

DEPARTMENT OF PUBLIC WORKS SANITARY DISTRICT

310 Bateau Drive P.O. Box 10 Stevensville, MD 21666

Telephone: (410) 643-3535 Fax: (410) 643-7364 www.qac.org

County Commissioners: James J. Moran, At Large Jack N. Wilson, Jr., District 1 Stephen Wilson, District 2 Philip L. Dumenil, District 3 Christopher M. Corchiarino, District 4

June 2022

2022 Annual Drinking Water Quality Report

Stevensville Water System MDE Public Water System ID No. 017-0019

This report is required by the federal Safe Water Drinking Act Amendment of 1996 and is designed to educate our customers about the quality of the water we deliver to you every day. We are pleased to inform you that your drinking water is safe and meets all federal and state requirements. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. We do periodically have iron issues (brown water) which can be an inconvenience, but this situation does not represent any health or safety concerns.

With the interconnection of the Stevensville and Chester water distribution systems in 2010, your water can now be supplied by six (6) different water treatment facilities drawing groundwater from three different aquifers. A source water assessment was performed by the Maryland Department of the Environment and is available on their website, <u>mde.maryland.gov</u>.

The Stevensville water treatment facility is the primary producer and utilizes groundwater from a 20inch well 1,590 feet deep into the Lower Patapsco aquifer. The second is the Business Park water treatment facility which utilizes groundwater from a single 12-inch well 1,494 feet deep into the Lower Patapsco aquifer. The third is the Thompson Creek water treatment facility which utilizes groundwater from a single 12-inch well 1,546 feet deep into the Lower Patapsco aquifer. The fourth is the Bayside water treatment facility which utilizes two 10-inch wells 670 feet into the Upper Patapsco aquifer. The fifth is the Queen's Landing water treatment facility, which utilizes two 10-inch wells 280 feet deep into the Aquia aquifer. The sixth is the Bridgepointe water treatment facility, which utilizes groundwater from two 6-inch wells 710 feet deep into the Magothy aquifer.

The Sanitary District routinely monitors for constituents in your drinking water according to Federal and State laws. The enclosed table indicates the results of our monitoring for the period of January 1 to December 31, 2021. All drinking water, <u>including bottled drinking water</u>, may reasonably be expected to contain at least a small amount of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The Environmental Protection Agency (EPA) requires that all public water utilities publish the following four paragraphs:

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). *Note: Cryptosporidium is a microbe found in some surface water supplies such as rivers or reservoirs. It is not typically found in groundwater, which is where all of our water supplies originate.*

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Sanitary District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking and cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the EPA Safe Drinking Water Hotlines at 1-800-426-4791 or at http://www.epa.gov/safewater/lead. Note: None of our County water systems have ever had lead issues.

PFAS – short for per- and polyfluoroalkyl substances – refers to a large group of more than 4,000 human-made chemicals that have been used since the 1940s in a range of products, including stain- and water-resistant fabrics and carpeting, cleaning products, paints, cookware, food packaging and fire-fighting foams. These uses of PFAS have led to PFAS entering our environment, where they have been measured by several states in soil, surface water, groundwater and seafood. Some PFAS can last a long time in the environment and in the human body and can accumulate in the food chain.

Currently, there are no federal regulations (i.e. Maximum Contaminant Levels (MCLs)) for PFAS in drinking water. However, the U.S. Environmental Protection Agency (EPA) has issued a Health Advisory Level (HAL) of 70 parts per trillion (ppt) for the sum of PFOA and PFOS concentrations in drinking water. While not an enforceable regulatory standard, when followed, the EPA HAL does provide drinking water customers, even the most sensitive populations, with a margin of protection from lifetime exposure to PFOA and PFOS in drinking water. **Beginning in 2020, the Maryland Department of the Environment (MDE) initiated a PFAS monitoring program. The combined PFOA and PFOS concentration from samples taken from each of the Stevensville water system wells was below the detection limit. MDE anticipates that EPA will establish an MCL for PFOA and PFOS in the near future. This would entail additional monitoring. Additional information about PFAS can be found on the MDE website: <u>mde.maryland.gov</u> "**

On the included summary table, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we have provided the following definitions:

Non-Detect - laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) - one part per million corresponds to one minute in two years or a single penny in \$10,000. Also equivalent to milligrams per liter (mg/l).

Parts per billion (ppb) - one part per billion corresponds to one minute in 2,000 years, or a single penny in 10,000,000. Also equivalent to micrograms per liter (µg/l).

Action Level (AL) - the concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level Goal (MCLG) - The 'Goal' is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL) - The 'Maximum Allowed' is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

The Sanitary District's water staff consists of twelve personnel with a combined experience of 98 years. Each operator is required to obtain 30-hours of formal training every three years in water treatment and water distribution operations.

Major decisions affecting the water utility are made by the County Commissioners, sitting as the Sanitary Commission. Should you wish to attend, the Sanitary Commission meets the second Tuesday of the month at 5:00 p.m. in their meeting room located at 107 North Liberty Street, Centreville, Maryland. Sanitary Commission meeting minutes are published and posted on the County's webpage which can be reviewed at www.qac.org.

In our continuing effort to maintain a safe and dependable water supply it is often necessary to make improvements in your water system. The costs of these improvements, as well as the cost to retain experienced staff, are reflected in the small annual rate increases you may experience every July.

We want our customers to be informed about their water utility. If you have any questions about this report or concerning your water utility, feel free to contact me via email at aquimby@qac.org or by calling 410-758-0920.

Very truly yours,

Alan L. Quimby

Alan L. Quimby, P.E. Director of Public Works

2021 Stevensville Water System – Stevensville Area Facilities REGULATED CONTAMINANTS

Contaminant	Units	Level Detected Stevensville	Level Detected Business Park	Level Detected Thompson Creek	MCL	MCLG	Likely Sources
Gross Alpha ₁	pCi/L	1.8	1.8	1.8	15	0	Natural Deposits
Gross Beta ₁	pCi/L	9.1	9.1	9.1	50	0	Natural Deposits
Radium Combined ₁	pCi/L	2.6	2.6	2.6	5	0	Natural Deposits
B arium	ppb	148	128	124	2000	2000	Natural Deposits
Copper ₄	ppb	275	275	275	AL=1300	1300	Plumbing Corrosion
Lead ₄	ppb	Non-Detect	Non-Detect	Non-Detect	AL=15	0	Plumbing Corrosion
Nitrate	ppb	Non-Detect	Non-Detect	Non-Detect	10,000	10,000	Fertilizer Runoff
HaloaceticAcids ²	ppb	7.8 - 8.8	7.8 - 8.8	7.8 - 8.8	60	none	Disinfection Byproducts
Trihalomethanes ²	ppb	6.5 - 6.8	6.5 - 6.8	6.5 - 6.8	80	none	Disinfection Byproducts

UNREGULATED (but detected) CONTAMINANTS

While Lead and Copper testing was conducted as required by regulation, the results were not submitted to MDE in a timely fashion which is a reporting violation

Contaminant	Units	Level Detected Stevensville	Level Detected Business Park	Level Detected Thompson Creek
Bromodichloromethane ³	ppb	0.2	1.4	
Chloroform ³	ppb	0.5	4.1	
Chloromethane ³	ppb	0.3	Non-Detect	
Dichloroacetic Acid ³	ppb	Non-Detect	2.0	
Trichloroacetic Acid ³	ppb	Non-Detect	1.3	
Sodium	ppm	23	24	27
Sulfate	ppm	12	14	

Footnotes:

- 1. These contaminants are a measure of naturally occurring radioactive elements.
- 2. Disinfection Byproduct are formed when Chlorine reacts with natural compounds.
- 3. Volatile Organic Compounds (VOC) and Synthetic Organic Compounds (SOC).
- 4. While Lead and Copper testing was conducted as required by regulation, the results were not submitted to MDE in a timely fashion which is a reporting violation.

Test Sample Dates:

DisinfectionByproducts - August, 2021

Lead & Copper= August, 2021(copper test range: ND to 602 of 20 samples) Nitrate & Nitrite - August, 2021

Inorganics- August, 2021

VOC/SOC -August 19, 2016 (Stv), May 12, 2009/June 7 2010 (BP) & March 15, 2010/January 26, 2010 (TC)

Radioactives - 2019

Bold indicates new results for this year's report; most contaminants are not required to be tested annually

2021 Stevensville Water System – Chester Area Facilities

REGULATED CONTAMINANTS

Contaminant	Units	Level Detected Bridgepointe	Level Detected Bayside	Level Detected Queen's Landing	MCL	MCLG	Likely Sources
Gross Alpha ₁	pCi/L	1.8	1.8	1.8	15	0	Natural Deposits
Gross Beta ₁	pCi/L	9.1	9.1	9.1	50	0	Natural Deposits
Radium Combined ₁	pCi/L	2.6	2.6	2.6	5	0	Natural Deposits
Barium	ppb	Non-Detect	Non Detect	163	2000	2000	Natural Deposits
Copper ₄	ppb	275	275	275	AL=1300	1300	Plumbing Corrosion
Lead ₄	ppb	Non-Detect	Non-Detect	Non-Detect	AL=15	0	Plumbing Corrosion
Fluoride 4	ppb	Non-Detect	Non-Detect	Non-Detect	4000	4000	Natural Deposits
Nitrate	ppb	Non-Detect	Non-Detect	Non-Detect	10,000	10,000	Fertilizer Runoff
HaloaceticAcids ²	ppb	7.8 - 8.8	7.8 - 8.8	7.8 - 8.8	60	0	Disinfection Byproducts
Trihalomethanes ²	ppb	6.5 - 6.8	6.5 - 6.8	6.5 - 6.8	80	0	Disinfection Byproducts

UNREGULATED (but detected) CONTAMINANTS

Contaminant	Units	Level Detected Bridgepointe	Level Detected Bayside	Level Detected Queen's Landing
Bromodichloromethane ³	ppb	0.6	0.4	1.1
Chloroform ³	ppb	1.9	2.4	6.4
Chloromethane ³	ppb	Non-Detect	0.4	Non-Detect
Dibromodichloromethane ³	ppb	Non-Detect	0.3	1.5
Iron	ppb	390	240	167
Sodium	ppm	53	50	22
Sulfate	ppm	44	49	47

Footnotes:

- 1. These contaminants are a measure of naturally occurring radioactive elements.
- 2. Disinfection Byproduct are formed when Chlorine reacts with natural compounds.
- Volatile Organic Compounds (VOC) and Synthetic Organic Compounds (SOC).
- 4. While Lead, Copper and Fluoride testing was conducted as required by regulation, the results were not submitted to MDE in a timely fashion which is a reporting violation.
- Test Sample Dates:

DisinfectionByproducts-August,2021

Lead & Copper - August, 2021 (20 samples)

Nitrate & Nitrite-August, 2021

Inorganics - August, 2018

VOC/SOC-June 20, 2014 (BP), February 15, 2006 (QL), August 19, 2016 (BS)

Radioactives - 2019

Bold indicates new results for this year's report; most contaminants are not required to be tested annually