

CBP P532 Land-Use

WIP Technical Series #1

January 25, 2013

Presentation Overview

- What is the spatial scale of CBP P5.3.2 watershed model land-use?
- How did CBP develop the Phase 5.3.2 watershed model land-use?
- How did MDE refine the P5.3.2 land-use?
- How are CBP and MDE planning to improve watershed model land-use in the future?
 - Phase 6
 - Local input

Presentation Overview

 What is the spatial scale of CBP P5.3.2 watershed model land-use?

Geography Overview

Presentation Overview

 How did CBP develop the Phase 5.3.2 watershed model land-use?

Land-Use Overview

- Tabular data
 - 31 Classifications
 - 2 Forest
 - 17 Agricultural
 - 6 Urban
 - 2 Construction
 - 3 Extractive
 - 1 Water

Land-Use Overview

- General Process
 - Apply agricultural census data
 - USDA dataset
 - Non-spatial dataset (tabular)
 - Incorporate extractive and construction land-use estimates
 - MDE permit data + USGS-CBPO methodologies
 - Incorporate urban land-use estimates
 - Impervious and pervious
 - USGS-CBPO methodologies
 - Forest = left-over

- Final tabular land use classifications
 - Crop
 - High till w/o manure
 - High till w/ manure
 - Low till w/ manure
 - Alfalfa
 - Hay w/o nutrients
 - Hay w/ nutrients
 - Nutrient management high till w/o manure
 - Nutrient management high till w/ manure
 - Nutrient management low till
 - Nutrient management alfalfa
 - Nutrient management hay
 - Pasture
 - Pasture
 - Nutrient management pasture
 - Trampled pasture
 - Nursery

- Tabular land use development
 - Data Sources
 - USDA Agricultural Census data
 - 1982, 1987, 1992, 1997, 2002, and 2007
 - County scale
 - Distributed to land-river segments based on satellite data
 - » 2006 Landsat satellite imagery
 - » Used to create USGS 2006 Modified Chesapeake Bay Land-Cover Dataset (CBLCD)

USGS 2006 Modified CBLCD (Detailed)

USGS 2006 Modified CBLCD (Reclassified)

Land-River Segment

Ag Census Apportionment

If Ag. Census data says:

-County High Till w/Manure = 200 acres

And if Land-Cover data says:

- -Total County cropland = 100 acres
- -Land River Segment X cropland = 20 acres
- -Land River Segment Y cropland = 10 acres

Then, proportions are:

- -Land River Segment X = 0.2
- -Land River Segment Y = 0.1

And, final acres are:

- -Land River Segment X = 40 acres High Till w/Manure
- -Land River Segment Y = 10 acres High Till w/Manure

Y = 10% of Total
County Cropland
(USGS Land-Cover)

County Cropland
(USGS Land-Cover)

County Cropland
(USGS Land-Cover)

WA County Boundary
CBP P532 Land-River Segments
USGS 2006 Modified Chesapeake Bay Land-Cover

Land-River Segment

Segment Ag. LU acres = (Segment LC % of County Total) x (County Ag. Census LU acres)

Water/Wetlands

Pasture Cropland

Urban/Barren/Extractive

Forest/Shrub/Grassland

Extractive

- Tabular land-use acres based off permitted mining data provided by MDE
 - Coal Mines
 - MDE provided polygons of disturbed areas to CBP
 - MDE Bureau of Mines
 - » Garrett and Allegany Counties
 - » Upper North Branch Potomac River
 - » Georges Creek
 - CBP rasterized polygons and acres were subsequently incorporated into tabular land-use
 - Mineral Mines
 - MDE provided point data of permitted mining locations
 - Acres in attribute table of point shapefile represent total permitted acres
 - CBP developed regression between permitted and disturbed acres using VA data
 - Apply regression to MD data
 - Incorporate estimated disturbed acres into tabular land-use
 - Buffer points based on estimated disturbed acres
 - Reclassify urban land-cover pixels
 - Overlay rasterized coal mine polygons and buffered mineral mine points with USGS 2006 CBLCD
 - Reclassify underlying urban pixels (represent misclassification) as extractive
 - Removes previously classified urban pixels from final tabular land-use calculations (i.e., avoids double counting urban)

Extractive

- 1. Calculate area of raster cells
- 2. Calculate acres
- 3. Incorporate into tabular data

Extractive

Construction

- Construction land-use acres calculated based on MD permitted construction site data
 - What is construction land-use?
 - Disturbed area of construction site only
 - Land requiring E&S controls
 - MDE sent Construction NOIs to CBP
 - CBP Methods
 - From MDE NOIs, calculate ratio between disturbed acres and acres of impervious generated
 - County scale
 - Impervious acres generated: disturbed acres
 - » Unique ratio per MD county
 - Apply ratio to CBP P532 model annual change in impervious acres
 - Per land-river segment
 - » Year A Construction Acres = (Year A impervious acres Year B impervious acres) x (impervious disturbed ratio)

- Final tabular land use classifications
 - NPDES Regulated
 - Impervious
 - Pervious
 - Non-regulated
 - Impervious
 - Pervious
 - Note: all pervious urban assumed to be turf grass

- Final tabular land use development
 - Data Sources
 - Satellite data 2006 Landsat imagery (USGS 2006 NLCD)
 - USGS 2006 CBLCD
 - USGS 2006 Modified CBLCD
 - Institutions NAVTEQ
 - Roads NAVTEQ
 - Road widths
 - Single detached housing units US Census Bureau
 - Rural lot sizes (acres) MDP Propertyview
 - Impervious coefficients
 - Regional Earth Sciences Applications Center (RESAC) impervious grid
 - Residential lot analysis
 - Turf grass coefficients
 - Land cover proportions within buffered rural roads
 - NPDES Regulated vs. Non-regulated
 - Mask land cover data with Maryland's urban stormwater source sector delineation

- USGS 2006 CBLCD
 - Serves as basis for urban impervious and pervious estimates
 - Derived from USGS 2006 NLCD

- USGS 2006 Modified CBLCD
 - Reclassified USGS 2006 CBLCD
 - Expanded urban footprint based on reclassification of non-urban areas
 - More detailed urban classification

USGS 2006 Modified CBLCD

- Reclassification
 - Expanded urban footprint
 - Reclassify based on overlay with NAVTEQ institutional areas
 - Apply 500 meter filter to developed pixels
 - Secondary road/developed area density reclassification
 - More detailed classification
 - Development Zones
 - » Different methods used to estimate urban impervious and pervious acres in each zone
 - » Urban
 - » Suburban
 - » Rural

- Reclassify CBLCD barren, scrub/shrub, grassland, pasture/hay, and cropland areas to developed open space based on overlay with NAVTEQ institutional area polygons
 - Military bases, golf courses, universities, hospitals, etc.

CBLCD

Modified CBLCD

- Apply 500 meter filter to developed pixels
 - Reclassifies all non-developed pixels within dense urban clusters as developed

Modified CBLCD

- Reclassify secondary roads and adjacent areas based on secondary road/developed area density raster thresholds
 - Development of density raster
 - Rasterize secondary road network
 - Merge secondary road raster polygon with CBLCD developed pixels
 - Calculate density (road pixels + developed pixels) using 500 meter filter
 - Covert pixel values in resultant raster to integers
 - Calculate threshold density values
 - Calculate mean and median values in previously mapped low-density residential areas. BPJ for final threshold values
 - Buffer secondary roads within density raster thresholds
 - 2 pixels (197 ft.)
 - Density thresholds vary per urban and rural area demarcations
 - Urban vs. rural US Census urbanized areas
 - Urban
 - » Density threshold: 4.5
 - Rural
 - » Density threshold: 5.0
 - Reclassify underlying pixels as developed (low-density residential), except for open water, unconsolidated shore, wetlands, and areas > 21% slope

Bring in secondary road network

▶ Dense secondary road network

Non-developed pixels reclassified

- Estimating impervious surfaces
 - Methods vary per development zone
 - Urban
 - Suburban
 - Rural
 - Delineated by USGS-CBP
 - Differentiate between intensity and type of development

- Urban Zone
 - Original CBLCD urban + filter reclassification + NAVTEQ institutional reclassification
 - Represents core urban areas/greater intensity of development
 - Estimating impervious surfaces
 - Impervious surface coefficients
 - State specific
 - 2001 RESAC impervious surface grid
 - » 30 meter pixels
 - » Percentage of pixel covered by impervious surfaces

USGS 2006 Modified CBLCD (Detailed)

Developed Land Cover Classes	Bay watershed	DC	DE	MD	NY	VA	WVA
Developed Open							
Space	5.82%	8.35%	9.98%	6.26%	6.27%	6.21%	1.53%
Low-intensity							
Developed	20.18%	30.32%	24.39%	22.74%	18.04%	16.08%	9.55%
Medium-intensity							
Developed	44.60%	61.40%	53.89%	52.46%	48.79%	48.04%	35.84%
High-intensity							
Developed	71.04%	86.99%	82.52%	82.57%	73.49%	75.97%	61.08%

State specific coefficients used in analysis

Impervious Acres = (Developed LC Class Acres) x (Impervious Coefficient)

Remainder = pervious urban; all pervious urban = turf grass

Suburban Zone

- Secondary road density reclassification
- Represents suburban sub-divisions
- Medium to low density residential (single detached homes)
- Estimating impervious surfaces
 - 50 randomly selected points
 - Overlay with aerial photography
 - Digitize impervious surfaces within closest residential parcel to random point
 - Calculate median impervious acres
 - Multiply median acres by number of single detached housing units (US Census Data) within the suburban zone
 - Done per land-river segment
 - Roads
 - NAVTEQ data includes # lanes, direction of travel, and whether or not controlled access
 - USGS-CBP assumed:
 - » Lane width = 12 ft.
 - » Shoulder width = 12 ft (24 ft. for controlled access roads)

Digitize **Impervious** surfaces

Sub-urban Zone

Calculate median acreage

State specific median applied in analysis

Impervious Acres = $((\# single detached houses) \times (0.14)) + (road impervious surfaces)$ Pervious Acres = original LC class barren, grassland, scrub/shrub, cropland, and pasture cells

Rural Zone

- All areas that are <u>not</u> classified as "urban" or "suburban"
- Includes all Modified CBLCD classifications outside of urban/suburban areas
- Modified CBLCD urban classifications in the "Rural Zone":
 - "Rural Developed"
 - Original CBLCD developed classifications that are reclassified to nondeveloped once 500 meter filter applied
 - » i.e., not part of dense urban clusters
 - Not actually used to inform any urban acre calculations in the tabular CBP P532 land-use

Rural Zone

- Estimating impervious surfaces
 - Similar methodology as applied for sub-urban areas
 - i.e., digitized impervious area for random sample of properties using aerial photography and applied US census data on single detached houses
 - Variation: Total property size key to calculation
 - Median property size = 1.86 acres (MDP Propertyview)
 - Median impervious surface acres = 0.14 (watershed); 0.18 (MD)
 - » Coefficients = 7.5% (watershed); 9.7% (MD)
 - » Applied state specific coefficients
 - Impervious Acres = (# single detached housing units) x (1.86) x (0.097)
 - Done per land-river segment
 - Roads
 - Same exact methodology as applied for sub-urban areas
- Estimating pervious urban area (i.e., turf grass)
 - Calculate turf grass coefficient
 - Apply 300 ft. buffer to roads
 - Overlay with Modified CBLCD
 - Calculate proportion of barren, grassland, scrub/shrub, cropland, and pasture cells to forest cells within buffer
 - Represents ratio of turf grass to wooded on rural residential properties
 - » Underlying assumption: all residential houses are located next to existing roads
 - Apply coefficient to total property size (1.86 acres)
 - Pervious Urban Acres = (# single detached housing units) x (1.86) x (turf grass coefficient)

USGS 2006 Modified CBLCD (Detailed)

Rural

Digitize Impervious surfaces

Rural Žone

Mapping the # of single detached houses

Single Detched Houses
Value
High: 2.6
Low: 0

Calculate median acreage

State specific median applied in analysis

Impervious Acres = ((# single detached houses) x (1.86) x (0.097)) + (road impervious surfaces)

Pervious Urban Acres = (# single detached houses) x (1.86) x (turf grass coefficient)

- Back-casting
 - 2006 base year
 - Methods discussed thus far reflective of 2006 conditions
 - Satellite imagery + NAVTEQ roads
 - High and medium intensity developed land estimates based on satellite imagery for 1984, 1992, and 2001
 - Apply housing data to back-cast low intensity residential developed lands to 1984, 1992, and 2001
 - Suburban and Rural Zones
 - Summarize total and single detached housing units in 1990 and 2000 (30 meter raster grid)
 - Extrapolated to 1992 and 2001 based on changes in county-level population estimates
 - Use GAMe model to back-cast housing units to 1984 and 2006 based
 - » Translates county population estimates into housing units
 - Develop regression equation between housing units and low intensity residential developed lands
 - » Use equation to estimate low intensity residential developed lands in 1984, 1992, and 2001
 - Linear interpolation to model years in between
- Forecast to model years beyond 2006
 - Linear interpolation

Progress Scenario Land-Use

- CBP P532 progress scenario land-use adjustments
 - Urban impervious and pervious acres developed based on previously discussed methods
 - Ag. acres based on ag. census data and extrapolation to non ag. census years
 - Forest = leftover
 - Total land-river segment acres (urban acres + ag. acres) = forest acres
 - If forest is negative, then ag. acres decreased proportionally
 - If there are still negative acres, non-regulated pervious and impervious acres reduced proportionally
 - If still negative acres, regulated impervious and pervious acres reduced proportionally
 - Land-use change BMPs applied

Presentation Overview

How did MDE refine the P5.3.2 land-use?

- Disaggregate urban land use into source sectors
 - NPDES Regulated
 - County Phase I and II MS4s
 - Municipal Phase II MS4s
 - SHA Phase I and II MS4
 - State Phase II MS4
 - Federal Phase II MS4
 - Industrial
 - Non-regulated
 - Non-MS4 jurisdictions (counties and municipalities)
 - State owned development in non-MS4 counties
 - Federally owned development in non-MS4 counties
 - SHA owned roads in non-MS4 counties
 - How?
 - Intersect urban land-cover (Modified CBLCD) with urban stormwater source sector delineations to produce urban area per regulated urban sector + non-regulated
 - Can calculate proportion of urban land-cover area per sector
 - Can apply proportions to tabular land-use data

MARYLAND MAST Urban Source Sectors Smart, Green & Growing

- County and Municipal Phase I and II MS4s
 - Jurisdictional boundaries
 - County
 - P5.3.2 land segments
 - Municipal
 - MDP Propertyview Data

SHA

- Phase I MS4
 - SHA Phase I MS4 impervious cover delineation
 - Right-of-way estimate
 - 75 m buffer to impervious cover
 - Intersect with RESAC transportation land-use
- Phase II MS4 and Non-regulated
 - MDP Propertyview road data
 - Impervious area estimate
 - » Interstates and state roads
 - » Assumed number of lanes
 - » Lane widths (SHA design manual)
 - Right-of-way estimate
 - » 75 m buffer to impervious estimate
 - » Intersect with RESAC transportation land-use

- State Phase II MS4
 - DNR Public Properties data layer
 - Extract state owned lands
 - MDP Propertyview
 - Point data
 - Extract state owned exempt properties
 - Buffer (individual acreages)
- Federal Phase II MS4
 - CBP P532 federal land-river segments
 - DNR Public Properties data layer
 - Extract federally owned lands
 - MDP Propertyview
 - Point Data
 - Extract federally owned exempt properties
 - Buffer (individual acreages)
- Non-regulated state and federal
 - Within non-MS4 counties
 - Same methods

- Industrial
 - General industrial stormwater permits
 - Process water permits with stormwater requirements
 - MDE permit applications
 - Geographic coordinates
 - Acres
 - » Create point shapefile
 - » Apply individual buffer

Presentation Overview

 How are CBP and MDE planning to improve watershed model land-use in the future?

CBP P6 Land-Use

- How does CBP plan to improve model landuse data?
 - Formation of CBP Land-Use Workgroup
 - Goals
 - To the extent feasible, incorporate as much local data into the Bay model land-use
 - Improve the spatial, temporal, and categorical representation of urban, agricultural, federal, and natural land uses through geospatial and statistical analyses applied to remotely sensed data, local data, and a large suite of other relevant geospatial datasets.

CBP P6 Local Data Needs

- How are MDE and CBP going to incorporate local data into CBP P6 land-use?
 - Acquire, inventory, analyze, and incorporate
 - Acquiring local data
 - MDE will be asking local jurisdictions to provide any <u>"readily available"</u> datasets that may be useful in developing the CBP P6 land-use dataset
 - The Department will be getting in touch with WIP team leaders and other applicable county and municipal staff in order to acquire this data
 - Target date for starting this process: <u>February 4th</u>
 - Target date for local jurisdictions to provide the data to MDE:
 May 31st

CBP P6 Local Data Needs

- Types of datasets MDE is looking for to characterize current and historic (1980+) LULC conditions
 - Land-Use/Land-Cover
 - Impervious surfaces
 - Other land cover (e.g., imagery derived tree canopy, turf grass, herbaceous vegetation)
 - Extractive areas (e.g., quarries, active and reclaimed surface mines, shale gas pads and related pipelines and roads)
 - Sewer service areas
 - Septic system locations
 - MS4/CSS stormwater regulated areas (latest version as defined by each state and/or locality)
 - Stormwater conveyance systems (drainage areas, pipes, outfalls, etc.)
 - Any other potential dataset that could inform current or historic land use
 - All applicable metadata files and methodology documentations

CBP P6 Local Data Needs

- Types of datasets MDE is looking for to characterize future LULC conditions
 - Zoning (consistent with latest comprehensive plan) with keys to interpret codes
 - Protected lands (including parks, recreation areas, and other county owned lands unavailable for future development)
 - Priority reinvestment/growth areas, designated growth areas, urban renewal/reinvestment zones, etc.
 - Actively planned and/or permitted developments (excluding approved but expired permits)
 - Proposed sewer service areas
 - Special environmental protection areas* (i.e., Critical Areas, Chesapeake Bay Preservation Areas, riparian buffers, erosion prone soils, flood zones, habitat protection areas)
 - Passenger rail transit stations (current and proposed)
 - Conservation priority areas (i.e., agricultural districts, green infrastructure hubs and/or corridors, rural legacy areas)
 - Planned transportation improvements
 - Any other potential dataset that could inform future land use
 - All applicable metadata files and methodology documentations

Summary

- CBP P532 model land-use does not exist in a spatial, GIS context
 - Why?
 - · Incorporation of agricultural census data
 - Urban methodologies
 - Most are spatial in nature, but some result in output datasets that are not spatially explicit
- Developed at the model land-river segment scale
 - Land-use acres not available at a finer scale (such as for Hagerstown)
- Accuracy increases as spatial scale increases
 - Land-river segment, county, segment-shed, major basin, state, etc.
- Process for Incorporation into final tabular dataset
 - Incorporate agricultural census data
 - Incorporate urban estimates (adjust if need be)
 - Forest = leftover
- MDE refinement of urban data by regulated sector
- Opportunity for local jurisdictions to help MDE and CBP improve Phase 6 model land-use
 - Providing data

Summary

Questions?

