MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

DOCKET #12-24

- COMPANY: Bluegrass Materials Company, LLC dba Martin Marietta Materials, Inc.
- LOCATION: Pinesburg Quarry, 14932 Bottom Road, Williamsport, Maryland 21795
- APPLICATION: Modification of the existing 1100 ton per hour limestone crushing and screening plant with the addition of one (1) 500 ton per hour trommel powered by a diesel engine rated at 129 horsepower and one (1) 600 ton per hour conveyor powered by a diesel engine rated at 67 horsepower.

ITEM	DESCRIPTION
1	Notice of Application and Opportunity to Request an Informational Meeting
2	Environmental Justice (EJ) Information - EJ Fact Sheet
3	Permit to Construct Application Forms – Form 5 Application Form, Form 5T Summary for meeting ambient and T-BACT requirements, Form 5EP Emissions Data, process flow diagram, emission calculations, and safety data sheet, and MDE Score and Screening Report
4	Evidence of Zoning Approval.

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND OPPORTUNITY TO REQUEST AN INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Bluegrass Materials Company, LLC dba Martin Marietta Materials, Inc. on September 17, 2024, for the modification of their existing 1,100 ton per hour limestone crushing and screening plant with the addition of one (1) 500 ton per hour trommel powered by a diesel engine rated at 129 horsepower and one (1) 600 ton per hour conveyor powered by a diesel engine rated at 67 horsepower. The proposed modification will be located at 14932 Bottom Road, Williamsport, Maryland 21795.

In accordance with HB 1200/Ch. 588 of 2022, the applicant provided an environmental justice (EJ) Score for the census tract in which the project is located using the MDE EJ Screening Tool. The EJ Score, expressed as a statewide percentile, was shown to be 58 which the Department has verified. This score considers three demographic indicators, minority population above 50%, poverty rate above 25% and limited English proficiency above 15%, to identify underserved communities. Multiple environmental health indicators are used to identify overburdened communities.

Copies of the application, the MDE EJ Screening Tool Report (which includes the score), and other supporting documents are available for public inspection on the Department's website at https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx (click on Docket Number #12-24). Any applicant-provided information regarding a description of the environmental and socioeconomic indicators contributing to that EJ score can also be found at the listed website. Such information has not yet been reviewed by the Department. A review of the submitted information will be conducted when the Department undertakes its technical review of all documents included in the application.

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Department will hold an informational meeting to discuss the application and the permit review process if the Department receives a written request for a meeting within 10 working days from the date of the second publication of this notice. A requested informational meeting will be held virtually using teleconference or internet-based conferencing technology unless a specific request for an in-person informational meeting is received. All requests for an informational meeting should be directed to the attention of Ms. Shannon Heafey, Air Quality Permits Program by email to shannon.heafey@maryland.gov or by mail to the Air and Radiation Administration, 1800 Washington Boulevard, Baltimore, Maryland 21230.

Further information may be obtained by calling Ms. Shannon Heafey at 410-537-4433.

Christopher R. Hoagland, Director Air and Radiation Administration

The Applicant's Guide to Environmental Justice and Permitting

What You Need to Know

This fact sheet is designed to provide guidance to applicants on incorporating environmental justice screening requirements pursuant to House Bill 1200, effective October 1, 2022.

What is Environmental Justice?

The concept behind the term environmental justice (EJ) is that regardless of race, color, national origin, or income, all Maryland residents and communities should have an equal opportunity to enjoy an enhanced quality of life. How to assess whether equal protection is being applied is the challenge.

Communities surrounded by a disproportionate number of polluting facilities puts residents at a higher risk for health problems from environmental exposures. It is important that residents who may be adversely affected by a proposed source be aware of the current environmental issues in their community in order to have meaningful involvement in the permitting process. Resources may be available from government and private entities to ensure that community health is not negatively impacted by a new source located in the community.

Extensive research has documented that health disparities exist between demographic groups in the United States, such as differences in mortality and morbidity associated with factors that include race/ethnicity, income, and educational attainment. House Bill 1200 adds to MDE's work incorporating diversity, equity and inclusion into our mission to help overburdened and underserved communities with environmental issues.

What is House Bill 1200 and what does it require?

Effective October 1, 2022, House Bill 1200 requires a person applying for a permit from the Department under §1-601 of the Environment Article of the Annotated Code of Maryland or any permit requiring public notice and participation to include in the application an EJ Score for the census tract where the applicant is seeking the permit; requiring the Department, on receiving a certain permit application to review the EJ Score; and requiring notices to include information related to EJ Scores and generally relating to environmental permits and environmental justice screenings.

What is a "Maryland EJ Tool"?

The term "Maryland EJ Tool" means a publicly available state mapping tool that allows users to: (1) explore layers of environmental justice concern; (2) determine an overall EJ score for census tracts in the state; and (3) view additional context layers relevant to an area. The MDE EJ Screening Tool is considered a Maryland EJ Tool.

What is an "EJ Score"?

The term "EJ Score" means an overall evaluation of an area's environment and environmental justice indicators, as defined by MDE in regulation, including: (1) pollution burden exposure; (2) pollution burden environmental effects; (3) sensitive populations; and (4) socioeconomic factors.

The MDE EJ Screening Tool considers three demographic indicators, minority population above 50%, poverty rate above 25% and limited English proficiency above 15%, to identify underserved communities, and multiple environmental health indicators to identify overburdened communities. The tool uses these indicators to calculate a

www.mde.maryland.gov

The Applicant's Guide to Environmental Justice and Permitting

What You Need to Know

Final EJ Score Percentile, statewide. It is that score, linked to the census tract where the project is to be located, that needs to be reported to MDE as part of your permit application.

What does the application require?

The link for the MDE EJ Screening Tool is located on the Department's website, www.mde.maryland.gov. Click on the Environmental Justice header at the top of the Department's home page, then select EJ Screening Tool from the menu on the left. Click on Launch the EJ Screening Tool. After you open the tool, click okay on the opening screen. At the top right, please click the first button for the MDE Screening Report. Input the address of the proposed installation in the address bar. Click on the Report button. Once the report has been generated select the print icon and save it in a .pdf format.

The applicant needs to include the MDE Screening Report with the EJ Score from the MDE EJ Screening Tool as part of the permit application upon submission. An application will not be considered complete without the report.

The applicant is encouraged to provide the Department with a discussion about the environmental exposures in the community. This will provide pertinent information about how the applicant should proceed with engaging with the community. Residents of a community with a high indicator score and a high degree of environmental exposure should be afforded broader opportunities to participate in the permit process and understand the impacts a project seeking permit approval may have on them.

Questions

For air quality permits, please call 410-537-3230. For water permits, please call 410-537-4145. For land permits pertaining to Solid Waste, please call 410-537-3098. For land permits pertaining to Oil Control, please call 410-537-3483. For land permits pertaining to Animal Feeding Operations, please call 410-537-4423. For land permits pertaining to Biosolids, please call 410-537-3403.

www.mde.maryland.gov

April 9, 2024

Maryland Department of the Environment Air and Radiation Management Administration, Air Quality Permits Program 1800 Washington Boulevard Baltimore, MD 21230 Attn: Dennis Borie Sent via email to MDE.Submit-AirPermits@maryland.gov, Dennis.Borie@maryland.gov

Dear Mr. Borie:

Please fine enclosed a *Permit to Construct Application*, in addition to all necessary supporting information, for one (1) 500 tph M515 MDS Portable Trommel powered by a CAT4.4 engine rated 129 horsepower and one (1) 600 tph TC 624 Telestack Tracked Conveyor powered by a CAT C2.2 engine rated 67 horsepower to operate along with the limestone crushing and screening plant (ARMA Registration Number 043-0115).

This application package contains the following information:

- Application Checklist
- Form 5, Form 5EP, & Form 5T
- Process Flow Diagram & Equipment List
- Material Balance Data & Emissions Calculations
- Safety Data Sheet (SDS) for limestone aggregate material
- Certificate of Insurance Liability (evidence of Workman's Compensation Insurance)
- EJ Report

If you have any questions or concerns regarding any part of this application, please do not hesitate to contact me. Thank you in advance for your assistance with this application.

Sincerely,

Whitney D. Mcquigan Whitney B. McGuigan

Whitney & McGuigan Environmental Engineer

FORM 5

AIR QUALITY PERMIT TO CONSTRUCT APPLICATION CHECKLIST

OWNER OF EQUIPMENT/PROCESS						
COMPANY NAME:						
COMPANY ADDRESS:						
	LOCATION OF EQUIPMENT/PROCESS					
PREMISES NAME:						
PREMISES						
ADDRESS:						
CONTACT	INFORMATION FOR THIS PERMIT APPLICATION					
CONTACT NAME:						
JOB TITLE:						
PHONE NUMBER:						
EMAIL ADDRESS:						
DESCRIPTION OF EQUIPMENT OR PROCESS						

Application is hereby made to the Department of the Environment for a Permit to Construct for the following equipment or process as required by the State of Maryland Air Quality Regulation, COMAR 26.11.02.09.

Check each item that you have submitted as part of your application package.

- Application package cover letter describing the proposed project
- Complete application forms (Note the number of forms included or NA if not applicable.)
 - No. _____ Form 5
 - No.
 Form 5T

 No.
 Form 5EP

 - No. ____ Form 6 No. ____ Form 10

No. _____ Form 41 No. ____ Form 42 No. ____ Form 44

No. ____ Form 11

- Vendor/manufacturer specifications/guarantees (Example specifications provided, flexible permit)
- \square Evidence of Workman's Compensation Insurance
- \square Process flow diagrams with emission points
 - Site plan including the location of the proposed source and property boundary (portable)
- Material balance data and all emissions calculations
 - Material Safety Data Sheets (MSDS) or equivalent information for materials processed and manufactured.
- Certificate of Public Convenience and Necessity (CPCN) waiver documentation from the Public Service Commission⁽¹⁾
- Documentation that the proposed installation complies with local zoning and land \square use requirements (2)
 - (1) Required for emergency and non-emergency generators installed on or after October 1, 2001 and rated at 2001 kW or more.
 - (2) Required for applications subject to Expanded Public Participation Requirements.

MARYLAND DEPARTMENT OF THE ENVIRONMENT Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • <u>www.mde.state.md.us</u>

APPLICATION FOR FUEL BURNING EQUIPMENT

Information Regarding Public Outreach

For Air Quality Permit to Construct applications subject to public review, applicants should consider the following information in the initial stages of preparing a permit application.

If you are not sure at the time you are applying for a permit whether public review of your application is required or for information on steps you can take to engage the surrounding community where your planned project will be located, please contact the Air Quality Permits Program at 410-537-3225 and seek their advice.

Communicating and engaging the local community as early as possible in your planning and development process is an important aspect of your project and should be considered a priority. Environmental Justice or "EJ" is a movement to inform, involve, and engage communities impacted by potential and planned environmental projects by affording citizens opportunities to learn about projects and discuss any concerns regarding impacts.

Although some permit applications are subject to a formal public review process prescribed by statute, the Department strongly encourages you to engage neighboring communities separate from and well ahead of the formal permitting process. Sharing your plans by way of community meetings, informational outreach at local gatherings or through local faith-based organizations can initiate a rewarding and productive dialogue that will reduce anxiety and establish a permanent link with your neighbors in the community.

All parties benefit when there is good communication. The Department can assist applicants in developing an outreach plan that fits the needs of both the company and the public.

MARYLAND	DEPARTMENT	OF THE	ENVIRONMENT

1800 Washington Blvd
Baltimore, Maryland 21230 (410) 537-3230
1-800-633-6101
www.mde.state.md.us

Air and Radiation Management Administration Air Quality Permits Program

APPLICATION FOR PROCESSING/MANUFACTURING EQUIPMENT

Permit to Construct D Registration Update D Initial Registration D

1A. Owner of Equipment/Company Name	DO NOT WRITE IN THIS BLOCK 2. REGISTRATION NUMBER
Mailing Address	County No Promises No
233 Stevenson Road	
Street Address	
North East MD 21901	1-2 3-6
City State Zip	Registration Class Equipment No.
Telephone Number	
(<u>443</u>) <u>877-2535</u>	7 8-11 Data Year
Signature Unala U. C	12-13 Application Date
Ronald M. Kopplin, President - East Division	10/4/24
Print Name and Title	Date
1B. Equipment Location and Telephone Number (if different fr 14932 Bottom Road Street Number and Street Name	om above)
Williamsport MD	21795 / 443 \\ 877-2535
City/Town State 2	Zip Telephone Number
Pinoshurg Quarry	
Premises Name (if different from above)	
3. Status (A= New, B= Modification to Existing Equipment, C= I New Construction New Construction Status Begun (MM/YY) B 15 15 16-19	Existing Equipment) Existing Initial Y) Operation (MM/YY)
4. Describe this Equipment: Make, Model, Features, Manufacturer One (1) M515 MDS Portable Trommel rated 500 tph and one (1) TC 624	r (include Maximum Hourly Input Rate, etc.) Telestack Tracked Conveyor rated 600 tph
5 Workmen's Compensation Coverage See attached COI	
Binder/Policy Number	Expiration Date
Company	plicent must provide the Department with press of
worker's compensation coverage as required under Section 1-20	2 of the Worker's Compensation Act.
6A. Number of Pieces of Identical Equipment Units to be Regis	stered/Permitted at this Time
6B. Number of Stack/Emission Points Associated with this Equ	uipment
Form Number: 5	

Form Number: 5 Rev. 9/27/2002 TTY Users 1-800-735-2258

7. Person Installing this Equipment (if different from Number 1 on Page 1) Name Same as Number 1 on Page 1
Company
Mailing Address/Street
City/Town State Telephone ()
8. Major Activity, Product or Service of Company at this Location
Quarrying and processing of natural limestone to produce crushed aggregated for use in the construction industry. Material is produced by the use of crushers, screens, conveyors, and associated ancillary equipment to produce various specifications of aggregate product.
Non-Metallic Mineral Mining - Crusher & Broken Limestone (SIC 1422)
9. Control Devices Associated with this Equipment
None
24-0
Simple/Multiple Spray/Adsorb Venturi Carbon Electrostatic Baghouse Thermal/Catalytic Dry
Cyclone Tower Scrubber Adsorber Precipitator Afterburner Scrubber
24-1 24-2 24-3 24-4 24-5 24-6 24-7 24-8
Other
Peacetike, wet suppression applied by spray pazzles
24-9
10. Annual Fuel Consumption for this Equipment
OIL-1000 GALLONS SULFUR % GRADE NATURAL GAS-1000 FT ³ LP GAS-100 GALLONS GRADE
COAL- TONS SULFUR % ASH% WOOD-TONS MOISTURE %
46-52 53-55 56-58 59-63 64-65
OTHER FUELS ANNUAL AMOUNT CONSUMED OTHER FUEL ANNUAL AMOUNT CONSUMED
(Specify Type) 66-1 (Specify Units of Measure) (Specify Type) 66-2 (Specify Units of Measure)
1= Coke 2= COG 3=BFG 4=Other
11. Operating Schedule (for this Equipment) Continuous Operation Batch Process Hours per Batch Batch per Week Hours per Day Days Per Week Days per Year
67-1 67-2 68-69 70-71 72 73-75
Seasonal Variation in Operation: No Variation Winter Percent Spring Percent Summer Percent Fall Percent (Total Seasons 100%)
76 77-78 79-80 81-82 83-84

Form Number: 5 Rev. 9/27/2002 TTY Users 1-800-735-2258

12. Equivalent Stack Innfo	rmation- is E	khaust through De	oors, Windows	s, etc. On	ly? (Y/N)]
					85	
If not, then Height Avove	Ground (FT)	Inside Diameter at Top	Exit Tempe	erature (°F)	Exit Velocity	(FT/SEC)
86-88		89-91	92-	95	96-9	8
		NOTE:				
Attach a block diagram o and all exist	of process/proing equipment	ocess line, indicating including contr	ting new equip ol devices and	oment as d emissio	reported on the	is form
12 Input Matariala (for this						
Is any of this data to be	e considered	confidential?	(Y or N)			
NAME	CAS NO	. (IF APPLICABLE)	PER HOUR		PER YEAR	UNITS
1. Crushed Limestone		(,	500	TPH	1,500,000	tons
2.						
3.						
4.						
5.						
6.						
7.						
8.						
9.						
TOTAL						
Process/Product Strea	am					
Process/Product Strea	am CAS NO	. (IF APPLICABLE)	PER HOUR		PUT RATE PER YEAR	
Process/Product Strea NAME 1. Crushed Limestone byproduct 2.		. (IF APPLICABLE)	PER HOUR 500	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
NAME 1. Crushed Limestone byproduct 2. 3.		. (IF APPLICABLE)	PER HOUR 500	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
NAME 1. Crushed Limestone byproduct 2. 3. 4.		. (IF APPLICABLE)	PER HOUR 500	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
NAME 1. Crushed Limestone byproduct 2. 3. 4. 5.		. (IF APPLICABLE)	PER HOUR 500	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6.		. (IF APPLICABLE)	PER HOUR 500	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7.		. (IF APPLICABLE)	PER HOUR 500	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8.		. (IF APPLICABLE)	PER HOUR 500	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9.	CAS NO	. (IF APPLICABLE)	PER HOUR 500	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
Process/Product Stream NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL		. (IF APPLICABLE)	PER HOUR 500	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
Process/Product Stream 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 15. Waste Streams- Solid a	am	. (IF APPLICABLE)	PER HOUR 500		PUT RATE PER YEAR 1,500,000	UNITS tons
Process/Product Stream NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 15. Waste Streams- Solid a NAME	am	. (IF APPLICABLE)	PER HOUR		PUT RATE PER YEAR 1,500,000	UNITS
NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 15. Waste Streams- Solid a NAME 1. Sediment/Particulates captured in w	am CAS NO	. (IF APPLICABLE)	PER HOUR	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
Process/Product Streat NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 15. Waste Streams- Solid at NAME 1. Sediment/Particulates captured in w 2. from wet suppression/wash system	am CAS NO	. (IF APPLICABLE)	PER HOUR	OUT UNITS TPH	PUT RATE PER YEAR	UNITS tons
Process/Product Streat NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 15. Waste Streams- Solid at NAME 1. Sediment/Particulates captured in w 2. from wet suppression/wash system. quantified proceed water managed of a site per approved mine plan and NF	am CAS NO CAS NO CAS NO CAS NO vater All ODES	. (IF APPLICABLE)	PER HOUR	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
Process/Product Streat NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 1. Sediment/Particulates captured in w 2. from wet suppression/wash system. quantified procese water managed 3. site per approved mine plan and NF 4. permit. Output rate not applicable.	am CAS NO	- (IF APPLICABLE)	PER HOUR	OUT UNITS TPH	PUT RATE PER YEAR 1,500,000	UNITS tons
Process/Product Streat NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 15. Waste Streams- Solid at NAME 1. Sediment/Particulates captured in w 2. from wet suppression/wash system 3. site per approved mine plan and NF 4. permit. Output rate not applicable. 5.	am CAS NO	- (IF APPLICABLE)	PER HOUR	OUT UNITS TPH	PUT RATE PER YEAR	UNITS tons
Process/Product Streat NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 15. Waste Streams- Solid at NAME 1. Sediment/Particulates captured in w quantified process water managed 3. site per approved mine plan and NF 4. permit. Output rate not applicable. 5. 6.	am CAS NO CAS NO CAS NO CAS NO vater All on PDES	-, (IF APPLICABLE)	PER HOUR		PUT RATE PER YEAR 1,500,000	UNITS tons
Process/Product Stream NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 15. Waste Streams- Solid at NAME 1. Sediment/Particulates captured in W 3. site per approved mine plan and NF 4. permit. Output rate not applicable. 5. 6. 7.	am CAS NO CAS NO CAS NO CAS NO CAS NO vater All ODES	. (IF APPLICABLE)	PER HOUR		PUT RATE PER YEAR 1,500,000	UNITS tons
Process/Product Streat NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 15. Waste Streams- Solid at NAME 1. Sediment/Particulates captured in w 2. from wet suppression/wash system 3. site per approved mine plan and NF 4. permit. Output rate not applicable. 5. 6. 7. 8.	am CAS NO	- (IF APPLICABLE)	PER HOUR	OUT UNITS TPH	PUT RATE PER YEAR	UNITS tons
Process/Product Stream NAME 1. Crushed Limestone byproduct 2. 3. 4. 5. 6. 7. 8. 9. TOTAL 15. Waste Streams- Solid a NAME 1. Sediment/Particulates captured in w quantified process water managed 3. site per approved mine plan and NF 4. permit. Output rate not applicable. 5. 6. 7. 8. 9.	am CAS NO CAS NO CAS NO CAS NO vater All on PDES	- (IF APPLICABLE)	PER HOUR	OUT UNITS TPH	PUT RATE PER YEAR	UNITS tons tons UNITS UNITS UNITS

FORM 5T

MARYLAND DEPARTMENT OF THE ENVIRONMENT Air and Radiation Management Administration Air Quality Permits Program 1800 Washington Boulevard Baltimore, Maryland 21230 (410)537-3225 1-800-633-6101 www.mde.maryland.gov

FORM 5T: Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration

Applicant Name: Martin Marietta Materials, Inc.

<u>Step 1:</u> Quantify premises-wide emissions of Toxic Air Pollutants (TAP) from new and existing installations in accordance with COMAR 26.11.15.04. Attach supporting documentation as necessary.

						Estimated Premises Wide Emissions of TAP				
Toxic Air Pollutant (TAP)	CAS Number	Class I or Class II?	Screening Levels (µg/m³)			Actual Total Existing TAP Emissions	Projected TAP Emissions from Proposed Installation	Premis Tota Emis	es Wide I TAP ssions	
			1-hour	8-hour	Annual	(lb/hr)	(lb/hr)	(lb/hr)	(lb/yr)	
ex. ethanol	64175	II	18843	3769	N/A	0.60	0.15	0.75	1500	
ex. benzene	71432	1	80	16	0.13	0.5	0.75	1.00	400	
SILICA, CRYSTALLINE - QUARTZ	14808607	NOT LISTED		0.250		0.00041	1.96 x 10^-6	0.00041	1.23	

(attach additional sheets as necessary.)

Note: Screening levels can be obtained from the Department's website (http://www.mde.maryland.gov) or by calling the Department.

<u>Step 2:</u> Determine which TAPs are exempt from further review. A TAP that meets either of the following Class I or Class II small quantity emitter exemptions is exempt from further TAP compliance demonstration requirements under Step 3 and Step 4.

Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(a))

A Class II TAP is exempt from Step 3 and Step 4 if the Class II TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m³.

Class I TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(b))

A Class I TAP is exempt from Step 3 and Step 4 if the Class I TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour and 350 pounds per year, any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m³, and any applicable annual screening level for the TAP must be greater than 1 µg/m³.

If a TAP meets either the Class I or Class II TAP Small Quantity Emitter Exemption Requirements, no further review under Step 3 and Step 4 are required for that specific TAP.

Form Number MDE/ARMA/PER.05T Revised: 03/01/2016 TTY Users 1-800-735-2258

FORM 5T: Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration

Step 3: Best Available Control Technology for Toxics Requirement (T-BACT, COMAR 26.11.15.05)

In the following table, list all TAP emission reduction options considered when determining T-BACT for the proposed installation. The options should be listed in order beginning with the most effective control strategy to the least effective strategy. Attach supporting documentation as necessary.

		% Emission	Cc	T-BACT Option	
l'arget Pollutants	Emission Control Option	Reduction	Capital	Annual Operating	Selected? (yes/no)
ex. ethanol and benzene	Thermal Oxidizer	99	\$50,000	\$100,000	по
ex. ethanol and benzene	Low VOC materials	80	0	\$100.000	yes
CS - QUARTZ	WET SUPPRESSION	77.7 - 95.9	TBD	~5,000 - \$30,000	YES

(attach additional sheets as necessary)

Step 4: Demonstrating Compliance with the Ambient Impact Requirement (COMAR 26.11.15.06)

Each TAP not exempt in Step 2 must be individually evaluated to determine that the emissions of the TAP will not adversely impact public health. The evaluation consists of a series of increasingly non-conservative (and increasingly rigorous) tests. Once a TAP passes a test in the evaluation, no further analysis is required for <u>that TAP</u>. "Demonstrating Compliance with the Ambient Impact Requirement under the Toxic Air Pollutant (TAP) Regulations (COMAR 26.11.15.06)" provides guidance on conducting the evaluation. Summarize your results in the following table. Attach supporting documentation as necessary.

Toxic Air Pollutant (TAP)	CAS	Screening Levels (µg/m³)		Premises Wide Total TAP Emissions		Allowable Emissions Rate (AER) per COMAR 26.11.16.02A		Off-site (Scre	Compliance Method Used?			
· onutant (i) (i)	Rumber	1-hour	8-hour	Annual	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)	1-hour	8-hour	Annual	AER or Screen
ex. ethanol	64175	18843	3769	N/A	0.75	1500	0.89	N/A	N/A	N/A	N/A	AER
ex. benzene	71432	80	16	0.13	1.00	400	0.04	36.52	1.5	1.05	0.12	Screen
CS - QUARTZ	14808607		0.250		0.00041	1.23	0.001	NA				NA
							(per MDE					(not required
							guidance					when <0.001
							document)					per MDE
												guidance)

(attach additional sheets as necessary)

If compliance with the ambient impact requirement cannot be met using the allowable emissions rate method or the screening analysis method, refined dispersion modeling techniques may be required. Please consult with the Department's Air Quality Permit Program prior to conducting dispersion modeling methods to demonstrate compliance.

FORM 5EP

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration

Air Quality Permits Program
1800 Washington Boulevard
Baltimore, Maryland 21230
(410)537-3225
1-800-633-6101
www.mde.maryland.gov

FORM 5EP: Emission Point Data

<u>Complete one (1) Form 5EP for EACH emission point</u> (stack or fugitive emissions) related to the proposed installation.

Applicant Name: Martin Marietta Materials, Inc

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: PP-TR-1 and associated conveyors

2. Emission Point Description

Describe the emission point including all associated equipment and control devices: M515 Trommel and associated Telestack Conveyor

3. Emissions Schedul	le for th	ne Emiss	ior	n Point				
Continuous or Intermittent (C/I	I)?			Seasonal Variation				
Minutes per hour:	·	00		Winter Dereent				variation:
Hours per day:		10		Spring Percent			28	
Davs per week:		5		Summer Percent			36	
Weeks per year:		50		Fall Percent			36	
4. Emission Point Info	ormatic	on				Repairing and		
Height above ground (ft):		5-40'		Length and width dimension	is	Length	:	Width:
Height above structures (ft):		4-8'		at top of rectangular stack (ft):	NA		NA
Exit temperature (°F):		ambient		Inside diameter at top of rou	und st	tack (ft):		NA
Exit velocity (ft/min):		NA		Distance from emission poir property line (ft):	nt to r	nearest		+/- 740
Exhaust gas volumetric flow ra (acfm):	ate	NA		Building dimensions if emise point is located on building	sion g (ft)	Height	Length	Width
5. Control Devices As	sociat	ed with t	he	Emission Point				
Identify each control device as also required for each control	ssociated ol devic	d with the : <u>e</u> . If none	em che	ission point and indicate the r eck none:	numb	er of device	es. <u>A Fo</u>	orm 6 is
None				Thermal Oxidizer		No		
Baghouse	No			Regenerative				
Cyclone	No			Catalytic Oxidizer		No		
Elec. Precipitator (ESP)	No			Nitrogen Oxides Reductio	on	No		
Dust Suppression System	No	<u> </u>			Ę	Non-Sele	ective	
Venturi Scrubber	No				L		arytic	
Spray Tower/Packed Bed No		Specify:		NO				
Carbon Adsorber	No			Wet Suppression				
Cartridge/Canister								

Regenerative

6. Estimated Emissions from th	e Emission Point					
	At Design Capacity	At Projected Operations				
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
Particulate Matter (filterable as PM10)	0.59	0.59	5.94	0.74		
Particulate Matter (filterable as PM2.5)	0.06	0.06	0.55	0.07		
Particulate Matter (condensables)	2.42	2.42	24.2	3.03		
Volatile Organic Compounds (VOC)						
Oxides of Sulfur (SOx)	2					
Oxides of Nitrogen (NOx)						
Carbon Monoxide (CO)						
Lead (Pb)						
	At Design Canacity	At	Projected Operat	ions		
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
Carbon Dioxide (CO ₂)						
Methane (CH₄)						
Nitrous Oxide (N ₂ O)						
Hydrofluorocarbons (HFCs)						
Perfluorocarbons (PFCs)						
Sulfur Hexafluoride (SF6)						
Total GHG (as CO ₂ e)						
List individual federal Hazardous Air	At Design Capacity	At	Projected Operat	ions		
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
Crystalline Silica	4.11 x 10^-6	1.96 x 10^-6	1.96 x 10^-5	2.93 x 10^-6		

(Attach additional sheets as necessary.)

Process Flow Diagram & Equipment List

PINESBURG QUARRY PLANT NO. 31101

PUGMILL PLANT $\left(1\right)\left(2\right)\left(3\right)$ (3) 25 TON HOPPERS PUGMILL UNIT $\left(4\right)$ BELT FEEDER σ 24"x10' Ο (5)BELT FEEDER σ \bigcirc 24"x10' 6 BELT FEEDER σ 24"x10' ()(7)CONV. NO. 1 σ \bigcirc 36"x30' (9) ╫╫ CEMENT SILO W/FEEDER $\binom{8}{}$ CONV. NO. 2 \cap σ 36"x60' (10) BARBER-GREENE PUGMILL W/DISCHARGE HOPPER TRUCK LOADOUT

PUGMILL PLANT

- ITEM DESCRIPTION
- 1. HOPPER
- 2. HOPPER
- 3. HOPPER
- 4. 24"x10' BELT FEEDER
- 5. 24"x10' BELT FEEDER
- 6. 24"x10' BELT FEEDER
- 7. 36"x30' CONV. NO. 1
- 8. 36"x60' CONV. NO. 2
- 9. CEMENT SILO W/FEEDER
- 10. BARBER GREENE PUGMILL W/DISCHARGI

DATE	REVISION
09/19/14	Revised title block and asset numbers
08/27/19	Revised title block

© COPYRIGHT BY MARTIN MARIETTA MATERIALS, INC. ALL RIGHTS RESERVED. UNAUTHORIZED DUPLICATION IS PROHIBITED.

	020907
	020907
	020907
	091167
	091168
	091169
	045818
	*
	*
E HOPPER	190319

C/N

TABLE 1								
	B	LUEGRASS MATERIALS - PINESBURG QUAF	RY					
		Equipment List						
		April 9, 2024						
Plan	Permit	Equipment	TRACK	Equipment	Date of			
I.D.	Approved Equipment	Description	UNIT	I.D. No.	Manufacture			
Primary Crus	hers		TPD	TPD	TPD			
2	Hazennag APPH 1515 Philliary Clushel		ТЪЛ	עפו	עסו			
Secondary/Te	ertiary Crushers							
13	ISC VSI Model 103 Crusher (SN103-176)	TBD	TBD	TBD	TBD			
38	Double Fine Screw	TBD	TBD	TBD	TBD			
Screens								
9	6x20'-3D Diester Screen	TBD	TBD	TBD	TBD			
15	7x20'-3D Diester Screen	TBD	TBD	TBD	TBD			
18	8x20'-2D Diester Screen	TBD	TBD	TBD	TBD			
26	8x20'-2D Diester Screen	TBD	TBD	TBD	TBD			
37	7x16'-2D Diester Screen	TBD	TBD	TBD	TBD			
Convoyors								
3	Conveyor	TBD	TRD	TRD	TRD			
4	Conveyor	TBD	TRD	TBD	TBD			
5	Conveyor	TBD	TBD	TBD	TBD			
8	Conveyor	TBD	TBD	TBD	TBD			
10	Conveyor	TBD	TBD	TBD	TBD			
14	Conveyor	TBD	TBD	TBD	TBD			
16	Conveyor	TBD	TBD	TBD	TBD			
17	Conveyor	TBD	TBD	TBD	TBD			
19	Conveyor	TBD	TBD	TBD	TBD			
20	Conveyor	TBD	TBD	TBD	TBD			
21	Conveyor	TBD	TBD	TBD	TBD			
22	Conveyor		TBD	TBD	TBD			
23	Conveyor		TBD					
24	Conveyor	TBD	TBD	TBD	TBD			
33	Conveyor	TBD	TBD	TBD	TBD			
34	Conveyor	TBD	TBD	TBD	TBD			
35	Conveyor	TBD	TBD	TBD	TBD			
36	Conveyor	TBD	TBD	TBD	TBD			
39	Conveyor	TBD	TBD	TBD	TBD			
40	Conveyor	TBD	TBD	TBD	TBD			
41	Conveyor	TBD	TBD	TBD	TBD			
42	Conveyor	TBD						
Engines	Discal Fasing		TDD	TDD	TDD			
PP-TR-1	Diesel Engine	500 TPH	TBD	TBD	TBD			
PP-CONV-1	Diesel Engine		TBD	TBD				
PP-CONV-3	Diesel Engine		TBD	TBD	TBD			
11-0010-5			100	100	100			
Bins / Feeder	'S							
1	Primary Grizzly Feeder	TBD	TBD	TBD	TBD			
6	Syntron Feeder	TBD	TBD	TBD	TBD			
7	Syntron Feeder	TBD	TBD	TBD	TBD			
11	125 ton Surge Bin	TBD	TBD	TBD	TBD			
12	Syntron Feeder	TBD	TBD	TBD	TBD			
27	100 ton Bin	TBD	TBD	TBD	TBD			
28		IRD	TBD	TBD	TBD			
29			IRD	IBD	IBD			
30	Relt Feeder							
30	Belt Feeder	TBD						
52					- 00			
Other			1	1				
			1					

Material Balance Data & Emissions Calculations

TABLE 2 BLUEGRASS MATERIALS - PINESBURG QUARRY PARTICULATE MATTER EMISSIONS ESTIMATE - PROCESSING PLANT EQUIPMENT

Part of the state	April 9, 2024										
Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td>HOURLY PM</td><td>EMISSIONS</td><td></td><td>ANNUAL P</td><td>PM EMISSIONS</td><td></td></t<>						HOURLY PM	EMISSIONS		ANNUAL P	PM EMISSIONS	
Partial			Estimated	PM Fa	actor (a)	Maximun	n Potential	Maximum Potential	Estimated Actual	Maximum Potential	Estimated Actual
Plant L3 Penet Approx Equipment Capacity Capacity Canadial Uncombal Canadial Uncombal Canadial Canadia			Potential			Emissio	n Rates	Emission Rates	Emission Rates	Emission Rates	Emission Rates
LD. Perm Agnove 2 support (Enable of Defauty and Defauty	Plan/Permit		Capacity	Controlled	Uncontrolled	Controlled	Uncontrolled	Controlled	Controlled	Uncontrolled	Uncontrolled
Prine Price Pric Price Price <th< td=""><td><u>I.D.</u></td><td>Permit Approved Equipment</td><td>(Tons/Hour)</td><td><u>(lb/Ton)</u></td><td><u>(lb/Ton)</u></td><td><u>(lb/Hour)</u></td><td><u>(lb/Hour)</u></td><td>(Tons/yr)</td><td>(Tons/yr)</td><td>(Tons/yr)</td><td>(Tons/yr)</td></th<>	<u>I.D.</u>	Permit Approved Equipment	(Tons/Hour)	<u>(lb/Ton)</u>	<u>(lb/Ton)</u>	<u>(lb/Hour)</u>	<u>(lb/Hour)</u>	(Tons/yr)	(Tons/yr)	(Tons/yr)	(Tons/yr)
netwoor memory APPri 181 Prome from the set of	Primary Crushers	S		0.001200	0.005400						
Second PricePortube<	2	Hazemag APPH 1515 Primary Crusher	600	0.001200	0.005400	0.720	3.240	3.154	0.900	14.191	4.050
10 10 10 0.0000	Secondary/Tertia	ary Crushers		0.001200	0.005400						
BBosSolSolBosPart <td>13</td> <td>ISC VSI Model 103 Crusher (SN103-176)</td> <td>500</td> <td>0.001200</td> <td>0.005400</td> <td>0.600</td> <td>2.700</td> <td>2.628</td> <td>0.750</td> <td>11.826</td> <td>3.375</td>	13	ISC VSI Model 103 Crusher (SN103-176)	500	0.001200	0.005400	0.600	2.700	2.628	0.750	11.826	3.375
Source	38	Double Fine Screw	500	0.001200	0.005400	0.600	2.700	2.628	0.750	11.826	3.375
n dot 30 Date Seem non nonz 1.230 1.200 1.500 5.72 1.60 6.730 1.153 15 hold 30 Date Seem 0.00 0.0230 0.1230 1.130 5.72 1.60 6.70 1.530 16 0.0230 Date Seem 0.00 0.0230 1.130 1.500 5.72 1.60 6.70 1.530 10 2.20 Date Seem 0.00 0.0200 1.130 1.500 5.72 1.60 6.70 1.730 10 2.20 Date Seem 0.00 0.0000 0.0000 0.000 1.80 0.20 0.00 0.0014 0.0000 0.000 0.000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 </td <td>Screens</td> <td></td> <td></td> <td>0.002200</td> <td>0.025000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Screens			0.002200	0.025000						
1 1000000000000000000000000000000000000	9	6x20'-3D Diester Screen	600	0.002200	0.025000	1.320	15.000	5.782	1.650	65.700	18.750
14.8 807.3D Deterferm 600 0.02300 0.1330 1.530 5.782 1.601 6.0.700 18.790 37 787.3D Deterferm 600 0.00230 0.2300 1.130 1.500 5.782 1.601 6.0.700 18.790 37 787.3D Deterferm 600 0.00230 0.2300 1.30 1.500 5.782 1.601 6.001 6.770 18.790 3 100 600 0.00140 0.00160 0.00100 0.00100 0.0134<	15	7x20'-3D Diester Screen	600	0.002200	0.025000	1.320	15.000	5.782	1.650	65.700	18.750
AB SDC2 3D geles Stein 600 0.0020 0.2390 1.230 1.500 5.720 1.680 6.6.700 1.839 Convert	18	8x20'-2D Diester Screen	600	0.002200	0.025000	1.320	15.000	5.782	1.650	65.700	18.750
3 Pite 2D base Seam 6.00 0.00000 1.00 5.78 1.60 6.00 0.0010 3 PID 6.00 0.0010 0.0030 0.003 0.0034 0.0134 <td0< td=""><td>26</td><td>8x20'-2D Diester Screen</td><td>600</td><td>0.002200</td><td>0.025000</td><td>1.320</td><td>15.000</td><td>5.782</td><td>1.650</td><td>65.700</td><td>18.750</td></td0<>	26	8x20'-2D Diester Screen	600	0.002200	0.025000	1.320	15.000	5.782	1.650	65.700	18.750
Conversion 0.000400 0.000400 0.000500 0.001 0.000500 0.001 0.00050 0.001 0.00050 0.001 0.00050 0.001 0.00050 0.001 <	37	7x16'-2D Diester Screen	600	0.002200	0.025000	1.320	15.000	5.782	1.650	65.700	18.750
3 15D 600 0.00040 0.03000 0.044 1.800 0.0384 0.0134 0.0313 3.342 1.123 5 15D 300 0.00140 0.00300 0.042 0.900 0.184 0.033 3.342 1.123 6 15D 300 0.00140 0.00300 0.042 0.900 0.184 0.033 3.342 1.123 10 15D 300 0.00140 0.00300 0.042 0.900 0.184 0.033 3.342 1.125 10 15D 400 0.00140 0.00300 0.016 0.126 0.016	Conveyors	•		0.000140	0.003000						
n n	3	TBD	600	0.000140	0.003000	0.084	1.800	0.368	0.105	7.884	2.250
S TDD 300 0.00140 0.00300 0.042 9.000 0.184 0.033 3.942 1.125 10 TDD 300 0.00140 0.00300 0.02 0.900 0.184 0.033 3.942 1.125 14 TDD 400 0.00140 0.00300 0.054 1.200 0.245 0.070 5.256 1.590 16 TDD 400 0.00140 0.00000 0.056 1.200 0.245 0.070 5.256 1.590 17 TDD 400 0.00140 0.00000 0.014 0.000 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 0.001 0.014 <td>4</td> <td>TBD</td> <td>300</td> <td>0.000140</td> <td>0.003000</td> <td>0.042</td> <td>0.900</td> <td>0.184</td> <td>0.053</td> <td>3.942</td> <td>1.125</td>	4	TBD	300	0.000140	0.003000	0.042	0.900	0.184	0.053	3.942	1.125
nb nb 300 0.00440 0.03000 0.042 0.900 0.184 0.033 3.92 1.125 10 TDD 300 0.00440 0.03000 0.62 0.900 0.184 0.033 3.92 1.125 14 TDD 400 0.00140 0.03000 0.65 1.300 0.245 0.070 5.256 1.500 17 TDD 100 0.00140 0.00000 0.014 1.300 0.0241 0.016 1.314 0.375 20 TDD 100 0.00140 0.00000 0.014 1.800 0.041 0.014 0.300 0.014 0.300 0.014 0.300 0.014 0.300 0.014 0.300 0.014 0.300 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014	5	TBD	300	0.000140	0.003000	0.042	0.900	0.184	0.053	3.942	1.125
10 TBD 300 0.00140 0.03300 0.043 0.034 0.033 3.942 1.125 14 TBD 400 0.00140 0.03300 0.056 1.200 0.245 0.070 5.256 1.500 15 TBD 400 0.00140 0.03300 0.014 3.00 0.615 0.018 1.114 0.375 19 TBD 400 0.00140 0.03000 0.014 0.300 0.615 0.018 1.144 0.375 20 TBD 400 0.00140 0.03000 0.014 0.300 0.618 0.105 7.84 2.230 21 TBD 600 0.00140 0.03000 0.042 0.800 0.184 0.015 1.314 0.375 23 TBD 100 0.00140 0.00300 0.042 0.900 0.184 0.015 1.314 0.375 24 TBD 300 0.00140 0.00300 0.042 0.900 0.184 </td <td>8</td> <td>TBD</td> <td>300</td> <td>0.000140</td> <td>0.003000</td> <td>0.042</td> <td>0.900</td> <td>0.184</td> <td>0.053</td> <td>3.942</td> <td>1.125</td>	8	TBD	300	0.000140	0.003000	0.042	0.900	0.184	0.053	3.942	1.125
H4 TBD 400 0.00104 0.03000 0.055 1.200 0.235 0.070 5.256 1.501 17 TBD 100 0.00144 0.0300 0.045 1.200 0.245 0.070 5.256 1.501 19 TBD 0.00144 0.03000 0.045 1.200 0.245 0.018 1.314 0.757 20 TBD 100 0.00144 0.03000 0.044 0.300 0.064 0.018 1.314 0.757 21 TBD 0.00144 0.03000 0.0484 1.800 0.033 2.628 0.730 22 TBD 200 0.00144 0.03000 0.042 0.000 0.184 0.033 3.942 1.135 24 TBD 300 0.00140 0.03000 0.042 0.900 0.184 0.033 3.942 1.135 33 TBD 300 0.00140 0.03000 0.042 0.900 0.184 0.035 3	10	TBD	300	0.000140	0.003000	0.042	0.900	0.184	0.053	3.942	1.125
Ind Ind 400 0.0010 0.00300 0.034 0.245 0.070 5.55.4 1.50 17 TBD 100 0.0010 0.00300 0.014 0.230 0.016 0.018 1.314 0.375 20 TBD 100 0.0010 0.00300 0.014 0.300 0.051 0.018 1.314 0.375 21 TBD 600 0.0010 0.00300 0.023 0.061 0.018 1.314 0.375 22 TBD 0.0010 0.00300 0.021 0.001 0.0133 0.035 2.428 0.73 24 TBD 0.0010 0.00300 0.042 0.900 0.144 0.033 3.422 1.125 25 TBD 300 0.0010 0.00300 0.042 0.900 0.144 0.033 3.442 1.125 33 TBD 300 0.0010 0.00300 0.042 0.900 0.144 0.033 3.442 1.125 <td>14</td> <td>TBD</td> <td>400</td> <td>0.000140</td> <td>0.003000</td> <td>0.056</td> <td>1.200</td> <td>0.245</td> <td>0.070</td> <td>5.256</td> <td>1.500</td>	14	TBD	400	0.000140	0.003000	0.056	1.200	0.245	0.070	5.256	1.500
17 18D 100 0.0010 0.00300 0.04 0.030 0.061 0.018 0.114 0.375 20 18D 100 0.0010 0.03300 0.041 0.303 0.061 0.018 0.103 0.355 1.500 21 18D 0.0010 0.03000 0.044 1.300 0.058 0.015 7.884 2.23 22 78D 200 0.00104 0.03000 0.084 0.130 0.015 7.884 2.23 23 78D 300 0.00104 0.03000 0.042 0.990 0.184 0.053 3.942 1.135 24 78D 300 0.00104 0.03900 0.042 0.990 0.184 0.053 3.942 1.135 33 78D 100 0.00104 0.00390 0.042 0.990 0.184 0.053 3.942 1.135 34 78D 3.00 0.00104 0.00390 0.042 0.990 0.184 </td <td>16</td> <td>TBD</td> <td>400</td> <td>0.000140</td> <td>0.003000</td> <td>0.056</td> <td>1.200</td> <td>0.245</td> <td>0.070</td> <td>5.256</td> <td>1.500</td>	16	TBD	400	0.000140	0.003000	0.056	1.200	0.245	0.070	5.256	1.500
19 IDD 400 0.00140 0.00300 0.014 0.203 0.0361 0.0138 0.1314 0.375 20 IBD 0.00140 0.00300 0.014 1.000 0.0361 0.013 0.013 0.013 0.025 0.025 0.035 0.258 0.075 22 IBD 0.00 0.00140 0.00300 0.042 0.000 0.0184 0.003 3.042 1.1314 0.0375 24 IBD 300 0.00140 0.00300 0.042 0.000 0.0184 0.003 3.042 1.125 33 IBD 300 0.00140 0.03900 0.042 0.090 0.184 0.033 3.042 1.125 34 IBD 300 0.00140 0.03900 0.042 0.900 0.184 0.053 3.042 1.125 36 IBD 601 0.00140 0.03900 0.042 0.900 0.184 0.053 3.042 1.125 39	17	TBD	100	0.000140	0.003000	0.014	0.300	0.061	0.018	1.314	0.375
2D TBD 100 0.00140 0.00300 0.014 0.000 0.0161 0.0181 1.114 0.375 21 TBD 000 0.000140 0.00300 0.024 0.003 0.035 0.035 0.228 0.035 0.231 0.035 0.248 0.035 0.336 0.336<	19	TBD	400	0.000140	0.003000	0.056	1.200	0.245	0.070	5.256	1.500
1 TBD 0.00 0.00140 0.00300 0.024 0.085 0.105 7.884 2.29 22 TBD 0.00 0.00140 0.00300 0.023 0.061 0.013 1.14 0.075 23 TBD 0.00 0.00140 0.03000 0.042 0.900 0.184 0.033 3.942 1.125 24 TBD 0.00 0.00140 0.03000 0.042 0.900 0.184 0.033 3.942 1.125 33 TBD 0.00140 0.03000 0.042 0.900 0.184 0.033 3.942 1.125 34 TBD 300 0.00140 0.03000 0.042 0.900 0.184 0.033 3.942 1.125 35 TBD 300 0.00140 0.03000 0.084 1.800 0.105 7.784 2.254 36 TBD 601 0.00140 0.03000 0.84 1.800 0.1055 7.840 2.254	20	TBD	100	0.000140	0.003000	0.014	0.300	0.061	0.018	1.314	0.375
120 15D 0.00140 0.00300 0.013 <th< td=""><td>21</td><td>TBD</td><td>600</td><td>0.000140</td><td>0.003000</td><td>0.084</td><td>1.800</td><td>0.368</td><td>0.105</td><td>7.884</td><td>2.250</td></th<>	21	TBD	600	0.000140	0.003000	0.084	1.800	0.368	0.105	7.884	2.250
23 TBD 100 0.00104 0.0300 0.041 0.300 0.0161 0.114 0.035 24 TBD 300 0.001040 0.003000 0.042 0.900 0.114 0.053 3.942 1.125 33 TBD 100 0.00140 0.00300 0.042 0.900 0.114 0.053 3.942 1.125 33 TBD 300 0.000140 0.003000 0.042 0.900 0.114 0.053 3.942 1.125 34 TBD 300 0.000140 0.003000 0.042 0.900 0.114 0.053 3.942 1.125 35 TBD 601 0.001040 0.03000 0.084 1.803 0.369 0.015 7.844 2.250 39 TBD 602 0.00140 0.03000 0.084 1.806 0.369 0.015 7.910 2.258 41 TBD 600 0.00200 0.025000 1.100 1.500	22	TBD	200	0.000140	0.003000	0.028	0.600	0.123	0.035	2.628	0.750
24 TBD 300 0.001140 0.003000 0.042 0.900 0.184 0.053 3.942 1.125 33 TBD 100 0.00140 0.003000 0.042 0.900 0.184 0.053 3.942 1.125 34 TBD 300 0.00140 0.033000 0.042 0.900 0.184 0.053 3.942 1.125 35 TBD 300 0.00140 0.033000 0.042 0.900 0.184 0.053 3.942 1.125 36 TBD 601 0.000140 0.033000 0.084 1.803 0.368 0.105 7.844 2.269 39 TBD 602 0.000140 0.033000 0.084 1.806 0.369 0.105 7.910 2.258 41 TBD 662 0.000140 0.033000 0.844 1.806 0.368 0.105 7.84 2.290 figins Figins Figins Figins 0.000210 0.02300<	23	TBD	100	0.000140	0.003000	0.014	0.300	0.061	0.018	1.314	0.375
25 TBD 300 0.000140 0.000300 0.042 0.900 0.184 0.033 1.942 1.125 33 TBD 100 0.000140 0.000000 0.042 0.900 0.184 0.033 1.135 34 TBD 300 0.000140 0.000000 0.042 0.900 0.184 0.053 3.942 1.125 36 TBD 600 0.000140 0.00000 0.042 0.900 0.184 0.053 3.942 1.125 36 TBD 601 0.000140 0.00300 0.084 1.800 0.368 0.165 7.897 2.240 40 TBD 602 0.000140 0.003000 0.084 1.806 0.369 0.165 7.910 2.238 41 TBD 602 0.000140 0.003000 0.084 1.806 0.369 0.165 7.910 2.238 42 TBD 600 0.002200 0.02200 0.084 1.806	24	TBD	300	0.000140	0.003000	0.042	0.900	0.184	0.053	3.942	1.125
33 TBD 100 0.00140 0.03000 0.014 0.000 0.018 0.013 1.14 0.775 34 TBD 300 0.00140 0.003000 0.042 0.000 0.184 0.053 3.942 1.125 35 TBD 600 0.00140 0.003000 0.042 0.000 0.184 0.053 3.942 1.125 36 TBD 601 0.00140 0.003000 0.084 1.805 0.368 0.105 7.844 2.254 40 TBD 602 0.00140 0.03000 0.084 1.806 0.369 0.105 7.910 2.258 41 TBD 602 0.00140 0.03000 0.844 1.806 0.369 0.105 7.910 2.258 42 TBD 600 0.00200 0.02300 0.844 1.806 0.369 0.105 7.910 2.258 6gines Engines 500 0.002200 0.025000 1.100	25	TBD	300	0.000140	0.003000	0.042	0.900	0.184	0.053	3,942	1.125
34 1BD 300 0.00140 0.003000 0.042 0.000 0.184 0.053 3.942 1.13 35 TBD 300 0.00140 0.003000 0.042 0.900 0.184 0.053 3.942 1.13 36 TBD 600 0.00140 0.00300 0.084 1.800 0.368 0.105 7.884 2.250 39 TBD 601 0.00140 0.003000 0.084 1.805 0.369 0.105 7.910 2.258 41 TBD 602 0.00140 0.003000 0.084 1.806 0.369 0.105 7.910 2.258 41 TBD 602 0.00140 0.003000 0.084 1.806 0.369 0.105 7.884 2.250 Engline 1 0.03000 0.0384 1.806 0.368 1.050 15.625 PP-CNV-3 Desel Engine 1 7.910	33	TBD	100	0.000140	0.003000	0.014	0.300	0.061	0.018	1.314	0.375
35 150 300 0.000140 0.003000 0.042 0.000 0.184 0.053 3.942 1.125 36 TBD 600 0.000140 0.003000 0.084 1.800 0.368 0.105 7.834 2.230 39 TBD 602 0.000140 0.003000 0.084 1.865 0.369 0.105 7.910 2.234 40 TBD 602 0.000140 0.003000 0.084 1.866 0.369 0.105 7.910 2.238 41 TBD 600 0.000140 0.003000 0.084 1.806 0.369 0.105 7.910 2.238 42 TBD 600 0.00200 0.02500 1.100 12.50 4.818 1.175 7.834 2.250 PP-CNV-2 Desel Engine 500 0.002200 0.02500 1.100 12.50 4.818 1.375 54.750 15.625 PP-CONV-3 Desel Engine 600 0.002200 0.025003	34	TBD	300	0.000140	0.003000	0.042	0.900	0.184	0.053	3,942	1.125
38 18D 600 0.000140 0.003000 0.084 1.800 0.058 0.105 7.884 2.250 39 TBD 601 0.000140 0.003000 0.084 1.803 0.369 0.105 7.937 2.254 40 TBD 602 0.000140 0.00300 0.084 1.866 0.369 0.105 7.910 2.258 41 TBD 602 0.000140 0.003000 0.084 1.866 0.369 0.015 7.910 2.258 42 TBD 600 0.000140 0.003000 0.084 1.866 0.369 0.015 7.844 2.250 Engine 7.84 2.250 15.65 PP-CONV-2 Desel Engine 500 0.002200 0.25000 1.100 12.500 4.818 1.375 54.750 15.625 PP-CONV-2 Desel Engine 0.00007 0.00033 0.004 0.018 0.005 <td>35</td> <td>TBD</td> <td>300</td> <td>0.000140</td> <td>0.003000</td> <td>0.042</td> <td>0.900</td> <td>0.184</td> <td>0.053</td> <td>3.942</td> <td>1.125</td>	35	TBD	300	0.000140	0.003000	0.042	0.900	0.184	0.053	3.942	1.125
39 TBD 601 0.000140 0.00300 0.084 1.803 0.369 0.105 7.897 2.254 40 TBD 602 0.00140 0.00300 0.084 1.806 0.369 0.105 7.910 2.258 41 TBD 602 0.00140 0.00300 0.844 1.806 0.369 0.105 7.910 2.258 42 TBD 600 0.00140 0.00300 0.84 1.800 0.368 0.105 7.910 2.258 6gines PP-CONV-1 Diesel Engine 500 0.002200 0.025000 1.100 12.500 4.818 1.375 54.750 15.625 PP-CONV-2 Diesel Engine 600 0.002200 0.025000 1.320 15.000 5.782 1.650 65.700 18.750 BinsFeeder 600 0.00007 0.000033 0.003 0.013	36	TBD	600	0.000140	0.003000	0.084	1.800	0.368	0.105	7,884	2.250
40 TBD 662 0.00140 0.00300 0.084 1.806 0.369 0.105 7.910 2.258 41 TBD 602 0.00140 0.003000 0.084 1.806 0.369 0.105 7.910 2.258 42 TBD 600 0.00140 0.003000 0.084 1.806 0.369 0.105 7.910 2.258 Engines 2.258 PP-CRNV-1 Diesel Engine	39	TBD	601	0.000140	0.003000	0.084	1.803	0.369	0.105	7.897	2.254
41 TBD 602 0.00140 0.03000 0.084 1.806 0.369 0.105 7.910 2.258 42 TBD 600 0.000140 0.003000 0.084 1.800 0.368 0.105 7.910 2.258 Engines 500 0.002200 0.03500 1.100 1.800 0.368 0.105 7.84 2.250 PP-CNN-1 Diesel Engine 500 0.02200 0.02500 1.100 12.500 4.818 1.375 54.750 15.625 PP-CONV-2 Diesel Engine 600 0.002200 0.02500 1.320 15.000 5.782 1.650 65.700 18.750 Bins/Feeder 600 0.00207 0.000033 0.004 0.018 0.018 0.005 0.079 0.0238 1 Primary Grizzy Feeder 550 0.000007 0.000033 0.013 0.013 0.004 0.058 0.017 1 Primary Grizzy Feeder 400 0.00007 0.000033 <	40	TBD	602	0.000140	0.003000	0.084	1.806	0.369	0.105	7,910	2.258
42 TBD 600 0.000140 0.003000 0.084 1.800 0.368 0.105 7.884 2.250 Engines <t< td=""><td>41</td><td>TBD</td><td>602</td><td>0.000140</td><td>0.003000</td><td>0.084</td><td>1.806</td><td>0.369</td><td>0.105</td><td>7.910</td><td>2.258</td></t<>	41	TBD	602	0.000140	0.003000	0.084	1.806	0.369	0.105	7.910	2.258
Engines Image: Solution of the state of the	42	TBD	600	0.000140	0.003000	0.084	1.800	0.368	0.105	7.884	2.250
PP.TR.1 Diesel Engine 500 0.002200 0.025000 1.100 12.500 4.818 1.375 54.750 15.625 PP-CONV-1 Diesel Engine </td <td>Engines</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Engines	1									
PP-CONV-1 Diesel Engine Image: constraint of the second s	PP-TR-1	Diesel Engine	500	0.002200	0.025000	1.100	12.500	4.818	1.375	54.750	15.625
PP-CONV-2 Diesel Engine 600 0.00200 0.025000 1.320 15.000 5.782 1.650 65.700 18.750 Bins/Feeders 0.000007 0.000033 0.004 0.018 0.005 0.00230 3.023 16.600 3.025 120.450 34.375 6 Syntron Feeder 400 0.000007 0.000033 0.004 0.013 0.013 0.004 0.058 0.017 7 Syntron Feeder 400 0.000007 0.000033 0.003 0.013 0.013 0.004 0.058 0.017 11 125 ton Surge Bin 500 0.000007 0.00033 0.003 0.014 0.014 0.004 0.058 0.017 12 Syntron Feeder 425 0.00007 0.00033 0.003 0.014 0.014 0.004 0.051 0.018 27 100 ton Bin 395 0.00007 0.00033 0.003 0.013 0.012 0.003 0.016 29 100 ton Bin	PP-CONV-1	Diesel Engine									
PP-CONV-3 Diesel Engine 600 0.002200 0.025000 1.320 15.000 5.782 1.650 65.700 18.750 Bins/Feeders 0.000007 0.000033 0.004 0.018 0.018 0.018 0.005 0.079 0.023 6 Syntron Feeder 400 0.00007 0.00033 0.003 0.013 0.013 0.004 0.058 0.017 7 Syntron Feeder 400 0.00007 0.00033 0.003 0.013 0.014 0.058 0.017 11 125 ton Surge Bin 500 0.000007 0.000033 0.003 0.014 0.016 0.005 0.072 0.021 12 Syntron Feeder 425 0.000007 0.00033 0.003 0.014 0.014 0.014 0.044 0.061 0.018 27 100 ton Bin 410 0.000007 0.00033 0.003 0.013 0.014 0.014 0.014 29 100 ton Bin 380 0.000007	PP-CONV-2	Diesel Engine									
Bins/Feeders 0.00007 0.000033 0.004 0.018 0.003 0.017 1 Primary Grizzly Feeder 550 0.00007 0.000033 0.004 0.018 0.018 0.005 0.079 0.023 6 Syntron Feeder 400 0.00007 0.00033 0.03 0.013 0.014 0.044 0.058 0.017 7 Syntron Feeder 400 0.000007 0.00033 0.003 0.013 0.014 0.044 0.058 0.017 11 125 ton Surge Bin 500 0.000007 0.000033 0.003 0.014 0.016 0.005 0.072 0.021 12 Syntron Feeder 425 0.00007 0.00033 0.003 0.014 0.014 0.004 0.061 0.018 27 100 ton Bin 395 0.00007 0.00033 0.003 0.013 0.004 0.057 0.016 29 100 ton Bin 380 0.00007 0.000033 0.003 0.012 <td< td=""><td>PP-CONV-3</td><td>Diesel Engine</td><td>600</td><td>0.002200</td><td>0.025000</td><td>1.320</td><td>15.000</td><td>5.782</td><td>1.650</td><td>65.700</td><td>18.750</td></td<>	PP-CONV-3	Diesel Engine	600	0.002200	0.025000	1.320	15.000	5.782	1.650	65.700	18.750
1 Primary Grizzly Feeder 550 0.000007 0.000033 0.004 0.018 0.008 0.005 0.079 0.023 6 Syntron Feeder 400 0.000007 0.000033 0.003 0.013 0.013 0.004 0.058 0.017 7 Syntron Feeder 400 0.000007 0.00033 0.003 0.013 0.014 0.004 0.058 0.017 11 125 tos Surge Bin 500 0.000007 0.000033 0.004 0.017 0.016 0.005 0.072 0.021 12 Syntron Feeder 425 0.000007 0.00033 0.003 0.014 0.014 0.004 0.061 0.018 27 100 ton Bin 395 0.00007 0.00033 0.003 0.013 0.004 0.057 0.016 28 100 ton Bin 380 0.00007 0.00033 0.003 0.012 0.003 0.055 0.016 30 100 ton Bin 380 0.00007 0.00	Bins/Feeders	<u>v</u>		0.000007	0.000033			10.600	3.025	120.450	34.375
6 Syntron Feeder 400 0.000007 0.000033 0.003 0.013 0.013 0.004 0.058 0.017 7 Syntron Feeder 400 0.000007 0.000033 0.003 0.013 0.013 0.004 0.058 0.017 11 125 ton Surge Bin 500 0.000007 0.000033 0.003 0.013 0.016 0.005 0.072 0.021 12 Syntron Feeder 425 0.000007 0.000033 0.003 0.014 0.014 0.004 0.061 0.018 27 100 ton Bin 410 0.000007 0.000033 0.003 0.013 0.014 0.004 0.059 0.017 28 100 ton Bin 395 0.000007 0.000033 0.003 0.013 0.012 0.003 0.055 0.016 30 100 ton Bin 365 0.000007 0.000033 0.003 0.012 0.003 0.051 0.014 31 Belt Feeder 335 0.000007 </td <td>1</td> <td>Primary Grizzly Feeder</td> <td>550</td> <td>0.000007</td> <td>0.000033</td> <td>0.004</td> <td>0.018</td> <td>0.018</td> <td>0.005</td> <td>0.079</td> <td>0.023</td>	1	Primary Grizzly Feeder	550	0.000007	0.000033	0.004	0.018	0.018	0.005	0.079	0.023
7 Syntron Feeder 400 0.000007 0.000033 0.003 0.013 0.004 0.058 0.017 11 125 ton Surge Bin 500 0.000007 0.000033 0.003 0.013 0.016 0.005 0.072 0.021 12 Syntron Feeder 425 0.000007 0.00033 0.003 0.014 0.014 0.004 0.061 0.018 27 100 ton Bin 410 0.000007 0.00033 0.003 0.014 0.013 0.004 0.057 0.017 28 100 ton Bin 395 0.000007 0.00033 0.003 0.013 0.004 0.057 0.016 29 100 ton Bin 380 0.000007 0.00033 0.003 0.012 0.003 0.055 0.016 30 100 ton Bin 365 0.000007 0.000033 0.003 0.012 0.012 0.003 0.055 0.016 30 100 ton Bin 350 0.000007 0.000033 0.003	6	Syntron Feeder	400	0.000007	0.000033	0.003	0.013	0.013	0.004	0.058	0.017
11 125 ton Surge Bin 100 1000007 0.00003 0.004 0.017 0.016 0.005 0.017 0.021 12 Syntron Feeder 425 0.000007 0.000033 0.003 0.014 0.014 0.004 0.016 0.005 0.017 0.021 27 100 ton Bin 410 0.000007 0.000033 0.003 0.014 0.013 0.004 0.057 0.018 28 100 ton Bin 395 0.00007 0.000033 0.003 0.013 0.004 0.057 0.016 29 100 ton Bin 380 0.000007 0.000033 0.003 0.012 0.003 0.055 0.016 30 100 ton Bin 365 0.000007 0.000033 0.003 0.012 0.012 0.003 0.055 0.016 31 Belf Feeder 335 0.00007 0.00033 0.002 0.011 0.003 0.051 0.014 32 Belf Feeder 335 0.00007	7	Syntron Feeder	400	0.000007	0.000033	0.003	0.013	0.013	0.004	0.058	0.017
12 Syntron Feeder 425 0.00007 0.000033 0.003 0.014 0.014 0.004 0.061 0.018 27 100 ton Bin 410 0.000007 0.000033 0.003 0.014 0.014 0.004 0.061 0.018 28 100 ton Bin 395 0.000007 0.00033 0.003 0.013 0.014 0.004 0.059 0.017 28 100 ton Bin 380 0.000007 0.00033 0.003 0.013 0.012 0.004 0.057 0.016 30 100 ton Bin 380 0.000007 0.00033 0.003 0.012 0.003 0.055 0.016 30 100 ton Bin 365 0.000007 0.00033 0.003 0.012 0.012 0.003 0.055 0.016 31 Belf Feeder 335 0.00007 0.00033 0.002 0.011 0.003 0.051 0.014 32 Belf Feeder 335 0.00007 0.00033	11	125 ton Surge Bin	500	0.000007	0.000033	0.004	0.017	0.016	0.005	0.072	0.021
27 100 ton Bin 410 0.00007 0.000033 0.013 0.013 0.004 0.059 0.017 28 100 ton Bin 395 0.000007 0.00033 0.013 0.013 0.004 0.059 0.016 29 100 ton Bin 380 0.000007 0.000033 0.003 0.013 0.012 0.003 0.055 0.016 30 100 ton Bin 365 0.000007 0.00033 0.003 0.012 0.003 0.055 0.016 30 100 ton Bin 365 0.000007 0.00033 0.003 0.012 0.012 0.003 0.055 0.016 31 Belt Feeder 350 0.00007 0.00033 0.003 0.012 0.011 0.003 0.051 0.014 32 Belt Feeder 335 0.00007 0.00033 0.002 0.011 0.003 0.048 0.014 4	12	Syntron Feeder	425	0.000007	0.000033	0.003	0.014	0.014	0.004	0.061	0.018
28 100 ton Bin 395 0.00007 0.00033 0.003 0.013 0.004 0.057 0.016 29 100 ton Bin 380 0.000007 0.00033 0.013 0.013 0.004 0.057 0.016 30 100 ton Bin 365 0.000007 0.00033 0.003 0.012 0.012 0.003 0.055 0.016 30 100 ton Bin 365 0.000007 0.00033 0.003 0.012 0.012 0.003 0.057 0.016 31 Belt Feeder 350 0.000007 0.000033 0.002 0.011 0.003 0.051 0.014 32 Belt Feeder 335 0.00007 0.00033 0.002 0.011 0.003 0.051 0.014 32 Belt Feeder 335 0.00007 0.00033 0.002 0.011 0.013 0.014 0.014 4 4 4 4 4 4 4 4 4 4 4 <td>27</td> <td>100 ton Bin</td> <td>410</td> <td>0.000007</td> <td>0.000033</td> <td>0.003</td> <td>0.014</td> <td>0.013</td> <td>0.004</td> <td>0.059</td> <td>0,017</td>	27	100 ton Bin	410	0.000007	0.000033	0.003	0.014	0.013	0.004	0.059	0,017
29 100 ton Bin 380 0.00007 0.00003 0.013 0.012 0.003 0.055 0.016 30 100 ton Bin 365 0.000007 0.000033 0.013 0.012 0.003 0.055 0.016 31 Belt Feeder 350 0.000007 0.000033 0.003 0.012 0.011 0.003 0.055 0.016 32 Belt Feeder 335 0.00007 0.000033 0.002 0.011 0.003 0.051 0.014 4	28	100 ton Bin	395	0.000007	0.000033	0.003	0.013	0.013	0.004	0.057	0,016
30 100 m Bin 365 0.00007 0.00033 0.012 0.012 0.003 0.053 0.015 31 Belt Feeder 350 0.000007 0.00033 0.012 0.012 0.012 0.003 0.053 0.014 32 Belt Feeder 335 0.00007 0.00033 0.002 0.011 0.003 0.053 0.014 32 Belt Feeder 335 0.00007 0.00033 0.002 0.011 0.013 0.048 0.014 32 Belt Feeder 335 0.00007 0.00033 0.002 0.011 0.011 0.003 0.048 0.014 4 <td>29</td> <td>100 ton Bin</td> <td>380</td> <td>0.000007</td> <td>0.000033</td> <td>0.003</td> <td>0.013</td> <td>0.012</td> <td>0.003</td> <td>0.055</td> <td>0.016</td>	29	100 ton Bin	380	0.000007	0.000033	0.003	0.013	0.012	0.003	0.055	0.016
31 Belt Feeder 350 0.00007 0.00003 0.003 0.012 0.011 0.003 0.051 0.014 32 Belt Feeder 335 0.000007 0.00033 0.002 0.011 0.011 0.003 0.048 0.014 1 Image: Control of the state of the	30	100 ton Bin	365	0.000007	0.000033	0.003	0.012	0.012	0,003	0.053	0,015
Difference Difference <thdifference< th=""> Difference Differen</thdifference<>	31	Belt Feeder	350	0.000007	0.000033	0.003	0.012	0.011	0.003	0.051	0.014
Image: Constraint of the second of the se	32	Belt Feeder	335	0.000007	0.000033	0.002	0.011	0.011	0.003	0.048	0.014
PM TOTALS 12.15 136.50 63.82 18.21 718.34 205.00				0.000007	01000000	0.002	0.011	0.011	01000	0.010	0.011
PM TOTALS 12.15 136.50 63.82 18.21 718.34 205.00	r		1	1							
PM TOTALS 12.15 136.50 63.82 18.21 718.34 205.00		1									
				PM TOTALS		12.15	136.50	63.82	18.21	718.34	205.00

PLANT OPERATING SCHEDULE

Notes: (a) PM Emission Factors are from AP-42, Table 11.19.2-2

600 Avg. Plant Process Rate (Tons/hr)

8,760 Potential Operating Hours

2,500 Estimated Actual Hours of Operation

TABLE 3 BLUEGRASS MATERIALS - PINESBURG QUARRY PM10 EMISSIONS ESTIMATE - PROCESSING PLANT EQUIPMENT

					HOURLY PM 1	IO EMISSIONS		ANNUAL PM 10 EMISSIONS		
		Estimated	PM 10	Factor (a)	Maximun	n Potential	Maximum Potential	Estimated Actual	Maximum Potential	Estimated Actual
		Potential			Emissic	n Rates	Emission Rates	Emission Rates	Emission Rates	Emission Rates
Plan/Permit		Capacity	Controlled	Uncontrolled	Controlled	Uncontrolled	Controlled	Controlled	Uncontrolled	Uncontrolled
<u>I.D.</u>	Permit Approved Equipment	(Tons/Hour)	<u>(lb/Ton)</u>	<u>(lb/Ton)</u>	<u>(lb/Hour)</u>	<u>(lb/Hour)</u>	(Tons/yr)	(Tons/yr)	(Tons/yr)	(Tons/yr)
Primary Crushers	\$		0.000540	0.002400						
2	Hazemag APPH 1515 Primary Crusher	600	0.000540	0.002400	0.324	1.440	1.419	0.405	6.307	1.800
Secondary/Tertia	ry Crushers		0.000540	0.002400						
13	ISC VSI Model 103 Crusher (SN103-176)	500	0.000540	0.002400	0.270	1.200	1.183	0.338	5.256	1.500
38	Double Fine Screw	500	0.000540	0.002400	0.270	1.200	1.183	0.338	5.256	1.500
Screens			0.000740	0.008700						
9	6x20'-3D Diester Screen	600	0.000740	0.008700	0.444	5.220	1.945	0.555	22.864	6.525
15	7x20'-3D Diester Screen	600	0.000740	0.008700	0.444	5.220	1.945	0.555	22.864	6.525
18	8x20'-2D Diester Screen	600	0.000740	0.008700	0.444	5.220	1.945	0.555	22.864	6.525
26	8x20'-2D Diester Screen	600	0.000740	0.008700	0.444	5.220	1.945	0.555	22.864	6.525
37	7x16'-2D Diester Screen	600	0.000740	0.008700	0.444	5.220	1.945	0.555	22.864	6.525
Conveyors			0.000046	0.001100						
3	Conveyor	600	0.000046	0.001100	0.028	0.660	0.121	0.035	2.891	0.825
4	Conveyor	300	0.000046	0.001100	0.014	0.330	0.060	0.017	1.445	0.413
5	Conveyor	300	0.000046	0.001100	0.014	0.330	0.060	0.017	1.445	0.413
8	Conveyor	300	0.000046	0.001100	0.014	0.330	0.060	0.017	1.445	0.413
10	Conveyor	300	0.000046	0.001100	0.014	0.330	0.060	0.017	1.445	0.413
14	Conveyor	400	0.000046	0.001100	0.018	0.440	0.081	0.023	1.927	0.550
16	Conveyor	400	0.000046	0.001100	0.018	0.440	0.081	0.023	1.927	0.550
17	Conveyor	100	0.000046	0.001100	0.005	0.110	0.020	0.006	0.482	0.138
19	Conveyor	400	0.000046	0.001100	0.018	0.440	0.081	0.023	1.927	0.550
20	Conveyor	100	0.000046	0.001100	0.005	0.110	0.020	0.006	0.482	0.138
21	Conveyor	600	0.000046	0.001100	0.028	0.660	0.121	0.035	2.891	0.825
22	Conveyor	200	0.000046	0.001100	0.009	0.220	0.040	0.012	0.964	0.275
23	Conveyor	100	0.000046	0.001100	0.005	0.110	0.020	0.006	0.482	0.138
24	Conveyor	300	0.000046	0.001100	0.014	0.330	0.060	0.017	1.445	0.413
25	Conveyor	300	0.000046	0.001100	0.014	0.330	0.060	0.017	1.445	0.413
33	Conveyor	100	0.000046	0.001100	0.005	0.110	0.020	0.006	0.482	0.138
34	Conveyor	300	0.000046	0.001100	0.014	0.330	0.060	0.017	1.445	0.413
35	Conveyor	300	0.000046	0.001100	0.014	0.330	0.060	0.017	1.445	0.413
36	Conveyor	600	0.000046	0.001100	0.028	0.660	0.121	0.035	2.891	0.825
39	Conveyor	601	0.000046	0.001100	0.028	0.661	0.121	0.035	2.896	0.826
40	Conveyor	602	0.000046	0.001100	0.028	0.662	0.121	0.035	2.900	0.828
41	Conveyor	602	0.000046	0.001100	0.028	0.662	0.121	0.035	2.900	0.828
42	Conveyor	600	0.000046	0.001100	0.028	0.660	0.121	0.035	2.891	0.825
Engines										
PP-TR-1	Diesel Engine	500	0.000540	0.002400	0.270	1.200	1.183	0.338	5.256	1.500
PP-CONV-1	Diesel Engine									
PP-CONV-2	Diesel Engine									
PP-CONV-3	Diesel Engine	600	0.000540	0.002400	0.324	1.440	1.419	0.405	6.307	1.800
Bins/Feeders			0.000004	0.000016						
1	Primary Grizzly Feeder	550	0.000004	0.000016	0.002	0.009	0.009	0.002	0.039	0.011
6	Syntron Feeder	400	0.000004	0.000016	0.001	0.006	0.006	0.002	0.028	0.008
7	Syntron Feeder	400	0.000004	0.000016	0.001	0.006	0.006	0.002	0.028	0.008
11	125 ton Surge Bin	500	0.000004	0.000016	0.002	0.008	0.008	0.002	0.035	0.010
12	Syntron Feeder	425	0.000004	0.000016	0.002	0.007	0.007	0.002	0.030	0.009
27	100 ton Bin	410	0.000004	0.000016	0.001	0.007	0.006	0.002	0.029	0.008
28	100 ton Bin	395	0.000004	0.000016	0.001	0.006	0.006	0.002	0.028	0.008
29	100 ton Bin	380	0.000004	0.000016	0.001	0.006	0.006	0.002	0.027	0.008
30	100 ton Bin	365	0.000004	0.000016	0.001	0.006	0.006	0.002	0.026	0.007
31	Belt Feeder	350	0.000004	0.000016	0.001	0.006	0.006	0.002	0.025	0.007
32	Belt Feeder	335	0.000004	0.000016	0.001	0.005	0.005	0.002	0.023	0.007
			PM 10 TOTALS		4.08	41.90	17.87	5.10	183.51	52.37

PLANT OPERATING SCHEDULE

(a) PM 10 Emission Factors are from AP-42, Table 11.19.2-2

Avg. Plant Process Rate (Tons/hr) Potential Operating Hours 600

8,760

2,500 Estimated Actual Hours of Operation

Notes:

			TABLE 4			
	BI	UEGRASS M	ATERIALS - PINESBUI	RG QUARRY		
	PM2.5 EM	SSIONS ESTI	MATE - PROCESSING	PLANT EQUIPMENT		
			April 9, 2024			
				HOURLY 2.5 EMISSIONS	ANNUAL 2.5 EM	ISSIONS
		Estimated		Maximum Potential	Maximum Potential	Estimated Actual
		Potential	PM2.5 Factor (a)	Emission Rates	Emission Rates	Emission Rates
Plan/Permit		Capacity	Controlled	Controlled	Controlled	Controlled
<u>I.D.</u>	Permit Approved Equipment	(Tons/Hour)	<u>(lb/Ton)</u>	<u>(lb/Hour)</u>	(Tons/yr)	(Tons/yr)
Primary Crushe	Ϋ́S		0.000100			
2	Hazemag APPH 1515 Primary Crusher	600	0.000100	0.060	0.263	0.075
Secondary/Terti	ary Crushers		0.000100			
13	ISC VSI Model 103 Crusher (SN103-176)	500	0.000100	0.050	0.219	0.063
38	Double Fine Screw	500	0.000100	0.050	0.219	0.063
Screens	•		0.000050			
9	6x20'-3D Diester Screen	600	0.000050	0.030	0.131	0.038
15	7x20'-3D Diester Screen	600	0.000050	0.030	0.131	0.038
18	8x20'-2D Diester Screen	600	0.000050	0.030	0.131	0.038
26	8x20'-2D Diester Screen	600	0.000050	0.030	0.131	0.038
37	7x16'-2D Diester Screen	600	0.000050	0.030	0.131	0.038
Conveyors	1-		0.000013			
3	Conveyor	600	0.000013	0.008	0.034	0.010
4	Conveyor	300	0.000013	0.004	0.017	0.005
5	Conveyor	300	0.000013	0.004	0.017	0.005
8	Conveyor	300	0.000013	0.004	0.017	0.005
10	Conveyor	300	0.000013	0.004	0.017	0.005
14	Conveyor	400	0.000013	0.005	0.023	0.007
10	Conveyor	400	0.000013	0.003	0.023	0.007
10	Conveyor	400	0.000013	0.001	0.000	0.002
20	Conveyor	100	0.000013	0.003	0.006	0.007
20	Conveyor	600	0.000013	0.001	0.034	0.010
22	Conveyor	200	0.000013	0.003	0.011	0.003
23	Conveyor	100	0.000013	0.001	0.006	0.002
24	Conveyor	300	0.000013	0.004	0.017	0.005
25	Conveyor	300	0.000013	0.004	0.017	0.005
33	Conveyor	100	0.000013	0.001	0.006	0.002
34	Conveyor	300	0.000013	0.004	0.017	0.005
35	Conveyor	300	0.000013	0.004	0.017	0.005
36	Conveyor	600	0.000013	0.008	0.034	0.010
39	Conveyor	601	0.000013	0.008	0.034	0.010
40	Conveyor	602	0.000013	0.008	0.034	0.010
41	Conveyor		0.000013	0.000	0.000	0.000
42	Conveyor	391	0.000013	0.005	0.022	0.006
Engines						
PP-TR-1	Diesel Engine	500	0.000050	0.025	0.110	0.031
PP-CONV-1	Diesel Engine					
PP-CONV-2	Diesel Engine					
PP-CONV-3	Diesel Engine	600	0.000050	0.030	0.131	0.038
Bins/Feeders			0.000013			
1	Primary Grizzly Feeder	550	0.000013	0.007	0.031	0.009
6	Syntron Feeder	400	0.000013	0.005	0.023	0.007
/		400	0.000013	0.005	0.023	0.007
11	125 ton Surge Bin	500	0.000013	0.00/	0.028	0.008
12	Syntron Feeder	425	0.000013	0.006	0.024	0.007
21	100 ton Bin	410	0.000013	0.005	0.023	0.007
20	100 ton Bin	393	0.000013	0.005	0.022	0.006
29	100 ton Bin	365	0.000013	0.005	0.022	0.006
31	Belt Feeder	350	0.000013	0.005	0.021	0.006
32	Belt Feeder	335	0.000013	0.004	0.019	0,005
			0.000015		0.017	0.000
			PM2.5 TOTALS	0.52	2.29	0.65
PLANT ODED AT	ING SCHEDULF			•		
Landi OI ERAI		Notes:	(a) PM2.5 Emission Fact	ors are from AP-42, Table 11.19.2-2		
-			the second se	· · · · · · · · · · · · · · · · · · ·		

600

Avg. Plant Process Rate (Tons/hr) Potential Operating Hours

From AP-42 Table 11.19.2-2 No Data available for Uncontrolled PM 2.5 emissions.

8,760

2,500 **Estimated Actual Hours of Operation**

TABLE 5 **BLUEGRASS MATERIALS - PINESBURG QUARRY EMISSIONS ESTIMATE - MOBILE PLANT ENGINES**

April 9, 2024

ESTIMTED EMISSIONS

					POTENTIAL EMISSIONS		ACTUAL EMISSIONS			Emission	
ITEM	POLLUTANT	Emission Factor M515 Trommel	Emission Factor Telestack	Units	Per Hour of Operation <u>(lbs/hr)</u> M515 Trommel	Per Hour of Operation <u>(lbs/hr)</u> Telestack	Per year of Operation <u>(tons/year)</u> Total	Per Hour of Operation <u>(lbs/hr)</u> M515 Trommel	Per Hour of Operation <u>(lbs/hr)</u> Telestack	Per year of Operation <u>(tons/year)</u>	Factor References (See Note 9)
1	PM-10	0.01000000	0.00300000	g/kW-hr	0.0021	0.0003	0.01	0.0021	0.0003	0.01	A
2	NOx	0.30000000	0.00000000	g/kW-hr	0.0632	0.0000	0.28	0.0632	0.0000	0.16	А
3	CO	0.02000000	1.30000000	g/kW-hr	0.0042	0.1434	0.65	0.0042	0.1434	0.01	А
4	SOx	0.93100000	0.93100000	g/kW-hr	0.1974	0.1025	1.31	0.1974	0.1025	0.49	С
5	Total Organic Compounds (TOC)	0.01000000	0.00000000	g/kW-hr	0.0021	0.0000	0.01	0.0021	0.0000	0.01	Α
6	Benzene*	0.00119000	0.00119000	g/hp-hr	0.0003	0.0013	0.01	0.0003	0.0013	0.00	В
7	Toluene*	0.00058600	0.00058600	g/hp-hr	0.0001	0.0000	0.00	0.0001	0.0000	0.00	В
8	Xylenes*	0.00069300	0.00069300	g/hp-hr	0.0001	0.0001	0.00	0.0001	0.0001	0.00	В
9	Propylene*	0.00290000	0.00290000	g/hp-hr	0.0006	0.0003	0.00	0.0006	0.0003	0.00	В
10	1,3-Butadiene*	0.00008720	0.00008720	g/hp-hr	0.0000	0.0000	0.00	0.0000	0.0000	0.00	В
11	Formaldehyde*	0.00308000	0.00308000	g/hp-hr	0.0007	0.0003	0.00	0.0007	0.0003	0.00	В
12	Acetaldehyde*	0.00239000	0.00239000	g/hp-hr	0.0005	0.0003	0.00	0.0005	0.0003	0.00	В
13	Acrolein*	0.00011800	0.00011800	g/hp-hr	0.0000	0.0000	0.00	0.0000	0.0000	0.00	В
14	Naphthalene*	0.00008480	0.00008480	lb/hr	0.0001	0.0001	0.00	0.0001	0.0001	0.00	В
	HAP Total				0.27	0.25	2.28	0.27	0.25	0.68	

Hazardous air pollutant (HAP) listed in the Cear Air Act. TOC includes VOC's

Notes

1. Potential Use indicates Continuous operation 24 hrs/day, 365 days a year, or 8,760 hours total. 0.5 %

2. Percent Sulfur in Fuel Oil =

3. Actual Hours of Operation 8,760

4. Potential Hours of Operation

5. Emission Factor references

А EPA Engine Specification from Manufacturer's data; M515 Trommel 129 hp; Telestack 67 hp

в EPA AP-42 Emission Factors; Sec. 3.3-Gasoline and Diesel Industrial Engines; Table 4-2b

2,500

EPA AP-42 Emission Factors; Sec 3.3-Gasoline and Diesel Industrial Engines; Table 3.3-1 (SCC20200102) С

TABLE 6 BLUEGRASS MATERIALS - PINESBURG QUARRY EMISSIONS SUMMARY April 9, 2024

		POTENTIAL PLANT E	POTENTIAL CONTROLLED PLANT EMISSIONS		TED ACTUAL PLANT EMISSIONS
		Per Hour	Per year	Per Hour	Per year
ITEM	POLLUTANT	of Operation	of Operation	of Operation	of Operation
		<u>(lbs/hr)</u>	<u>(tons/year)</u>	<u>(lbs/hr)</u>	<u>(tons/year)</u>
1	PM	12.15	53.23	12.15	18.22
2	PM-10	4.08	17.88	4.08	5.11
3	PM 2.5	0.52	2.30	0.52	0.66
4	NOx	0.06	0.28	0.06	0.16
5	СО	0.00	0.65	0.00	0.01
6	SOx	0.20	1.31	0.20	0.49
7	Total Organic Compounds (TOC)	0.00	0.01	0.00	0.01
8	Benzene*	0.00	0.01	0.00	0.00
9	Toluene*	0.00	0.00	0.00	0.00
10	Xylenes*	0.00	0.00	0.00	0.00
11	Propylene*	0.00	0.00	0.00	0.00
12	1,3-Butadiene*	0.00	0.00	0.00	0.00
13	Formaldehyde*	0.00	0.00	0.00	0.00
14	Acetaldehyde*	0.00	0.00	0.00	0.00
15	Acrolein*	0.00	0.00	0.00	0.00
16	Naphthalene*	0.00	0.00	0.00	0.00
	HAP Total	0.00	0.02	0.00	0.01
4					

Hazardous Air Pollutant (HAP) listed in the Cear Air Act. TOC includes VOC's

<u>Notes</u>

1. See Tables 2 - 6 for detailed calculations

2. Diesel Engine PM-10 and PM2.5 emissions assumed to equal PM Emissions

3. ND = Not Determined, no uncontrolled emissions factors available for PM 2.5

Martin Marietta Materials, Inc.

Pinesburg Quarry, Permit to Operate 005-0003 Permit to Construct Application Form 5 / 5EP Calculations

Date: 04/02/2024

								Particulate M	latter Emiss	i ons (*3)	
				Projected Operations (*2)					At Pro	jected Oper	ations
Description	Maka	Madal	Design Capacity	Pata (stab)	Daily Op. Hours (brs (day)	Annual Op. Hours	Emissions Factor	Design Capacity Hrly Emissions	Hourly Emissions	Daily Emissions	Annual Emissions
Description	ічаке	wodel	(stpii) (1)	Rate (Stpii)	(IIIS/uay)	(1115/ 91)	(no/ ion)	(ib/nr)	(10/11)	(ib/uay)	(10115/91)
PP-TR-1	MDS	M515 Trommel	500	500	10	2500	0.0022	1.10	1.10	11.00	1.38
PP-CONV-3	Telestack	TC 624	600	600	10	2500	0.0022	1.32	1.32	13.20	1.65
TOTAL								2.42	2.42	24.20	3.03

			PM-10 Emissions (*3)					PM-2.5	Emissions ('	*3)	
				At Projected Operations					At Pro	jected Oper	ations
			Design Capacity	Hourly	Daily	Annual	Emissions	Design Capacity	Hourly	Daily	Annual
		Emissions Factor	Hrly Emissions	Emissions	Emissions	Emissions	Factor	Hrly Emissions	Emissions	Emissions	Emissions
Description	Make	(lb/Ton)	(lb/hr)	(lb/hr)	(lb/day)	(Tons/yr)	(lb/Ton)	(lb/hr)	(lb/hr)	(lb/day)	(Tons/yr)
PP-TR-1	MDS	0.00054	0.27	0.27	2.70	0.34	0.00005	0.03	0.025	0.25	0.03
PP-CONV-3	Telestack	0.00054	0.32	0.32	3.24	0.41	0.00005	0.03	0.03	0.3	0.04
TOTAL			0.59	0.59	5.94	0.74		0.06	0.06	0.55	0.07

(*1) "Design Capacity" is based on vendor or manufacturer provided information, or educated estimates where information is not available.

(*2) "Projected Operations" represent conservative estimates based on computer flow modeling, equipment configuration, past operational records, and interviews with knowledgeable personnel.

(*3) PM, PM-10, & PM-2.5 emissions based on 100% equipment availability, and AP-42 emissions factors (AP-42 11.19.2, Table 11.19.1-2 (English Units) revised 08/04).

(*4) WMPO = Wet Material Processing Operations

(*5) Capacity / Rate = Input Rate = Output Rate for all of the above.

Safety Data Sheet (SDS)

SAFETY DATA SHEET (SDS): LIMESTONE

SECTION I – IDENTIFICATION

PRODUCT IDENTIFIER Limestone TRADE NAME Crushed Stone OTHER SYNONYMS

Sweet Rock, Aggregate, Aglime, Barn Lime, Coverstone, Fluing Agent, Flexible Base, Manufactured Sand, Mineral Filler, Screenings, Limestone CTB

RECOMMENDED USE AND RESTRICTION ON USE Used for construction purposes

This product is not intended or designed for and should not be used as an abrasive blasting medium or for foundry applications.

MANUFACTURER/SUPPLIER INFORMATION Martin Marietta Materials 2710 Wycliff Road Raleigh, North Carolina 27607 Phone: 919-781-4550

For additional health, safety or regulatory information and other emergency situations, call 919-781-4550

SECTION II - HAZARD(S) IDENTIFICATION

HAZARD CLASSIFICATION: Category 1A Carcinogen Category 1 Specific Target Organ Toxicity (STOT) following repeated exposures Category 1 Eye Damage Category 2 Skin Irritant

SIGNAL WORD: DANGER

HAZARD STATEMENTS:

May cause cancer by inhalation. Causes damage to lungs, kidneys and autoimmune system through prolonged or repeated exposure by inhalation. Causes skin irritation and serious eye damage.

PRECAUTIONARY STATEMENTS

Do not handle until the safety information presented in this SDS has been read and understood. Do not breathe dusts or mists. Do not eat, drink or smoke while manually handling this product. Wash skin thoroughly after manually handling.

If on skin: Rinse skin after manually handling and wash contaminated clothing if there is potential for direct skin contact before reuse.

If swallowed: If gastrointestinal discomfort occurs and if person is conscious, give a large quantity of water and induce vomiting; however, never attempt to make an unconscious person drink or vomit.

If inhaled excessively: Remove person to fresh air and keep comfortable for breathing.

If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do, and continue rinsing.

If exposed, concerned, unwell or irritation of the eyes, skin, mouth or throat/nasal passage persist: Get medical attention. Wear eye protection and respiratory protection following this SDS, NIOSH guidelines and other applicable regulations. Use protective gloves if manually handling the product.

Avoid creating dust when handling, using or storing. Use with adequate ventilation to keep exposure below recommended exposure limits.

Dispose of product in accordance with local, regional, national or international regulations.

Please refer to Section XI for details of specific health effects of the components.

COMPONENT(S)	CAS REGISTRY NO	% by weight (approx)						
CHEMICAL NAME								
Limestone	1317-65-3	80-99						
Silicon Dioxide ⁽¹⁾ , SiO ₂	7631-86-9	0-10						
Aluminum Oxide, Al ₂ O ₃	1344-28-1	<1						
Ferric Oxide, Fe ₂ O ₃	1309-37-1	<1						
Magnesium Oxide, MgO	1309-48-4	0-8						
Calcium Oxide, CaO	1305-78-8	0-43						
Sodium Oxide, Na ₂ O	1313-59-3	<1						
Potassium Oxide, K ₂ O	12136-45-7	<1						
Calcium Carbonate, CaCO ₃	471-34-1	40-100						

SECTION III – COMPOSITION/INFORMATION ON INGREDIENTS

(1): The composition of SiO_2 may be up to 100% crystalline silica

SECTION IV – FIRST-AID MEASURES

INHALATION: If excessive inhalation occurs, remove to fresh air. Dust in throat and nasal passages should clear spontaneously. Contact a physician if irritation persists or develops later.

EYES: Immediately flush eye(s) with plenty of clean water for at least 15 minutes, while holding the eyelid(s) open. Occasionally lift the eyelid(s) to ensure thorough rinsing. Remove contact lenses, if present and easy to do, and continue rinsing. Beyond flushing, do not attempt to remove material from the eye(s). Contact a physician if irritation persists or develops later.

SKIN: Rinse skin with soap and water after manually handling and wash contaminated clothing if there is potential for direct skin contact. Contact a physician if irritation persists or develops later.

INGESTION: If gastrointestinal discomfort occurs and if person is conscious, give a large quantity of water and induce vomiting; however, never attempt to make an unconscious person drink or vomit. Get medical attention.

SIGNS AND SYMPTOMS OF EXPOSURE: There are generally no signs or symptoms of exposure to respirable crystalline silica. Often, chronic silicosis has no symptoms. The symptoms of chronic silicosis, if present, are shortness of breath, wheezing, cough and sputum production. The symptoms of acute silicosis which can occur with exposures to very high concentrations of respirable crystalline silica over a very short time period, sometimes as short as 6 months, are the same as those associated with chronic silicosis; additionally, weight loss and fever may also occur. The symptoms of scleroderma, an autoimmune disease, include thickening and stiffness of the skin, particularly in the fingers, shortness of breath, difficulty swallowing and joint problems.

Direct skin and eye contact with dust may cause irritation by mechanical abrasion. Some components of the product are also known to cause corrosive effects to skin, eyes and mucous membranes. Ingestion of large amounts may cause gastrointestinal irritation and blockage. Inhalation of dust may irritate nose, throat, mucous membranes and respiratory tract by mechanical abrasion. Coughing, sneezing, chest pain, shortness of breath, inflammation of mucous membrane, and flu-like fever may occur following exposures in excess of appropriate exposure limits. Repeated excessive exposure may cause pneumoconiosis, such as silicosis and other respiratory effects.

SECTION V – FIRE-FIGHTING MEASURES

EXTINGUISHING AGENT

Not flammable; use extinguishing media compatible with surrounding fire.

UNUSUAL FIRE AND EXPLOSION HAZARD

Contact with powerful oxidizing agents may cause fire and/or explosions (see Section X of this SDS). While individual components are known to react vigorously with water to produce heat, this is not expected from the limestone.

SPECIAL FIRE FIGHTING PROCEDURES	HAZARDOUS COMBUSTION PRODUCTS
None known	None known

SECTION VI – ACCIDENTAL RELEASE MEASURES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED

Persons involved in cleaning should first follow the precautions defined in Section VII of the SDS. Spilled materials, where dust can be generated, may overexpose cleanup personnel to respirable crystalline silica-containing dust and other components that may pose inhalation hazards. Do not dry sweep spilled material. Collect the material using a method that does not produce dust such as a High-Efficiency Particulate Air (HEPA) vacuum or thoroughly wetting down the dust before cleaning up. Wear appropriate personal protective equipment as specified in Section VIII including appropriate respirators during and following clean up or whenever airborne dust is present to ensure worker exposures remain below occupational exposure limits (OELs - Refer to Section VIII).

Place the dust in a covered container appropriate for disposal. Dispose of the dust according to federal, state and local regulations.

This product is not subject to the reporting requirements of SARA Title III Section 313, and 40 CFR 372.

SECTION VII – HANDLING AND STORAGE

This product is not intended or designed for and should not be used as an abrasive blasting medium or for foundry applications. Follow protective controls set forth in Section VIII of this SDS when handling this product. Dust containing respirable crystalline silica and other components that may be corrosive/irritant may be generated during processing, handling and storage. Use good housekeeping procedures to prevent the accumulation of dust in the workplace.

Do not breathe dust. Avoid contact with skin and eyes. Do not store near food or beverages or smoking materials. Do not stand on piles of materials; it may be unstable.

Use adequate ventilation and dust collection equipment and ensure that the dust collection system is adequate to reduce airborne dust levels to below the appropriate OELs. If the airborne dust levels are above the appropriate OELs, use respiratory protection during the establishment of engineering controls. Refer to Section VIII - Exposure Controls/Personal Protection for further information.

In accordance with OSHA's Hazard Communication Standard (29 CFR 1910.1200, 1915.99, 1917.28, 1918.90, 1926.59, 1928.21), state, and/or local right-to-know laws and regulations, familiarize your employees with this SDS and the information contained herein. Warn your employees, your customers and other third parties (in case of resale or distribution to others) of the potential health risks associated with the use of this product and train them in the appropriate use of personal protective equipment and engineering controls, which will reduce their risks of exposure.

See also ASTM International standard practice E 1132-06, "Standard Practice for Health Requirements Relating to Occupational Exposure to Respirable Crystalline Silica."

For safe handling and use of this product for Hydraulic Fracturing, please see the OSHA/NIOSH Hazard Alert Worker Exposure to Silica during Hydraulic Fracturing DHHS (NIOSH) Publication No. 2012-166 (2012). http://www.osha.gov/dts/hazardalerts/hydraulic_frac_hazard_alert.pdf

June 2018

SECTION VIII – EXPOSURE CONTROLS/PERSONAL PROTECTION

Airborne OELs for Components of Lim	nestone:		
COMPONENT(S) CHEMICAL	MSHA/OSHA PEL	ACGIH TLV-TWA	NIOSH REL
NAME			
Limestone	(T) 15 mg/m ³ , (R) 5 mg/m ³	-	(T) 10 mg/m ³ , (R) 5 mg/m ³
Silicon Dioxide, SiO ₂ [§]	(R) 0.05 mg/m ³ (R) 0.025 mg/m ³ (AL)	(R) 0.025 mg/m ³ $^{\#}$	(R) 0.05 mg/m ^{3 #}
Aluminum Oxide, Al ₂ O ₃	(T) 15 mg/m^3 , (R) 5 mg/m^3	$^{(1)}(R) 1 \text{ mg/m}^3$	-
Ferric Oxide, Fe ₂ O ₃	$^{(2)}$ 10 mg/m ³	(R) 5 mg/m ³	⁽³⁾ 5 mg/m ³
Magnesium Oxide, MgO	⁽⁴⁾ 15 mg/m ³	(I) 10 mg/m^3	-
Calcium Oxide, CaO	5 mg/m^3	2 mg/m^3	2 mg/m^3
Sodium Oxide, Na ₂ O ⁽⁵⁾	2 mg/m^3	(C) 2 mg/m^3	(C) 2 mg/m^3
Potassium Oxide, K ₂ O	-	$^{(6)}$ (C) 2 mg/m ³	$^{(6)}$ (C) 2 mg/m ³
Calcium Carbonate, CaCO ₃	(T) 15 mg/m^3 , (R) 5 mg/m^3	-	(T) 10 mg/m^3 , (R) 5 mg/m^3

 $^{\$}$ The OSHA OELs for respirable crystalline silica are listed in the table. As of June 28, 2018, the MSHA standard for respirable crystalline silica has not been changed but may be revised in the future. The MSHA PEL for dust containing crystalline silica (quartz) is based on the silica content of the respirable dust sample and is calculated as: 10 mg/m³/($^{\$}$ SiO₂+2). The MSHA PEL for crystalline silica as tridymite and cristobalite is one-half the PEL for crystalline silica (quartz). # The ACGIH and NIOSH limits are for crystalline silica (quartz), independent of the dust concentration. The ACGIH TLV for crystalline silica as cristobalite is equal to the TLV for crystalline silica as quartz. In 2005, ACGIH withdrew the TLV for crystalline silica as tridymite. The NIOSH REL for crystalline silica as cristobalite and tridymite is the same as for quartz. Refer to Section X for thermal stability information for crystalline silica (quartz). AL: Action Level

(1): Limits based on Aluminum Metal and Insoluble Compounds.

(2): As Iron Oxide Fume.

(3): Dust and fume, as Iron

(4): As Magnesium Oxide Fume Total Particulate.

(5): Based on Sodium Hydroxide.

(6): Based on Potassium Hydroxide.

(R): Respirable Fraction.

(T): Total Dust.

(I): Inhalable Fraction.

(C): Ceiling Limit

Airborne OELs for Inert/Nuisance Dust:

Standard	Respirable Dust	Total Dust
MSHA/OSHA PEL		
(as Inert or Nuisance Dust)	5 mg/m^3	15 mg/m^3
ACGIH TLV		
(as Particles Not Otherwise Specified)	3 mg/m^3	*10 mg/m ³
NIOSH REL		
(Particulates Not Otherwise Regulated)	-	-

Note: The limits for Inert Dust are provided as guidelines. Nuisance dust is limited to particulates not known to cause systemic injury or illness.

* The TLV provided is for inhalable particles not otherwise specified.

ENGINEERING CONTROLS

Ventilation: Use local exhaust, general ventilation or natural ventilation adequate to maintain exposures below appropriate exposure limits.

Other control measures: Respirable dust and crystalline silica levels should be monitored regularly. Dust and crystalline silica levels in excess of appropriate exposure limits should be reduced by implementing feasible engineering controls, including (but not limited to) dust suppression (wetting), ventilation, process enclosure and enclosed employee work stations.

EYE/FACE PROTECTION

Safety glasses with side shields should be worn as minimum protection. Dust goggles should be worn when excessively (visible) dusty conditions are present or are anticipated. If irritation persists, get medical attention immediately. There is potential for severe eye irritation if exposed to excessive concentrations of dust for those using contact lenses.

SKIN PROTECTION

Use appropriate protective gloves if manually handling the product.

SECTION VIII – EXPOSURE CONTROLS/PERSONAL PROTECTION, CONTD.

RESPIRATORY PROTECTION

Respirator Recommendations:

For respirable crystalline silica levels that exceed or are likely to exceed appropriate exposure limits, a NIOSH-approved particulate filter respirator must be worn. Respirator use must comply with applicable MSHA or OSHA standards, which include provisions for a user training program, respirator repair and cleaning, respirator fit testing, and other requirements. For additional information contact NIOSH at 1-800-356-4674 or visit website: http://www.cdc.gov/niosh/npg (search for crystalline silica). See also ANSI standard Z88.2 (latest revision) "American National Standard for Respiratory Protection," 29 CFR 1910.134 and 1926.103, and 42 CFR 84.

NIOSH recommendations for respiratory protection include:

Up to 0.5 mg/m³:

(APF = 10) Any particulate respirator equipped with an N95, R95, or P95 filter (including N95, R95, and P95 filtering facepieces) except quarter-mask respirators. The following filters may also be used: N99, R99, P99, N100, R100, P100.

Up to 1.25 mg/m³:

(APF = 25) Any powered, air-purifying respirator with a high-efficiency particulate (100-series) filter.

(APF = 25) Any supplied-air respirator operated in a continuous-flow mode

Up to 2.5 mg/m³:

(APF = 50) Any air-purifying, full-facepiece respirator with an N100, R100, or P100 filter.

(APF = 50) Any powered, air-purifying respirator with a tight-fitting facepiece and a high-efficiency particulate filter **Up to 25 mg/m³**:

(APF = 1000) Any supplied-air respirator operated in a pressure-demand or other positive-pressure mode

Emergency or planned entry into unknown concentrations or IDLH conditions (50 mg/m³ for crystalline silica-quartz): A selfcontained breathing apparatus (SCBA) that has a full-face piece and is operated in a pressure-demand or other positive-pressure mode or any supplied-air respirator that has a full-face piece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus.

Escape from unknown or IDLH conditions: An air-purifying, full-face piece respirator with a high-efficiency particulate (100-series) filter or any appropriate escape-type, self-contained breathing apparatus.

If the workplace airborne crystalline silica concentration is unknown for a given task, conduct air monitoring to determine the appropriate level of respiratory protection to be worn. Consult with a certified industrial hygienist, your insurance risk manager or the OSHA Consultative Services group for detailed information. Ensure appropriate respirators are worn, as needed, during and following the task, including clean up or whenever airborne dust is present, to ensure worker exposures remain below OELs.

GENERAL HYGIENE CONSIDERATIONS

There are no known hazards associated with this material when used as recommended. Following the guidelines in this SDS are recognized as good industrial hygiene practices. Avoid breathing dust. Avoid skin and eye contact. Wash dust-exposed skin with soap and water before eating, drinking, smoking and using toilet facilities. Wash work clothes after each use.

SECTION IX— PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE	ODOR AND ODOR THRESHOLD
Limestone is a mixture of fine to coarse angular white to	Odorless to musty odor and not applicable
gray particles ranging in size from powder to small stones	
pH AND VISCOSITY	MELTING POINT/FREEZING POINT
Not applicable	Not applicable
BOILING POINT AND RANGE	FLASH POINT AND FLAMMABILITY
Not applicable	Not applicable
FLAMMABILITY/EXPLOSIVE LIMITS AND	EVAPORATION RATE AND DECOMPOSITION
AUTOIGNITION TEMPERATURE	TEMPERATURE
Not applicable	Not applicable
VAPOR PRESSURE AND VAPOR DENSITY IN AIR	SPECIFIC GRAVITY.
Not applicable	2.5-2.75
SOLUBILITY IN WATER	PARTITION COEFFICIENT: N-OCTANOL/WATER
Insoluble	Not applicable

SECTION X – STABILITY AND REACTIVITY

STABILITY	CONDITIONS TO AVOID
Stable	Contact with incompatible materials (see below).

THERMAL STABILITY

If crystalline silica (quartz) is heated to more than 870°C (1598°F), it can change to a form of crystalline silica known as tridymite, and if crystalline silica (quartz) is heated to more than 1470°C (2678°F), it can change to a form of crystalline silica known as cristobalite.

INCOMPATIBILITY (Materials to avoid)

Contact with powerful oxidizing agents such as fluorine, boron trifluoride, chlorine trifluoride, manganese trifluoride, and oxygen difluoride may cause fire and/or explosions. Some components of limestone may react vigorously with water.

HAZARDOUS DECOMPOSITION PRODUCTS

Silica dissolves in hydrofluoric acid producing a corrosive gas - silicon tetrafluoride.

HAZARDOUS POLYMERIZATION

Not known to polymerize

SECTION XI – TOXICOLOGICAL INFORMATION

□ Skin

Health Effects: The information below represents an overview of health effects caused by overexposure to one or more components in limestone.

Primary routes(s) of exposure:

Inhalation

Ingestion

C

EYE CONTACT: Direct contact with dust may cause irritation by mechanical abrasion or corrosive action. Conjunctivitis may occur.

SKIN CONTACT: Direct contact may cause irritation by mechanical abrasion. Some components of material are also known to cause corrosive effects to skin and mucous membranes.

SKIN ABSORPTION: Not expected to be a significant route of exposure.

INGESTION: Small amounts (a tablespoonful) swallowed during normal handling operations are not likely to cause injury. Ingestion of large amounts may cause gastrointestinal irritation and blockage.

INHALATION: Dust may irritate nose, throat, mucous membranes and respiratory tract by mechanical abrasion. Coughing, sneezing, chest pain, shortness of breath, inflammation of mucous membrane, and flu-like fever may occur following exposures in excess of appropriate exposure limits.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Inhaling respirable dust and/or crystalline silica may aggravate existing respiratory system disease(s) (e.g., bronchitis, emphysema, chronic obstructive pulmonary disease) and/or dysfunctions. Exposure to dust may aggravate existing skin and/or eye conditions. Smoking and obstructive/restrictive lung diseases may also exacerbate the effects of excessive exposure to this product.

This product is a mixture of components. The composition percentages are listed in Section III. Toxicological information for each component is listed below:

<u>Silicon Dioxide</u>: It is comprised of amorphous and crystalline forms of silica. In some batches, crystalline silica may represent up to 100% of silicon dioxide.

Exposure route: Eyes, respiratory system.

Target organs: Eyes, skin, respiratory system.

ACGIH, MSHA, and OSHA have determined that adverse effects are not likely to occur in the workplace provided exposure levels do not exceed the appropriate exposure limits. Lower exposure limits may be appropriate for some individuals including persons with pre-existing medical conditions as described under medical conditions aggravated by exposure.

A. SILICOSIS

The major concern is <u>silicosis</u> (lung disease), caused by the inhalation and retention of respirable crystalline silica dust. Silicosis leads to conditions such as lung fibrosis and reduced pulmonary function. The form and severity in which silicosis manifests itself, depends in part on the type and extent of exposure to silica dusts: chronic, accelerated and acute forms are recognized. In later stages the critical condition may become disabling and potentially fatal. Restrictive and/or obstructive changes in lung function may occur due to exposure. A risk associated with silicosis is development of pulmonary tuberculosis (silico-tuberculosis). Respiratory insufficiencies due to massive fibrosis and reduced pulmonary function, possibly with accompanying heart failure, are other potential causes of death due to silicosis.

Chronic or Ordinary Silicosis is the most common form of silicosis and can occur after many years of exposure to levels above the occupational exposure limits for airborne respirable crystalline silica dust. Not all individuals with silicosis will exhibit symptoms (signs) of the disease. Symptoms of silicosis may include (but are not limited to): Shortness of breath; difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; heart enlargement and/or failure. It is further defined as either simple or complicated silicosis.

Simple Silicosis is characterized by lung lesions (shown as radiographic opacities) less than 1 centimeter in diameter, primarily in the upper lung zones. Often, simple silicosis is not associated with symptoms, detectable changes in lung function or disability. Simple silicosis may be progressive and may develop into complicated silicosis or progressive massive fibrosis (PMF).

Complicated Silicosis or PMF is characterized by lung lesions (shown as radiographic opacities) greater than 1 centimeter in diameter. Although there may be no symptoms associated with complicated silicosis or PMF, the symptoms, if present, are shortness of breath, wheezing, cough and sputum production. Complicated silicosis or PMF may be associated with decreased lung function and may be disabling. Advanced complicated silicosis or PMF may lead to death. Advanced complicated silicosis or PMF can result in heart disease (cor pumonale) secondary to the lung disease.

Accelerated Silicosis can occur with exposure to high concentrations of respirable crystalline silica over a relatively short period; the lung lesions can appear within five (5) years of the initial exposure. The progression can be rapid. Accelerated silicosis is similar to chronic or ordinary silicosis, except that the lung lesions appear earlier and the progression is more rapid.

Acute Silicosis can occur with exposures to very high concentrations of respirable crystalline silica over a very short time period, sometimes as short as a few months. The symptoms of acute silicosis include progressive shortness of breath, fever, cough and weight loss. Acute silicosis is a rapidly progressive, incurable lung disease and is typically fatal.

B. CANCER

IARC - The International Agency for Research on Cancer ("IARC") concluded that there is "sufficient evidence in humans for the carcinogenicity of crystalline silica in the form of quartz or cristobalite", there is "sufficient evidence in experimental animals for the carcinogenicity of quartz dust" and that there is "limited evidence in experimental animals for the carcinogenicity of tridymite dust and cristobalite dust." The overall IARC evaluation was that "crystalline silica inhaled in the form of quartz or cristobalite dust is carcinogenic to humans (Group 1)." The IARC evaluation noted that not all industrial circumstances studied evidenced carcinogenicity. The monograph also stated that "Carcinogenicity may be dependent on inherent characteristics of the crystalline silica or on external factors affecting its biological activity or distribution of its polymorphs." For further information on the IARC evaluation, see <u>IARC Monographs on the Evaluation of Carcinogenic Risks to Humans</u>, Volume 100C, "Silica Dust, Crystalline, in the Form of Quartz or Cristobalite" (2012).

NTP - In its Eleventh Annual Report on Carcinogens, concluded that respirable crystalline silica is known to be a human carcinogen, based on sufficient evidence of carcinogenicity from studies in humans indicating a causal relationship between exposure to respirable crystalline silica and increased lung cancer rates in workers exposed to crystalline silica dust.

OSHA - Crystalline silica is not on the OSHA carcinogen list.

CALIFORNIA PROPOSITION 65 - Crystalline silica in October 1996 was listed on the Safe Drinking Water and Toxic Enforcement ACT of 1986 as a chemical known to the state to cause cancer or reproductive toxicity.

There have been many articles published on the carcinogenicity of crystalline silica, which the reader should consult for additional information; the following are <u>examples</u> of recently published articles: (1) "Dose-Response Meta-Analysis of Silica and Lung Cancer", *Cancer Causes Control*, (20):925-33 (2009); (2) "Occupational Silica Exposure and Lung Cancer Risk: A Review of Epidemiological Studies 1996-2005', *Ann Oncol*, (17) 1039-50 (2006); (3) "Lung Cancer Among Industrial Sand Workers Exposed to Crystalline Silica", *Am J Epidemiol*, (153) 695-703 (2001); (4) "Crystalline Silica and The Risk of Lung Cancer in The Potteries", *Occup Environ Med*, (55) 779-785 (1998); (5) "Is Silicosis Required for Silica-Associated Lung Cancer?", *American Journal of Industrial Medicine*, (37) 252- 259 (2000); (6) " Silica, Silicosis, and Lung Cancer: A Response to a Recent Working Group Report", *Journal of Occupational and Environmental Medicine*, (42) 704-720 (2000).

C. AUTOIMMUNE DISEASES

There is evidence that exposure to respirable crystalline silica (without silicosis) or that the disease silicosis may be associated with the increased incidence of several autoimmune disorders, -- scleroderma, systemic lupus erythematosus, rheumatoid arthritis and diseases affecting the kidneys. For a review of the subject, the following may be consulted: (1) "Antinuclear Antibody and Rheumatoid Factor in Silica-Exposed Workers", *Arh Hig Rada Toksikol*, (60) 185-90 (2009); (2) "Occupational Exposure to Crystalline Silica and Autoimmune Disease", *Environmental Health Perspectives*, (107) Supplement 5, 793-802 (1999); (3) "Occupational Scleroderma", *Current Opinion in Rheumatology*, (11) 490-494 (1999); (4) "Connective Tissue Disease and Silicosis", *Am J Ind Med*, (35), 375-381 (1999).

D. TUBERCULOSIS

Individuals with silicosis are at increased risk to develop pulmonary tuberculosis, if exposed to persons with tuberculosis. The following may be consulted for further information: (1) "Tuberculosis and Silicosis: Epidemiology, Diagnosis and Chemoprophylaxis", *J Bras Pneumol*, (34) 959-66 (2008); (2) *Occupational Lung Disorders*, Third Edition, Chapter 12, entitled "Silicosis and Related Diseases", Parkes, W. Raymond (1994); (3) "Risk of Pulmonary Tuberculosis Relative to Silicosis and Exposure to Silica Dust in South African Gold Miners," *Occup Environ Med*, (55) 496-502 (1998); (4) "Occupational Risk Factors for Developing Tuberculosis", *Am J Ind Med*, (30) 148-154 (1996).

E. KIDNEY DISEASE

There is evidence that exposure to respirable crystalline silica (without silicosis) or that the disease silicosis is associated with the increased incidence of kidney diseases, including end stage renal disease. For additional information on the subject, the following may be consulted: (1) "Mortality from Lung and Kidney Disease in a Cohort of North American Industrial Sand Workers: An Update", *Ann Occup Hyg*, (49) 367-73 (2005); (2) "Kidney Disease and Silicosis", *Nephron*, (85) 14-19 (2000); (3) "End Stage Renal Disease Among Ceramic Workers Exposed to Silica", *Occup Environ Med*, (56) 559-561 (1999); (4) "Kidney Disease and Arthritis in a Cohort Study of Workers Exposed to Silica", *Epidemiology*, (12) 405-412 (2001).

F. NON-MALIGNANT RESPIRATORY DISEASES

NIOSH has cited the results of studies that report an association between dusts found in various mining operations and nonmalignant respiratory disease, particularly among smokers, including bronchitis, emphysema, and small airways disease. *NIOSH Hazard Review – Health Effects of Occupational Exposure to Respirable Crystalline Silica*, published in April 2002, available from NIOSH, 4676 Columbia Parkway, Cincinnati, OH 45226, or at <u>https://www.cdc.gov/niosh/docs/2002-129/default.html</u>.

Respirable dust containing newly broken particles has been shown to be more hazardous to animals in laboratory tests than respirable dust containing older silica particles of similar size. Respirable silica particles which had aged for sixty days or more showed less lung injury in animals than equal exposures of respirable dust containing newly broken pieces of silica.

Aluminum Oxide:

Exposure route: Inhalation, ingestion, eye/skin contact.

Target organs: Respiratory system, gastrointestinal system, eyes, skin.

Acute effect: Inhalation or ingestion of high concentrations of this substance may cause gastrointestinal and/or upper respiratory tract irritation. Eye and skin irritant.

Chronic effect/carcinogenicity: Aluminum oxide is not classifiable as a human carcinogen. On occasion workers chronically exposed to aluminum-containing dusts or fumes have developed severe pulmonary reactions including fibrosis, emphysema and pneumothorax. Long-term exposure may have effects on the central nervous system.

Sodium Oxide:

Exposure route: Inhalation, ingestion, eye/skin contact.

Target organs: Respiratory system, gastrointestinal system, eyes, skin.

Acute effect: Corrosive – Sodium oxide reacts violently with water to form sodium hydroxide. Causes burns of skin, eyes, respiratory and gastrointestinal tracts, extremely destructive to mucous membranes.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

<u>Iron Oxide:</u> (Ferric Oxide) Exposure route: Inhalation, ingestion, skin

Target organs: Respiratory system, skin, eyes, neurological system

Acute effect: Major findings: stupor, shock, acidosis, hematemesis, bloody diarrhea or coma. Minor findings: vomiting, diarrhea, mild lethargy. Benign pneumoconiosis with X-ray shadows indistinguishable from fibrotic pneumoconiosis. Experimental work in animals exposed by intratracheal injection or by inhalation to iron oxide mixed with less than 5% silica has shown no evidence of fibrosis produced in lung tissue.

Chronic effect/carcinogenicity: Irritability, nausea or vomiting, and normocytic anemia. When exposed to levels greater than 50 to 100 milligram per day, it can result in pathological deposition of iron in the body tissues causing fibrosis of the pancreas, diabetes mellitus, and liver cirrhosis. Workers exposed to iron oxide fume and silica may develop a "mixed dust pneumoconiosis." Not classifiable as human carcinogen.

Potassium Oxide:

Exposure route: Inhalation, ingestion, eye/skin contact.

Target organs: Respiratory system, gastrointestinal system, eyes, skin.

Acute effect: Corrosive – Potassium oxide reacts violently with water to produce potassium hydroxide. If inhaled, causes sore throat, cough, burning sensation and shortness of breath. Contact with skin produces pain and blisters. Severe deep burns, redness and pain occur with eye contact. Ingestion results in burning sensations, abdominal pain, shock or collapse.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

Calcium Oxide:

Exposure route: Inhalation, ingestion, skin/eye contact.

Target organs: Eyes, skin, respiratory system.

Acute effect: Direct contact with tissues, can result in burns and severe irritation because of its high reactivity and alkalinity. Major complaints of workers exposed to lime consist of irritation of the skin and eyes, although inflammation of the respiratory passages, ulceration and perforation of the nasal septum, and even pneumonia has been attributed to inhalation of the dust.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

<u>Magnesium Oxide</u>: Exposure route: Inhalation, eye/skin contact.

Target organs: Eyes, respiratory system.

Acute effect: Magnesium oxide dust caused slight irritation of the eyes and nose, conjunctivitis, inflammation of the mucous membrane, and coughing up discolored sputum after industrial exposures amongst workers exposed to an unspecified concentration of MgO.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

<u>Calcium Carbonate</u>: Exposure route: Inhalation, skin/eye contact.

Target organs: Eyes, skin, respiratory system.

Acute effect: Irritation of the eyes, skin and respiratory system and cough. It has been reported that there may be a silicosis risk when using impure limestone containing in excess of 3% quartz. However, it is claimed that pure calcium carbonate does not cause pneumoconiosis. Adverse health effects have generally not been reported in literature among workers using CaCO₃.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen

Acute Toxicity Estimates for Limestone - Not Available

SECTION XII – ECOLOGICAL INFORMATION

No data available for this product.

SECTION XIII – DISPOSAL CONSIDERATIONS

WASTE DISPOSAL METHOD

Collect and reuse clean materials. Dispose of waste materials only in accordance with applicable federal, state, and local laws and regulations.

The above information applies to Martin Marietta Materials product only as sold. The product may be contaminated during use and it is the responsibility of the user to assess the appropriate disposal method in that situation.

SECTION XIV – TRANSPORT INFORMATION

DOT HAZARD CLASSIFICATION None

PLACARD REQUIRED None

LABEL REQUIRED

Label as required by the OSHA Hazard Communication standard {29 CFR 1910.1200(f)}, and applicable state and local regulations.

SECTION XV – REGULATORY INFORMATION

OSHA: Crystalline Silica is not listed as a carcinogen.

SARA Title III: Section 311 and 312: Immediate health hazard and delayed health hazard.

TSCA.: All components of the product appear on the EPA TSCA chemical substance inventory.

<u>RCRA</u>: Crystalline silica (quartz) is <u>not</u> classified as a hazardous waste under the Resource Conservation and Recovery Act, or its regulations, 40 CFR §261 <u>et seq</u>.

<u>CERCLA</u>: Crystalline silica (quartz) is <u>not</u> classified as a hazardous substance under regulations of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 40 CFR §302.4

<u>EPCRA (Emergency Planning and Community Right to Know Act)</u>: Crystalline silica (quartz) is <u>not</u> an extremely hazardous substance under regulations of the <u>Emergency Planning and Community Right to Know Act</u>, 40 CFR Part 355, Appendices A and <u>B</u> and is <u>not</u> a toxic chemical subject to the requirements of Section 313.

<u>Clean Air Act</u>: Crystalline silica (quartz) mined and processed by Martin Marietta Materials was not processed with or does not contain any Class I or Class II ozone depleting substances.

FDA: Silica is included in the list of substances that may be included in coatings used in food contact surfaces, 21 CFR

§175.300(b)(3).(The FDA standard primarily applies to products containing silica used in the coatings of food contact surfaces). <u>California Proposition 65</u>: Respirable crystalline silica (quartz) is classified as a substance known to the state of California to be a carcinogen.

<u>Massachusetts Toxic Use Reduction Act</u>: Respirable crystalline silica is considered toxic per the Massachusetts Toxic Use Reduction Act when used in abrasive blasting and molding.

<u>Pennsylvania Worker and Community Right to Know Act</u>: Quartz is considered hazardous for purposes of the Act, but it is not a special hazardous substance or an environmental hazardous substance.

SECTION XVI – OTHER INFORMATION

DEFINITIONS OF ACRONYMS/ABBREVIATIONS

ACGIH: American Conference of Governmental Industrial Hygienists AL: Action Level ANSI: American National Standards Institute **APF: Assigned Protection Factor** California REL: California Inhalation Reference Exposure Limit CAS: Chemical Abstracts Service CERCLA: Comprehensive Environmental Response, Compensation and Liability Act CFR: US Code of Federal Regulations DHHS: Department of Health and Human Services EPA: Environmental Protection Agency EPCRA: Emergency Planning and Community Right to Know Act FDA: Food and Drug Administration GHS: Globally Harmonized System HEPA: High-Efficiency Particulate Air IARC: International Agency for Research on Cancer IDLH: Immediately Dangerous to Life and Health MSHA: Mine Safety and Health Administration NIOSH: National Institute for Occupational Safety and Health, US Department of Health and Human Services NIOSH REL: NIOSH Recommended Exposure Limit NTP: National Toxicology Program **OEL:** Occupational Exposure Limit OSHA: Occupational Safety and Health Administration, US Department of Labor PEL: Permissible Exposure Limit PMF: Progressive Massive Fibrosis RCRA: Resource Conservation and Recovery Act SARA Title III: Title III of the Superfund Amendments and Reauthorization Act, 1986 SDS: Safety Data Sheet STOT: Specific Target Organ Toxicity TLV: Threshold Limit Value TSCA: Toxic Substance Control Act TWA: Time-Weighted Average

SECTION XVI – OTHER INFORMATION, CONTD.

User's Responsibility: The OSHA Hazard Communication Standard 29 CFR 1910.1200 requires that this SDS be made available to your employees who handle or may be exposed to this product. Educate and train your employees regarding applicable precautions. Instruct your employees to handle this product properly.

Disclaimer: The information contained in this document applies to this specific material as supplied and Martin Marietta Materials believes that the information contained in this SDS is accurate. The suggested precautions and recommendations are based on recognized good work practices and experience as of the date of publication. They are not necessarily all-inclusive or fully adequate in every circumstance as not all use circumstances can be anticipated. It may not be valid for this material if it is used in combination with other materials. It is the user's responsibility to satisfy oneself as to the suitability and completeness of this information for one's own particular use. Since the actual use of the product described herein is beyond our control, Martin Marietta Materials, assumes no liability arising out of the use of the product by others. Appropriate warnings and safe handling procedures should be provided to handlers and users. Also, the suggestions should not be confused with nor followed in violation of applicable laws, regulation, rules or insurance requirement. However, product must not be used in a manner which could result in harm.

An electronic version of this SDS is available at <u>www.martinmarietta.com</u>. More information on the effects of crystalline silica exposure may be obtained from OSHA (phone number: 1-800-321-OSHA; website: <u>http://www.osha.gov</u>) or from NIOSH (phone number: 1-800-35-NIOSH; website: <u>http://www.cdc.gov/niosh</u>).

DATE OF PREPARATION 6/2018

REPLACES 3/2015

NO WARRANTY, EXPRESSED OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE IS MADE

Certification of Insurance (COI)

CERTIFICATE OF LIABILITY INSURANCE

DATE (MM/DD/YYYY) 09/26/2023

T C B R	HIS ERT ELO EPR	CERTIFICATE IS ISSUED AS A I IFICATE DOES NOT AFFIRMATI W. THIS CERTIFICATE OF INS ESENTATIVE OR PRODUCER, AI	MATT VEL URA	rer (Y or Nce He ci	OF INFORMATION ONLY NEGATIVELY AMEND, DOES NOT CONSTITUT ERTIFICATE HOLDER.	AND Exten E a c	CONFERS N ND OR ALT CONTRACT	IO RIGHTS (ER THE CO BETWEEN T	UPON THE CERTIFICAT VERAGE AFFORDED B 'HE ISSUING INSURER(E HOL Y THE S), AU	.DER. THIS POLICIES ITHORIZED
II If	/IPO SUE	RTANT: If the certificate holder i BROGATION IS WAIVED, subject	is an to th	ADD	ITIONAL INSURED, the prime and conditions of the	olicy(i e polic	es) must hav sy, certain po	ve ADDITION olicies may i	IAL INSURED provision require an endorsement	sorbe . Ast	endorsed. atement on
tł	nis c	ertificate does not confer rights t	o the	cert	ificate holder in lieu of su	ich end	dorsement(s).			
PRO	DUCE	ER MARSH USA LLC				NAME:					
	1	100 North Tryon Street, Suite 3600				PHONE (A/C, No	, Ext):		FAX (A/C, No):		
	C	Charlotte, NC 28202				É-MAIL	SS:				
	F	Attn: CA NON-RESIDENT NO. OB22889					INS	SURER(S) AFFOR	DING COVERAGE		NAIC #
CN1	02458	3548-1 MMM-GAWX-23-24					PA · American 7	urich Insurance (Company		40142
INSI						INSURE	RA. American 2		ability Incurance Company		26247
	E	Bluegrass Materials Company, LLC				INSURE			ability insurance company		20247
	C	:/o Marin Marietta Materials, Inc.				INSURE	RC:				
	4	123 Parklake Avenue				INSURE	RD:				
	F	PO Box 30013				INSURE	RE:				
		Raleigh, NC 27612				INSURE	RF:				
CO	VER	AGES CER	TIFIC	CATE	NUMBER:	ATL	-005493470-03		REVISION NUMBER:		
T IN C E	HIS I IDIC/ ERTI XCLU	S TO CERTIFY THAT THE POLICIES ATED. NOTWITHSTANDING ANY RE FICATE MAY BE ISSUED OR MAY JSIONS AND CONDITIONS OF SUCH		NSUF EMEI AIN, CIES.	RANCE LISTED BELOW HAY NT, TERM OR CONDITION THE INSURANCE AFFORDI LIMITS SHOWN MAY HAVE	/E BEE OF AN ED BY BEEN R	N ISSUED TO CONTRACT THE POLICIE REDUCED BY	OR OTHER INSURE OR OTHER I S DESCRIBEI PAID CLAIMS.	D NAMED ABOVE FOR TH DOCUMENT WITH RESPEC D HEREIN IS SUBJECT TO	HE POL CT TO V D ALL 1	ICY PERIOD WHICH THIS THE TERMS,
LTR		TYPE OF INSURANCE	INSD	WVD	POLICY NUMBER		(MM/DD/YYYY)	(MM/DD/YYYY)	LIMIT	s	
A	Х	COMMERCIAL GENERAL LIABILITY			GLO987504402		09/30/2023	09/30/2024	EACH OCCURRENCE	\$	3,000,000
		CLAIMS-MADE X OCCUR							DAMAGE TO RENTED PREMISES (Ea occurrence)	\$	50,000
									MED EXP (Any one person)	\$	
										\$	3,000,000
										¢	6.000.000
	Y							BENERAL AGGREGATE	ф Ф	6 000 000	
	<u> </u>								PRODUCTS - COMP/OP AGG	\$	0,000,000
Α	A117				BAP987504502		09/30/2023	09/30/2023 09/30/2024	COMBINED SINGLE LIMIT	¢	5 000 000
					5/11 /0/00/002		0710012020	07/30/2024	(Ea accident)	ф Ф	5,000,000
									BODILY INJURY (Per person)	\$	
		AUTOS ONLY							BODILY INJURY (Per accident)	\$	
	Х								(Per accident)	\$	
										\$	
В	X	UMBRELLA LIAB X OCCUR			AUC 3293761-02		09/30/2023	09/30/2024	EACH OCCURRENCE	\$	1,000,000
		EXCESS LIAB							AGGREGATE	\$	1,000,000
										¢	
Α	WOF	RKERS COMPENSATION			WC987504702		09/30/2023	09/30/2024	X PER OTH-	ψ	
	AND	EMPLOYERS' LIABILITY							STATUTE ER		2 000 000
	OFF	ICER/MEMBER EXCLUDED?	N/A						E.L. EACH ACCIDENT	\$	2,000,000
	(Mar	ndatory in NH)							E.L. DISEASE - EA EMPLOYEE	\$	2,000,000
	DÉS	CRIPTION OF OPERATIONS below							E.L. DISEASE - POLICY LIMIT	\$	2,000,000
DES	CRIPT		FS (A	CORD	101 Additional Remarks Schedulu	e may be	attached if mor	e snace is require	ad)		
Re: I Cer Gen	DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more space is required) Re: Mining License Number 28473 Certificate holder is additional insured (except Workers' Compensation) as their interest may appear, if required by written contract with the named insured, subject to the terms and conditions of the policies. Jeneral liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. A waiver of subrogation applies under General Liability, Automobile Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions of the policies.										
CE	RTIF	FICATE HOLDER				CANC	ELLATION				
	C B F H	Department of Environmental Protection Bureau of Mining Programs P.O. Box 8461 Farrisburg, PA 17105-8461				SHO THE ACC	ULD ANY OF EXPIRATION ORDANCE WI	THE ABOVE D N DATE THE TH THE POLIC	ESCRIBED POLICIES BE C/ EREOF, NOTICE WILL E Y PROVISIONS.	ANCELL BE DEI	.ED BEFORE LIVERED IN
						AUTHO	RIZED REPRESE	NTATIVE			
									Marsh USA	120	2

The ACORD name and logo are registered marks of ACORD

© 1988-2016 ACORD CORPORATION. All rights reserved.

EJ Report

Martin Marietta has reviewed the Environmental Justice Screening Tool, beta version for the communities surrounding the Pinesburg Quarry at 14932 Bottom Road, Williamsport, MD 21795 (the "Facility"). The census identified tracts and their associated Environmental Justice (EJ) Scores are listed in the table shown below.

The Facility is not a major pollutant source. Quarrying and associated activities generally have limited impact on the communities in which they operate. Moreover, those limited impacts diminish rapidly with distance to any receptor. The census designated tracts evaluated below are rural in nature. The closest residence to the Facility is 14924 Bottom Road, Williamsport, MD and there are ninety-three (93) residents within 1,000 feet of the Facility.

In reviewing the pollutants considered under the MDE's environmental Justice Screening methodology, the Facility generates dust (aka particulate matter or PM) from blasting and equipment traffic. The Facility also maintains a permitted discharge to the Potomac River and that permit contains limits on total suspended solids ("TSS"). Finally, the Facility could have noise impacts beyond its boundary.

Martin Marietta maintains and complies with the following permits: Surface Mining Permit, Surface Mining License, NPDES Discharge Permit, Water Appropriations Permit, Air Permit, Oil Control Permit, and Scrap Tire General License. These permits have numerous requirements to protect our neighbors and the environment. The Facility uses a number of methods to comply with these permits, including the following:

To control dust emissions from on-site mobile equipment, the Facility operates a 9,000 gallon water truck, even during storm events. High pressure water sprays are utilized at dust producing points on the processing equipment to control any dust emissions. The Facility exit utilizes a wheel wash to prevent dust from being generated and/or tracked out by customer haul trucks. Finally, in accordance with State and Federal air regulations, the Facility operates so as to ensure that there are no visible emissions beyond its fence line.

To control TSS discharges from the Facility, settling pond systems are utilized to treat process and stormwater on site. These ponds are designed to ensure that TSS will settle to the bottom and therefore be removed from any discharge water. Further, this system is designed to minimize discharges. Water utilized in the process and to control dust is generally retained on site. For storm events or in the event there is more process water than can be retained on site, water samples are also collected monthly and reported to MDE quarterly that demonstrate compliance with the TSS and other limits of the NPDES permit.

Martin Marietta Materials, Inc. – Pinesburg Quarry received the 2022 Silver Environmental Excellence Award presented by the National Stone, Sand & Gravel Association. Environmental Excellence Awards are presented annually to recognize producers actively contributing to the maintenance of the environment in and around their operations as evidenced by a corporate commitment to the exemplary use of environmental controls and systems. It is important to note that the Pinesburg Quarry has maintained and exceeded environmental compliance for many years to ensure the surrounding community is not negatively impacted by the operations at the quarry.

MDE Screening Report

Area of Interest (AOI) Information

Area : 3.14 mi²

May 6 2024 14:05:29 Eastern Daylight Time

Tabloid ANSI B Landscape

MDE, OS, OIMT, Esri Community Maps Contributors, WashCo MD, West Virginia GIS, © OpenStreetMap, Microsoft, Esri, TomTom, Gamin, SafeGraph, GeoTechnologies, Inc, METUNASA, USGS FPA INFS US Comuni Rumanu USGA USFINS

5/6/24, 2:06 PM

about:blank

Name	Count	Area(mi²)	Length(mi)
MDE Final EJ Score (%ile score)	1	2.16	N/A
Overburdened Communities Combined Score	1	2.16	N/A
Overburdened Pollution Environmental Score (%ile score)	1	2.16	N/A
Overburdened Exposure Score (%ile score)	1	2.16	N/A
Overburdened Sensitive Population (%ile score)	1	2.16	N/A
Socioeconomic/Demographic Score 2020 (Percentile score) (Underserved Community)	1	2.16	N/A
Air Emissions Facilities	1	N/A	N/A
Sulfur Dioxide (2010)	0	0	N/A
Ozone (2015)	1	2.36	N/A
Fine Particles (2012)	1	2.36	N/A
Biosolids FY 2020 and Current Permit Details	0	N/A	N/A
Biosolids FY2010 - 2014 Permit Details	0	N/A	N/A
Biosolids FY2009 Expired Permit Details	0	N/A	N/A
Biosolids FY 2020 and Current Permits Distribution By Acreage	1	2.16	N/A
Biosolids FY2015 - 2019 Permits Distribution By Acreage	1	2.16	N/A
Biosolids FY2010 - 2014 Permits Distribution By Acreage	1	2.16	N/A
Biosolids FY2009 Permits Expired Distribution By Acreage	1	2.16	N/A
Biosolids FY 2020 and Current Permit Distribution By Percent Coverage	1	2.16	N/A
Biosolids FY2015 - 2019 Permit Distribution By Percent Coverage	1	2.16	N/A
Biosolids FY2010 - 2014 Permit Distribution By Percent Coverage	1	2.16	N/A
Biosolids FY2009 Expired Permit Distribution By Percent Coverage	1	2.16	N/A
Concentrated Animal Feeding Operations (CAFOs)	0	N/A	N/A
Composting Facilities	0	N/A	N/A
Food Scrap Acceptors	0	N/A	N/A
Landfills	0	N/A	N/A
Correctional Facilities	0	N/A	N/A
Industrial Food Suppliers	0	N/A	N/A
Residential Colleges	0	N/A	N/A
Non-Residential Colleges	0	N/A	N/A
Hospitals	0	N/A	N/A
High Schools	0	N/A	N/A
Grocery Stores	0	N/A	N/A
10 Miles from Landfill	2	6.28	N/A
10 Miles from Composting Facility	1	3.14	N/A
General Composting Facilities Tier 2 (MD)	0	N/A	N/A
Commercial Anaerobic Digester (MD)	0	N/A	N/A
Out of State Facilities	0	N/A	N/A
30 mile buffer (Maryland)	1	3.14	N/A
30 Mile Buffer (Out of State)	1	3.14	N/A
Land Restoration Facilities	0	N/A	N/A
Determinations (points)	0	N/A	N/A
Determinations (areas)	0	0	N/A
Entities	0	N/A	N/A
Active Coal Mine Sites	0	N/A	N/A
Historic Mine Facilities	0	N/A	N/A

5/6/24, 2:06 PM

about:blank

All Permitted Solid Waste Acceptance Facilities	0	N/A	N/A
Municipal Solid Waste Acceptance Facilities	0	N/A	N/A
Maryland Dam Locations	0	N/A	N/A
Maryland Pond Locations	5	N/A	N/A
Surface Water Intakes	0	N/A	N/A
Wastewater Discharge Facilities	2	N/A	N/A
Drinking Water	0	N/A	N/A
Clean Water	0	N/A	N/A

MDE Final EJ Score (%ile score)

#	Census tract identifier	Geographic Area Name	Total Population	Final EJ Score Percent (for this tract)	Final EJ Score Percentile (Distribution across Maryland)	Area(mi²)
1	24043011700	Census Tract 117, Washington County, Maryland	5389	30.90	57.83	2.16

Overburdened Communities Combined Score

#	GEOID20	Geographic_Area_ Name	TotalPop	Overburd_Exposu re_Percent	Overburd_Exposu re_Percentile	Overburd_Poll_En viro_Percent	Overburd_Poll_En viro_Percentile	Sensitive_Populati on_Percent	
1	24043011700	Census Tract 117, Washington County, Maryland 5,389 45.09		45.09	38.48	8.94	58.92	76.41	
#	Sensitive_Popul	ation_Percentile	Overburden	edAllPercent	Overburdene	dAllPercentile	Area(mi²)		
1	85.92		84.21		80.72		2.16		

Overburdened Pollution Environmental Score (%ile score)

#	GEOID20	Geographic_Area_ Name	RentalsOccupiedP re79Percent	Percentile	PercentRMP	PercentRMPEJ	PercentHazWaste	PercentHazWaste EJ				
1	24043011700	Census Tract 117, Washington County, Maryland	9.69	52.70 6.09 9		9.81	6.67	11.77				
#	PercentSuperFund PercentSuperFund PercentHaz		PercentHazWW	PercentHazWWEJ	BrownFPercent	Percentile_1	PercentPowerPlan ts	Percentile_12				
1	7.47 12.91		50.58	32.73	0.00	0.00	0.00	0.00				

#	PercentCAFOS	DS Percentile_12_13 PercentActiveMines		Percentile_12_13_14	alPercent	ercentile	Area(mi²)
1	0.00	0.00	0.00	0.00	8.94	58.92	2.16

Overburdened Exposure Score (%ile score)

#	GEOID20	Geogra	aphic_Area_ Name	Total_Po	р	PercentNATA_Can cer	Percentile_NATA_ Cancer	Perce	entNATA_Res p_HI	Percentile_N Resp_H	iata_ Ii	PercentNATA_Dies el
1	24043011700	Census Washin Marylar	s Tract 117, gton County, nd	5,389.00		60.00	14.78	60.00		9.77		23.15
#	Percentile_NATA_ Diesel	PercentNATA_PM2 PercentileNATA_I 5 M25		TA_P	PercentOzone	PercentileOzone	Per	centTraffic	ntTraffic PercentileTra		PercentTRI	
1	9.24	93.39		11.77		85.78 6.32 0.65		0.65	0.65 4.16			21.05
#	PercentileTRI		PercentHazWasteLF		Perc	entile_HazWasteLF	PollutionExposurePercen t		cen PollutionExposurePerc		Area(mi²)	
1	97.20		16.67		95.49		45.09		38.48		2.16	

Overburdened Sensitive Population (%ile score)

#	GEOID20	Geographic_ Name	_Area_	PerAstma		PercentileAst	PerMyo		PercentileMyo	Р	erLow	PercentileLow
1	24043011700 Census Tract 11 Washington Cou Maryland		t 117, County,	87.38	92.82		87.88		91.25 46.73			68.15
#	# PercentBroad			PercentileBroad Perce		ntSens PercentileSens		Are		Area(mi²)		
1	16.32 88.65			59.57		85.	85.22		2.16			

5/6/24, 2:06 PM

about:blank

Socioeconomic/Demographic Score 2020 (Percentile score) (Underserved Community)

#	Census tract identifier	Geographic Area Name	Total Population	Percent Poverty	Percent Minority	Percent Limited English Proficiency	Demographic Score (Percent for this tract)	Demographic Score (Percentile Distribution acoss Maryland)	Area(mi²)
1	24043011700	Census Tract 117, Washington County, Maryland	5,389	23.27	6.66	0.00	9.98	16.45	2.16

Air Emissions Facilities

	#	Agency Interest ID	Facilty Name	Agency Interest Alt Name	Premises ID	Emission Year	Air Code	NAIC Code	NAIC Description
	1	7764	Martin Marietta - Pinesburg Quarry	Martin Marietta - Pinesburg Quarry- 7764	043-0115	2021	SOP	212,312	Crushed and Broken Limestone Mining and Quarrying
	#	Physical Address	Physical City	Physical State	Physical Zip Code	County	Carbon Monoxide (CO)	Nitrous Oxide	Particulate Matter (PT)
-	1	14932 Bottom Rd	Williamsport	MD	21,795	Washington	0.01	0.01	49.72
	#	Particulate Matter (10 Filterable)	Particulate Matter (2.5 Filterable)	PM Condensables	Volatile Organic Compounds (VOC)	Sulphur Dioxide (SOx)	Carbon Dioxide	Mercury	Methane
ŀ	1	18.25	2.41	0.00	0.00	0.00	5.41	0.00	0.00
	#	Billable Criteria	Pollutants (BCRI)	Billiable Hazardous	s Pollutants (BHAP)	Total Billable a Hazardous Air Po (HA	nd Non-Bilable Ilutant Emissions IPS)	Co	unt

Ozone (2015)

18.27

1

#	STATEFP10	COUNTYFP10	COUNTYNS10	GEOID10	NAME10	Ozone NAA Area	8-Hr Ozone (2015) Designation	8-HR Ozone (2015) Classification	8-Hr Ozone (2015) Status	Area(mi²)
1	24	043	01714220	24043	Washington	No Data	Attainment/Unc lassifiable	No Data	No Data	2.36

0.00

1

Fine Particles (2012)

#	STATEFP10	COUNTYFP10	COUNTYNS10	GEOID10	NAME10	PM2.5 (2012) Status	Area(mi²)
1	24	043	01714220	24043	Washington	Attainment/Unclassifia ble	2.36

Biosolids FY 2020 and Current Permits Distribution By Acreage

0.00

#	County Name	FY2020andAfter	Area(mi²)
1	Washington	158.10	2.16

Biosolids FY2015 - 2019 Permits Distribution By Acreage

#	County Name	FY2015to2019	Area(mi²)
1	Washington	97.30	2.16

Biosolids FY2010 - 2014 Permits Distribution By Acreage

#	County Name	FY2010to2014	Area(mi²)
1	Washington	289.10	2.16

Biosolids FY2009 Permits Expired Distribution By Acreage

#	County Name	FY2009	Area(mi²)
1	Washington	No Data	2.16

Biosolids FY 2020 and Current Permit Distribution By Percent Coverage

#	County Name	FY2020andAfter	Area(mi²)
1	Washington	158.10	2.16

Biosolids FY2015 - 2019 Permit Distribution By Percent Coverage

about:blank

#	County Name	FY2015to2019	Area(mi²)
1	Washington	97.30	2.16

Biosolids FY2010 - 2014 Permit Distribution By Percent Coverage

#	County Name	FY2010to2014	Area(mi²)
1	Washington	289.10	2.16

Biosolids FY2009 Expired Permit Distribution By Percent Coverage

#	County Name	FY2009	Area(mi²)
1	Washington	No Data	2.16

10 Miles from Landfill

#	County	Туре	Facility_N	ADDRESS	FILL	SITE_ACRE	AI_No_	Owner_Type
1	WASHINGTON	WMF	Forty West MunicipalLandfill	12630 Earth Care Rd, Hagerstown MD 21722.	189	425.00	23,243.00	СТҮ
2	WASHINGTON	WRF	Washington Co. RubbleLandfill	11112 Kemps Mill Rd, Williamsport MD 21740.	75	100.00	23,096.00	СТҮ
#	MD_GF	RID_E	PERMI	TNUMB	EXPIRATION		Area(mi²)	
1	575 /673		2014-WMF-0266A		10/27/2019, 8:00 PM		3.14	
2	2 568 /652		2014-WRF-0270		10/27/2019, 8:00 PM	2019, 8:00 PM 3.14		

10 Miles from Composting Facility

#	County	Facility	Address	Accepts_Fo	Location_o	Area(mi²)
1	No Data	40 West Landfill	12630 Earth Care Rd, Hagerstown, MD 21740	No	12630 Earth Care Rd, Hagerstown, MD 21740	3.14

30 mile buffer (Maryland)

#	Facility_Name_1	Facility_Contact _1	Contact_Phone	Contact_Email_ 1	Contact_2	Contact_2_Phon e	Contact_2_Emai I	URL	Area(mi²)
1	Key City Compost at Utica Bridge Farm	Phil Westcott	(240) 608-0283	info@keycompo st.com	No Data	No Data	No Data	https://www.keyc ompost.com/	3.14

30 Mile Buffer (Out of State)

#	FacilityName	Contact	Area(mi²)
1	Wilson College	https://files.dep.state.pa.us/Waste/Bureau%20of%20Was te%20Management/WasteMgtPortalFiles/PA_Permitted_ Food_Waste_Composting_Facilities.pdf	3.14

Maryland Pond Locations

Facility Type DAM HEIGHT County HAZARD CLASS 6 DIGIT WATERSHED 8 DIGIT WATERSHED Count
--

Wastewater Discharge Facilities

#	AID	FAC_NAME	Comments	ValidateCo	GIS_Action	GIS_Comments	Corrective	ZipCodeCom
1	32,994	Pinesburg Quarry	No Data	Data Verified Accurate Against MD 8 Digit Watershed	No Data	No Data	No Data	No Data
2	22,110	C. William Hetzer, Inc - Shale Pit	No Data	Data Verified Accurate Against MD 8 Digit Watershed	No Data	No Data	No Data	No Data
	1	1		1		1		1
#	CBSEG_92	BAY_TRIB	MD12DIG	County	MDMajorTrib	HUC	Tier2Catchments_ yn	Tier2Catchments
1	POTTF_MD	02140501	021405010164	22	1	020700041103	0	No Data
2	POTTF_MD	02140501	021405010164	22	1	020700041103	0	No Data

about:blank

#	Tier3Catchments_ yn	Tier3Catch	nments	SSPRA_yn	SSPRA	Impaired_yn	Impaired	w	QA_yn	WQA
1	0	No Data		1	GROUP 2	1	Sediments, lons	1		Nutrients(Phosphor ous), (DO)
2	0	No Data		0	No Data	1	lons, Sediments	1		Nutrients(Phosphor ous), (DO)
#	T3038Dig_yn	T3038I	Dig	TMDL8Dig_yn	TMDL8Dig	MHTArcheo_yn	MHTArcheo	Faci	lity_Type	State_Num
1	1	lons		1	Sediments	0	No Data	No Data	3	No Data
2	1	lons		1	Sediments	0	No Data	No Data	3	No Data
#	WatershedYear	Watershed	Quarter	WatershedCode	WatershedName	SimplePermitting ction	A PermitAge	Су	cleYear	PreDraftComplete
1	No Data	No Data		No Data	No Data	No Data	No Data	No Data	3	No Data
2	No Data	No Data		No Data	No Data	No Data	No Data	No Data	9	No Data
#	DatePreDraftComp lete	DraftPermi eteB	tCompl y	IssueBy	AppFee	Bill	Amount	DSC	HG_RATE	SW_AUTH_ROD
1	No Data	No Data		No Data	No Data	0	0.00	0.00		0
2	No Data	No Data		No Data	No Data	0	0.00	0.00		0
#	P2_OR_C_Bay_20 00	Distri	ct	SurWellName	SurWellSource	SurWellDist	CommWellName	Comm	WellSource	CommWellDist
1	0	1C		No Data	No Data	-99.00	No Data	No Data	3	-99.00
2	0	1C		No Data	No Data	-99.00	No Data	No Data	3	-99.00
#	CommWellPr	otect		Active	Inc	lude	ManualActive			Count
1	0		1		1			1		
2	0		1		1				1	

© MDE

August 22, 2024

Ms. Kathryn Rathvon, Zoning Coordinator Division of Planning & Zoning 747 Northern Avenue Hagerstown, Maryland 21742

Dear Ms. Rathvon:

This letter is an official request for a zoning confirmation letter from the Washington County Division of Planning & Zoning for the Martin Marietta Materials, Inc. – Pinesburg Quarry located at 14932 Bottom Road, Williamsport, MD 21795. Tax Account # - 23006677; owner Martin Marietta Materials, Inc. The letter should be addressed to Whitney McGuigan, 233 Stevenson Road, North East, MD 21901. The required \$100.00 fee was previously mailed dated 5/20/2024.

If you need additional information please let me know.

Sincerely,

MUMMan

Whitney D. McGuigan

North East Quarry 233 Stevenson Road, North East, MD 21901 m. (443) 877-2535 e. whitney.mcguigan@martinmarietta.com www.martinmarietta.com

DEPARTMENT OF PLANNING & ZONING PLANNING | ZONING | LAND PRESERVATION | FOREST CONSERVATION | GIS

August 29, 2024

Whitney McGuigan 233 Stevenson Road North East MD 21901

RE: Request for Martin Marietta Materials Inc.-Pinesburg Quarry located at 14932 Bottom Road, Williamsport, MD 21795 Parcel ID: 23006677

To Whom it may Concern,

In response to your request for information regarding the above-reference properties we have researched our files and present the following:

- The zoning classifications for the subject property:
 - Environmental Conservation District which is governed by Article 5B in the Washington County Zoning Ordinance.
 - Agricultural Rural District which is governed by Article 5A in the Washington County Zoning Ordinance.
- The property also has an Industrial Mineral Overlay established on the property. The Industrial Mineral Overlay is governed by Article 15 in the Washington County Zoning Ordinance.

This information was researched on August 29, 2024 by the undersigned per request and as a public service. The undersigned certifies that the above information contained herein is believed to be accurate and is based upon or relates to the information supplied by the requestor. The Authority assumes no liability for errors or omissions. All information was obtained from public records which may be inspected during regular business hours.

Sincerely,

Katie Rathvon Zoning Coordinator

747 Northern Avenue | Hagerstown, MD 21742 | P: 240.313.2430 | F: 240.313.2431 | TDD: 7-1-1

WWW.WASHCO-MD.NET

ARTICLE 5B – "EC" ENVIRONMENTAL CONSERVATION DISTRICT⁵⁶

Section 5B.0 Purpose

The purpose of this district is to prescribe a zoning category for those areas where, because of natural geographic factors and existing land uses, it is considered feasible and desirable to conserve open spaces, water supply sources, woodland areas, wildlife and other natural resources. This district may include extensive steeply sloped areas, stream valleys, water supply sources, and wooded areas adjacent thereto.

Section 5B.1 Principal Permitted Uses and Accessory Uses

See the Table of Land Uses [Section 3.3, Table No. 3.3(1)]

Section 5B.2 Special Exceptions

See the Table of Land Uses [Table No. 3.3(1)] and any use the Board of Appeals finds is functionally similar to any permitted use or special exception listed in the table for this district. The Board of Appeals shall not grant any special exception that is inconsistent with the purpose set forth for this district.

Section 5B.3 Criteria

The maximum density in the Environmental Conservation zoning district shall be one (1) dwelling unit per twenty (20) acres of land owned minus the lot area taken off under Section 5B.4.

Section 5B.4 Exemptions

55

- (a) Each parcel of land of sufficient size as of October 29, 2002 shall be permitted to subdivide up to three (3) lots, which may be increased to a maximum of five (5) lots based on a sliding scale of one additional lot for each fifty (50) acres of land. The minimum lot size shall be the minimum lot size for the zoning of the property prior to the effective date of this amendment. Additional lots permitted under the zone will then be calculated on the remaining acreage based on one lot for every twenty acres.
- (b) Additional exemptions are available for the preservation of historic properties listed on the County Inventory of Historic Sites, the National Register of Historic Places or the Maryland Historical Trust's Inventory of Historic Sites. A lot may be created around the existing historic site/structure along with two additional lots on the original parcel upon the owner requesting and the Board of County Commissioners approving the placement of an "HP" Historic Preservation District Overlay designationon the lot with the historical site or structure.

Revision 14, Article 5B added 7/26/05 (RZ-03-005)

	Lot Area	Lot Width	Lot Area/Family	Front Yard	Side Yard	Rear Yard	Height
Dwelling, Single Family	40,000 sq. ft.	100 ft.	40,000 sq. ft.	40 ft.	15 ft.	50 ft.	40 ft.
Dwelling, Two-Family	40,000 sq. ft.	100 ft.	20,000 sq. ft.	40 ft.	15 ft.	50 ft.	40 ft.
Dwelling, Semi- Detached**	20,000 sq. ft.	50 ft.	20,000 sq. ft.	40 ft.	15 ft.	50 ft.	40 ft.

Section 5B.5 Residential Lot Size and Bulk Dimensions⁵⁷

** Semi-detached dwellings are special exception uses in this district and require Board of Zoning Appeals approval.

Section 5B.6 Non-Residential Lots Size and Bulk Dimensions (not covered in Rural Business)^{58 59}

This section covers uses listed in the Table of Land Uses [Table No. 3.3(1)] that are principally permitted and that are not governed by the Rural Business floating zone.

	Lot Area	Lot Width	Front Yard	Side Yard	Rear Yard
Banquet/Reception Facilities	5 acres	300 ft.	50 ft.	100 ft.	50 ft.
Schools, Elementary	15 Acres	400 ft.	150 ft.	100 ft.	50 ft.
Schools, Middle	30 Acres	500 ft.	150 ft.	100 ft.	50 ft.
Schools, High	60 Acres	500 ft.	150 ft.	100 ft.	50 ft.
Churches	2 Acres	200 ft.	100 ft.	50 ft.	50 ft.
Other Principal Permitted or Conditional Uses	3 Acres	300 ft.	50 ft.	50 ft.	50 ft.

Section 5B.7 Special Provisions⁶⁰

- 1. New development adjacent to existing Industrial Mineral (IM) zoning districtsshall have a setback of 200 feet from all shared property lines.
- Developments opting to use the clustering provision outlined in Article 22, Division VIII of this Ordinance may reduce side yard setbacks to a minimum of 15feet from adjacent property lines created by the new development.
- 3. Side yard setbacks for residential use lots shall be a minimum of 50 ft. for lots twenty (20) acres or greater in size.

⁵⁶ Revision 16, Section 5B.5 amended 8/4/09 (RZ-09-001)

⁵⁷ Revision 15, Section 5B.6 amended 9/19/06 (RZ-06-007)

⁵⁹ Revision 18, Section 5B.6 amended 1/16/18 (RZ-07-007/ORD-2018-13)

⁶⁰ Revision 16, Section 5B.7 amended 8/4/09 (RZ-09-001)

- 4. Side yard setbacks for residential use lots that are contiguous to parcels with permanent easements or parcels in areas designated as priority agricultural preservation areas or transferable development rights sending areas shall have minimum setbacks of 50 feet.
- 5. The Planning Commission may increase minimum setbacks up to 50 feet for properties adjacent to parcels that are being actively farmed or parcels with an Agricultural district designation.

ARTICLE 5A – "A(R)" AGRICULTURAL (RURAL) DISTRICT⁵¹

Section 5A.0 Purpose

The purpose of this district is to provide for continued farming activity and the many uses that do not require public water and sewerage facilities and which may be more suitably located outside of the urban-type growth of the larger communities of the County. The Agricultural zoning district has been purposely drawn to enclose large blocks of the best soils for intensive agricultural production as well as gently rolling topography for farming. Most of the operating farms as well as the largest block of farmland preserved through the Agricultural Preservation Program is located in this area.

Section 5A.1 Principal Permitted Uses and Accessory Uses

See the Table of Land Uses [Section 3.3, Table No. 3.3(1)]

Section 5A.2 Special Exceptions

See the Table of Land Uses [Table No. 3.3(1)] and any other use the Board of Appeals finds is functionally similar to any permitted use or special exception listed in the table for this district. The Board of Appeals shall not grant any special exception that is inconsistent with the purpose set forth for this district.

Section 5A.3 Criteria

The maximum density in the Agricultural zoning district shall be one (1) dwelling unit per five (5) acres of land owned minus the lot area taken off under Section 5A.4.

Section 5A.4 Exemptions

- (a) Each parcel of land of sufficient size as of October 29, 2002 shall be permitted to subdivide up to three (3) lots, which may be increased to a maximum of five (5) lots based on a sliding scale of one additional lot for each fifty (50) acres of land. The minimum lot size shall be the minimum lot size for the zoning of the property prior to the effective date of this amendment. Additional lots permitted under the zone will then be calculated on the remaining acreage based on one lot for every five acres.
- (b) Additional exemptions are available for the preservation of historic properties listed on the County Inventory of Historic Sites, the National Register of Historic Places or the Maryland Historical Trust's Inventory of Historic Sites. A lot may be created around the existing historic site/structure along with two additional lots on the original parcel upon the owner requesting and the Board of County Commissioners approving the placement of an "HP" Historic Preservation District Overlay designation on the lot with the historical site or structure.

⁵¹ Revision 14, Article 5A added 7/26/05 (RZ-03-005)

Section 5A.5 Residential Lot Size and Bulk Dimensions⁵²

	Lot Area	Lot Width	Lot Area/Family	Front Yard	Side Yard	Rear Yard	Height
Dwelling, Single Family	40,000 sq. ft.	100 ft.	40,000 sq. ft.	40 ft in.	15 ft.	50 ft.	40 ft.
Dwelling, Two-Family	40,000 sq. ft.	100 ft.	20,000 sq. ft.	40 ft.	15 ft.	50 ft.	40 ft.
Dwelling, Semi- Detached**	20,000 sq. ft.	50 ft.	20,000 sq. ft.	40 ft.	15 ft.	50 ft.	40 ft.

** Semi-detached dwellings are special exception uses in this district and require Board of Zoning Appeals approval.

Section 5A.6 Non-Residential Lot Size and Bulk Dimensions (not covered in Rural Business)^{53 54}

This section covers uses listed in the Table of Land Uses [Table No. 3.3(1)] that are principally permitted and that are not governed by the Rural Business floating zone.

	Lot Area	Lot Width	Front Yard	Side Yard	Rear Yard
Banquet/Reception Facilities	5 acres	300 ft.	50 ft.	100 ft.	50 ft.
Schools, Elementary	15 Acres	400 ft.	150 ft.	100 ft.	50 ft.
Schools, Middle	30 Acres	500 ft.	150 ft.	100 ft.	50 ft.
Schools, High	60 Acres	500 ft.	150 ft.	100 ft.	50 ft.
Churches	2 Acres	200 ft.	100 ft.	50 ft.	50 ft.
Other Principal Permitted or Conditional Uses	3 Acres	300 ft.	50 ft.	50 ft.	50 ft.

Section 5A.7 Special Provisions⁵⁵

- 1. New development adjacent to existing Industrial Mineral (IM) zoning districts shall have a setback of 200 feet from all shared property lines.
- 2. Developments opting to use the clustering provision outlined in Article 22, Division VIII of this Ordinance may reduce side yard setbacks to a minimum of 15 feet from adjacent property lines created by the new development.
- 3. Development that occurs within the Airport Overlay Area as designated in the Comprehensive Plan shall have a density requirement of one (1) dwelling unit per fifty (50) acres of land owned. No lots under Section 5A.4 shall be permitted in the Airport Overlay Area.
- 4. Side yard setbacks for residential use lots shall be a minimum of 50 ft. for lots five (5) acres or greater in size.

⁵² Revision 16, Section 5A.5 amended 8/4/09 (RZ-09-001)

⁵³ Revision 15, Section 5A.6 amended 9/19/06 (RZ-06-007)

⁵⁴ Revision 18, Section 5A.6 amended 1/16/18 (RZ-07-007/ORD-2018-03)

⁵⁵ Revision 16, Section 5A.7 amended 8/4/09 (RZ-09-001)

- 5. Side yard setbacks for residential use lots that are contiguous to parcels with permanent easements or parcels in areas designated as priority agricultural preservation areas or transferable development rights sending areas shall have minimum setbacks of 50 feet.
- 6. The Planning Commission may increase minimum setbacks up to 50 feet for properties adjacent to parcels that are being actively farmed or parcels with an Agricultural district designation.

ARTICLE 15 "IM" INDUSTRIAL, MINERAL DISTRICT¹⁰⁴

Section 15.0 Purpose

The purpose of the Industrial, Mineral District is to provide for high volume mineral extraction in the Rural Policy Area of the County. It is the intent of this Ordinancethat Industrial, Mineral Districts be protected from encroachment by incompatible land uses and that new or expanded "IM" Districts be compatible with existing adjacent land uses.

Section 15.1 Principal Permitted Uses and Accessory Uses

See Table of Land Uses [Section 3.3, Table No. 3.3(1)]

Section 15.2 Special Exceptions

Any other use the Board of Appeals finds is functionally similar to any permitted use or special exception listed in the Article. The Board of Appeals shall not grant any special exception that is inconsistent with the purpose set for the district.

Section 15.3 Establishing a New IM District

The Industrial Mineral District is a floating zone established for the rural areas of the County. A new "IM" District may not be established within the adopted urban growth area, town growth areas, or rural villages.

The approval process for establishing a new "IM" District shall be in accordance with Article 27, except that neither a change in the character of the neighborhood nor a mistake in the original zoning classification shall be a prerequisite to "IM" District approval.

In its deliberation on an application for an "IM" District, the Planning Commission shall consider the purpose of the "IM" District, the applicable policies of the Comprehensive Plan, the compatibility of the proposed district with the adjacent lands, and the effect of the mineral extractive operations on public roadways. The evaluation of these criteria shall result in findings of fact as part of a recommendation on the application to the Board of County Commissioners.

At the time of application for rezoning, the applicant shall submit a concept plan that includes:

- (a) A vicinity map at 1"=2000' showing the location of the proposed "IM" District in relation to its surroundings.
- (b) The boundary, acreage and current zoning of the tract.

⁹⁶ Revision 14, Article 15 replaced in its entirety, 7/26/05 (RZ-03-005)

- (c) Minimum topographic information sufficient to determine surface drainage patterns and principal drainage areas.
- (d) Adjacent land uses and zoning and the location of adjacent structures on adjacent lots within 1,000 feet of the property line.
- (e) The location of adjacent geologic formations and other environmentally significant features.
- (f) The proposed routes to be used for hauling mineral products from the site on public roads to their first intersection with a highway which is classified as major collector or above in the Washington County Highway Plan.
- (g) An estimate of average daily truck traffic from the site on roads identified in paragraph (f) and the average gross weight of each truck.
- (h) County roads identified in accordance with paragraph (f) shall be adequate in pavement thickness, roadway width, and alignment to accommodate the truck traffic from the extraction operation. The proposed routes, once identified and approved by the Commission, may not be changed without approval of the Commission subject to the same standards as the original review. As part of the site plan approval process, the County may require a performance bond from the applicant where the resulting vehicular traffic may result in damage to County roads.
- (i) The applicant, unless otherwise determined by an existing study, shall provide evidence as to what effect the proposed use will have on the groundwater supply and quality of all adjoining properties includingdetermination of a zone of dewatering influence.
- (j) The applicant shall provide a contingency plan for well replacement whenever a public water supply surface intake, public water supply well or spring, or private water supply well or spring is within the zone of dewateringinfluence as designated by the State.
- (k) The applicant shall provide a plan for reclamation of the site once mining has ceased. Reclamation plans should be designed to provide for suitable and appropriate re-use related uses, which exist or are planned for the surrounding area. The reclamation plan shall consider providing for use of any water filled pits as a public water supply. Other proposed land uses for the reclaimed site shall be detailed.

The Board of County Commissioners may, upon receiving a recommendation from the Planning Commission, restore the land to its previous classification upon written request from the landowner and upon successful completion of the required reclamation without another public hearing. Section 15.4 Initiation or Expansion of Operations in Existing IM Districts

Application for the initiation or expansion of operations within an existing IM District shall be accompanied by a complete copy of the application, including all supporting documentation, submitted to the State Water Resources Administration except for those elements identified as proprietary and confidential by State regulations. The application shall include plans for reclamation showing the projected timing and sequence of excavation, the proposed method of site reclamation, the resultant landform, and the vegetative cover. The site plan submitted with the application shall indicate methods of compliance with the standards of Sections 4.11 and 15.5. The application shall also conform to the requirements of Section 15.3(f) (g) and (h).

Section 15.5 Performance Standards for Site Plan Review¹⁰⁵

- (a) A person engaging in mineral extraction activities shall locate and conduct those activities on the site in a way that minimizes visual, auditory and other sensory effects on surrounding property owners.
- (b) Extractive operations shall be restricted to the hours of 6:00 a.m. to 7:00 p.m. Monday through Friday, and 8:00 a.m. to 7:00 p.m. Saturday.

Processing operations and non-extractive related activities (i.e., administrative, maintenance, repair), may be carried out on the premises beyond the allowed hours of operation, providing the sound level does not exceed the maximum acceptable limit allowed by the State of Maryland.

On Sundays and during atypical business hours, extractive operations will be allowed if expressly permitted by the Zoning Administrator because of an operating emergency or because of local or state need.

- (c) Any building or structure housing power-driven or power-producing machinery or equipment shall be located at least four hundred (400) feet from any lot in a RR, RS, RU, RM or RV District or any lot occupied by a dwelling, school, church, or institution for human care not located on the same lot as the said use.
- (d) No excavation shall take place, nor shall the slope of the natural land surface be altered as a result of such excavation, nor shall the storage of materials take place nearer than thirty feet to any property line or road right of way line. Security fencing and screen planting may be located within this area. This setback requirement shall not apply where theadjoining property is zoned IM.
- (e) Extraction operations shall be confined to areas of a minimum of one hundred (100) feet from all adjoining property lines in any "A", "EC", "P", "RB", or "B" District or any public road right-of-way, or a minimum of two

¹⁰⁵ Revision 15, Section 15.5(c) (e) amended 9/19/06 (RZ-06-007/ORD-06-09)

hundred (200) feet from all adjoining property lines in any RR, RS, RU, RM or RV district and two hundred (200) feet from any then existing principal building on an adjoining property.

- (f) Screen planting shall be required where mineral extraction and related activities are visible from adjacent residential, commercial or industrial structures or any public road. Plant materials used in the screen planting shall be of such species, size, and number as to minimize objectionable views, dust, and noise. Whenever topography, existing vegetation, or other existing natural barrier makes screen planting either unnecessary or impractical, the Planning Commission may waive this requirement. Any permanent berms shall be designed in such a way as to have a vegetative cover.
- (g) Entrance or haul roads providing access to the site for transportation of mineral products or heavy equipment shall be maintained in such a manner as to minimize dust.
- (h) All extraction areas, active or inactive, shall be fenced and posted with appropriate "warning" signs where: (1) water can pool more than one andone-half (1½) feet in depth, and (2) the excavation of slopes is steeper than one (1) foot vertical to two (2) feet horizontal. Other extraction areas, active or inactive, not meeting the foregoing depth and slopestandards may be required to be fenced at the discretion of the Planning Commission.¹⁰⁶
- (i) Vibration Control

Machines or blasting operations that cause vibration shall be permitted, but in no case may vibrations produce a peak particle velocity of more than two (2) inches per second measured at the nearest existing principal building on an adjacent lot. The mine operator may be required to maintain a record of each of the three components of ground movement (vertical, horizontal, and longitudinal) for each shot or blast event. These records shall be made available to the local governing body upon request.

(j) Storage of Materials

Material storage shall comply with Section 4.12(g).

Section 15.6 Prohibited Uses in "IM" Zone

Kilns used or modified for the purpose of incinerating hazardous waste or controlled hazardous substances or recycling hazardous waste for fuel are prohibited. Facilities or structures for the purpose of receiving, storing, or processing hazardous waste or controlled hazardous substances for the purpose of incineration in kilns on site are prohibited. Washington County Zoning Review Map

8/28/2024, 3:47:37 PM

Washington County Planning Depatment, Maryland Department of Transportation (MDOT), Maryland Department of Transportation State

Washington County, Maryland

This map is provided for informational purposes only. All data should be verified with respective sources.

Receipt									
			PAYMENT RECEIPT:	285882					
			CASHIER:	KRATHVON					
			DATE:	09/09/2024					
Record Information	on								
Record Number	Record Name		Site Address	Tax Acct ID					
ZC2024-0018	Zoning Confirmation			23006677					
Fee Information									
Description		Account Code	Invoice#	Amount					
Zoning Confirmation		401140-10-10800	266734	\$100.00					
			Total Fee Amount:	\$100.00					
Payment Informat	ion								
Method	Reference No	Comments		Transaction Amount					
Check	02047556			\$100.00					
Payor			Total Amoun	nt: \$100.00					
Martin Marietta PO Box 30013 Raleigh NC 27622									