Low pH Total Maximum Daily Loads for the Youghiogheny River Basin in Garrett County, Maryland

FINAL

1800 Washington Boulevard, Suite 540 Baltimore, MD 21230-1718

Submitted to:

Watershed Protection Division
U.S. Environmental Protection Agency, Region 3
1650 Arch Street
Philadelphia, PA 19103-2029

August 2007

EPA Submittal Date: August 6, 2007 EPA Approval Date: Sept. 20, 2007

CONTENTS

Abbreviations	vi
Executive Summary	viii
1 Introduction and Background	
1.1 Watershed Description	4
1.2 Water Quality Problem Statement	4
1.3 Water Quality Standards	6
1.4 Impaired Waterbodies	6
1.5 History of Mining in Western Maryland	7
2 Data Inventory and Analysis	
2.1 Data Inventory	9
2.1.1 Hydrology and Topography	9
2.1.2 Climate	
2.1.3 Water Chemistry Data	13
2.1.4 Land Use Data	13
2.1.5 Soils and Geology	19
2.1.6 Historical Mining Data	19
2.1.7 Point Source Data	19
2.1.8 Nonpoint Source Data	24
2.2 Data Analysis	
2.2.1 Source Assessment	25
2.2.2 Data Trends	25
3 Technical Approach	27
4 MDAS Model Development	31
4.1 Model Configuration.	31
4.1.1 Watershed Subdivision	31
4.1.2 Stream Representation	31
4.1.3 Land Use Representation	
4.1.4 Meteorological Representation	33
4.1.5 Hydrologic and Pollutant Representation	
4.2 Calibration and Validation	36
4.2.1 Hydrology Calibration	36
4.2.2 Water Quality Calibration	
4.3 Assumptions and Limitations	40
4.4 Baseline Model Results	
5 Allocation Analysis	46
5.1 TMDL Endpoints	46
5.2 Critical Conditions and Seasonal Variations	
5.3 TMDLs and Allocations	47
5.3.1 Wasteload Allocations	
5.3.2 Load Allocations	
5.3.3 Margin of Safety and Future Allocation	63
6 Reasonable Assurance	

TABLES

Table 1-1. Impaired stream segments in the Youghiogheny River watershed	2
Table 1-2. Water quality standards	7
Table 2-1. Data sets compiled for the Youghiogheny River watershed	9
Table 2-2. USGS flow gaging stations in the Youghiogheny River watershed	
Table 2-3. Available meteorological data	
Table 2-4. Water quality monitoring data sets	15
Table 2-5. Land use reclassifications from MDP data set	15
Table 2-6. Land use classification conversion between Pennsylvania and Maryland data sets	. 16
Table 2-7. Land use classification conversion between West Virginia and Maryland data sets.	
Table 2-8. Land use areas used for the Youghiogheny River watershed	. 17
Table 2-9. Permitted facilities included in the Youghiogheny River watershed model	22
Table 2-10. Methodology for assessment of stream acidification in Maryland	
Table 4-1. Modeled permitted flow and ammonium concentrations	34
Table 4-2. Modeled atmospheric deposition concentrations and fluxes	35
Table 4-3. Flow and chemical data for mine seeps and portals used in the model	
Table 4-4. Modeled baseline pH minimum, mean, and maximum	43
Table 4-5. Modeled baseline iron, aluminum, sulfate, nitrate, and ammonium yearly loads	43
Table 4-6. Baseline (2001) yearly loads from atmospheric deposition	. 44
Table 4-7. Baseline yearly loads from mine seeps and portals	. 45
Table 4-8. Baseline yearly loads from West Virginia	. 45
Table 5-1. TMDL pH minimum, mean, and maximum	
Table 5-2. Summary of yearly LA, WLA, MOS, and total TMDLs	. 49
Table 5-3. Comparison between baseline loads and TMDLs (lb/d)	. 52
Table 5-4. TMDL maximum daily iron loads by flow percentile range (lb/d)	. 54
Table 5-5. TMDL maximum daily aluminum loads by flow percentile range (lb/d)	. 55
Table 5-6. TMDL maximum daily sulfate loads by flow percentile range (lb/d)	. 56
Table 5-7. TMDL maximum daily nitrate loads flow percentile range (lb/d)	57
Table 5-8. TMDL maximum daily ammonium loads flow percentile range (lb/d)	. 59
Table 5-9. WLAs for permitted facilities upstream of impaired segments	. 60
Table 5-10. LAs for iron, aluminum, sulfate, nitrate, and ammonium yearly loads	. 61
Table 5-11. Projected (2020) yearly loads from atmospheric deposition for TMDL scenario	. 62
Table 5-12. Yearly loads from mine seeps and portals	. 63
Table 5-13. TMDL yearly loads from West Virginia	. 64

FIGURES

Figure 1-1. Impaired monitoring locations in the Youghiogheny River watershed	3
Figure 1-2. Location of the Youghiogheny River watershed.	
Figure 2-1. USGS gages in the Youghiogheny River watershed	
Figure 2-2. Climate stations used in the Youghiogheny River watershed model	12
Figure 2-3. Water quality stations in the Youghiogheny River watershed	14
Figure 2-4. Land use in the Youghiogheny River watershed.	18
Figure 2-5. Hydrologic soil groups in the Youghiogheny River watershed	20
Figure 2-6. Mining activities in the Youghiogheny River watershed	21
Figure 2-7. NPDES permitted facilities discharging to waters upstream of impaired monitor	ing
sites in the Youghiogheny River watershed.	23
Figure 3-1. Generalized diagram of pollutant flow in the modeling process	30
Figure 4-1. Watershed delineation for the Youghiogheny River watershed MDAS model	32
Figure 4-2. pH Calibration plot for Muddy Creek (MYC0018/WM-17)	39
Figure 4-3. pH Validation plot for UT to Bull Glade Run (ZWE0001/WM-7)	40
Figure 5-1. Example of load duration curve for iron for Laurel Run (LRL0034/BM929)	54
APPENDICES	
Appendix A: Water Quality Tables	

Appendix A: Water Quality Tables

Appendix B: Model Development and Configuration

Appendix C: Hydrology Calibration and Validation Results

Appendix D: pH Calibration and Validation Results

Appendix E: Iron Calibration and Validation Results

Appendix F: Aluminum Calibration and Validation Results

Appendix G: Sulfate Calibration and Validation Results

Appendix H: Nitrate Calibration and Validation Results

Appendix I: Ammonium Calibration and Validation Results

Appendix J: Technical Approach Used to Generate Maximum Daily Loads & TMDL Daily Loads and Statistics

ABBREVIATIONS

AMD acid mine drainage or acidic mine discharge

BASINS Better Assessment Science Integrating Point and Nonpoint Sources

CaCO₃ calcium carbonate

CAIR Clean Air Interstate Rule
CFR Code of Federal Regulations

cfs cubic feet per second CO₂ carbon dioxide

COMAR Code of Maryland Regulations COOP Cooperative Observer Network

DEM Digital Elevation Model
DMR discharge monitoring report
DOC dissolved organic carbon

EPA U.S. Environmental Protection Agency

FA future allocation
Fe(OH)₃ ferric hydroxide
Fe⁺² ferrous iron
Fe⁺³ ferric iron
FeS₂ iron sulfide

gpm gallons per minute H⁺ hydrogen ion

HSPF Hydrologic Simulation Program FORTRAN

LA load allocation lb/d pound per day lb/yr pound per year

MDAS Mining Data Analysis System

MDE Maryland Department of the Environment

MDP Maryland Department of Planning

mg/L milligrams per liter mgd million gallons per day

MOS margin of safety

MSTLAY Moisture Storage and Transport in Soil Layers

N nitrogen

NCDC NOAA's National Climatic Data Center

NHD National Hydrography Data

NOAA National Oceanic and Atmospheric Administration

NO_x nitrogen oxides

NPDES National Pollutant Discharge Elimination System

NRCS Natural Resources Conservation Service

PCS Permit Compliance System
SIC standard industrial classification

SMCRA Surface Mining Control and Reclamation Act

SO₂ sulfur dioxide

STATSGO State Soil Geographic Database

STORET EPA's STOrage and RETrieval water quality database

TMDL Total Maximum Daily Load USGS U.S. Geological Survey WBAN Weather Bureau Army-Navy

WLA wasteload allocation

WQLS water quality limited segment

WVDEP West Virginia Department of Environmental Protection

 $\begin{array}{ll} WWTP & wastewater \ treatment \ plant \\ \mu eq/L & microequivalents \ per \ liter \\ \mu g/L & micrograms \ per \ liter \\ \end{array}$

μS/cm micro Siemen per centimeter

EXECUTIVE SUMMARY

Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (at Title 40 of the *Code of Federal Regulations* [CFR] Part 130) require states to develop Total Maximum Daily Loads (TMDLs) for impaired waterbodies. A TMDL establishes the amount of a pollutant that a waterbody can assimilate without exceeding its water quality standard for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and nonpoint sources to restore and maintain the quality of the state's water resources (USEPA 1991).

The Youghiogheny River watershed (Maryland basin number - 05020201) is in western Maryland. The Youghiogheny River flows through portions of West Virginia, Maryland, and Pennsylvania. The headwaters originate on Backbone Mountain in northern West Virginia (Preston County) and western Maryland (Garrett County). The river flows north through part of Maryland and through a small part of northern West Virginia before it enters Pennsylvania at the Youghiogheny River Lake. The river continues to flow north to its confluence with the Monongahela River in Pennsylvania. The Youghiogheny River watershed is dominated by forest (60 percent) and agriculture (27 percent). Urban land use accounts for less than 10 percent of the total watershed area and is mostly concentrated around rivers and other waterbodies.

The Youghiogheny River was identified on the state's list of water quality limited segments (WQLSs) as impaired by low pH (1996 listing), sediments (1996/2002 listing), and impacts to biological communities (2002/2004 listing). Previously, the Youghiogheny River was listed for nutrients on the 1996 303(d) list. Nutrients were de-listed on the 2002 303(d) list after an intensive survey by MDE showed that showed no nutrient impairment.

The Maryland Department of the Environment (MDE) recently conducted a water quality assessment of all historical data within the Youghiogheny River watershed to determine where violation of the pH water quality standard might exist. MDE conducted a survey in 2005 to monitor stream segments with the potential to be impaired and identified 25 as being impaired (Table ES-1) due to atmospheric deposition, acid mine drainage, or as having episodic or chronic acidification if a source was not determined through the assessment process. This document establishes a TMDL of low pH in the 25 impaired stream segments that will allow for the attainment of the associated designated uses.

According to Maryland's water quality standards, the Youghiogheny River's water quality must support its designated uses. The majority of the Youghiogheny watershed is designated as Use III-P - Nontidal Cold Waters with Public Water Supply [Code of Maryland Regulations (COMAR) 26.08.02.08S(4)]. Only Broad Ford Run and its tributaries, upstream of the dam on Broad Ford Run, have another designation: Use I-P for Water Contact Recreation and Protection of Nontidal Warm Water Aquatic Life with Public Water Supply (COMAR 26.09.02.08S(1)). For both categories, the pH numeric criteria requires that pH values may not be less than 6.5 or greater than 8.5 (COMAR 26.08.02.03-3(B)(1) & (F)(4)).

Table ES-1. Impaired stream segments in the Youghiogheny River watershed

Station	Station code	Stream segment	pH source assessment		
WM-1	MYC0002	Muddy Creek	Acid mine drainage & acidic deposition		
WM-2	SNO0000	Snowy Creek	Acid mine drainage & acidic deposition		
WM-3	CHB0005	Cherry Bottom Run	Episodic acidification		
WM-4	HER0028	Herrington Creek	Episodic acidification		
WM-6	MUL0001	Murley Run	Episodic acidification		
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	Chronic acidification		
WM-8	HER0014	Herrington Creek	Episodic acidification		
WM-10	BUG0013	Bull Glade Run	Chronic acidification		
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	Chronic acidification		
WM-12	MLR0001	Millers Run	Episodic acidification		
WM-14	TOL0001	Toliver Run	Episodic acidification		
WM-15	LAU0013	Laurel Run	Acid mine drainage & acidic deposition		
WM-16	NED0005	Ned Run	Episodic acidification		
WM-17	MYC0018	Muddy Creek	Episodic acidification		
WM-18	HYR0001	Hoyes Run	Not impaired		
WM-19	HYR0005	Hoyes Run	Not impaired		
WM-21	ZWI0000	Unnamed tributary to Bear Creek	Chronic acidification		
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	Chronic acidification		
WM-24	UYM0000	Unnamed tributary to Yough. Lake	Not impaired		
WM-26	ZWH0000	Unnamed tributary to Mill Run	Acid mine drainage		
WM-27	MXL0010	Mill Run	Not impaired		
WM-28	BRC0003	Bear Creek	Not impaired		
WM-29	DCP0001	Deep Creek Lake Power Plant discharge	Not impaired		
BM909	BUF0082	Buffalo Run	Chronic acidification		
BM913	UGB0002	Unnamed tributary to Glade Run	Acid mine drainage		
BM915	NXB0003	North Branch Laurel Run	Acid mine drainage & acidic deposition		
BM928	LRL0018	Laurel Run	Acid mine drainage & acidic deposition		
BM929	LRL0034	Laurel Run	Chronic acidification		
BM930	TRR0007	Trap Run	Acid mine drainage		
BM931	WRR0008	White Rock Run	Chronic acidification		
BM933	WRG0003	White Rock Glade	Chronic acidification		

A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety

(MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody and may include a future allocation (FA) component. The TMDL components are illustrated using the following equation:

$$TMDL = SWLAs + SLAs + MOS + FA$$

For this TMDL, the Mining Data Analysis System (MDAS) was used to represent the source-response linkage for pH. MDAS is a comprehensive data management and modeling system capable of representing loads from nonpoint and point sources in the watershed and simulating in-stream processes.

MDAS model simulation for a multiyear period inherently accounts for seasonal variation, a required component of TMDLs. Continuous simulation represents both hydrologic and source loading variability seasonally. In addition, the model takes critical conditions into account through dynamic model simulation (i.e., using the model to predict conditions over a long period of time that represents wet, dry, and average flow periods).

In TMDL development, allowable loadings from pollutant sources are determined, the sum of which amounts to a cumulative TMDL threshold, thus providing a quantitative basis for establishing water quality-based controls. To address pH impairments, chemical species that affect pH (such as sulfate, iron, aluminum, nitrate, and ammonium) were reduced in the model simulation to raise the pH above 6.5. The state reserves the rights to revise these allocations provided that the allocations are consistent with the achievement of water quality standards.

A total allowable TMDL loading was determined from these reductions. WLAs were assigned to six of the seven permitted facilities that discharge to waters above impaired monitoring stations. If a parameter limit was not in the permit, the present discharge levels were not adversely affecting the stream and a WLA was not given for these parameters or permits. An explicit MOS of 5 percent of the total TMDL was subtracted from the total TMDL to obtain the LAs. The LAs include nonpoint sources such as atmospheric deposition and abandoned mine drainage. A summary of annual LAs for the subwatersheds addressed in this report is presented in Table ES-2. Daily maximum loads are presented in full in Section 5 (Table 5-2) of this report. Table ES-3 compares the TMDL allocations to the baseline loads.

Table ES-2. TMDL LAs for iron, aluminum, sulfate, nitrate, and ammonium yearly loads

Table ES				um, sulfate, nitrate, and ammonium yearly loads					
Station	Station code	Station name	TMDL fraction	lron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr)	
			LA	79,663	53,593	1,642,486	42,074	9,679	
			WLA	0	0	0	0	0	
			MOS	4,686	3,153	96,617	2,475	569	
		Muddy	FA	9,372	6,305	193,234	4,950	1,139	
WM-1 ^a	MYC0002	Creek	Total	93,721	63,050	1,932,337	49,498	11,387	
			LA	198,637	145,025	5,054,641	115,512	27,127	
			WLA	18	11	0	0	1,523	
			MOS	11,686	8,532	297,332	6,795	1,685	
		Snowy	FA	23,371	17,063	594,664	13,590	3,371	
WM-2 ^b	SNO0000	Creek	Total	233,712	170,631	5,946,637	135,896	33,705	
			LA	3,261	2,098	67,721	1,126	245	
			WLA	0	0	0	0	0	
		Cherry	MOS	192	123	3,984	66	14	
		Bottom	FA	384	247	7,967	133	29	
WM-3	CHB0005	Run	Total	3,837	2,468	79,672	1,325	288	
			LA	27,255	20,193	717,023	16,869	4,021	
			WLA	0	0	0	0	0	
			MOS	1,603	1,188	42,178	992	237	
		Herrington	FA	3,206	2,376	84,356	1,985	473	
WM-4	HER0028	Creek	Total	32,065	23,756	843,557	19,846	4,731	
			LA	2,249	2,811	490,988	8,045	1,827	
			WLA	0	0	0	0	0	
			MOS	132	165	28,882	473	107	
		Murley	FA	265	331	57,763	946	215	
WM-6 ^c	MUL0001	Run	Total	2,645	3,306	577,633	9,464	2,150	
			LA	104	159	39,768	532	124	
		Unnamed	WLA	0	0	0	0	0	
		tributary to	MOS	6	9	2,339	31	7	
		Bull Glade	FA	12	19	4,679	63	15	
WM-7	ZWE0001	Run	Total	123	187	46,786	626	145	
			LA	33,327	24,437	963,612	21,112	4,968	
			WLA	0	0	0	0	0	
			MOS	1,960	1,437	56,683	1,242	292	
		Herrington	FA	3,921	2,875		2,484	584	
WM-8 ^d	HER0014	Creek	Total	39,209	28,749	1,133,662	24,838	5,844	
			LA	294	449	112,925	1,514	352	
			WLA	0	0	0	0	0	
			MOS	17	26	6,643	89	21	
		Bull Glade	FA	35	53	13,285	178	41	
WM-10	BUG0013	Run	Total	346	528	132,853	1,781	414	
			LA	140	213	53,550	718	167	
		Unnamed	WLA	0	0	0	0	0	
		tributary to	MOS	8	13	3,150	42	10	
		Bull Glade	FA	16	25	6,300	84	20	
WM-11	UBL0000	Run	Total	164	250	63,000	845	197	
			LA	7,931	5,702	273,935	5,924	1,202	
		Millers	WLA	0	0	0	0	0	
WM-12	MLR0001	Run	MOS	467	335	16,114	348	71	

Table ES-2. (continued)

Table ES-2. (continued)									
Station	Station code	Station name	TMDL fraction	lron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr)	
			FA	933	671	32,228	697	141	
			Total	9,331	6,708	322,276	6,970	1,415	
			LA	14,172	9,423	397,953	6,812	1,422	
			WLA	0	0	0	0	330	
			MOS	834	554	23,409	401	103	
		Toliver	FA	1,667	1,109	46,818	801	206	
WM-14	TOL0001	Run	Total	16,673	11,086	468,180	8,014	2,061	
			LA	6,021	8,743	1,252,566	29,377	6,581	
			WLA	8	0	0	0	0	
			MOS	355	514	73,680	1,728	387	
		Laurel	FA	709	1,029	147,361	3,456	774	
WM-15	LAU0013	Run	Total	7,093	10,285	1,473,607	34,561	7,743	
			LA	3,183	2,274	72,552	1,539	369	
			WLA	0	0	0	0	0	
			MOS	187	134	4,268	91	22	
			FA	374	268	8,536	181	43	
WM-16	NED0005	Ned Run	Total	3,745	2,675	85,356	1,810	434	
			LA	57,719	42,081	1,329,769	31,324	7,139	
			WLA	752	101	0	0	0	
			MOS	3,439	2,481	78,222	1,843	420	
WM-		Muddy	FA	6,879	4,963	156,443	3,685	840	
17 ^e	MYC0018	Creek	Total	68,789	49,626	1,564,435	36,851	8,398	
			LA	1,573	1,063	54,834	820	186	
			WLA	0	0	0	0	0	
		Unnamed	MOS	93	63	3,226	48	11	
		tributary to Bear	FA	185	125	6,451	97	22	
WM-21	ZWI0000	Creek	Total	1,850	1,250	64,511	965	219	
			LA	49	65	13,424	198	39	
			WLA	0	0	0	0	0	
		Unnamed	MOS	3	4	790	12	2	
		tributary to Little Bear	FA	6	8	1,579	23	5	
WM-22	ZWL0005	Creek	Total	57	77	15,793	233	46	
			LA	3,285	1,667	147,856	1,185	232	
			WLA	0	0	0	0	0	
			MOS	193	98	8,697	70	14	
		Unnamed tributary to	FA	386	196	17,395	139	27	
WM-26	ZWH0000	Mill Run	Total	3,865	1,962	173,948	1,394	273	
20		-	LA	1,906	2,123	238,483	4,602	898	
			WLA	0	0	0	0	0	
			MOS	112	125	14,028	271	53	
		Buffalo	FA	224	250	28,057	541	106	
BM909	BUF0082	Run	Total	2,242	2,498	280,568	5,414	1,056	
			LA	504	420	45,811	816	173	
			WLA	0	0	43,011	010	0	
		ļ., , ,	MOS	30	25	2,695	48	10	
		Unnamed	FA	59	49	5,390	96	20	
BM913	UGB0002	tributary to Glade Run	Total	593	495	53,895	960	204	
BM915	NXB0003	North	LA	2,807		-			
טופויום	INVDOOR	Branch	WLA		1,921	90,465	1,748	361	
			VVLA	0	0	0	0	0	

Table ES-2. (continued)

Station	Station code	Station name	TMDL fraction	lron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr)
		Laurel	MOS	165	113	5,321	103	21
		Run	FA	330	226	10,643	206	42
			Total	3,302	2,260	106,430	2,056	425
			LA	13,478	8,838	315,092	5,573	1,152
			WLA	0	0	0	0	0
			MOS	793	520	18,535	328	68
		Laurel	FA	1,586	1,040	37,070	656	136
BM928 ^f	LRL0018	Run	Total	15,857	10,398	370,696	6,556	1,355
			LA	205	347	89,098	1,366	265
			WLA	0	0	0	0	0
			MOS	12	20	5,241	80	16
		Laurel	FA	24	41	10,482	161	31
BM929	LRL0034	Run	Total	241	409	104,822	1,607	312
			LA	2,251	1,597	100,301	1,743	372
			WLA	0	0	0	0	0
			MOS	132	94	5,900	103	22
			FA	265	188	11,800	205	44
BM930	TRR0007	Trap Run	Total	2,648	1,879	118,001	2,051	438
			LA	1,602	1,751	259,344	5,754	1,359
			WLA	0	0	0	0	0
			MOS	94	103	15,256	338	80
		White	FA	188	206	30,511	677	160
BM931	WRR0008	Rock Run	Total	1,885	2,060	305,111	6,770	1,598
			LA	1,291	2,227	380,867	9,839	2,215
			WLA	0	0	0	0	411
		White	MOS	76	131	22,404	579	154
		Rock	FA	152	262	44,808	1,158	309
BM933	WRG0003	Glade	Total	1,519	2,620	448,079	11,576	3,090

a WM-1 includes upstream loads from WM-17.
b WM-2 includes upstream loads from WM-15.
c WM-6 includes upstream loads from WM-7, WM-10, and WM-11.
d WM-8 includes upstream loads from WM-4.
e WM-17 includes upstream loads from WM-16.
f BM928 includes upstream loads from BM929.

Table ES-3. Comparison between baseline loads and TMDLs (lb/d)

Station	Station code	Station name	n baseline lo Load	lron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr) ^a
			Baseline	100,058	67,295	2,299,943	91,368	11,409
		Muddy	TMDL	93,721	63,050	1,932,337	49,498	11,387
WM-1 ^b	MYC0002	Creek	% reduction	6.3	6.3	16.0	45.8	0.2
			Baseline	339,230	245,788	6,779,850	251,595	33,520
		Snowy	TMDL	233,712	170,631	5,946,637	135,896	33,705
WM-2 ^c	SNO0000	Creek	% reduction	31.1	30.6	12.3	46.0	-0.6
		Cherry	Baseline	5,185	3,274	89,034	2,359	280
		Bottom	TMDL	3,837	2,468	79,672	1,325	288
WM-3	CHB0005	Run	% reduction	26.0	24.6	10.5	43.8	-2.8
			Baseline	49,330	34,982	961,242	36,783	4,706
		Herrington	TMDL	32,065	23,756	843,557	19,846	4,731
WM-4	HER0028	Creek	% reduction	35.0	32.1	12.2	46.0	-0.5
			Baseline	28,147	24,131	632,158	17,542	2,153
		Murley	TMDL	2,645	3,306	577,633	9,464	2,150
WM-6 ^d	MUL0001	Run	% reduction	90.6	86.3	8.6	46.0	0.2
		Unnamed	Baseline	2,457	2,129	50,350	1,166	146
		tributary	TMDL	123	187	46,786	626	145
WM-7	ZWE0001	to Bull Glade Run	% reduction	95.0	91.2	7.1	46.3	0.1
			Baseline	68,130	47,066	1,287,936	45,734	5,790
		Herrington	TMDL	39,209	28,749	1,133,662	24,838	5,844
WM-8 ^e	HER0014	Creek	% reduction	42.5	38.9	12.0	45.7	-0.9
			Baseline	6,929	5,987	143,118	3,314	415
		Bull Glade	TMDL	346	528	132,853	1,781	414
WM-10	BUG0013	Run	% reduction	95.0	91.2	7.2	46.3	0.1
		Unnamed	Baseline	3,284	2,838	67,853	1,572	197
		tributary to Bull	TMDL	164	250	63,000	845	197
WM-11	UBL0000	Glade Run	% reduction	95.0	91.2	7.2	46.3	0.1
			Baseline	17,943	11,868	365,751	12,366	1,405
		Millers	TMDL	9,331	6,708	322,276	6,970	1,415
WM-12	MLR0001	Run	% reduction	48.0	43.5	11.9	43.6	-0.7
VVIVI 12	WEROOT	rtan	Baseline	29,251	18,626	525,967	14,259	2,023
		Toliver	TMDL	16,673	11,086	468,180	8,014	2,061
WM-14	TOL0001	Run	% reduction	43.0	40.5	11.0	43.8	-1.9
VVIVI 1-T	1020001	IXIII	Baseline	70,855	58,324	1,664,904	63,843	7,768
		Lourol	TMDL	7,093	10,285	1,473,607	34,561	7,743
WM-15	LAU0013	Laurel Run	% reduction	90.0	82.4	11.5	45.9	0.3
77171 10	2,100010	Ttuli	Baseline	4,801	3,369	96,293	3,350	433
			TMDL	3,745	2,675	85,356	1,810	434
WM-16	NED0005	Ned Run	% reduction	22.0	20.6	11.4	46.0	-0.4
V V I V I I U	.4220003	NGG IXUII	Baseline	75,127	53,858	1,855,281	68,200	8,456
		Mudd	TMDL	68,789	49,626	1,564,435	36,851	8,398
WM-17 ^f	MYC0018	Muddy Creek	% reduction	8.4	7.9	1,564,435	46.0	0,396
A A I ALL	1411 000 10	Unnamed	Baseline	4,206	2,661		1,728	212
		tributary	TMDL	1,850	1,250	71,962 64,511	965	212
10/04/04	7),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	to Bear				1		
WM-21	ZWI0000	Creek	% reduction	56.0	53.0	10.4	44.2	-3.1

Table ES-3. (continued)

	Station	Station		Iron	Aluminum	Sulfate	Nitrate	Ammonium
Station	code	name	Load	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr) ^a
		Unnamed	Baseline	719	559	17,242	414	46
		tributary to Little	TMDL	57	77	15,793	233	46
		Bear						
WM-22	ZWL0005	Creek	% reduction	92.0	86.3	8.4	43.7	-0.1
		Unnamed	Baseline	7,578	3,097	197,556	2,506	284
		tributary	TMDL	3,865	1,962	173,948	1,394	273
WM-26	ZWH0000	to Mill Run	% reduction	49.0	36.7	12.0	44.3	3.8
			Baseline	13,190	9,903	313,262	9,603	1,057
		Buffalo	TMDL	2,242	2,498	280,568	5,414	1,056
BM909	BUF0082	Run	% reduction	83.0	74.8	10.4	43.6	0.1
		Unnamed	Baseline	3,294	2,146	60,634	1,720	201
		tributary to Glade	TMDL	593	495	53,895	960	204
BM913	UGB0002	Run	% reduction	82.0	77.0	11.1	44.2	-1.6
		North	Baseline	6,004	3,881	119,541	3,639	421
		Branch Laurel	TMDL	3,302	2,260	106,430	2,056	425
BM915	NXB0003	Run	% reduction	45.0	41.7	11.0	43.5	-0.9
			Baseline	20,439	13,732	413,817	11,637	1,341
		Laurel	TMDL	15,857	10,398	370,696	6,556	1,355
BM928 ^g	LRL0018	Run	% reduction	22.4	24.3	10.4	43.7	-1.1
			Baseline	4,824	3,737	114,594	2,862	312
		Laurel	TMDL	241	409	104,822	1,607	312
BM929	LRL0034	Run	% reduction	95.0	89.1	8.5	43.9	0.1
			Baseline	7,157	4,583	132,060	3,655	431
			TMDL	2,648	1,879	118,001	2,051	438
BM930	TRR0007	Trap Run	% reduction	63.0	59.0	10.6	43.9	-1.7
			Baseline	17,134	12,255	344,375	12,551	1,596
		White	TMDL	1,885	2,060	305,111	6,770	1,598
BM931	WRR0008	Rock Run	% reduction	89.0	83.2	11.4	46.1	-0.2
		White	Baseline	25,315	18,671	511,679	21,540	3,088
		Rock	TMDL	1,519	2,620	448,079	11,576	3,090
BM933	WRG0003	Glade	% reduction	94.0	86.0	12.4	46.3	0.0

^a The CAIR model predicts that ammonium in atmospheric deposition will increase in some areas. ^b WM-1 includes upstream loads from WM-17.

WW-2 includes upstream loads from WM-15.

d WM-6 includes upstream loads from WM-7, WM-10, and WM-11.

e WM-8 includes upstream loads from WM-4.
f WM-17 includes upstream loads from WM-16.

g BM928 includes upstream loads from BM929.

1 Introduction and Background

Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's (EPA) Water Quality Planning and Management Regulations (at Title 40 of the *Code of Federal Regulations* [CFR] Part 130) require states to develop Total Maximum Daily Loads (TMDLs) for waterbodies that are not supporting their designated uses even after pollutant sources have implemented technology-based controls. A TMDL establishes the maximum allowable load (mass per unit of time) of a pollutant that a waterbody is able to assimilate and still support its designated use(s). The maximum allowable load is determined using the relationship between pollutant sources and in-stream water quality. TMDLs provide a scientific basis for establishing water quality-based controls to reduce pollution from both point and nonpoint sources to restore and maintain the quality of the state's water resources (USEPA 1991). TMDL development requires an assessment of a waterbody's assimilative capacity, critical conditions, and other considerations.

The Youghiogheny River was identified on Maryland's list of water quality limited segments (WQLSs) as impaired by low pH (1996 listing), sediments (1996/2002 listing), and impacts on biological communities (2002/2004 listing). Previously, the Youghiogheny River was listed for nutrients on the 1996 303(d) list. Nutrients were de-listed on the 2002 303(d) list after an intensive survey by MDE showed that showed no nutrient impairment.

The Maryland Department of the Environment (MDE) recently conducted a water quality assessment of all historical data within the Maryland portion of the Youghiogheny River watershed to determine where violation of the pH water quality standard may exist. From this analysis it was determined that 31 stream segments throughout the watershed have the potential for low pH impairment. Water quality monitoring data collected in 2005 by MDE indicate that observed pH levels frequently violate water quality standards for 25 segments in the Youghiogheny River watershed (Maryland basin number – 05020201) (Table 1-1 and Figure 1-1). The pollutant loadings were classified by source, including acid mine drainage (AMD) and atmospheric deposition. In addition, a segment could be classified as having chronic or episodic acidification with no identified source. Previously, a pH TMDL was developed for Cherry Creek, which is a tributary of Deep Creek Lake in the Youghiogheny River watershed and was approved by EPA on November 11, 2003. This document proposes to establish a TMDL of low pH in the 25 impaired stream segments that will allow for the attainment of the associated designated uses.

Only the portion of the Youghiogheny River watershed that flows into the Youghiogheny River Lake in Maryland is included in this TMDL. There are tributaries to the Youghiogheny River in Maryland that enter the Youghiogheny River in Pennsylvania. These tributaries are not part of this TMDL or report.

This TMDL report addresses the low pH impairment in the Youghiogheny River watershed. Low pH in a waterbody leads to acidic conditions. A pH of less than 5 is considered to be harmful to most stream biota (USEPA 1999). Healthy freshwater ecosystems have a diverse number of species (e.g., zooplankton, fish, and waterfowl) that depend on the freshwater environment for life. As pH becomes more acidic, the number of aquatic species and their populations tend to decline, with some species being more tolerant of low pH than others (USEPA 2007). Low pH in

Table 1-1. Impaired stream segments in the Youghiogheny River watershed

Station	Station code	Stream segment	pH source assessment		
WM-1	MYC0002	Muddy Creek	Acid mine drainage & acidic deposition		
WM-2	SNO0000	Snowy Creek	Acid mine drainage & acidic deposition		
WM-3	CHB0005	Cherry Bottom Run	Episodic acidification		
WM-4	HER0028	Herrington Creek	Episodic acidification		
WM-6	MUL0001	Murley Run	Episodic acidification		
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	Chronic acidification		
WM-8	HER0014	Herrington Creek	Episodic acidification		
WM-10	BUG0013	Bull Glade Run	Chronic acidification		
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	Chronic acidification		
WM-12	MLR0001	Millers Run	Episodic acidification		
WM-14	TOL0001	Toliver Run	Episodic acidification		
WM-15	LAU0013	Laurel Run	Acid mine drainage & acidic deposition		
WM-16	NED0005	Ned Run	Episodic acidification		
WM-17	MYC0018	Muddy Creek	Episodic acidification		
WM-18	HYR0001	Hoyes Run	Not impaired		
WM-19	HYR0005	Hoyes Run	Not impaired		
WM-21	ZWI0000	Unnamed tributary to Bear Creek	Chronic acidification		
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	Chronic acidification		
WM-24	UYM0000	Unnamed tributary to Yough. Lake	Not impaired		
WM-26	ZWH0000	Unnamed tributary to Mill Run	Acid mine drainage		
WM-27	MXL0010	Mill Run	Not impaired		
WM-28	BRC0003	Bear Creek	Not impaired		
WM-29	DCP0001	Deep Creek Lake Power Plant discharge	Not impaired		
BM909	BUF0082	Buffalo Run	Chronic acidification		
BM913	UGB0002	Unnamed tributary to Glade Run	Acid mine drainage		
BM915	NXB0003	North Branch Laurel Run	Acid mine drainage & acidic deposition		
BM928	LRL0018	Laurel Run	Acid mine drainage & acidic deposition		
BM929	LRL0034	Laurel Run	Chronic acidification		
BM930	TRR0007	Trap Run	Acid mine drainage		
BM931	WRR0008	White Rock Run	Chronic acidification		
BM933	WRG0003	White Rock Glade	Chronic acidification		

a waterbody affects gill function, egg development, and larval survival (USEPA 1999). Species that do not tolerate acidic environments will begin to lose the ability to reproduce, and even if a species is able to spawn, the offspring often do not survive the harsh acidic environment and might be more susceptible to disease or deformity (Environment Canada 2005).

When pH falls below 5, most fish cannot survive, and terrestrial animals, such as waterfowl, that are dependent on the aquatic species for survival are affected as their aquatic food sources are diminished (Environment Canada 2005). Metals concentrations in streams (e.g., aluminum) can also become toxic to fish when stream water and runoff entering the stream is acidic (USEPA 1999).

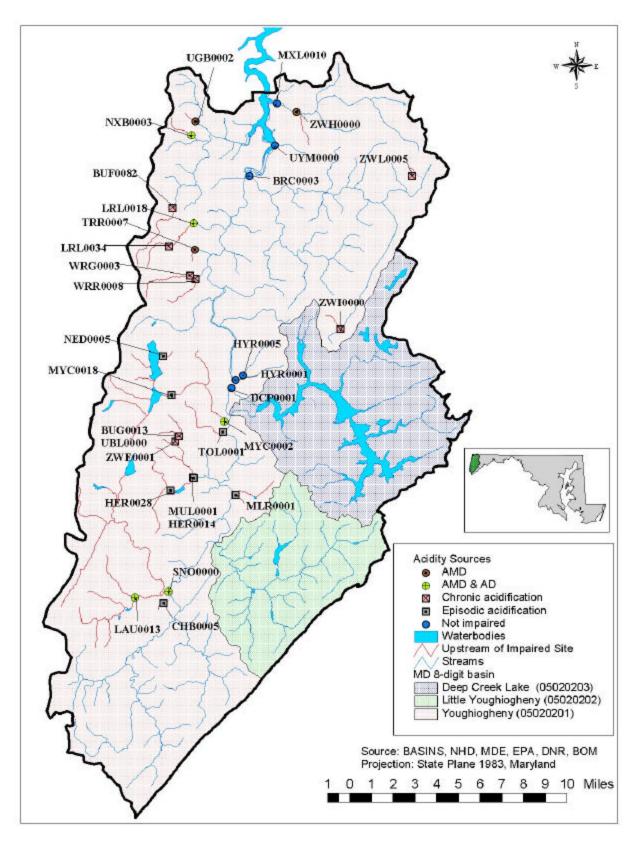


Figure 1-1. Impaired monitoring locations in the Youghiogheny River watershed.

1.1 Watershed Description

The Youghiogheny River flows through portions of West Virginia, Maryland, and Pennsylvania (Figure 1-2). The headwaters of the Youghiogheny River originate on Backbone Mountain in northern West Virginia (Preston County) and western Maryland (Garrett County). The river flows north through western Maryland and enters Pennsylvania through the Youghiogheny River Lake. The river continues to flow north to its confluence with the Monongahela River in Pennsylvania. The watershed's U.S. Geological Survey (USGS) hydrologic unit code is 05020006. The Maryland basin number is 05020201.

The entire Youghiogheny River watershed includes portions of Garrett County in Maryland; Preston County in West Virginia; and Allegheny, Fayette, Somerset, and Westmoreland Counties in Pennsylvania. However, the area of the Youghiogheny River watershed in this report restricted to the watershed portions in Maryland, West Virginia, and the southern regions of Fayette and Somerset Counties in Pennsylvania that flow to the Youghiogheny River Lake in Maryland.

1.2 Water Quality Problem Statement

There are several potential sources effecting pH in the Youghiogheny River watershed: atmospheric deposition (acid rain), AMD, agriculture, and naturally occurring conditions.

Acid rain is produced when atmospheric moisture reacts with gases to form sulfuric acid and nitric acids. These gases are primarily formed from nitrogen dioxides and sulfur dioxide, which enter the atmosphere through exhaust and smoke from burning fossil fuels such as gas, oil, and coal. Acid rain crosses political and watershed boundaries and can originate out of state.

Acid mine drainage occurs when surface and subsurface water percolates through coal-bearing minerals containing large amounts of pyrite and marcasite, which are crystalline forms of iron sulfide (FeS_2). The chemical reactions of the pyrite generate acidity in water. A synopsis of these reactions is as follows (Stumm and Morgan 1996):

- Exposure of pyrite to air and water causes the oxidation of pyrite.
- The sulfur component of pyrite is oxidized, releasing dissolved ferrous (Fe⁺²) and hydrogen (H⁺) ions. These hydrogen ions cause the acidity.
- The intermediate reaction with the dissolved Fe⁺² ions generates a precipitate, ferric hydroxide [Fe(OH)₃], and releases hydrogen ions, thereby causing more acidity.
- A third reaction occurs between the pyrite and the generated ferric (Fe⁺³) ions contained in the ferric hydroxide precipitate, where more hydrogen ions (increasing acidity) are released as well as Fe⁺² ions, which enter the reaction cycle.

Agriculture can play a small role in acidifying streams. Fertilizers used on agricultural land, and sometimes lawns and parks, can contain large amounts of nitrogen. Through chemical reactions in surface and subsurface waters, which will be described later in this report, nitrogen can lower a waterbody's pH level.

pH levels can further be lowered by natural conditions such as wetlands, more specifically bogs, and the lack of stream buffering capacity. Bogs were identified as a source of acid impairment in

Figure 1-2. Location of the Youghiogheny River watershed.

the Cherry Creek watershed, which flows to Deep Creek Lake and then the Youghiogheny River (MDE 2003). Bogs receive most of their water from precipitation, which is naturally slightly acidic but could also be affected by acid rain, and pH might be decreased from the natural decomposition of organic materials (MDE 2003). Bogs have been identified only in the Cherry Creek watershed, which does not flow into any of the listed segments in this study. The other natural condition that could result in lowered pH levels is the lack of buffering-capacity in streams. The bedrock in the Youghiogheny River watershed is mainly sandstone, shale, and siltstone, which contain little calcium carbonate. There are only small areas containing limestone and calcareous shale that include calcium carbonate, which buffers excess hydrogen ions to raise pH levels in streams.

1.3 Water Quality Standards

Maryland water quality standards consist of two components: (1) designated and existing uses and (2) narrative or numeric water quality criteria necessary to support those uses. Furthermore, water quality standards serve the purpose of protecting public health, enhancing the quality of water, and protecting aquatic resources.

Maryland's water quality standards require the Youghiogheny River's water quality to support its designated uses. The majority of the Youghiogheny watershed is designated as Use III-P - Nontidal Cold Waters with Public Water Supply [Code of Maryland Regulations (COMAR) 26.08.02.08S(4)]. Only Broad Ford Run and its tributaries, upstream of the dam on Broad Ford Run, have another designation: Use I-P for Water Contact Recreation and Protection of Nontidal Warm Water Aquatic Life with Public Water Supply (COMAR 26.09.02.08S(1)). For both categories, the pH numeric criteria requires that pH values may not be less than 6.5 or greater than 8.5 (COMAR 26.08.02.03-3(B)(1) & (F)(4)).

The Youghiogheny River enters into Pennsylvania via the Youghiogheny River Lake. Pennsylvania's water quality standards are presented in Table 1-2 (PADEP 2006). Water quality standards for West Virginia (WVSOS 2006) and the national recommended water quality criteria by EPA (USEPA 2004) are also listed in Table 1-2.

1.4 Impaired Waterbodies

MDE monitored 31 stream segments in 2005 to identify pH-impaired streams. Of these, MDE identified 25 as being impaired. For a full description of the assessment process, see Section 2.2.1. These streams were identified as impaired due to atmospheric deposition, AMD, and organic sources or as having episodic or chronic acidification if a source was not determined through the assessment process. The mainstem of the Youghiogheny River is not among those stream segments identified as impaired.

The Youghiogheny River enters Pennsylvania through the Youghiogheny River Lake. Pennsylvania does not list the Youghiogheny River for pH impairments at this point. The Youghiogheny River is listed for mercury further downstream in Pennsylvania. USGS maintains a water quality station (USGS 03077500) at the Youghiogheny River Lake dam, which is 10 miles downstream from where the Youghiogheny River enters Pennsylvania. Data from this site showed pH, sulfate, iron, and aluminium meeting Pennsylvania standards.

Table 1-2. Water quality standards

Parameter	Ma	ryland	Penns	sylvania	West Virginia		EPA	
	Value	Comment	Value	Comment	Value	Comment	Value	Comment
Acidity								
Alkalinity			20 mg/L as CaCO ₃				20 mg/L	
Aluminum			750 μg/L		750 μg/L	Dissolved acute ^a aquatic life	750 μg/L	Freshwater max.concentration at pH 6.5–9.0
					87 μg/L	Dissolved chronic ^b troutwaters aquatic life	87 μg/L	Freshwater continuous concentration at pH 6.5–9.0
Ammonia Nitrogen				Varies based on pH		Varies		Varies based on pH and temperature
Iron			1.5 mg/L	30-day average total recoverable	1.5 mg/L	Total chronic ^b warmwater aquatic life & Human health	1.0 mg/L	Freshwater continuous concentration
			0.3 mg/L	Dissolved	0.5	contact recreation/ public water supply	0.3 mg/L	Human health for consumption of water and organism
					0.5 mg/L	Total chronic ^b troutwaters aquatic life		
Nitrate			10 mg/L as N	Nitrate + Nitrite	10 mg/L as N	Human health for drinking water & consumption of organism	10 mg/L	Human health for consumption of water and organism
pH	6.5–8.5		6.0–9.0		6.0–9.0		6.5–9.0	Freshwater continuous range
							5.0–9.0	Human health for consumption of water and organism
Sulfate			250 mg/L					

^a One-hour average concentration not to be exceeded more than once every 3 years on the average.

West Virginia lists the entire length of five stream segments within the Youghiogheny River watershed on its 2006 303(d) list. The segments are the Youghiogheny River (biological), Snowy Creek (aluminium, biological, and iron), Laurel Run (iron and pH), Wardwell Run (biological), and Maple Run (biological). The sources of the impairments are not known, except for Laurel Run, where the suspected source is AMD.

1.5 History of Mining in Western Maryland

Coal mining has occurred in western Maryland since the early 1700s. Deep mine production peaked in the early 1900s. Coal mining in Maryland peaked at 5.5 million tons in 1907 but usually averaged 4 to 5 million tons annually (USDOI 2006). Because of the design of the mines, water with high acid and iron concentrations ran into the streams. Underground mining declined in Maryland after 1945, with 91 percent of the mines being surface mines in 1977 (USDOI 2006). In the 1980s production fluctuated between 3 and 4.5 million tons annually (USDOI

^b Four-day average concentration not to be exceeded more than once every 3 years on the average.

2006). Currently in the Youghiogheny River watershed, mining is confined to the Lower Youghiogheny coal field, which is in the north-central portion of the watershed.

2 DATA INVENTORY AND ANALYSIS

2.1 Data Inventory

Table 2-1 outlines key data sets compiled for this project. The data sets include geographical and political information, such as county boundaries and land use, and in-stream monitoring data, such as water quality and flow. Descriptions of the data sets that were used in model development are given in Sections 2.1.1 through 2.1.8.

Table 2-1. Data sets compiled for the Youghiogheny River watershed

Data type	Information sources
Reservoir boundaries and stream network	BASINS, USGS 7.5 minute Quads, MDE
Land use	Maryland Department of the Environment; West Virginia Gap Analysis from Natural Resource Analysis Center at West Virginia University; Pennsylvania Spatial Data Access
Soils	STATSGO
Watershed boundaries	USGS Hydrologic Unit Boundaries (8-digit), MDE
Topographic relief and elevation data	USGS 7.5 minute Quads, Digital Elevation Models from BASINS
Surface geology	Maryland Geological Survey
Active and abandoned mine locations	MDE
Flow data and locations	USGS
Meteorological data and locations ^a	National Oceanic and Atmospheric Administration – National Climatic Data Center (NOAA-NCDC)
Water quality data and locations	STORET, USGS, MDE
NPDES permitted facilities and locations ^b	Permit Compliance System (PCS), MDE

^a Precipitation, dry-bulb [air] temperature, dew point temperature, wind speed, cloud cover.

2.1.1 Hydrology and Topography

There are limited flow data available within the Youghiogheny River watershed. The USGS online database (NWISWeb) contains only three stations that have daily flow data for the past 15 years in the Youghiogheny River watershed (USGS 2005). These stations are shown in Figure 2-1 and listed in Table 2-2 with the period of record and measure of completeness for each gage. Seven other USGS stations are in the watershed; however, they do not contain daily flow data. The three stations with daily flow data are:

• Station 03075500 on the Youghiogheny River near Oakland, Maryland, which is in the southern part of the watershed and has a drainage area of 134 square miles.

^b NPDES permit limits, design flow, DMR data

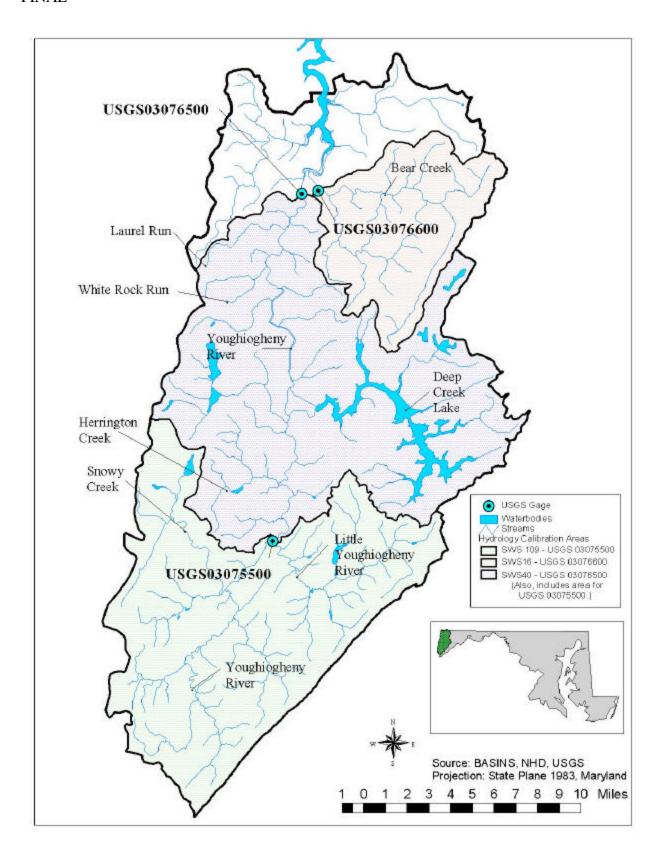


Figure 2-1. USGS gages in the Youghiogheny River watershed.

- Station 03076500 on the Youghiogheny River near Friendsville, Maryland, which is in the northern part of the watershed, has a drainage area of 295 square miles, and includes the area from station 03075500.
- Station 03076600 on Bear Creek near Friendsville, Maryland, which is in the northern part of the watershed and has a drainage area of 49 square miles.

Table 2-2. USGS flow gaging stations in the Youghiogheny River watershed

Station	Station name	Start date	End date	Percent complete
03075500	Youghiogheny River near Oakland, MD	08/26/1941	09/30/2005 ^b	100
03076500	Youghiogheny River at Friendsville, MD	12/01/1940 ^a	09/30/2005 ^b	100
03076600	Bear Creek at Friendsville, MD	10/01/1964	09/30/2005 ^b	100

^a This station also has data from 8/17/1898 though 12/31/1904.

The elevation of the Youghiogheny River watershed ranges from approximately 1,300 feet to over 3,300 feet. The lowest area is along the river and its tributaries in the north-central part of the watershed. The highest areas and the steepest slopes are in the mountains in the western and eastern edges of the watershed. Topographic information was obtained from Digital Elevation Models (DEMs) from EPA's Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) (USEPA 2004) and USGS topographic maps.

2.1.2 Climate

The National Oceanic and Atmospheric Administration (NOAA) collects weather data from numerous regional climate stations. NOAA's National Climatic Data Center (NCDC) stores and distributes weather data gathered by the Cooperative Observer Network (COOP) throughout the United States and from Weather Bureau Army-Navy (WBAN) airways stations or surface airway stations. The COOP stations record hourly or daily rainfall data, while the surface airway stations record hourly rainfall plus additional hourly data.

The identification of the best weather data for this modeling effort was based on several factors including geographic coverage, data record, and data completeness. There were two stations used for this TMDL study, based mainly on geographic location. There are other nearby weather stations with more complete data sets; however, they are not considered representative of the watershed because they are on opposite sides of the surrounding mountains and most likely have different rainfall patterns. Information on the selected hourly and daily COOP and WBAN stations is presented in Figure 2-2 and Table 2-3. Table 2-3 also provides statistics regarding the period of record and the completeness of records expressed as percentages of reported data corresponding to the respective station's period of record.

Additional data for dry-bulb air temperature, wind speed, solar radiation, cloud cover, and dew point temperature data were required in addition to hourly precipitation and evapotranspiration. Precipitation, wind speed, temperature, and cloud cover data were taken directly from the NOAA stations. Solar radiation was calculated using the Hamon equation (Hamon 1961) using latitude (to determine the hours of sunshine) and cloud cover. Potential

^b Provisional data were used to expand the end date to 11/30/2005.

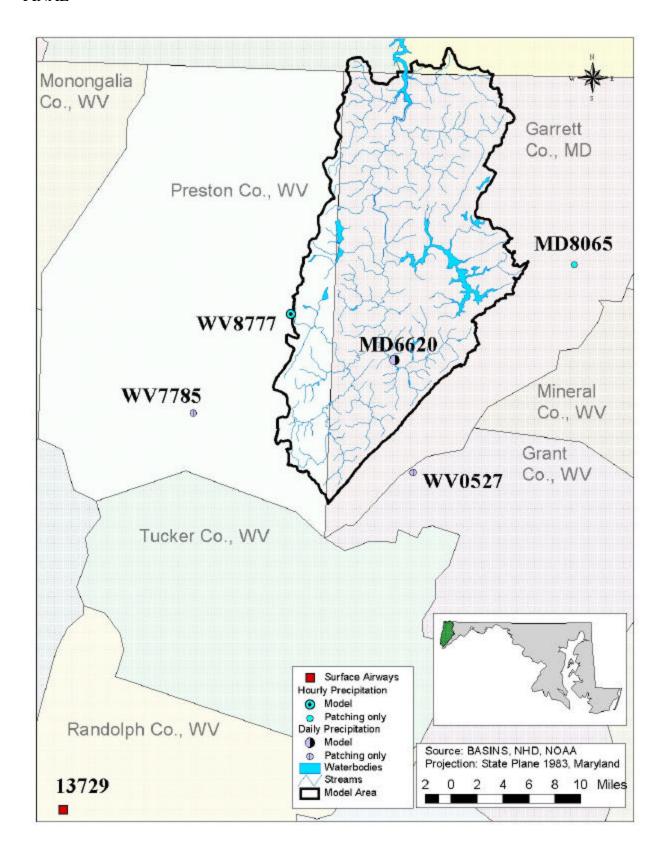


Figure 2-2. Climate stations used in the Youghiogheny River watershed model.

Table 2-3. Available meteorological data

Station ID	Station name	Start date	End date ^a	Percent complete	Data type	
13729 Elkins - Randolph Co Airport		' 1 01/01/1980 1	12/31/2002	96	Dew point temperature	
	•			100	Dry-bulb temperature	
	Airport			96	Windspeed and direction	
			04/30/1996	95	Cloud cover	
186620	Oakland 1 SE	01/01/1948	12/31/2004	98	Precipitation	
467785 ^b	Rowlesburg 1	01/01/1948	12/31/2004	99	Precipitation	
MD8065 ^b	Savage River Dam	05/01/1949	12/31/2004	85	Precipitation	
WV8777	Terra Alta No 1	01/01/1978	12/20/2004	90	Precipitation	

^a Unedited data were used to expand the end date to 11/30/2005.

evapotranspiration was calculated using the Penman method (Penman 1948). The Penman equation uses air temperature, wind speed, solar radiation, and dew point temperature to compute pan evaporation. An additional conversion factor of 0.8 for winter and 1.0 for summer was applied to estimate potential evapotranspiration. This conversion factor is used to represent the influence of vegetative cover on the land surface.

2.1.3 Water Chemistry Data

There are eight different sources of information on water quality for the Youghiogheny River watershed. Most information was provided by MDE. Additional data were obtained from EPA's STORET database (USEPA 2005a) and the West Virginia WAPbase database. Figure 2-3 and Table 2-4 present the available water quality data sets and the availability of the corresponding location data, flow data, data range, and parameters. The data sets contain many parameters including pH, nitrate, sulfate, total iron, dissolved iron, and total aluminum. Some data sets do not contain location information, such as latitude and longitude, or list specific dates of data collection. Therefore, these data sets could not be used for this study. Water quality data is summarized in Appendix A.

2.1.4 Land Use Data

Because the portion of the watershed included in this study encompasses parts of three states, land use data were obtained from three different sources. Land use data for Maryland was obtained from Maryland Department of Planning (MDP). The land use data for Pennsylvania were obtained from the Pennsylvania Spatial Data Access Web site, which is housed at Pennsylvania State University (PSU 2003). The West Virginia land use data were obtained from the Natural Resource Analysis Center and West Virginia Cooperative Fish and Wildlife Research Unit from West Virginia University (WVU 2000).

Each land use data set has its own classification system; therefore, it was necessary to reclassify the land uses to be consistent between data sets. The MDP classifications were used as the basis for the reclassification. The detailed MDP classifications were grouped into seven categories (Table 2-5). The land use classifications from Pennsylvania and West Virginia were compared to the MDP categories and reclassified into the appropriate land use categories (Tables 2-6 and 2-7).

^b Data from this station were used to patch other stations for the model.

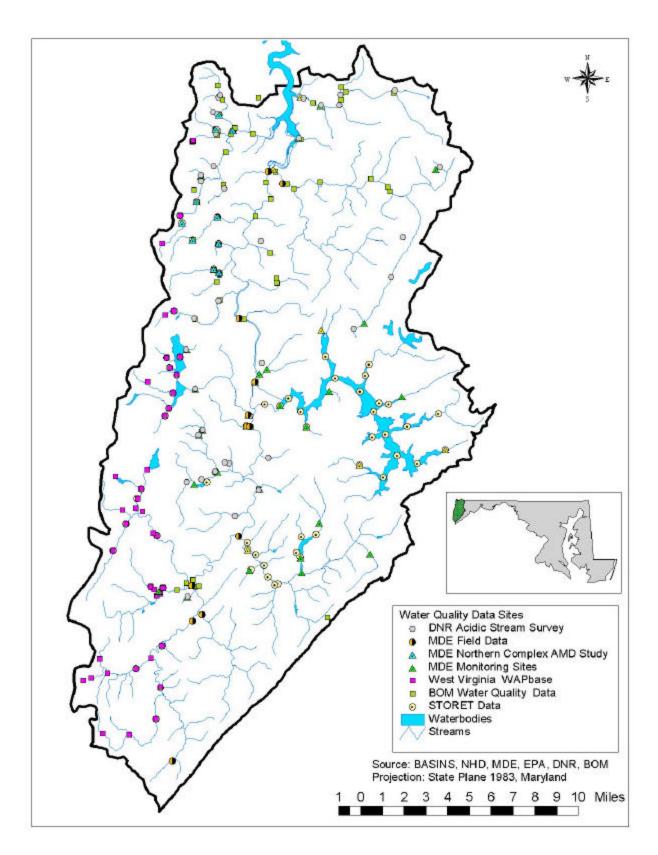


Figure 2-3. Water quality stations in the Youghiogheny River watershed.

Table 2-4. Water quality monitoring data sets

Source file	No. of stations	% of stations with flow	Period of record	Location information	Parameter
Bureau of Mines (BOM) Data	57	77.2	10/5/2000-		Aluminum, Alkalinity, Iron, Manganese, pH (Field & Lab), Flow
Maryland Department of Natural Resources (DNR) Acidic Stream Survey	47	0.0	1999 ^a	Latitude/ Longitude	Field pH
Maryland Biological Stream Survey (MBSS) Data	66	0.0	1995–2002 ^a	None	pH (Field & Lab)
	13	92.3	5/5/1997– 11/8/2000		Total Alkalinity, Field pH, Flow
MDE Field Data	45	0.0	3/28/2005- 11/3/2005	Latitude/ Longitude	Acid Neutralizing Capacity, pH, Chloride, Nitrate, Sulfate, Dissolved Organic Carbon, Alkalinity, Acidity, Hardness, Total Suspended Solids, Iron (Dissolved & Total), Total Aluminum
MDE Northern Complex AMD Study	10	0.0	4/14/2003- 12/4/2003	Latitude/ Longitude	Aluminum (Inorganic, Organic, & Total), Alkalinity, Net Alkalinity, pH (Field & Closed), Iron
Northern Yough. Assessment	10	0.0	4/14/2003- 12/4/2003	None	Field pH
EPA's STORET Database	99	32.3	8/21/1977- 12/4/2003	Latitude/ Longitude	Aluminum (Inorganic, Organic, & Total), Alkalinity (Bicarbonate, Carbonate, & Total), Iron, Manganese, pH (Field & Lab), Flow
West Virginia WAPbase Database	44	20	7/8/1996– 8/31/2005	Latitude/ Longitude	Acidity, Alkalinity, pH, Sulfate, Flow, Total Suspended Solids, Aluminum (Dissolved & Total), Iron (Dissolved & Total), Selenium (Dissolved & Total)

Specific date information is not available. Only sample year was provided.

Table 2-5. Land use reclassifications from MDP data set

Detailed land use description	Model land use group
Agricultural breeding building	Agriculture
Agriculture	Agriculture
Bare exposed rock	Barren land
Bare ground	Barren land
Barren land	Barren land
Beaches	Barren land
Brush	Forest
Commercial - retail and wholesale services	Urban built-up
Cropland	Agriculture
Deciduous forest	Forest
Evergreen forest	Forest
Extractive- surface mines/quarries/pits Feeding operations	Mining Agriculture
Forest	Forest

Detailed land use description	Model land use group
High-density residential	Urban built-up
Industrial	Urban built-up
Institutional	Urban built-up
Low-density residential	Urban built-up
Medium-density residential	Urban built-up
Mixed forest	Forest
Open urban land	Urban built-up
Orchards/vineyards/ horticulture	Agriculture
Pasture	Agriculture
Row and garden crops	Agriculture
Transportation	Urban built-up
Urban built-up	Urban built-up
Water	Water
Wetlands	Wetlands

Table 2-6. Land use classification conversion between Pennsylvania and Maryland data sets

Pennsylvania detailed land use description	Maryland Detailed land use description	Model land use group
Coal mines	Extractive-surface mines/quarries/pits	Mining
Coniferous forest	Evergreen forest	Forest
Deciduous forest	Deciduous forest	Forest
Emergent wetland	Wetlands	Wetlands
Hay Pasture	Pasture	Agriculture
High-density urban	High-density residential	Urban built-up
Low-density urban	Low-density residential	Urban built-up
Mixed forest	Mixed forest	Forest
Probably row crops	Agriculture	Agriculture
Quarries	Extractive- surface mines/quarries/pits	Mining
Row crops	Row and garden crops	Agriculture
Transitional	Barren land	Barren land
Water	Water	Water
Woody wetland	Wetlands	Wetlands

Table 2-7. Land use classification conversion between West Virginia and Maryland data sets

West Virginia detailed land use description	Maryland Detailed land use description	Model land use group
Barren land - mining	Extractive-surface mines/quarries/pits	Mining
Conifer plantation	Evergreen forest	Forest
Cove hardwood forest	Deciduous forest	Forest
Diverse/mesophytic hardwood forest	Mixed forest	Forest
Forested wetland	Wetlands	Wetlands
Hardwood/conifer forest	Mixed forest	Forest
Herbaceous wetland	Wetlands	Wetlands
Intensive urban	High-density residential	Urban built-up
Light intensity urban	Low-density residential	Urban built-up
Major power lines	Urban built-up	Urban built-up
Major roads	Transportation	Urban built-up
Moderate intensity urban	Medium-density residential	Urban built-up
Mountain hardwood forest	Mixed forest	Forest
Oak dominant forest	Deciduous forest	Forest
Pasture/grassland	Pasture	Agriculture
Populated areas	Urban built-up	Urban built-up
Row crop agriculture	Row and garden crops	Agriculture
Shrub wetland	Wetlands	Wetlands
Shrubland	Brush	Forest
Surface water	Water	Water
Surface water	Water	Water
Woodland	Mixed forest	Forest

Table 2-8 presents the final land use classifications and the area of each land use in the watershed. The dominant land use in the watershed is forest (60 percent) followed by agriculture

(27 percent). Urban land uses account for less than 10 percent of the total watershed area and are mostly concentrated around rivers and other waterbodies. Figure 2-4 presents the land use coverage for the Youghiogheny River watershed.

Table 2-8. Land use areas used for the Youghiogheny River watershed

Detailed land use description	Model land use group	Area (acres)	Area (miles²)	Percent land use
Cropland	Agriculture	40,320	63.0	16.01
Pasture	Agriculture	26,568	41.5	10.55
Orchards/vineyards/horticulture	Agriculture	74	0.1	0.03
Row and garden crops	Agriculture	1,232	1.9	0.49
Agricultural breeding building	Agriculture	253	0.4	0.10
	Agriculture subtotal	68,447	106.9	27.18
Barren land	Barren land	206	0.3	0.08
Bare ground	Barren land	434	0.7	0.17
	Barren land subtotal	640	1.0	0.25
Deciduous forest	Forest	115,241	180.1	45.77
Evergreen forest	Forest	3,369	5.3	1.34
Mixed forest	Forest	30,061	47.0	11.94
Brush	Forest	3,212	5.0	1.28
	Forest subtotal	151,884	237.3	60.32
Extractive-surface mines/quarries/pits	Mining	873	1.4	0.35
	Mining subtotal	873	1.4	0.35
Urban built-up	Urban built-up	475	0.7	0.19
Low-density residential	Urban built-up	14,679	22.9	5.83
Medium-density residential	Urban built-up	2,779	4.3	1.10
High-density residential	Urban built-up	214	0.3	0.09
Commercial	Urban built-up	1,329	2.1	0.53
Industrial	Urban built-up	50	0.1	0.02
Institutional	Urban built-up	761	1.2	0.30
Transportation	Urban built-up	11	0.02	0.004
Open urban land	Urban built-up	1,273	2.0	0.51
	Urban built-up subtotal	21,572	33.7	8.57
Water	Water	5,125	8.0	2.04
	Water subtotal	5,125	8.0	2.04
Wetlands	Wetlands	3,241	5.1	1.29
	Wetlands subtotal	3241	5.1	1.29
Total		251,782	393.4	100.00

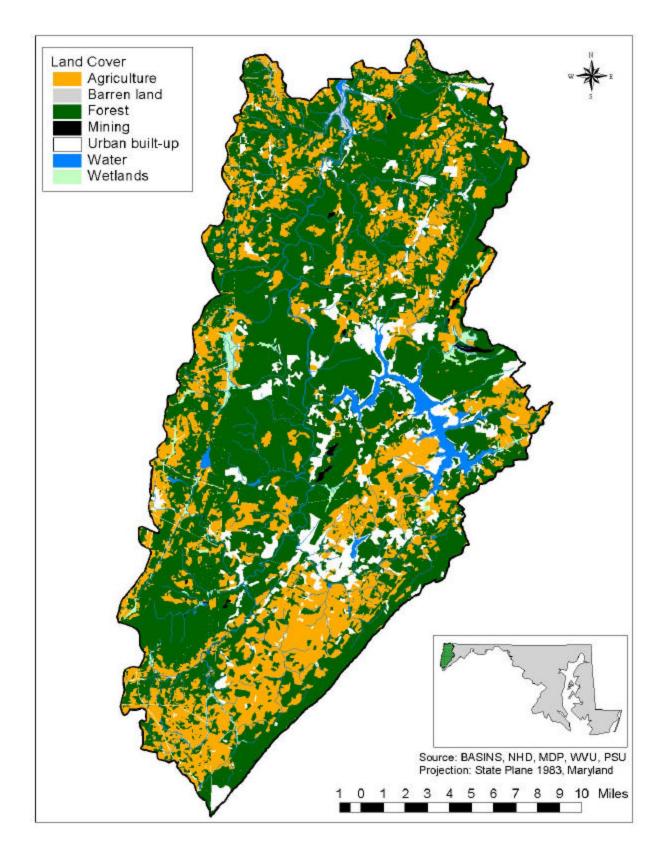


Figure 2-4. Land use in the Youghiogheny River watershed.

2.1.5 Soils and Geology

The Natural Resources Conservation Service (NRCS) has defined four hydrologic soil groups providing a means for grouping soils by similar infiltration and runoff characteristics during periods of prolonged wetting. Typically, clay soils (Group D) that are poorly drained have the lowest infiltration rates with the highest amount of runoff, while sandy soils (Group A) that are well drained have high infiltration rates with little runoff. Data for the watershed were obtained from BASINS, which contains information from the State Soil Geographic Database (STATSGO) and are presented in Figure 2-5. The majority of the watershed contains soil group C. There are areas of soil group B northwest of Deep Creek Lake, west of Pine Swamp, along the southeastern portion of the watershed, and in the northern portion, east of Youghiogheny River Lake. There are only two small portions of soil group D southwest of Pine Swamp.

The Youghiogheny River watershed is in the Appalachian Plateaus Physiologic Province. This province is characterized by gentle folded sedimentary rocks, such as sandstone, shale, and siltstone. The rocks range in age from Devonian to Pennsylvanian and contain several coal beds.

Surface geology of the area consists of the Chemung Formation, Hampshire Formation, Pocono Group, Greenbrier Formation, Mauch Chunk Formation, Pottsville Formation, Allegheny Formation, and the Conemaugh Formation. Three of these formations contain coal-bearing layers: the Conemaugh Formation (Upper Freeport and Barton coals) and the Pottsville and Allegheny Formations (Upper Freeport and Brookville coals). The Greenbrier Formation is the only formation that contains limestone and calcareous shale. These rock types act as a natural acidity buffer; however, they are found only in small areas of the watershed and are usually upstream of mining activity.

2.1.6 Historical Mining Data

Historical mining activities are an important consideration in the development of pH TMDLs. The study area contains numerous mining activities, but information on past activities is difficult to obtain because many operations did not keep thorough records. MDE provided information on mine drainage sources such as portals, sediment ponds, and pits (Figure 2-6). This information was plotted, and each location was assigned to its corresponding subwatershed in the model area. In all, 45 mine sources were included as model inputs. Few of the locations had concentration or flow data associated with them. In addition, Figure 2-6 shows areas of historical mining activities.

2.1.7 Point Source Data

A point source, according to 40 CFR 122.3, is any discernible, confined, and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, landfill leachate collection system, and vessel or other floating craft from which pollutants are or could be discharged. The National Pollutant Discharge Elimination System (NPDES) program, established under Cean Water Act sections 318, 402, and 405, requires permits for the discharge of pollutants from point sources.

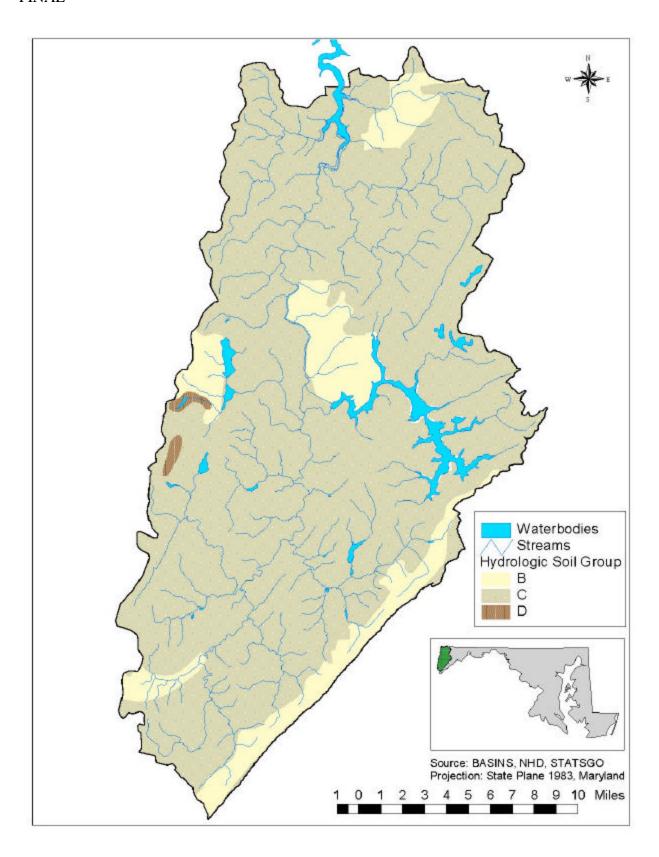


Figure 2-5. Hydrologic soil groups in the Youghiogheny River watershed.

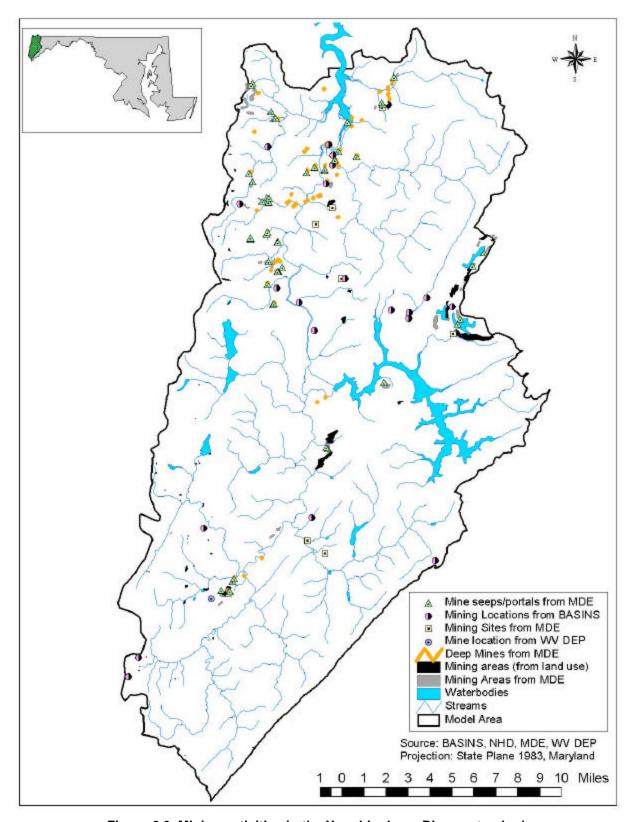


Figure 2-6. Mining activities in the Youghiogheny River watershed.

NPDES permit information was obtained from EPA's Permit Compliance System (PCS) (USEPA 2005b) and MDE. Table 2-9 identifies these permits, their permitted flow, and their permit limits for ammonia, total iron, and total aluminum. Figure 2-7 shows the locations of the seven NPDES permitted facilities in the TMDL area.

Table 2-9. Permitted facilities included in the Youghiogheny River watershed model

NPDES			Permit		nonia ^a g/L)	Total iron (mg/L)		Total aluminum (mg/L)	
permit number	Outlet	Facility	flow (mgd)	Mon. avg	Daily avg	Mon. avg	Daily avg	Mon. avg	Daily avg
MD0052850	001A	Swallow Falls State Park WWTP	0.062	3.5 (S)	12 (S)	1	1	1	
WV0033804	001	Terra Alta STP	0.25	2	4				
WV0086665	001	Alpine Lake STP	0.06				-		
WV0119113	002	Cranesville Stone (quarry)	variable			3.2	6	0.43	0.75
WVG551149	001	Alyeska, Inc. (Big Bear Lake Campground WWTP)	0.03	3 (S) 6 (W)	6 (S) 12 (W)	-	-	-	
WVG610139	001	Grimm Lumber, Inc. (sawmill)	0.0026				1		
WVG640110	001	Terra Alta WTP	0.005	-	1	1.2	2.5	0.75	1.5

^a Ammonia limits contain summer and winter limits. Summer limits (S) are valid from May 1 through October 31. Winter limits (W) are valid November 1 through April 30.

The Surface Mining Control and Reclamation Act of 1977 (SMCRA, Public Law 95-87) and its subsequent revisions were enacted to establish a nationwide program to protect the beneficial uses of land or water resources, protect public health and safety from the adverse effects of current surface coal mining operations, and promote the reclamation of mined areas left without adequate reclamation before August 3, 1977. The SMCRA requires a permit for development of new, previously mined, or abandoned sites for the purpose of surface mining. Permittees are required to post a performance bond that will be sufficient to ensure the completion of reclamation requirements by a regulatory authority if the applicant forfeits its permit. Mines that ceased operations before the effective date of SMCRA (often called *pre-law* mines) are not subject to the requirements of SMCRA.

SMCRA Title IV is designed to provide assistance for the reclamation and restoration of abandoned mines, while Title V states that any surface coal mining operations are required to meet all applicable performance standards. Some general performance standards include the following:

- Restoring the land affected to a condition capable of supporting the uses that it was capable of supporting before any mining
- Backfilling and compacting (to ensure stability or to prevent leaching of toxic materials) to restore the approximate original contour of the land, including all highwalls

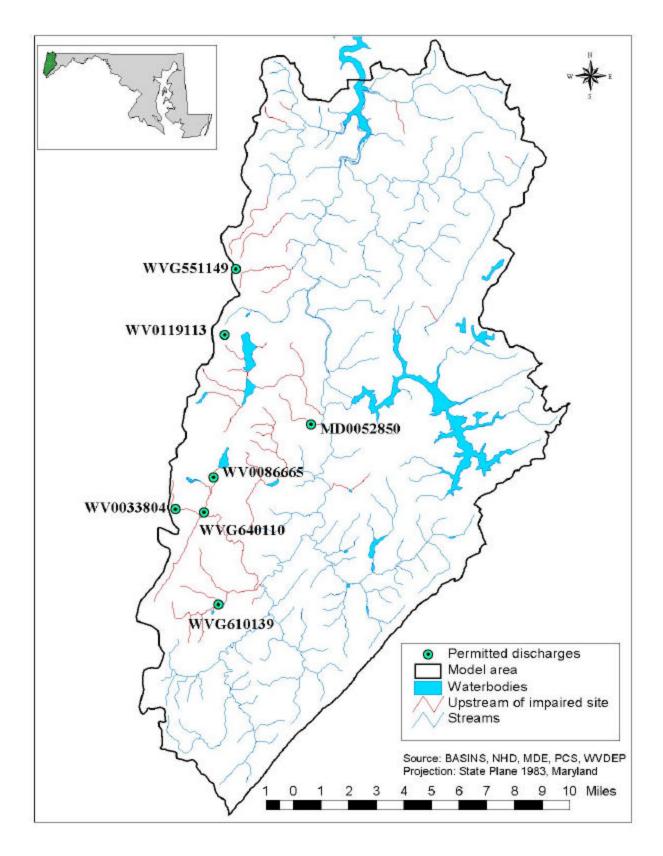


Figure 2-7. NPDES permitted facilities discharging to waters upstream of impaired monitoring sites in the Youghiogheny River watershed.

• Minimizing disturbances to the hydrologic balance and to the quality and quantity of water in surface water and groundwater systems both during and after surface coal mining operations and during reclamation by avoiding acid or other toxic mine drainage

Untreated coal mining-related point source discharges from deep, surface, and other mines typically have low pH values (that is, they are acidic) and contain high concentrations of metals (e.g., iron, aluminum, and manganese). Coal mining-related activities are commonly issued NPDES discharge permits that contain effluent limits for total iron, total manganese, nonfilterable residue, and pH. Many permits also include effluent monitoring requirements for total aluminum.

2.1.8 Nonpoint Source Data

Nonpoint sources of pollutants are diffuse, non-permitted sources. They most often result from precipitation-driven runoff. The two main sources of nonpoint source pollution that contribute to low pH levels in the Youghiogheny River watershed are mining and atmospheric deposition. Mining was previously described, and atmospheric deposition is described below.

The majority of acid deposition occurs in the eastern United States. In March 2005 EPA issued the Clean Air Interstate Rule (CAIR), which places caps on emissions for sulfur dioxide and nitrogen dioxides for the eastern United States. It is expected that CAIR will reduce sulfur dioxide emissions by more than 70 percent and nitrogen oxides emissions by more than 60 percent from 2003 emission levels (USEPA 2005c). Because the pollution is highly mobile in the atmosphere, reductions based on CAIR in West Virginia, Ohio, and Pennsylvania will likely improve the quality of precipitation in the Youghiogheny River watershed.

Atmospheric deposition occurs by two main methods: wet and dry. Wet deposition occurs through rain, fog, and snow. Dry deposition occurs from gases and particles. Dry deposition accounts for approximately half of the atmospheric deposition of acidity (USEPA 2005d). Particles and gases from dry deposition can be washed from trees, roofs, and other surfaces by precipitation after it is deposited and washed into streams. Winds blow the particles and gases contributing to acid deposition over large distances, including political boundaries such as state lines. The primary pollutants from atmospheric deposition are sulfur dioxide (SO₂) and nitrogen oxides (NO_x). The majority of sulfur dioxides (two-thirds) and one-fourth of nitrogen oxides are from fossil fuel burning electric power generating plants (USEPA 2005d).

Atmospheric deposition data were obtained from the EPA Office of Air Quality Planning and Standards at Research Triangle Park, North Carolina. The data are a result of air quality modeling in support of the CAIR. The data include concentrations of sulfate and nitrogen oxides in wet and dry deposition. For the technical information on these data, see the *Technical Support Document for the Final Clean Air Interstate Rule—Air Quality Modeling* (USEPA 2005e).

2.2 Data Analysis

2.2.1 Source Assessment

Streams in the Youghiogheny River watershed were monitored in the spring and fall of 2005. MDE analyzed the monitoring results following the method summarized below and in Table 2-10 for identifying the source(s) of acid impairments in streams.

- Assuming baseflow conditions, there is most likely no major source of acidification if the acid neutralizing capacity (ANC) of the stream is greater than 200 μeq/L.
- If agriculture represents greater than 50 percent of the drainage area for the monitoring location and the nitrogen nitrate (NO₃-N) level is greater than 100 μeq/L (~ 14 mg/L), there is a strong probability that agriculture is the major influence in stream acidification.
- If sulfate levels are greater than 500 μ eq/L (~ 24 mg/L), the primary acidification source is most likely acid mine drainage (AMD).
- If sulfate is greater than 300 μ eq/L (~ 14 mg/L), there is the potential that the stream could be affected by both AMD and atmospheric deposition.
- If conductivity is greater than 80–100 µS/cm, the stream is considered AMD-influenced.
- If the levels of organic ions are greater than the levels of nitrate and sulfate, there is the potential that the stream is acidified by organic acids.
- If the concentration of dissolved organic carbon (DOC) is greater than 8 mg/L, the stream could be influenced by organic sources and atmospheric deposition.
- Finally, stream water quality can be broken into three levels of acidification depending on the levels of ANC:
 - \circ Low (ANC > 50 and = 200 μeq/L): This level has episodic acidification, especially during high-intensity storm events, and occasionally long-duration storms.
 - o Very Low (ANC > 0 and = $50 \mu eq/L$): This level has chronic acidification where small acid inputs would drive the stream below $0 \mu eq/L$.
 - o Acidic (ANC = $0 \mu eq/L$): These streams have a baseflow ANC that remains below $0 \mu eq/L$.

Results of the data assessment are presented in Table 1-1 and Figure 1-1. Of the 31 segments that MDE monitored, 6 segments were found not to be pH impaired. Five stations were assessed as having impairments due to AMD and atmospheric deposition, three due to just AMD only, nine due to chronic acidification, and eight due to episodic acidification.

2.2.2 Data Trends

Data trends were not able to be determined because of the limited amount of available data.

Table 2-10. Methodology for assessment of stream acidification in Maryland

Water chemistry measurement		Source of acidification
Baseflow ANC < 200 μeq/L	No ?	None
Yes ?		
Agriculture > 50% of drainage area and NO ₃ -N > 100 μeq/L (~ 1.4 mg/L)	Yes ?	Possible agricultural influence
No ?		
SO ₄ = 500 μeq/L (~ 24 mg/L)	Yes ?	Primarily acid mine drainage
No ?		
SO ₄ = 300 μeq/L (~ 14 mg/L)	Yes ?	Possibly affected by both acid mine drainage and atmospheric deposition—look at conductivity (> 80– 100 µS/cm consider AMD influenced)
No ?		
Organic Ions > NO ₃ + SO ₄	Yes ?	Primarily organic sources
No ?		
DOC > 8 mg/L	Yes ?	Affected by both organic sources and atmospheric deposition
No ?		
Baseflow ANC 50–200 μeq/L	Yes ?	Stream vulnerable to episodic acidification
No ?		
Baseflow ANC < 50 μeq/L	Yes ?	Chronic acidification (Baseflow ANC may be less than $0\;\mu\text{eq/L.})$

3 TECHNICAL APPROACH

Establishing the relationship between in-stream water quality targets and source loadings is a critical component of TMDL development. It allows for evaluation of management options that will achieve the desired source load reductions. The link can be established through a range of techniques, from qualitative assumptions based on sound scientific principles to sophisticated modeling techniques. This section presents the approach taken to develop the linkage between sources and in-stream response for TMDL development in the Youghiogheny River watershed.

A watershed model is a useful tool for providing a quantitative linkage between sources and instream response. It is essentially a series of algorithms applied to watershed characteristics and meteorological data to simulate naturally occurring, land-based processes over an extended period, including hydrology and pollutant transport. Many watershed models are also capable of simulating in-stream processes using the land-based and subsurface calculations as input. Once a model has been adequately set up and calibrated for a watershed, it can be used to quantify the existing loading of pollutants from subwatersheds or from land use categories and also can be used to assess the impacts of a variety of hypothetical scenarios.

The following technical factors were critical to selecting an appropriate watershed model:

- The model should be able to address the pollutants of concern (e.g., pH).
- The model should be able to simulate processes and constituents that influence pH levels, such as sulfate, iron and aluminum.
- The model should be able to simulate chemical processes and interactions in the surface and subsurface environments because the cumulative effect of these two environments and chemical/biological reactions will affect in-stream pH levels.
- The model should be able to address a watershed with primarily rural land uses.
- The model should provide adequate time-step estimation of flow and not over-simplify storm events to provide accurate representation of rainfall events/snowmelt and resulting peak runoff.
- The model should be capable of simulating various pollutant transport mechanisms (e.g., groundwater contributions, sheet flow).
- The model should be able to simulate wet and dry atmospheric deposition.
- The model should include an acceptable snowmelt routine.

Using the above considerations, the Mining Data Analysis System (MDAS) was selected for modeling the Youghiogheny River watershed. MDAS is a re-coded C++ version of the Hydrologic Simulation Program Fortran (HSPF) model. MDAS integrates comprehensive data storage and management capabilities and the original HSPF algorithms. MDAS's algorithms are identical to a subset of those in the HSPF model. A brief overview of the HSPF model is provided below, and a detailed discussion of HSPF-simulated processes and model parameters is available in the HSPF User's Manual (Bicknell et al. 1996).

HSPF is a comprehensive watershed and receiving water quality modeling framework that was originally developed in the mid-1970s. During the past several years, it has been used to develop hundreds of EPA-approved TMDLs, and it is generally considered the most advanced hydrologic and watershed loading model available. The hydrologic portion of HSPF is based on the Stanford

Watershed Model (Crawford and Linsley 1966), which was one of the pioneering watershed models developed in the 1960s. The HSPF framework is developed in a modular fashion with many different components that can be assembled in different ways, depending on the objectives of the individual project. The model includes three major modules:

- PERLND for simulating watershed processes on pervious land areas
- IMPLND for simulating processes on impervious land areas
- RCHRES for simulating processes in streams and vertically mixed lakes

All three of these modules include many subroutines that calculate the various hydrologic and water quality processes in the watershed. Many options are available for both simplified and complex process formulations. Spatially, the watershed is divided into a series of subwatersheds representing the drainage areas that contribute to each of the stream reaches. These subwatersheds are then further subdivided into segments representing different land uses. For the developed areas, the land use segments are further divided into the pervious (PERLND) and impervious (IMPLND) fractions. The stream network (RCHRES) links the surface runoff and groundwater flow contributions from each of the land segments and subwatersheds and routes them through the waterbodies using storage routing techniques. The stream model includes precipitation and evaporation from the water surfaces, as well as flow contributions from the watershed, tributaries, and upstream stream reaches. Flow withdrawals can also be accommodated. The stream network is constructed to represent all the major tributary streams, as well as different portions of stream reaches where significant changes in water quality occur.

Like the watershed components, several options are available for simulating water quality in the receiving waters. The simpler options consider transport through the waterways and represent all transformations and removal processes using simple, first-order decay approaches. The framework is flexible and allows different combinations of constituents to be modeled depending on data availability and the objectives of the study.

The current version of MDAS includes algorithms for simulation of pollutant accumulation and washoff from land surfaces. MDAS integrates comprehensive data storage and management capabilities, a dynamic watershed model, and a data analysis/post-processing system into a convenient PC-based Windows interface that dictates no software requirements. For the Youghiogheny River pH TMDL, MDAS was updated to include additional modules from HSPF plus new modules designed specifically for this TMDL. Each of the additional modules is briefly described below and is more thoroughly explained in Appendix B.

The first module that was added to MDAS from HSPF was atmospheric deposition. With this addition, the model is able to model dry and wet deposition. Users have the option to enter fluxes (mass per area per time) for dry deposition and concentrations for wet deposition, which the program automatically combines with the input rainfall time series to compute the resulting flux. Either type of deposition data can be input as a constant value or alternatively, as a set of monthly values that is used for each year of the simulation.

The Moisture Storage and Transport in Soil Layers (MSTLAY) module, which was copied from HSPF, uses the fluxes that are computed from surface water, converts them into soil moisture and interlayer fluxes, and makes them usable for adsorption/desorption in solute transport

calculations. MSTLAY estimates moisture storages in the four soil layers, in addition to the fluxes of moisture between the storages.

Six modules were created to better simulate pH in the subsurface and in stream reaches by modeling sulfate and nitrogen species. These modules, which are further described in Appendix B, include routines to calculate the transfer and transformation of the different constituents in surface water and subsurface soils.

All these modules were added to MDAS to better predict pH levels in the streams because of the following factors:

- Sulfate and nitrate from atmospheric deposition carry hydrogen, which is the source of acidity, and play a role in water quality in the eastern United States.
- Acidity from atmospheric deposition might intensify or buffer pH levels in the subsurface environment.
- Minerals in the subsurface buffer pH.
- Seasonal biological activity generates carbon dioxide, which can influence pH. Carbon dioxide saturated interflow/groundwater can increase pH when the transport water is subjected to air and the carbon dioxide is released from the water.
- Biological nitrogen transformation, which changes concentrations of nitrate and ammonium, influences pH.
- Increased pH levels could again decrease pH because of dissolved aluminum entering surface water from interflow/groundwater flow.

All these processes are important to consider in the pH modeling process and were added to the MDAS model to better predict pH in the Youghiogheny River watershed. A generalized diagram of how the model flows is shown in Figure 3-1.

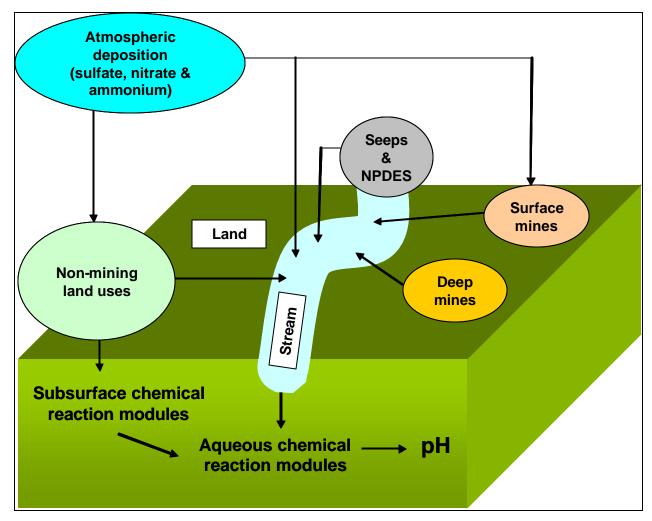


Figure 3-1. Generalized diagram of pollutant flow in the modeling process.

4 MDAS MODEL DEVELOPMENT

4.1 Model Configuration

Configuration of the model involved consideration the following five major components, all of which provide the basis for the model's ability to estimate flow and pollutant loadings:

- Watershed subdivision, which provides the basis for how the model is set up (e.g. land uses are input into the model by watershed subdivisions)
- Stream representation, which represents the actual stream channels in the model
- Land use representation, which provides the basis for distributing runoff and pollutant loading characteristics throughout the basin
- Meteorological data, which drive the watershed model
- Hydrologic and pollutant representation, which refers to the MDAS modules or algorithms used to simulate hydrologic processes (e.g., surface runoff, infiltration) and flow and pollutant transport through streams and rivers

4.1.1 Watershed Subdivision

Watershed subdivision refers to the subdivision of the entire watershed into smaller, discrete subwatersheds for modeling and analysis. MDAS calculates watershed processes using user-defined, hydrologically connected subwatersheds. These subdivisions were based on stream networks and topographic variability and secondarily on the locations of flow and water quality monitoring stations to facilitate model calibration. Using this method, 183 subwatersheds were defined for the Youghiogheny River watershed (Figure 4-1).

4.1.2 Stream Representation

Each delineated subwatershed in the MDAS model was conceptually represented with a single stream assumed to be a completely mixed, one-dimensional segment with a constant cross-section. The National Hydrography Data set (NHD) stream reach network was used to determine the representative stream length for each subwatershed. The stream lengths were used along with the 30-meter National Elevation Data set to calculate reach slope.

Channel dimensions for a number of segments were available from field surveys. Assuming representative trapezoidal geometry for all streams, mean stream depth and channel width were estimated using regression curves that relate upstream drainage area to stream dimensions (Rosgen 1996). Rating curves consisted of a representative depth-outflow-volume-surface area relationship. Estimated Manning's roughness coefficients of 0.035 were applied to each representative stream reach using typical literature values for natural streams (Chapra 1997).

4.1.3 Land Use Representation

MDAS requires a basis for distributing hydrologic and pollutant loading parameters. This is necessary to appropriately represent hydrologic variability throughout the watershed, which is influenced by land surface and subsurface characteristics. It is also necessary to represent

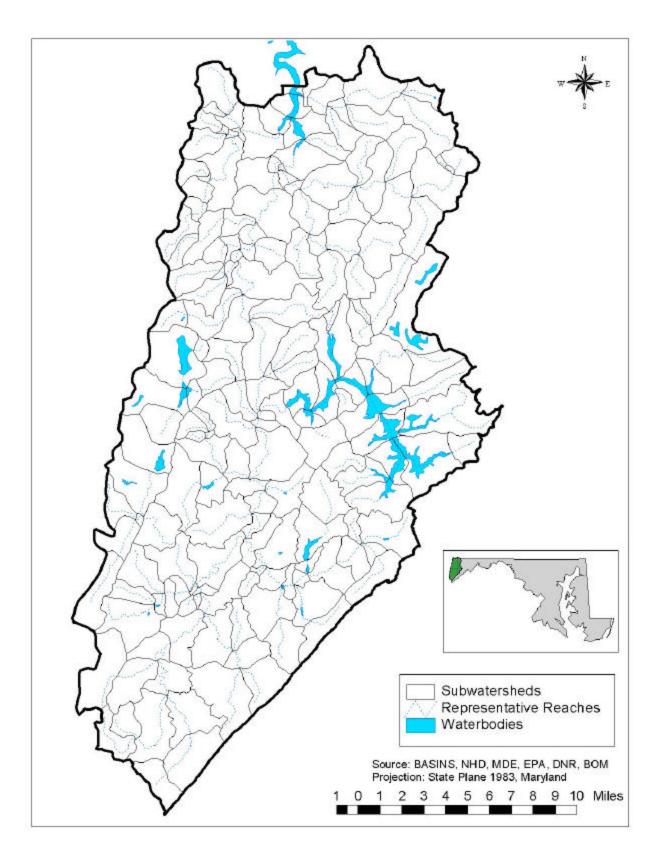


Figure 4-1. Watershed delineation for the Youghiogheny River watershed MDAS model.

variability in pollutant loading, which is highly related to land practices. Land use typically represents the primary unit for computing both water quantity and quality. In addition to the need for land use data in computing water quantity and quality, nonpoint source management decisions are also frequently based on land use related activity at the subwatershed level. Therefore, it is important to have a detailed land use representation with classifications that are meaningful for load allocation and load reduction. The following sections describe the source and rationale for the land use data used in the modeling effort.

Existing land use and land cover in the watershed were determined from information provided by MDE. The land use data for the portion of the watershed in Pennsylvania were obtained from the Pennsylvania Spatial Data Access Web site, which is housed at Pennsylvania State University (PSU 2003). The West Virginia land use data were obtained from the Natural Resource Analysis Center and West Virginia Cooperative Fish and Wildlife Research Unit from West Virginia University (WVU 2000). Each land use data set has its own classification system; therefore, it was necessary to reclassify the land uses to be consistent between data sets. The MDE classifications were used as the basis for the reclassification. The detailed MDE classifications were grouped into seven general categories (Table 2-5). Forest areas include deciduous forest, evergreen forest, and brush. Agriculture includes row crops, orchards, pasture, and non-specific cropland. Urban built-up areas include residential, commercial, industrial, institutional (e.g. schools, hospitals), and major highways.

4.1.4 Meteorological Representation

Hydrologic processes are time varying and depend on changes in environmental conditions such as precipitation, temperature, and wind speed. As a result, meteorological data are a critical component of watershed models.

Meteorological conditions are the driving force for nonpoint source transport processes in watershed modeling. Generally, the finer the spatial and temporal resolution available for meteorology, the more representative the simulation of associated watershed processes will be. At a minimum, precipitation and potential evapotranspiration are required as large factors for most watershed models. For the Youghiogheny River watershed, where the snowfall and snowmelt processes are a significant factor in watershed-wide hydrology, additional data were required for snow simulation. These data were temperature, dew point temperature, wind speed, and solar radiation.

The available precipitation data for a given station are not always 100 percent complete. An effort was made to select weather stations with a high level of completeness, above 90 percent. However, precipitation stations might contain various intervals of accumulated, missing, or deleted data. In these circumstances, rainfall patching must be performed. Patching involves using the *normal-ratio method*, which estimates a missing rainfall record with a weighted average from surrounding stations with similar rainfall patterns. Accumulated, missing, and deleted data records were repaired using hourly rainfall patterns at nearby stations with unimpaired data.

¹ Accumulated data represent cumulative precipitation over several hours, but the exact hourly distribution of the data is unknown.

Upon reviewing the available weather data, it was concluded that there were only two adequate precipitation gages for the Youghiogheny River watershed: Oakland 1 SE (COOP# 186620) and Terra Alta No 1 (COOP# WV8777). The additional weather data were obtained from Elkins—Randolph Co Airport (WBAN# 13729).

Data from these gages were used to develop an input file with hourly time-series of data from January 1987 through November 2005. An hourly time step for weather data was required to properly reflect diurnal temperature changes (and the resulting influence on whether precipitation was modeled as rainfall or snow) and provide adequate resolution for rainfall/runoff intensity to drive erosion and water quality processes during storms or snowmelt events.

4.1.5 Hydrologic and Pollutant Representation

Soils

To account for the variability of hydrology characteristics throughout the watershed associated with different soil types or topography, three groups of hydrology parameters were configured in the model. The hydrologic soil group classification is a means for grouping soils by similar infiltration and runoff characteristics during periods of prolonged wetting. Typically, clay soils that are poorly drained have the worst infiltration rates (D soils), while sandy soils that are well-drained have the best infiltration rates (A soils).

Hydrologic group data for the watershed were obtained from the STATSGO database. The data were summarized using the major hydrologic group in the surface layers of the map unit. Soils in the Youghiogheny River watershed are primarily classified as C, having moderate to slow infiltration rates when saturated. These hydrologic groups served as a starting point for the designation of infiltration and groundwater flow parameters during the MDAS setup.

Point Sources

Point source contributions of flow, ammonium, total iron, and total aluminum were incorporated into the model. Data were obtained from EPA's PCS database (Section 2.1.7), directly from permits provided by MDE, and information proved from the West Virginia Department of Environmental Protection. For model calibration, monthly flows and concentrations, obtained from discharge monitoring reports (DMRs), were used when they were available, and permitted flows were used when DMR information was not available. Table 4-1 lists the permit, flow statistics, concentration statistics, and the data source for the information. Because WV0119113 is for stormwater, its discharge is automatically calculated by the model and thus not included.

Table 4-1. Modeled permitted flow and ammonium concentrations

Permit	Outfall	Min flow (cfs)	Avg flow (cfs)	110.11		Min conc. (mg/L)	Avg conc. (mg/L)	Max conc. (mg/L)	Data source
MD0052850	001A	0.0000	0.0392	0.0897	Ammonia	0.00	1.44	3.50	DMR/permit
WV0033804	001	0.1702	0.3932	0.6607	Ammonia	0.00	0.79	10.40	DMR
WV0086665	001	0.0082	0.1126	0.4232					DMR
WVG551149	001	0.0464	0.0464	0.0464	Ammonia	3.00	4.50	6.00	permit
WVG610139	001	0.0040	0.0040	0.0040	Total iron	1.00	1.00	1.00	permit
					Total aluminum	0.75	0.75	0.75	permit
WVG640110	001	0.0077	0.0077	0.0077	Total iron	1.20	1.20	1.20	permit

Nonpoint Source Representation

Nonpoint source contributions of nitrate, ammonium, sulfate, iron, and aluminum were represented in the model through a number of mechanisms. Contributions were land use dependent and represented through surface, interflow, and groundwater outflows. Concentrations were initially based on literature values and then calibrated to correspond to observed concentrations (Section 4.2.2). In addition to the land use-based contributions, specific contributions were also included in the model for atmospheric deposition and mine seepage.

Atmospheric deposition was represented by two different pathways in the model: dry deposition and wet deposition. Both pathways were represented similarly for land uses and included contributions for nitrate, ammonium, and sulfate. Dry-weather deposition was represented using a constant load over time (weight/area/time). Wet deposition was represented by associating a specified concentration with precipitation data in the model. Data for both types of deposition were obtained from the EPA Office of Air Quality Planning and Standards at Research Triangle Park, North Carolina. The data are a result of air quality modeling in support of the CAIR. The data include concentrations of sulfate and nitrogen oxides in wet and dry deposition. For additional information on these data, please see the *Technical Support Document for the Final Clean Air Interstate Rule—Air Quality Modeling* (USEPA 2005e).

Dry and wet deposition were represented for two different time periods in the model. The year 2001 was used to represent current conditions for calibration. Predicted levels for 2020 were used in the model to represent TMDL conditions. These levels are reflective of the CAIR reducing emissions to the 2020 estimated levels. Table 4-2 presents both 2001 levels and predicted 2020 levels.

Table 4-2. Modeled atmospheric deposition concentrations and fluxes

						2001						
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.
	Dry deposition (gram/acre-day)											
NH ₄	0.29	0.28	0.51	0.80	0.88	1.00	0.86	0.56	0.69	0.64	0.47	0.45
NO_3	0.18	0.18	0.27	0.17	0.05	0.03	0.02	0.04	0.02	0.06	0.12	0.11
SO ₄	30.40	26.39	29.08	20.63	35.82	43.54	34.36	43.11	38.91	35.30	27.59	39.89
					Wet d	epositio	n (mg/L)					
NH_4	0.15	0.10	0.21	0.28	0.35	0.28	0.11	0.11	0.09	0.08	0.12	0.17
NO ₃	1.11	0.96	1.32	1.16	1.34	1.22	0.69	0.54	0.47	0.43	0.95	1.85
SO ₄	1.14	1.44	1.58	2.47	4.18	4.17	2.16	1.93	1.31	0.85	1.39	2.43
						2020						
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.
				D	ry depos	ition (gra	am/acre-	day)				
NH_4	0.40	0.42	0.62	1.08	1.22	1.55	1.22	0.63	1.05	0.96	0.71	0.59
NO_3	0.17	0.18	0.23	0.17	0.04	0.02	0.01	0.01	0.01	0.05	0.10	0.10
SO ₄	10.51	8.83	9.38	5.82	9.13	8.92	7.96	7.27	9.41	9.74	8.25	12.43
	Wet deposition (mg/L)											
NH_4	0.16	0.10	0.22	0.28	0.35	0.27	0.11	0.11	0.08	0.08	0.12	0.17
NO_3	0.72	0.57	0.79	0.61	0.57	0.49	0.26	0.21	0.21	0.19	0.44	1.85
SO ₄	0.63	0.73	0.97	1.34	1.90	1.58	0.86	0.81	0.59	0.47	0.79	1.26

Youghiogheny River TMDL Low pH Document version: 08/06/07

Mine seepage was modeled as a constant input (flow and concentration) at specific, known, abandoned mine locations. Pollutants in the mine seepage included iron, aluminum, and sulfate. Mine seepage locations were available through MDE and are shown in Figure 2-6, labeled as "Mine seeps/portals from MDE." Flow and chemical data were not provided for most sites, so median values of the available data were used. Table 4-3 presents the flow and chemical data that were used for these seeps and portals.

4.2 Calibration and Validation

After initially configuring the watershed model, model calibration and validation for hydrology and water quality were performed. Calibration refers to the adjustment or fine-tuning of modeling parameters to reproduce observations. Validation is performed for different monitoring stations without further parameter adjustments to ensure that the model represents other periods as well as it does at the original calibration periods. If the model exhibited a poor validation, the calibration process was revisited. Upon completion of the calibration and validation at selected locations, a calibrated data set containing parameter values for each modeled land use and soil type was obtained.

4.2.1 Hydrology Calibration

Hydrologic calibration was performed after the initial model setup. For MDAS, calibration is an iterative procedure of parameter evaluation and refinement as a result of comparing simulated and observed values of interest. It is required for parameters that cannot be deterministically and uniquely evaluated from topographic, climatic, physical, and chemical characteristics of the watershed and compounds of interest. Calibration is based on several years of simulation to evaluate parameters under a variety of climatic conditions. The calibration procedure results in parameter values that produce the best overall agreement between simulated and observed flows throughout the calibration period.

Three USGS flow-gaging stations were used for MDAS hydrology calibration and validation (Figure 2-1). These stations are listed in Table 2-2 with periods of records and measures of completeness. The calibration years were selected after examining annual precipitation variability and the availability of observation data. The periods were determined to represent a range of hydrologic conditions including low-, mean-, and high-flow conditions. Calibration for these conditions is necessary to ensure that the model accurately predicts a range of conditions over the entire simulation period.

During calibration, parameters influencing the simulation of runoff, infiltration, and evapotranspiration were adjusted using land use and soil type. Modeling parameters were varied to keep with observed temporal trends and soil and land cover characteristics. An attempt was made to keep the modeling parameters within the guidelines included in the BASINS Technical Note 6 (USEPA 2000).

Key considerations in the hydrology calibration included the overall water balance, the high-flow and low-flow distribution, storm-flow volumes and timing, and seasonal variation. At least three criteria for goodness of fit were used for calibration: volumetric comparison, graphical comparison, and the relative error method. The calculation of runoff volumes at various time

Table 4-3. Flow and chemical data for mine seeps and portals used in the model

Site ID	Туре	Date	Field pH	Iron (mg/L)	Aluminum	Sulfate (mg/L)	Flow (cfs)
MY-00037 ^a	Seep	Date	2.88 ^a	50.6°	(mg/L) 24.6 ^a	916 ^a	0.0045 ^b
C-57-S1	Seep		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
C-62-S1	Seep		4	10 ^b	1°	201 ^b	0.0668
C-62-S2	Seep		6	10 ^b	1°	201 ^b	0.0045 ^b
C-65-S1	Seep		6	10 ^b	1°	201 ^b	0.0111
FR-03-P2	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-03-S1	Seep		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-07-P4	Portal		4.5	10 ^b	1°	201 ^b	0.0223
FR-08-P1	Portal		5.5	10 ^b	1°	201 ^b	0.0022
FR-09-P10	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-09-P15	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-09-P18	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-09-P2	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-09-P22	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-09-P24	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-09-P25	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-09-P26	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-09-P29	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
FR-09-P31	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
OK-01-P1	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
OK-01-P2	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
SR-02-P1	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
SR-02-P2	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
SR-02-P3	Portal	07/17/02	5.5	45	0	201	0.0111
SR-02-S1	Seep	07/17/02	6	10	0	7	0.0045
SR-02-S2	Seep		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
SR-03-P3	Portal		4.5	10 ^b	1°	201 ^b	0.0022
SR-03-P7	Portal		4.75	10 ^b	1°	201 ^b	0.0022
SR-03-P8	Portal		6 ^b	10 ^b	1°	201 ^b	0.0022
Y-01-P1	Portal	07/08/02	6 ^b	1	0	250	0.0045 ^b
Y-06-P2	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
Y-06-Site1	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
Y-07-P7	Portal		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
Y-10-O1	Open Pit		7.5	10 ^b	1°	201 ^b	0.0045 ^b
Y-10-O2	Open Pit		7.5	10 ^b	1°	201 ^b	0.0045 ^b
Y-10-S1	Seep		6.5	10 ^b	1°	201 ^b	0.0223
Y-11-S1	Seep		6	10 ^b	1°	201 ^b	0.0067
Y-13-S1	Seep	06/25/02	6	3	0	110	0.0557
Y-18-S1	Seep		4.5	10 ^b	1°	201 ^b	0.0022
Y-19-S1	Seep		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
Y-20-S1	Seep		4.5	10 ^b	1°	201 ^b	0.0045 ^b
Y-22-O1	Open Pit		7	10 ^b	1°	201 ^b	0.0045 ^b
Y-22-O2	Open Pit		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b
Y-24-S1	Seep	07/31/02	6	19	0	216	0.0045
Y-24-S2	Seep		6 ^b	10 ^b	1°	201 ^b	0.0022
Y-9-S1	Seep		6 ^b	10 ^b	1°	201 ^b	0.0045 ^b

a Data from West Virginia Department of Environmental Protection.
b Median of data available at other seeps
c All reported concentrations were reported as less than 1. Value assumed to be 1.

scales (e.g., daily, monthly) provides an assessment of the model's ability to accurately simulate the water budget.

For this model, two stations (USGS 03075500 and USGS 03076600) were used in the hydrology calibration, and one station (USGS 03076500) was used for validation. Each station used the period from January 1, 1994, through November 30, 2005, as the model period. Result plots and tables are included in Appendix C. Stations USGS 03076600 and USGS 03076500 showed the best correlation between predictions and monitoring data. Discrepancies, most notably at USGS 03075500, can largely be explained by differences in measured precipitation data (used in the model) and the actual precipitation that fell within the watershed. The weather stations that were used in the model often contained localized storm events that did not occur over the entire watershed, thus creating peaks in the modeled results that were not present in the observed data. Likewise, the model did not predict storms at other times because the precipitation data did not include events that might have occurred in the watershed. These types of discrepancies are common and acceptable in watershed modeling applications.

Overall, the calibration and validation results demonstrated that the model predicts hydrology soundly. The calibration results for USGS 03075500 (Youghiogheny River near Oakland) followed seasonal trends of the observed data, slightly under-predicting observed data. There were two periods—one in 1999 and the other in 2000—when localized storm events were not captured in the weather station data used, and thus, modeled flow was well below the observed peaks during those storm events. Calibration results at USGS 03076600 (Bear Creek at Friendsville) followed seasonal trends similar to the observed data, slightly over-predicting observed low flow data during the summer months. Validation results at USGS 03076500 (Youghiogheny River at Friendsville) showed the best comparison between the observed and modeled flows, slightly under-predicting flow in the late spring months.

4.2.2 Water Quality Calibration

After hydrology was sufficiently calibrated, water quality calibration was performed. The water quality calibration consisted of running the watershed model, comparing water quality output to available water quality observation data, and adjusting pollutant loading and in-stream water quality parameters within a reasonable range. Recent data (2003–2005) were used for the calibration process to ensure that current conditions were simulated.

The 25 monitoring stations classified as impaired by MDE were used for MDAS water quality calibration and validation (Table 1-1 and Figure 1-1). Half the stations were used for calibration and the other half for validation. The periods used depended on the data and were either 2005 or 2003–2005. Ammonium was the only exception to the calibration period. No samples were analyzed for ammonium during 2003 or 2005, so data from 1998 were used. In addition, only three of the 25 stations had ammonium data.

During calibration, parameters influencing the simulation of water quality were adjusted using land use and soil type. Modeling parameters were adjusted so that model concentrations corresponded with observed concentrations. Calibration and validation were conducted for nitrate, ammonium, sulfate, iron, aluminum, and pH.

For nitrate and ammonium calibration, calibration parameters included the nitrogen transformation rates in the different model layers (surface layer, upper subsurface layer, lower subsurface layer, and streams) and precipitation of organic nitrogen in streams. In addition, a temperature correction for nitrogen transformation rates was calibrated.

The calibration of sulfate was conducted by adjusting stream and subsurface variables. Calibration parameters included desorption ratio (DESORP), sulfate transformation rate (kk₁), and background concentrations, which were land use specific.

After nitrogen and sulfate calibrations were completed, metals and pH calibrations were conducted, mainly with the subsurface chemical reaction parameters and background concentrations. Specific parameters included precipitation rates, metal dissolution constants, base saturation percentage, aluminum solubility constant, carbon dioxide (CO₂) pressure, and the aluminum selectivity constant.

During water quality calibration, it became clear that some calibration and validation locations contain unknown sources of metals, sulfate, or pH. These locations often exhibited higher concentrations than locations where mine seeps were known to exist. To account for these sources, which were assumed to be unidentified abandoned mines, mining land use was adjusted by removing acres from the forest land use and adding them to the mining land use. The additional acreage was retained during the allocation process. This shift in land use did not adversely affect the hydrology calibration.

Examples of pH calibration and validation are presented in Figures 4-2 and 4-3. Model calibration and validation results, for all parameters, are presented in Appendices D through I. Most of the modeled pH levels were within the pH observed range.

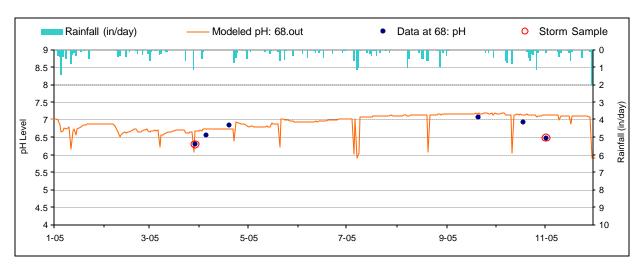


Figure 4-2. pH Calibration plot for Muddy Creek (MYC0018/WM-17).

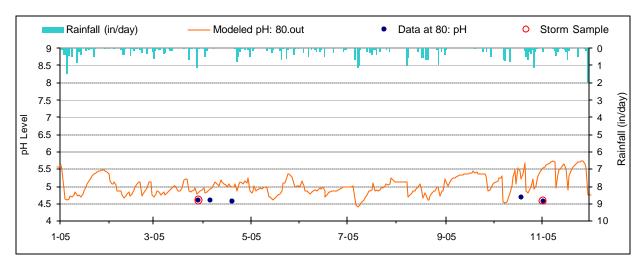


Figure 4-3. pH Validation plot for UT to Bull Glade Run (ZWE0001/WM-7).

There were several watersheds where the iron, aluminum, or sulfate concentrations were either lower than observed data or higher than observed data, although the pH simulation was reasonable. Further investigation is needed in these watersheds. For instance, if the modeled iron concentrations were too low but the pH and the other parameters were fairly well represented, it could mean there is a local source of iron that had not been identified (and thus generally not represented in the model). Similarly, if modeled iron, aluminum, and sulfate (the hallmarks of AMD) are below observed levels and modeled pH is reasonable, the watershed might have a greater acid-neutralizing capability than calibrated for, or there could be an acid-neutralizing source (e.g., Hoyes Run [WM-18/HYR0001 and WM-19/HYR0005] where a carbonate mine [MDG499801A] is located). Additionally, in watersheds where pH predictions reasonably match observations and iron, aluminum, and sulfate are modeled below observed levels, there might be an additional source of acidity not represented in the model.

4.3 Assumptions and Limitations

The goal of the modeling calibration was to determine a set of parameters that best describe hydrologic and water quality processes in the Youghiogheny River watershed. Using the best available data, model output was evaluated at representative calibration gages. The MDAS model is considered calibrated to the currently available data. Imprecision in the model output is present and expected and are primarily governed by uncertainty with the model inputs. Some uncertainties with the inputs is corrected during the calibration process (i.e., infiltration rates, interception capacity). Others simply appear as unexplained variance between the modeled and observed data. Model uncertainty is difficult to quantify because it changes as temporal and spatial conditions vary. The remainder of this section outlines the model inputs and limitations most likely to cause errors or uncertainty with the model output.

Weather gages are most likely the largest source of model uncertainty. Only two precipitation gages were available for the modeling analysis, and they were responsible for generating precipitation data for 393 square miles. In addition, the climate station used for climate data (e.g., temperature, cloud cover) was outside the watershed. The lack of weather gages significantly increases model uncertainty in terms of amount and timing of water flowing through the system.

Lack of weather gages particularly increases model uncertainty during storm events (timing and volume of water).

Because of the large watershed size and model limitations, large areas of land were lumped together as modeling subwatersheds. This process inherently simplifies watershed representation and reduces some level of detail. However, this process most likely introduces little modeling uncertainty when compared to the other potential sources of uncertainty.

Point source discharges have the potential to affect flow and water quality in a stream. The MDAS model can account for these sources by using time-series inputs of flow and concentrations. However, most point sources report data only on a monthly basis (or less frequently), and data was extrapolated to provide daily model input. In other cases, very little information was available about the point sources, and best professional judgment was used to estimate flow, timing, or outfall location. Point source uncertainties have the greatest potential to affect model output during low-flow events, when point sources make up a larger percentage of the load.

Mining information for the model is limited. Few mine seep data were available. The flow information for these seeps were labeled as estimated. The values used for the model are considered assumptions. If more data are obtained and contributions are found to be more significant than current estimates, mine seeps may have an effect on modeled pH. In addition, as mentioned in Section 4.2.2, land area was subtracted from forest land use and added to the mining land use based on observed concentrations. This assumed that based on monitoring data, additional mine lands/seeps were present in the watersheds, though they have not yet been identified.

Each MDAS/HSPF model is driven by the basic physiographic characteristics that make up a watershed—land use, soils, slopes, and geology (Section 2.1). Therefore, physiographic data must be accurate and complete for each subwatershed. Potential errors were introduced into the model because several of these physiographic characteristics were simplified to facilitate modeling. In addition, physiographic characteristics change over time and are not necessarily represented by the available data and the chosen calibration period. However, this process most likely does not introduce much modeling error when compared to the other potential sources or error.

The model was built to simulate only iron, aluminum, sulfate, nitrate, and ammonium. These constituents were assumed to have the greatest impact on pH levels in the watershed, based on a review of available data. There are other metals and ions that could affect pH, but these were not included in the model.

Atmospheric deposition was based on a regional model and predicted values. It was assumed to contribute at a constant rate (in terms of dry deposition) and a constant concentration (for wet deposition) over multiple years and the entire watershed.

For LAs, the CO₂ pressure was adjusted at a number of locations because CO₂ is created by respiration and the decay of organic matter. For acidic streams with pH levels as low as 4.4,

these processes do not occur. With improved pH levels, these processes are likely to occur, thus changing the CO₂ pressure to values reflective of less impaired watersheds.

The following is a list of the major limitations and assumptions in the MDAS model for predicting pH:

- No explicit AMD chemical reactions are incorporated
- Chemical reactions are based on an equilibrium concept, with no kinetic considerations.
- Nitrogen transformations are assumed to be a first-order reaction.
- Sulfate adsorption to soil particles is assumed to be linear.
- Generated soil CO₂ follows a seasonal sine curve.

4.4 Baseline Model Results

The calibrated and validated model was run for a "baseline" condition. This condition was essentially the starting point for TMDL analysis. For the baseline condition, permit flows and permit limits were included in the model instead of observed DMR flows and concentrations. (Permit information is provided in Table 2-9.) By using these permit values, the total loading from a point source is included in the model.

To give a sense of the extent of impairment at each location, the baseline pH minimum, mean, and maximum are shown in Table 4-4. Streams that exhibited lower pH minimum values generally required the greatest load reductions to achieve pH criteria. The model was run for the period of December 1, 2004, through November 30, 2005. This produced daily loads, which were then summed over the year to create the yearly loads, which are presented in Table 4-5 and subsequent tables.

Tables 4-5 through 4-8 present baseline loadings (before TMDL reductions) of the total daily loads per watershed, yearly loads per watershed, loads from atmospheric deposition, and loads from mine seeps. Table 4-5 presents the total baseline modeled loads for the model year for iron, aluminum, sulfate, nitrate, and ammonium at each station. Table 4-6 presents the baseline yearly atmospheric loads for sulfate, nitrate, and ammonium, based on Table 4-2 over each impaired watershed. Table 4-7 presents the baseline yearly loads of iron, aluminum, and sulfate from mine seeps and portals in the impaired watersheds based on Table 4-3. Table 4-8 presents that portion of loads in Table 4-5 that originate in West Virginia.

Table 4-4. Modeled baseline pH minimum, mean, and maximum

Station	Station code	Station name	pH minimum	pH mean	pH maximum
WM-1	MYC0002	Muddy Creek	5.78	6.87	7.19
WM-2	SNO0000	Snowy Creek	4.86	6.76	7.34
WM-3	CHB0005	Cherry Bottom Run	4.75	6.65	7.32
WM-4	HER0028	Herrington Creek	4.83	6.73	7.39
WM-6	MUL0001	Murley Run	4.27	5.63	7.19
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	4.22	5.16	7.10
WM-8	HER0014	Herrington Creek	4.65	6.54	7.36
WM-10	BUG0013	Bull Glade Run	4.23	5.25	7.12
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	4.22	5.26	7.12
WM-12	MLR0001	Millers Run	4.99	6.94	7.42
WM-14	TOL0001	Toliver Run	4.65	6.50	7.26
WM-15	LAU0013	Laurel Run	4.37	6.01	7.24
WM-16	NED0005	Ned Run	4.87	6.88	7.37
WM-17	MYC0018	Muddy Creek	5.40	6.83	7.15
WM-21	ZWI0000	Unnamed tributary to Bear Creek	4.42	6.14	7.28
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	4.47	5.99	7.35
WM-26	ZWH0000	Unnamed tributary to Mill Run	4.79	6.37	6.72
BM909	BUF0082	Buffalo Run	4.62	6.51	7.33
BM913	UGB0002	Unnamed tributary to Glade Run	4.35	5.52	7.16
BM915	NXB0003	North Branch Laurel Run	4.86	6.86	7.37
BM928	LRL0018	Laurel Run	4.73	6.53	7.32
BM929	LRL0034	Laurel Run	4.35	5.90	7.26
BM930	TRR0007	Trap Run	4.57	6.32	7.29
BM931	WRR0008	White Rock Run	4.43	5.75	7.26
BM933	WRG0003	White Rock Glade	4.26	5.21	7.09

Table 4-5. Modeled baseline iron, aluminum, sulfate, nitrate, and ammonium yearly loads

Station	Station code	Station name	Iron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr)
WM-1 ^a	MYC0002	Muddy Creek	100,058	67,295	2,299,943	91,368	11,409
WM-2 ^b	SNO0000	Snowy Creek	339,230	245,788	6,779,850	251,595	33,520
WM-3	CHB0005	Cherry Bottom Run	5,185	3,274	89,034	2,359	280
WM-4	HER0028	Herrington Creek	49,330	34,982	961,242	36,783	4,706
WM-6 ^c	MUL0001	Murley Run	28,147	24,131	632,158	17,542	2,153
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	2,457	2,129	50,350	1,166	146
WM-8 ^d	HER0014	Herrington Creek	68,130	47,066	1,287,936	45,734	5,790
WM-10	BUG0013	Bull Glade Run	6,929	5,987	143,118	3,314	415
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	3,284	2,838	67,853	1,572	197
WM-12	MLR0001	Millers Run	17,943	11,868	365,751	12,366	1,405
WM-14	TOL0001	Toliver Run	29,251	18,626	525,967	14,259	2,023
WM-15	LAU0013	Laurel Run	70,855	58,324	1,664,904	63,843	7,768
WM-16	NED0005	Ned Run	4,801	3,369	96,293	3,350	433
WM- 17 ^e	MYC0018	Muddy Creek	75,127	53,858	1,855,281	68,200	8,456
WM-21	ZWI0000	Unnamed tributary to Bear Creek	4,206	2,661	71,962	1,728	212

Youghiogheny River TMDL Low pH Document version: 08/06/07 Table 4-5. (continued)

Station	Station code	Station name	Iron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr)
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	719	559	17,242	414	46
WM-26	ZWH0000	Unnamed tributary to Mill Run	7,578	3,097	197,556	2,506	284
BM909	BUF0082	Buffalo Run	13,190	9,903	313,262	9,603	1,057
BM913	UGB0002	Unnamed tributary	3,294	2,146	60,634	1,720	201
BM915	NXB0003	North Branch Laurel Run	6,004	3,881	119,541	3,639	421
BM928 ^t	LRL0018	Laurel Run	20,439	13,732	413,817	11,637	1,341
BM929	LRL0034	Laurel Run	4,824	3,737	114,594	2,862	312
BM930	TRR0007	Trap Run	7,157	4,583	132,060	3,655	431
BM931	WRR0008	White Rock Run	17,134	12,255	344,375	12,551	1,596
BM933	WRG0003	White Rock Glade	25,315	18,671	511,679	21,540	3,088

Table 4-6. Baseline (2001) yearly loads from atmospheric deposition

	Station			Dry (lb/	yr)		Wet (lb/)	/r)
Station	code	Station name	Sulfate	Nitrate	Ammonium	Sulfate	Nitrate	Ammonium
WM-1 ^a	MYC0002	Muddy Creek	326,104	998	5,980	283,738	131,014	22,833
WM-2 ^b	SNO0000	Snowy Creek	583,525	1,786	10,700	507,716	234,434	40,856
WM-3	CHB0005	Cherry Bottom Run	9,394	29	172	8,173	3,774	658
WM-4	HER0028	Herrington Creek	81,042	248	1,486	70,513	32,559	5,674
WM-6 ^c	MUL0001	Murley Run	76,216	233	1,398	66,315	30,620	5,336
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	6,019	18	110	5,237	2,418	421
WM-8 ^d	HER0014	Herrington Creek	116,166	356	2,130	101,074	46,670	8,134
WM-10	BUG0013	Bull Glade Run	17,325	53	318	15,074	6,960	1,213
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	8,233	25	151	7,163	3,307	576
WM-12	MLR0001	Millers Run	46,572	143	854	40,521	18,710	3,261
WM-14	TOL0001	Toliver Run	60,040	184	1,101	52,240	24,121	4,204
WM-15	LAU0013	Laurel Run	175,455	537	3,217	152,661	70,490	12,285
WM-16	NED0005	Ned Run	9,214	28	169	8,017	3,702	645
WM- 17 ^e	MYC0018	Muddy Creek	229,624	703	4,211	199,792	92,253	16,077
WM-21	ZWI0000	Unnamed tributary to Bear Creek	7,135	22	131	6,208	2,867	500
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	2,682	8	49	2,334	1,078	188
WM-26	ZWH0000	Unnamed tributary to Mill Run	28,272	87	518	24,599	11,358	1,979
BM909	BUF0082	Buffalo Run	47,816	146	877	41,604	19,211	3,348
BM913	UGB0002	Unnamed tributary	6,917	21	127	6,018	2,779	484
BM915	NXB0003	North Branch Laurel Run	16,638	51	305	14,477	6,684	1,165
BM928 ^t	LRL0018	Laurel Run	56,761	174	1,041	49,387	22,804	3,974

a WM-1 includes upstream loads from WM-17.
b WM-2 includes upstream loads from WM-15.
c WM-6 includes upstream loads from WM-7, WM-10, and WM-11.
d WM-8 includes upstream loads from WM-4.
e WM-17 includes upstream loads from WM-16.
f BM928 includes upstream loads from BM929.

Table 4-6. (continued)

	Station		Dry (lb/yr)				Wet (lb/y	/r)
Station	code	Station name	Sulfate	Nitrate	Ammonium	Sulfate	Nitrate	Ammonium
BM929	LRL0034	Laurel Run	18,082	55	332	15,733	7,265	1,266
BM930	TRR0007	Trap Run	16,118	49	296	14,024	6,476	1,129
BM931	WRR0008	White Rock Run	33,430	102	613	29,087	13,431	2,341
BM933	WRG0003	White Rock Glade	44,178	135	810	38,439	17,749	3,093

Table 4-7. Baseline yearly loads from mine seeps and portals

Mine Seep	Associated station	Associated station code	Associated station name	Aluminum (lb/yr)	lron (lb/yr)	Sulfate (lb/yr)
MY-00037	WM-15	LAU0013	Laurel Run	234.2	443.9	8,036
OK-01-P1	WM-2	SNO0000	Snowy Creek	8.8	87.7	1,763
OK-01-P2	WM-2	SNO0000	Snowy Creek	8.8	87.7	1,763
SR-02-P3	BM930	TRR0007	Trap Run	21.9	986.9	4,408
SR-02-S2	BM930	TRR0007	Trap Run	8.8	87.7	1,763
Y-10-O1	BM928	LRL0018	Laurel Run	8.8	87.7	1,763
Y-10-O2	BM928	LRL0018	Laurel Run	8.8	87.7	1,763
Y-10-S1	BM928	LRL0018	Laurel Run	43.9	438.6	8,817
Y-11-S1	BM928	LRL0018	Laurel Run	13.2	131.6	2,645
Y-18-S1	BM931	WRR0008	White Rock Run	4.4	43.9	882
Y-24-S1	WM-3	CHB0005	Cherry Bottom Run	8.8	166.7	1,895
Y-24-S2	WM-3	CHB0005	Cherry Bottom Run	4.4	43.9	882

Table 4-8. Baseline yearly loads from West Virginia

Station	Station code	Station name	lron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr)
WM-2 ^a	SNO0000	Snowy Creek	300,697	217,871	6,010,047	223,029	28,364
WM-4	HER0028	Herrington Creek	16,697	11,840	325,352	12,450	1,593
WM-15	LAU0013	Laurel Run	69,614	57,309	1,635,928	62,732	7,632
WM-17	MYC0018	Muddy Creek	53,627	39,035	1,233,075	29,046	6,620
BM909	BUF0082	Buffalo Run	1,597	1,779	199,777	3,855	752
BM929	LRL0034	Laurel Run	201	341	87,524	1,341	260
BM933	WRG0003	White Rock Glade	11,448	8,443	231,386	9,741	1,211

^a WM-2 includes upstream loads from WM-15.

a WM-1 includes upstream loads from WM-17.
b WM-2 includes upstream loads from WM-15.
c WM-6 includes upstream loads from WM-7, WM-10, and WM-11.
d WM-8 includes upstream loads from WM-4.
e WM-17 includes upstream loads from WM-16.

^f BM928 includes upstream loads from BM929.

5 ALLOCATION ANALYSIS

A TMDL is the total amount of pollutant that can be assimilated by the receiving waterbody while still achieving water quality standards or goals. It is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for both nonpoint sources and natural background levels. In addition, the TMDL must include a margin of safety (MOS), either implicitly or explicitly, to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody and may include a future allocation (FA) component. Conceptually, this definition is represented by the equation:

$$TMDL = SWLAs + SLAs + MOS + FA$$

In TMDL development, allowable loadings from each pollutant source are summed to a cumulative TMDL threshold, thus providing a quantitative basis for establishing water quality-based controls. TMDLs can be expressed as a mass loading (e.g., grams of pollutant per year) or as a concentration in accordance with 40 CFR 130.2(l). The state reserves the right to revise these allocations provided the allocations are consistent with the achievement of water quality standards.

5.1 TMDL Endpoints

TMDL endpoints represent the water quality targets used to quantify TMDLs and their individual components. The water quality criteria for pH allow no values below 6.5 or above 8.5. For pH to meet criteria, chemical species that affect pH (such as sulfate, iron, aluminum, nitrate, and ammonium) were reduced to raise pH above 6.5. Appendix B (Model Development and Configuration) contains a detailed description of the pH modeling approach.

There are several possible causes for low pH in waterbodies. Atmospheric acid deposition (acid rain), abandoned mine drainage, natural conditions, and other human activities are being considered as sources in the Youghiogheny River watershed. On the basis of the se source considerations, sulfate, nitrate, ammonium, aluminum, and iron were selected to predict pH and assigned allocations to reach the TMDL endpoint. Sulfate and nitrate are common species in acid deposition.

Acid rain can affect pH of streams over large areas. Sulfate and nitrate were selected as TMDL endpoints because hydrogen ions associate with atmospheric sulfate and nitrate, which, during and after precipitation events, have the potential to add acidity to soils and streams, thus reducing pH.

Ammonia in present in aqueous systems in two forms: ammonia (NH₃) and ionized ammonia (NH₄⁺), also known as ammonium. When ammonia enters stream with low pH, the ammonia becomes ammonium which might increase pH. When ammonium enters a stream with high pH, it releases hydrogen ions which, in turn, lower stream pH. Ammonium was selected because it is also a result of atmospheric deposition and is a critical chemical species for bacterial-facilitated nitrogen transformation in soils. This nitrogen transformation changes nitrate and other nitrogen species in addition to changing chemical conditions within the soils. This process affects hydrogen concentrations, and thus, affects pH.

Increased acidity from mining activities is also a concern in western Maryland. Aluminum, iron, and sulfate were selected as inputs from the mining areas because these ions and their associated acid loadings can be large enough to influence in-stream pH, depending on local geology and condition of the mines. Decreasing these ions from abandoned mine areas will increase pH. In addition, hydrogen, which is generated from the previously mentioned nitrate and sulfate reactions, dissolves aluminosilicate to form free aluminum ions in soils. The newly generated free aluminum ions can further increase acidity.

These interconnected biogeochemical and physical reactions are simulated in the model to estimate daily stream pH conditions. Although the derived TMDLs are based on best professional judgment using current data in the calibrated model, meeting these TMDLs might not be necessary if alternative remediation and future monitoring prove that pH is being corrected without reducing these parameters.

5.2 Critical Conditions and Seasonal Variations

Federal regulations (40 CFR 130.7(c)(1)) require TMDLs to take into account critical conditions for stream flow, loading, and water quality parameters. The intent of this requirement is to ensure that the water quality of the waterbody is protected during times when it is vulnerable. Critical conditions are the set of environmental conditions, which, if met, will ensure the attainment of objectives for all other conditions. Nonpoint source loading is typically precipitation-driven. Instream impacts tend to occur during wet-weather and storm events that cause surface runoff to carry pollutants to waterbodies. During dry periods, little or no land-based runoff occurs, and elevated in-stream pollutant levels could be due to point sources. Because of the presence of both point and nonpoint sources in the watershed, both high-flow and low-flow periods were taken into account during TMDL development. This was accomplished through dynamic model simulation (i.e., using the model to predict conditions over a long period of time that represents wet, dry, and average flow periods).

The TMDL must also consider seasonal variation. MDAS model simulation for a multiyear period inherently accounts for seasonal variation. Continuous simulation represents both hydrologic and source loading variability seasonally. The constituent concentrations simulated on a daily time step by the model were compared to the TMDL endpoints. Allocations that met these endpoints throughout the modeling period were developed and are presented in Section 5.3.

5.3 TMDLs and Allocations

For the load reduction simulation (TMDL simulation), the model was run similar to the baseline condition. For the baseline condition, permit flows and permit limits were included in the model instead of observed DMR flows and concentrations. (Permit information is provided in Table 2-9.) By using these permit values, the total loading from a point source is included in the model.

TMDLs and source allocations were developed on a subwatershed basis for each of the impaired watersheds in Table 1-1. TMDL allocations include the LAs for nonpoint sources and the WLAs for point sources. A top-down methodology was followed to develop these TMDLs and allocate loads to sources. Headwaters were analyzed first because their loading affects downstream water quality. Loading contributions (of aluminum, iron, sulfate, nitrate, and ammonium) were reduced from applicable sources in these waterbodies until pH criteria were met. The loading

contributions of unimpaired headwaters and the reduced loadings for impaired headwaters were then routed through downstream waterbodies. Using this method, contributions from all sources were weighted equitably and pH criteria were achieved throughout the system. Reductions in sources affecting impaired headwaters ultimately led to improvements downstream and effectively decreased necessary loading reductions from downstream sources. Source allocations were developed for aluminum, iron, sulfate, nitrate, and ammonium.

Allocations were assigned so that pH did not fall below 6.5. Table 5-1 presents the pH ranges in the impaired watersheds after allocations were applied. Subsections 5.3.1, 5.3.2, and 5.3.3 describe WLAs, LAs, and the MOS and the FA components, respectively. Table 5-2 summarizes the yearly TMDL allocations and Table 5-3 compares the TMDL allocations to the baseline loads. The model was run to for the period of December 1, 2004, through November 30, 2005. This produced daily loads that were then summed over the year to create the yearly loads, which are presented in Table 5-2 and subsequent tables. Note that the atmospheric deposition contribution of ammonia is expected to increase in the model area based on the CAIR model, thus some TMDL conditions are greater than baseline conditions.

One way to express loads is through load duration curves. Figure 5-1 is an example of a curve for iron for Laurel Run (LRL0034/BM929). Points at the lower end of the curve plot (0 through 10 percent) represent high-flow conditions where only 0 through 10 percent of the flow exceeds the plotted point. Conversely, points on the high end of the plot (90 to 100 percent) represent low-flow conditions. The load duration curve shows the calculation of the TMDL at any flow rather than at a single, critical flow. The official TMDL number is reported as a single number, but the curve is provided to demonstrate the value of the acceptable load at any flow. Tables 5-4 through 5-8 present the maximum daily load by flow percentile range for iron, aluminum, sulfate, nitrate, and ammonium, respectively. Appendix J presents additional daily statistics and load duration curves by flow percentile range for each segment.

Table 5-1. TMDL pH minimum, mean, and maximum

Station	Station code	Station name	pH minimum	pH average	pH maximum
WM-1	MYC0002	Muddy Creek	6.50	6.97	7.23
WM-2	SNO0000	Snowy Creek	6.51	7.02	7.40
WM-3	CHB0005	Cherry Bottom Run	6.58	7.08	7.40
WM-4	HER0028	Herrington Creek	6.51	7.05	7.45
WM-6	MUL0001	Murley Run	6.60	7.05	7.37
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	6.60	7.06	7.37
WM-8	HER0014	Herrington Creek	6.53	7.03	7.44
WM-10	BUG0013	Bull Glade Run	6.62	7.06	7.37
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	6.62	7.06	7.37
WM-12	MLR0001	Millers Run	6.67	7.10	7.46
WM-14	TOL0001	Toliver Run	6.57	7.04	7.33
WM-15	LAU0013	Laurel Run	6.55	7.05	7.41
WM-16	NED0005	Ned Run	6.57	7.09	7.45
WM-17	MYC0018	Muddy Creek	6.50	6.95	7.20
WM-21	ZWI0000	Unnamed tributary to Bear Creek	6.63	7.07	7.38
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	6.60	7.10	7.42

Table 5-1. (continued)

Station	Station code	Station name	pH minimum	pH average	pH maximum
WM-26	ZWH0000	Unnamed tributary to Mill Run	6.50	6.71	6.86
BM909	BUF0082	Buffalo Run	6.63	7.07	7.44
BM913	UGB0002	Unnamed tributary to Glade Run	6.52	7.05	7.38
BM915	NXB0003	North Branch Laurel Run	6.54	7.05	7.41
BM928	LRL0018	Laurel Run	6.50	7.02	7.36
BM929	LRL0034	Laurel Run	6.72	7.08	7.39
BM930	TRR0007	Trap Run	6.55	7.06	7.40
BM931	WRR0008	White Rock Run	6.62	7.06	7.40
BM933	WRG0003	White Rock Glade	6.61	7.04	7.35

Table 5-2. Summary of yearly LA, WLA, MOS, and total TMDLs

Station	Station code	Station name	TMDL fraction	lron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr)
			LA	79,663	53,593	1,642,486	42,074	9,679
			WLA	0	0	0	0	0
			MOS	4,686	3,153	96,617	2,475	569
		Muddy	FA	9,372	6,305	193,234	4,950	1,139
WM-1 ^a	MYC0002	Creek	Total	93,721	63,050	1,932,337	49,498	11,387
			LA	198,637	145,025	5,054,641	115,512	27,127
			WLA	18	11	0	0	1,523
			MOS	11,686	8,532	297,332	6,795	1,685
		Snowy	FA	23,371	17,063	594,664	13,590	3,371
WM-2 ^b	SNO0000	Creek	Total	233,712	170,631	5,946,637	135,896	33,705
			LA	3,261	2,098	67,721	1,126	245
			WLA	0	0	0	0	0
		Cherry	MOS	192	123	3,984	66	14
		Bottom	FA	384	247	7,967	133	29
WM-3	CHB0005	Run	Total	3,837	2,468	79,672	1,325	288
			LA	27,255	20,193	717,023	16,869	4,021
			WLA	0	0	0	0	0
			MOS	1,603	1,188	42,178	992	237
		Herrington	FA	3,206	2,376	84,356	1,985	473
WM-4	HER0028	Creek	Total	32,065	23,756	843,557	19,846	4,731
			LA	2,249	2,811	490,988	8,045	1,827
			WLA	0	0	0	0	0
			MOS	132	165	28,882	473	107
		Murley	FA	265	331	57,763	946	215
WM-6 ^c	MUL0001	Run	Total	2,645	3,306	577,633	9,464	2,150
			LA	104	159	39,768	532	124
		Unnamed	WLA	0	0	0	0	0
		tributary to	MOS	6	9	2,339	31	7
		Bull Glade	FA	12	19	4,679	63	15
WM-7	ZWE0001	Run	Total	123	187	46,786	626	145
			LA	33,327	24,437	963,612	21,112	4,968
			WLA	0	0	0	0	0
			MOS	1,960	1,437	56,683	1,242	292
		Herrington	FA	3,921	2,875	113,366	2,484	584
WM-8 ^d	HER0014	Creek	Total	39,209	28,749	1,133,662	24,838	5,844

Table 5-2. (continued)

Table 5	-2. (continu								
Station	Station code	Station name	TMDL fraction	Iron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr)	
			LA	294	449	112,925	1,514	352	
			WLA	0	0	0	0	0	
			MOS	17	26	6,643	89	21	
		Bull Glade	FA	35	53	13,285	178	41	
WM-10	BUG0013	Run	Total	346	528	132,853	1,781	414	
			LA	140	213	53,550	718	167	
		Unnamed	WLA	0	0	0	0	0	
		tributary to	MOS	8	13	3,150	42	10	
		Bull Glade	FA	16	25	6,300	84	20	
WM-11	UBL0000	Run	Total	164	250	63,000	845	197	
			LA	7,931	5,702	273,935	5,924	1,202	
			WLA	0	0	0	0	0	
			MOS	467	335	16,114	348	71	
		Millers	FA	933	671	32,228	697	141	
WM-12	MLR0001	Run	Total	9,331	6,708	322,276	6,970	1,415	
			LA	14,172	9,423	397,953	6,812	1,422	
			WLA	0	0	0	0	330	
			MOS	834	554	23,409	401	103	
		Toliver	FA	1,667	1,109	46,818	801	206	
WM-14	TOL0001	Run	Total	16,673	11,086	468,180	8,014	2,061	
			LA	6,021	8,743	1,252,566	29,377	6,581	
			WLA	8	0	0	0	0	
			MOS	355	514	73,680	1,728	387	
		Laurel	FA	709	1,029	147,361	3,456	774	
WM-15	LAU0013	Run	Total	7,093	10,285	1,473,607	34,561	7,743	
			LA	3,183	2,274	72,552	1,539	369	
				WLA	0	0	0	0	0
			MOS	187	134	4,268	91	22	
			FA	374	268	8,536	181	43	
WM-16	NED0005	Ned Run	Total	3,745	2,675	85,356	1,810	434	
			LA	57,719	42,081	1,329,769	31,324	7,139	
			WLA	752	101	0	0	0	
			MOS	3,439	2,481	78,222	1,843	420	
WM-		Muddy	FA	6,879	4,963	156,443	3,685	840	
17 ^e	MYC0018	Creek	Total	68,789	49,626	1,564,435	36,851	8,398	
			LA	1,573	1,063	54,834	820	186	
		l	WLA	0	0	0	0	0	
		Unnamed tributary to	MOS	93	63	3,226	48	11	
		Bear	FA	185	125	6,451	97	22	
WM-21	ZWI0000	Creek	Total	1,850	1,250	64,511	965	219	
			LA	49	65	13,424	198	39	
			WLA	0	0	0	0	0	
		Unnamed	MOS	3	4	790	12	2	
		tributary to Little Bear	FA	6	8	1,579	23	5	
WM-22	ZWL0005	Creek	Total	57	77	15,793	233	46	
WM-26	ZWH0000	Unnamed	LA	3,285	1,667	147,856	1,185	232	
		tributary to	WLA	0,200	0	0	0	0	
		Mill Run	MOS	193	98	8,697	70	14	
			FA	386	196	17,395	139	27	
		1	173	300	130	17,000	103		

Table 5-2. (continued)

า สมาช 3	ole 5-2. (continued) Station Station		TMDL	Iron	Aluminum	Sulfate	Nitrate	Ammonium	
Station	code	name	fraction	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	
		_	Total	3,865	1,962	173,948	1,394	273	
			LA	1,906	2,123	238,483	4,602	898	
			WLA	0	0	0	0	0	
			MOS	112	125	14,028	271	53	
		Buffalo	FA	224	250	28,057	541	106	
BM909	BUF0082	Run	Total	2,242	2,498	280,568	5,414	1,056	
			LA	504	420	45,811	816	173	
			WLA	0	0	0	0	0	
		Unnamed	MOS	30	25	2,695	48	10	
		tributary to	FA	59	49	5,390	96	20	
BM913	UGB0002	Glade Run	Total	593	495	53,895	960	204	
			LA	2,807	1,921	90,465	1,748	361	
		North	WLA	0	0	0	0	0	
		Branch	MOS	165	113	5,321	103	21	
		Laurel	FA	330	226	10,643	206	42	
BM915	NXB0003	Run	Total	3,302	2,260	106,430	2,056	425	
			LA	13,478	8,838	315,092	5,573	1,152	
			WLA	0	0	0	0	0	
			MOS	793	520	18,535	328	68	
,		Laurel	FA	1,586	1,040	37,070	656	136	
BM928 ^f	LRL0018	Run	Total	15,857	10,398	370,696	6,556	1,355	
			LA	205	347	89,098	1,366	265	
			WLA	0	0	0	0	0	
			MOS	12	20	5,241	80	16	
		Laurel	FA	24	41	10,482	161	31	
BM929	LRL0034	Run	Total	241	409	104,822	1,607	312	
			LA	2,251	1,597	100,301	1,743	372	
			WLA	0	0	0	0	0	
			MOS	132	94	5,900	103	22	
			FA	265	188	11,800	205	44	
BM930	TRR0007	Trap Run	Total	2,648	1,879	118,001	2,051	438	
			LA	1,602	1,751	259,344	5,754	1,359	
			WLA	0	0	0	0	0	
			MOS	94	103	15,256	338	80	
		White	FA	188	206	30,511	677	160	
BM931	WRR0008	Rock Run	Total	1,885	2,060	305,111	6,770	1,598	
			LA	1,291	2,227	380,867	9,839	2,215	
			WLA	0	0	0	0	411	
		White	MOS	76	131	22,404	579	154	
Discoo	WD 0 2 2 2 2	Rock	FA .	152	262	44,808	1,158	309	
BM933	WRG0003	Glade	Total	1,519	2,620	448,079	11,576	3,090	

a WM-1 includes upstream loads from WM-17.
b WM-2 includes upstream loads from WM-15.
c WM-6 includes upstream loads from WM-7, WM-10, and WM-11.
d WM-8 includes upstream loads from WM-4.
e WM-17 includes upstream loads from WM-16.
f BM928 includes upstream loads from BM929.

Table 5-3. Comparison between baseline loads and TMDLs (lb/d)

Station	Station	Station	Load	lron	Aluminum	Sulfate	Nitrate	Ammonium
Station	code	name		(lb/yr)	(lb/yr)	(lb/yr) 2,299,943	(lb/yr)	(lb/yr) ^a
			Baseline TMDL	100,058	67,295		91,368	11,409
WM-1 ^b	MYC0002	Muddy Creek		93,721	63,050	1,932,337	49,498	11,387
VVIVI- I	WITC0002	Creek	% reduction	6.3	6.3	16.0	45.8 251,595	0.2 33,520
			Baseline TMDL	339,230	245,788	6,779,850	•	,
WM-2 ^c	SNO0000	Snowy		233,712	170,631	5,946,637	135,896	33,705
VVIVI-Z	31100000	Creek	% reduction	31.1	30.6	12.3	46.0	-0.6
		Cherry	Baseline	5,185	3,274	89,034	2,359	280
\A/\A A	CLIDOOOF	Bottom	TMDL	3,837	2,468	79,672	1,325	288
WM-3	CHB0005	Run	% reduction	26.0	24.6	10.5	43.8	-2.8
			Baseline	49,330	34,982	961,242	36,783	4,706
\A/B.4	LIEDOGGO	Herrington	TMDL	32,065	23,756	843,557	19,846	4,731
WM-4	HER0028	Creek	% reduction	35.0	32.1	12.2	46.0	-0.5
			Baseline	28,147	24,131	632,158	17,542	2,153
d		Murley	TMDL	2,645	3,306	577,633	9,464	2,150
WM-6 ^d	MUL0001	Run	% reduction	90.6	86.3	8.6	46.0	0.2
		Unnamed tributary	Baseline	2,457	2,129	50,350	1,166	146
		to Bull	TMDL	123	187	46,786	626	145
WM-7	ZWE0001	Glade Run	% reduction	95.0	91.2	7.1	46.3	0.1
			Baseline	68,130	47,066	1,287,936	45,734	5,790
		Herrington	TMDL	39,209	28,749	1,133,662	24,838	5,844
WM-8 ^e	HER0014	Creek	% reduction	42.5	38.9	12.0	45.7	-0.9
			Baseline	6,929	5,987	143,118	3,314	415
		Bull Glade	TMDL	346	528	132,853	1,781	414
WM-10	BUG0013	Run	% reduction	95.0	91.2	7.2	46.3	0.1
		Unnamed	Baseline	3,284	2,838	67,853	1,572	197
		tributary	TMDL	164	250	63,000	845	197
		to Bull				,		
WM-11	UBL0000	Glade Run	% reduction	95.0	91.2	7.2	46.3	0.1
	022000	Tturi	Baseline	17,943	11,868	365,751	12,366	1,405
		Millers	TMDL	9,331	6,708	322,276	6,970	1,415
WM-12	MLR0001	Run	% reduction	48.0	43.5	11.9	43.6	-0.7
VVIVI 12	WEROOT	T COLL	Baseline	29,251	18,626	525,967	14,259	2,023
		Talivar	TMDL	16,673	11,086	468,180	8,014	2,023
WM-14	TOL0001	Toliver Run	% reduction	43.0	40.5	11.0	43.8	-1.9
VVIVITIT	TOLOGOT	Ttuli	Baseline	70,855	58,324	1,664,904	63,843	7,768
		1	TMDL	7,093	10,285	1,473,607	34,561	7,743
WM-15	LAU0013	Laurel Run	% reduction	90.0	82.4	11.5	45.9	0.3
VVIVE 13	LA00013	IXUII						
			Baseline TMDL	4,801 3,745	3,369	96,293 85,356	3,350	433 434
\\/\\	NEDOOG	Nod Dun			2,675	85,356	1,810	
WM-16	NED0005	Ned Run	% reduction	22.0	20.6	11.4	46.0	-0.4
			Baseline	75,127	53,858	1,855,281	68,200	8,456
1000 4 4 7 f	MV00046	Muddy	TMDL	68,789	49,626	1,564,435	36,851	8,398
WM-17 ^f	MYC0018	Creek	% reduction	8.4	7.9	15.7	46.0	0.7
		Unnamed tributary	Baseline	4,206	2,661	71,962	1,728	212
		to Bear	TMDL	1,850	1,250	64,511	965	219
WM-21	ZWI0000	Creek	% reduction	56.0	53.0	10.4	44.2	-3.1

Table 5-3 (continued)

	Station	Station		Iron	Aluminum	Sulfate	Nitrate	Ammonium
Station	code	name	Load	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr)	(lb/yr) ^a
		Unnamed	Baseline	719	559	17,242	414	46
		tributary to Little	TMDL	57	77	15,793	233	46
		Bear						
WM-22	ZWL0005	Creek	% reduction	92.0	86.3	8.4	43.7	-0.1
		Unnamed	Baseline	7,578	3,097	197,556	2,506	284
		tributary	TMDL	3,865	1,962	173,948	1,394	273
WM-26	ZWH0000	to Mill Run	% reduction	49.0	36.7	12.0	44.3	3.8
77111 20	211110000	IXUII	Baseline	13,190	9,903	313,262	9,603	1,057
		Buffalo	TMDL	2,242	2,498	280,568	5,414	1,056
BM909	BUF0082	Run	% reduction	83.0	74.8	10.4	43.6	0.1
DIVIOUS	B01 0002	Unnamed	Baseline	3,294	2,146	60,634	1,720	201
		tributary	TMDL	593	495	53,895	960	204
		to Glade				·		
BM913	UGB0002	Run	% reduction	82.0	77.0	11.1	44.2	-1.6
		North Branch	Baseline	6,004	3,881	119,541	3,639	421
		Laurel	TMDL	3,302	2,260	106,430	2,056	425
BM915	NXB0003	Run	% reduction	45.0	41.7	11.0	43.5	-0.9
			Baseline	20,439	13,732	413,817	11,637	1,341
		Laurel	TMDL	15,857	10,398	370,696	6,556	1,355
BM928 ^g	LRL0018	Run	% reduction	22.4	24.3	10.4	43.7	-1.1
			Baseline	4,824	3,737	114,594	2,862	312
		Laurel	TMDL	241	409	104,822	1,607	312
BM929	LRL0034	Run	% reduction	95.0	89.1	8.5	43.9	0.1
			Baseline	7,157	4,583	132,060	3,655	431
			TMDL	2,648	1,879	118,001	2,051	438
BM930	TRR0007	Trap Run	% reduction	63.0	59.0	10.6	43.9	-1.7
			Baseline	17,134	12,255	344,375	12,551	1,596
		White	TMDL	1,885	2,060	305,111	6,770	1,598
BM931	WRR0008	Rock Run	% reduction	89.0	83.2	11.4	46.1	-0.2
		White	Baseline	25,315	18,671	511,679	21,540	3,088
		Rock	TMDL	1,519	2,620	448,079	11,576	3,090
BM933	WRG0003	Glade	% reduction	94.0	86.0	12.4	46.3	0.0

^a The CAIR model predicts that ammonium in atmospheric deposition will increase in some areas.

^b WM-1 includes upstream loads from WM-17.

^c WM-2 includes upstream loads from WM-15.

^d WM-6 includes upstream loads from WM-7, WM-10, and WM-11.

e WM-8 includes upstream loads from WM-4.
WM-17 includes upstream loads from WM-16.

^g BM928 includes upstream loads from BM929.

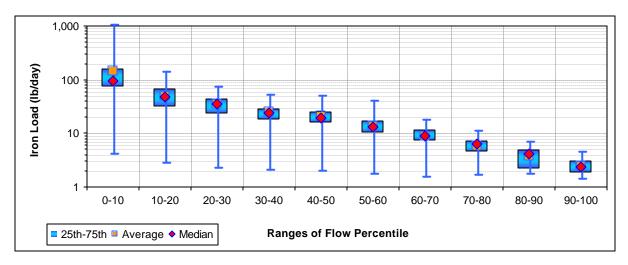


Figure 5-1. Example of load duration curve for iron for Laurel Run (LRL0034/BM929)

Table 5-4. TMDL maximum daily iron loads by flow percentile range (lb/d)

	Station	Station										
Station	code	name	0–10	10-20	20-30	30–40	40-50	50-60	60–70	70–80	80-90	90–100
		Muddy	234,62	55,67		10.100	21,39	24,21	14,48			0.074
WM-1a	MYC0002	Creek	1	1	68,559	18,408	1	0	8	7,017	3,036	3,871
14/14 A Ob	CNOOOOO	Snowy	667,85	192,3	213,17	FF 100	110,2	123,7	92,94	35,03	12,95	10.007
WM-2b	SNO0000	Creek	0	94	6	55,183	94	75	6	3	0	18,826
WM-3	CHB0005	Cherry Bottom Run	14,817	3,651	1,872	2,166	2,306	2,573	1,194	680	280	826
	LIEDAGGG	Herrington	00.440	25,87	00.455	7.5.47	11,66	13,52	0.004	0.740	1 110	4 050
WM-4	HER0028	Creek	90,118	0	30,155	7,547	0	4	9,834	3,763	1,410	1,958
WM-6c	MUL0001	Murley Run	6,011	1,255	1,316	481	293	455	151	108	68	50
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	314	62	80	39	18	53	10	8	4	4
		Herrington		27,85			16,41	18,94	12,28			
WM-8d	HER0014	Creek	99,026	1	31,796	8,672	1	8	1	5,028	1,852	2,583
WM-10	BUG0013	Bull Glade Run	871	172	218	101	48	135	26	20	12	10
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	410	82	103	48	23	64	12	9	5	5
WM-12	MLR0001	Millers Run	39,624	7,834	3,115	2,046	3,261	1,994	855	568	242	614
WM-14	TOL0001	Toliver Run	63,741	14,88	7,338	8,006	8,408	9,498	4,290	2,483	1,022	2,976
WM-15	LAU0013	Laurel Run	16,161	3,313	3,443	1,178	806	1,148	480	258	166	118
WM-16	NED0005	Ned Run	10,354	2,244	2,768	669	706	729	548	238	90	116
WM-	INLDUUUS		<u> </u>	38,87	2,700	007	700	127	340	230	70	110
17 ^e	MYC0018	Muddy Creek	170,60 0	38,87	51,274	11,560	9,749	9,918	6,489	4,190	1,909	1,606
WM-21	ZWI0000	Unnamed tributary to Bear Creek	7,886	1,721	905	1,048	1,531	1,283	570	337	130	447
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	232	29	14	11	19	6	4	3	2	1

Table 5-4. (continued)

	Station	Station										
Station	code	name	0–10	10–20	20-30	30–40	40-50	50-60	60–70	70–80	80-90	90–100
		Unnamed										
		tributary to										
WM-26	ZWH0000	Mill Run	3,558	1,433	1,239	1,002	772	533	471	409	332	186
BM909	BUF0082	Buffalo Run	9,498	1,357	633	482	337	214	174	84	55	36
		Unnamed										
		tributary to										
BM913	UGB0002	Glade Run	2,764	536	226	242	261	404	122	75	31	84
		North										
		Branch										
BM915	NXB0003	Laurel Run	13,734	2,615	1,076	888	850	881	403	257	107	286
				13,59								
BM928f	LRL0018	Laurel Run	66,544	2	5,435	6,005	6,039	6,239	3,026	1,852	728	2,343
BM929	LRL0034	Laurel Run	1,000	134	70	51	47	38	17	11	6	4
BM930	TRR0007	Trap Run	11,276	2,360	851	1,105	1,149	1,409	566	338	140	394
	WRR000	White Rock										
BM931	8	Run	5,294	1,009	1,339	407	263	552	188	100	48	37
	WRG000	White Rock										
BM933	3	Glade	4,478	854	1,299	490	276	784	209	116	49	45

Table 5-5. TMDL maximum daily aluminum loads by flow percentile range (lb/d)

Station	Station code	Station name	0–10	10–20	20-30	30–40	40-50	50-60	60-70	70-80	80- 90	90- 100
WM-1a	MYC0002	Muddy Creek	140,210	33,702	33,077	10,812	12,302	12,157	7,561	3,500	1,408	2,310
WM-2b	SNO0000	Snowy Creek	425,314	130,753	122,746	44,012	80,450	78,344	61,985	22,209	8,450	12,438
WM-3	CHB0005	Cherry Bottom Run	10,446	2,361	1,036	1,327	1,479	1,605	809	412	157	513
WM-4	HER0028	Herrington Creek	57,837	17,863	17,274	11,157	8,735	8,544	6,637	2,197	910	1,286
WM-6c	MUL0001	Murley Run	5,918	1,571	1,180	686	469	422	234	147	99	72
\A/A 4 7	7/4/50001	Unnamed tributary to Bull Glade	210	77	7/	/2	27	Г1	17	10	0	0
WM-7	ZWE0001	Run Herrington	319	77	76	62	37	51	17	12	8	8
WM-8d	HER0014	Creek	63,767	19,068	18,500	12,624	11,927	11,965	8,364	3,148	1,247	1,592
WM-10	BUG0013	Bull Glade Run	890	222	206	164	99	129	45	31	23	21
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	421	105	98	78	47	61	22	15	11	10
WM-12	MLR0001	Millers Run	29,215	5,493	2,047	1,459	1,904	1,242	582	340	141	377
WM-14	TOL0001	Toliver Run	45,765	9,877	4,212	4,911	5,450	5,939	2,938	1,505	585	1,849
WM-15	LAU0013	Laurel Run	15,266	5,144	2,977	2,094	1,396	1,098	739	428	309	189
WM-16	NED0005	Ned Run	6,675	1,536	1,587	463	463	450	347	126	52	71

a WM-1 includes upstream loads from WM-17. b WM-2 includes upstream loads from WM-15. c WM-6 includes upstream loads from WM -7, WM -10, and WM-11.

d WM-8 includes upstream loads from WM-4. WM-17 includes upstream loads from WM-16. BM928 includes upstream loads from BM929.

Table 5-5. (continued)

	Station	Station									80-	90-
Station	code	name	0–10	10–20	20-30	30–40	40-50	50-60	60–70	70–80	90	100
WM- 17 ^e	MYC0018	Muddy Creek	115,999	27,079	28,729	8,806	6,454	5,125	3,466	2,008	1,049	819
WM-21	ZWI0000	Unnamed tributary to Bear Creek	5,700	1,143	555	660	925	808	398	209	80	280
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	254	38	19	16	20	8	4	4	2	1
WM-26	ZWH0000	Unnamed tributary to Mill Run	2,893	925	884	672	436	264	193	162	131	91
BM909	BUF0082	Buffalo Run	8,914	1,358	674	560	348	229	146	103	61	40
BM913	UGB0002	Unnamed tributary to Glade Run	2,060	383	175	185	198	264	94	51	22	54
BM915	NXB0003	North Branch Laurel Run	10,067	1,860	908	576	535	546	273	150	60	174
BM928f	LRL0018	Laurel Run	47,904	9,288	3,933	3,542	3,761	3,868	2,012	1,091	401	1,440
BM929	LRL0034	Laurel Run	1,170	177	119	85	69	60	32	27	15	10
BM930	TRR0007	Trap Run	8,186	1,616	588	696	771	890	399	209	85	246
BM931	WRR0008	White Rock Run	3,764	925	846	481	316	387	162	92	65	49
BM933	WRG0003	White Rock Glade	3,708	1,173	910	3,040	603	610	282	174	131	112

^a WM-1 includes upstream loads from WM-17.

Table 5-6. TMDL maximum daily sulfate loads by flow percentile range (lb/d)

	Station	Station										
Station	code	name	0–10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90–100
		Muddy										
WM-1a	MYC0002	Creek	2,924,016	716,498	839,934	335,948	354,683	326,913	202,596	137,688	90,335	66,167
WM-2b	SNO0000	Snowy Creek	10,871,804	2,969,343	3,181,632	1,217,248	1,800,122	1,804,255	1,323,148	602,800	235,864	348,062
WM-3	CHB0005	Cherry Bottom Run	242,504	56,292	33,339	35,555	35,709	37,065	18,582	11,069	4,277	12,954
WM-4	HER0028	Herrington Creek	1,553,698	455,170	505,585	172,127	243,355	242,618	181,083	80,982	32,634	46,697
WM-6c	MUL0001	Murley Run	932,376	261,111	219,654	116,057	75,619	96,217	45,362	32,133	25,296	19,244
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	84,620	19,546	22,349	13,154	7,094	14,614	4,313	2,946	2,481	2,274
WM-8d	HER0014	Herrington Creek	2,034,691	520,608	572,113	239,224	384,626	394,665	255,030	125,498	47,934	82,087
WM-10	BUG0013	Bull Glade Run	235,741	56,529	60,784	34,869	19,422	37,185	11,745	7,997	6,745	5,970

b WM-2 includes upstream loads from WM-15. c WM-6 includes upstream loads from WM-7, WM-10, and WM-11.

d WM-8 includes upstream loads from WM-4. e WM-17 includes upstream loads from WM-16.

^f BM928 includes upstream loads from BM929.

Table 5-6. (continued)

able 5-6. (continued)												
Station	Station code	Station name	0–10	10–20	20–30	30–40	40–50	50-60	60–70	70–80	80–90	90–100
		Unnamed tributary to Bull Glade										
WM-11	UBL0000	Run	111,076	26,842	28,815	16,546	9,212	17,654	5,572	3,793	3,199	2,835
WM-12	MLR0001	Millers Run	980,462	189,996	106,613	67,956	82,134	46,220	42,775	19,686	14,032	17,528
WM-14	TOL0001	Toliver Run	1,368,440	304,393	181,437	177,955	174,595	178,924	132,206	54,776	21,057	61,846
WM-15	LAU0013	Laurel Run	2,244,317	629,619	494,921	250,071	187,988	181,532	104,043	77,698	56,885	39,180
WM-16	NED0005	Ned Run	145,583	37,473	38,617	14,467	14,385	11,205	8,840	5,020	3,061	2,599
WM-17e	MYC0018	Muddy Creek	2,332,409	630,496	700,280	276,307	218,335	190,611	126,334	103,050	78,730	54,884
WM-21	ZWI0000	Unnamed tributary to Bear Creek	253,908	49,404	31,735	30,762	41,697	32,149	15,266	9,772	3,579	11,979
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	45,131	8,086	4,828	3,680	4,111	2,136	1,415	978	704	464
WM-26	ZWH0000	Unnamed tributary to Mill Run	111,529	50,525	58,885	50,150	38,397	27,197	23,191	20,895	16,995	9,957
BM909	BUF0082	Buffalo Run	832,033	128,858	85,371	63,552	41,178	29,628	24,401	16,952	13,382	8,736
BM913	UGB0002	Unnamed tributary to Glade Run	184,419	35,359	19,872	17,719	18,048	24,688	9,374	5,877	2,527	5,813
BM915	NXB0003	North Branch Laurel Run	312,976	60,728	38,196	27,504	22,287	18,045	9,381	7,443	4,643	6,988
BM928f	LRL0018	Laurel Run	1,118,687	210,633	105,447	97,692	88,281	79,768	38,723	29,595	16,178	30,725
BM929	LRL0034	Laurel Run	308,253	44,947	33,479	23,195	18,199	13,327	8,504	6,723	5,120	3,351
BM930	TRR0007	Trap Run	371,890	76,514	35,435	39,702	38,470	41,496	18,290	12,339	4,998	13,004
BM931	WRR0008	White Rock Run	528,604	134,016	131,726	61,829	42,662	59,819	24,047	16,680	12,887	9,936
BM933	WRG0003	White Rock Glade	853,763	195,936	238,060	130,071	76,047	157,959	48,789	28,158	23,287	22,253

Table 5-7. TMDL maximum daily nitrate loads flow percentile range (lb/d)

	Station	Station									80-	
Station	code	name	0–10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	90	90–100
		Muddy										
WM-1a	MYC0002	Creek	84,075	28,977	18,086	10,981	7,039	5,289	3,452	2,038	626	450
WM-2b	SNO0000	Snowy Creek	228,057	77,279	54,132	28,515	18,886	16,252	59,904	6,023	966	934
WM-3	CHB0005	Cherry Bottom Run	5,394	916	1,814	456	1,511	146	84	55	28	127
WM-4	HER0028	Herrington Creek	30,945	11,593	7,854	4,293	2,819	2,542	7,781	900	137	118
WM-6c	MUL0001	Murley Run	13,216	5,828	3,857	2,201	1,418	1,250	631	445	104	152

Youghiogheny River TMDL Low pH Document version: 08/06/07

a WM-1 includes upstream loads from WM-17.
b WM-2 includes upstream loads from WM-15.
c WM-6 includes upstream loads from WM-7, VM-10, and WM-11.

^d WM-8 includes upstream loads from WM-4. ^e WM-17 includes upstream loads from WM-16. ^f BM928 includes upstream loads from BM929.

FINAL

Table 5-7. (continued)

Unnamed tributary to Bull Glade Run	CL-L!	Station	Station	0.10	10.00	20, 20	20. 40	40. 50	F0 (0	/O 70	70.00	80-	00 100
WM-84 HER0014 Herrington Creek Sp. 1674 13,361 7,862 4,676 5,572 2,574 7,936 910 226 777 778 779 7	Station	code	name	0–10	10-20	20-30	30–40	40–50	50-60	60–70	70–80	90	90–100
WM-7 ZWE0001 Run 923 373 242 134 92 97 49 34 13 22 23 24 24 24 24 25 25 25 25													
WM-8ª HER0014 Herrington Creek 51,674 13,361 7,862 4,676 5,572 2,574 7,936 910 226 777			Bull Glade										
MM-10 BUG0013 Run	WM-7	ZWE0001	Run	923	373	242	134	92	97	49	34	13	21
WM-10 BUIG0013 Run 2,599 1,075 697 388 264 268 135 95 34 56 20 2,000 2													
WM-10 BUG0013 Run 2,599 1,075 697 388 264 268 135 95 34 59 34 59 34 59 34 59 34 59 34 59 34 35 34 34	WM-8d	HER0014	Creek	51,674	13,361	7,862	4,676	5,572	2,574	7,936	910	226	771
WM-11 UBL0000 Run 1,233 510 331 184 125 127 64 45 16 26 WM-12 MIR0001 Millers Run 1,233 510 331 184 125 127 64 45 16 26 WM-14 MIR0001 Millers Run 29,481 5,625 2,810 2,472 3,257 870 437 222 49 12° VM-15 LAU0013 Laurel Run 55,412 20,870 13,637 7,739 5,089 4,048 3,351 1,444 260 48I WM-16 NED0005 Ned Run 2,683 1,119 732 419 277 221 332 78 11 5 WM-17 MYC0018 Creek 55,136 23,234 14,217 8,898 5,386 4,063 3,226 1,603 570 233 WM-21 ZWIL0005 Bear Creek 5,621 897 989 414 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
WM-11 UBL0000 kributary to Bull Glade 1,233 510 331 184 125 127 64 45 16 22 WM-12 MLR0001 Millers Run 29,481 5,625 2,810 2,472 3,257 870 437 222 49 12* WM-14 TOL0001 Toliver Run 32,754 5,858 5,641 2,622 7,111 926 464 286 133 59 WM-15 LAU0013 Laurel Run 55,412 20,870 13,637 7,739 5,089 4,048 3,351 1,444 260 488 WM-16 NED0005 Ned Run 2,683 1,119 732 419 277 221 332 78 111 3 WM-17 ZWI0000 Dear Creek 5,621 897 989 414 248 146 88 56 23 12 WM-22 ZWIL0005 Creek 992 200 100 90	WM-10	BUG0013		2,599	1,075	697	388	264	268	135	95	34	54
WM-11													
WM-11 UBL0000 Run 1,233 510 331 184 125 127 64 45 16 26 WM-12 MILR0001 Millers Run 29,481 5,625 2,810 2,472 3,257 870 437 222 49 129 WM-14 TOL0001 Toliver Run 32,754 5,858 5,641 2,622 7,111 926 464 286 133 590 WM-15 LAU0013 Laurel Run 55,412 20,870 13,637 7,739 5,089 4,048 3,351 1,444 260 488 WM-16 NED0005 Ned Run 2,683 1,119 732 419 277 221 332 78 11 3 WM-17 ZWI0000 Bear Creek 55,136 23,234 14,217 8,898 5,386 4,063 3,226 1,603 570 23 WM-21 ZWI0000 Bear Creek 5,621 897 989 414													
WM-14 TOL0001 Toliver Run 32,754 5,858 5,641 2,622 7,111 926 464 286 133 599 WM-15 LAU0013 Laurel Run 55,412 20,870 13,637 7,739 5,089 4,048 3,351 1,444 260 488 WM-16 NED0005 Ned Run 2,683 1,119 732 419 277 221 332 78 11 332 WM-17 MYC0018 Creek 55,136 23,234 14,217 8,898 5,386 4,063 3,226 1,603 570 233 WM-21 ZWI0000 Bear Creek 5,621 897 989 414 248 146 88 56 23 12 WM-22 ZWIL0005 Creek 992 200 100 90 46 32 16 8 2 3 12 WM-26 ZWH0000 Mill Run 3,757 1,083 1,192 83	WM-11	UBL0000	Run	1,233	510	331	184	125	127	64	45	16	26
WM-15 LAU0013 Laurel Run 55,412 20,870 13,637 7,739 5,089 4,048 3,351 1,444 260 488 WM-16 NED0005 Ned Run 2,683 1,119 732 419 277 221 332 78 11 9 WM-17 MYC0018 Creek 55,136 23,234 14,217 8,898 5,386 4,063 3,226 1,603 570 23 WM-21 ZWI0000 Bear Creek 5,621 897 989 414 248 146 88 56 23 12 WM-22 ZWL0005 Creek 992 200 100 90 46 32 16 8 2 9 WM-26 ZWH0000 Mill Run 3,757 1,083 1,192 833 453 173 114 69 44 18 BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050	WM-12	MLR0001	Millers Run	29,481	5,625	2,810	2,472	3,257	870	437	222	49	129
WM-16 NED0005 Ned Run 2,683 1,119 732 419 277 221 332 78 11 9 WM-17e MYC0018 Muddy Creek 55,136 23,234 14,217 8,898 5,386 4,063 3,226 1,603 570 23 WM-21 ZWI0000 Bear Creek 5,621 897 989 414 248 146 88 56 23 12 WM-22 ZWL0005 Little Bear Creek 992 200 100 90 46 32 16 8 2 9 WM-26 ZWH0005 Mill Run 3,757 1,083 1,192 833 453 173 114 69 44 18 BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050 731 367 186 41 44 BM915 NXB0003 Laurel Run 4,060 671 759 382 261	WM-14	TOL0001	Toliver Run	32,754	5,858	5,641	2,622	7,111	926	464	286	133	590
WM-17e MYC0018 Muddy Creek 55,136 23,234 14,217 8,898 5,386 4,063 3,226 1,603 570 23 WM-21 ZWI0000 Bear Creek 5,621 897 989 414 248 146 88 56 23 12 WM-22 ZWL0005 Creek 992 200 100 90 46 32 16 8 2 5 WM-22 ZWH0005 Creek 992 200 100 90 46 32 16 8 2 5 WM-22 ZWH0000 Mill Run 3,757 1,083 1,192 833 453 173 114 69 44 18 BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050 731 367 186 41 44 BM913 UGB0002 Buffalo Run 4,060 671 759 382 261 114	WM-15	LAU0013	Laurel Run	55,412	20,870	13,637	7,739	5,089	4,048	3,351	1,444	260	480
17° MYC0018 Creek 55,136 23,234 14,217 8,898 5,386 4,063 3,226 1,603 570 238		NED0005		2,683	1,119	732	419	277	221	332	78	11	5
Unnamed tributary to Bear Creek 5,621 897 989 414 248 146 88 56 23 127		MVC0010		EE 124	22 224	14 217	0 000	E 204	1.062	2 226	1 602	570	225
WM-21 ZWI0000 tributary to Bear Creek 5,621 897 989 414 248 146 88 56 23 127 WM-22 ZWL0005 Creek 992 200 100 90 46 32 16 8 2 5 WM-26 ZWH0000 Mill Run 3,757 1,083 1,192 833 453 173 114 69 44 18 BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050 731 367 186 41 44 BM913 UGB0002 Glade Run 4,060 671 759 382 261 114 70 52 14 60 BM915 NXB0003 Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 57 BM928/ LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207	17°	WITCOUTO		00,130	23,234	14,217	0,090	3,300	4,003	3,220	1,003	370	230
WM-21 ZWI0000 Bear Creek 5,621 897 989 414 248 146 88 56 23 12° WM-22 ZWL0005 Creek 992 200 100 90 46 32 16 8 2 5 WM-26 ZWH0000 Mill Run 3,757 1,083 1,192 833 453 173 114 69 44 18 BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050 731 367 186 41 44 BM913 UGB0002 Glade Run 4,060 671 759 382 261 114 70 52 14 66 BM915 NXB0003 Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 55 BM928f LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 </td <td></td>													
WM-22 ZWL0005 Creek 992 200 100 90 46 32 16 8 2 9 WM-26 ZWH0000 Mill Run 3,757 1,083 1,192 833 453 173 114 69 44 18 BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050 731 367 186 41 44 BM913 UGB0002 Glade Run 4,060 671 759 382 261 114 70 52 14 60 BM915 NXB0003 Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 55 BM928 ^t LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 403 205 57 275 BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310 <td< td=""><td>WM-21</td><td>ZWI0000</td><td></td><td>5,621</td><td>897</td><td>989</td><td>414</td><td>248</td><td>146</td><td>88</td><td>56</td><td>23</td><td>121</td></td<>	WM-21	ZWI0000		5,621	897	989	414	248	146	88	56	23	121
WM-22 ZWL0005 Little Bear Creek 992 200 100 90 46 32 16 8 2 5 WM-26 ZWH0000 Mill Run 3,757 1,083 1,192 833 453 173 114 69 44 18 BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050 731 367 186 41 44 BM913 UGB0002 Glade Run 4,060 671 759 382 261 114 70 52 14 60 BM915 NXB0003 Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 55 BM928' LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 403 205 57 275 BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310													
WM-22 ZWL0005 Creek 992 200 100 90 46 32 16 8 2 5 WM-26 ZWH0000 Mill Run 3,757 1,083 1,192 833 453 173 114 69 44 18 BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050 731 367 186 41 44 BM913 UGB0002 Glade Run 4,060 671 759 382 261 114 70 52 14 60 BM915 NXB0003 Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 55 BM928' LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 403 205 57 275 BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310 2													
WM-26 ZWH0000 Mill Run 3,757 1,083 1,192 833 453 173 114 69 44 18 BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050 731 367 186 41 44 BM913 UGB0002 Glade Run 4,060 671 759 382 261 114 70 52 14 60 North Branch Branch Branch NXB0003 Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 5 BM928f LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 403 205 57 275 BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310 216 108 55 16 60 BM930 TRR0007 Trap Run 8,804 1,547 925 716	WM-22	ZWL0005		992	200	100	90	46	32	16	8	2	5
WM-26 ZWH0000 Mill Run 3,757 1,083 1,192 833 453 173 114 69 44 18 BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050 731 367 186 41 44 BM913 UGB0002 Glade Run 4,060 671 759 382 261 114 70 52 14 60 North Branch Branch Branch Branch 2,280 1,451 868 433 251 126 64 15 5 BM928f LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 403 205 57 275 BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310 216 108 55 16 60 BM930 TRR0007 Trap Run 8,804 1,547 925 716			Unnamed										
BM909 BUF0082 Buffalo Run 23,265 4,576 2,286 2,084 1,050 731 367 186 41 44 BM913 UGB0002 Glade Run 4,060 671 759 382 261 114 70 52 14 60 NNAB0003 Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 5 BM928f LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 403 205 57 275 BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310 216 108 55 16 60 BM930 TRR0007 Trap Run 8,804 1,547 925 716 479 252 127 78 28 110 BM931 WRR0008 Run 9,956 4,020 2,661 1,495 1,006 889	\A/\A_24	7\\/\\\00000		2 757	1 002	1 100	ດລວ	453	170	111	40	4.4	10
BM913 UGB0002 Glade Run 4,060 671 759 382 261 114 70 52 14 60													
BM913 UGB0002 tributary to Glade Run 4,060 671 759 382 261 114 70 52 14 60 BM915 NXB0003 Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 55 BM928f LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 403 205 57 275 BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310 216 108 55 16 63 BM930 TRR0007 Trap Run 8,804 1,547 925 716 479 252 127 78 28 116 BM931 WR0008 Run 9,956 4,020 2,661 1,495 1,006 889 910 316 81 117	DIVI9U9	DUFUU02		23,203	4,370	2,200	2,004	1,030	731	307	100	41	49
BM915 NXB0003 Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 55 BM928f LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 403 205 57 275 BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310 216 108 55 16 65 BM930 TRR0007 Trap Run 8,804 1,547 925 716 479 252 127 78 28 116 BM931 WRR0008 Run 9,956 4,020 2,661 1,495 1,006 889 910 316 81 117													
BM915 NXB0003 Branch Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 57 BM928f LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 403 205 57 275 BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310 216 108 55 16 66 BM930 TRR0007 Trap Run 8,804 1,547 925 716 479 252 127 78 28 119 BM931 WRR0008 Run 9,956 4,020 2,661 1,495 1,006 889 910 316 81 117	BM913	UGB0002		4,060	671	759	382	261	114	70	52	14	60
BM915 NXB0003 Laurel Run 8,356 1,588 1,451 868 433 251 126 64 15 57 BM928f LRL0018 Laurel Run 27,687 5,009 3,879 2,280 1,207 802 403 205 57 275 BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310 216 108 55 16 66 BM930 TRR0007 Trap Run 8,804 1,547 925 716 479 252 127 78 28 119 BM931 WRR0008 Run 9,956 4,020 2,661 1,495 1,006 889 910 316 81 11													
BM929 LRL0034 Laurel Run 6,595 1,321 660 614 310 216 108 55 16 60 BM930 TRR0007 Trap Run 8,804 1,547 925 716 479 252 127 78 28 110 BM931 WRR0008 Run 9,956 4,020 2,661 1,495 1,006 889 910 316 81 117 White Rock White Rock <td>BM915</td> <td>N XB0003</td> <td></td> <td>8,356</td> <td>1,588</td> <td>1,451</td> <td>868</td> <td>433</td> <td>251</td> <td>126</td> <td>64</td> <td>15</td> <td>57</td>	BM915	N XB0003		8,356	1,588	1,451	868	433	251	126	64	15	57
BM930 TRR0007 Trap Run 8,804 1,547 925 716 479 252 127 78 28 110 BM931 WRR0008 Run 9,956 4,020 2,661 1,495 1,006 889 910 316 81 117 White Rock White Rock 4,020 2,661 1,495 1,006 889 910 316 81 117	BM928f	LRL0018	Laurel Run	27,687	5,009	3,879	2,280	1,207	802	403	205	57	275
BM930 TRR0007 Trap Run 8,804 1,547 925 716 479 252 127 78 28 119 BM931 WRR0008 Run 9,956 4,020 2,661 1,495 1,006 889 910 316 81 117 White Rock White Rock 4,020 2,661 1,495 1,006 889 910 316 81 117										108		16	63
BM931 WRR0008 Run 9,956 4,020 2,661 1,495 1,006 889 910 316 81 111 White Rock	BM930			8,804		925	716	479	252	127	78	28	119
White Rock					_	_							
	BM931	WRR0008		9,956	4,020	2,661	1,495	1,006	889	910	316	81	111
- 1 COVERT FOR A CONTRACT FOR A CONT	BM933	WRG0003	White Rock Glade	18,636	6,286	4,410	2,321	1,575	1,808	2,042	639	263	391

a WM-1 includes upstream loads from WM-17.
b WM-2 includes upstream loads from WM-15.
c WM-6 includes upstream loads from WM-7, WM-10, and WM-11.
d WM-8 includes upstream loads from WM-4.
e WM-17 includes upstream loads from WM-16.
f BM928 includes upstream loads from BM929.

Table 5-8. TMDL maximum daily ammonium loads flow percentile range (lb/d)

i abie 3	5-8. TMDL maximum daily ammonium loads flow percentile range (lb/d)												
Station	Station code	Station name	0–10	10-20	20-30	30-40	40-50	50-60	60-70	70–80	80- 90	90- 100	
WM-1a	MYC0002	Muddy Creek	21,749	11,228	7,429	4,028	2,433	2,058	1,648	1,458	228	182	
WM-2b	SNO0000	Snowy Creek	64,526	31,147	21,362	10,674	6,403	6,528	30,245	6,280	613	412	
WM-3	CHB0005	Cherry Bottom Run	734	200	265	165	293	58	64	21	49	57	
WM-4	HER0028	Herrington Creek	8,820	4,785	3,296	1,588	979	1,026	3,922	889	83	52	
WM-6c	MUL0001	Murley Run	4,067	2,343	1,643	811	480	512	255	179	31	37	
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	260	153	107	50	32	41	20	14	4	5	
WM-8d	HER0014	Herrington Creek	10,030	4,787	3,298	1,746	1,187	1,039	4,019	898	204	342	
WM-10	BUG0013	Bull Glade Run	753	440	308	146	92	113	56	39	11	13	
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	356	209	146	69	44	53	27	19	5	6	
WM-12	MLR0001	Millers Run	3,927	1,240	735	949	621	330	163	81	48	56	
		1											
WM-14	TOL0001	Toliver Run	4,421	1,323	914	1,050	1,380	368	297	97	227	262	
WM-15	LAU0013	Laurel Run	14,304	7,947	5,566	2,774	1,697	1,590	1,604	556	60	137	
WM-16	NED0005	Ned Run	830	460	320	161	97	92	165	40	4	2	
WM- 17 ^e	MYC0018	Muddy Creek	15,781	9,014	5,837	3,257	1,922	1,572	1,518	805	152	58	
WM-21	ZWI0000	Unnamed tributary to Bear Creek	793	200	153	164	96	57	53	19	39	54	
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	130	46	25	35	17	12	6	3	1	2	
WM-26	ZWH0000	Unnamed tributary to Mill Run	498	497	282	191	127	41	26	18	10	5	
BM909	BUF0082	Buffalo Run	2,987	1,016	565	785	390	272	135	67	13	15	
BM913	UGB0002	Unnamed tributary to Glade Run	544	161	187	129	72	45	26	12	20	23	
BM915	NXB0003	North Branch Laurel Run	1,099	384	350	286	147	99	49	24	21	25	
BM928f	LRL0018	Laurel Run	3,655	1,187	947	904	479	314	155	77	87	122	
BM929	LRL0034	Laurel Run	825	306	173	237	117	82	41	20	4	20	
BM930	TRR0007	Trap Run	1,174	366	242	287	153	100	60	25	45	53	
BM931	WRR0008	White Rock Run	2,961	1,662	1,162	575	354	371	438	130	24	28	
BM933	WRG0003	White Rock Glade	5,189	2,646	1,849	856	572	728	978	290	82	100	

Table 5-8. (continued)

	Station	Station									-08	90-
Station	code	name	0–10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	90	100

a WM-1 includes upstream loads from WM-17.

5.3.1 Wasteload Allocations

Federal regulations (40 CFR 130.7) require TMDLs to include individual WLAs for each point source. On the basis of the types of activities and the minimal flow of the discharges, these permitted non-mining sources are believed to be negligible. Under these TMDLs, these minor discharges are assumed to operate under their current permit limits and are assigned WLAs that allow them to discharge at their current permit limits. Table 5-9 presents the WLAs for each point source. It was assumed that if a parameter limit was not in the permit, that the present discharge levels were not adversely affecting the stream and a WLA was not given.

Table 5-9. WLAs for permitted facilities upstream of impaired segments

NPDES			Permit	Associated station/	Associated		Total	Total
Permit Number	Outlet	Facility	flow (mgd)	station code	station name	Ammonia ^a (lb/yr)	iron (lb/yr)	aluminum (lb/yr)
- Turnoor	- Guillot	Swallow	(94)	COGC	name	(1.57)	(1.07) 1	(12/91)
		Falls State						
		Park		WM-14/				
MD0052850	001A	WWTP	0.062	TOL0001	Toliver Run	330 (S)	^b	
		Terra Alta		WM-2/	Snowy			
WV0033804	001	STP	0.25	SNO0000	Creek	1,523		
		Alpine Lake		WM-2/	Snowy			
WV0086665	001	STP	0.06	SNO0000	Creek			
		Cranesville		WM-17/	Muddy			
WV0119113	002	Stone	0.077156 ^c	MYC0018	Creek	1	752	101
		Alyeska,						
		Inc. (Big						
		Bear Lake		D14000/	M// 11 D 1	407(0)		
140 (0 = = 4 4 40	204	Campgroun	0.00	BM933/	White Rock	137(S)		
WVG551149	001	d WWTP)	0.03	WRG0003	Glade	274 (W)		
		Grimm		1000000				
		Lumber,		WM-15/			_	
WVG610139	001	Inc.	0.0026	LAU0013	Laurel Run		8	
		Terra Alta		WM-2/	Snowy			
WVG640110	001	WTP	0.005	SNO0000	Creek		18	11

^a Ammonia limits contain summer and winter limits. Summer loads (S) are valid from May 1 through October 31. Winter loads (W) are valid November 1 through April 30.

Because the permits do not have limits for all parameters, during model development an analysis was performed on other data in PCS to see if this data had an affect on pH. The PCS database was searched for permits with the same Standard Industrial Classification (SIC) codes as the permits in the model. Average flow and loads from these facilities were used to calculate average effluent concentrations by SIC code. Additional information was obtained from EPA's national recommended water quality criteria (USEPA 2004). No effect was observed; therefore, these concentrations were not used in the final model.

^b WM-2 includes upstream loads from WM-15.

^c WM-6 includes upstream loads from WM -7, WM-10, and WM-11.

^d WM-8 includes upstream loads from WM-4.

e WM-17 includes upstream loads from WM -16.

^f BM928 includes upstream loads from BM929.

^b There is no permit limit for this parameter for this facility. Persent discharge levels assumed not to be adversely affecting stream.

^c Flow based on drainage area and average annual model output for mining land use.

5.3.2 Load Allocations

The LA is that portion of the TMDL that is assigned to nonpoint sources. LAs were first applied to atmospheric deposition. These TMDL loads are based on the 2020 predictions under the CAIR regulation from EPA Office of Air Quality Planning and Standards at Research Triangle Park, North Carolina. After these future loads were applied to the model, the loads from known mining seeps and portals were reduced. If further reductions were required, the loads from other nonpoint sources were reduced. These loads were applied to the whole watershed and not a specific nonpoint source or land use.

Table 5-10 presents total annual load allocations at the monitoring locations, as the stream leaves the watershed. Note that the loads in these tables include atmospheric deposition loads, which are also presented separately in Table 5-11 (but as direct inputs to the land surface rather than as the stream leaves the watershed). Atmospheric deposition reductions were not found to have a significant impact on predicted pH in the watershed. The loads in Table 5-10 include background concentration and atmospheric loads that have gone through chemical reactions. These loads also include loads from mine seeps which are presented in Table 5-12. These loads represent a 99 percent reduction in flow and pollutant concentration levels for the mine seeps.

Table 5-10. LAs for iron, aluminum, sulfate, nitrate, and ammonium yearly loads

Station	Station code	Station name	lron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr)
WM-1 ^a	MYC0002	Muddy Creek	79,663	53,593	1,642,486	42,074	9,679
WM-2 ^b	SNO0000	Snowy Creek	198,637	145,025	5,054,641	115,512	27,127
WM-3	CHB0005	Cherry Bottom Run	3,261	2,098	67,721	1,126	245
WM-4	HER0028	Herrington Creek	27,255	20,193	717,023	16,869	4,021
WM-6 ^c	MUL0001	Murley Run	2,249	2,811	490,988	8,045	1,827
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	104	159	39,768	532	124
WM-8 ^d	HER0014	Herrington Creek	33,327	24,437	963,612	21,112	4,968
WM-10	BUG0013	Bull Glade Run	294	449	112,925	1,514	352
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	140	213	53,550	718	167
WM-12	MLR0001	Millers Run	7,931	5,702	273,935	5,924	1,202
WM-14	TOL0001	Toliver Run	14,172	9,423	397,953	6,812	1,422
WM-15	LAU0013	Laurel Run	6,021	8,743	1,252,566	29,377	6,581
WM-16	NED0005	Ned Run	3,183	2,274	72,552	1,539	369
WM- 17 ^e	MYC0018	Muddy Creek	57,719	42,081	1,329,769	31,324	7,139
WM-21	ZWI0000	Unnamed tributary to Bear Creek	1,573	1,063	54,834	820	186
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	49	65	13,424	198	39
WM-26	ZWH0000	Unnamed tributary to Mill Run	3,285	1,667	147,856	1,185	232
BM909	BUF0082	Buffalo Run	1,906	2,123	238,483	4,602	898
BM913	UGB0002	Unnamed tributary	504	420	45,811	816	173
BM915	NXB0003	North Branch Laurel Run	2,807	1,921	90,465	1,748	361
BM928 [†]	LRL0018	Laurel Run	13,478	8,838	315,092	5,573	1,152

Table 5-10. (continued)

Station	Station code	Station name	lron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr)
BM929	LRL0034	Laurel Run	205	347	89,098	1,366	265
BM930	TRR0007	Trap Run	2,251	1,597	100,301	1,743	372
BM931	WRR0008	White Rock Run	1,602	1,751	259,344	5,754	1,359
BM933	WRG0003	White Rock Glade	1,291	2,227	380,867	9,839	2,215

^a WM-1 includes upstream loads from WM-17.

Table 5-11. Projected (2020) yearly loads from atmospheric deposition for TMDL scenario

	Station			Dry (lb/	yr)		Wet (lb/)	/r)
Station	code	Station name	Sulfate	Nitrate	Ammonium	Sulfate	Nitrate	Ammonium
WM-1 ^a	MYC0002	Muddy Creek	86,590	881	8,397	133,277	65,265	22,970
WM-2 ^b	SNO0000	Snowy Creek	154,943	1,576	15,025	238,484	116,784	41,103
WM-3	CHB0005	Cherry Bottom Run	2,494	25	242	3,839	1,880	662
WM-4	HER0028	Herrington Creek	21,519	219	2,087	33,121	16,219	5,708
WM-6 ^c	MUL0001	Murley Run	20,238	206	1,962	31,149	15,254	5,369
WM-7	ZWE0001	Unnamed tributary to Bull Glade Run	1,598	16	155	2,460	1,205	424
WM-8 ^d	HER0014	Herrington Creek	30,846	314	2,991	47,477	23,249	8,183
WM-10	BUG0013	Bull Glade Run	4,600	47	446	7,081	3,467	1,220
WM-11	UBL0000	Unnamed tributary to Bull Glade Run	2,186	22	212	3,365	1,648	580
WM-12	MLR0001	Millers Run	12,366	126	1,199	19,034	9,321	3,280
WM-14	TOL0001	Toliver Run	15,942	162	1,546	24,538	12,016	4,229
WM-15	LAU0013	Laurel Run	46,589	474	4,518	71,708	35,115	12,359
WM-16	NED0005	Ned Run	2,447	25	237	3,766	1,844	649
WM- 17 ^e	MYC0018	Muddy Creek	60,972	620	5,912	93,846	45,956	16,174
WM-21	ZWI0000	Unnamed tributary to Bear Creek	1,895	19	184	2,916	1,428	503
WM-22	ZWL0005	Unnamed tributary to Little Bear Creek	712	7	69	1,096	537	189
WM-26	ZWH0000	Unnamed tributary to Mill Run	7,507	76	728	11,554	5,658	1,991
BM909	BUF0082	Buffalo Run	12,697	129	1,231	19,542	9,570	3,368
BM913	UGB0002	Unnamed tributary	1,837	19	178	2,827	1,384	487
BM915	NXB0003	North Branch Laurel Run	4,418	45	428	6,800	3,330	1,172
BM928 ^t	LRL0018	Laurel Run	15,072	153	1,462	23,198	11,360	3,998
BM929	LRL0034	Laurel Run	4,801	49	466	7,390	3,619	1,274
BM930	TRR0007	Trap Run	4,280	44	415	6,588	3,226	1,135
BM931	WRR0008	White Rock Run	8,877	90	861	13,663	6,691	2,355
BM933	WRG0003	White Rock Glade	11,731	119	1,138	18,055	8,842	3,112

^a WM-1 includes upstream loads from WM-17.

^b WM-2 includes upstream loads from WM-15.

[°] WM-6 includes upstream loads from WM-7, WM-10, and WM-11.

d WM-8 includes upstream loads from WM-4.

^e WM-17 includes upstream loads from WM-16.

f BM928 includes upstream loads from BM929.

^b WM-2 includes upstream loads from WM-15.

^c WM-6 includes upstream loads from WM-7, WM-10, and WM-11.

^d WM-8 includes upstream loads from WM-4.

e WM-17 includes upstream loads from WM-16. f BM928 includes upstream loads from BM929.

Portions of the Youghiogheny River watershed originate in West Virginia. Several of these streams flow into streams listed as impaired by Maryland. The portion of the total allocation, including load allocations and the margin of safety, in Table 5-2 that is attributed to areas in West Virginia is presented in Table 5-13. These loads are area-weighted to the portion of the watershed that is in West Virginia. In addition, the mine seep, MY-00037, from Table 5-12, is in West Virginia. The TMDLs do not prescribe specific load allocations for the contributing area of West Virginia. Instead, they allow West Virginia and its stakeholders to determine appropriate and necessary source reductions.

Table 5-12. Yearly loads from mine seeps and portals

Mine Seep	Associated station	Associated station code	Associated station name	Aluminum (lb/yr)	lron (lb/yr)	Sulfate (lb/yr)
AMD-WV1	WM-15	LAU0013	Laurel Run	2.34	4.44	80.4
OK-01-P1	WM-2	SNO0000	Snowy Creek	0.09	0.88	17.6
OK-01-P2	WM-2	SNO0000	Snowy Creek	0.09	0.88	17.6
SR-02-P3	BM930	TRR0007	Trap Run	0.22	9.87	44.1
SR-02-S2	BM930	TRR0007	Trap Run	0.09	0.88	17.6
Y-10-O1	BM928	LRL0018	Laurel Run	0.09	0.88	17.6
Y-10-O2	BM928	LRL0018	Laurel Run	0.09	0.88	17.6
Y-10-S1	BM928	LRL0018	Laurel Run	0.44	4.39	88.2
Y-11-S1	BM928	LRL0018	Laurel Run	0.13	1.32	26.4
Y-18-S1	BM931	WRR0008	White Rock Run	0.04	0.44	8.8
Y-24-S1	WM-3	CHB0005	Cherry Bottom Run	0.09	1.67	18.9
Y-24-S2	WM-3	CHB0005	Cherry Bottom Run	0.04	0.44	8.8

5.3.3 Margin of Safety and Future Allocation

The MOS is the portion of the pollutant loading reserved to account for uncertainty in the TMDL development process. There are two ways to incorporate the MOS (USEPA 1991): (1) implicitly incorporate the MOS by using conservative model assumptions to develop allocations or (2) explicitly specify a portion of the TMDL as the MOS and use the remainder for allocations. For this TMDL, a 5 percent explicit MOS was used to account for uncertainty in the modeling process. The MOS loadings are presented in Table 5-2.

While the MOS is an allocation for scientific uncertainty, the FA is an allocation for growth. Ten percent of the load was allocated for future allocation in the area covered by the TMDL. This growth includes future urban development, including point sources, coal mining areas, agriculture, and other nonpoint sources. The FA could also be used for sources not accounted for or unknown and therefore not otherwise included in the TMDL. The FA loadings are presented in Table 5-2.

Table 5-13. TMDL yearly loads from West Virginia

Station	Station code	Station name	TMDL fraction	lron (lb/yr)	Aluminum (lb/yr)	Sulfate (lb/yr)	Nitrate (lb/yr)	Ammonium (lb/yr) ^a
			Baseline	300,697	217,871	6,010,047	223,029	28,364
		Snowy	TMDL	207,159	151,247	5,271,439	120,466	28,528
WM-2 ^b	SNO0000	Creek	% reduction	31.1	30.6	12.3	46.0	-0.6
			Baseline	16,697	11,840	325,352	12,450	1,593
		Herrington	TMDL	10,853	8,041	285,519	6,717	1,601
WM-4	HER0028	Creek	% reduction	35.0	32.1	12.2	46.0	-0.5
			Baseline	69,614	57,309	1,635,928	62,732	7,632
		Laurel	TMDL	6,961	10,106	1,447,959	33,960	7,608
WM-15	LAU0013	Run	% reduction	90.0	82.4	11.5	45.9	0.3
			Baseline	53,627	39,035	1,233,075	29,046	6,620
		Muddy	TMDL	53,627	39,035	1,233,075	29,046	6,620
WM-17	MYC0018	Creek	% reduction	0.0	0.0	0.0	0.0	0.0
			Baseline	1,597	1,779	199,777	3,855	752
		Buffalo	TMDL	1,597	1,779	199,777	3,855	752
BM909	BUF0082	Run	% reduction	0.0	0.0	0.0	0.0	0.0
			Baseline	201	341	87,524	1,341	260
		Laurel	TMDL	201	341	87,524	1,341	260
BM929	LRL0034	Run	% reduction	0.0	0.0	0.0	0.0	0.0
		White	Baseline	11,448	8,443	231,386	9,741	1,211
		Rock	TMDL	687	1,185	202,625	5,235	1,211
BM933	WRG0003	Glade	% reduction	94.0	86.0	12.4	46.3	-0.1

^a The CAIR model predicts that ammonium in atmospheric deposition will increase in some areas.
^b WM-2 includes upstream loads from WM-15.

6 REASONABLE ASSURANCE

Section 303(d) of Clean Water Act (CWA) and current EPA regulations require reasonable assurance that TMDLs will be implemented. TMDLs represent an attempt to quantify the pollutant load that may be present in a waterbody and still ensure attainment and maintenance of water quality standards. The Youghiogheny River TMDL identifies the necessary overall load reductions for those pollutants causing use impairments and distributes those reduction goals to the appropriate sources. Reaching the reduction goals established by these TMDLs will occur only through changes in current land use practices, including the remediation of acid mine drainage and the implementation of the CAIR. Although the derived TMDLs are based on best professional judgment using current data in the calibrated model, meeting these TMDLs might not be necessary if alternative remediation and future monitoring prove that pH is being corrected without reducing these parameters.

The Maryland Bureau of Mines (BOM) is responsible for protecting the environment from potential impacts from active mining and promoting the restoration of abandoned mine lands and water resources. In issuing new or updated permits in the TMDL area, BOM will ensure that permit limits will not adversely affect the pH in impaired waters. BOM also reclaims abandoned mine lands. These lands are prioritized on the basis of health, safety, and environmental impacts. Within the BOM, the Acid Mine Drainage Abatement Section's mission is to improve the waters of the state that are impaired by AMD from abandoned coal mines. This is an ongoing process that is limited by the amount of funding available and may be aided by partnerships with industries, watershed groups, other government agencies, and other interested parties.

On March 10, 2005, EPA issued the CAIR, which places caps on emissions for sulfur dioxide and nitrogen dioxides in the eastern United States. It is expected that CAIR will reduce sulfur dioxide emissions by more than 70 percent and nitrogen oxides emissions by more than 60 percent from the 2003 emission levels (USEPA 2005d). Because these pollutants are highly mobile in the atmosphere, emission reductions in West Virginia, Ohio, Pennsylvania, and possibly Michigan are expected to improve the quality of precipitation in the Youghiogheny River watershed.

The West Virginia Department of Environmental Protection (WVDEP) plans to develop a TMDL report for the West Virginia portion of the Youghiogheny River basin during its 2009 TMDL schedule. Reasonable assurance for maintenance and improvement of water quality in the affected watershed rests primarily with three separate programs. Two of these programs are wholly within WVDEP, and the third program is a cooperative effort involving many state and federal agencies. Within WVDEP, the programs involved in the effort include the NPDES Permitting Program and the Abandoned Mine Lands Program. In addition, WVDEP is involved with the West Virginia Watershed Management Network/Watershed Management Framework, which includes many state and federal agencies dealing with the protection and restoration of water resources. The framework process allows the resources of many entities to focus on the protection or restoration of water quality in selected streams.

Individuals or local groups, such as the Youghiogheny River Watershed Association, interested in improving conditions in the watershed are strongly encouraged to review funding sources available through MDE and other state and federal agencies. Numerous state programs, including

FINAL

section 319 programs, are available. Other Maryland programs include the Small Creeks and Estuaries Restoration Program and the State Revolving Loan Fund. For more information, visit http://www.mde.state.md.us/AboutMDE/grants/index.asp (MDE 2006).

Several remediation projects are already underway in the impaired reaches. Constructed and planned projects in the watersheds include

- The Crellin School Wetland Treatment Remediation Project on Snowy Creek treats 20 gpm.
- The Crellin-Rice Pyrolusite Remediation Project on the Laurel Run tributary to Snowy Creek treats 20 gpm.
- The Interstate #335 Anoxic Limestone Drain on White Rock Run treats 70 gpm.
- The Winding Ridge CCB Injection Project on Bear Creek treats 30 gpm.
- The Crellin Borehole Doser Project the Laurel Run tributary to Snowy Creek will treat 550 gpm.

• REFERENCES

- Appelo, C.A.J., and D. Postma. 2005. *Geochemistry, Groundwater and Pollution*. 2nd ed. Taylor & Francis.
- Bicknell, B.R., J.C. Imhoff, J.L. Kittle, Jr., A.S. Donigian, Jr., and R.C. Johanson. 1997. Hydrological Simulation Program—FORTRAN, User's manual for version 11. Athens: USEPA, EPA/600/R-97/080.
- Chapra, S.C. 1997. Surface Water Quality Modeling. McGraw-Hill, New York.
- COMAR (Code of Maryland Regulations). 2005. Code of Maryland Regulations (COMAR), Title 26, Subtitle 08, Chapter 02, Section 03 (Surface Water Quality Criteria).
- Crawford, N.H., and R.K. Linsley. Digital Simulation in Hydrology: Stanford Watershed Model IV. Tech Report 39. July 1966. Department of Civil Engineering, Stanford University.
- Environment Canada. 2005. Acid Rain and...Water. http://www.ec.gc.ca/acidrain/acidwater.html Accessed April 12, 2007.
- Hamon, R.W. 1961, Estimating Potential Evapotranspiration, In *Proceedings of the American Society of Civil Engineers, Journal of the Hydraulic Division* 87(HY3):107–120.
- MDE (Maryland Department of the Environment). 2003. *Total Maximum Daily Loads to Address Low pH in Cherry Creek in the Deep Creek Watershed Garrett County, Maryland*. Maryland Department of the Environment. Baltimore, MD.
- ——. 2006. *Grants and Other Financial Assistance Opportunities at MDE*. http://www.mde.state.md.us/AboutMDE/grants/index.asp. Accessed January 2006.
- PADEP (Pennsylvania Department of Environmental Protection). 2000. *Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania*. Pennsylvania Department of Environmental Protection, Harrisburg, PA.
- 2006. Pennsylvania Code, Title 25, Subpart C, Article II, Chapter 93, Section 03 (General Water Quality Criteria).
 http://www.pacode.com/secure/data/025/chapter93/025_0093.pdf>. Accessed November 2006.
- Penman, H.L. 1948. Natural Evaporation from Open Water, Bare Soil, and Grass. In *Proceedings of the Royal Society of London*, Ser. A, Vol. 193, No. 1032, pp. 120–145.
- PSU (Pennsylvania State University). 2003. *Pennsylvania Land Cover*, 2000. Office for Remote Sensing of Earth Resources, Pennsylvania State University. http://www.pasda.psu.edu/documents.cgi/orser/psu-palulc_2000.xml>. Accessed June 2005.

- Rosgen, D., and H.L. Silvey. 1996. *Applied River Morphology*. Wildland Hydrology, Pagosa Springs, CO.
- Stumm, W., and J.J. Morgan. 1996. Aquatic Chemistry. John Wiley, New York.
- USDOI (U.S. Department of the Interior). 2006. *Annual Evaluation Summary Report for the Regulatory and AML Programs Administered by the State of Maryland for Evaluation Year 2004*. Office of Surface Mining Reclamation and Enforcement. http://www.osmre.gov/oversight/maryland04.pdf. Accessed December 2006.
- USEPA (U.S. Environmental Protection Agency). 1991. *Guidance for Water Quality-Based Decisions: The TMDL Process.* EPA 440/-4-91-001. U.S. Environmental Protection Agency, Office of Water, Washington, DC.
- ——. 1999. From the Mountains to the Sea; The State of Maryland's Freshwater Streams. EPA/903/R-99/023. U.S. Environmental Protection Agency, Washington, DC.
- ———. 2000. *BASINS Technical Note 6: Estimating Hydrology and Hydraulic Parameters for HSPF*. EPA-823-R00-012. U.S. Environmental Protection Agency, Washington, DC.
- ——. 2004. Better Assessment Science Integrating Point and Nonpoint Sources. BASINS. U.S. Environmental Protection Agency, Office of Water, Washington, DC. http://www.epa.gov/ost/basins/b3webdwn.htm. Accessed June 2005.
- ———. 2004. *National Recommended Water Quality Criteria*. U.S. Environmental Protection Agency, Office of Water, Washington, DC.
- ———. 2005a. STORET. (Database). U.S. Environmental Protection Agency, Office of Water, Washington, DC. http://www.epa.gov/storet/>. Accessed June 2005.
- ——. 2005b. *Permit Compliance System (PCS)*. U.S. Environmental Protection Agency, Washington, DC. http://www.epa.gov/enviro/html/pcs/index.html>. Accessed January 2006.
- ——. 2005c. *EPA: Clean Air Interstate Rule*. U.S. Environmental Protection Agency, Washington, DC. http://www.epa.gov/cair/index.html>. Accessed January 2006.
- ——. 2005d. *EPA's Clean Air Market Programs—Acid Rain*. U.S. Environmental Protection Agency, Washington, DC. http://www.epa.gov/airmarkets/acidrain/>. Accessed January 2006.
- ——. 2005e. *Technical Support Document for the Final Clean Air Interstate Rule—Air Quality Modeling*. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina. http://www.epa.gov/cair/pdfs/finaltech02.pdf. Accessed January 2006.

- ———. 2007. Effects of Acid Rain Surface Waters and Aquatic Animals http://www.epa.gov/airmarkets/acidrain/effects/surface_water.html>. Accessed April 12, 2007.
- USGS (U.S. Geological Survey). 2005. *Surface-Water Data for the Nation*. U.S. Department of Interior, U.S. Geological Survey, Reston, Virginia. http://waterdata.usgs.gov/nwis/sw>. Accessed December 2005.
- WVSOS (West Virginia Secretary of State). 2006. Title 47 of the *Code of State Rules* (CSR), Series 2, titled *Legislative Rules Department of Environmental Protection, Requirements Governing Water Quality Standards*.

 http://www.wvsos.com/csr/verify.asp?TitleSeries=47-02>. Accessed November 2006.
- WVU (West Virginia University). 2000. *Land Cover (WV GAP)*. Natural Resource Analysis Center and West Virginia Cooperative Fish and Wildlife Research Unit, West Virginia University. http://www.nrac.wvu.edu/gap/. Accessed June 2005.