

County Commissioners:

James J. Moran, At Large Jack N. Wilson, Jr., District 1 J. Patrick McLaughlin, District 2 Philip L. Dumenil, District 3 Christopher M. Corchiarino, District 4

DEPARTMENT OF PUBLIC WORKS SANITARY DISTRICT

310 Bateau Drive Stevensville, MD 21666

Telephone: (410) 643-3535 Fax: (410) 643-7364 www.gac.org

June 2024

2024 Annual Drinking Water Quality Report

Sudlersville Water Treatment Facility MDE Public Water System ID No. 017-0024

This report is required by the federal Safe Water Drinking Act Amendment of 1996 and is designed to educate you about the quality of the water we deliver to you every day. On behalf of the Town Commissioners we are pleased to inform you that your drinking water is safe and meets all federal and state requirements. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Your water is supplied by the Sudlersville water treatment facility that utilizes groundwater from two wells into the Aquia aquifer. A source water assessment was performed by the Maryland Department of the Environment and is available on their website, mde.maryland.gov.

The Sanitary District routinely monitors for constituents in your drinking water according to Federal and State laws. The enclosed table indicates the results of monitoring for the period of January 1 to December 31, 2023. All drinking water, including bottled drinking water, may be reasonably expected to contain at least a small amount of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The Environmental Protection Agency (EPA) requires that all public water utilities publish the following four paragraphs:

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Note: Cryptosporidium is a microbe found in some surface water supplies such as rivers or reservoirs. It is not typically found in groundwater, which is where all of our water supplies originate.

If present, lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Queen Anne's County Sanitary District is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of

dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact the Queen Anne's County Sanitary District at (410) 643-3535. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead. *Note: None of our water systems have ever had lead issues.*

PFAS – short for per- and polyfluoroalkyl substances – refers to a large group of more than 4,000 human-made chemicals that have been used since the 1940s in a range of products, including stain- and water-resistant fabrics and carpeting, cleaning products, paints, cookware, food packaging and fire-fighting foams. These uses of PFAS have led to PFAS entering our environment, where they have been measured by several states in soil, surface water, groundwater, and seafood. Some PFAS can last a long time in the environment and in the human body and can accumulate in the food chain. On January 19, 2022 the Maryland Department of the Environment (MDE) tested the Sudlersville wells for PFAS. None were detected.

In the following table you will find many terms and abbreviations you might not be familiar with. To help you to better understand these terms we've provided the following definitions:

Non-Detect - laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) - one part per million corresponds to one minute in two years or a single penny in \$10,000. Also equivalent to milligrams per liter (mg/l).

Parts per billion (ppb) - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. Also equivalent to micrograms per liter ($\mu g/I$).

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level Goal (MCLG) - The 'Goal' is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL) - The 'Maximum Allowed' is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

The County Sanitary District's water staff consists of twelve personnel with a combined experience of 98 years. Each operator is required to obtain 30 hours of formal training every 3 years in water treatment and water distribution operations.

Major decisions affecting the water utility are made by the Town Commissioners of Sudlersville. Should you wish to attend, the Commission meets the first Wednesday at 6:30 p.m. in their meeting room located at 200 South Church Street.

We want our customers to be informed about their water utility. If you have any questions about this report or concerning your water utility, please contact me at the above number.

Very truly yours,

Matt Lacas

Matt Lucas, P.E. Chief Sanitary Engineer

TEST RESULTS 2023 Sudlersville Water Treatment Plant

REGULATED CONTAMINANTS

Contaminant	Units	Level Detected	MCL	MCLG	Likely Sources
¹ Gross Beta	pCi/L	5.1	50	0	Natural Deposits
¹ Combined Radium	pCi/L	1.2	5	0	Natural Deposits
Arsenic	ppb	Non-Detect - 5	10	0	Natural Deposits
Barium	ppb	21	2000	2000	Natural Deposits
Copper	ppb	37	AL=1300	1300	Plumbing Corrosion
Fluoride	ppb	Non-Detect	4000	4000	Natural Deposits
Nitrate	ppb	Non-Detect	10,000	10,000	Fertilizer Runoff
Lead	ppb	Non-Detect	AL=15	0	Plumbing Corrosion
² Haloacetic Acids	ppb	4 - 4	60	0	Disinfection Byproducts
² Trihalomethanes	ppb	10 - 11	80	0	Disinfection Byproducts

UNREGULATED (but detected) CONTAMINANTS

Contaminant	Units	Level Detected	
Trichloroacetic Acid	ppm	3	
Chlorodibromomethane	ppb	1	
³ Bromodichloromethane	ppb	5	
³ Chloroform	ppb	6	
Sodium	ppm	8	

- 1. Gross Alpha and Gross Beta are a measure of naturally occurring radioactive contaminants.
- Disinfection Byproducts are formed when chlorine reacts with natural compounds.
- 3. The Maryland Department of the Environment (MDE) tests for Volatile Organic Compounds (VOC) and Synthetic Organic Compounds (SOC)

Test Sample Dates: (full test results available upon request)

²Disinfection By-Products – September 6, 2022 (2 samples)

Lead & Copper – August 26, 2021 (Copper Test Range: Non-Detect to 38 of 5 samples) (Lead Test Range: all Non-Detect of 5 samples)

Arsenic – March 22, June 30, August 23, December 13, 2023

Nitrate - March 22, 2023

Inorganics - August 26, 2021

³VOC/SOC – September 10, 2020 (1 sample)

Radioactives - 2018

WATER CONSERVATION TIPS

1. Introduction

According to the American Water Works Association, the average per person indoor water use in the United States is 69.3 gallons per day. The breakdown of this use is shown below. As you will note, leaks are responsible for 13.7%, or 9.5 gallons per day (gpd).

Toilets	26.7%	(18.5 gpd)	Leaks	13.7%	(9.5 gpd)
Clothes Washing	21.7%	(15.0 gpd)	Dishwasher	1.4%	(1.0 gpd)
Showers & Baths	18.5%	(12.8 gpd)	Other	2.2%	(1.6 gpd)
Faucets	15.7%	(10.9 gpd)			

- 2. Toilets Toilets use the majority of water in your home, even when they don't leak.
 - Older toilets (installed prior to 1994) use 3.5 to 7 gallons per flush. Replacing an older toilet can save the typical household 7,900 to 21,700 gallons per year.
 - You can also fill one-half gallon milk bottles with water and place in the tank. Doing so will then save one-half gallon per flush and will not affect performance.
 - Check toilets periodically for leaks. This can be done by putting food coloring in the tank (not the bowl) and waiting an hour. If the color is in the bowl after an hour, the toilet is leaking. You may need to clean or replace the flapper. This is the number one cause of high-usage complaints typically a bathroom in a spare bedroom no one uses. A toilet leak can increase your bill by 10 times if allowed to leak for a full quarter!
 - Don't use toilets as a trashcan. Flush only when necessary.
 - Do not flush unused medicines down the toilet; damage to the environment may result.
- 3. Bathing The third highest water use (and the second highest energy use) is bathing.
 - If your showerhead can fill a one-gallon bucket in less than 20 seconds, replace it with a water efficient showerhead.
 - A short shower instead of a bath will save 20 gallons of water.
 - When taking a bath, don't let the cold water escape when you first turn on the hot water, the hot water which follows will warm the initial burst of cold water.

4. Appliances

- Clothes washers are the second biggest water user which uses 30-35 gallons per load. A high efficiency model will use 30% less water and 40-50% less energy.
- A full dishwasher uses as much as 25 gallons per load, but a full dishwasher uses less water than washing the same load by hand. Newer dishwashers should not require pre-rising of the dirty dishes in the sink.

5. Other

- Install aerators on all faucets.
- Turn off water when brushing teeth.
- Keep water in the refrigerator to drink, rather than letting water run into the sink while waiting for the water to get cool.
- Keep garbage disposal use to a minimum.

6. Irrigation

- A single yard sprinkler uses as much water in <u>one hour</u> as a typical home uses in 24 hours. If you water one hour a day for a week, you have doubled your water use for that week.
- Unless you have a 'yard meter' used strictly for irrigation, you will also be paying a sewer fee for the irrigation water.
- Irrigate sparingly, or use alternative means such as rain barrels.