Annual Drinking Water Quality Report

MD0220005

TOWN OF SHARPTOWN

Annual Water Quality Report for the period of January 1 to December 31, 2023

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

For more information regarding this report contact:

Name William R. White

Phone

410-883-3767

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien.

TOWN OF SHARPTOWN is Ground Water

Sources of Drinking Water

resulting from the presence of animals or from human activity. surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the

does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and
- discharges, oil and gas production, mining, or farming Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses
- and can also come from gas stations, urban storm water runoff, and septic systems. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production,

Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water

Some people may be more vulnerable to contaminants in drinking water than the general population.

are available from the Safe Drinking Water Hotline (800-426-4791). or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS

wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily Drinking Water Hotline or at http://www.epa.gov/safewater/lead. from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot

07/11/2024

WELL 6 WI881308	WELL 5 WI732005	WELL 4 WI035019	NEW WELL 7 WI140033	Source Water Name
W1881308	WI732005	WI035019	WI140033	
GW	We	GW	GW	Type of Water
e ≺	~	~	Ţ,	Report Status
T OF SHARPTOWN APPROX. 270 FT S OF RD 313	NEAR 0 MIS OF SHARPTOWN APPROX. 100 FTS OF STATE ST	SHARPTOWN		Location

Coliform Bacteria

					sample.	-
Naturally present in the environment.	z	0			1 positive monthly	0
		samples	Level		Contaminant Level	
		Coli or Fecal Coliform	Maximum Contaminant	Positive	Maximum	Level Goal
Likely Source of Contamination	Violation	Total No. of Positive E.	Fecal Coliform or E. Coli	Highest No. of	Total Coliform	Maximum Contaminant

Maximum Contaminant	Total Coliform H	Highest No. of	Fecal Coliform or E. Coli	Total No. of Positive E.	Violation	Likely Source of Contamination
Level Goal	<u>è</u>	Positive	Maximum Contaminant Level	Coli or Fecal Coliform Samples		
0	1 positive monthly sample.	٠		0	z	Naturally present in the environment.
ũ	â					
Water Quality Test Results	Results					
Definitions:		The followi	The following tables contain scientific terms and measures, some of which may require explanation.	erms and measures, some	of which may req	uire explanation.
Avg:		Regulatory	Regulatory compliance with some MCLs are based on running annual average of monthly samples	s are based on running and	nual average of n	nonthly samples.
Maximum Contaminant Level or MCL:	Level or MCL:	The highest technology.	st level of a contaminant that '.	is allowed in drinking wate	r. MCLs are set a	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Level 1 Assessment:		A Level 1 found in or	A Level 1 assessment is a study of the found in our water system.	water system to identify p	otential problems	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Maximum Contaminant Level Goal or MCLG:	Level Goal or MCLG:	The level	The level of a contaminant in drinking water below which there is no known	water below which there is	no known or expe	or expected risk to health, MCLGs allow for a margin of safety.
Level 2 Assessment:		A Level 2 has occur	A Level 2 assessment is a very detailed study of the water system to identify potential problems and detern has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.	ed study of the water syster bacteria have been found i	n to identify poter in our water syste	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum residual disinfectant level or MRDL:	ifectant level or MRDL:	The highe microbial	The highest level of a disinfectant allow microbial contaminants.	wed in drinking water. Ther	e is convincing ev	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disi	Maximum residual disinfectant level goal or MRDLG:		The level of a drinking water disinfectant below which there is no known or disinfectants to control microbial contaminants.	int below which there is no minants.	known or expect	expected risk to health. MRDLGs do not reflect the benefits of the use of
na:		not applicable	able.			
mrem:		millirems	millirems per year (a measure of radiation absorbed by the body)	tion absorbed by the body)	~	
ppb:		microgran	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.	1 - or one ounce in 7,350,0	00 gallons of wat	er.

ppm:

Treatment Technique or TT:

A required process intended to reduce the level of a contaminant in drinking water. milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

Regulated Contaminants

Selenium	health care provider.	Nitrate [measured as Nitrogen] - Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should	Fluoride	Chromium	Barium	Inorganic Contaminants	Total Trihalomethanes (TTHM)	Haloacetic Acids (HAA5)	Chlorine	Disinfection By-Products
01/19/2021		2023	2023	01/19/2021	01/19/2021	Collection Date	2023	2023	2023	Collection Date
Ž	E	ω	0.3	2.2	0.143	Highest Level Detected	45	တ	0.2	Highest Level Detected
7.7-1.1		6.8 - 8.5	0.3-0.3	2.2-2.2	0.143 - 0.143	Range of Levels Detected	0 - 82.4	0 - 15.2	0.2 - 0.2	Range of Levels Detected
50		10	4	100	2	MCLG	No goal for the total	No goal for the total	MRDLG = 4	MCLG
50		10	4.0	100	2	MCL	80	60	MRDL = 4	MCL
ppb		mqq	ppm	ppb	ppm	Units	ppb	ppb	ppm	Units
z		z	z	z	z	Violation	z	z	z	Violation
Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.		Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.	Discharge from steel and pulp mills; Erosion of natural deposits.	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.	Likely Source of Contamination	By-product of drinking water disinfection.	By-product of drinking water disinfection.	Water additive used to control microbes.	Likely Source of Contamination

								rodon and Irranium
Erosion of natural deposits.	z	pCi/L	15	0	3.3 - 3.3	3.3	06/14/2018	Gross alpha excluding
The Committee of the Co								
LI CONTINUE OF TAXABLE AND ADDRESS OF TAXABLE	2	פרויר	σ	0	2-2	2	06/14/2018	Combined Radium 226/228
Erosion of natural deposits.	Z	- 0:1	,					
1	82	()	٥	c	00	00	06/14/2018	Beta/photon emitters
Decay of natural and man-made deposits.	z	DOM:	E0	o .				
					0000	Delected		
			10		Detected	Detected	Collection Date	Radioactive Contaminants Collection Date
Violation Likely Source of Contamination	Violation	Units	MCL.	MCLG	Range of Levels	Linkort I avai		

Return Links

Water System Detail

Water Systems

Water System Search

County Map

Clossary

Drinking Water Branch

Sample and Compliance Schedules

Status: Principal County Served: Water System Name: Water System No.: WICOMICO TOWN OF SHARPTOWN MD0220005 State Type : Primary Source : Federal Type: Activity Date: GW 01-01-1973 0

TCR Schedules

(ICK)			П					
COLIFORM	3100	/31	1/1		10-01-2011	N N	RI	_
Analyte Name	Analyte Code	Seasonal End NIM/DD	Seasonal Start MN/DD	Effective and	Effective Begin Date	Sample	Sample	Comple

Total Number of Schedules Displayed = 1

Frequent Field Sample Schedules

Water System Facility State Asgn ID
Water System Facility Name
Analyte Code
Analyte Name
Days to Monitor per month
Samples Required per day
Effective Begin Date
End Date
Summary

Total Number of Schedules Displayed = 0

Non-TCR Group Schedules

			7 27		
	<u>DS01</u>	DS01	Link to Sampling Points		
	DISTRIBUTION SYSTEM	DISTRIBUTION SYSTEM	Water System Facility Name		
	2DBP	<u>PBCU</u>	Group Code & Link to Analytes		
	STAGE 2 DBP	LEAD AND COPPER	Analyte Group Name		
	2	10	Sample		
	RT	RT	e Sample Type		
	QT	3Y	Sample		
100 V	09-01-2024 to 09-30- 2024	06-01-2026 to 09-30- 2026	Current Monitoring Period Date Range		
	12-01-2024 to 12-31- 2024	06-01-2029 to 09-30- 2029	Next Monitoring Period Date Range		
	PWS	PWS	Responsible Party		

		1	With the second second	
<u>TP01</u>	<u>TP01</u>	<u>TP01</u>	<u>TP01</u>	<u>TP01</u>
WTP WELL 4 5 6 7	WTP WELL 45	WTP WELL 4 5 6 7	WTP WELL 4 5 6 7	WTP WELL 4 5 6 7
<u>NO3</u>	<u>580C</u>	<u>2V21</u>	<u>280C</u>	1109
NITRATE	5SOC (SOCS)	2V21 (VOCS)	2SOC (SOCS)	1109 GROUP (IOCS)
F-15	L			<u>-</u>
RT	RT	RT	RT	RT
QT	3Y	3Y	3Y	3Y
07-01-2024 to 09-30- 2024	01-01-2025 to 12-31- 2025	Monitoring Completed	01-01-2025 to 12-31- 2025	01-01-2025 to 12-31- 2025
10-01-2024 to 12-31- 2024	01-01-2028 to 12-31- 2028	01-01-2028 to 12-31- 2028	01-01-2028 to 12-31- 2028	01-01-2028 to 12-31- 2028
PWS	MDE	PWS	MDE	PWS

Total Number of Schedules Displayed = 7

Non-TCR Individual Schedules

	The second second second				
<u>TP01</u>	<u>TP01</u>	<u>TP01</u>	TP01	TP01	Facility and Link to Sampling Points
WTP WELL 4 567	WTP WELL 4 567	WTP WELL 4 567	WTP WELL 4 567	WTP WELL 4 5 6 7	Water System Facility Name
4030	4020	4000	1025	1005	Analyte Code
RADIUM- 228	RADIUM- 226	GROSS ALPHA, EXCL. RADON &	FLUORIDE	ARSENIC	Analyte Name
1	1	į.	.	_	Sample Count
RT	RT	RT	RT	RT	eldines
6Y	6Y	67	3Y	3Y	Sample
01-01-2029 to 12-31- 2029	01-01-2029 to 12-31- 2029	01-01-2024 to 12-31- 2024	Monitoring Completed	01-01-2025 to 12-31- 2025	Current Monitoring Period Date Rauge
	1	01-01-2030 to 12-31- 2030	01-01-2027 to 12-31- 2027	01-01-2028 to 12-31- 2028	Next Monitoring Period Date Range
MDE	MDE	MDE	PWS	PWS	Responsible Party

Compliance Schedule

г			I	Г	Γ	Ī	Ι		ı
DOCOMENIATION	GWUDI DETERMINATION	GWUDI DETERMINATION DOCUMENTATION	GWUDI DETERMINATION DOCUMENTATION	GWUDI DETERMINATION DOCUMENTATION	LCNT - LEAD CONSUMER NOTICE	TTHM OPERATIONAL EVALUATION LEVEL	DATA REQUESTED	DATA REQUESTED	Activity Name
					12-29-2023	07-30-2014	10-28-1998	10-28-1998	Activity Due Date
		72			12-29-2023	07-30-2014			Activity Projected Date
	05-17-2007	01-05-1999	01-05-1999	01-05-1999					Activity Achieved Date
									Activity Reported Date

Total Number of Compliance Schedules Displayed = 8

Disclaimer

sufficient samples have been collected for some but not all the analytes in the group. A monitoring violation may occur if samples were not collected from the appropriate sampling point, were not analyzed by a certified laboratory, or were not reported on time. specified water system facility (WSF). If the Current Monitoring Period Date Range reads "Monitoring Partially Completed", display this message. Total Coliform Rule (TCR), triggered, confirmation or repeat schedules or schedules with a daily or weekly frequency will not If the Current Monitoring Period Date Range reads "Monitoring Completed", sufficient samples have been collected from the

The Current Date and Time is: Thu Jul 11 10:59:41 EDT 2024

* 1

×

.