Intended for Maryland Department of the Environment

Document type
Construction Permit Application

Date
June 2025 (Revision to April 2025 Application)

W.R. GRACE & CO.-CONN. PERMIT TO CONSTRUCT APPLICATION

W.R. GRACE & CO.-CONN. HAS REDACTED INFORMATION FROM THIS APPENDIX PURSUANT TO A CLAIM OF CONFIDENTIALITY

CONTENTS

1.	INTRODUCTION	1
2.	FACILITY AND PROJECT DESCRIPTION	2
2.1	ICO Line 3	2
2.2	MAGNAPORE® Catalyst Plant (MAG / MGX) Modifications	4
3.	EMISSIONS CALCULATIONS	5
3.1	Emission Calculation Methodology	5
3.1.1	Step 1: Components of Project Emission Increases	5
3.1.1.1	Potential Emissions	6
3.1.1.2	Projected Actual Emissions (PAE)	6
3.1.1.3	Baseline Actual Emissions (BAE)	6
3.1.2	Step 2: Project Netting	6
3.2	ICO Line 3	7
3.2.1	Process Units	7
3.2.2	Combustion Unit	8
3.2.2.1	Criteria Pollutants	8
3.2.2.2	Greenhouse Gases (GHGs)	8
3.3	MAGNAPORE®	8
3.4	Site-Wide Emissions Summary	10
4.	TOXIC AIR POLLUTANT ANALYSES	11
5.	FEDERAL AND STATE REGULATORY APPLICABILITY	12
5.1	New Source Review	12
5.2	Title V Operating Permits	12
5.3	New Source Performance Standards	13
5.4	National Emission Standards for Hazardous Air Pollutants	13
5.4.1	40 CFR 63 Subpart A – General Provisions	13
5.4.2	40 CFR 63 Subpart VVVVVV – Chemical Manufacturing Area	
	Sources	13
5.4.3	Non-Applicability of All Other NESHAP	14
5.5	Compliance Assurance Monitoring	14
5.6	Code of Maryland Regulations (COMAR) Applicability	15
5.6.1	COMAR 26.11.02.09 – Sources Subject to Permits to Construct	
	and Approvals (APPLICABLE)	15
5.6.2	COMAR 26.11.02.10 – Sources Exempt from Permits to	
	Construct and Approvals (APPLICABLE)	15
5.6.3	COMAR 26.11.02.11 – Procedures for Obtaining Permits to	
	Construct Certain Significant Sources (NOT APPLICABLE)	15
5.6.4	COMAR 26.11.02.12 – Procedures for Obtaining Approvals of	
	PSD Sources, and NSR Sources, Permits to Construct, Permit to	
	Construct MACT Determinations on a Case-by-Case Basis in	
	Accordance with 40 CFR Part 63, Subpart B, and Certain 100-	
	ton Sources (APPLICABLE)	15
5.6.5	COMAR 26.11.02.13 – Sources Subject to State Permit to	
	Operate (NOT APPLICABLE)	15

PUBLIC VERSION

5.6.6	COMAR 26.11.02.14 – Procedures for Obtaining State Permits	
	to Operate and Permits to Construct Certain Sources and	
	Permits to Construct Control Equipment on Existing Sources	
	(NOT APPLICABLE)	16
5.6.7	COMAR 26.11.03 – Permits, Approvals, and Registration – Title	
	V Permits (APPLICABLE)	16
5.6.8	COMAR 26.11.09 – Control of Fuel-Burning Equipment,	
	Stationary Internal Combustion Engines, and Certain Fuel-	
	Burning Installations (APPLICABLE)	16
5.6.9	COMAR 26.11.15 – Toxic Air Pollutants (APPLICABLE)	16
5.6.10	COMAR 26.11.17 – Nonattainment Provisions for Major New	
	Sources and Major Modifications (NOT APPLICABLE)	16
5.6.11	COMAR 26.11.19 – Volatile Organic Compounds from Specific	
	Processes (APPLICABLE)	16
6.	PUBLIC ENGAGEMENT AND ENVIRONMENTAL JUSTICE	17
6.1	Public Meetings	17
6.2	Maryland EJ Screen Report	17

TABLES

Table 1. Project Emissions Increases Compared with PSD Significant EmissionRates10

APPENDICES

Appendix 1

Construction Permit Application Forms

Appendix 2

Site Location Map, Process Flow Diagram, and Plot Plan

Appendix 3

Detailed Emissions Calculations

Appendix 4

Control Equipment Specification Sheets

Appendix 5 Toxics Modeling Reports

Appendix 6

Public Feedback and Maryland EJ Screen Report

1. INTRODUCTION

W.R. Grace & Co.–Conn. (the applicant) owns and operates a facility in Curtis Bay, Baltimore, Maryland. The applicant is requesting a permit to construct at the current facility, which maintains a Part 70 operating permit (Permit No. 24-510-0076) in accordance with the requirements in Title 26, Subtitle 11, Chapter 2.12 (26.11.2.12) of the Code of Maryland Regulations (COMAR). Permitted sources at the facility currently include calciners, dryers, crushers, grinders, belt conveyors, pneumatic conveyors, screening/classifying devices, storage silos, and fabric filters for product collection and air pollution control.

The applicant is proposing to make modifications and add new equipment, which impact the facility's Part 70 operating permit. Specifically, the applicant is proposing to: (1) install a new production line at the Industrial Catalyst Operation Plant, and (2) modify the existing expansion side of the MAGNAPORE® Catalyst Plant.

This application includes the following appendices:

- Appendix 1. Construction Permit Application Forms
- Appendix 2. Site Location Map, Process Flow Diagram, and Plot Plan
- Appendix 3. Detailed Emissions Calculations
- Appendix 4. Emission Source and Control Equipment Specification Sheets
- **Appendix 5.** Toxics Modeling Reports
- Appendix 6. Maryland EJ Screen Report

2. FACILITY AND PROJECT DESCRIPTION

The W.R. Grace & Co.'s Grace Curtis Bay facility is located at 5500 Chemical Road, Baltimore, Maryland (herein referred to as the "Facility," or "Grace"), and the facility currently operates under a Part 70 operating permit (Permit No. 24-510-0076) most recently issued on September 1, 2019, by the Maryland Department of the Environment (MDE). Grace submitted a timely Part 70 / Title V renewal application for its permit expiring August 31, 2024, which MDE received on August 31, 2023, so the site continues to operate under the existing permit until the renewal is issued.

Existing emissions sources at the Facility consist of calciners, dryers, crushers, grinders, belt conveyors, pneumatic conveyors, screening/classifying devices, storage silos, and fabric filters for product collection and air pollution control located throughout. Grace is a multi-product specialty inorganic chemicals manufacturing facility, yielding silica-based and alumina-based products. Although Grace operates many plants at the Facility, only the Industrial Catalyst Operation (ICO) and the MAGNAPORE® Catalyst (MAG/MGX) Plants are relevant to this application. Currently, at the ICO Plant, Grace manufactures silica support products, and at the MAG/MGX Plant, Grace manufactures MAGNAPORE® products, a polymerization catalyst.

At the ICO Plant, Grace will install a new production line (herein referred to as "ICO Line 3") to meet projected growth of silica supports.

At the MAGNAPORE® Catalyst Plant, Grace will modify the expansion side (MGX) of the plant to increase production capacity in order to meet increased customer demands. The MAGNAPORE® Catalyst Plant consists of two plants: the original manufacturing facility constructed in 1980 (MAG), and an expansion manufacturing facility constructed in 1990 (MGX). The proposed modifications herein will affect both the MAG and MGX facilities as delineated below in **Section 2.2**. Grace proposes to implement these modifications through this Permit to Construct application.

Given the emissions associated with the proposed projects, the facility will continue to be classified as a major source under the Clean Air Act. However, the entire project does not qualify as a major modification within New Source Review (NSR) construction permitting, which is demonstrated in this application. Grace requests that MDE issue a Permit to Construct to reflect the proposed modifications below.

The following sections describe the proposed projects in further detail. A site location map, a process flow diagram, and a plot plan are included in **Appendix 2**.

2.1 ICO Line 3

The ICO plant currently consists of two lines, identified as ICO East Line and ICO West Line. Grace will be constructing a new production line, ICO Line 3, which will be similar to the existing ICO West production line. There are a few key distinctions between the ICO West Line and ICO Line 3 production lines. First, ICO Line 3 will not have the capability to add chromium. Second, there will not be a sand mill. Lastly, instead of a set of screens and air classifiers equipped to ICO West Line, Grace will utilize a coarse classifier. A fines classifier will be installed in the ICO Line 3, similar to ICO West Line. The secondary coarse and fine classifiers installed in the ICO West Line will not be replicated in the ICO Line 3. ICO Line 3 will utilize existing silos and truck-loading equipment that are part of the ICO West unit.

The new emission units and inherent controls units at ICO Line 3 will consist of:

- one (1) mill feed tank (ET-30102),
- two (2) Line 3 mills (EM-30702, EM-30712),
- one (1) mill receiver tank (ET-30103),
- one (1) spray dryer feed tank (ET-30104),
- one (1) Line 3 spray dryer (EST-35801), with a spray dryer cyclone (EC-35601) and baghouse (EBH-35601),
- one (1) coarse classifier feed hopper (EV-35114), with a bin vent (EBV-35614),
- one (1) coarse classifier (ECL-35704), with a coarse classifier baghouse (EBH-35604),
- one (1) coarse sacking station (ES-35604),
- one (1) fines classifier feed hopper (EV-35115), with a bin vent (EBV-35615),
- one (1) fines classifier (ECL-35705), with a fines classifier baghouse (EBH-35605),
- one (1) fines sacking station (ES-35605),
- one (1) finished product packaging silo (EV-35125), with a bin vent (EBV-35606),
- two (2) drum packaging stations (ES-35606, ES-35607),
- one (1) sack filling station (ES-35608),
- one (1) fugitive dust collector with a baghouse (EBH-35671),
- one (1) central vacuum system with a baghouse (EBH-35680), and
- one (1) indoor emissions via building vents.

The new emission points at ICO Line 3 will consist of:

- ICO-130: Line 3 spray dryer (EST-35801) with a spray dryer cyclone (EC-35601) and baghouse (EBH-35601),
- ICO-131: Coarse classifier (ECL-35704) with a coarse classifier baghouse (EBH-35604), fines classifier (ECL-35705) with a fines classifier baghouse (EBH-35605), and cartridge filter (EBH-35670),
- ICO-132: Finished product packaging silo (EV-35125) with a bin vent (EBV-35606),
- ICO-133: Fugitive dust collector with a baghouse (EBH-35671),
- ICO-134: Central vacuum system with a baghouse (EBH-35680), and
- ICO-135: Indoor emissions via building vents.

In addition to the inherent control devices which are used for material recovery, Grace is installing a single cartridge filter (EBH-35670) controlling the coarse classifier and fines classifier. Additionally, as part of the ICO Line 3 project, Grace will replace two (2) existing hammermills (H-7701S, H-7701N) that are shared between all the ICO Lines. These two hammermills' emissions will be routed to the existing stack ICO-60

The emission units at ICO Line 3 that emit fugitives, and whose emissions are captured by the fugitive dust collector (EBH-35671) will consist of:

- one (1) coarse sacking station (ES-35604),
- one (1) fines sacking station (ES-35605),

The emission units at ICO Line 3 that emit indoors, and whose emissions are captured by indoor emissions via building vents, will consist of:

- one (1) mill feed tank (ET-30102),
- two (2) Line 3 mills (EM-30702, EM-30712),
- one (1) mill receiver tank (ET-30103),
- one (1) spray dryer feed tank (ET-30104),

- one (1) coarse classifier feed hopper (EV-35114), with a bin vent (EBV-35614), and
- one (1) fines classifier feed hopper (EV-35115), with a bin vent (EBV-35615).

Existing emission units and controls units, which include the hydrogel hopper (V-1101) with two (2) cartridge collectors (BH2209N, BH2209S) and hammer mill slurry tank (T-1102) which will be shared across all the ICO lines, and the classifier (M-716) with a classifier ultra fine cyclone (C-216) and a cartridge collector (BH-216), both truck silos (T-184, T-185) with their respective bin vents (BV-284, BV-285), and the Bulk Truck Portable Fugitive Product Collector with its cartridge collector (BH-218) will be shared between the ICO West Line and the new ICO Line 3. The increase in production from ICO Line 3 is anticipated to lead to a slight increase in actual emissions from these existing units but will not affect the potential emissions from them. Accordingly, due to the increased uptime, projected actual emissions across the shared equipment in the ICO lines have been calculated based on a maximum of 365 operational days per year.

2.2 MAGNAPORE® Catalyst Plant (MAG / MGX) Modifications

The existing MAGNAPORE® Catalyst Plant currently uses a total of nineteen (19) washpots which are allocated between MAG and MGX, to complete the gel washing step that is integral to production of the MAGNAPORE® catalyst. This MGX Plant modification will install four (4) new washpots and their associated wash solution, and utility supply and return manifolds in the MGX gel washing area. This modification also installs support infrastructure in the MGX gel washing area to accommodate the storage of 12-16 more wash baskets. These changes will increase production capacity of the MAG / MGX facilities by approximately 245 metric tons (mT) per year.

3. EMISSIONS CALCULATIONS

This section summarizes the emission calculation methodologies for the emission sources that comprise the proposed new ICO Line 3 and MAGNAPORE® Projects. A more detailed set of documented emission calculations is presented in **Appendix 3** of the application. Emission source and control equipment specification sheets are presented in **Appendix 4** of the application.

3.1 Emission Calculation Methodology

When calculating project-related emissions increases (referred to as "project emissions increase" or PEI), different methodologies are applied depending on whether the emissions unit is new or existing. Therefore, it is crucial to distinguish whether a source impacted by the proposed project is classified as a new or existing emissions unit:

(i) A new emissions unit is any emissions unit that is newly constructed and that has existed for less than two years from the date such emissions unit first operated.¹

(ii) An existing emissions unit is any emissions unit that does not meet the requirements in paragraph 40 CFR 52.21(b)(7)(i) of this section (i.e., is not a "new emissions unit").² A replacement unit, as defined in paragraph 40 CFR §52.21(b)(33) of this section, is an existing emissions unit.

Since the Facility is an existing major stationary source for purposes of NSR, the full PSD and NSR permitting requirements will apply to each regulated pollutant if the proposed project meets the definition of a major modification. A major modification is a change to a major stationary source that results in both a significant emissions increase and a significant net emissions increase, per 40 CFR §52.21(b)(2)(i).

For PSD, and pursuant to 40 CFR 52.21(b)(40), a significant emissions increase, for a regulated NSR pollutant, refers to an emissions increase that is significant as defined in 40 CFR §52.21(b)(23) (i.e., the significant emission rate [SER]) for that pollutant. For pollutants with a SER, the net creditable emission increases and decreases over the contemporaneous period, as defined in 40 CFR §52.21(b)(3), are estimated, and the net emissions increase is calculated for comparison with the SERs.

Step 1 is referred to as the 'project emissions increase (PEI)' analysis, as it accounts only for emissions directly related to the proposed project. If the estimated emission increases from Step 1 exceed the major modification thresholds, then a Step 2 analysis is performed, commonly referred to as netting analysis. The netting analysis includes all projects within the contemporaneous period for which creditable emissions increases or decreases occurred.

3.1.1 Step 1: Components of Project Emission Increases

The project emissions increase is the difference between a future emission level (either potential emissions or projected-actual-emissions (PAE)) and the baseline actual emissions (BAE).

¹ 40 CFR §52.21(b)(7)(i)

² 40 CFR §52.21(b)(7)(ii)

3.1.1.1 Potential Emissions

For new emission units, the calculated project emissions increase is the annual potential emission rate of the unit considering inherent physical and operational constraints on the production capacity of the equipment and any federally enforceable emissions/operating limitations, where applicable.

3.1.1.2 Projected Actual Emissions (PAE)

Projected Actual Emissions, as defined by 40 CFR §52.21(b)(41), refer to the maximum annual rate in tons per year at which an existing emissions unit is projected to emit a regulated NSR pollutant in within 5 years (12-month period) of resuming regular operation, or within 10 years if the project increases the unit's design capacity or potential to emit and results in a significant emissions or net emissions increase.

For the purpose of the project, PAE is calculated by dividing the maximum potential operating days a unit could operate by the average of 24-month operating days (2021 and 2022). This resultant ratio is then multiplied with the baseline emissions of the existing units to calculate the PAE.

3.1.1.3 Baseline Actual Emissions (BAE)

For existing emission units being modified or affected, Baseline Actual Emissions (BAE) are determined following the definitions outlined in 40 CFR §52.21(b)(48)(i) and (ii) and COMAR 26.11.17.01(3). These regulations establish how to calculate emissions increases associated with the proposed project based on historical emissions data.

For other existing emissions units, BAE is similarly calculated using the average annual emissions rate during any consecutive 24-month period within the five years preceding the application submission. However, the Department may allow the use of an alternative 24-month period from the past 10 years if it is shown to more accurately reflect normal operations. This provision is detailed in COMAR 26.11.17.01(3)(c).

For any new emissions unit included in the project scope, the BAE is set to zero. The baseline period can be selected individually for each pollutant; however, once chosen for a specific pollutant, the same baseline period must be applied to all new, modified, and associated emissions units within the project scope. The selection process involves reviewing historical production and emissions data from the past five years to identify a representative 24-month rolling average period of production or annual emissions.

Since the proposed project at the Facility is targeted for a Q1 2025 application submittal date, the 5year period immediately preceding this date begins Q1 2020. Thus, for the project, the baseline period selected for the analysis for each pollutant is the 24-month period ending December 2022 (i.e., January 2021 to December 2022), which has the highest average emissions."

3.1.2 Step 2: Project Netting

For projects such as ICO Line 3, which includes both existing and new emission units, a hybrid approach can be taken when the Project Netting is calculated by summing the total Potential to Emit (PTE) from new units and the PAE from existing units, then subtracting the BAE of existing units. For new emission units, the PAE and the BAE is typically zero tons per year (tpy). Within the ICO Line 3 project, modified emission units are treated as new emission units.

Project Netting: Total PTE + PAE - BAE

For projects where existing emission units are utilized more, such as the increased utilization of existing assets in the Magnapore unit, the projected actual emissions for all existing emission units have been recalculated to reflect the increased production resulting from the project changes. This project entails no potential emissions as it does not involve adding new emission units. The net project emissions are determined by subtracting the BAE from the PAE.

3.2 ICO Line 3

The new ICO Line 3 production line at Curtis Bay will largely be a replica of the existing ICO West production unit, with a few key exceptions as described in **Section 2.1**. ICO Line 3 consists of a few ICO West Line emission units that will be integrated into the ICO Line 3 process line. For the new emission units, potential emissions were calculated based on the design and production capacity, and for the existing emissions units from the ICO West line, PAE and BAE are calculated as discussed in **Section 3.1**.

3.2.1 Process Units

The new process units Line 3 Spray Dryer (EST-35801), Coarse Classifier (ECL-35704), Fines Classifier (ECL-35705), and Finished Product Packaging Silo (EV-35125), Fugitive Dust Collector (EBH-35671), and Central Vacuum System (EBH-35680) have respective inherent control devices and stacks. However, indoor emissions via building vents do not have such control measures. The particulate matter (PM) and PM with an aerodynamic diameter less than ten micrometers and less than two and one-half micrometers, respectively (PM₁₀ and PM_{2.5}), emissions have been calculated via the maximum design air flow rate of the blower and the outlet grain loading for these emission units. PM_{2.5} emissions are assumed to be 95% of PM/PM₁₀ emissions.

Sample calculation:

Short Term PM and PM₁₀ Emissions
$$\left(\frac{lb}{day}\right)$$

= Design Air Flowrate (acfm) × Outlet Grain Loading $\left(\frac{grains}{acfm}\right) \times \frac{1lb}{7,000grains}$
 $\times \frac{60 \text{ minutes}}{1 \text{ hour}} \times \frac{24 \text{ hours}}{1 \text{ day}}$
Long Term PM and PM₁₀ Emissions $\left(\frac{ton}{year}\right)$
= Design Air Flowrate (acfm) × Outlet Grain Loading $\left(\frac{gr}{acfm}\right)$
 $\times \frac{1lb}{7,000grains} \times \frac{60 \text{ minutes}}{1 \text{ hour}} \times \frac{24 \text{ hours}}{1 \text{ day}} \times \text{ Annual No. of Days (365 days/year)} \div \frac{1 \text{ ton}}{2,000 \text{ lbs}}$

The Line 3 Spray Dryer (EST-35801) is equipped with an inherent control device, the Spray Dryer Cyclone (EC-35601) and Baghouse (EBH-35601) — which also serve as recovery devices. This device achieves a fine grain loading of 0.002 grains per actual cubic foot per minute (gr/acfm). Additionally, an external control device — a single Cartridge Filter with a 99.99% control efficiency — is equipped to control emissions from both the Coarse Classifier (ECL-35704) and Fines Classifier (ECL-35705).

Additional new emission units in ICO Line 3, which emit fugitive emissions, are controlled by a Fugitive Dust Collector equipped with a baghouse (EBH-35671), and those new emission units that release indoor emissions will be considered fugitive emissions discharged via building vents (ICO-135). The Hammer Mills (H-7701S and H-7701N) discharge their fugitive emissions through the existing stack

ICO-60. Also, note that the Hammer Mills in ICO Line 3 are replacing the existing Hammer Mills in ICO West Line. Since they are not identical replacements, they are considered new emissions units for the purpose of the project.

For those units repurposed from the existing ICO West Line — Hydrogel Hopper (V-1101), Hammer Mill Slurry Tank (T-1102), Classifier (M-716), Truck Silos (T-184 and T-185), and Bulk Truck Portable Fugitive Product Collector — their PAE and BAE are calculated as explained in **Section 3.1** to integrate them into the ICO Line 3 process, assuming a maximum of 365 operating days. The detailed emission calculation is provided in **Appendix 3**. The fugitive emissions from the existing Hammer Mill Slurry Tank (T-1102) are directed to the existing ICO-46 stack in the ICO West Line. The emissions from Bulk Truck Portable Fugitive Product Collector (BH-218), which are indoor emissions, will be vented through ICO-51 and ultimately discharged via the building vent ICO-47 in the ICO West Line. Indoor emissions are considered as insignificant activities.

3.2.2 Combustion Unit

ICO Line 3 includes a new Spray Dryer with a burner rated at a 11 MMBtu/hr. The criteria pollutants and greenhouse gas emissions from the combustion unit are calculated as discussed below.

3.2.2.1 Criteria Pollutants

Potential emissions of PM, PM₁₀, PM_{2.5}, sulfur dioxide (SO₂), carbon monoxide (CO), volatile organic compounds (VOC), and lead (Pb) are estimated using reference emission factors for natural gas combustion provided in the United States Environmental Protection Agency (USEPA's) Compilation of Air Pollutant Emission Factors reference document (i.e., AP-42; 5th Edition). The spray dryer burner is equipped with an ultra-low NOx burner, which has a vendor-specific NO_x emission rate of 10 ppm at 3% O₂. For this application, reference emission factors are taken from Table 1.4.1 and Table 1.4.2 found in Chapter 1.4 for Natural Gas Combustion (July 1998).

3.2.2.2 Greenhouse Gases (GHGs)

Potential emissions of methane (CH₄), carbon dioxide (CO₂) and nitrous oxide (N₂O) are estimated using reference emission factors provided in Table C-1 and C-2 of Subpart C to USEPA's Mandatory Reporting Rule (i.e., 40 CFR Part 98) corresponding to natural gas combustion operations. Potential carbon dioxide equivalent (CO₂e) emissions are estimated using the above-referenced emission factors in concert with the appropriate global warming potentials (GWP) for CO₂, CH₄, and N₂O provided in 40 CFR 98, Subpart A, Table A-1.

3.3 MAGNAPORE®

The production capacity of the MAG/MGX unit will increase with the addition of four new open-top, low vapor pressure washpots and is considered a modification to an existing process unit. To support the additional production at MAG/MGX, the existing process boilers (POW) will be required to generate additional steam.

The Project Netting was determined by calculating the difference between the PAE for the existing emission units, assuming a maximum of 365 operating days, increased production capacity, and increased steam demand, and the BAE, which is the average emissions from 2021 and 2022 for MAG/MGX process equipment and POW combustion related emissions attributable to supplying steam to MAG/MGX.

Production capacity was calculated using a material balance, taking into consideration batch timing and finished product yield and can be found in **Appendix 3**.

Process related emissions from MAG/MGX are calculated using a combination of the calculated production capacity and maximum operating days.

Combustion related emissions from MAG/MGX are calculated using the total maximum burner capacity. Potential emissions of PM, PM₁₀, PM_{2.5}, sulfur dioxide (SO₂), nitrogen oxides (NO_x), carbon monoxide (CO), volatile organic compounds (VOC), and lead (Pb) are estimated using reference emission factors for natural gas combustion provided in the United States Environmental Protection Agency (USEPA's) Compilation of Air Pollutant Emission Factors reference document (i.e., AP-42; 5th Edition). For this application, reference emission factors are taken from Table 1.4.1 and Table 1.4.2 found in Chapter 1.4 for Natural Gas Combustion (July 1998).

Combustion related emissions from the existing boilers (POW) to support additional steam demand from MAG/MGX are also considered. Utilizing the same time period between 2021 and 2022, the average ratio of MAG/MGX steam usage to annual production volumes as well as the average ratio of natural gas usage to steam production at POW are used to project the increase in natural gas usage at POW. Similar to the MAG/MGX criteria pollutant emissions, AP-42 reference emissions factors were used. Detailed calculations can be found in **Appendix 3**.

For both MAG/MGX and POW, potential emissions of methane (CH₄), carbon dioxide (CO₂) and nitrous oxide (N₂O) are estimated using reference emission factors provided in Table C-1 and C-2 of Subpart C to USEPA's Mandatory Reporting Rule (i.e., 40 CFR Part 98) corresponding to natural gas combustion operations. Potential carbon dioxide equivalent (CO₂e) emissions are estimated using the above-referenced emission factors in concert with the appropriate global warming potentials (GWP) for CO₂, CH₄, and N₂O provided in 40 CFR 98, Subpart A, Table A-1.

3.4 Site-Wide Emissions Summary

A detailed project netting analysis, including potential emissions for the new units, baseline actual emissions, and projected actual emissions for existing units, is provided in **Appendix 3**. A summary comparing the project's emission increases to the Major Modification SER is presented in **Table 1**.

Pollutant	Step 1- Project Emission Increases (tpy)	Major Modification Significant Emission Rate (tpy)	Major Permitting Triggered (tpy)	Step 2- Project Netting (tpy)	Major Permitting Triggered (tpy)
NOx	3.75	25	No	1.70	No
СО	9.26	100	No	5.83	No
PM	9.47	25	No	2.48	No
PM10	9.47	15	No	2.48	No
PM _{2.5}	9.04	10	No	2.38	No
SO ₂	0.07	40	No	0.04	No
VOC	1.85	25	No	0.43	No
Pb	5.53E-05	0.6	No	3.47E-05	No
CO ₂ e	14,519	-	N/A	8,843	N/A

Table 1. Project Emissions Increases Compared with PSD Significant Emission Rates

4. TOXIC AIR POLLUTANT ANALYSES

Projects in the ICO and MAG/MGX Plants change the process emissions of a Class II toxic air pollutant, ammonia, and are therefore subject to the requirements under COMAR 26.11.15 and COMAR 26.11.16. Grace is obligated to demonstrate that the updated ammonia emissions from the facility will not unreasonably endanger human health. This requirement is satisfied with a screening analysis to evaluate potential toxic effects other than cancer in line with MDE requirements.

An air toxics modeling protocol was submitted to MDE on November 10, 2024. MDE provided comments to Grace about the air toxics modeling protocol on November 22, 2024. The air toxics compliance demonstration for ammonia, prepared by POWER Engineers, can be found in **Appendix 5**.

Additionally, modifications in the MAG/MGX Plant may impact hexanol emissions, also a Class II TAP. Since the applicable screening level for hexanol was updated since the last TAPs compliance demonstration was performed, Grace is obligated to demonstrate that the proposed hexanol emissions from the facility will not unreasonably endanger human health. This requirement is also satisfied with a screening analysis to evaluate potential toxic effects other than cancer in line with MDE requirements.

An air toxics compliance demonstration for hexanol, prepared by POWER Engineers, can also be found in **Appendix 5**.

5. FEDERAL AND STATE REGULATORY APPLICABILITY

The following sections outline the federal and state air regulations potentially applicable to the proposed project. Specifically, potentially applicable requirements under New Source Review (NSR), Title V of the Clean Air Act Amendments, New Source Performance Standards (NSPS), National Emission Standards for Hazardous Air Pollutants (NESHAP), Compliance Assurance Monitoring (CAM), and COMAR Title 26, Subtitle 11 are discussed herein.

5.1 New Source Review

The federal NSR permitting program regulates emissions from major stationary sources of regulated air pollutants. The federal NSR program is comprised of two elements: Nonattainment NSR (NNSR) and PSD. NNSR permitting is applicable in areas that have been designated as nonattainment for a regulated pollutant under the National Ambient Air Quality Standards (NAAQS). PSD permitting applies in areas that have been designated as attainment or unclassifiable. The Curtis Bay facility is located in Baltimore City, which has been designated as a moderate nonattainment area for 2008 8-hour ozone, a serious nonattainment area for 2015 8-hour ozone, and attainment or unclassifiable for all other criteria pollutants.³ Ozone NNSR is attributable to emissions of NO_X and VOC, which are precursors to ground-level ozone formation. As such, NNSR is the relevant NSR permitting program for ozone and PSD is the relevant NSR permitting program for all other criteria pollutants.

The ozone NNSR major source thresholds from NO_x and VOC are 25 tpy each for sources in Baltimore City. The PSD major source threshold for all other regulated criteria pollutants is 100 tpy, since chemical manufacturing facilities are on the list of 28 sources for which there is a lower PSD major source threshold.⁴ The Facility is classified as an existing major stationary source for NSR. If the proposed project meets the definition of a major modification, the full PSD and NNSR permitting requirements will apply to that pollutant. In Baltimore City, the significant emission rates are 25 tpy for NO_x and VOC, 10 tpy for PM_{2.5}, 40 tpy for SO₂, 0.6 tpy for lead, 15 tpy for PM₁₀ and 100 tpy for CO. To simplify the permitting process, Grace will evaluate the ICO, MAG, and MGX Plants combined potential emissions to compare with the major modification thresholds. The combined project net emissions for this facility, shown in **Table 1**, are less than the NNSR major modification thresholds for NO_x and VOC and are less than the PSD major modification thresholds for all other regulated pollutants. As such, the facility will not trigger PSD or NNSR permitting.

5.2 Title V Operating Permits

The Title V operating permits program, promulgated in 40 CFR 70, requires a facility to obtain a Title V operating permit if it has potential emissions of a regulated criteria pollutant exceeding 100 tpy, of any single HAP exceeding 10 tpy, or of the aggregate of all HAP exceeding 25 tpy.

This facility is required to obtain a Title V operating permit due to its status as an NSR major source. Grace was issued a Title V operating permit in September 2019 and reapplied for another Title V operating permit which (application received by MDE on August 31, 2023).

³ Maryland Nonattainment/Maintenance Status for Each County by Year for All Criteria Pollutants. Available at: https://www3.epa.gov/airquality/greenbook/anayo_md.html

⁴ 40 CFR 52.21(b)(1)(i)(a)

5.3 New Source Performance Standards

NSPS, promulgated in 40 CFR 60, provide emissions standards for criteria pollutant emissions from new, modified, and reconstructed sources. NSPS standards are developed for particular industrial source categories, and applicability can be readily ascertained based on the source category covered.

There are no NSPS regulations that apply to the proposed project at the Curtis Bay facility. 40 CFR Subpart LL (Metallic Mineral Processing Plants) does not apply because Grace purchases previously processed materials and does not handle raw ores. Lastly, 40 CFR 60 Subpart Dc (Steam Generating Units) does not apply to Grace's permanent boilers because they were installed prior to the applicability date of the regulation. While the newer rental boiler (POW-06) recently became subject to 40 CFR 60 Subpart Dc, this project does not affect its applicability to nor its compliance with that rule.

5.4 National Emission Standards for Hazardous Air Pollutants

The NESHAP, promulgated in 40 CFR 63, regulate emissions of HAPs from specific source categories. A facility that has potential emissions exceeding 10 tpy for any individual HAP and/or emissions exceeding 25 tpy for the sum of all HAPs is classified as a major source of HAP emissions. A facility that is not a major source of HAPs is classified as an area source.

As previously established, the combined potential emissions of HAPs from the ICO, MAG, and MGX Plants are less than the HAP major source thresholds. As such, the Facility is considered an *area source* of HAP emissions. The following sections discuss the potentially applicable NESHAP standards to the proposed project at the multi-product specialty inorganic chemicals manufacturing facility.

5.4.1 40 CFR 63 Subpart A – General Provisions

NESHAP Subpart A provides generally applicable requirements for testing, monitoring, notifications, and recordkeeping. Any source that is subject to another subpart under 40 CFR 63 is also subject to Subpart A, unless otherwise stated in the specific subpart.

5.4.2 40 CFR 63 Subpart VVVVV – Chemical Manufacturing Area Sources

Subpart VVVVVV (6V), Chemical Manufacturing Area Sources (CMAS), applies to new and existing chemical manufacturing process units (CMPUs) that use or produce at least one of the HAPs listed in Table 1 of the rule in concentrations exceeding the thresholds listed in 40 CFR 63.11494(a)(2) and that are located at an area source of HAPs.⁵

The regulation defines a CMPU as follows:⁶

A CMPU includes all process vessels, equipment, and activities necessary to operate a chemical manufacturing process that produces a material or a family of materials described by North American Industry Classification System (NAICS) code 325. A CMPU consists of one or more unit operations and any associated recovery devices. A CMPU also includes each storage tank, transfer operation, surge control vessel, and bottoms receiver associated with the production of such NAICS code 325 materials.

The MAGNAPORE® manufacturing process meets the definition of a CMPU, as it produces via chemical reaction a product described under NAICS code 325. The CMPU uses chromium nitrate as a feedstock to produce MAGNAPORE®. Chromium compounds are a listed Table 1 HAP and are present in the

⁵ 40 CFR 63.11494(a)

⁶ 40 CFR 63.11494(b)

chromium nitrate feedstock in an amount exceeding 0.1% by weight. As such, the MAGNAPORE® manufacturing process meets the definition of an affected source under CMAS.

The silica-based manufacturing process in ICO Line 3 meets the definition of a CMPU, as it produces via chemical reaction a product described under NAICS code 325. However, ICO Line 3 will not be using any feedstocks containing chromium. Thus, ICO Line 3 is not subject to 40 CFR 63 Subpart VVVVVV.

The proposed modified MAGNAPORE® production line will be subject to the same requirements under CMAS as the facility's existing operations. Specifically, Grace will be required to perform quarterly inspections of process vessels and equipment in metal HAP service to demonstrate that the process vessels and equipment are sound and free of leaks.⁷ The management practice in 40 CFR 63.11495(a)(1) (process vessel must be equipped with a cover or lid that must be closed at all times) will be applicable, since the process will only contain metal HAPs (chromium compounds) in a powder form that will result in particulate emissions of metal HAP which is controlled by baghouse.

Grace is not required to submit a new Initial Notification or Notification of Compliance Status (NOCS) for the modified production line, as the modified line will be part of the existing MAGNAPORE® manufacturing process CMPU (i.e., this is not a new CMPU), and the process changes will not affect the facility's compliance demonstration.⁸ Grace will continue to be subject to the requirement to submit semiannual compliance reports containing the information specified in 40 CFR 63.11501(d)(1), (3), (4), and (8). Compliance reports are only required for semiannual periods during which the facility experienced any of the events described in those sections of the rule.⁹

5.4.3 Non-Applicability of All Other NESHAP

NESHAP standards are developed for particular industrial source categories, and applicability can be readily ascertained based on the source category covered. All NESHAP other than those addressed in this report categorically do not apply to the proposed project.

5.5 Compliance Assurance Monitoring

The requirement to develop CAM plans under 40 CFR 64 is applicable for emission units that are located at a Title V major source and that meet all the following criteria:¹⁰

- The unit is subject to an emission limit for a regulated air pollutant;
- The unit uses a control device to achieve compliance with the emission limit; and
- The pre-control potential emissions for that pollutant are greater than the Title V major source threshold from the emission unit.

For emission units with post-control emissions of the pollutant that are less than the Title V major source threshold, the CAM plan must be submitted as part of an application for renewal of the Title V permit.¹¹

⁷ 40 CFR 63.11495(a)(1), (3), (4), and (5)

⁸ 40 CFR 63.9(b)(2), 40 CFR 63.9(h), 40 CFR 63.11501(a)-(b), 40 CFR 63.11501(d)(4)

^{9 40} CFR 63.11501(d)

^{10 40} CFR 64.2(a)

¹¹ 40 CFR 64.5(b)

The facility currently operates under a Title V operating permit and the proposed project modifies existing emission units with permitted control devices. Thermal oxidizers T-657 (MAG-04) and T-1657 (MGX-12) are subject to CAM requirements because they both control VOC emissions that are above 100 TPY before control.

5.6 Code of Maryland Regulations (COMAR) Applicability

Maryland's state requirements for sources of regulated air contaminants are codified under Subtitle 11 of Title 26 of the Code of Maryland Regulations (COMAR 26.11). Specific applicability criteria for all MDE regulations that are not generally applicable (i.e., General Provisions) are covered in the following subsections.

- 5.6.1 <u>COMAR 26.11.02.09 Sources Subject to Permits to Construct and Approvals (APPLICABLE)</u> COMAR 26.11.02.09 specifies that construction or modification of any of the specified subset of regulated sources may not be commenced without first obtaining, and having in current effect, the specified permits to construct and associated approvals. Pursuant to COMAR 26.11.02.09A(1), 26.11.02.09A(2), 26.11.02.09A(4) and 26.11.02.09A(6), installation of the new ICO and modified MAG/MGX units requires an appropriate permit to construct prior to commencement of construction activities.
- 5.6.2 <u>COMAR 26.11.02.10 Sources Exempt from Permits to Construct and Approvals (APPLICABLE)</u> COMAR 26.11.02.10 lists sources and activities that are exempt from the requirement to obtain a permit to construct. As part of the Line 3 project Grace is adding a central vacuum system. COMAR 26.11.02.10T exempts "[v]acuum cleaning systems used exclusively for industrial, commercial, or residential house-keeping purposes." As a result, Grace believes the installation of this central vacuum system is exempted from permitting but is including in this application to be reviewed by MDE for applicability.
- 5.6.3 <u>COMAR 26.11.02.11 Procedures for Obtaining Permits to Construct Certain Significant Sources (NOT</u> <u>APPLICABLE</u>)

COMAR 26.11.02.11 delineates specific procedures governing applications for permits to construct for certain significant sources of regulated air pollutants as defined under COMAR 26.11.02.11A(1). Since this application for construction is not for a new source, there is no reconstruction or replacement that qualifies per COMAR 26.11.02.11(A)(2)(b), and the emissions will remain below major permitting thresholds, the proposed modified MAG / MGX production line and the new ICO Line 3 production line are not subject to the provisions under this regulation.

5.6.4 <u>COMAR 26.11.02.12 – Procedures for Obtaining Approvals of PSD Sources, and NSR Sources, Permits to Construct, Permit to Construct MACT Determinations on a Case-by-Case Basis in Accordance with 40 CFR Part 63, Subpart B, and Certain 100-ton Sources (APPLICABLE)</u> COMAR 26.11.02.12 lays out specific procedures governing permit to construct applications submitted by a discrete subset of regulated sources under the jurisdiction of MDE. As discussed in detail in **Section 5.10** of this application, the Grace facility is an existing PSD or NSR source. Therefore, pursuant to COMAR 26.11.02.12A(1), the applicable procedures put forth under COMAR 26.11.02.12 are applicable to the proposed project.

5.6.5 <u>COMAR 26.11.02.13 – Sources Subject to State Permit to Operate (NOT APPLICABLE)</u> Per COMAR 26.11.02.13A, a state permit to operate is not required for sources covered by a Part 70 permit. The Facility has a Part 70 permit, and as such, is not subject to the requirement to obtain a state permit to operate per COMAR 26.11.02.13A. The Facility requests that MDE include the modified and new production lines within their Part 70 permit.

- 5.6.6 <u>COMAR 26.11.02.14 Procedures for Obtaining State Permits to Operate and Permits to Construct Certain Sources and Permits to Construct Control Equipment on Existing Sources (NOT APPLICABLE) COMAR 26.11.02.14 lays out specific procedures that apply to any source or activity that is not regulated under COMAR 26.11.02.11A or COMAR 26.11.02.12, or that constitutes air pollution control equipment for which a permit to construct is required and will control an existing source. This permit to construct application is being submitted in accordance with the applicable requirements of COMAR 26.11.02.11A and COMAR 26.11.02.12. Therefore, pursuant to COMAR 26.11.02.14A(2), the applicable procedures put forth under COMAR 26.11.02.14 are not applicable to the proposed project.</u>
- 5.6.7 <u>COMAR 26.11.03 Permits, Approvals, and Registration Title V Permits (APPLICABLE)</u> As stated above, the Facility has a current Title V permit. Therefore, pursuant to COMAR 26.11.03.01(A)(1), the applicable procedures put forth under COMAR 26.11.03 are applicable to the proposed project.
- 5.6.8 <u>COMAR 26.11.09 Control of Fuel-Burning Equipment, Stationary Internal Combustion Engines, and</u> <u>Certain Fuel-Burning Installations (APPLICABLE)</u>

COMAR 26.11.09 regulates visible emissions and emissions of PM, SO₂, and NO_x from new fuelburning equipment constructed in the state of Maryland. While the combustion spray dryer in ICO Line 3 does not qualify as fuel-burning equipment, there is a section of the NO_x regulations which specifies applicability for any installation other than fuel-burning equipment that emits NO_x. Thus, the only applicable requirements of this regulation pertain to NO_x emissions limitations pursuant to COMAR 26.11.09.08.

5.6.9 <u>COMAR 26.11.15 – Toxic Air Pollutants (APPLICABLE)</u>

The provisions of COMAR 26.11.15 regulate emissions of any Class I or Class II toxic air pollutant (TAP) into the ambient air from any installation or new source if the source meets certain applicability criteria under the regulation. The Facility at the MAG / MGX and ICO Plants are subject to requirements under 40 CFR 63. Therefore, pursuant to COMAR 26.11.15.03(A)(4), the applicable procedures put forth under COMAR 26.11.15 are applicable to the proposed project.

5.6.10 <u>COMAR 26.11.17 – Nonattainment Provisions for Major New Sources and Major Modifications (NOT</u> <u>APPLICABLE</u>)

The provisions of COMAR 26.11.17 describe the procedures and conditions for sources that are applying as major new sources or making major modifications in an area of nonattainment. The proposed project, as demonstrated in **Section 5.1 and Table 1 (Section 3.4)0**, does not qualify as a major modification. Therefore, pursuant to COMAR 26.11.17.02(A)(1), the applicable procedures put forth under COMAR 26.11.17 are not applicable to the proposed project.

5.6.11 COMAR 26.11.19 - Volatile Organic Compounds from Specific Processes (APPLICABLE)

COMAR 26.11.19 regulates volatile organic compounds from specific processes. A couple of the specified processes are VOC equipment leaks and chemical production. The MAGNAPORE® Catalyst Plant is already subject to this requirement as specified in its Part 70 permit. Therefore, the applicable procedures put forth under COMAR 26.11.19.02, COMAR 26.11.19.16 and COMAR 26.11.19.30 are applicable to the proposed project.

6. PUBLIC ENGAGEMENT AND ENVIRONMENTAL JUSTICE

6.1 Public Meetings

Grace held a total of three public informational meetings to engage with the Curtis Bay and Baltimore City communities about the proposed construction projects. In addition to the regular meetings Grace has attended for over 10 years, Grace engaged with the public specifically about this project on several occasions. These public informational meetings were publicized in advance. The first meeting was held on December 12, 2024, with the general public and the Community of Curtis Bay Association (CCBA) on a virtual Zoom meeting. The community expressed interest in another set of meetings and Grace set up two additional meetings in January. The second meeting was held on January 22, 2025, again with the general public and the CCBA. The third meeting was held on January 27, 2025, with the general public and the Concerned Citizens of Baltimore. At these meetings, Grace expressed their commitment to NO_X and PM emissions reductions. As discussed with MDE on January 31, 2025, Grace is analyzing various options to achieve additional emissions reductions once the engineering and other required analysis is complete. Feedback from these communities was documented and can be found in **Appendix 6**.

6.2 Maryland EJ Screen Report

House Bill 1200 (HB1200) mandates that permit applications that require public notice, and participation must include an EJ Score for the census tract where the applicant is seeking the permit in the permit application package to MDE. The Department recommends using the Maryland EJ Tool to assess the EJ Score within a 1-mile radius of the facility.

To comply with HB1200 and MDE requirements, the Maryland EJ Tool was utilized to generate EJ Scores for the five census tracts located within a 1-mile radius of the W.R. Grace Curtis Bay facility. This includes Census Tracts 2505 and 2506 in Baltimore City, and Census Tracts 7301.02, 7502.04, and 7511.02 in Anne Arundel County. Two of the census tracts, 2505 and 7301.02, were flagged as overburdened communities with an overall EJ Score greater than the 75th percentile. Census Tract 2505 has the highest EJ Score, 100th percentile, indicating the census tract faces pollution, environmental, and socioeconomic burdens higher than 100% of the state of Maryland. Environmental Indicators with an EJ Indicator Score greater than 75% for the tract include the National Air Toxics Assessment (NATA) Respiratory Hazard Index (80%), NATA Particulate Matter/PM2.5 (97%), and Wastewater Discharge (92%).

Census Tract 7301.02 was also flagged as an overburdened community with an Overall EJ Score of 86th percentile, indicating that the tract faces pollution, environmental, and socioeconomic burdens greater than 86% of the state of Maryland. Environmental Indicators with an EJ Indicator Score greater than 75% for the tract include the NATA Respiratory Hazard Index (80%), NATA Particulate Matter/PM2.5 (95%), and Wastewater Discharge (91%).

To further understand the current socioeconomic and environmental conditions in the Curtis Bay community, Grace has included an analysis of the socioeconomic and environmental indicators provided by the screening tool. Additionally, Grace has engaged with community members about the upcoming projects at the Curtis Bay site on a number of occasions to listen to their concerns and gather input from the community to help shape the upcoming permit application and other measures that Grace is considering to address the community's concerns. The full Maryland EJ Screen Report can be found in **Appendix 6**.

APPENDIX 1 CONSTRUCTION PERMIT APPLICATION FORMS

NOTE: All information completed on the forms is based upon current design specifications and possible vendors of equipment. This information is subject to change and should be viewed as equivalent to what will be installed. Any minor changes in these values that do not impact emissions calculations or dispersion modeling will be updated in an "as-built" amendment.

W.R. GRACE & CO.-CONN. HAS REDACTED INFORMATION FROM THIS APPENDIX PURSUANT TO A CLAIM OF CONFIDENTIALITY

AIR QUALITY PERMIT TO CONSTRUCT **APPLICATION CHECKLIST**

OWNER OF EQUIPMENT/PROCESS					
COMPANY NAME:	W.R. Grace & CoConn.				
COMPANY ADDRESS:	7500 Grace Drive, Columbia, MD 21044				
	LOCATION OF EQUIPMENT/PROCESS				
PREMISES NAME:	W.R. Grace & Co Curtis Bay				
PREMISES ADDRESS:	5500 Chemical Road, Baltimore, MD 21226				
CONTACT	INFORMATION FOR THIS PERMIT APPLICATION				
CONTACT NAME:	Madison Smith				
JOB TITLE:	Environmental Manager				
PHONE NUMBER:	(443) 509-5415				
PHONE NUMBER: EMAIL ADDRESS:	(443) 509-5415 Madison.Smith@grace.com				
EMAIL ADDRESS:					

Application is hereby made to the Department of the Environment for a Permit to Construct for the following equipment or process as required by the State of Maryland Air Quality Regulation, COMAR 26.11.02.09.

Check each item that you have submitted as part of your application package.

- \mathbf{X} Application package cover letter describing the proposed project
- \mathbf{X} Complete application forms (Note the number of forms included or NA if not applicable.)
 - No. 2 Form 5 No. NA Form 11 No. 1 Form 5T No. NA Form 41 No. 8 Form 5EP Form 42 No. NA No. 7 Form 6 No. NA Form 44
 - No. NA Form 10

- \mathbf{X} Vendor/manufacturer specifications/guarantees
- X Evidence of Workman's Compensation Insurance
- X Process flow diagrams with emission points
- X Site plan including the location of the proposed source and property boundary
- \mathbf{X} Material balance data and all emissions calculations
- \square Material Safety Data Sheets (MSDS) or equivalent information for materials processed and manufactured.
- \square Certificate of Public Convenience and Necessity (CPCN) waiver documentation from the Public Service Commission⁽¹⁾
- X Documentation that the proposed installation complies with local zoning and land use requirements ⁽²⁾
 - (1) Required for emergency and non-emergency generators installed on or after October 1, 2001 and rated at 2001 kW or more.
 - (2) Required for applications subject to Expanded Public Participation Requirements.

BALTIMORE CITY DEPARTMENT OF HOUSING & COMMUNITY DEVELOPMENT

April 3, 2025

W.R. Grace & Co. 7500 Grace Dr., Columbia MD. 21044 5500 Chemical Road, Baltimore MD. 21226

Re: Zoning Verification Request: 5500 Chemical Road

To Whom It May Concern:

This is in response to your request for zoning verification concerning the above referenced property.

The subject property is located in an M-I Maritime Industrial District and authorized for use as a chemical manufacturing facility, in compliance with all applicable zoning regulations. Your proposal to complete the expansions of both the Magnapore and Industrial Catalyst plants would be permitted within your current zoning.

Should you have any additional questions regarding this matter, please contact the Office of the Zoning Administrator at (410) 396-4126.

Sincerely,

Geoffrey Veale Zoning Administrator

Brandon M. Scott, Mayor • Alice Kennedy, Housing Commissioner 417 East Fayette Street • Baltimore, MD 21202 • 443-984-5757 • dhcd.baltimorecity.gov

Ć	ORD [®] CERT	ΊF	IC	ATE OF LIA		TY IN	SURA	NCE	DATE(MM/DD/YYYY) 11/13/2024
CER	CERTIFICATE IS ISSUED AS A M TIFICATE DOES NOT AFFIRMATI DW. THIS CERTIFICATE OF INSU RESENTATIVE OR PRODUCER, AN	/ATT VELY JRAN	rer (/ Or Nce	OF INFORMATION ONL NEGATIVELY AMEND DOES NOT CONSTITU	LY AND C), EXTEN	ONFERS N D OR ALTE	O RIGHTS U	JPON THE CERTIFICA /ERAGE AFFORDED	BY THE POLICIES
SUB	DRTANT: If the certificate holder is ROGATION IS WAIVED, subject to ficate does not confer rights to the	the	term	is and conditions of the	e policy, o	certain polic			
RODUC	5				CONTAC NAME:	,			
	sk Services South, Inc.				PHONE (A/C. No.	Ext). (866) 2	283-7122	FAX (A/C. No.): (800)) 363-0105
550 L	a GA Office enox Road NE				E-MAIL			(A/C. NO.).	
	1700 ca GA 30326 USA				ADDRES		URER(S) AFFO	RDING COVERAGE	NAIC #
SURED)				INSURE	RA: Zurio	ch Americar	Ins Co	16535
	irace				INSURE	RB: Ameri	ican Zurich	Ins Co	40142
	Grace Drive Dia MD 21044 USA				INSURE	R C:			
					INSURE	R D:			
					INSURE	RE:			
					INSURE	RF:			
				NUMBER: 570109405				VISION NUMBER:	
NDIC CERT	IS TO CERTIFY THAT THE POLICIES CATED. NOTWITHSTANDING ANY REC IFICATE MAY BE ISSUED OR MAY P USIONS AND CONDITIONS OF SUCH	QUIRI PERTA POLI	emen AIN, 1 ICIES	IT, TERM OR CONDITION THE INSURANCE AFFOR . LIMITS SHOWN MAY HA	N OF ANY	CONTRACT	OR OTHER D S DESCRIBE Y PAID CLAIN	OCUMENT WITH RESP	ECT TO WHICH THIS
SR R	TYPE OF INSURANCE	ADDL INSD	SUBR WVD	POLICY NUMBER		POLICY EFF (MM/DD/YYYY)	POLICY EXP (MM/DD/YYYY)	LIM	IITS
	COMMERCIAL GENERAL LIABILITY							EACH OCCURRENCE	
	CLAIMS-MADE OCCUR							DAMAGE TO RENTED PREMISES (Ea occurrence)	
								MED EXP (Any one person)	
								PERSONAL & ADV INJURY	
GE	EN'L AGGREGATE LIMIT APPLIES PER:							GENERAL AGGREGATE	
	POLICY PRO- JECT LOC							PRODUCTS - COMP/OP AGG	
	OTHER:								
AL	JTOMOBILE LIABILITY			BAP 7900598 05		11/15/2024	11/15/2025	COMBINED SINGLE LIMIT	\$1,000,00
								(Ea accident) BODILY INJURY (Per person)	
Х								(, , ,	\
	AUTOS ONLY AUTOS							BODILY INJURY (Per accident) PROPERTY DAMAGE	/
	HIRED AUTOS ONLY NON-OWNED AUTOS ONLY							(Per accident)	
L	UMBRELLA LIAB OCCUR							EACH OCCURRENCE	
	EXCESS LIAB CLAIMS-MADE							AGGREGATE	
	DED RETENTION								
	/ORKERS COMPENSATION AND MPLOYERS' LIABILITY V / N			WC792878905		11/15/2024	11/15/2025	X PER STATUTE OTHER	
A	NY PROPRIETOR / PARTNER / EXECUTIVE	N / A		Workers Comp. AOS WC792879005		11/15/2024	11/15/2025	E.L. EACH ACCIDENT	\$2,000,00
(1	Mandatory in NH)			Workers Comp. MA				E.L. DISEASE-EA EMPLOYEE	\$2,000,00
D II	yes, describe under ESCRIPTION OF OPERATIONS below							E.L. DISEASE-POLICY LIMIT	\$2,000,00
	PTION OF OPERATIONS / LOCATIONS / VEHICL	ES (M		101 Additional Remarks School	ule may be	attached if more	snace is require	4)	1
	ver of Subrogation is granted						• •		у.
					-				
RTI	FICATE HOLDER			CA	ANCELLA	TION			
							BOVE DESCO	BED POLICIES BE CANCE	ILED REFORE THE
					EXPIRATIO	N DATE THERE		LL BE DELIVERED IN ACCO	
					POLICY PR	OVISIONS.			
	W.R. Grace & Co-Conn 7500 Grace Drive			AUT	THORIZED R	EPRESENTATIVE			
	Columbia MD 21044 USA					1 -	× ~		-
					.0	lon . In	iste Se	wices South .	Inc
					\sim			come crovia e	

ACORD 25 (2016/03)

©1988-2015 ACORD CORPORATION. All rights reserved. The ACORD name and logo are registered marks of ACORD

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 =1-800-633-6101 = www.mde.state.md.us

Air and Radiation Management Administration Air Quality Permits Program

PLICATION FOR PROCESSING (MANUEACTURING FOUR -. .

Uwner of Equipm	ent/Company Name		DO NOT WR	RITE IN THIS BLOCK
W.R. Grace & CoCo				RATION NUMBER
Mailing Address			County No	Draminan No.
5500 Chemical I	Road		County No.	Premises No.
Street Address				
Baltimore	MD	21226	1-2	3-6
City	State	Zip	Registration Cla	ass Equipment No
Telephone Numbe	r			
(410354-8	987		7 Data Year	8-11
Signature				
Querhaked			12-13	Application Date
Suppress	M		-	Approation bato
Jeff Lukowski, Ser	nior Operations Directo	or - Curtis Bay	25 JUNZO	pr
Print Name and Title	<u> </u>		Date	
	*		·····	
	ion and Telephone I	Number (if different f	rom above)	
Same as above				
Street Number and St	reet Name			
Street Number and St Same as above			(_)
Street Number and St	reet Name State		(Zip T	_) elephone Number
Street Number and St Same as above	State		(Zip T) elephone Number
Street Number and St Same as above City/Town	State c Curtis Bay		Zip () elephone Number
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff	State c Curtis Bay ferent from above)	inting Equipment Co	·	
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B=	State D Curtis Bay ferent from above) = Modification to Exi	sting Equipment, C=	Existing Equipme	nt)
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= N	State 5 Curtis Bay ferent from above) Modification to Exi lew Construction	New Constructio	• Existing Equipme n Exi	nt) sting Initial
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= N Status	State 5 Curtis Bay ferent from above) Modification to Exi lew Construction Begun (MM/YY)	New Constructio	• Existing Equipme n Exi	nt)
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= N Status	State 5 Curtis Bay ferent from above) Modification to Exi lew Construction	New Constructio Completed (MM/) 0 5 2	• Existing Equipme n Exi	nt) sting Initial
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= N Status	State 5 Curtis Bay ferent from above) Modification to Exi lew Construction Begun (MM/YY)	New Constructio	• Existing Equipme n Exi	nt) sting Initial
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= N Status A 15	State 5 Curtis Bay Ferent from above) Modification to Exi New Construction Begun (MM/YY) 0 1 2 6 16-19	New Constructio Completed (MM/Y 0 5 2 20-23	Existing Equipme n Exi (Y) Opera 7	nt) sting Initial ition (MM/YY) 20-23
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= N Status A 15	State 5 Curtis Bay Ferent from above) Modification to Exi New Construction Begun (MM/YY) 0 1 2 6 16-19 Coment: Make, Model,	New Constructio Completed (MM/Y 0 5 2 20-23 Features, Manufacture	Existing Equipme n Exi (Y) Opera 7	nt) sting Initial ition (MM/YY) 20-23
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= N Status A 15	State 5 Curtis Bay Ferent from above) Modification to Exi New Construction Begun (MM/YY) 0 1 2 6 16-19	New Constructio Completed (MM/Y 0 5 2 20-23 Features, Manufacture	Existing Equipme n Exi (Y) Opera 7	nt) sting Initial ition (MM/YY) 20-23 Hourly Input Rate, et
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= Status A 15 Describe this Equip ICO-Line 3 Pro	State 5 Curtis Bay Ferent from above) Modification to Exi New Construction Begun (MM/YY) 0 1 2 6 16-19 Coment: Make, Model,	New Constructio Completed (MM/Y 0 5 2 20-23 Features, Manufacture	Existing Equipme n Exi (Y) Opera 7	nt) sting Initial ition (MM/YY) 20-23
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= N Status A 15 Describe this Equip ICO-Line 3 Prod Workmen's Competence	State 5 Curtis Bay ferent from above) Modification to Exi lew Construction Begun (MM/YY) 0 1 2 6 16-19 Dement: Make, Model, cess (See Attached Tatached Tatach	New Constructio Completed (MM/Y 0 5 2 20-23 Features, Manufacture able) WC 7928789-05 Binder/Policy Number	Existing Equipme n Exi (Y) Opera 7	nt) sting Initial ition (MM/YY) 20-23 Hourly Input Rate, et
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= N Status A 15 Describe this Equip ICO-Line 3 Pro- Workmen's Comper- ompany_American Zu	State 5 Curtis Bay ferent from above) Modification to Exi lew Construction Begun (MM/YY) 0 1 2 6 16-19 Dement: Make, Model, cess (See Attached Ta Insation Coverage _ Irich Insurance Compa	New Constructio Completed (MM/Y 0 5 2 20-23 Features, Manufacture able) WC 7928789-05 Binder/Policy Number	Existing Equipme n Exi (Y) Opera 7 7	nt) sting Initial tion (MM/YY) 20-23 Hourly Input Rate, et 11/15/2025 Expiration Date
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= Status A 15 Describe this Equip ICO-Line 3 Pro Workmen's Compendent Monte: Before a Permit	State b Curtis Bay ferent from above) Modification to Exi lew Construction Begun (MM/YY) 0 1 2 6 16-19 Dement: Make, Model, cess (See Attached Ta Insation Coverage_ Inich Insurance Compa- to Construct may be issue	New Constructio Completed (MM/Y 0 5 2 20-23 Features, Manufacture able) WC 7928789-05 Binder/Policy Number	Existing Equipme n Exi (Y) Opera 7 or (include Maximum	nt) sting Initial tion (MM/YY) 20-23 Hourly Input Rate, et 11/15/2025 Expiration Date e Department with proof c
Street Number and St Same as above City/Town W.R. Grace & Co Premises Name (if diff Status (A= New, B= Status A 15 Describe this Equip ICO-Line 3 Pro Workmen's Compendent Ompany American Zu NOTE: Before a Permit worker's compendent	State b Curtis Bay ferent from above) Modification to Exi lew Construction Begun (MM/YY) b 1 2 6 16-19 Dement: Make, Model, cess (See Attached Ta Insation Coverage_ inich Insurance Compa to Construct may be issue impensation coverage as in	New Constructio Completed (MM/Y 0 5 2 20-23 Features, Manufacture able) WC 7928789-05 Binder/Policy Number iny	Existing Equipme n Exi (Y) Opera 7 er (include Maximum pplicant must provide th 02 of the Worker's Comp	nt) sting Initial ition (MM/YY) 20-23 Hourly Input Rate, et 11/15/2025 Expiration Date e Department with proof opensation Act.

7. Person Installing this Equipment (if different from Number 1 on Page 1) Name
Company
Mailing Address/Street
City/TownStateTelephone ()
8. Major Activity, Product or Service of Company at this Location
Multi-plant facility that manufactures Silica-based and Alumina-based inorganic chemicals.
9. Control Devices Associated with this Equipment None 24-0 None 24-0 None None 24-0 None 24-0 None None 24-0 None 24-0 None None Spray dryer and are in one baghouse are inherent to the spray dryer and are in one Form 6. Two baghouses and one cartridge filter are on the same stack and are in one Form 6.
Simple/Multiple CycloneSpray/Adsorb TowerVenturi ScrubberCarbon AdsorberElectrostatic PrecipitatorBaghouse Thermal/Catalytic AfterburnerDry Scrubber124-124-224-324-424-524-624-724-8
Other 4 Describe 1 cartridge filter and 3 bin vents, which are used for material recovery 24-9
10. Annual Fuel Consumption for this EquipmentOIL-1000 GALLONSSULFUR % GRADENATURAL GAS-1000 FT3LP GAS-100 GALLONS GRADE26-3132-3334 $35-41$ 42-45
COAL-TONS SULFUR % ASH% WOOD-TONS MOISTURE % 46-52 53-55 56-58 59-63 64-65
OTHER FUELS ANNUAL AMOUNT CONSUMED OTHER FUEL ANNUAL AMOUNT CONSUMED (Specify Type) 66-1 (Specify Units of Measure) (Specify Type) 66-2 (Specify Units of Measure) 1 = Coke 2= COG 3=BFG 4=Other 66-2 (Specify Units of Measure)
11. Operating Schedule (for this Equipment) Continuous Operation Batch Process Hours per Batch Batch per Week Hours per Day Days Per Week Days per Year X 2 4 7 3 6 5 67-1 67-2 68-69 70-71 72 73-75 Seasonal Variation in Operation: No Variation Winter Percent Spring Percent Summer Percent Fall Percent (Total Seasons= 100%)
X Image: Non-state Non-state <th< td=""></th<>

Form Number: 5 Rev. 9/27/2002 TTY Users 1-800-735-2258

Public Version

12. Equivalent Stack Innformation- is Exhaust through Doors, Windows, etc. Only? (Y/N)							
	See attached table			85			
If not, then Height Avove Grou	nd (FT) Inside Diameter at To	p Exit Tempera	ature (°F)	Exit Velocity (FT/SEC)		
86-88	89-91	92-95		96-98			
00-00		92-93		90-90	,		
Attach a black discuss of p	NOTE:			nautad an thi	form		
Attach a block diagram of process/process line, indicating new equipment as reported on this form and all existing equipment, including control devices and emission points.							
13. Input Materials (for this eq							
Is any of this data to be co	nsidered confidential?	(Y or N)	INPUT	DATE			
NAME	CAS NO. (IF APPLICABLE)	 Per Hour		PER YEAR			
1. See attached list							
2.					ļ		
4.							
5.					<u> </u>		
6.							
7.							
8.							
TOTAL		ŀ					
14. Output Materials (for this e Process/Product Stream	equipment)						
r iocessir iouuci oli eani			OUTPU	JT RATE			
NAME	CAS NO. (IF APPLICABLE)	PER HOUR		PER YEAR	UNITS		
1. Polyolefin Catalyst Base		422	Ibs	1,850	short ton		
3.					<u> </u>		
4.					<u> </u>		
5			· · · · ·				
6							
7. 8.							
9.							
TOTAL		L I	l		L		
15. Waste Streams- Solid and	Liquid		OUTDU				
NAME	CAS NO. (IF APPLICABLE)	PER HOUR	UNITS	JT RATE PER YEAR			
1. No waste materials, off spec							
2. product is recycled							
3.							
4. 5.				······································			
6.					<u> </u>		
7.							
8.							
9.							
TOTAL							

Public Version

16. Total Stack Emissions (for this	s equipment only) in Pounds I Total daily process emissions	Per Operating Day						
Particulate Matter	Oxides of Sulfur	Oxides of Nitrogen						
1 0 . 9 1	0.16	3 2 1						
99-104	105-110	111-116						
Carbon Monoxide	Volatile Organic Compounds	PM-10						
2 1 . 7 4	1 . 4 2							
177-122	123-128	129-134						
17. Total Fugitive Emissions (for t	17. Total Fugitive Emissions (for this equipment only) in Pounds Per Operating Day							
Particulate Matter	Oxides of Sulfur	Oxides of Nitrogen						
0	0	0						
135-139	140-144	145-149						
Carbon Monoxide	Volatile Organic Compounds	PM-10						
	0							
150-154	155-159	160-164						
Method Used to Determine Emiss	1	nission Factor 3= Stack Test 4= Other)						
TSP SOX	See attached calculations NOX CO	VOC PM10						
4 4	4 4	4 4						
165 166 167 168 169 170 AIR AND RADIATION MANAGEMENT ADMINISTRATION USE ONLY								
AIR AND RADIA	TION MANAGEMENT ADMINIS Rec'd. State Retu							
AIR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie By	TION MANAGEMENT ADMINIS Rec'd. State Retu Date_ ction Reviewed	STRATION USE ONLY rn to Local Jurisdiction By						
AIR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie By	TION MANAGEMENT ADMINIS Rec'd. State Retu Date_ ction Reviewed Date_	STRATION USE ONLY rn to Local Jurisdiction By by State						
AIR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie Date Date By	TION MANAGEMENT ADMINIS Rec'd. State Retu Date_ ction Reviewed Date_	STRATION USE ONLY rn to Local Jurisdiction By by State By						
AIR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie Date Date By	TION MANAGEMENT ADMINIS Rec'd. State Retu Date_ ction Reviewed Date Cear Equipment Code	STRATION USE ONLY rn to Local Jurisdiction By by State By						
AIR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie Date Date By 19. Inventory Date Month/N 171-1 20.	TION MANAGEMENT ADMINIS Rec'd. State Retu Date	STRATION USE ONLY rn to Local Jurisdiction By by State By SCC Code IT78-185 It to Operate I ransaction Date						
AIR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie Date Date By 19. Inventory Date Month/N 171-1	TION MANAGEMENT ADMINIS Rec'd. State Retu Date_ ction Reviewed Date Cear Equipment Code	STRATION USE ONLY rn to Local Jurisdiction By by State By SCC Code 178-185						
AIR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie Date Date By 19. Inventory Date Month/N 171-1 20.	TION MANAGEMENT ADMINIS Rec'd. State Retu Date	STRATION USE ONLY rn to Local Jurisdiction By by State By SCC Code IT78-185 It to Operate I ransaction Date						
AiR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie Date Date By 19. Inventory Date Month/N 171-1 20. Annual Operating Rate 186-192	TION MANAGEMENT ADMINIS Rec'd. State Retu Date Ction Reviewed Date Cear Equipment Code T4 175-177 Maximum Design Perm Hourly Rate 193-199	STRATION USE ONLY rn to Local Jurisdiction By by State By SCC Code SCC Code T78-185 Nit to Operate I ransaction Date Month (MM/DD/YR) D1200-201 202-207						
AiR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie Date Date By 19. Inventory Date Month/N 171-1 20. Annual Operating Rate Image: Control of the second seco	TION MANAGEMENT ADMINIS Rec'd. State Retu Date Ction Reviewed Date Cear Equipment Code T4 175-177 Maximum Design Perm Hourly Rate 193-199	STRATION USE ONLY rn to Local Jurisdiction By by State By SCC Code SCC Code ITRA-185 Dif to Operate Iransaction Date Month (MM/DD/YR)						
AiR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie Date Date By 19. Inventory Date Month/N 171-1 20. Annual Operating Rate 186-192	TION MANAGEMENT ADMINIS Rec'd. State Return Date	STRATION USE ONLY rn to Local Jurisdiction By by State By SCC Code SCC Code T78-185 Nit to Operate I ransaction Date Month (MM/DD/YR) D1200-201 202-207						
AiR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie Date Date By 19. Inventory Date Month/Y 171-1 20. Annual Operating Rate 186-192 11 Staff Code VOC Code 208-210 211	TION MANAGEMENT ADMINIS Rec'd. State Return Date_ ction Reviewed Car Equipment Code 74 175-177 Maximum Design Perm Hourly Rate Perm 193-199 SIP Code Regula 213 214 21	STRATION USE ONLY rn to Local Jurisdiction By by State By SCC Code SCC Code T78-185 Tot to Operate I ransaction Date Month (MM/DD/YR) DOJ 202-207 tion Code Confidentiality S-218 D1 D209 D209 D219 D219 D219 D219 D219 D219 D219 D21						
AiR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdie Date Date By 19. Inventory Date Month/Y 171-1 20. Annual Operating Rate 186-192 11 Staff Code VOC Code 208-210 211	TION MANAGEMENT ADMINIS Rec'd. State Return Date	STRATION USE ONLY rn to Local Jurisdiction By by State By SCC Code SCC Code T78-185 NIT to Operate I ransaction Date Month (MM/DD/YR) D178-185 NIT to Operate I ransaction Date Month (MM/DD/YR) D200-201 Confidentiality						
AiR AND RADIA 18. Date Rec'd. Local Date Reviewed by Local Jurisdia Date Date By 19. Inventory Date Month/N 171-1 20. Annual Operating Rate 186-192 208-210 208-210 211 211 212	TION MANAGEMENT ADMINIS Rec'd. State Return Date_ ction Reviewed Car Equipment Code 74 175-177 Maximum Design Perm Hourly Rate Perm 193-199 SIP Code Regula 213 214 21	STRATION USE ONLY rn to Local Jurisdiction By by State By SCC Code SCC						

Rev. 9/27/2002 TTY Users 1-800-735-2258

Form 5	ICO Line 3	Form 5 ICO Line 3
Section	4. ICO-Line 3 Process	Section 4. ICO-Line 3 Process

Quantity	Make	Model	Manufacturer	Description	Maximum Hourly Input Rate
2	TBD	TBD	TBD	Hammer Mill	_
1	TBD	TBD	TBD	Mill Feed Tank	_
2	TBD	TBD	TBD	Line 3 Wet Mill	
1	TBD	TBD	TBD	Mill Receiver Tank	
1	TBD	TBD	TBD	Spray Dryer Feed Tank	
1	TBD	TBD	TBD	Line 3 Spray Dryer	
1				Spray Dryer Cyclone	
1				Spray Dryer Baghouse	
1	TBD	TBD	TBD	Coarse Classifier Feed Hopper	
1	TBD	TBD	TBD	Fines Classifier Feed Hopper	
2				Bin Vent for Feed Hopper	_
1	TBD	TBD	TBD	Coarse Classifier	_
1	TBD	TBD	TBD	Fines Classifier	_
2				Baghouse for Classifier	_
1				Cartridge Filter for Classifier	
1	TBD	TBD	TBD	Coarse Sacking Station	
1	TBD	TBD	TBD	Fines Sacking Station	
1	TBD	TBD	TBD	Finished Product Packaging Silo	_
1				Bin Vent for Finished Product Packaging Silo	_
2	TBD	TBD	TBD	Drum Packaging Station	_
1	TBD	TBD	TBD	Sack Filling Station	_
1	TBD	TBD	TBD	Fugitive Dust Collector	
1				Baghouse for Fugitive Dust Collector	
1	TBD	TBD	TBD	Central Vacuum System	
1				Baghouse for Central Vacuum System	

Form 5 ICO Line 3 Section 12. ICO-Line 3 Stack Information

Stack ID	Height Above Ground	Inside Diameter at Top	Exit Temperature	Exit Velocity				
Stack ID	(ft)	(ft)	(°F)	(ft/s)				
ICO-130	83.75	2	350	73.21				
ICO-131	53.83	1.83	Ambient	65.90				
ICO-132	64.92	0.71	Ambient	63.14				
ICO-133	83.5	0.5	Ambient	424.41				
ICO-134	83.5	1	Ambient	9.19				
ICO-135	49	11.38	Ambient	20.08				

Form 5 ICO Line 3 Section 13. ICO-Line 3 Input Materials and Rates

Code Letter	Per Hour	Units	Per Year	Units
A	662	LBS.	2,900	TONS

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230

(410)537-3225 • 1-800-633-6101 • <u>www.mde.maryland.gov</u>

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: <u>W.R. Grace & Co.-Conn.</u>

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: ICO-130

2. Emission Point Description

Describe the emission point including all associated equipment and control devices: ICO-Line 3 Spray Dryer EST-35801, Cyclone EC-35601, and Baghouse EBH-35601. The baghouse is used for material recovery (direct-fired).

3. Emissions Schedul	e for th	ne Emiss	sion	Point					
Continuous or Intermittent (C/I))?	С		Seasonal Variation				_	
	,.			Check box if none: X Ot	herwis	se estimate s	seaso	nal va	ariation:
Minutes per hour:		60		Winter Percent					
Hours per day: Days per week:		24 7		Spring Percent Summer Percent					
Weeks per year:		52		Fall Percent					
4. Emission Point Info	rmatio								
Height above ground (ft):		83.75		Length and width dimension	ons	Length	:		Width:
Height above structures (ft):		16.92		at top of rectangular stack	(ft):	N/A		N/A	
Exit temperature (°F):		350		Inside diameter at top of ro	ound s	stack (ft):			2
Exit velocity (ft/min):		4,393		Distance from emission po property line (ft):	oint to	nearest			220
Exhaust gas volumetric flow ra (acfm):	te	13,800		Building dimensions if emi- point is located on buildir		Height 47	Lenç 16		Width 59
5. Control Devices As	sociate	ed with t	he l	•	-3 (/				
Identify each control device as also required for each contro					numb	er of device	es. <u>A</u>	Forr	<u>n 6 is</u>
None				Thermal Oxidizer		No			
🔀 Baghouse	No. <u>1</u>			Regenerative					
🔀 Cyclone	No. <u>1</u>			Catalytic Oxidizer		No			
Elec. Precipitator (ESP)	No			Nitrogen Oxides Reduct	ion	No			
Dust Suppression System	No			Selective]	Non-Sele			
🗌 Venturi Scrubber	No				L	Non-Oata No	2		
Spray Tower/Packed Bed	No			Specify:		NO			
Carbon Adsorber	No								
Cartridge/Canister									
Regenerative									

FOI	RM 5EP: Emission I	Point Data			
6. Estimated Emissions from th	e Emission Point				
Criteria Pollutants	At Design Capacity	At Projected Operations			
Criteria Fonutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Particulate Matter (filterable as PM10)	0.21	0.21	4.93	0.90	
Particulate Matter (filterable as PM2.5)	0.20	0.20	4.71	0.86	
Particulate Matter (condensables)	0.06	0.06	1.48	0.27	
Volatile Organic Compounds (VOC)	0.06	0.06	1.42	0.26	
Oxides of Sulfur (SOx)	6.47E-03	6.47E-03	0.16	0.03	
Oxides of Nitrogen (NOx)	0.13	0.13	3.21	0.59	
Carbon Monoxide (CO)	0.91	0.91	21.74	3.97	
Lead (Pb)	5.39E-06	5.39E-06	1.29E-04	2.36E-05	
			Projected Operat		
Greenhouse Gases (GHG)	At Design Capacity (lb/hr)				
	(18/11)	(lb/hr)	(lb/day)	(ton/yr)	
Carbon Dioxide (CO ₂)	1,287	1,287	30,882	5,636	
Methane (CH ₄)	2.43E-02	2.43E-02	5.82E-01	0.11	
Nitrous Oxide (N ₂ O)	2.43E-03	2.43E-03	5.82E-02	0.01	
Hydrofluorocarbons (HFCs)	0	0	0	0	
Perfluorocarbons (PFCs)	0	0	0	0	
Sulfur Hexafluoride (SF6)	0	0	0	0	
Total GHG (as CO ₂ e)	1,288	1,288	30,914	5,642	
List individual federal Hazardous Air	At Design Capacity	At I	Projected Operat	ions	
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
2-methylnaphthalene	2.59E-07	2.59E-07	6.21E-06	1.13E-06	
3-methylcholanthrene	1.94E-08	1.94E-08	4.66E-07	8.50E-08	
7,12-dimethylbenz(a)anthracene	1.73E-07	1.73E-07	4.14E-06	7.56E-07	
Acenaphthene	1.94E-08	1.94E-08	4.66E-07	8.50E-08	
Acenaphthylene	1.94E-08	1.94E-08	4.66E-07	8.50E-08	
Anthracene	2.59E-08	2.59E-08	6.21E-07	1.13E-07	
Benz(a)anthracene	1.94E-08	1.94E-08	4.66E-07	8.50E-08	
Benzene	2.26E-05	2.26E-05	5.44E-04	9.92E-05	
Benzo(a)pyrene	1.29E-08	1.29E-08	3.11E-07	5.67E-08	
Benzo(b)fluoranthene	1.94E-08	1.94E-08	4.66E-07	8.50E-08	
Benzo(g,h,i)perylene	1.29E-08	1.29E-08	3.11E-07	5.67E-08	
Benzo(k)fluoranthene	1.94E-08	1.94E-08	4.66E-07	8.50E-08	

(Attach additional sheets as necessary.)

List individual federal Hazardous Air	At Design Capacity	At Projected Operations			
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Chrysene	1.94E-08	1.94E-08	4.66E-07	8.50E-08	
Dibenzo(a,h)anthracene	1.29E-08	1.29E-08	3.11E-07	5.67E-08	
Dichlorobenzene	1.29E-05	1.29E-05	3.11E-04	5.67E-05	
Fluoranthene	3.24E-08	3.24E-08	7.76E-07	1.42E-07	
Fluorene	3.02E-08	3.02E-08	7.25E-07	1.32E-07	
Formaldehyde	8.09E-04	8.09E-04	1.94E-02	3.54E-03	
Hexane	1.94E-02	1.94E-02	4.66E-01	8.50E-02	
Indeno(1,2,3-cd)pyrene	1.94E-08	1.94E-08	4.66E-07	8.50E-08	
Naphthalene	6.58E-06	6.58E-06	1.58E-04	2.88E-05	
Phenanethrene	1.83E-07	1.83E-07	4.40E-06	8.03E-07	
Pyrene	5.39E-08	5.39E-08	1.29E-06	2.36E-07	
Toluene	3.67E-05	3.67E-05	8.80E-04	1.61E-04	

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230

(410)537-3225 • 1-800-633-6101 • www.mde.maryland.gov

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: <u>W.R. Grace & Co.</u>-Conn.

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: ICO-131

2. Emission Point Description

Describe the emission point including all associated equipment and control devices:

ICO-Line 3 Coarse Classifier ECL-35704 and Fines Classifier ECL-35705, Coarse Classifier Baghouse EBH-35604,

Fines Classifier Baghouse EBH-35605, and Cartridge EBH-35670. The baghouses and cartridge collector are used for material recovery.

J. EIIISSIONS Schedule for					
Continuous or Intermittent (C/I)?	С	Seasonal Variation Check box if none: X Ot	herwis	e estimate seaso	nal variation:
Minutes per hour:	60	Winter Percent			
Hours per day:	24	Spring Percent			
Days per week:	7	Summer Percent			
Weeks per year:	52	Fall Percent			
4. Emission Point Informat	ion				
Height above ground (ft):	53.83	Length and width dimensio	ons	Length:	Width:
Height above structures (ft):	7.33	at top of rectangular stack	(ft):	N/A	N/A

Exit temperature (°F):	Ambient	Inside diameter at top of round st	ack (ft):		1.83
Exit velocity (ft/min):	3,954	Distance from emission point to n property line (ft):	earest		220
Exhaust gas volumetric flow rate (acfm):	10,400	Building dimensions if emission point is located on building (ft)	Height 47	Length 168	Width 59

5. Control Devices Associated with the Emission Point

Identify each control device associated with the emission point and indicate the number of devices. <u>A Form 6 is</u> <u>also required for each control device</u>. If none check none:

None		Thermal Oxidizer	No
🛛 Baghouse	No. <u>2</u>	Regenerative	
Cyclone	No	Catalytic Oxidizer	No
Elec. Precipitator (ESP)	No	Nitrogen Oxides Reduction	No
Dust Suppression System	No	Selective	Non-Selective
🗌 Venturi Scrubber	No	∑ Other	☐ Non-Catalytic No. ¹
Spray Tower/Packed Bed	No	Specify: Cartridge Filter	NO
Carbon Adsorber	No		
Cartridge/Canister			
Regenerative			

6. Estimated Emissions from th	RM 5EP: Emission P e Emission Point				
	At Design Capacity	At Projected Operations			
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Particulate Matter (filterable as PM10)	0.01	0.01	0.18	0.03	
Particulate Matter (filterable as PM2.5)	0.01	0.01	0.17	0.03	
Particulate Matter (condensables)					
Volatile Organic Compounds (VOC)					
Oxides of Sulfur (SOx)					
Oxides of Nitrogen (NOx)					
Carbon Monoxide (CO)					
Lead (Pb)					
	At Design Capacity At		At Projected Operations		
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Carbon Dioxide (CO ₂)					
Methane (CH ₄)					
Nitrous Oxide (N ₂ O)					
Hydrofluorocarbons (HFCs)					
Perfluorocarbons (PFCs)					
Sulfur Hexafluoride (SF6)					
Total GHG (as CO ₂ e)					
List individual federal Hazardous Air	At Design Capacity	At	Projected Operat	ions	
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	

(Attach additional sheets as necessary.)

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230

(410)537-3225 • 1-800-633-6101 • <u>www.mde.maryland.gov</u>

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: <u>W.R. Grace & Co.-Conn.</u>

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: ICO-132

2. Emission Point Description

Describe the emission point including all associated equipment and control devices: ICO-Line 3 Silo EV-35125 and Bin Vent EBV-35606. The bin vent is used for material recovery.

3. Emissions Schedul	e for tl	he Emiss	sion							
Continuous or Intermittent (C/I)?	0		Seasonal Variation						
· · · · · · · · · · · · · · · · · · ·	<i>,</i> .	С		Check box if none: X Ot	herwis	e estimate s	seaso	nal va	riation:	
Minutes per hour:		60		Winter Percent						
Hours per day:		24		Spring Percent Summer Percent						
Days per week: Weeks per year:		<u>7</u> 52		Fall Percent						
4. Emission Point Info	ormatic	-		T all T el cent						
Height above ground (ft):	//matro	64.92		Length and width dimensio	ons	Length	:	١	Width:	
Height above structures (ft):		16		at top of rectangular stack		N/A			N/A	
Exit temperature (°F):		Ambient		Inside diameter at top of round stack (ft):			Inside diameter at top of round stack (ft):			0.71
Exit velocity (ft/min):		3,789		Distance from emission point to nearest property line (ft):				220		
Exhaust gas volumetric flow ra	ite	1,500		Building dimensions if emission Height Len				gth	Width	
(acfm):		,							59	
5. Control Devices Associated with the Emission Point										
Identify each control device associated with the emission point and indicate the number of devices. <u>A Form 6 is</u> <u>also required for each control device</u> . If none check none:										
None				Thermal Oxidizer		No				
Baghouse	No			Regenerative						
Cyclone	No			Catalytic Oxidizer		No				
Elec. Precipitator (ESP)	No			Nitrogen Oxides Reduct	ion	No				
Dust Suppression System	No			Selective] Non-Sele] Non-Cata				
🗌 Venturi Scrubber	No	<u> </u>		X Other	L					
Spray Tower/Packed Bed	No			Specify: Bin Vent, used for	or mate	No. <u>1</u> erial recove				
Carbon Adsorber	No									
Cartridge/Canister										
Regenerative										

6. Estimated Emissions from th	RM 5EP: Emission P			
	At Design Capacity	At	Projected Operat	ions
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Particulate Matter (filterable as PM10)	0.04	0.04	0.90	0.16
Particulate Matter (filterable as PM2.5)	0.04	0.04	0.85	0.16
Particulate Matter (condensables)				
Volatile Organic Compounds (VOC)				
Oxides of Sulfur (SOx)				
Oxides of Nitrogen (NOx)				
Carbon Monoxide (CO)				
Lead (Pb)				
	At Design Capacity	At Projected Operations		ions
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Carbon Dioxide (CO ₂)				
Methane (CH ₄)				
Nitrous Oxide (N ₂ O)				
Hydrofluorocarbons (HFCs)				
Perfluorocarbons (PFCs)				
Sulfur Hexafluoride (SF6)				
Total GHG (as CO ₂ e)				
List individual federal Hazardous Air	At Design Capacity	At	Projected Operat	ions
Pollutants (HAP) below:	(Ĭb/hr)	(lb/hr)	(lb/day)	(ton/yr)
			1 1	

(Attach additional sheets as necessary.)

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230

(410)537-3225 • 1-800-633-6101 • <u>www.mde.maryland.gov</u>

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: W.R. Grace & Co.-Conn.

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: ICO-133

2. Emission Point Description

Describe the emission point including all associated equipment and control devices: ICO-Line 3 Fugitive dust collection from several units (EBH-35671).

3. Emissions Schedul	e for th	ne Emiss	ion						
Continuous or Intermittent (C/I)?	0		Seasonal Variation					
	<i>)</i> .	С			nerwis	e estimate s	seaso	nal va	ariation:
Minutes per hour:		60		Winter Percent					
Hours per day:		24		Spring Percent					
Days per week:		7 52		Summer Percent Fall Percent					
Weeks per year: 4. Emission Point Info	rmatio	-		Fail Percent					
	matio				- 1	Length			Width:
Height above ground (ft):		83.5		Length and width dimension		-		width.	
Height above structures (ft):		16.75		at top of rectangular stack ((ft):	i): N/A			N/A
Exit temperature (°F):		Ambient		Inside diameter at top of round stack (ft):				0.5	
Exit velocity (ft/min):		25,465		Distance from emission point to nearest property line (ft):					220
Exhaust gas volumetric flow ra	ite			Building dimensions if emission Height				gth	Width
(acfm):		5,000		point is located on building (ft) 47 168				59	
5. Control Devices As	sociate	ed with t	he E	Emission Point		1	1		I
Identify each control device associated with the emission point and indicate the number of devices. <u>A Form 6 is</u> <u>also required for each control device</u> . If none check none:									
None			[Thermal Oxidizer		No			
🛛 Baghouse	No. <u>1</u>			Regenerative					
Cyclone	No		[Catalytic Oxidizer		No			
Elec. Precipitator (ESP)	No		[Nitrogen Oxides Reduction	on	No			
Dust Suppression System	No			Selective		_ Non-Sele _ Non-Cata			
🗌 Venturi Scrubber	No		ſ		L		2		
Spray Tower/Packed Bed	No			Specify:		No			
Carbon Adsorber	No								
Cartridge/Canister									
Regenerative									

FOF	RM 5EP: Emission P	oint Data					
6. Estimated Emissions from th	e Emission Point						
Criterie Delluterte	At Design Capacity	At	At Projected Operations				
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Particulate Matter (filterable as PM10)	0.02	0.02	0.48	0.09			
Particulate Matter (filterable as PM2.5)	0.02	0.02	0.46	0.08			
Particulate Matter (condensables)							
Volatile Organic Compounds (VOC)							
Oxides of Sulfur (SOx)							
Oxides of Nitrogen (NOx)							
Carbon Monoxide (CO)							
Lead (Pb)							
	At Design Capacity	At Projected Operations		ions			
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Carbon Dioxide (CO ₂)							
Methane (CH ₄)							
Nitrous Oxide (N ₂ O)							
Hydrofluorocarbons (HFCs)							
Perfluorocarbons (PFCs)							
Sulfur Hexafluoride (SF6)							
Total GHG (as CO ₂ e)							
List individual federal Hazardous Air	At Design Capacity	At	Projected Operat	ions			
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			

(Attach additional sheets as necessary.)

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230

(410)537-3225 • 1-800-633-6101 • <u>www.mde.maryland.gov</u>

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: <u>W.R. Grace & Co.-Conn.</u>

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: ICO-134

2. Emission Point Description

Describe the emission point including all associated equipment and control devices: ICO-Line 3 Central Vacuum System with one baghouse (EBH-35680).

3. Emissions Schedul	e for tl	ne Emiss	ion						
Continuous or Intermittent (C/I)?	0		Seasonal Variation					
		С			herwis	e estimate s	seaso	nal va	ariation:
Minutes per hour:		60		Winter Percent					
Hours per day:		24		Spring Percent					
Days per week:		<u>7</u> 52		Summer Percent					
Weeks per year: 4. Emission Point Info	rmatic			Fall Percent					
	matic		[Longth		, I., I., I., I., I., I., I., I., I., I.	Width:
Height above ground (ft):		83.5		Length and width dimensio		Length:		width.	
Height above structures (ft):		16.75	at top of rectangular stack (ft):			t): N/A			N/A
Exit temperature (°F):		Ambient		Inside diameter at top of round stack (ft):				1	
Exit velocity (ft/min):		551	Distance from emission point to nearest property line (ft):					220	
Exhaust gas volumetric flow ra	ite			Building dimensions if emis	ssion	Height	Len	gth	Width
(acfm):		433		point is located on building (ft) 47 168				59	
5. Control Devices As	sociat	ed with t	he E	Emission Point			1		
Identify each control device associated with the emission point and indicate the number of devices. <u>A Form 6 is</u> <u>also required for each control device</u> . If none check none:									
□ None				Thermal Oxidizer		No			
🛛 Baghouse	No. <u>1</u>			Regenerative					
Cyclone	No			Catalytic Oxidizer		No			
Elec. Precipitator (ESP)	No			Nitrogen Oxides Reduct	ion	No			
Dust Suppression System	No				[Non-Sele		1	
🗌 Venturi Scrubber	No			Catalytic	L	Non-Cata			
Spray Tower/Packed Bed	No			☐ Other Specify:		No			
Carbon Adsorber	No								
Cartridge/Canister									
Regenerative									

FOF	RM 5EP: Emission P	oint Data					
6. Estimated Emissions from th	e Emission Point						
Criterie Delluterte	At Design Capacity	At	At Projected Operations				
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Particulate Matter (filterable as PM10)	0.02	0.02	0.48	0.09			
Particulate Matter (filterable as PM2.5)	0.02	0.02	0.46	0.08			
Particulate Matter (condensables)							
Volatile Organic Compounds (VOC)							
Oxides of Sulfur (SOx)							
Oxides of Nitrogen (NOx)							
Carbon Monoxide (CO)							
Lead (Pb)							
	At Design Capacity	At Projected Operations		ions			
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Carbon Dioxide (CO ₂)							
Methane (CH ₄)							
Nitrous Oxide (N ₂ O)							
Hydrofluorocarbons (HFCs)							
Perfluorocarbons (PFCs)							
Sulfur Hexafluoride (SF6)							
Total GHG (as CO ₂ e)							
List individual federal Hazardous Air	At Design Capacity	At	Projected Operat	ions			
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			

(Attach additional sheets as necessary.)

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230

(410)537-3225 • 1-800-633-6101 • <u>www.mde.maryland.gov</u>

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: <u>W.R. Grace & Co.-Conn.</u>

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: ICO-135

2. Emission Point Description

Describe the emission point including all associated equipment and control devices:

ICO-Line 3 Indoor emissions released from building vents.

3. Emissions Schedul	e for tl	ne Emiss	ion	Point						
Continuous or Intermittent (C/I)?	0		Seasonal Variation						
	<i>,</i> .	С			herwis	e estimate s	seaso	nal va	ariation:	
Minutes per hour:		60		Winter Percent						
Hours per day:		24		Spring Percent Summer Percent						
Days per week: Weeks per year:		<u>7</u> 52		Fall Percent						
4. Emission Point Info	rmatic			T all Fercent						
Height above ground (ft):	/////acre	49		Length and width dimensio	ons	Length	:	1	Width:	
Height above structures (ft):		2		at top of rectangular stack (ft):		N/A		N/A		
Exit temperature (°F):		Ambient		Inside diameter at top of ro	ound s	tack (ft):			6.5	
Exit velocity (ft/min):		1,205		Distance from emission point to nearest property line (ft):					220	
Exhaust gas volumetric flow ra	ite	40,000		Building unifolioion in officioion				gth	Width	
(acfm):		40,000		point is located on building (ft) 47 168 59						
5. Control Devices As	sociat	ed with t	he E	Emission Point						
	Identify each control device associated with the emission point and indicate the number of devices. <u>A Form 6 is</u> <u>also required for each control device</u> . If none check none:									
🗙 None			[Thermal Oxidizer		No				
☐ Baghouse	No			Regenerative						
Cyclone	No		[Catalytic Oxidizer		No				
Elec. Precipitator (ESP)	No		[Nitrogen Oxides Reduct	ion	No				
Dust Suppression System	No] Non-Sele				
🗌 Venturi Scrubber	No		ſ	Catalytic	L] Non-Cata				
Spray Tower/Packed Bed	No			☐ Other Specify:		No				
Carbon Adsorber	No									
Cartridge/Canister										
Regenerative										

The emissions from indoor sources to the atmosphere is deemed to be an insignificant source per COMAR 26.11.02.10X(3) (<1 toy of regulated pollutants). All indoor building vents are to be permitted as one source of Indoor emissions.

RM 5EP: Emission P	oint Data				
e Emission Point					
At Design Capacity	At	At Projected Operations			
(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
0.10	0.10	2.47	0.45		
0.10	0.10	2.35	0.43		
At Design Canacity	At Projected Operation		ons		
(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
At Design Capacity	At	Projected Operat	ions		
(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
	Emission Point At Design Capacity (Ib/hr) 0.10 0.10 0.10 0.10 At Design Capacity (Ib/hr) At Design Capacity (Ib/hr) Image: At Design Capacity (Ib/hr)	At Design Capacity (lb/hr) At 0.10 0.10	Emission Point At Design Capacity (lb/hr) At Projected Operative (lb/hr) 0.10 0.10 2.47 0.10 0.10 2.35 0.10 0.10 2.35 0.10 0.10 2.35 0.10 0.10 2.35 0.10 0.10 2.35 0.10 0.10 2.35 0.10 0.10 2.35 0.10 0.10 2.35 0.10 0.10 2.35 0.10 0.10 2.35 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1.10 0.10 0.10 1.10 0.10 0.10 1.10 0.10 0.10 1.10 0.10 0.10 1.10 0.10		

(Attach additional sheets as necessary.)

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230

(410)537-3225 • 1-800-633-6101 • <u>www.mde.maryland.gov</u>

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: W.R. Grace & Co.-Conn.

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: Indoor emissions. No stack ID

2. Emission Point Description

Describe the emission point including all associated equipment and control devices: ICO-Line 3 Coarse Classifier Feed Hopper with one bin vent (EBV-35614).

3. Emissions Schedul	e for the	e Emiss	ion	Point						
Continuous or Intermittent (C/I)	?	С		Seasonal Variation						
. ,		_			herwis	e estimate s	seaso	nal va	ariation:	
Minutes per hour:		60		Winter Percent						
Hours per day:		24		Spring Percent						
Days per week:		7		Summer Percent						
Weeks per year:	rmetier	52		Fall Percent						
4. Emission Point Info	rmatior	1	1			1				
Height above ground (ft):		N/A		Length and width dimensio				Width:		
Height above structures (ft):		N/A		at top of rectangular stack	(ft):	(ft): N/A		N/A		
Exit temperature (°F):		N/A		Inside diameter at top of ro		()			N/A	
Exit velocity (ft/min):		N/A		Distance from emission point to nearest property line (ft):					N/A	
Exhaust gas volumetric flow ra	te		Building dimensions if emission Height Le				Len	gth	Width	
(acfm):		Indoor		point is located on building (ft) N/A N/A N						
5. Control Devices Associated with the Emission Point										
Identify each control device associated with the emission point and indicate the number of devices. <u>A Form 6 is</u> <u>also required for each control device</u> . If none check none:										
□ None				Thermal Oxidizer		No				
Baghouse	No			Regenerative						
Cyclone	No			Catalytic Oxidizer		No				
Elec. Precipitator (ESP)	No			Nitrogen Oxides Reduct	Nitrogen Oxides Reduction No					
Dust Suppression System	No			Selective		☐ Non-Sele ☐ Non-Cata				
🗌 Venturi Scrubber	No			X Other	L	No. 1				
Spray Tower/Packed Bed	No			Specify: Bin vent, used for	mater					
Carbon Adsorber	No									
Cartridge/Canister										
Regenerative										

FOF	RM 5EP: Emission	Point Data				
6. Estimated Emissions from th	e Emission Point					
Criteria Pollutants	At Design Capacity	At	Projected Opera	tions		
Criteria Poliutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
Particulate Matter (filterable as PM10)						
Particulate Matter (filterable as PM2.5)						
Particulate Matter (condensables)						
Volatile Organic Compounds (VOC)						
Oxides of Sulfur (SOx)						
Oxides of Nitrogen (NOx)						
Carbon Monoxide (CO)						
Lead (Pb)						
	At Design Capacity	At Projected Operation		ons		
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
Carbon Dioxide (CO ₂)						
Methane (CH ₄)						
Nitrous Oxide (N ₂ O)						
Hydrofluorocarbons (HFCs)						
Perfluorocarbons (PFCs)						
Sulfur Hexafluoride (SF6)						
Total GHG (as CO ₂ e)						
List individual federal Hazardous Air	At Design Capacity	At	Projected Opera	tions		
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		

(Attach additional sheets as necessary.)

Γ

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230

(410)537-3225 • 1-800-633-6101 • www.mde.maryland.gov

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: W.R. Grace & Co.-Conn.

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: Indoor emissions. No stack ID.

2. Emission Point Description

Describe the emission point including all associated equipment and control devices: ICO-Line 3 Fines Classifier Feed Hopper with one bin vent (EBV-35615).

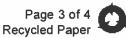
3. Emissions Schedul	e for tl	ne Emiss	sion							
Continuous or Intermittent (C/I)?	0		Seasonal Variation						
``````````````````````````````````````	):	С			herwis	e estimate s	seaso	nal va	ariation:	
Minutes per hour:		60		Winter Percent						
Hours per day:		24		Spring Percent						
Days per week:		7		Summer Percent						
Weeks per year: 4. Emission Point Info	rmatic	52		Fall Percent						
	ormatic		1			Longth			Width:	
Height above ground (ft):		N/A		Length and width dimensions		Length		wiatri.		
Height above structures (ft):		N/A		at top of rectangular stack (ft):		N/A			N/A	
Exit temperature (°F):		N/A		Inside diameter at top of ro		. ,			N/A	
Exit velocity (ft/min):		N/A	Distance from emission point to nearest property line (ft):					N/A		
Exhaust gas volumetric flow ra	ite			Building dimensions if emis	ssion	Height	Len	gth	Width	
(acfm):		Indoor	point is located on building (ft) N/A N/A				N/A			
5. Control Devices As	sociat	ed with t	he E	Emission Point			1		L	
Identify each control device associated with the emission point and indicate the number of devices. <u>A Form 6 is</u> <u>also required for each control device</u> . If none check none:										
□ None				Thermal Oxidizer		No				
Baghouse	No			Regenerative						
Cyclone	No			Catalytic Oxidizer		No				
Elec. Precipitator (ESP)	No			Nitrogen Oxides Reducti	ion	No				
Dust Suppression System	No			Selective		_ Non-Sele _ Non-Cata				
🗌 Venturi Scrubber	No			X Other	L					
Spray Tower/Packed Bed	No			Specify: Bin vent, used for	mater	No. <u>1</u> ial recovery				
Carbon Adsorber	No									
Cartridge/Canister										
Regenerative										

FORM 5EP: Emission Point Data										
6. Estimated Emissions from the	e Emission Point									
Oritaria Dallutarta	At Design Capacity	At	Projected Opera	tions						
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)						
Particulate Matter (filterable as PM10)										
Particulate Matter (filterable as PM2.5)										
Particulate Matter (condensables)										
Volatile Organic Compounds (VOC)										
Oxides of Sulfur (SOx)										
Oxides of Nitrogen (NOx)										
Carbon Monoxide (CO)										
Lead (Pb)										
Greenhouse Gases (GHG)	At Design Capacity	At Projected Operations								
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)						
Carbon Dioxide (CO ₂ )										
Methane (CH ₄ )										
Nitrous Oxide (N ₂ O)										
Hydrofluorocarbons (HFCs)										
Perfluorocarbons (PFCs)										
Sulfur Hexafluoride (SF6)										
Total GHG (as CO ₂ e)										
List individual federal Hazardous Air	At Design Capacity	At	Projected Opera	tions						
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)						
		1	1							

(Attach additional sheets as necessary.)

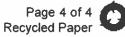
1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

Air and Radiation Management Administration = Air Quality Permits Program


## **APPLICATION FOR PERMIT TO CONSTRUCT** GAS CLEANING OR EMISSION CONTROL EQUIPMENT

1. Owner of Installation	Telephone No. Date of Appli		
W.R. Grace & CoConn.	(410) 354-8	987	6/25/2025
2. Mailing Address	City	County	
5500 Chemical Road	Baltimore	21226	Baltimore City
3. Equipment Location	City/Town or	P.O.	County
5500 Chemical Road	Baltimore		Baltimore City
4. Signature of Owner or Operator	e of Owner or Operator Title Print or Ty		
Jufforkoval	Senior Opera	tions Director - Curt	is Bay Jeff Lukowski
5. Application Type: Alteration		New Construc	tion X
6. Date Construction is to Start: 01/2026			<b>ate (Estimate):</b> 5/2027
7. Type of Gas Cleaning or Emission Control	I Equipment: This	control equipment	is inherent to the spray dryer
Simple Cyclone X Multiple Cyclone	Afterburn		ostatic Precipitator
Scrubber	Other >	Baghouse	
(type)			(type)
8. Gas Cleaning Equipment Manufacturer	Model No.	Collection Effi	ciency (Design Criteria)
Cyclone: GEA Baghouse: Elex-Kleen Corp 12	Custom model t0-WXWC-400XL(	lit)	99.99%
9. Type of Equipment which Control Equipme	nt is to Service:		
ICO-Line 3 Spray Dryer			
10. Stack Test to be Conducted:			
Yes No X			
(Stacl	k Test to be Conducte	ed By)	(Date)
11. Cost of Equipment Included in	spray dryer quote	•	
Estimated Erection Cost\$10,846			

12. The Following S	Shall Be Design	Criteria: par	ameters. Or culations. Th	utlet par he cyclo	ameters ne desig	used here are	Public Version not the guaranteed outlet reflected in the emissions conservative estimates were
	INLET	ma	de for grain	loading		<u>OUTLET</u>	
Gas Flow Rate	13,800	ACFM*				13,800	ACFM*
Gas Temperature	250	°F				250	°F
Gas Pressure	-20		N.G.			0	INCHES W.G.
	P	RESSURE DF		-20			
Dust Loading	20	GRAINS//	ACFD**			0.002	GRAINS/ACFD**
Moisture Content	5	%				5	%
OR Wet Bulb Temperature		°F					°F
Liquid Flow Rate (Wet Scrubber)		GALLONS	S/MINUTE				
	R LIQUID OTHER T	HAN WATER IN	NDICATE C	OMPOS	SITION C	F SCRUBBING	G MEDIUM IN WEIGHT %)
*=	ACTUAL CUBIC	FEET PER MI	NUTE	**=	= ACTU/	AL CUBIC FE	ET DRY
WHEN APPLICATION INVOLVES THE REDUCTION OF GASEOUS POLLUTANTS, PROVIDE THE CONCENTRATION OF EACH POLLUTANT IN THE GAS STREAM IN VOLUME PERCENT. INCLUDE THE COMPOSITION OF THE GASES ENTERING THE CLEANING DEVICE AND THE COMPOSITION OF EXHAUSTED GASES BEING DISCHARGED INTO THE ATMOSPHERE. USE AVAILABLE SPACE IN ITEM 15 ON PAGE 3.							
13. Particle Size An	alysis Gra	ce has conse	rvatively a	Issume	ed that a	all PM = PM1	0
Size of Dust Particles I	-	Unit	% of To	tal Dust	t	<u>% to be Col</u>	llected
0 to 10 Mic			100		-	99.99	
10 to 44 M	icrons		0			100	
Larger tha	n 44 Microns		0			100	
14. For Afterburner	Construction C	only:					
Volume of	Contaminated Air				CFM	(DO NOT IN	CLUDE COMBUSTION AIR)
Gas inlet 1	emperature				۰F		
Capacity o	f Afterburner				BTU/HF	2	
Diameter (	or area) of Afterbu	Irner Throat					
Combustio	n Chamber	meter)	(length)		Operati	ng Temperati	ure at Afterburner °F
Retention	Time of Gases						


15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere.

See Appendix 2 for Process Flow Diagram.



Public Version

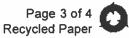
Date Received:	Local	_ State	
Acknowledgeme	ent Date:		
Reviewed By:			
	•	· · ·	
Returned to Loc			
Date			
Application Retu	irned to Applicant:		
Date			
Ву			
REGISTRATION NU	MBER OF ASSOCIATED EQUIPMENT:		
PREMISES NUMBER	R:		
	R:		Date
			_Date
			Date



1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

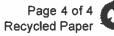
Air and Radiation Management Administration 

Air Quality Permits Program


## APPLICATION FOR PERMIT TO CONSTRUCT GAS CLEANING OR EMISSION CONTROL EQUIPMENT

1. Owner of Installation	Telephone No. Date of Applicatio			
W.R. Grace & CoConn.	(410) 354-8987 6/25/2025			
2. Mailing Address 5500 Chemical Road	CityZip CodeCountyBaltimore21226Baltimore City			
3. Equipment Location	City/Town or I	P.O.	County	
5500 Chemical Road	Baltimore		Baltimore City	
4. Signature of Owner or Operator Title Print or				
Dettorukn 1.	Senior Operation	ons Director - Curtis	Bay Jeff Lukowski	
5. Application Type: Alteration		New Constructi	on X	
6. Date Construction is to Start: 01/2026		Completion Dat 05/2027	e (Estimate):	
7. Type of Gas Cleaning or Emission Control	Equipment:			
Simple Cyclone Multiple Cyclone Afterburner Electrostatic Precipitator				
Scrubber	Other X		pe)	
8. Gas Cleaning Equipment Manufacturer	Model No.		iency (Design Criteria)	
Baghouse America	2-PTPBBV-39-6.2	5 9	9.99%	
9. Type of Equipment which Control Equipment	it is to Service:			
ICO-Line 3 Coarse Classifier Feed Hopper				
10. Stack Test to be Conducted:		,		
Yes No X				
(Stack	Test to be Conducted	ј Ву)	(Date)	
11. Cost of Equipment \$12,000				
Estimated Erection Cost\$3,741				

-	_	riteria:	outlet parameters	. This c	ontrol device er	Public Version are not the guaranteed nits indoors and is vented sions; Insignificant
	INLET		activity).		OUTLET	
Gas Flow Rate	624	_ ACFM*	k		624	ACFM*
Gas Temperature	70	_ °F			70	°F
Gas Pressure	-10		S W.G.		0	INCHES W.G.
	PRI	ESSURE	DROP	10		
Dust Loading	10	_ GRAIN	IS/ACFD**		0.001	GRAINS/ACFD**
Moisture Content	5	_ %			5	%
OR Wet Bulb Temperature		°F				°F
Liquid Flow Rate		GALLO	ONS/MINUTE			
(Wet Scrubber) (WHEN SCRUBBE	R LIQUID OTHER THA	AN WATER	R INDICATE COMPO	OSITION	OF SCRUBBING	MEDIUM IN WEIGHT %)
*=	= ACTUAL CUBIC FE	EET PER	MINUTE *	*= ACTL	JAL CUBIC FEE	T DRY
WHEN APPLICATION INVOLVES THE REDUCTION OF GASEOUS POLLUTANTS, PROVIDE THE CONCENTRATION OF EACH POLLUTANT IN THE GAS STREAM IN VOLUME PERCENT. INCLUDE THE COMPOSITION OF THE GASES ENTERING THE CLEANING DEVICE AND THE COMPOSITION OF EXHAUSTED GASES BEING DISCHARGED INTO THE ATMOSPHERE. USE AVAILABLE SPACE IN ITEM 15 ON PAGE 3.						
13. Particle Size An	nalysis Grace	has cons	servatively assume	ed that a	all PM = PM10	
Size of Dust Particles	Entering Cleaning Ur	<u>nit</u>	<u>% of Total Du</u>	<u>ist</u>	<u>% to be Colle</u>	ected
0 to 10 Mi	crons		100	_	99.99	
10 to 44 N	licrons		0	_	100	
Larger tha	ın 44 Microns		0	_	100	
14. For Afterburner	^r Construction On	ly:				
Volume of	Contaminated Air			_ CFM	(DO NOT INC	LUDE COMBUSTION AIR)
Gas Inlet ⁻	Temperature			_ °F		
Capacity o	of Afterburner			_ BTU/H	IR	
Diameter	(or area) of Afterburr	ner Throai	t	-		
Combustic	on Chamber(diam	eter)	(length)	_ Opera	ting Temperatur	e at Afterburner °F
Retention	Time of Gases			_		


15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere.

See Appendix 2 for Process Flow Diagram.



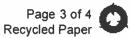
Public Version

Date Received: Local	State
Acknowledgement Date:	
By	
Reviewed By:	
Returned to Local:	
Date	
Ву	
Application Returned to Applicant: Date By	
REGISTRATION NUMBER OF ASSOCIATED EQUIPM	
PREMISES NUMBER:	
Emission Calculations Revised By	Date
Form number: 6	



1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

Air and Radiation Management Administration = Air Quality Permits Program


## APPLICATION FOR PERMIT TO CONSTRUCT GAS CLEANING OR EMISSION CONTROL EQUIPMENT

1. Owner of Installation	Telephone No	<b>)</b> .	Date of Application
W.R. Grace & CoConn.	(410) 354-8987	,	6/25/2025
2. Mailing Address	City	Zip Code	County
5500 Chemical Road	Baltimore	21226	Baltimore City
3. Equipment Location	City/Town or	P.O.	County
5500 Chemical Road	Baltimore		Baltimore City
4. Signature of Owner or Operator	Title		Print or Type Name
Jef Sukowsti	Senior Operation	ons Director - Curti	s Bay Jeff Lukowski
5. Application Type: Alteration		New Construc	tion X
6. Date Construction is to Start:		Completion D	ate (Estimate):
01/2026		05/202	7
7. Type of Gas Cleaning or Emission Contro	I Equipment:		
Simple Cyclone Multiple Cyclone	Afterburne	er Electro	ostatic Precipitator
Scrubber	Other X	Bin Vent	
(type)			(type)
8. Gas Cleaning Equipment Manufacturer	Model No.	Collection Effi	iciency (Design Criteria)
Baghouse America	2-PTPBBV-39-6.2	99	9.99%
9. Type of Equipment which Control Equipme	ent is to Service:		
ICO-Line 3 Fines Classifier Feed Hopper			
10. Stack Test to be Conducted:			
Yes No 🗶			
(Stac	ck Test to be Conducte	d By)	(Date)
11. Cost of Equipment \$12,000			_
Estimated Erection Cost\$3,741			

Venied via dollarda venis (UV-133) indoor emissions.	ind is			
vented via building vents (ICO-135; Indoor emissions; INLET Insignificant activity).				
Gas Flow Rate 624 ACFM* 624 ACFM*				
Gas Temperature 70 °F 70 °F				
Gas Pressure 0 10 INCHES W.G. 0 INCHES W	V.G.			
Dust Loading10GRAINS/ACFD**0.001GRAINS/A	CFD**			
Moisture Content5_%5_%				
OR Wet Bulb Temperature°F°F				
Liquid Flow Rate GALLONS/MINUTE				
(Wet Scrubber) (WHEN SCRUBBER LIQUID OTHER THAN WATER INDICATE COMPOSITION OF SCRUBBING MEDIUM IN WI	EIGHT %)			
*= ACTUAL CUBIC FEET PER MINUTE **= ACTUAL CUBIC FEET DRY				
WHEN APPLICATION INVOLVES THE REDUCTION OF GASEOUS POLLUTANTS, PROVIDE THE CONCENTRATION OF EACH POLLUTANT IN THE GAS STREAM IN VOLUME PERCENT. INCLUDE THE COMPOSITION OF THE GASES ENTERING THE CLEANING DEVICE AND THE COMPOSITION OF EXHAUSTED GASES BEING DISCHARGED INTO THE ATMOSPHERE. USE AVAILABLE SPACE IN ITEM 15 ON PAGE 3.				
<b>13. Particle Size Analysis</b> Grace has conservatively assumed that all PM = PM10				
Size of Dust Particles Entering Cleaning Unit % of Total Dust % to be Collected				
0 to 10 Microns 100 99.99				
10 to 44 Microns 0 100				
Larger than 44 Microns 0 100				
14. For Afterburner Construction Only:				
Volume of Contaminated Air CFM (DO NOT INCLUDE COMB	USTION AIR)			
Gas Inlet Temperature °F				
Capacity of AfterburnerBTU/HR				
Diameter (or area) of Afterburner Throat				
Combustion Chamber Operating Temperature at Afterburn (diameter) (length)	er°F			
Retention Time of Gases				


15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere.

See Appendix 2 for Process Flow Diagram.



Public Version

Date Received: Loca	al	_ State	
	ate:		
Ву			
<b>Reviewed By:</b>			
Local			
Returned to Local:			
Date			
Ву			
Application Returned			
Date			
•			
REGISTRATION NUMBER	R OF ASSOCIATED EQUIPMENT:		
Г			
PREMISES NUMBER:			
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	
L	evised By	Date	

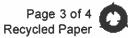


1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

# Air and Radiation Management Administration = Air Quality Permits Program

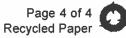
# **APPLICATION FOR PERMIT TO CONSTRUCT** GAS CLEANING OR EMISSION CONTROL EQUIPMENT

1. Owner of Installation	Telephone No.		Date of Application		
W.R. Grace & CoConn.	(410) 354-8987 6/25/2025				
2. Mailing Address	City	Zip Code	County		
5500 Chemical Road	Baltimore	21226	Baltimore City		
3. Equipment Location	City/Town or	P.O.	County		
5500 Chemical Road	Baltimore		Baltimore City		
4. Signature of Owner or Operator	Title		Print or Type Name		
Differ	Senior Operati	ons Director - Curti	s Bay Jeff Lukowski		
5. Application Type: Alteration		New Construc	tion X		
6. Date Construction is to Start: 01/2026		Completion Da 05/2027	ate (Estimate):		
7. Type of Gas Cleaning or Emission Control Equipment:					
Simple Cyclone Multiple Cyclone	Afterburn	er Electro	ostatic Precipitator		
	- · · · [_		Iter, 1 Coarse		
Scrubber (type)	Other X		id 1 Fines Baghouse(type)		
8. Gas Cleaning Equipment Manufacturer	Model No.		ciency (Design Criteria)		
Cartridge: ACT Dust Collectors Baghouses: Sty LLC	ACT 4-32 CT <mark>R-95-15</mark> 9-10 (•	4.5) WIP	99.99+% 99.99+%		
9. Type of Equipment which Control Equipmen	nt is to Service:				
ICO-Line 3 Coarse Classifier and ICO-Line 3 Fines Classifier					
10. Stack Test to be Conducted:					
Yes No X					
	Test to be Conducte	ed By)	(Date)		
11. Cost of Equipment Cartridge: \$236,824.36,	Baghouses: Inclu	ded in the Classifie	rs quote		
Estimated Erection Cost\$21,376					


ļ	INLET				OUTLET	
Gas Flow Rate	10,400	ACFM*			10,400	ACFM*
Gas Temperature	70	°F			70	°F
Gas Pressure	10		V.G.		0	INCHES W.G.
	PR	ESSURE DR	OP1	10		
Dust Loading	100	GRAINS/A	CFD**		0.0001	GRAINS/ACFD**
Moisture Content	5	%			5	%
OR Wet Bulb Temperature		°F				°F
	R LIQUID OTHER TH ACTUAL CUBIC F		IDICATE COMP		OF SCRUBBING I	MEDIUM IN WEIGHT %) T DRY
WHEN APPLICATION INVOLVES THE REDUCTION OF GASEOUS POLLUTANTS, PROVIDE THE CONCENTRATION OF EACH POLLUTANT IN THE GAS STREAM IN VOLUME PERCENT. INCLUDE THE COMPOSITION OF THE GASES ENTERING THE CLEANING DEVICE AND THE COMPOSITION OF EXHAUSTED GASES BEING DISCHARGED INTO THE ATMOSPHERE. USE AVAILABLE SPACE IN ITEM 15 ON PAGE 3.						
13. Particle Size Ana	<b>alysis</b> Gra	ce has conse	ervatively assi	umed that	all PM = PM10	0
Size of Dust Particles Entering Cleaning Unit % of Total Dust % to be Collected			ected			
0 to 10 Mic	rons		100		99.99+	
10 to 44 Mi	icrons		0		100	
Larger than	n 44 Microns		0		100	
14. For Afterburner	Construction Or	nly:				
Volume of	Contaminated Air			_ CFM	(DO NOT INCI	LUDE COMBUSTION AIR)
Gas Inlet T	emperature			°F		
Capacity o	f Afterburner				२	
Diameter (*	or area) of Afterbur	ner Throat		_		
Combustio	n Chamber(dian	neter)	(length)	Operati	ing Temperature	e at Afterburner °F
Retention ⁻	Time of Gases			_		

Form number: 6 Revision date: 0/2000 TTY Users 1-800-735-2258

12. The Following Shall Be Design Criteria:


15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere.

See Appendix 2 for Process Flow Diagram.



Public Version

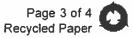
Date Received: Local	State
Acknowiedgement Date:	
By	
Reviewed By:	
Local	
State	
Returned to Local:	
Date	
Ву	
Application Returned to Applicant:	
Date	
Ву	
REGISTRATION NUMBER OF ASSOCIATED EQUIPMENT:	
PREMISES NUMBER:	
Emission Calculations Revised By	Date



1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

Air and Radiation Management Administration 

Air Quality Permits Program


## APPLICATION FOR PERMIT TO CONSTRUCT GAS CLEANING OR EMISSION CONTROL EQUIPMENT

1. Owner of Installation	Telephone No.		Date of Application
W.R. Grace & CoConn.	(410) 354-8987	7	6/25/2025
2. Mailing Address	City	Zip Code	County
5500 Chemical Road	Baltimore	21226	Baltimore City
3. Equipment Location	City/Town or P	2.0.	County
5500 Chemical Road	Baltimore		Baltimore City
4. Signature of Owner or Operator	Title		Print or Type Name
DefoSukonal	Senior Operatior	ns Director - Curtis E	3ay Jeff Lukowski
5. Application Type: Alteration		New Constructi	on X
6. Date Construction is to Start:		Completion Dat	e (Estimate):
01/2026		05/2027	
7. Type of Gas Cleaning or Emission Control	Equipment:		
Simple Cyclone Multiple Cyclone	Afterburne	r Electros	static Precipitator
Scrubber	Other X	Bin Vent	pe)
8. Gas Cleaning Equipment Manufacturer	Model No.		iency (Design Criteria)
	model Ho.		
	TD-486	99.9	9%
9. Type of Equipment which Control Equipmer	nt is to Service:		
ICO-Line 3 Finished Product Packaging Silo			
10. Stack Test to be Conducted:		· · · · · · · · · · · · · · · · · · ·	
Yes No 🗙			
(Stack	Test to be Conducted	By)	(Date)
11. Cost of Equipment \$12,904			
Estimated Erection Cost \$3,741			

12. The Following	Shall Be Design	Criteria:		meters	. Outlef	t parameters u	Public Version ut are not the guaranteed sed here are reflected in
	INLET		the emissic		culation	OUTLET	
Gas Flow Rate	1,500	ACFM	*			1,500	ACFM*
Gas Temperature	70	°F				70	°F
Gas Pressure	-20		S W.G.			0	INCHES W.G.
	P	RESSURE		-20			
Dust Loading	30	GRAIN	IS/ACFD**			0.003	GRAINS/ACFD**
Moisture Content	5	%				5	%
OR Wet Bulb Temperatur	e	°F					°F
Liquid Flow Rate		GALLO	ONS/MINUTE				
(Wet Scrubber) (WHEN SCRUBB	ER LIQUID OTHER T	HAN WATE	R INDICATE C	ОМРО	SITION	OF SCRUBBING	MEDIUM IN WEIGHT %)
*	= ACTUAL CUBIC	FEET PER	MINUTE	**	= ACTL	IAL CUBIC FEE	ET DRY
CONCENTRAT COMPOSITION OF	THE GASES ENT	LUTANT I ERING TH	IN THE GAS	STRE/ G DEVI	AM IN \ CE ANI	OLUME PERC	SENT. INCLUDE THE SENT. INCLUDE THE SITION OF EXHAUSTED NITEM 15 ON PAGE 3.
13. Particle Size A	<b>nalysis</b> Gra	ice has co	nservatively	assum	ned that	all PM = PM1	0
Size of Dust Particles	Entering Cleaning	<u>Unit</u>	<u>% of To</u>	otal Du	<u>st</u>	<u>% to be Coll</u>	ected
0 to 10 N	licrons		10	0	_	99.99	
10 to 44	Microns		0		_	100	
Larger th	an 44 Microns		0	)	_	100	
14. For Afterburne	r Construction C	)nly:					
Volume o	of Contaminated Air				CFM	(DO NOT INC	CLUDE COMBUSTION AIR)
Gas Inlet	Temperature				°F		
Capacity	of Afterburner				вти/н	R	
Diameter	(or area) of Afterbu	irner Throa	ıt				
Combust	ion Chamber(dia	meter)	(length	)	_ Opera	ting Temperatu	re at Afterburner °F
Retentior	Time of Gases				-		

15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere.

See Appendix 2 for Process Flow Diagram



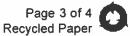
Public Version

Date Received:	Local	State	
Acknewladae	at Data:		
	nt Date:		
<b>Reviewed By:</b>			
Local			
State			
Returned to Loca	ıl:		
Date			
Ву			
Application Retur	ned to Applicant		
Date			
REGISTRATION NUM	IBER OF ASSOCIATED EQUIPMENT:		
PREMISES NUMBER			
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_ Date
Emission Calculation	ns Revised By		_ Date

1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

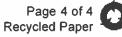
Air and Radiation Management Administration - Air Quality Permits Program

## APPLICATION FOR PERMIT TO CONSTRUCT GAS CLEANING OR EMISSION CONTROL EQUIPMENT


1. Owner of Installation	Telephone No	•	Date of Application
W.R. Grace & CoConn.	(410) 354-898	87	6/25/2025
2. Mailing Address	City	Zip Code	County
5500 Chemical Road	Baltimore	21226	Baltimore City
3. Equipment Location	City/Town or I	P.O.	County
5500 Chemical Road	Baltimore		Baltimore City
4. Signature of Owner or Operator	Title		Print or Type Name
Dypohikons	Senior Operatio	ns Director - Curtis B	ay Jeff Lukowski
5. Application Type: Alteration		New Construction	on X
6. Date Construction is to Start: 01/2026		Completion Date 05/2027	e (Estimate):
7. Type of Gas Cleaning or Emission Control	Equipment:		
Simple Cyclone Multiple Cyclone	Afterburne	er Electros	tatic Precipitator
Scrubber	Other X	Baghouse	
(type)		(typ	pe)
8. Gas Cleaning Equipment Manufacturer	Model No.	Collection Efficie	ency (Design Criteria)
Mikro-Pulsaire	645-8-20	99.99	%
9. Type of Equipment which Control Equipmer	nt is to Service:		
ICO-Line 3 Fugitive Dust Collector			
10. Stack Test to be Conducted:			
Yes No X			
	Test to be Conducted	d By)	(Date)
11. Cost of Equipment \$10,500			
Estimated Erection Cost\$8,777			

		Criteria: out	let parameters	Outlet	parameters use conservative 0	Public Version t are not the guaranteed ed here are reflected in the 0.005 gr/acfd is used.
	INLET				OUTLET	-
Gas Flow Rate	5,000	ACFM*			5,000	ACFM*
Gas Temperature	70	°F			70	°F
Gas Pressure	-0.5 to -4	INCHES V	V.G.		0	INCHES W.G.
	PI	RESSURE DR	OP	o -4		
Dust Loading	0.5		CFD**		0.0005	GRAINS/ACFD**
Moisture Content	5	%			5	%
OR Wet Bulb Temperature	<u> </u>	°F				°F
Liquid Flow Rate		GALLONS	MINUTE			
(Wet Scrubber) (WHEN SCRUBBE	R LIQUID OTHER TH	HAN WATER IN	IDICATE COMPO	OSITION	OF SCRUBBING	MEDIUM IN WEIGHT %)
*=		EET PER MI	NUTE *	*= ACTL	JAL CUBIC FEE	ET DRY
CONCENTRATI	THE GASES ENTE	LUTANT IN T ERING THE C	HE GAS STRE	AM IN VICE AN	VOLUME PERC	S, PROVIDE THE CENT. INCLUDE THE DSITION OF EXHAUSTED N ITEM 15 ON PAGE 3.
13. Particle Size An	alysis	Grace has co	nservatively as	sumed	that all PM = P	PM10
Size of Dust Particles	Entering Cleaning I	Jnit	% of Total Du	ust	<u>% to be Coll</u>	ected
0 to 10 Mi			100		99.99	
10 to 44 M			0	_	100	
Larger tha	n 44 Microns		0	_	100	
14. For Afterburner	Construction O	nly:				
Volume of	Contaminated Air			_ CFM	(DO NOT INC	CLUDE COMBUSTION AIR)
Gas Inlet	Temperature			_ °F		
Capacity o	of Afterburner			_ BTU/H	IR	
Diameter	(or area) of Afterbu	rner Throat		_		
Combustic	on Chamber(dia	meter)	(length)	_ Opera	iting Temperatu	re at AfterburnerºF
Retention	Time of Gases			_		




15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere.

See Appendix 2 for Process Flow Diagram.



Public Version

	Local	State	
Acknowledgeme	nt Data:		
	nt Date:		
Reviewed By:			
Local			
State			
Returned to Loca	al:		
Date			
Ву			
Application Retu	rned to Applicant:		
Date			
Ву			
REGISTRATION NUI	MBER OF ASSOCIATED EQUIPMENT:		
PREMISES NUMBER	R:		
<b>Emission Calculatio</b>	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	
Emission Calculatio	ns Revised By	Date	



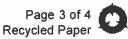
# MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

Air and Radiation Management Administration 

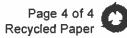
Air Quality Permits Program

# **APPLICATION FOR PERMIT TO CONSTRUCT** GAS CLEANING OR EMISSION CONTROL EQUIPMENT


1. Owner of Installation	Telephone No	).	Date of Application		
W.R. Grace & CoConn.	(410) 354-898	7	6/25/2025		
2. Mailing Address	City	Zip Code	County		
5500 Chemical Road	Baltimore	21226	Baltimore City		
3. Equipment Location	City/Town or	P.O.	County		
5500 Chemical Road	Baltimore		Baltimore City		
4. Signature of Owner or Operator	Title		Print or Type Name		
Houkowel.	Senior Operatio	ns Director - Curtis	Bay Jeff Lukowski		
5. Application Type: Alteration		New Construc	tion X		
6. Date Construction is to Start: 01/2026		Completion Da 05/2027	ate (Estimate):		
7. Type of Gas Cleaning or Emission Control	Equipment:				
Simple Cyclone Multiple Cyclone	Afterburne	er Electro	ostatic Precipitator		
Scrubber	Other X	Baghouse			
(type)			(type)		
8. Gas Cleaning Equipment Manufacturer	Model No.	Collection Effi	ciency (Design Criteria)		
Legends Equipment	72AVR7	99.9	9%		
9. Type of Equipment which Control Equipmer	nt is to Service:				
ICO-Line 3 Central Vacuum System					
10. Stack Test to be Conducted:					
Yes No X					
(Stack	Test to be Conducte	d By)	(Date)		
11. Cost of Equipment \$10,499					
Estimated Erection Cost\$8,777					

Form number: 6 Revision date: 0/2000 TTY Users 1-800-735-2258

12. The Following	Shall Be Design C	criteria:	outlet para	meters	Outlet	, parameters us	t are not the guaranteed ed here are reflected in
	INLET		the emission	ons calo	culation	^{IS.} OUTLET	
Gas Flow Rate	433	_ ACFM	at.			433	ACFM*
Gas Temperature	70	_°F				70	°F
Gas Pressure	-0.5 to -4		ES W.G.			0	INCHES W.G.
	PR	ESSURE		-0.5 t	to -4		
Dust Loading	5	_ GRAIN	NS/ACFD**			0.005	GRAINS/ACFD**
Moisture Content	5	_ %				5	%
OR Wet Bulb Temperature		_ °F					°F
Liquid Flow Rate		_ GALLO	ONS/MINUTI	E			
(Wet Scrubber) (WHEN SCRUBBE	R LIQUID OTHER TH	AN WATE		COMPO	SITION	OF SCRUBBING	MEDIUM IN WEIGHT %)
*=	ACTUAL CUBIC FE	EET PER		**:	= ACTL	JAL CUBIC FEE	TDRY
CONCENTRATIO	THE GASES ENTER	UTANT RING TH	IN THE GAS	S STRE	AM IN V CE AN	OLUME PERC	S, PROVIDE THE ENT. INCLUDE THE SITION OF EXHAUSTED I ITEM 15 ON PAGE 3.
13. Particle Size An	alysis Grace	has cons	servatively a	assume	d that a	II PM = PM10	
Size of Dust Particles	Entering Cleaning U	<u>nit</u>	<u>% of T</u>	otal Dus	<u>st</u>	<u>% to be Colle</u>	ected
0 to 10 Mi	crons			100	_	99.99	
10 to 44 M	licrons			0	_	100	
Larger tha	n 44 Microns			0	-	100	
14. For Afterburner	Construction On	ly:					
Volume of	Contaminated Air _				CFM	(DO NOT INC	LUDE COMBUSTION AIR)
Gas Inlet 1	Femperature				۰F		
Capacity o	of Afterburner				BTU/H	IR	
Diameter (	or area) of Afterburr	ner Throa	at				
Combustic	n Chamber(diam	eter)	(lengtl	h)	Opera	ting Temperatu	re at Afterburner °F
Retention	Time of Gases				-		


Form number: 6 Revision date: 0/2000 TTY Users 1-800-735-2258 15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere.

See Appendix 2 for Process Flow Diagram



Public Version

Date Received:	Local	State	
	ent Date:		
Ву			
<b>Reviewed By:</b>			
Local			
State		· · ·	
Returned to Loc	al:		
Date			
Ву			
	rned to Applicant:		
Date			
<i>z</i>			·
<b>REGISTRATION NUI</b>	MBER OF ASSOCIATED EQUIPMENT:		
PREMISES NUMBER	R:		
	ns Revised By		_Date
			Date
			Date
			_Date
			_ Date
			_ <b>Date</b>
			_ <b>Date</b>
			_ <b>Date</b>
			_ Date
			_Date
			_Date



#### MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 =1-800-633-6101 = www.mde.state.md.us

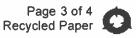
#### Air and Radiation Management Administration Air Quality Permits Program

# APPLICATION FOR PROCESSING/MANUFACTURING EQUIPMENT Permit to Construct Image: Company Name Owner of Equipment/Company Name

W.R. Grace & CoCo	• •	e		IN THIS BLOCK
Mailing Address			County No.	Premises No.
5500 Chemical Roa	d			
Street Address				
Baltimore	MD	21226	1-2	3-6
City	State	Zip	Registration Class	Equipment No.
Telephone Number				
( 410 ) 354-89	87		7 Data Year	8-11
Signature				
Jebbar			12-13	Application Date
Jeff Lukowski, Seni	or Operations Direct	or- Curtis Bav	255422025	
Print Name and Title			Date	
1B. Equipment Location	on and Telephone	Number (if different f	rom above)	
Same as above				
Street Number and Street	eet Name			
Same as above			( )	
City/Town	State		Zip Telep	hone Number
W.R. Grace & Co	- Curtis Ray			
Premises Name (if diffe				
3. Status (A= New, B=		<b>—</b> • • • •		
	ew Construction	New Construction		g Initial
Status B	egun (MM/YY)	Completed (MM/Y	Y) Operation	
В 0	6 2 6	0 5 2	7 1 9	9 0
15	16-19	20-23		0-23
4. Describe this Equip	ment: Make, Mode	l, Features, Manufacture	er (include Maximum Ho	
Magnapore Proc	duction Line (MAG a	nd MGX) Reg #24-0076-	-7-1024	
5. Workmen's Comper	nsation Coverage_	WC 7928789-05		11/15/2025
Company American Zu	rich Insurance Com	Binder/Policy Number		Expiration Date
NOTE: Before a Permit to	Construct may be issu	led by the Department, the ap s required under Section 1-20		
6A. Number of Pieces	of Identical Equip	ment Units to be Regi	stered/Permitted at th	is Time 4 Additional
CD Number of Phoeld	minaton Dainte A	accaleted with this Fr	winnent No New Emis	MGX Wash Pots
6B. Number of Stack/E	inission points A	ssociated with this Eq		
Form Number: 5				

. .




7. Person Installing this Equipment (if different from Number 1 on Page 1) Name	
Company	
Mailing Address/Street	
City/TownStateTelephone ()	
8. Major Activity, Product or Service of Company at this Location	
Multi-plant facility that manufactures Silica-based and Alumina-based inorganic chemicals.	
9. Control Devices Associated with this Equipment	
None 24-0	
Simple/Multiple CycloneSpray/Adsorb TowerVenturi ScrubberCarbon 	
Other Describe 24-9	
10. Annual Fuel Consumption for this Equipment       * Represents total fuel consumption for MAG-MGX Equipment and ification         OIL-1000 GALLONS       SULFUR % GRADE       NATURAL GAS-1000 FT ³ LP GAS-100 GALLONS GRADE         26-31       32-33       34       35-41       42-45	ıfter
COAL- TONS     SULFUR %     ASH%     WOOD-TONS     MOISTURE %       46-52     53-55     56-58     59-63     64-65	
OTHER FUELS       ANNUAL AMOUNT CONSUMED       OTHER FUEL       ANNUAL AMOUNT CONSUMED         (Specify Type)       66-1       (Specify Units of Measure)       (Specify Type)       66-2       (Specify Units of Measure)         1= Coke 2= COG 3=BFG 4=Other       66-2       (Specify Units of Measure)	
<b>11. Operating Schedule (for this Equipment)</b> Continuous Operation Batch Process Hours per Batch Batch per Week Hours per Day Days Per Week Days per Yea         X       2       4       7       3       6       8         67-1       67-2       68-69       70-71       72       73-75         Seasonal Variation in Operation:       No Variation       Winter Percent       Spring Percent       Summer Percent       Fall Percent       (Total Seasons= 100%)	r 5
X         76         77-78         79-80         81-82         83-84	

Form Number: 5 Rev. 9/27/2002 TTY Users 1-800-735-2258



**Public Version** 

12. Equivalent Stack Innformation	tion- is Exhaust through E	oors, Windows	s, etc. Onl	<b>y?</b> (Y/N) N	ון
	No additional stacks due	to modification		85	]
If not, then Height Avove Grou			rature (°E)	Exit Velocity (	(FT/SEC)
86-88	89-91	92-	95	96-98	3
	NOTE				<u> </u>
Attach a block diagram of pr	NOTE: ncess/process line_indica	iting new equin	mont as r	enorted on this	sform
	equipment, including cont				510111
13. Input Materials (for this equ	lipment only)				
Is any of this data to be co		′ (Y or N)			
				T RATE	
	CAS NO. (IF APPLICABLE)	PER HOUR	UNITS	PER YEAR	UNITS
See Attached List     2.					<u> </u>
3.					
4.					<u> </u>
5.	<u> </u>				<u>+</u>
6.					
7.					
8.					-
9.					
TOTAL			-		
44 Output Materials (for this a					
14. Output Materials (for this e	quipment)				I
Process/Product Stream					
Process/Product Stream			OUTF	PUT RATE	
Process/Product Stream	CAS NO. (IF APPLICABLE)	PER HOUR		PUT RATE PER YEAR	UNITS
NAME 1. Magnapore Catalyst	CAS NO. (IF APPLICABLE)	PER HOUR 355			UNITS tons
NAME 1. Magnapore Catalyst 2.	CAS NO. (IF APPLICABLE)		UNITS	PER YEAR	1
NAME           NAME           1.         Magnapore Catalyst           2.         3.	CAS NO. (IF APPLICABLE)		UNITS	PER YEAR	1
NAME       1. Magnapore Catalyst       2.       3.       4.	CAS NO. (IF APPLICABLE)		UNITS	PER YEAR	1
NAME       1. Magnapore Catalyst       2.       3.       4.       5.	CAS NO. (IF APPLICABLE)		UNITS	PER YEAR	1
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.	CAS NO. (IF APPLICABLE)		UNITS	PER YEAR	1
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.	CAS NO. (IF APPLICABLE)		UNITS	PER YEAR	1
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.	CAS NO. (IF APPLICABLE)	· · · · · · · · · · · · · · · · · · ·	UNITS	PER YEAR	1
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.	CAS NO. (IF APPLICABLE)	· · · · · · · · · · · · · · · · · · ·	UNITS	PER YEAR	1
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL		· · · · · · · · · · · · · · · · · · ·	UNITS	PER YEAR	1
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.		· · · · · · · · · · · · · · · · · · ·		PER YEAR 1553	1
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL           15. Waste Streams- Solid and I	_iquid	355		PER YEAR 1553	
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL           15. Waste Streams- Solid and I           NAME		355 PER HOUR		PER YEAR 1553 	UNITS
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL           NAME           1. Catalyst Waste	_iquid	<u>355</u> PER HOUR 155	UNITS Ibs OUTF UNITS Ibs	PER YEAR 1553 	UNITS
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL           15. Waste Streams- Solid and I           NAME           1. Catalyst Waste           2. Suspended Solids	-iquid CAS NO. (IF APPLICABLE)	<u>355</u> PER HOUR 155 19	UNITS Ibs OUTF UNITS Ibs Ibs	PER YEAR 1553 	UNITS tons tons
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL           NAME           1. Catalyst Waste           2. Suspended Solids	_iquid	<u>355</u> PER HOUR 155	UNITS Ibs OUTF UNITS Ibs	PER YEAR 1553 	UNITS
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL           NAME           1. Catalyst Waste           2. Suspended Solids           3. Nitrates (as N)	-iquid CAS NO. (IF APPLICABLE)	<u>355</u> PER HOUR 155 19	UNITS Ibs OUTF UNITS Ibs Ibs	PER YEAR           1553	UNITS tons tons
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL           1. Catalyst Waste           2. Suspended Solids           3. Nitrates (as N)           4.	-iquid CAS NO. (IF APPLICABLE)	<u>355</u> PER HOUR 155 19	UNITS Ibs OUTF UNITS Ibs Ibs	PER YEAR           1553	UNITS tons tons
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL           15. Waste Streams- Solid and I           NAME           1. Catalyst Waste           2. Suspended Solids           3. Nitrates (as N)           4.           5.           6.           7.	-iquid CAS NO. (IF APPLICABLE)	<u>355</u> PER HOUR 155 19	UNITS Ibs OUTF UNITS Ibs Ibs	PER YEAR           1553	UNITS tons tons
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL           15. Waste Streams- Solid and I           NAME           1. Catalyst Waste           2. Suspended Solids           3. Nitrates (as N)           4.           5.           6.           7.           8.	-iquid CAS NO. (IF APPLICABLE)	<u>355</u> PER HOUR 155 19	UNITS Ibs OUTF UNITS Ibs Ibs	PER YEAR           1553	UNITS tons tons
NAME           1. Magnapore Catalyst           2.           3.           4.           5.           6.           7.           8.           9.           TOTAL           15. Waste Streams- Solid and I           NAME           1. Catalyst Waste           2. Suspended Solids           3. Nitrates (as N)           4.           5.           6.           7.	-iquid CAS NO. (IF APPLICABLE)	<u>355</u> PER HOUR 155 19	UNITS Ibs OUTF UNITS Ibs Ibs	PER YEAR           1553	UNITS tons tons



Public Version

16. Total Stack Emissions (for	this equipment only) in	n Pounds Per Oper	ating Day
Particulate Matter	Oxides of Sulf	fur C	Dxides of Nitrogen
2.4	0.	0 5	4 . 4 2
99-104	105-110		111-116
Carbon Monoxide	Volatile Organic Com	pounds	PM-10
7.3	6.	6 2	2.4
177-122	123-128		129-134
17. Total Fugitive Emissions (f	or this equipment only	) in Pounds Per Op	perating Day
Particulate Matter	Oxides of Sulf	<u></u>	Dxides of Nitrogen
6.7		0	0
135-139	140-144	d L  d	145-149
Carbon Monoxide	Volatile Organic Com	pounds	PM-10
0	0	. 7	6.7
150-154	155-159		160-164
Method Used to Determine Em	iissions (1= Estim See attached calcu		actor 3= Stack Test 4= Other)
TSP SOX	NOX C		PM10
4 4	4	4 4	4
165 166	167 16	8 169	170
105 105	107 10	105	170
AIR AND RAI		T ADMINISTRATIC	
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction	T ADMINISTRATIC	Cal Jurisdiction
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction	T ADMINISTRATIC Return to Loc Date Reviewed by State	Cal Jurisdiction
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction	T ADMINISTRATIC Return to Loc Date Reviewed by State	Cal Jurisdiction
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction th/Year Equipme 71-174 175	T ADMINISTRATIC         Return to Log         Date         Reviewed by State         Date         ent Code         177	N USE ONLY   cal Jurisdiction   By   By
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction th/Year Equipme 71-174 175- Maximum Design	T ADMINISTRATIC         Return to Log         Date         Reviewed by State         Date         Pate         Explored by State         Date         Date         Explored by State         Date         Date </td <td>Solution   By   By</td>	Solution   By
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction th/Year Equipme 71-174 175	T ADMINISTRATIC         Return to Log         Date         Reviewed by State         Date         Date         Image: Contemportant contemportemportant contemportemportant contemportant contemportant contemp	Solution   By
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction th/Year Equipme 71-174 175- Maximum Design	T ADMINISTRATIC         Return to Log         Date         Reviewed by State         Date         Date         Image: Contemportant contemportemportant contemportemportant contemportant contemportant contemp	SCC Code  Transaction Date (MM/DD/YR)
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction th/Year Equipme 71-174 175- Maximum Design Hourly Rate 193-199	T ADMINISTRATIC  Return to Log Date  Reviewed by State Date  T77  Permit to Ope Month	ON USE ONLY         cal Jurisdiction         By         3y         SCC Code         178-185         Prate         Iransaction Date         (MM/DD/YR)         11         202-207
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction th/Year Equipme 71-174 175- Maximum Design Hourly Rate 193-199	T ADMINISTRATIC  Return to Log Date  Reviewed by State Date  T77  Permit to Ope Month 200-20	ON USE ONLY         cal Jurisdiction         By         3y         SCC Code         178-185         Prate         Iransaction Date         (MM/DD/YR)         11         202-207
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction th/Year Equipme 71-174 175- Maximum Design Hourly Rate 193-199 SIP Code	T ADMINISTRATIC Return to Log Date Reviewed by State Date T77 Permit to Ope Month 200-20 Regulation Code	Solution   By
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction th/Year Equipment 71-174 175 Maximum Design Hourly Rate 193-199 SIP Code	T ADMINISTRATIC Return to Log Date Reviewed by State Date T77 Permit to Ope Month 200-20 Regulation Code	SCC Code   SCC Code   178-185   178-202-207     Image: Confidentiality   202-207     Action
AIR AND RAI	DIATION MANAGEMEN Date Rec'd. State sdiction th/Year Equipment 71-174 175 Maximum Design Hourly Rate 193-199 SIP Code	T ADMINISTRATIC Return to Log Date Reviewed by State Date T77 Permit to Ope Month 200-20 Regulation Code	SCC Code   3y   SCC Code   178-185   Transaction Date   (MM/DD/YR)   1   202-207



Section 13. MA	AG/MGX Inp	ut Materia	is and Rates	5
Code Letter	Per Hour	Units	Per Year	Units
А	129	LBS.	546	TONS
В	1,356	LBS.	5,939	TONS
С	40	LBS.	175	TONS
D	178	LBS.	782	TONS
E	16	LBS.	72	TONS
F	8	LBS.	157	TONS
G	169	LBS.	740	TONS
Н	308	LBS.	1,350	TONS

#### Form 5 MAG/MGX Plant Section 13, MAG/MGX In t Materials and Bates

# MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration 

Air Quality Permits Program
1800 Washington Boulevard
Baltimore, Maryland 21230
(410)537-3225
1-800-633-6101
www.mde.maryland.gov

# FORM 5T: Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration

Applicant Name: W.R. Grace & Co. - Curtis Bay

<u>Step 1:</u> Quantify premises-wide emissions of Toxic Air Pollutants (TAP) from new and existing installations in accordance with COMAR 26.11.15.04. Attach supporting documentation as necessary.

						Estimated P	Estimated Premises Wide Emissi				
Toxic Air Pollutant (TAP)	CAS Number	Class I or Class II?	Screening Levels (µg/m³)		Actual Total Existing TAP Emissions	Projected TAP Emissions from Proposed Installation	Tota	ses Wide II TAP ssions			
			1-hour	8-hour	Annual	(lb/hr)	(lb/hr)	(lb/hr)	(lb/yr)		
ex. ethanol	64175	11	18843	3769	N/A	0.60	0.15	0.75	1500		
ex. benzene	71432	1	80	16	0.13	0.5	0.75	1.00	400		
Chrome +3	7440-47-3	Ш	NA	5	NA	0.023	0.023	0.023	146.667		
Ammonia	7664-41-7	II	243.7832	174.1309	NA	32.40	3.57	38.77	268102		
Hexanol	111-27-3	Ш	NA	27.30	NA	0.715	0.715	0.715	6,260		

(attach additional sheets as necessary.)

Note: Screening levels can be obtained from the Department's website (<u>http://www.mde.maryland.gov</u>) or by calling the Department.

<u>Step 2:</u> Determine which TAPs are exempt from further review. A TAP that meets either of the following Class I or Class II small quantity emitter exemptions is exempt from further TAP compliance demonstration requirements under Step 3 and Step 4.

Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(a))

A Class II TAP is exempt from Step 3 and Step 4 if the Class II TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m³.

### Class I TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(b))

A Class I TAP is exempt from Step 3 and Step 4 if the Class I TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour and 350 pounds per year, any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200  $\mu$ g/m³, and any applicable annual screening level for the TAP must be greater than 1  $\mu$ g/m³.

# If a TAP meets either the Class I or Class II TAP Small Quantity Emitter Exemption Requirements, no further review under Step 3 and Step 4 are required for that specific TAP.

# FORM 5T: Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration

#### Step 3: Best Available Control Technology for Toxics Requirement (T-BACT, COMAR 26.11.15.05)

In the following table, list all TAP emission reduction options considered when determining T-BACT for the proposed installation. The options should be listed in order beginning with the most effective control strategy to the least effective strategy. Attach supporting documentation as necessary.

	ret Bellutente Emission Control Ontion % Emi		Costs				
Target Pollutants	Emission Control Option	Reduction	Capital	Annual Operating	T-BACT Option Selected? (yes/no)		
ex. ethanol and benzene	Thermal Oxidizer	99	\$50,000	\$100,000	no		
ex. ethanol and benzene	Low VOC materials	80	0	\$100.000	yes		
Chrome +3	Filters/Dust Collectors	99	\$20,000-300,000	\$10,000-\$100,000	yes		
Ammonia	Absorbers/Scrubbers	95	\$500,000	\$200,000	yes		
Hexanol	Condensers	99	\$80,000	\$5,000	yes		
Hexanol	Thermal Oxidizers/Afterburners	99	\$300,000 \$100,000		yes		

(attach additional sheets as necessary)

#### Step 4: Demonstrating Compliance with the Ambient Impact Requirement (COMAR 26.11.15.06)

Each TAP not exempt in Step 2 must be individually evaluated to determine that the emissions of the TAP will not adversely impact public health. The evaluation consists of a series of increasingly non-conservative (and increasingly rigorous) tests. Once a TAP passes a test in the evaluation, no further analysis is required for <u>that TAP</u>. "Demonstrating Compliance with the Ambient Impact Requirement under the Toxic Air Pollutant (TAP) Regulations (COMAR 26.11.15.06)" provides guidance on conducting the evaluation. Summarize your results in the following table. Attach supporting documentation as necessary.

CAS	Screening Levels (µg/m³)		Premises Wide Total TAP Emissions		Rate (A	Rate (AER) per Screening Analysis					
	1-hour	8-hour	Annual	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)	1-hour	8-hour	Annual	AER or Screen
64175	18843	3769	N/A	0.75	1500	0.89	N/A	N/A	N/A	N/A	AER
71432	80	16	0.13	1.00	400	0.04	36.52	1.5	1.05	0.12	Screen
7440473	NA	5	NA	0.023	146.667	.0815	NA	NA	1.96	NA	ISCST3
7664417	243.783	174.130	NA	38.77	268102	3.974/0.873	NA	190.835	118.214	NA	Screen
111273	NA	27.30	NA	0.715	6,260	0.445/0.097	NA	NA	13.70	NA	Screen
	Number           64175           71432           7440473           7664417	CAS Number         1-hour           64175         18843           71432         80           7440473         NA           7664417         243.783	CAS Number         (μg/m³)           1-hour         8-hour           64175         18843         3769           71432         80         16           7440473         NA         5           7664417         243.783         174.130	CAS Number         (µg/m³)           1-hour         8-hour         Annual           64175         18843         3769         N/A           71432         80         16         0.13           7440473         NA         5         NA           7664417         243.783         174.130         NA	CAS Number         Screening Levels (μg/m³)         Total Emission           1-hour         8-hour         Annual         (lb/hr)           64175         18843         3769         N/A         0.75           71432         80         16         0.13         1.00           7440473         NA         5         NA         0.023           7664417         243.783         174.130         NA         38.77	CAS Number         Screening Levels (µg/m³)         Total TAP Emissions           1-hour         8-hour         Annual         (lb/hr)         (lb/yr)           64175         18843         3769         N/A         0.75         1500           71432         80         16         0.13         1.00         400           7440473         NA         5         NA         0.023         146.667           7664417         243.783         174.130         NA         38.77         268102	CAS Number         Screening Levels (µg/m³)         Total TAP Emissions         Rate (A COMAR 26           1-hour         8-hour         Annual         (lb/hr)         (lb/yr)         (lb/hr)           64175         18843         3769         N/A         0.75         1500         0.89           71432         80         16         0.13         1.00         400         0.04           7440473         NA         5         NA         0.023         146.667         .0815           7664417         243.783         174.130         NA         38.77         268102         3.974/0.873	CAS Number         Screening Levels (µg/m³)         Total TAP Emissions         Rate (AER) per COMAR 26.11.16.02A           1-hour         8-hour         Annual         (lb/hr)         (lb/yr)         (lb/hr)         (lb/yr)           64175         18843         3769         N/A         0.75         1500         0.89         N/A           71432         80         16         0.13         1.00         400         0.04         36.52           7440473         NA         5         NA         0.023         146.667         .0815         NA           7664417         243.783         174.130         NA         38.77         268102         3.974/0.873         NA	CAS Number         Screening Levels (µg/m³)         Total TAP Emissions         Rate (AER) per COMAR 26.11.16.02A         Screening Levels           1-hour         8-hour         Annual         (lb/hr)         (lb/yr)         (lb/hr)         (lb/yr)         1-hour         1-hour         8-hour         Annual         (lb/hr)         (lb/yr)         (lb/hr)         (lb/yr)         1-hour         1-hour         1-hour         0.75         1500         0.89         N/A         N/A           64175         18843         3769         N/A         0.75         1500         0.89         N/A         N/A           71432         80         16         0.13         1.00         400         0.04         36.52         1.5           7440473         NA         5         NA         0.023         146.667         .0815         NA         NA           7664417         243.783         174.130         NA         38.77         268102         3.974/0.873         NA         190.835	CAS Number         Screening Levels (µg/m³)         Total TAP Emissions         Rate (AER) per COMAR 26.11.16.02A         Screening Analy (µg/m³)           1-hour         8-hour         Annual         (lb/hr)         (lb/yr)         (lb/hr)         (lb/yr)         1-hour         8-hour         8-hour           64175         18843         3769         N/A         0.75         1500         0.89         N/A         N/A         N/A           71432         80         16         0.13         1.00         400         0.04         36.52         1.5         1.05           7440473         NA         5         NA         0.023         146.667         .0815         NA         NA         1.96           7664417         243.783         174.130         NA         38.77         268102         3.974/0.873         NA         190.835         118.214	CAS Number         Screening Levels (µg/m³)         Total TAP Emissions         Rate (AER) per COMAR 26.11.16.02A         Screening Analysis (µg/m³)           1-hour         8-hour         Annual         (lb/nr)         (lb/yr)         (lb/nr)         (lb/yr)         1-hour         8-hour         Annual           64175         18843         3769         N/A         0.75         1500         0.89         N/A         N/A         N/A         N/A           71432         80         16         0.13         1.00         400         0.04         36.52         1.5         1.05         0.12           7440473         NA         5         NA         0.023         146.667         .0815         NA         NA         1.96         NA           7664417         243.783         174.130         NA         38.77         268102         3.974/0.873         NA         190.835         118.214         NA

(attach additional sheets as necessary)

If compliance with the ambient impact requirement cannot be met using the allowable emissions rate method or the screening analysis method, refined dispersion modeling techniques may be required. Please consult with the Department's Air Quality Permit Program prior to conducting dispersion modeling methods to demonstrate compliance.

APPENDIX 2 SITE LOCATION MAP, PROCESS FLOW DIAGRAM, AND PLOT PLAN

# W.R. GRACE & CO.-CONN. HAS NOT INCLUDED OR REDACTED INFORMATION FROM THIS APPENDIX PURSUANT TO A CLAIM OF CONFIDENTIALITY

APPENDIX 3 DETAILED EMISSIONS CALCULATIONS

# W.R. GRACE & CO.-CONN. HAS REDACTED INFORMATION FROM THIS APPENDIX PURSUANT TO A CLAIM OF CONFIDENTIALITY

W.R. Grace Co.-Conn. 5500 Chemical Rd, Baltimore, MD 21226 Project Netting

STEP 1 - Project Emission		NO _X	СО	РМ	PM ₁₀	PM _{2.5}	SO ₂	VOC	Pb	CO ₂ e
Increases		(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)
	ICO Line 3	0.59	3.97	1.99	1.99	1.91	0.03	0.26	2.36E-05	5,642
Project Potenital to Emit (PTE)	Magnanara Evenneian	0.35	5.57	1.55	1.55	1.91	0.03	0.20	2.302 03	3,012
	Total	0.59	3.97	1.99	1.99	1.91	0.03	0.26	2.36E-05	5,642
						1	1		I	
	Increased utilization of existing ICO West assets	0.00	0.00	5.44	5.44	5.17	0.00	0.00	0.00	0
Project Increases - Projected Actuals	Increased throughput at Magnapore	0.81	1.33	1.67	1.67	1.60	0.01	1.33	7.94E-06	3,203
Actuals										
	Increased steam production at Powerhouse	2.36	3.96	0.36	0.36	0.36	0.03	0.26	2.37E-05	5,674
	Total	3.17	5.30	7.48	7.48	7.13	0.04	1.59	3.17E-05	8,877
						1			I.	
	Total PTE + PAE	3.75	9.26	9.47	9.47	9.04	0.07	1.85	5.53E-05	14,519
	Major Modification SER	25	100	25	15	10	40	25	0.6	-
	Major Permitting Triggered?	NO	NO	NO	NO	NO	NO	NO	NO	NO
		NO _X	СО	РМ	PM ₁₀	PM _{2.5}	SO _x	VOC	Pb	CO ₂ e
STEP 2 - Project Netting		(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)
	Existing ICO assets emissions	0.00	0.00	5.18	5.18	4.92	0.00	0.00	0.00	0
	Magnanava	0.62	1.02	1.59	1.59	1.51	0.01	1 27		2 220
Project Past Actuals (BAE)	Марпароге	0.62	1.02	1.59	1.59	1.51	0.01	1.27	6.09E-06	2,228
	Magnapore - Powerhouse contributions	1.43	2.41	0.22	0.22	0.22	0.02	0.16	1.45E-05	3,448
	Total BAE	2.05	3.43	6.99	6.99	6.66	0.02	1.42	2.06E-05	5,675
<b>B</b>	Total PTE + PAE - Project Decreases - BAE	1.70	5.83	2.48	2.48	2.38	0.04	0.43	3.47E-05	8,843
Project Netting (Increases and Decreases)	Major Modification SER	25	100	25	15	10	40	25	0.6	-
-	Major Permitting Triggered?	NO	NO	NO	NO	NO	NO	NO	NO	NO



					Pro	cess Units	5							
Status	Process Unit ID	Process Unit Description	Inherent Control Device ID	Inherent Control Device Description	Control Device ID	Control Device Description	Stack ID	Flowrates ⁷ (acfm)	PM ⁷ (gr/acfm)	Max PM (lbs/day)	Days	Max PM ⁸ (ton/year)	Max PM ₁₀ ⁸ (ton/year)	Max PM _{2.5} ⁹ (ton/year)
REPLACED	H-7701S	Hammer Mill ¹					$F^1$							
REPLACED	H-7701N	Hammer Mill ¹					$F^1$							
NEW	ET-30102	Mill Feed Tank					I ³							
NEW	EM-30702	Line 3 Mill					I ³							
NEW	EM-30712	Line 3 Mill					I ³							
NEW	ET-30103	Mill Receiver Tank					I ³							
NEW	ET-30104	Spray Dryer Feed Tank					I ³							
NEW	EST-35801	Line 3 Spray Dryer ⁵	EC-35601 EBH-35601	Spray Dryer Cyclone & Baghouse			ICO-130	13,800	0.002	4.44	365	0.81	0.81	0.77
NEW	EV-35114	Coarse Classifier Feed Hopper	EBV-35614	Bin Vent			I ³							
NEW	ECL-35704	Coarse Classifier	EBH-35604	Coarse Classifier Baghouse Fines Classifier	EBH-35670	Cartridge Filter ⁶	ICO-131	10,400	0.0001	0.18	365	0.03	0.03	0.03
NEW	ECL-35705	Fines Classifier	EBH-35605	Baghouse										
NEW	ES-35604	Coarse Sacking Station					F ²							
NEW	EV-35115	Fines Classifier Feed Hopper	EBV-35615	Bin Vent			I ³							
NEW	ES-35605	Fines Sacking Station					F ²							
NEW	EV-35125	Finished Product Packaging Silo	EBV-35606	Bin Vent			ICO-132	1,500	0.003	0.90	365	0.16	0.16	0.16
NEW	ES-35606	Drum Packaging Station					ICO-132 ⁴		F	Routed to EBV-	35606 (ICO-1	32) via EV-351	25	
NEW	ES-35607	Drum Packaging Station					ICO-132 ⁴		F	Routed to EBV-	35606 (ICO-1	32) via EV-351	25	
NEW	ES-35608	Sack Filling Station					ICO-132 ⁴	Routed to EBV-35606 (ICO-132) via EV-35125						
NEW	EBH-35671	Fugitive Dust Collector with a Baghouse					ICO-133	5,000	0.0005	0.48	365	0.09	0.09	0.08
NEW	EBH-35680	Central Vacuum System with a Baghouse					ICO-134	433	0.005	0.48	365	0.09	0.09	0.08
NEW		Indoor Emissions via Building Vents					ICO-135	40,000	0.0003	2.5	365	0.45	0.45	0.43
		• • • • • • • • • • • • • • • • • • •	-	-	-	<del>.</del>	-	-	-	Proces	s Units Tota	1.63	1.63	1.55

# Table A.1: POTENTIAL EMISSIONS (PTE) for New Process Units

Notes:

1. Hammer mill in ICO line 3 is being replaced with one of larger capacity, and the fugitive emissions from these emission units are routed to an existing stack ICO-60.

2. Fugitive emissions are routed to a Fugitive Dust Collection System and controlled by baghouse EBH-35671 (ICO-133).

3. Indoor emissions will be vented via building vents (ICO-135).

4. Fugitive emissions are routed to the Finished Product Packaging Silo (EV-35125) and controlled by EBV-35606 (ICO-132)

5. The Spray Dryer is controlled by a cyclone and baghouse, which has an outlet grain loading of 0.002 gr/acfm.

6. A single Cartridge Filter will be controlling the Coarse Classifier and Fines Classifier.

7. The flowrates for the Classifiers (ECL-35704, ECL-35705), the Finished Product Packaging Silo (EBV-35606) and the Fugitive Dust Collector (EBH-35671) are sourced from manufacturer specification sheets. The grain loadings were calculated via process knowledge and manufacturer-supplied control efficiencies.

8. PM is assumed equal to  $PM_{10}$ .

9.  $PM_{2.5}$  is assumed 95% of  $PM/PM_{10}$ 

# Table A.2: POTENTIAL EMISSIONS (PTE) for New Combustion Unit

					<b>Combustion Unit</b> ³	,4,5							
Status	Process Unit ID	Process Unit Description	Stack ID	Capacity (MMBtu/hr)	Hours	NO _x	СО	PM/PM ₁₀ ¹	PM _{2.5} ²	<b>SO</b> ₂	voc	Pb	CO ₂ e ⁶
NEW	D-35801	Spray Dryer	ICO-130	11.0	8,760	0.59	3.97	0.36	0.36	0.03	0.26	2.4E-05	5,642
					<b>Combustion Unit Total</b>	0.59	3.97	0.36	0.36	0.03	0.26	2.4E-05	5,642
					Pollutants>	NO _X	СО	PM/PM ₁₀	PM _{2.5}	SO ₂	voc	Pb	CO ₂ e
		Total E	missions from I	NEW Units ( Process l	Jnits + Combustion Unit)	0.59	3.97	1.99	1.91	0.03	0.26	2.4E-05	5,642

#### Notes:

1. PM is assumed equal to  $PM_{10}$ .

2.  $\text{PM}_{2.5}$  is assumed 95% of  $\text{PM}/\text{PM}_{10}$ 

3. Emission factors are from AP-42 Chapter 1.4, Table 1.4.1 and Table 1.4.2.

Pollutant	Emission Factor (Ib/MMscf)
NO _X ^a	12.39
CO	84
PM/PM ₁₀	7.6
PM _{2.5}	7.6
SO ₂	0.6
VOC	5.5
Pb	0.0005
PM	_
(Condensable)	5.7
PM (Filterable)	1.9

 a  Ultra-low NOx emission factor is 10 ppm at 3% O2, according to the vendor data.

 $E = Kx Ch x F x (20.9/(20.9 - 0_2\%))$  from Appendix F to Part 75—Conversion Procedures

	=======================================
C _h (ppm)	10
O ₂ (%)	3%
K (lb/dscf)/ppm NO _X	1.194E-07
F (dscf/MMBtu)	8,710

4. Natural gas heating value is 1020 Btu/scf.

5. Per 40 CFR 98, Subpart C, Tables C-1 and C-2 for natural gas combustion. The emission factors were converted from kg/MMBtu to lb/MMBtu.

6. The CO₂e emission factor is calculated as the sum of each GHG pollutant multiplied by its global warming potential, per 40 CFR 98, Subpart A, Table A-1:

CO₂: 1 CH₄: 28

N₂O: 265

Greenhouse Gases (GHG) Emission Factors

Pollutant	Emission Factor (lb/MMbtu) ^{10,11}
CO ₂	116.98
CH ₄	2.20E-03
N ₂ O	2.20E-04
CO ₂ e ²	117.10



# Table A.3: PROJECTED ACTUAL EMISSIONS (PAE) for Existing Units

	Process Unit		Inherent Control	Inherent Control		2021 Actual Emissions (ton/year)	2022 Actual Emissions (ton/year)	2023 Actual Emissions (ton/year)	Projected Actual PM ^{1,5}	Projected Actual PM ₁₀ ^{1,5}	Projected Actual PM _{2.5} ^{1,6}
Status	ID	Process Unit Description	Device ID	<b>Device Description</b>	Stack ID	PM/PM ₁₀	PM/PM ₁₀	PM/PM ₁₀	(ton/year)	(ton/year)	(ton/year)
			BH2209N	Cartridge Collector							
EXISTING	V-1101	Hydrogel Hopper ³	BH2209S	Cartridge Collector	ICO-60	1.73	1.8	1.68	1.85	1.85	1.76
EXISTING	T-1102	Hammer Mill Slurry Tank			F ²			Routed to BH-	-204 (ICO-46)		
EXISTING	N/A	Fugitive dust collection from several units.	BH-204	Baghouse	ICO-46	1.54	1.60	1.50	1.65	1.65	1.57
EXISTING	M-716	Classifier ⁴	C-216 BH-216	Classifier Ultra Fine Cyclone Cartridge Collector	ICO-73	0.84	0.87	0.82	0.90	0.90	0.86
EXISTING	T-184	Truck Silo⁴	BV-284	Product Collector, bin vent	ICO-127	0.35	0.36	0.34	0.38	0.38	0.36
EXISTING	T-185	Truck Silo ⁴	BV-285	Product Collector, bin vent	ICO-128	0.42	0.44	0.41	0.45	0.45	0.43
EXISTING	-	Bulk Truck Portable Fugitive Product Collector	BH-218	Cartridge Collector	ICO-51 ⁷			Indoor E	missions		
EXISTING	West Plant Building Vent	Indoor Emissions			ICO-47	0.20	0.21	0.19	0.21	0.21	0.20
						Total P	ojected Actu	al Emissions	5.44	5.44	5.17

# **Table A.4: Projected Operating Days**

	Process Unit			Inherent Control			Actu	al Operating	Days	Max.	
Status	ID	Process Unit Description	Device ID	Device Description	Stack ID	Max days	2021	2022	2023	Average Davs	Ratio
EXISTING	V-1101	Hydrogel Hopper ³	BH2209N BH2209S	Cartridge Collector Cartridge Collector	ICO-60	365	341	354	332	348	1.05
EXISTING	T-1102	Hammer Mill Slurry Tank			F ²			Routed to BH	-204 (ICO-46)		
EXISTING	N/A	Fugitive dust collection from several units.	BH-204	Baghouse	ICO-46	365	341	354	332	348	1.05
EXISTING	M-716	Classifier ⁴	C-216 BH-216	Classifier Ultra Fine Cyclone Cartridge Collector	ICO-73	365	341	354	332	348	1.05
EXISTING	T-184	Truck Silo ⁴	BV-284	Product Collector, bin vent	ICO-127	365	341	354	332	348	1.05
EXISTING	T-185	Truck Silo ⁴	BV-285	Product Collector, bin vent	ICO-128	365	341	354	332	348	1.05
EXISTING	-	Bulk Truck Portable Fugitive Product Collector	BH-218	Cartridge Collector	ICO-51 ⁷			Indoor E	missions		
EXISTING Notes:	West Plant Building Vent	Indoor Emissions			ICO-47	365	341	354	332	348	1.05

Notes:

Projected actual emissions were calculated by assuming a ratio of maximum days to maximum average days from 2021 and 2022.
 Fugitive emissions are routed to an existing stack, ICO-46, included in the above tables.

 Fugitive emissions from these emission units are routed to an existing stack, ICO-60.
 Actual emissions were derived from the flow rate and grain loading for the emission units and the number of operating days reported in the 2021, 2022 and 2023 Emissions Certification reports. 5. PM is assumed equal to  $PM_{10}$ . 6.  $PM_{2.5}$  is assumed 95% of  $PM/PM_{10}$ 

7. Indoor emissions will be vented via the building vent (ICO-47), included in the above tables.



# Table A.5: PAST OR BASELINE ACTUAL (BAE) for Existing Units

	Process Unit		Control	Control Device		2021 Actual Emissions (ton/year)	2022 Actual Emissions (ton/year)	2023 Actual Emissions (ton/year)	Past Actual PM ^{1,5}	Past Actual PM ₁₀ ^{1,5}	Past Actual PM _{2.5} ^{1,6}
Status	ID	Process Unit Description	Device ID	Description	Stack ID	<b>PM/PM</b> ₁₀	PM/PM ₁₀	PM/PM ₁₀	(ton/year)	(ton/year)	(ton/year)
EXISTING	V-1101	Hydrogel Hopper ³	BH2209N BH2209S	Cartridge Collector Cartridge Collector	ICO-60	1.73	1.80	1.68	1.77	1.77	1.68
EXISTING	T-1102	Hammer Mill Slurry Tank			F ²		-	Routed to BH	-204 (ICO-46)	-	-
EXISTING	N/A	Fugitive dust collection from several units.	BH-204	Baghouse	ICO-46	1.54	1.60	1.50	1.57	1.57	1.49
EXISTING	M-716	Classifier ⁴	C-216 BH-216	Classifier Ultra Fine Cyclone & Cartridge Collector	ICO-73	0.84	0.87	0.82	0.86	0.86	0.81
EXISTING	T-184	Truck Silo⁴	BV-284	Product Collector, bin vent	ICO-127	0.35	0.36	0.34	0.36	0.36	0.34
EXISTING	T-185	Truck Silo ⁴	BV-285	Product Collector, bin vent	ICO-128	0.42	0.44	0.41	0.43	0.43	0.41
EXISTING	-	Bulk Truck Portable Fugitive Product Collector	BH-218	Cartridge Collector	ICO-51 ⁷		-	Indoor E	missions	-	
EXISTING	West Plant Building Vent	Indoor Emissions			ICO-47	0.20	0.21	0.19	0.20	0.20	0.19
						То	tal Past Actu	al Emissions	5.18	5.18	4.92

Past actual emissions were derived from the maximum two-year average of the 2021, 2022, and 2023 Emissions Certification reports.
 Fugitive emissions are routed to an existing stack, ICO-46, included in the above tables.

 Fugitive emissions from these emission units are routed to an existing stack, ICO-60.
 Actual emissions were derived from the flow rate and grain loading for the emission units and the number of operating days reported in the 2021, 2022 and 2023 Emissions Certification reports. 5. PM is assumed equal to  $PM_{10}$ . 6.  $PM_{2.5}$  is assumed 95% of  $PM/PM_{10}$ 

7. Indoor emissions will be vented via the building vent (ICO-47), included in the above tables.



# Magnapore Expansion Project Projected Actual Emissions (PAE)

Inaginapore Expans					(				
	PM	PM ₁₀	PM _{2.5} ³	SO ₂ ⁴	NO _x ⁵	VOC ⁶	CO ⁷	Pb ⁸	CO ₂ e ⁹
PAE (tpy) ^{1,2}	2.03	2.03	1.95	0.04	3.17	1.59	5.30	0.00	8,877
Significant Emissions (tpy) ¹⁰	25	15	10	40	25 ¹¹	25 ¹¹	100	0.6	75,000 ¹²
1. Emissions from increas 2. Conservatively assumi 3. Assume PM _{2.5} = 0.95 * 4. AP-42 Table 1.4-2; 0.6 5. AP-42 Table 1.4-2; 0.6 6. AP-42 Table 1.4-2; 5.5 7. AP-42 Table 1.4-2; 5.5 7. AP-42 Table 1.4-2; 0.0 9. AP-42 Table 1.4-2; 120 10. 40 CFR §52.21(b)(23) 11. COMAR 26.11.17.01 12. 40 CFR §52.21(b)(49)	ng hourly pro PM ₁₀ Ib/MMscf Ib/MMscf Ib/MMscf Ib/MMscf 005 Ib/MMsc 0,000 Ib/MMs (i) B(26)(a) (iv)(B)	cf scf CO ₂ , 0.64	ted emission	ns at 8,760 hơ ₂O, 2.3 lb/MI	ours/year. Wscf CH4				
Projected Actuals	2.03	2.03	1.95	0.038	3.17	1.59	5.30	0.00	8,877
Baseline Emissions	1.81	1.81	1.73	0.025	2.05	1.42	3.43	0.00	5,675
Project Increases	0.22	0.22	0.22	0.013	1.11	0.17	1.87	0.00	3,201

# MAG/MGX Expansion Project Emissions

Criteria Pollutant (tpy)	Source - Magnapore Combustion	Source - POW Steam Production	Source - Magnapore Process	MAG Total (tpy)	Total PAE (tpy)
PM	0.12	0.36	1.55	1.67	2.03
PM ₁₀	0.12	0.36	1.55	1.67	2.03
PM _{2.5}	0.12	0.36	1.47	1.60	1.95
SO ₂	0.01	0.03	-	0.01	0.04
NO _x	0.81	2.36	-	0.81	3.17
VOC	0.09	0.26	1.24	1.33	1.59
СО	1.33	3.96	-	1.33	5.30
Pb	0.00	0.00	-	0.00	0.00
CO ₂	1,907	5,662	1,293	3,199	8,861
CH ₄	0.04	0.11	-	0.04	0.15
N ₂ O	0.01	0.03	-	0.01	0.04
CO ₂ e	1,911	5,674	1,293	3,203	8,877

APPENDIX 4 CONTROL EQUIPMENT SPECIFICATION SHEETS

# W.R. GRACE & CO.-CONN. HAS NOT INCLUDED INFORMATION FROM THIS APPENDIX PURSUANT TO A CLAIM OF CONFIDENTIALITY

Public Version

APPENDIX 5 TOXICS MODELING REPORTS

# 1.0 MARYLAND TAP ANALYSIS FOR AMMONIA

The Project is subject to the Maryland toxic air pollutant (TAP) requirements because TAPs will discharge into the ambient air, and the Project is required to obtain a Permit-to-Construct (PTC) under COMAR 26.11.02.09 (pursuant to COMAR 26.11.15.03(A)(1)).

COMAR 26.11.15.06 requires a demonstration that TAP emissions will not unreasonably endanger human health. Grace is demonstrating compliance with this ambient impact requirement using a screening analysis as specified under COMAR 26.11.15.07. According to COMAR 26.11.16.02(A), such a demonstration is made by showing that TAP emissions from the premises will not cause increases in ambient levels that exceed the applicable TLV- /threshold-based screening level for a Class II TAP (MDE Screening Levels).

# 1.1 TAP Sources/Ammonia Emissions

The maximum expected premises-wide ammonia emissions were calculated using stack test/monitoring data, process rates, product ammonia content, ammonia usage, tank vapor displacement, mass balance and engineering judgement.

Table 1 identifies the premises-wide ammonia sources along with a description of the source and the calculated ammonia emissions.

STACK ID	AMMONIA EMISSIONS (G/S)	SOURCE DESCRIPTION	CONTROLS
SGO_21	0.518	A-Mill and Baghouse	
SGO_32	0.115	K-11/Activator and Baghouse	
SGO_56	0.433	Flash Dryer and Baghouse	
SGO_68	0.324	Wash Tanks vent	
SGO_74	0.179	B-Mill and Baghouse	
SAC_111	0.001	Spray Dryer and 8 Cyclones	Venturi Scrubber and Hot Water Generator HCL Scrubber
SAC_115	0.025	Calciner and Cyclone, Dryer and 2 Cyclones	Calciner and 2 Scrubbers, Dryer Scrubber and Ammonia Absorber
SAC_123	0.019	Ammonia Storage Tank	Ammonia Scrubber
AEO_11	4.66	Dryer, 4 Alumina Spheres Columns, Separator, Centrifuge and 11 Tanks	Catalytic Converter to control ammonia (CAMET)
AEO_82	0.05	Dryer, Kiln III (exhaust and flue gas), Kiln 1, Kiln I Cooler, Calciner Kiln (exhaust gas) and Baghouse	SCR Reactor
ICO_20	0.27	West Plant Spray Dryer and Baghouse	
ICO_105	0.41	East Plant Spray Dryer and Baghouse	
DCO_01	0.31	Building fugitives (stack)	
DCO_23	0.003	3 electric Calciners	Venturi Scrubber and 2 Packed Tower Absorbers
AEO_54	0.38	Building fugitives (stack)	

#### TABLE 1 TAP SOURCES AND AMMONIA EMMISIONS

STACK ID	AMMONIA EMISSIONS (G/S)	SOURCE DESCRIPTION	CONTROLS
SGO_84	0.52	Turbo Dryer and Baghouse	
ICO_PL3	0.126	New Line 3 Spray Dryer, Cyclone and Baghouse	
SGO_33	0.33	Building 111 fugitives (vent)	
MAG_0921	0.054	Magnapore fugitives (vent)	

# **1.2 TAPS Compliance Screening Analysis**

A refined screening approach is used to demonstrate compliance. In this refined screening, offsite ground-level impacts of maximum expected ammonia emissions (the ammonia Class II TAP is listed under COMAR 26.11.16.07 B) are estimated using refined air quality modeling, consistent with COMAR 26.11.16.02(A)(3) (and COMAR 26.11.16.02(C)(1)), are directly compared to the applicable MDE Screening Levels.

# **Refined Air Quality Modeling**

Consistent with COMAR 26.11.16.02, a more rigorous, refined air quality dispersion modeling analysis was performed to project off-site 1-hr and 8-hr ammonia concentrations. The United States Environmental Protection Agency's (USEPA) guidance given in Appendix W to 40 CFR 51 was followed in the performance of this refined air quality modeling.

- Air quality model

The refined modeling was conducted using the USEPA air quality model (AERMOD) (version 23132) using Providence/ORIS BEEST Suite (version 12.10) as the user interface. The standard regulatory default option was invoked in AERMOD. In addition, the adjusted u* regulatory option was invoked.

- Model receptors

Concentrations were projected at ground-level locations (receptors) on the W.R. Grace Curtis Bay property line and at locations off-site (including receptors not on land, to be comprehensive). Model receptors were located to determine the expected highest off-site shortterm concentrations. A total of 5683 receptors were used. Receptors were placed along the property line at 25-m spacing. Also, receptors were placed in a grid at 25-m spacing out to 200 m from the property, and at 100-m spacing out to 3 km from the property. Figures 1 and 2 show maps of the closer-in model receptors and the entire receptor grid, respectively.

The Grace facility is isolated within a highly industrial section of Curtis Bay surrounded by other industries and a landfill. No general public reside in the vicinity of the facility. Much of the Grace facility (to the North and West) is surrounded by a large water body. The inaccessibility of the shoreline and inhospitable nature of the industrial facility deters public access. There is fencing along almost all the property to the East and South. In addition, there is a guardhouse at the entrance to the facility, signage, and video surveillance that preclude/deter public access.

Ground elevations (as well as hill-height scaling factors used by AERMOD) of each receptor were obtained using AERMAP (version 18081), AERMOD's terrain preprocessor. United States

Geological Survey (USGS) digital elevation data (3DEP data with a resolution of 1 arc-second) for the modeling domain were input to AERMAP.

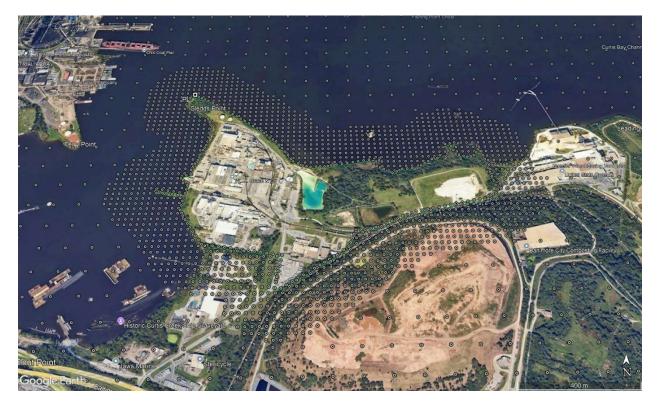



FIGURE 1 RECEPTOR MAP – CLOSE-IN RECEPTORS

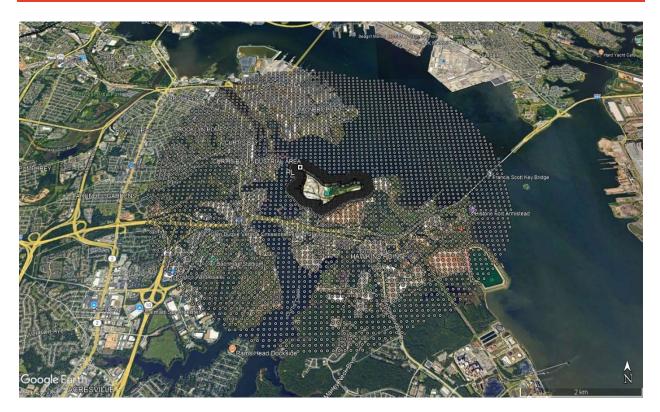



FIGURE 2 RECEPTOR MAP – ENTIRE RECEPTOR GRID

- Rural/urban classification

The Land Use Procedure given in USEPA Appendix W to 40 CFR 51 section 7.2.1.1(b)(i) was used to determine the urban/rural status for the dispersion modeling. The Project sources are located within an urban area (Baltimore urban area), but located close enough to a body of water (Patapsco River and Curtis Creek) or other non-urban land use categories to result in a predominantly rural land use classification within 3 km of the source. Section 5.1 of the AERMOD Implementation Guide (EPA-450/B-24-009, November 2024) cautions users against applying the Land Use Procedure on a source-by-source basis but should also consider the potential for urban heat island influences across the full modeling domain. Following your suggestion, the Land Use Procedure was used to determine the urban/rural status but disregarding the area of water within 3 km of the source. After removing the area covered by water (32%), 68% of the 3-km radius area is land. GoogleEarth images and US Geological Survey National Land Cover Database (NLCD) data for the area of interest were reviewed. Approximately 70% of the relevant land area is comprised of urban land use types as proposed by Auer (J. Appl. Meteor., 17, 636-643, May 1978). As a result, AERMOD was run in the urban mode. The April 2020 census population of nearby Baltimore City (585708) and the default surface roughness length were input to AERMOD to run the urban mode.

- Meteorological data

The recent five consecutive years (2019 through 2023) of AERMOD-ready representative meteorological input data were obtained from MDE (specifically, the SFC and PFL files provided by MDE's LiAn Zhuang (email dated 9/30/24)). The surface meteorological data (Automated Surface Observing System data) were collected at Baltimore/Washington International

Thurgood Marshall Airport, Anne Arundel County, Maryland (WBAN 93721), and the upper air meteorological data were collected at Sterling, Virginia (Dulles International Airport) (WBAN 93734). MDE used AERSURFACE (version 20060) to determine representative surface characteristics and AERMET (version 23132) to process the meteorological data. The adjusted u* regulatory option was invoked in AERMET.

- Structure downwash

Direction-specific building dimensions of nearby/adjacent buildings/structures/tanks on the premises were generated using BPIPPRM (version 04274) and input to AERMOD to address the potential structure wake effects on stack plumes. Premises wide, 176 buildings/structures/tanks were included in the structure downwash analysis.

- Stack characteristics

Two types of sources were modeled: point sources and volume sources. Point sources were used to represent emissions from stacks, while volume sources were used to represent vented fugitive building emissions.

The USEPA User's Guide for the Industrial Source Complex (ISC3) Dispersion Models (EPA-454/B-95-003a) was followed in developing the source characteristics of the volume sources.

The SGO_33 source is a roof line source and was represented by 42 separated volume sources. The separation distance between the volume sources is two times the width, W, of the source (W is 3 ft). The Syinit (initial SIGMA_y) is calculated as 2W/2.15 [2*3/2.15=2.79 ft]. The Szinit (initial SIGMA_z) is calculated as Hb/2.15 [40/2.15=18.60 ft], where Hb is the average building roof height (40 ft).

The MAG_0921 source was represented by 4 individual volume sources. The width of each volume source is 6 ft. The initial SIGMA_y is calculated as W/4.3 [6/4.3=1.40 ft], where W is the width of the volume source. The initial SIGMA_z is calculated as Hb/2.15 [28/2.15=13.02 ft], where Hb is the building height (28 ft).

Tables 2 and 3 present characteristics of modeled sources input to AERMOD.

STACK ID	LOCATION			STACK HEIGHT	STACK DIAMETER	STACK EXIT VELOCITY	STACK Exit temp.
	UTM E (m)	UTM N (m)	(m)	(m)	(m)	(m/s)	(K)
SGO_21	364407.0	4341540.7	6.5	24.08	0.46	22.94	421.89
SGO_32	364468.9	4341582.5	6.9	9.14	0.71	5.94	349.67
SGO_56	364413.9	4341526.6	6.7	32.00	0.25	26.08	394.11
SGO_68	364495.8	4341520.9	7.1	23.77	0.51	18.63	310.78
SGO_74	364446.7	4341527.0	6.4	16.76	0.46	10.22	421.89
SAC_111	364323.0	4341583.8	6.4	60.96	1.68	16.04	343.00
SAC_115	364281.7	4341624.8	6.2	45.72	1.37	14.21	327.44
SAC_123	364295.0	4341519.3	6.3	9.14	0.15	5.17	310.78
AEO_11	364367.5	4341862.1	4.5	36.58	1.07	20.06	310.78
AEO_82	364375.8	4341879.5	4.5	48.77	1.52	18.33	483.56
ICO_20	364310.7	4341780.6	4.7	24.38	0.61	21.67	435.78
ICO_105	364359.3	4341765.4	4.8	24.38	0.61	17.79	435.78
DCO_01	364697.6	4341370.1	11.0	14.63	0.42	10.16	324.67
DCO_23	364734.7	4341393.2	10.0	15.24	0.2	5.82	333.00
AEO_54	364392.8	4341853.4	4.8	16.76	3.51	12.67	293.15
SGO_84	364451.8	4341607.8	6.3	12.19	0.61	14.34	422.04
ICO_PL3	364306.4	4341783.5	4.7	24.38	0.61	21.67	435.78

#### TABLE 2 CHARACTERISTICS OF MODELED POINT SOURCES

#### TABLE 3 CHARACTERISTICS OF MODELED VOLUME SOURCES

SOURCE	LOCATION		BASE ELEV.	RELEASE HEIGHT	INITIAL SIGMA _Y	INITIAL SIGMAz
ID	UTM E	UTM N	(172)	(100)	(m)	(100)
	(m)	(m)	(m)	(m)		(m)
S33_0001	364520.8	4341535.7	7.4	12.19	0.85	5.67
S33_0002	364519.0	4341536.1	7.4	12.19	0.85	5.67
S33_0003	364517.2	4341536.4	7.4	12.19	0.85	5.67
S33_0004	364515.4	4341536.8	7.4	12.19	0.85	5.67
S33_0005	364513.6	4341537.1	7.3	12.19	0.85	5.67
S33_0006	364511.8	4341537.5	7.3	12.19	0.85	5.67
S33_0007	364510.0	4341537.8	7.3	12.19	0.85	5.67
S33_0008	364508.2	4341538.2	7.3	12.19	0.85	5.67
S33_0009	364506.4	4341538.6	7.3	12.19	0.85	5.67
S33_0010	364504.6	4341538.9	7.3	12.19	0.85	5.67
S33_0011	364502.8	4341539.3	7.3	12.19	0.85	5.67
S33_0012	364501.0	4341539.6	7.3	12.19	0.85	5.67
S33_0013	364499.2	4341540.0	7.3	12.19	0.85	5.67

SOURCE	LOCAT	ION	BASE ELEV.	RELEASE HEIGHT	INITIAL SIGMA _y	INITIAL SIGMAz
ID	UTM E	UTM N				
	(m)	(m)	(m)	(m)	(m)	(m)
S33_0014	364497.4	4341540.4	7.3	12.19	0.85	5.67
S33_0015	364495.7	4341540.7	7.3	12.19	0.85	5.67
S33_0016	364493.9	4341541.1	7.3	12.19	0.85	5.67
S33_0017	364492.1	4341541.4	7.3	12.19	0.85	5.67
S33_0018	364490.3	4341541.8	7.3	12.19	0.85	5.67
S33_0019	364488.5	4341542.1	7.2	12.19	0.85	5.67
S33_0020	364486.7	4341542.5	7.2	12.19	0.85	5.67
S33_0021	364484.9	4341542.9	7.2	12.19	0.85	5.67
S33_0022	364483.1	4341543.2	7.2	12.19	0.85	5.67
S33_0023	364481.3	4341543.6	7.1	12.19	0.85	5.67
S33_0024	364479.5	4341543.9	7.1	12.19	0.85	5.67
S33_0025	364477.7	4341544.3	7.1	12.19	0.85	5.67
S33_0026	364475.9	4341544.7	7.1	12.19	0.85	5.67
S33_0027	364474.1	4341545.0	7.0	12.19	0.85	5.67
S33_0028	364472.3	4341545.4	7.0	12.19	0.85	5.67
S33_0029	364470.5	4341545.7	7.0	12.19	0.85	5.67
S33_0030	364468.8	4341546.1	7.0	12.19	0.85	5.67
S33_0031	364467.0	4341546.5	7.0	12.19	0.85	5.67
S33 0032	364465.2	4341546.8	7.0	12.19	0.85	5.67
S33_0033	364463.4	4341547.2	7.0	12.19	0.85	5.67
S33_0034	364461.6	4341547.5	7.0	12.19	0.85	5.67
S33_0035	364459.8	4341547.9	7.0	12.19	0.85	5.67
S33_0036	364453.5	4341549.1	6.9	12.19	0.85	5.67
S33_0037	364451.7	4341549.5	6.9	12.19	0.85	5.67
S33_0038	364449.9	4341549.8	6.9	12.19	0.85	5.67
S33_0039	364448.1	4341550.2	6.9	12.19	0.85	5.67
S33_0040	364446.3	4341550.6	6.9	12.19	0.85	5.67
S33_0041	364435.3	4341552.8	6.8	12.19	0.85	5.67
S33_0042	364433.5	4341553.1	6.8	12.19	0.85	5.67
M0921_1	364536.4	4341774.4	5.8	8.53	0.43	3.97
M0921_2	364537.6	4341780.4	5.8	8.53	0.43	3.97
M0921_3	364538.8	4341786.4	5.8	8.53	0.43	3.97
 M0921_4	364540.0	4341792.3	5.8	8.53	0.43	3.97

# **Refined Screening Compliance Demonstration**

Table 4 presents the refined modeling results (projected maximum off-site concentrations) for the premises-wide, multi-stack analysis. This table also compares the projected maximum off-site ammonia impacts with the applicable MDE Screening Levels and demonstrates compliance (i.e., maximum off-site concentrations do not exceed MDE Screening Levels).

# TABLE 4 REFINED MODELING TAP COMPLIANCE - COMPARISON BETWEEN MAXIMUM MODELED AMMONIA CONCENTRATIONS AND MDE SCREENING LEVELS

TAD	040#	MAXIMUM MODELED MDE SCREENING LE		NING LEVEL	COMPL	IANCE	
ТАР	CAS #	1-hr 8-hr		1-hr	8-hr	1-hr	8-hr
		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)		
Ammonia	7664-41-7	190.8345	118.2143	243.7832	174.1309	Yes	Yes

# 1.0 MARYLAND TAP ANALYSIS FOR HEXANOL

The Magnapore Expansion Project is subject to the Maryland toxic air pollutant (TAP) requirements because TAPs will discharge into the ambient air, and the Project is required to obtain a Permit-to-Construct (PTC) under COMAR 26.11.02.09 (pursuant to COMAR 26.11.15.03(A)(1)).

COMAR 26.11.15.06 requires a demonstration that TAP emissions will not unreasonably endanger human health. Grace is demonstrating compliance with this ambient impact requirement using a screening analysis as specified under COMAR 26.11.15.07. According to COMAR 26.11.16.02(A), such a demonstration is made by showing that TAP emissions from the premises will not cause increases in ambient levels that exceed the applicable TLV- /threshold-based screening level for a Class II TAP (MDE Screening Levels).

# 1.1 TAP Sources/Hexanol Emissions

The maximum expected premises-wide hexanol emissions were calculated using condenser vapor pressure, process rates, mass balance, control efficiencies, monitoring data, and engineering judgement.

Table 1 identifies the premises-wide hexanol sources along with a description of the source and the calculated hexanol emissions.

STACK ID	HEXANOL EMISSIONS (G/S)	SOURCE DESCRIPTION	CONTROLS
MAG_03	0.00630	3 Tanks, 3 Reactors and Condenser	
MAG_04	0.05565	Calciner and Filters	Thermal Oxidizer
MAG_06	0.00473	Dryer, Tower Water Condenser and Chilled Water Condenser	
MGX_10	0.00578	7 Tanks, 2 Reactors and Chilled Water Condenser	
MGX_12	0.00557	Electric Calciner and Filters	Thermal Oxidizer
MGX_23	0.00851	Dryer, Tower Water Condenser and Chilled Water Condenser	
MAG_0921	0.00357	Magnapore fugitives (vent)	

### TABLE 1 TAP SOURCES AND HEXANOL EMMISIONS

# 1.2 TAPS Compliance Screening Analysis

A refined screening approach is used to demonstrate compliance. In this refined screening, offsite ground-level impacts of maximum expected hexanol emissions are estimated using refined air quality modeling, consistent with COMAR 26.11.16.02(A)(3) (and COMAR 26.11.16.02(C)(1)), are directly compared to the applicable MDE Screening Levels.

#### **Refined Air Quality Modeling**

Consistent with COMAR 26.11.16.02, a more rigorous, refined air quality dispersion modeling analysis was performed to project off-site 8-hr hexanol concentrations. The United States Environmental Protection Agency's (USEPA) guidance given in Appendix W to 40 CFR 51 was followed in the performance of this refined air quality modeling.

- Air quality model

The refined modeling was conducted using the USEPA air quality model (AERMOD) (version 23132) using Providence/ORIS BEEST Suite (version 12.10) as the user interface. The standard regulatory default option was invoked in AERMOD. In addition, the adjusted u* regulatory option was invoked.

- Model receptors

Concentrations were projected at ground-level locations (receptors) on the W.R. Grace Curtis Bay property line and at locations off-site (including receptors not on land, to be comprehensive). Model receptors were located to determine the expected highest off-site shortterm concentrations. A total of 5683 receptors were used. Receptors were placed along the property line at 25-m spacing. Also, receptors were placed in a grid at 25-m spacing out to 200 m from the property, and at 100-m spacing out to 3 km from the property. Figures 1 and 2 show maps of the closer-in model receptors and the entire receptor grid, respectively.

The Grace facility is isolated within a highly industrial section of Curtis Bay surrounded by other industries and a landfill. No general public reside in the vicinity of the facility. Much of the Grace facility (to the North and West) is surrounded by a large water body. The inaccessibility of the shoreline and inhospitable nature of the industrial facility deters public access. There is fencing along almost all the property to the East and South. In addition, there is a guardhouse at the entrance to the facility, signage, and video surveillance that preclude/deter public access.

Ground elevations (as well as hill-height scaling factors used by AERMOD) of each receptor were obtained using AERMAP (version 18081), AERMOD's terrain preprocessor. United States Geological Survey (USGS) digital elevation data (3DEP data with a resolution of 1 arc-second) for the modeling domain were input to AERMAP.

#### POWER Engineers, Inc. TAP Analysis (Updated 043025)

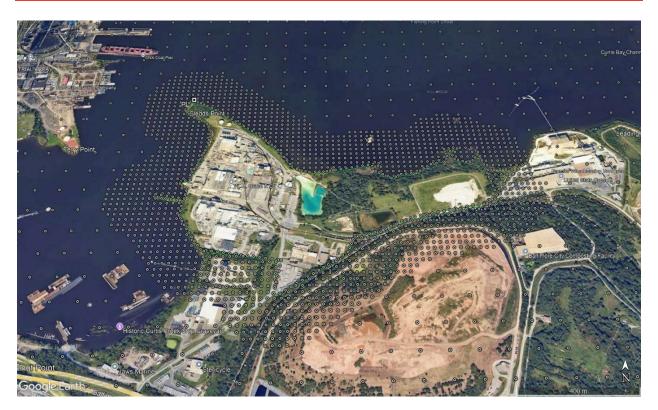



FIGURE 1 RECEPTOR MAP – CLOSE-IN RECEPTORS

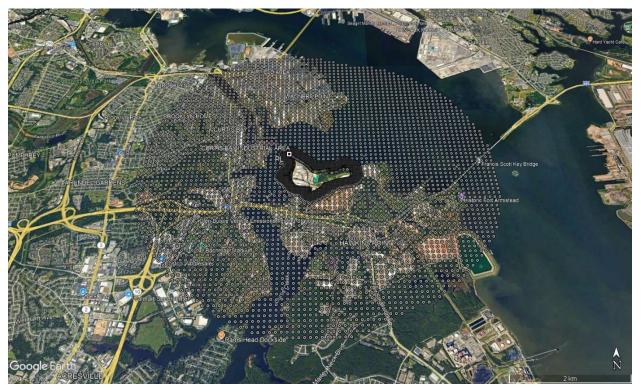



FIGURE 2 RECEPTOR MAP – ENTIRE RECEPTOR GRID

#### - Rural/urban classification

The Land Use Procedure given in USEPA Appendix W to 40 CFR 51 section 7.2.1.1(b)(i) was used to determine the urban/rural status for the dispersion modeling. The Project sources are located within an urban area (Baltimore urban area), but located close enough to a body of water (Patapsco River and Curtis Creek) or other non-urban land use categories to result in a predominantly rural land use classification within 3 km of the source. Section 5.1 of the AERMOD Implementation Guide (EPA-450/B-24-009, November 2024) cautions users against applying the Land Use Procedure on a source-by-source basis but should also consider the potential for urban heat island influences across the full modeling domain. Following your suggestion, the Land Use Procedure was used to determine the urban/rural status but disregarding the area of water within 3 km of the source. After removing the area covered by water (32%), 68% of the 3-km radius area is land. GoogleEarth images and US Geological Survey National Land Cover Database (NLCD) data for the area of interest were reviewed. Approximately 70% of the relevant land area is comprised of urban land use types as proposed by Auer (J. Appl. Meteor., 17, 636-643, May 1978). As a result, AERMOD was run in the urban mode. The April 2020 census population of nearby Baltimore City (585708) and the default surface roughness length were input to AERMOD to run the urban mode.

- Meteorological data

The recent five consecutive years (2019 through 2023) of AERMOD-ready representative meteorological input data were obtained from MDE (specifically, the SFC and PFL files provided by MDE's LiAn Zhuang (email dated 9/30/24)). The surface meteorological data (Automated Surface Observing System data) were collected at Baltimore/Washington International Thurgood Marshall Airport, Anne Arundel County, Maryland (WBAN 93721), and the upper air meteorological data were collected at Sterling, Virginia (Dulles International Airport) (WBAN 93734). MDE used AERSURFACE (version 20060) to determine representative surface characteristics and AERMET (version 23132) to process the meteorological data. The adjusted u* regulatory option was invoked in AERMET.

- Structure downwash

Direction-specific building dimensions of nearby/adjacent buildings/structures/tanks on the premises were generated using BPIPPRM (version 04274) and input to AERMOD to address the potential structure wake effects on stack plumes. Premises wide, 176 buildings/structures/tanks were included in the structure downwash analysis.

- Stack characteristics

Two types of sources were modeled: point sources and volume sources. Point sources were used to represent emissions from stacks, while volume sources were used to represent vented fugitive building emissions.

Regarding point sources, stacks were represented in different ways in AERMOD depending on their release characteristics. The stacks with rain caps (MAG_04 and MGX_12) and stack-top-mounted flame arrester (MAG_03) were represented as POINTCAP stacks. Stacks with horizontal releases (MAG_06 and MGX_23) were represented as POINTHOR stacks. The stack with a downward release (MGX_10) was represented as a default point source stack but with an exit velocity set to a nominally low value of 0.001 m/s to suppress momentum plume rise.

The USEPA User's Guide for the Industrial Source Complex (ISC3) Dispersion Models (EPA-454/B-95-003a) was followed in developing the source characteristics of the volume sources.

The MAG_0921 source was represented by 4 individual volume sources. The width of each volume source is 6 ft. The initial SIGMA_y is calculated as W/4.3 [6/4.3=1.40 ft], where W is the width of the volume source. The initial SIGMA_z is calculated as Hb/2.15 [28/2.15=13.02 ft], where Hb is the building height (28 ft).

Tables 2 and 3 present characteristics of modeled sources input to AERMOD.

STACK ID	LOCATION		BASE ELEV.	STACK HEIGHT	STACK DIAMETER	STACK EXIT VELOCITY	STACK EXIT TEMP.
	UTM E	UTM N	(m) (m)		(m)	(m/s)	(K)
	(m)	(m)			()	(	(14)
MAG_03	364544.3	4341807.0	5.7	24.69	0.10	0.478	294.26
MAG_04	364558.2	4341795.7	5.5	25.45	0.61	5.917	783.15
MAG_06	364556.9	4341810.5	5.5	6.10	0.14	0.031	294.26
MGX_10	364526.3	4341794.0	5.9	27.43	0.08	0.001	294.26
MGX_12	364503.7	4341785.2	5.8	36.88	0.61	5.917	783.15
MGX_23	364526.4	4341787.3	5.9	21.34	0.08	0.621	294.26

#### TABLE 2 CHARACTERISTICS OF MODELED POINT SOURCES

#### TABLE 3 CHARACTERISTICS OF MODELED VOLUME SOURCES

SOURCE	LOCATION		BASE ELEV.	RELEASE HEIGHT	INITIAL SIGMA _Y	INITIAL SIGMAz	
ID	UTM E	UTM N	(m)	(m)	(m)	(m)	
	(m)	(m)	(m)	(m)	(m)		
M0921_1	364536.4	4341774.4	5.8	8.53	0.43	3.97	
M0921_2	364537.6	4341780.4	5.8	8.53	0.43	3.97	
M0921_3	364538.8	4341786.4	5.8	8.53	0.43	3.97	
M0921_4	364540.0	4341792.3	5.8	8.53	0.43	3.97	

# **Refined Screening Compliance Demonstration**

Table 4 presents the refined modeling results (projected maximum off-site concentrations) for the premises-wide, multi-stack analysis. This table also compares the projected maximum off-site hexanol impacts with the applicable MDE Screening Level and demonstrates compliance (i.e., maximum off-site concentrations do not exceed MDE Screening Level).

# TABLE 4 REFINED MODELING TAP COMPLIANCE - COMPARISON BETWEEN MAXIMUM MODELED HEXANOL CONCENTRATIONS AND MDE SCREENING LEVEL

TAD	010 #	MAXIMUM MODELED CONCENTRATION	MDE SCREENING LEVEL	COMPLIANCE	
ТАР	CAS #	8-hr	8-hr	0.6.4	
		(µg/m³)	(µg/m³)	8-hr	
Hexanol	111-27-3	13.70	27.30	Yes	

Public Version

APPENDIX 6 PUBLIC FEEDBACK AND MARYLAND EJ SCREEN REPORT Ramboll – Maryland EJ Screen Report W.R. Grace Project

Prepared for: W.R. Grace & Co

Prepared by: Ramboll Atlanta, GA San Francisco, CA

Last Updated: February 20, 2025

# **Maryland EJ Screen Report**

# W.R. Grace Project

# Contents

Executive Summary	2
1.0 Background	3
<ul> <li>1.1 MDE's Definition of Underserved and Overburdened Communities</li> <li>1.1.1 Underserved Communities</li> <li>1.1.2 Overburdened Communities</li> <li>1.1.3 How MDE Calculates an EJ Score:</li> </ul>	3 3
2.0 MDE EJ Screen Score Summary	5
3.0 Socioeconomic Indicator Analysis	8
4.0 Environmental Pollution Indicator Analysis	8
4.0 Environmental Pollution Indicator Analysis	
	9

# **FIGURE**

# **TABLES**

# **Executive Summary**

House Bill 1200 (HB1200) mandates that permit applications that require public notice and participation must include an EJ Score for the census tract where the applicant is seeking the permit in the permit application package to the Maryland Department of the Environment (MDE). The Department recommends using the Maryland EJ Tool to assess the EJ Score within a 1-mile radius of the facility.

To comply with HB1200 and MDE requirements, the Maryland EJ Tool was utilized to generate EJ Scores for the five census tracts located within a 1-mile radius of the W.R. Grace Curtis Bay facility. This includes Census Tracts 2505 and 2506 in Baltimore City, and Census Tracts 7301.02, 7502.04, and 7511.02 in Anne Arundel County. Two of the census tracts, 2505 and 7301.02, were flagged as overburdened communities with an overall EJ Score greater than the 75th percentile. Census Tract 2505 has the highest EJ Score, 100th percentile, indicating the census tract faces pollution, environmental, and socioeconomic burdens higher than 100% of the state of Maryland. Environmental Indicators with an EJ Indicator Score greater than 75% for the tract include the National Air Toxics Assessment (NATA) Respiratory Hazard Index (80%), NATA Particulate Matter/PM2.5 (97%), and Wastewater Discharge (92%).

Census Tract 7301.02 was also flagged as an overburdened community with an Overall EJ Score of 86th percentile, indicating that the tract faces pollution, environmental, and socioeconomic burdens greater than 86% of the state of Maryland. Environmental Indicators with an EJ Indicator Score greater than 75% for the tract include the NATA Respiratory Hazard Index (80%), NATA Particulate Matter/PM2.5 (95%), and Wastewater Discharge (91%).

To further understand the current socioeconomic and environmental conditions in the Curtis Bay community, Grace has included an analysis of the socioeconomic and environmental indicators provided by the screening tool. Additionally, Grace has been an active member of the community and has been engaging with the local community members regularly for many years. Information about the upcoming Curtis Bay projects were outlined during more recent specific outreach sessions. These meetings allowed for two-way communication and provided community members an opportunity to share their concerns and for Grace to gather input from the community. These conversations helped to shape the upcoming permit application as well as other measures that Grace is actively considering to address the community's concerns.



ENVIRONMENT & HEALTH

# 1.0 Background

This document provides an Environmental Justice (EJ) Screening Score based on quantitative data from the Maryland Department of the Environment's (MDE's) Environmental Justice Screening Tool, Version 2.0 Beta. The assessment focuses on socioeconomic and environmental indicators within a 1-mile radius of the WR Grace facility, located at 5500 Chemical Road, in Baltimore, Maryland. The Overall EJ Score is presented as a percentile for comparison purposes that represents the percentage of the population in Maryland that ranks lower than the census tract in question. Environmental and Socioeconomic Indicators are presented as percentages, percentile rankings are included if the information was provided by the screening tool.

## 1.1 MDE's Definition of Underserved and Overburdened Communities

- **1.1.1 Underserved Communities**¹: According to state law, a community is classified as underserved if it meets at least one of the following criteria:
  - **Low-income residents**: At least 25% of the population qualifies as low-income, which is based on the most recent U.S. Census Bureau data. This means households earning below a certain income threshold, typically below 200% of the federal poverty line, are counted.
  - **Nonwhite residents**: At least 50% of the residents identify as nonwhite. This includes populations categorized as African American, Hispanic, Asian, Native American, or other nonwhite groups.
  - Limited English proficiency: At least 15% of the population has limited English proficiency, meaning they speak a language other than English at home and speak English less than "very well."
- **1.1.2 Overburdened Communities (OBC)**^{2,3}: A community is considered overburdened if three or more of the following environmental health indicators exceed the 75th percentile statewide:

#### • Pollution Burden Exposure Indicators:

- **PM2.5 concentration**: Particulate matter 2.5 levels above the 75th percentile for statewide comparison.
- **Ozone concentration**: Based on summer seasonal average of the maximum daily 8-hour concentration of ozone in air in ppb (parts per billion).
- **NATA Diesel PM concentration**: Diesel particulate matter (PM) levels above the 75th percentile for statewide comparison.
- NATA Cancer Risk: Increased cancer risk based on NATA data, with a score exceeding the 75th percentile statewide.
- **NATA Respiratory Hazard Index**: Higher respiratory risks, calculated based on exposure to toxic chemicals.
- **Traffic Proximity**: High levels of traffic congestion or proximity to major roadways, contributing to pollution from vehicle emissions.
- **TRI Facility Proximity**: Close proximity to toxic release inventory facilities that emit pollutants.
- **Hazardous Waste Landfill Proximity**: Close to landfills that may leach hazardous materials into the environment.

¹MDEJ. MDE's Environmental Justice Screening Tool. <u>EJ Screening Tool</u>

 $^{^{\}rm 2}$  MDEJ. MD EJSCREEN v2.0: A Tool for Mapping Environmental Justice in Maryland.

https://mde.maryland.gov/programs/Crossmedia/EnvironmentalJustice/Documents/mdejscreen-cejsc-2-25-2021v1.pdf

³ MDEJ. MDE's Environmental Justice Screening Tool. <u>EJ Screening Tool</u>



- Pollution Burden Environmental Effects Indicators:
  - **Lead Paint Indicator**: Elevated risks of lead exposure, often based on housing age and maintenance levels.
  - Risk Management Plan Facility Proximity: Close proximity to facilities handling hazardous chemicals, as defined by federal Risk Management Plan (RMP) regulations.
  - Hazardous Waste Proximity: Near hazardous waste management facilities.
  - **Superfund Site Proximity**: Close proximity to National Priorities List (Superfund) sites, indicating potential long-term environmental contamination.
  - **Wastewater Discharge Indicator**: High levels of proximity to areas with significant wastewater discharge.
  - **Brownfields Proximity**: Close proximity to brownfield sites, which may involve redevelopment of contaminated land.
  - **Power Plant Proximity**: Near emitting power plants, which can contribute to air and water pollution.
  - **Concentrated Animal Feeding Operation (CAFO) Proximity**: Near large-scale animal farming operations that may impact air and water quality.
  - **Mining Operations Proximity**: Close proximity to mining sites, which may cause land disturbance and contamination.
- Sensitive Population Indicators:
  - **Low-birth-weight Infants**: Census tracts with a higher proportion of low-birth-weight infants (below 5.5 pounds) in relation to statewide data.
  - **Asthma Emergency Room Discharges**: Communities where asthma-related emergency room visits are above the 75th percentile.
  - **Myocardial Infarction Discharges**: Higher rates of hospital discharges due to heart attacks (myocardial infarctions), indicating poor cardiovascular health.
  - Broadband Coverage: Percent of population lacking broadband access, with census tracts above the 75th percentile indicating limited access to essential online services.

#### **1.1.3** How MDE Calculates an EJ Score⁴:

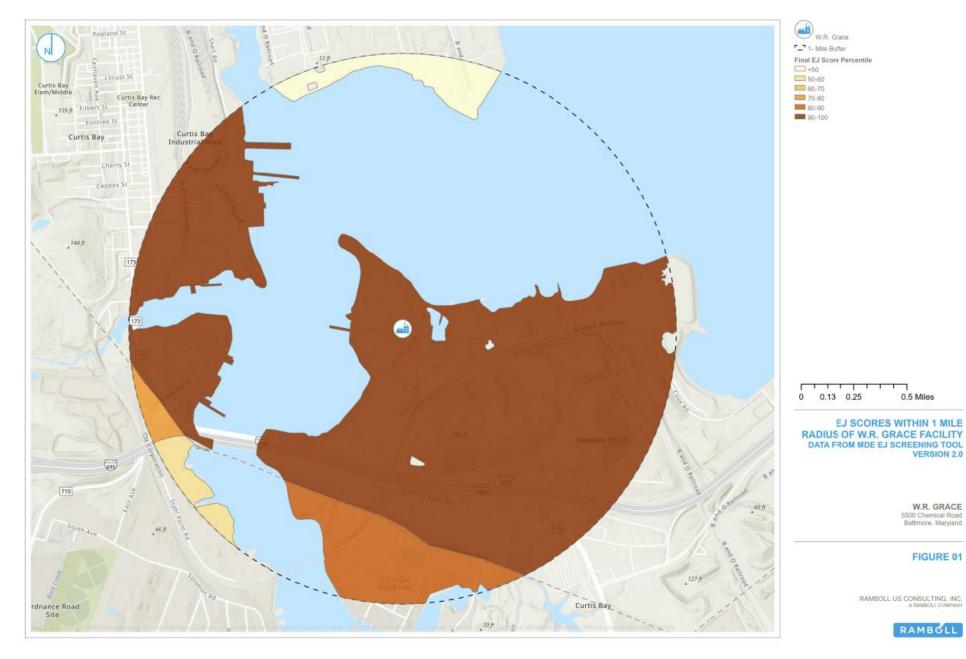
MDE calculates the EJ Score based on four primary factors:

- Pollution Burden Exposure: This score considers the levels of air and water pollutants, traffic proximity, and nearby industrial facilities. A census tract is flagged if these indicators are above the 75th percentile compared to statewide data. For example, a community with PM2.5 concentrations of 9 μg/m³ and proximity to a TRI facility may receive a higher exposure score.
- 2. **Pollution Burden Environmental Effects**: This score evaluates environmental degradation and proximity to hazardous sites, such as Superfund locations or emitting power plants. A community with several nearby hazardous facilities may have an elevated environmental effects score.
- 3. **Sensitive Populations**: This score reflects the vulnerability of populations based on health indicators, such as asthma rates and low-birth-weight infants. Communities with asthma emergency room discharge rates above 15 per 1,000 people would score higher in this category.
- 4. **Socioeconomic/Demographic Indicators**: The socioeconomic score is calculated based on the definition of an underserved community. If 30% of a community's residents are low-income, or 55% are nonwhite, or 20% have limited English proficiency, that census tract qualifies as underserved. A tract meeting more than one of these thresholds would receive a higher socioeconomic score.

⁴ MDEJ. MDE's Environmental Justice Screening Tool. <u>EJ Screening Tool</u>



The overall EJ Score is derived from the combined weight of these four categories. A census tract that has high pollution burdens, environmental effects, and sensitive populations, along with socioeconomic vulnerabilities, will receive a higher EJ Score, potentially reflecting severe environmental justice concerns.


# 2.0 MDE EJ Screen Score Summary

The census tracts within one mile of the facility, including Census Tracts 2505 and 2506 in Baltimore City, as well as Census Tracts 7301.02, 7502.04, and 7511.02 in Anne Arundel County, present environmental and socioeconomic challenges that are of concern. For the purposes of this summary, the focus will be on the indicators that are potentially related to the project and those that demonstrate a clear need for assistance in the area. For more comprehensive information on all indicators in the projects 1-mile vicinity, the full raw data from the MDE EJ Screening Report is included as an attachment to this report. **Figure 1** provides EJ scores across all census tracts and **Table 1** provides indicator data across all census tracts.

The area's Overall Environmental Justice (EJ) Score Percentile reaches 100.00th percentile in Census Tract 2505, 14.90th percentile in Census Tract 2506, 86.12nd percentile in Census Tract 7301.02, 73.27th percentile in Census Tract 7502.04, and 50.92nd percentile in Census Tract 7511.02, placing several of these tracts among the most impacted in Maryland, indicating substantial environmental risks and social inequities. Poverty rates in these tracts reach as high as 51.92%, with minority populations making up 53.65% of residents in some areas, amplifying the vulnerability of these communities to environmental hazards. Environmental pollution is of particular interest, with PM2.5 exposure scores reaching 98.37% in some census tracts, which poses respiratory and cardiovascular risks. The NATA Respiratory Hazard Index is similarly high at 80%, reflecting elevated risks from pollutants like volatile organic compounds (VOCs) and fine particles. The Toxics Release Inventory (TRI) Score, reaching 78.95%, points to nearby industrial facilities releasing toxic chemicals, further contributing to health risks. Additionally, proximity to wastewater discharge facilities, Wastewater Discharge Score reaching 97.20%, indicates substantial exposure to industrial contaminants. The combination of these environmental pollution indicators and socioeconomic vulnerabilities creates a high-risk environment for the communities near the facility, underscoring the need for environmental risk mitigation and enhanced community engagement.



# ENVIRONMENT & HEALTH





			Table 1. Census Tr	racts within 1-mile of 5500 Chemical Roa	d, Baltimore, Maryland					
			Threshold for	Indicator to be classified as EJ communi	ty is 75th percentile					
City/County	Census Tract	Overall EJ Score (Percentile)	Socioeconomic Indicators	EJ Score for Indicator (% for tract)	Socioeconomic Score (Percentile Distribution acoss Maryland)	Environmental Indicators	EJ Score for Indicator (% for tract)	EJ Score for Indicator (Percentile score)		
			Poverty	18.96%		NATA Respiratory Hazard Index Score	80.00%	32.49%		
			, over q	2010070		NATA Particulate Matter (PM2.5) Score	97.20%	28.69%		
Anne Arundel County	7511.02	50.92			20.01	Toxics Release Inventory (TRI) Score	15.79%	94.87%		
			Minority	40.03%		Hazard Waste Proximity Score	17.63%			
						Wastewater Discharge Score	53.56%			
			Poverty	11.45%		NATA Respiratory Hazard Index Score	80.00%	25.09%		
			rotery	11.40%		NATA Particulate Matter (PM2.5) Score	95.28%	19.80%		
Anne Arundel County	7301.02	86.12			34.00	Toxics Release Inventory (TRI) Score	42.11%	99.32%		
			Minority	34.10%		Hazard Waste Proximity Score	21.20%			
						Wastewater Discharge Score	91.25%			
			Poverty	16.68%		NATA Respiratory Hazard Index Score	80.00%	24.32%		
		73.27	Poverty	10/00/0		NATA Particulate Matter (PM2.5) Score	97.94%	22.39%		
Anne Arundel County	7502.04		73.27	73.27				15.19	Toxics Release Inventory (TRI) Score	5.26%
			Minority	27.47%		Hazard Waste Proximity Score	20.77%			
						Wastewater Discharge Score	95.22%			
			Poverty	51.92%		NATA Respiratory Hazard Index Score	80.00%	58.15%		
			Poverty	51.52%		NATA Particulate Matter (PM2.5) Score	97.25%	51.35%		
Baltimore City	2505	100.00			73.13	Toxics Release Inventory (TRI) Score	52.63%	99.52%		
			Minority	53.65%		Hazard Waste Proximity Score	37.81%	-		
						Wastewater Discharge Score	92.24%			
			Poverty			NATA Respiratory Hazard Index Score	80.00%			
			. overly		]	NATA Particulate Matter (PM2.5) Score	98.37%			
Baltimore City	2506	14.90				Toxics Release Inventory (TRI) Score	78.95%	99.86%		
			Minority			Hazard Waste Proximity Score	38.12%			
						Wastewater Discharge Score	97.20%			

Notes:

1. Socioeconomic indicators for census tract 2506 were not provided in the MDEJ Data Set



# ENVIRONMENT & HEALTH

# 3.0 Socioeconomic Indicator Analysis

The census tracts within a 1-mile radius of the facility face significant socioeconomic challenges, contributing to the compounded risks posed by environmental hazards. Census Tract 2505, located in Baltimore City, stands out as the most vulnerable, with a Final Environmental Justice (EJ) Score of 100.00th percentile — the highest in the area. This tract also exhibits one of the highest poverty rates at 51.92%, and its minority population exceeds 50%, compounding the challenges for its residents. This combination of high poverty and minority representation underscores the need for targeted socioeconomic and environmental interventions. In contrast, Census Tract 2506, also in Baltimore City, has a notably lower EJ Score of 14.90th percentile, though it still exhibits environmental pollution exposure vulnerabilities compared to other tracts in the state. Notably, the tool does not provide information on socioeconomic risks, such as poverty rates and minority population, for this census tract.

In Anne Arundel County, Census Tracts 7301.02 and 7502.04 also face considerable socioeconomic risks, with high EJ Scores of 86.12th and 73.27th percentile, respectively. While the poverty rates in these tracts are lower at around 15%, they still face substantial challenges due to minority populations ranging from 25% to 35%. These factors elevate the tracts' overall vulnerability to environmental hazards. Census Tract 7511.02, with a moderate EJ Score of 50.92nd percentile, shows a somewhat reduced environmental burden, but socioeconomic vulnerabilities persist. With a minority population of 40% and a poverty rate of 19%, this tract still warrants attention. Across all tracts, the elevated poverty and minority populations may highlight the need for better access to healthcare, economic assistance, and resources to mitigate the impacts of environmental risks.

# 4.0 Environmental Pollution Indicator Analysis

Environmental pollution poses a concern across the census tracts surrounding the facility. Particulate Matter (PM2.5) concentrations have exposure scores reaching as high as 98.37%. All tracts in this area face elevated environmental risks from PM2.5, as reflected by NATA PM Scores consistently above 95%. The NATA Respiratory Hazard Index, which remains high at 80% across all tracts, further underscores the poor air quality due to pollutants such as volatile organic compounds (VOCs) and fine particulate matter. This suggests that these communities experience some of the highest pollution levels in Maryland, leading to an increased risk of respiratory and cardiovascular issues.

The Toxics Release Inventory (TRI) Score adds to the environmental concerns, with values peaking at 78.95%. Census Tracts 2505 and 2506 in Baltimore City are particularly affected by the proximity of industrial facilities. These tracts are exposed to hazardous chemicals that could lead to long-term health risks, including cancer and respiratory diseases. This exposure is exacerbated by the area's dense population and socioeconomic challenges.

Additional environmental stressors include the proximity to hazardous waste and wastewater discharge sites. Census Tract 7511.02, despite having a moderate EJ Score of 50.92nd percentile, experiences a Wastewater Discharge Score of 53%, indicating moderate risks related to water contamination. In contrast, the other tracts have much higher wastewater discharge scores, exceeding 90%, suggesting that air pollution is not the only major environmental impact in these areas. The Hazardous Waste Proximity Scores, which reach 38.12%, further highlight the exposure of communities, particularly in Census Tracts 2505 and 2506, to industrial waste, increasing the burden of environmental risks on these vulnerable populations.



# 5.0 Community Involvement

Grace has been a proud member of the Curtis Bay community for more than 115 years and is committed to its future. For more than a decade, Grace has administered the Community Advisory Panel (CAP) and has regularly participated in neighborhood meetings. In addition to our routine engagements with the community, we partner with United Way and other local businesses for the annual Back to School Bash and Holiday Festival, serve Thanksgiving dinner to hundreds of community members each November, and volunteer at the local Boys & Girls Club and local schools to support youth development. We proudly support Chesapeake Arts Center, Grow Home, and The Well to help enhance the lives of families in the community.

Prior to submitting the permit application to MDE, Grace engaged with community members on several occasions to provide information on the proposed projects and listen and gather feedback from the Curtis Bay and surrounding communities. Formal outreach began in October 2024, when Grace team members met with members of the Board of the Curtis Bay Community Association (CBCA) to describe the process and timeline the company planned to follow and listen to any initial concerns as the process got underway. Grace then scheduled the first communitywide meeting on this project based on feedback that a December meeting would be more welcome than one in November. After the first meeting on December 12, 2024, Grace heard community feedback which was then incorporated into the company's overall site project planning as a direct result. During subsequent community meetings on January 22, 2025, and January 27, 2025, Grace team members shared changes Grace began analyzing as a direct response to the concerns raised by the community in December. Since October 2024, Grace has conducted several one-on-one meetings with a variety of stakeholders including local elected officials, local universities active in the community, and board members from organizations such as the CBCA, South Baltimore Community Land Trust, and Concerned Citizens for a Better Brooklyn. Throughout this process, the team at Grace has gathered feedback from the community and continues to work internally to address concerns to positively impact the community, where feasible.

# 6.0 Conclusion

In summary, the EJ Screening Score analysis for the 1-mile radius surrounding the Grace facility highlights significant environmental and socioeconomic conditions. The high EJ Scores in several census tracts, particularly Census Tract 2505 with a 100th percentile score, reveal elevated levels of PM2.5 exposure, respiratory hazard indices, and close proximity to industrial facilities. These environmental burdens are compounded by socioeconomic vulnerabilities, such as high poverty rates and large minority populations. The combination of these factors suggests a heightened need for interventions to reduce environmental risks and improve the overall quality of life in these communities. The full raw data set from the Maryland EJ Screen Tool is included as an attachment for a more detailed review of all indicators in the region.

Grace recognizes that the EJ Screening Score analysis of the Curtis Bay community ranks it amongst the most underserved and overburdened communities in the state of Maryland. With this in mind, we are committed to being a responsible business, a good neighbor, and an active member of the Curtis Bay community. Grace's investment in the facility will enable us to keep jobs in the community and allow us to hire additional employees. While making upgrades to our facility, we plan to incorporate state-of-the-art emissions control technologies.



For over a decade, Grace has participated in community events, meetings, donation drives, and youth development programs. Additionally, Grace has engaged with the Curtis Bay and surrounding communities specifically about the upcoming projects and permit application to solicit input from the community. Through these interactions, we have heard the concerns raised by the community. We are looking into ways Grace may be able to assist with those concerns, where feasible. We plan to continue in partnership with the community, working closely together for the good of our shared community.

Public Version



# **ATTACHMENTS**



# MDE Screening Report

# Area of Interest (AOI) Information

Area : 3.14 mi²

Oct 15 2024 10:22:06 Eastern Daylight Time

Tabloid ANSI B Landscape



10/15/24, 10:25 AM

Summary

13/24, 10.25 AW	1	about blank	1
Name	Count	Area(mi²)	Length(mi)
MDE Final EJ Score (%ile score)	5	1.70	Ν/Α
Overburdened Communities Combined Score	5	1.70	N/A
Overburdened Pollution Environmental Score (%ile score)	5	1.71	N/A
Overburdened Exposure Score (%ile score)	5	1.71	N/A
Overburdened Sensitive Population (%ile score)	5	1.71	N/A
Socioeconomic/Demographic Score 2020 (Percentile score) (Underserved Community)	4	1.67	N/A
Air Emissions Facilities	8	N/A	N/A
Sulfur Dioxide (2010)	1	0.27	N/A
Ozone (2015)	2	3.14	N/A
Fine Particles (2012)	2	3.14	N/A
Biosolids FY 2020 and Current Permit Details	0	N/A	N/A
Biosolids FY2010 - 2014 Permit Details	0	N/A	N/A
Biosolids FY2009 Expired Permit Details	0	N/A	N/A
Biosolids FY 2020 and Current Permits Distribution By Acreage	1	0.29	N/A
Biosolids FY2015 - 2019 Permits Distribution By Acreage	2	1.72	N/A
Biosolids FY2010 - 2014 Permits Distribution By Acreage	2	1.72	N/A
Biosolids FY2009 Permits Expired Distribution By Acreage	2	1.72	N/A
Biosolids FY 2020 and Current Permit Distribution By Percent Coverage	2	1.72	N/A
Biosolids FY2015 - 2019 Permit Distribution By Percent Coverage	2	1.72	N/A
Biosolids FY2010 - 2014 Permit Distribution By Percent Coverage	2	1.72	N/A
Biosolids FY2009 Expired Permit Distribution By Percent Coverage	2	1.72	N/A
Concentrated Animal Feeding Operations (CAFOs)	0	N/A	N/A
Composting Facilities	0	N/A	N/A
Food Scrap Acceptors	0	N/A	N/A
Landfills	5	N/A	N/A
Correctional Facilities	0	N/A	N/A
Industrial Food Suppliers	0	N/A	N/A
Residential Colleges	0	N/A	N/A
Non-Residential Colleges	0	N/A	N/A
Hospitals	0	N/A	N/A
High Schools	0	N/A	N/A
Grocery Stores	0	N/A	N/A
10 Miles from Landfill	19	49.84	N/A
10 Miles from Composting Facility	1	1.92	N/A
General Composting Facilities Tier 2 (MD)	0	N/A	N/A
Commercial Anaerobic Digester (MD)	0	N/A	N/A
Out of State Facilities	0	N/A	N/A
30 mile buffer (Maryland)	4	10.25	N/A
30 Mile Buffer (Out of State)	0	0	N/A
Land Restoration Facilities	17	N/A	N/A
Determinations (points)	0	N/A	N/A
Determinations (areas)	6	0.08	N/A
Entities	18	N/A	N/A
Active Coal Mine Sites	0	N/A	N/A
Historic Mine Facilities	0	N/A	N/A
·			

about:blank

#### 10/15/24, 10:25 AM

about:blank

**Public Version** 

All Permitted Solid Waste Acceptance Facilities	5	N/A	N/A
Municipal Solid Waste Acceptance Facilities	1	N/A	N/A
Maryland Dam Locations	0	N/A	N/A
Maryland Pond Locations	14	N/A	N/A
Surface Water Intakes	0	N/A	N/A
Wastewater Discharge Facilities	8	N/A	N/A
Drinking Water	0	N/A	N/A
Clean Water	0	N/A	N/A

## MDE Final EJ Score (%ile score)

#	Census tract identifier Geographic Area Name		Total Population	Final EJ Score Percent (for this tract)	Final EJ Score Percentile (Distribution across Maryland)	Area(mi²)
1	24510250500	Census Tract 2505, Baltimore city, Maryland	4561	53.72	100.00	1.41
2	24003730102	Census Tract 7301.02, Anne Arundel County, Maryland	10577	37.42	86.12	0.20
3	24003751102	Census Tract 7511.02, Anne Arundel County, Maryland	4599	29.71	50.92	0.05
4	24510250600	Census Tract 2506, Baltimore city, Maryland	0	22.77	14.90	0.03
5	24003750204	Census Tract 7502.04, Anne Arundel County, Maryland	4790	33.85	73.27	0.02

# Overburdened Communities Combined Score

#	GEOID20	Geographic_Area_ Name	TotalPop	Overburd_Exposu re_Percent	Overburd_Exposu re_Percentile	Overburd_Poll_En viro_Percent	Overburd_Poll_En viro_Percentile	Sensitive_Populati on_Percent	
1	24510250500	Census Tract 2505, Baltimore city, Maryland	4,561	68.28	100.00	32.31	99.93	83.25	
2	24003730102	Census Tract 7301.02, Anne Arundel County, Maryland	10,577	53.20	94.60	19.86	92.00	84.23	
3	24003751102	Census Tract 7511.02, Anne Arundel County, Maryland	4,599	52.77	93.92	13.60	78.47	50.71	
4	24510250600	Census Tract 2506, Baltimore city, Maryland	0	65.46	99.93	25.62	98.36	0.00	
5	24003750204	Census Tract 7502.04, Anne Arundel County, Maryland	4,790	48.75	74.71	20.38	92.96	72.08	
#	Sensitive_Population_Percentile		Overburden	edAllPercent	Overburdene	dAllPercentile	Area(mi²)		
1	94.81		100.00		100.00		1.41		
2	95.90		97.27		93.37		0.20		
3	29.60		59.54		76.21		0.05		
4	0.07		43.75		4.85 0.03		0.03		

78.54

0.02

Overburdened Pollution Environmental Score (%ile score)

90.23

77.72

5

**Public Version** 

#	GEOID20	Geographic_Area_ Name	RentalsOccupiedP re79Percent	Percentile	PercentRMP	PercentRMPEJ	PercentHazWaste	PercentHazWaste EJ
1	24510250500	Census Tract 2505, Baltimore city, Maryland	40.28	94.81	98.39	61.14	37.81	57.77
2	24003730102	Census Tract 7301.02, Anne Arundel County, Maryland	1.83	24.74	24.81	23.72	21.20	23.37
3	24003751102	Census Tract 7511.02, Anne Arundel County, Maryland	8.54	44.77	19.61	28.99	17.63	29.59
4	24510250600	Census Tract 2506, Baltimore city, Maryland	0.00	0.00	79.64	0.00	38.12	0.00
5	24003750204	Census Tract 7502.04, Anne Arundel County, Maryland	8.09	41.49	41.01	24.54	20.77	22.65

#	PercentSuperFund NPL	PercentSuperFund NPLEJ	PercentHazWW	PercentHazWWEJ	BrownFPercent	Percentile_1	PercentPowerPlan ts	Percentile_12
1	20.80	60.04	92.24	92.24	1.27	98.56	0.00	0.00
2	21.46	25.91	91.25	68.44	0.00	0.00	18.18	99.32
3	23.04	33.92	53.56	58.52	0.00	0.00	0.00	0.00
4	13.49	0.00	97.20	0.00	2.11	99.52	0.00	0.00
5	17.51	24.56	95.22	68.44	0.84	97.20	0.00	0.00

#	PercentCAFOS	Percentile_12_13	PercentActiveMines	Percentile_12_13_14	PollutionEnvironment alPercent	PollnEnvironmentalP ercentile	Area(mi²)
1	0.00	0.00	0.00	0.00	32.31	99.93	1.42
2	0.00	0.00	0.00	0.00	19.86	92.00	0.20
3	0.00	0.00	0.00	0.00	13.60	78.47	0.05
4	0.00	0.00	0.00	0.00	25.62	98.36	0.03
5	0.00	0.00	0.00	0.00	20.38	92.96	0.02

# Overburdened Exposure Score (%ile score)

#	GEOID20	Geographic_Area_ Name	Total_Pop	PercentNATA_Can cer	Percentile_NATA_ Cancer	PercentNATA_Res p_HI	Percentile_NATA_ Resp_HI	PercentNATA_Dies el
1	24510250500	Census Tract 2505, Baltimore city, Maryland	4,561.00	60.00	52.14	80.00	58.15	50.98
2	24003730102	Census Tract 7301.02, Anne Arundel County, Maryland	10,577.00	60.00	22.50	80.00	25.09	30.19
3	24003751102	Census Tract 7511.02, Anne Arundel County, Maryland	4,599.00	60.00	29.13	80.00	32.49	38.68
4	24510250600	Census Tract 2506, Baltimore city, Maryland	0.00	60.00	0.00	80.00	0.00	50.24
5	24003750204	Census Tract 7502.04, Anne Arundel County, Maryland	4,790.00	60.00	21.81	80.00	24.32	40.08
#	Percentile_NATA_ Diesel	PercentNATA_PM2 5	PercentileNATA_P M25	PercentOzone	PercentileOzone	PercentTraffic	PercentileTraffic	PercentTRI
1	58.53	97.25	51.35	99.65	58.53	5.74	43.43	52.63
2	18.37	95.28	19.80	99.79	25.25	1.57	10.47	42.11
3	28.61	97.20	28.69	99.77	32.70	14.09	31.05	15.79
4	0.00	98.37	0.00	99.45	0.00	40.01	0.00	78.95
5	21.98	97.94	22.39	99.65	24.48	7.07	19.50	5.26

**Public Version** 

#	PercentileTRI	PercentHazWasteLF	Percentile_HazWasteLF	PollutionExposurePercen t	PollutionExposurePercen tile	Area(mi²)
1	99.52	100.00	99.73	68.28	100.00	1.42
2	99.32	16.67	95.49	53.20	94.60	0.20
3	94.87	16.67	95.49	52.77	93.92	0.05
4	99.86	16.67	95.49	65.46	99.93	0.03
5	80.18	0.00	0.00	48.75	74.71	0.02

Overburdened Sensitive Population (%ile score)

#	GEOID20	Geographic_Area_ Name	PerAstma	PercentileAst	PerMyo	PercentileMyo	PerLow	PercentileLow
1	24510250500	Census Tract 2505, Baltimore city, Maryland	95.50	90.57	95.30	88.38	83.90	87.90
2	24003730102	Census Tract 7301.02, Anne Arundel County, Maryland	80.63	99.79	85.23	99.86	74.73	99.86
3	24003751102	Census Tract 7511.02, Anne Arundel County, Maryland	45.40	56.60	49.00	57.01	22.20	28.71
4	24510250600	Census Tract 2506, Baltimore city, Maryland	0.00	0.00	0.00	0.00	0.00	0.00
5	24003750204	Census Tract 7502.04, Anne Arundel County, Maryland	74.00	81.07	68.20	74.57	54.09	69.31

#	PercentBroad	PercentileBroad	PercentSens	PercentileSens	Area(mi²)
1	41.68	99.52	79.10	91.59	1.42
2	3.68	50.10	61.07	87.41	0.20
3	13.32	77.10	32.48	54.85	0.05
4	0.00	0.00	0.00	0.05	0.03
5	7.97	48.87	51.06	68.46	0.02

Socioeconomic/Demographic Score 2020 (Percentile score) (Underserved Community)

#	Census tract identifier	Geographic Area Name	Total Population	Percent Poverty	Percent Minority	Percent Limited English Proficiency	Demographic Score (Percent for this tract)	Demographic Score (Percentile Distribution acoss Maryland)	Area(mi²)
1	24510250500	Census Tract 2505, Baltimore city, Maryland	4,561	51.92	53.65	0.00	35.19	73.13	1.41
2	24003730102	Census Tract 7301.02, Anne Arundel County, Maryland	10,577	11.45	34.10	1.09	15.55	34.00	0.20
3	24003751102	Census Tract 7511.02, Anne Arundel County, Maryland	4,599	18.96	40.03	1.03	20.01	44.62	0.05
4	24003750204	Census Tract 7502.04, Anne Arundel County, Maryland	4,790	16.68	27.47	1.41	15.19	33.10	0.02

Air Emissions Facilities

Public Version

5/24	TU.25 AM about blank							
#	Agency Interest ID	Facilty Name	Agency Interest Alt Name	Premises ID	Emission Year	Air Code	NAIC Code	NAIC Description
1	439	Curtis Bay Energy, LP	Curtis Bay Energy, LP-439	510-2975	2021	Title V	562,213	Solid Waste Combustors and Incinerators
2	1792	US Coast Guard Yard (USCG Yard)	US Coast Guard Yard (USCG Yard)-1792	003-0316	2021	Title V	928,110	National Security
3	1890	Bitumar USA, Inc.	Bitumar USA, Inc1890	003-0234	2021	SOP	324,122	Asphalt Shingle and Coating Materials Manufacturing
4	2102	W. R. Grace & Co Davison Chemical	W. R. Grace & Co Davison Chemical- 2102	510-0076	2021	Title V	325,180	Other Basic Inorganic Chemical Manufacturing
5	6867	Baltimore City Composting/Veolia Water North America-Central, LLC	Baltimore City Composting/Veolia Water North America-Central, LLC-6867	510-2781	2021	SOP	325,311	Nitrogenous Fertilizer Manufacturing
6	9620	United States Gypsum Company	United States Gypsum Company- 9620	510-0106	2021	Title V	327,420	Gypsum Product Manufacturing
7	13670	Quarantine Road Municipal Landfill	Quarantine Road Municipal Landfill- 13670	510-2293	2021	Title V	562,212	Solid Waste Landfill
8	20813	Buckeye Terminals, LLC - Baltimore Terminal	Buckeye Terminals, LLC - Baltimore Terminal-20813	510-0918	2021	Title V	493,190	Other Warehousing and Storage
#	Physical Address	Physical City	Physical State	Physical Zip Code	County	Carbon Monoxide (CO)	Nitrous Oxide	Particulate Matter (PT)
1	3200 Hawkins Point Rd	Baltimore	MD	21,226	Baltimore City	13.14	551.00	0.00
2	2401 Hawkins Point Rd	Curtis Bay	MD	21,226	Anne Arundel	311.54	90.94	0.07
3	6000 Pennington Ave	Curtis Bay	MD	21,226	Anne Arundel	35.92	44.55	5.54
4	5500 Chemical Rd	Curtis Bay	MD	21,226	Baltimore City	549.23	683.13	1,035.06
5	5800 Quarantine Rd	Curtis Bay	MD	21,226	Baltimore City	0.00	0.00	0.00
6	5500 Quarantine Rd	Curtis Bay	MD	21,226	Baltimore City	87.11	103.24	286.85
7	6100 Quarantine Road	Curtis Bay	MD	21,226	Baltimore City	92.27	16.96	390.82
8	6200 Pennington Ave	Baltimore	MD	21,226	Baltimore City	89.46	107.39	15.33
#	Particulate Matter (10 Filterable)	Particulate Matter (2.5 Filterable)	PM Condensables	Volatile Organic Compounds (VOC)	Sulphur Dioxide (SOx)	Carbon Dioxide	Mercury	Methane
1	26.60	1.14	0.43	0.44	29.57	319,199.07	0.00	13.10
2	0.07	0.07	4.59	128.38	3.38	54,692.70	0.00	2.68
3	0.64	0.64	1.81	11.65	1.12	50,567.54	0.00	1.04
4	1,035.05	983.20	39.26	60.91	44.54	793,481.77	0.04	14.80
5	0.00	0.00	0.00	109.94	0.00	0.00	0.00	0.00
6	196.82	90.03	26.93	22.70	0.62	133,194.46	0.00	2.38
7	173.93	26.39	3.17	22.05	3.83	68,440.86	0.00	73,254.09
8	10.25	7.38	4.32	1,052.60	121.38	81,081.85	0.00	1.87
#	Billable Criteria I	Pollutants (BCRI)	Billiable Hazardous	s Pollutants (BHAP)	Hazardous Air Po	nd Non-Bilable Illutant Emissions NPS)	Co	unt
1	608.03		3.80		3.81		1	
2	227.37		1.47		94.57		1	
3	59.78		0.00		0.05		1	
4	1,862.90		20.56		1,468.49		1	
5	109.94		0.00		326.42		1	
6	350.31		0.00		7.42		1	
7	219.93		6.42		44.10		1	
8	1,295.94		0.00		66.06		1	
			-		-		· · · ·	

#### 10/15/24, 10:25 AM

about:blank

**Public Version** 

#### Sulfur Dioxide (2010)

#	area_name	COMPOSID	Clean Data Determination	Area(mi²)
1	Anne Arundel County and Baltimore County, MD	SO2.2010.Baltimore	Yes	0.27

Ozone (2015)

#	STATEFP10	COUNTYFP10	COUNTYNS10	GEOID10	NAME10	Ozone NAA Area	8-Hr Ozone (2015) Designation	8-HR Ozone (2015) Classification	8-Hr Ozone (2015) Status	Area(mi²)
1	24	510	01702381	24510	Baltimore	Baltimore, MD	Nonattainment	Moderate	No Data	2.72
2	24	003	01710958	24003	Anne Arundel	Baltimore, MD	Nonattainment	Moderate	No Data	0.42

#### Fine Particles (2012)

#	STATEFP10	COUNTYFP10	COUNTYNS10	GEOID10	NAME10	PM2.5 (2012) Status	Area(mi²)
1	24	510	01702381	24510	Baltimore	Attainment/Unclassifia ble	2.72
2	24	003	01710958	24003	Anne Arundel	Attainment/Unclassifia ble	0.42

#### Biosolids FY 2020 and Current Permits Distribution By Acreage

	#	County Name	FY2020andAfter	Area(mi²)
ſ	1	Anne Arundel	103.73	0.29

#### Biosolids FY2015 - 2019 Permits Distribution By Acreage

#	County Name	FY2015to2019	Area(mi²)
1	Anne Arundel	No Data	0.29
2	Baltimore City	No Data	1.43

#### Biosolids FY2010 - 2014 Permits Distribution By Acreage

#	County Name	FY2010to2014	Area(mi²)
1	Anne Arundel	No Data	0.29
2	Baltimore City	No Data	1.43

## Biosolids FY2009 Permits Expired Distribution By Acreage

#	County Name	FY2009	Area(mi²)
1	Anne Arundel	No Data	0.29
2	Baltimore City	No Data	1.43

#### Biosolids FY 2020 and Current Permit Distribution By Percent Coverage

#	County Name	FY2020andAfter	Area(mi²)
1	Anne Arundel	103.73	0.29
2	Baltimore City	No Data	1.43

#### Biosolids FY2015 - 2019 Permit Distribution By Percent Coverage

#	County Name	FY2015to2019	Area(mi²)
1	Anne Arundel	No Data	0.29
2	Baltimore City	No Data	1.43

#### Biosolids FY2010 - 2014 Permit Distribution By Percent Coverage

#	County Name	FY2010to2014	Area(mi²)
1	Anne Arundel	No Data	0.29
2	Baltimore City	No Data	1.43

#### Biosolids FY2009 Expired Permit Distribution By Percent Coverage

;	#	County Name	FY2009	Area(mi²)
1	/	Anne Arundel	No Data	0.29
2	E	Baltimore City	No Data	1.43

# Landfills

about:blank

#	County	Туре	Facility_N	ADDRESS	SITE_ACRE	AI_No_	Owner_Type	PERMITNUMB	EXPIRATION	Count
1	BALTIMORECI TY	WPT	Baltimore Processing & TransferCntr.	5800 Chemical Road, Baltimore MD 21226.	15.60	10,299.00	PRI	2013-WPT- 0627	2/23/2019, 7:00 PM	1
2	BALTIMORECI TY	WMI	Baltimore RegionalMWI	3200 Hawkins Point Road, Baltimore MD 21226	4.00	439.00	PRI	2011-WIN-0036	3/7/2017, 7:00 PM	1
3	BALTIMORECI TY	WMF	Quarantine Road MunicipalLF	6100 Quarantine Road, Baltimore MD 21226.	153.00	13,670.00	MUN	2014-WMF- 0325	11/8/2019, 7:00 PM	1
4	BALTIMORECI TY	WPT	Stericycle Medical WastePF&TS	5901 Chemical Road, Baltimore MD 21226.	2.40	8,713.00	PRI	2014-WPT- 0591	12/9/2019, 7:00 PM	1
5	BALTIMORECI TY	WIF	W.R. Grace & CoConn.	5500 Chemical Road, Baltimore MD 21226.	157.00	2,102.00	PRI	2012-WIF-0613	1/29/2017, 7:00 PM	1

## 10 Miles from Landfill

Public Version

#	County Type			ADDRESS	FILL		AL No.	
#	County	Туре	Facility_N		FILL	SITE_ACRE	AI_No_	Owner_Type
1	HOWARD	WPT	AmeriwastePF&TS	7150 Kit Kat Road, Elkridge MD 21075.	-	12.89	36,535.00	PRI
2	BALTIMORECITY	WTS	Northwest TransferStation	5030 Reisterstown Road, Baltimore MD 21215.	-	6.60	23,220.00	MUN
3	FREDERICK	WMF	Fort Detrick MunicipalLandfill	7184 Troy Hill Drive Elkridge MD 21075.	61	297.00	1,790.00	FED
4	HOWARD	WTS	Workplace EssentialsTS	7184 Troy Hill Drive Elkridge MD 21075.	-	1.00	36,696.00	PRI
5	ANNEARUNDEL	WMF	Millersville MunicipalLandfill	389 Burns Crossing Road, Severn MD 21144	330	567.00	19,044.00	СТҮ
6	ANNEARUNDEL	WPT	Curtis Creek PF &TS	23 Stahl Point Road, Baltimore MD 21226.	-	12.80	23,330.00	PRI
7	BALTIMORE	WPF	Recovermat Mid- Atlantic, LLCPF	2202 Halethorpe Farm Road, Halethorpe MD 21227.	-	8.50	18,296.00	PRI
8	BALTIMORE	WTS	Western Acceptance FacilityTS	3310 Transway Road, Halethorpe MD 21227.	6	6.00	10,889.00	СТҮ
9	BALTIMORECITY	WPT	Baltimore Processing & TransferCntr.	5800 Chemical Road, Baltimore MD 21226.	-	15.60	10,299.00	PRI
10	BALTIMORECITY	WPT	Baltimore Recyling CenterPF&TS	1030 Edison Highway, Baltimore MD 21213.	-	12.50	63,585.00	PRI
11	BALTIMORECITY	WMI	Baltimore RegionalMWI	3200 Hawkins Point Road, Baltimore MD 21226	-	4.00	439.00	PRI
12	BALTIMORECITY	WPT	Daniels SharpsmartPF&TS	6611 Chandlery Street, Baltimore MD 21224	-	1.00	63,950.00	PRI
13	BALTIMORECITY	WIF	Fort Armistead Road-Lot 15LF	3601 Fort Armistead Road, Baltimore MD 21226.	32	65.00	100,995.00	PRI
14	BALTIMORECITY	WIF	Hawkins Pt. Plant Industrial WasteLF	3901 Fort Armistead Road, Baltimore MD 21226.	30	30.00	22,198.00	PRI
15	BALTIMORECITY	WPF	L & J ProcessingFacility	222 North Calverton Road, Baltimore MD 21223.	-	1.00	64,649.00	PRI
16	BALTIMORECITY	WMF	Quarantine Road MunicipalLF	6100 Quarantine Road, Baltimore MD 21226.	126	153.00	13,670.00	MUN
17	BALTIMORECITY	WTE	Southwest ResourceRecovery	1801 Annapolis Road, Baltimore MD 21230.	-	15.00	472.00	PRI
18	BALTIMORECITY	WPT	Stericycle Medical WastePF&TS	5901 Chemical Road, Baltimore MD 21226.	-	2.40	8,713.00	PRI
19	BALTIMORECITY	WIF	W.R. Grace & Co Conn.	5500 Chemical Road, Baltimore MD 21226.	10.7	157.00	2,102.00	PRI

#	MD_GRID_E	PERMITNUMB	EXPIRATION	Area(mi²)
1	865 /489	2011-WPT-0572	11/2/2016, 8:00 PM	0.01
2	855 /550	2010-WTS-0038	1/16/2016, 7:00 PM	0.27
3	672 /583	2015-WMF-0327	8/25/2020, 8:00 PM	1.85
4	885 /550	2015-WTS-0594	6/3/2020, 8:00 PM	1.85
5	895 /460	2012-WMF-0240	11/12/2017, 7:00 PM	1.92
6	917 /500	2013-WPT-0539	12/18/2018, 7:00 PM	3.14
7	888 /506	2010-WPF-0341	12/25/2015, 7:00 PM	3.14
8	905 /510	2015-WTS-0599	5/10/2020, 8:00 PM	3.14
9	921 /499	2013-WPT-0627	2/23/2019, 7:00 PM	3.14
10	920 /535	2014-WPT-0631	12/27/2019, 7:00 PM	3.14
11	926 /568	2011-WIN-0036	3/7/2017, 7:00 PM	3.14
12	950 /525	2015-WPT-0633	2/8/2020, 7:00 PM	3.14
13	927/500	2011-WIF-0653	9/25/2018, 8:00 PM	3.14
14	925 /501	2005-WIF-0527A	1/3/2016, 7:00 PM	3.14
15	896/531	2008-WPF-0634	6/28/2016, 8:00 PM	3.14
16	922 /502	2014-WMF-0325	11/8/2019, 7:00 PM	3.14
17	904 /523	2011-WTE-0030	10/5/2016, 8:00 PM	3.14
18	921 /501	2014-WPT-0591	12/9/2019, 7:00 PM	3.14
19	921 /500	2012-WIF-0613	1/29/2017, 7:00 PM	3.14

## 10 Miles from Composting Facility

#	County	Facility	Address	Accepts_Fo	Location_o	Area(mi²)
1			389 Burns Crossing Road, Severn, MD 21144	No	389 Burns Crossing Rd, Severn, MD 21144	1.92

## 30 mile buffer (Maryland)

	#	Facility_Name_1	Facility_Contact _1	Contact_Phone	Contact_Email_ 1	Contact_2	Contact_2_Phon e	Contact_2_Emai	URL	Area(mi²)
1		Prince George's County Organics Composting Facility	Angie Webb, Recycling Coordinator	(240) 904-4630	awebb@menv.co m	No Data	No Data	No Data	https://www.princ egeorgescounty md.gov/583/Orga nics-Composting- Facility	0.83
2		Bioenergy DEVCO - Maryland Organics Recycling Facility	Vinnie Bevivino	(202) 360-1805	Vbevivino@bioen ergydevco.com	Mike Manna	(609) 744-2819	mmanna@bioen ergydevco.com	https://www.bioen ergydevco.com/m aryland-organics- recycling-facility/	3.14
3		Veteran Compost - Aberdeen	Justen Garrity	(443) 584-3478	info@veterancom post.com	No Data	No Data	No Data	https://www.veter ancompost.com/	3.14
4		Composting Facility at Alpha Ridge Landfill	Bureau of Environmental Services	(410) 313-6444	No Data	No Data	No Data	No Data	https://www.howa rdcountymd.gov/ public- works/compostin g-facility	3.14

#### Land Restoration Facilities

Indexinant         Restriction         Statement         Statement <thstatement< th=""> <thstatement< th="">         &lt;</thstatement<></thstatement<>	#	Brownfields Master Inventory Number (BMI #). BMI #s are formatted MD####.	Site Name	Other names the site may be known by	Location of Site	City of Site	State of Site	County of Site	Zip code of site	ShapeArea	Count
2         Montan         Browner book         Solitation of the section of t	1	MD0293	Management	Multichem Corp; Delaware Hospital		Baltimore	Maryland	Baltimore City	21226	0.00	1
3         OLDUST         No Las         Read         Bailmone         Manyand         Bailmone City         212:00         3.14         1           4         MD0977         Gambal         Rescription (100-111M)         S031 Ardinal (100-111M)         S031 Ardinal (100-111M)         S031 Ardinal (100-111M)         S031 Ardinal (100-111M)         S031 Ardinal (100-111M)         S031 Ardinal (100-111M)         S030 Ardinal (100-111M)         S031 Ardinal (100-111M)         S031 Ardinal (100-111M)         S031 Ardinal (100-111M)         S031 Ardinal (100-111M)         S031 Ardinal (100-111	2	MD0019	Industries - Quarantine	Corp. Quarantine Rd Dump MD-009; Quarantine	Quarantine	Baltimore	Maryland	Baltimore City	21226	32.00	1
4       MD0971       Property (NG)       Norman       Batimore       Mayland       Batimore (N)       Statimore (N)	3	MD0312	Striegel Supply	No Data		Baltimore	Maryland	Baltimore City	21226	3.14	1
5       MD0009       ML Charge- Near Siles       Mpre Note Many Siles       Many Soles       Many	4	MD0977		Recovery Corp (MD-11/MD-		Baltimore	Maryland	Baltimore City	21226	21.09	1
6       MOD015       Co. Davidsom       Mo Data       Shoul Chermical Raad       Curtis Bay       Maryland       Baltimore City       21226       110.00       1         7       MD0014       Clin Corp Cherm Div       Olin Chermical       Shoul Chermical       Baltimore       Maryland       Baltimore City       21226       6.80       1         8       MD014       Eate-Chermeral Chermical Chermical Chermical Sin       Mo Data       Shoul Chermical Baltimore       Maryland       Baltimore City       21226       0.00       1         9       MD1310       Former Recichel Sin       Mo Data       Shoul Chermical Baltimore       Baltimore       Maryland       Baltimore City       21226       0.00       1         10       MD0550       Leading Point       No Data       Shoul Chermical Baltimore       Baltimore       Maryland       Baltimore City       21226       0.00       1       1         11       MD0110       American Baltimore       No Data       Shoul Chermical Baltimore       Baltimore       Maryland       Baltimore City       21226       0.00       1       1         12       MD0110       Ginerican Baltimore       Shoul Chermical Baltimore       Shoul Chermical Baltimore       Shoul Chermical Baltimore       Shoul Chermical Baltimore	5	MD0009	Quarantine	Hpp; Robb Tyler; Glidden;	Quarantine	Baltimore	Maryland	Baltimore City	21226	50.98	1
7     M00014     M010 Control     On Chemical Perindus Networks     Baltimore Naryland     Baltimore City     21226     6.80     1       8     M0014     Extend General Romand Control     No Data     S600 Chemical Science     Maryland     Baltimore City     21226     9.00     1       8     M01130     Former Romer	6	MD0015	Co Davidson	No Data		Curtis Bay	Maryland	Baltimore City	21226	110.00	1
8         MUD114         Chemical Co.         No Data         Read         Batimore         Maryland         Batimore City         712.00         9.00         1           9         MD1319         Former Reichold Site         ML Chemicals, NL Loduzian, Coxon Textorin Freedow         Kood         Batimore         Maryland         Anne Arundel         21226         6.90         1           10         MD0559         Leading Point         No Data         G400 Coxonarine Recovery Coroparation (Curris Batimore MD-103; 200) (Curris Batimore MD-103; 200; 200; 200; 200; 200; 200; 200; 2	7	MD0014		Olin Chemical	Pennington	Baltimore	Maryland	Baltimore City	21226	6.80	1
9       MD1319       Former elicibid Site       Multidistries elicibid Site       Multi	8	MD0114		No Data		Baltimore	Maryland	Baltimore City	21226	9.00	1
10       MD0559       Leading Point       No Data       Quarantine Road       Baltimore       Maryland       Baltimore City       21226       18.00       1         11       MD0011       American Recovery Company, Inc. Company, Inc. Company, Inc.       American Recovery Company, Inc.       American Recovery Company, Inc.       See also MD       901 Birch Street       Baltimore       Maryland       Baltimore City       21226       0.00       1         12       MD1422       Olin Chemical       See also MD       701 No D016       Baltimore       Maryland       Baltimore City       21226       0.00       1         13       MD0406       Us. Coast Guard Curits       See also MD       701 No Data       Baltimore       Maryland       Baltimore City       21226       0.00       1         14       MD0406       Us. Coast Guard Curits       Coast Guard Yard       201 Hawkins       Baltimore       Maryland       Anne Arundel       21226       0.00       1         15       MD012       Crown Central Regourse       No Data       Mongano       Baltimore       Maryland       Baltimore City       21226       0.00       1         16       MD012       Crown Central Regourse       No Data       Mericanoga       Baltimore       Maryland <td< td=""><td>9</td><td>MD1319</td><td></td><td>NL Industries Baltimore,</td><td></td><td>Baltimore</td><td>Maryland</td><td>Anne Arundel</td><td>21226</td><td>6.90</td><td>1</td></td<>	9	MD1319		NL Industries Baltimore,		Baltimore	Maryland	Anne Arundel	21226	6.90	1
11MD0011American Company, Inc. Company, Inc. Company, Inc.Recovery Street1001 Birch StreetBaltimoreMarylandBaltimore City212260.00112MD1422Olin ChemicalSee also MD- 0145701 PenningtonBaltimoreMarylandBaltimore City212260.00113MD0406U.S. Coast Guard - CurtisCoast Guard2401 Hawkins PoningtonBaltimoreMarylandAnne Arundel21226113.00114MD0112Crown Central Pertoleum PenningtonNo Data6000 Pennington AvenueBaltimoreMarylandBaltimore City212260.00115MD0258Crown Central Pertoleum PenningtonNo Data6000 Pennington AvenueBaltimoreMarylandBaltimore City212260.00116MD0258JongtonNo Data6000 Pennington AvenueBaltimoreMarylandBaltimore City212260.00116MD1946Singin Pennington Venue (previous VCP propertiesNo DataSoli and SOI Pennington Avenue, SOI AndardMarylandBaltimore City212260.00116MD1946MD1946Singin BaltimoreSoli and SOI Pennington Avenue, SOI AndardMarylandBaltimore City212261.1.0117MD1946Sini AndardSoli AndardSoli AndardSoli AndardMarylandMarylandBaltimore City212264.1.10 <t< td=""><td>10</td><td>MD0559</td><td>Leading Point</td><td>No Data</td><td>Quarantine</td><td>Baltimore</td><td>Maryland</td><td>Baltimore City</td><td>21226</td><td>18.00</td><td>1</td></t<>	10	MD0559	Leading Point	No Data	Quarantine	Baltimore	Maryland	Baltimore City	21226	18.00	1
12MD1422Olin ChemicalSealso MD- O014Pennington AvenueBaltimoreMarylandBaltimore City2122620.69113MD0406U.S. Coast Guard - CurtisCoast Guard Yard2401 Hawkins Point RoadBaltimoreMarylandAnne Arundel21226113.00114MD0112Crown Central Pennington AvenueNo Data6000 Pennington AvenueBaltimoreMarylandBaltimore City212260.00115MD0258Locomotive JunkyardNo DataNea 6000 Chemical RoadBaltimoreMarylandBaltimore City212260.00116MD0258JunkyardNo DataS501 and 5701 Pennington AvenueS501 and 5701 Pennington Avenue, S501 Andard Sco11 endired venue, (previous vCep property ensington Avenue, (previous vCep property ensington Avenue, (previous vCep property ensington Avenue, Sco11 AndardBaltimoreMarylandBaltimore City212260.00116MD1946Jorigin BaltimoreIncludes Olin Corry, General Avenue, (previous vCep property ensington Avenue, (previous vCep property ensington Avenue, (previous vCep property ensington Avenue, (previous vCep property ensington Avenue, foon property ensington Avenue, foon property e	11	MD0011	Recovery Company, Inc. (Curtis Bay	Recovery Corporation (MD-103); 2001 Benhill Avenue		Baltimore	Maryland	Baltimore City	21226	0.00	1
13MD0406Guard - Curtis BayCoast Guard Yard2401 Hawkins Point RoadBaltimoreMarylandAnne Arundel21226113.00114MD0112Crown Central Petroleum (6000 Pennington Avenue)No Data6000 Pennington AvenueBaltimoreMarylandBaltimore City212260.00115MD0258Locomotive JunkyardNo DataNear 6000 Chemical RoadBaltimoreMarylandBaltimore City212260.00116MD1946Origin BaltimoreIncludes Olin Corp, General Chemical and S011 Pennington Avenue, unaddressed property desribed as Rear 5501 Pennington Avenue, venue, unaddressed property desribed as Rear 5501 Pennington Avenue, venue, unaddressed property desribed as Rear 5501 Pennington Avenue, venue, unaddressed property desribed as Rear 5501 Pennington Avenue, venue, venue, unaddressed property desribed as Rear 5501 Pennington Avenue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, venue, <b< td=""><td>12</td><td>MD1422</td><td>Olin Chemical</td><td></td><td>Pennington</td><td>Baltimore</td><td>Maryland</td><td>Baltimore City</td><td>21226</td><td>20.69</td><td>1</td></b<>	12	MD1422	Olin Chemical		Pennington	Baltimore	Maryland	Baltimore City	21226	20.69	1
14MD0112Petroleum (6000 Nenue)No Data6000 Pennington AvenueBaltimoreMarylandBaltimore City212260.00115MD0258Locomotive JunkyardNo DataNear 6000 Chemical RoadBaltimoreMarylandBaltimore City212260.00116MD1946JensonSfo1 and 5701 Pennington Avenue, Sfo1 and 5701 Pennington Avenue, Sfo1 and 5701 Pennington Avenue, Sfo1 and 5701 Pennington Avenue, Sfo1 Pennington	13	MD0406	Guard - Curtis			Baltimore	Maryland	Anne Arundel	21226	113.00	1
15       MD 0258       Junkyard       No Data       Chemical Road       Baltimore       Maryland       Baltimore City       21226       0.00       1         16       MD 1946       Origin Baltimore       Train the component of the component	14	MD0112	Petroleum (6000 Pennington	No Data	Pennington	Baltimore	Maryland	Baltimore City	21226	0.00	1
16MD1946Origin BaltimoreIncludes Olin Corp, General Chemical and S501 Pennington Avenue, 	15	MD0258		No Data		Baltimore	Maryland	Baltimore City	21226	0.00	1
	16	MD1946		Corp, General Chemical and 5501 Pennington Avenue (previous VCP	Pennington Avenue, 5501 Andard Avenue, unaddressed property desribed as Rear 5501 Pennington Ave	Baltimore	Maryland	Baltimore City	21226	41.10	1
	17	MD2070		WPN Recycling		Baltimore	Maryland	Baltimore City	21226	8.77	1

Determinations (areas)

Public Version

#	Site Name	Entity receiving the determination from the LRP.	Issue Date	Type of determination issued: NFA (No Further Action), NFRD (No Further Requirements Determination), or COC (Certificate of Completion)	Last inspection date	Indicates whether the determination includes an environmental covenant (EC)	Property has Unrestricted residential use	Property has Restricted residential use	Area(mi²)
1	95 Stahl Point Road	95 Stahl Point Road, LLC	7/15/2018, 8:00 PM	NFA w/EC	No Data	Yes	No	No	< 0.01
2	FMC Corp.	FMC Corporation	12/9/2020, 7:00 PM	EC Only	No Data	Yes	No	No	< 0.01
3	4501 Curtis Avenue	Alliance HSP Curtis LLC	12/27/2016, 7:00 PM	NFRD	No Data	Yes	No	No	< 0.01
4	Amoco Baltimore Asphalt Terminal	BP Products North America	1/20/2004, 7:00 PM	NFRD	9/11/2017, 8:00 PM	No	No	No	0.02
5	Amoco Baltimore Asphalt Terminal	Fishing Point Properties, LLC	5/5/2005, 8:00 PM	NFRD	8/18/2013, 8:00 PM	No	No	No	0.02
6	Amoco Baltimore Asphalt Terminal	Deenah, LLC	4/1/2007, 8:00 PM	NFRD	8/18/2013, 8:00 PM	No	No	No	0.02

Entities

#	Brownfields Master Inventory Number (BMI #). This is the site ID number LRP uses to identify sites. BMI #s are formatted MD####.	Site Name	Other names the site may be known by.	Location of Site	City of Site	State of Site	County of Site	Zip code of site
1	MD0293	Biochem Management Inc.	Former Multichem Corp; Delaware Hospital Service	1917 Benhill Avenue	Baltimore	Maryland	Baltimore City	21226
2	MD0019	Browning Ferris Industries - Quarantine Road	Portion of SCM Corp. Quarantine Rd Dump MD-009; Quarantine Road - BFI	5901 Quarantine Road	Baltimore	Maryland	Baltimore City	21226
3	MD0312	Striegel Supply	No Data	6001 Chemical Road	Baltimore	Maryland	Baltimore City	21226
4	MD0977	Gambel Property	American Recovery Corp (MD-11/MD- 103)	5301 Andard Avenue	Baltimore	Maryland	Baltimore City	21226
5	MD0009	SCM Corp Quarantine Road Site	SCM Millenium Hpp; Robb Tyler; Glidden; Dupont	5901 Quarantine Road	Baltimore	Maryland	Baltimore City	21226
6	MD0015	WR Grace & Co Davidson Chem Div.	No Data	5500 Chemical Road	Curtis Bay	Maryland	Baltimore City	21226
7	MD0014	Olin Corp Curtis Bay	Olin Chemical	5501 Pennington Avenue	Baltimore	Maryland	Baltimore City	21226
8	MD0114	Estech General Chemical Co.	No Data	5500 Chemical Road	Baltimore	Maryland	Baltimore City	21226
9	MD1319	Former Reichold Site	NL Chemicals, NL Industries Baltimore, Textron Inc	6401 Chemical Road	Baltimore	Maryland	Anne Arundel	21226
10	MD0559	Leading Point	No Data	5400 Quarantine Road	Baltimore	Maryland	Baltimore City	21226
11	MD0011	American Recovery Company, Inc. (Curtis Bay Facility)	American Recovery Corporation (MD- 103); 2001 Benhill Avenue (MD-103)	1901 Birch Street	Baltimore	Maryland	Baltimore City	21226
12	MD1422	Olin Chemical	See also MD-0014	5701 Pennington Avenue	Baltimore	Maryland	Baltimore City	21226
13	MD0406	U.S. Coast Guard - Curtis Bay	Coast Guard Yard	2401 Hawkins Point Road	Baltimore	Maryland	Anne Arundel	21226
14	MD0112	Crown Central Petroleum (6000 Pennington Avenue)	No Data	6000 Pennington Avenue	Baltimore	Maryland	Baltimore City	21226
15	MD0258	Locomotive Junkyard	No Data	Near 6000 Chemical Road	Baltimore	Maryland	Baltimore City	21226
16	MD2070	5101 Andard Avenue	WPN Recycling	5101 Andard Avenue	Baltimore	Maryland	Baltimore City	21226
17	MD1946	Origin Baltimore	Includes Olin Corp, General Chemical and 5501 Pennington Avenue (previous VCP properties)	5501 and 5701 Pennington Avenue, 5501 Andard Avenue, unaddressed property desribed as Rear 5501 Pennington Ave k/a 5401	Baltimore	Maryland	Baltimore City	21226

#	Area of site in acres	File Available Electronically. Please note that a PIA request must be completed to review LRP files. In addition, only a portion of a file may be available electroncally.	Provides a link to the fact sheet for the property.	Count
1	0.00	Yes	https://mde.maryland.gov/programs/land/ MarylandBrownfieldVCP/Documents/www. mde.state.md.us/assets/document/Brownfi elds/Biochem_Manag.pdf	1
2	32.00	Yes	factsheet not available	1
3	3.14	Yes	https://mde.maryland.gov/programs/land/ MarylandBrownfieldVCP/Documents/www. mde.state.md.us/assets/document/Brownfi elds/striegel.pdf	1
4	21.09	Yes	Fact Sheet Not Available.	1
5	50.98	No	Fact Sheet Not Available.	1
6	110.00	Yes	https://mde.maryland.gov/programs/land/ MarylandBrownfieldVCP/Documents/WR %20GRACE%20DAVIDSON%20CHEM.p df	1
7	6.80	Yes	https://mde.maryland.gov/programs/land/ MarylandBrownfieldVCP/Documents/www. mde.state.md.us/assets/document/Brownfi elds/Olin_Chem.pdf	1
8	9.00	Yes	https://mde.maryland.gov/programs/land/ MarylandBrownfieldVCP/Documents/www. mde.state.md.us/assets/document/Brownfi elds/estech.pdf	1
9	6.90	Yes	Fact Sheet Not Available.	1
10	18.00	Yes	https://mde.maryland.gov/programs/land/ MarylandBrownfieldVCP/Documents/Lead ing%20Point.pdf	1
11	0.00	Yes	Fact Sheet Not Available.	1
12	20.69	No	https://mde.maryland.gov/programs/land/ MarylandBrownfieldVCP/Documents/www. mde.state.md.us/assets/document/Brownfi elds/Olin_Chem.pdf	1
13	113.00	No	https://mde.maryland.gov/programs/LAND /MarylandBrownfieldVCP/Documents/ww w.mde.state.md.us/assets/document/brow nfields/Coast%20Guard%20Yard.pdf	1
14	0.00	Yes	https://mde.maryland.gov/programs/LAND /MarylandBrownfieldVCP/Documents/ww w.mde.state.md.us/assets/document/brow nfields/crown.pdf	1
15	0.00	No	Fact Sheet Not Available.	1
16	8.77	No	Fact Sheet Not Available.	1
17	41.10	Yes	Fact Sheet Not Available.	2

All Permitted Solid Waste Acceptance Facilities

#	county	AI_ID	master_ai_name	Facility_Type	OwnerType	permit_number	ai_physical_add ress	permit_class	Count
1	Anne Arundel	23,330	Curtis Creek Processing Facility & Transfer Station	Processing Facility & Transfer Station	Private (Commercial)	2018-WPT-0539	23 Stahl Point Rd, Curtis Bay, MD 21226	Renew	1
2	Baltimore City	2,102	W. R. Grace & Co Davison Chemical	Industrial Landfill	Private (Commercial)	2017-WIF-0613	5500 Chemical Rd, Curtis Bay, MD 21226-1698	Renew	1
3	No Data	439	Curtis Bay Energy, LP	Medical Waste Incinerator	Private (Commercial)	2017-WMI-0036	3200 Hawkins Point Road, Baltimore, MD 21226	Renew	1
4	No Data	8,713	Stericycle, Inc	Processing Facility & Transfer Station	Private (Commercial)	2016-WPT-0677	5901 Chemical Rd, Curtis Bay, MD 21226	New	1
5	No Data	13,670	Quarantine Road Municipal Landfill	Municipal Solid Waste Landfill	Municipal Government	2019-WMF-0325	6100 Quarantine Road, Curtis Bay, MD 21226	Renew	1

Municipal Solid Waste Acceptance Facilities

Public Version

#	county	AI_ID	MSW_Landfill s	Facility_Type	OwnerType	permit_numbe r	master_ai_na me	ai_physical_a ddress	permit_class	Count
1	No Data	13,670	Quartantine Road Landfill	Municipal Solid Waste Landfill	Municipal Government	2019-WMF- 0325	Quarantine Road Municipal Landfill	6100 Quarantine Road, Curtis Bay, MD 21226	Renew	1

# Maryland Pond Locations

#	Facility Type	DAM HEIGHT	County	HAZARD CLASS	6 DIGIT WATERSHED	8 DIGIT WATERSHED	Count
---	---------------	------------	--------	--------------	-------------------	-------------------	-------

# Wastewater Discharge Facilities

#	AID	FAC_NAME	Comments	ValidateCo	GIS_Action	GIS_Comments	Corrective	ZipCodeCom
1	6,867	Baltimore City Composting/Veolia Water North America-Central, LLC	No Data	Data Verified Accurate Against Federal HUC 8 Digit Watershed	No Data	No Data	No Data	No Data
2	2,102	W. R. Grace & Co Grace Davison - Curtis Bay	No Data	Data Verified Accurate Against MD 8 Digit Watershed	No Data	No Data	No Data	No Data
3	19,004	CSX Transportation - Chesapeake Bay Piers	No Data	Data Verified Accurate Against MD 8 Digit Watershed	No Data	No Data	No Data	No Data
4	0	HESS CORPORATION- BALTIMORE	No Data	Data Verified Accurate Against MD 8 Digit Watershed	No Data	No Data	No Data	No Data
5	9,620	United States Gypsum Company	No Data	Data Verified Accurate Against Federal HUC 8 Digit Watershed	No Data	No Data	No Data	Changed Zipcode from 212261621 to 21226
6	1,792	US Coast Guard Yard (USCG Yard)	No Data	Data Verified Accurate Against Parcel Data	No Data	No Data	No Data	No Data
7	1,792	US Coast Guard Yard (USCG Yard)	No Data	Data Verified Accurate Against Parcel Data	No Data	No Data	No Data	No Data
8	0	CITY OF BALTIMORE - MILLENNIUM CHEMICALS LANDFILL SITE	No Data	Data Verified Accurate Against MD 8 Digit Watershed	No Data	No Data	No Data	No Data
#	CBSEG_92	BAY_TRIB	MD12DIG	County	MDMajorTrib	нис	Tier2Catchments_ yn	Tier2Catchments
1	РАТМН	02130903	021309031006	3	4	020600031203	0	No Data
2	PATMH	02130903	021309031008	3	4	020600031202	0	No Data
3	РАТМН	02130903	021309031008	3	4	020600031202	0	No Data
4	No Data	02130903	021309031008	2	4	020600031202	0	No Data
5	РАТМН	02130903	021309031006	3	4	020600031203	0	No Data
6	РАТМН	02130903	021309031008	2	4	020600031202	0	No Data
7	РАТМН	02130903	021309031008	2	4	020600031202	0	No Data
8	PATMH	02130903	021309031006	3	4	020600031203	0	No Data

**Public Version** 

0/2	, 10.25 Alvi			1		1		1
#	Tier3Catchments_ yn	Tier3Catchments	SSPRA_yn	SSPRA	Impaired_yn	Impaired	WQA_yn	WQA
1	0	No Data	0	No Data	1	lons, Sediments, Stream Modification, Habitat	0	No Data
2	0	No Data	0	No Data	1	Pesticides, Nutrients(Nitrogen, Phosphorous), PCB, Biological, Metals, Sediments, (DO)	0	No Data
3	0	No Data	0	No Data	1	lons, Sediments, Stream Modification, Habitat	0	No Data
4	0	No Data	0	No Data	1	Biological, Nutrients(Nitrogen, Phosphorous), Metals, Sediments, Pesticides, PCB, (DO)	0	No Data
5	0	No Data	0	No Data	1	Pesticides, Nutrients(Nitrogen, Phosphorous), PCB, Biological, Sediments, (DO)	0	No Data
6	0	No Data	0	No Data	1	Pesticides, Nutrients(Nitrogen, Phosphorous), PCB, Biological, Metals, Sediments, (DO)	0	No Data
7	0	No Data	0	No Data	1	Nutrients(Nitrogen, Phosphorous), Metals, Sediments, Pesticides, PCB, Biological, (DO)	0	No Data
8	0	No Data	0	No Data	1	Metals, Sediments, Nutrients(Nitrogen, Phosphorous), Pesticides, PCB, Biological, (DO)	0	No Data
#	T3038Dig_yn	T3038Dig	TMDL8Dig_yn	TMDL8Dig	MHTArcheo_yn	MHTArcheo	Facility_Type	State_Num
1	1	lons, Sediments	0	No Data	0	No Data	No Data	No Data
2	1	Biological, Metals	1	Pesticides, Nutrients(Nitrogen, Phosphorous), PCB, Sediments, (DO)	0	No Data	No Data	No Data
3	1	lons, Sediments	0	No Data	0	No Data	No Data	No Data
4	1	Biological, Metals	1	Nutrients(Nitrogen, Phosphorous), Sediments, Pesticides, PCB, (DO)	1	Present	No Data	No Data
5	1	Biological	1	Pesticides, Nutrients(Nitrogen, Phosphorous), PCB, Sediments, (DO)	0	No Data	No Data	No Data
6	1	Biological, Metals	1	Pesticides, Nutrients(Nitrogen, Phosphorous), PCB, Sediments, (DO)	0	No Data	No Data	No Data
7	1	Metals, Biological	1	Nutrients(Nitrogen, Phosphorous), Sediments, Pesticides, PCB, (DO)	0	No Data	No Data	No Data
8	1	Metals, Biological	1	Sediments, Nutrients(Nitrogen, Phosphorous), Pesticides, PCB, (DO)	0	No Data	No Data	No Data

10/15/24, 10:25 AM

about:blank

Public Version

#	WatershedYear	WatershedQuarter	WatershedCode	WatershedName	SimplePermittingA ction	PermitAge	CycleYear	PreDraftComplete
1	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
2	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
3	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
4	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
5	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
6	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
7	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
8	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data

#	DatePreDraftComp lete	DraftPermitCompl eteBy	IssueBy	AppFee	Bill	Amount	DSCHG_RATE	SW_AUTH_ROD
1	No Data	No Data	No Data	No Data	0	0.00	0.00	0
2	No Data	No Data	No Data	No Data	0	0.00	0.00	0
3	No Data	No Data	No Data	No Data	0	0.00	0.00	0
4	No Data	No Data	No Data	No Data	0	0.00	0.00	0
5	No Data	No Data	No Data	No Data	0	0.00	0.00	0
6	No Data	No Data	No Data	No Data	0	0.00	0.00	0
7	No Data	No Data	No Data	No Data	0	0.00	0.00	0
8	No Data	No Data	No Data	No Data	0	0.00	0.00	0

#	P2_OR_C_Bay_20 00	District	SurWellName	SurWellSource	SurWellDist	CommWellName	CommWellSource	CommWellDist
1	0	46	No Data	No Data	-99.00	No Data	No Data	-99.00
2	0	46	No Data	No Data	-99.00	No Data	No Data	-99.00
3	0	46	No Data	No Data	-99.00	No Data	No Data	-99.00
4	0	46	No Data	No Data	-99.00	No Data	No Data	-99.00
5	0	46	No Data	No Data	-99.00	No Data	No Data	-99.00
6	0	31B	No Data	No Data	-99.00	No Data	No Data	-99.00
7	0	31B	No Data	No Data	-99.00	No Data	No Data	-99.00
8	0	46	No Data	No Data	-99.00	No Data	No Data	-99.00

#	CommWellProtect	Active	Include	ManualActive	Count
1	0	1	1	1	1
2	0	1	1	1	1
3	0	1	1	1	1
4	0	0	1	0	1
5	0	1	1	1	1
6	0	1	1	1	1
7	0	1	1	1	1
8	0	0	1	0	1

© MDE