MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

DOCKET #20-21, Supplement # 1, Supplement #2

COMPANY: Global Resource Recyclers

LOCATION: 2600 Marble Court, Forestville, MD 20747

APPLICATION: Installation of one (1) portable RAP crushing and screening plant.

<u>ITEM</u>	DESCRIPTION
1	Notice of Application and Opportunity to Request an Informational Meeting
2	Permit to Construct Application Package including: Form 5, Form 5T, Form 5EP, Form 6, Form 44, site map, vendor specifications, emissions worksheet.
3	Zoning Approval from Prince George's County

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND OPPORTUNITY TO REQUEST AN INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Global Resource Recyclers on September 20, 2021 for the installation of one (1) portable RAP crushing and screening plant. The proposed installation will be located at 2600 Marble Court, Forestville, MD 20747

The application and other supporting documents are available for public inspection on the Department's website. Look for Docket #20-21 at the following link:

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Department will hold an informational meeting to discuss the application and the permit review process if the Department receives a written request for a meeting within 10 working days from the date of the second publication of this notice. All requests for an informational meeting should be emailed to Ms. Shannon Heafey at shannon.heafey@maryland.gov.

Further information may be obtained by contacting Ms. Shannon Heafey by email at shannon.heafey@maryland.gov or by phone at (410) 537-4433.

George S. Aburn, Jr., Director Air and Radiation Administration

AIR QUALITY PERMIT TO CONSTRUCT **APPLICATION CHECKLIST**

	OWNER OF EQUIPMENT/PROCESS
COMPANY NAME:	Global Besource Breydlew
COMPANY ADDRESS:	2600 MARDIE COURT
	FRESTILE, MD 20747
	LOCATION OF EQUIPMENT/PROCESS
PREMISES NAME:	Global Resource Recyclas
PREMISES ADDRESS:	2600 Monte Court
	FUNESHILL MID 20747
CONTACT NAME:	INFORMATION FOR THIS PERMIT APPLICATION
JOB TITLE:	Harold Creed
PHONE NUMBER:	202-288-4130
EMAIL ADDRESS:	
	SCRIPTION OF EQUIPMENT OR PROCESS
2 2	SOUR FIGURE OF EAGUR MENT ON PROCESS
Application is hereby mad	le to the Department of the Environment for a Permit to
Construct for the following	g equipment or process as required by the State of Maryland Air
Quality Regulation, COM/	AR 26.11.02.09.
Check each item that you	have submitted as part of your application package.
Application packa	ge cover letter describing the proposed project
Complete applicate applicable.)	ion forms (Note the number of forms included or NA if not
No Form	
No. Form	
No. K Form	5EP No Form 42 No Form 44
No Form	10 No Form 44
	rer specifications/guarantees
	man's Compensation Insurance
	rams with emission points
	the location of the proposed source and property boundary
	lata and all emissions calculations
Material Safety Da processed and ma	ata Sheets (MSDS) or equivalent information for materials anufactured.
	ic Convenience and Necessity (CPCN) waiver documentation ervice Commission (1)
Documentation the use requirements	at the proposed installation complies with local zoning and land
	r emergency and non-emergency generators installed on or after and rated at 2001 kW or more.
(2) Required fo	r applications subject to Expanded Public Participation Requirements

Required for applications subject to Expanded Public Participation Requirements.

APPLICATION FOR PROCESSING/MANUFACTURING EQUIPMENT

STATE OF MARYLAND DEPARTMENT OF THE ENVIRONMENT Air and Radiation Management Administration 1800 Washington Boulevard Baltimore, Maryland 21230

Permit to Construct Registration Update Initial Registration

PPL	ICATION FOR PROCESSING/MANUFACTURING EQUIPMENT	
PPL 1A	OWNER OF EQUIPMENT/COMPANY NAME	DO NOT WRITE IN THIS BLOCK 2. REGISTRATION NUMBER County No. 1-2 3-6 Registration Class Fremises No. 2. Registration Class Fauipment No. APPLICATION DATE
/	PRINT NAME AND TITLE HAROLE CLEEN	DATE: 4/11/2021 4/3
1B		20794 301, 568-2050 ZIP TELEPHONE
	PREMISES NAME (IF DIFFERENT FROM ABOVE)	
3	A. NEW EQUIPMENT STATUS CONSTRUCTION BEGUN MONTH / YEAR MODIFICATION TO B. EXISTING EQUIPMENT C. EXISTING EQUIPMENT 15 NEW CONSTRUCTION BEGUN MONTH / YEAR CONSTRUCTION BEGUN MONTH / YEAR 16-19	NEW EXISTING ISTRUCTION COMPLETED INITIAL OPERATION MONTH / YEAR MONTH / YEAR 20-23 20-23
4 <u>Or</u> 5	DESCRIBE THIS EQUIPMENT: MAKE, MODEL, FEATURES, MANUFACTURER; IN L (1) RAP CLUSTER ONE(1) RAP SCROW & WORKER'S COMPENSATION COVERAGE EXPIRATION DATE	CLUDE MAXIMUM HOURLY INPUT RATE, ETC.
	COMPANY See Attacked COS - BINDER / POLICY NU	MBER 53099351
3	NUMBER OF PIECES OF IDENTICAL EQUIPMENT UNITS TO BE REGISTERED / PERMIT NUMBER OF STACKS / EMISSION POINTS ASSOCIATED WITH THIS EQUIPMENT	
7	PERSON INSTALLING THIS EQUIPMENT (IF DIFFERENT FROM (1) ABOVE)	itle
	COMPANY	
	MAILING ADDRESS / STREET	
	CITY, TOWN STATE	TELEPHONE ()

8	MAJOR ACTIVITY, PRODUCT, OR SERVICE OF COMPANY AT THIS LOCATION
	ONE CONCRETE and Recycled Asphalt parenet (RAP) crushing and control devices associated with this equipment NONE Screening Plant.
9	CONTROL DEVICES ASSOCIATED WITH THIS EQUIPMENT NONE SCIENTING Plant.
	SIMPLE/ SPRAY MULTIPLE ADSORB VENTURI CARBON ELECTROSTATIC CATALYTIC DRY CYCLONE TOWER SCRUBBER ADSORBER PRECIPITATOR BAGHOUSE AFTERBURNER SCRUBBER
	24-1 24-2 24-3 24-4 24-5 24-6 24-7 24-8
	OTHER Wet Suffression sprays As regured. 24-9 DESCRIBE
10	ANNUAL FUEL CONSUMPTION FOR THIS EQUIPMENT (FUEL LISTED ONLY ACCOUNTS FOR NEW EQUIPMENT USAGE ONLY: OIL -1,000 GALLONS SULFUR % GRADE NATURAL GAS - 1,000 FT3 LP GAS - 100 GALLONS GRADE B C
	26-31 32-33 34 35-41 42-45 F
	COAL - TONS SULFUR % ASH % WOOD - TONS MOISTURE % 46-52 52-55 56-58 59-63 64-65
	OTHER FUELS ANNUAL AMOUNT CONSUMED OTHER FUELS ANNUAL AMOUNT CONSUMED (SPECIFY TYPE) (SPECIFY TYPE) 66-2 (SPECIFY TYPE)
11	1 = COKE 2 = COG 3 = BFG 4 = OTHER OPERATING SCHEDULE (for this equipment)
	CONTINUOUS BATCH PROCESS PER BATCH PER WEEK PER DAYS PER DAYS PER WEEK PER DAYS PER
	SEASONAL VARIATION IN OPERATION:
	NO VARIATION WINTER PERCENT SPRING PERCENT SUMMER PERCENT FALL PERCENT (TOTAL SEASONS = 100%) X 76 77-78 79-80 81-82 83-84
12	EQUIVALENT STACK INFORMATION - IS EXHAUST THROUGH DOORS, WINDOWS, ETC., ONLY?
	HEIGHT ABOVE GROUND (FT) IF NOT, THEN 85 LEXIT EXIT TEMPERATURE (°F) 86-88 89-91 92-95 96-98

NOT	TE: ATTACH A BLOCK DIAGRAM OF PROCESS / PROC INCLUDING CONTROL DEVICES AND EMISSION P	CESS LINE, INDICATING N	EW EQUIPMENT AS RE	EPORTED ON THIS FOR	M AND ALL EXISTING	EQUIPMENT,
13.	INPUT MATERIALS (for this equipment only) - IS ANY OF THIS DATA TO BE CONSIDERED CONFIDENTIAL?	Y OR N				
	NAME	CAS NUMBER (if applicable)	PER HOUR	<u>INPUT</u> UNITS	<u>RATE</u> PER YEAR	UNITS
1.	RAP SIMPACTOR		353	TPH	72.00	UNITS
2. 3.	RAP Screen		500	TPH		
4. 5.	RAP CONVEYOR		300	TPH		
6. 7.	RAP Conneyor			JPH		
8.	Time Coloury of		300			
9.	TOTAL	-				
14.	OUTPUT MATERIALS (for this equipment) PROCESS / PRODUCT STREAM					
	NAME	CAS NUMBER (if applicable)	PER HOUR	<u>OUTPUT</u> UNITS	PER	
1.	RAP Supartor	(ii sppiioable)	353	TPH	YEAR	UNITS
 3. 	RAP SCIEEN	-	500	TPH		
4. 5.	RAP Conveyor		300	TPH		
6. 7.	RAP CONVEYOR		300	TOIL		
8.	Time Connegor			ITH		
9.	TOTAL					-
15.	WASTE STREAMS - SOLID AND LIQUID					
	NAME	CAS NUMBER (if applicable)	PER HOUR	<u>OUTPUT E</u> UNITS	RATE PER YEAR	UNITS
1.						
2.		-				
3.		-				
4.		•				
5.						
6.						
7.						
8. 9.						
U .	TOTAL					

16. TOTAL STACK EMISSIONS (FOR THIS EQUIPMENT ONLY) IN POUNDS PER OPERATING DAY PARTICULATE MATTER OXIDES OF SULFUR OXIDES OF NITROGEN 111-116
CARBON MONOXIDE VOLATILE ORGANIC COMPOUNDS PM-10 117-122 123-128 129-134
17. TOTAL FUGITIVE EMISSIONS (FOR THIS EQUIPMENT ONLY) IN POUNDS PER OPERATING DAY
PARTICULATE MATTER OXIDES OF SULFUR OXIDES OF NITROGEN 135-139 140-144 OXIDES OF NITROGEN 145-149
CARBON MONOXIDE VOLATILE ORGANIC COMPOUNDS PM-10
METHOD USED TO DETERMINE EMISSIONS (1 = ESTIMATE 2 = EMISSION FACTOR 3 = STACK TEST 4 = OTHER)
TSP SOX NOX CO VOC PM10 2 2 2 2 2 2 2 2 2 165 166 167 168 169 170
AIR MANAGEMENT USE ONLY
18. DATE REC'D LOCAL DATE REC'D STATE RETURN TO LOCAL JURISDICTION DATE BY
REVIEWED BY LOCAL JURISDICTION REVIEWED BY STATE DATE BY DATE BY
19. INVENTORY DATE MONTH / YEAR EQUIPMENT CODE SCC CODE 171-174 175-177 178-185
20. ANNUAL OPERATING RATE MAXIMUM DESIGN HOURLY RATE MONTH TRANSACTION DATE (MM /DD /YR) 186-192 193-199 200-201 202-207
STAFF CODE VOC CODE SIP CODE REGULATION CODE CONFIDENTIALITY 208-210 211-212 213-214 215-218 219
POINT DESCRIPTION ACTION A: ADD B: CHANGE

CERTIFICATE OF LIABILITY INSURANCE

DATE (MM/DD/YYYY) 4/30/2021

THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF INSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER, AND THE CERTIFICATE HOLDER.

	9755 nmsia.com RER(S) AFFOR nsurance C	DING COVERAGE ompany of South Carolina	NAIC# 19259 10844				
Hunt Valley MD 21030 Hunt Valley MD 21030 INSURER A: Selective Insurer A: Selective Insurer B: Builders M Insurer C: Insurer C: Insurer D:	nmsia.com RER(S) AFFOR nsurance C	DING COVERAGE ompany of South Carolina	19259				
INSURE INSURER A: Selective Insurer A: Selective Insurer B: Builders M Global Resource Recyclers, Inc. 2600 Marble Ct Forestville MD 20747 INSURER C: INSURER C: INSURER C: INSURER C:	RER(S) AFFOR nsurance C	ompany of South Carolina	19259				
INSURER A : Selective la CHAMCON-01 Global Resource Recyclers, Inc. 2600 Marble Ct Forestville MD 20747 INSURER B : Builders M INSURER C : INSURER C : INSURER D :	nsurance C	ompany of South Carolina					
NSURED Global Resource Recyclers, Inc. 2600 Marble Ct Forestville MD 20747 CHAMCON-01 INSURER B: Builders M INSURER C: INSURER C: INSURER D:							
Global Resource Recyclers, Inc. 2600 Marble Ct Forestville MD 20747 INSURER D:							
Forestville MD 20747 INSURER D:		INSURER C:					
INSURER F:							
COVERAGES CERTIFICATE NUMBER: 1809606192		REVISION NUMBER:					
THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO T INDICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT OF CERTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE AFFORDED BY THE POLICIES EXCLUSIONS AND CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PARTIES. TYPE OF INSURANCE ADDITIONS POLICY NUMBER POLICY FIRST (MM/DD/YYYY) INSURANCE POLICY NUMBER (MM/DD/YYYY) INSURANCE POLICY NUMBER (MM/DD/YYYYY)	R OTHER DESCRIBED	OCUMENT WITH RESPEC	OT TO WHICH THIS				
	12/23/2021	DAMAGE TO RENTED	\$1,000,000				
CLAIMS-MADE X OCCUR	-	, , , , , , , , , , , , , , , , , , , ,	\$ 500,000				
			\$ 15,000				
		PERSONAL & ADV INJURY	\$1,000,000				
GEN'L AGGREGATE LIMIT APPLIES PER: POLICY X PRO- X Loc			\$2,000,000				
	4		\$ 2,000,000				
OTHER: A AUTOMOBILE LIABILITY S 2099351 12/23/2020	12/23/2021		\$1,000,000				
X ANY AUTO			\$				
OWNED SCHEDULED			\$				
AUTOS ONLY AUTOS X HIRED X NON-OWNED X NON-OWNED AUTOS ONLY X AUTOS ONLY X		PROPERTY DAMAGE	\$				
AUTOS ONLY AUTOS ONLY		(Per accident)	s				
A X UMBRELLALIAB X OCCUR S 2099351 12/23/2020	12/23/2021		\$10,000,000				
A X UMBRELLA LIAB X OCCUR S 2099351 12/23/2020 S EXCESS LIAB CLAIMS-MADE	12/20/2021	AGGREGATE	\$10,000,000				
OEAIMO-IIIAGE			\$				
	12/23/2021	X PER OTH-	\$				
AND EMPLOYERS' LIABILITY ANYPROPRIETOR/PARTNER/EXECUTIVE ANYPROPRIETOR/PARTNER/EXECUTIVE	12/20/2021		\$ 500,000				
OFFICER/MEMBEREXCLUDED? (Mandatory in NH)		E.L. DISEASE - EA EMPLOYEE	A Color of Color of Color				
If yes, describe under DESCRIPTION OF OPERATIONS below			\$ 500,000				
DESCRIPTION OF OPERATIONS BEIOW		E.E. DIGENGE TOPICT ENTIT	000,000				
DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101 Additional Remarks Schedule, may be attached if more s	nace is require	ed)					
	pace is require	ed)					
DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more s Evidence of Insurance	pace is require	ed)					

FORM 5EP

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

	FORM (SEP:	Emission Point Dat	a				
Complete one (1) Form 5EP for E	ACH emissio	on poi	nt (stack or fugitive emissio	ns) re	lated to the	propos	sed in	nstallation.
Applicant Name: Clobal Res	sauce 3	ecydl	<u>leis</u>	,				
1. Emission Point Identif	ication Nan	ne/Nu	ımber					
List the applicant assigned name/nu	imber for this	emiss	sion point and use this value	on th	e attached r	equire	ed plo	ot plan:
2. Emission Point Descri	ption	-				2000	1 21	
Describe the emission point includir	ng all associa	ted eq	uipment and control devices	S:				
Diesel engir								
3. Emissions Schedule fo	r the Emis	sion	A STRUCTURE OF THE SECOND SECO			1 - N - W-		
Continuous or Intermittent (C/I)?			Seasonal Variation Check box if none: M Ot	honvid	an actimate	20000	nalv	ariation.
Minutes per hour:	60		Winter Percent	TIET WIS	se estimate s	seaso	nai v	ariation:
Hours per day:	10		Spring Percent					
Days per week:	5		Summer Percent					
Weeks per year:		16	Fall Percent					
4. Emission Point Inform	ation							
Height above ground (ft):	10	_	Length and width dimensio		Length	:		Width:
Height above structures (ft):	2	6	at top of rectangular stack	(ft):				
Exit temperature (°F):	800		Inside diameter at top of ro				C	. 333
Exit velocity (ft/min):	225		Distance from emission po property line (ft):	int to	nearest		(/Acies
Exhaust gas volumetric flow rate (acfm):	1178	I I	Building dimensions if emispoint is located on buildin	ssion g (ft)	Height //A	Leng		Width
5. Control Devices Assoc		the E	mission Point		No. 2 March 1985			
Identify each control device associ	ated with the evice. If none	emiss e chec	sion point and indicate the k none:	numb	er of device	es. <u>A</u>	Forr	<u>n 6 is</u>
None			Thermal Oxidizer		No			
☐ Baghouse No.			☐ Regenerative					
☐ Cyclone No.			Catalytic Oxidizer		No			
☐ Elec. Precipitator (ESP) No.			Nitrogen Oxides Reducti	ion	No			
☐ Dust Suppression System No.			☐ Selective ☐ Catalytic	[☐ Non-Sele ☐ Non-Cata			
☐ Venturi Scrubber No.		_		L		•		al.
Spray Tower/Packed Bed No.		S] Other pecify:		No			
☐ Carbon Adsorber No.								
☐ Cartridge/Canister								
Regenerative								

	e Emission Point At Design Capacity	At I	Projected Opera	tions
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Particulate Matter (filterable as PM10)	0.73	0.73	7.3	Charles Research
Particulate Matter (filterable as PM2.5)	0.12	0.15	7, 2,	0, 292
Particulate Matter (condensables)				
Volatile Organic Compounds (VOC)	0.85	0.85	8.5	0 01
Oxides of Sulfur (SOx)	0.68	0.68	6.8	0.34
Oxides of Nitrogen (NOx)	10.4	10.4	104	0.27
Carbon Monoxide (CO)	2.23	2.23		0.897
Lead (Pb)	2.05	L. L3	22.3	0.892
	At Design Capacity	At F	At Projected Operations	
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Carbon Dioxide (CO ₂)	385	385	3850	154
Methane (CH₄)	303	383	3830	/37
Nitrous Oxide (N₂O)				
Hydrofluorocarbons (HFCs)				
Perfluorocarbons (PFCs)				
Sulfur Hexafluoride (SF6)				
Total GHG (as CO₂e)	385	385	3850	154
List individual federal Hazardous Air	The same of the Barbard Control of the	Committee of the same of the s	rojected Operat	
Pollutants (HAP) below:	At Design Capacity (Ib/hr)	(lb/hr)	(lb/day)	(ton/yr)
Aldehydes	0.164	0.164	1.64	AND THE RESIDENCE OF THE PARTY
	0.707	0.101	7.01	0.066

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration ● Air Quality Permits Program 1800 Washington Boulevard ● Baltimore, Maryland 21230 (410)537-3225 ● 1-800-633-6101● www.mde.maryland.gov

FORM 5EP: Emission Point Data									
Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.									
Applicant Name: GLOSAL Cesource Clecyclers									
1. Emission Point Idea	1. Emission Point Identification Name/Number								
List the applicant assigned nam	List the applicant assigned name/number for this emission point and use this value on the attached required plot plan:								
2. Emission Point Description									
Describe the emission point incl	uding al	l associate	ed e	quipment and control devices	3:				
Diesel ENG	zine	EXL	IAL	157 Stack					
3. Emissions Schedul	e for th	ne Emiss	sion	Point					
Continuous or Intermittent (C/I)?			Seasonal Variation Check box if none: Ot	herwis	e estimate s	seaso	nal va	ariation:
Minutes per hour:		60		Winter Percent					
Hours per day:		(0		Spring Percent					
Days per week:		5		Summer Percent					
Weeks per year:		16		Fall Percent				- Inches	
4. Emission Point Info	rmatic	n							
Height above ground (ft):		10		Length and width dimension at top of rectangular stack		Length			Width:
Height above structures (ft):		2							
Exit temperature (°F):		800		Inside diameter at top of ro					333
Exit velocity (ft/min):		Distance from emission point to nearest property line (ft):					Aries		
Exhaust gas volumetric flow rate (acfm):			Building dimensions if emission point is located on building (ft)			Width			
5. Control Devices As	sociat	ed with t	he	Emission Point					
Identify each control device as also required for each control					numb	er of device	es. <u>A</u>	Fori	<u>n 6 is</u>
None				☐ Thermal Oxidizer		No			
Baghouse	No			Regenerative					
☐ Cyclone	No			☐ Catalytic Oxidizer		No			
☐ Elec. Precipitator (ESP)	No			☐ Nitrogen Oxides Reduct	ion	No			
☐ Dust Suppression System	No			☐ Selective ☐ Catalytic	Į	☐ Non-Sele			
☐ Venturi Scrubber	No				L				
☐ Spray Tower/Packed Bed	No			Other Specify:		No			
☐ Carbon Adsorber	No								
☐ Cartridge/Canister									
Regenerative									

6. Estimated Emissions from the		A4 D	rojected Operat	lone	
Criteria Pollutants	At Design Capacity (lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Particulate Matter (filterable as PM10)	0.24	0.24	2.4	0.096	
Particulate Matter (filterable as PM2.5)				0.010	
Particulate Matter (condensables)					
Volatile Organic Compounds (VOC)	0.28	0.28	28	0.112	
Oxides of Sulfur (SOx)	0.23	0.23	23	0,092	
Oxides of Nitrogen (NOx)	3.45	3.45	345	138	
Carbon Monoxide (CO)	0.74	0.74	74	0.294	
Lead (Pb)	0.11	0.17	7.1	0.210	
	At Design Capacity	At P	rojected Operat	ions	
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Carbon Dioxide (CO ₂)	178	178	1280	512-	
Methane (CH ₄)	123				
Nitrous Oxide (N ₂ O)					
Hydrofluorocarbons (HFCs)					
Perfluorocarbons (PFCs)					
Sulfur Hexafluoride (SF6)					
Total GHG (as CO ₂ e)	121	128	1280	51.2	
List individual federal Hazardous Air	At Design Capacity		rojected Operat		
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Aldehydes	0.055	0.055	0.55	0.027	

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration ● Air Quality Permits Program 1800 Washington Boulevard ● Baltimore, Maryland 21230 (410)537-3225 ● 1-800-633-6101● www.mde.maryland.gov

	ı	ORM 5	EP: Emission Point Dat	a			
Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.							
Applicant Name: SloSAL les ource leuxlers							
1. Emission Point Ide	ntificat	ion Nam	e/Number				
List the applicant assigned nam	e/numb	er for this e	emission point and use this value	e on the attached requir	ed plot plan:		
2. Emission Point Des	criptic	n					
Describe the emission point inc	_		ed equipment and control device	es:			
3. Emissions Schedul	e for the	ne Emiss	sion Point				
Continuous or Intermittent (C/I)?			therwise estimate seaso	onal variation:		
Minutes per hour:		(00	Winter Percent				
Hours per day:		10	Spring Percent				
Days per week: Weeks per year:		16	Summer Percent Fall Percent				
4. Emission Point Info	ormatic		T an i ercent				
Height above ground (ft):		4	Langth and width dimansi	Length:	Width:		
Height above structures (ft):		2	Length and width dimension at top of rectangular stack				
Exit temperature (°F):		800	Inside diameter at top of r	ound stack (ft):	0.333		
Exit velocity (ft/min):		225	Distance from emission po property line (ft):	oint to nearest	VARUES		
Exhaust gas volumetric flow ra (acfm):	ite	1178	Building dimensions if em point is located on buildi		igth Width		
5. Control Devices As	sociat		the Emission Point				
Identify each control device as also required for each control			emission point and indicate the check none:	e number of devices. 🛚 💆	A Form 6 is		
None			☐ Thermal Oxidizer	No			
Baghouse	No		☐ Regenerative				
Cyclone	No		☐ Catalytic Oxidizer	No			
☐ Elec. Precipitator (ESP)	No		☐ Nitrogen Oxides Reduc	tion No			
☐ Dust Suppression System	No		☐ Selective ☐ Catalytic	☐ Non-Selective☐ Non-Catalytic			
☐ Venturi Scrubber	No		☐ Other	No			
☐ Spray Tower/Packed Bed	No		Specify:	140.			
☐ Carbon Adsorber	No						
☐ Cartridge/Canister							
Regenerative							

RM 5EP: Emission P	oint Data	72.3		
e Emission Point				
At Design Capacity	At P	tions		
(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
0.08	0.08	0.8	0.032	
0.09	0.09	0.94	0.038	
		0.76	0.630	
1.15	1.15	11.5	0.46	
0.25	0.75	7.5	0.100	
At Design Capacity	At Projected Operations		itions	
(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
42.8	42.8	428	17.1	
42.8	42.8	428	17.1	
At Design Capacity	At P	At Projected Operations		
(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
0.016	0 016	A 10	0.007	
0.018	0.018	0.18	0.007	
- New -				
	e Emission Point At Design Capacity (lb/hr) O.08 O.09 O.08 J.15 O.25 At Design Capacity (lb/hr) 42.8 At Design Capacity	At Design Capacity (lb/hr) O.08 O.09 O.08 O.09 O.08 J.15 O.25 At Design Capacity (lb/hr) 42.8 At Design Capacity (lb/hr) 42.8 At Design Capacity (lb/hr) At P (lb/hr) (lb/hr)	At Design Capacity (lb/hr)	

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration ● Air Quality Permits Program 1800 Washington Boulevard ● Baltimore, Maryland 21230 (410)537-3225 ● 1-800-633-6101● www.mde.maryland.gov

		FORM 5	EP:	Emission Point Data	a			
Complete one (1) Form 5EP f	or EAC	H emissio	n poii	nt (stack or fugitive emission	ns) rela	ated to the propo	sed ins	stallation.
Applicant Name: GLoSAL	Res	unce	Rec	yelers				
1. Emission Point Ide	ntifica	tion Nam	e/Nu	ımber				
List the applicant assigned nam	ne/numb	er for this	emiss	ion point and use this value	on the	e attached requi	red plot	plan:
2. Emission Point Des	scription	on						
Describe the emission point inc	luding a	Il associate	ed equ	uipment and control devices	s:			
Diesel engi	Ne	Exhau	ST	STACK				
3. Emissions Schedu	le for t	he Emiss	sion	Point				
Continuous or Intermittent (C/	1)?			Seasonal Variation Check box if none: Otl	herwis	se estimate seas	onal va	riation:
Minutes per hour:		60		Winter Percent				
Hours per day: Days per week:		10						
Weeks per year:		110						
	ormatic			Tun Toront				
Height above ground (ft):		4		Length and width dimension	ne	Length:	V	Vidth:
Height above structures (ft):		2		Number Ission point and use this value on the attached required plot plan: STACK Requipment and control devices: TSTACK In Point Seasonal Variation Check box if none: Otherwise estimate seasonal variation: Winter Percent Spring Percent Summer Percent Fall Percent Length and width dimensions at top of rectangular stack (ft): Inside diameter at top of round stack (ft): Distance from emission point to nearest property line (ft): Building dimensions if emission point is located on building (ft) Emission Point Insision point and indicate the number of devices. A Form 6 is		ons		
Exit temperature (°F):		800		Inside diameter at top of ro	ound s	tack (ft):	0	.333
Exit velocity (ft/min):		225			int to			
Exhaust gas volumetric flow ra (acfm):	ate	1178					ngth	Width
5. Control Devices As	sociat	ed with t	he E	mission Point				Waller Control
					numb	er of devices.	A Form	1 6 is
None				☐ Thermal Oxidizer		No	_	
Baghouse	No			Regenerative				
☐ Cyclone	No			☐ Catalytic Oxidizer		No	_	
☐ Elec. Precipitator (ESP)	No			☐ Nitrogen Oxides Reducti	ion	No		
☐ Dust Suppression System	No				בַ			
☐ Venturi Scrubber	Comparison Com							
☐ Spray Tower/Packed Bed	Prome (1) Form SEP for EACH emission point (stack or fugitive emissions) related to the proposed installation.							
☐ Carbon Adsorber	No							
☐ Cartridge/Canister								
Regenerative								

	At Design Capacity	At Projected Operations					
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Particulate Matter (filterable as PM10)	0.08	0.08	0.8	0.632			
Particulate Matter (filterable as PM2.5)							
Particulate Matter (condensables)							
Volatile Organic Compounds (VOC)	0.09	0.09	0.94	0.038			
Oxides of Sulfur (SOx)	80.0	800	0.76	0.030			
Oxides of Nitrogen (NOx)	1.10	1.15	11.5	0.46			
Carbon Monoxide (CO)	0.25	0.75	0.5	0.100			
Lead (Pb)		0.00		0.100			
	At Design Capacity	At F	Projected Opera	erations			
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Carbon Dioxide (CO ₂)	42.8	42.8	428	17.1			
Methane (CH ₄)		, , , ,	120				
Nitrous Oxide (N₂O)							
Hydrofluorocarbons (HFCs)							
Perfluorocarbons (PFCs)							
Sulfur Hexafluoride (SF6)							
Total GHG (as CO₂e)	42.8	42.8	428	17.1			
List individual federal Hazardous Air	At Design Capacity	At Projected Operations					
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
A1 101 \0		C					
Al dehydes.	0.018	0.018	0.18	0.007			

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration ● Air Quality Permits Program 1800 Washington Boulevard ● Baltimore, Maryland 21230 (410)537-3225 ● 1-800-633-6101● www.mde.maryland.gov

	F	ORM 5	EP	: Emission Point Data	а				
Complete one (1) Form 5EP for	or EACH	l emission	n po	pint (stack or fugitive emissio	ns) re	ated to the p	ropos	ed in	stallation.
Applicant Name:									
1. Emission Point Ide	ntificat	ion Nam	e/N	lumber					
List the applicant assigned name LAP (LIBNER, So	e/numb	er for this o	emis	ssion point and use this value	on th	e attached re	quire	d plot	plan:
2. Emission Point Des									
Describe the emission point incl									
FugiTive PART	cul	ute m	Att	er from RAP CRI	ushin	JG, SLAE	(NS	NG,	& Come
3. Emissions Schedul	e for tl	ne Emiss	sior	Point					
Continuous or Intermittent (C/I)?			Seasonal Variation	thonui	a antimata a	00000	al va	riotion
Minutes per hour:		60		Check box if none: Ot Winter Percent	literwis	se estimate s	eason	iai va	nation.
Hours per day:		10		Spring Percent	 				
Days per week:		5		Summer Percent					
Weeks per year:		16		Fall Percent					
4. Emission Point Info	rmatic	n							
Height above ground (ft):		10		Length and width dimension	ons	Length:		1	Nidth:
Height above structures (ft):					100		=	80	
Exit temperature (°F):	TIN SUM								
Exit velocity (ft/min):									195
Exhaust gas volumetric flow ra (acfm):	ite	MA		Building dimensions if emi point is located on buildir		Height	Leng	th	Width
5. Control Devices As	sociat	ed with t	he	Emission Point					
Identify each control device as also required for each control					numb	per of device	s. <u>A</u>	<u>Forn</u>	<u>1 6 is</u>
None				☐ Thermal Oxidizer		No			
Baghouse	No			Regenerative					
Cyclone	No			☐ Catalytic Oxidizer		No			
☐ Elec. Precipitator (ESP)	No			☐ Nitrogen Oxides Reduction		No			
☐ Dust Suppression System	No			☐ Selective		☐ Non-Sele			
☐ Venturi Scrubber	No			☐ Catalytic		☐ Non-Cata			
☐ Spray Tower/Packed Bed	No			Other Specify:		No			
☐ Carbon Adsorber	No								
☐ Cartridge/Canister									
Regenerative									

	At Design Capacity	At F	Projected Opera	tions	
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Particulate Matter (filterable as PM10)	1.94	1,94	19.4	0.776	
Particulate Matter (filterable as PM2.5)				0,110	
Particulate Matter (condensables)					
Volatile Organic Compounds (VOC)					
Oxides of Sulfur (SOx)					
Oxides of Nitrogen (NOx)					
Carbon Monoxide (CO)					
Lead (Pb)					
	At Design Capacity	At F	At Projected Operations		
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Carbon Dioxide (CO ₂)					
Methane (CH ₄)					
Nitrous Oxide (N ₂ O)					
Hydrofluorocarbons (HFCs)					
Perfluorocarbons (PFCs)					
Sulfur Hexafluoride (SF6)					
Total GHG (as CO₂e)				-1,	
List individual federal Hazardous Air	At Design Capacity	At F	Projected Opera	tions	
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	

(Attach additional sheets as necessary.)

Portable Trakpactor Emissions Calculations - AP42 Emission Factors

Assumptions:

10 Hours/day

18 gallons/hour diesel 130,500 Btu/gallon diesel

3530 tons/day

Throughput 353 tph - RAP

Stack - Engine Exhaust		23490000	Btu/day	23.49 MMBtu/day
PM-10	.31 lb/MMBtu	7.2819	lb/day	0.72819 lb/hr
SOx	.29 lb/MMBtu	6.8121	lb/day	0.68121 lb/hr
NOx	4.41 lb/MMBtu	103.5909	lb/day	10.35909 lb/hr
СО	.95 lb/MMBtu	22.3155	lb/day	2.23155 lb/hr
TOC	.36 lb/MMBtu	8.4564	lb/day	0.84564 lb/hr
CO2	164 lb/MMBtu	3852.36	lb/day	385.236 lb/hr
Aldehydes	0.07 lb/MMBtu	1.6443	lb/day	0.16443 lb/hr

Plant Aggregate - Fugitive Emissions RAP

	lb/	day	ton	/yr
	Total PM	PM-10		
Conveyor 1	10.59	3.883	0.4236	0.15532
Crusher	4.236	1.9062	0.16944	0.076248
Total	14.826	5.7892	0.59304	0.231568

PM calculated at 3530 * 0.003 (conveyor transfer point, uncontrolled, for crushed stone, AP-42)
PM-10 calculated at 3530 * 0.0011 (conveyor transfer point, uncontrolled, for crushed stone, AP-42)
Crusher total PM calculated at 3530 * 0.0012 (tertiary crushing, controlled)
Crusher PM10 calculated at 3530 * 0.00054 (tertiary crushing, controlled)
Ton/year = lb/day *80/2000

180 gallons per day for 80 days equals 14,400 gallons

Portable RAP Screen Emissions Calculations - AP42 Emission Factors

Assumptions:

10 Hours/day

6 gallons/hour diesel 130,500 Btu/gallon diesel

5000 tons/day

Estimates high due to using aggregate screening and conveying info

Stack - Engine Exhaust		7830000	Btu/day	7.83 MMBtu/day
PM-10	.31 lb/MMBtu	2.4273	lb/day	0.24273 lb/hr
SOx	.29 lb/MMBtu	2.2707	lb/day	0.22707 lb/hr
NOx	4.41 lb/MMBtu	34.5303	lb/day	3.45303 lb/hr
СО	.95 lb/MMBtu	7.4385	lb/day	0.74385 lb/hr
TOC	.36 lb/MMBtu	2.8188	lb/day	0.28188 lb/hr
CO2	164 lb/MMBtu	1284.12	lb/day	128.412 lb/hr
Aldehydes	0.07 lb/MMBtu	0.5481	lb/day	0.05481 lb/hr

Plant Aggregate - Fugitive Emissions (all values in Ib/day)

Total PM PM-10

C1 to C4 15

5.5 (Conveyor transfer point, uncontrolled)

Screen

11

1.48 (Screening, controlled)

Total

26 6.98

Note: Conveyors C1 to C4 have 5,000 tons total (combined) per day

11 X 80 = 880 = 0.44 tons

1.48 X 80 = 118.4 = 0.0592 tons

15 X 80 = 1200 = 0.6 tons

5.5 X 80 = 440 = 0.22 tons

Portable RAP Conveyor Emissions Calculations - AP42 Emission Factors

Assumptions:

10 Hours/day

2 gallons/hour diesel 130,500 Btu/gallon diesel

3000 tons/day

Estimates high due to using aggregate screening and conveying info

Stack - Engine Exhaust		2610000	Btu/day	2.61 MMBtu/day		
PM-10	.31 lb/MMBtu	0.8091	lb/day		0.08091	lb/hr
SOx	.29 lb/MMBtu	0.7569	lb/day		0.07569	lb/hr
NOx	4.41 lb/MMBtu	11.5101	lb/day		1.15101	lb/hr
СО	.95 lb/MMBtu	2.4795	lb/day		0.24795	lb/hr
TOC	.36 lb/MMBtu	0.9396	lb/day		0.09396	lb/hr
CO2	164 lb/MMBtu	428.04	lb/day		42.804	lb/hr
Aldehydes	0.07 lb/MMBtu	0.1827	lb/day		0.01827	lb/hr

Plant Aggregate - Fugitive Emissions (all values in lb/day)

Total PM PM-10

Conveyor 9

3.3 (Conveyor transfer point, uncontrolled)

Total 9 3.3

9 X 80 = 720 = 0.36 tons 3.3 X 80 = 264 = 0.132 tons

PRINCE GEORGE'S COUNTY ZONING VERIFICATION SITE DRAWING

Property

Tax Account: 0504092

Owner Name: GLOBAL RESOURCE RECYCLERS INC

Premise Address: 2600 Marble Ct, District Heights, MD 20747

Tax Account #: 0504092 Assessment District: 06 Lot: 14 Block: B Parcel:

Description: Plat: 06151024

Subdivision: FORESTVILLE

PLAT 3>

Acreage: 3.3830

Parcel Details Ownership Information

Owner Name: GLOBAL RESOURCE

RECYCLERS INC

Owner Address: 162 Lafayette Ave,

Laurel, MD 20707

Liber: 08467 Folio: 837 **Transfer Date: 9/30/1992**

CENTER-RESUB PT OF BLK A & B- Current Assessment: \$514,200.00

Land Valuation: \$359,800.00

Improvement

Valuation: \$154,400.00 Sale Price: \$0.00

Structure Area (Sq Ft): 1256

Administrative Details

Tax Map Grid: 082B3 WSSC Grid: 204SE07 **Tree Conservation**

Plan 1:

Tree Conservation Plan 2: TCP2-097-97

Councilmanic District: Null

Military Installation Overlay - Noise

Noise Intensity Zone: Noise Intensity Zone

Decibel Range: 60 db - 74 db

Military Installation Overlay - Safety

Type Code: 83

Zone Name: Accident Potential Zone 2

Military Installation Overlay - Height

Zone Use: App/Dep Clearance (50:1) - North End


Area Label: B

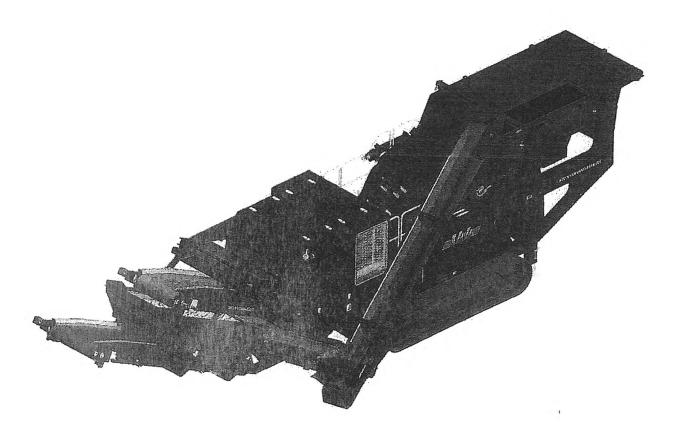
Zoning

Zone Type: Industrial

Class: I-4 (Limited Intensity Industrial)

M-NCPPC: Prince George's County Planning

CAR THE CONTROL OF THE STANDARD OF THE PARTY AND THE STANDARD OF THE STANDARD


Allan Myers MD, Inc. - Global Resource Recyclers 2600 Marble Court Forestville, MD 20747

VENDOR LITERATURE

SPECIFICATIONS

McCloskey i44R

All specifications are current as of this printing, but are subject to change

144R May. 2011, issue 001

DESCRIPTION

Heavy duty track mounted Crusher with following features:

- 1050mm (42") diameter x 1100mm (43") wide Impactor.
- 350Hp Cat C9 engine.
- Track or Track c\w Wheel bogie.
- Integrated hydraulic folding hopper.
- Integrated hydraulic tolding stockpiling conveyors.
- I-beam plate fabricated chassis construction.
- Open chassis design for ease of maintenance
- Fast setup time
- Vibrating feeder under crusher discharge.

DIMENSIONS AND WEIGHTS

Length - transport model

Width - transport all models

Height - transport track

Weight - track

15.348 (50' - 4")

3.08m (10'-1")

3.40m (11'-2")

45,000 Kgs (99,207 lbs) inc magnet

CAPACITIES

Diesel tank capacity

635 L (168 US gal)

Hydraulic tank capacity

1210 L (320 US Gals)

IMPACTOR CHAMBER

Feed opening WxH

1150 x 800mm, (45.3 x 31.5")

Impactor rotor

1050mm (42") diameter x 1100mm (43.3") wide

Crusher speed

600-740 rpm (33-40 m/sec rotor tip speed)

Number of aprons

2 (3 with optional grinding path)

Number of blowbars Full blowbar weight

4 (3 bar optional)

217 Kg (478 lbs)

Crusher Drive

Hydraulic - V-Belts

Feed size

450 x 450 x 450mm lump, (18" x 18" x 18")

Impactor weight

9,500kg (20,940 lbs) estimated

Closed side setting adjustment Motor

Hydraulic rams, shim system

Kawasaki axial piston 280cc/rev

Flow rate

400 Lpm (105 US gpm)

Speed sensor

Load sensor

YES Hydraulic

PAN FEEDER

Feeder width

1080mm (42.5")

Feeder length

4050mm (159.4")

Drive

Hydraulic

Motor

David Brown MCC 2208 58.7cc/rev

Flow rate

60.8 Lpm (16.1 US gpm)

Adjustable speed

Variable speed

Yes - via mechanical Flow Control

Yes - via electrical proportional

Maximum speed

1060rpm

2

144R

May. 2011, issue 001

HOPPER

Length overall 4560mm (14' - 11") Loading width 3491mm (11' - 5") Width 2220mm (7' - 3") Volume 5.4m³ (7.4yd³) Material 8mm Hardox sides Locking system Wedge type and toggle

SIDE CONVEYOR

Stockpile height 2080mm (6' - 10") Belt width 650mm (26") Belt spec EP 400/3 3+1.5 Drive drum dia. 220mm (8.6") Tail drum dia. 220mm (8.6") - spoked Motor **OMT400** Flow rate 43.7 Lpm (11.5 US gpm)

Adjustable speed YES Maximum speed 109 rpm

MAIN CONVEYOR

Belt width 1050mm (42") Belt spec Plain 500/3 8+2 Drive drum dia. 285mm (11.2") Tail drum dia. 270mm (10.6") - spoked

Motor

OMV630

Flow rate 87.4 Lpm (23.1 US gpm)

Maximum speed 138.7 rpm Angle adjustable NO Quick release YES

FINES CONVEYOR

Stockpile height 2965mm (9' - 9") Belt width 1200mm (48") Belt spec Plain 500/3 8+2 Drive drum dia. 285mm (11.2")

Tail drum dia. 270mm (10.6") - spoked

Motor **OMV630**

Flow rate 68.4 Lpm (18.1 US gpm)

Maximum speed 108.6 rpm Angle adjustable NO Quick release YES

144R May. 2011, issue 001

SCREENBOX

Dimensions - top deck

Bearing type 2 Deck

Screens - top deck

Tensioning - top deck

Screen angle

Screen motor

Drive system Hydraulic flowrate

Speed adjustable

Screen stroke adjustable

Screen shaft speed

Screen 'g' force

3050mm x 1525mm (10' x 5')

NSK/RHP 22219

5' x 4' side tension - 2 off & 5' x 2' side

tension - 1 off

Quick release pin and wedge

25 deg

DBH MCC2208 (59cc/rev)

Direct drive with HRC150 coupling

68.4 Lpm (18.1 US gpm)

YES - Pressure compensated FCV

8 - 10mm

950 rpm

5.05

TRANSFER CONVEYOR

Belt width

Belt spec

Drive drum dia. Tail drum dia.

Motor

Flow rate

Adjustable speed

Maximum speed

650mm (26")

Plain 400/3 4+2

200mm (8")

200mm (8")

OMT400

43.7 Lpm (11.5 US gpm)

YES

109.5 rpm

RETURN CONVEYOR

Belt width

Belt spec

Drive drum dia.

Tail drum dia. (Spoked)

Motor

Flow rate

Adjustable speed Maximum speed

500mm (20")

Chevron - 400/3 6+1.5

290mm (11.5")

270mm (10.6")

OMT400

43.7 Lpm (11.5 US gpm)

YES

109.5 rpm

May. 2011, issue 001

PAN FEEDER UNDER IMPACTOR

Width 1160mm (45.7") length 2030mm (80")

Base liners 10mm (3/8") stainless steel Side liners 12mm (1/2" Hardox 400

Operating angle 130

Vibrating motor Twin out of balance mass Hydraulic motor 2 off Eaton 32.9cc/rev Fixed speed

YES

Flow rate 87.4 Lpm (23.1 US gpm)

POWERUNIT AND HYDRAULICS

Engine CAT C9 Engine power 261 kW (350 HP)

Engine speed 1900 rpm

Flywheel Pump 1 (Crusher/Tracks) Kawasaki K3V140DTP LH PTO Pump 2 (Feeder/Side conveyor) Turolla 33/23/10 Front PTO Pump 3 (Main conveyor/Pilots) David Brown 5046 Front PTO Pump 4 (Screenbox/Return conveyor) David Brown 5036 5023 I otal system flow 724.9 Lpm (191.5 US Gpm)

Hydraulic tank capacity 1210 L (320 US Gals) Hydraulic tank ratio 1.67:1

Twin Hydraulic Oil cooler YES

ELECTRICS

Emergency stops 4 off, 2 feeder, 2 powerunit

Chassis cabling Armored cable Start Siren YES - 10 sec delay

Control panel Plus 1 Danfoss colour screen

Engine shutdowns: Low oil pressure High water temp

Air filter blockage (selectable)

Fuel contamination Low hydraulic tank level

High hydraulic return line filter backpressure High hydraulic water filter backpressure

High hydraulic oil temperature

Engine room light YES

Radio control tracks OPTION - Hetronic system Pendant track control YES - plugged in control cabinet

TRACKS

Width Length Height

Gearbox Hatio

Motor Speed max

Speed max Flow rate

Multiple speeds

Attachment to chassis

400mm (15.7")

3400mm (11' - 2") crs

817mm (32")

Bonfiglioli 711 (or equivalent)

153:1 Rexroth 90

1.50 Kph (0.93 Mph) 138 Lpm (36.45 US gpm)

Three speed system selectable at control panel with smooth start / stop.

Bolt On for quick change

OPTIONS

Roll-in bogie system

Main conveyor variable speed control

Interlock system Hopper Extensions Overband magnet

Water Pump and dust suppression system

Various blow bar material options

Grinding path 3 or 4 bar rotor

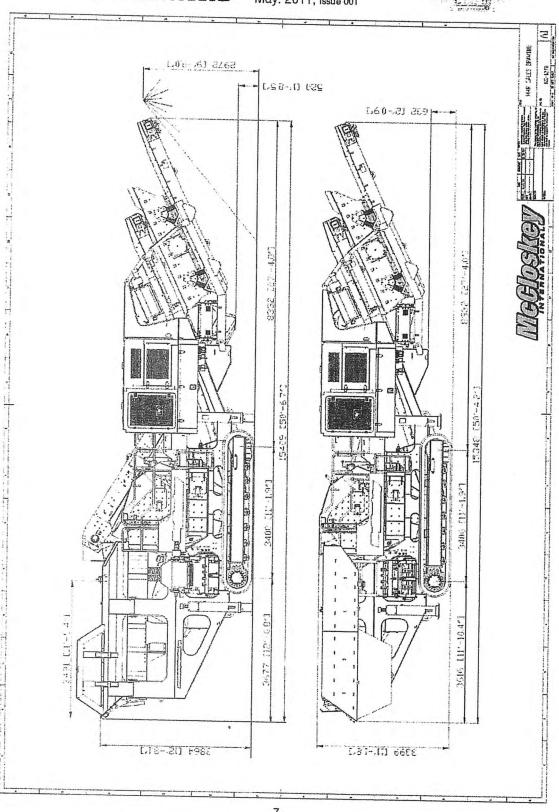
Work lights

Belt Scale

Refueling pump

Recirculation Screen

SAFETY FEATURES


External belt alignment points External grease points

Engine safety shutdown systems

Full safety guarding for nip points

McCloskey

the regardicates. The 16th larger is 25,77, larger, a strip for more material and regarding to read materials. So it was contracted a solution for readonals materials are the readonals. The formation is solutionally expectations. The formation is solven, and the formation is a strip of the formation is a strip of the formation is a strip of the formation of the formation is a strip of the formation of the formation is a strip of the formation of the formation in the formation of the formation is a strip of the formation of the formation in the formation is a strip of the formation of the formation in the formation is a strip of the formation of the formation in the formation is a strip of the formation of the formation in the formation is a strip of the formation of the formation in the formation is a strip of the formation in the formation in the formation is a strip of the formation in the formation in the formation is a strip of the formation in the formation in the formation is a strip of the formation in the formation in the formation is a strip of the formation in the for

ST801

#1191

The McGloskey™ ST Tracked Stackers are all about efficiency, from its speedy setup time to its high degree of mobility, downtime is minimized while throughput and stockpile capacity are maximized.

Hydraulic main lift and top fold are standard, as is the diesel power unit. Electric and dual power are also available to get the lob done, no matter what application. The 22.5 degree maximum conveyor

angle allows for the highest stockpiles per conveyor length in the industry.

With its durable truss frame, large feed hopper and base production capacity of 500 TPH with optional upgrades to 800 TPH, the McCloskey ST Tracked Stackers stand up well above the competition.

Available as a radio controlled track-mounted unit.

- 900mm (36) wide heavy duty
 80) long conveyor
- 36.5 kW (40 Hb) Tier 4 diesel engine
- On site track mobility
- Large feed hopper
- Hydraulic folding frame for easy transport
- Fast on-site setup time (5 minutes)
- Abundant service room inside the power-pack
- Adjustable hopper height to optimize operational efficiency

McCloskey

Wide Feed Opening

Allews for time flow of material and high volume cupucity.

16' Hopper

A larger 16th wide hopper designed to be used with larger leaders, allowing for more material and no spillage.

Meavy Duty Build

One of the most extent and chantes muchases on the removal the 17°0's retend to excel at the total is a second page.

Screenbox

thigh Chargy 5/ x 107 screenbox delivers the highest product capacity.

mccloskeyinternational.com

Extended Tail Conveyor

The larger fall conveyor allows for an increases declivings height and leade outly into various counters

SPECIFICATION DATA

Dimensions and Capacinas

giris 197 No Bir KM) Enequal

transport Peight 11/27 (3.40m) Transport Dagin 50/27 (15.30m)

mapped Water 1976 19 tom,

Height 25 ft/60 Mgs (65 f/30 lbs)

Stockpile Height 12° 3° (3.75n Kended fol

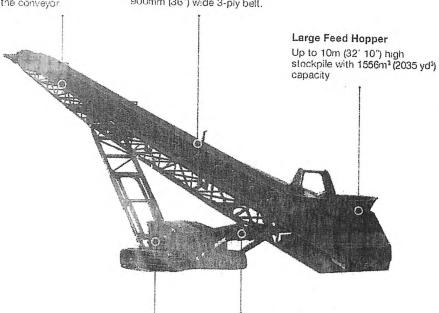
to kala dagir 1971-196mj via kina

Stockfills (16.9) - FIT NY 1814 mij Side Mid Governjer

erosakov forcer som 💎 🕏 😯 107 (159 lig

Alemas e Martie, progress (1994). November (2004) etc. (1904) e resistant (1904). November (2004)

MECONING CONTROL OF A CONTROL OF A CONTROL OF THE C


Necloskey

Hydraulic Top Fold

Straightforward hydractic controls to fold and unfold, raise and lower the conveyor.

80' Conveyor

24.38m (80') long conveyor with 900mm (36") wide 3-ply belt.

Shutdown Systems

Engine safety shutdown systems.

Radio Remote Track Control

Provides remote maneuverability and enhances safety for moving freely to the best location.

mccloskeyinternational.com

SPECIFICATION DATA

Dimensions and Capacities

Engine

36.5 kW (49 Hp) Diesel

Belt Length

80' (24.38m)

Belt Width

900mm (36")

Stockpile Height

10.0m (32' 10")

Stockpile Capacity

1556m³ (2035 yd³)

Transport Length

15.75m (51' 8")

Transport Height

3.43m (11' 3")

Transport Width

2.49m (8' 2")

©Copyright 2020 McCloskey International, All rights reserved. McCloskey is a tracemark of McCloskey International

McCoskey International reserves the right to make changes to the information and design of the machines on this brochure Without reservation and notification to the users. Information at time of print considered acounte — McCoskey International assumes no liability resulting from errors or omissions in this document.

MARYLAND-NATIONAL CAPITAL PARK AND PLANNING COMMISSION Prince George's County Planning Department

Planning Information Services 14741 Governor Oden Bowie Drive, Suite L2 Upper Marlboro, MD 20772 (301) 952-3208 (301)-952-3195 www.mncppc.org

September 20, 2021

Mr. Harold Green
Global Resource Recyclers, Inc
2600 Marble Court
District Heights, Maryland 20747
Re: 2600 and 2601 Marble Court, District Heights, Maryland 20747
Tax ID: 0504084 (Block B, Lot 13) and 0504092 (Block B, Lot 14)
In response to your request for information regarding the above-referenced property, we have researched our files/data base and present the following:

🖒 Zoning Verification	OR	☐ Buildable lots
1. The current zoning classifi 1-4 (Limited Intensity In Noise, Safety (Accident	dustrial)	/M-I-O-Z (Military Installation Overlay Zone)- Height,
.		(APZ 2) restrictions as regulated by the <i>Approved Military</i> of Amendment, November 2016
An area of land designated deed (to land for which no "	as a sepa Subdivis	□ No ☑ Not Applicable arate parcel of land on a "Record Plat," or on a legally recorded sion" plat is required pursuant to the provisions of Subtitle 24) nce George's County, Maryland.

Comment:

3. Specific Use(s)/Regulation(s):

Specific uses allowed in the I-4 zone can be found in Part 7, Section 27-473(b) of the Prince George's County Zoning Ordinance (Ordinance). Specific regulations and prohibited uses for the M-I-O-Z can be found in Part10C of the Ordinance. (See Page 3, Additional Comments)

4. According to the current zoning ordinance and/or regulations applicable to the subject property, the current use of the property is classified as:
☐ Permitted by Right
☐ Permitted by Special Exception
☐ Legally Nonconforming
☐ Prohibited
Comment:
See Page 3, Additional Comments
5. Conformance: According to the current zoning ordinance and/or regulations applicable to the subject property, the current use and/or structure is:
\square Legally Conforming (in conformance with applicable zoning and subdivision regulations, or grandfathered). May rebuild in accordance with current regulations.
\square Legally Nonconforming (not in conformance with applicable zoning and subdivision regulations, but legal and subject to conditions and/or requirements). See Rebuild (below).
\square Nonconforming (not in conformance with applicable zoning and subdivision regulations). See Rebuild (below).
Comment:
See Page 3, Additional Comments
6. Rebuild: In the event of casualty, in whole or in part, the structure located on the subject property may be rebuilt in its current form in accordance with Section 27-243 of the current zoning ordinance: ☐ Yes ☐ No
Comment:
See Page 3, Additional Comments
7. Variances, special exceptions, and/or zoning conditions approved for the subject property: ☐ Variance ☐ Special Exception ☐ Zoning Conditions None Comment:

8. Site Plan Information:	
☐ An approved site plan for the subject property is on file. Available plans must be requested, additional fees apply. Request plans at	

Additional comments regarding the subject property:

Per Section 27-473(b) of the Ordinance, the manufacturing or cutting of structural products made of clay, concrete, glass, stone, or similar materials is permitted in the I-4 Zone. However, with the adoption of the MIOZ in 2016 (Council Resolution CR-97-2016) and pursuant to Section 27-548.53(e)(2)(A) of the Ordinance, existing uses in the Safety Zones (APZ1, APZ2 and Clear Zone) that are on the prohibited use list in Section 27-548.56(a) of the Ordinance are considered nonconforming. Per Section 27-548.56(a)(1)(H)(i) of the Ordinance, any type of use that may release into the air any substance, such as steam, dust, or smoke which would impair visibility or otherwise interfere with the operation of aircraft is strictly prohibited in the Safety Zones. If your operation produces any of the listed substances, per Part 10C, your use is prohibited and is now nonconforming. Certification of this nonconforming use would require referral to Joint Base Andrews for their comment per Section 27-548.57 of the Ordinance.

Note: The Maryland-National Capital Park and Planning Commission's (Commission) role is to review permit applications for compliance with zoning and subdivision regulations. The full text of the Ordinance (Subtitle 27) is at: https://www.municode.com/library/md/prince_george's_county/codes/code_of_ordinances

Information regarding use and occupancy permits, building permits and outstanding violations may be obtained by contacting the Prince George's County Department of Permitting, Inspections, and Enforcement (DPIE) at 301-636-2000.

This information was researched on 9/20/21 , by the undersigned, per request and as a public service. The undersigned certifies that the above information contained herein is accurate to the best of our knowledge, information, and belief, and is based upon or relates to the information supplied by the requestor. The Department assumes no liability for errors and omissions. All information was obtained from public records, which may be inspected during regular business hours.

Sincerely, Hilary Covington Planning Information Services

MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

SUPPLEMENT TO DOCKET #20-21

COMPANY: Global Resource Recyclers

LOCATION: 2600 Marble Court, Forestville, MD 20747

APPLICATION: Installation of one (1) portable recycled asphalt pavement crushing and

screening plant.

<u>ITEM</u> <u>DESCRIPTION</u>

1 Notice of Application and Informational Meeting

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Global Resource Recyclers on September 20, 2021 for the installation of one (1) portable recycled asphalt pavement crushing and screening plant. The proposed installation will be located at 2600 Marble Court, Forestville, MD 20747.

An Informational Meeting will be held on April 20, 2022, at 6 p.m. at the Comfort Inn at Joint Base Andrews, 7979 Malcolm RD, Clinton, MD 20735.

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Informational Meeting has been scheduled so that citizens can discuss the application and the permit review process with the applicant and the Department.

The application and other supporting documents are available for public inspection on the Department's website. Look for Docket #20-21 at the following link.

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

The Department will provide an interpreter for deaf and hearing impaired persons provided that a request is made for such service at least ten (10) days prior to the meeting.

Further information may be obtained by calling Ms. Shannon Heafey at 410-537-4433.

George S. Aburn, Jr., Director Air and Radiation Administration

MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

SUPPLEMENT 2 TO DOCKET #20-21

LOCATION: 2600 Marble Court, Forestville, MD 20747

APPLICATION: Installation of one (1) portable concrete and recycled asphalt pavement

crushing and screening plant.

<u>ITEM</u>	DESCRIPTION
1	Notice of Tentative Determination, Opportunity to Request a Public Hearing, and Opportunity to Submit Written Comments
2	Fact Sheet and Tentative Determination
3	Draft Permit to Construct and Conditions
4	Supplemental Information
5	Privilege Log – Not Applicable

MARYLAND DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF TENTATIVE DETERMINATION, OPPORTUNITY TO REQUEST A PUBLIC HEARING, AND OPPORTUNITY TO SUBMIT WRITTEN COMMENTS

FIRST NOTICE

The Department of the Environment, Air and Radiation Administration (ARA) has completed its review of an application for a Permit to Construct submitted by Global Resource Recyclers on September 20, 2021 for the installation of one (1) portable concrete and recycled asphalt pavement crushing and screening plant. The proposed installation will be located at 2600 Marble Court, Forestville, MD 20747.

Pursuant to Section 1-604, of the Environment Article, Annotated Code of Maryland, the Department has made a tentative determination that the Permit to Construct can be issued and is now ready to receive public comment on the application.

Copies of the Department's tentative determination, the application, the draft permit to construct with conditions, and other supporting documents are available for public inspection on the Department's website. Look for Docket #20-21 at the following link:

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

Interested persons may request a public hearing and/or submit written comments on the tentative determination. Requests for a public hearing must be submitted in writing and must be received by the Department no later than 20 days from the date of this notice. Written comments must be received by the Department no later than 30 days from the date of this notice.

Interested persons may request an extension to the public comment period. The extension request must be submitted in writing and must be received by the Department no later than 30 days from the date of this notice or within 5 days after the hearing (if a hearing is requested), whichever is later. The public comment period may only be extended one time for a 60-day period.

All requests for a public hearing, requests for an extension to the public comment period, and all written comments should be emailed to Ms. Shannon Heafey at shannon.heafey@maryland.gov.

Further information may be obtained by contacting Ms. Shannon Heafey by email at shannon.heafey@maryland.gov or by phone at (410) 537-4433.

Christopher R. Hoagland, Director Air and Radiation Administration

MARYLAND DEPARTMENT OF ENVIRONMENT AIR AND RADIATION ADMINISTRATION

FACT SHEET AND TENTATIVE DETERMINATION GLOBAL RESOURCE RECYCLERS

PROPOSED INSTALLATION OF ONE (1) PORTABLE CONCRETE AND RECYCLED ASPHALT PAVEMENT (RAP) CRUSHING AND SCREENING PLANT

I. INTRODUCTION

The Maryland Department of the Environment (the "Department") received an application from Global Resource Recyclers on September 20, 2021 for a Permit to Construct for one (1) portable concrete and recycled asphalt pavement (RAP) crushing and screening plant. The proposed installation will be located at 2600 Marble Court, Forestville, MD 20747.

A notice was placed in <u>The Prince George's Post</u> on March 31, 2022 and April 7, 2022 announcing a scheduled informational meeting to discuss the permit to construct application. The informational meeting was held on April 20, 2022 at 6 PM at the Comfort Inn At Joint Base Andrews located at 7979 Malcolm Road, Clinton, MD 20735.

As required by law, all public notices were also provided to elected officials in all State, county, and municipality legislative districts located within a one mile radius of the facility's property boundary.

The Department has reviewed the application and has made a tentative determination that the proposed installation is expected to comply with all applicable air quality regulations. A notice will be published to provide the public with opportunities to request a public hearing and to comment on the application, the Department's tentative determination, the draft permit conditions, and other supporting documents. The Department will not schedule a public hearing unless a legitimate request is received.

If the Department does not receive any comments that are adverse to the tentative determination, the tentative determination will automatically become a final determination. If adverse comments are received, the Department will review the comments, and will then make a final determination with regard to issuance or denial of the permit. A notice of final determination will be published in a newspaper of general circulation in the affected area. The final determination may be subject to judicial review pursuant to Section 1-601 of the Environment Article, Annotated Code of Maryland.

II. CURRENT STATUS AND PROPOSED INSTALLATION

A. Current Status

Global Resource Recyclers currently does not operate any equipment or processes requiring air quality permits, but previously operated a 300 ton per hour, electric powered, concrete and recycled asphalt pavement (RAP) crushing and screening plant originally installed in 1993. The plant was controlled by wet suppression systems and consisted of one (1) Universal Impactmaster II crusher and screen. The equipment was removed in 2021.

B. Proposed Installation

Global Resource Recyclers is proposing to install one (1) portable concrete and recycled asphalt pavement (RAP) crushing and screening plant, equipped with wet suppression systems and consisting of one (1) 353 ton per hour (tph) McCloskey crusher powered by one (1) 360 horsepower (hp) Tier 4 diesel engine, one (1) McCloskey screen powered by one (1) 127 hp Tier 4 diesel engine, and two (2) McCloskey conveyors each powered by one (1) 49 hp Tier 4 diesel engine. The proposed installation will be equipped with wet suppression systems to control fugitive dust. The permit will allow Global Resource Recyclers to install subsequent, equivalent replacement equipment, as needed, without obtaining a new permit to construct.

A second company, Allan Myers, plans to lease the equipment at the site. Allan Myers – GRR will obtain a separate permit to construct allowing them to operate at the GRR facility. As part of the permit conditions, only one (1) of the companies (GRR or Allan Myers) will be allowed to operate the crushing and screening equipment at the site at any one time.

III. APPLICABLE REGULATIONS

The proposed installation is subject to all applicable Federal and State air quality control regulations, including, but not limited to the following:

- (a) All applicable terms, provisions, emissions standards, testing, monitoring, record keeping, and reporting requirements included in federal New Source Performance Standards (NSPS) promulgated under 40 CFR 60, Subpart A (General Provisions) and Subpart OOO for Nonmetallic Mineral Processing Plants.
- (b) COMAR 26.11.02.19C & D, which require that the Permittee submit to the Department annual certifications of emissions, and that the Permittee maintain sufficient records to support the emissions information presented in the submittals.
- (c) COMAR 26.11.06.03C and D, which requires that the Permittee take reasonable precautions to prevent particulate matter from unconfined sources and materials handling and construction operations from becoming airborne.

- (d) COMAR 26.11.06.08 and 26.11.06.09, which generally prohibit the discharge of emissions beyond the property line in such a manner that a nuisance or air pollution is created.
- (e) COMAR 26.11.09.05E, which limits visible emissions from the diesel engines to 10% and 40% opacity during idle and operating modes, respectively. Exceptions to these opacity limits are as follows:
 - (i) The 10% opacity limit during idle mode does not apply for a period of 2 consecutive minutes after a period of idling of 15 minutes for the purpose of clearing the exhaust system;
 - (ii) The opacity limit during idle mode does not apply to emissions resulting directly from a cold engine start-up and warm-up for the following maximum periods:
 - (A) engines that are idling continuously when not in service: 30 minutes; and
 - (B) all other engines: 15 minutes.
 - (iii) The 10% and 40% opacity limits do not apply while maintenance, repair, or testing is being performed by qualified mechanics.
- (f) COMAR 26.11.09.07A(2), which limits the sulfur content of distillate fuel oils to not more than 0.3 percent by weight.
- (g) COMAR 26.11.15.05, which requires that the Permittee implement "Best Available Control Technology for Toxics" (T – BACT) to control emissions of toxic air pollutants.
- (h) COMAR 26.11.15.06, which prohibits the discharge of toxic air pollutants to the extent that such emissions will unreasonably endanger human health.

IV. GENERAL AIR QUALITY

The U.S. Environmental Protection Agency (EPA) has established primary and secondary National Ambient Air Quality Standards (NAAQS) for six (6) criteria pollutants, i.e., sulfur dioxide, particulate matter, carbon monoxide, nitrogen dioxide, ozone, and lead. The primary standards were established to protect public health, and the secondary standards were developed to protect against non-health effects such as damage to property and vegetation.

The Department utilizes a statewide air monitoring network, operated in accordance with EPA guidelines, to measure the concentrations of criteria pollutants in Maryland's ambient air. The measurements are used to project statewide ambient air quality, and currently indicate that Prince George's County complies with the NAAQS for carbon monoxide, particulate matter, nitrogen dioxide, and lead.

Ground level ozone continues to present a problem for the entire Washington metropolitan area, which is classified as a non-attainment area for ozone. The primary contributors to the formation of ozone are emissions of oxides of nitrogen, primarily from combustion equipment, and emissions of Volatile Organic Compounds (VOC) such as paint solvents and gasoline vapors. Prince George's County is included in the non-attainment area for ozone.

With regard to toxic air pollutants (TAPs), screening levels (i.e., acceptable ambient concentrations for toxic air pollutants) are generally established at 1/100 of allowed worker exposure levels (TLVs)¹. The Department has also developed additional screening levels for carcinogenic compounds. The additional screening levels are established such that continuous exposure to the subject TAP at the screening level for a period of 70 years is expected to cause an increase in lifetime cancer risk of no more than 1 in 100,000.

V. COMPLIANCE DEMONSTRATION AND ANALYSIS

The proposed installation must comply with all State imposed emissions limitations and screening levels, as well as the NAAQS. The Department has conducted an engineering and air quality review of the application. The emissions were projected based on U.S. EPA emission factors for crushing and screening plants and U.S. EPA emissions factors for diesel engines. The conservative U.S. EPA's SCREEN3 model was also used to project the maximum ground level concentrations from the proposed facility, which were then compared to the screening levels and the NAAQS.

- **A. Estimated Emissions** The maximum emissions of air pollutants of concern from the proposed installation are listed in Table I.
- B. Compliance with National Ambient Air Quality Standards The maximum ground level concentrations for nitrogen dioxide, sulfur dioxide, carbon monoxide, and particulate matter based on the emissions from the proposed installation are listed in column 2 of Table II. The combined impact of the projected contribution from the proposed installation and the ambient background concentration for each pollutant shown in column 3 of Table II is less than the NAAQS for each pollutant shown in column 4.

¹ TLVs are threshold limit values (exposure limits) established for toxic materials by the American Conference of Governmental Industrial Hygienists (ACGIH). Some TLVs are established for short-term exposure (TLV – STEL), and some are established for longer-term

exposure (TLV – TWA), where TWA is an acronym for time-weight average.

C. Compliance with Air Toxics Regulations – The toxic air pollutants of concern that would be emitted from this installation is listed in column 1 of Table III. The predicted maximum off-site ambient concentration of crystalline silica is shown in column 4 of Table III, and in each case the maximum concentration is less than the corresponding screening level for crystalline silica shown in column 2.

VI. TENTATIVE DETERMINATION

Based on the above information, the Department has concluded that the proposed installation will comply with all applicable Federal and State air quality control requirements. In accordance with the Administrative Procedure Act, Department has made a tentative determination to issue the Permit to Construct.

Enclosed with the tentative determination is a copy of the draft Permit to Construct.

TABLE I PROJECTED MAXIMUM EMISSIONS FROM THE PROPOSED INSTALLATION

	PROJECTED MAXIMUM EMISSIONS FROM PROPOSED INSTALLATION	
POLLUTANT	(lbs/day) at 10 hrs/day	(tons/year)
Nitrogen Dioxide (NO ₂)	3.87	0.15
Sulfur Dioxide (SO ₂)	11.99	0.48
Carbon Monoxide (CO)	39.85	1.59
Volatile Organic Compounds (VOC)	1.81	0.07
Particulate Matter (PM ₁₀)	0.21	0.44

TABLE II
PROJECTED IMPACT OF EMISSIONS OF CRITERIA POLLUTANTS FROM THE
PROPOSED INSTALLATION ON AMBIENT AIR QUALITY

POLLUTANTS	MAXIMUM OFF-SITE GROUND LEVEL CONCENTRATIONS CAUSED BY EMISSIONS FROM PROPOSED PROCESS (µg/m³)	BACKGROUND AMBIENT AIR CONCENTRATIONS (μg/m³)*	NATIONAL AMBIENT AIR QUALITY STANDARDS (NAAQS) (µg/m³)
Nitrogen Dioxide (NO ₂)	annual avg.→ 2.0	annual avg.→ 11.80	annual avg.→ 100
Carbon Monoxide (CO)	8-hour max→ 185.1 1-hour max → 264.5	8-hr max.→ 802 1-hr max.→ 1260	8-hr max.→ 10,000 1-hr max.→ 40,000
Sulfur Dioxide (SO ₂)	24-hour max. → 31.8 annual avg. → 6.4	24-hour max.→ 2.88 annual avg.→0.21	24-hour max.→ 366 annual avg.→ 78.5
Particulate Matter (PM ₁₀)	24-hr max → 77.1	24-hr max.→ 32	24-hr max.→ 150

^{*}Background concentrations were obtained from Maryland air monitoring stations as follows:

NO₂, CO, PM₁₀ and SO₂ → HU-Beltsville Monitoring Station in Prince George's County

TABLE III PREDICTED MAXIMUM OFF-SITE AMBIENT CONCENTRATIONS FOR TOXIC AIR POLLUTANTS EMITTED FROM THE PROPOSED INSTALLATION

TOXIC AIR POLLUTANTS	SCREENING LEVELS (μg/m³)	PROJECTED WORST-CASE FACILITY-WIDE EMISSIONS (lbs/hr)	PREDICTED MAXIMUM OFF-SITE GROUND LEVEL CONCENTRATIONS (µg/m³)
Crystalline Silica	1-hour→ None 8-hour→0.25 Annual→ None	0.00065	1-hour→ None 8-hour→ 0.080 Annual→ None

The values represent maximum facility-wide emissions of toxic air pollutants during any 1-hour period of facility operation.

The values are based on worst-case emissions from the proposed facility and were predicted by EPA's SCREEN3 model, which provides conservative estimations concerning the impact of pollutants on ambient air quality.

Larry Hogan Governor Horacio Tablada Secretary

Air and Radiation Administration

1800 Washington Boulevard, Suite 720 Baltimore, MD 21230

	3111010, 1112 21200
☐ Construction Permit	Operating Permit
PREMISES NO.: 033-2066-6-1638	DATE ISSUED: [<mark>Date Issued</mark>]
PERMIT FEE: <u>\$2,000.00 (Paid)</u>	EXPIRATION DATE: <u>To Be Paid in Accordance with COMAR</u> <u>26.11.02.04B</u>
LEGAL OWNER & ADDRESS	SITE
Global Resource Recyclers 2600 Marble Court Forestville, MD 20747 Attention: Mr. Harold Green, CEO	Global Resource Recyclers 2600 Marble Court Forestville, MD 20747 AI # 28901
SOURCE DESCRIPTION This permit authorizes the installation of crushing and screening plant.	one (1) concrete and recycled asphalt pavement (RAP)
This permit supersedes all previous permi	its to construct issued to ARA Premises 033-2066.
This permit to construct also serves as a tafter initiating operation of the plant auth	temporary permit to operate for a period of up to 180 days corized by this permit.
This source is subject to the	e conditions described on the attached pages.
	Page 1 of 13
Program Manager	Director, Air and Radiation Administration

INDEX

Part A – General Provisions

Part B – Applicable Regulations

Part C – Construction Conditions

Part D - Operating Conditions

Part E – Notifications, Testing and Monitoring

Part F - Record Keeping and Reporting

Part G – Temporary Permit-To-Operate Conditions

This permit-to-construct is issued to cover the following registered installation:

ARA	Description	Date of
Registration		Installation
Number		
033-2066-6- 1638	One (1) portable concrete and recycled asphalt pavement (RAP) crushing and screening plant,	2022
	equipped with wet suppression systems and consisting of:	Subsequent equivalent
	 One (1) 353 ton per hour (tph) crusher powered by one (1) 360 horsepower (hp) Tier 4 diesel engine; 	equipment may be
	 One (1) 500 tph screen powered by one (1) 127 hp Tier 4 diesel engine; and 	installed to replace
	• Two (2) 300 tph conveyors each powered by one (1)	existing
	49 hp Tier 4 diesel engine.	equipment,
	<u>-</u>	as needed.

Part A - General Provisions

- (1) The following Air and Radiation Administration (ARA) permit-to-construct applications and supplemental information are incorporated into this permit by reference:
 - (a) Application for Processing or Manufacturing Equipment (Form 5) received at the Department on September 20, 2021.
 - (b) Application for Gas Cleaning or Emission Control Equipment (Form 6) received at the Department on September 20, 2021.
 - (c) Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration (Form 5T) received at the Department on September 20, 2021.

- (d) Emission Point Data (Form 5EP) received at the Department on September 20, 2021.
- (e) Supplemental Information for vendor specifications, emissions calculations, and zoning approval received at the Department on September 20, 2021.

If there are any conflicts between representations in this permit and representations in the applications, the representations in the permit shall govern. Estimates of dimensions, volumes, emissions rates, operating rates, feed rates and hours of operation included in the applications do not constitute enforceable numeric limits beyond the extent necessary for compliance with applicable requirements.

- (2) Upon presentation of credentials, representatives of the Maryland Department of the Environment ("MDE" or the "Department") and the Prince George's County Health Department shall at any reasonable time be granted, without delay and without prior notification, access to the Permittee's property and permitted to:
 - (a) inspect any construction authorized by this permit;
 - (b) sample, as necessary to determine compliance with requirements of this permit, any materials stored or processed on-site, any waste materials, and any discharge into the environment;
 - (c) inspect any monitoring equipment required by this permit;
 - (d) review and copy any records, including all documents required to be maintained by this permit, relevant to a determination of compliance with requirements of this permit; and
 - (e) obtain any photographic documentation or evidence necessary to determine compliance with the requirements of this permit.
- (3) The Permittee shall notify the Department prior to increasing quantities and/or changing the types of any materials referenced in the application or limited by this permit. If the Department determines that such increases or changes constitute a modification, the Permittee shall obtain a permit-to-construct prior to implementing the modification.
- (4) Nothing in this permit authorizes the violation of any rule or regulation or the creation of a nuisance or air pollution.

- (5) If any provision of this permit is declared by proper authority to be invalid, the remaining provisions of the permit shall remain in effect.
- (6) This permit supersedes permit-to-construct number all previous permits-to-construct issued to ARA Premises No. 033-2066.
- (7) Subsequent to issuance of this permit, the Department may impose additional and modified requirements that are incorporated into a State permit-to-operate issued pursuant to COMAR 26.11.02.13.

Part B - Applicable Regulations

(1) This source is subject to all applicable federal air pollution control requirements including, but not limited to, the following:

All applicable terms, provisions, emissions standards, testing, monitoring, record keeping, and reporting requirements included in federal New Source Performance Standards (NSPS) promulgated under 40 CFR 60, Subparts A and OOO for Nonmetallic Mineral Processing Plants.

All notifications required under 40 CFR 60, Subparts A and OOO shall be submitted to both of the following:

The Administrator
Compliance Program
Maryland Department of the Environment
Air and Radiation Administration
1800 Washington Boulevard, STE 715
Baltimore MD 21230

and

United States Environmental Protection Agency Region III, Enforcement & Compliance Assurance Division Air, RCRA and Toxics Branch (3ED21) Four Penn Center 1600 John F. Kennedy Boulevard Philadelphia, PA 19103-2852

- (2) This source is subject to all applicable federally enforceable State air pollution control requirements including, but not limited to, the following regulations:
 - (a) COMAR 26.11.01.07C, which requires that the Permittee report to the Department occurrences of excess emissions.
 - (b) COMAR 26.11.02.04B, which states that a permit to construct or an approval expires if, as determined by the Department:
 - (i) Substantial construction or modification is not commenced within 18 months after the date of issuance of the permit or approval, unless the Department specifies a longer period in the permit or approval;
 - (ii) Construction or modification is substantially discontinued for a period of 18 months after the construction or modification has commenced; or
 - (iii) The source for which the permit or approval was issued is not completed within a reasonable period after the date of issuance of the permit or approval.
 - (c) COMAR 26.11.02.09A, which requires that the Permittee obtain a permit-to-construct if an installation is to be modified in a manner that would cause changes in the quantity, nature, or characteristics of emissions from the installation as referenced in this permit.
 - (d) COMAR 26.11.06.03C and D, which requires that the Permittee take reasonable precautions to prevent particulate matter from unconfined sources and materials handling and construction operations from becoming airborne.
 - (e) COMAR 26.11.06.12, which states that a person may not construct, modify, or operate, or cause to be constructed, modified, or operated, a New Source Performance Standard (NSPS) source in a manner which results or will result in violation of the provisions of 40 CFR, Part 60.
 - (f) COMAR 26.11.09.05E, which limits visible emissions from the diesel engines to 10% and 40% opacity during idle and operating modes, respectively. Exceptions to these opacity limits are as follows:

- (i) The 10% opacity limit during idle mode does not apply for a period of 2 consecutive minutes after a period of idling of 15 minutes for the purpose of clearing the exhaust system;
- (ii) The 10% opacity limit during idle mode does not apply to emissions resulting directly from a cold engine start-up and warm-up for the following maximum periods:
 - (A) engines that are idling continuously when not in service: 30 minutes; and
 - (B) all other engines: 15 minutes.
- (iii) The 10% and 40% opacity limits do not apply while maintenance, repair, or testing is being performed by qualified mechanics.
- (g) COMAR 26.11.09.07A(2), which limits the sulfur content of distillate fuel oils to not more than 0.3 percent by weight.
- (3) This source is subject to all applicable State-only enforceable air pollution control requirements including, but not limited to, the following regulations:
 - (a) COMAR 26.11.02.13A(16), which requires that the Permittee obtain from the Department, and maintain and renew as required, a valid State permit-to-operate.
 - (b) COMAR 26.11.02.19C & D, which require that the Permittee submit to the Department annual certifications of emissions, and that the Permittee maintain sufficient records to support the emissions information presented in such submittals.
 - (c) COMAR 26.11.06.08 and 26.11.06.09, which generally prohibit the discharge of emissions beyond the property line in such a manner that a nuisance or air pollution is created.
 - (d) COMAR 26.11.15.05, which requires that the Permittee implement "Best Available Control Technology for Toxics" (T BACT) to control emissions of toxic air pollutants.

(e) COMAR 26.11.15.06, which prohibits the discharge of toxic air pollutants to the extent that such emissions would unreasonably endanger human health.

Part C – Construction Conditions

- (1) Except as otherwise provided in this part, the portable crushing and screening plant shall be constructed in accordance with specifications included in the incorporated applications.
- (2) This permit authorizes the installation of a portable crushing and screening plant and subsequent, equivalent replacement crushing and screening equipment as needed.
- (3) The Permittee shall equip the portable crushing and screening plant with wet suppression systems to comply with the particulate matter handling requirements of COMAR 26.11.06.03C and D and 40 CFR 60, Subpart OOO.

Part D - Operating Conditions

- (1) Except as otherwise provided in this part, all equipment associated with the portable crushing and screening plant covered by this permit shall be operated in accordance with specifications included in the application and any operating procedures recommended by equipment vendors unless the Permittee obtains from the Department written authorization for alternative operating procedures.
- (2) Only one (1) portable crushing and screening plant shall be operated on this property at any one time. This includes ARA Premises Nos. 033-2066 and 033-2947.
- (3) The Permittee shall only process concrete and recycled asphalt pavement in the portable crushing and screening plant unless the Permittee obtains an approval from the Department to process other materials.
- (4) Wet suppression systems shall be used as needed to comply with the fugitive particulate matter requirements of COMAR 26.11.06.03C and D, and the following opacity limits specified in 40 CFR, Part 60, Subpart OOO for affected facilities at nonmetallic mineral processing plants constructed, modified, or reconstructed on or after April 22, 2008:

- (a) No more than 12 percent opacity from each crusher; and
- (b) No more than 7 percent opacity from all other fugitive sources.
- (5) The Permittee shall perform monthly periodic inspections to check that water is flowing to discharge spray nozzles in the wet suppression systems for affected facilities at nonmetallic mineral processing plants constructed, modified, or reconstructed on or after April 22, 2008. The Permittee must initiate corrective action within 24 hours and complete corrective action as expediently as practical if the Permittee finds that water is not flowing properly during an inspection of the water spray nozzles. [Reference: 40 CFR §60.674(b)]
- (6) The engines associated with the portable crushing and screening plant shall be nonroad engines, as defined in 40 CFR §1068.3, unless the Permittee complies with the stationary nonroad engine requirements of 40 CFR 60, Subpart IIII and 40 CFR 63, Subpart ZZZZ, as applicable, for each engine.
- (7) The engines associated with the portable crushing and screening plant shall only burn diesel fuel with a maximum sulfur content of 0.3 percent by weight.
- (8) Soils contaminated with petroleum-based fuels, other volatile organic compounds, or metals shall not be processed at the facility.
- (9) The Permittee shall control fugitive dust on site, including from plant roads and stockpiles, by using water, approved chemical dust suppressants, or combination of both.

Part E - Notifications, Testing and Monitoring

- (1) The Permittee shall submit written or electronic notification to the Department of the initial startup date of the portable crushing and screening plant and the initial startup date of each subsequent, equivalent replacement equipment within 15 days after such date. [40 CFR §60.7(a)(3) and §60.676(i)]
- (2) Not later than 180 days after the initial startup of the portable crushing and screening plant and each subsequent, equivalent replacement equipment (if required), the Permittee shall demonstrate compliance with all applicable opacity standards. [Reference: 40 CFR §60.11(b) and §60.672(b)]
- (3) The Permittee shall use Method 9 of Appendix A-4 to 40 CFR, Part 60 and the procedures in 40 CFR §60.11, with the following additions:

- (a) The minimum distance between the observer and the emission source shall be 4.57 meters (15 feet).
- (b) The observer shall, when possible, select a position that minimizes interference from other fugitive emission sources (e.g., road dust). The required observer position relative to the sun (Method 9 of Appendix A-3 of this part, Section 2.1) must be followed.
- (c) For affected facilities using wet dust suppression for particulate matter control, a visible mist is sometimes generated by the spray. The water mist must not be confused with particulate matter emissions and is not to be considered a visible emission. When a water mist of this nature is present, the observation of emissions is to be made at a point in the plume where the mist is no longer visible.

[Reference: 40 CFR §60.675(c)(1)]

- (4) The duration of the Method 9 (40 CFR, Part 60, Appendix A-4) observations must be 30 minutes (five 6-minute averages). Compliance with the applicable opacity standards must be based on the average of the five 6-minute averages.

 [Reference: 40 CFR §60.675(c)(3)]
- (5) The Permittee shall submit notification of the intended date of the required Method 9 observations to the Department at least 30 days prior to that date.
- (6) Within 45 days following the required Method 9 observations, the Permittee shall submit the results to the Department.

Part F - Record Keeping and Reporting

- (1) The Permittee shall maintain for at least five (5) years, and shall make available to the Department upon request, records of the following information:
 - (a) The amount of each material (concrete or RAP) processed in the portable crushing and screening plant in tons per month;
 - (b) A log identifying each piece of equipment operated each day, including a description of the equipment, the date of operation, and the hours of operation.
 - (c) The amount of diesel fuel burned in the diesel engines each month;

- (d) All opacity observation test results for the initial plant and each subsequent, equivalent replacement equipment;
- (e) Copies of all notifications of initial start-up of the crushing and screening plant and each subsequent, equivalent replacement equipment;
- (f) Equipment information or vendor literature for all initial equipment associated with the portable plant and each subsequent, equivalent replacement equipment;
- (g) A log of each periodic inspection of the wet suppression systems associated with the crushing and screening plant including the dates and any corrective actions taken; [Reference: 40 CFR §60.674(b) and §60.674(b) and §60.676(b)(1)]
- (h) A copy of the notification of the initial startup date of the crushing and screening plant; and
- (i) Equipment information or vendor literature for all equipment associated with the crushing and screening plant.
- (2) The Permittee shall maintain at the facility for at least five (5) years, and shall make available to the Department upon request, records necessary to support annual certifications of emissions and demonstrations of compliance for toxic air pollutants. Such records shall include, if applicable, the following:
 - (a) Mass emissions rates for each regulated pollutant, and the total mass emissions rate for all regulated pollutants for each registered source of emissions;
 - (b) Accounts of the methods and assumptions used to quantify emissions;
 - (c) All operating data, including operating schedules and production data, that were used in determinations of emissions;
 - (d) Amounts, types, and analyses of all fuels used;
 - (e) Any records, the maintenance of which is required by this permit or by State or federal regulations, that pertain to the operation and maintenance of continuous emissions monitors, including:

- (i) all emissions data generated by such monitors;
- (ii) all monitor calibration data;
- (iii) information regarding the percentage of time each monitor was available for service; and
- (iv) information concerning any equipment malfunctions.
- (f) Information concerning operation, maintenance, and performance of air pollution control equipment and compliance monitoring equipment, including:
 - (i) identifications and descriptions of all such equipment;
 - (ii) operating schedules for each item of such equipment;
 - (iii) accounts of any significant maintenance performed;
 - (iv) accounts of all malfunctions and outages; and
 - (v) accounts of any episodes of reduced efficiency.
- (g) Limitations on source operation or any work practice standards that significantly affect emissions; and
- (h) Other relevant information as required by the Department.
- (3) The Permittee shall submit to the Department by April 1 of each year a certification of emissions for the previous calendar year. The certifications shall be prepared in accordance with requirements, as applicable, adopted under COMAR 26.11.01.05 1 and COMAR 26.11.02.19D.
 - (a) Certifications of emissions shall be submitted on forms obtained from the Department.
 - (b) A certification of emissions shall include mass emissions rates for each regulated pollutant, and the total mass emissions rate for all regulated pollutants for each of the facility's registered sources of emissions.

- (c) The person responsible for a certification of emissions shall certify the submittal to the Department in the following manner:
 - "I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."
- (4) The Permittee shall submit to the Department by April 1 of each year a written certification of the results of an analysis of emissions of toxic air pollutants from the Permittee's facility during the previous calendar year. Such analysis shall include either:
 - (a) A statement that previously submitted compliance demonstrations for emissions of toxic air pollutants remain valid; or
 - (b) A revised compliance demonstration, developed in accordance with requirements included under COMAR 26.11.15 & 16, that accounts for changes in operations, analytical methods, emissions determinations, or other factors that have invalidated previous demonstrations.
- (5) The Permittee shall report, in accordance with requirements under COMAR 26.11.01.07, occurrences of excess emissions to the Compliance Program of the Air and Radiation Administration.

Part G - Temporary Permit-to-Operate Conditions

(1) This permit-to-construct shall also serve as a temporary permit-to-operate that confers upon the Permittee authorization to operate the crushing and screening plant for a period of up to 180 days after initiating operation of the crushing and screening plant.

- (2) The Permittee shall provide the Department with written or electronic notification of the date on which operation of the crushing and screening plant is initiated. Such notification shall be provided within 15 business days of the date to be reported.
- (3) During the effective period of the temporary permit-to-operate the Permittee shall operate the new installation as required by the applicable terms and conditions of this permit-to-construct, and in accordance with operating procedures and recommendations provided by equipment vendors.
- (4) The Permittee shall submit to the Department an application for a State permitto-operate no later than 60 days prior to expiration of the effective period of the temporary permit-to-operate.

MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION

SUPPLEMENTAL INFORMATION REFERENCES

The Code of Maryland Regulations (COMAR) is searchable by COMAR citation at the following Division of State Documents website:

http://www.dsd.state.md.us/COMAR/ComarHome.html

The Code of Federal Regulations (CFR), including New Source Performance Standards (NSPS) at 40 CFR, Part 60 and National Emission Standards for Hazardous Air Pollutants (NESHAP) at 40 CFR, Parts 61 and 63, is searchable by CFR citation at the following U.S. Government Publishing Office website:

http://www.ecfr.gov

Information on National Ambient Air Quality Standards (NAAQS) is located at the following U.S. Environmental Protection Agency (EPA) website:

https://www.epa.gov/criteria-air-pollutants/naaqs-table

Information on Maryland's Ambient Air Monitoring Program is located at the following Maryland Department of the Environment website:

http://mde.maryland.gov/programs/Air/AirQualityMonitoring/Pages/index.aspx

Information on the U.S. EPA's Screen3 computer model and other EPA-approved air dispersion models is located at the following U.S. EPA website:

http://www.epa.gov/scram001/dispersion screening.htm

Information on the U.S. EPA TANKS Emission Estimation Software is located at the following U.S. EPA website:

http://www.epa.gov/ttn/chief/software/tanks/index.html

Information on the U.S. EPA Emission Factors and AP-42 is located at the following U.S. EPA website:

https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emission-factors