The 2017 Oroville Dam Spillway Incident – What Happened and What Should We Learn?

John W. France, PE, D.GE, D.WRE JWF Consulting LLC

Maryland Dam Safety Training 14 November 2018

Presentation Content

- Introduction
- Chronology of the incident
- Background information
- Physics of incident what happened?
- Causes of incident why did it happen?
- What should we learn?

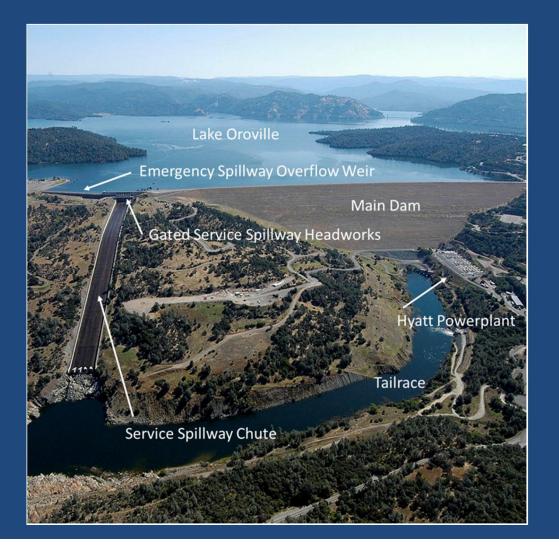
Team Mission

To complete a thorough review of available information to develop findings and opinions on the chain of <u>conditions</u>, <u>actions</u>, and <u>inactions</u> that caused the damage to the service spillway and emergency spillway, and why <u>opportunities for</u> <u>intervention</u> in the chain of conditions, actions, or inactions may not have been realized. Evaluations of actions, inactions, and decisions for the various stages of the project (pre-design, design, construction, operations, and maintenance) will consider the <u>states of practice applicable</u> to the various time periods involved.

Forensic Team

- John W. France, PE, D.GE, D.WRE Team Leader and Geotechnical Engineer
- Irfan A. Alvi, PE Hydraulic Structures Engineer and Human Factors Specialist
- Peter A. Dickson, PhD, PG Engineering Geologist
- Henry T. Falvey, Dr.-Ing, Hon.D.WRE Hydraulic Engineer
- Stephen J. Rigbey Director, Dam Safety at BC Hydro, and Geological Engineer
- John Trojanowski, PE Hydraulic Structures Engineer

California State Water Project


- Largest state owned and operated water system in the U.S.
- Multiple Purposes and Benefits
- Provides water supply and irrigation
- 32 Storage Facilities
 21 Pumping Plants
 4 Pumping-generating Plants
 8 Hydroelectric Plants
 700 miles of Canals and
 Pipelines
- Constructed in the 1960s and 1970s

Oroville Facility Description

- Embankment dam 770-ft high, tallest dam in the United States
- Gate-controlled, concrete chute service spillway
- Uncontrolled, overflow emergency spillway
- Powerplant
- Designed and constructed in the 1960s

Oroville Dam

Regulatory Setting

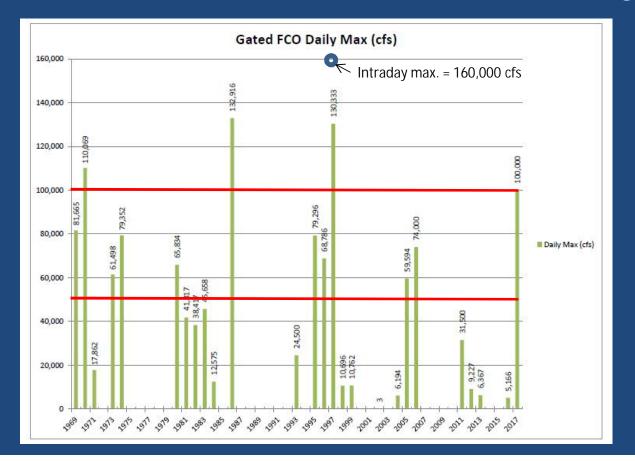
• Both federal and state regulation:

- Federal Energy Regulatory Commission (FERC) US Federal Government
- California Division of Safety of Dams (DSOD) State Government

Service Spillway (SS) Description

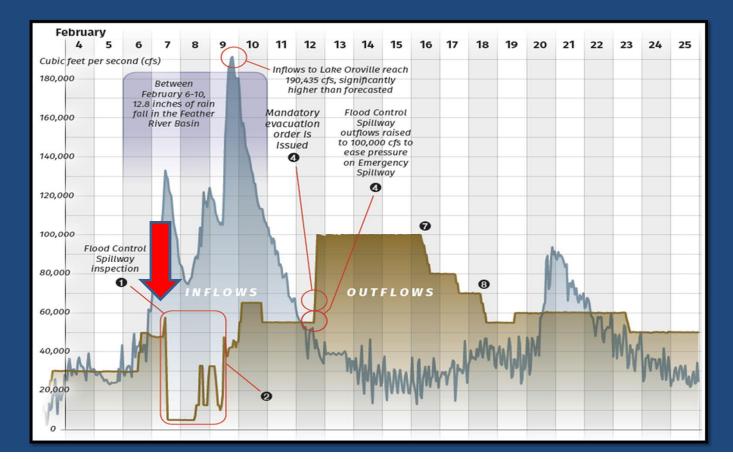
- Eight top-seal radial gates, each 17 ft 8 in wide x 33 ft 6 in high
- Concrete chute 179 ft wide, 3,000 ft long, with drop of 500 ft
- Slopes of 5-2/3 % in upper chute and 24.5 % in lower chute
- Four chute clocks at downstream end of the chute
- ~300,000 cfs discharge for PMF

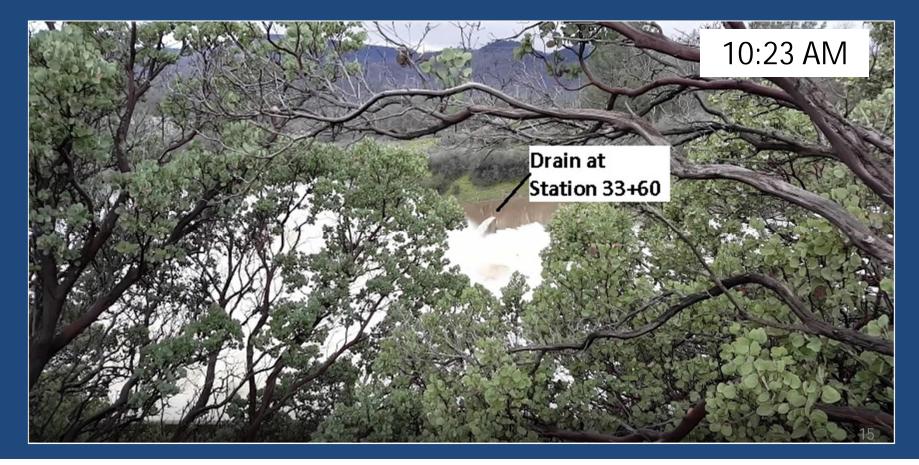
Service Spillway


Emergency Spillway (ES) Description

- Uncontrolled overflow structure
- Two sections:
 - 930-foot long concrete gravity weir
 - 800-foot long broad-crested weir
- Maximum weir height of about 50 feet
- ~350,000 cfs discharge for PMF

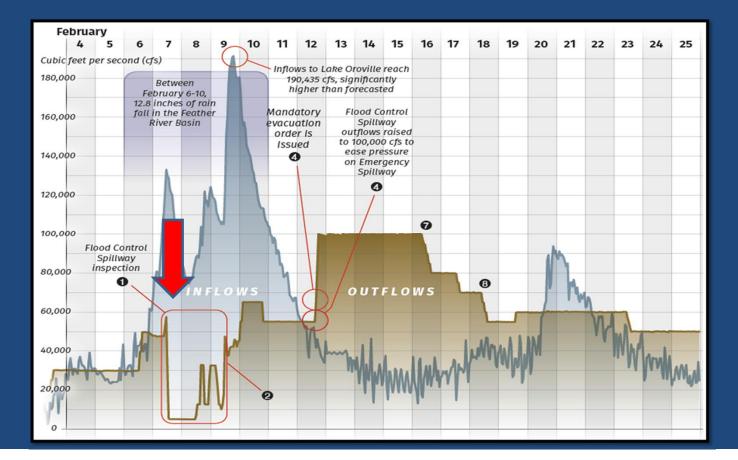
Emergency Spillway

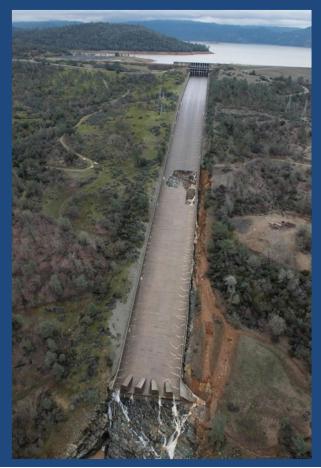



SS Operation History

Emergency spillway had never operated

Incident Chronology




Gates Nearly Closed

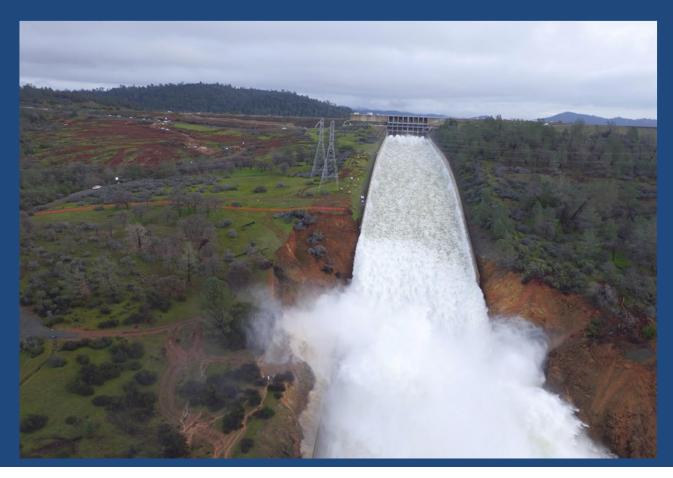
Incident Chronology

Initial Damage – February 7

Initial Damage – February 7

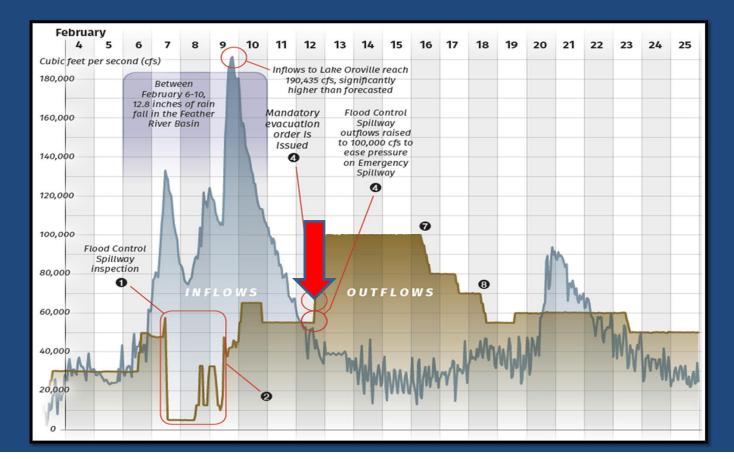
Initial Damage – February 7

Climb Team Inspection – February 8


Incident Chronology

Balancing Risks

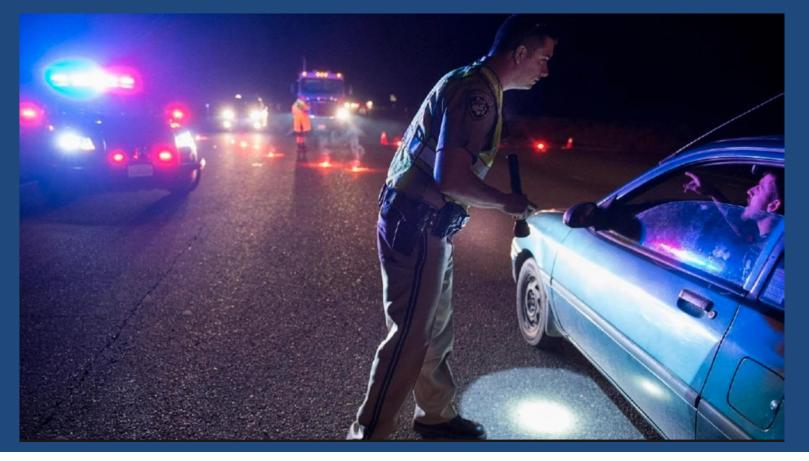
SS Discharge at 55,000 cfs - February 10-12


Flow Begins Over Emergency Spillway February 11, AM

Flow Begins Over Emergency Spillway February 11, AM

Incident Chronology

Headcutting Erosion at ES February 12


Headcutting Erosion at ES February 12

Headcutting Erosion at ES February 12

Evacuation – February 12 – ~ 190,000 People

Increased Flows Thru SS – 100,000 cfs

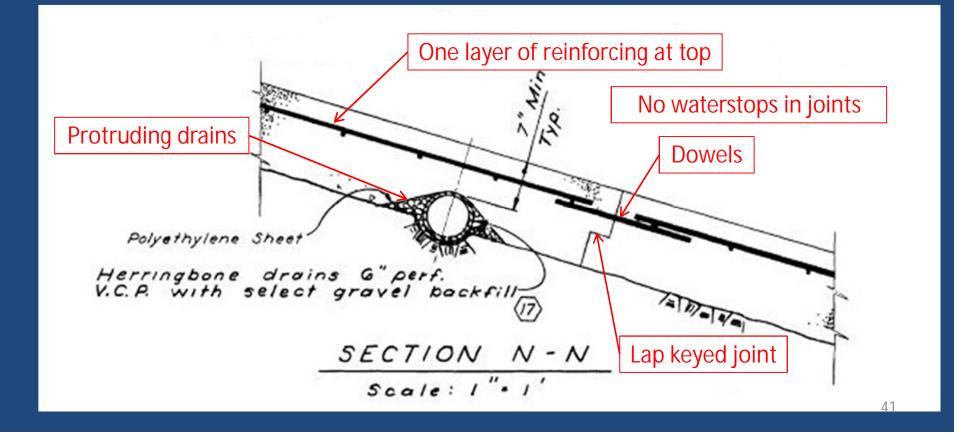
Erosion Debris in the River

Service Spillway Damage

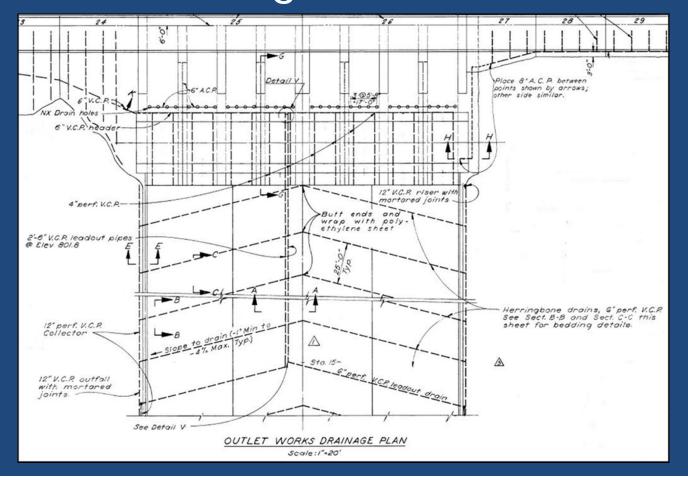
Background Information

- SS chute design and construction
- SS chute repairs
- SS chute drain flows

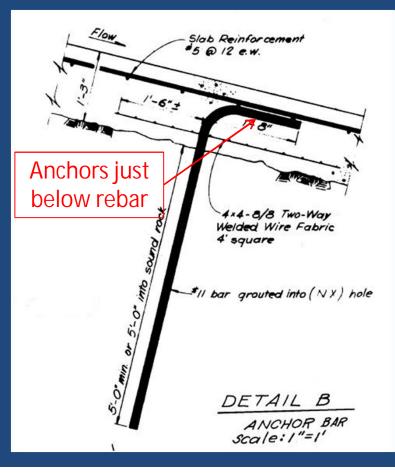
SS Chute Design and Construction


- Nominal 15-inch thickness
- No waterstops in joints
- Dowels in joints
- Single layer of reinforcement near top of slab
- Lapped keys in transverse joints
- Keyed longitudinal joints
- VCP drains protruding into the slab
- Foundation anchors at 10-foot spacing, 5 feet into foundation
- 6-inch maximum size aggregate

Slipforming



4(

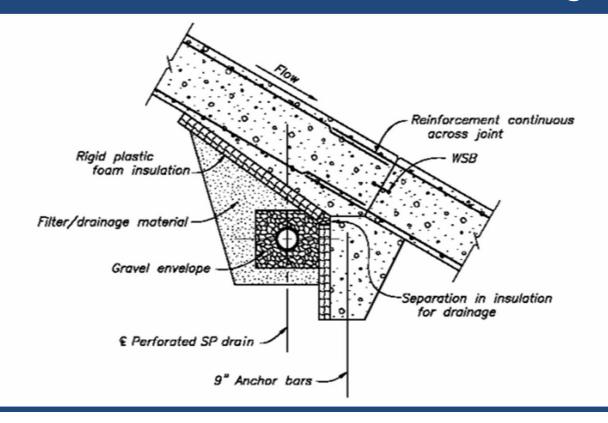

Drain and Joint Details

Herringbone Drains

Chute Slab Anchors

Practice of the 1960s

- Compared Oroville chute design to 110 designs from between 1955 and 1975
- Numerous factors considered:
 - Slab thickness
 - Joint details
 - Reinforcing
 - Dowels
 - Drains


Results for 1960s Comparison

Feature	Designs Reviewed	Oroville
Slab thickness	8" to 48" (12" to 18")	15″
Keyed joints	75%	Yes
Joint waterstops	35%	No
Cutoffs	66%	No
Two layers of rebar	69%	No (one layer at top)
Continuous rebar at joints	24%	No
Dowels at joints	35%	Yes
Anchors	79%	Yes
Drains	95%	Yes
Drains entirely below slab	87% (92% of those w/ drains	No
		45

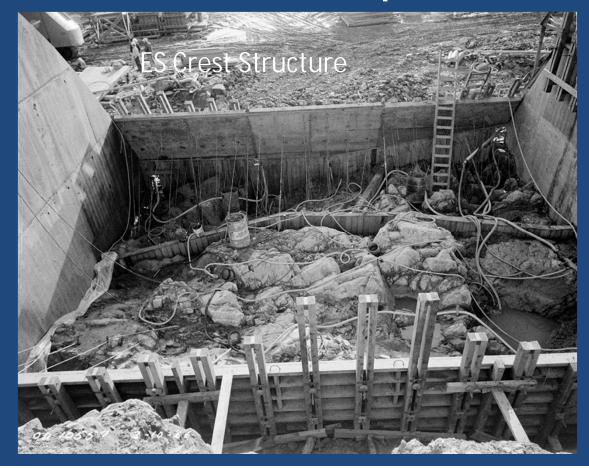
Comparison to 1960s Practice

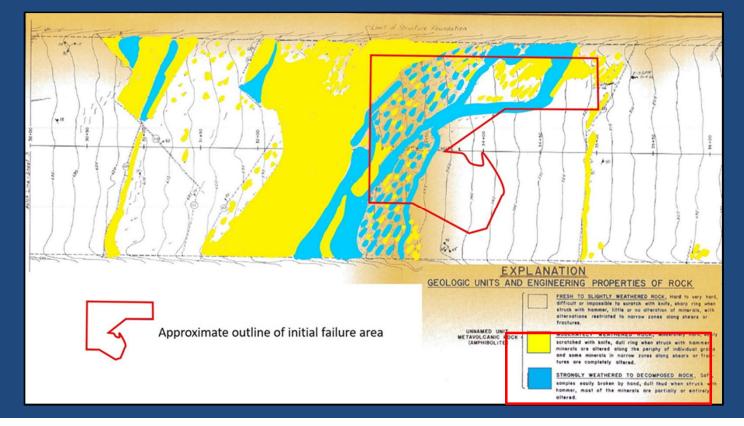
- Within the range of other spillways of the time on rock, but generally in mid to low-mid range
- Drains protruding into section were at low end less than 8 percent had protruding drains and none with as large a percentage of slab thickness
- Did not include typical details for soil foundations
- Not "best practices" of the time

Modern Best Practices for Spillway Chute Joint and Drain Design

Design Shortcomings Further Compromised During Construction

- Foundation preparation requirements were dramatically relaxed during construction
- Conditions varied
- Areas of "compacted clayey fines"
- Areas of strongly weathered rock
- No adjustments were made in anchors or other chute design details





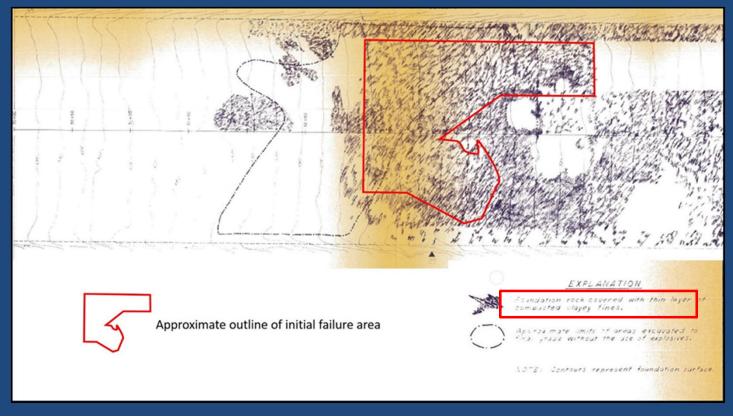
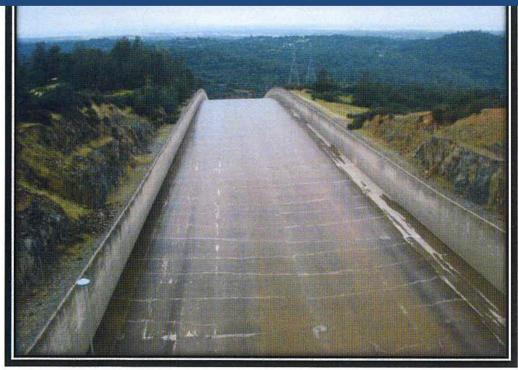


Photo 39. Chute foundation in vicinity of Sta. 33+60. Tile and gravel underdrains in lanes 2 and 3, rebar in lane 3. View southeast. Neg. No. 4644 11-2-66

Foundation at Initial Chute Failure Location

Foundation at Initial Chute Failure Location

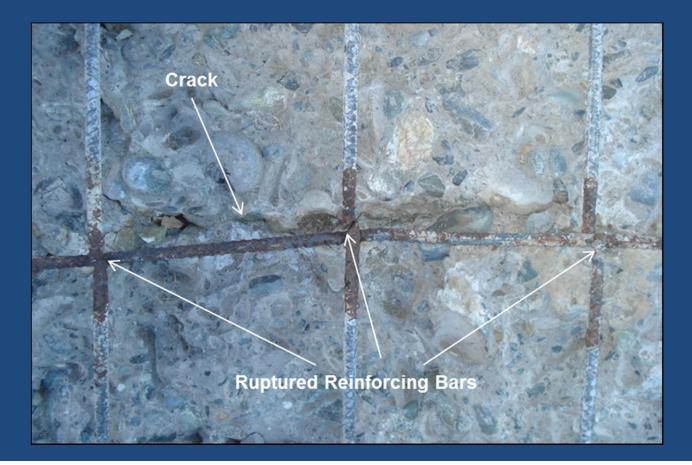

History of SS Chute Repairs

- Five documented repair programs
 - 1977
 - 1985
 - 1997
 - 2009
 - 2013

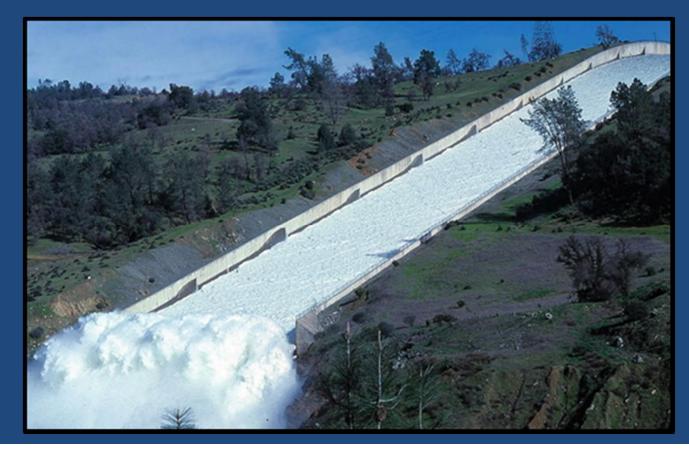
SS Chute Repairs

- Cracks
- Spalls
- Delaminations
- Ruptured reinforcing bars

Crack Pattern in SS Chute

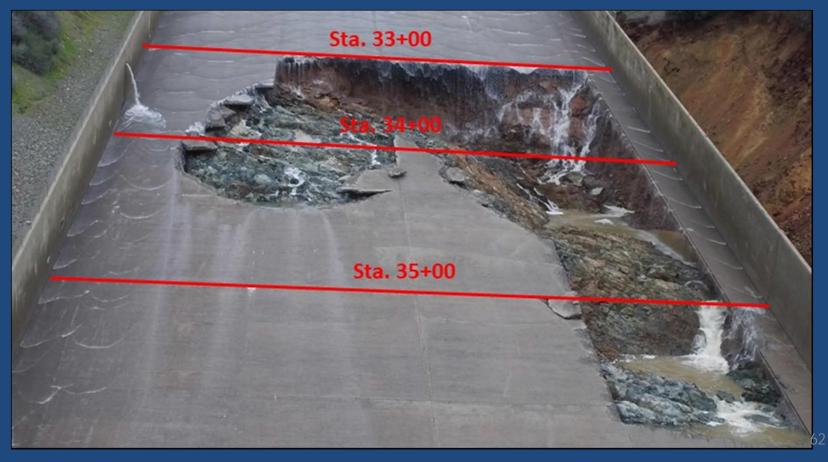


12. The concrete along the spillway chute has been repaired. The repaired herringbone crack pattern is said to reflect the underlying drain system. 57


Spalls and Failed Prior Repairs

Ruptured Rebar

SS Underdrain Flows



February 3, 2006

SS Underdrain Flows

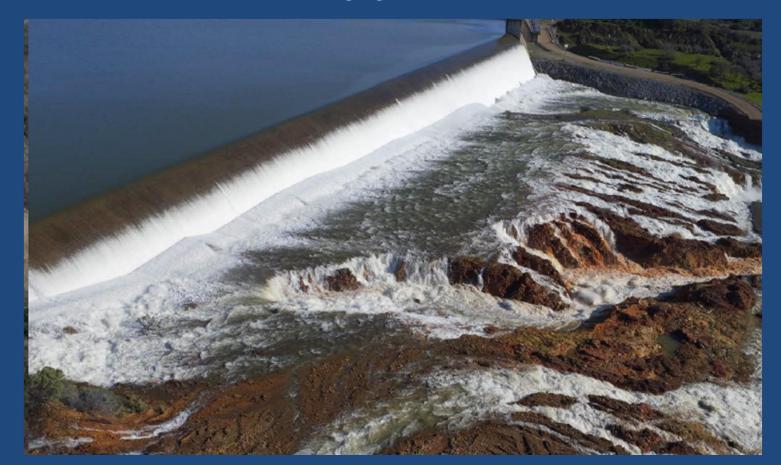
- Drains flow heavily when SS is discharging
- Flow is from leakage through the slab into the foundation
 - Joints
 - Cracks
- Gates leak when closed

Physics of SS Damage

Contributory Physical Factors

- Foundation conditions (geology)
- Cracks in the slab
- Joints without waterstops
- Slab delaminations and spalling
- Corrosion and failure of reinforcing

Possible Changes Since 2006*

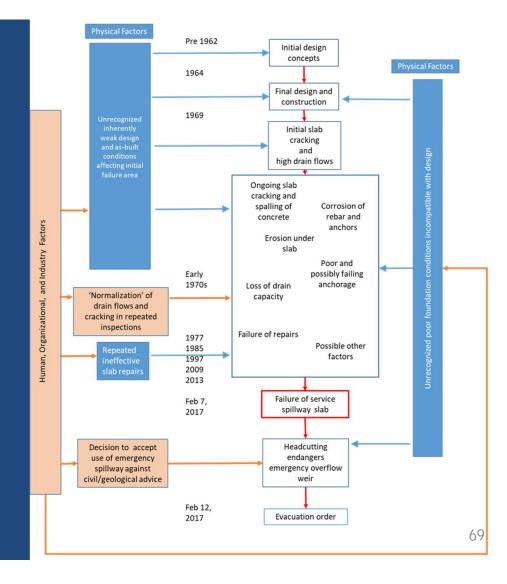

- New chute slab damage and/or deterioration of previous repairs
- Expansion of shallow voids below the slab
- Corrosion and failure of reinforcing or dowels across cracks and joints
- Reduction in anchor capacity

* Most recent previous discharge greater than 54,000 cfs

Factors Unlikely or Not Significant

- Cavitation
- Groundwater flow/pressure
- Seismic damage

What Happened – ES?

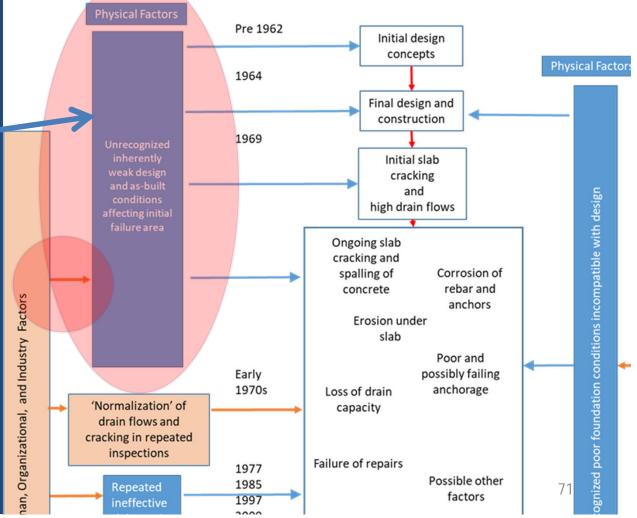

Contributory Physical Factors

- Unfavorably oriented areas of erodible rock (geology)
- Flow concentrations
 - Topography
 - Infrastructure
- Insufficient energy dissipation at crest structure
- No erosion protection downstream of crest structure

Why the Incident Happened

The Oroville Dam spillway incident was caused by a long-term systemic failure of the California Department of Water Resources (DWR), regulatory, and general industry practices to recognize and address inherent spillway design and construction weaknesses, poor bedrock quality, and deteriorated service spillway chute conditions. The incident cannot reasonably be "blamed" mainly on any one individual, group, or organization.

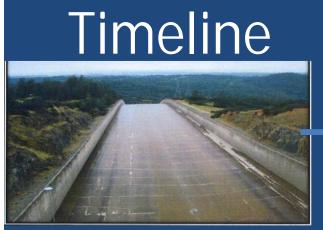
Timeline


Why the Incident Happened – SS

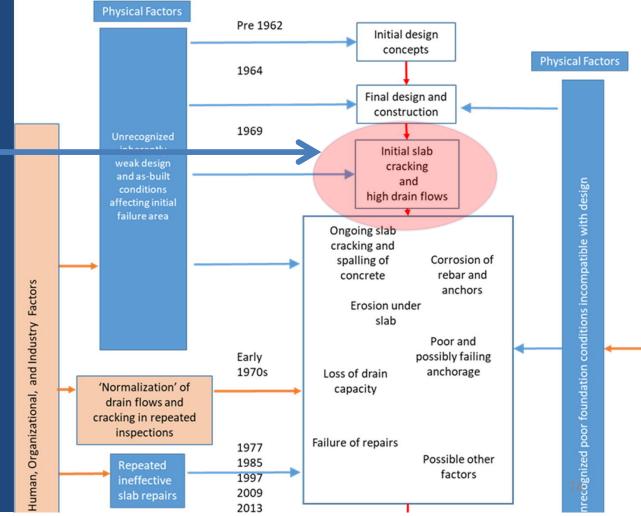
- Incompatibility of as-constructed spillway with foundation and hydraulic conditions
- Chute slab cracking and drain flows were "normalized"
- Geology was misunderstood
- Repairs were not sufficiently robust and durable
- Subsequent inspections and evaluations, including potential failure modes analyses (PFMAs), did not identify the vulnerability

Timeline

- Thin slab
- Protruding drains
- No waterstops
- Incompatible with foundation

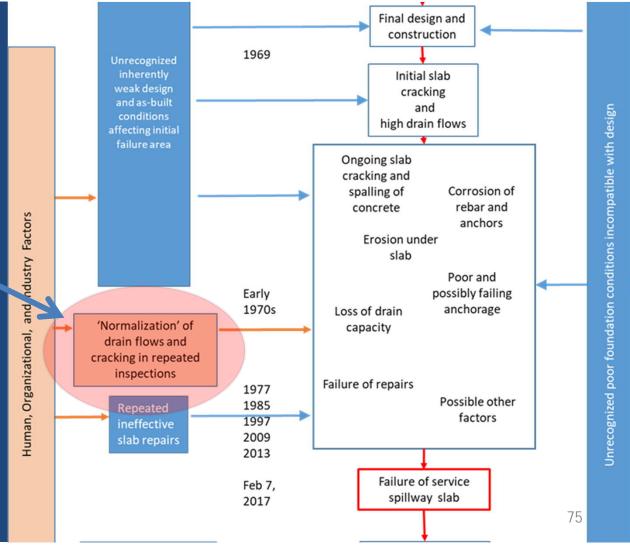


Comparison to 1960s Practice


- Within the range of other chute spillways of the time on rock, but generally in mid to low-mid range
- Drains protruding into section were at low end 8th percentile
- Did not include typical details for soil foundations
- Not "best practices" of the time

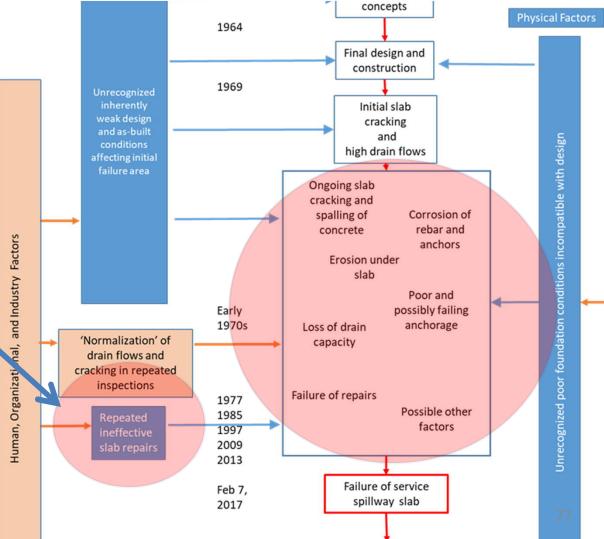
Service Spillway Design and Construction

- Poor Communication During Design and Construction
 - Geologist and designer(s) did not communicate
 - Construction team and designer(s) did not communicate
 - Not atypical of the era, but very problematic
 - Design for rock, but overexcavation not understood
 - Lack of adaptation/consultation during construction


Major concerns in 1969 "Should consult designer"

Timeline

From "mystifying" to normal



Normalization of Cracking and Underdrain Flows

- Cracking observed immediately after concrete placement
- Large drain flows observed during first spillway operation in 1969 – described as "mystifying" and ascribed to leakage through the slab
- Follow-up suggested, but not clear if there was follow-up
- Thereafter, cracking and drain flows were accepted as normal behavior

Timeline

Lack of Durability of Repairs

- Repeated cracking and spalling in old locations plus cracking and spalling in new locations
- Relationship to original design not clearly recognized
- Long term deterioration of slab condition not recognized
- Repairs were effectively "band aids" which did not address root causes

Durability of Repairs

Inspection and Evaluation History

Inspections

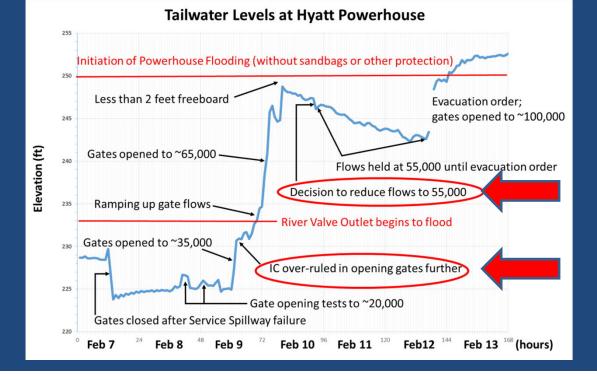
- Twice per year DSOD inspections
- Annual FERC inspections
- FERC Part 12D five-year inspections
- California Director's Dam Safety Reviews
- Potential Failure Modes Analyses (PFMAs)
 - 2004 and 2009 no significant spillway PFMs
 - 2014 spillway PFMs were considered

2014 PFMA

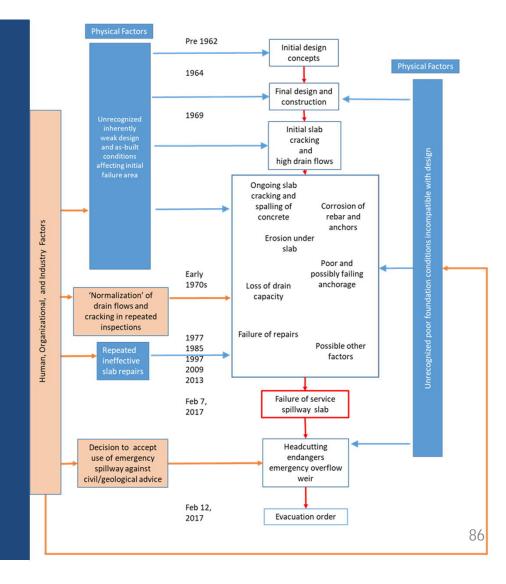
- PFMs identified for both SS and ES
- SS spillway PFMs:
 - Category IV, ruled out
 - Focus on release of reservoir water
 - Not whether chute would fail, but rather, if chute failed, would reservoir be released
 - Influenced by misunderstanding of geology
- ES spillway PFMs:
 - Dominated by misunderstanding of geology discussed later

Why the Incident Happened - ES

- Misunderstanding of geology
 - 2005 memo
 - » "Spillway does not empty onto a bare dirt hillside. Instead, it empties onto a hillside composed of solid amphibolite bedrock extending from the spillway crest down to the Feather River"
 - * "...Emergency Spillway at Oroville Dam is a safe and stable structure founded on bedrock that will not erode."
 - 2009 report
 - "The rock between the Feather River and the emergency spillway is very competent and resistant to erosion."


Why the Incident Happened - ES

- Incident management
 - Not trying to second guess; rather review decision process to learn
 - Relative risk of trade-offs may not have been fully informed
 - Dam safety risk of emergency spillway operation may not have been fully recognized


Balancing Risks

Why the Incident Happened - ES Specific decisions were made to limit service spillway flows, when threat from tailwater was actually diminishing

Timeline

Lessons to be Learned

• General industry lessons

- Importance of "top-down" dam safety culture and program
- Limitations of physical inspections
- Need for comprehensive reviews
- Need for appropriate attention to appurtenant structures
- Shortcomings of current PFMA practices
- Over reliance on regulatory compliance

Dam Safety Culture and Program

- Identified senior executive responsible for dam safety
 - Differing response to question of who fulfilled this role
- Informed by regular communication from dedicated dam safety professionals
 - DWR dam safety program was in an intermediate state of maturity
- Dam safety culture embedded with the organization

Maturity Level of DWR Program

	ational commitment to, and resourcing and oversight of, th	e effective delivery of a dam safety program and manageme	nt of dam safety risk.		Cente for Energy Advancement through Section adjust Innovation
Sub-elements	Maturity Level				
	Needing Development [Lacks conformance to applicable guidelines, standards and industry practice]	 Intermediate [Conforms to applicable guidelines, standards and industry practice in some areas] 	3. Good industry Practice [Generally conforms to applicable guidelines, standards and industry practice]	 Best industry Practice High degree of understanding and conformance with applicable guidelines, standards and industry practice] 	5. Leading Edge [Developing, trialing and implementing new technology, methods and systems]
10-A. Regulation*	(a) Regulatory requirements are not well recognized and may not be met	(a) Regulatory requirements are recognized and partially met	(a) Regulatory requirements are generally well understood and met, and satisfactory relationship is maintained with Regulators	(a) Regulatory requirements are well understood and met, and productive relationship is maintained with Regulators	Generally meeting Best Practice level, and also developin trialing and implementing new technology, methods and systems
requirements, specific to the dam Owner's country or state]	(b) Little or no monitoring of changes in regulatory requirements	(b) incomplete monitoring of and response to changes in regulatory requirements	(b) Regular monitoring of and active response to changes in regulatory requirements.	(b) Proactive monitoring of and high level of engagement with changes in regulatory requirements	
Management (Policy, goals and values that underpin, and provide directive for,	(a) Poorly defined or documented with dam safety requirements inadequately addressed, with little or no review and update	(a) Defined and documented with dam safety requirements partially addressed, with irregular review and update	(a) Defined and documented with dam safety requirements addressed and referenced to good industry practice, with regular review and update, and largely integrated with organization policy, goals and values	(a) Well defined and documented with dam safety requirements addressed and referenced to best industry practice, with regular review and update, and fully integrated with organization policy, goals and values	Generally meeting Best Practice level, and also developin trialing and implementing new technology, methods and systems
delivery of the Dam Safety Program. Risk management policy and practice for the management of dam safety risks.]	(b) Poor understanding of Dam Safety issues and risks		(b) Generally complete understanding of Dam Safety issues and risks, and risk management sometimes considered in conjunction with the organization's risk management policy and practice	(b) Comprehensive understanding of Dam Safety issues and risks throughout organization, and risk management fully integrated with the organization's risk management policy and practice	
	(c) Little or no organizational commitment to dam safety awareness (d) Continuous improvement absent	(c) Limited organizational commitment to dam safety awareness (d) Continuous improvement is rare	(c) Organization is commited to internal dam safety awareness (d) Continuous improvement is present	(c) Organization committed to broader dam safety awareness - internal and external (d) Continuous improvement is embedded	
10-C. Delegated Roles & Responsibilities	(a) Poorly defined or understood	(a) Limited definition and incomplete level of understanding	(a) Defined and good level of understanding at operational levels in the organization	(a) Defined, well structured and high level of understanding at all levels in the organization	Generally meeting Best Practice level, and also developin trialing and implementing new technology, methods and systems
[Delegation of Roles and Responsibilities for delivery of the Dam Safety Program]	(b) Little or no linkage to Dam Safety objectives	(b) Limited linkage to Dam Safety objectives	(b) Generally linked to Dam Safety objectives, and personnel are empowered to deliver the objectives	(b) Strong linkage to the Dam Safety objectives, and personnel are empowered to deliver the objectives, and influence dam safety outcomes in wider organization	afaxenta
	(c) Little or no attention by senior management to dam safety roles and responsibilities	(c) Limited review of roles and responsibilities by senior management	(c) Senior management reviews and confirms roles and responsibilities after organizational changes	(c) Senior management regularly reviews roles and responsibilities, including after organizational changes	
Communications within the	(a) Little or no communication between levels and reporting of dam safety issues and risks to Senior and Executive managers	(a) Limited communication between levels and reporting of dam safety issues and risks to Senior and Executive managers	(a) Structured communication between levels and reporting of dam rafety issues and risks to Senior and Executive managers with some feedback.	(a) No impediments to effective and prompt communication across organization. Reporting of dam safety issues and risks to Senior and Executive managers with feedback.	Generally meeting Best Practice level, and also developin trialing and implementing new technology, methods and systems
organization, and the community, to support delivery of the Dam Safety Program]	(b) Little or no provision of dam safety education and awareness information for external communication	(b) Dam Safety team provides necessary dam safety education and awareness information for communication to external parties	(b) Dam Safety team involved in external communication of dam safety education and awareness information	(b) High level of Dam Safety team involvement with planning and external communication of dam safety education and awareness information	
10-E. Resourcing	(a) Little or no recognition of resourcing needs by organization	(a) Minimum resourcing needs are met by organization	(a) Resources provided by organization are generally adequate	(a) Organization's dam safety resources provide high value and protection	Generally meeting Best Practice level, and also developin trialing and implementing new technology, methods and
and financial resources for delivery	(b) Dam safety program deliverables are commonly deferred due to lack of resources	(b) Limited timely completion of key dam safety program deliverables	(b) Timely completion of most key dam safety program deliverables	(b) Timely and thorough completion of all key dam safety program deliverables	systems
of the Dam Safety Program]	(c) Little or no consideration of succession requirements	(c) Incomplete consideration and implementation of succession requirements	(c) Generally complete succession planning and implementation	(c) Proactive implementation of succession planning to provide continuity of knowledge and capability	

89

Limits of Physical Inspections

- Latent conditions below the surface cannot always be identified by physical inspection
- Knowledge of design construction and performance needed
- Additional investigations may be needed

Comprehensive Reviews

- Review of design, construction, and performance against current state of practice and knowledge – never done for Oroville spillway
- Questions to ask:
 - Consistent with current practice?
 - If not, do differences pose risks?
 - If there is not enough information to know, does possible risk justify further investigation

Attention to Appurtenant Structures

- Sometimes eclipsed by main dam
- Evaluation should be commensurate with risks
- May require specialized qualifications

Potential Shortcomings of PFMAs

- Focus on uncontrolled release of the reservoir
- A PFM can be dominated by a single factor (e.g. geology for Oroville Dam spillways)
- Dependent on experience of team members' knowledge and experience
- Dependent on thoroughness of PFM identification
 brainstorming
- May not fully address complicated systems

PFMs to be Considered

- Think about risks associated with events or component failures that may not result in uncontrolled release of reservoir, but could still be highly consequential.
 - No loss of water containment, no loss of life,
 - Non-catastrophic environmental effects
 - BUT loss of flow control and a large public evacuation

Reliance on Regulatory Programs

- Focused on uncontrolled release of reservoir
- May not address risks from component failures short of release
- Compliance may not fulfill owner's legal responsibilities

Independent Forensic Team Report Oroville Dam Spillway Incident

- https://damsafety.org/sites/default/files/files/ Independent%20Forensic%20Team%20Report %20Final%2001-05-18.pdf, or
- Google "Oroville Dam forensic report"

Thank You!

