MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

DOCKET # 19-22

Applicant:	Complete Recycling Group, LLC
Application:	Installation of two (2) MAX4000SP secondary aluminum sweat furnaces, US Furnaces each rated at 5 MMBtu/hr and equipped with an afterburner.
Location:	1500 W. Pulaski Hwy Elkton MD 21921

ITEM	DESCRIPTION
1	Notice of Application and Opportunity to Request an Informational Meeting
2	Environmental Justice (EJ) Information - EJ Fact Sheet and MDE Score and Screening Report
3	Permit to Construct Application Forms: 5, 5T, 5EP, and 6
4	Furnace Brochures

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND OPPORTUNITY TO REQUEST AN INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Complete Recycling Group, LLC on October 10, 2022, for Installation of two (2) MAX4000SP secondary aluminum sweat furnaces, US Furnaces each rated at 5 MMBtu/hr and equipped with an afterburner. The proposed installations will be located at 1500 W. Pulaski Hwy in Elkton, Cecil County MD 21921.

In accordance with HB 1200/Ch. 588 of 2022, the applicant provided an environmental justice (EJ) Score for the census tract in which the project is located using the Maryland EJ mapping tool. The EJ Score, expressed as a statewide percentile, was shown to be 45.43 which the Department has verified. This score considers three demographic indicators – minority population above 50%, poverty rate above 25% and limited English proficiency above 15%.

Copies of the application, the EJ mapping tool screening report (which includes the score), and other supporting documents are available for public inspection on the Department's website at https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx (click on Docket Number 19-22). Any applicant-provided information regarding a description of the environmental and socioeconomic indicators contributing to that EJ score can also be found at the listed website. Such information has not yet been reviewed by the Department. A review of the submitted information will be conducted when the Department undertakes its technical review of all documents included in the application.

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Department will hold an informational meeting to discuss the application and the permit review process if the Department receives a written request for a meeting within 10 working days from the date of the second publication of this notice. A requested informational meeting will be held virtually using teleconference or internet-based conferencing technology unless a specific request for an in-person informational meeting is received. All requests for an informational meeting should be directed to the attention of Ms. Shannon Heafey, Air Quality Permits Program, Air and Radiation Administration, 1800 Washington Boulevard, Baltimore, Maryland 21230.

Further information may be obtained by calling Ms. Shannon Heafey at 410-537-4433.

Christopher R. Hoagland, Director Air and Radiation Administration

The Applicant's Guide to Environmental Justice and Permitting What You Need to Know

This fact sheet is designed to provide guidance to applicants on incorporating environmental justice screening requirements pursuant to House Bill 1200, effective October 1, 2022.

What is Environmental Justice?

The concept behind the term environmental justice (EJ) is that regardless of race, color, national origin, or income, all Maryland residents and communities should have an equal opportunity to enjoy an enhanced quality of life. How to assess whether equal protection is being applied is the challenge.

Communities surrounded by a disproportionate number of polluting facilities puts residents at a higher risk for health problems from environmental exposures. It is important that residents who may be adversely affected by a proposed source be aware of the current environmental issues in their community in order to have meaningful involvement in the permitting process. Resources may be available from government and private entities to ensure that community health is not negatively impacted by a new source located in the community.

Extensive research has documented that health disparities exist between demographic groups in the United States, such as differences in mortality and morbidity associated with factors that include race/ethnicity, income, and educational attainment. House Bill 1200 adds to MDE's work incorporating diversity, equity and inclusion into our mission to help overburdened and underserved communities with environmental issues.

What is House Bill 1200 and what does it require?

Effective October 1, 2022, House Bill 1200 requires a person applying for a permit from the Department under §1-601 of the Environment Article of the Annotated Code of Maryland or any permit requiring public notice and participation to include in the application an EJ Score for the census tract where the applicant is seeking the permit; requiring the Department, on receiving a certain permit application to review the EJ Score; and requiring notices to include information related to EJ Scores and generally relating to environmental permits and environmental justice screenings.

What is a "Maryland EJ Tool"?

The term "Maryland EJ Tool" means a publicly available state mapping tool that allows users to: (1) explore layers of environmental justice concern; (2) determine an overall EJ score for census tracts in the state; and (3) view additional context layers relevant to an area.

www.mde.maryland.gov

The Applicant's Guide to Environmental Justice and Permitting What You Need to Know

What is an "EJ Score"?

The term "EJ Score" means an overall evaluation of an area's environment and environmental justice indicators, as defined by MDE in regulation, including: (1) pollution burden exposure; (2) pollution burden environmental effects; (3) sensitive populations; and (4) socioeconomic factors.

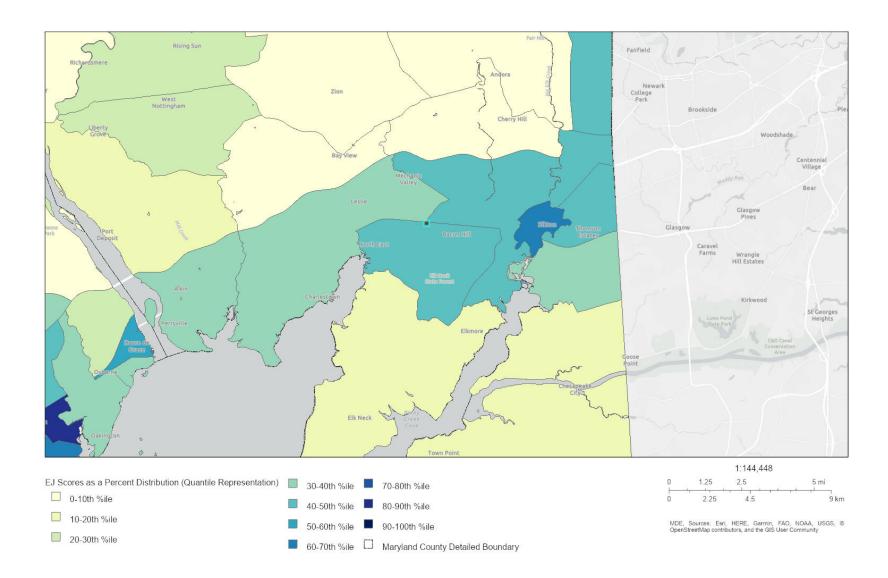
The Maryland EJ Screening Tool uses three demographic indicators – minority population above 50%, poverty rate above 25% and percent of the population having limited English proficiency above 15% - to calculate a score that can be used as an indicator of susceptibility to environmental exposure. It is that score, linked to the census tract where the project is to be located, that needs to be reported to MDE as part of your permit application.

What does the application require?

The link for the Maryland EJ Tool is located on the Department's website, <u>www.mde.maryland.gov</u>, under Quick Links as EJ Screening Tool. At the top right, please click the first button for the MDE Screening Report. Input the address of the proposed installation in the address bar. Click on the Report button. Once the report has been generated select the print icon.

The applicant needs to include the MDE Screening Report with the EJ Score from the Maryland EJ Tool as part of the permit application upon submission. An application will not be considered complete without the report.

The applicant is encouraged to provide the Department with a discussion about the environmental exposures in the community. This will provide pertinent information about how the applicant should proceed with engaging with the community. Residents of a community with a high indicator score and a high degree of environmental exposure should be afforded broader opportunities to participate in the permit process and understand the impacts a project seeking permit approval may have on them.


Questions

For air quality permits, please call 410-537-3230.
For water permits, please call 410-537-4145.
For land permits pertaining to Solid Waste, please call 410-537-3098.
For land permits pertaining to Oil Control, please call 410-537-3483.
For land permits pertaining to Animal Feeding Operations, please call 410-537-4423.
For land permits pertaining to Biosolids, please call 410-537-3403.

Area of Interest (AOI) Information

Nov 15 2022 6:00:44 Eastern Standard Time

Summary

Name	Count	Area(ft ²)	Length(ft)
EJ Scores as a Percent Distribution (Quantile Representation)	1	N/A	N/A
Active High Air Emission Facilities	1	N/A	N/A
LRP Facilities	0	N/A	N/A
Maryland Dam Locations	0	N/A	N/A
Maryland Pond Locations	0	N/A	N/A
Wastewater Discharge Facilities	0	N/A	N/A
Historic Mine Locations	0	N/A	N/A
Significant Wastewater Treatment Plants	0	N/A	N/A
Point Source Discharges	0	N/A	N/A
All Permitted Solid Waste Acceptance Facilities	0	N/A	N/A
Municipal Solid Waste Acceptance Facilities	0	N/A	N/A
EJ Scores as a Percent Distribution (Quantile Representation)	1	N/A	N/A
Active High Air Emission Facilities	1	N/A	N/A
LRP Facilities	0	N/A	N/A
Maryland Dam Locations	0	N/A	N/A
Maryland Pond Locations	0	N/A	N/A
Wastewater Discharge Facilities	0	N/A	N/A
Historic Mine Locations	0	N/A	N/A
Significant Wastewater Treatment Plants	0	N/A	N/A
Point Source Discharges	0	N/A	N/A
All Permitted Solid Waste Acceptance Facilities	0	N/A	N/A
Municipal Solid Waste Acceptance Facilities	0	N/A	N/A

EJ Scores as a Percent Distribution (Quantile Representation)

#	#	Geographic Area Name	Percent Minority	Percent Poverty	Percent_Limited_En glish_Proficiency	SocioScore Percent Tract Only	Socio Percentile (All MD)	Socio Percentile (All MD) %	Area(ft ²)
1		Census Tract 309.03, Cecil County, Maryland	21.50	35.79	0.00	19.10	45.43	45.428%	N/A

Active High Air Emission Facilities

#	master_ai_id	master_ai_name	air_code	naic	naic_description	emission_year	latitude	longitude
1	7253	Complete Recycling Group/B&H New & Used Tires	SOP	331,314	Secondary Smelting and Alloying of Aluminum	2020	39.610116	-75.908373

#	physical_address_li ne_1	physical_address_ municipality	physical_address_s tate_code	physical_address_z ip	county	со	nitrogen	pm10
1	1500 W Pulaski Hwy	Elkton	MD	21,921	Cecil 1.01 1		1.17	0.70
#	pt	voc	SOX	pm25	pmcondense carbon dioxide		mercury	methane
1	0.00	0.06	0.16	0.00	0.25	1,437.91	0.00	0.03
#	# BCRI		ВНАР		HAPS		Count	
1	1 2.34		0.00		0.00		1	

EJ Scores as a Percent Distribution (Quantile Representation)

#	Geographic Area Name	Percent Minority	Percent Poverty	Percent_Limited_En glish_Proficiency	SocioScore Percent Tract Only	Socio Percentile (All MD)	Socio Percentile (All MD) %	Area(ft ²)
1	Census Tract 309.03, Cecil County, Maryland	21.50	35.79	0.00	19.10	45.43	45.428%	N/A

Active High Air Emission Facilities

#	master_ai_id	master_ai_name	air_code	naic	naic_description emission_year		latitude	longitude
1	7253	Complete Recycling Group/B&H New & Used Tires	SOP	331,314	Secondary Smelting and Alloying of 2020 Aluminum		39.610116	-75.908373
#	physical_address_li ne_1	physical_address_ municipality	physical_address_s tate_code	physical_address_z ip	county co		nitrogen	pm10
1	1500 W Pulaski Hwy	Elkton	MD	21,921	Cecil	1.01	1.17	0.70
#	pt	voc	SOX	pm25	pmcondense	carbon_dioxide	mercury	methane
1	0.00	0.06	0.16	0.00	0.25	1,437.91	0.00	0.03
#	# BCRI		BH	HAP H.		PS	Co	unt
1	2.34		0.00		0.00		1	

© MDE

14 Lanfair Road - Cheltenham, PA 19012 - (215) 881-9401 - Fax: (215) 881-9402 - e-mail: tom@eesolutions.net

October 10, 2022

Maryland Department of the Environment Air and Radiation Administration (ARA) 1800 Washington Blvd. Baltimore, MD 21230

Re: Air Quality Permit Application for Two (2) Aluminum Sweat Furnaces Complete Recycling Group LLC, Elkton, Cecil County Permit No. 015-0275

Dear Sir/Madam:

Please accept the enclosed application for the proposed installation of a 3rd and 4th aluminum sweat furnace to be located at 1500 W. Pulaski Highway in Elkton, Maryland. The metals recycling facility is currently permitted to operate two (2) aluminum sweat furnaces (Secondary Aluminum Process, SIC 3341, NAICS 331314). The proposed sweat furnaces are the same make/model as the existing units.

A Permit to Construct (PTC) checklist is included along with the appropriate forms and supporting materials. In addition, an Initial Notification under 40 CFR Part 63 Subpart RRR is also included.

Thank you for your attention in this matter. If you have any questions or require further information, please contact me at 919-632-3258 or <u>mark@eesolutions.net</u>, or Richard Polansky of Complete Recycling Group at 443-309-4474 or <u>rpolansky@complete-recycle.com</u>.

Very truly yours,

Environmental and Engineering Solutions, Inc.

Mak Q Huncile

Mark D. Huncik Air Quality Consultant

Enclosures (Air Permit Application for Aluminum Sweat Furnace)

cc: Richard J. Polansky, Complete Recycling Group

Initial Notification Report

Applicable Rule: 40 CFR Part 63 Subpart RRR - National Emission Standards for Hazardous Air Pollutants for Secondary Aluminum Production. Initial notification is being made in accordance with §63.1515(a) [this serves as the identification of the relevant standard, as required by §63.9(b)(2)(iii)].

I. **GENERAL INFORMATION**

Print or type the following information for each plant that produces secondary aluminum (§63.9(b)(2)(i)-(ii)):

Owner/Operator	_Complete Recycling Group LLC
Street Address	_1500 W. Pulaski Hwy, Elkton, MD 21921
Mailing Address	same as above

Plant Name Complete Recycling Group LLC
Plant Contact/Title Richard J. Polansky, President
Plant Contact Phone Number 443-309-4774
Plant Street Addresssame as above
Plant Mailing Address_ same as above
Plant Email Address rpolansky@complete-recycle.com

Plant Permit Number ___015-0275_

II. **CERTIFICATION** (Note: You may edit the text in this section as deemed appropriate)

Based upon information and belief formed after a reasonable inquiry, I, as a responsible official of the above-mentioned facility, certify that the information contained in this notification is accurate and true to the best of my knowledge.

Name of Responsibl	e Official: Ric	hard J. P	olansky_	
Title of Responsible (Official: Presic	lent		
RACH	ARD J. POL	LANSK	sy i	10.10.2022
Signature			0	Data

Signature

Initial Notification

Date

III. SOURCE DESCRIPTION

1. **Check** your existing/new source status (optional):

Existing source [affected source(s) constructed on or before February 11, 1999; must comply with Secondary Aluminum NESHAP by March 24, 2003]

- New source [affected source(s) constructed or reconstructed after February 11, 1999; must comply with Secondary Aluminum NESHAP by March 23, 2000 or upon initial startup, whichever is later]
- New source at an aluminum die casting facility, aluminum foundry, or aluminum extrusion facility [must comply with Secondary Aluminum NESHAP by March 24, 2003 or upon initial startup, whichever is later]¹
- 2. Indicate your anticipated compliance date (§63.9(b)(2)(iii)): Upon Startup_____
- 3. Briefly describe the nature, size, design, and method of operation of your plant, including the operating design capacity (§63.9(b)(2)(iv)):__Secondary aluminum sweat furnace with afterburner integral to the furnace. Maximum of 1.5 tons/hr scrap charged to the furnace.

4. **Check** your major/area source status (§63.9(b)(2)(v)):

- □ Major Source [potential plant-wide hazardous air pollutant (HAP) emissions exceed 10 tons/year for a single HAP or 25 tons/year for a combination of HAP's]
- Area Source [potential plant-wide HAP emissions total less than 10 tons/year for a single HAP or 25 tons/year for all HAP's]

Check the emission estimation method used to determine major/area source status:

- \Box Previous source test data
- Manufacturer's test data
- Industry emission factors
- Other method (specify)

¹ This requirement is based on direct final rule amendments published on June 14, 2002 (67 FR 41118)

5. **Indicate** the number of each type of affected source/emission unit that exists at your plant and the hazardous air pollutants (HAP) emitted² from each point (§63.9(b)(2)(iv); see definitions in §63.1503):³

Number	Affected Source	HAP Emitted					
2	Sweat furnace	D/F					
	Aluminum scrap shredder	Sb HF	As Pb	Cd Mn	Cr Hg	D/F Ni	HCl
	Thermal chip dryer	Sb HF	As Pb	Cd Mn	Cr Hg	D/F Ni	HCl
	Scrap dryer/delacquering kiln/decoating kiln	Sb HF	As Pb	Cd Mn	Cr Hg	D/F Ni	HCl
	Dross-only furnace	Sb HF	As Pb	Cd Mn	Cr Hg	D/F Ni	HCl
	Rotary dross cooler	Sb HF	As Pb	Cd Mn	Cr Hg	D/F Ni	HCl
	Group 2 furnace ("clean furnace")	Sb HF	As Pb	Cd Mn	Cr Hg	D/F Ni	HC1
	Secondary Aluminum Processing Unit (consisting one or more group 1 furnaces and in-line fluxers)	Sb HF	As Pb	Cd Mn	Cr Hg	D/F Ni	HCl

Possible HAP emitted from Secondary Aluminum production facilities include: antimony (Sb) & compounds, arsenic (As) & compounds (inorganic), cadmium (Cd) & compounds, chromium (Cr) & compounds, dioxin/furans (D/F), hydrochloric acid (HCl), hydrogen fluoride (HF), lead (Pb) & compounds, manganese (Mn) & compounds, mercury (Hg) & compounds, and nickel (Ni) & compounds. Area sources are <u>only</u> subject to emission standards for D/F, not the other HAP.

3

2

See applicability flowcharts to determine whether or not your facility is subject to Subpart RRR.

AIR QUALITY PERMIT TO CONSTRUCT **APPLICATION CHECKLIST**

	OWNER OF EQUIPMENT/PROCESS							
COMPANY NAME:	Complete Recycling Group							
COMPANY ADDRESS:	1500 W. Pulaski Hwy, Elkton, MD 21921							
	LOCATION OF EQUIPMENT/PROCESS							
PREMISES NAME:	Complete Recycling Group							
PREMISES	same as above							
ADDRESS:								
CONTACT	CONTACT INFORMATION FOR THIS PERMIT APPLICATION							
CONTACT NAME:	Richard J. Polansky							
JOB TITLE:	President							
PHONE NUMBER:	(443) 309-4474							
EMAIL ADDRESS:	rpolansky@complete-recycle.com							
DES	CRIPTION OF EQUIPMENT OR PROCESS							
	Two (2) Aluminum Sweat Furnaces with Afterburners							

Application is hereby made to the Department of the Environment for a Permit to Construct for the following equipment or process as required by the State of Maryland Air Quality Regulation, COMAR 26.11.02.09.

Check each item that you have submitted as part of your application package.

- \mathbf{X} Application package cover letter describing the proposed project
- \mathbf{X} Complete application forms (Note the number of forms included or NA if not applicable.)
 - No. <u>1</u> Form 5 No. ____ Form 11 No. 1 Form 5T
 - No. _____ Form 41 No. 2 Form 5EP
 - No. 2 Form 6
 - No. ____ Form 10

No. ____ Form 42 No. ____ Form 44

- \mathbf{X} Vendor/manufacturer specifications/guarantees
- \mathbf{X} Evidence of Workman's Compensation Insurance
- X Process flow diagrams with emission points
- X Site plan including the location of the proposed source and property boundary
- \mathbf{X} Material balance data and all emissions calculations
- \mathbf{X} Material Safety Data Sheets (MSDS) or equivalent information for materials processed and manufactured.
- \square Certificate of Public Convenience and Necessity (CPCN) waiver documentation from the Public Service Commission⁽¹⁾
- Documentation that the proposed installation complies with local zoning and land \square use requirements ⁽²⁾
 - (1) Required for emergency and non-emergency generators installed on or after October 1, 2001 and rated at 2001 kW or more.
 - (2) Required for applications subject to Expanded Public Participation Requirements.

Complete Recycling Group 1500 W Pulaski Hwy

Imagery ©2022 CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA/FPAC/GEO, Map data ©2022 100 ft

Sweat Furnaces (2)

Forms (5, 5T, 5EP, 6) and Attachments

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 •1-800-633-6101 • www.mde.state.md.us

Air and Radiation Management Administration Air Quality Permits Program

APPLICATION FOR PROCESSING/MANUFACTURING EQUIPMENT

Perr	mit to Construct X	Registration Opdate	initial Registra	uion 🖵
A. Owner of Eau	upment/Company Namo	9	DO NOT WRI	TE IN THIS BLOCK
Complete F	Recycling Group LLC			ATION NUMBER
•			-	
Mailing Addre			County No.	Premises No.
1500 W Pulasl	ki Hwy		_	
Street Address				
Elkton	MD	21921	1-2 Registration Clas	³⁻⁶ ss Equipment No.
City	State	Zip		
Telephone Nu	mber			
-)9-4774		7	8-11
()			Data Year	
Signature				
-	IAMO DOLANSKI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
RACH.	ARD J. POLANSKY	10.10.2022	12-13	Application Date
	0			
Richard J. Pol	ansky, President		10.10.2022	
Print Name and	Title	······	Date	
same as abov	ocation and Telephone e	Number (il umerent i	rom above)	
Street Number a	ind Street Name			
City/Town	State		(Zip Tel	_) lephone Number
City/Town	Siale		Zip Tei	lephone Number
Premises Name	(if different from above)			
Ctotus /A - Nov	v D- Madification to Ex	ciating Equipment C-	- Evisting Equipment	4)
Status (A= Nev	v, B= Modification to Ex New Construction	New Construction	• • •	-
Status	Begun (MM/YY)	Completed (MM/Y		ting Initial on (MM/YY)
Status				
A	1 2 2 2		3	
15	16-19	20-23		20-23
Deceribe this F	-	. Frating Manufacture		
	Equipment: Make. Mode			,
MAX4000SP sec	condary aluminum sweat fu	rnace with afterburner, US	5 Furnaces - 5 MIMBtu/i	nr firing total firing rate
Workmon's Co	mpensation Coverage_	AF WCP 100049109-01		8/3/2023
		Binder/Policy Number		Expiration Date
	NT FUND INSURANCE CO).		
	ermit to Construct may be issu			
WORK	er's compensation coverage as	s required under Section 1-2	02 of the worker's Compe	ensation Act.
A. Number of Pi	eces of Identical Equip	ment Units to be Regi	stered/Permitted at	this Time 2
	eres et la entrout aquip			
3. Number of St	tack/Emission Points A	ssociated with this Eq	uipment ²	
			I I' ' ''	

7. Person Installing this Equip					
Company					
Mailing Address/Street					
City/Town	State		Telephone ()	
8. Major Activity, Product or Se	ervice of Company a	at this Location	on		
Complete Recycling Group (CR	RG) is a scrap and salva	ge yard.			
9. Control Devices Associated		t one			
		4-0			
Cyclone Tower Sc	Venturi Carbon crubber Adsorber	Electrostatic Precipitator 24-5	Baghouse	Thermal/Catalytic Afterburner X 24-7	Dry Scrubber 24-8
Other Describe 24-9					
10. Annual Fuel Consumption	for this Equipment				
OIL-1000 GALLONS SULFUR 26-31 32-33		RAL GAS-1000 8 7 6 35-41	-T ³ LF	P GAS-100 GALLON 42-45	NS GRADE
COAL- TONS 46-52	SULFUR %	ASH%	WOOD-TON		TURE % 4-65
OTHER FUELS ANNU/	AL AMOUNT CONSUMED	0 1 OTHER	FUEL	ANNUAL AMOU	NT CONSUMED
(Specify Type) 66-1 (Sp	ecify Units of Measure) 1= Coke 2= CO		y Type) 66-2 her	 2(Specify Uni	ts of Measure)
11. Operating Schedule (for th Continuous Operation Batch Process		ch per Week F	lours per Day	Days Per Week	Days per Year
67-1 67-2	68-69		2 4 70-71	7	3 6 5 73-75
Seasonal Variation in Operation: No Variation Winter Percent S X 76 77-78		er Percent	Fall Percent	(Total Seasor	าร= 100%)

Form Number: 5 Rev. 9/27/2002 TTY Users 1-800-735-2258

12. Equivalen	t Stack Innformati	on- is Exhaust through I	Doors, Window	vs, etc. On	ly? (Y/N) N	7
					85	
If not, then	Height Avove Groun	d (FT) Inside Diameter at To	op Exit Temp	erature (°F)	Exit Velocity	
	86-88	89-91	92	-95	96-9	8
		NOTE:				
Attach a blo		cess/process line, indic				is form
	and all existing e	quipment, including con	trol devices an	a emissio	on points.	
	erials (for this equ					
Is any of t	his data to be con	sidered confidential?	N (Y or N)			
 N		CAS NO. (IF APPLICABLE)	PER HOUR		JT RATE PER YEAR	
1. Natural Gas (2 furnace			5,000 each	cf/hr	43,800 each	1000 cf
2. Aluminum Scrap (2 fur			1.5 each	tons	13,140 each	tons
3.						
4. 5.						
6.						
7.						
8.						
9.						
TOTAL			•		•	-
14 Output Ma	toriolo (for this of					
	aterials (for this ec Product Stream	luipment)				
1100000,1				OUT	PUT RATE	
	IAME	CAS NO. (IF APPLICABLE)	PER HOUR	UNITS	PER YEAR	UNITS
1. Aluminum Ingots (2 fur 2.	maces)		1,500 each	pounds	6,570 each	tons
3.						
4.						
5.						
6.						
7.						
8.						
9. TOTAL						
15. Waste Stre	eams- Solid and L	iquid				
		-			PUT RATE	
N	IAME	CAS NO. (IF APPLICABLE)	PER HOUR	UNITS	PER YEAR	UNITS
2.						
3.						
4.						
5.						
6.						
7.						
8. 9.						
TOTAL						

16. Total Stack Emissions (for this equipment only) in Pounds Per Operating Day Particulate Matter Oxides of Sulfur Oxides of Nitrogen 1 4 7 5 2 8 2 8 6 1 1 99-104 105-110 111-116 Carbon Monoxide Volatile Organic Compounds PM-10 1 1 9 2 0 1 1 4 7 2 6 177-122 123-128 129-134 17. Total Fugitive Emissions (for this equipment only) in Pounds Per Operating Day Particulate Matter Oxides of Sulfur Oxides of Nitrogen 135-139 140-144 145-149 Carbon Monoxide Volatile Organic Compounds PM-10 150-154 155-159 160-164 (1= Estimate 2= Emission Factor 3= Stack Test 4= Other) Method Used to Determine Emissions TSP SOX NOX CO VOC PM10 2.3 2 2 2 2,3 2 165 166 167 168 169 170 AIR AND RADIATION MANAGEMENT ADMINISTRATION USE ONLY 18. Date Rec'd. Local Date Rec'd. State Return to Local Jurisdiction Date_____ By____ Reviewed by Local Jurisdiction **Reviewed by State** Date By Date By 19. Inventory Date Month/Year SCC Code Equipment Code 171-174 175-177 178-185 20. Annual Maximum Design Permit to Operate **Transaction Date Operating Rate Hourly Rate** Month (MM/DD/YR) 186-192 193-199 200-201 202-207 Staff Code VOC Code SIP Code Confidentiality **Regulation Code** 211 212 208-210 213 214 215-218 219 **Point Description** Action A: Add C: Change 220-238 239

MARYLAND DEPARTMENT OF THE ENVIRONMENT	Air and Radiation Management Administration Air Quality Permits Program	1800 Washington Boulevard Baltimore, Maryland 21230	(410)537-3225 ● 1-800-633-6101● www.mde.marvland.gov
--	---	---	--

Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration FORM 5T:

Complete Recycling Group Applicant Name: Step 1: Quantify premises-wide emissions of Toxic Air Pollutants (TAP) from new and existing installations in accordance with COMAR 26.11.15.04. Attach supporting documentation as necessary

	of TAP	Premises Wide Total TAP Emissions	(Ib/yr)	1500	400			
	issions	Premis Tota Emis	(Ib/hr)	0.75	1.00			
	Estimated Premises Wide Emissions of TAP	Projected TAP Emissions from Proposed Installation	(Ib/hr)	0.15	0.75			
	Estimated P	Actual Total Existing TAP Emissions	(Ib/hr)	0.60	0.5			
		µg/m³)	Annual	N/A	0.13			
		Screening Levels (µg/m³)	8-hour	3769	16			
y.		Screen	1-hour	18843	80			
on as necessary.		Class I or Class II?		II	1			
g documentati		CAS Number		64175	71432			
26.11.15.04. Attach supporting documentation as		Toxic Air Pollutant (TAP)		ex. ethanol	ex. benzene	See attached table		

(attach additional sheets as necessary.)

Note: Screening levels can be obtained from the Department's website (<u>http://www.mde.maryland.gov</u>) or by calling the Department.

Step 2: Determine which TAPs are exempt from further review. A TAP that meets either of the following Class I or Class II small quantity emitter exemptions is exempt from further TAP compliance demonstration requirements under Step 3 and Step 4.

Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(a)) A Class II TAP is exempt from Step 3 and Step 4 if the Class II TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 $\mu g/m^3$.

Class I TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(b))

not exceed 0.5 pounds per hour and 350 pounds per year, any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 $\mu g/m^3$, and any applicable annual screening level for the TAP must be greater than 1 $\mu g/m^3$. A Class I TAP is exempt from Step 3 and Step 4 if the Class I TAP meets the following requirements: Premises wide emissions of the TAP shall

If a TAP meets either the Class I or Class II TAP Small Quantity Emitter Exemption Requirements, no further review under Step 3 and Step 4 are required for that specific TAP

Revised: 03/01/2016 Form Number MDE/ARMA/PER.05T TTY Users 1-800-735-2258

<u>Step 3</u> : Best Available Control Technology for Toxics Requirement (T-BACT, COMAR 26.11.15.05) In the following table, list all TAP emission reduction options considered when determining T-BACT for the proposed installation. The options	ble Con											
should be listed in order beginning with the most effective control strategy to the least effective strategy. Attach supporting documentation as necessary.	, list all ⁻ der begi	trol Tech TAP emis: inning with	nology 1 sion redu h the mo:	for Toxic uction opti st effectiv	s Require ions consid e control s	ment (T-E dered whe strategy to	BACT, COM an determini the least ef	AR 26.11.15 ng T-BACT f ₍ fective strate	. 05) or the propc gy. Attach	sed installa supporting c	tion. The d	options Ition as
-					% Emission	sion		Costs	S		T-BA	T-BACT Option
Target Pollutants	ts	Emissio	Emission Control Option	ol Option	Reduction	tion	Ö	Capital	Annual Operating	perating	Selecte	Selected? (yes/no)
ex. ethanol and benzene	ene	Th	Thermal Oxidizer	izer	66		\$50,000	0	\$100,000	000		ou
ex. ethanol and benzene	sne	TOW	Low VOC materials	irials	80		0		\$100.000	000		yes
VOC, D/F, and PM	5		Afterburner	_	%+66	%	To be determined	rmined	To be determined	ermined	Yes, M/	Yes, MACT compliant
(auach aggluonal sneets as necessary)	eels as l	recessary	(
Toxic Air Pollutant (TAP)	CAS	CAS (µg/m ³)	Screening Levels (µg/m ³)		Premises W Total TAP Emissions	Premises Wide Total TAP Emissions	Allowable Rate (A COMAR 2(Allowable Emissions Rate (AER) per COMAR 26.11.16.02A	Off-site (Scree	Off-site Concentrations per Screening Analysis (μg/m ³)	ons per sis	Compliance Method Used?
		1-hour	8-hour	Annual	(IH/dI)	(Ib/yr)	(Ib/hr)	(Ib/yr)	1-hour	8-hour	Annual	AER or Screen
ex. ethanol	64175	18843	3769	N/A	0.75	1500	0.89	N/A	N/A	N/A	N/A	AER
ex. benzene	71432	80	16	0.13	1.00	400	0.04	36.52	1.5	1.05	0.12	Screen
See attached table												
(attach additional sheets as necessary)	eets as r	recessary					-					
ir compliance with the amplent impact requirement cannot be met using the allowable emissions rate method or the screening analysis method, refined dispersion modeling techniques may be required. Please consult with the Department's Air Quality Permit Program	the amp persion	ment impa modelin	act requi	irement c iques ma	sannot pe y be requ	ired. Plea	g the allow ase consult	using the allowable emissions rate method or the screening analy Please consult with the Department's Air Quality Permit Program	ons rate me partment's	Air Quality	/ Permit P	g anaiysis rogram
prior to conducting dispersion modeling methods to demonstrate compliance.			0									

Form Number MDE/ARMA/PER.05T Revised: 03/01/2016 TTY Users 1-800-735-2258

Page 2 of 2 Recycled Paper

				Screening Levels		Estimated	Premises Wide Emis	sions of TAP		Allowable Emi	ission Rate (AER)	per 26.11.16.02		
Toxic Air Pollutant (TAP) (Class I or II)	CAS No.	TAP Class I or II?	1-hour (µg/m3)	8-hour (µg/m3)		TAP Emissions per Furnace (lbs/hr)	Total TAP Emissions for 4 furnaces (lb/hr)	Total TAP Emissions (Ib/yr) - (see Note 3)	No Further Review as Small Quantity Emitter?		8-hour (lbs/hr)		TAP less than AER?	AERMOD Model Result (µg/m3) - 8-hr average
Dioxin/Furans (see Note 1)	NA	I	NA	1.2E+01	3.0E-08	2.86E-09	1.14E-08	1.002E-04	NO	NA	NA	1.095E-05	YES (exempt under 26.11.15.02(B) - Control of NESHAP and MACT Sources)	
Aluminum (see Note 2)	1317255	Ш	NA	10	NA	0.05075	0.203	1778.28	NO	NA	0.0358	NA	NO	5.41
Arsenic (see Note 4)	7440382	-	NA	0.1	0.0002	9.80E-07	3.92E-06	0.034	NO	NA	0.000358	0.073	YES	
Barium	7440393		NA	5	NA	2.16E-05	8.64E-05	0.757	NO	NA	0.0179	NA	YES	
Beryllium	7440417	1	NA	0.0005	0.0004	5.88E-08	2.35E-07	0.002	NO	NA	0.00000179	0.146	YES	
Cadmium	7440439	1	NA	0.02	0.0006	5.39E-06	2.16E-05	0.189	NO	NA	0.0000716	0.219	YES	
Chromium	7440473	I	NA	5	NA	6.86E-06	2.74E-05	0.240	NO	NA	0.0179	NA	YES	
Cobalt	7440484	11	NA	0.2	NA	4.12E-07	1.65E-06	0.014	NO	NA	0.000716	NA	YES	
Copper	7440508	11	NA	2	NA	4.17E-06	1.67E-05	0.146	NO	NA	0.00716	NA	YES	
Manganese	7439965	Ш	NA	2	NA	1.86E-06	7.44E-06	0.065	NO	NA	0.00716	NA	YES	
Mercury	7439976	Ш	0.3	0.1	NA	1.27E-06	5.08E-06	0.045	NO	0.001074	0.000358	NA	YES	
Molybdenum	7439987	Ш	NA	5	NA	5.39E-06	2.16E-05	0.189	NO	NA	0.0179	NA	YES	
Nickel	7440020	1	NA	1	NA	1.03E-05	4.12E-05	0.361	NO	NA	0.00358	NA	YES	
Selenium	7782492		NA	2	NA	1.18E-07	4.72E-07	0.004	NO	NA	0.00716	NA	YES	
Vanadium	7440622		NA	0.5	NA	1.13E-05	4.52E-05	0.396	NO	NA	0.00179	NA	YES	
Zinc	7440666		1000	500	NA	1.42E-04	5.68E-04	4.976	YES	x	X	x	X	
2-methylnapthalene	91576		NA	29.0798	NA	1.18E-07	4.72E-07	0.004	NO	NA	0.104105684	NA	YES	
3-methylchloranthrene	56495		NA	20	NA	8.82E-09	3.53E-08	0.000	NO	NA	0.0716	NA	YES	
Acenaphthene	83329		NA	20	NA	8.82E-09	3.53E-08	0.000	NO	NA	0.0716	NA	YES	
Acenaphthylene	203968		NA	24.6	NA	8.82E-09	3.53E-08	0.000	NO	NA	0.088068	NA	YES	
Anthracene	120127		NA	20	NA	1.18E-08	4.72E-08	0.000	NO	NA	0.0716	NA	YES	
Benzene	71432		79.8671	15.9734	0.13	1.03E-05	4.12E-05	0.361	NO	0.285924218	0.057184772	47.45	YES	
Benzo(g,h,i)perylene	191242		NA	20	NA	5.88E-09	2.35E-08	0.000	NO	NA	0.0716	NA	YES	
Butane	106978		NA	23771	NA	1.03E-02	4.12E-02	360.912	YES	X	X	X	X	
Ethane	74840		NA	12302	NA	1.52E-02	6.08E-02	532.608	YES	x	X	x	X	
Fluoranthene	206440		NA	82	NA	1.47E-08	5.88E-08	0.001	NO	NA	0.29356	NA	YES	
Fluorene	86737		NA	20	NA	1.37E-08	5.48E-08	0.000	NO	NA	0.0716	NA	YES	
Formaldehyde	50000		NA	20.3	0.08	3.68E-04	1.47E-03	12.895	NO	NA	0.072674	29.2	YES	
Hexane	110543		NA	1762.4	NA	8.82E-03	3.53E-02	309.053	YES	X	X	X	X	
Naphthalene	91203		786.4	524.3	NA	2.99E-06	1.20E-05	0.105	YES	X	X	x	X	
Pentane	109660		NA	17705.5	NA	1.27E-02	5.08E-02	445.008	YES	x	x	x	X	
Phenanathrene	85018		NA	9.8	NA	8.33E-08	3.33E-02	0.003	NO	NA	0.035084	NA	YES	
Propane	74986		NA	18032.7	NA	2.50E-08	1.00E-07	0.001	YES	X	X	X	X	
Pyrene	129000		NA	20	NA	2.45E-08	9.80E-08	0.001	NO	NA	0.0716	NA	YES	
i yrcne	108883		NA	753.6	NA	1.67E-05	6.68E-05	0.585	YES	X	X	X	X	

Toxic Air Pollutant (TAP) Screening Analysis for 4 Aluminum Sweat Furnaces at Complete Recycling Group, Elkton, MD

Metals

Note 1: For the dioxin/furan emission estimate, the NESHAP regulatory limit of 3.5 x 10⁻¹⁰ grains of dioxins and furans per dry standard cubic foot at 11 percent oxygen was used and the flow rate of 954 dscfm was used for each furnace.

Note 2: For aluminum, we have assumed that 25% of the particulate is aluminum. Our original assumption of 90% of the particulate being aluminum was too conservative since most of the particulate will be products of incomplete combustion of the oils on the scrap materials.

Note 3: Total yearly emissions based on 24 hours a day, 7 days a week, and 52 weeks a year

Note 4: For arsenic and all pollutants below arsenic in the table, the hourly emissions for each furnace were calculated using the WebFIRE emission factors for burning natural gas and the assumption that the furnace would burn 0.005 million cubic feet of natural gas per hour (5 MMBtu/hr total burners for each furnace).

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: Complete Recycling Group

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: AS3

2. Emission Point Description

Describe the emission point including all associated equipment and control devices:

Aluminum Sweat Furnace #3

3. Emissions Schedul	le for th	ne Emiss	ion	Point						
Continuous or Intermittent (C/)?	С		Seasonal Variation						
	.,.	U			herwis	e estimate s	seaso	onal va	ariation:	
Minutes per hour:				Winter Percent						
Hours per day:				Spring Percent						
Days per week:				Summer Percent Fall Percent						
Weeks per year: 4. Emission Point Info	ormatio	n		Fair Fercent						
	Jinatio					Length			Width:	
Height above ground (ft):		46		Length and width dimension		Lengui	•		vviuti.	
Height above structures (ft):		8		at top of rectangular stack	(ft):					
Exit temperature (°F):		680		Inside diameter at top of ro	ound s	tack (ft):			2	
Exit velocity (ft/min):		1,446		Distance from emission po property line (ft):	oint to i	nearest			72	
Exhaust gas volumetric flow ra	ate			Building dimensions if emis	ssion	Height	Len	gth	Width	
(acfm):		4,550		point is located on buildir		38	1	50	80	
5. Control Devices As	sociate	ed with t	he I	Emission Point			1		<u> </u>	
Identify each control device as <u>also required for each contr</u>					numb	er of device	es. <u>A</u>	<u>Fori</u>	<u>m 6 is</u>	
□ None				X Thermal Oxidizer		No. <u>1</u>				
☐ Baghouse	No			Regenerative						
Cyclone	No			Catalytic Oxidizer		No				
Elec. Precipitator (ESP)	No			Nitrogen Oxides Reduct	ion	No				
Dust Suppression System	No			☐ Selective ☐ Catalytic	[☐ Non-Sele ☐ Non-Cata				
🗌 Venturi Scrubber	No				L	No	-			
Spray Tower/Packed Bed	No			Specify:		NO				
Carbon Adsorber	No									
Cartridge/Canister										
Regenerative										

FOF	RM 5EP: Emission P	oint Data		
6. Estimated Emissions from th	e Emission Point			
Criteria Pollutants	At Design Capacity	At	Projected Operat	ions
Criteria Foliutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Particulate Matter (filterable as PM10)	0.239	0.239	5.74	1.05
Particulate Matter (filterable as PM2.5)	0.239	0.239	5.74	1.05
Particulate Matter (condensables)	0.057	0.057	1.37	0.25
Volatile Organic Compounds (VOC)	0.026	0.026	0.63	0.11
Oxides of Sulfur (SOx)	0.033	0.033	0.79	0.14
Oxides of Nitrogen (NOx)	0.476	0.476	11.43	2.09
Carbon Monoxide (CO)	0.400	0.400	9.60	1.75
Lead (Pb)				
	At Design Capacity	At	Projected Operat	ions
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Carbon Dioxide (CO ₂)	571.43	571.43	13,714.29	2,502.86
Methane (CH ₄)	0.01	0.01	0.26	0.05
Nitrous Oxide (N ₂ O)	0.01	0.01	0.25	0.05
Hydrofluorocarbons (HFCs)				
Perfluorocarbons (PFCs)				
Sulfur Hexafluoride (SF6)				
Total GHG (as CO ₂ e)	574.51	574.51	13,788.27	2,516.36
List individual federal Hazardous Air	At Design Capacity	At	Projected Operat	ions
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Total HAPs	0.009	0.009	0.22	0.039
See attached Emissions Tables				

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: Complete Recycling Group

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: AS4

2. Emission Point Description

Describe the emission point including all associated equipment and control devices:

Aluminum Sweat Furnace #4

3. Emissions Schedul	le for th	ne Emiss	ion	Point						
Continuous or Intermittent (C/)?	С		Seasonal Variation						
	.,.	U			herwis	e estimate s	seaso	onal va	ariation:	
Minutes per hour:				Winter Percent						
Hours per day:				Spring Percent						
Days per week:				Summer Percent Fall Percent						
Weeks per year: 4. Emission Point Info	ormatio	n		Fair Percent						
	Jinatio					Length			Width:	
Height above ground (ft):		46		Length and width dimension		Lengui	•		vviuti.	
Height above structures (ft):		8		at top of rectangular stack	(ft):					
Exit temperature (°F):		680		Inside diameter at top of ro	ound s	tack (ft):			2	
Exit velocity (ft/min):		1,446		Distance from emission po property line (ft):	oint to i	nearest			72	
Exhaust gas volumetric flow ra	ate			Building dimensions if emis	ssion	Height	Len	gth	Width	
(acfm):		4,550		point is located on buildir		38	1	50	80	
5. Control Devices As	sociate	ed with t	he I	Emission Point			1		<u> </u>	
Identify each control device as <u>also required for each contr</u>					numb	er of device	es. <u>A</u>	<u>Fori</u>	<u>m 6 is</u>	
□ None				X Thermal Oxidizer		No. <u>1</u>				
☐ Baghouse	No			Regenerative						
Cyclone	No			Catalytic Oxidizer		No				
Elec. Precipitator (ESP)	No			Nitrogen Oxides Reduct	ion	No				
Dust Suppression System	No			☐ Selective ☐ Catalytic		☐ Non-Sele ☐ Non-Cata				
🗌 Venturi Scrubber	No				L	No	-			
Spray Tower/Packed Bed	No			Specify:		NO				
Carbon Adsorber	No									
Cartridge/Canister										
Regenerative										

FOF	RM 5EP: Emission P	oint Data		
6. Estimated Emissions from th	e Emission Point			
Criteria Pollutants	At Design Capacity	At	Projected Operat	ions
Criteria Foliutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Particulate Matter (filterable as PM10)	0.239	0.239	5.74	1.05
Particulate Matter (filterable as PM2.5)	0.239	0.239	5.74	1.05
Particulate Matter (condensables)	0.057	0.057	1.37	0.25
Volatile Organic Compounds (VOC)	0.026	0.026	0.63	0.11
Oxides of Sulfur (SOx)	0.033	0.033	0.79	0.14
Oxides of Nitrogen (NOx)	0.476	0.476	11.43	2.09
Carbon Monoxide (CO)	0.400	0.400	9.60	1.75
Lead (Pb)				
	At Design Capacity	At	Projected Operat	ions
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Carbon Dioxide (CO ₂)	571.43	571.43	13,714.29	2,502.86
Methane (CH ₄)	0.01	0.01	0.26	0.05
Nitrous Oxide (N ₂ O)	0.01	0.01	0.25	0.05
Hydrofluorocarbons (HFCs)				
Perfluorocarbons (PFCs)				
Sulfur Hexafluoride (SF6)				
Total GHG (as CO ₂ e)	574.51	574.51	13,788.27	2,516.36
List individual federal Hazardous Air	At Design Capacity	At	Projected Operat	ions
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Total HAPs	0.009	0.009	0.22	0.039
See attached Emissions Tables				
			+	
			+ +	

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd
Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • www.mde.state.md.us

Air and Radiation Management Administration • Air Quality Permits Program

GAS CLEANING OR EMISSION CONTROL EQUIPMENT 1. Owner of Installation Telephone No. Date of Application (443) 309-4774 Complete Recycling Group 10/2022 2. Mailing Address Citv Zip Code County 21921 1500 W. Pulaski Hwy Elkton Cecil 3. Equipment Location City/Town or P.O. County 1500 W. Pulaski Hwy Cecil Elkton 4. Signature of Owner or Operator Title Print or Type Name President RACHARD (). POLANSKU Richard J. Polansky 10.10.2022 5. Application Type: Alteration New Construction | X 6. Date Construction is to Start: **Completion Date (Estimate):** December 2022 January 2023 7. Type of Gas Cleaning or Emission Control Equipment: **Simple Cyclone Multiple Cyclone** Afterburner **Electrostatic Precipitator** Х Scrubber Other (type) (type) **Collection Efficiency (Design Criteria)** 8. Gas Cleaning Equipment Manufacturer Model No. US Furnaces 100% (integral to furnace) 9. Type of Equipment which Control Equipment is to Service: Seconday Aluminum Sweat Furnace #3 10. Stack Test to be Conducted: No X Yes (Stack Test to be Conducted By) (Date) **11. Cost of Equipment** To be determined Estimated Erection Cost

APPLICATION FOR PERMIT TO CONSTRUCT

12. The Following Shall B	e Design Criteria:			
INLET				<u>OUTLET</u>
Gas Flow Rate	ACFM*			ACFM*
Gas Temperature	°F			°F
Gas Pressure	INCHES V	N.G.	<u> </u>	INCHES W.G.
	PRESSURE DF	ROP		
Dust Loading	GRAINS/A	ACFD**		GRAINS/ACFD**
Moisture Content OR	%			%
Wet Bulb Temperature	°F			°F
Liquid Flow Rate (Wet Scrubber)	GALLONS	S/MINUTE		
	OTHER THAN WATER IN	NDICATE COMPO	SITION	OF SCRUBBING MEDIUM IN WEIGHT %)
*= ACTUA	L CUBIC FEET PER MI	NUTE **	= ACTL	JAL CUBIC FEET DRY
COMPOSITION OF THE GA	SES ENTERING THE C GED INTO THE ATMOS	LEANING DEVI	CE ANI AVAILA	/OLUME PERCENT. INCLUDE THE D THE COMPOSITION OF EXHAUSTED .BLE SPACE IN ITEM 15 ON PAGE 3. <u>% to be Collected</u>
0 to 10 Microns			_	
10 to 44 Microns			_	
Larger than 44 Mic	rons		-	
14. For Afterburner Const	ruction Only: <mark>*See</mark>	attached Resider	nce Tim	e Calculation
Volume of Contam	inated Air		CFM	(DO NOT INCLUDE COMBUSTION AIR)
Gas Inlet Tempera	ture		°F	
Capacity of Afterb	urner		BTU/H	IR
Diameter (or area)	of Afterburner Throat			
Combustion Cham Retention Time of	(diameter)	(length)).8 seconds	_ Opera	ting Temperature at Afterburner <u>1600</u> ∘F

15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere.

See attached diagram

Date Received: Local	State
Acknowledgement Date:	
By	
Reviewed By:	
Local State	
State	
Returned to Local:	
Date By	
Application Returned to Applicant: Date By	
REGISTRATION NUMBER OF ASSOCIATED EQUIPME	NT:
PREMISES NUMBER:	
Emission Calculations Revised By	Date

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • www.mde.state.md.us

Air and Radiation Management Administration Air Quality Permits Program

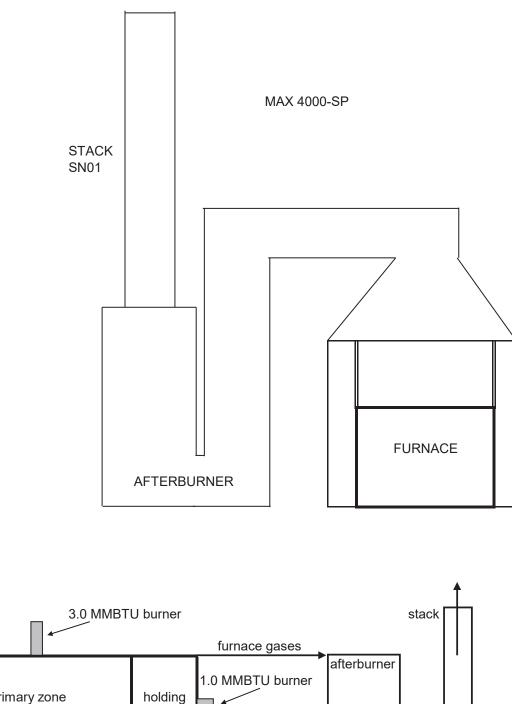
APPLICATION FOR PERMIT TO CONSTRUCT GAS CLEANING OR EMISSION CONTROL EQUIPMENT

1. Owner of Installation	Telephone No	Date of Application						
Complete Recycling Group	(443) 309-4774		10/2022					
2. Mailing Address	City	Zip Code	County					
1500 W. Pulaski Hwy	Elkton	21921	Cecil					
3. Equipment Location	City/Town or F	P.O.	County					
1500 W. Pulaski Hwy	Elkton		Cecil					
4. Signature of Owner or Operator	Title		Print or Type Name					
RACHARD J. POLANSKY 10.10.2022	President		Richard J. Polansky					
5. Application Type: Alteration		New Construction	on X					
6. Date Construction is to Start:		Completion Date	e (Estimate):					
December 2022		January 2023						
7. Type of Gas Cleaning or Emission Control	Equipment:							
Simple Cyclone Multiple Cyclone	Afterburne	r X Electros	tatic Precipitator					
Scrubber	Other	(typ	pe)					
8. Gas Cleaning Equipment Manufacturer	Model No.	Collection Effici	ency (Design Criteria)					
US Furnaces		100% (integral to f	urnace)					
9. Type of Equipment which Control Equipment	nt is to Service:							
Seconday Aluminum Sweat Furnace #4								
10. Stack Test to be Conducted:	10. Stack Test to be Conducted:							
Yes No X								
	Test to be Conducted	а Ву)	(Date)					
11. Cost of Equipment To be determined								
Estimated Erection Cost								

12. The Following Shall B	e Design Criteria:			
INLET				<u>OUTLET</u>
Gas Flow Rate	ACFM*			ACFM*
Gas Temperature	°F			°F
Gas Pressure	INCHES V	V.G.	<u> </u>	INCHES W.G.
	PRESSURE DF	ROP		
Dust Loading	GRAINS/A	ACFD**		GRAINS/ACFD**
Moisture Content OR	%			%
Wet Bulb Temperature	°F			°F
Liquid Flow Rate (Wet Scrubber)	GALLONS	S/MINUTE		
	OTHER THAN WATER IN	NDICATE COMPO	SITION	OF SCRUBBING MEDIUM IN WEIGHT %)
*= ACTUA	L CUBIC FEET PER MI	NUTE **	= ACTL	JAL CUBIC FEET DRY
COMPOSITION OF THE GA	SES ENTERING THE C GED INTO THE ATMOS	LEANING DEVI	CE ANI AVAILA	/OLUME PERCENT. INCLUDE THE D THE COMPOSITION OF EXHAUSTED .BLE SPACE IN ITEM 15 ON PAGE 3. <u>% to be Collected</u>
0 to 10 Microns			_	
10 to 44 Microns			_	
Larger than 44 Mic	rons		-	
14. For Afterburner Const	ruction Only: <mark>*See</mark>	attached Resider	nce Tim	e Calculation
Volume of Contam	inated Air		CFM	(DO NOT INCLUDE COMBUSTION AIR)
Gas Inlet Tempera	ture		°F	
Capacity of Afterb	urner		BTU/H	IR
Diameter (or area)	of Afterburner Throat			
Combustion Cham Retention Time of	(diameter)	(length)).8 seconds	_ Opera	ting Temperature at Afterburner <u>1600</u> ∘F

15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere.

See attached diagram



Date Received: Local	State
Acknowledgement Date:	
By	
Reviewed By:	
Local State	
State	
Returned to Local:	
Date By	
Application Returned to Applicant: Date By	
REGISTRATION NUMBER OF ASSOCIATED EQUIPME	NT:
PREMISES NUMBER:	
Emission Calculations Revised By	Date

Complete Recycling Group LLC Residence Time Calculation US Furnaces MAX4000 Aluminum Sweat Furnace

Burner ID	Burner Rating MM BTU/hr	Fuel	F factor dscf/MM BTU	Oxygen %	Stoichiometric Flow, dscfm	Moisture at Afterburner %	Temperature deg. F	Pressure at Afterburner	Afterburner Flow acfm	Afterburner Volume, ft3	Afterburner Residence Time, sec
Primary	3	gas	8,710	10	835	6	1,250	-0.06	2867		
Holding	1	gas	8,710	6	204	5	1,200	-0.06	679		
Afterburner	1	gas	8,710	6	204	5	1,650	-0.1	901		
Total	5	gas			1242				4,446	122.7	1.66
Sample Calcul	ation_ stoich, flow, o	dscfm	=	F factor dscf/milli	bu on BTU x	urner rated heat million BTU/h	•	flue gas oxyger (20.9/(20.9-ox		60 min/hr	
		Definitio	าร								
		20.9/(20.	9-oxygen%), corr	ection fact	million BTU fuel co or for unconsumed ypical burner set u	d oxygen in flue g	gas (excess air)	Table 1.			
Conversion to	actual conditions										
	dscfm x (1 + moi		stack temp R. /	' Temp std	. R. x stack pressu	ire / std pressure	1				
	Definitions	(-1.06)									
	R = Rankine, or d	eg F + 460)								
	•		sure compared t 13.6) + 29.92	o atmosph	eric, in. mercury (f	or this demonstr	ation, baro assu	med to be 29.92)	1		
	std pressure, 29.9	•									
	,	er vapor v =0.06	olume in flue gas	es, assump	ntion based upon g	as combustion e	xperienced at sin	nilar installations	i		
		-0.00									

pour off melt

Emission Calculations and Emission Factors including stack test data for PM

Pollutant	MAX-4000 Sweat Furnace Burner Rating (MMBTU/hr)	Emission Factor for Combustion of Natural Gas (Ib/MMCF)	Heating Value of Natural Gas (BTU/CF)	Hourly natural gas combustion emission rate per MAX-4000 (lbs/hr)	Hourly emission rate per stack testing results for particulate and from WEBFIRE for SOx per MAX-4000 (lbs/hr)	Emission Rate per MAX-4000 furnace (Ibs/hr)	Emission Rate per furnace (lb/day)	Emission Rate per furnace (TPY)	Total potential emissions for 4 sweat furnaces (TPY)	TPY Threshold for Major Source Permitting
NO	5	100	1050	0.470		0.470	11.42	2.00	0.24	25
NOx	-	100	1050	0.476		0.476	11.43	2.09	8.34	25
SOx	5	0.6	1050	0.003	0.03	0.033	0.79	0.14	0.58	100
CO	5	84	1050	0.400		0.400	9.60	1.75	7.01	100
VOC	5	5.5	1050	0.026		0.026	0.63	0.11	0.46	25
PM/PM10/PM2.5	5	7.6	1050	0.036	0.203	0.239	5.74	1.05	4.19	100
Condensable PM	5	5.7	1050	0.027	0.030	0.057	1.37	0.25		
CO2	5	120000	1050	571.43		571.43	13,714.29	2,502.86	10,011.43	NA
Methane	5	2.3	1050	0.011		0.01	0.26	0.05	0.19	NA
N2O	5	2.2	1050	0.010		0.01	0.25	0.05	0.18	NA
CO2e	5			574.51		574.51	13,788.27	2,516.36	10,065.44	NA
HAPs (Total)	5	1.89	1050	0.009		0.009	0.22	0.039	0.16	10

After Control Criteria Pollutant Emissions per Furnace and Facility Total at Complete Recycling Group, Elkton, MD.

MEMORANDUM

To:	STAC	K TEST FILE – ALTECH RECOVERY, LLC
Through:		Ainor Source Compliance Section Manager
From:	Chad Gilgen, E	Environmental Scientist CG
Date:	December 16, 2	2020
	Source: Location: Contact: Tester: Permit #: Action Code:	Aluminum Sweat Furnace Exhaust (II.A.2) Magna, Salt Lake County, Utah Steve Allen: 801-414-1737 TETCO DAQE-AN157400001-17, dated November 28, 2017 Report Audit

The DAQ received a stack test report for the stack emissions testing of the above listed unit located at Altech Recovery, LLC in Salt Lake County, Utah on July 17, 2020. Testing was performed on May 27, 2020, to determine compliance with the PM_{10} and $PM_{2.5}$ emission limits found in condition II.B.2.a of DAQE-AN157400001-17

Source	Test Date	Pollutant	DAQ Results	Tester Results	Limits
Aluminum	6-5-19	PM_{10} and	0.1354 lb/ton	0.135 lb/ton	4.40 lb/ton
Sweat		PM _{2.5}			
Furnace					
Exhaust					

DEVIATIONS:	None.
CONCLUSION:	The overall stack test report appears to be acceptable.
RECOMMENDATION:	The emissions for the above listed units should be considered to have been in compliance with the PM_{10} emission limit found in condition II.B.2.a of DAQE-AN0109190017-19.
ATTACHMENTS:	TETCO's stack test report dated June 18, 2020, DAQ generated stack test review Excel spreadsheets.

Company Name Company Contact: Contact Phone No.								
Company Contact:			Source I	nformation				
Company Contact:		Altech - Af	terburner St					
		Steve Allen		lack				
onract Phone No		801-414-17						
Source Designation:		Afterburne						
				eview Dates				
Fest Date:		5/27/2020						
Review Date:		12/16/2020						Tabs Are Shown
Observer:		Unobserved						
Reviewer:		Chad G.						
			ulate Emission			-	1	
		lbs/MMBtu	lbs/ton	gr/dscf				
		Emission Da	4.400 tes - "Front a	nd Rack Hal	<i>cu</i>			
		Emission Ka	lbs/ton	gr/dscf		1		
		IDS/IVIIVI BLU	0.1354	0.0092				
		1 1	est Informati					
								٦
Stack_I.Dinches	As ft^2	Y	DI H @	Ср	Pbar	Pq (static)	Dn	
24.00	3.14	1.0000	1.503	0.84	25.8	-0.075	0.505	1
Circular								
		Cont	ractor Inform	nation				
Contracting Company: Contact: Phone No.: Project No.:		TETCO Dean Kitchen 801-792-9106						
F factors for Coal, Oil, an	d Gas ——					F fact	or used	
		Fd scf/MMBtu	Fw scf/MMBtu	Fc scf/MMBt	u		1MBtu	
COAL		O 10100	0 10540	0 1970				
Anthrocite 2			-			00	02	
Bituminous 2		0 9780	0 10640	O 1800				
Lignite		○ 9860	O 11950	○ 1910				
OIL		O 9190	O 320	0 1420				
GAS		0 0710	0 10010					
Natural		0 8710	0 10610	0 1040				
Propane		O 8710	O 10200	O 1190				
Butane		0 8710	0 10390	0 1250				
		0 0/10						

Summary Division of Air Quality Reference Methods 5 - TSP Compliance Demonstration of

Altech - Afterburner Stack

Testing Results								
Test Date	5/27/2020	5/27/2020	5/27/2020	5/27/2020				
Circular	Run 1	Run 2	Run 3	Run 4				
As ft^2	3.14	3.14	3.14					
Pbar	25.80	25.80	25.80					
Pq (static)	-0.08	-0.08	-0.08					
Ps	25.79	25.79	25.79					
Avg. Ts F	885.10	854.15	847.80					
CO2 - F _{CO2}	5.00	4.80	4.80					
02	12.20	13.20	13.40					
N2+C	82.80	82.00	81.80					
Md	29.29	29.30	29.30					
Ms	28.19	28.62	28.34					
Y	1.00	1.00	1.00					
Ср	0.84	0.84	0.84					
Vm cf	48.41	48.09	48.32					
Vlc	92.20	54.90	80.70					
A _{VG.} Tm F	89.03	85.43	83.48					
Vm std	40.29	40.29	40.63					
Vw std	4.34	2.58	3.80					
Bws	0.10	0.06	0.09					
S Bws	1.00	1.00	1.00					
Avg. Sqrt Dlp	0.26	0.26	0.26					
Vs	25.26	24.84	24.97					
scfm wet	1611.23	1621.56	1638.10					
acfm	4761.15	4681.42	4706.31					
Qsd dscfh	87274.03	91429.75	89881.83					
# Sample								
Points	8.00	8.00	8.00					
Dn	0.505	0.505	0.505					
An	1.39E-03	1.39E-03	1.39E-03					
Start Time	9:41	11:39	13:29					
End Time	10:50	12:45	14:37					
Total Test								
time	60.00	60.00	60.00					
Time @ point	3.00	3.00	3.00					

	Lab Data - grams collected				
Lab Data	Probe	Filter	Back		
Run 1	0.0048	0.0486	0.0034		
Run 2	0.0086	-0.004	0.0046		
Run 3	0.0031	0.0108	0.0043		
Run 4					

	Front Half Emissions Summary						
	Run 1	Run 2	Run 3	Run 4	Avg.		
gr./dscf	0.0205	0.0018	0.0053		0.0092		
lbs/hr	0.2550	0.0230	0.0678		0.1153		
lbs/MMBtu	#VALUE!	#VALUE!	#VALUE!				

Total Emissions Summary w/back half condensable						
	Run 1	Run 2	Run 3	Run 4	Avg.	
gr./dscf	0.0218	0.0035	0.0069		0.0107	
lbs/hr	0.2713	0.0460	0.0888		0.1354	
lbs/MMBtu	#VALUE!	#VALUE!	#VALUE!			

lbs/MMBtu
O2
O CO2

F factor used

PARTICULATE MATTER COMPLIANCE TEST CONDUCTED AT ALTECH RECOVERY, LLC ALUMINUM SWEAT FURNACE EXHAUST

MAY 27, 2020

by:

TETCO 391 East 620 South American Fork, Utah 84003 801-492-9106 (Phone) 801-4928-9107 (Fax)

REVIEWED Initials: CG Date: 12-16-20 Compliance Status: In compliance File # 15740

Prepared for:

AlTech Recovery 2050 South 7500 West Magna, UT 84044

Date of report:

June 18, 2020

SUMMARY OF RESULTS

Emission Results

Table I presents the test results. More detailed results are found in Table I, in Appendix A.

			Emission		Emission	Emission
Source			Rate	Production	Rate	Limit
	Test Method ¹	Pollutant	(lb/hr)	$(tph)^2$	(lb/ton)	(lb/ton)
Aluminum	5	PM (filterable)	0.115	-	-	-
Sweat	202	PM (condensible)	0.020	-	-	-
Furnace	5 & 202	$(PM_{10} and PM_{2.5})$	0.135	1.375	0.098	4.40

1 Methods 5 and 202 were used instead of Method 201A.

2 Tons per hour of scrap aluminum processed

Process Data

A copy of the source "Melt Report" is found in Appendix D. Two "charge"s of scrap material were loaded during each test run: one charge was added at the beginning of the test run and a second charge was added during the second half of the test run after switching test ports.

Discussion of Errors or Irregularities

There were none.

Description of Collected Samples

The test filter for run 1 was lightly discolored with gray colored particulate. The was not any visible particulate on the test filters for runs 2 and 3. The front washes were clear in appearance.

Percent Isokinetic Sampling

Each of the tests were isokinetic within the $\pm 10\%$ criterion specified in the *Federal Register*. Isokinetic values for each test run are presented in Table II.

AERMOD Model Output Summary

> 8-hr average (µg/m³ / g/s)

*** AERMOD - VERSION 21112 ***	*** C:\Projects\EESolutions\Complete Recycling\Air Toxics\AERMOD\Furnace	* * *	10/07/22
*** AERMET - VERSION 21112 ***	***	* * *	14:21:24
			PAGE 107

*** MODELOPTs: NonDFAULT CONC FLAT and ELEV RURAL ADJ_U*

*** THE SUMMARY OF HIGHEST 8-HR RESULTS ***

** CONC OF AL IN MICROGRAMS/M**3 **

		DATE				NETWORK
GROUP ID	AVERAGE CONC	(YYMMDDHH)	RECEPTOR	(XR, YR, ZELEV,	ZHILL, ZFLAG)	OF TYPE GRID-ID

ALL HIGH 1ST HIGH VALUE IS 845.30539 ON 19052016: AT (421939.94, 4384925.73, 43.50, 51.21, 0.00) DC

*** RECEPTOR TYPES: GC = GRIDCART

GP = GRIDPOLR

DC = DISCCART

DP = DISCPOLR

AERMOD Dispersion Modeling Analysis For Air Toxics

Four Aluminum Sweat Furnaces (4) Complete Recycling Group, LLC Elkton, Cecil County, Maryland

October 2022

This summary report provides the results of the refined dispersion modeling analysis conducted in support of the new furnace installations at Complete Recycling Group LLC's Elkton, Maryland operations. The analyses were conducted to demonstrate compliance with the Maryland Department of Environment's (MDE's) air toxics Screening Level of $10 \,\mu g/m^3$ for Aluminum. Only estimated Aluminum emissions are above the Allowable Emission Rate (AER) per COMAR Chapter 26.11.16.02.

This modeling is submitted as part of the air permit application for a permit-to-construct for installation and operation of two (2) new identical sweat furnaces.

Modeling Methodology

The methodologies used in the dispersion modeling analyses were based upon the guidance contained in the <u>Guideline on Air Quality Models (Revised)</u> (USEPA, 2017) and its prior supplements as well as <u>User's Guide for the AMS/EPA Regulatory Model (AERMOD)</u> (USEPA, 2022).

The most current version (Version No. 22112) of the USEPA-approved dispersion model AERMOD was used in the dispersion modeling analyses. The model is capable of estimating ground-level concentrations from multiple sources and can incorporate the effects of building downwash on the predicted concentrations. The model also calculates concentrations expected in any cavity regions which include off-site receptors, thus eliminating the need to run a model for cavity concentrations.

In addition, the model includes complex terrain algorithms, thus allowing the model to select the appropriate algorithms for intermediate and complex terrain. The AERMOD model directly predicts applicable maximum short-term (i.e., 1-hour, 3-hour, 8-hour, 24-hour) and annual average concentrations.

The sweat furnace source parameters and emissions are based on site conditions and the hourly (lb/hr) rates contained in the air permit application (See Form 5EP).

A "Good Engineering Practice" (GEP) stack height analysis was performed to determine the wake effects and downwash conditions and account for them in the dispersion modeling.

1

Building wake effects generally cause higher predicted concentrations near a point source. A GEP/wake effect analysis was performed using the procedures outlined in the Guideline for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations) Revised (USEPA, 1985) as utilized in the Building Profile and Input Program with PRIME algorithm (BPIPPRM, Version 04274).

The refined dispersion modeling analyses with AERMOD utilized a dense cartesian receptor grid that extends out to 1 km from the site. Receptors were placed at 10-meter spacing along facility property boundaries and out to 20 meters downwind, 25-meter spacing to 250 meters downwind, 50-meter spacing to 500 meters downwind, and 100-meter spacing to 1000 meters downwind. Additional receptors surrounding the maximum impact locations were not deemed necessary as the receptor spacing was sufficient to bracket the maximum predicted concentrations.

Terrain elevations were developed using USGS NED 1/3 data (~10 meter resolution) and the AERMAP program. The higher resolution data was used to better resolve the terrain features in the near-field areas around the site.

The refined modeling was conducted with a recent five-year (2017-2021) meteorological data set as processed through AERMET by the MDE. The data set consisted of hourly surface meteorological data from the National Weather Service at the Bellanca Airfield (New Castle) Airport, Delaware (Station No. 13781), with coincident upper-air data from Sterling, VA (Station No. 93734). The data is considered appropriate to represent the dispersion conditions at the plant site. The AERSURFACE program was used to determine the surface characteristics for the airport site. The program provides sector-averaged surface characteristics by sector using a "geo.dat" file created by the CALMET geo preprocessors from land use/land cover data files.

Modeling Results

The results of the dispersion modeling are provided in the attached table and output summary. The maximum ambient concentrations occurred at or near the northern property fenceline/ boundary along West Pulaski Highway. The concentration is below the Aluminum Screening Level of $10 \mu g/m^3$ (54% of Screening Level).