MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

DOCKET #15-23

- COMPANY: Journey Pet Services
- LOCATION: 10800 Laurel Hill Drive Frostburg, Maryland 21532
- APPLICATION: Installation of one (1) pet crematory

ITEM	DESCRIPTION
1	Notice of Application and Opportunity to Request an Informational Meeting
2	Environmental Justice (EJ) Information - EJ Fact Sheet and MDE Score and Screening Report
3	Permit to Construct Application Forms - Form 5, Form 6, Form 10, Form 5EP; Evidence of Workman's Compensation Insurance; Material balance data and emissions calculations, testing data and modeling report
4	Zoning Approval

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND OPPORTUNITY TO REQUEST AN INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Journey Pet Services on August 29, 2023, for a pet crematory. The proposed installation will be located at 10800 Laurel Hill Drive, Frostburg, Maryland 21532.

In accordance with HB 1200/Ch. 588 of 2022, the applicant provided an environmental justice (EJ) Score for the census tract in which the project is located using the Maryland EJ mapping tool. The EJ Score, expressed as a statewide percentile, was shown to be 27.9%, which the Department has verified. This score considers three demographic indicators, minority population above 50%, poverty rate above 25% and limited English proficiency above 15%, to identify underserved communities. Multiple environmental health indicators are used to identify overburdened communities.

Copies of the application, the EJ mapping tool screening report (which includes the score), and other supporting documents are available for public inspection on the Department's website at https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx (click on Docket Number 15-23). Any applicant-provided information regarding a description of the indicators contributing to that EJ score can also be found at the listed website. Such information has not yet been reviewed by the Department. A review of the submitted information will be conducted when the Department undertakes its technical review of all documents included in the application.

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Department will hold an informational meeting to discuss the application and the permit review process if the Department receives a written request for a meeting within 10 working days from the date of the second publication of this notice. A requested informational meeting will be held virtually using teleconference or internet-based conferencing technology unless a specific request for an in-person informational meeting is received. All requests for an informational meeting should be directed to the attention of Ms. Shannon Heafey, Air Quality Permits Program by email to shannon.heafey@maryland.gov or by mail to the Air and Radiation Administration, 1800 Washington Boulevard, Baltimore, Maryland 21230.

Further information may be obtained by calling Ms. Shannon Heafey at 410-537-4433.

Christopher R. Hoagland, Director Air and Radiation Administration

The Applicant's Guide to Environmental Justice and Permitting

What You Need to Know

This fact sheet is designed to provide guidance to applicants on incorporating environmental justice screening requirements pursuant to House Bill 1200, effective October 1, 2022.

What is Environmental Justice?

The concept behind the term environmental justice (EJ) is that regardless of race, color, national origin, or income, all Maryland residents and communities should have an equal opportunity to enjoy an enhanced quality of life. How to assess whether equal protection is being applied is the challenge.

Communities surrounded by a disproportionate number of polluting facilities puts residents at a higher risk for health problems from environmental exposures. It is important that residents who may be adversely affected by a proposed source be aware of the current environmental issues in their community in order to have meaningful involvement in the permitting process. Resources may be available from government and private entities to ensure that community health is not negatively impacted by a new source located in the community.

Extensive research has documented that health disparities exist between demographic groups in the United States, such as differences in mortality and morbidity associated with factors that include race/ethnicity, income, and educational attainment. House Bill 1200 adds to MDE's work incorporating diversity, equity and inclusion into our mission to help overburdened and underserved communities with environmental issues.

What is House Bill 1200 and what does it require?

Effective October 1, 2022, House Bill 1200 requires a person applying for a permit from the Department under §1-601 of the Environment Article of the Annotated Code of Maryland or any permit requiring public notice and participation to include in the application an EJ Score for the census tract where the applicant is seeking the permit; requiring the Department, on receiving a certain permit application to review the EJ Score; and requiring notices to include information related to EJ Scores and generally relating to environmental permits and environmental justice screenings.

What is a "Maryland EJ Tool"?

The term "Maryland EJ Tool" means a publicly available state mapping tool that allows users to: (1) explore layers of environmental justice concern; (2) determine an overall EJ score for census tracts in the state; and (3) view additional context layers relevant to an area. The MDE EJ Screening Tool is considered a Maryland EJ Tool.

What is an "EJ Score"?

The term "EJ Score" means an overall evaluation of an area's environment and environmental justice indicators, as defined by MDE in regulation, including: (1) pollution burden exposure; (2) pollution burden environmental effects; (3) sensitive populations; and (4) socioeconomic factors.

The MDE EJ Screening Tool considers three demographic indicators, minority population above 50%, poverty rate above 25% and limited English proficiency above 15%, to identify underserved communities, and multiple environmental health indicators to identify overburdened communities. The tool uses these indicators to calculate a

www.mde.maryland.gov

The Applicant's Guide to Environmental Justice and Permitting

What You Need to Know

Final EJ Score Percentile, statewide. It is that score, linked to the census tract where the project is to be located, that needs to be reported to MDE as part of your permit application.

What does the application require?

The link for the MDE EJ Screening Tool is located on the Department's website, www.mde.maryland.gov. Click on the Environmental Justice header at the top of the Department's home page, then select EJ Screening Tool from the menu on the left. Click on Launch the EJ Screening Tool. After you open the tool, click okay on the opening screen. At the top right, please click the first button for the MDE Screening Report. Input the address of the proposed installation in the address bar. Click on the Report button. Once the report has been generated select the print icon and save it in a .pdf format.

The applicant needs to include the MDE Screening Report with the EJ Score from the MDE EJ Screening Tool as part of the permit application upon submission. An application will not be considered complete without the report.

The applicant is encouraged to provide the Department with a discussion about the environmental exposures in the community. This will provide pertinent information about how the applicant should proceed with engaging with the community. Residents of a community with a high indicator score and a high degree of environmental exposure should be afforded broader opportunities to participate in the permit process and understand the impacts a project seeking permit approval may have on them.

Questions

For air quality permits, please call 410-537-3230. For water permits, please call 410-537-4145. For land permits pertaining to Solid Waste, please call 410-537-3098. For land permits pertaining to Oil Control, please call 410-537-3483. For land permits pertaining to Animal Feeding Operations, please call 410-537-4423. For land permits pertaining to Biosolids, please call 410-537-3403.

www.mde.maryland.gov

MDE Screening Report

Area of Interest (AOI) Information

Oct 3 2023 14:14:56 Eastern Daylight Time

Summary

about:blank

about:blank

Name	Count	Area(mi²)	Length(mi)
MDE Final EJ Score (%ile score)	1	N/A	N/A
Overburdened Communities Combined Score	1	N/A	N/A
Overburdened Pollution Environmental Score (%ile score)	1	N/A	N/A
Overburdened Exposure Score (%ile score)	1	N/A	N/A
Overburdened Sensitive Population (%ile score)	1	N/A	N/A
Socioeconomic/Demographic Score 2020 (Percentile score) (Underserved Community)	1	N/A	N/A
Air Emissions Facilities	0	N/A	N/A
Sulfur Dioxide (2010)	0	N/A	N/A
Ozone (2015)	1	N/A	N/A
Fine Particles (2012)	1	N/A	N/A
Biosolids FY 2020 and Current Permit Details	0	N/A	N/A
Biosolids FY2010 - 2014 Permit Details	0	N/A	N/A
Biosolids FY2009 Expired Permit Details	0	N/A	N/A
Biosolids FY 2020 and Current Permits Distribution By Acreage	1	N/A	N/A
Biosolids FY2015 - 2019 Permits Distribution By Acreage	1	N/A	N/A
Biosolids FY2010 - 2014 Permits Distribution By Acreage	1	N/A	N/A
Biosolids FY2009 Permits Expired Distribution By Acreage	1	N/A	N/A
Biosolids FY 2020 and Current Permit Distribution By Percent Coverage	1	N/A	N/A
Biosolids FY2015 - 2019 Permit Distribution By Percent Coverage	1	N/A	N/A
Biosolids FY2010 - 2014 Permit Distribution By Percent Coverage	1	N/A	N/A
Biosolids FY2009 Expired Permit Distribution By Percent Coverage	1	N/A	N/A
Concentrated Animal Feeding Operations (CAFOs)	0	N/A	N/A
Composting Facilities	0	Ν/Α	N/A
Food Scrap Acceptors	0	Ν/Α	N/A
Landfills	0	N/A	N/A
Correctional Facilities	0	N/A	N/A
Industrial Food Suppliers	0	N/A	N/A
Residential Colleges	0	Ν/Α	N/A
Non-Residential Colleges	0	Ν/Α	N/A
Hospitals	0	N/A	N/A
High Schools	0	Ν/Α	N/A
Grocery Stores	0	Ν/Α	N/A
10 Miles from Landfill	2	Ν/Α	N/A
10 Miles from Composting Facility	1	Ν/Α	N/A
General Composting Facilities Tier 2 (MD)	0	Ν/Α	N/A
Commercial Anaerobic Digester (MD)	0	Ν/Α	N/A
Out of State Facilities	0	Ν/Α	N/A
30 mile buffer (Maryland)	0	N/A	N/A
30 Mile Buffer (Out of State)	1	N/A	N/A
Land Restoration Facilities	0	N/A	N/A
Determinations (points)	0	Ν/Α	N/A
Determinations (areas)	0	Ν/Α	N/A
Entities	0	Ν/Α	N/A
Active Coal Mine Sites	0	Ν/Α	N/A
Historic Mine Facilities	0	N/A	N/A

about:blank

All Permitted Solid Waste Acceptance Facilities	0	N/A	N/A
Municipal Solid Waste Acceptance Facilities	0	N/A	N/A
Maryland Dam Locations	0	N/A	N/A
Maryland Pond Locations	0	N/A	N/A
Surface Water Intakes	0	N/A	N/A
Wastewater Discharge Facilities	0	N/A	N/A
Drinking Water	0	N/A	N/A
Clean Water	0	N/A	N/A

MDE Final EJ Score (%ile score)

#	Census tract identifier	Geographic Area Name	Total Population	Final EJ Score Percent (for this tract)	Final EJ Score Percentile (Distribution across Maryland)	Area(mi²)
1	24001001700	Census Tract 17, Allegany County, Maryland	4278	25.95	27.89	N/A

Overburdened Communities Combined Score

#	GEOID20	Geographic_Area_ Name	TotalPop	Overburd_Exposu re_Percent	Overburd_Exposu re_Percentile	Overburd_Poll_En viro_Percent	Overburd_Poll_En viro_Percentile	Sensitive_Populati on_Percent
1	24001001700	Census Tract 17, Allegany County, Maryland	4,278	31.69	1.03	5.99	39.92	66.95
#	# Sensitive_Population_Percentile		OverburdenedAllPercent		OverburdenedAllPercentile		Area(mi²)	
1	66.58 37.73			50.17		N/A		

Overburdened Pollution Environmental Score (%ile score)

#	GEOID20	Geographic_Area_ Name	RentalsOccupiedP re79Percent	Per	centile	Percent	RMP	PercentRMF	PEJ	PercentHazWast	e PercentHazWaste EJ
1	24001001700	Census Tract 17, Allegany County, Maryland	18.18	66.37		0.97		2.69		0.51	6.54
#	PercentSuperFund NPL	PercentSuperFund NPLEJ	PercentHazWW	Percent	tHazWWEJ	BrownFP	ercent	Percentile_	_1	PercentPowerPla ts	n Percentile_12
1	6.13	17.79	9.92	10.91		0.00		0.00		0.00	0.00
#	PercentCAFOS	Percentile_12_	13 PercentActiv	eMines	Percentile	_12_13_14		nEnvironment IPercent	Pollr	EnvironmentalP ercentile	Area(mi²)
1	0.00	0.00	18.18		99.32		5.99		39.92	2	N/A

Overburdened Exposure Score (%ile score)

#	GEOID20	Geographic_Area_ Name	Total_Po	р	PercentNATA_Can cer	Percentile_NATA_ Cancer	Perce	entNATA_Res p_HI	Percentile_N Resp_H		PercentNATA_Dies el
1	24001001700	Census Tract 17, Allegany County, Maryland	4,278.00		40.00	9.02	40.00		5.00		10.23
#	Percentile_NATA_ Diesel	PercentNATA_PM2 5	PercentileNA M25	ATA_P	PercentOzone	PercentileOzone	Per	centTraffic	PercentileT	raffic	PercentTRI
1	4.63	75.48	4.28		85.54	9.70	2.28		12.50		0.00
#	PercentileTRI	Percent	lazWasteLF	Perc	entile_HazWasteLF	PollutionExposurePercen t		ercen PollutionExposurePer tile			Area(mi²)
1	0.00	0.00		0.00		31.69 1.03		1.03		N/A	

Overburdened Sensitive Population (%ile score)

#	GEOID20	Geographic_Area Name	- PerAstma	PercentileAst	PerMyo	PercentileMyo	PerLow	PercentileLow
1	24001001700	Census Tract 17, Allegany County, Maryland	76.50	76.56	84.80	79.63	24.80	29.87
#	PercentBro	ad	PercentileBroad	Perce	ntSens PercentileSens			Area(mi²)
1	17.20	84.69		50.83		67.69	N/A	

Socioeconomic/Demographic Score 2020 (Percentile score) (Underserved Community)

about:blank

:	#	Census tract identifier	Geographic Area Name	Total Population	Percent Poverty	Percent Minority	Percent Limited English Proficiency	Demographic Score (Percent for this tract)	Demographic Score (Percentile Distribution acoss Maryland)	Area(mi²)
1		24001001700	Census Tract 17, Allegany County, Maryland	4,278	39.91	6.01	0.00	15.31	33.45	N/A

Ozone (2015)

#	STATEFP10	COUNTYFP10	COUNTYNS10	GEOID10	NAME10	Ozone NAA Area	8-Hr Ozone (2015) Designation	8-HR Ozone (2015) Classification	8-Hr Ozone (2015) Status	Area(mi²)
1	24	001	01713506	24001	Allegany	No Data	Attainment/Unc lassifiable	No Data	No Data	N/A

Fine Particles (2012)

#	STATEFP10	COUNTYFP10	COUNTYNS10	GEOID10	NAME10	PM2.5 (2012) Status	Area(mi²)
1	24	001	01713506	24001	Allegany	Attainment/Unclassifia ble	N/A

Biosolids FY 2020 and Current Permits Distribution By Acreage

#	County Name	FY2020andAfter	Area(mi²)	
1	Allegany	1,329.50	N/A	

Biosolids FY2015 - 2019 Permits Distribution By Acreage

#	County Name	FY2015to2019	Area(mi²)
1	Allegany	244.70	N/A

Biosolids FY2010 - 2014 Permits Distribution By Acreage

#	County Name	FY2010to2014	Area(mi²)
1	Allegany	241.00	N/A

Biosolids FY2009 Permits Expired Distribution By Acreage

	#	County Name	FY2009	Area(mi²)
Γ	1	Allegany	200.30	N/A

Biosolids FY 2020 and Current Permit Distribution By Percent Coverage

#	County Name	FY2020andAfter	Area(mi²)
1	Allegany	1,329.50	N/A

Biosolids FY2015 - 2019 Permit Distribution By Percent Coverage

#	County Name	FY2015to2019	Area(mi²)
1	Allegany	244.70	N/A

Biosolids FY2010 - 2014 Permit Distribution By Percent Coverage

	#	County Name	FY2010to2014	Area(mi²)
-	1	Allegany	241.00	N/A

Biosolids FY2009 Expired Permit Distribution By Percent Coverage

#	County Name	FY2009	Area(mi²)
1	Allegany	200.30	N/A

10 Miles from Landfill

#	County	Туре	Facility_N	ADDRESS	FILL	SITEACRE	AI_No_	Owner_Type
1	ALLEGANY	WMF	Mountainview MunicipalLF	13300 New George's Creek Rd, Frostburg MD 21532.	40	396.00	19,953.00	PRI
2	ALLEGANY	WPT	Western MarylandPF&TS	13810 Hazmat Drive, Cumberland MD 21502.	-	5.85	63,586.00	PRI

about:blank

	#	MD_GRIDE	PERMITNUMB	EXPIRATION	Area(mi²)
1		261 /654	2011-WMF-0010	4/12/2016, 8:00 PM	N/A
2	2	801 /710	2014-WPT-0632	10/29/2019, 8:00 PM	N/A

10 Miles from Composting Facility

;	#	County	Facility	Address	Accepts_Fo	Location_o	Area(mi²)
1		No Data	Allegany County Compost Site	11700 Pittsburgh PLate Glass Road, Cumberland, MD 21502	No	11700 Pittsburgh Plate Glass Rd, Cumberland, MD 21502	N/A

30 Mile Buffer (Out of State)

#	¥	FacilityName	Contact	Area(mi²)
1		Hillcrest Saylor Dairy Farms, LLC	https://files.dep.state.pa.us/Waste/Bureau%20of%20Was te%20Management/WasteMgtPortalFiles/PA_Permitted_ Food_Waste_Composting_Facilities.pdf	N/A

© MDE

AIR QUALITY PERMIT TO CONSTRU APPLICATION CHECKLIST

	OWNER OF EQUIPMENT/PROCESS	
COMPANY NAME:	Journey Pet Services	
COMPANY ADDRESS:	10800 Laurel Hill Dr., Frestburg, MD 21532	
	LOCATION OF EQUIPMENT/PROCESS	
PREMISES NAME:	Journet Pet Services	
PREMISES ADDRESS:	10800 Laurel Hill Drive, Frostburg, MD 21532	
CONTACT	INFORMATION FOR THIS PERMIT APPLICATION	
CONTACT NAME:	Caleb Hill	
JOB TITLE:	Owner	
PHONE NUMBER:	301-689-3599	
EMAIL ADDRESS:	caleb@journeypetservices.com	
DESCRIPTION OF EQUIPMENT OR PROCESS		
Pet Crematory		

Application is hereby made to the Department of the Environment for a Permit to Construct for the following equipment or process as required by the State of Maryland Air Quality Regulation, COMAR 26.11.02.09.

Check each item that you have submitted as part of your application package.

Application package cover letter describing the proposed project

- Complete application forms (Note the number of forms included or NA if not applicable.)
 - No.
 X
 Form 5
 No.
 Form 11

 No.
 X
 Form 5T
 No.
 Form 41

 No.
 X
 Form 5EP
 No.
 Form 42

 No.
 X
 Form 6
 No.
 Form 44

 No.
 x
 Form 10
 Form 44
- X Vendor/manufacturer specifications/guarantees
- Evidence of Workman's Compensation Insurance
- Process flow diagrams with emission points
- Site plan including the location of the proposed source and property boundary
- Material balance data and all emissions calculations
- Material Safety Data Sheets (MSDS) or equivalent information for materials processed and manufactured.
- Certificate of Public Convenience and Necessity (CPCN) waiver documentation from the Public Service Commission ⁽¹⁾
- Documentation that the proposed installation complies with local zoning and land use requirements ⁽²⁾
 - (1) Required for emergency and non-emergency generators installed on or after October 1, 2001 and rated at 2001 kW or more.
 - ⁽²⁾ Required for applications subject to Expanded Public Participation Requirements.

MARYLAND DEPARTMENT OF THE EI 1800 Washington Blvd = Baltimore, Maryla (410) 537-3230 =1-800-633-6101 = www.mde	and 21230
Air and Radiation Management Administration Air	r Quality Permits Program
APPLICATION FOR PROCESSING/MANUFA Permit to Construct C Registration Update C	CTURING EQUIPMENT Initial Registration
1A. Owner of Equipment/Company Name Journey Pet Services	DO NOT WRITE IN THIS BLOCK 2. REGISTRATION NUMBER
Mailing Address 10800 Lawrel Hill Dr.	County No. Premises No.
Street AddressFrostburgMDZ1532CityStateZip	1-2 Registration Class Equipment No.
Telephone Number (_301)689-3599	7 8-11 Data Year
Signature	12-13 Application Date
Caleb Hill - Owner	8/15/23 Date
1B. Equipment Location and Telephone Number (if different fro 10800 Laurel Hill Drive	om above)
Street Number and Street Name 215 Frostburg MD City/Town State	532 ()_689-3599 Telephone Number
Premises Name (if different from above)	
3. Status (A= New, B= Modification to Existing Equipment, C= E New Construction New Construction Status Begun (MM/YY) A 0 6 2 3 15 16-19 20-23	Existing Initial
4. Describe this Equipment: Make, Model, Features, Manufacturer B&L Cremation Systems Inc, BLP-750M5 Animal Crematory	(include Maximum Hourly Input Rate, etc.)
5. Workmen's Compensation Coverage Q96 79002- Binder/Policy Number Company NOTE: Before a Permit to Construct may be issued by the Department, the app worker's compensation coverage as required under Section 1-202	Expiration Date
6A. Number of Pieces of Identical Equipment Units to be Regist	
6B. Number of Stack/Emission Points Associated with this Equ	ipmentOne
Form Number: 5 Rev. 9/27/2002 TTY Users 1-800-735-2258	Page 1 of 4 Recycled Paper

7. Person Installing this Equipment (if different from Number 1 on Page 1) Name
Company
Mailing Address/Street
City/Town State Telephone ()
8. Major Activity, Product or Service of Company at this Location
Pet Cremations
9. Control Devices Associated with this Equipment None X 24-0
Simple/MultipleSpray/AdsorbVenturiCarbonElectrostaticBaghouseThermal/CatalyticDryCycloneTowerScrubberAdsorberPrecipitatorAfterburnerScrubber24-124-224-324-424-524-624-724-8
Other Describe 24-9
10. Annual Fuel Consumption for this Equipment
OIL-1000 GALLONS SULFUR % GRADE NATURAL GAS-1000 FT ³ LP GAS-100 GALLONS GRADE 26-31 32-33 34 35-41 42-45
COAL- TONS SULFUR % ASH% WOOD-TONS MOISTURE % 46-52 53-55 56-58 59-63 64-65
OTHER FUELS ANNUAL AMOUNT CONSUMED OTHER FUEL ANNUAL AMOUNT CONSUMED
(Specify Type) 66-1 (Specify Units of Measure) (Specify Type) 66-2 (Specify Units of Measure) 1= Coke 2= COG 3=BFG 4=Other
11. Operating Schedule (for this Equipment) Continuous OperationBatch ProcessHours per BatchBatch per WeekHours per DayDays Per WeekDays per YearX017010736567-167-268-6970-717273-75
Seasonal Variation in Operation: No Variation Winter Percent Spring Percent Summer Percent Fall Percent (Total Seasons= 100%) X 2 5 2 5 2 5 2 5 76 77-78 79-80 81-82 83-84 83-84

12. Equivalent Stack Innformat	ion- is Exhaust through Do	oors, Windows	, etc. Only	(Y/N) [N]	
If not, then Height Avove Groun 25 86-88	nd (FT) Inside Diameter at Top	Exit Temper	00	Exit Velocity (f	T/SEC)
Attach a block diagram of pr and all existing	NOTE: ocess/process line, indicat equipment, including contr	ing new equip ol devices and	ment as re emission	eported on this points.	form
13. Input Materials (for this equilation of this data to be constant)	uipment only) nsidered confidential? N	(Y or N)	INPUT	RATE	
NAME	CAS NO. (IF APPLICABLE)	PER HOUR		PER YEAR	UNITS
1. Deceased Pets		150	lbs	273	tons
2.					
3.			l l		
4.	<u> </u>				
5.			<u>├</u>		
6.					
7.		· ·····	<u>}</u> †	· · · · · · · · · · · · · · · · · · ·	
8.					
9.					
TOTAL			I		<u> </u>
TOTAL					
14. Output Materials (for this e Process/Product Stream	quipment)		OUTP	UT RATE	
I NAME	CAS NO. (IF APPLICABLE)	PER HOUR		PER YEAR	UNITS
1. Bone Fragments		7.5	lbs	55	tons
2.					
3.					
4.					
5.					
	1				1
					+
III <i>f</i> .					
			i		
8.		· · · · · · · · · · · · · · · · · · ·			
8. 9.					
8.	Liquid				
8. 9. TOTAL 15. Waste Streams- Solid and	-				
8. 9. TOTAL 15. Waste Streams - Solid and NAME	Liquid CAS NO. (IF APPLICABLE)	PER HOUR		PUT RATE PER YEAR	
8. 9. TOTAL 15. Waste Streams - Solid and NAME 1.	-	PER HOUR			
8. 9. TOTAL 15. Waste Streams - Solid and NAME 1. 2.	-	PER HOUR			
8. 9. TOTAL 15. Waste Streams - Solid and NAME 1. 2. 3.	-	PER HOUR			
8. 9. TOTAL 15. Waste Streams - Solid and NAME 1. 2. 3. 4.	CAS NO. (IF APPLICABLE)	PER HOUR			
8. 9. TOTAL 15. Waste Streams - Solid and NAME 1. 2. 3. 4. 5.	-	PER HOUR			
8. 9. TOTAL 15. Waste Streams - Solid and NAME 1. 2. 3. 4. 5. 6.	CAS NO. (IF APPLICABLE)	PER HOUR			
8. 9. TOTAL 15. Waste Streams - Solid and NAME 1. 2. 3. 4. 5. 6. 7.	CAS NO. (IF APPLICABLE)	PER HOUR			
8. 9. TOTAL 15. Waste Streams - Solid and NAME 1. 2. 3. 4. 5. 6. 7. 8.	CAS NO. (IF APPLICABLE)	PER HOUR			
8. 9. TOTAL 15. Waste Streams - Solid and NAME 1. 2. 3. 4. 5. 6. 7.	CAS NO. (IF APPLICABLE)	PER HOUR			

.

16. Total Stack Emissions (for this equipment only) in Pounds Per Operating Day

Particulate Matter	Oxides of Su	lfur Oxide	s of Nitrogen
3.50		6 3	2 . 7 0
99-104	105-110		111-116
Carbon Monoxide	Volatile Organic Cor	mpounds	PM-10
2.21	0	. 2	3 . 5 0
177-122	123-128		129-134
17. Total Fugitive Emission	s (for this equipment only	y) in Pounds Per Opera	ting Day
Particulate Matter	Oxides of Su	lfur <u>Oxide</u>	s of <u>Nitrogen</u>
135-139	IN/A		145-149
Carbon Monoxide	Volatile Organic Cor	mpounds	PM-10
150-154	155-159		160-164
Method Used to Determine	·		or 3= Stack Test 4= Other)
TSP SOX		$\frac{1}{2}$	PM10
	.] [] [.		L
165 166		168 169	170
	SADIARITONIAN AND BALE	NE ADMINISTRATIONI	BEANIN
	RADYANIONIMANACEME		
AIR AND 18. Date Rec'd. Local	gan mangagana ang kang kang kang kang kang ka	Return to Local .	Jurisdiction
18. Date Rec'd. Local	Date Rec'd. State	Return to Local . Date	
18. Date Rec'd. Local Reviewed by Local J	Date Rec'd. State	Return to Local Date Reviewed by State	Jurisdiction By
18. Date Rec'd. Local Reviewed by Local J	Date Rec'd. State	Return to Local DateBeturn to Local DateBy	Jurisdiction By
18. Date Rec'd. Local Reviewed by Local J DateBy_	Date Rec'd. State	Return to Local DateBy	Jurisdiction ^{By} SCC Code
18. Date Rec'd. Local Reviewed by Local J DateBy_	Date Rec'd. State	Return to Local DateBy	Jurisdiction By SCC Code
18. Date Rec'd. Local Reviewed by Local J DateBy_ 19. Inventory Date M	Date Rec'd. State	Return to Local DateBy	Jurisdiction By SCC Code
18. Date Rec'd. Local Reviewed by Local J Date By 19. Inventory Date W 20.	Date Rec'd. State	Return to Local DateByBy	Jurisdiction By SCC Code
18. Date Rec'd. Local Reviewed by Local J Date By 19. Inventory Date M 20. Annual Operating Rate	Date Rec'd. State	Return to Local DateBy	Jurisdiction
18. Date Rec'd. Local Reviewed by Local J Date By 19. Inventory Date M 20. Annual Operating Rate 186-192	Date Rec'd. State	Return to Local DateBy	Jurisdiction By SCC Code 178-185 e Iransaction Date (MM/DD/YR) 202-207
18. Date Rec'd. Local Reviewed by Local J DateBy 19. Inventory Date M 20. Annual Operating Rate 186-192 Staff Code VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2"	Date Rec'd. State	Return to Local DateBy	Jurisdiction By SCC Code SCC Code IT8-185 IT8-185 ITANSACtion Date (MM/DD/YR) 202-207 Confidentiality 219 Action
18. Date Rec'd. Local Reviewed by Local J DateBy 19. Inventory Date M 20. Annual Operating Rate 186-192 Staff Code VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2"	Date Rec'd. State	Return to Local DateBy	Jurisdiction By
18. Date Rec'd. Local Reviewed by Local J DateBy 19. Inventory Date M 20. Annual Operating Rate 186-192 Staff Code VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2">VOC Colspan="2"	Date Rec'd. State	Return to Local DateBy	Jurisdiction By SCC Code SCC Code Transaction Date (MM/DD/YR) Confidentiality 202-207 Confidentiality 219 Action A: Add

Air and Radiation Management Administration

Air Quality Permits Progra
1800 Washington Boulevard
Baltimore, Maryland 21230
(410)537-3225
1-800-633-6101
www.mde.maryland.gov

FORM 5EP: Emission Point Data

<u>Complete one (1) Form 5EP for EACH emission point</u> (stack or fugitive emissions) related to the proposed installation.

Applicant Name: Journey Pet Services

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: ST-04

2. Emission Point Description

Describe the emission point including all associated equipment and control devices: Pet Crematory Stack

3. Emissions Schedul	e for the En	nissior	CARLY NEW TOP FOR BOTH DETAILS OF THE PARTY AND A MARK TO THE PARTY AND A PARTY AN	and a second realized and the second	na markina a ja Ka dana dina za		
Continuous or Intermittent (C/I)?	I	Seasonal Variation Check box if none: X Other	vice estimate	e a conclu	ariation:	
Minutes per hour:		·	Winter Percent	vise estimate	seasonal v	anation.	
Hours per day:		10	Spring Percent				
Days per week:		7	Summer Percent				
Weeks per year:		52	Fall Percent				
4. Emission Point Info					TARK AN		
Height above ground (ft):	2	5	Length and width dimensions	s Length:		Width:	
Height above structures (ft):	4	5	at top of rectangular stack (ft):				
Exit temperature (°F):	100	00	Inside diameter at top of round	d stack (ft):		2.0	
Exit velocity (ft/min):	18	3	Distance from emission point property line (ft):	to nearest		100	
Exhaust gas volumetric flow ra	te 240	00	Building dimensions if emissic		Length	Width	
(acfm):			point is located on building (1	it) 14	50	32	
5. Control Devices As	sociated wi	th the	Emission Point		GRADIN KASA	的目标,并且随意认为行为	
Identify each control device as also required for each contro			ission point and indicate the nu eck none:	nber of devic	es. <u>A For</u>	<u>m 6 is</u>	
🛛 None			Thermal Oxidizer	No			
Baghouse	No		Regenerative				
Cyclone	No		Catalytic Oxidizer	No			
Elec. Precipitator (ESP)	No		Nitrogen Oxides Reduction	No			
Dust Suppression System	No		Selective	☐ Non-Sel			
🗌 Venturi Scrubber	No				-		
Spray Tower/Packed Bed	No		☐ Other Specify:	No			
Carbon Adsorber	No						
Cartridge/Canister							
Regenerative							
					Daga		

FOR	M 5EP: Emission	Point Data				
6. Estimated Emissions from the	Emission Point	1				
Criteria Pollutants	At Design Capacity			ojected Operations		
	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
Particulate Matter (filterable as PM10)	0.35	0.35		0.30		
Particulate Matter (filterable as PM2.5)						
Particulate Matter (condensables)	0.35	0.35		0.30		
Volatile Organic Compounds (VOC)	0.02	0.02		0.041		
Oxides of Sulfur (SOx)	0.163	0.163		0.30		
Oxides of Nitrogen (NOx)	0.27	0.27		0.486		
Carbon Monoxide (CO)	0.22125	0.22125		0.40		
Lead (Pb)	0.0003	0.0003		0.0005		
	At Design Capacity	At	Projected Opera	tions		
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
Carbon Dioxide (CO ₂)			(ID/Udy)	(toinyi)		
Methane (CH ₄)	· · · ·					
Nitrous Oxide (N ₂ O)						
Hydrofluorocarbons (HFCs)						
Perfluorocarbons (PFCs)		· · · · · · · · · · · · · · · · · · ·				
Sulfur Hexafluoride (SF6)						
Total GHG (as CO ₂ e)						
and the many set of the set of the set of the set of the	ne na la Alemana antina de Merrer	i ener e en el				
List individual federal Hazardous Air	At Design Capacity		Projected Opera			
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
· · · · · · · · · · · · · · · · · · ·						
· · · · · · · · · · · · · · · · · · ·						
	······					
	· · ·					

(Attach additional sheets as necessary.)

-

MARYLAND DEPARTMENT OF THE ENVIRONMEN

1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

Air and Radiation Management Administration - Air Quality Permits Program

APPLICATION FOR PERMIT TO CONSTRUCT GAS CLEANING OR EMISSION CONTROL EQUIPMENT 1. Owner of Installation **Telephone No.** Date of Application Journey Pet Services June 2023 301-689-3599 2. Mailing Address City Zip Code County 10800 Laurel Hill Dr. Frostburg 21532 Allegany City/Town or P.O. 3. Equipment Location County 10800 Laurel Hill Drive Frostburg Allegany 4. Signature of Owner or Operator Title **Print or Type Name** Owner Calbe Hill Alteration New Construction X 5. Application Type: 6. Date Construction is to Start: **Completion Date (Estimate):** 06/2023 10/2023 7. Type of Gas Cleaning or Emission Control Equipment: **Multiple Cyclone** Simple Cyclone Afterburner Х **Electrostatic Precipitator** Scrubber Other (type) (type) 8. Gas Cleaning Equipment Manufacturer Model No. **Collection Efficiency (Design Criteria) B&L** Cremation Systems inc **BLP750M5** 9. Type of Equipment which Control Equipment is to Service: Pet Crematory 10. Stack Test to be Conducted: No Yes (Stack Test to be Conducted By) (Date) 11. Cost of Equipment Estimated Erection Cost

Form number: 6 Revision date: 0/2000 TTY Users 1-800-735-2258

12. The Following Shall Be Desig	in Critería:	
INLET		OUTLET
Gas Flow Rate	ACFM*	ACFM*
Gas Temperature	°F	°F
Gas Pressure	INCHES W.G.	INCHES W.G.
	PRESSURE DROP	
Dust Loading	GRAINS/ACFD**	GRAINS/ACFD**
Moisture Content	%	%
Wet Bulb Temperature	°F	°F
(Wet Scrubber)	GALLONS/MINUTE	POSITION OF SCRUBBING MEDIUM IN WEIGHT %)
*≕ ACTUAL CUBI	C FEET PER MINUTE	**= ACTUAL CUBIC FEET DRY
CONCENTRATION OF EACH P COMPOSITION OF THE GASES EN	OLLUTANT IN THE GAS STR ITERING THE CLEANING DE	GASEOUS POLLUTANTS, PROVIDE THE EAM IN VOLUME PERCENT. INCLUDE THE VICE AND THE COMPOSITION OF EXHAUSTED E AVAILABLE SPACE IN ITEM 15 ON PAGE 3.
13. Particle Size Analysis		
Size of Dust Particles Entering Cleanin	g Unit <u>% of Total D</u>	oust <u>% to be Collected</u>
0 to 10 Microns		
10 to 44 Microns		
Larger than 44 Microns		
14. For Afterburner Construction	Only:	· · · · · · · · · · · · · · · · · · ·
Volume of Contaminated A	\ir	CFM (DO NOT INCLUDE COMBUSTION AIR)
Gas Inlet Temperature		•F
Capacity of Afterburner	1.5 MM	BTU/HR
Diameter (or area) of After		
Combustion Chamber(diameter) (length)	Operating Temperature at Afterburner <u>1600</u> °F
Retention Time of Gases	One Second	

15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere.

Enclosed from Diagram

Date Received: Local	State
Acknowledgement Date:	
By	
Reviewed By:	
Local	
State	
Returned to Local:	
Date	
Ву	
Application Returned to Applicant: Date By	
REGISTRATION NUMBER OF ASSOCIATED EQUIPMENT:	
Emission Calculations Revised By	Date

D	E C AUG	E [17	7 V 2023	E	
By				D	

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd
Baltimore, Maryland 21230
(410) 537-3230
1-800-633-6101
www.mde.state.md.us

Air and Radiation Management Administration Air Quality Permits Program

ÅPPLICATION FOR INCINERATORS Permit to Construct (Incomparison)Registration (Incomparison)	Ĩ	DO NOT WRITE IN THIS SPACE		
1. Owner of Installation or Company Name Journey Pet Services	Date of Application July 2023	Date Rec. Local Date Red. State		
Mailing Address 10800 Lawrel Hill Dr.	Telephone 301-689-3599	Acknowledgement Sent Date By		
City State Frostburg MD 2A. Premises Name it Different from Above	Zip Code 21532	By Reviewed Name Date		
2B. Incinerator Location if Different From Above (give Stre County and Zip Code):	et Address, City,	Local State		
10800 Laurel Hill Drive, Frostburg, MD 21532 3. Owner, Agent or Authorized Company Official Calch Hill		Returned to Local Jurisdiction Date By		
Caleb Hill (Print/Type Name)		Application Returned to Applicant Date By		
(Signature) 10800 Laurel Hill Dr., Frostburg (Mailing Address, City/Town, State, Zip C		Premises Number		
4A. New Construction Only Begin_June 2023 4B. Existing Initial Op Date Construction Completed_Oct 2023	Installation eration Date (14-15)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
5. Installation or Contractor (New or Replacement Only)				
(Name or Company Title) See above (Mailing Address, City/Town, State, Zip Code, Telephone N	Jumber)			
	rial or Catalog No.	7. Total Number of Incinerators of Identical Design and Capacity at this Location:One		
8. Major Activity at this Location-Auto Dealer, Hospital, Apa Pet Crematory	artment House, etc.	9. Rated Capacity of Incinerator in Ib/hr: 150 16-19		
10. Incinerator Type (Mark only one with X) Single Chamber Ö Multiple Chamber Ö Auxiliary 20-1 20-2	Burner Ö Other Ö	2 Specify		
Hours/Day 1 0 Days/Year 3 6 5	Waste Burned Per Ope	rating Day: <u>1500</u> gal 32-3		
13. Method of Charging Waste into Unit: Manu	al 🕺 Au	tomatic Ö		

14. Type of Waste/Refuse Incinerated. Mark major type with χ all others with Check \checkmark .
Trash Refuse Refuse Refuse Animal or Municipal Infectious/ 100% Dry 33 34 35 36 Animal or Animal or Refuse Bathological
Does this waste contain Carcinogenic or Toxic Material? Y/N Industrial Process Waste 40 Other 41
15. Total Annual Auxiliary Fuels Used Natural Gas 10,520,000 (ft ³) 0il 42-47 (Grade) 48 49-55 LP Gas (gallons) Other specify fuel & units required 56-59 90-92
16. Stack Information: Height Above Ground (ft) Inside Diameter at Top (in) 94-96 97-99 Exit Temperature (°F) Gas Exit Velocity (ft/min) 100-103 104-107
17. Emission Control Devices Gas Cleaning Form AMA-6 Must be Completed for Each Device Used and Attached to this Application.
None Settling Chamber Simple Multiple Venturi Electrostatic Bag- After- 108 109 110 111 112 113 114 115 116
Other117-118 Specify Type
DO NOT WRITE BELOW THIS LINE
18. Actual Stack Emissions in Pounds per Operating Day Particulate Matter Oxides of Sulfur 119 124 Carbon Monoxide Information 137 142 Volatile Organic Compounds 143 148
Other Pollutants SpecifyType/Amount
19. Inventory Date 180 183
20. Method Used to Determine Emissions Estimate Emission Factor Stack Test Other Estimate Emission Factor Stack Test Other Particulate 184-1 -2 -3 -4 Oxides Oxides 0 185-1 -2 -3 -4 Oxides of 186-1 -2 -3 -4 Carbon 187-1 -2 -3 -4 Volatile 188-1 -2 -3 -4 187-1 -2 -3 -4 Volatile 188-1 -2 -3 -4 187-1 -2 -3 -4
21. Premises Information Premises Name
Census Tract 43 248 SIC No. 49 252 MD Grid East 253 256 MD Grid North 257 259 Private Local State Federal
Owner Image: State of State
260-0 260-1 260-2 260-3

Form number: 10 Revision date: 09/27/2002 TTY Users 1-800-735-2258

Calculation of Emissions Potential to Emit

.

B&L Cremation	Systems, Inc.
--------------------------	---------------

Total Incinerat	or Burn (Capacity		150	lbs/hr (our of	remains	s (type 4	4)				
Flue Gas Flow	Rate =	93	4 dscfm	1	0 Hours/	'Day	х	7	Days/₩	x	52	Weeks/Yea	r
	(10	0% Excess	Air)				=	3640	Hours	/Year			
Total Emission	Poto = L	nainaratar I	Juwn Date	YEm	ission Fa	atom							
		nemeratori	SULU KAU	а еш	ission ra	CIOF							
Sulfer Dioxide	(<u>SO,)</u>												
150 lb/hr	Х	2.17	lb/ton		х		1 ton	,			=	0.163	
						200	0 lbs				=	0.30	ТРҮ
0.16 lb/hr	Х	454000	mg/lb		X		1 ppmv				=	17.85	ppmv
934 dscfm	х	60	min/hr	х	0.028	m³/r³	Х	2.61	mg/m³				
<u>Nitrogen Oxide</u>	<u>(NOx - a</u>	<u>ıs Nitrogen</u>	<u>Dioxide)</u>										
150 lb/hr	x	3.56	lb/ton		х		1 ton				=	0.27	lbs/hr
						200	00 lbs	•			=	0.486	
0.27 lb/hr	х	454000	mg/lb		x		1 ppmv	,			=	41.09	ppmv
934 dscfm	х	60	min/hr		0.028	m³/r³			mg/m³				
Hydrocarbons	(TOC/VO	DC - methai	ne)										
150 lb/hr	Х	0.299	lb/ton		<u>X</u>	200	<u>1 ton</u> 00 lbs				=	0.02	lbs/hr TPY
0.00 11 /	v	454000	81		37								
0.02 lb/hr 934 dscfm	x x	454000 60	mg/lb min/hr		X 0.028	m ³ /r ³	1 ppmv X		mg/m ³		-	9.88	ppinv
							71	0.05	, mg/m				
<u>Lead (Pb)</u>	((0.0002 %	5 of body	weight)									
150 lb/hr	X	0.0002	lb/ton		······						=	0.0003	
		10	0 lbs								=	0.0005	ТРҮ
Particulates (PI	<u>M & PM,</u>	ച											
150 lb/hr	х	4.67	lb/ton		х		1 ton				=	0.35	lbs/hr
						200	00 lbs	-			=	0.637	
0.35 lb/hr	х	7000	mg/lb								=	0.04	gr/dscf
934 dsefm	х	60	min/hr										0
<u>Carbon Monox</u>	<u>ide (CO)</u>												
150 lb/hr	х	2.95	lb/ton		x		1 ton				=	0.22125	lbs/hr
						200	00 lbs				=	0.40	TPY
0.22 lb/hr	X	454000	mg/lb		X		1 ppmv	7			=	56.15	ppmv
934 dscfm	х	60	min/hr		0.028	m³/f³	X		mg/m ³				

Notes:

1. Incinerator Emissions based on EPA emissions from Table 2.3.1 of AP-42 (5th Edition)

2. All conversion factors from AP-42 Appendix A. Lead from EPA Fire,

Compound	CAS #	SCC	Amount lbs.	Cremations per year	Total lbs/yr	Total tons/yr
4	SCC	CAS	FACTOR	CREMATIONS	الله الله	Tlyr
1,2,3,7,8,9- Hexachlorodibe	31502101	31502101	4.92E-10	4		
nzo-p-dioxin					4.92E-10	2.40E-13
Indeno(1,2,3- cd)pyrene	31502101 193-39-5	193-39-5	< 1.540E-8		1.54E-08	7.70E-12
Hydrogen fluoride	31502101	31502101 7664-39-3	6.55E-04	1	6.55E-04	3.28E-07
Hydrogen chloride	31502101	31502101 7647-01-0	7.20E-02		7.20E-02	3.60E-05
Hexachlorodibe	31502101		1.09E-08			
nzofurans, total					1.09E-08	5.45E-12
2,3,4,6,7,8- Hexachlorodibe	31502101	31502101 60851-34-5	3.44E-10	1		
nzofuran					3.44E-10	1.72E-13
1,2,3,7,8,9- Hexachlorodibe	31502101	31502101 72918-21-9	1.67E-09			
nzofuran					1.67E-09	8.35E-13
1,2,3,6,7,8- Hexachlorodibe	31502101	31502101 57117-44-9	8.52E-10			
nzofuran				-	8.52E-10	4.26E-13
Dibenzo(a,h) anthracene	31502101 53-70-3	53-70-3	< 1.270E-8	-	1.27E-08	6.35E-12
Hexachlorodibe	31502101	31502101 34465-46-8	5.66E-09			
Inzo-p-dioxins, total					5.66E-09	2.83E-12
Molybdenum	31502101	31502101 7439-98-7	< 1.670E-5	1	0.0000167	8.35E-09
1,2,3,6,7,8- Hexachlorodibe	31502101	31502101 57653-85-7	3.97E-10			
nzo-p-dioxin					3.97E-10	1.985E-13
1,2,3,4,7,8-	31502101	31502101 39227-28-6	2.75E-10			
nzo-p-dioxin					2.75E-10	1.375E-13
Heptachlorodib	31502101		< 5.410E-9			
enzoturans, total					5.41E-09	2.705E-12

3.31E-08	0.0000662		6.62E-05	31502101 7439-92-1	31502101	Lead
8.1E-11	0.000000162	1	1.62E-07	129-00-0	31502101 129-00-0	Pyrene
2.18E-08	0.0000436	1	< 4.360E-5	31502101 7782-49-2	31502101	Selenium
3.65E-09	52000000	4	7.30E-06	31502101 7440-22-4	31502101	Silver
3.97E-14	7.94E-11					nzo-p-dioxin
_			7.94E-11	31502101 1746-01-6	31502101	2,3,7,8-
7.05E-13	1.41E-09					nzo-p-dioxins, total
		1	1.41E-09		31502101	Tetrachlorodibe
2.595E-13	5.19E-10					T etrachlorodibe nzofuran
		4	5.19E-10	31502101 51207-31-9	31502101	2,3,7,8-
5.5E-12	0.000000011					nzofurans, total
		-	1.10E-08		31502101	Tetrachlorodibe
4.26E-08	0.0000852	4	< 8.520E-5	31502101 7440-28-0	31502101	Thallium
2.895E-08	0.0000579		5.79E-05	31502101 7440-62-2	31502101	Vanadium
1.765E-07	0.000353	1	3.53E-04	31502101 7440-66-6	31502101	Zinc
1.175E-11	2.35E-08					dioxins, total
			2.35E-08		31502101	Polychlorinated
4.765E-13	9.53E-10					nzofuran
			9.53E-10	31502101 70648-26-9	31502101	1,2,3,4,7,8- Hexachlorodihe
1.025E-10	0.00000205		2.05E-07	206-44-0	31502101 206-44-0	Fluoranthene
2.085E-10	0.000000417	1	4.17E-07	86-73-7	31502101 86-73-7	Fluorene
1.895E-12	3.79E-09					enzo-p-dioxin
		<u>ь</u>	3.79E-09	31502101 35822-46-9	31502101	1,2,3,4,6,7,8-
4.07E-12	8.14E-09					enzo-p-dioxins, total
		1	8.14E-09		31502101	Heptachlorodib
2.285E-12	4.57E-09					enzofuran
		1	< 4.570E-9	31502101 67562-39-4	31502101	1,2,3,4,6,7,8-
1.39E-13	2.78E-10					Heptachlorodib enzofuran
		_	< 2.780E-10	31502101 55673-89-7	31502101	1,2,3,4,7,8,9-

5.55E-11	0.000000111		1.11E-07	83-32-9	31502101 83-32-9	Acenaphthene
1.085E-12	2.17E-09					enzo-p-dioxins, total
		-1	2.17E-09		31502101	Pentachlorodib
1.37E-08	0.0000274	1	2.74E-05	31502101 7440-50-8	31502101	Copper
4.88E-12	9.76E-09		< 9.760圧-9	56-55-3	31502101 56-55-3	Benzo (a) anthracene
1.88E-09	0.00000376					(PAH)
						aromatic
		<u>-</u> -	3.76E-06		31502101	Polycyclic
8.1E-13	1.62E-09	<u>ــــــــــــــــــــــــــــــــــــ</u>	1.62E-09	31502101 39001-02-0	31502101	Octachlorodibe nzofurans, total
1.91E-08	0.0000382		3.82E-05	31502101 7440-02-0	31502101	Nickel
3.035E-12	6.07E-09					total
			6.07E-09	31502101 3268-87-9	31502101	Octachlorodibe
1.165E-13	2.33E-10					enzo-p-dioxin
		<u> </u>	2.33E-10	31502101 40321-76-4	31502101	1,2,3,7,8-
1.47E-13	2.94E-10					enzofuran
		<u> </u>	< 2.940E-10	31502101 57117-41-6	31502101	1,2,3,7,8-
4.425E-13	8.85E-10		~ 0.000E-10	3 1302 10 1 37 1 17 -3 1-4	31202101	2,3,4,7,8- Pentachlorodib enzofuran
3.22E-12	6.44E-09					total
			6.44E-09		31502101	Pentachlorodib
1.145E-09	0.00000229		2.29E-06	85-01-8	31502101	Phenanthrene
2.795E-08	0.0000559		5.59E-05		31502101	PM, filterable
0.0000425	0.085		8.50E-02		31502101	PM, filterable
0.000001645	0.00329	1	3.29E-03	7439-97-6	31502101	Mercury
1.765E-11	3.53E-08					dibenzofurans, total
			< 3.530E-8		31502101	Polychlorinated

Total Tons/yr. 8.09E-05	Тс					
	1.62E-01					
1.455E-11	2.91E-08					perylene
	-	1	< 2.910E-8	191-24-2	31502101 191-24-2	Benzo (g,h,i)
7.1E-12	1.42E-08					fluoranthene
		1	< 1.420E-8	207-08-9	31502101 207-08-9	Benzo (k)
6.85E-10	0.00000137		1.37E-06	31502101 7440-41-7	31502101	Beryllium
5.55E-09	0.0000111	1	1.11E-05	31502101 7440-43-9	31502101	Cadmium
7.95E-12	1.59E-08					fluoranthene
			< 1.590E-8	205-99-2	31502101 205-99-2	Benzo (b)
6.75E-09	0.0000135	1	1.35E-05	31502101 18540-29-9	31502101	Chromium (VI)
0.00000015	0.00003	1	< 3.000E-5	31502101 7440-38-2	31502101	Arsenic
2.7E-11	0.000000054	1	< 5.400E-8	218-01-9	31502101 218-01-9	Chrysene
8.75E-10	0.00000175	-	< 1.750E-6	31502101 7440-48-4	31502101	Cobalt
1.495E-08	0.0000299		2.99E-05	31502101 7440-47-3	31502101	Chromium
1.455E-11	2.91E-08					pyrene
		1	< 2.910E-8	50-32-8	31502101 50-32-8	Benzo (a)
0.00000012	0.000024	1	2.40E-05	31502101 7440-39-3	31502101	Barium
1.51E-08	0.0000302	1	< 3.020E-5	31502101 7440-36-0	31502101	Antimony
1.62E-10	0.00000324	1	3.24E-07	120-12-7	31502101 120-12-7	Anthracene
6.1E-11	0.000000122					
		L	1 22 - 07	8-96-800	31502101	Acenanhthylene 31502101 208-96-8

To: Ellen Pazos, B&L Cremation Systems, Inc

- cc: Nicole Saniti & Megan Keyser, Trinity Consultants
- From: Susan Barnes, Trinity Consultants

Date: August 4, 2023

RE: Journey Pet Services Crematory AERSCREEN Modeling

Summary

As requested by B&L Cremation Systems, Inc. (B&L), Trinity Consultants (Trinity) has completed AERSCREEN air dispersion modeling for criteria pollutants and toxic air pollutants (TAPs) emitted from the Journey Pet Services Crematory to demonstrate compliance with the National Ambient Air Quality Standards (NAAQS) and Maryland Department of the Environment (MDE) Toxic Air Pollutants Program (TAPs Program).

Journey Pet Services is proposing to install and operate a BLP-750M5 Animal Crematory and is evaluating compliance with ambient air quality standards associated with this project. Accordingly, Journey Pet Services has requested that Trinity conduct AERSCREEN modeling to assess the off-site impacts of this change.

The AERSCREEN modeling completed by Trinity demonstrates that the maximum estimated ambient concentrations of all criteria pollutants, including particulate matter with aerodynamic diameter less than or equal to 10 microns (PM₁₀), particulate matter with aerodynamic diameter less than or equal to 2.5 microns (PM_{2.5}), sulfur dioxide (SO₂), nitrogen oxides (NO_x), lead, carbon monoxide (CO), and TAPs emitted by the facility are less than the NAAQS and TAP limits. Therefore, Journey Pet Services is not expected to cause exceedance of the NAAQS or TAPs Program screening levels.

Air Dispersion Modeling Methodology and Inputs

The AERSCREEN air dispersion model was determined by B&L and Trinity to provide a reasonable and conservative estimate of off-site air quality impacts caused by Journey Pet Services. This section describes the inputs used in the modeling.

AERSCREEN Inputs

AERSCREEN modeling estimates off-site pollutant concentrations using physical stack parameters, building parameters, estimates of meteorological conditions, and information about the surrounding area. Much of the necessary information was provided to Trinity by B&L. Additional information was gathered by analyzing Journey Pet Services and the surrounding area using Google Earth. A complete list of parameters used in the AERSCREEN model is shown in Attachment 1.

Emission Rates

Journey Pet Services emits air pollutants from three crematory stacks. For the purposes of this analysis, Trinity has assumed that the emissions from the three stacks are emitted from a single stack, and that the emissions from a single cremation occur over the course of an hour. When modeling the emissions from a single stack, a linear relationship exists between the emission rates from the stack and the estimated ambient concentrations of modeled pollutants. Therefore, AERSCREEN modeling was performed using a unit emission rate of 1 pound per hour, then predicted ambient concentrations of criteria pollutants and TAPs were calculated by multiplying the AERSCREEN results for the appropriate averaging periods by the known emission rate in pounds per hour of each pollutant. Trinity assumed that emission rates of PM₁₀ and PM_{2.5} were equivalent to potential emission rates for total PM. These predicted concentrations were then compared to the applicable NAAQS and TAP screening levels. Calculations of predicted ambient concentrations for each pollutant are detailed in Attachment 1.

Modeling Results

The completed AERSCREEN modeling demonstrates that off-site concentrations of all criteria pollutants and TAPs emitted from Journey Pet Services are not expected to exceed the NAAQS and TAP screening levels. Table 1 presents a comparison of the model predicted concentrations to the NAAQS. The comparison to TAP screening levels is provided in Attachment 1.

Pollutant	Averaging Period	National Ambient Air Quality Standard (µg/m³)	Predicted Maximum Off-site Concentration (µg/m³)	NAAQS Exceeded?
PM ₁₀	24-Hour	150	1.65	NO
D84	24-Hour	35	1.65	NO
PM _{2,5}	Annual	12.0	0,28	NO
, .	1-Hour	196	1,28	NO
<u>co</u>	3-Hour	1,300	1.28	NO
SOx	24-Hour	365	0.77	NO
	Annual	80	0.13	NO
	1-Hour	188	2,13	NO
NOx	Annual	100	0.21	NO
Lead	3-Month	0.15	0.00	NO
	1-Hour	10,000	1.74	NO
CO	8-Hour	40,000	1.74	NO

Table 1: Comparison of Model Results to NAAQS

.

.

Attachment 1: AERSCREEN Inputs and Results

B&L Cremation Systems Woodbine Pet Crematory AERSCREEN Inputs and Results

AERSCREEN Inputs

Control Options	
Land Use	Rural

Source Parameters		
Source Type	Point	
Emission Rate	1	lb/hr
Stack Height	25	ft
Stack Diameter	24	in
Stack Temperature	1,000	F
Exit Velocity	23.52	ft/s

Building Parameters

Height	14	ft
Length	50	ft
Width	32	ft
Max Dimension Angle to N	75	oegrees
Angle from Center to Stack	150	degrees
Distance from Center to Stack	3	ft

Receptors

Receptors		
Min Distance to Ambient Air	100	ft
Max Distance to Probe	16,425	ft

Meteorology

Min Temperature	0	F
Max Temperature	100	F
Min Wind Speed	0.5	m/s
Anemometer Height	10	m
Surface Profile	Deciduo	us Forest

AERSCREEN Results

Modeled Concentrations @ 1 lb/hr (µg/m³)

		Scaled 3-	Scaled 8-	Scaled 24~	Scaled
	Max 1-Hour	Hour	Ноиг	Hour	Annual
Maximum Impact	6.734	6.734	6.061	4.041	0.6734
At Ambient Boundary	4.95	4.95	4.455	2,97	0.495

Criteria Pollutant Emission Rates (Ib/hr)

		Source				
PM ₁₀	0.35	Potential to Emit from Permit Application				
PM2.5	0.35	Potential to Emit from Permit Application				
SO _x	0.16	Potential to Emit from Permit Application				
NOx	0.27	Potential to Emit from Permit Application				
Lead	3.00E-04	Potential to Emit from Permit Application				
VOC	0.02	Potential to Emit from Permit Application				
co	0,22	Potential to Emit from Permit Application				

	Actual Emissions (lb/hr/unit)	Actual Emissions (lb/hr)	Source
Indeno(1,2,3-cd)pyrene	1.54E-08	4.62E-08	Provided by B&L
Hydrogen fluoride	6.55E-04	1.97E-03	Provided by B&L
Hydrogen chloride	7.20E-02	2.16E-01	Provided by B&L
Dibenzo(a,h)anthracene	1.27E-08	3.81E-08	Provided by B&L
Fluorene	4.17E-07	1.25E-06	Provided by B&L
Fluoranthene	2.05E-07	6.15E-07	Provided by B&L
Zinc	3,53E-04	1.06E-03	Provided by B&L
Vanadium	5.79E-05	1.74E-04	Provided by B&L
Thallium	8.52E-05	2.56E-04	Provided by B&L
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	3.79E-09	1.14E-08	Provided by B&L
1,2,3,4,7,8,9-Heptachlorodibenzofuran	2.78E-10	8.34E-10	Provided by B&L
1,2,3,4,6,7,8-Heptachlorodibenzofuran	4.57E-09	1.37E-08	Provided by B&L
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	4.92E-10	1.48E-09	Provided by B&L
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	3.97E-10	1.19E-09	Provided by B&L
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	2.75E-10	8.25E-10	Provided by B&L
2,3,4,6,7,8-Hexachlorodibenzofuran	3.44E-10	1.03E-09	Provided by B&L
1,2,3,7,8,9-Hexachlorodibenzofuran	1.67E-09	5.01E-09	Provided by B&L
1.2.3.6.7.8-Hexachlorodibenzofuran	8.52E-10	2.56E-09	Provided by B&L
1,2,3,4,7,8-Hexachlorodibenzofuran	9.53E-10	2.86E-09	Provided by B&L
2,3,4,7,8-Pentachlorodibenzofuran	8.85E-10	2.66E-09	Provided by B&L
1,2,3,7,8-Pentachlorodibenzofuran	2.94E-10	8.82E-10	Provided by B&L
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	2.33E-10	6.99E-10	Provided by B&L
2,3,7,8-Tetrachlorodibenzofuran	5.19E-10	1.56E-09	Provided by B&L
2,3,7,8-Tetrachlorodibenzo-p-dioxin	7.94E-11	2.38E-10	Provided by B&L
Silver	7.30E-06	2.19E-05	Provided by B&L
Molybdenum	1.67E-05	5.01E-05	Provided by B&L
Selenium	4.36E-05	1.31E-04	Provided by B&L
Pyrene	1.62E-07	4.86E-07	Provided by B&L
Lead	6.62E-05	1.99E-04	Provided by B&L
Mercury	3.29E-03	9.87E-03	Provided by B&L
Phenanthrene	2.29E-06	6.87E-06	Provided by B&L
Nickel	3.82E-05	1.15E-04	Provided by B&L
Benz(a)anthracene	9.76E-09	2.93E-08	Provided by B&L
Copper	2.74E-05	8.22E-05	Provided by B&L
Acenaphthene	1.11E-07	3.33E-07	Provided by B&L
Acenaphthylene	1.22E-07	3.66E-07	Provided by B&L
Anthracene	3.24E-07	9.72E-07	Provided by B&L
Antimony	3.02E-05	9.06E-05	Provided by B&L
Barium	2.40E-05	7.20E-05	Provided by B&L
Benzo(a)pyrene	2,91E-08	8.73E-08	Provided by B&L
Chromium	2,99E-05	8.97E-05	Provided by B&L
Cobalt	1.75E-06	5.25E-06	Provided by B&L
Chrysene	5.40E-08	1.62E-07	Provided by B&L
Arsenic	3.00E-05	9.00E-05	Provided by B&L
Chromium VI	1.35E-05	4.05E-05	Provided by B&L
Benzo(b)fluoranthene	1.59E-08	4.77E-08	Provided by B&L
Cadmium	1.11E-05	3.33E-05	Provided by B&L
Bervllium	1.37E-06	4.11E-06	Provided by B&L
Benzo(k)fluoranthene	1.42E-08	4.26E-08	Provided by B&L
Benzo(ghi)perylene	2.91E-08	8.73E-08	Provided by B&L

Modeled Maximum Impact Concentrations By Pollutant (µg/m³)

			Scaled 8-	Scaled 24-	Scaled
	Max 1-Hour	Scaled 3-Hour	Hour	Hour	Annual
PM ₁₀	2.36	2.36	2.12	1.41	0.24
PM2.5	2.36	2.36	2.12	1.41	0.24
50 _x	1.10	1.10	0.99	0.66	0,11
NOx	1.82	1.82	1,64	1.09	0.18
Lead	0.00	0.00	0.00	0.00	0.00
VOC	0.13	0,13	0.12	0.08	0.01
со	1.49	1.49	1.34	0.89	0.15

Modeled Maximum Impact Concentrations By Pollutant (ug/m³)

Modeled Maximum Impact Concentrations By Pollutant (µg/m³)							
		Scaled 8		Scaled 24-	Scaled		
	Max 1-Hour	Scaled 3-Hour Hour		Hour	Annual		
Indeno(1,2,3-cd)pyrene	3.11E-07	3.11E-07	2.80E-07	1.87E-07	3.11E-08		
Hydrogen fluoride	1.328-02	1.32E-02	1.19E-02	7.94E-03	1.32E-03		
Hydrogen chloride	1.45E+00	1.45E+00	1.31E+00	8.73E-01	1.45E-01		
Dibenzo(a,h)anthracene	2.57E-07	2.57E-07	2.31E-07	1.54E-07	2.57E-08_		
Fluorene	8.42E-06	8,42E-06	7.58E-06	5.06E-06	8.42E-07		
Fluoranthene	4.14E-06	4.14E-06	3.73E-06	2.49E-06	4.14E-07		
Zinc	7.13E-03	7.13E-03	6.42E-03	4.28E-03	7.13E-04		
Vanadium	1.17E-03	1.17E-03	1.05E-03	7.02E-04	1.17E-04		
Thailium	1.72E-03	1.72E-03	1,55E-03	1.03E-03	1.72E-04		
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	7.66E-08	7.66E-08	6.89E-08	4.59E-08	7.66E-09		
1,2,3,4,7,8,9-Heptachlorodibenzofuran	5.62E-09	5.62E-09	5.05E-09	3,37E-09	5.62E-10		
1,2,3,4,6,7,8-Heptachlorodibenzofuran	9.23E-08	9.23E-08	8.31E-08	5.54E-08	9.23E-09		
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	9,94E-09	9,94E-09	8,95E-09	5.96E-09	9.94E-10		
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	8.02E-09	8.02E-09	7.22E-09	4,81E-09	8.02E-10		
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	5.56E-09	5.56E-09	5.00E-09	3.33E-09	5.56E-10		
2,3,4,6,7,8-Hexachlorodibenzofuran	6.95E-09	6.95E-09	6.25E-09	4.17E-09	6.95E-10		
1,2,3,7,8,9-Hexachlorodibenzofuran	3.37E-08	3,37E-08	3.04E-08	2.02E-08	3.376-09		
1,2,3,6,7,8-Hexachlorodibenzofuran	1.72E-08	1,72E-08	1.55E-08	1.03E-08	1.72E-09		
1,2,3,4,7,8-Hexachlorodibenzofuran	1.93E-08	1.93E-08	1.73E-08	1.16E-08	1.93E-09		
2,3,4,7,8-Pentachiorodibenzofuran	1.79E-08	1.79E-08	1.61E-08	1.07E-08	1.79E-09		
1,2,3,7,8-Pentachlorodibenzofuran	5.94E-09	5.94E-09	5.35E-09	3.56E-09	5.94E-10		
1,2,3,7,8-Pentachiorodibenzo-p-dioxin	4,71E-09	4,71E-09	4,24E-09	2.82E-09	4.718-10		
2,3,7,8-Tetrachlorodibenzofuran	1.05E-08	1,05E-08	9.44E-09	6.29E-09	1.05E-09		
2,3,7,8-Tetrachlorodibenzo-p-dioxin	1.60E-09	1,60E-09	1,44E-09	9.63E-10	1.60E-10		
Silver	1.47E-04	1.47E-04	1.33E-04	8.85E-05	1.47E-05		
Molybdenum	3,37E-04	3.37E-04	3.04E-04	2.02E-04	3.37E-05		
Selenium	8.81E-04	8.81E-04	7.93E-04	5.29E-04	8.81E-05		
Pyrene	3,27E-06	3,27E-06	2,95E-06	1.96E-06	3.27E-07		
Lead	1.34E-03	1,34E-03	1,20E-03	8.03E-04	1.34E-04		
Mercury	6.65E-02	6.65E-02	5.98E-02	3.99E-02	6.65E-03		
Phenanthrene	4.63E-05	4.63E~05	4.16E-05	2.78E-05	4.63E-06		
Nickel	7.72E-04	7.72E-04	6.95E-04	4.63E-04	7.72E-05		
Benz(a)anthracene	1,97E-07	1.97E-07	1.77E-07	1.18E-07	1.97E-08		
Copper	5.54E-04	5.54E-04	4.98E-04	3.32E-04	5.54E-05		
Acenaphthene	2.24E-06	2.24E-06	2.028-06	1.35E-06	2.24E-07		
Acenaphthylene	2.46E-06	2.46E-06	2.22E-06	1.48E-06	2.46E-07		
Anthracene	6.55E-06	6.55E-06	5.89E-06	3.93E-06	6.55E-07		
Antimony	6.10E-04	6,10E-04	5,49E-04	3.66E-04	6.10E-05		
Barlum	4.85E-04	4,85E-04	4,36E-04	2,91E-04	4,85E-05		
Benzo(a)pyrene	5.88E-07	5.88E-07	5.29E-07	3.53E-07	5,88E-08		
Chromium	6,04E-04	6.04E-04	5.44E-04	3.62E-04	6.04E-05		
Cobalt	3.54E-05	3,54E-05	3.18E-05	2.12E-05	3.54E-06		
Chrysene	1.09E-06	1.09E-06	9,82E-07	6,55E-07	1.095-07		
Arsenic	6.06E-04	6.06E-04	5.45E-04	3.64E-04	6.06E-05		
Chromium VI	2.73E-04	2,73E-04	2.45E-04	1.64E-04	2.73E-05		
Benzo(b)fluoranthene	3.21E-07	3.21E-07	2,89E-07	1.93E-07	3.218-08		
Cadmium	2.24E-04	2.24E-04	2.02E-04	1.35E-04	2.24E-05		
Beryllium	2.77E-05	2.77E-05	2.49E-05	1.66E-05	2.77E-06		
Benzo(k)fluoranthene	2.87E-07	2.87E-07	2,58E-07	1.72E-07	2.87E-08		
Benzo(ghi)perylene	5.88E-07	5.88E-07	5.29E-07	3.53E-07	5,88E-08		

Comparison With NAA	QS (µg/m³)			1			·····
		Max 1-Hour	Scaled 3- Hour	Scaled 8- Hour	Scaled 24- Hour	Scaled 3- month	Scaled Annua
	Modeled Concentration				1.41	+-4	
PM10	NAAQS				150		
	Modeled < NAAQS?	+-			Y		
PM _{2.5}	Modeled Concentration			F-4	1.41		0,24
	NAAQS				35		12.0
	Modeled < NAAOS?				Y		Ý
	Modeled Concentration	1.10	1.10		0.66		0.11
SO,	NAAQS	196	1,300		365		80
-	Modeled < NAAQS?	Ý	Ŷ		Y		Y
	Modeled Concentration	1.82					0.18
NOx	NAAQS	188					100
-	Modeled < NAAQS?	Y					Y
	Modeled Concentration					0.00	+
Lead	NAAQS					0.15	
	Modeled < NAAQS?					Υ Υ	+
	Modeled Concentration						
VOC	NAAQS						
	Modeled < NAAQS?						
	Modeled Concentration	1,49		1.34			
co	NAAQS	10,000		40,000			
	Modeled < NAAQS?	Y		Y			

		Max 1-Hour	Scaled 3- Hour	Scaled 8- Hour	Scaled 24- Hour	Scaled 3- month	Scaled Annu
						monus	
	Modeled Concentration Screening Level						
Indeno(1,2,3-cd)pyrene							
······································	Modeled < Screening Level?						
Under an Orientida	Modeled Concentration	0.01		0.01			· •• ···
Hydrogen fluoride	Screening Level	16.37		4.09			
	Modeled < Screening Level?	Y		Y			
	Modeled Concentration	1.45		1.31			0,15
Hydrogen chloride	Screening Level	29.83		165.27			0,70
	Modeled < Screening Level?	Y		Y			Y
	Modeled Concentration						
Dibenzo(a,h)anthracene	Screening Level						
	Modeled < Screening Level?						
	Modeled Concentration			0.00			
Fluorene	Screening Level			20.00			**
	Modeled < Screening Level?			Y _			
	Modeled Concentration	l					+
Fluoranthene	Screening Level						
	Modeled < Screening Level?						
	Modeled Concentration	0,01		0.01			
Zinc	Screening Level	1000,00		500.00			
	Modeled < Screening Level?	Ý		Y			
	Modeled Concentration			0.00			
Vanadium	Screening Level		÷	0,50			
	Modeled < Screening Level?			Y			
· · · · · · · · · · · · · · · · · · ·	Modeled Concentration			0.00			
Thallium	Screening Level			0.20			
	Modeled < Screening Level?			Y			
	Modeled Concentration	·····		0.00			0.0000000
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	Screening Level			0.26			0.0000000
	Modeled < Screening Level?			Y			Y
*****	Modeled Concentration					+	0.0000000
1,2,3,4,7,8,9-Heptachlorodibenzofuran	Screening Level						0.0000000
1,2,3,4,7,0,54 (cptschiologioch2010)	Modeled < Screening Level?						7 Y
	Modeled Concentration						0.0000000
1,2,3,4,6,7,8-Heptachlorodibenzofuran	Screening Level			-14			0.0000000
1,2,5,4,6,7,6-neptach0r0dibenzoruran				-*			0,000000 Y
	Modeled < Screening Level?						-
1 2 2 2 4 0 Mayrachlandibanza a diavia	Modeled Concentration						0,0000000
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	Screening Level						0.0000000 Y
	Modeled < Screening Level?						•
	Modeled Concentration			0.00			0.0000000
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	Screening Level	i		0.02	····		0.0000000
	Modeled < Screening Level?			Y			Y
	Modeled Concentration						0.0000000
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	Screening Level						0.0000000
	Modeled < Screening Level?						Y
	Modeled Concentration						0.0000000
2,3,4,6,7,8-Hexachlorodibenzofuran	Screening Level	<u> </u>					0.000000
	Modeled < Screening Level?			-			Y
	Modeled Concentration			-+			0.0000000
1,2,3,7,8,9-Hexachlorodibenzofuran	Screening Level					+	0.000000
	Modeled < Screening Level?						Y
and the second se	Modeled Concentration					·	0.0000000
1,2,3,6,7,8-Hexachlorodibenzofuran	Screening Level						0.000000
* * * * *	Modeled < Screening Level?	-					Y

		Max 1-Hour	Scaled 3- Hour	Scaled 8- Hour	Scaled 24- Hour	Scaled 3- month	Scaled Annual
	Modeled Concentration						0.000000002
1,2,3,4,7,8-Hexachlorodibenzofuran	Screening Level						0.00000003
	Modeled < Screening Level?						Y
	Modeled Concentration	-		0.00			0.00000002
2,3,4,7,8-Pentachlorodibenzofuran	Screening Level			0.04			0.00000003
	Modeled < Screening Level?			Y			Y
	Modeled Concentration						0.000000001
1,2,3,7,8-Pentachlorodibenzofuran	Screening Level	+	+-			-+	0.00000003
	Modeled < Screening Level?						Y
	Modeled Concentration		**	0.00			0.000000000
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	Screening Level			0.01			0.00000003
	Modeled < Screening Level?	'		Y			Y
	Modeled Concentration						0.000000001
2,3,7,8-Tetrachlorodibenzofuran	Screening Level						0.00000003
	Modeled < Screening Level?						Y Y
	Modeled Concentration						0.0000000002
2,3,7,8-Tetrachlorodibenzo-p-dioxin	Screening Level	-					0.00000003
	Modeled < Screening Level?						Y
	Modeled Concentration		-	0.00			
Silver	Screening Level			0.10			
	Modeled < Screening Level?			Y			
	Modeled Concentration			0,00			
Molybdenum	Screening Level	'		5.00			
	Modeled < Screening Level?			Y		***	
	Modeled Concentration			0,00			
Selenium	Screening Level		~	2.00			
	Modeled < Screening Level?			Y			
	Modeled Concentration			0.00	-		
Pyrene	Screening Level			20.00			
	Modeled < Screening Level?			Y			
	Modeled Concentration			0.00			
Lead	Screening Level			0.50			
	Modeled < Screening Level?			Y			
	Modeled Concentration	0.07		0.06			
Mercury	Screening Level	0.30		0.10			
	Modeled < Screening Level?	Y	r. +	Y		~~	~~
	Modeled Concentration			0.00			
Phenanthrene	Screening Level		~~	9.80			
	Modeled < Screening Level?	<u> </u>		Y			
	Modeled Concentration			0.00			
Nickel	Screening Level			1.00			
	Modeled < Screening Level?			Y			
	Modeled Concentration	-					
Benz(a)anthracene	Screening Level	'					
	Modeled < Screening Level?						
_	Modeled Concentration	'		0.00			
Copper	Screening Level			2.00			
	Modeled < Screening Level?			Y			
	Modeled Concentration			0.00			
Acenaphthene	Screening Level			20.00			
	Modeled < Screening Level?			Y			
	Modeled Concentration	-		0.00			**
Acenaphthylene	Screening Level			24,64			
	Modeled < Screening Level?			Y			
	Modeled Concentration			0,00			
Anthracene	Screening Level			20.00			
	Modeled < Screening Level?			Y			
	Modeled Concentration			0.00			
Antimony	Screening Level			5.00			
	Modeled < Screening Level?			Y Y			

			Scaled 3-	Scaled 8-	Scaled 24-	Scaled 3-	
		Max 1-Hour	Hour	Hour	Hour	month	Scaled Annual
	Modeled Concentration			0.00			
Barium	Screening Level			5.00			
	Modeled < Screening Level?		'	Y			
	Modeled Concentration					-	
Benzo(a)pyrene	Screening Level						
	Modeled < Screening Level?						
	Modeled Concentration	1		0.00			
Chromium	Screening Level			5.00			
	Modeled < Screening Level?			Y			
	Modeled Concentration			0.00			
Cobalt	Screening Level			0.20			+
	Modeled < Screening Level?			Y			
	Modeled Concentration						
Chrysene	Screening Level						
	Modeled < Screening Level?						
Arsenic	Modeled Concentration			0.00			0.0001
	Screening Level			0.10			0.0002
	Modeled < Screening Level?			Y			Y .
	Modeled Concentration			0.00			0.00003
Chromium VI	Screening Level			0.10			0.00008
	Modeled < Screening Level?			Y			Ŷ
	Modeled Concentration						+
Benzo(b)fluoranthene	Screening Level						
	Modeled < Screening Level?						
	Modeled Concentration			0.00			0.00002
Cadmium	Screening Level			0.02			0,0006
	Modeled < Screening Level?	-	·	Y			Y
	Modeled Concentration			0,00002			0.000003
Beryllium	Screening Level			0.00050			0.000400
	Modeled < Screening Level?			Y			Y
	Modeled Concentration				-	****	***
Benzo(k)fluoranthene	Screening Level					+ -	F-++
	Modeled < Screening Level?						
	Modeled Concentration			0.00			
Benzo(ghł)perylene	Screening Level			20.00			
	Modeled < Screening Level?			Y			

EMISSIONS TESTING of the FOSTER'S PET CREMATION SERVICE B & L SYSTEMS, INC. BLP 750 ANIMAL CREMATORY INCINERATOR Spring Hill, Florida

÷

March 9, 2004

FDEP Permit No.: 1010377-002-AO EU No. 003 SES Reference No. 04S61

Conducted by:

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563 Phone (813) 752-5014, Fax (813) 752-2475

Project Participants

Mark S. Gierke Dale A. Wingler Travis B. Nelson .

SOL

.

SOUTHERN ENVIRONMENTAL SCIENCES. INC.

EMISSIONS TESTING of the FOSTER'S PET CREMATION SERVICE B & L SYSTEMS, INC. BLP 750 ANIMAL CREMATORY INCINERATOR Spring Hill, Florida

March 9, 2004

TABLE OF CONTENTS

Pag

1.0 INTRODUCTION	<u>e</u> 1
2.0 SUMMARY OF RESULTS	1
3.0 PROCESS DESCRIPTION	4
4.0 SAMPLING PROCEDURES	4
 4.1 Methods	4 5 5 8 10
5.0 ANALYTICAL PROCEDURE	11
5.1 Pretest Preparation	. 11
Project Participants Certification Visible Emissions Evaluation Process Operational Data Laboratory Data Temperature Recording Chart Field Data Sheets CO Analyzer Strip Chart Calibration Data Calculations and Symbols	

1.0 INTRODUCTION

Southern Environmental Sciences, Inc. conducted emissions testing of the Foster's Pet Cremation Service animal crematory on March 9, 2004. This facility is located at 15204 County Line Road, Spring Hill, Florida. Testing was conducted for particulates, carbon monoxide and visible emissions. Oxygen (0₂) concentrations were measured to correct emission rates to 7% 0₂. Testing was performed to determine if the plant was operating in compliance with requirements of the Florida Department of Environmental Protection (FDEP).

2.0 SUMMARY OF RESULTS

The facility was found to be in compliance with all applicable emission limiting standards. Results of the particulate and carbon monoxide testing are summarized in Table 1. Particulate emissions from this source are limited to a maximum allowable concentration of 0.080 grains per dry standard cubic foot (corrected to 7% 0₂), and 0.30 pounds per hour. The average measured particulate concentration was 0.009 grains per dry standard cubic foot (corrected to 7% 0₂), and 0.031 pounds per hour, well within the limit. The maximum allowable carbon monoxide emissions concentration from this source is 100 parts per million, dry basis (corrected to 7% 0₂), and 0.17 pounds per hour. The average measured carbon monoxide emission concentration was 4.3 parts per million, dry basis (corrected to 7% 0₂), and 0.01 pounds per hour, well within the allowable limit.

A visible emissions evaluation was performed over a one hour period. The average

TABLE 1. EMISSIONS TEST SUMMARY

Run 2 Run 3

,

Company: FOSTER'S PET CREMATION SERVICE Source: Animal Crematory Incinerator

	Run 1		
Date of Run	3/9/04	3/9/04	3/9/04
Process Rate (lbs/hr)	124	124	124
Start Time (24-hr. clock)	1135	1302	1425
End Time (24-hr. clock)	1238	1403	1526
Vol. Dry Gas Sampled Meter Cond. (DCF)	35.293	36.308	37.298
Gas Meter Calibration Factor	0.986	0.986	0.986
Barometric Pressure at Barom. (in. Hg.)	30,14	30.14	30.14
Elev. Diff. Manom. to Barom. (ft.)	0	0	0
Vol. Gas Sampled Std. Cond. (DSCF)	34.324	34.476	35,476
Vol. Liquid Collected Std. Cond. (SCF)	8.020	6.794	5.913
Moisture in Stack Gas (`)/0 Vol.)	18.9	16.5	14.3
Molecular Weight Dry Stack Gas	29.04	29.12	29.30
Molecular Weight Wet Stack Gas	26.95	27.29	27.69
Stack Gas Static Press. (in. H2O gauge)	-0.01	-0.01	-0,01
Stack Gas Static Press. (in. Hg. abs.)	30.14	30.14	30.14
Average Square Root Velocity Head	0.164	0.175	0.178
Average Orifice Differential (in. H2O)	1.049	1.041	1.118
Average Gas Meter Temperature (°F)	80.6	93.7	92.9
Average Stack Gas Temperature (°F)	1240.3	1367.1	1359.6
Pitot Tube Coefficient	0.84	0.84	0.84
Stack Gas Vel. Stack Cond. (ft./sec.)	17.01	18.68	18.85
Effective Stack Area (sq. ft.)	1.77	1.77	1.77
Stack Gas Flow Rate Std. Cond. (DSCFM)	457	482	501
Stack Gas Flow Rate Stack Cond. (ACFM)	1,803	1,981	1,999
Net Time of Run (min.)	60	60	60
Nozzle Diameter (in.)	0.611	0.611	0.611
Percent Isokinetic	108.7	103.6	102.5

TABLE 1. EMISSIONS TEST SUMMARY (con't)

		Run 2	Run 3
Company:	FOSTER'S PET CREMATION SERVICE		
Source:	Animal Crematory Incinerator		

	Run 1			
Date of Run Process Rate (lbs/hr) Start Time (24-hr. clock) End Time (24-hr. clock) Oxygen (%)	3/9/04 124 1135 1238 8,0	3/9/04 124 1302 1403 10.0	3/9/04 124 1425 1526 10.5	
		11 1		Average
Particulate Collected (mg.)	34.0 0.015	11.1 0.005	7.4 0.003	0.008
Particulate Emissions (gr./DSCF) Particulate Emissions (gr./DSCF @ 7% 02) Allowable Part. Emissions (grJDSCF @ 7% 02)	0.016	0.006	0.004	0.009 0.080
Particulate Emissions (lb./hr.) Allowable Part. Emissions (113./hr.)	0.060	0.021	0.014	0.031 0.30
CO Emissions (PPM)	3.08	2.25	5,00	4.3
CO Emissions (PPM @ 7% 02) Allowable CO Emissions (PPM @ 7% 02)	3.3	2.9	6.7	4.3 100
CO Emissions (1b./hr.) Allowable CO Emissions (1b./hr.)	0.006	0.005	0.011	0,007 0.12

Note: Standard conditions 68°F, 29.92 in. Hg

maximum six minute opacity was zero percent, well within the allowable limit of 5 percent.

3.0 PROCESS DESCRIPTION

The B & L Systems, Inc. Model BLP 750 Series crematory incinerator cremates animal remains in an environmentally acceptable manner. Emissions are controlled by an afterburner. The afterburner is preheated and maintained at a minimum operating temperature of 1600°F prior to ignition of the primary chamber. The unit is designed to be charged with a maximum of 750 pounds of animal remains and incinerate at a maximum rate of 150 pounds per hour with a maximum heat input of 2.00 MMBTU per hour (primary chamber 1.00 MMBTU per hour, secondary chamber 1.0 MMBTU/hr), each chamber fired exclusively on propane gas only. The time required for complete incineration depends upon the total weight of the waste. Process operational data was provided by facility personnel and is included in the appendix.

4.0 SAMPLING PROCEDURES

4.1 Methods

All sampling was performed using methods currently acceptable to the FDEP. Particulate sampling and analyses were conducted in accordance with EPA Method 5 Determination of Particulate Emissions from Stationary Sources, 40 CFR 60, Appendix A-3. Carbon monoxide emissions were conducted in accordance with EPA Method 10 - Determination of Carbon Monoxide Emissions from Stationary Sources, 40 CFR 60, Appendix A-4. The oxygen content of the stack gas was determined in accordance with EPA Method 3B Gas Analysis for the Determination of Emission Rate Correction Factor or Excess Air, 40 CFR 60, Appendix A-2. The visible emissions evaluation was performed using procedures described in EPA Method 9 Visual Determination of the Opacity of Emissions from Stationary Sources, 40 CFR 60, Appendix A-4.

4.2 Sampling Locations

Locations of the sample ports and stack dimensions are shown in Figure 1. Particulate sampling was accomplished by conducting horizontal traverses through each of two ports located on the stack at a ninety degree angle from one another. Twenty four sample points were chosen in accordance with EPA Method 1 - Sample and Velocity Traverses for Stationary Sources, 40 CFR 60, Appendix A-1. Carbon monoxide and oxygen sampling were performed from the same sampling ports as the particulate sampling.

4.3 Sampling Trains

The particulate sampling train consisted of a Nutech Corporation 3 foot quartz lined probe and nozzle, a heated glass fiber filter and four impingers arranged as shown in Figure 2. Flexible tubing was used between the heated filter and the impingers. The first two impingers were each charged with 100 milliliters of water, the third served as a dry trap and the fourth impinger was charged with indicating silica gel desiccant. The impingers were cooled in an ice and water bath during sampling. A Nutech Corporation control console was used to monitor the gas flow rates and stack conditions during sampling.

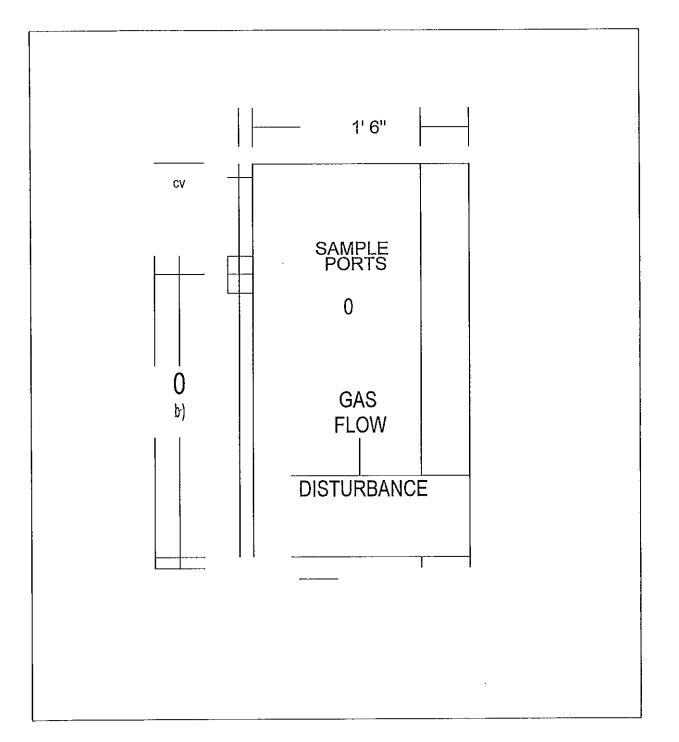
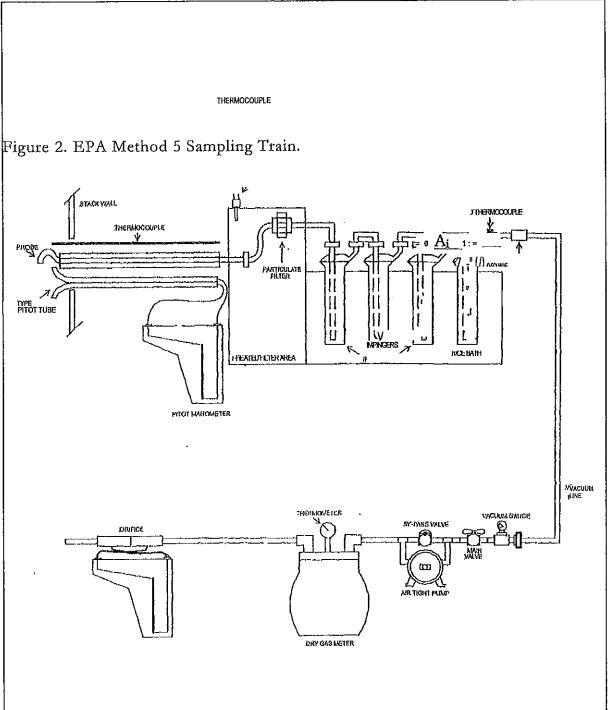



Figure 1. Stack Dimensions and Sample Port Locations, Foster's Pet Cremation Service, Animal Crematory Incinerator, Spring Hill, Florida.

The carbon monoxide sampling train consisted of a stainless steel probe, teflon sample line, condenser, silica gel and carbon dioxide adsorbent tubes and a Thermo Environmental Instruments, Inc, Model 48 Gas Filter Correlation CO analyzer arranged as shown in Figure 3. The oxygen sampling train consisted of a probe, sample line, tedlar bag in a rigid container, valve, vacuum pump, and flow meter.

4.4 Sample Collection

Prior to particulate sampling, the pitot tubes were checked for leaks and the manometers were zeroed. A pretest leak check of the particulate sampling train was conducted by sealing the <u>no77le</u> and applying a 15" Hg vacuum. A leak rate of less than 0.02 cubic feet per minute was considered acceptable. Particulate sample was collected isokinetically for two and one half minutes at each of the points sampled.

The carbon monoxide analyzerwas calibrated immediately prior to the beginning of the test and checked after each run by introducing known gases into the instrument through the sampling train.

The tedlar bag used for obtaining an integrated oxygen sample was leak checked prior to the test by pressurizing it to 2 to 4 in. H_2O and allowing it to stand overnight. The bag was considered leak free if it remained inflated. A one hour integrated sample was obtained at a rate 0.5 liters per minute for each run.

Carbon monoxide and oxygen sampling were conducted simultaneously with particulate

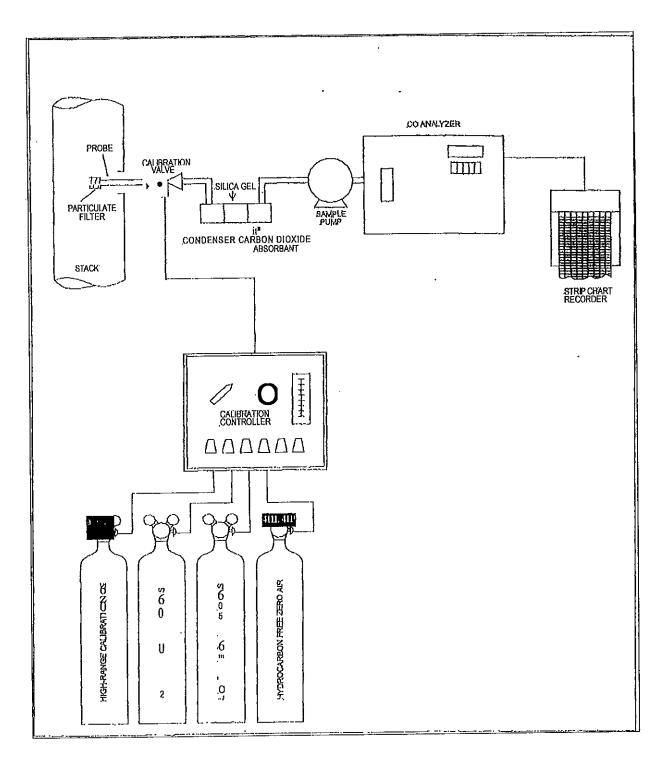


Figure 3. EPA Method 10 Sampling Train.

sampling.

4.5 Sample Recovery

A post test leak check of the particulate sampling train was performed at the completion of each run by sealing the nozzle and applying a vacuum equal to or greater than the maximum value reached during the sample period. A leak rate of less than 0.02 CFM or 4 percent of the average sampling rate (whichever was less) was considered acceptable. The nozzle and probe were then brushed and rinsed with reagent grade acetone and the washings were placed in clean polyethylene containers and sealed. The glass fiber filter was removed from the holder with forceps and placed in a covered petri dish for return to the laboratory. The front half of the filter holder was rinsed with acetone and the washings were added to the no77le and probe wash. The contents of the first three impingers were measured volumetrically and the silica gel in the fourth impinger was weighed to the nearest 0.1 gram for determination of moisture content.

Two calculations of the moisture content of the stack gas were made for each run, one from the impinger analysis and one from the assumption of saturated conditions based upon the average stack gas temperature and a psychrometric chart as described in EPA Method 4, Determination of Moisture Content in Stack Gases, 40 CFR 60, Appendix A. The lower of the two values of moisture content was considered to be correct and was

used in the emissions computations.

5.0 ANALYTICAL PROCEDURE

1

5

5.1 Pretest Preparation

The glass fiber filters for the particulate train were numbered, oven dried at 105°C for two to three hours, desiccated and weighed to a constant weight in preparation for the test, Results were recorded to the nearest 0.1 milligram. Filters were loaded into holders and a filter was set aside as a control blank. The impingers were charged as described in section 4.3 and the contents of the fourth impinger were weighed to the nearest 0.1 gram.

5.2 Analysis

Upon return to the laboratory, the particulate filters were removed from the containers with forceps, dried at 105°C for two to three hours, desiccated and weighed to a constant weight. Results were recorded to the nearest 0.1 milligram. The probe and nozzle washes and an acetone blank were measured volumetrically and transferred to clean, tared evaporating dishes and evaporated to dryness over low heat. The evaporating dishes were then oven dried at 105°C for two to three hours, desiccated and weighed to a constant weight. Results were recorded to the nearest 0.1 milligram. The total particulate reported is the sum of the filter weight gain and the weight gain of the evaporating dishes, corrected for the acetone blank.

APPENDIX

Project Participants Certification Visible Emissions Evaluation Process Operational Data Laboratory Data Temperature Recording Chart Field Data Sheets CO Analyzer Strip Chart Calibration Data Calculations and Symbols

PROJECT PARTICIPANTS AND CERTIFICATION

FOSTER'S PET CREMATION SERVICE B & L SYSTEMS, INC. BLP 750 ANIMAL CREMATORY INCINERATOR Spring Hill, Florida

March 9, 2004

Project Participants:

Mark S. Gierke Dale A. Wingler Travis B. Nelson

Fred T. Smith II (Foster's Pet Cremation)

Mark S. Gierke

Kenneth M. Roberts

Dale A. Wingler

Conducted the field testing.

Provided process rates.

Performed visible emissions evaluation.

Performed laboratory analyses.

Prepared the final test report.

Certification:

I certify that to my knowledge all data submitted in this report is true and correct.

Glerke

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street, Plant City, Florida 33566 181 3)752-5014

VISIBLE EMISSIONS EVALUATION

COMPANY r : . /, ,,,1	
	a 217) Ci Wh 0 Ind
	<u>,,0</u> ,0
ADDRESS 1576 . 1 c. 0 00- 1: SP tt 1 ^t	$\frac{1}{q} \frac{1}{q}$
	COM/XI:NCO /ES NO 🗆
AIRS NO. /0 1 037 7	EUNO. = 00,,
	PERMITTED,RATE.500 (, ^r)°li ^c h 5° tbsihr
PROCESS EQUIPMENT	
<u>6+) for is o c O NI</u>	
CONTROL EQUIPMENT	t/e it(o
OPERATING MODE	AMBIENT TEMP. (°F)
NokI.Go, <. 1-A	START 70 STOP? 5
HEIGHT ABOVE GROUND LEVEL START/L/40 1	HEIGHT REL. TO OBSERVER START,A,,;1,2,,' STOR_
DISTANCE FROM OBSERVER STARTIIO'STOPyty,ro, 19	DIRECTION FROM OBSERVER START 3,7;,0 STOP)K,4)
EMISSION COLO KO t' ¹	
WATER DROPLETS PRESENT NO YES CI	IS WATER DROPLET PLUMEP(71- ATTACHED 0 DETACHED
POINT IN THE PLUME AT WHICH OF STARTS -1cV G: Ki-t-	PACITY WAS DETERMINED STOP.6.,?
DESCRIBE BACKGROUND START r,,y	STOP (cric,
BACKGROUND COLOR STARTC1 14 "viCSTOP00-ry.e	SKY CONDITIONS START J_ 'it STOP
WIND SPEED IMPHI START-y - ID STOP	WIND DIRECTION STOPS
AVERAGE OPACITY FOR	RANGE OF OPAC. READINGS MIN. 0 MAX. ()
SOURCE LAYOUT SKETCH	0 DRAW NORTH ARROW
) Émission Point
Sun *	7 O
Plume and Stack	14 Observer's Position
Sun Locatio	n Line
Wes-c)"3	

<u>~3</u> /	YAT ION DATE STARTSTIME SICPTIME									
SEC	υ	15	30	45	SEC	0	T	15	30	45
IMIN					MÌŃ				1	
0	ΠT		III	MI	30	Ć	>	Ø	\mathcal{O}	\sim
1	\mathcal{O}		IN	ήE	31	O	2	0	Ø	\overline{O}
2		5		U	32	62	24	\mathcal{O}	\bigcirc	\square
3		N.		(† 6 . j	33	C	긱	O_{-}	O	Ω
4	$ \mathcal{O} $	ľKI		NIN E N/E	34	Ļ	2	<u>_</u>	Õ	$\underline{\mathcal{D}}$
3	M		IF A		35	\mathcal{L}	2	$\underline{\mathcal{O}}_{\underline{\mathcal{O}}}$	\underline{c}	$ \Omega $
6			Ň	X/	36	<u>.</u> C.	4	<u></u>	Q	$ \mathcal{Q} $
7	Б		Ň		37	LC.	2	\mathbb{R}	Q	$ \mathcal{O} $
8					38	1C	싔	$\underline{\circ}$	$\left \begin{array}{c} 0 \\ \end{array} \right $	
<u>9</u>				M	<u>39</u> 40	\mathcal{C}	4	0 Ø	5	
	ŇЛ	C	M	\sim	40	17	イ の	B	D	K
11	ŤŔ		ĒS		42	$\frac{1}{c}$	~	D	0	0
13	N / F			•	43		2	\odot	Õ	0
14	Į V .		A 4		44	10	フ	0	$\overline{\bigcirc}$	0
15	1N	In	<u>U</u>	EL	45	\overline{c}	5	\mathcal{O}	Ø	0
16		Щ			46	Ľ	$\overline{\Sigma}$	\bigcirc	\bigcirc	Ø
17		SIU	a o) ta	47		$\overline{2}$	\mathcal{O}	O	\mathcal{O}
-18		_			4-8	10	2	$ \mathcal{D} $	0	0
19		JIR	[<u>]]</u> (121	49	C		0	O	0
20			<u>(C)</u>		'50	=	2	0	$\downarrow \bigcirc$	$ \underline{C} $
21	$-\mathbf{N}$	Vc	UV	Vc	31	44	2	Q	$ \Omega$	\mathcal{O}
22	N	Ð	\mathbf{N}		. '52	1	2	Q	$\downarrow \mathcal{Q}$	10
23		10	1 /		53	10	2	$ \bigcirc$	O	Q
24			± ()	\bigcirc	54	44)	$ \mathcal{O} $	10	0
.25	╶┼┛┙			1 6—	-55	4	2	$ \Omega$	$ \underline{\mathcal{O}} $	\underline{n}
26		[]] ≖	Б		56		2	$ \mathcal{O} $	$\frac{1}{C}$	$\frac{1}{2}$
27	_WW	ЩШ	\mathcal{O}	Q		+-	\mathcal{L}		44	10
28	<u> </u>	49	ЧC	<u>: 10</u>	-+	+-	<u>(</u>	∂	$ \mathcal{O} $	10
29	nn É	<u>-10</u>	<u></u>		1 59	<u> </u>	<u>(</u>	<u>1 (</u>	0	
Ob	server	:,,		۱ <u>۲)</u>	oii i' _h	2				
Cei	Certified ^{by:}									
Date Certified: 2-0 / Exp. Date: 8/01/										
	Signature: $\sum_{k=1}^{n} \left f_{1} \right ^{1} > c_{1}(7) \qquad (A)^{n}, \leq T_{n}T_{1} \qquad y \neq 1$									
1		e: `}	ree,	111	, > c. (7)		1,	∧)*" , ^{<}	57-10	, yy-
Titl	e:									

PROCESS WEIGHT STATEMENT

DATE

SAMPLING TIME : FROM 11'3-5'A.m. TO <u>3!'^{Zr-}P.M.</u>

STATEMENT OF PROCESS WEIGHT

3

A REAL PROPERTY AND A STOCK	•	·····	<u></u>	··	
Lines of the second second second		04- C	m qri	riic	
A SECONDENSION OF THE PARTY OF			•		
	<u> </u>				
	100 -14		4106	R d,	····
	<u>169,,o/-1</u>		4100	<u> </u>	
	EAF 4111		2 (~	0	
	<u></u>		<u> </u>	0 0	/
	SPring	$H_{1}(I \setminus FL)$			
			······································		

DATA ON OPERATING CYCLE TIMF

DATA ON AOTUAL

1-07____165 lie 9T(1-1-1

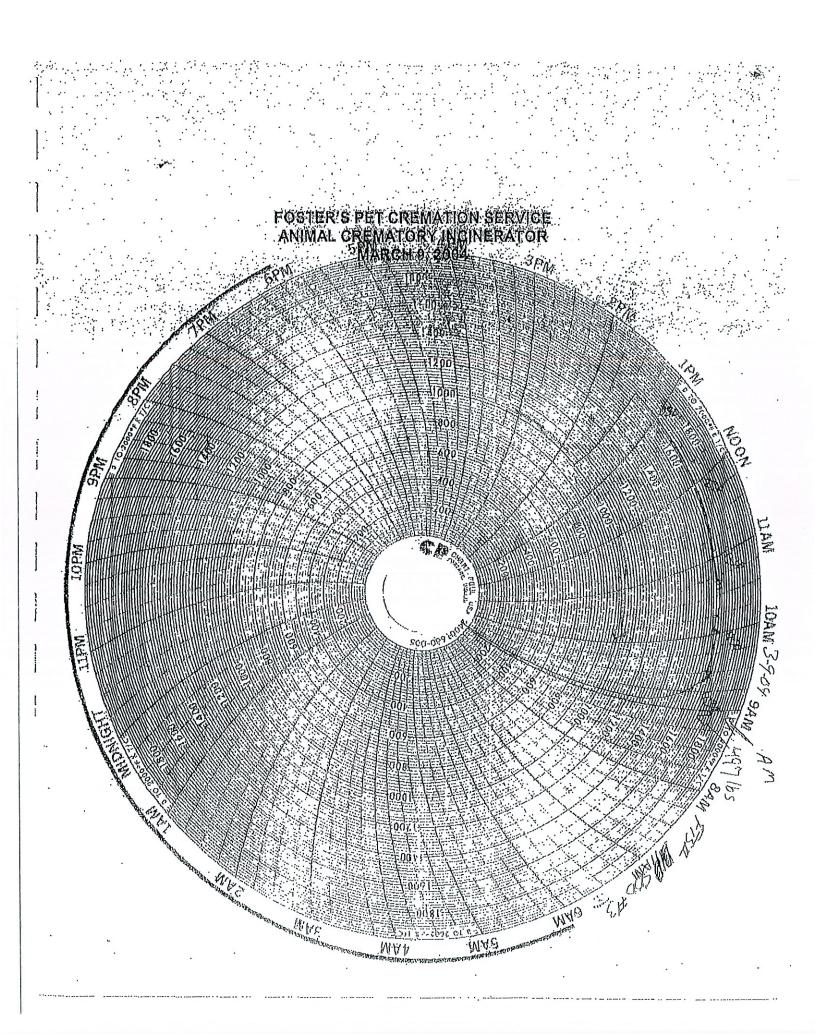
DATA ON ACTUAL	
PROCESS RATE	R#1 124 165/hr
	R#2 124 Hs/br
	R#3 124 145/6C
AVERAGE PROCESS WORKING	RATE 10.5/11
AROBUCI	
ARODUGI IEGODOSIA PROBUST	
FROMUST	

DURING OPERATION CYCLE

<u>firi; 02 qt,</u>

I certify that the above information is true and correct to the best of my kno

"It


vledge. 71 tel 1

OPITATOR_

Signature

. .

Title

.

•

.

PARTICULATE MATTER COLLECTED

	OSTER'S PET CREMATION S NIMAL CREMATORY INCINEF 03/09/2004		Ξ	Analyzed	by:		<u>DW</u>	
Acetone blank con Acetone blank vol Acetone blank fina Acetone blank tar Acetone blank we	lume, mi.,(Va) al weight, g. e weight, g.		106 200 104.2163 104.2159 0,0004		Filter Filter	blank no. blank tare blank final welght diff	weight, g.	7158 0.3691 0.3692 0.0001
Run No. Filter No. Liquid lost during Acetone wash con Acetone wash vol Acetone wash re	ntainer no. lume, ml. (Vaw)	1 7111 0 23 100 0.0002		1 (Filter) 2 (Wash)			<u>1WOWA14k</u> 0.367 100:6154 TOTAL te blank, g. (Wa) culate matter, p.	0.0265 0.0077 0.0342
Run No. Filter No. Liquid lost during Acetone wash co Acetone wash vo Acetone wash re	ntainer no. lume, ml. (Vaw)	2 7113 0 43 95 0.0002		Coritalher	Ein	EIGHT a Weight 0.3686 108.7303	Oh, PAKT <u>tare</u> Weight 0.3661 108.7215 TOTAL e blank, g. (Wa) iculate matter, g.	<u>ICULEIIt</u> <u>2111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>11111</u> <u>11111</u> <u>11111</u> <u>11111</u> <u>111111</u> <u>11111</u> <u>11111</u> <u>11111</u> <u>11111</u> <u>11111</u> <u>11111</u>
Run No. Filter No. Liquid lost during Acetone wash of Acetone wash re	ontainer no. olume, ml. (Vaw)	3 7117 0 4 105 0.0002		CoE al e P' 1 (Filter) 2 (Wash)	na	1.'W401 0.3695 103.1044 Less acetor	R·Rer.t'Li ,TAII,P. &Pit 0.3692 103.0971 TOTAL ne blank, g. (Wa) ticulate matter, g.	0.0003 0.0073 0.0076 0.0002

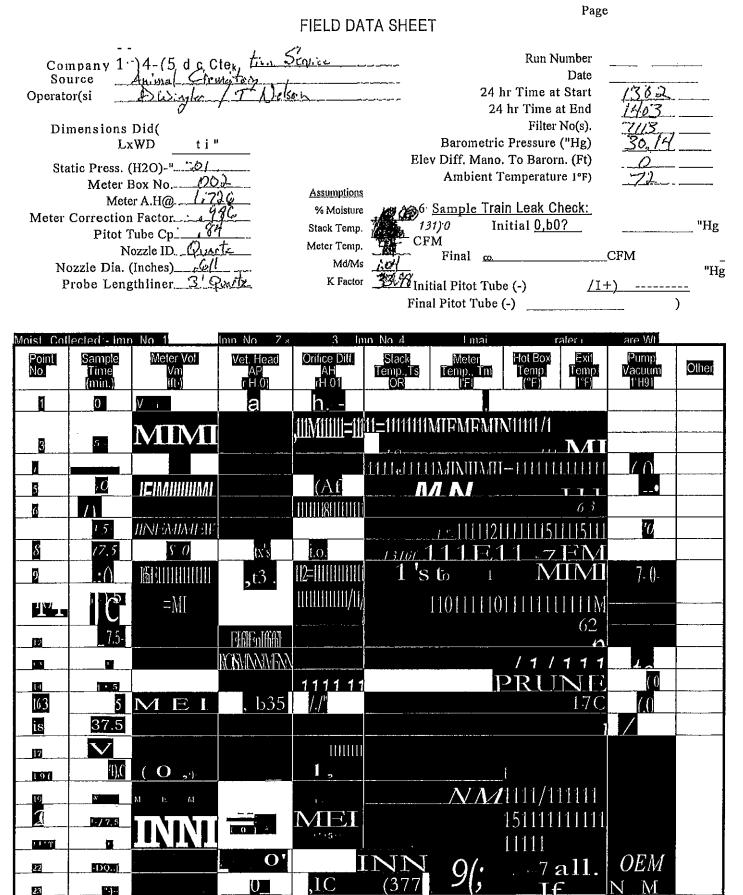
MOISTURE COLLECTED

Foster's Chemetery Plan Lung Gined Unit Date Run No. Weighed 2 by: Impinger Number 3 4 1 100.0 261.0 \mathcal{O} Final Weight (grams): 260.0 250.9 Ö Initial Weight (grams): 100.0 100.0 10.1 . D 160.0 Difference (grams): (VI)Total Condensate (grams): Unit Date Run No. Weighed Impinger Number 2 by: 3 1 4 230 0 ,26-3.1 <u>)06.0</u> Weight (grams): Final 245.8 100.0 Weight (grams): /00.9 Initial 8.1 6.0 Ø 11-30. Difference (grams): 144.1 Total Condensate (grams): Unit Date Run No. Weighed 2 3 1 4 by: Impinger Number 106.0 \underline{O} 200 255.0 Final Weight (grams): 245.6 (100.0 <u>100.0</u>

6.0

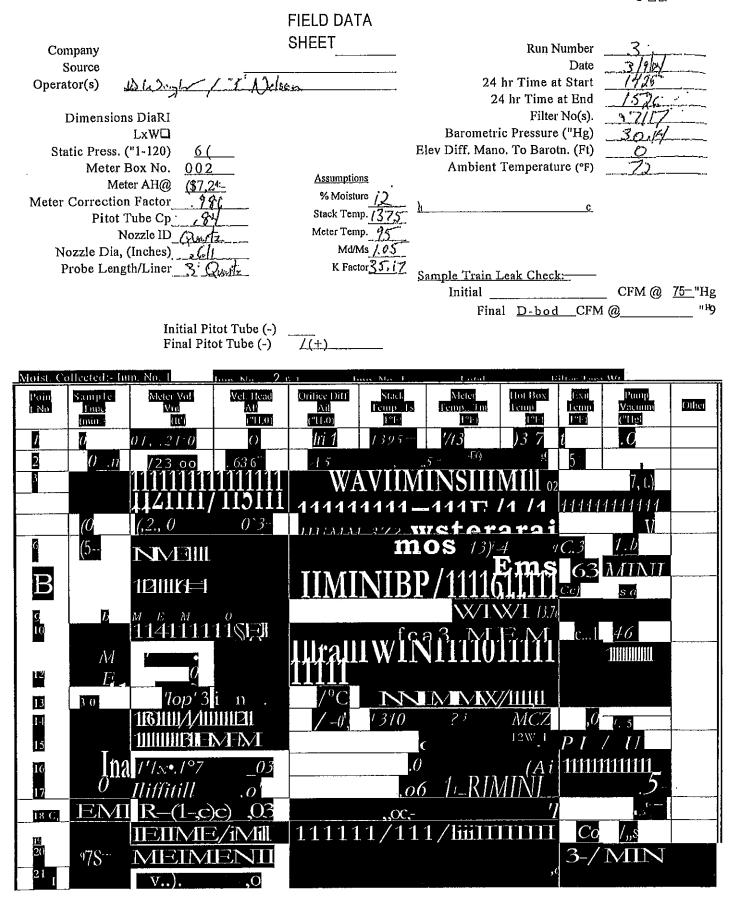
110.D

9.4


Initial Weight (grams): Difference (grams):

FIELD DATA SHEET

Com ^p an ^y <u>cee'?''')</u>)w'cla	Run Number	
	<u></u>	Date	
Operator(s)	<u> </u>	24 hr Time at Start 24 hr Time at End	
Dimensions Diat-		Filter No(s).	
LxWO		Barometric Pressure ("Hg)	
	,01.	Elev Diff. Mano. To Barom. (Ft)	
	2	Meter Ambient Temperature 1°F)	····
	Assumptions		
Meter Correction	986 °A Moisture		
Factor	54 Stack Temp.		<u>2_</u> CFM @ <u>/</u> 3 - "Hg
Pitot Tube Cp Nozzle ID	CII Meter Temp.	Final D.Clo	
	Quella K Factor	$\frac{1.03}{\frac{1}{2}17/37,5i}$ Final Pitot Tube (-)	+1
Probe Length/Liner		, <i>as</i> NapehiG	
		·	"Hg
		Initial Pitot Tube (-)	_ +1
Moist. Collected - Imp. No. 1	Vel. Head Orifice OW.	Stack Meter Hot Box Exit	Pdmp
Point Sample Meter Vo No Time Vm		Temp Ts Temp, Tin Temp Temp	Vacuum Olner
			(*1 (史)). t
1 c? ·C; 7.3	/ =/	OMNT C71131111P111111/111	
47, i c-,	1:7		
		e '3 si 1111.1111111111111111111111111111111	
INEMIII		r 3)3 () MEM 2 2	(.5
	. <u>.</u>		
it) 11 1111	1		
7 0* 01-00) NNEA3	- ∠O•i	11 2.0
8 /	73	Mill -7`	/ 1,6
.20	h M E	/1)3 INTHUMM	
10 0 D		HILL HILFAMENER2	
11 z '0 do		NIMI .9	3
	т -ov Ма	$a_{\rm H_0O} = 7$ ($R_{\rm H_M} = -9$	
	\mathbf{I} ,,-ov, \mathbf{L}	1 SZF 1	() 16 ·)·()
			= 3.0
[5 33-		Illrill 🕅	MEN
16 /. [[[[[[6][[[5		EMI
1 <u>N</u>	\mathcal{X} , \mathcal{J} -	/)/	
18 C ??			
19 LS 11/10		ot - 6	o ¹
	<u>лт</u>	<u>_t)<·)-</u>	3.s
		11111	"- <u> K</u>
al IW			


Page

Page _/_ Of

22	- <u>3</u> 1 5-7-(Di-		(Mill	
23	Rol T 56	• to ME 2011 MININATI		
24	57 EMI <i>ios</i> Curmo	ERIMISEM 9c inii	'o <i>PIM</i>	

 \mathbf{Z} LL₩ 0 (t)

cW

0 cc

GAS ANALYSIS DATA FORM

	č)	$\int_{1}^{J} Z,$ $i (7)_{2}$ $0 \geq 2$ $0 \leq 2$	d	N
	in 4>3 <	2 2 c > c	C,I) "	(-
		*(i) z	(f) '	 C.
C) ik ((0		$ru c^{co}$ < t a), < cr	(n '	9
		'cu.' Z		-
$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	c\I		.C)	1 n (
V,		a) z		0
(N_{-}, γ) CS) (A_{B}) (A_{B}) CS) (A_{B})			٩	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t Z CC			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		U)	0 0	

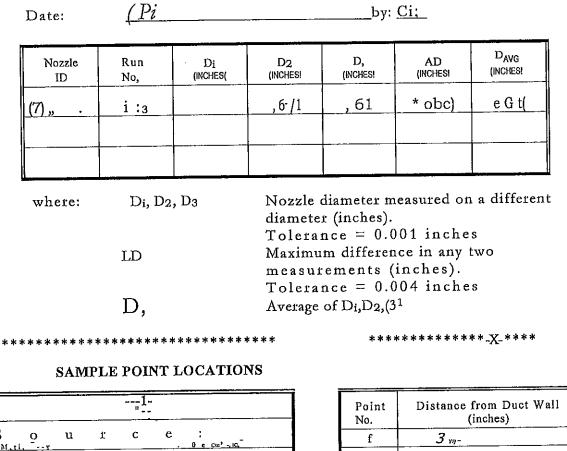
.J co 0 ap < U) - ¹₂ Q Q - ²₂ Q Q - ²₂ Q Q - ²₂ Q C - ²₁ Q (n < 0 L - ² 0 Z . ³ 0 Z . ³ 4

:

GAS ANALYSIS DATA FORM

ſ

				1	1	للمعيل
- "; - "; - 8	الله م	<u>ک):</u> کر دور اور اور اور اور اور اور اور اور اور ا		-a -a 1/. (_7		
(κ2 c.)		0 0') N a)	5) (X = 2) (X = 2) (X = 2)		
ct] 0 -	C 0	a)	a) E 0) C a, r0	ai a) a co	a] is 0 r0 C	0 &

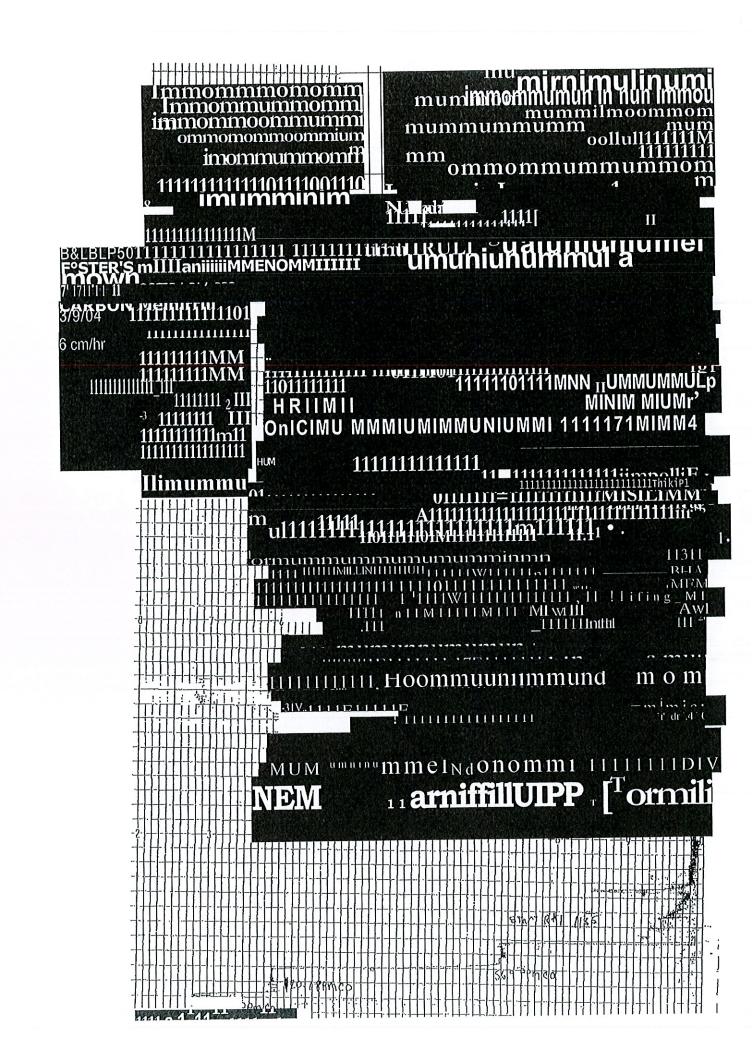

Melacridar	Weight of Stack Gas (Dry Basis) (Md)		, <u>, , , , , , , , , , , , , , , , , , </u>			
	Muitiplier	44.	N CO	.28	.28	TOTAL
	Average Net V очне	4.5	10.0			
со	Nat	4.5 4.5 4.5 4.5	0'01			
	Actual Reading	4.5	to . 0 /4. 5			
Ņ	Net N	4, S	ଠୁ ଦୁ			
-	C 15 0 CO CC		CiTh D			
	a) z					
	ro 0) n C < 11 CC					
α	0	0*	он_J < < (I) H UZ , (I) c9 a < Z * * 0 c <u>c c 0</u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	//) ZO < cr ⁽¹⁾ 0 cr ⁽¹⁾ (1) (1) (2) z <	

GAS ANALYSIS DATA FORM

	i]
) 1	7 4. a) H	. O 80 O 0 00	CO C°	в 0	ਾਂ:a) a ਸ਼ਰੋਸ ਕਹਿਸ 🗸 🕂	
\} \} v}) (0 (,	(1) (2) (3)	(<u>.</u> 1)	
)') {,2'			-C -C - 4 E		(t) 10 45	
t O ct e_	- D	03 († 03	E IC 0 -c -a 0 (/	×	45 2 cii 4 76 C <	Lot:: ::::::::::::::::::::::::::::::::::

	<u></u>				1	·····
	ii 0 ii, "7) m ,, o > · ·	Cı		00 0 -		нон Асна, г
03 ۲ > <	° ^a) ₁ ; coz 0 >	/) I-:I-)	\i) <u>,</u>			1
со	å.). Ž	' {) / _ , 1,,\-)), (-) c			
	7-46 2 u (3 < Cc	•.,r) 6.0	0 •:) ^{, –}			
N	со Z то 2 < ,) сс	q) (J) C P	'n ,			
	Z) cn	• • ?			
	₽?, ia	(,_ n (<i>(2)</i> ,š			
Z ^t O _{cc}	_*	000	,, 0 C ,,	Ο < 	(1) 3 Z ⁰ 2 O- O- O- O- O- O- O- O- O- O-	

SOUTIERN ENVIRONMENTAL SCIENCES, INC. NOZZLE CALIBRATION



Point No.	Distance from Duct Wall (inches)
f	<i>3</i> ₁₀₇
, ,)	s'-1
Li	C-1
	-7.,C •
	/ ^h i
7	ii,
"{-	10,8-
el	
10	tiff ft `l
I(i'l,
r,)-	•0,;
 	

1

. .

.

GOUTHEIM EtIVIROMI1ENTAL C'CIENCES, INC.

DRY GAS METER CALIBRATION

Meter Box Number:	002	Barometric Pressure:	29,99
Date: 07/03	/2003	Wet Test Meter No.:	P-576

	Marte Martine	Sile Alla					
		્રે કરીવેલ્લાન સંસ્થાર	a shares				्रियोग् वर्षे इन्द्रेलय कर्षे
El du persona se Presento acos							
0,50	5.000	5;155	76.0	86.5	12.15	0.988	1.6
1.00	5.000	5,198	. 76.0	91.0	8.88	0.987	1.7
1,50	10.000	10.428	76.0	93.0	14.28	0.986	1.6
2.00	10.000	10.470	75.5	95.0	12.50	0.985	1.7
3.00	10.000	10,489	, 75.0	97.0	10.43	0.985	1.7
4.00	10.000	10.485	75.0	98.0	9.15	0.985	1.8
·	,u					0.986	1.7

Delta H@ Acceptable Range	1.926	
Yi Acceptable Range	1.006	

to 1.526 to 0.966

Yi = $\frac{Vw Pb (Td + 460)}{Vd (Pb+DeltaH/13.6) (Tw + 460)}$

Delta H@ = .0317 (DeltaH) [[(Tw + 460) (Theta)/Vw]]Pb (Td + 460)

Where: Vw = Gas Volume passing through the wet test meter, ft.^3.
Vd = Gas Volume passing through the dry gas meter, ft.^3 Tw = Temperature of the gas in the wet test meter, deg F.
Tdi = Average temperature of the gas in the dry gas meter, deg F.
Delta H = Pressure differential across orifice. in. H20.
Yi = Ratio of accuracy of wet test meter to dry gas-meter for each run.
Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y =/- 0.05Y.
Pb = Barometric pressure, in. Hg

Theta -= Time of calibration-run_rmin. _____ -

SOUTKR.N 1NVIRONMENTAL SCIENCES, INC.

POSTTEST DRY GAS METER CALIBRATION FORM

		ox Number: Date: ic Pressure:	002 03/24/2004 30,38		t Meter No,: Pretest Y: alibrated by:	P-576 0.986 TW	
2.00	10.000	10.363	71.5	78.0	12.57	10.00	0,972
2.00	10.000	10.503		86.0	12.62	10.00	0.974
2.00	10.000	10.632	71.0	93.0	12.67	10.00	0,975
						Average	0.974
			Accept	table Limits	0.937	to	1.035

 Yi
 Vw Pb (Td + 460)

 Vd (Pb+DeltaH/13.6) (Tw + 460)

Where:

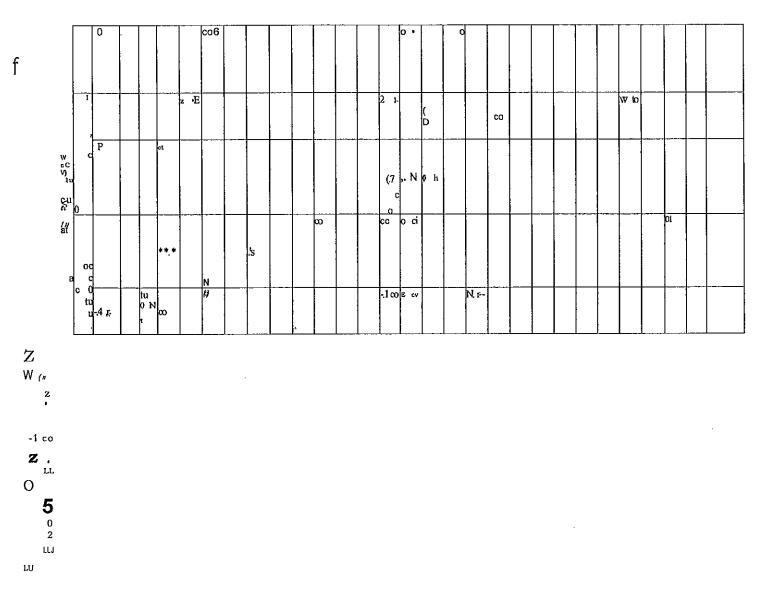
- Vw = Gas volume passing through the wet test meter, ft.^A3.
- **Vd**= Gas volume passing through the dry gas meter, ft.^A3.
- Tw = Temperature of the gas in the wet test meter, deg F.
- Tdi = Temperature of the inlet gas of the dry gas meter, deg F.
- Tdo = Temperature of the outlet gas of the dry gas meter, deg F.
- Delta H= Pressure differential across orifice. in. H20.
- $Y_i = Ratio of accuracy of wet test meter to dry gas meter for each run.$
 - Y= Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y =/- 0.05Y.
 - Pb = Barometric pressure, in. Hg
- Theta = Time of calibration run, min.

THERMOMETER CALIBRATIONS

		stimetennia		
			新加速创造型:	73.0
75,0	n/a n/a	2.0	n/a	73.0
REAL AS LEADERS		/ S Dec E		

Quality Control Limits = +/-5 Deg F

SOUTHERN ENVIRONMENTAL SCIENCES, INC.


TYPE S PITOT TUBE 'NSPECTION FORM

	·	003INC 3/31/03
dhanga kata selalah dalah	YES	. Wilson
diversive in strate of the start	YES (explain please)	NO (NO ⁻²)
ANALY KNOLPHOLP		
α1 · ·	. 20	· <10°
ε2	30 .	
b1	30	<10°
b2	20	<6°
Y		< 5°
θ	20	
	30	
A	.290 inches	
$z = A \sin Y$.010 Inches	110:1
w = A sin θ	.015Inches	< 1/8 inch
Pa	.145 Inches	< 1/32 Inch
РЬ	.145 Inches	
	1 . · (40' Inonés	· · · · ·

COMMENTS:

ALLERACION BROWNED			
L CALENDARY NOT VIN BLACK IN BLACK	YES		
		NO)

•

C	cc E		х	-					αQ		ti r- Ø (0							
CÇ	<u>a</u>						0 F			6* * *						66		J
°u-										a							t i	
	1a 					 	යාග			r 0	E வ மப்ர ல							c i

[∞-0			 ***				01		_		[ŀ						
		:			0								0	。 1 0 0		(\$1*'			CO	C1 04				
			•						ө		• •	ry _i	r 1 M•							0) 0)				
	fe;'	c 0												ი. <i>I.II</i> , 0)a)										
		v)												4 ¥										
:8:	0	c			4-/ 09	u O	00					cc/		0 00	" O		00				00			
CI:1												>0		N								-		
(I) L-	(1:5	F-		1-F-	a.						· 0	4 •		2 2		a,						/-		
			 δŻ						, НН	-1	C.)					00		tîn (jn		4 CD		 	a	
																							90 K	

SOUTHERN ENVIRONMENTAL sciENCES, INC.

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

PRESSURE MEASUREMENT DEVICE CALIBRATION FORM

Device Type	Magnehelic	Calibration Date	0410112003
Range	025" H2O	Calibrated by	K. Roberts
Manufacturer	Dwyer	Reference Device	, Manometer
Serial No.	R991014CA18	Measurement Units	'H2O

Device Reading	Reference Device Reading	% Difference*
0	0	0.00
0.059	0.06	-1.67
0.119	0.12	-0.83
0.18	0.18	0.00
0.249	0.25	-0.40

* % difference shall not exceed +/- 5%

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street St. Plant City, Florida 33563 (813) 752-5014

INSTRUMENT CALIBRATION

E1-7 0		
		03/09/2004
	De	FOSTER'S PET CREMATION SERVICE
		BLP 500/150 ANIMAL CREMATORY
-1915 -1915	· · · · · · · · · · · · · · · · · · ·	CARBON MONOXIDE
	$c_{\rm Lose}$	M. q TERKE

ІНМТ, І.М. р	ýa.	1,
Wat ⁱ Te	TECO	Yokogawa
$\begin{array}{c} W & a + i T - e \\ \hline & e C T (T (T a 5.7 A 0)) \\ \hline & e - e - A - A - E - E - E - E - E - E - E - E$	48 48-27158-228	
<u></u>	2 0 0	6CM/HR

A HI OVOMO			
0 :11: 0VOM0. / SUPPLIER	AIR PRODUCTS	AIR PRODUCTS	AIR PRODUCTS
CYLINDER #	SG9170323	SX32489	SG9162702
CONC. (PPM)	56.9	120.7	142.4
EXPIRATION DATE	04/25/2004	01/06/2006	09/30/2006

	OBSER ⁴ C. NC.	7, f.) D FE
	0	0	0.00
	55.6	56.9	-0.65
- 1 ⁸ •	122	120.7	0.65
,, ,	142	142.4	-0.20

	Regression Output:	
المحمد معتقد م اريخ المحمد عامان المحمد - المحمد -		11.6234
abfifse6pf:		11.9109
rin of Y Est		
ar.40		11.0000
No, of Observations,		<u>4</u>
XOGANNA	1,0058	
Std err of, Coe	(0.0029	

	PA PROTOCOL GAS STANDARD	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Approved By: Durie Laas Pub. No. 320-9702
Technical Information Call	722 S. Kentworth Avenue, Chicago, 11 60628 OF ANALYSIS, E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{c}{c}$	с. О каналасе Gas * S. H	ISC: SULTER BUTER

Airgas SpeciallyGases 2722 South Wentworth Avenue Chicago, IL 90628 773.785,3000 Fax:173,185. 1928 "51.3ifq85.COM

.u 7.

Certificate of Analysis: E.P.A, Protocol Gas Mixture Certification performed in accordance with "EPA Traceability Protocol (Sept.1997)"

.

linder No: artification Date:	<u>SX32489</u> 0116/200	E	Order No: Expiration Date: Part No:		<u>1:57779-0a</u> 01/12006: E02N199E15A0T0	
	Certified Concentration	Unit of Measure	Accuracy	Procedure	Analytical principle	
Carbon. Monoxide Nitrogen	1:207' Balance	PPM	1.%	G-1	NDA	

Reference Standard Information

Туре	Compone	ent	Concentration	Unit	Cylinder Number	
NTRM	Carbon Mo		244.7	PPM	SG91595,19BAL	
		Analytical Data				
Component 1	Carbon-Monox	ide-				
lst An	alysis Date:	12/39/2002				
	Zero	:0 :000:	Cand		Ref	244.81
	Zero	0:000	Cand		Ref	
	Zero	0.000	Cand	120.700:	Ref	244,800
2nd A	natysis Date:	01106/03.				
	Zero	0.00.0	Cand	120.800	Ref	244:000
	Zero	······································	Cand	120:800	Ref	1.244.800
	Zero	0.000	Cand	120.900	Ref	244700

Allow Hines

f/j -Approved by:

Analyzed

Airgas Specialty Gases 12722 South Wanhvorth Avenue Chicago, IL 60628 773,785,3000 Fax: 773.765.1928 mettr.airgas.com

Certificate of Analysis EPA Protocol Gas Mixture

Cylinder No: Cylinder Pressure: Certification Date: SG9162702BAL 2,013 psig 09/30/2003

Reference Number: Expiration Date: Laboratory:

54-ST9736-000 09/3012006 ASG - Chicago - IL

Certified Concentrations

QorriponentConcentratiOnCarbi ^p a Monoxide142.4PPMNitt.OgeniBalance	Accuracy Analytical Princips Np1R	Proedure al
--	--------------------------------------	----------------

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. Notes:

Do not use cylinder below 150 psig.

Approved for Release **Reference Standard Information Concentration** Component Cyl. Number Type 244.7 PPM SG9159474BAL Carbon Monoxide NTRM Analytical Results 1st Component CarbOn-Moncbdde 09/22/2003 1st Analysis Date: S Z 142.3 0.0000 0.0000 142.4 PPM 244.7 Z Conc R R 142.3 PPM S Z 244.7 Conc 142.4 142.4 142.4 PPM Conc 0.0000 R 244.7 S AVG: 142.4 PPM 2nd Analysis Date: 09/30/2003 142.5 Z 0.0000 Conc 142.4 PPM 2441 S Z R 142.4 0.0000 R 244.7 Conc 142.5 PPM S Z 142.5 PPM 142.5 0.0000 R 24-4.7 8 Conc AVG: 142.5 PPM

CO EMISSION TEST CALCULATIONS

COMPANY: FOSTER'S PET CREMATION SERVICE SOURCE: B&L BLP 500/150 ANIMAL CREMATORY TEST DATE: 03/09/2004 Data analyst: MG

		Average	СО	Stmk		Emissions	
	00	02	7% 02	Flpwrate		Limosions	
Run No		(⁰ /0-	(PPM)	(dstfitin):	mg/m3	lbstft3	I b sitt r
1	(^P PM) 3.08	8.0	3.3	457	3.6	2.24E-007	0.006
2	2,25	10.0	2.9	482	2.6	1.64E-007	0.005
	5.0	10.5	6.7	501	5.8	3.63E-007	0.011
Averages	3.44	9.5	4.3	480	4.0	2.50E-007	0.007

FORMULAS:

CO @ 7% 02 = Actual CO x (14/(21-%02))

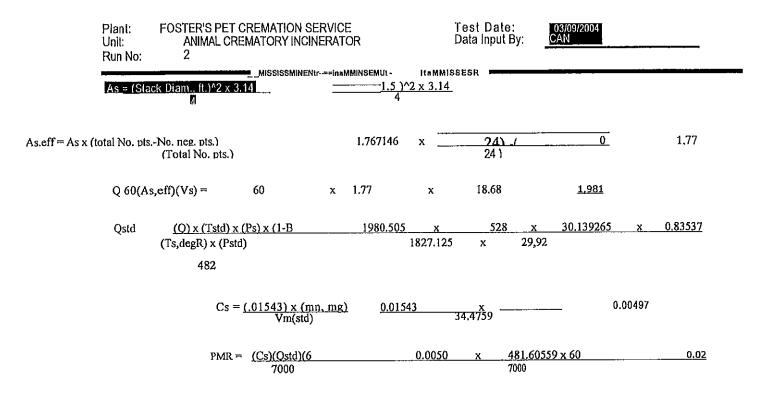
mg/m3 = ppm x .041573 x molecular wt.

lb/ft3 = mg/m3

35.31 ft^3/m^3 x 1000mg/g x 453.59 gill)

where: Pstd = 29.92 "Hg Tstd = 528 deg RMolecular Weight of CO = 28 $1b/hr = 1b/ft3 \times flowrate \times 60 min/hr$

SOUTHERN ENVIRONMENTAL SCIENCES, INC. EMISSIONS TEST CALCULATIONS


į

İ.

ł

Plant: Unit: Run No:	Foster's Pet C Animal Cre 2	REMATION EMATORY INC	SERVICE CINERATO	R	Test Dal Data Input		/09/2004	,		;
Pbar = (Pb	ar at barom.) - (Elev 30.14	7. diff. barom	. to manom 0	ı., ft.) x (. x	1/100) (0.1/100)	<u>.30.14</u>				
Pm =]	Pbar + Delta H =		30.14	÷	1.041 13.6	<u>30.22</u>				
	· (Vm) x (Y) <u>x (Tstd</u>	l <u>,deg R) x (Pn</u> n,deg R) x (P	<u>n)</u> /std)							
	= 36.308		0.986	x	<u>528 x</u> 553.7 x	<u>30,22</u> 29.92		<u>34.476</u>		
Vw(std) ≕	Vic x (.04715))=	144.1	x	0.04715	<u>6.794</u>				
Bws=	<u>Vw(std)</u> Vw(std) + Vm(std			6.794	6.794 34.476		<u>0.165</u>			
<u>Bws @ sat</u> 1 - Bws = LOWER		0.99	1	USE	BWS		78		x	27.29
Md = 0.44	4(%CO2) + .32(%02 .44 x	2) + .28(%N2- 4.5		.32 x	10 +	0.28				
Ms = Md(1-Bws) + 18(Bws) = <u>27.29</u>		29.12		0.835	18		0.165		
<u>Ps = Pbar</u>	+ <u>(Pp. in. H2O) =</u> 13 , 6		30.14		-0,01 13.6	<u>30.14</u>				
Vs = 85.4	9 x (Cp) x (avg sqrt 85.49 <u>18.68</u>	delta P) x sqrt x	[(Ts,R)/(0.84	Ps)(Ms)] x	0.175 _{x sqrt}	1827.1		30.14		
<u>An = [(N</u>	ozzle diam, in,/12)^ 4	2 x 3.14159]			0,611 / <u>12)^2 x</u> 4	<u>(3.14159]</u>		<u>0.00204</u>		
<u>%I =</u>	(.09450) x (Ts,dep									
(Ps)	x (Vs) x (An) x (S 0.0945	Sample Time x	e) x (1-Bv 1827.1	vs) x	34.476					
	30,14 <u>103.6</u>	x	18.68	x	0.0020361	60	x	0,835		

SOUTHERN ENVIRONMENTAL SCIENCES, INC. EMISSIONS TEST CALCULATIONS

Emissions calculations in emissions test summary may differ slightly from example calculations due to rounding of some numbers in example.

Southern Environmental Sciences, Inc. 1204 North Wheeler Street 🗆 Plant Clty, Florida 336662354 🗖 (813)752-5014

NOMENCLATURE USED IN STACK SAMPLING CALCULATIONS

А,	= Cross-sectional area of nozzle, ft ²
As	= Cross-sectional area of stack, ft ²
B_{ws}	Water vapor in gas stream, proportion by volume
C _p	= Pitot coefficient
C_s	= Pollutant concentration, gr/DSCF
Fd	= Ratio of gas generated to heat value of fuel, DSCF/mm BTU
ΑH	= Average pressure differential across orifice, in. H2O
%1	Isokinetic variation, %
Μđ	= Molecular weight of dry gas
М,	= Total amount of pollutant collected, mg
Ms	= Molecular weight of stack gas
N	= Normality of barium perchlorate titrant
٨Pa	v_{g} = Average of the square roots of the velocity heads
^P bar	= Barometric pressure at the sampling site, in, Hg
Р	= Stack gas static pressure, in. H ₂ O
P_{rn}	- Absolute pressure at the dry gas meter, in, Hg
Ps	= Absolute stack pressure, in. Hg
PIM	P – Pollutant mass rate, lb/hr
^p std	– Standard absolute pressure, 29.92 in. Hg
0	= Total sampling time, minutes

Southern Environmental Sciences, Inc. 1204 North Wheeler Street 0 Plant City, Florida 335662354 🗆 (613)752.5014

NOMENCLATURE USED IN STACK SAMPLING CALCULATIONS (Continued)

- Stack gas flowrate, ACFM

- ^{Ci}std = Stack gas flowrate, DSCFM
- T_{in} = Absolute average meter temperature, °R

T_s — Absolute average stack gas temperature, °R

 L_{td} = Standard absolute temperature, 528 °R

v. = Volume of sample aliquot titrated, ml

V_{ta} Liquid collected in impingers and silica gel, grams

 v_{n^1} = Sample volume at meter conditions, DCF

 $v_{m(std)}$ = Sample volume at standard conditions, DSCF

V. Stack gas velocity, ft/sec

 v_{soln} = Total volume of solution, ml

v, = Volume of barium perchlorate titrant used for the sample, ml

 v_{ib} = Volume of barium perchlorate titrant used for the blank, ml

v wktai = Volume of water vapor in sample corrected to standard conditions, SCE

= Dry gas meter calibration factor

13.6 = Specific gravity of mercury

W. Robert Flanigan Mayor

Commissioners

Donald L. Carter, Jr. Commissioner of Finance

> Kevin G. Grove Commissioner of Public Safety

Nina Forsythe Commissioner of Water, Parks and Recreation

Adam Ritchey Commissioner of Public Works

Elizabeth Stahlman City Administrator

City of Frostburg

August 25, 2023

RE: Zoning Verification for 10800 Laurel Hill Drive, Frostburg, MD

To Whom This May Concern:

Thank you for your request for zoning verification related to the property noted above by address.

The subject property is located in the T-LI Technology and Light Industrial District. This zoning district is purposed to provide for commercial and light industrial uses which are compatible with residential, commercial and institutional uses in adjacent areas of the City. This district is designed to accommodate planned business parks or substantial tracts of land suitable for business and industry with a focus on the technology sector. This district shall provide for flexibility, but requires wellplanned access and design. The appropriate zoning district regulations are enclosed with this letter.

Specifically, Journey Pet Services, an existing business under new ownership, is in conformance with the T-LI zoning regulations, after the Frostburg Planning Commission approved such a use as a principal permitted use within the district. There are no open zoning code violations for this property.

I will gladly assist with any further questions or concerns.

Very truly yours,

CITY OF FROSTBURG

By:

Bethany Fife Director of Community Development 301.689.6000, Ext. 110 <u>bfife@frostburgcity.org</u>

Sec. 3.11. - "T-LI" Technology/Light Industrial District.

- A. *Purpose.* To provide for commercial and light industrial uses which are compatible with residential, commercial and institutional uses in adjacent areas of the City. This district is designed to accommodate planned business parks or substantial tracts of land suitable for business and industry with a focus on the technology sector. This district shall provide for flexibility, but requires well-planned access and design.
- B. *Principal Permitted Uses and Structures.* The following principal uses and structures are permitted in the "T-LI" district:
 - (1) Group homes consistent with <u>Section 8.5</u>.
 - (2) Treatment centers.
 - (3) Adult day care centers.
 - (4) Assisted living centers and nursing homes.
 - (5) Colleges, trade or hobby schools.
 - (6) Hospices and hospitals.
 - (7) Building material sales yard, including the sale of rock, sand, gravel, and the like, and tradesperson's equipment storage yard or headquarters.
 - (8) Contractor offices.
 - (9) Fitness centers.
 - (10) Medical laboratories.
 - (11) Wholesale business, warehouse, trucking terminals, and similar non-processing storage and distribution uses, but not including prohibited uses.
 - (12) Manufacturing, compounding, processing, or packaging of food and food products, and cosmetics, toiletries, and pharmaceuticals.
 - (13) Manufacturing, compounding or assembling of articles using the following or similar prepared materials: bone or shell, cellophane, fur, glass, leather, plastic, precious or semiprecious metals or stones, rubber, textiles or cloth products, tobacco, wood or wood products.
 - (14) Manufacturing of ceramic or glass products.
 - (15) Manufacturing or assembling from prepared materials of the following or similar items: musical instruments, clocks or watches, toys or novelties, electrical appliances, scientific or electronic devices, light sheet metal products, machine tool, office equipment.
 - (16) Incidental sales of products manufacturing or stored on the premises.
 - (17) Technological or communication based enterprises.
 - (18) Agriculture, limited to cropland, nurseries and greenhouses.

- C. *Special Exceptions.* The following principal uses are permitted as special exceptions after approval by the Board of Zoning Appeals:
 - (1) Adult uses.
 - (2) Gambling establishments.
 - (3) Body art studios.
 - (4) Wind energy systems complying with regulations found in <u>Section 8.8</u>.
 - (5) Self-storage facilities, subject to the provisions set forth in <u>Section 8.9</u>.
 - (6) A use or structure that the applicant proves to the satisfaction of the Board of Zoning Appeals to be of the same general character as the above permitted uses and special exception uses, in accordance with the provisions of Section 1.18C(3), but not including uses that are specifically prohibited in this district.
- D. Accessory Uses and Structures. The following accessory uses and structures shall be permitted in the "T-LI" district:
 - (1) Temporary buildings and structures in accordance with <u>Section 6.6</u>.
 - (2) Signs in accordance with Part 7 of this Ordinance.
 - (3) Accessory uses and structures that are clearly customarily accessory and directly incidental to the permitted principal uses and structures.
- E. *Lot, Yard and Height Requirements:* The following minimum requirements shall apply to all uses and structures in the "T-LI" district, except as superseded by more restrictive provisions of this Ordinance.

	Commercial Use
Minimum Lot Area	6,000 sq. ft.
Minimum Front Yard	30 ft.
Minimum Rear Yard	10 ft.
Minimum Side Yard	Adjoining a C district: None, or if side yard provided a minimum of 10 ft.; Adjoining a R district: 10 ft.
Minimum Lot Width	street line: 50 ft.; front building line: 50 ft.
Maximum Lot Coverage	80%

(Ord. No. 2018-02, §§ 2, 8, 9, 5-17-2018; Ord. No. 2019-04, § 1, 5-16-2019.)