Annual Drinking Water Quality Report for 2022

Town of Perryville

PWSID # 0070018 June, 2023

We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the water quality and services we deliver to you every day. Our goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

We are pleased to report that our drinking water is safe and meets federal and state requirements.

A source water assessment plan that provides more information such as potential sources of contamination has been prepared. This plan is available at the Cecil County Public Library or from Maryland Department of the Environment (MDE). For more information call 1-800-633-6101. **Results of the assessment can be found on the MDE website:**

https://mde.maryland.gov/programs/Water/water_supply/Source_Water_Assessment_Program/Pages/by_county.aspx

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If you have any questions about this report or concerning your water, please contact the Town Hall at (410) 642-6066. We want our residents to be informed about their water.

The Town of Perryville routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2022. As water travels over the land or underground, it can pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily pose a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per trillion (ppt) or Microgram per liter- one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

TEST RESULTS						
Contaminant	Violation Y/	Level Detecte	Unit Measuremen	MCLG	MCL	Likely Source of Contamination
Disinfection and Disinfection	n By-Pro	oducts				
Chlorine (2022)	N	0.6	ppm	4	4	Water additive to control microbes
Inorganic Contaminant	S		l	I		
Copper (Distribution) (2021)	N	0.089	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead (Distribution) (2021)	N	2	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Barium (2022)	N	0. 02 5	ppm	2	2	Discharge of drilling waste; Discharge from metal refineries; Erosion of natural deposits
Nitrate (measured as Nitrogen) Highest level detected	N	1	ppm	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural
Stage 2 Disinfection Bypro	ducts:					
TTHM (Distribution) (2022) (Total trihalomethanes) Average	N	58	ppb	0	80	By-product of drinking water chlorination
HAA5 (Distribution) (2022)Average (Haloacetic Acids)	N	37	ppb	0	60	By-product of drinking water chlorination
Microbiological	Violation	I evel		MCLG	Treatment	likely source of contamination
Contaminants		Detected			Technique	and y source of contamination
Turbidity					TT	
Lowest monthly % meeting limit	N	0.096	NTU	n/a	1.0	Soil runoff
Highest single measurement	N	100%	NTU	n/a	0.3	Soil runoff

 $Note: \textit{Test results are for year 2022 or as otherwise indicated; all contaminants are not required to be \textit{tested for annually}. \\$

2

Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Town of Perryville is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact Town Hall at 410-642-6066. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

PFAS – or per- and polyfluoroalkyl substances – refers to a large group of more than 4,000 human-made chemicals that have been used since the 1940s in a range of products, including stain- and water-resistant fabrics and carpeting, cleaning products, paints, cookware, food packaging and fire-fighting foams. These uses of PFAS have led to PFAS entering our environment, where they have been measured by several states in soil, surface water, groundwater, and seafood. Some PFAS can last a long time in the environment and in the human body and can accumulate in the food chain. Beginning in 2020, the Maryland Department of the Environment (MDE) initiated a PFAS monitoring program. Our water system was not tested for PFAS in 2022. In March 2023, EPA announced proposed Maximum Contaminant Levels (MCLs) of 4 ppt for PFOA and 4 ppt for PFOS, and a Group Hazard Index for four additional PFAS compounds. Future regulations would require additional monitoring as well as certain actions for systems above the MCLs. EPA will publish the final MCLs and requirements by the end of 2023 or beginning of 2024. Additional information about PFAS can be found on the MDE website: mde.maryland.gov/PublicHealth/Pages/PFAS-Landing-Page.aspx

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man-made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

MCL's are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

The Maryland Rural Water Association's State Circuit Rider assisted with the completion of this report.

Please call our Town Hall if you have questions about this report.410-642-6066