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Executive Summary 
The Interstate Commission on the Potomac River Basin (ICPRB) and the Center for 

Watershed Protection (CWP) conducted a pilot study of water quality data collected at Moores 
Run in Baltimore City, Airpark Business Center in Carroll County, and Urbana in Frederick 
County to characterize stormwater discharges and evaluate watershed restoration activities. The 
overarching objectives were to determine if there are trends in water quality over time and, if any 
trends are found, attempt to relate them to watershed restoration efforts or the implementation of 
Best Management Practices (BMPs). Another goal of the pilot study was to provide 
recommendations for future analysis of MS4 monitoring data and improving the monitoring 
requirements in Maryland’s Phase I MS4 permits.  

Trend analysis of water quality parameters, loading rates, and runoff coefficients was 
performed using a variety of statistical methods, including permutation methods, least squares 
and log regression, step trends, Mann-Kendall, Seasonal Kendall, and Seasonal Autoregressive 
Integrated Moving Average (SARIMA) models. Trends were identified in each watershed. 
Overall, the Carroll County watershed showed the most noticeable response to watershed 
restoration efforts, with decreasing metals and nitrogen species noted at the outfall monitoring 
site, where a large wet pond retrofit had taken place. The impact of restoration efforts was less 
noticeable in Frederick County, likely because BMP construction and increasing impervious 
cover occurred simultaneously; however, declining trends in water quality were not observed, so 
BMP implementation may have mitigated effects of development. Very little development or 
BMP implementation occurred in the Baltimore City watershed, but trends in loading rates and 
runoff coefficients suggest that repairs to its sewershed may have impacted both runoff volume 
and water quality, as increased runoff coefficients and loading rates were observed. 

A Principal Components Analysis was conducted to determine if identified trends were 
associated with changes in land cover and BMP implementation. The results suggested that the 
impacts of the retrofit at the Carroll County outfall could be directly linked to reductions in both 
pollutant concentrations and pollutant loads; however, the effects of this restoration practice 
were generally not observed at the instream station of the same watershed. At the Frederick 
County location, it was not possible to assess the benefits of a similar retrofit at the outfall, since 
very little monitoring data were available before the practice was retrofit. Another confounding 
issue at the Frederick County instream and outfall sites was that development and BMP 
implementation occurred simultaneously with land development, making it difficult to determine 
the effect of restoration efforts. 

In addition to evaluating whether changes in the watershed were associated with 
significant changes to water quality or runoff volumes, this study also focused on the quality of 
the data in the MS4 monitoring database. Some data quality issues included gaps in the data 
record, censoring of non-detected values, and inconsistent calculations/measurements of event 
concentrations, event runoff volumes, and precipitation intensities. Associated with these 
evaluations of data quality, the study included a power analysis to determine the data record 
needed to detect trends of various strengths, expressed as percent change in pollutant 
concentration per year. The results varied somewhat by location, but in general, the number of 
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samples currently required by the MDE were inadequate to detect very strong (10% per year) 
changes within one permit cycle. Within two five-year permit cycles, on the other hand, the 
standard of 12 samples per year was adequate to detect strong (10%) changes for most 
parameters. For moderate (5% per year) trends, a greater sampling rate of between 12 and 24 
samples per year would be necessary for most parameters to detect a change within two permit 
cycles. Weak (2% per year) trends could generally not be detected within two cycles, even with 
very frequent sampling, with most parameters requiring greater than 48 samples per year. 

Based on these analyses, the report made a series of recommendations both for analyzing the 
remainder of the data in the MDE database, as well as setting standards for future monitoring 
protocols.  

Recommendations for analyzing the remaining data in the MDE database based on this 
study’s findings include: 

▪ Focus on watersheds where restoration impacts can be detected, e.g., watersheds with one 
or few large BMPs or several smaller BMPs implemented over a relatively short period 
of time, with data from before and after the watershed restoration practices are 
implemented, and sites that have limited development over time. 

▪ Select appropriate statistical techniques. Permutation methods are recommended, 
especially for data that do not have an equal-interval time series. Logistic regression is 
recommended for parameters with outliers, such as bacteria. 

▪ Incorporate changes to the landscape that may not be apparent from the database or 
readily available land cover data, such as buried utilities and changes to vegetation. 

▪ Continue to incorporate seasonal variability and rainfall characteristics into the analysis. 

▪ Conduct field visits, as they may provide information about the watersheds not apparent 
in the data. 

The second set of recommendations focus on adapting the MS4 monitoring protocols and 
include the following: 

▪ Develop a Quality Assurance Project Plan (QAPP) for MS4 monitoring. 

▪ Provide more information regarding flow measurements, including how stormflow and 
runoff are measured, and a measure of discharge for stormflow and baseflow. 

▪ Develop a specific protocol for reporting censored values. 

▪ Maintain and clarify sampling frequency. 

▪ Sample a range of storm depths. 

▪ Use a flow-weighted EMC calculation. 
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List of Abbreviations 
 

BACI Baltimore City (used to refer to the Moores Run watershed) 

BMP Best Management Practice 

BOD Biochemical Oxygen Demand (mg/L) 

CACO Carroll County (used to refer to the Airpark Business Center watershed)  

CCCIC Chesapeake Conservancy Conservation Innovation Center 

CWP Center for Watershed Protection 

E. coli Escherichia coli (MPN/100) 

EMC Event Mean Concentration 

FRCO Frederick County (used to refer to the Urbana watershed) 

GIS Geographic Information Systems 

ICPRB Interstate Commission on the Potomac River Basin 

LOWESS Locally Weighted Scatter Plot Smoothing 

MDE Maryland Department of the Environment 

MS4 Municipal Separate Storm Sewer System 

NO23 Nitrite plus Nitrate (mg/L) 

NPDES National Pollutant Discharge Elimination System 

QAPP Quality Assurance Project Plan 

QA/QC Quality Assurance/Quality Control 

SARIMA Seasonal Autoregressive Integrated Moving Average 

SHA State Highway Administration 

TCU Total Copper (µg/L) 

TKN Total Kjeldahl Nitrogen (mg/L) 

TP Total Phosphorus (mg/L) 

TPB Total Lead (µg/L) 

TPH Total Petroleum Hydrocarbons (mg/L) 

TSQVOL Total Storm Flow Volume (gallons) 

TSS Total Suspended Solids (mg/L) 

TZN Total Zinc (µg/L) 
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Introduction 
The Maryland Department of the Environment (MDE) includes monitoring requirements 

in the Phase I Municipal Separate Storm Sewer System (MS4) permits. In the first round of 
permits, starting in the mid-1990s, the goal of the monitoring requirements was the 
characterization of storm sewer discharges, particularly by dominant land use type. Permittees 
were required to monitor for a variety of water quality constituents at as many as five outfalls in 
their system. Monitoring instream stations associated with the outfalls was also required. Around 
2000, in the second round of permits, each permittee was required to monitor at only one outfall 
and one instream location downstream of the outfall, but in addition to water quality monitoring, 
biological monitoring, habitat assessment, and physical (geomorphic) monitoring were also 
required downstream of the outfall. The goal was still discharge characterization, with the 
variation in site characteristics occurring statewide rather than within each permittee’s 
jurisdiction. Physical monitoring was also required in a second small watershed to assess the 
effectiveness of Maryland’s stormwater control regulations. Starting around 2004, in the third 
round of permits, while the monitoring requirements remained roughly the same, the goal of the 
monitoring was redirected to determining the effects of stormwater BMPs and watershed 
restoration on water quality, habitat, and the health of biological communities. Permittees were 
directed to monitor watersheds where watershed restoration was anticipated, and pre- and post-
implementation conditions could be monitored. Current monitoring permits specify roughly the 
same monitoring requirements for the same reason: determining the effectiveness of watershed 
restoration. 

Monitoring data has been collected under the MS4 program for over twenty years, and MDE 
is interested in using the data to answer questions related to the water quality characterization of 
discharged stormwater and the effectiveness of BMPs and watershed restoration, including: 

▪ Do concentrations of water quality constituents in discharged stormwater vary with the 
dominant land use type in a catchment? 

▪ Does an increase in treated impervious cover (i.e., water quality volume = 1 inch of 
precipitation) lead to improved water quality? 

▪ Have any improvements in water quality conditions been observed in MS4 monitoring 
watersheds, where impervious restoration has been implemented? If so, can these 
improvements in water quality be attributed to watershed restoration efforts? 

▪ Has the overall quality of stormwater discharged by Maryland’s MS4s been improving 
over time? 

In this pilot study, the Interstate Commission on the Potomac River Basin (ICPRB) and 
Center for Watershed Protection (CWP) performed trend analyses using the water quality data 
collected at the outfall and instream stations of three watersheds monitored by the Phase I MS4 
jurisdictions. The study had the following goals: 

1. Determine if there have been any observed water quality trends over time at the selected 
MS4 monitoring locations. 
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2. If there are any observed trends in water quality, determine if these trends can be 
attributed to watershed restoration efforts. 

3. Conduct a power analysis to determine if current monitoring protocols are sufficient to 
detect trends in water quality and relate them to watershed restoration or other changes in 
the watershed. 

4. Make recommendations for 1) performing similar trend analyses at other MS4 
monitoring locations, and 2) modifying the water quality component of Maryland’s MS4 
monitoring program. 

This technical report for MDE integrates the findings of the statistical analyses with 
results from previous work done by ICPRB and CWP to QA/QC Maryland’s MS4 monitoring 
data and generate data for potential explanatory variables (i.e., exploratory analysis and 
preparation of explanatory, confounding, and auxiliary variables). The report then provides 
recommendations for changes in the required monitoring programs for Maryland MS4 
jurisdictions based on the analysis of the water quality data, as well as recommendations for the 
next steps in analyzing existing water quality data from the MS4 program.  

Review of Previous Technical Memorandums 
Explanatory, Confounding, and Auxiliary Variables 

CWP produced a technical memorandum that investigated possible explanatory, 
confounding, and auxiliary variables for the water quality trend analyses. The memorandum 
characterized the land use and BMPs within the monitoring watersheds selected for the pilot 
study, and it also documented BMP and land use sources and methods used by the jurisdictions 
in their data collection efforts (Fraley-McNeal, 2019). This report addresses the need to identify 
variables that can have an impact on explaining or obscuring trends, but which may not be 
apparent in the water quality data over time. The main findings are given in the following 
paragraphs. 

BMP data were obtained from the National Pollutant Discharge Elimination System 
(NPDES) geodatabase for Baltimore City, Carroll County, and Frederick County. It was apparent 
that the monitoring site drainage area boundaries in the NPDES geodatabase did not align with 
adjacent BMP drainage area boundaries. Possible explanations are that the drainage areas in the 
NPDES geodatabase were delineated prior to BMP construction or that development altered 
drainage patterns and delineation was not completed after this occurred. To correct this issue, the 
monitoring site drainage areas were adjusted to align with the BMP drainage area boundaries 
(Appendix A: Figures 1a through 1c). 

There are five different categories of BMPs in the geodatabase: new, redevelopment, 
conversion, restoration, and alternative. See Appendix A’s Table 1 for the current counts of the 
BMPs in each watershed, by category. There were some issues with the data, including that some 
BMPs were reported in incorrect categories, and there were incorrect drainage areas and 
impervious cover included in the BMP attributes. All BMP data within the monitoring drainage 
areas were reviewed to verify accuracy, and revisions were made where necessary. See 
Appendix A: Tables 2 through 6 for more information about the BMPs. 
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Impervious cover in the Baltimore City monitoring watershed was developed based on 
data from the Chesapeake Conservancy Conservation Innovation Center (CCCIC). The total 
amount of impervious surface was calculated as the sum of the impervious road, impervious non-
road, tree canopy over impervious, and 30% of the fractional impervious land use class acres 
(fractional impervious cover is defined as areas that are 30% impervious surfaces and 70% 
mixed open land). For Carroll and Frederick Counties, land cover data used were digitized 
impervious cover layers provided by MDE for most years during the period from 2005 to 2018. 
Land cover summaries are included in Appendix A, Figure 2 and Table 7. The acres of 
impervious cover within the individual BMP drainage areas were compared to impervious cover 
in the monitoring watersheds they were located within to determine the portion of the monitoring 
watersheds treated by BMPs. 

In addition to the variables discussed in CWP’s technical memorandum, other variables 
were explored for this report. These include the effects of storm intensity throughout the 
monitoring time period, seasonality, and precipitation depth. In addition, the analyses 
investigated unit loads and runoff coefficients (i.e., unit per depth of rainfall) for both trend and 
land cover analyses.  

Exploratory Analysis 
ICPRB and CWP produced a technical memorandum documenting exploratory data 

analyses, the goal of which was to perform preliminary testing of the water quality data to form a 
bridge between assembling and reviewing the available data and formulating and testing 
statistical hypotheses (Jepsen and Caraco, 2019). Several statistical and graphical methods were 
used throughout the exploratory analysis, including tests of normality, histograms, matrix plots, 
scatterplots, locally-weighted scatterplot smoothing (LOWESS), nonparametric correlation 
testing, and GIS analyses. More specifically, ICPRB calculated descriptive statistics, explored 
correlations between water quality data and other variables, and qualitatively examined change 
in concentration over time. Graphical methods included LOWESS curves to detect raw trends 
and matrix plots to help identify correlations. CWP undertook preliminary testing of the water 
quality data, including tests of normality, as well as performed time series decomposition and 
explored metrics associated with runoff. CWP also investigated whether parametric methods 
could be used. The following paragraphs provide an overview of the exploratory analysis results. 

To begin, some data quality issues were identified with the event mean concentration 
(EMC) calculations and with data entry (e.g., values being recorded as baseflow and stormflow 
on the same date). Also, the majority of the data had non-normal distributions, meaning that 
nonparametric tests would be emphasized for later statistical analysis.  

LOWESS curves were generated in order to detect trends in the untransformed datasets 
with nonparametric regression. Based on visual inspection of these plots, as well as time series 
decompositions, few water quality parameters appeared to be strongly increasing or decreasing 
during the monitoring time period. However, there did appear to be some overall patterns in 
concentration over time, seasonal effects on concentrations of most pollutants, and correlations 
between instream and outfall concentrations.  
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Correlations between the water quality parameters and between storm event parameters 
(i.e., duration, intensity, total storm flow volume, depth) were also evaluated. Many parameters 
were found to be correlated, which helped to bolster confidence in the quality of the data because 
expected relationships were observed in many circumstances. For example, metals tend to adsorb 
onto the organic fraction of sediment particles (Leisenring et al., 2011), so one would expect 
metals and sediments to be correlated during stormflow conditions, when the majority of 
sediments are transported through a stream system. This was reflected in the water quality 
correlations, as total suspended solids were correlated with copper, lead and zinc during 
stormflow at all sites except for Frederick County’s outfall.  

Finally, the amount of runoff resulting from the monitored storm events was evaluated. 
The runoff coefficient appeared to have a stronger trend over time than any pollutant 
concentrations.  

Methods 
Site Descriptions 

Three watersheds with outfall and instream monitoring performed in compliance with Phase I 
MS4 permits were selected for this pilot study. Watersheds with the following characteristics 
were chosen: 

 

▪ Have a long (ten years or more) monitoring record at fixed stations with regular 
frequency and minimum data gaps. 

▪ Have relatively complete data sets with consistent monitoring of water quality 
parameters. 

▪ Be relatively free of data quality issues (e.g., data entry errors, missing data). 
▪ Have a documented change in watershed restoration or BMP implementation over the 

monitoring period. 
▪ Show preliminary evidence of trends, as reported in a previous ICPRB report (Nagel and 

Mandel 2018), consistent with the changes in watershed restoration. 
o This 2018 report (Analysis of Monitoring Data Collected under Maryland’s 

Municipal Separate Storm Sewer System (MS4) Permits: Database Design and 
Preliminary Analysis of Water Chemistry) describes how the monitoring data 
were integrated into a database and associated challenges with this process. 
Preliminary trend analysis using simple linear regression was also done. 

 

Based on these requirements, the following watersheds were selected: Moores Run in 
Baltimore City; Airpark Business Center in Carroll County; and Urbana in Frederick County. In 
each case, the outfall station is located upstream of the instream station, so the instream station 
reflects inputs from a larger area.  

Moores Run, Baltimore City (BACI) 
 Moores Run has water quality monitoring data available from 1999 to 2016, except for a 
gap in 2013. This watershed is highly urbanized with a significant amount of impervious cover. 
The outfall station is located at Hamilton Avenue and drains 113.2 acres. The instream station is 
located at Radecke Avenue and drains 2,247.6 acres (Figure 1). Even though the catchment area 
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is highly urbanized, the reach between the outfall and instream station has a significant wooded 
buffer. There has been minimal implementation of structural BMPs in this watershed. 

 A site visit was conducted at the Moores Run watershed on August 20, 2019, during 
which MDE, ICPRB, and CWP staff were shown the monitoring locations and sampling 
equipment by Baltimore City staff Prakash Mistry and Nick Mitrus. See Figures 2a through 2f 
for pictures taken from the site visit. 

Airpark Business Center, Carroll County (CACO) 
 Chemical monitoring data are available for the Airpark Business Center watershed from 
2000 to 2016. The outfall, WPU01, drains 207.3 acres and is located in an industrial park. The 
instream site, WPU02, drains 555.2 acres, and the watershed area between WPU01 and WPU02 
is largely agricultural (Figure 3). BMPs have been implemented in the drainage areas of both the 
instream and outfall stations, notably a large detention basin retrofit at the outfall.  

 On July 22, 2019, MDE, ICPRB, and CWP staff visited the Airpark Business Center 
monitoring stations. Carroll County staff Byron Madigan gave a tour of the monitoring locations 
and described the sampling procedure. See Figures 4a through 4d for pictures taken from the site 
visit. 

Urbana, Frederick County (FRCO) 
Water chemistry data from 1999 to 2016 were used in this pilot study from one of 

Urbana’s stormwater ponds, which was built in 2004. The pond’s outfall station, Pond-R, is 
located in a high-density residential area and drains 30.1 acres. The instream site, located on 
Peter Pan Run within the Bush Creek watershed, drains 1,584.6 acres (Figure 5). The watershed 
area between the outfall and instream stations is primarily agricultural. Few BMPs are located in 
the outfall watershed, but their drainage areas are extensive. The instream drainage area contains 
significantly more BMPs. 

On August 1, 2019, MDE, ICPRB, and CWP staff were given a tour of the FRCO 
monitoring sites and sampling equipment by Don Dorsey of Frederick County and Nathan 
Drescher of KCI Technologies, Inc. KCI presently monitors the sites, but another company 
performed monitoring during the pilot study time period. See Figures 6a through 6d for pictures 
taken from the site visit.  

Data Sources and Preparation 
MS4 Database - Construction and Variables 

Working with MDE staff, ICPRB designed a relational database to store the monitoring 
data submitted by Phase I MS4 jurisdictions and State Highway Administration (SHA) under the 
requirements of their permits (Nagel 2019). The database is designed to hold water chemistry, 
habitat, biological, and physical data in separate tables, linked to other tables identifying 
sampling activities and monitoring locations. ICPRB staff populated the database with the 
available water chemistry data submitted by the permittees. Almost 97,500 records of chemical 
and flow parameters were included in the database, taken from nearly 5,000 sampling events at 
69 monitoring locations. The most recent year for which data are used in this pilot study is 2016, 
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but note that data have been collected since then and are still being collected. Future work could 
explore analyses extending past 2016. 

The database contains a number of water quality parameters, and nine of these parameters 
were used in the pilot study to investigate water quality response to BMP implementation: 
Biochemical Oxygen Demand (BOD, mg/L); Total Suspended Solids (TSS, mg/L); Escherichia 
coli (E. coli, MPN/100); Nitrite plus Nitrate (NO23, mg/L); Total Kjeldahl Nitrogen (TKN, 
mg/L); Total Phosphorus (TP, mg/L); Total Copper (TCU, µg/L); Total Zinc (TZN, µg/L), and 
Total Lead (TPB, µg/L). 

Data Censoring 
Censored data points are known only to be "less than" or "greater than" a limit of 

detection, meaning that their true value is unquantifiable (Helsel and Hirsch, 2002). In this study, 
censored values were measurements below the limit of detection of a given parameter. Censoring 
was most prevalent with BOD and metals (TZN, TPB, TCU), so before statistical analyses could 
be performed, various issues concerning the detection limits needed to be addressed. First, in the 
data provided by the MS4 jurisdictions, values below the detection limit had been assigned the 
value of the detection limit, rather than being left as the instrument-measured value. Second, 
detection limits of zero and NA were present in the database. Third, there were often several 
detection limits listed for a specific parameter, some of which appeared to be data entry errors, 
and others reflected either a change in the laboratory methods over time, different analysts 
measuring the samples, or variations in sample quality (Appendix B).  

Most statistical methods used require a single detection limit in order to be performed. To 
correct the issue of multiple detection limits, a dataset with updated values (called “result values” 
in the dataset) was created and used in the analyses. Uncensored values (i.e., values greater than 
the detection limit) were unchanged. Also unchanged were the value of data points whose 
detection limits were either zero or NA, as these were deemed to be uncensored. Values that 
were less than the indicated detection limit were interpreted to be uncensored values matched to 
an incorrect detection limit, so these were also classified as uncensored. For censored values 
(i.e., values equal to the detection limit), the detection limits had to be used as the “result value,” 
but were standardized to the same detection limit among each parameter and flow type 
combination, then set to half the detection limit.  

Substituting in a value (e.g., zero, the detection limit) for nondetects is not the preferred 
method for handling censoring (Helsel and Hirsch 2002); however, as stated above, the data 
received by MDE from the jurisdictions already had these substitutions made and also included 
multiple detection limits per parameter. Furthermore, assumptions had to be made about which 
data points were truly censored. Selecting one of the already substituted detection limits for 
parameters for each jurisdiction/flow type combination and then halving it was thought to be a 
more conservative representation of the detection limit that would also minimize the effects of 
censoring.  
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BMP Data and GIS Layers 
 The MDE provided ICPRB and CWP with the NPDES BMP geodatabase that included 
information about locations and types of BMPs in MS4 jurisdictions, as well as built year and 
drainage areas. As discussed above, it was found that the monitoring drainage area boundaries of 
individual BMPs in the geodatabase did not perfectly overlay with one another or the watershed 
drainage areas. In most cases, the discrepancies were due to the delineation of the catchment or 
watershed areas, and these boundaries were corrected to align with BMP drainage area 
delineations. When additional information was needed about a specific BMP or drainage area, 
CWP staff contacted the appropriate jurisdiction. 

In Baltimore City, impervious cover could be characterized using Chesapeake 
Conservancy Conservation Innovation Center layers because there were no major changes in 
land cover over the monitoring period. In both Frederick County and Carroll County, at least a 
portion of the watershed experienced land development during the monitoring period. 
Consequently, MDE staff digitized aerial imagery to create a time series that reflected changes in 
impervious cover and tree canopy, and these data were combined with BMP treatment data to 
characterize land cover change and BMP implementation as a time series. 

Statistical Approaches 
Several procedures and statistical tests were performed to answer MDE’s management 

questions. Specifically, outfall and instream concentrations were compared to determine if they 
behaved differently, which would indicate additional factors influencing stream conditions below 
the stormwater outfall. Trend analysis of the outfall and instream concentrations was performed 
after data had been appropriately prepared, as described above. Methods included traditional 
trend analysis (i.e., Mann-Kendall and Seasonal Kendall tests), step trends, permutation methods, 
and other nonparametric and log-transformed methods. Runoff coefficients and loading rates 
were calculated and their trends analyzed using permutation analysis, log-link least squares 
regression, and logistic regression. In addition to analyzing trends, the analyses include the use 
of Principal Components Analysis to develop a relationship between a restoration index, 
reflecting BMP implementation and land cover, and observed values including pollutant 
concentrations, runoff coefficients, and pollutant loads (pounds per inch of rainfall). In addition, 
a power analysis was conducted to determine the number of samples that would need to be 
collected annually to detect change in one or two permit cycles. Finally, recommendations are 
given for changes in the MS4 monitoring program and the next steps in analysis of the existing 
water quality data. Results of this statistical analysis and recommendations for future analysis 
were presented to MDE in person at MDE’s offices on November 15, 2019 and subsequently on 
November 27, 2019 in writing. 

Pairwise Comparisons 
The goal of the first analysis was to determine whether concentrations of the water 

quality parameters were significantly different between the instream and outfall sites in each 
watershed. To accomplish this, data needed to be paired such that individual dates had a 
measurement from both the instream and outfall ~0.45sampling locations. Consequently, dates 
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that had data from only the instream or outfall site were excluded from the analysis. Fortunately, 
pairing the data resulted in only a small number of observations being excluded.  

Three methods were used to compare the paired data points. The first was resampling 
methods (i.e., permutation methods) with the “paired.perm.test” function in the “broman” R 
package. The second was the Wilcoxon signed-rank test, using the paired option of the base R 
“wilcox.test” function, and the third was a paired t-test conducted with the base R “t.test” 
function. For a paired t-test, the data do not have to be normally distributed, as long as the 
differences between the pairs are normally or nearly normally distributed, as was the case for this 
dataset. For all methods, a p-value of less than or equal to 0.05 was used to identify significant 
differences. 

Trends 
Trends in Concentrations 

To address the first objective of the pilot study, which was to determine if water quality 
trends occurred over time, trend analysis was performed. A variety of methods were used: 
permutation, traditional methods (i.e., Mann-Kendall, Seasonal Kendall), least-squares 
regression, logistic models, Seasonal Autoregressive Moving Average (SARIMA) time series, 
and step trends. A significance level of 5% was used to identify significant p-values for each 
method.  

Permutation Methods 
Permutation methods offer an alternative to classical statistical methods, which rely on an 

underlying distribution to estimate the confidence or range of a particular value or slope (Elliffe 
and Elliffe 2019). For example, if linear regression is used to model a relationship between 
variables, the p-value of the slope is estimated by assuming an underlying normal distribution. In 
permutation methods, the distribution is estimated by randomly resampling the original data to 
simulate this distribution.  

For this study, the R package “perm” (Fay and Shaw 2010) was used to detect trends 
using the “permTREND” function. This package uses either exact methods, through Monte Carlo 
simulation, or asymptotic methods, based on the quality of the data. In order to account for the 
variability introduced by precipitation depths, stormflow concentrations were first fit to a linear 
least squares model of precipitation versus concentration. The residuals of this model were then 
correlated with time to represent a precipitation-adjusted change over time. 

Mann-Kendall and Seasonal Kendall Methods 
The traditional trend methods used were the nonparametric Mann-Kendall and Seasonal 

Kendall tests. With guidance from Helsel and Hirsch (2002) and Buchanan and Mandel (2015), 
data were prepared for trend analysis by first classifying their temporal coverage and degree of 
censoring, as these factors determine which tests to use.  

To assess temporal coverage of the data, the number of samples in every month was 
counted and arranged in tables for each site’s station and flow type combination. Sampling 
frequency did not allow for weekly, monthly, or bimonthly time series, but trimonthly seasonal 
time series were possible. Four seasons were defined for the purposes of this analysis: winter 
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(December, January, February), spring (March, April, May), summer (June, July, August), and 
autumn (September, October, November). The percentage of months with measured values was 
calculated for each season, as well as for the entire monitoring period (called “annual” hereafter) 
(Tables 1a though 1c). If the annual coverage was greater than or equal to 75%, it was 
considered acceptable for trend analysis, but if its coverage was less than 75%, seasonal 
coverage was evaluated. Only seasons with greater than or equal to 75% coverage were 
analyzed. When annual trend analysis was possible, trend analysis was not conducted on each 
season independently, as data from each season would be included in the annual trend.  

Once the temporal coverage was analyzed, the detection limits for the censored values 
needed to be standardized. To accomplish this, the data were classified based on the percentage 
of nondetects present in each parameter, broken down by site and flow type. Data were assigned 
as minimally censored if there was less than 5% censoring, moderately censored if there was 
between 5% and 50% censoring, and heavily censored if censoring was greater than 50%. A 
single detection limit was selected for moderately censored parameters but not the other 
censoring categories because 1) if less than 5% of the data are censored, trend tests will most 
likely not be affected, and the original detection limits were kept, and 2) heavily censored data 
are not suitable for traditional trend analysis, so were not evaluated. For moderately-censored 
parameters, the chosen detection limit was usually the most common detection limit among the 
censored values, as well as the lowest value in that dataset and was set to half of the detection 
limit in the updated dataset.  

In order to produce a set of uniform time series for trend analysis, the data were culled to 
establish an even distribution over time for each parameter. Culled datasets were assembled by 
selecting the value closest to the midpoint of each season to represent that season-year. For 
seasonal time series, only the midpoints of the given season were used. The percent of data 
below the detection limit was then recalculated for these datasets (Tables 2a through 2c). In the 
case of moderately-censored datasets, an extra step was taken to reduce the bias of censored 
values. These data were seasonally-adjusted (also referred to as median-adjusted) by subtracting 
the median value for each season from that season’s observations. 

Flow adjustment is used to remove flow as a source of variability in concentration and to 
facilitate trend detection. Since flow measurements are not available in the database, a modified 
flow adjustment procedure was used, in which intensity of rainfall (inches/hour) was substituted 
for flow (cfs). This adjustment was only performed on annual, culled datasets with minimal 
censoring. Additionally, as intensity data are only associated with storm events, this procedure 
could not be performed on baseflow data. Data that have been treated in this way will be referred 
to as MFC (modified flow-corrected). 

Based on the degree of censoring and data coverage, either Mann-Kendall or Seasonal 
Kendall tests were used. As shown in Table 3, time series with minimal censoring were analyzed 
using the Seasonal Kendall test for annual time series or with the Mann-Kendall test for seasonal 
time series. Both annual and seasonal time series with moderate censoring were analyzed with 
Mann-Kendall tests. Datasets containing more than 50% nondetects are too heavily censored to 
produce meaningful trend results. Instead, plots of the detection limits and measured values were 
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generated (Appendix C: Figures 1-22). See Tables 4a through 4c for the specific tests conducted 
for each parameter.  

To perform the modified flow adjustment procedure, residuals were calculated from 
LOWESS curves of log-transformed concentration against log-transformed intensity. Seasonal 
Kendall tests were then applied to these residuals. Please see Tables 4a through 4c for which 
parameters were modified flow-corrected.  

Once the data were prepared, trend analysis was performed using R 3.5.1 (R Core Team, 
2013). Before executing a trend test, the degree of autocorrelation, or internal, lagged correlation, 
was evaluated by generating autocorrelation function (ACF) and partial autocorrelation functions 
(PACF) plots. Additionally, “modifiedmk” (Patakamuri and O’Brien, 2019), an R package that 
performs Mann-Kendall tests corrected for autocorrelation, was utilized. For Seasonal Kendall 
tests, the “Kendall” package (McLeod, 2011) was used. As well as providing p-values, Kendall’s 
Tau is also reported. Its sign describes a trend as positive (increasing) or negative (decreasing).  

Log-Link Least Squares Regression 
This method uses simple least squares regression to determine if a trend is present over 

time by performing a regression with concentration versus time (in years), using a “log-link” 
function. The “log-link” function preserves the mean of the original sample, while using a log-
transformation to reduce the influence of outliers. The log-link function was used because it was 
determined in the exploratory analysis phase that the data were not normal. The model was 
generated using the “glm” function, which is available in base R. The value of the coefficients 
represents an exponential function of decay, or increase over time, in the following form: 

  𝐶 = 𝐶𝑒௧ା 

  Where: 

   C = Concentration 
   C0= Initial Concentration 
   a = Coefficient of exponential change 
   t = Time (days) 
   b= Coefficient associated with Precipitation (only for stormflow) 
   P = Precipitation Depth (only for stormflow) 
 
 Precipitation is included in the equation to account for the variability introduced by this 
parameter during storm events, but the results presented in this document do not summarize the 
precipitation depth in detail. 

Logistic Regression 
Logistic regression estimates to what degree a variable influences the likelihood of a 

binomial variable being in a specified category. The regression estimates the logit (or the log of 
odds) based on predictive variables. In this case, concentration values were classified as “high” 
or “low,” with high values being above the median over the entire monitoring period. The results 
of the logistic regression represent a change in this value in response to independent variables. 
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For this study, the logit values were regressed against time for baseflow values and against time 
and precipitation for stormflow values.  

 SARIMA Models 
SARIMA models are used in time series data to account for correlations between data 

points as well as seasonal effects. One component of these models is a “drift” constant, which 
identifies the average movement in each time period. These methods are widely used for time 
series data because they can adjust for errors that can be introduced when each value is related in 
time to previous values. Accounting for these relationships can help to identify significant 
influences or trends that might not otherwise be apparent.  

Data were aggregated to a monthly time step. While there were relatively few months 
with multiple observations in the same year, the data were not uniformly spaced, and a 
potentially greater issue was that resulting datasets had multiple periods without any 
observations. This gap in observations makes it difficult to determine the relationship between 
each successive value (i.e., the autocorrelation), which is a critical component SARIMA models. 
The “auto.arima” code, which is a part of the “forecast v8.9” package, was used to develop 
model issues (Hyndman and Kanjdakar, 2008). This package automates the process of selecting 
a model, but it is important to note that the model selection needs to be confirmed. Without 
changing the settings, the models produced by default had issues with autocorrelation. Next, the 
“sarima” function, which is a part of the “asta v 1.9” package, was used to check the models and 
to evaluate if the results were statistically significant. Models were evaluated with some changes 
to the standard settings, which included searching all models rather than using a stepwise 
selection and using maximum likelihood estimation rather than an approximation. Both of these 
changes improve the model but result in very long computation times. Using these packages 
together, the projected drift, or change per month, was estimated for models where a seasonal 
drift was determined to be significant, but this was not the case for many of the models.  

Step Trends 
Step trend analysis was used to determine if there were significant differences in the 

water quality parameter concentrations between three different time periods: a drought period 
from 1999-2002, in which the Potomac region experienced record dry conditions, as evidenced 
by extremely low flows in the Potomac River mainstem; 2003-2009, characterized mostly by 
moderate conditions; and 2010-2016, a moderate to wet period. The classification systems 
developed by Olson (2005) were used in characterizing the three time periods, referred to as 
Period I, Period II, and Period III, respectively. Analysis was performed on the culled datasets of 
all data except those that were heavily censored.  

 To determine if there was a significant difference between any of the time periods, the 
nonparametric Kruskal-Wallis test was performed. In cases where the Kruskal-Wallis test had a 
significant p-value, individual Mann-Whitney tests were used to determine which group or 
groups were different from one another. Base R functions were used. 
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Trends in Runoff Coefficients 
The runoff coefficient represents the amount of surface runoff generated by a given 

rainfall depth. For this study, the coefficient is represented as a volume of runoff (cf) per inch of 
rainfall depth. This parameter is important for three primary reasons. First, the runoff coefficient 
is highly dependent on land cover in the watershed, particularly the amount of impervious cover 
(Schueler 1999; Pitt 1999). Therefore, the coefficient is a robust measurement of the impacts of 
land development. Second, modern stormwater BMPs are designed to both “treat” runoff and to 
reduce the volume of runoff (Battiata et al. 2010). Therefore, successful BMP implementation in 
a watershed should be correlated with reduced runoff volumes. Third, the volume of runoff helps 
to explain water quality conditions that may not be represented by pollutant concentrations alone. 
For example, channel erosion is influenced by increased stream flows associated with 
urbanization. This energy cannot be understood or captured by concentrations alone. In addition, 
the total pollutant load is influenced by both the concentration and flow of runoff. 

The MDE database reports the volume of runoff (Total Storm Flow Volume; TSQVOL) 
in gallons, and rainfall depth (DEPTH) in inches. For this report, the runoff coefficient was 
calculated as follows: 

Rv = (TSQVOL) / (DEPTH × 7.48) 

Where: 
Rv = Runoff coefficient (cf / inch) 
TSQVOL = Runoff volume (gal) 
DEPTH = Rainfall Depth (inches) 
7.48 = Conversion factor (gal / cf) 

 
Two statistical methods were used to evaluate trends in the runoff coefficient: a 

permutation method using the “permTREND” package and a log-transformed least squares 
regression, as previously described. 

Trends in Unit Loading Rates 
Loads expressed as expected loading rate (e.g., pounds) per inch of runoff are useful for 

understanding how the total pollutant load delivered to a waterbody changes over time. Trends in 
unit loading are a combination of the changes in concentrations and changes in runoff volume. 
For the pilot study, loads were calculated for nutrients (NO23, TP, and TKN) and TSS. The 
pollutant load, in pounds, was calculated for each observation as a product of runoff volume 
(gallons) and pollutant concentration (mg/L) and a factor (8.33 × 10-6).  

Land Cover Effects 
This study hypothesizes that changes in runoff volumes, pollutant loads, and 

concentrations are the direct result of changes in land cover and BMP implementation over time 
in a watershed. These land cover changes were quantified for each drainage area (Fraley-McNeal 
2019) and are summarized in this section for watersheds where land cover changes were 
observed. These include both the outfall and instream stations in CACO and the instream station 
in FRCO. No appreciable changes in land cover or BMP implementation occurred in BACI; at 
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the FRCO outfall, a single BMP was implemented in 2004, but the earliest available data at the 
site is 2003. As a result, these stations are not included in all analyses. The variables investigated 
included stormflow concentrations, baseflow concentrations, the runoff coefficient, and unit area 
pollutant loading rates (per inch of runoff). The analyses focused on four parameters: TSS, NO23, 
TKN and TP.  

Predictor Variables 
For each analysis, the following variables were included: rainfall depth, season 

(represented by annual quarter), impervious cover acreage, and impervious cover capture by 
stormwater BMPs (acres(. The more detailed land cover descriptions characterized in Fraley-
McNeal (2019) were condensed to develop straightforward predictors for each watershed of 
concern. These predictors were slightly different in FRCO and CACO due to differences in the 
types and extent of BMP implementation at each station. In addition, digitized land cover was 
only available from 2005 onward, so for years prior, impervious cover and BMPs were estimated 
using the sign methods outlined in Fraley-McNeal (2019). 

Land Cover and BMPs 
In CACO, the entire drainage area in the outfall catchment was initially captured by an 

older wet pond, but the area was classified as “untreated” since the pond was not designed to 
modern standards. In 2008, the wet pond was converted to a modern wet pond, and, at this point, 
impervious cover in the drainage was converted to the “treated” category. In the area within the 
drainage area of the instream station, but outside of the outfall drainage, land draining to a 
shallow wetland were also put into the “treated” category. Finally, small BMPs within the 
drainage area of either the pond or shallow wetland are considered “nested.” The “treated” 
category includes the drainage area of all BMPs, including the nested BMPs.  

In FRCO, the outfall drainage area had no change in land cover or BMP coverage for the 
period in which land cover data had been digitized; therefore, the analysis focused on the 
instream station. In contrast to the CACO location, a large portion of the watershed was 
untreated, and the BMPs that were in the constructed watershed encompassed a much broader 
range of types and designs. Finally, no nested BMPs were present in the watershed. 
Consequently, the factors used in the analysis were somewhat different, including untreated 
impervious cover and impervious cover treated by dry ponds, wet or micropool ponds, wetlands, 
filters, or other practices. 

Other Predictors 
In addition to the land cover parameters, the effects of rainfall and seasonal effects, as 

estimated by the annual quarter, were included as predictor variables. These parameters are 
included in the model to account for their influence but are not reported as variables of concern. 

Methodology 
Since several components represent land development and treatment in this method, we 

developed a “Treatment Index’” for each drainage area using Principal Components Analysis. 
This method reduces the number of variables in the model and eliminates the potential for 
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correlations between parameters. The specific elements of the regression were slightly different 
for Carroll County and Frederick County. 

The components were developed using the “princomp” function, with the following results: 

𝐼ைି =  −0.395 × 𝑈𝑛𝑡𝑟𝑒𝑎𝑡 + 0.650 × 𝑇𝑟𝑒𝑎𝑡 + 0.650 × 𝑁𝑒𝑠𝑡 

𝐼ைିூ =  −0.534 × 𝑈𝑛𝑡𝑟𝑒𝑎𝑡 + 0.815 × 𝑇𝑟𝑒𝑎𝑡 + 0.223 × 𝑁𝑒𝑠𝑡 

𝐼ிோைିூ =  −0.594 × 𝑈𝑛𝑡𝑟𝑒𝑎𝑡 − 0.533 × 𝐷𝑟𝑦 − 0.603 × 𝑊𝑒𝑡 

Where: 

I = Treatment Index 

Untreat = Area of Impervious Cover Not Treated by BMPs (acres) 

Treat = Area of Impervious Cover Treated by One or More BMPs (acres) 

Nest = Area treated by a smaller BMP “Nested” within the drainage area of a larger BMP 
(acres) 

Dry = Area treated by Dry Detention Ponds (acres) 

Wet = Area treated by Wet Detention Ponds (acres) 

In general, a higher treatment index number reflects a greater degree of restoration, but 
the index is not as clear in Frederick County, where land development is confounded by BMP 
implementation. The component vectors accounted for almost all of the variability in the land 
cover data over time, with the following results (see Tables 5a-5c for eigenvectors): 

▪ CACO outfall: 99.3% of the variability (eigenvalue of 3,845) 
▪ CACO instream: 98.7% of the variability (eigenvalue of 5,242) 
▪ FRCO instream: 94.8% of the variability (eigenvalue of 2,346)  

 The effects of change in each drainage area were then evaluated by developing a 
regression equation that includes the index for each drainage area, along with the quarter (as an 
indication of season) and precipitation (for pollutant concentrations) to predict pollutant 
concentrations, runoff coefficients, and pollutant loads (per inch of rainfall). The permutation 
regression was conducted using the “lmp” function in the “lmperm” R package. 

Power Analysis 
A power analysis was used to determine how many samples per year would be needed to 

detect a change within one or two five-year permit cycles. The “power.trend” and 
“generate.trend” functions from the “emom” package in R were used for this analysis. The 
“power.trend” function determines the power, which is the percent chance of detecting a trend at 
a given significance level, by comparing mean values and associated distributions for each year 
of data and by completing simulations given the standard deviation of the data, as well as the 
underlying average annual concentrations, using the following assumptions: 
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1. The data are lognormally distributed, and trends occur exponentially (i.e., at a given % 
reduction per year). 

2. The annual variability is characterized by the standard deviation of the residuals from the 
log-link models completed as a part of the trend analysis.  

3. Trends are detected at significance of 5%. 
4. The desired power is 0.80. 

The trends tested include three scenarios, each representing a reduction of a given percentage 
each year, including 2%, 5% and 10% concentration reductions per year. The average value per 
year was generated using the “generate.trend” function. In this case, annual decline in the log-
transformed values was represented. For each generated trend, the power was tested using the 
“power.trend” function.  

The power analysis assumes that a complete data record is available, with no significant 
gaps. By contrast, the data analyzed as a part of this study had some time gaps, both within 
seasons and over longer periods of time, for some parameters. 

Results 
Pairwise Comparisons 

The results from the three methods (permutation, Wilcoxon signed-rank, and paired t-
test) that were used to compare measures of central tendency between outfall and instream 
stations for both stormflow and baseflow conditions were almost identical, with only few 
differences in which station (i.e., outfall or instream) had the higher values and which differences 
were significant. These small differences are likely explained by the Wilcoxon signed-rank test 
comparing medians, whereas the permutation and paired t-test methods compare means.  

Overall, the tests suggest that there are significant differences between outfall and 
instream stations for many parameters in both storm- and baseflow conditions. Although there 
were some differences between stations, some patterns emerge. For example, every station has 
significantly higher TSS concentrations at the instream station during stormflow compared to 
baseflow, and instream baseflow NO23 concentrations were greater in instream baseflow 
compared to stormflow (Tables 6a-6c and 7a-7c). 

Trends 
Trends in Concentrations 
Each analysis method and its results are described in the subsequent sections, and the combined 
results of all methods are presented in Tables 8a-8c and Appendix D. 

Permutation Methods 
Overall, less change was observed at the BACI location than the other two watersheds in 

this study. TP, TKN, TCU, and TPB displayed no trends at the outfall or instream stations, but E. 
coli showed a strong and statistically significant negative trend over time in both the instream 
and outfall stations. The instream station also showed a weak negative correlation for TZN and a 
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moderate negative correlation for NO23. The outfall station also experienced moderate positive 
trends for BOD and TSS (Table 9a). 

Trends at the CACO location were quite different between the instream and outfall 
stations. The only significant trend at the instream station was a moderate negative trend in TCU. 
At the outfall, on the other hand, strong negative trends were seen for all metals, as well as 
moderate significant negative trends for TP and TSS. A moderate positive trend was also seen 
for BOD at the outfall (Table 9a). 

FRCO also experienced different results between the instream and outfall stations, with 
moderate negative trends for NO23 and TCU, a weak negative trend for TPB, and a moderate 
positive trend for TKN at the instream station. At the outfall station, moderate negative trends 
were observed for TSS, NO23, TP, and TCU, as well as a weak negative trend for TKN (Table 
9a).  

Only a few statistically significant trends were found in baseflow concentrations, 
including TKN at the BACI outfall station, TP at the CACO outfall station, NO23 at all CACO 
and FRCO stations, and TSS at the FRCO instream station. Baseflow results were not calculated 
for BOD or the metals (TCU, TPB, TZN). For these parameters, numerous non-detectable events 
were monitored, and the detection methods changed over time. As a result, any trends detected 
were impossible to separate from the methods used (Table 9b). 

Mann-Kendall and Seasonal Kendall Methods  
In BACI’s watershed, instream NO23, modified flow-corrected (MFC) NO23, TZN, and 

TPB significantly decreased in stormflow. Instream baseflow TCU and TZN significantly 
decreased. At the outfall during storm events, spring TSS increased, while summer TP, TCU, 
and TZN decreased. Outfall baseflow experienced a significant negative decrease in TCU and 
TZN (Table 10a). 

Carroll County’s instream site did not experience a significant reduction of any water 
quality parameter in autumn stormflow. Instream baseflow had a significant decrease in spring 
NO23 and summer TP. At the outfall, there was a significant increase in autumn stormflow BOD, 
with a significant reduction in autumn stormflow NO23 and TCU. Outfall baseflow experienced 
an increase in summer TSS, but a decrease in spring TP and TCU. Overall, trends were much 
stronger at the outfall site (Table 10b).  

Frederick County’s instream site had significant reductions in stormflow NO23, MFC 
NO23, and TCU, but a significant increase in TKN. For baseflow at the instream site, only TSS 
was significantly reduced and no parameter significantly increased. At the outfall, stormflow TP, 
MFC TP, TCU, and MFC TCU significantly decreased (Table 10c).  

Log-Link Least Squares Regression 
For the purposes of this analysis, the results were expressed as the log of the coefficient 

of change, so the data presented in Tables 11a through 11b are represented as a fraction over a 
year, meaning that values greater than 1.0 represent an increase (e.g., 1.2 is 20%/year). 
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Overall, the BACI watershed experienced less change than others in this study, but a 
statistically significant negative trend in stormflow at the instream station for E. coli, NO23, TZN 
and TPB, and at the outfall for E. coli was observed. There was also a significant increase in 
TKN and TSS at the outfall (Table 11a).  

The trends at the CACO location were quite different between the instream and outfall 
stations. The only significant result at the instream site was a negative trend for TCU during 
stormflow. At the outfall, on the other hand, negative trends were observed during stormflow for 
all metals, TP, and TSS, with a weak positive trend for BOD (Table 11a). 

At FRCO, negative trends were observed for stormflow NO23 and TCU at both stations, 
as well as a negative trend for TPB at the instream station. Negative trends in TKN, TP, TSS and 
BOD were observed during stormflow at the outfall station. Finally, a positive trend in TKN was 
observed at the instream station (Table 11a). 

Only a few statistically significant trends were found in baseflow concentrations, 
including NO23 at the CACO instream station, NO23 and TP at the CACO outfall station, and 
NO23 and TSS at the FRCO instream station. Baseflow results were not calculated for BOD or 
the metals. For these parameters, numerous non-detectable events were monitored, and the 
detection methods changed over time. As a result, any trends detected were impossible to 
separate from the methods used (Table 11b). 

Logistic Regression 
The logistic regression results transform the logit value to reflect an odds ratio. For 

example, a value of 1.2 suggests that over a one-year period the odds of a high concentration are 
20% higher. 

Overall, the BACI location experienced less change than others in this study, showing a 
statistically significant negative trend over time at the instream station for stormflow E. coli, 
NO23, and TPB, and at the outfall for E. coli. There was also an observed increase in BOD at 
both stations and for TSS at the outfall (Table 12a).  

The trends at the CACO location were quite different between the instream and outfall 
stations. The only significant trends at the instream station were a negative trend for stormflow 
TCU. At the outfall, on the other hand, negative trends were observed for all metals and TP 
(Table 12a). 

At the FRCO watershed, negative trends were observed for stormflow NO23 and TCU at 
both stations, as well as a negative trend for TPB at the outfall station. A negative trend in TP 
and TPB was also observed at the outfall station. Finally, a positive trend for TKN was observed 
at the instream station (Table 12a). 

Only a few statistically significant trends were observed in baseflow concentrations, 
including TSS at the BACI outfall, NO23 and TP at both CACO stations, TSS and TP at the 
FRCO instream station, and NO23 at the FRCO outfall station. Baseflow results were not 
calculated for BOD or the metals (TCU, TPB, TZN). For these parameters, numerous non-
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detectable events were monitored, and the detection methods changed over time. As a result, any 
trends detected were impossible to separate from the methods used (Table 12b). 

SARIMA 
The results of this method did not find any significant trends.  

Step Trends 
In the BACI watershed, the only parameter at the instream site to show significant 

differences between time periods during stormflow was NO23, specifically between Periods I and 
II, I and III. At the instream site during baseflow, there were differences among the periods of 
TKN and TCU. All time periods of TKN differed from one another, and Periods I and III, II and 
III differed for TCU. At BACI’s outfall during baseflow, Periods I and II, II and III were 
significantly different from one another for TKN. Regarding TCU measurements, Period I and 
III, II and III were significantly different, and for TZN, I and III, II and III differed (Table 13a). 

In CACO, comparisons using Period I were not possible due to lack of data. Differences 
between Periods II and III only occurred at the outfall. Specifically, Periods II and III differed 
significantly for stormflow TCU. In baseflow, summer TSS and spring TCU had significantly 
different values recorded between Periods II and III (Table 13b). 

Comparisons between time periods at FRCO only revealed significant differences at the 
instream site. Stormflow TCU was significantly different between Period I and III. Time periods 
during baseflow for TSS were all different from one another, and for TP, Periods II and III 
differed significantly (Table 13c). 

Trends in Runoff Coefficients 
Both permutation and log-transformed least squares regression methods suggest a 

statistically significant negative trend (at the 5% significance level) over time at the CACO 
outfall station, and a significant positive trend at the BACI outfall station. While the log-
transformed method also detected a negative trend at the CACO Instream station, this trend was 
not detected using the permutation method. No significant trends were found in FRCO at either 
the outfall or instream station (Table 14).  

Trends in Loading Rates 
Results from the permutation method indicate significant trends for all parameters the 

BACI and CACO outfall stations (Table 15a). The trends were positive at the BACI station and 
negative at the CACO station. 

Regression using a log-link function resulted in significant positive trends for all 
parameters at the BACI outfall station and negative trends for all parameters, except for TSS, at 
the CACO outfall station (Table 15b). 

Results from the logistic regression method indicate significant trends for all parameters 
the BACI and CACO outfall stations (Table 15c). The trends were positive at the BACI station 
and negative at the CACO station. 
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Land Cover Effects 
The change in land cover and BMP implementation over time is summarized in Tables 

16-18 and Figures 7a-7c. 

In CACO, storm concentrations of TSS and TP decreased at the outfall with increasing 
treatment, with no statistically significant findings at the instream station. At the FRCO instream 
station, results were mixed. As the treatment index increased, there was an apparent increase in 
NO23 and a decrease in TKN (Table 19a). 

Results for baseflow concentrations were different in each watershed. An increase in the 
treatment index was associated with decreased TP and NO23 and increased TKN at the CACO 
outfall, decreased NO23 at the CACO instream station, and decreased TKN and increased NO23 at 
FRCO (Table 19b). 

An increase in the treatment index was associated with a significant decrease in the 
runoff coefficient at the CACO outfall but had no other significant results (Table 20). 

The results of the unit area pollutant loading rate analyses are generally similar to the 
results of the runoff coefficient analyses. For all applicable pollutants/parameters, unit area 
loading rates decreased as the treatment index increased at the CACO outfall station. However, 
at the CACO instream station, the only observed decrease in unit loading rate as the treatment 
index increased was for NO23. There were no significant results for the FRCO station (Table 21). 

Power Analysis 
Tables 22a-22c and 23a-23c summarize the number of samples required to detect a change 

over one or two, five-year permit cycles, respectively, for weak (2% per year), moderate (5% per 
year) and strong (10% per year) trends. The results varied somewhat by location but in general 
the number of samples currently required by MDE (8-12 samples per year) were inadequate to 
detect very strong (10% per year) changes within one permit cycle. Within two five-year permit 
cycles, on the other hand, the standard of 12 samples per year was adequate to detect strong 
(10%) changes for most parameters, and 8 samples per year was sufficient for many. For 
moderate (5% per year) trends, a greater sampling rate of between 12 and 24 samples per year 
would be necessary for most parameters to detect a change within two permit cycles. Weak (2% 
per year) trends could generally not be detected within two cycles, even with very frequent 
sampling, with most parameters requiring greater than 48 samples per year.  

Discussion 
Pairwise Comparisons 

The results of this study are consistent with other findings (Christianson et al. 2014), 
which have found that watersheds with natural stream channels have higher pollutant 
concentrations instream than at outfalls during storm events, particularly for sediment-borne 
pollutants. Conversely, Baltimore City, the only watershed with an armored channel, tends to 
have higher concentrations at the outfall. The results point to the importance of stream channel 
erosion in developing watersheds. Furthermore, it supports the contention that detecting trends in 
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the stream channel is more difficult than detecting them at the outfall due to the processes that 
occur within the channel itself (Johnson et al. 2016; Peterson et al. 2001). 

Trends in Concentrations 
Methods 

Several statistical analysis methods were used to detect trends in water quality parameters 
over time, including Mann-Kendall tests, log-link regression, permutation methods, logistic 
regression, and SARIMA models. Given the available data, the SARIMA models and Mann-
Kendall method were difficult to apply due to gaps in the time series, and some of the 
nonparametric methods could only be applied seasonally due to limited data.  

SARIMA models were the only method to find no significant trends in the water 
chemistry data. There were several challenges associated with this method that may have led to 
this outcome. First, developing these models can be time consuming since they rely on 
identifying coefficients that account for both the autocorrelation and moving average 
components of the data. Second, SARIMA models assume that the data have an even time step 
(e.g., monthly, daily or weekly data). While models can account for missing data, and periods 
with multiple observations can be aggregated, these changes can result in two problems: missing 
data can make it difficult to interpret correlations between data points, and aggregating data can 
result in a loss of information, such as when three data points become only one point. 
Furthermore, most models developed through this process were “stationary,” with no component 
included for change over time. It is important to note that some nonsignificant trends were 
detected when standard settings were used on the “auto.arima” function, but the resulting models 
were problematic. In particular, the model should remove any correlations between the residuals 
over time, but the models developed with the standard settings showed significant correlations 
between the residual at a particular time point and “lag” values. The results suggest that this 
approach, although an excellent option for addressing some of the most common issues 
associated with time series data, was not very useful given the somewhat inconsistent time 
between samples for this data set. 

Aside from the SARIMA models, the remaining methods were generally in agreement 
with one another. Table 24 summarizes how the methods differed in their ability to detect trends 
at 5% significance. In general, when one method did not find a significant trend, the others did 
not either. Additionally, trend directions (i.e., positive or negative) were frequently consistent, 
with only a few instances where one method detected a trend in the opposite direction of the 
majority. When this did occur, the p-values of the outlier trends were not significant.  

Overall, in most cases where the methods disagreed, Mann-Kendall techniques and 
logistic regression methods were less likely to detect trends, whereas the log-link regression and 
permutation methods proved highly sensitive. In addition to being a sensitive method, 
permutations tended to agree with other methods, with only two occasions where the result using 
this method was an outlier. Conversely, the logistic and log-link regression methods had six and 
five instances, respectively, of being in the minority. Logistic regression is very well suited for 
some analyses; however, it was particularly useful for identifying trends in E. coli and other 
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parameters that are better represented by a percent exceedance. In summary, the permutation 
method, along with a logistic regression for extremely variable parameters such as E. coli, appear 
to be the most accurate and robust reflection of trends. 

Results 
BACI 
 In the Moores Run watershed, all applicable methods found the following parameters to 
significantly decrease over the monitoring time period: instream and outfall stormflow E. coli, 
instream stormflow NO23, instream and outfall baseflow TCU and TZN. Additionally, all 
methods tested found a significant increase in TSS at the outfall site during stormflow.  

 Of the three watersheds, Baltimore City was the only one to experience a reduction in E. 
coli, which occurred during stormflow only. This was also the one watershed where an observed 
increase in the water quality parameters was common, with increasing trends identified for BOD, 
TSS, and TKN (Table 8a).  

CACO 
 Significant trends of water quality parameters at the Airpark Business Center watershed 
were mostly negative and associated with the outfall. All available methods identified significant 
negative trends for outfall stormflow TP and all metals (TCU, TZN, TPB); outfall baseflow NO23 
and TP; instream stormflow TCU; and instream baseflow NO23. One out of three methods (log-
link regression) found a significant decrease in instream baseflow TP. Only one parameter 
increased over time. Two out of three methods found that outfall stormflow BOD significantly 
increased (Table 8b).  

 The CACO watershed experienced fewer changes in water quality at the instream site 
compared to the outfall, which saw decreasing trends in TP and metals during stormflow. The 
instream station did, however, see decreases in NO23 and TKN during baseflow. The only 
positive trends were in outfall BOD and TSS during stormflow.  

FRCO 
 Generally, analyses showed significant decreasing pollutant trends in the Urbana 
watershed. The only parameter where an increasing trend was observed was instream stormflow 
TKN, which all four applied methods determined. This increase in TKN may be due to a variety 
of factors, such as changes in “sanitary” factors (i.e., new sewer piping and septic systems from 
the development) and application of fertilizers both on the agricultural lands in the instream 
site’s drainage area and lawns in the housing development.  

At the instream site, all methods identified a significantly decreasing trend for stormflow 
NO23 and TCU, as well as baseflow TSS. At the outfall, all available methods identified 
stormflow TP and TCU to be significantly decreasing.  

In the Frederick County watershed, more trends were identified in stormflow than in 
baseflow, including the only increasing parameter, TKN. Also, compared to BACI and CACO 
results, the trends identified at the FRCO sites were more variable as there was a relatively large 
number of trends identified as significant by only one or two of the applied methods (Table 8c). 
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Explanatory, Confounding, and Auxiliary Variables 
 In addition to variables discussed in the Explanatory, Confounding, and Auxiliary 
Variables Technical Memorandum (i.e., BMPs and land cover), other variables that may impact 
findings were identified during the statistical analysis. These variables include repairs to sewer 
pipes, changes in vegetation, erosion, and the potential impacts of seasonality. 

Repairs to Sewershed 
 One of the findings of this study was that loading rates and runoff coefficients increased 
during the monitoring time period at the BACI watershed. A potential explanation may be 
repairs to sanitary sewer pipes in the area. Based on a report from the City of Baltimore 
Department of Public Works, Bureau of Water and Wastewater (2009), from June 2003 to June 
2006, upwards of 7,000 linear feet of sewer piping was constructed to replace the existing middle 
section of the Moores Run sewer interceptor. In the lower section, more than 13,000 linear feet 
of piping was installed from June 2005 through June 2008. From June 2004 to June 2006, the 
upper section of the Moores Run sewer interceptor had almost 4,000 linear feet of piping 
replaced. Altogether, around 24,000 linear feet of pipes were replaced in the Moores Run 
sewershed in five years. 

Before these repairs to the sanitary sewer took place, the sewage pipes may have been 
cracked or otherwise degraded such that baseflow and runoff from small amounts of 
precipitation could seep into the pipes as groundwater, thereby reducing the amount of surface 
runoff into streams. Conversely, during larger precipitation events, sewage and stormwater 
would be expelled from the sanitary pipes due to pressure. Fixing the degraded pipes could then 
have increased the amount of runoff into the stream system due to less water entering the 
sewershed and more flowing over ground, carrying with it the nutrients and sediments whose 
loading rates increased. During storm events, sewage-laden water would be retained in the pipes, 
which may explain the decrease in stormflow E. coli. 

Vegetation 
 The BACI and FRCO watersheds experienced changes in vegetation during the 
monitoring time period. Beginning with BACI, based on aerial imagery (Figures 8a though 8b), 
the tree canopy in the stream corridor widened markedly between 1994 and 2017. Additionally, 
during the site visit, the tree canopy was noted to be essentially closed at the outfall and provided 
good coverage at the instream station (Figures 2b, 2c, 2d). Unfortunately, quantitative 
information associated with tree canopy cover was not available, so it could not be included in 
the land cover analysis. 

 In the FRCO watershed, the area where the pond and outfall site later were established 
was actively farmed prior to the start of development, and became grassy with no trees or shrubs 
for several years during and post-construction of the Villages of Urbana housing development, as 
seen in Figures 9a and 9b from 2002 and 2004 (Frederick County Division of Public Works 2003 
and 2004). When the site visit was conducted in 2019, the area downstream of the pond’s 
embankment and below the outfall was abundantly vegetated with tall grasses, shrubs, and small 
trees (Figure 9c). For this site, tree canopy cover was provided by MDE in the form of hand-
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digitized land cover, but a GIS layer for non-tree vegetation was not available, so the increase in 
non-tree vegetation around the outfall was not documented and accounted for in the Principal 
Components Analysis. 

Channel Erosion 
 At FRCO’s instream site in Peter Pan Run, the stream bank is incised and actively 
eroding. This was evident in photographs taken by the Frederick County Division of Public 
Works (2004) in 2004 (Figure 10a), as well as from the August 2019 site visit (Figure 10b). 
During the site visit, it was also observed that a point or gravel bar had formed the week prior as 
a result of a storm event, which also caused sediments to cover the stilling well but not the intake 
tubing for the monitoring station (Figure 10c). The monitoring data collected supports the 
photographical evidence, as the instream site had particularly high TSS compared to the outfall 
during stormflow (Tables 6b and 7b). This addition of sediments and other constituents during 
stormflow can potentially mask the reductions observed at the outfall due to a variety of other 
tributary inputs.  

Seasonality and Intensity 
 For the summaries in Appendix D, plots were generated of every water quality parameter 
against storm intensity. The data points in the plots were then colored by season (i.e., winter, 
spring, summer, autumn) and year. When the season-colored plots were interpreted, an 
interesting pattern was observed in the BACI plots. For all parameters except NO23 and E. coli, 
the most intense storms were associated with summertime values, but the measured values were 
relatively low. Springtime values were associated with low-to medium- intensity storms and had 
the highest measured values. Spring and winter values followed similar patterns, as did summer 
and autumn values. In the CACO and FRCO watersheds, this pattern was observed for a few 
parameters, but not nearly as strongly as in BACI, nor uniformly across the outfall and instream 
sites.  

Another difference between the Baltimore City watershed and the other watersheds is that 
the City appeared to measure a greater range of storm intensities (Figure 11b). The most intense 
storm in BACI is more than 2 inches/hour, but in CACO and FRCO, the highest measured 
intensities are ~0.8 inches/hour and ~0.45 inches/hour, respectively. There is a documented 
weather phenomenon in the Baltimore-Washington metropolitan area called the Bay breeze, 
which can result in heavier rainfall events in the cities (Ryu et al. 2016). The Bay breeze may 
contribute to the elevated storm intensities measured in Baltimore, but another reason may stem 
from a difference in how and how often storms of varying intensities are sampled between 
jurisdictions. Baltimore City staff use stage activation to automatically trigger sample collection 
during storm events. This means that, unlike jurisdictions that rely on checking weather forecasts 
for storms to sample, Baltimore City may be recording fast-moving, high intensity storms that 
may not appear in a forecast with advance notice. Regardless of why intensities appear higher in 
BACI than in CACO and FRCO, if the total precipitation regime of a watershed is truncated due 
to sampling methods, estimates of runoff and loads may be skewed as they do not represent the 
entire distribution of rainfall events. 
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Detecting Effects of BMPs and Land Cover 
This pilot study was not able to compare land cover between watersheds to determine if 

differing land cover conditions between stations resulted in variable loads or concentrations. 
With only three locations and apparent confounding influences, such as sewer repairs and 
changing land use over time, the land cover analysis instead focused on changing land cover and 
BMP implementation during the monitoring time period. Results suggest that the influence of 
stormwater BMPs and land cover can clearly be observed in pollutant concentrations, unit loads, 
and runoff coefficients during particular conditions. In this study, the clearest relationship was 
the observed benefit of the pond retrofit at the CACO outfall station. The station met several 
conditions that are worth considering in future studies: 

1. The retrofit impacted a very large area in a short period of time. 
2. There was little new development occurring in the outfall drainage area in concert with 

the retrofit. 
3. Extensive monitoring data were available both before (1999-2007) and after (2008-2016) 

the retrofit. 
4. The retrofit was implemented at an outfall so that instream effects did not affect the 

observed loads, flows, or concentrations. 

For watersheds that experience a complicated land development pattern, as in FRCO, 
detecting the benefits of stormwater BMPs used to treat development is somewhat more 
challenging. In this watershed, for example, BMPs were implemented concurrently with 
increases in impervious cover. Consequently, separating the impacts of development and 
restoration can be challenging. However, it is encouraging that no trends in declining water 
quality conditions were not observed. 

Benefits of restoration at CACO and, to a lesser extent at FRCO, were not as obvious at 
instream stations, possibly due to instream effects and changing land cover conditions. This 
result suggests that the methodology of pairing an instream station with an outfall station is 
beneficial, particularly if restoration occurs in the outfall drainage area. 

Finally, inconsistent data collection periods can lead to challenges determining restoration 
impacts. It was not possible to evaluate the benefits of the single retrofit at the FRCO outfall 
because only one year of monitoring data was available from the period before the dry pond was 
retrofitted. 

In general, the pollutant loading trends at the CACO outfall were predictable in that 
pollutant loads decrease as the treatment factor increases and the area of untreated impervious 
cover decreases. Although only one outfall location had both the necessary water quality data 
and BMP/land use change data to allow for this analysis, the results suggest that links between 
land use change/BMP implementation and water quality may be more easily observed at outfall 
stations than at instream stations.  

It also appears that differences in pollutant loading are more highly driven by runoff 
volume than pollutant concentrations, with the unit load results for almost every parameter 
corresponding with the same findings for the runoff coefficients. This result may indicate that the 
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effects of both BMPs and land development are more predictive of runoff volume than pollutant 
concentrations. This effect is reasonable given that pollutant concentrations may be affected by 
other factors, such as stream processing, channel erosion, and practices that are unaccounted for, 
such as lawn care. 

The inconclusive findings at the FRCO stations can partially be explained by the pattern 
of development in the watershed. The treatment indices for the CACO stations showed a sharp 
demarcation between development (“untreated” factor) versus BMPs (“treated” or “nested” 
factors), but coefficients for both BMP implementation and development were positive at the 
FRCO station. This discrepancy occurs because of a more complex development pattern at the 
FRCO station, wherein BMPs were primarily implemented as a part of new development. As a 
result, BMP implementation is correlated with an overall increase in impervious cover in the 
watershed. By contrast, the CACO watersheds were dominated by the effects of a single retrofit 
in 2008 that caused an immediate shift from the “treated” to “untreated” categories. It is possible 
that the BMPs implemented in the FRCO watershed as a part of development were highly 
effective since the results do not suggest an increase in pollutant loads or runoff volume, but it 
was difficult to separate the effects of BMPs from the effects of land cover change. 

Another potential factor in the FRCO watershed is the land cover data included in this 
analysis. Aerial photographs (Appendix D, page 48) suggest that brush cover increased over time 
in the FRCO watershed, but this analysis focused on impervious cover. Tree canopy was also 
delineated, but it was not included in the analysis due to the small fraction represented in the 
watershed. Although the effects of land cover focused on urban land cover types, another 
potential influence in FRCO could relate to the agricultural land being converted to urban uses. 
In particular, the decrease in NO23 at the instream site could possibly result from a loss in 
agricultural land. 

Impacts of BMP and Land Development on Flows 
Although there is some evidence that BMPs may reduce the concentrations of pollutants, 

the BMPs in this study appear to have a more direct impact on flow volume, based on the results 
in Carroll County. Furthermore, it appears that unit loads (measured as lb/inch of rain) are 
generally driven by flow reductions or increases. This result is consistent with other findings and 
the goals of many modern stormwater programs, which focus primarily on runoff reduction as a 
treatment method. The results also highlight the importance of accurately measuring flows and 
recording rainfall characteristics. 

Data Collection and Sampling Methods 
Data collection and sampling methods impact the data quality in the MS4 database and 

can potentially affect conclusions regarding the data. As a part of this study, topics investigated 
included rainfall measurement, flow measurement, laboratory methods, and sample collection 
frequency. 
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Flow Measurement: Storm Events 
Analyses suggested that flow is a crucial variable for tracking progress. The data 

suggested that reduced flow volumes were observed immediately after a retrofit in Carroll 
County, and flow increases were observed in Baltimore City as sewer repairs were implemented.  

Laboratory Methods: Censored Values 
For metals and BOD, the number of uncensored values contributed to variability in the 

data. In baseflow, the number of censored values prevented trend detection using certain 
methods. In addition to a high number of censored values, the laboratory methods changed over 
time, so that apparent trends were actually a relic of changing detection limits over time 
(Appendix B).  

Sampling Method: Calculating Concentrations 
Currently, the MDE sampling methodology relies on calculating the EMC using three 

samples: one on the rising limb, one at the peak, and one at the falling limb, called the Average 
Concentration Method. The project team reviewed data from Stony Run in Baltimore City to 
evaluate the differences between a flow-weighted EMC, versus MDE’s current method. The 
results, completed for TN, TP, and TSS, suggest that the Average Concentration Method 
introduces a slight bias, with slightly higher median values for all three variables (Figures 12a 
through 12c; Figure 13), and increases the variability of the data. Finally, the method introduces 
error at each point.  

Sample Collection Frequency 
Currently, MDE’s permit requires sampling 12 storms per year for large jurisdictions and 

8 storms per year for medium jurisdictions, with no fewer than two storms in each quarter. The 
power analysis conducted as a part of this study suggests that this frequency, given the variability 
of the data at each station, is sufficient to detect very strong decreases in loads and 
concentrations within 10 years and moderate trends (e.g., 5% per year) within 20 years. In the 
current database, some stations did not meet this criterion, as there were long periods of time 
lacking sampling for some parameters. 

Recommendations  
The pilot study resulted in two sets of recommendations: 1) Next Steps In Analyzing 

Existing Water Quality Data and 2) Changes to the MS4 Monitoring Program. 

Recommendations for Next Steps in Analysis of Existing Water Quality 
Data from the MS4 Program 
Focus on watersheds where restoration impacts can be detected 

For future work in evaluating existing water quality data from the MS4 program, the first 
suggestion is to be very selective when choosing which watersheds to use in the statistical 
analyses. If possible, prioritization for data analysis should be given to watersheds that have: 1) 
one or a few larger BMPs or several smaller BMPs implemented over a relatively short period of 
time; 2) data from before and after watershed restoration practices are implemented; and 3) 
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limited development over time. Additionally, data from each candidate watershed should be 
carefully examined for issues with large gaps or sample clustering during a portion of the year. 
The watersheds studied for this project did have long monitoring histories with limited gaps on 
the surface, but when individual parameters were assessed, issues were noted with sampling 
frequencies. 

Select appropriate statistical techniques 
Next, certain methods are recommended for future trend analysis. Permutation methods 

are suggested because they do not require assumptions about the data’s distribution or 
homoscedasticity, making them very useful for testing environmental data, which are often 
skewed (Elliffe and Elliffe 2019). Moreover, when compared to other methods used for trend 
analysis, permutation appeared to be sensitive, not only agreeing well with other methods, but 
also tending to find significant trends when other methods did not. The log-link method also 
performed well, with similar results as permutation methods. Methods that require an equal-
interval time series, such as the Mann-Kendall, Seasonal Kendall, and SARIMA, are robust, but 
they require either a very long time series or a fine and regular time step with few long gaps, and 
are consequently only recommended for data with those characteristics. Logistic regression 
methods tended to not find a trend when others did, but they performed well for highly variable 
parameters with outliers, such as E. coli. 

Understand changes to the landscape that may not be apparent from the MDE database or 
readily available land cover data 

In this study, changes in impervious cover, BMP implementation, and tree canopy were 
incorporated into the analysis, but other land cover changes such as growth in low-lying shrubs 
or other vegetation may also be considered. The next analysis should also consider the impacts of 
buried infrastructure (e.g., sewer, stormwater, and drinking water infrastructure) on results. In 
this study, extensive sewer work in the City of Baltimore seemed to result in greater storm runoff 
volumes. Without understanding these dynamics, some outcomes would be challenging to 
explain. 

Continue to incorporate seasonal variability and rainfall characteristics into the analysis. 
Further consideration and exploration of confounding, auxiliary, and explanatory 

variables should be incorporated in future work. Seasonal variation of rainfall depth, intensity, 
and other storm attributes can explain why certain patterns are observed in concentrations.  

Conduct field visits 
Finally, field visits to the watersheds of interest are recommended. Such visits are essential to 

understanding watershed characteristics that are not apparent from the database alone. In this 
study, field visits provided insights about areas of active channel erosion, sewer repairs, 
sampling methods, sampling constraints, and regrowth of vegetation. 

Recommendations for Changes to the MS4 Monitoring Program 
Both quantitative analyses and observed data gaps provided sufficient background to 

improve the MS4 monitoring program, including methods for flow measurement, EMC 
computation, reporting of censored values, and number of storms sampled. 
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Develop a QAPP for MS4 monitoring 
Inconsistencies between MS4s and lack of information regarding how samples were 

collected, analyzed, and reported was a challenge in using data in the MDE database. In the 
future, it is recommended that MS4 permittees who do not currently have a QAPP filed with 
MDE do so, and that the QAPPs are distributed to the individuals performing the statistical 
analysis. 

Provide more information regarding flow measurements 
The MDE database currently reports a single value for stormflow (i.e., the volume of 

stormflow in gallons). QAPPs should provide detail regarding how stormflow is measured, 
including specific methods to calculate runoff volume, including when to start and discontinue 
flow measurements. In addition, the database should include some measure of discharge both 
instream and at the outfall for both storm and non-storm events. The lack of discharge data made 
it difficult to use any methods that employ flow-correction to detect changes or trends. 

Develop a specific protocol for reporting non-detected values 
In this study, censored values were problematic for some parameters because they were not 

treated uniformly across jurisdictions, and changing methods resulted in false trends for some 
parameters. The following specific measures can help to improve this issue in the future: 

1. Record the instrument-measured value rather than the detection limit. This value helps to 
characterize the variability of censored values. 

2. The detection limit should be reported even if the reported value is above the limit. The 
database has some entries of “0” or “NA” for the detection limit. 

3. It appeared that some detection limits were incorrect in the database (in some cases a 
single value orders of magnitude higher than the others). When methods do change, the 
MS4 or laboratory should provide a note or other indication that the method has changed, 
or if an alternative method needs to be used due to sample characteristics such as salinity 
or turbidity. 

Sampling frequency 
The current sampling frequency of 12 events per year was inadequate to detect even 

strong (10% per year) change in one permit cycle for most parameters, but could detect this 
change within two permit cycles. Greater sampling frequency (up to 24 per year) would still be 
unable to detect even strong trends within one permit cycle, but could enable detection of 
moderate (5% per year) trends within two permit cycles for many parameters. Weak trends (2%) 
could generally not be detected even with very frequent monitoring. Given the number of storms 
that can reasonably be sampled annually, the current rate of sampling may be adequate, but only 
relatively strong trends can be detected using this frequency, except over longer periods of time. 
In addition, the expectation of detecting change within a single permit cycle may be unrealistic, 
even with very large sampling rates. 

Sampling storm diversity 
Although the sampling record suggests that a wide range of storms was sampled at these 

locations, some monitoring designs may exclude large and quickly-moving storms. This would 
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be the case both in jurisdictions where staff are prevented from collecting high-flow discharge 
measurements due to safety concerns and for jurisdictions that rely on weather forecasts to 
predict when to set up samplers for storm events, rather than having stage-activated pressure 
transducer samplers. The MS4 permit should clearly outline the range of storms that can be 
monitored at a given location. 

EMC calculation 
Currently, MDE’s standards require calculation of an “Average EMC,” which averages 

the rising limb, peak, and falling limb of a storm. An analysis completed for this study suggests 
that the method introduces a slight bias toward higher concentrations when compared with a 
flow-weighted method for the same storm events. This finding was consistent with other research 
(Ma et al., 2009) which found that approximately 30 grab samples per event were required to 
estimate a flow-weighted composite sample within 20%. A flow-weighted sample is a better 
estimate of the true concentration because, when multiplied by the event runoff volume, it results 
in an unbiased estimate of the pollutant load (Gulliver et al., 2012). In addition, the method of 
EMC collection (time-weighted, flow-weighted, or grab sample; and discrete vs. composite) 
should be reported along with the EMC. 
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