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[1] The overall size of the “dead zone” within the main stem of the Chesapeake Bay and its
tidal tributaries is quantified by the hypoxic volume (HV), the volume of water with
dissolved oxygen (DO) less than 2 mg/L. To improve estimates of HV, DO was subsampled
from the output of 3-D model hindcasts at times/locations matching the set of 2004-2005
stations monitored by the Chesapeake Bay Program. The resulting station profiles were
interpolated to produce bay-wide estimates of HV in a manner consistent with nonsynoptic,
cruise-based estimates. Interpolations of the same stations sampled synoptically, as well as
multiple other combinations of station profiles, were examined in order to quantify
uncertainties associated with interpolating HV from observed profiles. The potential
uncertainty in summer HV estimates resulting from profiles being collected over 2 weeks
rather than synoptically averaged ~5 km®. This is larger than that due to sampling at
discrete stations and interpolating/extrapolating to the entire Chesapeake Bay (2.4 km®). As
a result, sampling fewer, selected stations over a shorter time period is likely to reduce
uncertainties associated with interpolating HV from observed profiles. A function was
derived that when applied to a subset of 13 stations, significantly improved estimates of HV.
Finally, multiple metrics for quantifying bay-wide hypoxia were examined, and cumulative
hypoxic volume was determined to be particularly useful, as a result of its insensitivity to
temporal errors and climate change. A final product of this analysis is a nearly three-decade
time series of improved estimates of HV for Chesapeake Bay.
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1. Introduction

[2] The prevalence and spatial extent of low dissolved ox-
ygen (DO) concentrations in estuarine and marine environ-
ments has been increasing for at least 50 years [Diaz and
Rosenberg, 2008; Gilbert et al., 2010]. Although hypoxia
does occur naturally, as in the Baltic Sea [Conley et al.,
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2009], the eastern Pacific Ocean [Helly and Levin, 2004],
and fjord systems [Nordberg et al., 2001], much of the
recent increase in occurrence is believed to be caused by
anthropogenic effects [Cloern, 2001; Diaz and Rosenberg,
2008], with a greater increase in the number of hypoxic
coastal systems than of hypoxic open ocean systems [Gilbert
et al., 2010]. Examples include the Chesapeake Bay [Officer
et al., 1984], Gulf of Mexico [Rabalais et al., 2007], Hood
Canal [Parker-Stetter and Horne, 2009], Lake Erie [Hawley
et al., 2006], and Long Island Sound [Lee and Lwiza, 2008].
In this study we specifically focus on the presence of hy-
poxia in the Chesapeake Bay (hereafter also referred to as
the Bay), a 12,000 km? estuary with a 170,000 km” water-
shed, relatively weak tidal mixing, and a central channel
exceeding 25 m in depth, making it especially vulnerable to
nutrient enrichment and hypoxia [Linker et al., 2008].

[3] Hypoxia, defined as DO < 2.0 mg L™, was observed
in the main channel of the Chesapeake Bay as early as the
1930s [Newcombe and Horne, 1938], and severe anoxia
(DO < 0.2 mg L") was observed at least as early as 1984
[Seliger et al., 1984]. Hypoxia and anoxia are now
observed every summer in large portions of the Bay [Hagy
et al., 2004]. In general, phytoplankton supply organic
matter to the deep main stem (MS), which is isolated from

4924



BEVER ET AL.: IMPROVING HYPOXIC VOLUME ESTIMATES

39.5

39

=77 -76.8 -76.6

Figure 1.

-76.4

-76.2
Longitude

-76 -75.8

Bathymetry and spatial extent of Chesapeake Bay and its tributaries. The bathymetry is

shaded. Circles are the CBP station locations; triangles mark the 13 stations used as a station set in this
paper; squares show the CBP stations used for CH3D and ICM open boundary conditions; the star at the
northern extent of the Bay marks station CB1.1. The aspect ratio of the Bay is stretched in the east-west
direction, to better show the bathymetry and station locations.

oxygenated surface water by stratification in the spring
[Taft et al., 1980]. The decay of organic matter in the iso-
lated bottom water draws down the DO, leading to the
observed hypoxic conditions [Officer et al., 1984; Taft et
al., 1980]. Stronger winds increase lateral and vertical mix-
ing in the fall [Goodrich et al., 1987], oxygenating the bot-
tom water. The volume of low DO water also shows
significant correlations to freshwater and nutrient input to
the Bay and to wind direction, indicating that these factors
may also be driving year-to-year variations in hypoxia
[Hagy et al., 2004 ; Murphy et al., 2011; Scully, 2010b].

[4] The duration and extent of hypoxia in modern sys-
tems is generally estimated directly using measured DO (as
in DiMarco et al. [2010], Hagy et al. [2004], Lee and Lwiza
[2008], and Officer et al. [1984]); however, field observa-
tions of DO are inevitably limited in their spatial and/or
temporal resolution. Current hypoxia observations within
the Chesapeake Bay include DO profiles collected through
the Chesapeake Bay Program (CBP; http://www.chesapea-
keBay.net/data_waterquality.aspx). Roughly 30-60 stations
are sampled monthly to semimonthly throughout the year,
giving good spatial coverage of the entire Bay system
(Figure 1 and Table 1). Vertical profiles of DO, temperature,
salinity, chlorophyll a, pH, and nutrient data are collected at

the sampled stations. It takes anywhere from 7 to 14 days to
collect the data from the stations sampled during a specific
cruise using multiple vessels from two institutions; thus, the
observations are not a synoptic representation of the system.
The DO profiles are converted to different metrics that com-
pare the amount of hypoxia from year to year and act as indi-
cators of the health of the Bay, with the volume of hypoxic
water currently being a widely used metric (as in Hagy et al.
[2004] and Murphy et al. [2011]).

[s] As computing power has increased, models have
become critical in efforts to extend DO observations in
space and time and to determine the overall extent of hy-
poxia and the processes responsible for oxygen drawdown
[Cerco and Cole, 1993 ; Cerco and Noel, 2004, 2005 ; Het-
land and DiMarco, 2008; Liu and Scavia, 2010; Pena
et al., 2010; Scully, 2010a]. For Chesapeake Bay alone,
there are several different 3-D numerical model implemen-
tations investigating the driving processes behind observed
DO. Scully [2010a] used the ChesROMS hydrodynamic
model with a single-term DO formulation to show that hy-
poxia within the Chesapeake Bay was strongly influenced
by wind direction during the summer months. Cerco [1995]
and Linker et al. [2008] used the CBP model to investigate
the effects of reduced nutrient loads on DO within
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Table 1. All the Considered Chesapeake Bay Program Station
Locations, With the Station Names, Depths (m), Latitude/Longi-
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Table 1. (continued)

Name Latitude Longitude Depth Location
tude, and the General Location Within the Estuary®
LE3.2 —76.550470 37.669140 16 TRIB
Name Latitude Longitude Depth Location | g33 —76.474420 37.688420 7 TRIB
CBLI 6.081340 39545113 P STEM  LE34 —76.444860 37.631890 22 TRIB
CB2.1 ~76.024666  39.440113 6 STEM ~ LE3ON —76283000  37.606800 4 TRIB
CB22 —76.174675 39346775 13 STEM LE3.6S —76.293000 37.572630 4 TRIB
CB3.1 76238010 39.248444 19 STEM B30 —76284670  37.596798 12 TRIB
CB32 76306340 39.163445 12 sTEM ~ LE37 —76306610  37.530690 7 TRIB
CB33C —76359680  38.995113 26 STEM  LE41 —76.691250 - 37.418830 1 TRIB
CB33E 76346344 39.001778 9 STEM ~ L[E42 —76578110 37290440 18 TRIB
CB33W ~76.388016  39.003445 9 STEM ~ LE43 —76430940 37233920 22 TRIB
CB4.1C 76399670 38.825115 33 STEM LES5.1 —76.648330 37.202970 15 TRIB
CB4.1E —76.371060 38.816505 95 TRIB LES.2 —76.593060 37.056000 10 TRIB
CB4IW  —76462730  38.813450 9 sTEmM  LE33 ~76475440 36990440 g TRIB
CB4.2C ~76417730  38.644840 28 sTEm B34 776392750 36954860 18 TRIB
CB4.2F —76.399950 38644840 13 STEM LES.5-W —76.313280 36.999030 15 TRIB
CB42W  —76501340  38.643450 9 STEM ~ LESS 76303000 36996810 27 TRIB
CB4.3C —76.434670 38.556510 28 STEM LES.6 —76.338360 36.904560 18 TRIB
CB4.3E —76.389670 38.556510 23 STEM RETI1.1 —76.664130 38.490677 13 TRIB
RET2.4 —76.990530 38.362625 17.8 TRIB
CB4.3W —76.493010 38.556510 9 STEM
CCB4.4 _76.343000 38413177 32 sTEM ~ RET3.1 —76.822200  37.917300 8 TRIB
CB5.1W —76.375500 38325123 9 STEM RET3.2 —76.711950 37.811580 7 TRIB
CB5.1 ~76293000 38318455 36 sTEM ~ RET42 —76.797150 37571250 17 TRIB
CB5.2 —76.228000 38.136790 33 STEM RET4.3 —76.788890 37.508690 7 TRIB
CBS3 26.168000 37911793 2% oTEM  RETS2 —76.782190 37.202940 15 TRIB
CB5.4W ~76294670  37.813465 5 STEM ~ 1F17 —76.680240 38581787 4 TRIB
CB5.4 —76.174660 37.800130 33 STEM TF2.1 —77.048590 38.706505 21 TRIB
CB5S ~76.189670  37.691800 23 STEM 133 —76.909280 38018470 ? TRIB
CB6.1 ~76.162160  37.588467 13 STEM ~ 1F3-6A —76923204  37.221817 8 TRIB
CB6.2 ~76.156330  37.486800 14 STEM ~ WE41 —76.346340  37.311806 6 TRIB
CB6.3 —76.159660 37411526 16 STEM WE4.2N —76.390500 37.251810 7 TRIB
WE4.2S —76.386340 37.236810 6 TRIB
CB6.4 —76.207990 37.236526 12 STEM
CB7.IN —75.974660 37.775127 33 STEM WE4.2 —76.386340 37.241810 18 TRIB
CB7.1S 76057990  37.581240 17 STEM ~ WE43 —76.373000 37176810 6 TRIB
CB7.1 75989660  37.683464 26 STEM ~ VE44 —76293000 37110146 8 TRIB
CB7.2E 76024660  37.411526 13 TRIB V12! —76.341620 - 39.383442 2 TRIB
CB72 76.079660 37411526 - tRip | WIS —76.524690 39.208443 16.2 TRIB
CB73E —76.053825 37228752 27 STEM ~ WI6I —76474686 39075110 6 TRIB
CB7.3 —76.125210 37.116810 16 STEM “The reported depth is the maximum reported in CBP profiles from each
CB7.4N —75.999374 37.062366 15 STEM station. STEM and TRIB refer to the station location within the main stem
CB7.4 —76.020485 36.995700 17 STEM of the Bay or one of the tributaries.
CB8.1E —76.034935 36.947370 19 STEM
CBS.1 —76.167720 36.995422 15 STEM
EEl.1 —76.249670 38.883450 13 TRIB . L. L.
EE2.1 —76.274666 38.650120 9 TRIB Chesapeake Bay, ultimately driving management decisions
EE2.2 76308010 38.533455 14 TRIB which potentially may cost in the tens of billions of dollars
EE3.0 —76.016330 38.283455 8.2 TRIB [Maryland, 2012; Commonwealth of Virginia, 2010]. The
EE3.1 —75.974655 38.200123 13.6 TRIB  authors are also currently using a combination of eight
EE3.2 —75.924670 37.980103 28.6 TRIB model implementations to investigate seasonal correlations
EE3.3 —75.766320 37.941790 3.7 TRIB  petween bottom DO and water column stratification.
EE3.4 —75.791320 - 37.908460 7 TRIB [6] The goal of the present study is to use multiple model
EE3.5 —75.844376 37.796516 29 STEM  cimulations combined with field measurements to better
ETI1.1 —75.958000 39.575115 3 TRIB . T
i _75.816320 39525112 146 TRIB reprgsent the spatial extent and temporal variability .of DO
ET2.3 75809666 39.508450 13.6 TRIB w1'th1n the Chesapeake Bay estuarine system..To this end,
ET4.2 —76.216340 38.991780 19.8 TRIB thlS Study used a COHeCthn Of four 3-D numer‘lcal hydrody-
ET5.2 —76.058000 38.580120 13.9 TRIB namic and DO model implementations, combined with DO
ET6.2 —75.882990 38.333454 4 TRIB  measurements, to investigate optimal DO sampling strat-
LEIL.1 —76.601620 38.425125 12 TRIB  egies within the Chesapeake Bay. The main objectives of
LE1.2 —76.511060 38.378735 18 TRIB this paper are (1) to determine to what degree the current
LEL3 —76.488010 38.340680 25.5 TRIB  observational DO sampling strategy captures the total vol-
LEL4 —76.421340 38.312070 17 TRIB  yme of hypoxic water within the Bay, (2) to determine if
LE2.2 —76.583015 38.166794 14.4 TRIB there is a minimum number of optimal stations that can be
LE2.3 —76.347725 38.021515 21 TRIB used to accurately calculate the hypoxic volume (HV)
LE3.1 —76.615920 37.759250 11 TRIB

within the Bay, (3) to use results from the multiple
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numerical models to generate a 29 year time series of likely
improved estimates of hypoxic volume from observed DO
concentrations, and (4) to investigate metrics other than
hypoxic volume that could be used for characterizing total
hypoxia within Chesapeake Bay.

2. Methods

[7] In this study, results from multiple numerical mod-
els are combined with dissolved oxygen measurements in
the Chesapeake Bay in order to better understand
hypoxic volume variability in the Bay. The hypoxic vol-
umes calculated here only include portions of the Bay
and its tributaries that have bottom depths greater than 2
m. Thus, we do not address the occurrence of hypoxic
events generated in shallower waters resulting from diel
variations in respiration and productivity, among other
factors [i.e., Breitburg, 1990]. Because these shallow
waters (<2 m) comprise only about 2.5 km® (~3%) of the
total volume of the Bay, this omission results in a rela-
tively small error in our total Bay hypoxic volumes. The
occurrence of shallow water hypoxia, however, is one of
the key indicators of ecosystem health and thus should be
considered in future modeling studies attempting to bet-
ter understand water quality in the Chesapeake Bay and
its tributaries.

[8] A brief introduction to the hydrodynamic-DO models
used in these analyses is provided below (section 2.1) as
well as the calculations of hypoxic volume (section 2.2). A
method to scale interpolated hypoxic volumes from dis-
crete station sets to better match the true HV within the
Bay is then discussed (section 2.3) and is followed by a dis-
cussion of other useful methods for quantifying hypoxia
within the Bay (duration and spatial extent of hypoxia, cu-
mulative hypoxic volume (CHV), section 2.4). This section
concludes with an explanation of the target diagrams and
other model skill metrics used to determine model profi-
ciency (section 2.5).

2.1.

[¢9] The backbone of the numerical model estimates of
HV are the hydrodynamic models that estimate the water
characteristics and currents necessary for the DO calcula-
tions. Two 3-D hydrodynamic numerical models are used
in this study: (1) The Chesapeake Bay Program’s Curvilin-
ear Hydrodynamics in Three Dimensions (CH3D) model
and (2) the Regional Ocean Modeling System (ROMS).
We term model simulations using different model grids,
forcing conditions, or DO formulations as DO model
“implementations.” These DO model implementations
were used to hindcast DO throughout the Bay for the calen-
dar years 2004 and 2005. The years 2004 and 2005 were
chosen to represent relatively wet and average years,
respectively, and are close enough in time that the effects
of long-term climate change and land-use change between
the 2 years can be assumed to be negligible.

2.1.1. Hydrodynamic Models

[10] The CH3D model used a curvilinear boundary-fitted
horizontal grid with 11,064 horizontal cells and a five-foot
(1.52 m) Cartesian vertical grid with a maximum of 19 ver-
tical layers [Cerco et al., 2010; Johnson et al., 1991 ; Wang
and Johnson, 2000]. Turbulence was modeled using the k-¢

Three-Dimensional Numerical Models

turbulence closure scheme. The open boundary with the At-
lantic Ocean was set at the mouth of the Chesapeake Bay,
with open boundary conditions based on CBP monitoring
observations at three stations spanning the Bay mouth (Fig-
ure 1; P. Wang, personal communication, 2013). Fresh-
water flow from above the fall line was from the U.S.
Geological Survey, and freshwater input below the fall line
was from the CBP watershed model [Donigian et al., 1994
Linker et al., 2000]. Wind velocity was taken from the
Thomas Point Light, Patuxtent Naval Station, Richmond
International Airport, Norfolk International Airport, and
DC National Airport, then scaled to represent the magni-
tude over water and interpolated to the model grid [Cerco
etal., 2010].

[11] The ROMS model used a curvilinear horizontal grid
and a stretched terrain-following vertical grid with 20 verti-
cal layers [Haidvogel et al., 2008 ; Shchepetkin and McWil-
liams, 2005]. ROMS results were based on both the
Chesapeake Bay ROMS Community Model (ChesROMS)
[Xu et al., 2012] and the Chesapeake Bay Operational Fore-
cast System (CBOFS) [Lanerolle et al., 2009, 2011] imple-
mentations. Both versions of ROMS wused the #k-w
turbulence closure, and temperature and salinity open
boundary conditions were based on the World Ocean Atlas
2001. Tidal forcing was based on the Advanced CIRCula-
tion model (ADCIRC), with nontidal water levels
accounted for using observations along the Atlantic Ocean
coastline near the Bay mouth. Rivers were included using
U.S. Geological Survey data. Meteorology, wind, and heat
fluxes were a combination of model results and observa-
tions. A major difference between ChesROMS and CBOFS
was the horizontal grid resolution; ChesROMS was 100 x
150 cells with about 1 to 7 km resolution; CBOFS was 332
x 291 cells with about 0.03 to 4 km resolution. In Ches-
ROMS and CBOFS about 68% and 80% of the cells were
on land, respectively, and were not included in the dynamic
calculations.

2.1.2. DO Model Implementations

[12] Four DO model implementations were used in this
analysis and are described as follows: (1) CH3D with the
ecological Integrated Compartment Model (ICM), (2)
CBOFS with a constant respiration rate DO formulation
[Scully, 2013], (3) ChesROMS with the same constant res-
piration rate as in (2), and (4) ChesROMS with a depth-
dependent respiration rate DO formulation.

[13] (1) CH3D + ICM: the ICM is a complex multicom-
ponent ecological model that was forced offline with output
from CH3D and has been extensively calibrated to the
Chesapeake Bay [Cerco, 2000; Cerco and Noel, 2004;
Cerco et al., 2010; Linker et al., 2000]. Simulations ana-
lyzed here (provided to us by the CBP) used 24 state varia-
bles in the water column (including physical variables,
multiple algal and zooplankton groups, nitrogen, phospho-
rous, and silica) and a full sediment diagenesis component.
The model computed algal biomass, nutrient cycling, and
DO, as well as numerous additional constituents and proc-
esses (P. Wang, personal communication, 2013). For this
study we were provided output from the CBP Modeling
Team run number 379, which used the 11,064 horizontal

grid cell version of ICM.
[14] (2) CBOFS+1-Term and (3) ChesROMS + 1-
Term: these two implementations used the ROMS
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Table 2. Summary of the Different Methods of Calculating HV?

Hypoxic Volume Name DO Source DO Sample Timing DO Sampling Locations Notes
CBP Data HV CBP Data Monthly to bimonthly, Entire Bay, variable stations Uses all available data for a given
~2 week window sampled dependent on cruise
cruise
Integrated 3-D Models Daily, instantaneous Entire Bay Total 3-D modeled HV
Absolute Match Models Same as CBP Data HV, Same as CBP Data HV, Directly comparable to CBP Data HV
~ 2 week window entire Bay
Spatial Match HV Models When CB1.1 was sampled, Same as CBP Data HV, Directly comparable to 3-D modeled
instantaneous entire Bay HV
All Stations HV Models When CB1.1 was sampled, All possible CBP stations, Determines if more CBP stations need
instantaneous entire Bay sampled
Main Stem HV (MS) Models Daily, instantaneous 10 stations in the main stem Determines if only MS stations can
capture HV
Main Stem + Flanks HV Models Daily, instantaneous 10 main stem and 20 stations Determines if only MS + Flanks sta-
(MS + Flanks) on the flanks of the main tions can capture HV
stem
Main Stem -+ Tributaries Models Daily, instantaneous 10 main stem and 20 stations Determines if only MS + Tribs stations
HV (MS + Tribs) in the tributaries of the can capture HV
main stem
MS + Flanks + Tribs HV Models Daily, instantaneous 10 main stem, 20 flanks, and Determines if MS + Flanks + Tribs
20 tributary stations stations can capture HV
Assumed Optimal HV Models Daily, instantaneous 32 stations throughout the Intelligently chosen attempting to cap-
Bay ture low DO
CBP13 HV Models Daily, instantaneous 13 CBP stations in and Limits interpolated HV to only 13
around the main stem CBP stations
CBP13 Observed HV CBP Data Monthly to bimonthly, 13 CBP stations in and Less uncertainty in HV than CBP Data
~2 day window around the main stem HV
Upscaled CBP13 CBP Data Monthly to bimonthly, 13 CBP stations in and Interpolated HV upscaled to better
Observed HV ~2 day window around the main stem represent actual 3-D HV

*The DO sample timing gives both how frequently the HV estimates are calculated and the amount of time encompassed within the DO estimates used
to calculate HV. The notes column gives extra information on each HV estimate.

hydrodynamic model and a simplified single-term DO for-
mulation that specified a constant rate of oxygen drawdown
due to respiration [Scully, 2010a]. As such, these imple-
mentations did not explicitly model nutrients, primary pro-
duction, etc. Oxygen was added to the water at the surface
assuming a constant piston velocity of 3 cm h™".

[15] (4) ChesROMS + DD: this implementation used the
ChesROMS hydrodynamic model and a depth-dependent
respiration rate. It was nearly identical to the constant res-
piration rate implementations, except the respiration rate
increased with water depth such that the respiration rate
was zero at the surface and increased linearly to 1.25 gO%/
m’/d at 30 m water depth, and the surface oxygen concen-
tration was set to saturation.

[16] Modeled DO results were provided by the original
modelers in different output time steps. The full 3-D mod-
eled DO fields were supplied as daily averaged output for
the ICM model and daily instantaneous snapshots for the
ROMS implementations. Time series at each of the Chesa-
peake Bay Program station locations were also provided
and are daily averaged for the ICM model and hourly for
the ROMS implementations.

2.2. Hypoxic Volume Calculations

[17] Hypoxic volume was first computed using the
observed CBP profile station data (Table 2). Observations
were grouped according to cruise, with each cruise encom-
passing 30—60 profiled stations that were collected within

*7 days of the sampling time at the Main Stem station,
CB1.1. The CBP volumetric inverse distance squared inter-
polator program version 4.63 [U.S. Environmental Protec-
tion Agency (USEPA), 2003] was used to interpolate/
extrapolate these profiles onto the entire Chesapeake Bay.
This is the interpolation program the CBP has utilized for
its estimation of water quality parameters throughout the
Chesapeake Bay and its tributaries [USEPA, 2003]. The
default interpolation options within the program were used
in this study. Specifically, the DO profiles were interpolated
onto a 1 km? grid with 0.5 m vertical resolution within the
main stem of the Chesapeake Bay (a higher resolution grid
was utilized in some of the smaller tributaries), using an
inverse distance squared weighting of up to the nearest four
surrounding vertical profiles, with a maximum allowed dis-
tance between the profiles and grid point of 25 km. If verti-
cal profiles did not extend to the seabed, the DO value at
the bottom of the profile was filled down to the seabed. The
16 cruises in both 2004 and 2005 (monthly in the fall/win-
ter/spring, semimonthly in the summer) yielded 16 interpo-
lated hypoxic volumes for each year. Because these HV
estimates were based on the CBP interpolator plus profile
data and not the numerical model simulations these are
referred to as the CBP Data HV.

[18] Hypoxic volume was calculated from the output of
each 3-D numerical model implementation using two dif-
ferent types of methodologies. The first method directly
integrated the volumes of all grid cells with DO less than
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Figure 2. Locations of intelligently placed stations for efficiently capturing the 3-D hypoxic volume.
(left) Locations of the (circles) Main Stem stations, (triangles) Flanks stations, and (squares) Tributary
stations. (right) Locations of the Assumed Optimal stations.

2 mg L' and thus represents the total volume of hypoxic
water from the modeled 3-D DO fields. This calculation,
which sums directly over all the model grid points, is
referred to as Integrated 3-D HV. The second method
involving model output utilizes modeled profiles only at
select stations and thus mirrors the calculation of HV from
the data by using the CBP interpolator described above.
This second method, which includes several variations,
is collectively referred to as Interpolated Model HV
(Table 2).

[19] As part of the Interpolated Model HV approach,
nine different sets of simulated DO station profiles were
used with the CBP interpolator to formulate nine different
estimates of hypoxic volume. The first set of simulated sta-
tion profiles matched both the time and location of the CBP
Data HV stations (Absolute Match HV). In contrast, the
remaining eight sets of simulated station profiles were all
synoptic, i.e., all stations were sampled instantaneously.
Like the first case, Cases 2 and 3 (Spatial Match and All
Stations) used actual CBP station locations. In contrast,
Cases 4-8 (Figure 2) were derived from hypothetical sta-
tion locations that might better be able to capture the full
Integrated 3-D HV. These station sets were chosen based
on model results showing where the bottom DO was fre-
quently below 2 mg L™ and where the variability in the
bottom DO was high (Figure 3). The ninth and final case
(CBP13 HV) includes 13 CBP station locations specifically
chosen to capture key spatial variability in hypoxic volume
in a major section of the Bay that is regularly sampled the
most synoptically by the CBP (see Figure 1). Cases 1-3 use
hourly model output for the ROMS implementations and
daily for CH3D +ICM and are calculated for each CBP
cruise, while Cases 4-9 use the daily model output and are
calculated for every day of the model simulations, for
direct comparison with the daily Integrated 3-D HV.

[20] Each of these nine sets of Interpolated Model HV
was calculated using the DO fields from each of the four
model implementations. In summary (Table 2):

[21] 1. The Absolute Match HV was computed using a
subset of model output, which matched the CBP Data HV
profiles from each cruise in both space and time (typically
30—-60 CBP stations).

[22] 2. The Spatial Match HV was computed using a sub-
set of model output which matched the locations of the
CBP Data HV profiles (30—-60 CBP stations) but assumed a
synoptic snapshot such that all model profiles were taken at
the same dates/times as the observed profile at CB1.1.

[23] 3. The All Stations HV was computed like Case 2,
except that all CBP station locations were used (99 stations,
Table 1).

[24] 4. The Main Stem HV was computed using 10 sta-
tions down the MS of the Bay (Figure 2a).

[25] 5. The MS+ Flanks HV was computed using the
Case 4 stations plus 20 stations along the flanks of the main
stem.

[26] 6. The MS + Tribs HV was computed using the Case
4 stations plus 20 stations in the tributaries or near tributary
mouths

[27] 7. The MS+ Flanks+ Tribs HV was computed
using the Case 6 stations plus the 20 flank stations.

[28] 8. The Assumed Optimal HV was computed using a
set of 32 stations that were a priori deemed to be optimal
for completely capturing the total 3-D hypoxic volume
(Figure 2b).

[29] 9. The CBP13 HV was computed using the set of 13
CBP station locations illustrated in Figure 1. Specifically,
stations CB3.2, CB3.3C, CB4.1C, CB4.2C, CB4.3C,
CB4.4, CB5.1, CB5.2, CB5.4, CB6.2, CB6.4, CB7.1, and
LE2.3 were used.

[30] To determine if interpolated hypoxic volumes were
overly sensitive to the exact location of the stations, new
station sets were also created with each station location ran-
domly shifted north/south and east/west using a Gaussian
distribution with a standard deviation of 1.5 km. This pro-
cess generated insignificant changes to the interpolated
hypoxic volumes and is not discussed further.
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Figure 3. (left) The fraction of 2004 the bottom water column grid cell had DO less than 2 mg L™".
(right) The standard deviation of DO in the bottom grid cell during 2004.

2.3. Upscaling the Interpolated Hypoxic Volumes HVscaled = (1 + CF)HVinterp, (1)

[31] A scaling method was developed to correct the ie., CF = (HVscaled — HVinterp) [HVinterp,

Interpolated Model HV to better represent the Integrated

3-D HV. The first step in the upscaling of the Interpolated where HVscaled is a more accurate, upscaled estimate
Model HV (HVinterp) cases was to define a dimensionless of hypoxic volume. CF >0 is needed if Interpolated
“correction factor” (CF), such that Model HV underestimates 3-D Integrated HV, and CF <0
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is needed if Interpolated Model HV overestimates 3-D Inte-
grated HV. Next, using output from all four numerical
models over both years worth of CBP cruises, CF was
determined for each cruise by equating HVscaled in (1)
with that case’s corresponding 3-D Integrated HV. It was
seen that the correction factor, CF, was itself a clear (but
with a large amount of scatter at lower HVs) function of
the Interpolated Model HV in that CF became larger as
Interpolated Model HV became smaller (see additional
details in section 3).

[32] To account for this dependence of CF on Interpo-
lated 3-D HV, an upscaling function was then fit to the
many individual realizations of CF using

v =a(logl0(x)) + b, (2)

where x was Interpolated Model HV (in km?), @ and b were
best fit coefficients, and y was the best global fit for CF.
When performing least squares fits to set the coefficients a
and b, only hypoxic volumes greater than 2 km? were con-
sidered. Once best fit global choices for @ and b had been
identified, all Interpolated Model HV values were then
scaled to their approximate 3-D HV values using the single
relationship

HVscaled = (1 + [a(logl0(x)) + b])HVinterp. (3)

[33] To prevent occasional excessive reductions in HV,
the maximum that large Interpolated Model HV could be
reduced by was set to 25% of the corresponding original
Interpolated Model HV. Below 2 km®, CF is simply set to
1. The 2 km?® cutoff was chosen because it is large enough
to occur every year and yet small enough that the CF does
not become very large from the division by the interpolated
HV (HVinterp) in equation (1). Also, below about 2 km?®
the scatter in the CF becomes increasingly large, implying
this scaling method is not appropriate for low hypoxic
volumes.

2.4. Other Metrics for Quantifying Hypoxia Severity

[34] In addition to hypoxic volume, five other measures
of quantifying hypoxia severity were investigated. These
include estimates of hypoxic area and hypoxic thickness,
which were computed using the 3-D model output, as well
as hypoxic duration, maximum hypoxic volume, and cumu-
lative hypoxic volume, which provided a single value for
each year.

[35] Hypoxic area was estimated from the model results
by summing the horizontal surface area of each bottom
grid cell that had DO less than 2 mg L™ '. As such, it was a
representation of the 2-D area of the Bay undergoing
hypoxic conditions. The Integrated 3-D HV was divided by
the hypoxic area in order to calculate the average thickness
of water that was hypoxic each day. The duration of hy-
poxia was defined as the amount of time the hypoxic vol-
ume was greater than 2 km?>. The calculation of the hypoxic
duration was simply the number of days between the first
and last hypoxic volume in each year greater than this 2
km® cutoff. If the hypoxic volume dropped below the
threshold and then returned above the threshold, the
amount of time below the threshold was still counted in the
duration of hypoxia. This gives an estimate of the amount

of time between the first and last instances of hypoxic vol-
ume greater than 2 km? in any given year.

[36] The cumulative hypoxic volume (km® days) inte-
grated over a year conveniently incorporates the hypoxic
volume and the duration of hypoxia into a single metric.
The cumulative hypoxic volume was calculated by multi-
plying the hypoxic volumes by the length of time they
occurred and then summing these products over a full year.
The interpolated hypoxic volumes were treated as a step
function, where the interpolated hypoxic volume was mul-
tiplied by the number of days between the date on which
the hypoxic volume was interpolated and the date of the
next set of profiles. A temporal interpolation was not done,
because the 3-D output from the models showed that the
total hypoxic volume did not behave in a manner that could
be represented by interpolating between the cruises.

2.5. Methods for Model Skill Comparison

[37] Model skill was evaluated using the metric pre-
sented by Wilmott [1981],

N
S e~ X

Sy =1-— v — —
—(1Xe — Xe| + | Xgi — XR))
Zl—] (

(4)

where Sy, is the Wilmott skill, X is the variable being com-
pared, and X is the time-averaged value. Subscripts E and
R represent estimated (usually modeled) and reference
(generally observed) values, respectively. Perfect agree-
ment between the estimates and the references yields a skill
of one, and skill decreases toward zero as the two diverge.

[38] Graphical methods of evaluating model skill are
helpful when trying to illustrate the relative skill of multi-
ple model formulations. Jolliff et al. [2009] and Hofmann
et al. [2011] provide a detailed description of target dia-
grams and their use in model skill assessment. In short, tar-
get diagrams show the total root-mean-squared difference
(RMSD) as the distance from the origin, the bias between
estimated and reference values on the Y axis, and the
unbiased RMSD (ubRMSD) on the X axis. The ubRMSD is
multiplied by the sign of the difference between the stand-
ard deviations of the estimates and the reference values,
thus illustrating whether the estimated variability is higher
(positive X axis) or lower (negative X axis) than the refer-
ence variability. The bias and ubRMSD are often normal-
ized by the standard deviation of the reference values to aid
in the comparison of different variables or years. After nor-
malization, any point falling inside the circle of radius one
performed better than simply using the mean of the refer-
ence values.

3. Results

[39] Verification of the modeled bottom DO is presented
in section 3.1. Relative model skill in estimating the CBP
Data HV is assessed by applying the same interpolation
scheme to both the observed DO profile data and the model
equivalents of these data (section 3.2). Once it has been
ascertained that the models have skill in reproducing the
observations, the models are used to estimate the ability of
the CBP interpolator routine to capture the full 3-D hypoxic
volume in the Bay. Various numbers and locations of select
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Figure 4. Normalized target diagrams comparing the bottom DO concentration from the models to the

CBP monitoring observations.

stations are used as inputs to the interpolator with the aim
of determining which stations are most critical to sample
on each cruise (section 3.3). In section 3.4, an algorithm is
applied that can be used to upscale the output of the inter-
polator to better capture the full hypoxic volume, even
when only a subset of select stations are available for inter-
polation. In section 3.5, a variety of alternative measures of
quantifying hypoxia severity are examined, several of
which build on the upscaling presented earlier. Finally,
these metrics are applied to 29 years of dissolved oxygen
profile observations in the Chesapeake Bay (section 3.6).

3.1. Verification of Modeled Bottom DO

[40] Model skill at reproducing the observed bay-wide
DO distributions is here limited to determining how well
the models reproduced DO on a monthly to bimonthly time
period. All four of the model implementations proved to be
skillful at reproducing the seasonal trend in bottom DO
throughout the Chesapeake Bay in both 2004 and 2005

(A) 2004
Bi
1.2

—t

N

1.2

ubRMSD

(Figure 4). Although higher frequency observations of deep
water DO were not available for systematic model-data
comparison in the context of this present study, the models
examined here all displayed tidal to weekly variations in
the DO field that were qualitatively consistent with higher
frequency DO observations collected at other times [i.c.,
Sanford et al., 1990].

3.2. HV Computed From Interpolation of Observed
DO (CBP Data HV) Versus Interpolation of Simulated
DO (Absolute Match HV)

[41] Hypoxic volume was first computed by applying the
same interpolation scheme to both the observations (CBP
Data HV) and to the model equivalents of those observa-
tions (Absolute Match HV). In general, the model-
generated Absolute Match HV successfully reproduced the
mean CBP Data HV for all four model implementations
(Figure 5). Interestingly, the ROMS-based models all over-
estimate the temporal variability of HV (i.e., their output

i Bias
1.2

il
s\ Ss] ]

A B
%P I@\

CH3D +ICM
CBOFS + 1-Term

2
( {/{eg(/ @
W\
N

-ﬁ_.f/ ChesROMS + 1-Term et
1 42 ChesROMS + Depth Dep. 142
Model Average

Figure 5. Normalized target diagrams comparing the hypoxic volumes calculated from the models
(Absolute Match HV) to those calculated from the observations (CBP Data HV).
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Table 3. Maximum, Mean, and Standard Deviation of Hypoxic Volume®

Jan-Dec HV (km®) May—Aug HV (km?)

Standard Wilmott Standard Wilmott
Year Source of Station DO Oxygen Formulation Max Mean Deviation Skill Mean Deviation Skill
2004 CH3D-ICM Full ecological Model 9.3 23 2.9 0.92 42 2.9 0.85
CBOFS2 1-Term 13.6 2.1 3.9 0.94 4.1 4.9 0.90
ChesROMS 1-Term 19.7 33 5.8 0.89 6.6 7.0 0.82
ChesROMS Depth-dependent respiration 114 2.4 3.5 0.95 4.7 3.7 091
Model average NA 13.5 2.5 39 0.93 5.0 4.4 0.93
Observations NA 10.0 2.6 3.4 NA 5.0 34 NA
2005 CH3D-ICM Full ecological model 8.9 2.6 3.2 0.92 35 3.0 0.88
CBOFS2 1-Term 12.8 2.7 4.4 0.90 5.3 4.5 0.88
ChesROMS 1-Term 22.0 4.9 7.4 0.82 9.6 8.1 0.67
ChesROMS Depth-dependent respiration 15.0 4.1 5.6 0.89 7.5 6.1 0.78
Model average NA 14.7 3.6 5.1 0.92 6.8 5.5 0.84
Observations NA 11.2 34 3.9 NA 6.3 3.5 NA

“The Wilmott skill of the four models in terms of their ability to reproduce the hypoxic volume computed from observed station DO profiles (CBP
Data HV) using simulated station DO profiles (Absolute Match HV). Statistics for the average of the four models are also presented.

all falls on the right-hand side of the target diagrams),
whereas CH3D + ICM underestimates this variability (and
is on the left-hand side of the target diagrams; Figure 5).

[42] Most symbols lie well within the outer circle of the
target diagrams (Figure 5) and have high Wilmott skill val-
ues (Table 3). Although CH3D + ICM performed similarly
well in 2004 and 2005, the ROMS-based models all per-
formed better in 2004 than in 2005. Not surprisingly, skill
scores were also higher when the full year time series
(January—December) was used, rather than just the summer
month time series (1 June to 30 September), since all mod-
els were able to successfully reproduce the near zero winter
hypoxic volumes. Although all models performed reason-
ably well in terms of reproducing the seasonal cycle of HV,
it is interesting to note that when the 2004 time series of
hypoxic volumes from the four models were averaged, the
resulting HV generally matched the CBP Data HV better
than did individual models (Table 3 and Figure 5).

3.3.
HV

[43] Hypoxic volumes computed from summing the vol-
ume of all grid cells with DO <2 mg L' (i.e., Integrated
3-D HV, shown by continuous blue lines in Figure 6) were
almost always greater than or equal to those interpolated
from the model equivalents of the data (Absolute Match
HV, black circles in Figure 6), with the maximum differen-
ces being nearly 50% of the total hypoxic volume (up to 7
km?). The method used here to calculate the Absolute
Match HV mimics that used by the CBP when the inverse
distance squared interpolator is applied to cruise data col-
lected over 1-2 weeks. There are two distinct contributions
to this mismatch between model output sampled and inter-
polated as if it were a series of station profiles and the
“true” time series of hypoxic volume output by each
model: (i) spatial interpolation error and (ii) temporal inter-
polation error.

[44] The spatial error in hypoxic volume associated with
interpolating over a finite number of stations was isolated
by utilizing model output to instantaneously “sample” all
stations from a given cruise period at a single moment dur-
ing the cruise rather than matching the timing of each indi-

Integrated 3-D HV Versus Interpolated Model

vidual DO profile. These instantaneous (i.e., synoptic)
station profiles were then entered into the CBP interpolator
to generate the time series termed Spatial Match HV (red
circles in Figure 6). The difference between the Spatial
Match HV and the Integrated 3-D HV for the correspond-
ing moments in time is then an estimate of the spatial error
associated with the interpolation. The magnitude of this
spatial interpolation error contribution among the four
models for May—August 2004 and 2005, indicated by the
series of blue dots in Figure 7, has a mean value of 2.4
km?>. Surprisingly, the spatial error associated with the All
Station HV, which synoptically utilized all 99 profile sta-
tions sampled at any time by the CBP from 2004 to 2005,
was not statistically different from those computed by
interpolation simulated DO from only ~30-60 stations
(Spatial Match HV).

[45] The maximum size of the potential temporal inter-
polation error associated with the length of time over which
profiles are taken (typically about 10 days; see horizontal
black lines in Figure 6) was determined by continually
computing the instantaneous Spatial Match HV over the
date range of each cruise. (Contributions to this range were
calculated daily for the CH3D + ICM model and every 3 h
for the ROMS models.) The total range of the Spatial
Match HV over the course of the cruise period was then
equal to the maximum potential temporal error in the Abso-
lute Match HV. This potential temporal error is shown by
the vertical red lines in Figure 6 and by the red dots in Fig-
ure 7. The average potential temporal error for Absolute
Match HV among the four models for May—August 2004
and 2005 was 4.7 km®, which is larger than the average
spatial error. Thus, it is clear that the time which elapses
over the course of a given cruise can significantly affect the
HV estimates produced by the interpolation.

[46] As described above, hypoxic volume computed by
the interpolation generally underestimates the total hypoxic
volume within the Bay as represented by the dynamic mod-
els. In an attempt to determine whether alternate hypotheti-
cal station locations might do a better job of capturing the
total hypoxic volume when using the CBP interpolator, HV
was interpolated from six more sets of various station loca-
tions (Cases 4-9 described in section 2.2, Table 2), and all
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Figure 6. Comparisons of different methods for calculating hypoxic volumes in (A—E) 2004 and (F-J)
2005: the Integrated 3-D HV (continuous blue line), the Absolute Match HV (black circles), and the
Spatial Match HV (red circles). See text and Table 2 for HV definitions. Horizontal lines (black) show
the range of time over which the observed profiles were sampled, and vertical lines (red) show the range
of Spatial Match HV computed over these date ranges.

were compared to their corresponding “true” Integrated 3-
D HV. Before upscaling (see section 3.4), none of these six
station sets consistently reproduced the Integrated 3-D HV
most closely (Figure 8). These results suggest that the inter-
polation of 10-20 well-placed stations was equally as skill-
ful as the 99 existing CBP stations in terms of reproducing
total Bay HV, and thus, eliminating spatial errors (in the
absence of upscaling) would likely require many hundreds
of synoptically observed profile stations.

[47] We also explored whether differences in the vol-
umes of the grids themselves could be systematically influ-
encing the comparison of hypoxic volumes. It is
conceivable that the dynamic models might consistently
produce overly large Integrated 3-D HV estimates if their
grid volumes were all significantly larger than the volume
represented by the interpolator’s grid. Although the various

model bathymetries do differ, these differences do not
explain the consistently mismatched integrated versus
interpolated HV. The 3-D model grid volume is smaller
than that of the interpolator grid in one case (CH3D),
nearly identical to the interpolator grid volume in another
case (ChesROMS), and larger than the interpolator grid
volume in the third case (CBOFS). Yet application of the
interpolator to output from every model similarly underes-
timated the corresponding model’s Integrated 3-D HV.

3.4. Capturing Total Hypoxic Volume in the Bay by
Upscaling Interpolated HV Estimates

[48] The CBP13 station set was ultimately chosen for
upscaling to the 3-D hypoxic volume for three reasons.
First, the limited number of stations made for a reduced
sampling time during observational cruises (~2.3 days)
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Figure 7. Potential uncertainty in the calculation of hypoxic volume from discrete stations. Red circles
mark the range of the interpolated Spatial Match HV over each sampling period (i.e., the length of red
bars on Figure 6; potential temporal error). Blue circles represent the difference between the Integrated
3-D HV and the interpolated Spatial Match HV (i.e., the distance between the blue line and red circles in

Figure 6; spatial error).

and therefore limited potential errors due to nonsynopticity.
Second, adding tens of additional synoptic stations, even
when placed at locations where the variance in hypoxia is
high, did not notably improve the ability of the various
Interpolated Model HV cases to match Integrated 3-D HV
(Figure 8). Third, because the scaling was developed using
actual CBP station locations, rather than using hypothetical
station locations as in Cases 4-8, it could easily be applied
as a correction factor for the CBP hypoxic volumes com-
puted directly from station observations, including cruises
over past decades.

[49] The correction factor (see equation (1)) required to
scale each Interpolated Model HV to match Integrated 3-D

HV was a function of Interpolated Model HV for each of
the four models in 2004 and 2005 (Figure 9). When Inter-
polated Model HV was less than about 10 km?, Integrated
3-D HV was strongly underpredicted (i.e., a positive CF
was needed), whereas when Interpolated Model HV was
greater than about 20 km®, Integrated 3-D HV was slightly
overpredicted (favoring a slightly negative CF). This gen-
eral trend held for all models for both 2004 and 2005 (Fig-
ure 9), although the Interpolated Model HV values for
CH3D + ICM were all approximately <10 km? and thus
always underpredicted the “true” Integrated 3-D HV.
When all the Interpolated Model HV cases were combined
for both years for all four models, the least-squares best fit
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Figure 8.

Normalized target diagrams showing how well different combinations of stations reproduced

the Integrated 3-D HV. Station sets corresponded to: MS10, 10 stations in the main stem of the Bay;
Flanks, the 10 Main Stem stations plus the stations along the flanks of the main stem, Trib., the 10 Main
Stem stations plus those in the tributaries; F1+ Tr, the 10 Main Stem stations plus the flanks and tribu-
tary stations; AO, the Assumed Optimal station locations for capturing hypoxia; CBP13, the set of 13
CBP stations; CBP13SC, the set of 13 CBP stations scaled to better match the total 3-D hypoxic

volume.

for the coefficients a and b for the global correction factor,
y=a(log 10(HVinterp)) + b (equation (2)), were a = —1.22
and b= 1.52, where Interpolated Model HV is in km®, and
the best fit correction factor (black line in Figure 10) was
found to cross zero at 18 km®>. In other words, the global
correction factor was slightly negative for Interpolated
Model HV >18 km® and became positive for Interpolated
Model HV <18 km”.

[s0] After applying the correction factor, the scaled
hypoxic volumes more successfully reproduced the Inte-
grated 3-D HV. This is shown by the target diagram (Figure
8), where the scaled CBP13 case (in green) for each model
better matches Integrated 3-D HV than does the corre-
sponding unscaled CBP13 HV (in yellow). These scaling
coefficients worked nearly equally well for the CBP13 set
of stations, the main stem set of 10 stations, and a set of 11
CBP stations in the main stem of the Bay; thus, these best
fit scaling coefficients were not overly sensitive to the spe-
cific CBP13 station set.

3.5. Results Using Other Metrics for Quantifying
Hypoxia Severity

[51] Additional metrics that can be used to quantify the
severity of hypoxia include hypoxic area, hypoxic thick-

ness, the duration of hypoxia, peak hypoxic volume, and
cumulative hypoxic volume. The duration of hypoxia, peak
hypoxic volume, and cumulative hypoxic volume metrics
have the advantage of providing a single annual value with
which to describe hypoxia. Analysis of 3-D model output
indicated that the variation in hypoxic volumes among the
ROMS implementations was largely the result of different
spatial extents of hypoxia, because the average thicknesses
from the three ROMS models were similar (Figure 11).
The CH3D+ICM model estimated a generally thinner
hypoxic layer than the ROMS-based implementations.
Although useful as an indicator of extent of benthic envi-
ronments subject to hypoxic stress, hypoxic area (and
resulting hypoxic thickness) are not direct outputs of the
CBP interpolator and thus were not a primary focus of this
present study.

[52] The duration of hypoxia (times with hypoxia >2
km?) varied based on the HV estimates used in the calcula-
tion, with a longer duration from the Integrated 3-D DO
fields than from DO fields calculated from the discrete
Interpolated Models (Figure 12). On average, the Integrated
3-D DO fields from the four hydrodynamic + DO models
showed 44 and 40 more days of hypoxia than the Spatial
Match for 2004 and 2005, respectively. These differences
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Figure 9. Stars indicate the individual correction factors required for each Interpolated Model HV to
match the Integrated 3-D HV for the CBP13 station set. Each of the four models is shown separately for
2004 and 2005. The linear trend is shown in each case for reference.
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Figure 10. Stars indicate the individual correction factors
required for each Interpolated Model HV to match the Inte-
grated 3-D HV for the CBP13 station set. The global best
fit log function (see equation (2)) is shown by the continu-
ous black curve.

in hypoxic duration arose from both the Interpolated Model
HV cases underestimating the 3-D hypoxic volume and the
dates of cruises not corresponding with the actual begin-
ning or end of hypoxia. The CBP13 Interpolated HV was
calculated using the daily model output, yet still underesti-
mated the duration of hypoxia. Upscaling of Interpolated
HV helped correct the former shortcoming; thus, hypoxic
duration based on CBP13SC was consistently closest to the
“true” Integrated 3-D duration. However, if calculated at
the same dates and times as the CBP Data, upscaling could
not inherently correct for potentially unfortunate cruise
timing near the actual beginning or end of hypoxia.

[53] The cumulative hypoxic volumes have a single an-
nual value, a benefit over the hypoxic volume time series.
Unlike the annual peak hypoxic volume, for example, these
cumulative values should also have reduced uncertainties
over a single hypoxic volume computed from a given
cruise. The Absolute Match and Spatial Match cumulative
hypoxic volumes were similar, on average, disagreeing by
only 10% or less at the end of the year (Figure 13). None-
theless, the cumulative hypoxic volume from all the Inter-
polated Model HV sets underestimated the real cumulative
hypoxic volume from the 3-D fields. After scaling, how-
ever, most of the new cumulative hypoxic volumes nearly
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(A and D) Hypoxic volume from the 3-D fields, (B and E) hypoxic area, and (C and F) the

average thickness of hypoxia from each model for 2004 (Figures 1 1A—11C) and 2005 (Figures 11D-11F).

matched the 3-D values, with an average mismatch of only
11.5% of the 3-D cumulative hypoxic volumes, compared
to 28% before scaling. Much of this mismatch was caused
by the CH3D + ICM model, because the stations did not
represent the 3-D hypoxic volume as well in this model.

3.6. Application of Upscaling to Metrics for
Chesapeake Bay Hypoxia From 1984 to 2012

[54] Finally, the upscaling method derived above (sec-
tion 3.4) was applied to several decades of DO profile sta-
tion data collected by the CBP. Potentially useful long-
term hypoxia metrics that were likely improved by this
upscaling included time series of semimonthly/monthly
hypoxic volume (which visually highlights the maximum
annual HV), annual cumulative hypoxic volume (which

can smooth away extreme events of short duration), the an-
nual duration of hypoxia, and the average summer hypoxic
volume (Figure 14). It is interesting to note from Figure 14
that those years with the very highest or lowest maximum
HV do not correspond on a one-to-one basis with those
with the very highest or lowest cumulative HV.

[55s] Supporting text files are provided with the online
version of this manuscript that contain time series of many
different interpolated HVs and cumulative HV from the
CBP Data.

4. Discussion

[s6] By combining results from multiple models and
determining the results that are consistent between all the
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Figure 12. The duration of hypoxic volume greater than 2 km? for the different models and sampling

approaches.

models, information was gained to better understand the
uncertainty in the available observations, methods for
improving the interpolated observations were developed,
and additional metrics for evaluating hypoxia were sug-
gested. The analysis presented in this paper benefits from
the simultaneous use of two different core hydrodynamic
models and three different dissolved oxygen formulations,
each sampled for hypoxic volume in 10 different ways. The
approach applied here highlights the advantages of multiple
models for both interpreting observations and simulating
environmental scenarios. The use of multiple models is a
valuable tool, which should be used going forward to inves-
tigate how systems function and to improve observational
sampling strategies.

4.1. Limitations in Observation-Based Estimates of
Hypoxic Volume, Alternative Sampling Strategies, and
Improvement Through Upscaling

[s7] Utilization of multiple model simulations suggests
that the inverse distance squared interpolation method
underestimated the summer hypoxic volume by up to 50%,
due to both spatial and temporal errors associated with
sampling constraints. Because of the strong time variation
inherent to hypoxia in Chesapeake Bay, the temporal errors
associated with a 2 week sampling cruise could be as large
as ~10 km® and are likely to exceed the uncertainties asso-
ciated with finite spatial sampling. It is important to recog-
nize that the above estimates of potential temporal error in
observed HV are dependent on the temporal variability pro-
duced by individual hydrodynamic + DO models used. As

shown by their positions on the right-hand side of the target
diagrams in Figure 5, the three ROMS models overesti-
mated the actual variability in HV observed in the monthly
to bimonthly CBP Data HV, whereas the CH3D +ICM
model underestimated the variability of the observed CBP
Data HV. Thus, the temporal errors the ROMS models pre-
dict to be present in the interpolated HV observations may
be higher than the true temporal error, while the temporal
errors predicted by the CH3D + ICM model are likely to be
lower than the true temporal error.

[s8] By choosing to recalculate the hypoxic volume from
the CBP Data using only profiles in the set of 13 CBP sta-
tions close to the main stem (see Figure 1) and then upscal-
ing the hypoxic volume, the limitations inherent in the
present CBP interpolation method are at least partially cor-
rected. During Chesapeake Bay Program cruises, the 13
CBP stations are sampled relatively quickly (averaging
~2.3 days), so their use, as opposed to using station data
collected over a 10 day cruise, helps reduce temporal error.
The correction factor produced by the best fit logarithmic
scaling function was based on the difference in interpolated
model output from these 13 stations and the “true” hypoxic
volume calculated from spatially integrating over every
model grid point. In this way the tendency of the interpola-
tion to underestimate HV due to spatial limitations was
also at least partially corrected.

[59] The model results presented here suggest sampling
fewer stations more often can give a better estimate of the
extent of deep water hypoxia. This is likely because the
strong variability of hypoxia in the Chesapeake Bay is not
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the observations for the CBP13 and the scaled CBP13 stations for (¢) 2004 and (j) 2005.

simply a function of longitudinal location or depth within
the estuary. The work presented here and by Sanford et al.
[1990] showed the DO within the Chesapeake Bay was
highly variable in time, as has also been shown in other
systems [DiMarco et al., 2010; Lee and Lwiza, 2008]. For
example, the models showed high temporal variability in
response to periodic advection of low oxygen water out of
the main channel due to wind forcing [Sanford et al., 1990,
Scully, 2010a]. This spatially coherent advection of DO

results in a large amount of variability in the 3-D hypoxic
volumes between, and during, each CBP profiling cruise.
Sampling fewer stations more often and more synoptically
is likely a more efficient strategy for capturing this coherent
temporal variability as opposed to sampling more stations
less often and less synoptically.

[60] Work in the Gulf of Mexico also shows how models
can be used to improve DO sampling strategies. DiMarco
et al. [2010] and Hetland and DiMarco [2008] showed that
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(a) Hypoxic volumes calculated from 13 CBP stations, using the CBP hypoxic volume

interpolator program, and then upscaled by the developed scaling method. (b) The cumulative hypoxic
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hypoxic volume based on these scaled hypoxic volumes. The average summer hypoxic volume is the av-
erage of all HVs between 1 June and 30 September of a given year.

a spatially and temporally coarse sampling strategy on the
Louisiana-Texas shelf does not optimally capture hotspots
of low DO and thus does not represent the overall HV well.
Their model results demonstrate that DO monitoring obser-
vations in the Gulf of Mexico need to be closer in space
and time to better capture the true HV.

4.2. Importance of Using Multiple Metrics in
Evaluating Long-Term Variability in Chesapeake Bay
Hypoxia

[61] The large temporal variability in both the location
of low bottom DO and the total hypoxic volume make met-
rics determining the amount of hypoxia based on only one
or two stations or a few hypoxic volumes unlikely to fully
characterize the extent of hypoxia within a single year, let
alone multiple years. In locations where hypoxia varies in
space and time, metrics need to be crafted such that they
are part of a system that captures the overall severity of hy-
poxia from year to year. The system needs to take into
account the spatial and temporal complexity of the natural
environment and the inherent errors associated with inter-
polating observations. Ideal metrics should also capture
changes to hypoxia caused by climate change. For exam-

ple, metrics based on a specific date range may inad-
equately capture hypoxia if there is a climatic induced shift
in the timing or duration of hypoxia. It should be very clear
when generating and reporting a system of metrics from the
observations and/or model results as to what exactly these
numbers represent. Currently, there are a number of differ-
ent methods being used to calculate hypoxic volumes and
associated metrics (based on Hagy et al. [2004], Murphy et
al. [2011], Scavia et al. [2006], Testa et al. [2008], and P.
Tango (personal communication, 2013)).

[62] We put forth using the yearly maximum hypoxic
volume, the yearly cumulative hypoxic volume, and the
yearly duration of hypoxia as ways to characterize the over-
all extent and likely impact of hypoxia within the Chesa-
peake Bay. The accuracy of all three of these metrics has
likely been improved by the upscaling method presented in
this paper. These three metrics have the benefit of each
being a single value for an entire season and all being rele-
vant to ecological health. The diversity of using these three
metrics simultaneously can also be used to better reflect the
diversity of ecological sensitivity to hypoxic intensity,
extent, and duration. It is important to recognize that years
with the most intense instantaneous hypoxia (i.e., largest
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Table 4. Yearly Hypoxia Metrics From the CBP Profiles®

Maximum HV (km®)

Cumulative HV (km® days)

Duration of HV >2 km? (days)

Year All Profiled Stations CBP13 Scaled All Profiled Stations CBP13 Scaled All Profiled Stations CBP13 Scaled
1985 8.2 11.7 536 883 98 126
1986 11.7 15.1 641 956 91 131
1987 9.4 11.2 801 1137 119 119
1988 8.5 13.0 630 1000 133 133
1989 11.0 15.2 701 1025 77 91
1990 8.7 11.0 636 990 119 133
1991 9.5 13.6 729 1100 92 133
1992 9.8 12.9 566 850 78 105
1993 16.4 17.6 907 1276 91 112
1994 9.4 14.6 686 1080 91 161
1995 10.7 14.0 523 807 105 119
1996 8.7 12.1 737 1141 90 104
1997 10.5 15.1 491 822 42 56
1998 12.2 17.1 984 1483 120 120
1999 7.1 11.0 528 779 70 70
2000 7.5 10.1 739 1092 105 126
2001 6.5 8.7 642 971 104 104
2002 7.3 9.5 465 784 70 70
2003 15.2 16.7 1036 1387 119 133
2004 10.0 16.0 703 1091 91 91
2005 11.2 15.3 932 1367 91 125
2006 8.3 11.7 670 1084 84 119
2007 7.1 10.2 588 928 91 119
2008 17.3 14.8 938 1234 77 112
2009 8.8 11.6 699 1050 90 90
2010 9.9 13.5 775 1138 83 83
2011 12.0 15.7 976 1355 117 161

*The years of 1984 and 2012 did not have complete data during the preparation of this manuscript and have been left off of this table.

peak volume) do not necessarily correspond to the years
with greatest hypoxic duration or greatest cumulative
hypoxic volume (Figure 14 and Table 4). Although there is
general agreement between the yearly ups and downs in
these three metrics, they do not directly follow each other,
making a characterization based on a single one insufficient
to determine even the relative magnitudes of the others.

[63] The dynamics of hypoxia in diverse regions, includ-
ing the Chesapeake Bay, Gulf of Mexico, Hood Canal, and
Long Island Sound, has been shown to be linked to physical
and biological forcing, such as riverine nutrient input vary-
ing between wet and dry years [Bianchi et al., 2010; Hagy
et al., 2004; Paulson et al., 2006], mixing and lateral
advection due to winds [Sanford et al., 1990; Scully,
2010b], stratification or overturning of the water column
[Bianchi et al., 2010; Lee and Lwiza, 2008 ; Warner et al.,
2001], and reduced DO solubility with increasing water
temperature [Najjar et al., 2010; Scully, 2013], all of which
may be influenced by climate change. Using the yearly
maximum hypoxic volume, the yearly cumulative hypoxic
volume, and the yearly duration of hypoxia to characterize
the severity of low DO has the additional benefit of incor-
porating changes in hypoxia caused by climate change. The
duration of hypoxia can account for an increase in the
amount of time such systems are hypoxic without being bi-
ased by temporal shifts in the timing of hypoxia. The cu-
mulative hypoxic volume metric integrates over the entire
year and thus will directly account for possible increases

(or decreases) in the duration of hypoxia, while also being
insensitive to shifts in the timing of hypoxia.

[64] Of these three metrics, the annual cumulative
hypoxic volume is likely the one that can be estimated with
the most confidence. As a single metric for characterizing
interannual variability in the severity of hypoxia, cumula-
tive hypoxic volume is more attractive than the maximum
hypoxic volume, duration of hypoxia, or average summer
hypoxic volume. The annual maximum hypoxic volume,
even when upscaled from the CBP 13 HV observations,
still suffers from temporal errors associated with variations
in hypoxic volume that can occur on time scales less than
2.3 days. The annual hypoxic duration metric also still suf-
fers from temporal errors after upscaling, given that the
timing of the monthly CBP cruises in spring or fall may or
may not correspond well with the first or last appearance of
significant hypoxia. The annual cumulative hypoxic vol-
ume, on the other hand, is relatively insensitive to temporal
observational errors, both in terms of nonsynopticity in
sampling and in terms of exactly capturing the first or last
appearance of modest levels of hypoxia (~2 km?). Another
advantage of the cumulative hypoxic volume approach is
its inherent ability to incorporate the effects of climate
change. Najjar et al. [2010] and Scully [2013] show climate
change induced warming of the Bay could have large nega-
tive implications on DO. If the hypothesized continued
warming of the Chesapeake Bay causes intense hypoxia to
occur substantially earlier or end substantially later, then
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that will be immediately seen in the cumulative hypoxic
volume. The common CBP approach of averaging hypoxic
volume over several specific summer cruises (but not inte-
grating beyond this temporal window; see supporting infor-
mation) will not account for the full severity of hypoxic
volume expansion associated with climate change.

5. Summary and Conclusions

[65] Hypoxia in Chesapeake Bay is a significant ecologi-
cal stressor that was observed as early as 1930 [Newcombe
and Horne, 1938] and is currently a focus of regulations
aimed at environmentally restoring the Chesapeake Bay,
estimated to cost in the tens of billions of dollars [Mary-
land, 2012; Virginia, 2010]. Management plans are partly
based on reducing the size of this Chesapeake Bay “dead
zone,” but little information is available on how reliably
point measurements of DO can be scaled up to estimate the
total volume of hypoxic water in the Bay. There is no doubt
that the Chesapeake Bay Program’s biweekly to monthly
observations of water quality at dozens of stations in the
Bay and its tributaries represent an invaluable long-term
data set for characterizing DO. However, in complex sys-
tems limitations associated with the logistics of cruise-
based sampling introduce both spatial and temporal errors
when these observations are interpolated to represent the
true hypoxic volume. Output from highly resolved, 3-D nu-
merical models provide a useful tool for better understand-
ing the errors introduced by interpolation of these discrete
observed profiles.

[66] Application of the CBP interpolation program to
profiles of DO “sampled” from 3-D model output at the
times and locations matching CBP observation stations
indicates that this observational approach of sampling and
interpolating DO tends to underestimate true hypoxic vol-
ume during summer by several km>. The component of this
error associated with limitations in spatial sampling for
summer 2004 and 2005 was found to be 2.4 km® on aver-
age. However, the potential temporal error in hypoxic vol-
ume associated with interpolation of station data collected
over 1-2 weeks was even larger, approaching 5 km® on av-
erage. Thus, this study suggests that quickly sampling a
select number of stations along and adjacent to the main
stem of the Bay may optimize the sampling strategy for
characterizing time-varying hypoxic volume within the
Chesapeake Bay. Similarly quick sampling strategies at
select stations could work to optimally estimate HV in
other relatively deep and narrow estuarine hypoxic zones.
Furthermore, adding stationary vertical profiler time series
to the sampling strategy [i.e., Newton et al., 2011] would
greatly improve the understanding and monitoring of hy-
poxia in the Chesapeake Bay by allowing for a characteri-
zation of the time variation in the DO from field data,
verifying the models’ results on the time variation in the
DO field and estimating the severity of hypoxia in real
time.

[67] Based on model output from 2004 to 2005, a scaling
factor was derived that can be used to upscale interpolations
of observed hypoxic volumes to likely better represent the
full 3-D hypoxic volumes within the Chesapeake Bay.
Although future work may further refine this scaling method,
the scaling factor derived here likely improved observation-

based estimates of instantaneous hypoxic volume, maximum
hypoxic volume, cumulative hypoxic volume, and the dura-
tion of hypoxia for CBP cruises extending from 1984 to
2012. Among these metrics for bay-wide hypoxia, cumula-
tive hypoxic volume is likely the least sensitive to temporal
errors brought about by nonsynoptic sampling. In addition,
cumulative hypoxic volume is arguably more useful than av-
erage summer hypoxia, another metric often used for man-
agement purposes to quantify the health of the Bay, as it
includes hypoxic conditions from key spring and fall months
which is when increases in hypoxia due to climate change
may be most significant.

[68] Numerical models have evolved to the point that
they can be very beneficial for refining and giving insight
into observational sampling schemes of societal relevance
that drive environmental policy. By using multiple numeri-
cal models, we have improved the understanding of a long-
term data set and generated better estimates of metrics that
estimate and track the health of the Chesapeake Bay.
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