MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

DOCKET #20-21

COMPANY: Global Resource Recyclers

LOCATION: 2600 Marble Court, Forestville, MD 20747

APPLICATION: Installation of one (1) portable RAP crushing and screening plant.

<u>ITEM</u>	DESCRIPTION
1	Notice of Application and Opportunity to Request an Informational Meeting
2	Permit to Construct Application Package including: Form 5, Form 5T, Form 5EP, Form 6, Form 44, site map, vendor specifications, emissions worksheet.
3	Zoning Approval from Prince George's County

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND OPPORTUNITY TO REQUEST AN INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Global Resource Recyclers on September 20, 2021 for the installation of one (1) portable RAP crushing and screening plant. The proposed installation will be located at 2600 Marble Court, Forestville, MD 20747

The application and other supporting documents are available for public inspection on the Department's website. Look for Docket #20-21 at the following link:

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Department will hold an informational meeting to discuss the application and the permit review process if the Department receives a written request for a meeting within 10 working days from the date of the second publication of this notice. All requests for an informational meeting should be emailed to Ms. Shannon Heafey at shannon.heafey@maryland.gov.

Further information may be obtained by contacting Ms. Shannon Heafey by email at shannon.heafey@maryland.gov or by phone at (410) 537-4433.

George S. Aburn, Jr., Director Air and Radiation Administration

AIR QUALITY PERMIT TO CONSTRUCT **APPLICATION CHECKLIST**

	OWNER OF EQUIPMENT/PROCESS
COMPANY NAME:	Global Besource Breyders
COMPANY ADDRESS:	2600 MARDIE COURT
	FRESTILE, MD 20747
	LOCATION OF EQUIPMENT/PROCESS
PREMISES NAME:	Global Resource Recyclas
PREMISES ADDRESS:	2600 Morte Court
	FUNESHILL MID 20747
CONTACT NAME:	INFORMATION FOR THIS PERMIT APPLICATION
JOB TITLE:	Harold Creed
PHONE NUMBER:	202-288-4130
EMAIL ADDRESS:	
	SCRIPTION OF EQUIPMENT OR PROCESS
2 2	SOUR FIGURE OF EAGUR MENT ON PROCESS
Application is hereby mad	le to the Department of the Environment for a Permit to
Construct for the following	g equipment or process as required by the State of Maryland Air
Quality Regulation, COM/	AR 26.11.02.09.
Check each item that you	have submitted as part of your application package.
Application packa	ge cover letter describing the proposed project
Complete applicate applicable.)	ion forms (Note the number of forms included or NA if not
No Form	
No. Form	
No. K Form	5EP No Form 42 No Form 44
No Form	10 No Form 44
	rer specifications/guarantees
	man's Compensation Insurance
	rams with emission points
	the location of the proposed source and property boundary
	lata and all emissions calculations
Material Safety Da processed and ma	ata Sheets (MSDS) or equivalent information for materials anufactured.
	ic Convenience and Necessity (CPCN) waiver documentation ervice Commission ⁽¹⁾
Documentation the use requirements	at the proposed installation complies with local zoning and land
	r emergency and non-emergency generators installed on or after and rated at 2001 kW or more.
(2) Required fo	r applications subject to Expanded Public Participation Requirements

Required for applications subject to Expanded Public Participation Requirements.

APPLICATION FOR PROCESSING/MANUFACTURING EQUIPMENT

STATE OF MARYLAND DEPARTMENT OF THE ENVIRONMENT Air and Radiation Management Administration 1800 Washington Boulevard Baltimore, Maryland 21230

Permit to Construct Registration Update Initial Registration

PPL	ICATION FOR PROCESSING/MANUFACTURING EQUIPMENT	
PPL 1A	OWNER OF EQUIPMENT/COMPANY NAME	DO NOT WRITE IN THIS BLOCK 2. REGISTRATION NUMBER County No. 1-2 3-6 Registration Class Fremises No. 2. Registration Class Fauipment No. APPLICATION DATE
/	PRINT NAME AND TITLE HAROLE CLEEN	DATE: 4/11/2021 4/3
1B		20794 301, 568-2050 ZIP TELEPHONE
	PREMISES NAME (IF DIFFERENT FROM ABOVE)	
3	A. NEW EQUIPMENT STATUS CONSTRUCTION BEGUN MONTH / YEAR MODIFICATION TO B. EXISTING EQUIPMENT C. EXISTING EQUIPMENT 15 NEW CONSTRUCTION BEGUN MONTH / YEAR CONSTRUCTION BEGUN MONTH / YEAR 16-19	NEW EXISTING ISTRUCTION COMPLETED INITIAL OPERATION MONTH / YEAR MONTH / YEAR 20-23 20-23
4 <u>Or</u> 5	DESCRIBE THIS EQUIPMENT: MAKE, MODEL, FEATURES, MANUFACTURER; IN L (1) RAP CLUSTER ONE(1) RAP SCROW & WORKER'S COMPENSATION COVERAGE EXPIRATION DATE	CLUDE MAXIMUM HOURLY INPUT RATE, ETC.
	COMPANY See Attacked COS - BINDER / POLICY NU	MBER 53099351
3	NUMBER OF PIECES OF IDENTICAL EQUIPMENT UNITS TO BE REGISTERED / PERMIT NUMBER OF STACKS / EMISSION POINTS ASSOCIATED WITH THIS EQUIPMENT	
7	PERSON INSTALLING THIS EQUIPMENT (IF DIFFERENT FROM (1) ABOVE)	itle
	COMPANY	
	MAILING ADDRESS / STREET	
	CITY, TOWN STATE	TELEPHONE ()

8	MAJOR ACTIVITY, PRODUCT, OR SERVICE OF COMPANY AT THIS LOCATION
	ONE CONCRETE and Recycled Asphalt parenet (RAP) crushing and control devices associated with this equipment NONE Screening Plant.
9	CONTROL DEVICES ASSOCIATED WITH THIS EQUIPMENT NONE SCIENTING Plant.
	SIMPLE/ SPRAY MULTIPLE ADSORB VENTURI CARBON ELECTROSTATIC CATALYTIC DRY CYCLONE TOWER SCRUBBER ADSORBER PRECIPITATOR BAGHOUSE AFTERBURNER SCRUBBER
	24-1 24-2 24-3 24-4 24-5 24-6 24-7 24-8
	OTHER Wet Suffression sprays As regured. 24-9 DESCRIBE
10	ANNUAL FUEL CONSUMPTION FOR THIS EQUIPMENT (FUEL LISTED ONLY ACCOUNTS FOR NEW EQUIPMENT USAGE ONLY: OIL -1,000 GALLONS SULFUR % GRADE NATURAL GAS - 1,000 FT3 LP GAS - 100 GALLONS GRADE B C
	26-31 32-33 34 35-41 42-45 F
	COAL - TONS SULFUR % ASH % WOOD - TONS MOISTURE % 46-52 52-55 56-58 59-63 64-65
	OTHER FUELS ANNUAL AMOUNT CONSUMED OTHER FUELS ANNUAL AMOUNT CONSUMED (SPECIFY TYPE) (SPECIFY TYPE) 66-2 (SPECIFY TYPE)
11	1 = COKE 2 = COG 3 = BFG 4 = OTHER OPERATING SCHEDULE (for this equipment)
	CONTINUOUS BATCH PROCESS PER BATCH PER WEEK PER DAYS PER DAYS PER WEEK PER DAYS PER
	SEASONAL VARIATION IN OPERATION:
	NO VARIATION WINTER PERCENT SPRING PERCENT SUMMER PERCENT FALL PERCENT (TOTAL SEASONS = 100%) X 76 77-78 79-80 81-82 83-84
12	EQUIVALENT STACK INFORMATION - IS EXHAUST THROUGH DOORS, WINDOWS, ETC., ONLY?
	HEIGHT ABOVE GROUND (FT) IF NOT, THEN 85 LEXIT EXIT TEMPERATURE (°F) 86-88 89-91 92-95 96-98

NOT	TE: ATTACH A BLOCK DIAGRAM OF PROCESS / PROC INCLUDING CONTROL DEVICES AND EMISSION P	CESS LINE, INDICATING N	EW EQUIPMENT AS RE	EPORTED ON THIS FOR	M AND ALL EXISTING	EQUIPMENT,
13.	INPUT MATERIALS (for this equipment only) - IS ANY OF THIS DATA TO BE CONSIDERED CONFIDENTIAL?	Y OR N				
	NAME	CAS NUMBER (if applicable)	PER HOUR	<u>INPUT</u> UNITS	<u>RATE</u> PER YEAR	UNITS
1.	RAP SIMPACTOR		353	TPH	72.00	UNITS
2. 3.	RAP Screen		500	TPH		
4. 5.	RAP CONVEYOR		300	TPH		
6. 7.	RAP Conneyor			JPH		
8.	Time Coloury of		300			
9.	TOTAL	-				
14.	OUTPUT MATERIALS (for this equipment) PROCESS / PRODUCT STREAM					
	NAME	CAS NUMBER (if applicable)	PER HOUR	<u>OUTPUT</u> UNITS	PER	
1.	RAP Supartor	(ii sppiioable)	353	TPH	YEAR	UNITS
 3. 	RAP Screen	-	500	TPH		
4. 5.	RAP Conveyor		300	TPH		
6. 7.	RAP CONVEYOR		300	TOIL		
8.	Time Connegor			ITH		
9.	TOTAL					-
15.	WASTE STREAMS - SOLID AND LIQUID					
	NAME	CAS NUMBER (if applicable)	PER HOUR	<u>OUTPUT E</u> UNITS	RATE PER YEAR	UNITS
1.						
2.		-				
3.		-				
4.		•				
5.						
6.						
7.						
8. 9.						
.	TOTAL					

16. TOTAL STACK EMISSIONS (FOR THIS EQUIPMENT ONLY) IN POUNDS PER OPERATING DAY PARTICULATE MATTER OXIDES OF SULFUR OXIDES OF NITROGEN 111-116
CARBON MONOXIDE VOLATILE ORGANIC COMPOUNDS PM-10 117-122 123-128 129-134
17. TOTAL FUGITIVE EMISSIONS (FOR THIS EQUIPMENT ONLY) IN POUNDS PER OPERATING DAY
PARTICULATE MATTER OXIDES OF SULFUR OXIDES OF NITROGEN 135-139 140-144 OXIDES OF NITROGEN 145-149
CARBON MONOXIDE VOLATILE ORGANIC COMPOUNDS PM-10
METHOD USED TO DETERMINE EMISSIONS (1 = ESTIMATE 2 = EMISSION FACTOR 3 = STACK TEST 4 = OTHER)
TSP SOX NOX CO VOC PM10 2 2 2 2 2 2 2 2 2 165 166 167 168 169 170
AIR MANAGEMENT USE ONLY
18. DATE REC'D LOCAL DATE REC'D STATE RETURN TO LOCAL JURISDICTION DATE BY
REVIEWED BY LOCAL JURISDICTION REVIEWED BY STATE DATE BY DATE BY
19. INVENTORY DATE MONTH / YEAR EQUIPMENT CODE SCC CODE 171-174 175-177 178-185
20. ANNUAL OPERATING RATE MAXIMUM DESIGN HOURLY RATE MONTH TRANSACTION DATE (MM /DD /YR) 186-192 193-199 200-201 202-207
STAFF CODE VOC CODE SIP CODE REGULATION CODE CONFIDENTIALITY 208-210 211-212 213-214 215-218 219
POINT DESCRIPTION ACTION A: ADD B: CHANGE

CERTIFICATE OF LIABILITY INSURANCE

DATE (MM/DD/YYYY) 4/30/2021

THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF INSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER, AND THE CERTIFICATE HOLDER.

	9755 nmsia.com RER(S) AFFOR nsurance C	DING COVERAGE ompany of South Carolina	NAIC# 19259 10844	
Hunt Valley MD 21030 Hunt Valley MD 21030 INSURER A: Selective Insurer A: Selective Insurer B: Builders M Insurer C: Insurer C: Insurer D:	nmsia.com RER(S) AFFOR nsurance C	DING COVERAGE ompany of South Carolina	19259	
INSURE INSURER A: Selective Insurer A: Selective Insurer B: Builders M Global Resource Recyclers, Inc. 2600 Marble Ct Forestville MD 20747 INSURER C: INSURER C: INSURER C: INSURER D:	RER(S) AFFOR nsurance C	ompany of South Carolina	19259	
INSURER A : Selective la CHAMCON-01 Global Resource Recyclers, Inc. 2600 Marble Ct Forestville MD 20747 INSURER B : Builders M INSURER C : INSURER C : INSURER D :	nsurance C	ompany of South Carolina		
NSURED Global Resource Recyclers, Inc. 2600 Marble Ct Forestville MD 20747 CHAMCON-01 INSURER B: Builders M INSURER C: INSURER C: INSURER D:				
Global Resource Recyclers, Inc. 2600 Marble Ct Forestville MD 20747 INSURER D:				
Forestville MD 20747				
INSURER F:				
COVERAGES CERTIFICATE NUMBER: 1809606192		REVISION NUMBER:		
THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO T INDICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT OF CERTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE AFFORDED BY THE POLICIES EXCLUSIONS AND CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PARTIES. TYPE OF INSURANCE ADDITIONS POLICY NUMBER POLICY FIRST (MM/DD/YYYY) INSURANCE POLICY NUMBER (MM/DD/YYYY) INSURANCE POLICY NUMBER (MM/DD/YYYYY)	R OTHER DESCRIBED	OCUMENT WITH RESPEC	OT TO WHICH THIS	
	12/23/2021	DAMAGE TO RENTED	\$1,000,000	
CLAIMS-MADE X OCCUR		, , , , , , , , , , , , , , , , , , , ,	\$ 500,000	
			\$ 15,000	
		PERSONAL & ADV INJURY	\$1,000,000	
GEN'L AGGREGATE LIMIT APPLIES PER: POLICY X PRO- X Loc			\$2,000,000	
	4		\$ 2,000,000	
OTHER: A AUTOMOBILE LIABILITY S 2099351 12/23/2020	12/23/2021		\$1,000,000	
X ANY AUTO			\$	
OWNED SCHEDULED			\$	
AUTOS ONLY AUTOS X HIRED X NON-OWNED X NON-OWNED AUTOS ONLY X AUTOS ONLY X		PROPERTY DAMAGE	\$	
AUTOS ONLY AUTOS ONLY		(Per accident)	s	
A X UMBRELLALIAB X OCCUR S 2099351 12/23/2020	12/23/2021		\$10,000,000	
A X UMBRELLA LIAB X OCCUR S 2099351 12/23/2020 S EXCESS LIAB CLAIMS-MADE	12/20/2021	AGGREGATE	\$10,000,000	
OEAIMO-IIIAGE			\$	
	12/23/2021	X PER OTH-	\$	
AND EMPLOYERS' LIABILITY ANYPROPRIETOR/PARTNER/EXECUTIVE ANYPROPRIETOR/PARTNER/EXECUTIVE	12/20/2021		\$ 500,000	
OFFICER/MEMBEREXCLUDED? (Mandatory in NH)		E.L. DISEASE - EA EMPLOYEE	A Color of Color of Color	
If yes, describe under DESCRIPTION OF OPERATIONS below			\$ 500,000	
DESCRIPTION OF OPERATIONS BEIOW		E.E. DIGENGE TOPIOT ENVI	000,000	
DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101 Additional Remarks Schedule, may be attached if more s	nace is require	ed)		
	pace is require	ed)		
DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more s Evidence of Insurance	pace is require	ed)		

FORM 5EP

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

	FORM (SEP:	Emission Point Dat	a				
Complete one (1) Form 5EP for E	ACH emissio	on poi	nt (stack or fugitive emissio	ns) re	lated to the	propos	sed in	nstallation.
Applicant Name: Clobal Res	sauce 3	ecydl	160	,				
1. Emission Point Identif	ication Nan	ne/Nu	ımber					
List the applicant assigned name/nu	imber for this	emiss	sion point and use this value	on th	e attached r	equire	ed plo	ot plan:
2. Emission Point Descri	ption	-				2000	1 21	
Describe the emission point includir	ng all associa	ted eq	uipment and control devices	S:				
Diesel engir								
3. Emissions Schedule fo	r the Emis	sion	A STRUCTURE OF THE SECOND SECO			1 - N - W-		
Continuous or Intermittent (C/I)?			Seasonal Variation Check box if none: M Ot	honvid	an actimate	20000	nalv	ariation.
Minutes per hour:	60		Winter Percent	TIET WIS	se estimate s	seaso	nai v	ariation:
Hours per day:	10		Spring Percent					
Days per week:	5		Summer Percent					
Weeks per year:		16	Fall Percent					
4. Emission Point Inform	ation							
Height above ground (ft):	10	_	Length and width dimensio		Length	:		Width:
Height above structures (ft):	2	6	at top of rectangular stack	(ft):				
Exit temperature (°F):	800		Inside diameter at top of ro				C	. 333
Exit velocity (ft/min):	225		Distance from emission po property line (ft):	int to	nearest		(/ARIES
Exhaust gas volumetric flow rate (acfm):	1178	1	Building dimensions if emission Height Len point is located on building (ft)			Leng		Width
5. Control Devices Assoc		the E	mission Point		No. 2 March 1985			
Identify each control device associ	ated with the evice. If none	emiss e chec	sion point and indicate the k none:	numb	er of device	es. <u>A</u>	Forr	<u>n 6 is</u>
None			Thermal Oxidizer		No			
☐ Baghouse No.			☐ Regenerative					
☐ Cyclone No.			Catalytic Oxidizer		No			
☐ Elec. Precipitator (ESP) No.			Nitrogen Oxides Reducti	ion	No			
☐ Dust Suppression System No.			☐ Selective ☐ Catalytic	[☐ Non-Sele ☐ Non-Cata			
☐ Venturi Scrubber No.		_		L		•		al.
Spray Tower/Packed Bed No.		S] Other pecify:		No			
☐ Carbon Adsorber No.								
☐ Cartridge/Canister								
Regenerative								

	e Emission Point At Design Capacity	At I	Projected Opera	tions
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Particulate Matter (filterable as PM10)	0.73	0.73	7.3	Charles Age 1
Particulate Matter (filterable as PM2.5)	0.12	0.15	7, 2,	0, 292
Particulate Matter (condensables)				
Volatile Organic Compounds (VOC)	0.85	0.85	8.5	0 01
Oxides of Sulfur (SOx)	0.68	0.68	6.8	0.34
Oxides of Nitrogen (NOx)	10.4	10.4	104	0.27
Carbon Monoxide (CO)	2.23	2.23		0.897
Lead (Pb)	2.05	L. L3	22.3	0.892
	At Design Capacity	At Projected Operations		ions
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Carbon Dioxide (CO ₂)	385	385	3850	154
Methane (CH₄)	303	383	3830	/37
Nitrous Oxide (N₂O)				
Hydrofluorocarbons (HFCs)				
Perfluorocarbons (PFCs)				
Sulfur Hexafluoride (SF6)				
Total GHG (as CO₂e)	385	385	3850	154
List individual federal Hazardous Air	The same of the Barbard Control of the	Committee of the same of the s	rojected Operat	
Pollutants (HAP) below:	At Design Capacity (Ib/hr)	(lb/hr)	(lb/day)	(ton/yr)
Aldehydes	0.164	0.164	1.64	AND THE RESIDENCE OF THE PARTY
	0.707	0.101	7.01	0.066

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration ● Air Quality Permits Program 1800 Washington Boulevard ● Baltimore, Maryland 21230 (410)537-3225 ● 1-800-633-6101● www.mde.maryland.gov

FORM 5EP: Emission Point Data									
Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.									
Applicant Name: GLOSAL lesource lecyclers									
1. Emission Point Idea	ntificat	ion Nam	e/N	umber					
List the applicant assigned nam	List the applicant assigned name/number for this emission point and use this value on the attached required plot plan:								
2. Emission Point Description									
Describe the emission point incl	uding al	l associate	ed e	quipment and control devices	3:				
Diesel ENG	Diesel Engine Exhaust Stack								
3. Emissions Schedul	e for th	ne Emiss	sion	Point					
Continuous or Intermittent (C/I)?			Seasonal Variation Check box if none: Ot	herwis	e estimate s	seaso	nal va	ariation:
Minutes per hour:		60		Winter Percent					
Hours per day:		(0		Spring Percent					
Days per week:		5		Summer Percent					
Weeks per year:		16		Fall Percent				- Inches	
4. Emission Point Info	rmatic	n							
Height above ground (ft):		10		Length and width dimension at top of rectangular stack		Length			Width:
Height above structures (ft):		2							
Exit temperature (°F):		800		Inside diameter at top of ro					333
Exit velocity (ft/min):		225		Distance from emission po property line (ft):	oint to				Aries
Exhaust gas volumetric flow ra (acfm):	te	1178		Building dimensions if emission point is located on building (ft) Height A Length W		Width			
5. Control Devices As	sociat	ed with t	he	Emission Point					
Identify each control device as also required for each control					numb	er of device	es. <u>A</u>	Fori	<u>n 6 is</u>
None				☐ Thermal Oxidizer		No			
Baghouse	No			Regenerative					
☐ Cyclone	No			☐ Catalytic Oxidizer		No			
☐ Elec. Precipitator (ESP)	No			☐ Nitrogen Oxides Reduct	ion	No			
☐ Dust Suppression System	No			☐ Selective ☐ Catalytic	Į	☐ Non-Sele			
☐ Venturi Scrubber	No				L				
☐ Spray Tower/Packed Bed	No			Other Specify:		No			
☐ Carbon Adsorber	No								
☐ Cartridge/Canister									
Regenerative									

6. Estimated Emissions from the		A4 D	rojected Operat	lone
Criteria Pollutants	At Design Capacity (lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Particulate Matter (filterable as PM10)	0.24	0.24	2.4	0.096
Particulate Matter (filterable as PM2.5)				0.010
Particulate Matter (condensables)				
Volatile Organic Compounds (VOC)	0.28	0.28	28	0.112
Oxides of Sulfur (SOx)	0.23	0.23	23	0,092
Oxides of Nitrogen (NOx)	3.45	3.45	345	138
Carbon Monoxide (CO)	0.74	0.74	74	0.294
Lead (Pb)	0.11	0.17	7.1	0.210
	At Design Capacity		rojected Operat	ions
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Carbon Dioxide (CO ₂)	178	178	1280	512-
Methane (CH ₄)	123			
Nitrous Oxide (N ₂ O)				
Hydrofluorocarbons (HFCs)				
Perfluorocarbons (PFCs)				
Sulfur Hexafluoride (SF6)				
Total GHG (as CO ₂ e)	121	128	1280	51.2
List individual federal Hazardous Air	At Design Capacity		rojected Operat	
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Aldehydes	0.055	0.055	0.55	0.027

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration ● Air Quality Permits Program 1800 Washington Boulevard ● Baltimore, Maryland 21230 (410)537-3225 ● 1-800-633-6101● www.mde.maryland.gov

	ı	ORM 5	EP: Emission Point Dat	a				
Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.								
Applicant Name: SloSAL les ource leurlers								
1. Emission Point Ide	ntificat	ion Nam	e/Number					
List the applicant assigned nam	List the applicant assigned name/number for this emission point and use this value on the attached required plot plan:							
2. Emission Point Des	criptic	n						
Describe the emission point inc	_		ed equipment and control device	es:				
3. Emissions Schedul	e for the	ne Emiss	sion Point					
Continuous or Intermittent (C/I)?			therwise estimate seaso	onal variation:			
Minutes per hour:		(00	Winter Percent					
Hours per day:		10	Spring Percent					
Days per week: Weeks per year:		16	Summer Percent Fall Percent					
4. Emission Point Info	ormatic		T an i ercent					
Height above ground (ft):		4	Langth and width dimansi	Length:	Width:			
Height above structures (ft):		2	Length and width dimension at top of rectangular stack					
Exit temperature (°F):		800	Inside diameter at top of r	ound stack (ft):	0.333			
Exit velocity (ft/min):		225	Distance from emission po property line (ft):	oint to nearest	VARUES			
Exhaust gas volumetric flow ra (acfm):	ite	1178	Building dimensions if em point is located on buildi		igth Width			
5. Control Devices As	sociat		the Emission Point					
Identify each control device as also required for each control			emission point and indicate the check none:	e number of devices. 🛚 💆	A Form 6 is			
None			☐ Thermal Oxidizer	No				
Baghouse	No		☐ Regenerative					
Cyclone	No		☐ Catalytic Oxidizer	No				
☐ Elec. Precipitator (ESP)	No		☐ Nitrogen Oxides Reduc	tion No				
☐ Dust Suppression System	No		☐ Selective ☐ Catalytic	☐ Non-Selective☐ Non-Catalytic				
☐ Venturi Scrubber	No		☐ Other	No				
☐ Spray Tower/Packed Bed	No		Specify:	140.				
☐ Carbon Adsorber	No							
☐ Cartridge/Canister								
Regenerative								

RM 5EP: Emission P	oint Data	72.3			
e Emission Point					
At Design Capacity	At P	rojected Opera	tions		
(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
0.08	0.08	0.8	0.032		
0.09	0.09	0.94	0.038		
		0.76	0.630		
1.15	1.15	11.5	0.46		
0.25	0.75	7.5	0.100		
At Design Capacity	At P	At Projected Operations		At Projected Operations	
(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
42.8	42.8	428	17.1		
42.8	42.8	428	17.1		
At Design Capacity	At P			At Projected Operations	
(lb/hr)	(lb/hr) (lb/day)		(ton/yr)		
0.016	0 016	A 10	0.007		
0.018	0.018	0.18	0.007		
April					
	e Emission Point At Design Capacity (lb/hr) O.08 O.09 O.08 J.15 O.25 At Design Capacity (lb/hr) 42.8 At Design Capacity	At Design Capacity (lb/hr) O.08 O.09 O.08 O.09 O.08 J.15 O.25 At Design Capacity (lb/hr) 42.8 At Design Capacity (lb/hr) 42.8 At Design Capacity (lb/hr) At P (lb/hr) (lb/hr)	At Design Capacity (lb/hr)		

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration ● Air Quality Permits Program 1800 Washington Boulevard ● Baltimore, Maryland 21230 (410)537-3225 ● 1-800-633-6101● www.mde.maryland.gov

	FORM 5EP: Emission Point Data							
Complete one (1) Form 5EP f	or EAC	H emissio	n poii	nt (stack or fugitive emission	ns) rela	ated to the propo	osed in	stallation.
Applicant Name: GloSAL Resource Rengeles								
1. Emission Point Identification Name/Number								
List the applicant assigned name/number for this emission point and use this value on the attached required plot plan:								
2. Emission Point Des	scriptio	on						
Describe the emission point inc	luding a	II associate	ed equ	uipment and control devices	3:			
Diesel engi	Ne	Exhau	SET	STACK				<u>.</u>
3. Emissions Schedu	le for t	he Emiss	sion	Point Point				
Continuous or Intermittent (C/	1)?			Seasonal Variation Check box if none: Otl	herwis	se estimate seas	onal va	riation:
Minutes per hour:		60		Winter Percent				
Hours per day: Days per week:		10		Spring Percent Summer Percent				
Weeks per year:		16		Fall Percent				
4. Emission Point Info	ormatic			Tun Croom				
Height above ground (ft):		4		Length and width dimensio	ne	Length:	1	Nidth:
Height above structures (ft):		2		at top of rectangular stack				
Exit temperature (°F): Soo Inside diameter at top of round stack (ft): 0.33						.333		
Distance from emission point to nearest						Aries		
Exhaust gas volumetric flow ra (acfm):	ate	1178		Building dimensions if emis point is located on buildin		Height Lei	ngth	Width
5. Control Devices As	sociat	ed with t	he E	mission Point				
Identify each control device associated with the emission point and indicate the number of devices. <u>A Form 6 is</u> also required for each control device. If none check none:								
None				☐ Thermal Oxidizer		No	_	
Baghouse	No			☐ Regenerative				
☐ Cyclone	No			☐ Catalytic Oxidizer		No		
☐ Elec. Precipitator (ESP)	No			☐ Nitrogen Oxides Reducti	ion	No		
☐ Dust Suppression System	No			Selective	בַ	Non-Selective		
☐ Venturi Scrubber	No		_	☐ Catalytic	L	☐ Non-Catalytic		
☐ Spray Tower/Packed Bed	No		S	☐ Other Specify:		No	-	
☐ Carbon Adsorber	No							
☐ Cartridge/Canister								
Regenerative								

	At Design Capacity	At F	Projected Opera	itions	
	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Particulate Matter (filterable as PM10)	0.08	0.08	0.8	0.632	
Particulate Matter (filterable as PM2.5)					
Particulate Matter (condensables)					
Volatile Organic Compounds (VOC)	0.09	0.09	0.94	0.038	
Oxides of Sulfur (SOx)	80.0	800	0.76	0.030	
Oxides of Nitrogen (NOx)	1.10	1.15	11.5	0.46	
Carbon Monoxide (CO)	0.25	0.75	0.5	0.100	
Lead (Pb)		0.00		0.100	
对于 是是1000年的1000年的	At Design Capacity	At F	Projected Opera	itions	
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Carbon Dioxide (CO ₂)	42.8	42.8	428	17.1	
Methane (CH ₄)		, , , ,	120		
Nitrous Oxide (N₂O)					
Hydrofluorocarbons (HFCs)					
Perfluorocarbons (PFCs)					
Sulfur Hexafluoride (SF6)					
Total GHG (as CO₂e)	42.8	42.8	428	17.1	
List individual federal Hazardous Air	At Design Capacity	A CONTRACTOR OF THE PARTY OF TH			
Pollutants (HAP) below:				(ton/yr)	
A1 101 \0		C			
Al dehydes.	0.018	0.018	0.18	0.007	

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration ● Air Quality Permits Program 1800 Washington Boulevard ● Baltimore, Maryland 21230 (410)537-3225 ● 1-800-633-6101● www.mde.maryland.gov

	F	FORM 5	EP	: Emission Point Data	а			
Complete one (1) Form 5EP for	or EACH	l emission	n po	pint (stack or fugitive emissio	ns) rel	ated to the pr	opose	ed installation.
Applicant Name:								
1. Emission Point Identification Name/Number								
List the applicant assigned name LAP (LIBNER, So	e/numb	er for this (み, ~q	emis	ssion point and use this value	on th	e attached re	quirec	l plot plan: <u>Fug 1</u> ti ve
2. Emission Point Description								
Describe the emission point incl								
FugiTive PART	rcul	ate m	Att	er from RAP CRI	ushir	JG, SLAE	enia	ug, & Com
3. Emissions Schedul	e for tl	he Emiss	sior	Point				
Continuous or Intermittent (C/I)?			Seasonal Variation	thonuis	a antimata a	2000	al variation.
Minutes per hour:		60		Check box if none: Ot Winter Percent	Tierwis	se esumate se	eason	ai variation:
Hours per day:	-	10		Spring Percent	1			
Days per week:		5		Summer Percent				
Weeks per year:		16		Fall Percent				
4. Emission Point Info	rmatic	on						
Height above ground (ft):		10	-	Length and width dimension	ons	Length:		Width:
Height above structures (ft):		0		at top of rectangular stack		100		80
Exit temperature (°F):		Amsién	5	Inside diameter at top of ro				
Exit velocity (ft/min):		AM		Distance from emission po property line (ft):	oint to			195
Exhaust gas volumetric flow rate (acfm):			Building dimensions if emi point is located on buildir		Height MA	Leng	th Width	
5. Control Devices As	sociat	ed with t	he	Emission Point				
Identify each control device as also required for each control					numb	per of devices	s. <u>A I</u>	Form 6 is
None				☐ Thermal Oxidizer		No		
Baghouse	No			Regenerative				
Cyclone	No			☐ Catalytic Oxidizer		No		
☐ Elec. Precipitator (ESP)	No			☐ Nitrogen Oxides Reduct	tion	No		
☐ Dust Suppression System	No			Selective		☐ Non-Selec		
☐ Venturi Scrubber	No			☐ Catalytic		☐ Non-Catal		
☐ Spray Tower/Packed Bed	No			Other Specify:		No	-	
☐ Carbon Adsorber	No							
☐ Cartridge/Canister								
Regenerative								

At Design Capacity (lb/hr) .	(lb/hr) 1, 9 4	Projected Opera (Ib/day) (9.4 Projected Opera (Ib/day)	(ton/yr) 0.77(c		
At Design Capacity	1,94 At F	19.4 Projected Opera	0.77(c		
At Design Capacity	At F	Projected Opera	tions		
At Design Capacity	At Projected Operations		At Projected Operations		
(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)		
	At Design Capacity (lb/hr)	" Doolgii Capacity	a Dough Capacity		

(Attach additional sheets as necessary.)

Portable Trakpactor Emissions Calculations - AP42 Emission Factors

Assumptions:

10 Hours/day

18 gallons/hour diesel 130,500 Btu/gallon diesel

3530 tons/day

Throughput 353 tph - RAP

Stack - Engir	ne Exhaust	23490000	Btu/day	23.49 MMBtu/day
PM-10	.31 lb/MMBtu	7.2819	lb/day	0.72819 lb/hr
SOx	.29 lb/MMBtu	6.8121	lb/day	0.68121 lb/hr
NOx	4.41 lb/MMBtu	103.5909	lb/day	10.35909 lb/hr
СО	.95 lb/MMBtu	22.3155	lb/day	2.23155 lb/hr
TOC	.36 lb/MMBtu	8.4564	lb/day	0.84564 lb/hr
CO2	164 lb/MMBtu	3852.36	lb/day	385.236 lb/hr
Aldehydes	0.07 lb/MMBtu	1.6443	lb/day	0.16443 lb/hr

Plant Aggregate - Fugitive Emissions RAP

	lb/	day	ton	/yr
	Total PM	PM-10		
Conveyor 1	10.59	3.883	0.4236	0.15532
Crusher	4.236	1.9062	0.16944	0.076248
Total	14.826	5.7892	0.59304	0.231568

PM calculated at 3530 * 0.003 (conveyor transfer point, uncontrolled, for crushed stone, AP-42)
PM-10 calculated at 3530 * 0.0011 (conveyor transfer point, uncontrolled, for crushed stone, AP-42)
Crusher total PM calculated at 3530 * 0.0012 (tertiary crushing, controlled)
Crusher PM10 calculated at 3530 * 0.00054 (tertiary crushing, controlled)
Ton/year = lb/day *80/2000

180 gallons per day for 80 days equals 14,400 gallons

Portable RAP Screen Emissions Calculations - AP42 Emission Factors

Assumptions:

10 Hours/day

6 gallons/hour diesel 130,500 Btu/gallon diesel

5000 tons/day

Estimates high due to using aggregate screening and conveying info

Stack - Engi	ne Exhaust	7830000	Btu/day	7.83 MMBtu/day
PM-10	.31 lb/MMBtu	2.4273	lb/day	0.24273 lb/hr
SOx	.29 lb/MMBtu	2.2707	lb/day	0.22707 lb/hr
NOx	4.41 lb/MMBtu	34.5303	lb/day	3.45303 lb/hr
СО	.95 lb/MMBtu	7.4385	lb/day	0.74385 lb/hr
TOC	.36 lb/MMBtu	2.8188	lb/day	0.28188 lb/hr
CO2	164 lb/MMBtu	1284.12	lb/day	128.412 lb/hr
Aldehydes	0.07 lb/MMBtu	0.5481	lb/day	0.05481 lb/hr

Plant Aggregate - Fugitive Emissions (all values in Ib/day)

Total PM PM-10

C1 to C4 15

5.5 (Conveyor transfer point, uncontrolled)

Screen

11

1.48 (Screening, controlled)

Total

26 6.98

Note: Conveyors C1 to C4 have 5,000 tons total (combined) per day

11 X 80 = 880 = 0.44 tons

1.48 X 80 = 118.4 = 0.0592 tons

15 X 80 = 1200 = 0.6 tons

5.5 X 80 = 440 = 0.22 tons

Portable RAP Conveyor Emissions Calculations - AP42 Emission Factors

Assumptions:

10 Hours/day

2 gallons/hour diesel 130,500 Btu/gallon diesel

3000 tons/day

Estimates high due to using aggregate screening and conveying info

Stack - Engi	ne Exhaust	2610000	Btu/day	2.61	MMBtu/da	У
PM-10	.31 lb/MMBtu	0.8091	lb/day		0.08091	lb/hr
SOx	.29 lb/MMBtu	0.7569	lb/day		0.07569	lb/hr
NOx	4.41 lb/MMBtu	11.5101	lb/day		1.15101	lb/hr
СО	.95 lb/MMBtu	2.4795	lb/day		0.24795	lb/hr
TOC	.36 lb/MMBtu	0.9396	lb/day		0.09396	lb/hr
CO2	164 lb/MMBtu	428.04	lb/day		42.804	lb/hr
Aldehydes	0.07 lb/MMBtu	0.1827	lb/day		0.01827	lb/hr

Plant Aggregate - Fugitive Emissions (all values in lb/day)

Total PM PM-10

Conveyor 9

3.3 (Conveyor transfer point, uncontrolled)

Total 9 3.3

9 X 80 = 720 = 0.36 tons 3.3 X 80 = 264 = 0.132 tons

PRINCE GEORGE'S COUNTY ZONING VERIFICATION SITE DRAWING

Property

Tax Account: 0504092

Owner Name: GLOBAL RESOURCE RECYCLERS INC

Premise Address: 2600 Marble Ct, District Heights, MD 20747

Tax Account #: 0504092 Assessment District: 06 Lot: 14 Block: B Parcel:

Description: Plat: 06151024

Subdivision: FORESTVILLE

PLAT 3>

Acreage: 3.3830

Parcel Details Ownership Information

Owner Name: GLOBAL RESOURCE

RECYCLERS INC

Owner Address: 162 Lafayette Ave,

Laurel, MD 20707

Liber: 08467 Folio: 837 **Transfer Date: 9/30/1992**

CENTER-RESUB PT OF BLK A & B- Current Assessment: \$514,200.00

Land Valuation: \$359,800.00

Improvement

Valuation: \$154,400.00 Sale Price: \$0.00

Structure Area (Sq Ft): 1256

Administrative Details

Tax Map Grid: 082B3 WSSC Grid: 204SE07 **Tree Conservation**

Plan 1:

Tree Conservation Plan 2: TCP2-097-97

Councilmanic District: Null

Military Installation Overlay - Noise

Noise Intensity Zone: Noise Intensity Zone

Decibel Range: 60 db - 74 db

Military Installation Overlay - Safety

Type Code: 83

Zone Name: Accident Potential Zone 2

Military Installation Overlay - Height

Zone Use: App/Dep Clearance (50:1) - North End

Area Label: B

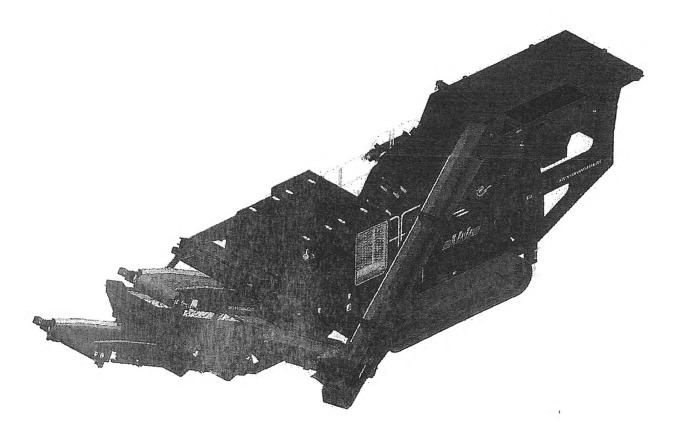
Zoning

Zone Type: Industrial

Class: I-4 (Limited Intensity Industrial)

M-NCPPC: Prince George's County Planning

CAR THE CONTROL OF THE STANDARD OF THE PARTY AND THE STANDARD OF THE STANDARD


Allan Myers MD, Inc. - Global Resource Recyclers 2600 Marble Court Forestville, MD 20747

VENDOR LITERATURE

SPECIFICATIONS

McCloskey i44R

All specifications are current as of this printing, but are subject to change

144R May. 2011, issue 001

DESCRIPTION

Heavy duty track mounted Crusher with following features:

- 1050mm (42") diameter x 1100mm (43") wide Impactor.
- 350Hp Cat C9 engine.
- Track or Track c\w Wheel bogie.
- Integrated hydraulic folding hopper.
- Integrated hydraulic tolding stockpiling conveyors.
- I-beam plate fabricated chassis construction.
- Open chassis design for ease of maintenance
- Fast setup time
- Vibrating feeder under crusher discharge.

DIMENSIONS AND WEIGHTS

Length - transport model

Width - transport all models

Height - transport track

Weight - track

15.348 (50' - 4")

3.08m (10' - 1")

3.40m (11'-2")

45,000 Kgs (99,207 lbs) inc magnet

CAPACITIES

Diesel tank capacity

635 L (168 US gal)

Hydraulic tank capacity

1210 L (320 US Gals)

IMPACTOR CHAMBER

Feed opening WxH

1150 x 800mm, (45.3 x 31.5")

Impactor rotor

1050mm (42") diameter x 1100mm (43.3") wide

Crusher speed

600-740 rpm (33-40 m/sec rotor tip speed)

Number of aprons

2 (3 with optional grinding path)

Number of blowbars Full blowbar weight

4 (3 bar optional)

217 Kg (478 lbs)

Crusher Drive

Hydraulic - V-Belts

Feed size

450 x 450 x 450mm lump, (18" x 18" x 18")

Impactor weight

9,500kg (20,940 lbs) estimated

Closed side setting adjustment Motor

Hydraulic rams, shim system

Kawasaki axial piston 280cc/rev

Flow rate

400 Lpm (105 US gpm)

Speed sensor

Load sensor

YES Hydraulic

PAN FEEDER

Feeder width

1080mm (42.5")

Feeder length

4050mm (159.4")

Drive

Hydraulic

Motor

David Brown MCC 2208 58.7cc/rev

Flow rate

60.8 Lpm (16.1 US gpm)

Adjustable speed Variable speed

Yes - via mechanical Flow Control

Yes - via electrical proportional

Maximum speed

1060rpm

144R

May. 2011, issue 001

HOPPER

Length overall 4560mm (14' - 11") Loading width 3491mm (11' - 5") Width 2220mm (7' - 3") Volume 5.4m³ (7.4yd³) Material 8mm Hardox sides Locking system Wedge type and toggle

SIDE CONVEYOR

Stockpile height 2080mm (6' - 10") Belt width 650mm (26") Belt spec EP 400/3 3+1.5 Drive drum dia. 220mm (8.6") Tail drum dia. 220mm (8.6") - spoked Motor **OMT400** Flow rate 43.7 Lpm (11.5 US gpm)

Adjustable speed YES Maximum speed 109 rpm

MAIN CONVEYOR

Belt width 1050mm (42") Belt spec Plain 500/3 8+2 Drive drum dia. 285mm (11.2") Tail drum dia. 270mm (10.6") - spoked

Motor

OMV630

Flow rate 87.4 Lpm (23.1 US gpm)

Maximum speed 138.7 rpm Angle adjustable NO Quick release YES

FINES CONVEYOR

Stockpile height 2965mm (9' - 9") Belt width 1200mm (48") Belt spec Plain 500/3 8+2 Drive drum dia. 285mm (11.2")

Tail drum dia. 270mm (10.6") - spoked

Motor **OMV630**

Flow rate 68.4 Lpm (18.1 US gpm)

Maximum speed 108.6 rpm Angle adjustable NO Quick release YES

144R May. 2011, issue 001

SCREENBOX

Dimensions - top deck

Bearing type 2 Deck

Screens - top deck

Tensioning - top deck

Screen angle

Screen motor

Drive system Hydraulic flowrate

Speed adjustable

Screen stroke adjustable

Screen shaft speed

Screen 'g' force

3050mm x 1525mm (10' x 5')

NSK/RHP 22219

5' x 4' side tension - 2 off & 5' x 2' side

tension - 1 off

Quick release pin and wedge

25 deg

DBH MCC2208 (59cc/rev)

Direct drive with HRC150 coupling

68.4 Lpm (18.1 US gpm)

YES - Pressure compensated FCV

8 - 10mm

950 rpm

5.05

TRANSFER CONVEYOR

Belt width

Belt spec

Drive drum dia. Tail drum dia.

Motor

Flow rate

Adjustable speed

Maximum speed

650mm (26")

Plain 400/3 4+2

200mm (8")

200mm (8")

OMT400

43.7 Lpm (11.5 US gpm)

YES

109.5 rpm

RETURN CONVEYOR

Belt width

Belt spec

Drive drum dia.

Tail drum dia. (Spoked)

Motor

Flow rate

Adjustable speed Maximum speed

500mm (20")

Chevron - 400/3 6+1.5

290mm (11.5")

270mm (10.6")

OMT400

43.7 Lpm (11.5 US gpm)

YES

109.5 rpm

May. 2011, issue 001

PAN FEEDER UNDER IMPACTOR

Width 1160mm (45.7") length 2030mm (80")

Base liners 10mm (3/8") stainless steel Side liners 12mm (1/2" Hardox 400

Operating angle 130

Vibrating motor Twin out of balance mass Hydraulic motor 2 off Eaton 32.9cc/rev Fixed speed

YES

Flow rate 87.4 Lpm (23.1 US gpm)

POWERUNIT AND HYDRAULICS

Engine CAT C9 Engine power 261 kW (350 HP)

Engine speed 1900 rpm

Flywheel Pump 1 (Crusher/Tracks) Kawasaki K3V140DTP LH PTO Pump 2 (Feeder/Side conveyor) Turolla 33/23/10 Front PTO Pump 3 (Main conveyor/Pilots) David Brown 5046 Front PTO Pump 4 (Screenbox/Return conveyor) David Brown 5036 5023 I otal system flow 724.9 Lpm (191.5 US Gpm)

Hydraulic tank capacity 1210 L (320 US Gals) Hydraulic tank ratio 1.67:1

Twin Hydraulic Oil cooler YES

ELECTRICS

Emergency stops 4 off, 2 feeder, 2 powerunit

Chassis cabling Armored cable Start Siren YES - 10 sec delay

Control panel Plus 1 Danfoss colour screen

Engine shutdowns: Low oil pressure High water temp

Air filter blockage (selectable)

Fuel contamination Low hydraulic tank level

High hydraulic return line filter backpressure High hydraulic water filter backpressure

High hydraulic oil temperature

Engine room light YES

Radio control tracks OPTION - Hetronic system Pendant track control YES - plugged in control cabinet

TRACKS

Width Length Height

Gearbox Hatio

Motor Speed max

Speed max Flow rate

Multiple speeds

Attachment to chassis

400mm (15.7")

3400mm (11' - 2") crs

817mm (32")

Bonfiglioli 711 (or equivalent)

153:1 Rexroth 90

1.50 Kph (0.93 Mph) 138 Lpm (36.45 US gpm)

Three speed system selectable at control panel with smooth start / stop.

Bolt On for quick change

OPTIONS

Roll-in bogie system

Main conveyor variable speed control

Interlock system Hopper Extensions Overband magnet

Water Pump and dust suppression system

Various blow bar material options

Grinding path 3 or 4 bar rotor

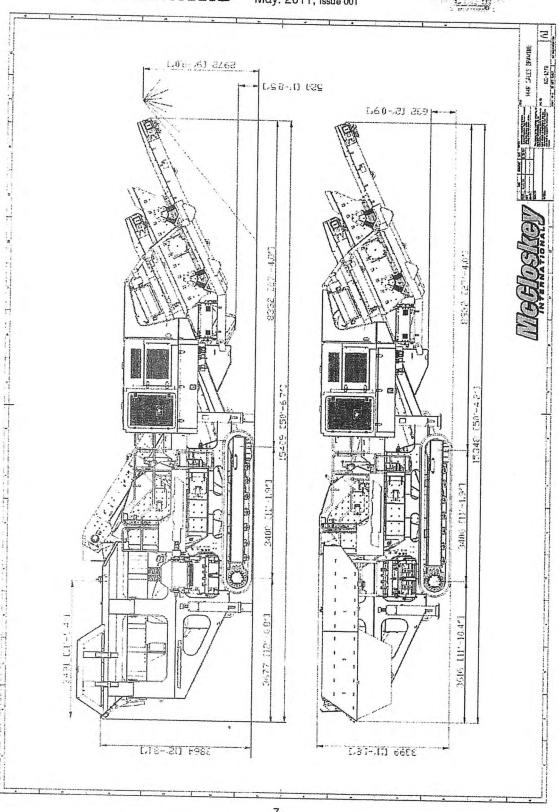
Work lights

Belt Scale

Refueling pump

Recirculation Screen

SAFETY FEATURES


External belt alignment points External grease points

Engine safety shutdown systems

Full safety guarding for nip points

McCloskey

the regardicates. The 16th larger is 25,77, larger, a strip for more material and regarding to read materials. So it was contracted a solution for readonals materials are the readonals. The formation is solutionally expectations. The formation is solven, and the formation is a strength of the formation is a strength of the formation of the form

ST801

The McCloskey ST Tracked Stackers are all about efficiency, from its speedy setup time to its high degree of mobility. Countime is minimized while throughput and stockpile capacity are maximized.

Hydraulic main lift and top fold are standard, as is the diesel power unit. Electric and dual power are also available to get the lob done, no matter what application. The 22.5 degree maximum conveyor

angle allows for the highest stockpiles per conveyor length in the industry.

With its durable truss frame, large feed hopper and base production capacity of 500 TPH with optional upgrades to 800 TPH, the McCloskey ST Tracked Stackers stand up well above the competition.

Available as a radio controlled track-mounted unit.

- 900mm (36) wide heavy duty
 80) long conveyor
- 36.5 kW (40 Hg) Tier 4 diesel engine
- On site track plobility
- Large feed hopper
- Hydraulic folding frame for easy transport
- Fast on-site setup time (5 minutes)
- Abundant service room inside the power-pack
- Adjustable hopper height to optimize operational efficiency

McCloskey

Wide Feed Opening

Allows for time flow of malanal and high volume capacity.

16' Hopper

A larger titll wide hopper designed to be used with larger leaders, allowing for more material and no apillage.

Meavy Duty Build

time of the most infinal and denable markanes on the rearret the 11°56 is beat to exist at the tedial to it to real rates patient

Screenbox

High Casegy 5' x, 10' is received delivere the ingliced product capacity.

mccloskeyinternational.com

Extended Tail Conveyor

The larger tail conveyor oflows for an increasis discharge height and heads namily into various constians

SPECIFICATION DATA

127 He 195 kW

11' 2" (4 AVHO) 60 2" (15. 20m)

tir to to stony

Hoegra 25 pay Vige 165 6 54 his

throughbole despit Extended for

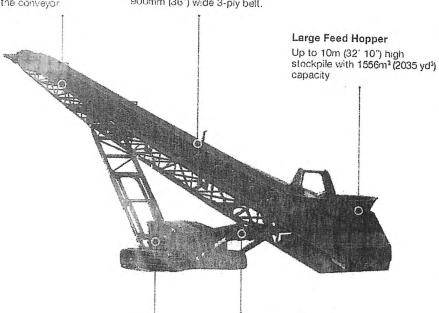
12 (136m)

Grandfalbaloga Grandfal Generalis

67,107,056,09

Kanpan patrika magamatan ik Mester terletik di Afrika Salari Dinagkapan di Salari

Mest or regit to a more a contract to a property of the object to the object to a contract to a cont


Necloskey

Hydraulic Top Fold

Straightforward hydractic controls to fold and unfold, raise and lower the conveyor.

80' Conveyor

24.38m (80') long conveyor with 900mm (36") wide 3-ply belt.

Shutdown Systems

Engine safety shutdown systems.

Radio Remote Track Control

Provides remote maneuverability and enhances safety for moving freely to the best location.

mccloskeyinternational.com

SPECIFICATION DATA

Dimensions and Capacities

Engine

36.5 kW (49 Hp) Diesel

Belt Length

80' (24.38m)

Belt Width

900mm (36")

Stockpile Height

10.0m (32' 10")

Stockpile Capacity

1556m³ (2035 yd³)

Transport Length

15.75m (51' 8")

Transport Height

3.43m (11' 3")

Transport Width

2.49m (8' 2")

©Copyright 2020 McCloskey International, All rights reserved. McCloskey is a tracemark of McCloskey International

McCoskey International reserves the right to make changes to the information and design of the machines on this brochure Without reservation and notification to the users. Information at time of print considered acounte — McCoskey International assumes no liability resulting from errors or omissions in this document.

MARYLAND-NATIONAL CAPITAL PARK AND PLANNING COMMISSION Prince George's County Planning Department

Planning Information Services 14741 Governor Oden Bowie Drive, Suite L2 Upper Marlboro, MD 20772 (301) 952-3208 (301)-952-3195 www.mncppc.org

September 20, 2021

Mr. Harold Green
Global Resource Recyclers, Inc
2600 Marble Court
District Heights, Maryland 20747
Re: 2600 and 2601 Marble Court, District Heights, Maryland 20747
Tax ID: 0504084 (Block B, Lot 13) and 0504092 (Block B, Lot 14)
In response to your request for information regarding the above-referenced property, we have researched our files/data base and present the following:

🗖 Zoning Verification	OR	☐ Buildable lots
1. The current zoning classifi 1-4 (Limited Intensity In Noise, Safety (Accident	dustrial)	/M-I-O-Z (Military Installation Overlay Zone)- Height,
•		(APZ 2) restrictions as regulated by the <i>Approved Military</i> Amendment, November 2016
An area of land designated deed (to land for which no "	as a sepa Subdivis	□ No ☑ Not Applicable rate parcel of land on a "Record Plat," or on a legally recorded ion" plat is required pursuant to the provisions of Subtitle 24) nce George's County, Maryland.

Comment:

3. Specific Use(s)/Regulation(s):

Specific uses allowed in the I-4 zone can be found in Part 7, Section 27-473(b) of the Prince George's County Zoning Ordinance (Ordinance). Specific regulations and prohibited uses for the M-I-O-Z can be found in Part10C of the Ordinance. (See Page 3, Additional Comments)

4. According to the current zoning ordinance and/or regulations applicable to the subject property, the current use of the property is classified as:
☐ Permitted by Right
☐ Permitted by Special Exception
☐ Legally Nonconforming
☐ Prohibited
Comment:
See Page 3, Additional Comments
5. Conformance: According to the current zoning ordinance and/or regulations applicable to the
subject property, the current use and/or structure is:
\square Legally Conforming (in conformance with applicable zoning and subdivision regulations, or grandfathered). May rebuild in accordance with current regulations.
\square Legally Nonconforming (not in conformance with applicable zoning and subdivision regulations, but legal and subject to conditions and/or requirements). See Rebuild (below).
\square Nonconforming (not in conformance with applicable zoning and subdivision regulations). See Rebuild (below).
Comment:
See Page 3, Additional Comments
C.D.I. 11d I. the count of concellent in the least of the structural control on the subject was approximately
6. Rebuild: In the event of casualty, in whole or in part, the structure located on the subject property may be rebuilt in its current form in accordance with Section 27-243 of the current zoning ordinance:
☐ Yes ☐ No Comment:
See Page 3, Additional Comments
7. Variances, special exceptions, and/or zoning conditions approved for the subject property: □ Variance □ Special Exception □ Zoning Conditions □ None
Comment:

8. Site Plan Information:	
☐ An approved site plan for the subject property is on file. Available plans must be requested, additional fees apply. Request plans at http://www.pgplanning.org/DocumentCenter/View/6884/Online-Information-Reque	est-Form
□ No site plan	
List of approved plans and permits for subject property:	
N/A	

Additional comments regarding the subject property:

Per Section 27-473(b) of the Ordinance, the manufacturing or cutting of structural products made of clay, concrete, glass, stone, or similar materials is permitted in the I-4 Zone. However, with the adoption of the MIOZ in 2016 (Council Resolution CR-97-2016) and pursuant to Section 27-548.53(e)(2)(A) of the Ordinance, existing uses in the Safety Zones (APZ1, APZ2 and Clear Zone) that are on the prohibited use list in Section 27-548.56(a) of the Ordinance are considered nonconforming. Per Section 27-548.56(a)(1)(H)(i) of the Ordinance, any type of use that may release into the air any substance, such as steam, dust, or smoke which would impair visibility or otherwise interfere with the operation of aircraft is strictly prohibited in the Safety Zones. If your operation produces any of the listed substances, per Part 10C, your use is prohibited and is now nonconforming. Certification of this nonconforming use would require referral to Joint Base Andrews for their comment per Section 27-548.57 of the Ordinance.

Note: The Maryland-National Capital Park and Planning Commission's (Commission) role is to review permit applications for compliance with zoning and subdivision regulations. The full text of the Ordinance (Subtitle 27) is at: https://www.municode.com/library/md/prince_george's_county/codes/code_of_ordinances

Information regarding use and occupancy permits, building permits and outstanding violations may be obtained by contacting the Prince George's County Department of Permitting, Inspections, and Enforcement (DPIE) at 301-636-2000.

This information was researched on 9/20/21 , by the undersigned, per request and as a public service. The undersigned certifies that the above information contained herein is accurate to the best of our knowledge, information, and belief, and is based upon or relates to the information supplied by the requestor. The Department assumes no liability for errors and omissions. All information was obtained from public records, which may be inspected during regular business hours.

Sincerely, Hilary Covington Planning Information Services

MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

SUPPLEMENT TO DOCKET #20-21

COMPANY: Global Resource Recyclers

LOCATION: 2600 Marble Court, Forestville, MD 20747

APPLICATION: Installation of one (1) portable recycled asphalt pavement crushing and

screening plant.

<u>ITEM</u> <u>DESCRIPTION</u>

1 Notice of Application and Informational Meeting

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Global Resource Recyclers on September 20, 2021 for the installation of one (1) portable recycled asphalt pavement crushing and screening plant. The proposed installation will be located at 2600 Marble Court, Forestville, MD 20747.

An Informational Meeting will be held on April 20, 2022, at 6 p.m. at the Comfort Inn at Joint Base Andrews, 7979 Malcolm RD, Clinton, MD 20735.

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Informational Meeting has been scheduled so that citizens can discuss the application and the permit review process with the applicant and the Department.

The application and other supporting documents are available for public inspection on the Department's website. Look for Docket #20-21 at the following link.

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

The Department will provide an interpreter for deaf and hearing impaired persons provided that a request is made for such service at least ten (10) days prior to the meeting.

Further information may be obtained by calling Ms. Shannon Heafey at 410-537-4433.

George S. Aburn, Jr., Director Air and Radiation Administration