

Other Causes of Dam Failures

- Structural Failures
- Earthquake
- Trees
- Animal Burrows
- Poor Design
- Poor Construction
- Neglect / Lack of Maintenance
- Lightning

Dam Hazard Clas	ssifi	cations
• Low Hazard	=	Class "a"
Significant Hazard		Class "b"
• High Hazard		Class "c"

MDE Dam Hazard Classifications

- Low Hazard Potential loss of life is very unlikely due to low danger flood depths.
- Significant Hazard Potential loss of life is possible with no more than 6 lives in jeopardy and flooding to no more than two isolated houses and downstream roads.
- High Hazard Potential loss of life is very likely with more than 6 lives in jeopardy, and serious damage to residential, commercial, or industrial buildings, and downstream roads.

Loss of Life from Dam Failure	Varies with Warning Time				
Warning time < 15",	Loss of Life = .5(PAR)				
Warning time 15" to 90",	Loss of Life = PAR ⁶				
Warning time > 90",	Loss of Life = .0002(PAR)				
Source: "A Procedure for Estimating Loss of Life Caused by Dam Failure", USBR, Wayne Graham, 1999					

Incremental Flood Analysis

Flood Conditions without & with Dam Failure

Storms to Evaluate

- Sunny Day (Normal Pool)
- 100-Year Storm
- Brim-up Storm (fill reservoir to top of dam)
- 1/2 of Probable Maximum Flood
- Full Probable Maximum Flood

Probable Maximum Flood (PMF)

PMF - the largest flood considered possible based on the most severe combination of meteorological and hydrologic conditions that are reasonably possible.

Hydrology for Dams

- GISHydro2000 Model > 400 acres
- TR-20 Models
- HEC-1 Model
- HydroCad Model (new dam break added)

Web Sites:

www.gishydro.umd.edu

www.hydrocad.net

Dam Break Models

- HEC-1 Computer Model
- HECRAS Computer
- NWS DAMBRK or FLDWAV
- NWS Simple DAMBRK Equation
- HEC-HMS (New HEC-1 but not recommended)

Learn HEC1 Model

- ALL DATA IS ENTERED IN FIELDS OF 8 WITH TEN COLUMNS MAXIMUM UNLESS Y
- THE HERY CARD ALLONG YOU TO USE A PARE PORMAT WHERE YOU DON'T HAVE TO RET ABOUT COLUMN LOCATIONS. You place a comma between data entries. NE
- TERSED
- THE MEXT THREE CARDS ARE PROJECT DESCRIPTION CARDS, USE ONE OR MORE OF RESE CARDS 9 Your Dan Name, File Name (*.dat)
- D 100 YEAR ROUTING WITH & WITHOUT DAM FAILURE (DESCRIPTION) D HYDROLOGIC DATA OBTAINED FROM 11/79 SCS (USE AS MANY OR ONLY ONE I
- Next card is the time computing ordinates 6 minutes interval and 30 ordinates
 T
 5
 300
- ninimum = 5 10 5
- * The next card says that there are 2 jobs (without failure & with failure) $\pi = 2$

Breach Parameters for HEC-1 Model

- Breach Bottom Elevation
- Breach Top Elevation (Trigger Elevation)
- Bottom Breach Width
- Breach Side Slope
- Time of Failure

Suggested Breach Parameters for Earth Dams			
Source	Average Breach Width (ft)	Breach Side Slope (1V:ZH)	Breach Failure Time (hrs)
NWS (1988)	1H to 5H	Z = 0 to 1	0.1 to 2.0
COE (1980)	0.5H to 4H	Z = 0 to 1	0.5 to 4
FERC (1991)	1H to 5H	Z = 0 to 1	
USBR (1982)			0.00333b
Boss Dambrk (1988)			
Harrington (1999)	1H to 8H	Z= 0 to 1	H/120 to H/180

Froelich Breach Predictor Equations
$b = 9.5 K_0 (V_s H)^{0.25}$
$T_{f} = 0.59 (V_{s}^{0.47}) / H^{-0.91}$
b = Average Breach Width (ft),
= Time of Failure (hrs)
$K_0 = 0.7$ for Piping & 1.0 for Overtopping Failure
Vs = Storage Volume (ac-ft)
H = Selected Failure Depth (ft) above Breach Bottom
T_f = Time of Failure (hrs, ~H/120 or Minimum of 10 Min)

Dam Break Models

NWS Simple Dam Break Equation

$Q_{p} = Q_{0} + 3.1B_{r}(C/(T_{f} + C/\sqrt{H}))^{3}$

- $Q_b = Breach + Non-Breach Flow (cfs)$
- $Q_0 =$ Non-Breach Flow (cfs)
- **B**_r = Final Average Breach Width (ft, ~ 1H to 5H)
- C = 23.4 As/Br
- A_s = Reservoir Surface Area (ac) at Failure Elevation
- H = Selected Failure Depth (ft) above Final Breach Elevation
- $T_{\rm f}$ = Time of Failure (hrs, ~H/120 or Minimum of 10 Min)

Dam Break Models

• SCS (NRCS) Breach Formula

$$Q_{\rm b} = 3.2 {\rm H}^{5/2}$$

- Usually Conservative Estimate of Breach Flow but not Always
- Storage Volume not included in Formula
- Similar to a V-Notch Weir Formula

NWS S	IMPLE	DAMBR	K EQU	ATION:	NRCS N	ID-378 EQUATION:
Q_{NWS}	$= 3.1B_{0}$	(C/T_f)	+C/	$\left H\right ^{3}$	Q_{NI}	$_{RCS} = 3.2 H^{2}$
3r = 31 H = He C = 23 As = S $\Gamma_{r} = H/$ = Min	H (Brea eight of 4As/Br urface / 120 (Fa nimum	Ch Widti Water a = 7.8As Area at F ilure Tir Fime of	h, ft) t failure 5/H 5ailure (ne, hrs) 10 min	e, ft (acres) = 0.17 h		
H [ft]	As [ac]	T, [hrs]	с	Q _{NWS} [cfs]	Q _{NRCS} [cfs]	
5.0	0.3	0.17	0.47	88	179	
5.0	1.0	0.17	1.56	270	179	
5.0	5.0	0.17	7.80	451	179	
10.0	0.3	0.17	0.23	79	1012	
10.0	1.0	0.17	0.78	610	1012	
	5.0	0.17	3.90	1996	1012	
	0.5	0.17	0.26	184	2789	
15.0	1.0	0.17	0.52	696	2789	
15.0	5.0	0.17	2.60	4117	2789	
	1.0	0.17	0.39	648	5724	
	3.0	0.17	1.17	3705	5724	
	10.0	0.17	3.90	9750	5724	
20.0				10000	22222	
20.0 40.0	10.0	0.33	1.90	10605	02002	

Dam Break Models

- NWS Simple Dam Break Equation
 - Developed from NWS Full Dam Break Model
 - Based on Falling Head Weir Flow
 - Input Non-Breach Flow, Surface Area, Selected Failure Depth, & Time of Failure

Dam Break Models

NWS Full Dam Break Model (DAMBRK)

- Very Difficult to Learn & Temperamental
- Uses Unsteady State Dynamic Routing by a Finite Difference Technique
- Includes Pressure & Acceleration Effects
- A Hydrograph must be Inputted
- Has Been Replaced by NWS Flood Wave Model (FLDWAV), Free Download at:

Recommended Dam Failure Methods for Small Dams 15 feet or less in height

- Use NWS SMPDBK Equation to determine Breach Flows
- Use HECRAS Model to determine Downstream Flood Depths
- Stop Danger Reach when roads flood < 1.5 feet, and Flooding to Houses & Buildings < 6 inches

Recommended Dam Failure Methods for Dams > 15 & < 75 feet high

- Use Hec-1 Model for Breach Flows
- Use HECRAS Model to determine Downstream Flood Depths & USBR Hazard Charts to determine Flood Dangers
- Stop Danger Reach when Increased Flooding < 1 foot or no structures flooded

Recommended Dam Failure Methods for Dams > or = 75 feet high

- Use HMR-52 & HEC-1 Model for Hydrology
- Use HECRAS Model for Breach Flow
- Use the Unsteady HECRAS Model if feasible
- May also use DAMBRK , or FLDWAV Models for Breach Flow

Nagels Breach Statistics

Piping Failure Breach Width = 60 ft = 4H Side Slope Z = 0.4 Time of Failure <20 min

Foreman Dam Breach Statistics

Overtopping Failure Breach Width = 85 ft = 8H Side Slope Z = 0.5 Time of Failure <30 min

Frazer Dam Breach Statistics

Overtopping Failure Breach Width = 120 ft = 6H Side Slope Z = 0.6 Time of Failure Unknown

Jones Lake Dam Breach Statistics

Piping Failure Breach Width = 103 ft = 6H Side Slope Z = 0.6 Failure Time Unknown

Sassafras Dam Breach Statistics

Overtopping Failure Breach Width = 47 ft = 4H Side Slope Z = 0.2 Failure Time = 15 Min

Stubbs Dam Breach Statistics

Piping Failure Breach Width = 30 ft = 2.5H Side Slope Z = 0.2 Failure Time Unknown

MDE Dam Break Web Site

Go to www.mde	state.md.us & Search for technical reference
Microsoft Word . Documents	 Hazard Guidelines Model Emergency Action Plans
Microsoft Excel Spreadsheets	 NWS Dam Break Equation USBR Hazard Graphs Hydrology Spreadsheets Hydraulic Spreadsheets
Executable Programs	 HEC-1 Program NWS Simple Dam Break Program Sample Data for HEC-1 & NWS Simple Dam Break

