AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

DOCKET #03-24

- COMPANY: Brandywine Green, LLC dba Agape Pet Services
- LOCATION: 19712 Shepherdstown Pike Boonsboro, Maryland 21713
- APPLICATION: Installation of five (5) animal crematories to replace three (3) existing crematories.

ITEM	DESCRIPTION
1	Notice of Application and Opportunity to Request an Informational Meeting
2	Environmental Justice (EJ) Information - EJ Fact Sheet and MDE Score and Screening Report
3	Permit to Construct Application Forms - Form 5T, Form 10, Form 5EP, Form 27; Vendor/manufacturer specifications/guarantees; Evidence of Workman's Compensation Insurance; Process flow diagrams with emission points; Site plan including the location of the proposed source and property boundary; Material balance data and emissions calculations, testing data and modeling report
4	Zoning Approval

MARYLAND DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND OPPORTUNITY TO REQUEST AN INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Brandywine Green, LLC dba Agape Pet Services on February 26, 2024 for the installation of five animal crematories to replace three existing animal crematories. The proposed installation will be located at 19712 Shepherdstown Pike, Boonsboro, Maryland 21713.

In accordance with HB 1200/Ch. 588 of 2022, the applicant provided an environmental justice (EJ) Score for the census tract in which the project is located using the MDE EJ Screening Tool. The EJ Score, expressed as a statewide percentile, was shown to be 37.7%, which the Department has verified. This score considers three demographic indicators, minority population above 50%, poverty rate above 25% and limited English proficiency above 15%, to identify underserved communities. Multiple environmental health indicators are used to identify overburdened communities.

Copies of the application, the MDE EJ Screening Tool Report (which includes the score), and other supporting documents are available for public inspection on the Department's website at https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx (click on Docket Number 03-24). Any applicant-provided information regarding a description of the environmental and socioeconomic indicators contributing to that EJ score can also be found at the listed website. Such information has not yet been reviewed by the Department. A review of the submitted information will be conducted when the Department undertakes its technical review of all documents included in the application.

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Department will hold an informational meeting to discuss the application and the permit review process if the Department receives a written request for a meeting within 10 working days from the date of the second publication of this notice. A requested informational meeting will be held virtually using teleconference or internet-based conferencing technology unless a specific request for an inperson informational meeting is received. All requests for an informational meeting should be directed to the attention of Ms. Shannon Heafey, Air Quality Permits Program by email to shannon.heafey@maryland.gov or by mail to the Air and Radiation Administration, 1800 Washington Boulevard, Baltimore, Maryland 21230. Further information may be obtained by calling Ms. Shannon Heafey at 410-537-4433.

Christopher R. Hoagland, Director Air and Radiation Administration

The Applicant's Guide to Environmental Justice and Permitting

What You Need to Know

This fact sheet is designed to provide guidance to applicants on incorporating environmental justice screening requirements pursuant to House Bill 1200, effective October 1, 2022.

What is Environmental Justice?

The concept behind the term environmental justice (EJ) is that regardless of race, color, national origin, or income, all Maryland residents and communities should have an equal opportunity to enjoy an enhanced quality of life. How to assess whether equal protection is being applied is the challenge.

Communities surrounded by a disproportionate number of polluting facilities puts residents at a higher risk for health problems from environmental exposures. It is important that residents who may be adversely affected by a proposed source be aware of the current environmental issues in their community in order to have meaningful involvement in the permitting process. Resources may be available from government and private entities to ensure that community health is not negatively impacted by a new source located in the community.

Extensive research has documented that health disparities exist between demographic groups in the United States, such as differences in mortality and morbidity associated with factors that include race/ethnicity, income, and educational attainment. House Bill 1200 adds to MDE's work incorporating diversity, equity and inclusion into our mission to help overburdened and underserved communities with environmental issues.

What is House Bill 1200 and what does it require?

Effective October 1, 2022, House Bill 1200 requires a person applying for a permit from the Department under §1-601 of the Environment Article of the Annotated Code of Maryland or any permit requiring public notice and participation to include in the application an EJ Score for the census tract where the applicant is seeking the permit; requiring the Department, on receiving a certain permit application to review the EJ Score; and requiring notices to include information related to EJ Scores and generally relating to environmental permits and environmental justice screenings.

What is a "Maryland EJ Tool"?

The term "Maryland EJ Tool" means a publicly available state mapping tool that allows users to: (1) explore layers of environmental justice concern; (2) determine an overall EJ score for census tracts in the state; and (3) view additional context layers relevant to an area. The MDE EJ Screening Tool is considered a Maryland EJ Tool.

What is an "EJ Score"?

The term "EJ Score" means an overall evaluation of an area's environment and environmental justice indicators, as defined by MDE in regulation, including: (1) pollution burden exposure; (2) pollution burden environmental effects; (3) sensitive populations; and (4) socioeconomic factors.

The MDE EJ Screening Tool considers three demographic indicators, minority population above 50%, poverty rate above 25% and limited English proficiency above 15%, to identify underserved communities, and multiple environmental health indicators to identify overburdened communities. The tool uses these indicators to calculate a

www.mde.maryland.gov

The Applicant's Guide to Environmental Justice and Permitting

What You Need to Know

Final EJ Score Percentile, statewide. It is that score, linked to the census tract where the project is to be located, that needs to be reported to MDE as part of your permit application.

What does the application require?

The link for the MDE EJ Screening Tool is located on the Department's website, www.mde.maryland.gov. Click on the Environmental Justice header at the top of the Department's home page, then select EJ Screening Tool from the menu on the left. Click on Launch the EJ Screening Tool. After you open the tool, click okay on the opening screen. At the top right, please click the first button for the MDE Screening Report. Input the address of the proposed installation in the address bar. Click on the Report button. Once the report has been generated select the print icon and save it in a .pdf format.

The applicant needs to include the MDE Screening Report with the EJ Score from the MDE EJ Screening Tool as part of the permit application upon submission. An application will not be considered complete without the report.

The applicant is encouraged to provide the Department with a discussion about the environmental exposures in the community. This will provide pertinent information about how the applicant should proceed with engaging with the community. Residents of a community with a high indicator score and a high degree of environmental exposure should be afforded broader opportunities to participate in the permit process and understand the impacts a project seeking permit approval may have on them.

Questions

For air quality permits, please call 410-537-3230. For water permits, please call 410-537-4145. For land permits pertaining to Solid Waste, please call 410-537-3098. For land permits pertaining to Oil Control, please call 410-537-3483. For land permits pertaining to Animal Feeding Operations, please call 410-537-4423. For land permits pertaining to Biosolids, please call 410-537-3403.

www.mde.maryland.gov

Area of Interest (AOI) Information

Area : 3.14 mi²

Feb 19 2024 17:06:49 Central Standard Time

Summary

Name	Count	Area(mi²)	Length(mi)
MDE Final EJ Score (%ile score)	2	3.14	N/A
Overburdened Communities Combined Score	2	3.14	N/A
Overburdened Pollution Environmental Score (%ile score)	2	3.14	N/A
Overburdened Exposure Score (%ile score)	2	3.14	N/A
Overburdened Sensitive Population (%ile score)	2	3.14	N/A
Socioeconomic/Demographic Score 2020 (Percentile score) (Underserved Community)	2	3.14	N/A
Air Emissions Facilities	1	N/A	N/A
Sulfur Dioxide (2010)	0	0	N/A
Ozone (2015)	1	3.14	N/A
Fine Particles (2012)	1	3.14	N/A
Biosolids FY 2020 and Current Permit Details	0	N/A	N/A
Biosolids FY2010 - 2014 Permit Details	0	N/A	N/A
Biosolids FY2009 Expired Permit Details	0	N/A	N/A
Biosolids FY 2020 and Current Permits Distribution By Acreage	1	3.14	N/A
Biosolids FY2015 - 2019 Permits Distribution By Acreage	1	3.14	N/A
Biosolids FY2010 - 2014 Permits Distribution By Acreage	1	3.14	N/A
Biosolids FY2009 Permits Expired Distribution By Acreage	1	3.14	N/A
Biosolids FY 2020 and Current Permit Distribution By Percent Coverage	1	3.14	N/A
Biosolids FY2015 - 2019 Permit Distribution By Percent Coverage	1	3.14	N/A
Biosolids FY2010 - 2014 Permit Distribution By Percent Coverage	1	3.14	N/A
Biosolids FY2009 Expired Permit Distribution By Percent Coverage	1	3.14	N/A

Concentrated Animal Feeding Operations0N/AN/ACompositing Facilitios0N/AN/AFood Strap Acceptors0N/AN/ALandfills0N/AN/ACorrectional Facilities0N/AN/AIndustrial Food Suppliers0N/AN/AResidential Colleges0N/AN/ANon-Residential Colleges0N/AN/AHospitals0N/AN/AHospitals0N/AN/AGrocery Stores0N/AN/A10 Miles from Landfill10.26N/A10 Miles from Compositing Facility00N/AGeneral Compositing Facility00N/AOut of State Facilities0N/AN/AOut of State Facilities0N/AN/ADeterminations (pricits)0N/AN/ADeterminations (pricits)0N/AN/AAdd Restoration Facilities0N/AN/AAdd Restoration Facilities0N/AN/ADeterminations (pricits)0N/AN/ADeterminations (pricits)0N/AN/AAdird Panitities <t< th=""><th></th><th></th><th></th><th></th></t<>				
Food Scrap Acceptors0N/AN/ALandfills0N/AN/ACorrectional Facilities0N/AN/AIndustrial Food Suppliers0N/AN/AResidential Colleges0N/AN/ANon-Rasidomital Colleges0N/AN/AHospitals0N/AN/AHospitals0N/AN/AGroerey Stores0N/AN/AGroerey Stores0N/AN/A10 Miles from Campositing Facilities0N/AN/A10 Miles from Compositing Facilities0N/AN/AGeneral Compositing Facilities0N/AN/ACommercial Anaerobic Digester (MD)0N/AN/AOut of Stato Facilities0N/AN/A30 mile buffer (Maryland)13.14N/ADeterminations (points)0N/AN/ADeterminations (points)0N/AN/ADeterminations (points)0N/AN/AActive Coal Mine Stats0N/AN/AAltiber Facilities0N/AN/AAltiber Statis0N/AN/AAltiber Facilities0N/AN/AAltiber Facilities0N/AN/AAltiber Marces0N/AN/AAltiber Marces0N/AN/AAltiber Marces0N/AN/AAltiber Marces0N/AN/AAltiber		0	N/A	N/A
Landfilis0NiANiACorrectional Facilities0N/AN/AIndustrial Food Suppliers0N/AN/AResidential Colleges0N/AN/ANon-Residential Colleges0N/AN/AHospitals0N/AN/AHospitals0N/AN/AHospitals0N/AN/AHigh Schools0N/AN/AGrocery Stores0N/AN/A10 Miles from Landfill10.26N/A10 Miles from Composing Facility00N/AGeneral Composing Facility0N/AN/AOut of State Facilities0N/AN/AOut of State Facilities0N/AN/AOut of State Facilities0N/AN/ADeterminations (points)0N/AN/ADeterminations (points)0N/AN/ALend Resionation Facilities0N/AN/AEntities0N/AN/AItsitonic Mine Facilities0N/AN/AItsitonic Mine Facilities0N/AN/AItsitonic Mine Facilities0N/AN/AActive Coal Mine State0N/AN/AAll Permitted Solid Waste Acceptance Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities0N/AN/AMaryl	Composting Facilities	0	N/A	N/A
Correctional Facilities0N/AN/AIndustrial Food Suppliers0N/AN/AResidential Colleges0N/AN/ANon-Residential Colleges0N/AN/AHospitals0N/AN/AHospitals0N/AN/AIf glb Schools0N/AN/A10 Miles from Landfill10.28N/A10 Miles from Composing Facility00N/A10 Miles from Composing Facility0N/AN/A10 Miles from Composing Facilities0N/AN/A10 Miles from Composing Facilities0N/AN/A10 Miles from Composing Facilities0N/AN/A10 Miles from Composing Facilities0N/AN/A11 Entore Miles from Composing Fa	Food Scrap Acceptors	0	N/A	N/A
Industrial Food Suppliers0N/AN/AResidential Colleges0N/AN/ANon-Residential Colleges0N/AN/AHospitals0N/AN/AHigh Schools0N/AN/AGrocery Stores0N/AN/AO Miles from Londfill10.268N/AO Miles from Composting Facility00N/AGeneral Composting Facility00N/ACommercial Anaerobic Digester (MD)0N/AN/AOut of State Facilities0N/AN/A30 Mile Buffer (Maryland)13.14N/A30 Mile Buffer (Out of State)0N/AN/ADeterminations (points)0N/AN/ADeterminations (points)0N/AN/AEntities0N/AN/AActive Coal Mine State0N/AN/AActive Coal Mine State0N/AN/AHistoric Mine Facilities0N/AN/AAltiPermited Sold Waste Acceptance0N/AN/AAltiPermited Sold Waste Acceptance Facilities0N/AN/AAltiPermited Sold Waste Acceptance0N/AN/AMunicipal Solid Waste Acceptance0N/AN/AAltiPermited Sold Waste Acceptance0N/AN/AMunicipal Solid Waste Acceptance0N/AN/AMaryland Dan Locations0N/AN/A	Landfills	0	N/A	N/A
Residential Colleges0N/AN/ANor-Residential Colleges0N/AN/AHospitals0N/AN/AHigh Schools0N/AN/AGrocery Stores0N/AN/A10 Miles from Landfill10.28N/A10 Miles from Composting Facility00N/AComposting Facility00N/ACommercial Anaerobic Digester (MD)0N/AN/AOut of State Facilities0N/AN/A30 Mile Buffer (Maryland)13.14N/A30 Mile Buffer (Out of State)0N/AN/ADeterminations (points)0N/AN/ADeterminations (points)0N/AN/AActive Coal Mine State0N/AN/AActive Coal Mine State0N/AN/AHistoric Mine Facilities0N/AN/AActive Coal Mine State0N/AN/AAltipermitted Solid Waste Acceptance Facilities0N/AN/AAltipermitted Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance0N/AN/AMaryland Dam Locations0N/AN/AMaryland Pond Locations1N/AN/A	Correctional Facilities	0	N/A	N/A
Non-Residential Colleges0N/AN/AHospitals0N/AN/AHospitals0N/AN/AHigh Schools0N/AN/AGrocery Stores0N/AN/A10 Miles from Landfill10.26N/A10 Miles from Composting Facility0N/AN/AGeneral Composting Facility0N/AN/ACommercial Anaerobic Digester (MD)0N/AN/AOut of State Facilities0N/AN/AOut of State Facilities0N/AN/AOut of State Facilities0N/AN/AOut of State Facilities0N/AN/ADuffer (Maryland)13.14N/ADeterminations (areas)0N/AN/ADeterminations (areas)0N/AN/ALetrinet Solid Waste Acceptance Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance Facilities0 <t< td=""><td>Industrial Food Suppliers</td><td>0</td><td>N/A</td><td>N/A</td></t<>	Industrial Food Suppliers	0	N/A	N/A
Hospitals0N/AN/AHigh Schools0N/AN/AGrocery Stores0N/AN/A10 Miles from Landfill10.26N/A10 Miles from Composting Facility00N/AGeneral Composting Facility Tier 2 (MD)0N/AN/ACommercial Anaerobic Digester (MD)0N/AN/AOut of State Facilities0N/AN/AOut of State Facilities0N/AN/A30 mile buffer (Maryland)13.14N/A20 Mile Suffer (Out of State)0N/AN/ADeterminations (areas)0N/AN/ADeterminations (areas)0N/AN/AActive Coal Mine Sites0N/AN/AAll Permitted Solid Waste Acceptance Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMunicipal Apol Decations0N/AN/AMaryland Pond Locations1N/AN/A	Residential Colleges	0	N/A	N/A
High Schools0N/AN/AGrocery Stores0N/AN/A10 Miles from Landfill10.26N/A10 Miles from Composting Facility00N/AGeneral Composting Facility0N/AN/ACommercial Anaerobic Digester (MD)0N/AN/AOut of State Facilities0N/AN/A20 mile buffer (Maryland)13.14N/A30 Mile Buffer (Out of State)00N/A20 mile buffer (Maryland)00N/A30 Mile Buffer (Out of State)0N/AN/A20 berminations (points)0N/AN/ADeterminations (areas)0N/AN/AEntries0N/AN/AActive Coal Mine Sites0N/AN/AAll Permitted Solid Waste Acceptance1N/AN/AAll Permitted Solid Waste Acceptance0N/AN/AMunicipal Solid Waste Acceptances0N/AN/AMaryland Pond Locations1N/AN/A	Non-Residential Colleges	0	N/A	N/A
Grocery Stores0N/AN/A10 Miles from Landfill10.26N/A10 Miles from Composting Facility00N/A10 Miles from Composting Facility00N/AGeneral Composting Facilities Tier 2 (MD)0N/AN/ACommercial Anaerobic Digester (MD)0N/AN/AOut of State Facilities0N/AN/AOut of State Facilities0N/AN/A30 mile buffer (Maryland)13.14N/A30 Mile Buffer (Out of State)00N/ALand Restoration Facilities0N/AN/ADeterminations (points)0N/AN/ADeterminations (areas)0N/AN/AEntities0N/AN/AActive Coal Mine Sites0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMunicipal Applications0N/AN/AMaryland Den Locations1N/AN/A	Hospitals	0	N/A	N/A
10 Miles from Landfill10.26N/A10 Miles from Composing Facility00N/A10 Miles from Composing Facility0N/AN/AGeneral Composing Facilities Tier 2 (MD)0N/AN/ACommercial Anaerobic Digester (MD)0N/AN/AOut of State Facilities0N/AN/A30 mile buffer (Maryland)13.14N/A30 Mile Buffer (Out of State)00N/ALand Restoration Facilities0N/AN/ADeterminations (points)0N/AN/ADeterminations (areas)0N/AN/AActive Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMuricipal Acceptance Facilities0N/AN/AMaryland Pond Locations1N/AN/A	High Schools	0	N/A	N/A
10 Miles from Composting Facility00N/AGeneral Composting Facilities Tie 2 (MD)0N/AN/ACommercial Anaerobic Digester (MD)0N/AN/AOut of State Facilities0N/AN/A30 mile buffer (Maryland)13.14N/A30 Mile Buffer (Out of State)00N/A30 Mile Buffer (Out of State)0N/AN/ADeterminations (points)0N/AN/ADeterminations (areas)0N/AN/AEntities0N/AN/AActive Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMuricipal Solid Waste Acceptance Facilities0N/AN/AMuricipal Solid Waste Acceptance Facilities1N/AN/AMuricipal Solid Waste Acceptance Facilities0N/AN/AMuricipal Solid Waste Acceptance Facilities0N/AN/AMuricipal Acceptance Facilities0N/AN/AMuricipal Acceptance Facilities0N/AN/AMaryland Dond Locations1N/AN/A	Grocery Stores	0	N/A	N/A
General Composting Facilities Tier 2 (MD)0N/AN/ACommercial Anaerobic Digester (MD)0N/AN/AOut of State Facilities0N/AN/A30 mile buffer (Maryland)13.14N/A30 Mile Buffer (Out of State)00N/A10 mile buffer (Maryland)0N/AN/A20 Mile Buffer (Out of State)00N/A20 mile buffer (Out of State)0N/AN/A20 mi	10 Miles from Landfill	1	0.26	N/A
Commercial Anaerobic Digester (MD)0N/AN/AOut of State Facilities0N/AN/A30 mile buffer (Maryland)13.14N/A30 Mile Buffer (Out of State)00N/A30 Mile Buffer (Out of State)00N/ALand Restoration Facilities0N/AN/ADeterminations (points)0N/AN/ADeterminations (areas)00N/AEntities0N/AN/AActive Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations0N/AN/AMaryland Pond Locations1N/AN/A	10 Miles from Composting Facility	0	0	N/A
Out of State Facilities0N/AN/A30 mile buffer (Maryland)13.14N/A30 Mile Buffer (Out of State)00N/A30 Mile Buffer (Out of State)00N/ALand Restoration Facilities0N/AN/ADeterminations (points)0N/AN/ADeterminations (areas)00N/AEntities0N/AN/AActive Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations1N/AN/AMaryland Pond Locations1N/AN/A	General Composting Facilities Tier 2 (MD)	0	N/A	N/A
30 mile buffer (Maryland)13.14N/A30 Mile Buffer (Out of State)00N/A30 Mile Buffer (Out of State)00N/ALand Restoration Facilities0N/AN/ADeterminations (points)0N/AN/ADeterminations (areas)00N/AEntities0N/AN/AActive Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations0N/AN/AMaryland Pond Locations1N/AN/A	Commercial Anaerobic Digester (MD)	0	N/A	N/A
30 Mile Buffer (Out of State)00N/A30 Mile Buffer (Out of State)0N/AN/ALand Restoration Facilities0N/AN/ADeterminations (points)0N/AN/ADeterminations (areas)00N/AEntities0N/AN/AActive Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations1N/AN/A	Out of State Facilities	0	N/A	N/A
Land Restoration Facilities0N/AN/ADeterminations (points)0N/AN/ADeterminations (areas)00N/AEntities0N/AN/AActive Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations0N/AN/AMaryland Pond Locations1N/AN/A	30 mile buffer (Maryland)	1	3.14	N/A
Determinations (points)0N/AN/ADeterminations (areas)00N/ADeterminations (areas)00N/AEntities0N/AN/AActive Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations0N/AN/AMaryland Pond Locations1N/AN/A	30 Mile Buffer (Out of State)	0	0	N/A
Determinations (areas)00N/AEntities0N/AN/AEntities0N/AN/AActive Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations0N/AN/AMaryland Pond Locations1N/AN/A	Land Restoration Facilities	0	N/A	N/A
Entities0N/AN/AActive Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations0N/AN/AMaryland Pond Locations1N/AN/A	Determinations (points)	0	N/A	N/A
Active Coal Mine Sites0N/AN/AHistoric Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations0N/AN/AMaryland Pond Locations1N/AN/A	Determinations (areas)	0	0	N/A
Historic Mine Facilities0N/AN/AAll Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations0N/AN/AMaryland Pond Locations1N/AN/A	Entities	0	N/A	N/A
All Permitted Solid Waste Acceptance Facilities1N/AN/AMunicipal Solid Waste Acceptance Facilities0N/AN/AMaryland Dam Locations0N/AN/AMaryland Pond Locations1N/AN/A	Active Coal Mine Sites	0	N/A	N/A
FacilitiesIIIIIMunicipal Solid Waste Acceptance Facilities0N/AN/AN/AMaryland Dam Locations0N/AN/AN/AMaryland Pond Locations1N/AN/AN/A	Historic Mine Facilities	0	N/A	N/A
Maryland Dam Locations 0 N/A Maryland Pond Locations 1 N/A		1	N/A	N/A
Maryland Pond Locations 1 N/A N/A	Municipal Solid Waste Acceptance Facilities	0	N/A	N/A
	Maryland Dam Locations	0	N/A	N/A
	Maryland Pond Locations	1	N/A	N/A
Surface Water Intakes 0 N/A N/A	Surface Water Intakes	0	N/A	N/A

Wastewater Discharge Facilities	1	N/A	N/A
Drinking Water	0	N/A	N/A
Clean Water	0	N/A	N/A

MDE Final EJ Score (%ile score)

#	Census tract identifier	Geographic Area Name	Total Population	Final EJ Score Percent (for this tract)	Final EJ Score Percentile (Distribution across Maryland)	Area(mi²)
1	24043011501	Census Tract 115.01, Washington County, Maryland	4508	27.73	37.73	2.91
2	24043011400	Census Tract 114, Washington County, Maryland	6516	26.75	32.40	0.22

Overburdened Communities Combined Score

#	¥	GEOID20	Geographic_Area_ Name	TotalPop	Overburd_Exposu re_Percent	Overburd_Exposu re_Percentile	Overburd_Poll_En viro_Percent	Overburd_Poll_En viro_Percentile	Sensitive_Populati on_Percent
1		24043011501	Census Tract 115.01, Washington County, Maryland	4,508	41.65	23.17	5.66	37.59	78.22
2		24043011400	Census Tract 114, Washington County, Maryland	6,516	39.70	13.94	5.61	37.39	66.08

#	Sensitive_Population_Percentile	OverburdenedAllPercent	OverburdenedAllPercentile	Area(mi²)
1	89.41	70.68	44.63	2.91
2	64.80	54.07	54.27	0.22

Overburdened Pollution Environmental Score (%ile score)

#	GEOID20	Geographic_Area_ Name	RentalsOccupiedP re79Percent	Percentile	PercentRMP	PercentRMPEJ	PercentHazWaste	PercentHazWaste EJ
1	24043011501	Census Tract 115.01, Washington County, Maryland	12.52	51.54	1.52	2.13	0.40	2.18
2	24043011400	Census Tract 114, Washington County, Maryland	9.62	58.92	2.41	6.15	1.34	7.26

#	PercentSuperFund NPL	PercentSuperFund NPLEJ	PercentHazWW	PercentHazWWEJ	BrownFPercent	Percentile_1	PercentPowerPlan ts	Percentile_12
1	3.76	5.50	32.73	14.88	0.00	0.00	0.00	0.00
2	4.42	10.15	32.73	23.80	0.00	0.00	0.00	0.00

#	PercentCAFOS	Percentile_12_13	PercentActiveMines	Percentile_12_13_14	PollutionEnvironment alPercent	PollnEnvironmentalP ercentile	Area(mi²)
1	0.00	0.00	0.00	0.00	5.66	37.59	2.91
2	0.00	0.00	0.00	0.00	5.61	37.39	0.22

Overburdened Exposure Score (%ile score)

#	GEOID20	Geographic_Area_ Name	Total_Pop	PercentNATA_Can cer	Percentile_NATA_ Cancer	PercentNATA_Res p_HI	Percentile_NATA_ Resp_HI	PercentNATA_Dies el
1	24043011501	Census Tract 115.01, Washington County, Maryland	4,508.00	60.00	9.46	60.00	6.25	16.09
2	24043011400	Census Tract 114, Washington County, Maryland	6,516.00	60.00	15.73	60.00	10.40	16.16

#	Percentile_NATA_ Diesel	PercentNATA_PM2 5	PercentileNATA_P M25	PercentOzone	PercentileOzone	PercentTraffic	PercentileTraffic	PercentTRI
1	3.86	92.44	6.94	87.93	4.93	0.07	0.58	0.00
2	6.42	92.43	11.54	88.57	8.62	0.46	3.66	0.00

#	PercentileTRI	PercentHazWasteLF	Percentile_HazWasteLF	PollutionExposurePercen t	PollutionExposurePercen tile	Area(mi²)
1	0.00	16.67	95.49	41.65	23.17	2.91
2	0.00	0.00	0.00	39.70	13.94	0.22

Overburdened Sensitive Population (%ile score)

1 24043011501	Census Tract 115.01, Washington	90.73	87.15	90.53	85.10	20.07	
	County, Maryland					39.87	50.10
2 24043011400	Census Tract 114, Washington County, Maryland	82.20	95.97	82.70	95.69	19.00	33.90

#	PercentBroad	PercentileBroad	PercentSens	PercentileSens	Area(mi²)
1	7.80	43.61	57.23	66.49	2.91
2	19.59	97.20	50.87	80.69	0.22

Socioeconomic/Demographic Score 2020 (Percentile score) (Underserved Community)

#	Census tract identifier	Geographic Area Name	Total Population	Percent Poverty	Percent Minority	Percent Limited English Proficiency	Demographic Score (Percent for this tract)	Demographic Score (Percentile Distribution acoss Maryland)	Area(mi²)
1	24043011501	Census Tract 115.01, Washington County, Maryland	4,508	16.40	2.75	0.00	6.38	5.28	2.91
2	24043011400	Census Tract 114, Washington County, Maryland	6,516	23.84	8.01	0.55	10.80	19.60	0.22

Air Emissions Facilities

#	Agency Interest ID	Facilty Name	Agency Interest Alt Name	Premises ID	Emission Year	Air Code	NAIC Code	NAIC Description
1	31943 Agape Pet Services Agape Pet Services-31943 C		043-0468	2021	SOP	812,220	Cemeteries and Crematories	
#						Carbon Monoxide		Particulate Matter
#	Physical Address	Physical City	Physical State	Physical Zip Code	County	(CO)	Nitrous Oxide	(PT)

#	Particulate Matter (10 Filterable)	Particulate Matter (2.5 Filterable)	PM Condensables	Volatile Organic Compounds (VOC)	Sulphur Dioxide (SOx)	Carbon Dioxide	Mercury	Methane
1	0.00	0.00	0.62	7.89	5.26	7,739.25	0.00	0.15
#	# Billable Criteria Pollutants (BCRI)		Billiable Hazardous	s Pollutants (BHAP)	Hazardous Air Po	nd Non-Bilable Ilutant Emissions PS)	Co	unt
1	28.90		0.00		0.00		1	

Ozone (2015)

ŧ	STATEFP10	COUNTYFP10	COUNTYNS10	GEOID10	NAME10	Ozone NAA Area	8-Hr Ozone (2015) Designation	8-HR Ozone (2015) Classification	8-Hr Ozone (2015) Status	Area(mi²)
1	24	043	01714220	24043	Washington	No Data	Attainment/Unc lassifiable	No Data	No Data	3.14

Fine Particles (2012)

#	STATEFP10	COUNTYFP10	COUNTYNS10	GEOID10	NAME10	PM2.5 (2012) Status	Area(mi²)
1	24	043	01714220	24043	Washington	Attainment/Unclassifia ble	3.14

Biosolids FY 2020 and Current Permits Distribution By Acreage

#	County Name	FY2020andAfter	Area(mi²)
1	Washington	158.10	3.14

Biosolids FY2015 - 2019 Permits Distribution By Acreage

#	County Name	FY2015to2019	Area(mi²)
1	Washington	97.30	3.14

Biosolids FY2010 - 2014 Permits Distribution By Acreage

#	County Name	FY2010to2014	Area(mi²)
1	Washington	289.10	3.14

Biosolids FY2009 Permits Expired Distribution By Acreage

	#	County Name	FY2009	Area(mi²)
1	1	Washington	No Data	3.14

Biosolids FY 2020 and Current Permit Distribution By Percent Coverage

#	County Name	FY2020andAfter	Area(mi²)	
1	Washington	158.10	3.14	

Biosolids FY2015 - 2019 Permit Distribution By Percent Coverage

#	County Name	FY2015to2019	Area(mi²)	
1	Washington	97.30	3.14	

Biosolids FY2010 - 2014 Permit Distribution By Percent Coverage

#	County Name	FY2010to2014	Area(mi²)	
1	Washington	289.10	3.14	

Biosolids FY2009 Expired Permit Distribution By Percent Coverage

#	County Name	FY2009	Area(mi²)	
1	Washington	No Data	3.14	

10 Miles from Landfill

#	County	Туре	Facility_N	ADDRESS	FILL	SITEACRE	AI_No_	Owner_Type
1	WASHINGTON	WRF	Washington Co. RubbleLandfill	11112 Kemps Mill Rd, Williamsport MD 21740.	75	100.00	23,096.00	СТҮ
#	# MD_GRID_E		PERMITNUMB		EXPIRATION		Area(mi²)	
1	568 /652		2014-WRF-0270		10/27/2019, 7:00 PM		0.26	

30 mile buffer (Maryland)

#	Facility_Name_1	Facility_Contact _1	Contact_Phone	Contact_Email_ 1	Contact_2	Contact_2_Phon e	Contact_2_Emai I	URL	Area(mi²)
1	Key City Compost at Utica Bridge Farm	Phil Westcott	(240) 608-0283	info@keycompo st.com	No Data	No Data	No Data	https://www.keyc ompost.com/	3.14

All Permitted Solid Waste Acceptance Facilities

#	county	AI_ID	master_ai_name	Facility_Type	OwnerType	permit_number	ai_physical_add ress	permit_class	Count
1	Washington	31,943	Agape Pet Services	Transfer Station	Private (Commercial)	2015-WTS-0672	19712 Shepherdstown Pike, Boonsboro, MD 21713	New	1

Maryland Pond Locations

#	Facility Type	DAM HEIGHT	County	HAZARD CLASS	6 DIGIT WATERSHED	8 DIGIT WATERSHED	Count
---	---------------	------------	--------	--------------	-------------------	-------------------	-------

Wastewater Discharge Facilities

#	AID	FAC_NAME	Comments	ValidateCo	GIS_Action	GIS_Comments	Corrective	ZipCodeCom
1	118/6	Boonsboro Lagoon- WWTL	No Data	Data Verified Accurate Against Federal HUC 8 Digit Watershed	No Data	No Data	No Data	No Data

	#	CBSEG_92	BAY_TRIB	MD12DIG	County	MDMajorTrib	HUC	Tier2Catchments_ yn	Tier2Catchments
ſ	1	POTTF_MD	02140502	021405020191	22	1	020700041008	0	No Data

#	Tier3Catchments_ yn	Tier3Catchments	SSPRA_yn	SSPRA	Impaired_yn	Impaired	WQA_yn	WQA
1	0	No Data	0	No Data	1	Habitat, Nutrients(Phosphor ous), Sediments, Stream Modification, Bacteria, Ions, (DO)	1	Nutrients

#	T3038Dig_yn	T3038Dig	TMDL8Dig_yn	TMDL8Dig	MHTArcheo_yn	MHTArcheo	Facility_Type	State_Num
1	1	lons	1	Nutrients(Phosphor ous), Sediments, Bacteria, (DO)	0	No Data	No Data	No Data
#	WatershedYear	WatershedQuart	er WatershedCode	WatershedName	SimplePermitting/ ction	A PermitAge	CycleYear	PreDraftComplete
1	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
#	DatePreDraftComp lete	DraftPermitCom eteBy	lssueBy	AppFee	Bill	Amount	DSCHG_RATE	SW_AUTH_ROD
1	No Data	No Data	No Data	No Data	0	0.00	0.00	0
#	P2_OR_C_Bay_20 00	District	SurWellName	SurWellSource	SurWellDist	CommWellName	CommWellSource	CommWellDist
1	0	2A	No Data	No Data	-99.00	No Data	No Data	-99.00
#	CommWellPr	otect	Active	Inc	lude	ManualActive		Count
1	0 1			1	1		1	

© MDE

February 20, 2024

Air Quality Permits Program Air and Radiation Administration Maryland Department of the Environment 1800 Washington Boulevard Baltimore, Maryland 21230

Re: State Permit to Operate 043-0468 Amendment, Renewal, and Change of Ownership Application

Brandywine Green, LLC dba Agape Pet Services (Agape) respectfully submits this State Permit to Operate Permit Amendment, Renewal, and Change of Ownership Application to the Maryland Department of the Environment for Permit Number 043-0468.

Brandywine Green, LLC was previously named Agape Pet Services, LLC. Agape Pet Services, LLC took ownership of Agape Pet Services. The business is currently registered with the Secretary of State as Brandywine Green, LLC.

Agape is applying to renew Permit 043-0468 and increase the allowed throughput of pets. Agape is seeking to remove the three BLP750M5 machines on site and add 5 new machines.

We appreciate your consideration of this request. If you have any comments or concerns, please contact us at (316) 402-8265 or elarkin@gatewayservicesinc.com.

Sincerely,

Emily Larkin

Emily Larkin Environmental Permitting Manager Brandywine Green, LLC

Brandywine Green, LLC Application Contents

SECTION I: MDE FORMS

Form 10 with Checklist

Form 27

FEIN Form

5T

5EP

SECTION II: Technical Information

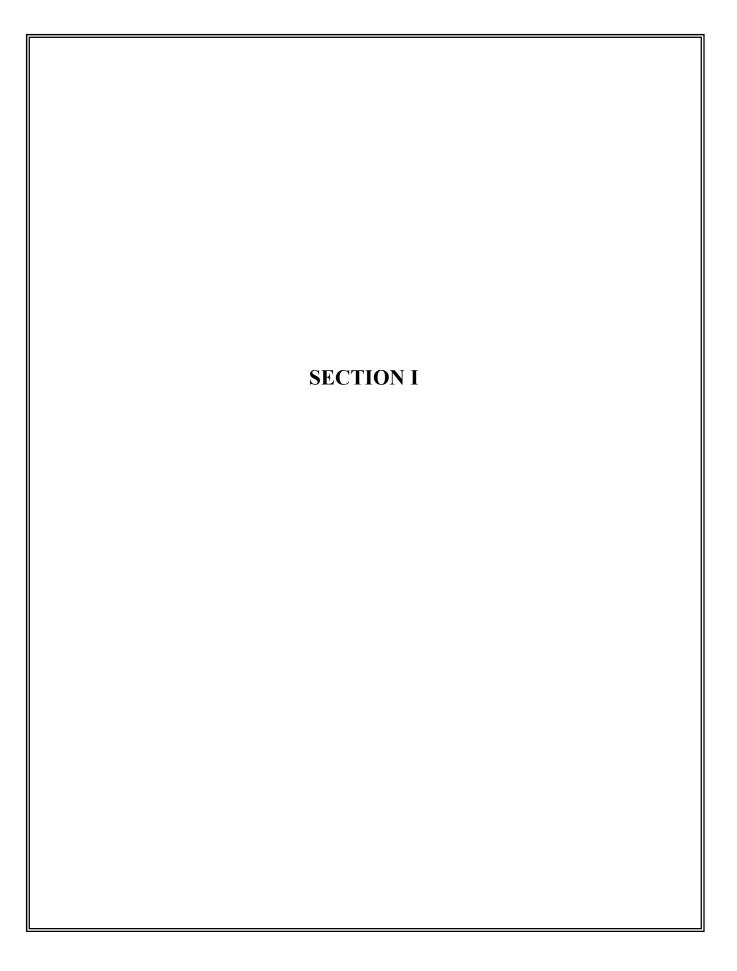
Plot Plan

Process Flow Diagram

Emissions Calculations and Methodology

Equipment Specifications

SECTION III: Supporting Documentation


Stack Test Results - Toxics, PM, and PM sizing report

Certificate of Insurance

Zoning Confirmation

Change of Ownership Proof

Environmental Justice Report

AIR QUALITY PERMIT TO CONSTRUCT APPLICATION CHECKLIST

OWNER OF EQUIPMENT/PROCESS						
COMPANY NAME:						
COMPANY ADDRESS:						
	LOCATION OF EQUIPMENT/PROCESS					
PREMISES NAME:						
PREMISES						
ADDRESS:						
CONTACT	CONTACT INFORMATION FOR THIS PERMIT APPLICATION					
CONTACT NAME:						
JOB TITLE:						
PHONE NUMBER:						
EMAIL ADDRESS:						
DESCRIPTION OF EQUIPMENT OR PROCESS						

Application is hereby made to the Department of the Environment for a Permit to Construct for the following equipment or process as required by the State of Maryland Air Quality Regulation, COMAR 26.11.02.09.

Check each item that you have submitted as part of your application package.

- Application package cover letter describing the proposed project
- Complete application forms (Note the number of forms included or NA if not applicable.)
 - No. _____ Form 11 No. _____ Form 5
 - No.
 Form 5T

 No.
 Form 5EP

 - No. ____ Form 6 No. ____ Form 10

- No.
 Form 41

 No.
 Form 42

 No.
 Form 44

- Vendor/manufacturer specifications/guarantees
- \square Evidence of Workman's Compensation Insurance
- \square Process flow diagrams with emission points
 - Site plan including the location of the proposed source and property boundary
- \square Material balance data and all emissions calculations
 - Material Safety Data Sheets (MSDS) or equivalent information for materials processed and manufactured.
- Certificate of Public Convenience and Necessity (CPCN) waiver documentation from the Public Service Commission⁽¹⁾
- Documentation that the proposed installation complies with local zoning and land \square use requirements (2)
 - (1) Required for emergency and non-emergency generators installed on or after October 1, 2001 and rated at 2001 kW or more.
 - (2) Required for applications subject to Expanded Public Participation Requirements.

MARYLAND DEPARTMENT OF THE ENVIRONMENT Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • <u>www.mde.state.md.us</u>

APPLICATION FOR FUEL BURNING EQUIPMENT

Information Regarding Public Outreach

For Air Quality Permit to Construct applications subject to public review, applicants should consider the following information in the initial stages of preparing a permit application.

If you are not sure at the time you are applying for a permit whether public review of your application is required or for information on steps you can take to engage the surrounding community where your planned project will be located, please contact the Air Quality Permits Program at 410-537-3225 and seek their advice.

Communicating and engaging the local community as early as possible in your planning and development process is an important aspect of your project and should be considered a priority. Environmental Justice or "EJ" is a movement to inform, involve, and engage communities impacted by potential and planned environmental projects by affording citizens opportunities to learn about projects and discuss any concerns regarding impacts.

Although some permit applications are subject to a formal public review process prescribed by statute, the Department strongly encourages you to engage neighboring communities separate from and well ahead of the formal permitting process. Sharing your plans by way of community meetings, informational outreach at local gatherings or through local faith-based organizations can initiate a rewarding and productive dialogue that will reduce anxiety and establish a permanent link with your neighbors in the community.

All parties benefit when there is good communication. The Department can assist applicants in developing an outreach plan that fits the needs of both the company and the public.

1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • www.mde.state.md.us

Air and Radiation Management Administration Air Quality Permits Program

Application for Incinerators

Permit to Construct \square Registration \square			DO NOT WRITE IN THIS SPACE				
1. Owner of Installation or Company Name Brandywine Green, LLC		Date of Application 1/8/2024	Date Rec. Local Date Red. State				
Mailing Address 2 Daniels Way RI		Telephone 226.962.0718	Acknowledgement Sent Date By				
City State Cranston RI 2A. Premises Name if Different from Above Agape Pet Services		Zip Code 02921	Reviewed Name Date				
2B. Incinerator Location if Different From At County and Zip Code):	oove (give Stre	et Address, City,	Local State				
19712 Shepherdstown Pike Boonsboro N 3. Owner, Agent or Authorized Company Of			Returned to Local Jurisdiction Date By				
Kevin Beveridge (Print/Type N 2 Daniels Way, Cranston, BL 02021 (Signature	·		Application Returned to Applicant Date By				
			Premises Number				
(Mailing Address, City/Tow	n, State, Zip C	ode)					
4A. New Construction Only Begin June 1, 2024 Date Construction	Installation peration Date	1 2 3 4 5 6 Registration Number					
Completed	7 8 9 10 11 12 13						
5. Installation or Contractor (New or Replace Matthews Environmental	ement Only)						
(Name or Company Title) 2045 Spirit Blvd, Apopka, FL, 32707							
(Mailing Address, City/Town, State, Zip Cod	le, Telephone I	Number)					
	nufacturer's Se EB PPJr, SN	erial or Catalog No. TBD	7. Total Number of Incinerators of Identical Design and Capacity at this Location: <u>1</u>				
8. Major Activity at this Location-Auto Deale	r, Hospital, Apa	artment House, etc.	9. Rated Capacity of Incinerator in Ib/hr: 7516-19				
Pet Crematorium							
10. Incinerator Type (Mark only one with X) Single Chamber Ö Multiple Chamber Ö 20-1 20	Auxiliary	Burner Ö Other Ö	22 Specify				
11. Frequency of Burning Hours/Day 2 4 Days/Year 3 6 5	12. Amount of	Waste Burned Per Op	tons bs. gal.				
232425262713. Method of Charging Waste into Unit:	Manu	<u>32-1 32-2</u> Ial öx Al	2 32-3 utomatic Ö				

14. Type of Waste/Refuse Incinerated. Mark major type with χ all others with Check \checkmark .
Trash 100% DryRefuse 20% GarbageRefuse 50% GarbageGarbage 35Animal or GarbageMunicipal Animal PartsInfectious/ RefuseInfectious/ Pathological33343536373819
Does this waste contain Carcinogenic or Toxic Material? Y/N Industrial Process Waste 40 Other 41
15. Total Annual Auxiliary Fuels Used Oil(gallons) Natural Gas(ft ³) 42-47 (Grade) 48 49-55 LP Gas 191,576 (gallons) Other specify fuel & units required 56-59 90-92
16. Stack Information: Height Above Ground (ft) 21 Inside Diameter at Top (in) 20 94-96 97-99 Exit Temperature (°F) 1100 Gas Exit Velocity (ft/min) 0.33 100-103 104-107
17. Emission Control Devices Gas Cleaning Form AMA-6 Must be Completed for Each Device Used and Attached to this Application.
NoneSettling ChamberSimpleMultipleVenturiElectrostaticBag- PrecipitatorAfter- burner108109110111112113114115116
Other
DO NOT WRITE BELOW THIS LINE
18. Actual Stack Emissions in Pounds per Operating Day Particulate Matter Oxides of Sulfur 119 124 Carbon Monoxide Oxides of Sulfur 137 142 Volatile Organic Compounds 143 143 148
19. Inventory Date 180 183
20. Method Used to Determine Emissions Estimate Estimate Emission Factor Stack Test Other Particulate matter 184-1 -2 -3 -4 Oxides of Sulfur Image: Stack Test Other Oxides of Nitrogen 186-1 -2 -3 -4 Carbon Monoxide Image: Stack Test Other Volatile Organics 188-1 -2 -3 -4 187-1 -2 -3 -4
21. Premises Information Premises Name

Form number: 10 Revision date: 09/27/2002 TTY Users 1-800-735-2258

AIR QUALITY PERMIT TO CONSTRUCT APPLICATION CHECKLIST

OWNER OF EQUIPMENT/PROCESS						
COMPANY NAME:						
COMPANY ADDRESS:						
	LOCATION OF EQUIPMENT/PROCESS					
PREMISES NAME:						
PREMISES						
ADDRESS:						
CONTACT	CONTACT INFORMATION FOR THIS PERMIT APPLICATION					
CONTACT NAME:						
JOB TITLE:						
PHONE NUMBER:						
EMAIL ADDRESS:						
DESCRIPTION OF EQUIPMENT OR PROCESS						

Application is hereby made to the Department of the Environment for a Permit to Construct for the following equipment or process as required by the State of Maryland Air Quality Regulation, COMAR 26.11.02.09.

Check each item that you have submitted as part of your application package.

- Application package cover letter describing the proposed project
- Complete application forms (Note the number of forms included or NA if not applicable.)
 - No. _____ Form 11 No. _____ Form 5
 - No.
 Form 5T

 No.
 Form 5EP

 - No. ____ Form 6 No. ____ Form 10

- No.
 Form 41

 No.
 Form 42

 No.
 Form 44

- Vendor/manufacturer specifications/guarantees
- \square Evidence of Workman's Compensation Insurance
- \square Process flow diagrams with emission points
 - Site plan including the location of the proposed source and property boundary
- \square Material balance data and all emissions calculations
 - Material Safety Data Sheets (MSDS) or equivalent information for materials processed and manufactured.
- Certificate of Public Convenience and Necessity (CPCN) waiver documentation from the Public Service Commission⁽¹⁾
- Documentation that the proposed installation complies with local zoning and land \square use requirements (2)
 - (1) Required for emergency and non-emergency generators installed on or after October 1, 2001 and rated at 2001 kW or more.
 - (2) Required for applications subject to Expanded Public Participation Requirements.

MARYLAND DEPARTMENT OF THE ENVIRONMENT Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • <u>www.mde.state.md.us</u>

APPLICATION FOR FUEL BURNING EQUIPMENT

Information Regarding Public Outreach

For Air Quality Permit to Construct applications subject to public review, applicants should consider the following information in the initial stages of preparing a permit application.

If you are not sure at the time you are applying for a permit whether public review of your application is required or for information on steps you can take to engage the surrounding community where your planned project will be located, please contact the Air Quality Permits Program at 410-537-3225 and seek their advice.

Communicating and engaging the local community as early as possible in your planning and development process is an important aspect of your project and should be considered a priority. Environmental Justice or "EJ" is a movement to inform, involve, and engage communities impacted by potential and planned environmental projects by affording citizens opportunities to learn about projects and discuss any concerns regarding impacts.

Although some permit applications are subject to a formal public review process prescribed by statute, the Department strongly encourages you to engage neighboring communities separate from and well ahead of the formal permitting process. Sharing your plans by way of community meetings, informational outreach at local gatherings or through local faith-based organizations can initiate a rewarding and productive dialogue that will reduce anxiety and establish a permanent link with your neighbors in the community.

All parties benefit when there is good communication. The Department can assist applicants in developing an outreach plan that fits the needs of both the company and the public.

1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • www.mde.state.md.us

Air and Radiation Management Administration Air Quality Permits Program

Application for Incinerators

Permit to Construct \square Registration \square	DO NOT WRITE IN THIS SPACE					
1. Owner of Installation or Company Name Brandywine Green, LLC		Date of Application 1/8/2024	Date Rec. Local Date Red. State			
Mailing Address 2 Daniels Way RI		Telephone 226.962.0718	Acknowledgement Sent Date			
City State Cranston RI 2A. Premises Name if Different from Above Agape Pet Services		Zip Code 02921	By Reviewed Name Date			
2B. Incinerator Location if Different From Ab County and Zip Code):	ove (give Stre	et Address, City,	Local State			
19712 Shepherdstown Pike Boonsboro N 3. Owner, Agent or Authorized Company Off			Returned to Local Jurisdiction Date By			
Kevin Beveridge Kevin B Beveridge 2 Daniels Way, Cranston, RI, 02921 (Signature)			Application Returned to Applicant Date By			
(Mailing Address, City/Town	n, State, Zip C	ode)	Premises Number			
4A. New Construction Only Begin June 1, 2024 Date Construction Completed	1 2 3 4 5 6 Registration Number					
5. Installation or Contractor (New or Replace Matthews Environmental	ement Only)					
(Name or Company Title) 2045 Spirit Blvd, Apopka, FL, 32707						
(Mailing Address, City/Town, State, Zip Cod	e, Telephone I	Number)				
	nufacturer's Se 518P6, SN TE	erial or Catalog No. BD	7. Total Number of Incinerators of Identical Design and Capacity at this Location: <u>1</u>			
8. Major Activity at this Location-Auto Dealer, Hospital, Apartment House, etc. 9. Rated Capacity of Incinerator in Ib/hr: <u>300</u> Pet Crematorium 16-19						
10. Incinerator Type (Mark only one with X) Single Chamber Ö Multiple Chamber Ö 20-1 20		Burner Ö Other Ö 21 2	22 Specify			
11. Frequency of Burning Hours/Day 2 4 Days/Year 3 6 5 23 24 25 26 27		Waste Burned Per Ope tons lbs	gal.			
13. Method of Charging Waste into Unit:	Manu		utomatic Ö			

Trash Refuse Refuse So% Garbage Garbage Animal or X Municipal Infectious/ Pathological 39 Does this waste contain Carcinogenic or Toxic Material? Y/N Industrial Process Waste Other 41 15. Total Annual Auxiliary Fuels Used (Grade) 48 Natural Gas (ft ³) (ft ³) LP Gas 459.782 (gallons) Other specify fuel & units required 16. Stack Information: Height Above Ground (ft) 21 94.96 Inside Diameter at Top (in) 36 Exit Temperature (°F) 1100 Gas Exit Velocity (ft/min) 0.33 104-107
Carcinogenic or Toxic Material? Y/N Industrial Process Waste Other 15. Total Annual Auxiliary Fuels Used (gallons) (ft ³) 15. Total Annual Auxiliary Fuels Used (gallons) (ft ³) 16. Stack Information: Height Above Ground (ft) 21 Inside Diameter at Top (in) 36 94-96 94-96 Gas Exit Velocity (ft/min) 0.33 100-103 104-107
Oil (gallons) (Grade) 48 Natural Gas (ft ³) LP Gas 459,782 (gallons) Other specify fuel & units required 56-59 90-92 16. Stack Information: Height Above Ground (ft) 21 Inside Diameter at Top (in) 36 94-96 97-99 Exit Temperature (°F) 1100 Gas Exit Velocity (ft/min) 0.33 100-103 104-107
94-96 97-99 Exit Temperature (°F) 1100 Gas Exit Velocity (ft/min) 0.33 100-103 104-107
17. Emission Control Devices Gas Cleaning Form AMA-6 Must be Completed for Each Device Used and Attached to this Application. None Settling Chamber Simple Multiple Venturi Electrostatic Bag- After-
Image: Logic log
DO NOT WRITE BELOW THIS LINE
18. Actual Stack Emissions in Pounds per Operating Day Particulate Matter Oxides of Sulfur 119 124 Carbon Monoxide Oxides of Sulfur 137 142 Volatile Organic Compounds 143 143 148
Other Pollutants SpecifyIype/Amount
19. Inventory Date 180 183
20. Method Used to Determine Emissions Estimate Emission Factor Stack Test Other Particulate Image: Stack Test Other Image: Stack Test Other Matter Image: Stack Test Other Image: Stack Test Other Oxides of Image: Stack Test Image: Stack Test Other Image: Stack Test Other Nitrogen Image: Stack Test Image: Stack Test Image: Stack Test Image: Stack Test Other Volatile Image: Stack Test Other Organics Image: Test
21. Premises Information Premises Name
Census Tract Image: Sic No. Image:

Form number: 10 Revision date: 09/27/2002 TTY Users 1-800-735-2258

AIR QUALITY PERMIT TO CONSTRUCT APPLICATION CHECKLIST

OWNER OF EQUIPMENT/PROCESS						
COMPANY NAME:						
COMPANY ADDRESS:						
	LOCATION OF EQUIPMENT/PROCESS					
PREMISES NAME:						
PREMISES						
ADDRESS:						
CONTACT	CONTACT INFORMATION FOR THIS PERMIT APPLICATION					
CONTACT NAME:						
JOB TITLE:						
PHONE NUMBER:						
EMAIL ADDRESS:						
DESCRIPTION OF EQUIPMENT OR PROCESS						

Application is hereby made to the Department of the Environment for a Permit to Construct for the following equipment or process as required by the State of Maryland Air Quality Regulation, COMAR 26.11.02.09.

Check each item that you have submitted as part of your application package.

- Application package cover letter describing the proposed project
- Complete application forms (Note the number of forms included or NA if not applicable.)
 - No. ____ Form 11 No. _____ Form 5
 - No.
 Form 5T

 No.
 Form 5EP

 - No. ____ Form 6 No. ____ Form 10

- No.
 Form 41

 No.
 Form 42

 No.
 Form 44

- Vendor/manufacturer specifications/guarantees
- \square Evidence of Workman's Compensation Insurance
- \square Process flow diagrams with emission points
 - Site plan including the location of the proposed source and property boundary
- \square Material balance data and all emissions calculations
 - Material Safety Data Sheets (MSDS) or equivalent information for materials processed and manufactured.
- Certificate of Public Convenience and Necessity (CPCN) waiver documentation from the Public Service Commission⁽¹⁾
- Documentation that the proposed installation complies with local zoning and land \square use requirements (2)
 - (1) Required for emergency and non-emergency generators installed on or after October 1, 2001 and rated at 2001 kW or more.
 - (2) Required for applications subject to Expanded Public Participation Requirements.

MARYLAND DEPARTMENT OF THE ENVIRONMENT Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • <u>www.mde.state.md.us</u>

APPLICATION FOR FUEL BURNING EQUIPMENT

Information Regarding Public Outreach

For Air Quality Permit to Construct applications subject to public review, applicants should consider the following information in the initial stages of preparing a permit application.

If you are not sure at the time you are applying for a permit whether public review of your application is required or for information on steps you can take to engage the surrounding community where your planned project will be located, please contact the Air Quality Permits Program at 410-537-3225 and seek their advice.

Communicating and engaging the local community as early as possible in your planning and development process is an important aspect of your project and should be considered a priority. Environmental Justice or "EJ" is a movement to inform, involve, and engage communities impacted by potential and planned environmental projects by affording citizens opportunities to learn about projects and discuss any concerns regarding impacts.

Although some permit applications are subject to a formal public review process prescribed by statute, the Department strongly encourages you to engage neighboring communities separate from and well ahead of the formal permitting process. Sharing your plans by way of community meetings, informational outreach at local gatherings or through local faith-based organizations can initiate a rewarding and productive dialogue that will reduce anxiety and establish a permanent link with your neighbors in the community.

All parties benefit when there is good communication. The Department can assist applicants in developing an outreach plan that fits the needs of both the company and the public.

1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • www.mde.state.md.us

Air and Radiation Management Administration Air Quality Permits Program

Application for Incinerators

Permit to Construct 🖬 Registrat	DO NOT WRITE IN THIS SPACE						
1. Owner of Installation or Company Brandywine Green, LLC	Name	Date of Application 1/8/2024	Date Rec. Local Date Red. State				
Mailing Address 2 Daniels Way	RI	Telephone 226.962.0718	Acknowledgement Sent Date				
City Cranston 2A. Premises Name if Different from Agape Pet Services	State RI TAbove	Zip Code 02921	By Reviewed Name Date				
2B. Incinerator Location if Different County and Zip Code):	From Above (give Stre	et Address, City,	Local State				
19712 Shepherdstown Pike Boon 3. Owner, Agent or Authorized Com			Returned to Local Jurisdiction Date By				
Kevin B Beveridge 2 Daniels Way, Cranston, RI, 02921	/Type Name) Signature)		Application Returned to Applicant Date By				
(Mailing Address, C	City/Town, State, Zip C	ode)	Premises Number				
4A. New Construction Only Begin June 1, 2024 Date Construction Completed	1 2 3 4 5 6 Registration Number 7 8 9 10 11 12 13						
5. Installation or Contractor (New or Matthews Environmental	Replacement Only)	I					
(Name or Company Title) 2045 Spirit Blvd, Apopka, FL, 32707							
(Mailing Address, City/Town, State,	Zip Code, Telephone I	Number)					
6. Equipment Manufacturer Matthews	Manufacturer's Se IEB 56, SN TE	erial or Catalog No. 3D	7. Total Number of Incinerators of Identical Design and Capacity at this Location: $\frac{0}{2}$				
8. Major Activity at this Location-Aut Pet Crematorium	o Dealer, Hospital, Ap	artment House, etc.	9. Rated Capacity of Incinerator in Ib/hr: 400 16-19				
10. Incinerator Type (Mark only one Single Chamber Ö Multiple Cha 20-1		Burner Ö Other Ö 21 2	2 Specify				
11. Frequency of Burning Hours/Day 2 4 Days/Year 3 6 23 24 25 2	5 Units:	Waste Burned Per Ope tons $32-1$ lbs. $32-2$	gal				
13. Method of Charging Waste into			itomatic Ö				

14. Type of Waste/Refuse Incinerated. Mark major type with $x \rightarrow$ all others with Check \checkmark .
Trash 100% DryRefuse 20% Garbage 33Refuse 50% Garbage 34Garbage 35Animal or 36Municipal Animal PartsInfectious/ Refuse 37Infectious/ Pathological 39
Does this waste contain Carcinogenic or Toxic Material? Y/N Industrial Process Waste 40 Other 41
15. Total Annual Auxiliary Fuels Used Oil (gallons) Natural Gas(ft ³)
OII
16. Stack Information: Height Above Ground (ft) 21 Inside Diameter at Top (in) 20
94-96 97-99 Exit Temperature (°F) 1100 Gas Exit Velocity (ft/min) 0.33 100-103 104-107
17. Emission Control Devices Gas Cleaning Form AMA-6 Must be Completed for Each Device Used and Attached to this Application.
None Settling Chamber Simple Multiple Venturi Venturi Electrostatic Bag- After- 108 109 110 111 112 113 114 115 116
Other117-118 Specify Type
DO NOT WRITE BELOW THIS LINE
18. Actual Stack Emissions in Pounds per Operating Day
Particulate Matter Oxides of Sulfur Oxides of Sulfur Oxides of Nitrogen 119 124 125 130 Oxides of Nitrogen Carbon Monoxide 137 142 Volatile Organic Compounds 143
Other Pollutants SpecifyType/Amount
19. Inventory Date 180 183
20. Method Used to Determine Emissions Estimate Emission Factor Stack Test Other Estimate Emission Factor Stack Test Other
Particulate Emission actor Stack rest Other matter 184-1 -2 -3 -4 Oxides of Sulfur 185-1 -2 -3 -4
Oxides of Nitrogen Image: Solution of the second
186-1 -2 -3 -4 187-1 -2 -3 -4 Volatile
Organics
21. Premises Information Premises Name
Census Tract Image: Sic No. Image: Sic No. Image: MD Grid East Image: Sic No. Im
Owner Private Local State Federal Owner Image: Completed in the state Image: Date Completed in the state 260-0 260-1 260-2 260-3

Form number: 10 Revision date: 09/27/2002 TTY Users 1-800-735-2258

1800 Washington Blvd ● Baltimore, Maryland 21230 (410) 537-3230 ● 1-800-633-6101 ● www.mde.state.md.us

Air and Radiation Management Administration
• Air Quality Permits Program

Appl ication for Permit to Operate Incinerators

	remise Identification:								
	Pet Services se Name or Identification								
043-04	468 se Number								
	Shepherdstown Pike	Boonsbore	D MD	21713	Washington				
Premis	se Address	City	State	Zip	County				
2. E	2. Equipment Identification								
Unit	Type Equipment (By-pi	roduct waste, municipal, etc.)	lbs/hr (design)	F	Registration #				
1	•	nership of existing permit.	240	043-0468					
		allation of new equipment II be removed from the site.	350 200		8-2-0040 8-2-0041				
2	<u>11eg # 41, 42, and 43 m</u>		200	043-046	8-2-0042				
			200	043-046	8-2-0043				
3. A	mount and Description	of Waste Being Incinerated	l						
Unit	Amount (tons/yr)		Description of Was	ste					
1	Deceased pets in their containers								
	795 tons/year currently permitted sitewide.								
2	2 Seeking approval to increase throughput.								
4. Description of Air Pollution Control Device									
7. 0									
Unit		Type of Control Device		Grain Loa	ding (at 12% CO ₂)				
1	Secondary chamber at a	a minimum of 1600 degrees fa	hrenheit						
2									
Signature_									
Title_	Title VP Central Services								
Date_	Date02/22/24								
Form nu	umber: 27								

1800 Washington Boulevard • Suite 720 • Baltimore, Maryland 21230-1720

410-537-3000 • 800-633-6101 • <u>https://mde.maryland.gov/</u>

Air and Radiation Administration • Air Quality Permits Program

Budget Reconciliation and Financing Act of 2003 (Commonly referred as Maryland House Bill 935)

On July 1, 2003, House Bill 935, Chapter 203 amended § 1-203 of the Environment Article, <u>Annotated</u> <u>Code of Maryland</u>, as follows:

Section 1-203(b).

(1) A license or permit is considered renewed for purposes of this subsection if the license or permit is issued by a unit of State government to a person for the period immediately following a period for which the person previously possessed the same or a substantially similar license.

(2) Before any license or permit may be renewed under this article, **the issuing authority shall verify through the office of the Comptroller (emphasis added)** that the applicant has paid all undisputed taxes and the unemployment insurance contributions payable to the Comptroller or the Secretary of Labor, Licensing, and Regulation or that the applicant has provided for payment in a manner satisfactory to the unit responsible for collection.

In order for the Maryland Department of the Environment (MDE) to verify this compliance, we would need you to provide the following information before we can process or issue your renewal license, permit, or certification:

Current MDE License/Permit No.: 043-0468

Name of Lice	ensee or Permit Holder:	Brandywine Green, LLC	
Address: 197	712 Shepherdstown Pike		
Во	onsboro MD 21713		
Contact Nam	ne: Kevin Beveridge	Title:	VP Central Services
		0.0740	

Contact Telephone Number: 226.962.0718 Contact Email: kbeveridge@gatewayservicesinc.com

Privacy Act Notice: This Notice is provided pursuant to the Federal Privacy Act of 1974, 5 U.S.C. § 552a. Disclosure of your Social Security or Federal Tax Identification on this form is mandatory pursuant to the provisions of § 1-203 (2003) of Environment Article, <u>Annotated Code of Maryland</u>, which requires MDE to verify that an applicant for a permit or license has paid all undisputed taxes and unemployment insurance. Social Security and Federal Tax Identification Nos. will not be used for any purposes other than those described in this Notice.

Federal Employer Identification Number (FEIN): 23-2855315

Certification: I certify that the above information is true and correct to the best of my knowledge.

Kevin B Beveridge

_02/22/24_____ Date

Complete and return this form to the above address. If you have any questions, please contact our office at (410) 537-3230.

Signature

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

FORM 5EP: Emission Point Data

<u>Complete one (1) Form 5EP for EACH emission point</u> (stack or fugitive emissions) related to the proposed installation.

Applicant Name: Brandywine Green LLC

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: IEB56

2. Emission Point Description

Describe the emission point including all associated equipment and control devices:

Matthews IEB56 Pet Crematory

3. Emissions Schedule for the Emission Point										
Continuous or Intermittent (C/I)?		С		Seasonal Variation						
			Check box if none: X Otl	herwis	e estimate s	seaso	nal va	iriation:		
Minutes per hour: Hours per day:		60		Winter Percent Spring Percent						
Days per week:		<u>18</u> 7		Summer Percent						
Weeks per year:		52		Fall Percent						
4. Emission Point Infor	matio									
Height above ground (ft):		20		Length and width dimensions		Length:			Width:	
Height above structures (ft):		3	;	at top of rectangular stack	(ft):					
Exit temperature (°F):		1100		Inside diameter at top of ro		()			1.67	
Exit velocity (ft/min):		20	1	Distance from emission po property line (ft):	int to r	nearest			227	
Exhaust gas volumetric flow rate	e	4687		Building dimensions if emis		Height	Len	0	Width	
(acfm):				point is located on building (fl		14	72		69	
5. Control Devices Ass	ociate	ed with t	he E	mission Point						
Identify each control device asso <u>also required for each control</u>					numb	er of device	es. <u>A</u>	Form	<u>n 6 is</u>	
X None			[Thermal Oxidizer		No				
Baghouse	No			Regenerative						
	No			Catalytic Oxidizer		No				
Elec. Precipitator (ESP)	No			Nitrogen Oxides Reduct	ion	No				
Dust Suppression System	No] Non-Sele				
Venturi Scrubber	No		г	Catalytic	L] Non-Cata	-			
Spray Tower/Packed Bed	No		L	☐ Other Specify:		No				
Carbon Adsorber	No									
Cartridge/Canister										
Regenerative										

FORM 5EP: Emission Point Data								
6. Estimated Emissions from the Emission Point								
Criteria Pollutants	At Design Capacity	At Projected Operations						
	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)				
Particulate Matter (filterable as PM10)	See attached							
Particulate Matter (filterable as PM2.5)								
Particulate Matter (condensables)								
Volatile Organic Compounds (VOC)								
Oxides of Sulfur (SOx)								
Oxides of Nitrogen (NOx)								
Carbon Monoxide (CO)								
Lead (Pb)								
	At Design Capacity	At Projected Operations						
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)				
Carbon Dioxide (CO ₂)								
Methane (CH ₄)								
Nitrous Oxide (N ₂ O)								
Hydrofluorocarbons (HFCs)								
Perfluorocarbons (PFCs)								
Sulfur Hexafluoride (SF6)								
Total GHG (as CO ₂ e)								
List individual federal Hazardous Air	At Design Capacity	At Projected Operations						
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)				

(Attach additional sheets as necessary.)

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

FORM 5EP: Emission Point Data

<u>Complete one (1) Form 5EP for EACH emission point</u> (stack or fugitive emissions) related to the proposed installation.

Applicant Name: Brandywine Green LLC

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: S18P6 A

2. Emission Point Description

Describe the emission point including all associated equipment and control devices:

ThermTec S18P6 Pet Crematory

3. Emissions Schedule for the Emission Point											
Continuous or Intermittent (C/I)?		С		Seasonal Variation							
				Check box if none: X Otherwise estimate seasonal variation:							
Minutes per hour:		60		Winter Percent							
Hours per day: Days per week:	18			Spring Percent Summer Percent							
Weeks per year:		7 52		Fall Percent							
4. Emission Point Info	ormatio			T di l'electit							
		20		Length and width dimensions at top of rectangular stack (ft):		Length:		Width:			
Height above structures (ft):		3									
Exit temperature (°F):		1100		Inside diameter at top of round stack (ft):				3			
Exit velocity (ft/min):		20	1	Distance from emission point to nearest property line (ft):					180		
Exhaust gas volumetric flow ra (acfm):	4687			Building dimensions if emis point is located on buildin		Height 14	Len 6	gth 0	Width 40		
5. Control Devices As	sociat	ed with t	he E	mission Point							
Identify each control device associated with the emission point and indicate the number of devices. <u>A Form 6 is</u> <u>also required for each control device</u> . If none check none:											
X None			[Thermal Oxidizer		No					
Baghouse	No			Regenerative							
Cyclone	No	No		Catalytic Oxidizer No.							
Elec. Precipitator (ESP)	No	lo		Nitrogen Oxides Reduct	No						
Dust Suppression System	No					☐ Non-Selective ☐ Non-Catalytic					
🗌 Venturi Scrubber	No		г	Catalytic	L		5				
Spray Tower/Packed Bed	No		S	Other Specify:		No					
Carbon Adsorber	No										
Cartridge/Canister											
☐ Regenerative											

FORM 5EP: Emission Point Data								
6. Estimated Emissions from the Emission Point								
Criteria Pollutants	At Design Capacity	At Projected Operations						
	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)				
Particulate Matter (filterable as PM10)	See attached							
Particulate Matter (filterable as PM2.5)								
Particulate Matter (condensables)								
Volatile Organic Compounds (VOC)								
Oxides of Sulfur (SOx)								
Oxides of Nitrogen (NOx)								
Carbon Monoxide (CO)								
Lead (Pb)								
	At Design Capacity	At Projected Operations						
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)				
Carbon Dioxide (CO ₂)								
Methane (CH ₄)								
Nitrous Oxide (N ₂ O)								
Hydrofluorocarbons (HFCs)								
Perfluorocarbons (PFCs)								
Sulfur Hexafluoride (SF6)								
Total GHG (as CO ₂ e)								
List individual federal Hazardous Air	At Design Capacity	At Projected Operations						
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)				

(Attach additional sheets as necessary.)

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

FORM 5EP: Emission Point Data

<u>Complete one (1) Form 5EP for EACH emission point</u> (stack or fugitive emissions) related to the proposed installation.

Applicant Name: Brandywine Green LLC

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: S18P6 B

2. Emission Point Description

Describe the emission point including all associated equipment and control devices:

ThermTec S18P6 Pet Crematory

3. Emissions Schedule for the Emission Point											
Continuous or Intermittent (C/I)?		С		Seasonal Variation							
				Check box if none: Otherwise estimate seasonal variation:							
Minutes per hour: 60		Winter Percent Spring Percent									
Hours per day: Days per week:				Summer Percent							
Weeks per year:	7 52			Fall Percent							
4. Emission Point Info	ormatio			i di i ciociti							
Height above ground (ft):20				Length and width dimensions		Length:		Width:			
Height above structures (ft):	leight above structures (ft):		;	at top of rectangular stack (ft):							
Exit temperature (°F):		1100		Inside diameter at top of round stack (ft):			3				
Exit velocity (ft/min):		20		Distance from emission point to nearest property line (ft):					190		
Exhaust gas volumetric flow ra (acfm):	ite	4687		Building dimensions if emis point is located on buildin		Height 14	Len 6	gth 0	Width 40		
5. Control Devices As	sociat	ed with t	the E	mission Point							
Identify each control device associated with the emission point and indicate the number of devices. <u>A Form 6 is</u> <u>also required for each control device</u> . If none check none:											
X None			[Thermal Oxidizer		No					
Baghouse	No			Regenerative							
Cyclone	No			Catalytic Oxidizer No							
Elec. Precipitator (ESP)	No	D		Nitrogen Oxides Reduct	No						
Dust Suppression System	No					☐ Non-Selective ☐ Non-Catalytic					
🗌 Venturi Scrubber	No		Г	Catalytic	L		-				
Spray Tower/Packed Bed	No		L	Other Specify:		No					
Carbon Adsorber	No										
Cartridge/Canister											
Regenerative											

FOF	RM 5EP: Emission	Point Data					
6. Estimated Emissions from the	e Emission Point						
	At Design Capacity	At I	Projected Opera	tions			
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Particulate Matter (filterable as PM10)	See attached						
Particulate Matter (filterable as PM2.5)							
Particulate Matter (condensables)							
Volatile Organic Compounds (VOC)							
Oxides of Sulfur (SOx)							
Oxides of Nitrogen (NOx)							
Carbon Monoxide (CO)							
Lead (Pb)							
	At Design Capacity	At I	Projected Opera	tions			
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Carbon Dioxide (CO ₂)							
Methane (CH ₄)							
Nitrous Oxide (N ₂ O)							
Hydrofluorocarbons (HFCs)							
Perfluorocarbons (PFCs)							
Sulfur Hexafluoride (SF6)							
Total GHG (as CO ₂ e)							
List individual federal Hazardous Air	At Design Capacity	At Projected Operations					
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

FORM 5EP: Emission Point Data

<u>Complete one (1) Form 5EP for EACH emission point</u> (stack or fugitive emissions) related to the proposed installation.

Applicant Name: Brandywine Green LLC

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: PPJr A

2. Emission Point Description

Describe the emission point including all associated equipment and control devices:

Matthews PPJ<u>r Pet</u> Crematory

3. Emissions Schedul	e for t	he Emiss	sion	Point							
Continuous or Intermittent (C/I)?	0		Seasonal Variation							
	/.	С		Check box if none: X Ot	herwis	e estimate s	seaso	nal v	ariation:		
Minutes per hour:		60		Winter Percent							
Hours per day:				Spring Percent							
	ormatio										
Height above ground (ft):		20		Length and width dimensic	ons	Length	:		Width:		
Height above structures (ft):	Emission Point Information bove ground (ft): 20 bove ground (ft): 3 bove structures (ft): 3 bove structures (ft): 3 borerature (°F): 1100 city (ft/min): 20 gas volumetric flow rate 4687 Building dimensions if emission point is located on building (ft)										
Exit temperature (°F):	s per week: 7 Summer Percent ks per year: 52 Fall Percent Lemission Point Information Length and width dimensions at top of rectangular stack (ft): Length ht above ground (ft): 20 _ Length and width dimensions at top of rectangular stack (ft): Length ht above structures (ft): 3 Distance from emission point to nearest property line (ft): Height 14 velocity (ft/min): 20 Building dimensions if emission point to nearest property line (ft): Height 14 aust gas volumetric flow rate n): 4687 Building dimensions if emission point is located on building (ft) Height 14 5. Control Devices Associated with the emission point and indicate the number of device required for each control device. If none check none:										
Exit velocity (ft/min):		20			int to I	nearest			220		
Exhaust gas volumetric flow ra (acfm):	ate	4687				_	Leng 72	gth	Width 69		
5. Control Devices As	sociat	ed with t	he E	mission Point							
					numb	er of device	es. <u>A</u>	For	<u>m 6 is</u>		
X None			[Thermal Oxidizer		No					
Baghouse	No			Regenerative							
Cyclone	No			Catalytic Oxidizer		No					
Elec. Precipitator (ESP)	No		C	Nitrogen Oxides Reduct	ion	No					
Dust Suppression System	No			Selective Catalytic		_ Non-Sele _ Non-Cata					
🗌 Venturi Scrubber	No		Г		L		-				
Spray Tower/Packed Bed	No		L	Specify:		No					
Carbon Adsorber	No										
Cartridge/Canister											
☐ Regenerative											

FOF	RM 5EP: Emission	Point Data					
6. Estimated Emissions from the	e Emission Point						
	At Design Capacity	At I	Projected Opera	tions			
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Particulate Matter (filterable as PM10)	See attached						
Particulate Matter (filterable as PM2.5)							
Particulate Matter (condensables)							
Volatile Organic Compounds (VOC)							
Oxides of Sulfur (SOx)							
Oxides of Nitrogen (NOx)							
Carbon Monoxide (CO)							
Lead (Pb)							
	At Design Capacity	At I	Projected Opera	tions			
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Carbon Dioxide (CO ₂)							
Methane (CH ₄)							
Nitrous Oxide (N ₂ O)							
Hydrofluorocarbons (HFCs)							
Perfluorocarbons (PFCs)							
Sulfur Hexafluoride (SF6)							
Total GHG (as CO ₂ e)							
List individual federal Hazardous Air	At Design Capacity	At Projected Operations					
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

FORM 5EP: Emission Point Data

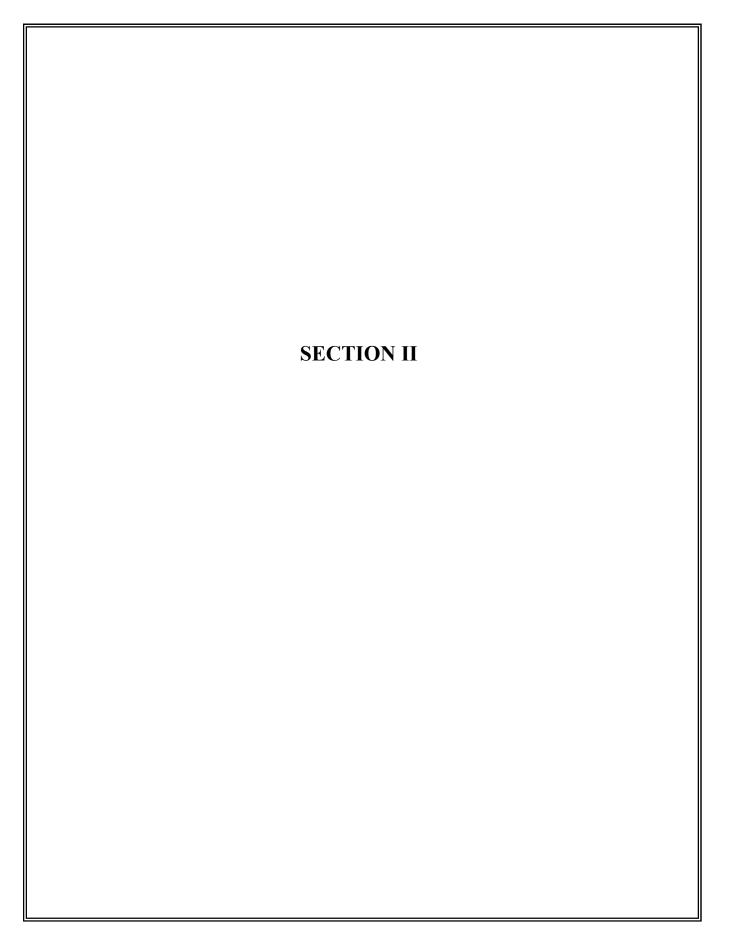
<u>Complete one (1) Form 5EP for EACH emission point</u> (stack or fugitive emissions) related to the proposed installation.

Applicant Name: Brandywine Green LLC

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: PPJr B

2. Emission Point Description


Describe the emission point including all associated equipment and control devices:

Matthews PPJ<u>r Pet</u> Crematory

3. Emissions Schedu	e for t	he Emiss	sion	Point								
Continuous or Intermittent (C/)?	0										
	/.				herwis	e estimate s	seaso	nal v	ariation:			
	ormatio			FairFercent								
Height above ground (ft):	//matro	20		Length and width dimensio	ons	Length	:	_	Width:			
Height above structures (ft):		3										
Height above structures (ft): 3 at top of rectangular stack (ft): Exit temperature (°F): 1100 Inside diameter at top of round stack (ft): Exit velocity (ft/min): 20 Distance from emission point to nearest property line (ft): Exhaust gas volumetric flow rate (acfm): 4687 Building dimensions if emission point to nearest property line (ft): Identify each control Devices Associated with the Emission Point Height 14 72 Identify each control device associated with the emission point and indicate the number of devices. If none check none: None Image: None Image: None Image: None Image: None Regenerative									1.67			
Exit velocity (ft/min):		20			int to r	nearest			215			
	ate	4687				-	Leng 72	gth	Width 69			
5. Control Devices As	sociat	ed with t	he E	mission Point								
Hours per day: 18 Spring Percent Days per week: 7 Summer Percent Weeks per year: 52 Fall Percent 4. Emission Point Information Length and width dimensions at top of rectangular stack (ft): Length: Width: Height above ground (ft): 3 Length and width dimensions at top of rectangular stack (ft): Length: Width: Exit temperature (°F): 1100 Inside diameter at top of round stack (ft): 1.67 Exit velocity (ft/min): 20 Distance from emission point to rearest property line (ft): 215 Exhaust gas volumetric flow rate (acfm): 4687 Building dimensions if emission point to 14 Length 14 Identify each control device associated with the Emission Point 14 72 Ø Identify each control device associated with the emission point and indicate the number of devices. A Form 6 is also required for each control device. If none check none: Mone Thermal Oxidizer Regenerative Cyclone No. Elec. Precipitator (ESP) No. Nitrogen Oxides Reduction No. Elec. Precipitator (ESP) No. Nitrogen Oxides Reduction No. Strop oxides Reduction No. Strop oxide												
X None			[Thermal Oxidizer		No						
Baghouse	No			Regenerative								
Cyclone	No			Catalytic Oxidizer		No						
Elec. Precipitator (ESP)	No		C	Nitrogen Oxides Reduct	ion	No						
Dust Suppression System	No											
🗌 Venturi Scrubber	No		Г	Catalytic	L] Non-Cata						
Spray Tower/Packed Bed	No		L	Specify:		No						
Carbon Adsorber	No											
Cartridge/Canister												
☐ Regenerative												

FOF	RM 5EP: Emission	Point Data					
6. Estimated Emissions from the	e Emission Point						
	At Design Capacity	At I	Projected Opera	tions			
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Particulate Matter (filterable as PM10)	See attached						
Particulate Matter (filterable as PM2.5)							
Particulate Matter (condensables)							
Volatile Organic Compounds (VOC)							
Oxides of Sulfur (SOx)							
Oxides of Nitrogen (NOx)							
Carbon Monoxide (CO)							
Lead (Pb)							
	At Design Capacity	At I	Projected Opera	tions			
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			
Carbon Dioxide (CO ₂)							
Methane (CH ₄)							
Nitrous Oxide (N ₂ O)							
Hydrofluorocarbons (HFCs)							
Perfluorocarbons (PFCs)							
Sulfur Hexafluoride (SF6)							
Total GHG (as CO ₂ e)							
List individual federal Hazardous Air	At Design Capacity	At Projected Operations					
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)			

(Attach additional sheets as necessary.)

1

199

Agape Pet Serve

Agape Pet Services

erdstown Pike

Google Earth

Legend

- 📍 Agape Pet Services
- Crystal Grottoes Caverns
- Custom Landscape Management
- Harvest Moon Pet Boarding
- 🕹 Property Line

Custom Landscape Manageme Harvest Moon Pet Boarding

Shepherdstown Plke

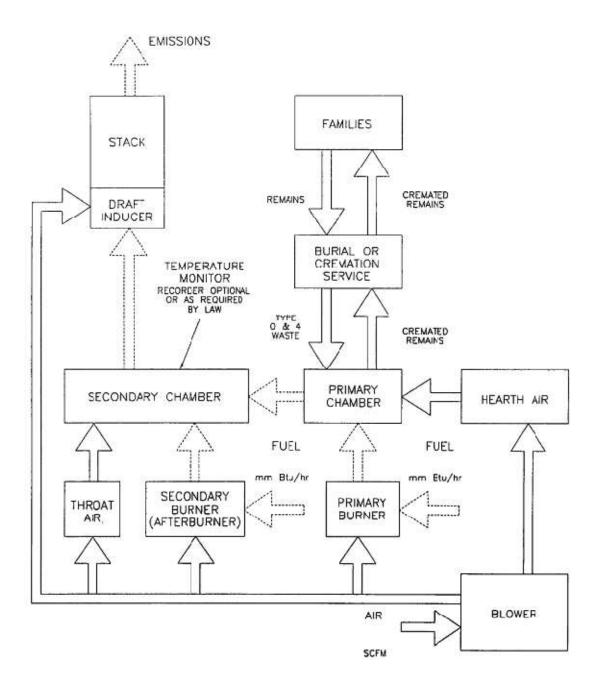
Crystal Grottoes Caverns

A N 29

Plot Plan

2	ot	2

	the second s
Number	Make/Model
1	Matthews IEB 56
2	Facultative 1600
3	Matthews PPJr B
4	Matthews PPJr A
5	Matthews IEB 40
6	ThermTec S18P6 B
7	Therm Tec S18P6 A


Propane Tank

.

Google Earth Image © 2024 Airbus

PROCESS FLOW DIAGRAM CREMATOR

			Throughput					
Incinerator Model		ThermTec S18P6	ThermTec S18P6	Matthews PPJr	Matthews PPJr	Matthews IEB 56	Facultive 1600	Matthews IEB 40
Maximum Hourly Burn Rate	lb/hr	300	300	75	75	400	250	350
Requested Worst Case Annual Burn Rate	TPY	1314	1314	328.5	328.5	1752	1095	1533
Maximum Heat Input	MMBTU/hr	4.8	4.8	2	2	4.5	3.75	5
Propane Usage	gal/hr	52	52	22	22	49	41	55
	hr/day	24	24	24	24	24	24	24
Operating Schodule	day/wk	7	7	7	7	7	7	7
Operating Schedule	wk/yr	52	52	52	52	52	52	52
	hrs/yr	8760	8760	8760	8760	8760	8760	8760
Discussion: A extremely conservative worst case	is 8,760 at maximur	n rated capacity for ea	ich machine. The m	achines typically o	perate 17 hours per	day with a much le	ower burn rate as j	pet size, cool down

times, and cremation type vary (private versus communal cremation)

Worst Case Sitew	ideThroughput	
averaging period	lb	cremations
1 hr	1750	12
8 hr	14000	93
annual	15330000	102200
Discussion: One creamation is assumed 150 lb	. However the averag	e pet is much smaller

Screen3 Worst Case (ug/m3)/(lb/hr)											
1-hr	8-hr	Annual									
70.19	49.13	5.62									
Discussion: A screen3 was run for a worst case mach	hine at 1 lb/hr. The	distance 180 ft was									
used as that is the closest machine to the property line	e. All stacks will be	a minimum of 20									
ft. The output file is on the following page.											

									Worst Case	Emissions									
				ThermTec S18P6	ThermTec S18P6	Matthews PPJr		Matthews IEB 56	Facultive 1600 M	atthews IEB 40	Sitewide	ThermTec S18P6	ThermTec S18P6	Matthews PPJr		Matthews IEB 56	Facultive 1600	Matthews IEB 40	Sitewic
Pollutant	Emission Factor	Units	Source				Maximum (lb/hr)							Maximum	(ton/yr)			
Condensed PM	0.01	lb/ton	Stack Test	0.0015	0.0015		0.0004	0.0020	0.0013	0.0018	0.0088		0.0066	0.0016	0.0016		0.0055	0.0077	0.038
PM10	0.54	lb/ton	Stack Test	0.0810	0.0810	0.0203	0.0203	0.1080	0.0675	0.0945	0.4725		0.3548	0.0887	0.0887		0.2957	0.4139	2.069
PM2.5	0.24	lb/ton	Stack Test	0.0360	0.0360	0.0090	0.0090	0.0480	0.0300	0.0420	0.2100	0.1577	0.1577	0.0394	0.0394	0.2102	0.1314	0.1840	0.9198
NOx	13	lb/103 gal	AP 42 1.5	0.6823	0.6823	0.2843	0.2843	0.6397	0.5331	0.7108	3.8168		2.9886	1.2452	1.2452	2.8018	2.3348	3.1131	16.7174
CO	7.5		AP 42 1.5	0.3936	0.3936	0.1640	0.1640	0.3690	0.3075	0.4101	2.2020	1.7242	1.7242	0.7184	0.7184		1.3470	1.7960	9.6440
SO2	1.5		AP 42 1.5	0.0787	0.0787	0.0328	0.0328	0.0738	0.0615	0.0820	0.4404	0.3448	0.3448	0.1437	0.1437		0.2694	0.3592	1.9289
VOC	1		AP 42 1.5	0.0525	0.0525	0.0219	0.0219	0.0492	0.0410	0.0547	0.2936		0.2299	0.0958	0.0958		0.1796	0.2395	1.2860
Lead	0.000066		Stack Test	0.0001	0.0001	0.0000	0.0000	0.0002	0.0001	0.0002	0.0008	0.0006	0.0006	0.0001	0.0001		0.0005	0.0007	0.0034
Carbon Dioxide			AP 42 1.5	656.0819	656.0819	273.3674	273.3674	615.0768	512.5640	683.4186		2873.6386	2873.6386	1197.3494	1197.3494		2245.0302	2993.3736	
Methane	0.2		AP 42 1.5	0.0105	0.0105	0.0044	0.0044	0.0098	0.0082	0.0109	0.0587	0.0460	0.0460	0.0192	0.0192		0.0359	0.0479	0.2572
	0.9	lb/103 gal	AP 42 1.5	0.0472	0.0472	0.0197	0.0197	0.0443	0.0369	0.0492	0.2642	0.2069	0.2069	0.0862	0.0862		0.1616	0.2155	1.1574
CO2 Equivalent				670.4212	670.4212	279.3422	279.3422	628.5199	523.7666	698.3554	3750.1686	2936.4449	2936.4449	1223.5187	1223.5187	2752.9171	2294.0976	3058.7967	16425.7385
									Projected 1										
				ThermTec S18P6	ThermTec S18P6	Matthews PPJr			Facultive 1600 M	atthews IEB 40	Sitewide	ThermTec S18P6	ThermTec S18P6	Matthews PPJr		Matthews IEB 56	Facultive 1600	Matthews IEB 40	Sitewide
Pollutant	Emission Factor	Units	Source				Maximum (
							(/							Maximum				
Condensed PM	0.01	lb/ton	Stack Test	0.0002	0.0002	0.0001	0.0001	0.0003	0.0002	0.0003	0.0013	0.0010	0.0010	0.0002	0.0002	0.0013	0.0008	0.0011	0.0057
PM10	0.54	lb/ton	Stack Test	0.0122	0.0122	0.0030	0.0001 0.0030	0.0003 0.0162	0.0101	0.0142	0.0709	0.0532	0.0532	0.0133	0.0002 0.0133	0.0013 0.0710	0.0443	0.0621	0.3104
PM10 PM2.5	0.54 0.24	lb/ton lb/ton	Stack Test Stack Test	0.0122 0.0054	0.0122 0.0054	0.0030 0.0014	0.0001 0.0030 0.0014	0.0003 0.0162 0.0072	0.0101 0.0045	0.0142 0.0063	0.0709 0.0315	0.0532 0.0237	0.0532 0.0237	0.0133 0.0059	0.0002 0.0133 0.0059	0.0013 0.0710 0.0315	0.0443 0.0197	0.0621 0.0276	0.3104 0.1380
PM10 PM2.5 NOx	0.54 0.24 13	lb/ton lb/ton lb/103 gal	Stack Test Stack Test AP 42 1.5	0.0122 0.0054 0.1023	0.0122 0.0054 0.1023	0.0030 0.0014 0.0426	0.0001 0.0030 0.0014 0.0426	0.0003 0.0162 0.0072 0.0960	0.0101 0.0045 0.0800	0.0142 0.0063 0.1066	0.0709 0.0315 0.5725	0.0532 0.0237 0.4483	0.0532 0.0237 0.4483	0.0133 0.0059 0.1868	0.0002 0.0133 0.0059 0.1868	0.0013 0.0710 0.0315 0.4203	0.0443 0.0197 0.3502	0.0621 0.0276 0.4670	0.3104 0.1380 2.5076
PM10 PM2.5 NOx CO	0.54 0.24 13 7.5	lb/ton lb/ton lb/103 gal lb/103 gal	Stack Test Stack Test AP 42 1.5 AP 42 1.5	0.0122 0.0054 0.1023 0.0590	0.0122 0.0054 0.1023 0.0590	0.0030 0.0014 0.0426 0.0246	0.0001 0.0030 0.0014 0.0426 0.0246	0.0003 0.0162 0.0072 0.0960 0.0554	0.0101 0.0045 0.0800 0.0461	0.0142 0.0063 0.1066 0.0615	0.0709 0.0315 0.5725 0.3303	0.0532 0.0237 0.4483 0.2586	0.0532 0.0237 0.4483 0.2586	0.0133 0.0059 0.1868 0.1078	0.0002 0.0133 0.0059 0.1868 0.1078	0.0013 0.0710 0.0315 0.4203 0.2425	0.0443 0.0197 0.3502 0.2021	0.0621 0.0276 0.4670 0.2694	0.3104 0.1380 2.5076 1.4467
PM10 PM2.5 NOx CO SO2	0.54 0.24 13	lb/ton lb/ton lb/103 gal lb/103 gal lb/103 gal	Stack Test Stack Test AP 42 1.5 AP 42 1.5 AP 42 1.5	0.0122 0.0054 0.1023 0.0590 0.0118	0.0122 0.0054 0.1023 0.0590 0.0118	0.0030 0.0014 0.0426 0.0246 0.0049	0.0001 0.0030 0.0014 0.0426 0.0246 0.0246 0.0049	0.0003 0.0162 0.0072 0.0960 0.0554 0.0111	0.0101 0.0045 0.0800 0.0461 0.0092	0.0142 0.0063 0.1066 0.0615 0.0123	0.0709 0.0315 0.5725 0.3303 0.0661	0.0532 0.0237 0.4483 0.2586 0.0517	0.0532 0.0237 0.4483 0.2586 0.0517	0.0133 0.0059 0.1868 0.1078 0.0216	0.0002 0.0133 0.0059 0.1868 0.1078 0.0216	0.0013 0.0710 0.0315 0.4203 0.2425 0.0485	0.0443 0.0197 0.3502 0.2021 0.0404	0.0621 0.0276 0.4670 0.2694 0.0539	0.3104 0.1380 2.5076 1.4467 0.2893
PM10 PM2.5 NOx CO SO2 VOC	0.54 0.24 13 7.5 1.5 1	lb/ton lb/ton lb/103 gal lb/103 gal lb/103 gal lb/103 gal	Stack Test Stack Test AP 42 1.5 AP 42 1.5 AP 42 1.5 AP 42 1.5	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079	0.0030 0.0014 0.0426 0.0246 0.0049 0.0033	0.0001 0.0030 0.0014 0.0426 0.0246 0.0049 0.0033	0.0003 0.0162 0.0072 0.0960 0.0554 0.0111 0.0074	0.0101 0.0045 0.0800 0.0461 0.0092 0.0062	0.0142 0.0063 0.1066 0.0615 0.0123 0.0082	0.0709 0.0315 0.5725 0.3303 0.0661 0.0440	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345	0.0133 0.0059 0.1868 0.1078 0.0216 0.0144	0.0002 0.0133 0.0059 0.1868 0.1078 0.0216 0.0144	0.0013 0.0710 0.0315 0.4203 0.2425 0.0485 0.0323	0.0443 0.0197 0.3502 0.2021 0.0404 0.0269	0.0621 0.0276 0.4670 0.2694 0.0539 0.0359	0.3104 0.1380 2.5076 1.4467 0.2893 0.1929
PM10 PM2.5 NOx CO SO2 VOC Lead	0.54 0.24 13 7.5 1.5 1 0.000066	lb/ton lb/ton lb/103 gal lb/103 gal lb/103 gal lb/103 gal lb/body	Stack Test Stack Test AP 42 1.5 AP 42 1.5 AP 42 1.5 AP 42 1.5 Stack Test	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000	0.0030 0.0014 0.0426 0.0246 0.0049 0.0033 0.0000	0.0001 0.0030 0.0014 0.0426 0.0246 0.0049 0.0033 0.0000	0.0003 0.0162 0.0072 0.0960 0.0554 0.0111 0.0074 0.0000	0.0101 0.0045 0.0800 0.0461 0.0092 0.0062 0.0000	0.0142 0.0063 0.1066 0.0615 0.0123 0.0082 0.0000	0.0709 0.0315 0.5725 0.3303 0.0661 0.0440 0.0001	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001	0.0133 0.0059 0.1868 0.1078 0.0216 0.0144 0.0000	0.0002 0.0133 0.0059 0.1868 0.1078 0.0216 0.0144 0.0000	0.0013 0.0710 0.0315 0.4203 0.2425 0.0425 0.0425 0.0323 0.0001	0.0443 0.0197 0.3502 0.2021 0.0404 0.0269 0.0001	0.0621 0.0276 0.4670 0.2694 0.0539 0.0359 0.0359	0.3104 0.1380 2.5076 1.4467 0.2893 0.1929 0.0005
PM10 PM2.5 NOx CO SO2 VOC Lead Carbon Dioxide	0.54 0.24 13 7.5 1.5 1 0.000066 12500	lb/ton lb/103 gal lb/103 gal lb/103 gal lb/103 gal lb/body lb/103 gal	Stack Test Stack Test AP 42 1.5 AP 42 1.5 AP 42 1.5 AP 42 1.5 Stack Test AP 42 1.5	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000 98.4123	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000 98.4123	0.0030 0.0014 0.0426 0.0246 0.0049 0.0033 0.0000 41.0051	0.0001 0.0030 0.0014 0.0426 0.0246 0.0049 0.0033 0.0000 41.0051	0.0003 0.0162 0.0072 0.0950 0.0554 0.0111 0.0074 0.0000 92.2615	0.0101 0.0045 0.0800 0.0461 0.0092 0.0062 0.0000 76.8846	0.0142 0.0063 0.1066 0.0615 0.0123 0.0082 0.0000 102.5128	0.0709 0.0315 0.5725 0.3303 0.0661 0.0440 0.0001 550.4937	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001 431.0458	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001 431.0458	0.0133 0.0059 0.1868 0.0216 0.0144 0.0000 179.6024	0.0002 0.0133 0.0059 0.1868 0.1078 0.0216 0.0144 0.0000 179.6024	0.0013 0.0710 0.0315 0.4203 0.2425 0.0485 0.0323 0.0001 404.1054	0.0443 0.0197 0.3502 0.2021 0.0404 0.0269 0.0001 336.7545	0.0621 0.0276 0.4670 0.0539 0.0359 0.0001 449.0060	0.3104 0.1380 2.5076 1.4467 0.2893 0.1929 0.0005 2411.1624
PM10 PM2.5 NOx CO SO2 VOC Lead Carbon Dioxide Methane	0.54 0.24 13 7.5 1.5 1 0.000066 12500 0.2	lb/ton lb/103 gal lb/103 gal lb/103 gal lb/103 gal lb/103 gal lb/body lb/103 gal lb/103 gal	Stack Test Stack Test AP 42 1.5 AP 42 1.5 AP 42 1.5 AP 42 1.5 Stack Test AP 42 1.5 AP 42 1.5	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000 98.4123 0.0016	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000 98.4123 0.0016	0.0030 0.0014 0.0426 0.0246 0.0049 0.0033 0.0000 41.0051 0.0007	0.0001 0.0030 0.0014 0.0426 0.0246 0.0049 0.0033 0.0000 41.0051 0.0007	0.0003 0.0162 0.0072 0.0960 0.0554 0.0111 0.0074 0.0000 92.2615 0.0015	0.0101 0.0045 0.0800 0.0461 0.0092 0.0062 0.0000 76.8846 0.0012	0.0142 0.0063 0.1066 0.0615 0.0123 0.0082 0.0000 102.5128 0.0016	0.0709 0.0315 0.5725 0.3303 0.0661 0.0440 0.0001 550.4937 0.0088	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001 431.0458 0.0069	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001 431.0458 0.0069	0.0133 0.0059 0.1868 0.0216 0.0144 0.0000 179.6024 0.0029	0.0002 0.0133 0.0059 0.1868 0.0216 0.0144 0.0000 179.6024 0.0029	0.0013 0.0710 0.0315 0.4203 0.2425 0.0485 0.0323 0.0001 404.1054 0.0065	0.0443 0.0197 0.3502 0.2021 0.0404 0.0269 0.0001 336.7545 0.0054	0.0621 0.0276 0.4670 0.2694 0.0539 0.0359 0.0001 449.0060 0.0072	0.3104 0.1380 2.5076 1.4467 0.2893 0.1925 0.0005 2411.1624 0.0386
PM10 PM2.5 NOx CO SO2 VOC Lead Carbon Dioxide Methane Nitrous Oxide	0.54 0.24 13 7.5 1.5 1 0.000066 12500	lb/ton lb/103 gal lb/103 gal lb/103 gal lb/103 gal lb/103 gal lb/body lb/103 gal lb/103 gal	Stack Test Stack Test AP 42 1.5 AP 42 1.5 AP 42 1.5 AP 42 1.5 Stack Test AP 42 1.5	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000 98.4123 0.0016 0.0071	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000 98.4123 0.0016 0.0071	0.0030 0.0014 0.0426 0.0246 0.0049 0.0033 0.0000 41.0051 0.0007 0.0030	0.0001 0.0030 0.0014 0.0426 0.0246 0.0049 0.0033 0.0000 41.0051 0.0007 0.0030	0.0003 0.0162 0.0072 0.0960 0.0554 0.0111 0.0074 0.0000 92.2615 0.0015 0.0015	0.0101 0.0045 0.0800 0.0461 0.0092 0.0062 0.0000 76.8846 0.0012 0.0055	0.0142 0.0063 0.1066 0.0123 0.0082 0.0000 102.5128 0.0016 0.0074	0.0709 0.0315 0.5725 0.3303 0.0661 0.0440 0.0001 550.4937 0.0088 0.0396	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001 431.0458 0.0069 0.0310	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001 431.0458 0.0069 0.0310	0.0133 0.0059 0.1868 0.1078 0.0216 0.0144 0.0000 179.6024 0.0029 0.0129	0.0002 0.0133 0.0059 0.1868 0.0216 0.0144 0.0000 179.6024 0.0029 0.0129	0.0013 0.0710 0.0315 0.4203 0.2425 0.0485 0.0323 0.0001 404.1054 0.0065 0.0291	0.0443 0.0197 0.3502 0.2021 0.0404 0.0269 0.0001 336.7545 0.0054 0.0254	0.0621 0.0276 0.4670 0.2694 0.0539 0.0359 0.0001 449.0060 0.0072 0.0323	0.3104 0.1380 2.5076 1.4467 0.2893 0.1929 0.0005 2411.1624 0.0386 0.1736
PM10 PM2.5 NOx CO SO2 VOC Lead Carbon Dioxide Methane Nitrous Oxide CO2 Equivalent	0.54 0.24 13 7.5 1.5 1 0.000066 12500 0.2 0.9	lb/ton lb/103 gal lb/103 gal lb/103 gal lb/103 gal lb/body lb/103 gal lb/103 gal	Stack Test Stack Test AP 42 1.5 AP 42 1.5 AP 42 1.5 AP 42 1.5 Stack Test AP 42 1.5 AP 42 1.5 AP 42 1.5	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000 98.4123 0.0016 0.0071 100.5632	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000 98.4123 0.0016 0.0071 100.5632	0.0030 0.0014 0.0426 0.0246 0.0049 0.0033 0.0000 41.0051 0.0007 0.0030 41.9013	0.0001 0.0030 0.0014 0.0226 0.0246 0.0049 0.0033 0.0000 41.0051 0.0007 0.0030 41.9013	0.0003 0.0162 0.0072 0.0960 0.0554 0.0111 0.0074 0.0000 92.2615 0.0015 0.0066 94.2780	0.0101 0.0045 0.0800 0.0461 0.0092 0.0062 0.0000 76.8846 0.0012 0.0055 78.5650	0.0142 0.0063 0.1066 0.0615 0.0123 0.0082 0.0000 102.5128 0.0016 0.0074 104.7533	0.0709 0.0315 0.5725 0.3303 0.0661 0.0440 0.0001 550.4937 0.0088 0.0396 562.5253	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001 431.0458 0.0069 0.0310 440.4667	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001 431.0458 0.0069 0.0310 440.4667	0.0133 0.0059 0.1868 0.0216 0.0144 0.0000 179.6024 0.0029 0.0129 183.5278	0.0002 0.0133 0.0059 0.1868 0.0216 0.0144 0.0000 179.6024 0.0029	0.0013 0.0710 0.0315 0.4203 0.2425 0.0485 0.0323 0.0001 404.1054 0.0065 0.0291	0.0443 0.0197 0.3502 0.2021 0.0404 0.0269 0.0001 336.7545 0.0054	0.0621 0.0276 0.4670 0.2694 0.0539 0.0359 0.0001 449.0060 0.0072	0.3104 0.1380 2.5076 1.4467 0.2893 0.1925 0.0005 2411.1624 0.0386
PM10 PM2.5 NOx CO SO2 VOC Lead Carbon Dioxide Methane Nitrous Oxide CO2 Equivalent	0.54 0.24 13 7.5 1.5 1 0.000066 12500 0.2 0.9	lb/ton lb/103 gal lb/103 gal lb/103 gal lb/103 gal lb/body lb/103 gal lb/103 gal	Stack Test Stack Test AP 42 1.5 AP 42 1.5 AP 42 1.5 AP 42 1.5 Stack Test AP 42 1.5 AP 42 1.5 AP 42 1.5	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000 98.4123 0.0016 0.0071 100.5632	0.0122 0.0054 0.1023 0.0590 0.0118 0.0079 0.0000 98.4123 0.0016 0.0071 100.5632	0.0030 0.0014 0.0426 0.0246 0.0049 0.0033 0.0000 41.0051 0.0007 0.0030 41.9013	0.0001 0.0030 0.0014 0.0226 0.0246 0.0049 0.0033 0.0000 41.0051 0.0007 0.0030 41.9013	0.0003 0.0162 0.0072 0.0960 0.0554 0.0111 0.0074 0.0000 92.2615 0.0015 0.0066 94.2780	0.0101 0.0045 0.0800 0.0461 0.0092 0.0062 0.0000 76.8846 0.0012 0.0055 78.5650	0.0142 0.0063 0.1066 0.0615 0.0123 0.0082 0.0000 102.5128 0.0016 0.0074 104.7533	0.0709 0.0315 0.5725 0.3303 0.0661 0.0440 0.0001 550.4937 0.0088 0.0396 562.5253	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001 431.0458 0.0069 0.0310	0.0532 0.0237 0.4483 0.2586 0.0517 0.0345 0.0001 431.0458 0.0069 0.0310 440.4667	0.0133 0.0059 0.1868 0.0216 0.0144 0.0000 179.6024 0.0029 0.0129 183.5278	0.0002 0.0133 0.0059 0.1868 0.0216 0.0144 0.0000 179.6024 0.0029 0.0129	0.0013 0.0710 0.0315 0.4203 0.2425 0.0485 0.0323 0.0001 404.1054 0.0065 0.0291	0.0443 0.0197 0.3502 0.2021 0.0404 0.0269 0.0001 336.7545 0.0054 0.0254	0.0621 0.0276 0.4670 0.2694 0.0539 0.0359 0.0001 449.0060 0.0072 0.0323	0.3104 0.1380 2.5070 1.4467 0.2893 0.1929 0.0009 2411.1624 0.0380 0.1730

									MDE	MDE	MDE			
		Emission	Emission	Emission	Worst Case	Ground Level	Ground Level	Ground Level	Screening	Screening	Screening	Percent	Percent	Percent
		Factor	Factor	Factor	Sitewide Emissions	Concentration	Concentration	Concentration	Level	Level	Level	of Screen Level	of Screen Level	of Screen Leve
		(EPA FIRE)	Source	(as number)	1-HOUR	1-HOUR	8-HOUR	Annual	1-HOUR	8-HOUR	Annual	1-HOUR	8-HOUR	Annual
CAS	POLLUTANT	(cremations)		(Cremations)	(lb)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(decimal %)	(decimal %)	(decimal %)
83329	Acenaphthene	1.11E-07	EPA Fire	1.11E-07	1.30E-06	9.09E-05	6.36E-05	7.27E-06		2.03E+01			3.13E-06	
208968	Acenaphthylene	6.73E-07	EPA Fire	6.73E-07	7.85E-06	5.51E-04	3.86E-04	4.41E-05		2.46E+01			1.57E-05	
75070	Acetaldehyde	0.000139	Stack Test	1.32E-05	1.54E-04	1.08E-02	7.57E-03	8.65E-04	4.50E+02	2.30E+03	5.00E+00	2.40E-05	3.29E-06	1.73E-04
120127	Anthracene	3.24E-07	EPA Fire	3.24E-07	3.78E-06	2.65E-04	1.86E-04	2.12E-05		2.00E+01			9.29E-06	
	Antimony	< 3.020E-5	EPA Fire	3.02E-05	3.52E-04	2.47E-02	1.73E-02	1.98E-03		5.00E+00			3.46E-03	
7440382		6.17E-05		6.03E-07	7.04E-06	4.94E-04	3.46E-04	3.95E-05			2.00E-03		3.46E-03	1.98E-02
7440393		2.60E-05		2.60E-05	3.03E-04	2.13E-02	1.49E-02	1.70E-03		5.00E+00			2.98E-03	
	Benzo (a) anthracene	0.00000013			1.52E-06	1.06E-04	7.45E-05	8.52E-06						
	Benzo (a) pyrene	0.0000066		0.0000066	7.70E-06	5.40E-04	3.78E-04	4.32E-05						
	Benzo (b) fluoranthene	0.00000018		0.00000018	2.10E-07	1.47E-05	1.03E-05	1.18E-06						
	Benzo (g,h,i) perylene	4.4055E-08			5.14E-07	3.61E-05	2.53E-05	2.89E-06		2.00E+01			1.26E-06	
207089	Benzo (k) fluoranthene	< 1.420E-8	EPA Fire	1.42E-08	1.66E-07	1.16E-05	8.14E-06	9.30E-07						
	Beryllium	2.60E-06	Stack Test	6.05E-08	7.06E-07	4.95E-05	3.47E-05	3.96E-06			4.00E-03		6.94E-02	9.91E-04
7440439	Cadmium	2.21E-04		2.95E-07	3.44E-06	2.42E-04	1.69E-04	1.93E-05			6.00E-03		8.45E-03	3.22E-03
7440473	Chromium	2.99E-05	EPA Fire	2.99E-05	3.49E-04	2.45E-02	1.71E-02	1.96E-03		5.00E+00			3.43E-03	
18540299	Chromium (VI)	1.40E-05	Stack Test	3.05E-07	3.56E-06	2.50E-04	1.75E-04	2.00E-05		1.00E-01	8.00E-04		1.75E-03	2.50E-02
218019	Chrysene	< 5.400E-8	EPA Fire	5.40E-08	6.30E-07	4.42E-05	3.10E-05	3.54E-06						
7440484	Cobalt	0.0000136	EPA Fire	0.0000136	1.59E-04	1.11E-02	7.80E-03	8.91E-04		2.00E-01			3.90E-02	
7440508	Copper	2.93E-05	Stack Test	2.46E-05	2.87E-04	2.01E-02	1.41E-02	1.61E-03		2.00E+00			7.05E-03	
53703	Dibenzo(a,h) anthracene	1.36E-08	EPA Fire	1.36E-08	1.59E-07	1.11E-05	7.80E-06	8.91E-07						
206440	Fluoranthene	2.05E-07	EPA Fire	2.05E-07	2.39E-06	1.68E-04	1.18E-04	1.34E-05		8.20E+01			1.43E-06	
86737	Fluorene	4.17E-07	EPA Fire	4.17E-07	4.87E-06	3.41E-04	2.39E-04	2.73E-05		2.00E+01			1.20E-05	
50000	Formaldehyde	0.000034	Stack Test	8.14E-06	9.50E-05	6.67E-03	4.67E-03	5.33E-04		2.03E+01	8.00E-01		2.30E-04	6.67E-04
7647010	Hydrogen chloride	3.02E-01	Stack Test	2.36E-02	2.75E-01	1.93E+01	1.35E+01	1.55E+00	2.98E+01	1.65E+02	7.00E+00	6.49E-01	8.20E-02	2.21E-01
7664393	Hydrogen fluoride	1.14E-03	Stack Test	7.85E-05	9.16E-04	6.43E-02	4.50E-02	5.14E-03	1.64E+01	4.09E+00		3.92E-03	1.10E-02	
193395	Indeno(1,2,3-cd)pyrene	1.55E-08	EPA Fire	1.55E-08	1.81E-07	1.27E-05	8.88E-06	1.02E-06						
7439921	Lead	1.53E-03	Stack Test	2.68E-05	3.13E-04	2.19E-02	1.54E-02	1.76E-03		5.00E-01			3.07E-02	
7439976	Mercury	5.28E-03	Stack Test	9.40E-09	1.10E-07	7.70E-06	5.39E-06	6.16E-07		1.00E-01			5.39E-05	
7439987	Molybdenum	< 1.670E-5	EPA Fire	1.67E-05	1.95E-04	1.37E-02	9.57E-03	1.09E-03		5.00E+00			1.91E-03	
91203	Naphthalene	0.0000678	EPA Fire	0.0000678	7.91E-04	5.55E-02	3.89E-02	4.44E-03	7.86E+02	5.24E+02		7.06E-05	7.42E-05	
7440020	Nickel	3.83E-05	Stack Test	5.08E-06	5.93E-05	4.16E-03	2.91E-03	3.33E-04		1.00E+00			2.91E-03	
85018	Phenanthrene	2.29E-06	EPA Fire	2.29E-06	2.67E-05	1.88E-03	1.31E-03	1.50E-04		9.80E+00			1.34E-04	
129000	Pyrene	1.62E-07	EPA Fire	1.62E-07	1.89E-06	1.33E-04	9.29E-05	1.06E-05		2.00E+01			4.64E-06	
7782492	Selenium	0.0000449	Stack Test	4.40E-06	5.13E-05	3.60E-03	2.52E-03	2.88E-04		2.00E+00			1.26E-03	
7440224	Silver	7.30E-06	EPA Fire	7.30E-06	8.52E-05	5.98E-03	4.18E-03	4.78E-04		1.00E-01			4.18E-02	
7440280	Thallium	0.0000855	EPA Fire	0.0000855	9.98E-04	7.00E-02	4.90E-02	5.60E-03		2.00E-01			2.45E-01	
7440622	Vanadium	5.79E-05	EPA Fire	5.79E-05	6.76E-04	4.74E-02	3.32E-02	3.79E-03		5.00E-01			6.64E-02	
7440666	Zinc	4.07E-04	Stack Test	3.50E-04	4.08E-03	2.87E-01	2.01E-01	2.29E-02	1.00E+03	5.00E+02		2.87E-04	4.01E-04	
	PM, filterable	8.50E-02	EPA Fire	8.50E-02	9.92E-01	6.96E+01	4.87E+01	5.57E+00						
	Polycyclic aromatic hydrocar	3.76E-06	Stack Test	1.36E-08	1.59E-07	1.11E-05	7.80E-06	8.91E-07						
1746016	Total Dioxins & Furans - TEQ	balanced	Stack Test	8.10E-11	9.45E-10	6.63E-08	4.64E-08	5.31E-09		8.20E-04	3.00E-08		5.66E-05	1.77E-01
Discussion: 7	Oxic stack test results for a Matthe	ws Cremation u	init cremating		ion III of the applicatio	n. These are mor	e representative	as EPA fire were	developed u	ising human	s. All toxics	fall below screeni	ng levels.	

02/20/24

14:43:55 *** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

C:\Users\elarkin\Documents\All\MD\Boonsboro\2024 Renewal Amendment COO\done\wor

SIMPLE TERRAIN INPUTS:		
SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	0.125998
STACK HEIGHT (M)	=	6.0960
STK INSIDE DIAM (M)	=	0.5000
STK EXIT VELOCITY (M/S)	=	6.0960
STK GAS EXIT TEMP (K)	=	866.4833
AMBIENT AIR TEMP (K)	=	293.0000
RECEPTOR HEIGHT (M)	=	0.0000
URBAN/RURAL OPTION	=	RURAL
BUILDING HEIGHT (M)	=	4.2672
MIN HORIZ BLDG DIM (M)	=	12.1920
MAX HORIZ BLDG DIM (M)	=	18.2880

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 2.473 M**4/S**3; MOM. FLUX = 0.785 M**4/S** 2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST	CONC		U10M	USTK	MIX HT	PLUME	SIGMA
SIGMA							
(M)	(UG/M**3)	STAB	(M/S)	(M/S)	(M)	HT (M)	Y (M)
Z (M) DWA	ASH						
55.	70.19	4	8.0	8.0	2560.0	6.77	4.70
4.24 S	S						
100.	46.36	4	8.0	8.0	2560.0	7.55	8.20
6.04 S	S						
200.	30.35	4	5.0	5.0	1600.0	10.25	15.56

0 50 00							
9.59 SS 300.		4	3.5	3.5	1120.0	13.94	22.61
12.65 SS 400.	17.11	4	3.0	3.0	960.0	16.08	29.45
15.70 SS 500.	14.07	4	2.5	2.5	800.0	19.12	36.15
18.59 SS 600.	11.87	4	2.0	2.0	640.0	23.71	42.72
21.32 SS 700.	10.43	4	2.0	2.0	640.0	23.71	49.19
24.14 SS 800.	9.098	4	2.0	2.0	640.0	23.71	55.57
26.89 SS 900.		4	1.5	1.5	480.0	31.37	61.88
29.47 SS 1000.		4	1.5	1.5	480.0	31.37	68.13
32.09 SS 1100.		4	1.5	1.5	480.0	31.37	74.31
34.12 SS 1200.		6	2.5	2.5	10000.0	26.23	40.01
16.01 SS 1300.		6			10000.0		
16.81 SS 1400.		6			10000.0		
17.50 SS 1500.		6			10000.0		
18.26 SS		0	2.0	2.0	10000.0	20.40	49.03
	HR CONCENTRAT 70.19					6.77	4.70
DWASH=NO I DWASH=HS I DWASH=SS I DWASH=NA I **** RI PERFORI WITH ORIG	MEANS NO CALC MEANS NO BUIL MEANS HUBER-S MEANS SCHULMA MEANS DOWNWAS COULATORY (De MING CAVITY C. GINAL SCREEN (BRODE, 1988)	DING D NYDER N-SCIR H NOT ****** fault) ALCULA CAVITY	OWNWASH DOWNWAS E DOWNW APPLICA ***** *** TIONS MODEL	USEI H USE ASH U BLE, ****) ED JSED		
*** CAVIT:	Y CALCULATION	- 1 *	* *	**>	* CAVITY C	ALCULATI	ON - 2
	/M**3) =	0.0	00	СС	DNC (UG/M*	*3)	=
	010M (M/S) =	99.	99	CI	RIT WS @10	M (M/S)	=

CRIT WS @ HS (M/S) = 99.99 CRIT WS @ HS (M/S) = 99.99 DILUTION WS (M/S) = 99.99DILUTION WS (M/S) =99.99 CAVITY HT (M) = 4.43 CAVITY HT (M) = 4.29 CAVITY LENGTH (M) = 15.45 CAVITY LENGTH (M) = 12.45 ALONGWIND DIM (M) = 12.19 ALONGWIND DIM (M) = 18.29 CAVITY CONC NOT CALCULATED FOR CRIT WS > 20.0 M/S. CONC SET = 0.0 END OF CAVITY CALCULATIONS ***** *** SUMMARY OF SCREEN MODEL RESULTS *** ******* CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M) _____ _____ _____ ____ SIMPLE TERRAIN 70.19 55. 0.

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

1.	Equipment Type A. Model No. B. Underwriters Laboratories Listing and File No	IE43-PPJR
2.	Dimensions A. Footprint B. Maximum Length C. Maximum Width D. Maximum Height E. Chamber Loading Opening	10' – 10" (3.30 m) 6' -5" (1.96 m) 8' - 4" (2.54 m)
3.	Weight	18,000 lbs. (8,165 kg)
4.	 Utility/Air Requirements A. Gross Gas Input, Natural or LP Gas	11 inches (279.4 mm) water column or greater 11 inches (279.4 mm) water column or greater 230 volt, 3Ø or 1Ø, and 115 volt, 50/60 hz (other available)
5.	Incineration Capacity	75 lbs./hr. (34 kg/h)
6.	Typical Loading Capacity of Waste Types	300 lbs. (136 kg/h)
7.	Construction and Safety Standards	Incineration Institute of America, Underwriters Laboratories, Canadian Standards Association
8.	 Steel Structure Construction A. Frame B. Front/Rear Plates C. Floor Plates D. Outer Side Casing E. Inner Side Casing 	3/8" (9.5 mm) plate 3/16" (5 mm) plate 12 gauge (3 mm) plate
9.	Stack Construction A. Inner Wall B. Outer Wall	
10. I	Draft Nozzle Construction	Schedule 40 type 316 s.s. pipe, welded connections
11.	Main Chamber Door ConstructionA. Steel ShellB. Outer RefractoryC. Inner Refractory	3/16" (5 mm) steel, welded with reinforcement 1" (25 mm) insulating block

THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION OF MATTHEWS ENVIRONMENTAL SOLUTIONS & MAY NOT BE DISCLOSED TO THIRD PARTIES WITHOUT THE WRITTEN CONSENT OF MATTHEWS. UNLESS OTHERWISE SPECIFIED IN WRITING, MATTHEWS ENVIRONMENTAL SOLUTIONS IS THE OWNER OF THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN.

12.	 Primary Chamber Wall Construction A. Outer Casing Wall B. Inner Frame/Air Compartment C. Inner Casing Wall D. Outer Refractory Wall E. Inner Refractory Wall 	2" (51 mm) air compartment 12 gauge (3 mm) sheet 5" (127 mm) insulating block
13.	 Secondary Chamber Wall Construction A. Outer Casing Wall B. Inner Frame/Air Compartment C. Inner Casing Wall D. Outer Refractory Wall E. Inner Refractory Wall 	2" (51 mm) air compartment 12 gauge (3 mm) sheet 6" (152 mm) insulating block
14.	 Refractory Temperature Ratings A. Standard Firebrick B. Insulating Firebrick C. Castable Refractory (Hearth) D. Castable Refractory E. Insulating Block F. Bonding Mortar 	2,600° F. (1427° C) 2,550° F. (1399° C) 2,550° F. (1399° C) 1,900° F. (1038° C)
15.	Chamber Volumes (not including external flues, stacks or chimneys) A. Primary Chamber B. Secondary Chamber	
16.	 Emission Control Features A. Secondary Chamber with Afterburner B. Opacity Monitor and Controller with Visual and Audible Alarms C. Auxiliary Air Control System D. Microprocessor Temperature Control System 	Included Included
	Operating Temperatures A. Primary Chamber B. Secondary Chamber	1,200° F 1,800° F. (649° C - 982° C) 1,400° F 1,832° F. (760° C - 1000° C) as required
18.	Secondary Chamber Retention Time	> 1 second
19.	Ash Removal	Door functions as a heat shield. Sweep out beneath front door into hopper that fills collection pan.

20.	Safety Interlocks A. High Gas Pressure	Optional Included Included Included Included Included Included Included
22.	Burner Description	The nozzle mix burners used on this cremation equipment are industrial quality and designed for incinerator use.
23.	Ultraviolet Flame Detection	Ultraviolet flame detection has proven to be the most reliable means of flame safety. The system is completely sealed in a quartz capsule to eliminate problems, caused by moisture and dust created in the cremation process, which effect flame rod detectors.
24.	 Operating Panel Indicating Lights A. Safe Run B. Door Closed C. Pollution Alarm D. Afterburner On (Secondary Burner) E. Cremation Burner On F. Low Fire Cremation Burner On G. Afterburner (Secondary Burner) Reset H. Cremation Burner Reset I. Hearth Air J. Throat Air Off 	Included Included Included Included Included Included Included Included Included
25.	 Automatic Timer Functions A. Master Cycle B. Afterburner (Secondary Burner) C. Cremation Burner D. Low Fire Cremation Burner E. Hearth Air F. Throat Air G. Pollution Monitoring H. Afterburner (Secondary Burner) Prepurge I. Cremation Burner Prepurge J. Cool Down	Included Included Included Included Included

THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION OF MATTHEWS ENVIRONMENTAL SOLUTIONS & MAY NOT BE DISCLOSED TO THIRD PARTIES WITHOUT THE WRITTEN CONSENT OF MATTHEWS. UNLESS OTHERWISE SPECIFIED IN WRITING, MATTHEWS ENVIRONMENTAL SOLUTIONS IS THE OWNER OF THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN.

26.	Exterior Finish A. Primer B. Finish	0
27.	Start-Up and Training	Startup of cremation equipment and training of operators to properly operate and maintain the equipment is performed on-site under actual operating conditions. Included is a comprehensive owner's manual, with details on the equipment, its components and proper operation.
28.	Environmental Submittals	Complete technical portion of state environmental permits. Engineering calculations, technical data, existing stack test results and equipment blueprints provided.

THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION OF MATTHEWS ENVIRONMENTAL SOLUTIONS & MAY NOT BE DISCLOSED TO THIRD PARTIES WITHOUT THE WRITTEN CONSENT OF MATTHEWS. UNLESS OTHERWISE SPECIFIED IN WRITING, MATTHEWS ENVIRONMENTAL SOLUTIONS IS THE OWNER OF THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN.

Therm Tec, Inc.

P.O. Box 1105 Tualatin, Oregon 97062

(503) 625-7575 Fax (503) 625-6161 E-mail tt@thermtec.com

S-18-P6 SIX CELL ANIMAL CREMATORY

SPECIFICATIONS

1.	MAIN CHAMBERS (Primary Cells)		S-18-P6
	Internal Dimensions Of Primary Cells		26" H, 27" W, 44" L
	Volume Of Cell	Cubic Feet	18.50
	Burner (1)	Btu's Hr.	400,000
	Burner Control	PLC	Off - On
	Loading Height	Inches	30"
	Charge Opening Into Cell	Inches	26" x 27"
	Preheated Combustion Air Surface	Square Feet	13.5
	Hearth Area	Square Feet	8.5
	Metal Jacket Thickness	Plate	3/16"
	Refractory Thickness, Rated @ 2,800 Deg. F.	Inches	4"
	Insulation Thickness Rated @ 1,900 Deg.F.	Inches	1.5"
	Weight	Pounds	5,200
2.	AFTERBURNER (Secondary Chamber)		S-18-P6
	Burners (2)	Btu's Hr.	2,400,000
	Burner Control	PLC	Full Modulation
	Outside	Inches	46"
	Diameter - Inside	Inches	36"
	Volume Of Chamber	Cubic Feet	38.20
	Preheated Comb. Air Surface	Square Feet	30.50
	Metal Jacket Thickness (Dual Wall Construction)	Sheet	3/16"
	Refractory Thickness, Rated @ 3,000 Deg. F.	Inches	3"
	Weight	Pounds	2,980
3.	RETENTION SECTION - REFRACTORY	LINED	S-18-P6
	Number Of Retention	Sections	1
	Metal Jacket Thickness	Sheet	10 Gauge
	Diameter - Outside	Inches	42"
	Diameter - Inside	Inches	36"
	Refractory Thickness, Rated @ 2,300 Deg. F.	Inches	3"
	Volume Of Chamber	Cubic Feet	42.47
	TOTAL RETENTION VOLUME	CUBIC FEET	80.67
	Total Weight Of Chamber	Pounds	1,820

13508 OAK ST. • KANSAS CITY, MISSOURI 64145 (816) 941-2009 • 1-800-345-0847 Fax (816) 941-2199 Specifications Subject To Change Or Modification

Spec-S-18-P6

Page No. 1 01/03/2019

Therm Tec, Inc.

P.O. Box 1105 Tualatin, Oregon 97062

(503) 625-7575 Fax (503) 625-6161 E-mail tt@thermtec.com

S-18-P6 SIX CELL ANIMAL CREMATORY

SPECIFICATIONS

STACK SECTIONS - REF	RACTORY LINED	S-18-P6
Number Of Stacks - 6 ft	Sections	2
Metal Jacket Thickness	Sheet	10 Gauge
Stack Diameter -Outside	Inches	42"
Stack Diameter -Inside	Inches	36"
Refractory Thickness, Rated @	2,300 Deg. F. Inches	3"
Weight Each Section	Pounds	1,610
Total Weight Of Stacks	Pounds	3,220
OVERALL DIMENSIONS	AND WEIGHT OF UNITS :	S-18-P6
Foot Print	Ft / inches	28' 11" x 7' 4"
Width	Ft / inches	28' 11"
Length With Door Closed	Ft / inches	7' 4"
Length With Door Open -90 De	g. Ft / inches	9' 5"
Height To Top Of A/B	Ft / inches	10' 6"
Height To Top Of Stack	Ft / inches	28' 6"
Total Weight Of System	Pounds	39,100
UTILITY Connection To L	Init :	S-18-P6
	NPT Plumbed to Single Point Connection (Wire To Control Panel Terminal Strip Plus (
UTILITY REQUIREMENTS	8:	S-18-P6
Fuel: Natural Gas Max.	Cubic Feet Per Hour	4,800
Delivered @	Pounds	2-5 lb.
Operating @	W.C.	14"
	0 Volts, 60 Amps, Single Phase, 4 Wire, 60 5.0 H.P. (Hydraulic Doors)) Hz.
_		0.40 50
DESIGN AND CONSTRUC		S-18-P6
Construction and Safety Star	ndards: NFPA 86	

Oven Construction Gas Piping

Therm Tec, Inc.

P.O. Box 1105

Tualatin, Oregon 97062

(503) 625-7575 Fax (503) 625-6161 E-mail tt@thermtec.com

S-18-P6 SIX CELL ANIMAL CREMATORY

SPECIFICATIONS

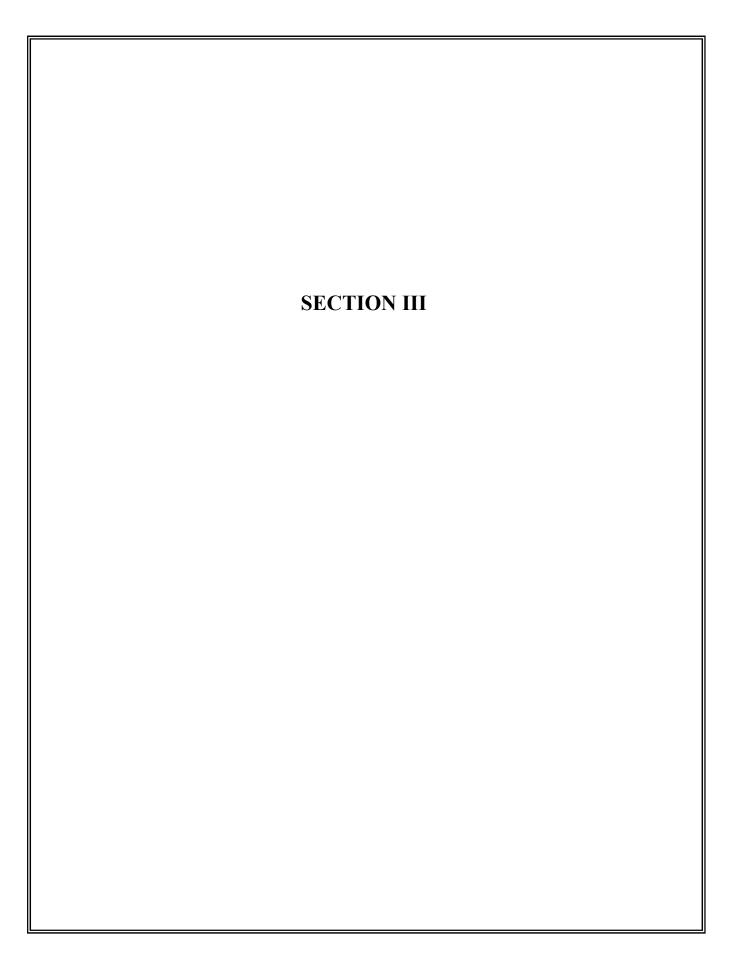
9.	CONTROLS PROVIDED	WITH MODELS :		S-18-P6
	Construction and Safety S Enclosure	tandards: NEMA 12	UL 508 A	
	On-Off Switch	System Power		
	PLC & Touch Screen Control	Provides Full Control &	Monitoring Of Cremat	ion Cycles
	Temperature Control	Individual Control For I Burners Off-On		
		Afterburner Control		
		Burners Full Modula	tion	
	Combustion Air	Individual Control For E	Each Cell	
	Afterburner Combustion Air	Full Modulation to prov	ide On Ratio Combust	ion (Energy Efficiency
	Door Safety Limit Switch	Each Cell		
10.	Mechanical Controls Or	n System :		S-18-P6
	Combustion Air Supply To Sy Combustion Air Supply To Sy			

11.	BURN RATING OF	CELLS : Pounds Per Load	S-18-P6
	Animal Cremations	Load Capacity Ib.	150 lb.
		Burn Rate Pounds Per Hour	50 lb.

Cells Loaded 3 To 4 Times Per Day Burn Rate Is Dependent Upon - Btu Of Material ,Load Rate And Density

OPTIONS AVAILABLE AT ADDITIONAL COST	S-18-P6
Decorative Facade, Front And Sides	
Hydraulic actuated load doors	
Temperature Recorders, (Continuous, 7 Day / 24 Hours) Single Pin	Or Dual Pin
Opacity Monitor With Alarm	
Remote Access For Equipment Monitoring	
Data acquisition	
Additional Stack Sections	
Stack Roof Penetration Rain Shield Does Not Include Roof Jack	
Stack Rain Cap	
Extra Operational and Maintenance Manuals	

SPECIFICATIONS- Model IEB Series 56


1.	Equipment Type A. Model No. B. Underwriters Laboratories Listing and File No	IE43-IEB 56
2.	Dimensions A. Footprint B. Maximum Length C. Maximum Width D. Maximum Height E. Chamber Loading Opening	16' – 8" (5.08 m) 8' -11 1/2" (2.73 m)
3.	Weight	54,000 lbs. (24,494 kg.)
4.	 Utility/Air Requirements A. Gross Gas Input, Natural or LP Gas Running Gas Pressure, Natural Gas Running Gas Pressure, LP Gas B. Electrical Supply C. Air Supply 	11 inches (279.4 mm) water column or greater 11 inches (279.4 mm) water column or greater
5.	Incineration Capacity	400 lbs./hr. (181.4 kg/h)
6.	Typical Loading Capacity of Waste Types	3000 lbs. (1360.8 kg)
7.	Construction and Safety Standards	Incineration Institute of America, Underwriters Laboratories, Canadian Standards Association
8.	 Steel Structure Construction A. Frame B. Front/Rear Plates C. Floor Plates D. Outer Side Casing E. Inner Side Casing 	3/8" (9.5 mm) plate 3/16" (5 mm) plate 12 gauge (3 mm) plate
9.	Stack Construction A. Inner Wall B. Outer Wall	
10.	Draft Nozzle Construction	Schedule 40 type 316 s.s. pipe, welded connections
11.	Main Chamber Door ConstructionA. Steel ShellB. Outer RefractoryC. Inner Refractory	3/16" (5 mm) steel, welded with reinforcement 1" (25 mm) insulating block
12.	Primary Chamber Wall ConstructionA. Outer Casing WallB. Inner Frame/Air CompartmentC. Inner Casing Wall	2" (51 mm) air compartment

SPECIFICATIONS- Model IEB Series 56

	D. Outer Refractory WallE. Inner Refractory Wall	
13.	Secondary Chamber Wall Construction A. Outer Casing Wall B. Inner Frame/Air Compartment C. Inner Casing Wall D. Outer Refractory Wall E. Inner Refractory Wall	2" (51 mm) air compartment 12 gauge (3 mm) sheet 6" (152 mm) insulating block
14.	 Refractory Temperature Ratings A. Standard Firebrick B. Insulating Firebrick C. Castable Refractory (Hearth) D. Castable Refractory E. Insulating Block F. Bonding Mortar 	2,600° F. (1427° C) 2,550° F. (1399° C) 2,550° F. (1399° C) 1,900° F. (1038° C)
15.	Chamber Volumes (not including external flues, stacks or chimneys) A. Primary Chamber B. Secondary Chamber	
16.	 Emission Control Features A. Secondary Chamber with Afterburner B. Opacity Monitor and Controller with Visual and Audible Alarms C. Auxiliary Air Control System D. Microprocessor Temperature Control System 	Included Included Included Included
17.	Operating Temperatures A. Primary Chamber B. Secondary Chamber	
18.	Secondary Chamber Retention Time	> 1 second
19.	Ash Removal	Door functions as a heat shield. Sweep out beneath front door into hopper that fills collection pan.
20.	Safety Interlocks A. High Gas Pressure	Optional Optional Included Included Included Included Included Included Included

SPECIFICATIONS- Model IEB Series 56

22.	Burner Description	The nozzle mix burners used on this cremation equipment are industrial quality and designed for incinerator use.
23.	Ultraviolet Flame Detection	Ultraviolet flame detection has proven to be the most reliable means of flame safety. The system is completely sealed in a quartz capsule to eliminate problems, caused by moisture and dust created in the cremation process, which effect flame rod detectors.
24.	Operating Panel Indicating Lights	
	 A. Safe Run B. Door Closed C. Pollution Alarm D. Afterburner On (Secondary Burner) E. Cremation Burner On F. Low Fire Cremation Burner On G. Afterburner (Secondary Burner) Reset H. Cremation Burner Reset I. Hearth Air J. Throat Air Off 	Included Included Included Included Included Included Included Included Included
25.	 Automatic Timer Functions A. Master Cycle B. Afterburner (Secondary Burner) C. Cremation Burner D. Low Fire Cremation Burner E. Hearth Air F. Throat Air G. Pollution Monitoring H. Afterburner (Secondary Burner) Prepurge I. Cremation Burner Prepurge J. Cool Down 	Included Included Included Included Included Included Included Included Included
26.	Exterior Finish	
	A. PrimerB. Finish	2 coats rust inhibiting 2 coats textured finish
27.	Start-Up and Training	Startup of cremation equipment and training of operators to properly operate and maintain the equipment is performed on-site under actual operating conditions. Included is a comprehensive owner's manual, with details on the equipment, its components and proper operation.
28.	Environmental Submittals	Complete technical portion of state environmental permits. Engineering calculations, technical data, existing stack test results and equipment blueprints provided.

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

375 Beale Street, Suite 600 San Francisco, California 94105 (415) 771-6000

Contractor Source Test Supplemental Form

Site name:

NST number:

Testing company: BEST ENVIRONMETAL

Test purpose:

Routine compliance testing

Compliance test required after previous source test failure

Start-up test

Other, ex: trial testing for permit changes, engineering studies

Please explain:

Revised report with corrections noted

Revision number:

Preliminary test results:

Values within range set by rule or regulation

Values outside of range set by rule or regulation

N/A

Please explain:

Source Test Report Initial Compliance

Bubbling Wells Napa, CA

Animal Cremator (S-2) Plant 24712 Permit Application 30522 Condition 27310 NST 6521

Test Date: May 25-27, 2021 Report Date: August 17, 2021

Prepared For:

Bubbling Wells 40 Executive Ct Napa, CA 94558

Performed and Reported by:

BEST ENVIRONMENTAL 339 Stealth Court Livermore, CA 94551 Phone: (925) 455-9474 Fax: (925) 455-9479 Email: bestair@best-enviro.com

For Submittal To:

Bay Area Air Quality Management District 375 Beale Street San Francisco, CA 94105

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program. If this report is submitted for compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please call the Team Leader or Reviewer at (925) 455-9474.

William Johnston William Johnston

Project Manager

Reviewer:

I have reviewed this report for presentation and accuracy of content, and hereby certify that to the best of my knowledge the information is complete and correct.

The

Basim (Bobby) Asfour Principal

ii

Source Test Information			
Source Location:	Bubbling Wells 40 Executive Ct Napa, CA 94558 Plant 1124724712		
Source Description:	Animal Cremator, Matthew, Model IEB Series 50, 4.4MMBtu/hr fired on natural gas		
Source Number:	#2		
Condition Number:	#27310		
Test Parameters:	Dioxins, Furans & PAHs, Hydrogen Chloride & Hydrogen Fluoride, Arsenic, Beryllium, Cadmium, Copper, Lead, Nickel, Selenium, Hexavalent Chromium, Aldehydes		
Source Testing Firm:	BEST ENVIRONMENTAL 339 Stealth Court Livermore, CA 94551 Phone (925) 455-9474 Fax (925) 455-9479		
Contact:	Regan Best or Bobby Asfour		
Test Date:	May 25-27, 2021		
NST:	Number 6521		
Analytical Laboratories:	 BEST ENVIRONMENTAL 339 Stealth Court Livermore, CA 94551 Phone (925) 455-9474 Fax (925) 455-9479 Atmospheric Analysis & Consulting 1534 Eastman Avenue Ventura, CA 93003 ALS Environmental 1435 Norjohn Ct Burlington, Ontario 		

Source Test Information

TABLE of CONTENTS

SECTION	1.	INTRODUCTION	1
1.1.	TEST	PURPOSE	
1.2.	TEST	LOCATION	1
1.3.	TEST	DATE	1
1.4.	TEST	PARAMETERS AND METHODS	1
1.5.	SAM	PLING AND OBSERVING PERSONNEL	1
SECTION	2.	SUMMARY OF RESULTS	2
2.1.	Emis	SION RESULTS	2
2.2.		MENTS: DISCUSSION OF QUALITY ASSURANCE AND ERRORS	
2.3.	Proc	CESS DESCRIPTION	
2.4.		v Diagram	
2.5.		CESS AND CONTROL OPERATING PARAMETERS	
2.6.	TEST	ING OR PROCESS INTERRUPTIONS AND CHANGES	
SECTION	3.	SAMPLING AND ANALYSIS PROCEDURES	4
3.1.		LOCATION	
3.2.		HOD DESCRIPTION, EQUIPMENT, SAMPLING, ANALYSIS AND QA/QC	
3.3.	ANA	lytical Laboratory	б
TABLE 1-	HCL	& HF TEST RESULTS	7
TABLE 3-	HEX	AVALENT CHROMIUM TEST RESULTS	9
TABLE 4-	ALD	EHYDES TEST RESULTS	10
TABLE 5-	PAH	TEST RESULTS	11
TABLE 6-	DIO	XIN TEST RESULTS	12
TABLE 7-	DIO	XIN TOXIC EQUIVALENCY FACTOR TEST RESULTS	
APPENDI	CES		•••••
	A.	Calculations & Nomenclature	A-1
	B.	Laboratory Reports	
	C.	Field Data Sheets	
	D.	Process Information	
	E.	Equipment Calibration	
	F.	Stack Diagrams	
	G.	Sampling System Diagrams	
	Ц.	Source Test Plan	
	I.	Permit to Operate	
	1.	i crime to operate	

SECTION 1. INTRODUCTION

1.1. Test Purpose

BEST ENVIRONMENTAL (BE) was contracted by Bubbling Wells to a perform an initial compliance source test on one animal cremator located at the Bubbling Well facility in Napa, Ca. The purpose of the test was to comply with Bay Area Air Quality Management District (BAAQMD) Condition 27310. The cremator tested is a Matthews IEB 50 designated by BAAQMD as source S-2.

1.2. Test Location

The test was conducted on the Unit IEB 50 which is located at 40 Executive Ct, Napa, CA. The facility is identified by the BAAQMD as Plant 24712.

1.3. Test Date

The test was conducted on May 25-27, 2021.

1.4. Test Parameters and Methods

The following emission parameters were measured.

Parameter	Test Methods	Run time
Dioxins, Furans & PAHs	EPA M23	120 min.
Hydrogen Chloride & Hydrogen Fluoride	EPA M26A	60 min
Arsenic, Beryllium, Cadmium, Copper, Lead, Nickel, Selenium	EPA M29	60 min
Hexavalent Chromium	EPA M306	80 min
Acetaldehyde & Formaldehyde	ARB 430	30 min
Flow Rate	EPA M1-4	Concurrent

1.5. Sampling and Observing Personnel

The test notification was submitted to the BAAQMD on May 14, 2021 by BE and assigned a Notice of Source Test Number 6521. Subail Asfour, Regan Best Irwin and William Johnston of BE performed the test. David Harberts of Bubbling Wells coordinated the test program. No representative of the BAAQMD was present to witness the test.

SECTION 2. SUMMARY OF RESULTS

2.1. Emission Results

Table 2.1 summarizes the Average Test Results compared to the permit limits. Triplicate runs were performed for all test parameters with the unit operating at typical load. Testing was conducted according to approved California Air Resources Board (CARB) and Environmental Protection Agency (EPA) test methods. Individual run results are presented in Tables 1 through 6 on pages 7-13. A copy of the permit is included in the appendices.

Parameter	Average Result lbs/body	Permit Limits lbs/body
Hydrogen Chloride	2.36E-02	7.2 E-02
Hydrogen Fluoride	<7.85E-05	6.60E-04
Dioxins & Furans	8.10E-11	1.40E-09
PAHs	2.37E-05	4.90E-08
Arsenic	6.03E-07	3.00E-05
Beryllium	<6.05E-08	1.40E-06
Cadmium	2.95E-07	1.10E-05
Copper	2.46E-05	2.70E-05
Lead	2.68E-05	6.6E-05
Nickel	5.08E-06	3.80E-05
Selenium	4.40E-06	4.40E-05
Hexavalent Chromium	3.05E-07	1.40E-05
Acetaldehyde	1.32E-05	1.30E-04
Formaldehyde	8.14E-06	3.40E-05

Table 2.1 Average Test Results

2.2. Comments: Discussion of Quality Assurance and Errors

Quality assurance procedures listed in the above referenced test methods and referenced in the Source Test Plan were performed and documented. The QA/QC procedures are described in Section 4.3 of the report.

Pretest calculations for Method 23 & Method 29 were performed for run time determinations. These calculations can be found in Appendix A.

Emission factors in units of pounds pollutant per body incinerated was calculated using pounds per hour, the method run time and the number of bodies. The number of bodies was calculated from the total weight divided by 150 lbs (permitted weight equal to a body).

The Dioxin/PAH runs had to be conducted on two separate days due to run time and available incineration time.

Final dioxin results were calculated using EPA toxic equivalency factors.

SECTION 3. SOURCE OPERATION

3.1. Process Description

Bubbling Well offers two types of cremation services, as well as many other memorial options for the pet owners of the Bay Area, Private Cremation and Communal non return cremation from three animal cremators. The cremators are equipped with secondary temperature controls to controls emissions and odor. A continuous temperature chart recorder continuously monitors the chamber temperatures. Cremator IEB 50 is a single batch operation loaded initially and fired continually throughout the day with no additional loads.

3.2. Flow Diagram

A digital image of the stack is contained in Appendix F.

3.3. Process and Control Operating Parameters

The operating temperature of the secondary chamber was kept above 1,650°F during the test series. A continuous temperature chart recorder continuously monitors the chamber temperatures. Temperature charts provided by Bubbling Well are in Appendix D. Process charge weights for each day are presented below.

Test Date	Total Weight (lbs)	Incineration Time (hr)	# Bodies (@150 lbs per)
5-25-21	1,528	5.50	10.2
5-26-21	2,037	6.25	13.6
5-27-21	2,374	6.75	15.8

Process Weights

3.4. Testing or Process Interruptions and Changes

No test or process interruptions occurred during the test.

SECTION 4. SAMPLING AND ANALYSIS PROCEDURES

4.1. Port Location

Emissions from the engine were sampled through a single sample port located on the round stack. The dimensional cross-section of the stack is 25.5 inches.

4.2. Method Description, Equipment, Sampling, Analysis and QA/QC

Sampling and analytical procedures of the EPA Methods are followed as published in the "Quality Assurance Handbook for Air Pollution Measurement Systems" Volume III, US EPA 600/4-77-027b.

Parameter	Test Methods	Run time
Dioxins, Furans & PAHs	EPA M23	120 min.
Hydrogen Chloride & Hydrogen Fluoride	EPA M26A	80 min
Arsenic, Beryllium, Cadmium, Copper, Lead, Nickel, Selenium	EPA M29	80 min
Hexavalent Chromium	EPA M306	80 min
Formaldehyde & Acetaldehyde	ARB 430	30 min
Flow Rate	EPA M1-4	Concurrent

The following is an overview of the Testing Performed

EPA Method 1. This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements.

EPA Method 2 is used to determine stack gas velocity using a standard or S-type pitot tube and inclined manometer or magnehelic. Temperature is monitored using a K-type thermocouple and calibrated Omega temperature meter. Leak checks are performed before and after each traverse to validate the results. Thermometer calibrations are performed using an Omega Model CL-300 calibrator. Geometric calibrations of S-type pitots are performed and records are submitted with the report.

EPA Method 3 is used to determine the molecular weight of the stack gas from O2 and CO2 measurements. Concentrations of O2 & CO2 were obtained from EPA Method 3C analysis.

EPA Method 4 is used to determine the moisture content in the gas stream by extracting a sample and condensing the moisture in the impingers and the silica gel trap. The moisture gained is determined volumetrically and gravimetrically. Results are recorded on the field data sheet.

EPA M26A is applicable for determining emissions of hydrogen halides (HX) [HCl, HBr, and HF] and halogens (X2) [Cl2 and Br2] from stationary sources. Gaseous pollutants are withdrawn isokinetically from the source and collected in absorbing solutions. Acidic and alkaline absorbing solutions collect the gaseous hydrogen halides and halogens, respectively. Following sampling. the emissions are solubilized in the acidic solution and form chloride (Cl–), bromide (Br–), and fluoride (F–) ions. The halogens have a very low solubility in the acidic solution and pass through to the alkaline solution where they are hydrolyzed to form a proton (H+), the halide ion, and the

4

hypohalous acid (HClO or HBrO). Sodium thiosulfate is added to the alkaline solution to assure reaction with the hypohalous acid to form a second halide ion, such that 2 halide ions are formed for each molecule of halogen gas. The halide ions in the separate solutions are measured by ion chromatography (IC).

EPA M23 is used to determine the Dioxins and Polycyclic Aromatic Hydrocarbon (PAH) emissions. The sampling equipment consists of a glass nozzle, a BEI constructed heated glass-lined probe, heated filter box and filter holder with teflon-coated glass-fiber filter, followed by a Teflon® line to a condenser and XAD sorbent module that sits directly on-top of the first of four modified Greenburg-Smith impingers. The first impinger has a short stem and is empty, the second contains DI water and the third is empty. A fourth impinger contains silica gel to remove any remaining moisture. The sample is drawn through the sample train using a vacuum pump and the volume is measured by a dry gas meter in an isokinetic metering control module.

Sampling is performed isokinetically. <u>Sampling QA/QC</u>: consists of pitot leak checks which are performed by pressurizing each leg of the pitot separately to a pressure greater than 3" H₂O. The leak check is passed when no movement in the manometer fluid occurs over 15 seconds. Sampling system leak checks are performed before and after each test run. The sampling system leak checks are performed by capping the nozzle and pulling a vacuum greater than 15 inches of mercury and observing the meter rate. The leak check is passed when the leak rate is less than 0.02CFM or 4% of the average sample rate, whichever is less. The final leak check is performed at a vacuum at least as high as the highest vacuum pulled during the run. The impingers are kept in ice to maintain the temperature of the gas exiting the last impinger to below 68°F. No silicone grease is used in the components of the sampling train.

Sample recovery is performed in a clean enclosed area or at the laboratory. The nozzle/probe sample is recovered with acetone and a methylene chloride rinse. The filter is carefully removed and placed in a labeled petri-dish. The transfer line between the filter and condenser, the condenser and the first impinger are rinsed three times with acetone and methylene chloride. The sorbent module is capped. The second and third impinger contents and silica gel are recovered and weighed.

Equipment QA/QC includes the following: The dry gas meter, pitot, thermocouples, gauges and nozzles are all calibrated according to the methods and with a frequency of between 6 to 12 months as specified in CARB QA/QC Volume VI, Table 3. Nozzles are calibrated to within 0.001" diameter and are inspected for damage prior to each test. Acetone, Methylene Chloride and deionized water blanks were collected using identical equipment, reagents, proportions and techniques as the test samples. <u>Analytical QA/QC</u> consists of at least one field blank, which is a sample train assembled tested and recovered in the same manner as the samples without drawing any sample. A chain of custody is completed for all samples, and the samples are packaged and shipped to the laboratory according to the method.

EPA M29 is used to determine the emissions of metal compounds. The sampling equipment consists of a Method 5 arrangement with a borosilicate glass nozzle, heated glass probe and heated quartz glass fiber filter, followed by a Teflon® line to a series of four Greenburg-Smith impingers

immersed in ice. The first two impingers contain a solution of 5% HNO₃/10% H₂O, the third is empty, the fourth contains silica gel desiccant).

Analysis for metals was performed by Inductively Coupled Argon Plasma (ICAP), Atomic Adsorption Spectroscopy (AAS), Graphite Furnace AAS (GFAAS).

EPA Method 306 was used to determine total and hexavalent chromium. An emission sample is extracted isokinetically from the source using an unheated Method 5 sampling train (40 CFR Part 60, Appendix A), with a glass nozzle and probe liner, but with the filter omitted. The sample time shall be at least two hours. The Cr emissions are collected in an alkaline solution containing 0.1 N sodium hydroxide (NaOH). The collected samples are recovered using an alkaline solution and are then transported to the laboratory for analysis. Reagent blanks are collected using the same lot reagents, same proportions and techniques as the test samples. Analytical QA/QC consisted of a reagent blank.

CARB Method 430 is used to determine emissions of Aldehyde and Ketone compounds. Gaseous emissions are drawn through a Teflon sample line and two midget impingers in series, each containing aqueous acidic solution of 2,4-dintrophenyl-hydrazine (DNPH), 10mL per impinger. A pre-test leak check is performed for each run. Sample is drawn at a rate of ~ 0.5 liters per minute for approximately 10 to 58 minutes. Following each run the sample impingers are capped off labeled and prepared for shipment. Also, a field blank is collected for each run by loading the impingers and performing a leak check. The integrity of each sample is maintained by labeling each bottle in correspondence to the chain of custody and shipment in a chilled container. All sampling is performed within 48-hours of pre-sampling reagent blank analysis. After organic solvent extraction, the samples are sent to a laboratory and analyzed using reverse phase HPLC (high performance Liquid Chromatography) where target compounds are quantified and identified by comparison of retention times and area counts of the samples with those of standards. Each impinger is analyzed separately including blanks. For each run, sample C was the field blank.

4.3. Analytical Laboratory

HCl & HF samples were analyzed by AAC lab. Dioxins, furans, PAHs, metals and hexavalent chrome samples were analyzed by ALS Environmental. For more information on the analysis procedure and QA/QC refer to Appendix B

TABLE 1

Bubbling Wells Acid Emission Results Crematory Unit IEB 50

. Permit #30522

RUN #		1	2	3	AVERAGE	Limits
Test Dat	te	5-25-21	5-25-21	5-25-21		
Run Tin	ne	1100-1205	1200-1204	1414-1520		
Total W	eight		1,528			
Bodies p	per Batch	10.2	10.2	10.2		
Run Tin	ne, hrs		1.0			
Sample	Volume (DSCF)	39.454	37.959	38.340		
Isokinet	ic (%)	107	100	102	103	
Stack Te	emp. F	975	983	992	983	
Velocity	v (ft/sec)	22.34	22.45	22.56	22.45	
Flowrate	e (ACFM)	4,755	4,777	4,801	4,778	
Flowrate	e (DSCFM)	1,564	1,617	1,596	1,592	
H_2O (vo	lume %)	11.36	8.31	9.36	9.68	
HCl	ug/sample	39,900	50,900	43,500	44,767	
	ppm	23.67	31.38	26.55	27.20	
	lbs/hr	2.09E-01	2.78E-01	2.35E-01	2.41E-01	
	lbs/body	2.06E-02	2.73E-02	2.31E-02	2.36E-02	7.20E-02
HF	ug/sample	<157	<137	153	<149	
	ppm	< 0.17	< 0.15	0.17	< 0.16	
	lbs/hr	<8.24E-04	<7.47E-04	<8.26E-04	<7.99E-04	
	lbs/body	<8.09E-05	<7.34E-05	<8.11E-05	<7.85E-05	6.60E-04

WHERE:

body = 150 lbs "Hg = Inches of Mercury °F = Fahrenheit ug = micrograms Molecular Weight HCL = 36.46 HF = 20.006 CALCULATIONS:

 $\begin{array}{l} Vw \; std = 0.06236 \; * \; Vw \; * \; (Tstd + 460) \; / \; 29.92 \; / \; 18 \\ Vm \; std = \; Vm \; * \; Yd \; * \; (Tstd + 460) \; * \; (Pb \; + (\Delta H / 13.6)) \; / \; (Tm \; + \; 460) \; / \; 29.92 \\ ppm = \; 1.6085 \; * \; (mg \; / \; Vm \; std) \; * \; (Tstd \; + \; 460) \; / \; MW \\ lbs/body = \; lbs/hr \; * \; hrs/batch \; * \; batch/body \\ Body = \; 150 \; pounds \end{array}$

lbs/hr = Emission rate, grams per hour lbs//body = pounds pollutant per bodies per batch

TABLE 2

Bubbling Well Metals Emission Results Crematory Unit IEB 50 Permit #30522

RUN #		1	2	3	AVERAGE	Limit
Test Date		5-26-21	5-26-21	5-26-21		
Run Time		1100-1205	1155-1318	1414-1520		
Total Weig	ht		2,037			
Bodies per	Batch	13.6	13.6	13.6	13.6	
Run Time,	hrs		1.0			
Sample Vo	lume (DSCF)	50.233	47.662	51.077		
Isokinetic	(%)	108.4	99.7	99.8	102.6	
Stack Tem	p. F	1,009	1,087	977	1,024	
Velocity (f	t/sec)	22.90	23.20	22.20	22.77	
Flowrate (A	ACFM)	4,874	4,938	4,724	4,846	
Flowrate (I	DSCFM)	1,477	1,523	1,632	1,544	
H ₂ O (volur	ne %)	15.8	9.7	6.1	10.6	
		Mass Emissions				
Arsenic	ug/sample	2.72	1.93	1.38	2.0100	
	ug/dscm	1.53E-03	1.15E-03	7.65E-04	1.15E-03	
	ug/dscf	5.41E-02	4.05E-02	2.70E-02	4.06E-02	
	lbs/hr	1.06E-05	8.15E-06	5.83E-06	8.18E-06	
	lb/body	7.78E-07	6.00E-07	4.29E-07	6.03E-07	3.00E-05
	ppb (MW=74.99)	4.94E-04	3.69E-04	2.47E-04	3.70E-04	
Beryllium	ug/sample	<0.2	<0.2	<0.2	<0.2	
Derymann	ug/dscm	<1.13E-04	<1.19E-04	<1.11E-04	<1.14E-04	
	ug/dscf	<3.98E-03	<4.20E-03	<3.92E-03	<4.03E-03	
	lbs/hr	<7.77E-07	<8.45E-07	<8.44E-07	<8.22E-07	
	lb/body	<5.7E-08	<6.2E-08	<6.2E-08	<6.05E-08	1.40E-06
	ppb (MW=9.0)	<3.02E-04	<3.19E-04	<2.97E-04	<3.06E-04	
Codmium	wa/sampla	1.04	1.11	0.783	0.98	
Cadmium	ug/sample					
	ug/dscm ug/dscf	5.86E-04 2.07E-02	6.59E-04 2.33E-02	4.34E-04 1.53E-02	5.60E-04	
	lbs/hr	4.04E-06	4.69E-06	3.31E-06	1.98E-02 4.01E-06	
	lb/body	2.98E-07	4.09E-00 3.45E-07	2.43E-07	2.95E-07	1.10E-05
	ppb (MW=112.4)	1.26E-04	1.42E-04	9.32E-07	1.20E-04	1.101-03

TABLE 2 continued Bubbling Well Metals Emission Results Crematory Unit IEB 50 Permit #30522

Copper	ug/sample	47.5	108	86.0	80.5	
	ug/dscm	2.68E-02	6.42E-02	4.77E-02	4.62E-02	
	ug/dscf	0.95	2.27	1.68	1.63	
	lbs/hr	1.85E-04	4.56E-04	3.63E-04	3.35E-04	
	lb/body	1.36E-05	3.36E-05	2.67E-05	2.46E-05	2.70E-05
	ppb (MW=63.55)	1.02E-02	2.44E-02	1.81E-02	1.76E-02	
Lead	ug/sample	42.4	89.0	131	87.47	
	ug/dscm	2.39E-02	5.29E-02	7.26E-02	4.98E-02	
	ug/dscf	8.44E-01	1.87E+00	2.56E+00	1.76E+00	
	lbs/hr	1.65E-04	3.76E-04	5.53E-04	3.65E-04	
	lb/body	1.21E-05	2.77E-05	4.07E-05	2.68E-05	6.6 0E-05
	ppb (MW=207.2)	2.78E-03	6.16E-03	8.46E-03	5.80E-03	
Nickel	ug/sample	7.42	26.6	15.6	16.54	
	ug/dscm	4.18E-03	1.58E-02	8.65E-03	9.55E-03	
	ug/dscf	1.48E-01	5.58E-01	3.05E-01	3.37E-01	
	lbs/hr	2.88E-05	1.12E-04	6.59E-05	6.90E-05	
	lb/body	2.12E-06	8.27E-06	4.85E-06	5.08E-06	3.80E-05
	ppb (MW=53.71)	1.88E-03	7.10E-03	3.89E-03	4.29E-03	
Selenium	ug/sample	13.7	25.4	4.46	14.52	
	ug/dscm	7.72E-03	1.51E-02	2.47E-03	8.43E-03	
	ug/dscf	2.73E-01	5.33E-01	8.73E-02	2.98E-01	
	lbs/hr	5.32E-05	1.07E-04	1.88E-05	5.98E-05	
	lb/body	3.92E-06	7.90E-06	1.39E-06	4.40E-06	4.40E-05
	ppb (MW=78.96)	2.36E-03	5.76E+00	9.44E-01	2.24E+00	

WHERE,

< = Less Than

Velocity = Stack gas velocity in feet per second

DSCFM = Dry Standard cubic feet per minute ug/dscm = micrograms per dry standard cubic meter

ug/dscf = micrograms per dry standard cubic foot lbs/hr = Emission rate, grams per hour

lbs//body = pounds pollutant per bodies per batch

CALCULATIONS,

ug/DSCM = ug / DSCF / 35.31 lbs/hr = ((ug/dscf) / 1,000,000 * DSCFM * 600 / 454 ppb @ 60 °F = 24.14 * (ug/dscm) / M.W. lbs/body = lbs/hr * hrs/batch * batch/body Body = 150 pounds

TABLE 3Bubbling WellsHexavalent Chromium Emission ResultsIEB 50Permit #30522

RUN #	1	2	3	AVERAGE	Limit
Test Date	5-26-21	5-26-21	5-26-21		
Test Time	918-1041	1155-1318	1359-1520		
Total Weight		2,037			
Bodies per Batch	13.6	13.6	13.6	13.6	
Run Time, hrs		1.3			
Isokinetic (%)	106.7	101.8	98.5		
Sample Volume (DSCF)	50.151	48.882	49.872		
Velocity (ft/sec)	22.80	23.41	22.32	22.84	
Flow Rate (ACFM)	4,852	4,982	4,750	4,861	
Flow Rate (DSCFM)	1,498	1,531	1,614	1,548	
Chromiu	m Emission	S			
Hexavalent Chromium, total ug	0.29	0.78	1.21	0.76	
Hexavalent Chromium, (ug/dscm)	1.64E-04	4.52E-04	6.87E-04	4.34E-04	
Hexavalent Chromium, (ug/dscf)	5.78E-03	1.60E-02	2.43E-02	1.53E-02	
Hexavalent Chromium, (lbs/hr)	1.14E-06	3.23E-06	5.17E-06	3.18E-06	
Hexavalent Chromium, (lbs/body)	1.10E-07	3.09E-07	4.95E-07	3.05E-07	1.40E-05
Hexavalent Chromium, (ppb) (MW=51.996)	7.60E-05	2.10E-04	3.19E-04	2.02E-04	

WHERE,

< = Less Than

Velocity = Stack gas velocity in feet per second DSCFM = Dry Standard cubic feet per minute ug/dscm = micrograms per dry standard cubic meter ug/dscf = micrograms per dry standard cubic foot lbs/hr = Emission rate, grams per hour

CALCULATIONS,

ug/DSCM = ug / DSCF / 35.31 lbs/hr = ((ug/dscf) / 1,000,000 * DSCFM * 600 / 454 ppb @ 60 °F = 24.14 * (ug/dscm) / M.W. lbs/body = lbs/hr * hrs/batch * batch/body Body = 150 pounds

TABLE 4

Bubbling Wells Aldehyde Emissions Results Crematory Unit IEB 50 Permit #30522

RUN	1	2	3	Average	Limit
Test Date	5-27-21	5-27-21	5-27-21		
Test Time	1006-1036	1044-1114	1120-1150		
Standard Temp., °F	70	70	70		
Total Weight		2,374	-		
Bodies per batch	15.83	15.83	15.83	15.83	
Run Time, hrs		0.5			
Flow Rate, DSCFM ¹	1,467	1,467	1,467	1,467	
Standard Meter Volume, liters	14.7	14.5	14.5	14.596	
Emi	ssions Data				
Oxygen, %	16.6	18.5	17.5	17.5	
M.W.					
Formaldehyde, ug/sample	0.597	0.670	0.775	0.681	
Formaldehyde, ppb	32.6	37.2	42.9	37.5	
Formaldehyde, gm/hr 30.0	0.10	0.12	0.13	0.12	
Formaldehyde, lbs/hr	2.24E-04	2.55E-04	2.94E-04	2.58E-04	
Formaldehyde, lbs/body	7.07E-06	8.06E-06	9.29E-06	8.14E-06	3.40E-05
Acetaldehyde, ug/sample	0.138	2.081	1.082	1.100	
Acetaldehyde, ppb	5.1	78.5	40.7	41.5	1
Acetaldehyde, gm/hr 44.1	2.34E-02	3.59E-01	1.86E-01	1.89E-01	
Acetaldehyde, lbs/hr	5.17E-05	7.92E-04	4.11E-04	4.18E-04	
Acetaldehyde, lbs/body	1.63E-06	2.50E-05	1.30E-05	1.32E-05	1.30E-04

1 = flow rate is from the M23 run 3

WHERE:

ppb = parts per billion M.W. = Molecular Weight gm/hr = Grams Per Hour ug/dscm = micrograms per dry standard cubic meter Formadehyde MW = 30 Acetadehyde MW = 44.1

CALCULATIONS:

ug/dscm = (ug/sample) / dscm

gm/hr = ppb * DSCFM * M.W * 453.6 * 8.223E-5 /(Tstd + 460) Aldehyde, ppbv = ((ug/sample) / M.W. * (24.14 / sample volume)) * 1000

lbs/body = lbs/hr * hrs/batch * batch/body Body = 150 pounds

TABLE 5 Bubbling Wells PAH Emission Results IEB 50

TEST#	1	2	3	AVERAGE
Test Date	5-25-21	5-25-21	5/27/21	
Run Time	952-1156	1304-1508	0907-1110	
Total Weight, lbs	1,5	528	2,374	
Bodies per Batch	10.2	10.2	15.8	
Run Time, hrs	2.0	2.0	2.0	
Sample Volume (DSCF)	72.882	70.325	66.153	69.786
Sample Volume (DSCM)	2.064	1.992	1.873	1.976
Flow Rate (DSCFM)	1,563	1,616	1,510	1,563
Isokinetic, %	99.1	92.5	93.1	94.9
Naphthalene,				
total ng	19600	5980	27600	17727
(ng/dscm)	9496	3003	14732	9077
(lbs/hr)	5.56E-05	1.82E-05	8.33E-05	5.24E-05
(lbs/body)	1.09E-05	3.57E-06	1.05E-05	8.34E-06
ppt, MW = 128	1790	566	2777	1711
Acenaphthylene,				
total ng	405	40.2	132	192.4
(ng/dscm)	196	20	70	96
(lbs/hr)	1.15E-06	1.22E-07	3.98E-07	5.57E-07
(lbs/body)	2.26E-07	2.40E-08	5.04E-08	1.00E-07
ppt, MW = 152	31.15	3.20	11.19	15.18
Acenaphthene,				
total ng	122	33.2	86.5	80.57
(ng/dscm)	59.1	16.7	46.2	40.6
(lbs/hr)	3.46E-07	1.01E-07	2.61E-07	2.36E-07
(lbs/body)	6.80E-08	1.98E-08	3.30E-08	4.03E-08
ppt, MW = 154	9.26	2.61	7.23	6.37
Fluorene,				
total ng	10300	4610	3700	6203
(ng/dscm)	4990	2315	1975	3093
(lbs/hr)	2.92E-05	1.40E-05	1.12E-05	1.81E-05
(lbs/body)	5.74E-06	2.75E-06	1.41E-06	3.30E-06
ppt, MW=166	725.40	336.47	287.09	449.65
Phenanthrene,				
total ng	18800	9120	28900	18940
(ng/dscm)	9108	4579	15426	9705
(lbs/hr)	5.33E-05	2.77E-05	8.72E-05	5.61E-05
(lbs/body)	1.05E-05	5.44E-06	1.10E-05	8.98E-06
ppt, MW=178	1234.8	620.8	2091.2	1315.6

TABLE 5 Continued... (page 2 of 3) PAH Emission Results IEB 50

TEST#	1	2	3	AVERAGE
Anthracene,				
total ng	1130	132	178	480
(ng/dscm)	547	66	95	236
(lbs/hr)	3.21E-06	4.01E-07	5.37E-07	1.38E-06
(lbs/body)	6.29E-07	7.88E-08	6.79E-08	2.59E-07
ppt, MW=178	74.22	8.98	12.88	32.03
Fluoranthene,				
total ng	992	632	914	846
(ng/dscm)	481	317	488	429
(lbs/hr)	2.81E-06	1.92E-06	2.76E-06	2.50E-06
(lbs/body)	5.53E-07	3.77E-07	3.49E-07	4.26E-07
ppt, MW=202	57.41	37.907	58.279	51.200
Pyrene,				
total ng	615	348	1100	688
(ng/dscm)	298	175	587	353
(lbs/hr)	1.74E-06	1.06E-06	3.32E-06	2.04E-06
(lbs/body)	3.43E-07	2.08E-07	4.20E-07	3.23E-07
ppt, MW=202	35.59	20.87	70.14	42.202
Benzo(a)Anthracene,				
total ng	47.6	16.9	17.6	27.4
(ng/dscm)	23.1	8.5	9.4	13.6
(lbs/hr)	1.35E-07	5.14E-08	5.31E-08	7.99E-08
(lbs/body)	2.65E-08	1.01E-08	6.71E-09	1.44E-08
ppt, MW=228	2.441	0.9	0.994	1.444
Chrysene				
total ng	3210	1330	1510	2017
(ng/dscm)	1555	668	806	1010
(lbs/hr)	9.11E-06	4.04E-06	4.56E-06	5.90E-06
(lbs/body)	1.79E-06	7.94E-07	5.76E-07	1.05E-06
ppt, MW=228	164.595	70.676	85.302	106.858
Benzo(b)Fluoranthene,				
total ng	313.0	25.8	32.3	123.7
(ng/dscm)	152	13	17	61
(lbs/hr)	<8.88E-07	<7.84E-08	<9.75E-08	<3.55E-07
(lbs/body)	1.74E-07	1.54E-08	1.23E-08	<6.74E-08
ppt, MW=252	14.5	1.2	1.7	5.8
Benzo(k)Fluoranthene,				
total ng	17.2	< 0.36	< 0.30	<5.95
(ng/dscm)	8.3	< 0.18	<0.16	<2.89
(lbs/hr)	4.88E-08	<1.09E-09	<9.06E-10	<1.69E-08
(lbs/body)	9.58E-09	2.15E-10	1.14E-10	<3.30E-09
ppt, MW=252	0.8	< 0.017	< 0.015	< 0.277

TABLE 5 Continued... (page 3 of 3) PAH Emission Results IEB 50

TEST#	1	2	3	AVERAGE
Benzo(e)Pyrene,				
total ng	267	18	33	106
(ng/dscm)	129	9	17	52
(lbs/hr)	7.58E-07	5.56E-08	9.87E-08	3.04E-07
(lbs/body)	1.49E-07	1.09E-08	1.25E-08	5.74E-08
ppt, MW=252	12.39	0.88	1.67	4.98
Benzo(a)Pyrene,				
total ng	35.8	2.31	3.07	13.7
(ng/dscm)	17.3	1.2	1.6	6.7
(lbs/hr)	<1.02E-07	<7.02E-09	<9.27E-09	<3.93E-08
(lbs/ton)	1.99E-08	1.38E-09	1.17E-09	<7.50E-09
ppt, MW=252	1.7	0.1	0.2	0.6
Perylene,				
total ng	3.61	< 0.54	2.59	2.2
(ng/dscm)	1.7	< 0.27	1.4	1.1
(lbs/hr)	1.02E-08	<1.64E-09	7.82E-09	6.57E-09
(lbs/body)	2.01E-09	3.22E-10	9.88E-10	1.11E-09
ppt, MW=252	0.2	< 0.026	0.1	0.1
Indeno(1,2,3-cd)Pyrene,				
total ng	47.50	5.8	4.9	19.4
(ng/dscm)	23.0	2.9	2.6	9.5
(lbs/hr)	1.35E-07	1.76E-08	1.49E-08	5.58E-08
(lbs/body)	2.65E-08	3.46E-09	1.88E-09	1.06E-08
ppt, MW = 276	2.012	0.3	0.2	0.8
Dibenz(a,h)Anthracene,				
total ng	57.8	2.7	2.0	20.8
(ng/dscm)	28.0	1.3	1.1	10.1
(lbs/hr)	1.64E-07	8.12E-09	5.98E-09	5.94E-08
(lbs/body)	3.22E-08	1.59E-09	7.55E-10	1.15E-08
ppt, MW=278	2.4	0.1	0.1	0.9
Benzo(ghi)Perylene,				
total ng	57.8	7.4	10.7	25.303
(ng/dscm)	28.0	3.7	5.7	12.479
(lbs/hr)	1.64E-07	2.25E-08	3.23E-08	7.29E-08
(lbs/body)	3.22E-08	4.42E-09	4.08E-09	1.36E-08
ppt, MW = 276	2.448	< 0.325	0.499	1.091

Total PAHs, lbs/body

2.37E-05 4.90E-08

Limit

Where,

DSCFM = Dry Standard Cubic Feet per Minute ng/dscm = nanograms per dry standard cubic meter ng/sec = Emission rate, nanograms per second ppt = part per trillion lbs/hr = pounds per hur lbs/body = pounds per body body = 150m lbs

Calculations,

ng/dscm = ng / dscm ng/sec = 0.02832 * DSCFM * ng/dscm / 60 ppt = ng/dscm * 22.4 * (Tstd. + 460) / 492 / M.W.

Emission Rate, lbs/hr = ppm * MW * DSCFM * 60 / 385E6 (Tstd 68°F) Emission Factor, lbs/body = (lbs/hr *hrs/batch * batch per body

TABLE 6Bubbling WellsDioxin & Furans Emission ResultsIEB 50

TEST#	TEF	1	2	3	AVERAGE
Test Date		5-25-21	5-25-21	5/27/21	
Run Time		952-1156	1304-1508	0907-1110	
Total Weight, lbs			528	2,374	
Bodies per Batch		10.2	10.2	15.8	
Run Time, hrs		2.0	2.0	2.0	
Sample Volume (DSCF)		72.882	70.325	66.153	69.786
Sample Volume (DSCM)		2.064	1.992	1.873	1.976
Flow Rate (DSCFM)		1,563	1,616	1,510	1,563
Isokinetic, %		99.1	92.5	93.1	94.9
2,3,7,8 TCDD	1.0				
total pg		16.9	9.79	<3.20	9.96
total ng		0.017	0.010	< 0.0032	0.010
(ng/dscm)		0.0082	0.0049	< 0.0017	0.0049
(lbs/hr)		4.80E-11	2.98E-11	<9.66E-12	2.91E-11
(lbs/body)		9.41E-12	5.84E-12	<1.22E-12	5.49E-12
ppt, $MW = 128$		1.54E-03	9.27E-04	<3.22E-04	9.31E-04
1,2,3,7,8 PeCDD	1.0				
total pg	1.0	77.7	41.4	25.2	48.1
total ng		0.078	0.041	0.025	0.048
(ng/dscm)		0.0376	0.0208	0.0135	0.048
(lbs/hr)		2.20E-10	1.26E-10	7.61E-11	1.41E-10
(lbs/body)	-	4.33E-11	2.47E-11	9.61E-12	2.59E-11
ppt, MW = 128		7.10E-03	3.92E-03	2.54E-03	4.52E-03
1,2,3,4,7,8 HxCDD	0.1	7.10E 05	5.72E 05	2.5 12 05	1.522 05
total pg		36.3	31.5	<9.4	25.7
total ng	-	0.036	0.032	<0.0094	0.026
(ng/dscm)	-	0.0176	0.0158	< 0.0050	0.0128
(lbs/hr)	-	1.03E-10	9.58E-11	<2.84E-11	7.57E-11
(lbs/body)		2.02E-11	1.88E-11	<3.59E-12	1.42E-11
ppt, MW = 152	-	2.79E-03	2.51E-03	<7.97E-04	2.03E-03
1,2,3,6,7,8 HxCDD	0.1				
total pg		69.0	<41	<11	40.3
total ng		0.069	< 0.041	< 0.011	0.040
(ng/dscm)		0.0334	< 0.0206	< 0.0059	< 0.020
(lbs/hr)		1.96E-10	<1.25E-10	<3.32E-11	<1.18E-10
(lbs/body)		3.84E-11	<2.45E-11	<4.20E-12	<2.24E-11
ppt, $MW = 154$		5.24E-03	<3.23E-03	<9.20E-04	<3.13E-03
1,2,3,7,8,9 HxCDD	0.1				
total pg		62.7	63.6	<10	45.4
total ng		0.063	0.064	<0.010	0.045
(ng/dscm)		0.0304	0.0319	< 0.0053	0.0225
(lbs/hr)		1.78E-10	1.93E-10	<3.02E-11	1.34E-10
(lbs/body)		3.49E-11	3.80E-11	<3.81E-12	2.56E-11
ppt, MW=166		4.42E-03	4.64E-03	<7.76E-04	3.28E-03
1,2,3,4,6,7,8 HpCDD	0.01				
total pg		210	300	<61	190
total ng		0.210	0.300	< 0.061	0.190
(ng/dscm)		0.1017	0.1506	< 0.033	0.0950
(lbs/hr)		5.96E-10	9.12E-10	<1.84E-10	5.64E-10
(lbs/body)		1.17E-10	1.79E-10	<2.33E-11	1.06E-10
ppt, MW=178		1.38E-02	2.04E-02	<4.41E-03	1.29E-02
11 / 11 / 1		1			

TABLE 6 Continued...

(page 2 of 3)

TEST#		1	2	3	AVERAGE
OCDD	0.0003				
total pg		154	350	97.9	201
total ng		0.154	0.350	0.098	0.201
(ng/dscm)		0.0746	0.1757	0.0523	0.1009
(lbs/hr)		4.37E-10	1.06E-09	2.96E-10	5.99E-10
(lbs/body)		8.58E-11	2.09E-10	3.73E-11	1.11E-10
ppt, MW=178		1.01E-02	2.38E-02	7.08E-03	1.37E-02
2,3,7,8 TCDF	0.1				
total pg		124	43.0	82.9	83.3
total ng		0.124	0.043	0.083	0.083
(ng/dscm)		0.0601	0.0216	0.0442	0.0420
(lbs/hr)		3.52E-10	1.31E-10	2.50E-10	2.44E-10
(lbs/body)		6.91E-11	2.57E-11	3.16E-11	4.21E-11
ppt, MW=202		7.18E-03	2.58E-03	5.29E-03	5.01E-03
1,2,3,7,8 PeCDF	0.03				
total pg		132	61.3	59.7	84.3
total ng		0.132	0.061	0.060	0.084
(ng/dscm)		0.0640	0.0308	0.0319	0.0422
(lbs/hr)		3.75E-10	1.86E-10	1.80E-10	2.47E-10
(lbs/body)		7.35E-11	3.66E-11	2.28E-11	4.43E-11
ppt, MW=202		7.64E-03	3.68E-03	3.81E-03	5.04E-03
2,3,4,7,8 PeCDF	0.3				
total pg	0.0	162	94.2	173	143
total ng		0.162	0.094	0.173	0.143
(ng/dscm)		0.0785	0.0473	0.0923	0.0727
(lbs/hr)		4.60E-10	2.86E-10	5.22E-10	4.23E-10
(lbs/body)		9.02E-11	5.62E-11	6.60E-11	7.08E-11
ppt, MW=228		8.31E-03	5.01E-03	9.77E-03	7.70E-03
1,2,3,4,7,8 HxCDF	0.1				
total pg	0.1	102	80.6	39	73.7
total ng		0.102	0.081	0.039	0.074
(ng/dscm)		0.0494	0.0405	0.0206	0.0368
(lbs/hr)		2.89E-10	2.45E-10	1.16E-10	2.17E-10
(lbs/body)		5.68E-11	4.81E-11	1.47E-11	3.99E-11
ppt, MW=228		5.230E-03	4.283E-03	2.175E-03	3.896E-03
1,2,3,6,7,8 HxCDF	0.1				
total pg		125	87.5	<41.0	84.5
total ng	1	0.125	0.088	<0.041	0.085
(ng/dscm)		0.0606	0.0439	< 0.0219	0.0421
(lbs/hr)		3.55E-10	2.66E-10	<1.24E-10	2.48E-10
(lbs/body)		6.96E-11	5.22E-11	<1.56E-11	4.58E-11
ppt, MW=252		5.80E-03	4.21E-03	<2.10E-03	4.03E-03
1,2,3,7,8,9 HxCDF	0.1				
total pg		32.1	23.8	11.1	22.3
total ng		0.032	0.024	0.011	0.022
(ng/dscm)		0.032	0.0120	0.0059	0.0111
(lbs/hr)		9.11E-11	7.23E-11	3.35E-11	6.56E-11
(lbs/body)	1	1.79E-11	1.42E-11	4.23E-12	1.21E-11
ppt, MW=252	1	1.49E-03	1.14E-03	5.67E-04	1.07E-03
TF ()	1				

TABLE 6 Continued...

(page 3 of 3)

TEST#		1	2	3	AVERAGE
2,3,4,6,7,8 HxCDF	0.1				
total pg		112	92.4	67.4	90.6
total ng		0.112	0.092	0.067	0.091
(ng/dscm)		0.0543	0.0464	0.0360	0.0455
(lbs/hr)		3.18E-10	2.81E-10	2.03E-10	2.67E-10
(lbs/body)		6.24E-11	5.51E-11	2.57E-11	4.78E-11
ppt, MW=252		5.20E-03	4.44E-03	3.44E-03	4.36E-03
1,2,3,4,6,7,8 HpCDF	0.01				
total pg		177	237	77.9	164.0
total ng		0.177	0.237	0.078	0.164
(ng/dscm)		0.0858	0.1190	0.0416	0.0821
(lbs/hr)		5.02E-10	7.20E-10	2.35E-10	4.86E-10
(lbs/body)		9.86E-11	1.41E-10	2.97E-11	8.99E-11
ppt, MW=252		8.21E-03	1.14E-02	3.98E-03	7.86E-03
1,2,3,4,7,8,9 HpCDF	0.01				
total pg		23.7	<18	5.3	15.7
total ng		0.024	< 0.018	0.005	< 0.02
(ng/dscm)		0.0115	< 0.0090	0.0028	0.0078
(lbs/hr)		6.72E-11	<5.47E-11	1.59E-11	4.59E-11
(lbs/body)		1.32E-11	<1.07E-11	2.01E-12	8.65E-12
ppt, MW=252		1.10E-03	<8.65E-04	2.69E-04	7.45E-04
OCDF	0.0003				
total pg		35.2	75.1	17.5	42.6
total ng		0.035	0.08	0.018	< 0.0
(ng/dscm)		0.0171	0.0377	0.0093	0.0214
(lbs/hr)		9.99E-11	2.28E-10	5.28E-11	1.27E-10
(lbs/body)		1.96E-11	4.48E-11	6.68E-12	2.37E-11
ppt, MW = 276		1.49E-03	3.30E-03	8.17E-04	1.87E-03

Where,

DSCFM = Dry Standard Cubic Feet per Minute ng/dscm = nanograms per dry standard cubic meter ppt = part per trillion lbs/body = pounds per body

Body = 150 pounds

Calculations,

ng/dscm = ng / dscm

ng/sec = 0.02832 * DSCFM * ng/dscm / 60

ppt = ng/dscm * 22.4 * (Tstd. + 460) / 492 / M.W.

Emission Rate, lbs/hr = ppm * MW * DSCFM * 60 / 385E6 (Tstd 68°F) Emission Factor, lbs/body = (lbs/hr) * (hrs/batch) * (bodies/batch)

TABLE 7Bubbling WellDioxin & Furans Emission ResultsToxic Equivalent FactorsIEB 50

Parameter	TEF	Avg	TEF Avg	
2,3,7,8 TCDD	1.0	8	8	
(lbs/body)		5.49E-12	5.49E-12	
1,2,3,7,8 PeCDD	1.0			
(lbs/body)		2.59E-11	2.59E-11	
1,2,3,4,7,8 HxCDD	0.1			
(lbs/body)	0.1	1.42E-11	1.42E-12	
(105/0003)		1.1212 11	1.121 12	
1,2,3,6,7,8 HxCDD	0.1			
(lbs/body)		2.24E-11	2.24E-12	
	0.1			
1,2,3,7,8,9 HxCDD (lbs/body)	0.1	2.56E-11	2.56E-12	
(105/00dy)		2.30E-11	2.301-12	
1,2,3,4,6,7,8 HpCDD	0.01			
(lbs/body)		1.064E-10	1.06E-12	
0000	0.0003			
OCDD (lbs/body)	0.0003	1.11E-10	3.32E-14	
(105/00dy)		1.1112-10	5.52E-14	
2,3,7,8 TCDF	0.1			
(lbs/body)		4.21E-11	4.21E-12	
1,2,3,7,8 PeCDF	0.03			
(lbs/body)		4.43E-11	1.33E-12	
22459 D CDE	0.2			
2,3,4,7,8 PeCDF (lbs/body)	0.3	7.08E-11	2.12E-11	
(105/00dy)		7.082-11	2.121-11	
1,2,3,4,7,8 HxCDF	0.1			
(lbs/body)		3.99E-11	3.99E-12	
1,2,3,6,7,8 HxCDF	0.1			
(lbs/body)		4.58E-11	4.58E-12	
	0.1			
1,2,3,7,8,9 HxCDF (lbs/body)	0.1	1.21E-11	1.21E-12	
(IDS/DOUY)		1.211-11	1.211-12	
2,3,4,6,7,8 HxCDF	0.1			
(lbs/body)		4.78E-11	4.78E-12	
	0.04			
1,2,3,4,6,7,8 HpCDF (lbs/body)	0.01	8.99E-11	8.99E-13	
(IDS/DOUY)		0.77E-11	0.77E-13	
1,2,3,4,7,8,9 HpCDF	0.01			
(lbs/body)		8.65E-12	8.65E-14	
	0.0000			
OCDF	0.0003	<u>, , , , , , , , , , , , , , , , , , , </u>	711615	
(lbs/body)		2.37E-11	7.11E-15	T :
T - 4 - 1		F 3 (E) 10	0 101 11	Limit
Total		7.36E-10	8.10E-11	1.40E-09

APPENDICES

APPENDIX A – CALCULATIONS & NOMENCLATURE APPENDIX B - LABORATORY REPORTS APPENDIX C - FIELD DATA SHEETS APPENDIX D – PROCESS INFORMATION APPENDIX E – EQUIPMENT CALIBRATION APPENDIX F – STACK DIAGRAMS APPENDIX G – SAMPLING SYSTEM DIAGRAMS APPENDIX H – NST APPENDIX I – PERMIT

A

APPENDIX A CALCULATIONS & NOMENCLATURE Best Environmental

Livermore, CA 925 455-9474

Standard .	Abbreviatio	ns for Reports	
Uniț	Abbreviation	Unit	Abbreviation
billion	G	microgram	μg
Brake horsepower	bhp	milligram	mg
Brake horsepower hour	bhp-hr	milliliter	ml
British Thermal Unit	Btu	million	MM
capture efficiency	CE	minute	min
destruction efficiency	DE	Molecular Weight	М
Dry Standard Cubic Feet	DSCF	nanogram	ng
Dry Standard Cubic Feet per Minute	DSCFM	Parts per Billion	ppb
Dry Standard Cubic Meter	DSCM	Parts per Million	ppm
Dry Standard Cubic Meter per Minute	DSCMM	pennyweight per firkin	pw/fkn
grains per dry standard cubic foot	gr/DSCF	pound	lb
gram	g	pounds per hour	lbs/hr
grams per Brake horsepower hour	g/bhp-hr	pounds per million Btu	lbs/MMBtu
kilowatt	kW	second	sec
liter	1	Specific Volume, ft ³ /lb-mole	SV
Megawatts	MW	Thousand	k
meter	m	watt	W

Common Conversions / Calculations / Constants

1 gram = 15.432 grains

1 pound = 7000 grains

grams per pound = 453.6

bhp = 1.411 * Engine kW, (where Engine kW = Generator kW output / 0.95) @ 95% efficiency

g/bhp-hr = 453*ppm*(MW / (385E6))* 0.00848 * f-factor * (20.9 / (20.9-O₂)); CARB

g/bhp-hr = lbs/hr * 453.6 / bhp

2.59E-9 = Conversion factor for ppm to lbs/scf; EPA 40CFR60.45 @ 68°F

Correction Multiplier for Standard Temperature = (460 + T_{std}. °F) / 528

F factor: dscf / MMBTU @ 60°F = 8579, @ 68°F = 8710. @ 70° F = 8743

Btu/ft³@ $68^{\circ}F = 1040$ for Natural Gas; EPA Method 19 @ 70° F = 1044 for Natural gas

lb/hr Part. Emission Rate = 0.00857 * gr/dscf * dscfm; EPA Method 5

lbs/hr = ppm / SV x dscfm x M * 60; CARB Method 100; where SV ≈ 385E⁶ @ 68°F or ≈ 379E⁶ @ 60°F or ≈ 386E⁶ @ 70°F.

Correction to 12% CO2 = gr/dscf * 12% / stack CO2%; EPA Method 5

Correction to 3% O₂ = ppm * 17.9 / (20.9 - stack O₂ %); CARB Method 100

Correction to $15\% O_2 = ppm * 5.9 / (20.9 - stack O_2 \%)$; CARB Method 100

dscfm = Gas Fd * MMBtu/min * 20.9 / (20.9 - stack O2 %); EPA Method 19

lb/MMBtu @ $60^{\circ}F = Fd * M * ppm * 2.64E-9 * 20.9 / (20.9 - stack O_2 %);$

(a) $68^{\circ}F = Fd * M$	* ppm * 2.59E-9 * 20	0.9 / (20.9 - stack O ₂ %); EPA Method	$19 @ 70^{\circ} F = 2.5$	8E-9
	Standard	Temperatures by District		
EPA	68 °F	NSAPCD - Northern Sonoma	68 °F	•
CARB	68 °F	PCAPCD - Placer	68 °F	
BAAQMD - Bay Area	70 °F	SLOCAPCD - San Luis Obispo	60 °F	
SJVUAPCD - San Joaquin	60 °F	SMAQMD - Sacramento	68°F de facto	
SCAQMD - South Coast	60 °F	SCAQMD - Shasta County	68 °F	
MBUAPCD - Monterey Bay	68 °F	YSAPCD - Yolo-Solano	68 °F	۸ D
FRAOMD – Feather River	68 ºF	AADBAPC - Amador County	68 °F	A-2

BEST ENVIRONMENTAL

ACID EMISSION CALCULATIONS EPA Method 26A

FACILITY: UNIT: CONDITION:	Bubbling Wells IEB 50 1528 lbs	5	DATE: TIME: TEST NO.:	5-25-21 1022-1125 1		METER BOX NO.: PROBE NO.: NOZZLE NO.:	APEX 1 PR 52 Q14B	
Pitot Factor,	Cp	0.84	Meter Temp., °F	T _m	76	Total H ₂ O Condensed,	V _w	107.0
Barometric Press., "Hg	Pb	30.07	Meter Press.,"H ₂ O	ΔH	1.405			
Static Pressure, "H ₂ O	P _{stat}	-0.03	Average √∆P., "H ₂ O	√∆P	0.241			
Stack Pressure, "Hg	Ps	30.07	Stack Area, Ft ²	As	3.547			
Stack Temp., °F	T _s	975	Nozzle Dia., Inches	D _n	0.505			
Sample Time, mins	Θ	60.0	Meter Factor,	Y _d	1.0200			
Std. Temp., °F	T _{std}	70	Sample Volume, Ft'	Vm	38.790			
A) Gas Volume (V _m) _s	_{td} = (T _{std} +460)*\	/ _m *Y _d *(P _b +ΔH/13.6)/((T _m +46)*29.92) =			39.454	DSCF

A)	Gas volume $(v_m)_{std} = (1_{std} + 400)^{-1} v_m + 1_d + (r_b + \Delta m + 1_3, 0) + ((1_m + 400)^{-2,3,2})^{-1}$	37.434	DOCI	
B)	Volume H ₂ O collected (V_w) _{std} = 8.9148E-5*(T_{std} +460)* V_w =	5.056	SCF	
C)	Total Sample Volume $(V_t)_{std} = (V_m)_{std} + (V_w)_{std} =$	44.510	SCF	
D)	Moisture Content (%H ₂ O) = 100 * (V_w) _{std} / (V_t) _{std} =	11.358	%.	
E)	Stack Gas Velocity (Vs) = 85.49 $C_p \sqrt{(\Delta P)} (T_s + 460/MW_s P_s) =$	22.342	ft/sec	
F) *	Stack Gas Molecular Wt.= $30*(1-H_2O\%/100))+18(H_2O\%/100) =$	28.637	g/g-mole	
G)	% Isokinetic (I) = 9142.88(V_t)(T_s +460)/((D_n^2)(Θ)(P_s)(V_s)(T_{std} +460)) =	107.19	%	
H)	$ACFM = (V_s)(A_s)60 =$	4,755	ACFM	
I)	Stack Gas Vol. Flow Rate, DSCFM = $(V_s)(A_s)((T_{std}+460)/(T_s+460))(P_s)(1-\%H_2O/100)*2.005 =$	1,564	DSCFM	

* stack gas molecular weigh was not measured and given a value of 30 for fired sources as per EPA Method 3, section 1.3

\\ZENA-W2K\users\Reports\Bii\\2021\Bubbling Well\M26A.xls

A-3

ACID EMISSION CALCULATIONS M26A

FACILITY:	Bubbling W	ells	DATE:	5-25-21		METER BOX NO.:	APEX 1	
UNIT:	IEB 50		TIME:	1200-1204		PROBE NO.:	PR 52	
CONDITION:	1528 lbs		TEST NO.:	2		NOZZLE NO .:	Q14B	
							and the state of the	
Pitot Factor,	Cp		Meter Temp., °F	T _m	82	Total H ₂ O Condensed,	Vw	72.8
Barometric Press., "Hg	Pb	30.07	Meter Press.,"H ₂ O	ΔH	1.302			
Static Pressure, "H ₂ O	P _{stat}	-0.03	Average √∆P., "H ₂ O	√∆P	0.243			
Stack Pressure, "Hg	Ps	30.07	Stack Area, Ft ²	As	3.547			
Stack Temp., °F	Ts	983	Nozzle Dia., Inches	D _n	0.505			
Sample Time, mins	Θ		Meter Factor,	Y _d	1.0200			
Std. Temp., °F	T _{std}	70	Sample Volume, Ft3	Vm	37.747			
B) Volume H₂O collectC) Total Sample Volu	cted $(V_w)_{std} =$ me $(V_t)_{std} = ($	8.9148E-5 V _m) _{std} + (V	(w) _{std} =	0)*29.92) =			37.959 3.440 41.398	SCF SCF
D) Moisture Content ($%H_2O) = 100$) * (V _w) _{std} /	$(V_t)_{std} =$				8.309	%
E) Stack Gas Velocit	y (Vs) = 85.4	9 C _p √(ΔP)	$(T_s + 460/MW_s P_s) =$				22.447	ft/sec
F) * Stack Gas Molecul	F) * Stack Gas Molecular Wt.= $30*(1-H_2O\%/100)+18(H_2O\%/100) = 29$							g/g-mole
G) % Isokinetic $(I) = $	9142.88(V _t)(1	[_s +460)/((I	$(D_n^2)(\Theta)(P_s)(V_s)(T_{std}+40)$	50)) =			99.78	%
H) ACFM = $(V_s)(A_s)$	i0 =						4,777	ACFM

I) Stack Gas Vol. Flow Rate, DSCFM = $(V_s)(A_s)((T_{std}+460)/(T_s+460))(P_s)(1-\%H_2O/100)*2.005 =$ 1,617 DSCFM

* stack gas molecular weigh was not measured and given a value of 30 for fired sources as per EPA Method 3, section 1.3

\\ZENA-W2K\users\Reports\Biil\2021\Bubbling Weil\M26A.xls

A-4

ACIDS EMISSION CALCULATIONS EPA Method 26A

FACILITY:	Bubbling We	lls	DATE:	5-25-21		METER BOX NO .:	APEX 1	
UNIT:	IEB 50		TIME:	1334-1438		PROBE NO.:	PR 52	
CONDITION:	1528 lbs		TEST NO.:	3		NOZZLE NO.:	Q14B	
Pitot Factor,	C _p	0.84	Meter Temp., °F	T _m	80	Total H ₂ O Condensed,	Vw	83.8
Barometric Press., "Hg	Рь	30.07	Meter Press.,"H ₂ O	ΔH	1.36			
Static Pressure, "H ₂ O	P _{stat}	-0.03	Average √∆P., "H ₂ O	√∆P	0.243			
Stack Pressure, "Hg	Ps	30.07	Stack Area, Ft ²	As	3.547			
Stack Temp., °F	Ts	992	Nozzle Dia., Inches	D _n	0.505			
Sample Time, mins	Θ		Meter Factor,	Y _d	1.0200			
Std. Temp., °F	T _{std}	70	Sample Volume, Ft ³	Vm	37.980			
B) Volume H_2O collect	$(V_w)_{std} = 8$	3.9148E-5					3.959 42.300	
C) Total Sample Volu	$IIIe (V_t)_{std} - (V_t)_{std}$	m/std + (V	w)std —				42.JUU	SCF
D) Moisture Content ($%H_2O) = 100$	* (V _w) _{std} /	$(V_t)_{std} =$				9.360	%
E) Stack Gas Velocit	y (Vs) = 85.49	C _p √(ΔP)	$(T_s + 460/MW_s P_s) =$				22.560	ft/sec
F) * Stack Gas Molecul	ar Wt.= 30*(1	-H ₂ O%/10	$(00) + 18(H_2O\%/100) =$				28.877	g/g-mole
G) % Isokinetic (I) = 9	G) % Isokinetic (I) = 9142.88(V _t)(T _s +460)/((D _n ²)(Θ)(P _s)(V _s)(T _{std} +460)) =							%
$\dot{\mathbf{H}} \mathbf{)} \text{ACFM} = (\mathbf{V}_{s})(\mathbf{A}_{s})6$	0 =						4,801	ACFM
I) Stack Gas Vol. Flo	w Rate, DSCF	$M = (V_s)($	(A _s)((T _{std} +460)/(T _s +46	0))(P _s)(1-%H	2O/100)*2	.005 =	1,596	DSCFM

* stack gas molecular weigh was not measured and given a value of 30 for fired sources as per EPA Method 3, section 1.3

\\ZENA-W2K\users\Reports\Blli\2021\Bubbling Well\M26A.xis

A-5

BEST ENVIRONMENTAL

METALS EMISSION CALCULATIONS EPA Method 29

FACILITY: UNIT: CONDITION:	Bubbling Well IEB 50 2,037 lbs	S	DATE: TIME: TEST NO.:	5-26-21 918-1041 1	,	METER BOX NO.: PROBE NO.: NOZZLE NO.:	Apex 1 PR 52 Q14B	an - Mar - San -
Pitot Factor,	Cp	0.84	Meter Temp., °F	T _m	73	Total H ₂ O Condensed,	Vw	199.5
Barometric Press., "Hg	Pb	29.85	Meter Press.,"H ₂ O	ΔH	1.320			
Static Pressure, "H ₂ O	P _{stat}	-0.03	Average √∆P., "H ₂ O	VΔP	0.241			
Stack Pressure, "Hg	Ps	29.85	Stack Area, Ft ²	As	3.547			
Stack Temp., °F	Ts	1009	Nozzle Dia., Inches	D _n	0.505			
Sample Time, mins	Θ	80.0	Meter Factor,	Yd	1.0200			
Std. Temp., °F	' T _{std}	70	Sample Volume, Ft ³	Vm	49.482			
A) Gas Volume (V.).	.=(T.+460)*1	J *V.*(P. +AH/13 6)/((T +46)	1)*29 92) =			50,233	DSCF

A)	Gas Volume $(V_m)_{std} = (T_{std} + 460)^* V_m^* Y_d^* (P_b + \Delta H/13.6)/((T_m + 460)^* 29.92) =$	50.233	DSCF
B)	Volume H ₂ O collected $(V_w)_{std} = 8.9148E-5*(T_{std}+460)*V_w =$	9.426	SCF
C)	Total Sample Volume $(V_t)_{std} = (V_m)_{std} + (V_w)_{std} =$	59.659	SCF
D)	Moisture Content (%H ₂ O) = 100 * (V_w) _{std} / (V_t) _{std} =	15.800	%
E)	Stack Gas Velocity (Vs) = 85.49 $C_p \sqrt{(\Delta P)} (T_s + 460/MW_s P_s) =$	22.902	ft/sec
F) *	Stack Gas Molecular Wt.= $30*(1-H_2O\%/100))+18(H_2O\%/100) =$	28.104	g/g-mole
Ĝ)	% Isokinetic (I) = 9142.88(V_t)(T_s +460)/((D_n^2)(Θ)(P_s)(V_s)(T_{std} +460)) =	108.40	%
H)	$ACFM = (V_s)(A_s)60 =$	4,874	ACFM
I)	Stack Gas Vol. Flow Rate, DSCFM = $(V_s)(A_s)((T_{std}+460)/(T_s+460))(P_s)(1-\%H_2O/100)*2.005 =$	1,477	DSCFM

* stack gas molecular weigh was not measured and given a value of 30 for fired sources as per EPA Method 3, section 1.3

\\ZENA-W2K\users\Reports\Bill\2021\Bubbling Well\M29.xls

A-6

METALS EMISSION CALCULATIONS EPA Method 29

FACILITY: UNIT: CONDITION:	Bubbling Wel IEB 50 2,037 lbs	lls	DATE: TIME: TEST NO.:	5-26-21 1155-1318 2		METER BOX NO.: PROBE NO.: NOZZLE NO.:	Apex 1 PR 52 Q14B	1
Pitot Factor,	C _p	0.84	Meter Temp., °F	T _m	78	Total H ₂ O Condensed,	V _w	108.8
Barometric Press., "Hg	Pb	29.85	Meter Press.,"H ₂ O	ΔH	1.193			
Static Pressure, "H ₂ O	P _{stat}	-0.03	Average √∆P., "H ₂ O	√∆P	0.241			
Stack Pressure, "Hg	Ps	29.85	Stack Area, Ft ²	As	3.547			
Stack Temp., °F	Ts	1087	Nozzle Dia., Inches	D _n	0.505			
Sample Time, mins	Θ	80.0	Meter Factor,	Y _d	1.0200			
Std. Temp., °F	T _{std}	70	Sample Volume, Ft3	V _m	47.405			

A)	Gas Volume $(V_m)_{std} = (T_{std} + 460) * V_m * Y_d * (P_b + \Delta H/13.6) / ((T_m + 460) * 29.92) =$	47.662	DSCF
B)	Volume H ₂ O collected $(V_w)_{std} = 8.9148E-5*(T_{std}+460)*V_w =$	5.141	SCF
C)	Total Sample Volume $(V_t)_{std} = (V_m)_{std} + (V_w)_{std} =$	52.803	SCF
D)	Moisture Content (%H ₂ O) = 100 * (V_w) _{std} / (V_t) _{std} =	9.736	%
E)	Stack Gas Velocity (Vs) = 85.49 $C_p \sqrt{(\Delta P)} (T_s + 460/MW_s P_s) =$	23.204	ft/sec
F) *	Stack Gas Molecular Wt.= $30*(1-H_2O\%/100))+18(H_2O\%/100) =$	28.832	g/g-mole
G)	% Isokinetic (I) = 9142.88(V _t)(T_s +460)/((D_n^2)(Θ)(P_s)(V_s)(T_{std} +460)) =	99.73	%
H)	$ACFM = (V_s)(A_s)60 =$	4,938	ACFM
I)	Stack Gas Vol. Flow Rate, DSCFM = $(V_s)(A_s)((T_{std}+460)/(T_s+460))(P_s)(1-\%H_2O/100)*2.005 =$	1,523	DSCFM

* stack gas molecular weigh was not measured and given a value of 30 for fired sources as per EPA Method 3, section 1.3

\\ZENA-W2K\users\Reports\Bill\2021\Bubbling Well\M29.xls

A-7

METALS EMISSION CALCULATIONS EPA Method 29

FACILITY: UNIT: CONDITION:	Bubbling Wells IEB 50 2,037 lbs	3	DATE: TIME: TEST NO.:	5-26-21 1359-1522 3		METER BOX NO.: PROBE NO.: NOZZLE NO.:	Apex 1 PR 52 Q14B	
Pitot Factor,	Cp	0.84	Meter Temp., °F	T _m	82	Total H ₂ O Condensed,	V _w	70.6
Barometric Press., "Hg	Pb	29.85	Meter Press.,"H ₂ O	ΔH	1.367			
Static Pressure, "H ₂ O	P _{siat}	-0.03	Average √∆P., "H ₂ O	√∆P	0.241			
Stack Pressure, "Hg	Ps	29.85	Stack Area, Ft ²	As	3.547			
Stack Temp., °F	T _s	977	Nozzle Dia., Inches	D _n	0.505		X	
Sample Time, mins	Θ	80.0	Meter Factor,	Y _d	1.0200			
Std. Temp., °F	T _{std}	70	Sample Volume, Ft ³	Vm	51.157			
A) Gas Volume $(V_m)_{st}$			P _b +ΔH/13.6)/((T _m +46	0)*29.92) =			51.077	DSCF

B)	Volume H ₂ O collected $(V_w)_{std} = 8.9148E-5*(T_{std}+460)*V_w =$	3.336	SCF .
C)	Total Sample Volume $(V_t)_{std} = (V_m)_{std} + (V_w)_{std} =$	54.413	SCF
D)	Moisture Content (%H ₂ O) = 100 * (V_w) _{std} / (V_t) _{std} =	6.130	%
E)	Stack Gas Velocity (Vs) = 85.49 $C_p \sqrt{(\Delta P)} (T_s + 460/MW_s P_s) =$	22.198	ft/sec
F) *	Stack Gas Molecular Wt.= $30*(1-H_2O\%/100))+18(H_2O\%/100) =$	29.264	g/g-mole
G)	% Isokinetic (I) = 9142.88(V _t)(T _s +460)/((D _n ²)(Θ)(P _s)(V _s)(T _{std} +460)) =	99.78	%
H)	$ACFM = (V_s)(A_s)60 =$	4,724	ACFM
I)	Stack Gas Vol. Flow Rate, DSCFM = $(V_s)(A_s)((T_{std}+460)/(T_s+460))(P_s)(1-\%H_2O/100)*2.005 =$	1,632	DSCFM

* stack gas molecular weigh was not measured and given a value of 30 for fired sources as per EPA Method 3, section 1.3

\\ZENA-W2K\users\Reports\Bill\2021\Bubbling Weil\M29.xis

A-8

FACILITY:	Bubbling We	lls	DATE:	5-26-21		METER BOX NO.:	LSI 1	
UNIT:	IEB 50		TIME:	1155-1318		PROBE NO.:	PR48	
CONDITION:	2,037 lbs		TEST NO :	2		NOZZLE NO.:	Q14C	
Pitot Factor,	Cp	0.840	Meter Temp. °F	T _m	85	Total H ₂ O Condensed, ml	V _w	116.6
Barometric Press. "Hg	Pb	29.85	Meter Press. "H ₂ O	ΔH	1.52			
Static Pressure, "H ₂ O	Pstat	-0.03	Average √∆P., "H ₂ O	VΔP	0.243			
Stack Pressure, "Hg	Ps	29.85	Stack Area, Ft ²	As	3.547			
Stack Temp. °F	Ts	1086	Nozzle Dia. Inches	D _n	0.505			
Sample Time, mins	Θ	80	Meter Factor,	Y _d	0.9920			
Std. Temp. °F	T _{std}	70	Sample Volume, Ft3	Vm	50.600			

EPA Method 306 CHROMIUM EMISSION CALCULATIONS

A)	Gas Volume $(V_m)_{std} = (T_{std} + 460) * V_m * Y_d * (P_b + \Delta H/13.6) / ((T_m + 460) * 29.92) =$	48.882	DSCF
B)	Volume H ₂ O collected (V_w) _{std} = 8.9148E-5*(T_{std} +460)* V_w =	5.509	SCF
C)	Total Sample Volume $(V_t)_{std} = (V_m)_{std} + (V_w)_{std} =$	54.391	SCF
D)	Moisture Content (%H ₂ O) = 100 * (V_w) _{std} / (V_t) _{std} =	10.129	%
E)	Stack Gas Velocity (Vs) = 85.49 C _p $\sqrt{(\Delta P)}$ (T _s + 460/MW _s P _s) =	23.408	ft/sec
F) *	Stack Gas Molecular Wt.= $30*(1-H_2O\%/100))+18(H_2O\%/100) =$	28.785	g/g-mole
G)	% Isokinetic (I) = 9142.88(V _t)(T_s +460)/((D_n^2)(Θ)(P_s)(V_s)(T_{std} +460)) =	101.76	%
H)	$ACFM = (V_s)(A_s) \times 60 =$	4,982	ACFM
I)	Stack Gas Vol. Flow Rate, DSCFM = $(V_s)(A_s)((T_{std}+460)/(T_s+460))(P_s)(1-\%H_2O/100)*2.005 =$	1,531	DSCFM

* stack gas molecular weigh was not measured and given a value of 30 for fired sources as per EPA Method 3, section 1.3

z:/reports/ba/2008/evergreen cemetery/pm-metals-tbi-.xls - 04/08/2008

A-9

FACILITY: UNIT: CONDITION:	Bubbling Well IEB 50 2,037 lbs	<u>s</u>	DATE: TIME: TEST NO.:	5-26-21 1359-1520 3		METER BOX NO.: PROBE NO.: NOZZLE NO.:	LSI 1 PR48 Q14C	
Pitot Factor,	Cp	0.840	Meter Temp. °F	T _m	85	Total H ₂ O Condensed, ml	Vw	94.8
Barometric Press. "Hg	Pb	29.85	Meter Press. "H ₂ O	ΔH	1.72			
Static Pressure, "H ₂ O	Pstat	-0.03	Average √∆P., "H ₂ O	VΔP	0.242			
Stack Pressure, "Hg	Ps	29.85	Stack Area, Ft ²	As	3.547			
Stack Temp. °F	Ts	968	Nozzle Dia. Inches	D _n	0.505	Stack Gas O2,	%	14.5
Sample Time, mins	Θ		Meter Factor,	Yd	0.9920	Stack Gas CO2,	%	3.50
Std. Temp. °F	T _{std}	70	Sample Volume, Ft3	Vm	51.600	Stack Gas N2,	%	82.0

EPA Method 306 CHROMIUM EMISSION CALCULATIONS

A)	Gas Volume $(V_m)_{std} = (T_{std} + 460) * V_m * Y_d * (P_b + \Delta H/13.6) / ((T_m + 460) * 29.92) =$	49.872	DSCF
B)	Volume H ₂ O collected $(V_w)_{std} = 8.9148E-5*(T_{std}+460)*V_w =$	4.479	SCF
C)	Total Sample Volume $(V_t)_{std} = (V_m)_{std} + (V_w)_{std} =$	54.351	SCF
D)	Moisture Content (%H ₂ O) = 100 * (V_w) _{std} / (V_t) _{std} =	8.241	%
E)	Stack Gas Velocity (Vs) = 85.49 C _p $\sqrt{(\Delta P)}$ (T _s + 460/MW _s P _s) =	22.317	ft/sec
F) *	Stack Gas Molecular Wt.= $30*(1-H_2O\%/100))+18(H_2O\%/100) =$	29.011	g/g-mole
G)	% Isokinetic (I) = 9142.88(V_t)(T_s +460)/((D_n^2)(Θ)(P_s)(V_s)(T_{std} +460)) =	98.52	%
H)	$ACFM = (V_s)(A_s) \times 60 =$	4,750	ACFM
I) *	Stack Gas Vol. Flow Rate, $DSCFM = (V_s)(A_s)((T_{std}+460)/(T_s+460))(P_s)(1-\%H_2O/100)*2.005 =$ stack gas molecular weigh was not measured and given a value of 30 for fired sources as per EPA Method 3, section 1.3		DSCFM

BEST ENVIRONMENTAL

FACILITY: UNIT: CONDITION:	Bubbling Wells IEB 50 2,037 lbs	5	DATE: TIME: TEST NO.:	5-26-21 918-1041 1		METER BOX NO.: PROBE NO.: NOZZLE NO.:	LSI 1 PR48 Q14C	
Pitot Factor,	Cp	0.840	Meter Temp. °F	T _m	78	Total H2O Condensed, ml	Vw	164.2
Barometric Press. "Hg	Pb	29.85	Meter Press. "H ₂ O	ΔH	1.61			- LY LY LY MY M
Static Pressure, "H ₂ O	P _{stat}	-0.03	Average √∆P., "H ₂ O	√∆P	0.240			
Stack Pressure, "Hg	Ps	29.85	Stack Area, Ft ²	As	3.547			
Stack Temp. °F	T _s	1023	Nozzle Dia. Inches	D _n	0.505			
Sample Time, mins	Θ	80	Meter Factor,	Y _d	0.9920			
Std. Temp. °F	T _{std}	70	Sample Volume, Ft3	Vm	51.236			

EPA Method 306 CHROMIUM EMISSION CALCULATIONS

A)	Gas Volume $(V_m)_{std} = (T_{std}+460)*V_m*Y_d*(P_b+\Delta H/13.6)/((T_m+460)*29.92) =$	50.151	DSCF
B)	Volume H ₂ O collected $(V_w)_{std} = 8.9148E-5*(T_{std}+460)*V_w =$	7.758	SCF
C)	Total Sample Volume $(V_t)_{std} = (V_m)_{std} + (V_w)_{std} =$	57. 9 09	SCF
D)	Moisture Content (% H_2O) = 100 * (V_w) _{std} / (V_t) _{std} =	13.397	%
E)	Stack Gas Velocity (Vs) = 85.49 $C_p \sqrt{(\Delta P)} (T_s + 460/MW_s P_s) =$	22.799	ft/sec
F) *	Stack Gas Molecular Wt.= $30*(1-H_2O\%/100))+18(H_2O\%/100) =$	28.392	g/g-mole
G)	% Isokinetic (I) = 9142.88(V_t)(T_s +460)/((D_n^2)(Θ)(P_s)(V_s)(T_{std} +460)) =	106.71	%
H)	$ACFM = (V_s)(A_s) \times 60 =$	4,852	ACFM
I)	Stack Gas Vol. Flow Rate, DSCFM = $(V_s)(A_s)((T_{std}+460)/(T_s+460))(P_s)(1-\%H_2O/100)*2.005 =$	1,498	DSCFM

* stack gas molecular weigh was not measured and given a value of 30 for fired sources as per EPA Method 3, section 1.3

z:\reports\ba\2008\evergreen cemetery\pm-metals-tbl-.xls - 04/08/2008

A-11

Bubbling Wells Formaldehyde Emissions Results IEB 50

Facility: Bubbling Wells Unit: IEB 50 Date: 5/27/2021 Time:

Time:		1006-1036	1044-1114	1120-1150
		Run 2	Run 3	Run 4
1. Uncorrected Meter Volume (Vm)	Liters	14.6	14.4	14.5
2. Meter Factor (Yd)		1.0060	1.0060	1.0060
3. Barometric Pressure (Pb)	"Hg	29.90	29.90	29.90
4. Meter Pressure (Δ H)	"H ₂ O	0.00	0.00	0.00
5. Meter Temperature (Tm)	۴	68	69	71
6. Std. Temperature (Tstd)	°F	70	70	70
Std. Meter Volume (Vm std)	Liters	14.73	14.50	14.55
Formaldehyde	ug/sample	0.597	0.670	0.775
Formaldehyde(M.W.=30.0)	ppb	32.61	37.17	42.86
Acetaldehyde	ug/sample	0.138	2.081	1.082
Acetaldehyde (M.W.=44.1)	ppb	5.127	78.538	40.707

WHERE:

M.W. = Molecular Weight "H₂0 = Inches of Water "Hg = Inches of Mercury °F = Fahrenheit % = Percent

CALCULATIONS:

Vw std = 0.06236 * Vw * (Tstd + 460) / 29.92 / 18Vm std = Vm * Yd * (Tstd + 460) * (Pb +(Δ H/13.6)) / (Tm + 460) / 29.92 Stack Moisture H₂O % = 100 * Vw std / (Vw std + Vm std) Aldehyde, ppmv = ug/sample / M.W. * (24.14 / Vm std) **H)** ACFM = (Vs)(As)60 =

FACILITY:	Bubbling Wo	ells	DATE:	5-25-21		METER BOX NO.:	LSI 1	
UNIT:	IEB 50		TIME:	952-1156		PROBE NO.:	PR 48	
CONDITION:	1,528 lbs		TEST NO.:	1		NOZZLE NO.:		
Pitot Factor,	Ср	the second se	Meter Temp., °F	Tm	78	Total H2O Condensed,	Vw	224.0
Barometric Press., "Hg	РЬ	and the second day of the seco	Meter Press.,"H2O	<u>ΔΗ</u>	1.75			
Static Pressure, "H2O	Pstat	-0.03	Average √∆P., "H ₂ O	√∆P	0.245			
Stack Pressure, "Hg	Ps	30.07	Stack Area, Ft2	As	3.547			
Stack Temp., °F	Ts	989	Nozzle Dia., Inches	Dn	0.505			
Sample Time, mins	Θ		Meter Factor,	Yd	0.9220			
Std. Temp., °F	Tstd	70	Sample Volume, Ft3	Vm	79.500			
, , , ,		2	Yd*(Pb+DH/13.6)/((BE-5*(Tstd+460)*Vw	ŕ	.92) =		72.882 10.584	
C) Total Sample Volu	ime (Vt)std =	(Vm)std	+ (Vw)std =				83.465	SCF
D) Moisture Content	(%H2O) = 10	0 * (Vw)	std / (Vt)std =				12.680	%
E) Stack Gas Velocity (Vs) = $85.49 \text{ Cp} \ddot{O}(\text{DP}) (\text{Ts} + 460/\text{MWs Ps}) = 22.887$								ft/sec
F) * Stack Gas Molecular Wt.= $30*(1-H_2O\%/100)+18(H_2O\%/100) =$							28.478	g/g-mole
G) % Isokinetic (I) = $9142.88(Vt)(Ts+460)/((Dn2)(Q)(Ps)(Vs)(Tstd+460)) =$								%

EPA METHOD 23 EMISSION CALCULATIONS

I) Stack Gas Vol. Flow Rate, DSCFM = (Vs)(As)((Tstd+460)/(Ts+460))(Ps)(1-%H2O/100)*2.005 = 1,563 DSCFM

A-13

4,871 ACFM

FACILITY:	Bubbling Well	s	DATE:	5-25-21		METER BOX NO.:	LSI 1	
UNIT:	IEB 50		TIME:	1304-1508		PROBE NO.:	PR 48	
CONDITION:	1,528 lbs		TEST NO .:	2		NOZZLE NO.:	Q14C	
Pitot Factor,	Ср		Meter Temp., °F	Tm	82	Total H2O Condensed,	Vw	95.0
Barometric Press., "Hg	Pb	and the second second	Meter Press.,"H2O	ΔH	1.65			
Static Pressure, "H2O	Pstat	-0.03	Average √∆P., "H ₂ O	√∆p	0.236			
Stack Pressure, "Hg	Ps	30.07	Stack Area, Ft2	As	3.547			
Stack Temp., °F	Ts	958	Nozzle Dia., Inches	Dn	0.505			
Sample Time, mins	Θ		Meter Factor,	Yd	0.9220			
Std. Temp., °F	Tstd	70	Sample Volume, Ft3	Vm	77.300			
								DSCF SCF
C) Total Sample Vol	ume (Vt)std = (V	(m)std	$+(\nabla w)$ std =				74.813	SCF
D) Moisture Content	(%H2O) = 100	* (Vw):	std / (Vt)std =				6.000	%
E) Stack Gas Veloci	ty (Vs) = 85.49	Cp Ö(E	0P) (Ts + 460/MWs P	s) =			21.508	ft/sec
F) * Stack Gas Molecular Wt.= $30*(1-H_2O\%/100))+18(H_2O\%/100) =$ 29.280 g/g-m							g/g-mole	
G) % Isokinetic (I) = $9142.88(Vt)(Ts+460)/((Dn2)(Q)(Ps)(Vs)(Tstd+460)) =$							92.47	%
H) ACFM = $(Vs)(As)$)60 =						4,577	ACFM

EPA METHOD 23 EMISSION CALCULATIONS

I) Stack Gas Vol. Flow Rate, DSCFM = (Vs)(As)((Tstd+460)/(Ts+460))(Ps)(1-%H2O/100)*2.005 = 1,616 DSCFM

A-14

FACILITY:	Bubbling W	ells	DATE:	5/27/21		METER BOX NO.:	LSI 1	
UNIT:	IEB 50		TIME:	0907-1110		PROBE NO.:	PR48	
CONDITION:	1,528 lbs		TEST NO.:	3		NOZZLE NO	Q14C	
Pitot Factor,	Ср	0.840	Meter Temp., °F	Tm	73	Total H2O Condensed,	Vw	225.0
Barometric Press., "Hg	Pb	and the second s	Meter Press.,"H2O	ΔH	1.49			
Static Pressure, "H2O	Pstat	-0.03	Average √AP., "H ₂ O	√∆P	0.246			
Stack Pressure, "Hg	Ps	29.90	Stack Area, Ft2	As	3.547			
Stack Temp., °F	Ts	1064	Nozzle Dia., Inches	Dn	0.505			
Sample Time, mins	Θ		Meter Factor,	Yd	0.9220			
Std. Temp., °F	Tstd	70	Sample Volume, Ft3	Vm	71.940			
 A) Gas Volume (Vm)std = (Tstd+460)*Vm*Yd*(Pb+DH/13.6)/((Tm+460)*29.92) = B) Volume H2O collected (Vw)std = 8.9148E-5*(Tstd+460)*Vw = 								DSCF SCF
C) Total Sample Vol	ume (Vt)std =	• (Vm)std	+(Vw)std =				76.784	SCF
D) Moisture Content	(%H2O) = 10	00 * (Vw)	std / (Vt)std =				13.845	%
E) Stack Gas Veloci	ty (Vs) = 85.4	19 Cp Ö(I	DP) (Ts + 460/MWs P	's) =			23.693	ft/sec
F) * Stack Gas Molecu	lar Wt.= 30*(1-H ₂ O%/	100))+18(H ₂ O%/100)) =			28.339	g/g-mole
G) % Isokinetic (I) =	9142.88(Vt)(Ts+460)/(((Dn2)(Q)(Ps)(Vs)(Ts	std+460)) =			93.12	%
H) ACFM = $(Vs)(As)$)60 =						5,042	ACFM

EPA METHOD 23 EMISSION CALCULATIONS

I) Stack Gas Vol. Flow Rate, DSCFM = (Vs)(As)((Tstd+460)/(Ts+460))(Ps)(1-%H2O/100)*2.005 = 1,510 DSCFM

A-15

TABLE

(page 1 of 3)

TEST#	1 1	2	3	AVERAGE	PT/AP-42
TEST DURATION, minutes	120.0	120.0	120.0		
PRODUCTION RATE (Ib)	1800.0	1800.0	1800.0		
STANDARD TEMP., °F	68	68	68		
SAMPLE VOLUME (DSCF)	73.202	74.510	73.115		
SAMPLE VOLUME (DSCM)	2.073	2,110	2.071		
FLOWRATE (DSCFM)	1,551	1,553	1,551		
STACK GAS TEMP. °F	1,000.0	1,000.0	1,000.0		
ISOKINETIC, %	100.3	102.0	100.2		
H ₂ O, % vol	11.4	11.2	11.4		and the second
Naphthalene,	1				
total ng	0.600	0.600	0.600	0.600	
(ng/dscm)	0.289	0.284	0.290	0.288	
(ng/sec)	0.212	0.208	0.212	0,211	And an and the second
(ug/hr)	0.001	0.001	0.001	0.001	
(lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(lbs/ton)	9.34E-13	9.19E-13	9.35E-13	9.29E-13	
ppt, MW = 128	0.054	0.053	0.054	0.054	
2-Methylnaphthylene,	1				
total ng	0.500	0.500	0.500	0.500	
(ng/dscm)	0.241	0.237	0.241	0.240	
		the state of the s			
(ng/sec) (ug/hr)	0.177	0.174	0.177	0.176	ang bag tang bag bag bag bag tang tang tang tang tang tang tang ta
(lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(lbs/ton)	7.78E-13	7.66E-13	7.79E-13	7.74E-13	
ppt, MW = 128	0.045	0.045	0.045	0.045	
Acenaphthylene,	0.045	0.043	0.045	0.045	
total ng	<0.200	<0.200	<0.200	<0.200	
(ng/dscm)	<0.200	<0.200	<0.200	<0.200	100,100,000,000,000,000,000,000,000,000
(ng/sec)	<0.096			<0.090	
	<0.000	<0.069 <0.000	<0.071	<0.000	
(ug/hr) (lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(lbs/ton)	<3.11E-13	<3.06E-13	<3.12E-13	<3.10E-13	ang dang tang tang tang tang tang tang tang t
(10s/10h) ppt, MW = 152	<0.015		<0.015	<0.015	
Acenaphthene,	<0.015	<0.015	<0.015	<0.015	
total ng	0.400	0.400	0.400	0.400	
(ng/dscm)	0.193	0.190	0.193	0.192	
	0.193	0.139	0.195		
(ng/sec)	0.001	0.001	0.001	0.141	
(ug/hr) (lbs/hr)	0.00000		0.00000	the state of the s	
	6.23E-13	0.000000 6.13E-13		0.000000	
(lbs/ton) ppt, MW = 154	0.030		6.23E-13 0.030	6.20E-13 0.030	
Fluorene,	0.030	0.030	0.030	0.030	
ويتحدث والمراجع	0.200	0.200	0.000	0.000	
total ng	0.200	0.200	0.200	0.200	1000 (1000 (1000 1000 (1000 1000 1000 1
(ng/dscm)					1
(ng/sec)	0.071	0.069	0.071	0.070	
(ug/hr)	0.000	0.000	0.000	0.000	
(lbs/hr)	0.000000	0.000000		0.000000	
(lbs/ton)	3.11E-13	3.06E-13	3.12E-13	3.10E-13	
ppt, MW=166 Phenanthrene,	0.014	0.014	0.014	0.014	-
	0.200	0.000	0.000	0.200	
total ng	0.200	0.200	0.200	0.200	
(ng/dscm)	<0.096	0.095	0.097	0.096	
(ng/sec)	<0.071	0.069	0.071	0.070	
(ug/hr)	<0.000	0.000	0.000	0.000	
(lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(lbs/ton)	<3.11E-13	3.06E-13	3.12E-13	3.10E-13	
ppt, MW=178	< 0.013	0.013	0.013	0.013	
	1		1	1	

CARB Method 429 PAH Pre-test Emission Calculations Burning Wells

TABLE Continued... (page 2 of 3)

CARB Method 429 PAH Emission Results Burning Wells

TEST#	1	2	3	AVERAGE	
Anthracene,					
total ng	0.400	0.400	0,400	<0.400	
(ng/dscm)	< 0.193	< 0.190	<0.193	< 0.192	
(ng/sec)	<0.141	< 0.139	< 0.141	<0.141	
(ug/hr)	< 0.001	< 0.001	< 0.001	< 0.001	
(lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(lbs/ton)	<6.23E-13	<6.13E-13	<6.23E-13	<6.20E-13	
ppt, MW=178	< 0.026	< 0.026	< 0.026	< 0.026	
Fluoranthene,					
total ng	0.200	0.200	0.200	0.200	
(ng/dscm)	< 0.096	0.095	0.097	0.096	
(ng/sec)	< 0.071	0.069	0.071	0.070	
(ug/hr)	<0.000	0.000	0.000	0.000	
(lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(lbs/ton)	<3.11E-13	3.06E-13	3.12E-13	3.10E-13	
ppt, MW=202	< 0.011	0.011	0.011	0.011	
Pyrene,					
total ng	0.200	0.200	0.200	0.200	
(ng/dscm)	0.096	0.095	0.097	0.096	
(ng/sec)	0.071	0.069	0.071	0.070	
(ug/hr)	0.000	0.009	0.000	0.000	
(lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(lbs/ton)	3.11E-13	3.06E-13	3.12E-13	3.10E-13	
ppt, MW=202	0.011	0.011	0.011	0.011	
	0.011	0.011	0.011	0.011	
Benzo(a)Anthracene,	0.000		0.000	0.000	
total ng	0.200	0.200	0.200	0.200	
(ng/dscm)	0.096	0.095	0.097	0.096	
(ng/sec)	0.000	0.009	0.000	0.070	
(ug/hr) (lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(lbs/ton)	3.11E-13	3.06E-13	3.12E-13	3.10E-13	
ppt, MW=228	0.010	0.010	0.010	0.010	
ومرجعة ومحرجه والمرجعة والمحاركة والمحاركة والمحاركة والمحاركة والمحاركة ومحاركة ومحركها ومحرجها والمحاركة والم	0.010	0.010	0.010	0.010	
Chrysene					
total ng	0.200	0.200	0.200	0.200	
(ng/dscm)	0.096	0.095	0.097	0.096	
(ng/sec)	0.071	0.069	0.071	0.070	
(ug/hr)	0.000	0.000	0.000	0.000	
(lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(lbs/ton)	3.11E-13	3.06E-13	3.12E-13	3.10E-13	
ppt, MW=228	0.010	0.010	0.010	0.010	
Benzo(b)Fluoranthene,					
total ng	0.200	0.200	0.200	0.200	
(ng/dscm)	0.096	0.095	0.097	0.096	
(ng/sec)	0.071	0.069	0.071	0.070	
(ug/hr)	0.000	0.000	0.000	0.000	
(lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(lbs/ton)	3.11E-13	3.06E-13	3.12E-13	3.10E-13	
ppt, MW=252	0.009	0.009	0.009	0.009	
Benzo(k)Fluoranthene,				1	
total ng	0.200	0.200	0.200	< 0.200	
(ng/dscm)	0.096	< 0.095	< 0.097	< 0.096	
(ng/sec)	0.071	< 0.069	<0.071	< 0.070	
(ug/hr)	0.000	< 0.000	<0.000	<0.000	
(lbs/hr)	0.000000	0.000000	0.000000	0.000000	
(ibs/ton)	3.11E-13	<3.06E-13	<3.12E-13	<3.10E-13	
ppt, MW=252	0.009	< 0.009	< 0.009	< 0.009	1
1		1	1	1	

TABLE Continued... (page 3 of 3)

CARB Method 429 PAH Emission Results Burning Wells

TEST#	1	2	3	AVERAGE	
Benzo(c)Pyrene,					
total ng	0.300	0.300	0.300	0.300	
(ng/dscm)	0.145	0.142	0.145	0.144	
(ng/sec)	0.106	0.104	0.106	0.105	
(ug/hr)	0.000	0.000	0.000	0.000	
(lbs/hr)	8.41E-10	8.27E-10	8.42E-10	8.36E-10	
(lbs/ton)	4.67E-13	4.59E-13	4.68E-13	4.65E-13	
ppt, MW=252	0.014	0.014	0.014	0.014	
Benzo(a)Pyrene,					
total ng	0.300	0.300	0.300	0.300	
(ng/dscm)	0.145	<0.142	0.145	0.144	
(ng/sec)	0.106	< 0.104	0.106	0.105	
(ug/hr)	0.000	< 0.000	0.000	0.000	
(lbs/hr)	8.41E-10	<8.27E-10	8.42E-10	8.36E-10	
(lbs/ton)	4.67E-13	<4.59E-13	4.68E-13	4.65E-13	
ppt, MW=252	0.014	<0.014	0.014	0.014	
Perylene,	1				
total ng	0.200	0.200	0.200	< 0.200	
(ng/dscm)	0.096	< 0.095	< 0.097	< 0.096	
(ng/sec)	0.071	< 0.069	< 0.071	< 0.070	
(ug/hr)	0.000	< 0.000	< 0.000	<0.000	
(lbs/hr)	5.60E-10	<5.51E-10	<5.61E-10	<5.58E-10	
(lbs/ton)	3.11E-13	<3.06E-13	<3.12E-13	<3.10E-13	
ppt, MW=252	0.009	< 0.009	< 0.009	< 0.009	
Indeno(1,2,3-cd)Pyrene,					
total ng	0.400	0.400	0.400	<0.400	
(ng/dscm)	0.193	<0.190	<0.193	<0.192	
(ng/sec)	0.141	< 0.139	<0.141	<0.141	
(ug/hr)	0.001	< 0.001	< 0.001	< 0.001	
(lbs/hr)	1.12E-09	<1.10E-09	<1.12E-09	<1.12E-09	
(lbs/ton)	6.23E-13	<6.13E-13	<6.23E-13	<6.20E-13	
ppt, $MW = 276$	0.017	< 0.017	< 0.017	<0.017	
Dibenz(a,h)Anthracene,	1				
total ng	0.300	0.300	0.300	< 0.300	
(ng/dscm)	< 0.145	<0.142	<0.145	< 0.144	
(ng/sec)	< 0.106	<0,104	<0.106	<0.105	
(ug/hr)	< 0.000	< 0.000	< 0.000	< 0.000	
(lbs/hr)	<8.41E-10	<8.27E-10	<8.42E-10	<8.36E-10	
(lbs/ton)	<4.67E-13	<4.59E-13	<4.68E-13	<4.65E-13	
ppt, MW=278	< 0.013	< 0.012	< 0.013	< 0.012	
Benzo(ghi)Perylene,					
total ng	0.200	0.200	0.200	0.200	
(ng/dscm)	0.096	< 0.095	0.097	0.096	
(ng/sec)	0.071	<0.069	0.071	0.070	
(ug/hr)	0.000	< 0.000	0.000	0.000	
(lbs/hr)	5.60E-10	<5.51E-10	5.61E-10	5.58E-10	
(lbs/ton)	3.11E-13	<3.06E-13	3.12E-13	3.10E-13	
ppt, MW = 276	0.008	<0.008	0.008	0.008	
*Half of Lab Reporting Limit u		1		11	
Total PAHs, ibs/hr				7.12E-12	Limit
Total PAHs, lbs/body (lbs/hr/18	00 lbs/12 horlies	s)		5.94E-13	4.90E-08
Where,	iss in bound	-,		0.2 112 10	
DSCFM = Dry Standard Cubic Fe	et per Minute				
ng/dscm = nanograms per dry stam ng/sec = Emission rate, nanogram Tstd = Standard Temperature, "&d	idard cubic meter s per second				
ppt = part per trillion lbs/hr = pounds per hour lbs/ton = pounds per ton lbs/day = pounds per 10-hr day					
Calculations,					

Calculations,

ng/dscm = ng / dscm

ng/sec = 0.02832 * DSCFM * ng/dscm / 60 ppt = ng/dscm * 22.4 * (Tstd. + 460) / 492 / M.W. Emission Rate, lbs/hr = ppm * MW * DSCFM * 60 / 385E6 (Tstd 68°F) Emission Factor, lbs/ton = (lbs/hr) / (tons/hr) Emission Rate, lbs/day = lbs/hr * 10

RUN #	1	2	3	AVERAGE	LIMITS
SAMPLE VOLUME (DSCF)	47.968	47.722	50.373		
DUCT TEMP., (°F)	1000.0	1000.0	1000.0	1000.0	
VELOCITY (ft/sec)	31.00	31.05	31.02	31.02	
FLOW RATE (ACFM)	4,689	4,697	4,692	4,693	
FLOW RATE (DSCFM)	1,592	1,581	1,589	1,587	
Antimony, total ug	0.30	0.30	0.30	0.30	
Antimony, (ug/dscm)	2.21E-01	2.22E-01	2.10E-01	2.18E-01	
Antimony, (gm/hr)	5.98E-04	5.96E-04	5.68E-04	5.87E-04	
Antimony, (lb/hr)	1.32E-06	1.31E-06	1.25E-06	1.29E-06	
Antimony, (ppb) (MW=121.75)	4.38E-02	4.40E-02	4.17E-02	4.32E-02	
Arsenic, total ug	1.20	1.20	1.20	1.20	
Arsenic, (ug/dscm)	8.83E-01	8.88E-01	8.41E-01	8.71E-01	
Arsenic, (gm/hr)	2.39E-03	2.38E-03	2.27E-03	2.35E-03	
Arsenic, (lb/hr)	5.27E-06	5.26E-06	5.01E-06	5.18E-06	3.00E-05
Arsenic, (ppb) (MW=74.99)	2.84E-01	2.86E-01	2.71E-01	2.80E-01	
Barium, total ug	5.50	5.50	5.50	5.50	
Barium, (ug/dscm)	4.05E+00	4.07E+00	3.86E+00	3.99E+00	
Barium, (gm/hr)	1.10E-02	1.09E-02	1.04E-02	1.08E-02	
Barium, (lb/hr)	2.42E-05	2.41E-05	2.29E-05	2.37E-05	
Barium, (ppb) (MW=137.34)	7.12E-01	7.15E-01	6.78E-01	7.02E-01	
Beryllium, total ug	< 0.30	< 0.30	< 0.30	< 0.30	
Beryllium, (ug/dscm)	2.21E-01	2.22E-01	2.10E-01	2.18E-01	
Beryllium, (gm/hr)	5.98E-04	5.96E-04	5.68E-04	5.87E-04	
Beryllium, (lb/hr)	1.32E-06	1.31E-06	1.25E-06	1.29E-06	1.40E-06
Beryllium, (ppb) (MW=9.0)	5.92E-01	5.95E-01	5.64E-01	5.84E-01	
Cadmium, total ug	0.15	0.15	0.15	0.15	
Cadmium, (ug/dscm)	8.86E-05	8.90E-05	8.43E-05	8.73E-05	
Cadmium, (gm/hr)	2.40E-07	2.39E-07	2.28E-07	2.35E-07	
Cadmium, (lbs/hr)	5.28E-10	5.27E-10	5.02E-10	5.19E-10	1.10E-05
Cadmium, (ppb) (MW=112.4)	1.90E-05	1.91E-05	1.81E-05	1.88E-05	
Chromium, total ug	1.15	1.15	1.15	1.15	
Chromium, (ug/dscm)	8.47E-01	8.51E-01	8.06E-01	8.35E-01	
Chromium, (gm/hr)	2.29E-03	2.29E-03	2.18E-03	2.25E-03	
Chromium, (lb/hr)	5.05E-06	5.04E-06	4.80E-06	4.96E-06	
Chromium, (ppb) (MW=51.996)	3.93E-01	3.95E-01	3.74E-01	3.87E-01	
Cobalt, total ug	< 0.30	< 0.30	< 0.30	< 0.30	
Cobalt, (ug/dscm)	2.21E-01	2.22E-01	2.10E-01	2.18E-01	
Cobalt, (gm/hr)	5.98E-04	5.96E-04	5.68E-04	5.87E-04	
Cobalt, (lb/hr)	1.32E-06	1.31E-06	1.25E-06	1.29E-06	
Cobalt, (ppb) (MW=58.94)	9.04E-02	9.09E-02	8.61E-02	8.92E-02	

Bubbling Wells Metals Pre Test Calculation

A-20

TABLE 1 continued.....

RUN #	1	2	3	AVERAGE	LIMITS
Copper, total ug	1.30	1.30	1.30	1.30	
Copper, (ug/dscm)	9.57E-01	9.62E-01	9.11E-01	9.43E-01	
Copper, (gm/hr)	2.59E-03	2.58E-03	2.46E-03	2.54E-03	
Copper, (lb/hr)	5.71E-06	5.70E-06	5.42E-06	5.61E-06	2.70E-05
Copper, (ppb) (MW=63.55)	3.64E-01	3.65E-01	3.46E-01	3.58E-01	
Lead, total ug	0.55	0.55	0.55	0.55	
Lead, (ug/dscm)	4.05E-01	4.07E-01	3.86E-01	3.99E-01	
Lead, (gm/hr)	1.10E-03	1.09E-03	1.04E-03	1.08E-03	
Lead, (lb/hr)	2.42E-06	2.41E-06	2.29E-06	2.37E-06	6.60E-05
Lead, (ppb) (MW=207.2)	4.72E-02	4.74E-02	4.49E-02	4.65E-02	
Manganese, total ug	0.65	0.65	0.65	0.65	
Manganese, (ug/dscm)	4.78E-01	4.81E-01	4.56E-01	4.72E-01	
Manganese, (gm/hr)	1.29E-03	1.29E-03	1.23E-03	1.27E-03	
Manganese, (lb/hr)	2.85E-06	2.85E-06	2.71E-06	2.80E-06	
Manganese, (ppb) (MW=54.94)	2.10E-01	2.11E-01	2.00E-01	2.07E-01	
Mercury, total ug	0.382	0.524	0.197	0.367	
Mercury, (ug/dscm)	2.25E-04	3.11E-04	1.11E-04	2.16E-04	
Mercury, (gm/hr)	6.10E-07	8.35E-07	2.99E-07	5.81E-07	
Mercury, (lbs/hr)	1.34E-09	1.84E-09	6.59E-10	1.28E-09	
Mercury, (ppb) (MW=200.6)	2.71E-05	3.74E-05	1.33E-05	2.60E-05	
Nickel, total ug	0.30	0.30	0.30	0.30	
Nickel, (ug/dscm)	2.21E-01	2.22E-01	2.10E-01	2.18E-01	
Nickel, (gm/hr)	5.98E-04	5.96E-04	5.68E-04	5.87E-04	
Nickel, (lb/hr)	1.32E-06	1.31E-06	1.25E-06	1.29E-06	3.80E-05
Nickel, (ppb) (MW=58.71)	9.08E-02	9.13E-02	8.65E-02	8.95E-02	
Phosphorus, total ug	125.00	125.00	125.00	125.00	
Phosphorus, (ug/dscm)	9.20E+01	9.25E+01	8.76E+01	9.07E+01	
Phosphorus, (gm/hr)	2.49E-01	2.48E-01	2.37E-01	2.45E-01	
Phosphorus, (lb/hr)	5.49E-04	5.48E-04	5.22E-04	5.39E-04	
Phosphorus, (ppb) (MW=30.98)	7.17E+01	7.21E+01	6.83E+01	7.07E+01	
Selenium, total ug	2.10	2.10	2.10	2.10	
Selenium, (ug/dscm)	1.55E+00	1.55E+00	1.47E+00	1.52E+00	
Selenuim, (gm/hr)	4.18E-03	4.17E-03	3.97E-03	4.11E-03	1 105 05
Selenuim, (lb/hr)	9.22E-06	9.20E-06	8.76E-06	9.06E-06	4.40E-05
Selenium, (ppb) (MW=78.96)	4.73E-01	4.75E-01	4.50E-01	4.66E-01	
Silver, total ug	0.30	0.30	0.30	0.30	
Silver, (ug/dscm)	2.21E-01	2.22E-01	2.10E-01	2.18E-01	
Silver, (gm/hr)	5.98E-04	5.96E-04	5.68E-04	5.87E-04	
Silver, (lb/hr)	1.32E-06	1.31E-06	1.25E-06	1.29E-06	
Silver, (ppb) (MW=107.87)	4.94E-02	4.97E-02	4.71E-02	4.87E-02	
Thallium, total ug	0.25	0.25	0.25	0.25	
Thallium, (ug/dscm)	1.84E-01	1.85E-01	1.75E-01	1.81E-01	
Thallium, (gm/hr)	4.98E-04	4.97E-04	4.73E-04	4.89E-04	
Thallium, (lb/hr)	1.10E-06	1.10E-06	1.04E-06	1.08E-06	
Thallium, (ppb) (MW=204.37)	2.17E-02	2.18E-02	2.07E-02	2.14E-02	21
A-21					

Zinc, total ug	6.30	6.30	6.30	6.30	
Zinc, (ug/dscm)	4.64E+00	4.66E+00	4.42E+00	4.57E+00	
Zinc, (gm/hr)	1.25E-02	1.25E-02	1.19E-02	1.23E-02	
Zinc, (lb/hr)	2.77E-05	2.76E-05	2.63E-05	2.72E-05	
Zinc, (ppb) (MW=65.37)	1.71E+00	1.72E+00	1.63E+00	1.69E+00	

Note: Less than (<) signs precede the method detection limit. All detected levels are corrected for reagent blank

WHERE,

< = Less Than Velocity = Stack gas velocity in feet per second DSCFM = Dry Standard cubic feet per minute ug/dscm = micrograms per dry standard cubic meter gm/hr = Emission rate, grams per hour

CALCULATIONS,

ug/DSCM = ug / DSCF / 35.31 gm/hr = ((ug/dscm) / 1,000,000) * (DSCFM / 35.31) * 60 ppb @ 70 °F = 24.14 * (ug/dscm) / M.W.

lbs/hr = gm/hr / 453

A-22

RUN	1	2	3	Average	Limit
Standard Temp., °F	70	70	70		
Total Weight		1,800			
Flow Rate, DSCFM ¹	1,600	1,600	1,600	1,600	
Standard Meter Volume, liters	25.2	25.2	25.1	25.165	
Emi	ssions Data				
M.W.					
Formaldehyde, ug/sample	0.100	0.100	0.100	0.100	
Formaldehyde, ppb	3.2	3.2	3.2	3.2	
Formaldehyde, gm/hr 30.0	0.01	0.01	0.01	0.01	
Formaldehyde, lbs/hr	2.39E-05	2.39E-05	2.40E-05	2.39E-05	3.40E-05
Acetaldehyde, ug/sample	0.100	0.100	0.100	0.100	
Acetaldehyde, ppb	2.2	2.2	2.2	2.2	
Acetaldehyde, gm/hr 44.1	1.08E-02	1.08E-02	1.09E-02	1.08E-02	
Acetaldehyde, lbs/hr	2.39E-05	2.39E-05	2.40E-05	2.39E-05	1.30E-04

Bubbling Wells Aldehyde Emissions Pre Test Calculation

WHERE:

ppb = parts per billion M.W. = Molecular Weight gm/hr = Grams Per Hour ug/dscm = micrograms per dry standard cubic meter Formadehyde MW = 30 Acetadehyde MW = 44.1

CALCULATIONS:

ug/dscm = (ug/sample) / dscm

gm/hr = ppb * DSCFM * M.W * 453.6 * 8.223E-5 /(Tstd + 460) Aldehyde, ppbv = ((ug/sample) / M.W. * (24.14 / sample volume)) * 1000

RUN #		1	2	3	AVERAGE	Limits
Total W	eight		1,800			
Sample	Volume (DSCF)	45.770	45.252	45.427		
Stack To	emp. F	1000	1000	1000	1000	
Velocity	(ft/sec)	22.44	22.63	22.62	22.57	
Flowrat	e (ACFM)	4,776	4,817	4,814	4,802	
Flowrat	e (DSCFM)	1,579	1,591	1,591	1,587	
H_2O (vo	olume %)	9.36	9.45	9.42	9.41	
HCl	ug/sample	100	100	100	100	
	ppm	0.05	0.05	0.05	0.05	
	lbs/hr	4.57E-04	4.62E-04	4.60E-04	4.60E-04	7.20E-02
HF	ug/sample	100	100	100	100	
	ppm	0.09	0.09	0.09	0.09	
	lbs/hr	4.57E-04	4.62E-04	4.60E-04	4.60E-04	6.60E-04

Bubbling Wells Acid Pre Test Calculations

WHERE:

"Hg = Inches of Mercury "F = Fahrenheit ug = micrograms Molecular Weight HCL = HF = 36.46lbs/hr = Emiss 20.006 CALCULATIONS:

Vw std = 0.06236 * Vw * (Tstd + 460) / 29.92 / 18

Vm std = Vm * Yd * (Tstd + 460) * (Pb +(Δ H/13.6)) / (Tm + 460) / 29.92 ppm = 1.6085 * (mg / Vm std) * (Tstd + 460) / MW

A-24

APPENDIX B LABORATORY REPORTS

1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567

	Certi	ficate of Analysis	
ALS Project Contact:	Breanne Dusureault BEST100	Client Name: Client Address:	Best Environmental 339 Stealth Court
ALS Project ID: ALS WO#:	L2599663	Glient Address.	Livermore, CA 94551
Date of Report	29-Jul-21		USA
Date of Sample Receipt	9-Jun-21	Client Contact: Client Project ID:	Basim Asfour BUBBLING WELLS
COMMENTS:	РАН	via modified CARB 429 (HRMS Option)
Note: Cyclopenta[cd]pyrene	coelutes with benz[a]anthracene,	such that the presence of either may lead	d to an elevated result for the other.
		PAMY	Dear
	Cert	tified by:	
		Ron McLeod, Ph.D. Director, Air Toxics and Special	Chamistrias Life Sciences

This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd.

	ALS				
	Sam	ple Analysis Sun	mary Report		
Sample Name	R1	R2	R3	BLANK	
ALS Sample ID	L2599663-1	L2599663-2	L2599663-3	L2599663-4	
Sample Size	1	1	. 1	1	
Sample size units	Sample	Sample	Sample	Sample	
Percent Moisture	n/a	n/a	n/a	n/a	
Sample Matrix	Stack	Stack	Stack	Stack	
Sampling Date	25-May-21	25-May-21	27-May-21	27-May-21	
Extraction Date	15-Jun-21	15-Jun-21	15-Jun-21	15-Jun-21	
Target Analytes	ng	ng	ng	ng	
Naphthalene	19600	5980	27600	1430	
Acenaphthylene	405	40.2	132	<18	
Acenaphthene	122	33.2	86,5	68.1	
Fluorene	10300	4610	3700	177	
Phenanthrene	18800	9120	28900	402	
Anthracene	1130	132	178	21.5	
Fluoranthene	992	632	914	51,7	
Pyrene	615	348	1100	68.0	
Benz(a)anthracene	47.6	16,9	17.6	2.53	
Chrysene	3210	1330	1510	8.43	
Benzo(b)fluoranthene	313	25.7	32,3	2.95	
Benzo(k)fluoranthene	17.2	<0.36	<0.30	0.936	
Benzo(e)pyrene	267	18.3	32,7	3.86	
Benzo(a)pyrene	35.8	2.31	3.07	2.66	
Perylene	3,61	<0.54	2.59	0.803	
Indeno(1,2,3-cd)pyrene	47.5	5.80	4.92	3.02	
Dibenz(a,h)anthracene	57.8	2.67	1.98	<0.58	
Benzo(g,h,i)perylene	57.8	7,41	10.7	7.80	
Extraction Standards	% Rec	% Rec	% Rec	% Rec	
Naphthalene d8	27	71	78	74	
Acenaphthylene d8	112	69	93	73	
Phenanthrene d10	40	97	102	90	
Anthracene-d10	87	71	91	69	
Fluoranthene d10	33	97	117	105	
Benz(a)anthracene-d12	70	46	45	49	
Chrysene d12	70	43	57	49	
Benzo(b)fluoranthene-d12	113	83	99	83	
Benzo(k)fluoranthene-d12	102	82	98	74	
Benzo(a)pyrene d12	100	80	99	75	
Perylene d12	80	76	66	64	
Indeno(1,2,3,cd)pyrene-d12	81	83	113	125	
Dibenz(a,h)anthracene-d14	80	80	114	126	
Benzo(g,h,i)perylene d12	79	87	116	141	
Field Spikes					
1-Methylnaphthalene-d10	70	74	85	78	
Fiuorene-d10	68	84	89	90	
p-Terphenyl-d14	99	71	72	69	

99

ALS Life Sciences

	0.0	ality Control S	ummary Report	
Sample Name	Media Blank	-	Laboratory Control	
Sample Name	Meula Bialik	Method blank	Sample	
ALS Sample ID	WG3554311-1	WG3554311-4	WG3554311-2	
Sample Size	1	1	1	
Sample size units	Blank	Blank	n/a	
Percent Moisture	n/a	n/a	n/a	
Sample Matrix	QC	QC	QC	
Sampling Date	n/a	n/a	n/a	
Extraction Date	15-Jun-21	15-Jun-21	15-Jun-21	
Target Analytes	ng	ng	% Rec	
Naphthalene	17.0	7.90	104	
Acenaphthylene	0.761	1.01	95	
Acenaphthene	0.611	1.12	101	
Fluorene	0.933	0.803	96	
Phenanthrene	1.80	1.80	. 97	
Anthracene	1.08	1.96	91	
Fluoranthene	1.05	0.713	101	
Pyrene	1.05	0.805	98	
Benz(a)anthracene	1,88	2.50	92	
Chrysene	1.98	2,17	104	
Benzo(b)fluoranthene	1,84	2.46	89	
Benzo(k)fluoranthene	1.74	2.36	108	
Benzo(e)pyrene	1.09	< 0.92		
Benzo(a)pyrene	1,19	<1.1	91	
Perviene	1,52	<1.3		
Indeno(1,2,3-cd)pyrene	2.40	<2.4	95	
Dibenz(a,h)anthracene	1.90	3.17	93	
Benzo(g,h,i)perylene	1.31	<1.4	92	
Extraction Standards	% Rec	% Rec	% Rec	
Naphthalene d8	86	76	71	
Acenaphthylene d8	101	68	79	
Phenanthrene d10	96	69	74	
Anthracene-d10	91	61	73	
Fluoranthene d10	107	66	78	
Benz(a)anthracene-d12	43	24	38	
Chrysene d12	39	24	35	
Benzo(b)fluoranthene-d12	102	46	82	
Benzo(k)fluoranthene-d12	91	41	73	
Benzo(a)pyrene d12	102	45	81	
Perviene d12	57	36	72	
Indeno(1,2,3,cd)pyrene-d12	133	55	94	
Dibenz(a,h)anthracene-d14	132	54	91	
Benzo(g,h,i)perylene d12	151	66	103	

B-4 Page 3 of 1

						Sample	Analysis	Repor	t					
ALS Sample ID Analysis Method Analysis Type	R1 L2599663-1 C429 Mod. Sample Stack						Sampling Extraction Sample Si Percent M Split Ratio	Date ze pisture	25-May-21 15-Jun-21 1 n/a 3	Sample			Approved: E. Sabijic e-signature 27-Jul-2021	
Run Information		Run 1					Run 2				Run 3			
Filename		10-210726	A23				10-210726	5A19			10-210726	A25		
Run Date		27-Jul-21					26-Jul-21				27-Jul-21			
Final Volume		1020	JL.					սե.				й.		
Dilution Factor		1					40				40			
Analysis Units Instrument - Column		ng HRMS-10 I	DBSMS#U	50423334	н		ng HRMS-10	DBSMS#US	50423334H		ng HRMS-10 (DB5MS#US	50423334H	
		Ret.	Conc.	EDL		LQL	Ret.	Conc.	EDI.	LQL	Ret.	Conc.	EDI.	LQI
Target Analytes		Time	ng	ng i	lags	ng	Time	ng	ng Flags	ng	Time	ng	ng Flags	ng
Naphthalene							8,68	19600	270	6100				
Acenaphthylene		11.24	405	170		31								
Acenaphthene Fluorene		11,52	122	14	м	31	12,34	10300	97	6100				
Phenanthrene							13,92	18800	65	6100				
Anthracene		14.01	1130	37		31								
Fluoranthene							16.10	992	37	6100				
Pyrene							16.55	615	36	6100				
Benz(a)anthracene Chrysene							19.12	47.6	9.0 M	6100	10.17	2240		
Benzo(b)fluoranthene		21.40	313	0.18	м	31					19.17	3210	2.8 M,J	120
Benzo(k)fluoranthene		21.44	17.2	0.22	м, 3, 8	31								
Benzo(e)pyrene		21.94	267	0.28		31								
Benzo(a)pyrene		22.04	35,8	0,33		31								
Perylene		22,21	3,61	0.43	<u></u> Ј,В	31								
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene		24.19 24,23	47.5 57.8	1.1 0.64	м	31 31								
Benzo(g,h,!)perylene		24.72	57.8	0.84		31								
Extraction Standards	NG		% Rec	timite				% Rec				% Rec		
Naphthalene d8 Acenaphthylene d8	300 300	11.22	113	20-150 20-150			8.65	27						
Phenanthrene d10	300	11.22	114	30-150			13.88	40						
Anthracene-d10	300	13.98	87	30-150			20100							
Fluoranthene d10	300			30-150			16.05	33						
Benz(a)anthracene-d12	300			30-150			19.06	70						
Chrysene d12 Benzo(b)fluoranthene-d12	300 300	21.35	113	30-150 30-150							19,14	70		
Benzo(k)fluoranthene-d12	300	21.33		30-150										
Benzo(a)pyrene d12	300	21.99		30-150										
Perviene d12	300	22.16		30-150										
Indeno(1,2,3,cd)pyrene-d12	300	24.13		30-150										
Dibenz(a,h)anthracene-d14	300 300	24.18 24.65		30-150 30-150										
Benzo(g,h,i)perviene d12	300	24.00	/9	30-130										
Field Spikes														
1-Methylnaphthalene-d10	300	9.89		50-150										
Fluorene-d10 p-Terphenyl-d14	300 300	12.31 16.93		50-150 50-150										
EDI.		Indicates t	he Estima	ited Dete	tion Limit,	based on the me	asured backgro	ound noise	for this target in thi	s sample.				
LQL							west calibration	level (con	rected for sample si:	te and dilutions)				
м ט						integrated. elected above the	MDL,							
t		Indicates t	hat a tarç	pet analyt	e was dete	cted below the ca	librated range.							

ł

						Sample	Analysis	Report	٤				
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	R2 L2599563-2 C429 Mod. Sample Stack						Sampling D Extraction of Sample Size Percent Moi Split Ratio	Date ze pisture	1 1 1	25-May-21 15-Jun-21 1 n/a 3	Sample	Approved: E. Sabijic e-signature 27-jui-2021	
Run Information		Run 1					Run 2						
Filename		10-210726/	5A21				10-210726/	A17					
Run Date		26-Jul-21 2	23:09				26-Jul-21 2	20:43					
Final Volume		1020 u	JL				1020 u	iL					
Dilution Factor		i					10						
Analysis Units		ng					ng	_					
Instrument - Column		HRMS-10 D	JB5MS#U	50423334	н		HRMS-10 D	/85MS#US	8423334	4H			
		Ret.	Conc.	EDL		LQL	Ret.	Conc,	EDL		LQL		
Target Analytes		Time	ng	ng F	lags	ng	Time	ng	ng i	Flags	ng		
Naphthalene							8.69	5980	15		310		
Acenaphthylene	•	11.23	40.2			31							
Acenaphthene		11,52	33.2	4,8	м	31	12 34	1610	23	м	310		
Fiuorene							12.34 13.93	4610 9120	23 8.5		310		
Phenanthrene Anthracene		14.01	132	0,96		31	40.0		6.4		4.4		
Fluoranthene		16.10	632			31							
Pyrene	3	16.56	348	2.3		31							
Benz(a)anthracene	2	19.11	16.9		м, ј, в	31							
Chrysene		19.16	1330		м	31							
Benzo(b)fluoranthene Benzo(k)fluoraothene		21.40 NotFod	25.7 <0.36	0.30 0.36	L L	31 31							
Benzo(k)fluoranthene Benzo(e)pyrene		NotFod 21.94	<0.36 18.3		U U	31 31							
Benzo(a)pyrene		22.04	2.31		з,в	31							
Perylene		22,16	<0.54	0.54	U	31							
Indeno(1,2,3-cd)pyrene	8	24.19	5.80		3,B	31							
Dibenz(a,h)anthracene		24,23	2.67		1,8	31							
Benzo(g,h,i)perviene		24,72	7,41		J,B	31							
Extraction Standards			% Rec				8.65	% Rec 71					
Naphthalene d8 Acenaphthylene d8		11.21		20-150 20-150			0.05	/1					
Phenanthrene d10				30-150			13.89	97					
Anthracene-d10		13.97		30-150									
Fluoranthene d10	300	16.06	97	30-150									
Benz(a)anthracene-d12		19.06		30-150									
Chrysene d12		19,12		30-150									
Benzo(b)fluoranthene-d12 Benzo(k)fluoranthene-d12		21,34		30-150 30-150									
Benzo(k)fluoranthene-d12 Benzo(a)pyrene d12		21.41 21.99		30-150 30-150									
Perylene d12		22,15		30-150									
Indeno(1,2,3,cd)pyrene-d12	2 300	24.13	83	30-150									
Dibenz(a,h)anthracene-d14	4 300	24.18		30-150									
Benzo(g,h,i)perylene d12		24.65	87	30-150									
Fleid Spikes			74	150									
1-Methylnaphthalene-d10 Eluorene-d10		9.88 12,29		50-150 50-150									
Fluorene-d10 p-Terphenyl-d14		12,29 16,93		50-150 50-150									
P. 10-10-10-10-10-10-10-10-10-10-10-10-10-1													
EDL							easured backgro						
LQL							west calibration	level (con	ected fr	or sample siz	ize and dilutions)		
M 1					en manually i I was not dete	integrated. tected above the	- MDI						
						ted below the ca							
	в	Indiantos	that this +	ramet war	e detected in	the biank at ar	reater than 10%	of the sam	onle cor	ocentration.			

						Sample	Analysis	Report	t		
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	R3 L2599663-3 C429 Mod. Sample Stack						Sampling I Extraction Sample Sh Percent Mo Split Ratio	Date	27-May-21 15-Jun-21 1 n/a 3	Sample	Approved: <i>F. Sabijic</i> e-signature 27-Jul-2021
Run Information		Run 1					Run 2				
ilename		10-210726	A22				10-210726	A19			
Run Date		26-Jui-21					26-Jul-21				
Final Volume		1020 1	n.					st.			
Dilution Factor		1					20				
Analysis Units		ng					ពថ្ម				
Instrument - Column		HRMS-10 I	JB5M5#C	504233341			HRMS-10	JB5M5#U5	0423334H		
		Ret.	Conc.	EDL		LQL	Ret.	Conc.	EDL	LQL	
Farget Analytes		Time	ng	ng Fl	ags	ng	Time	ng	ng Flags	ng	
Naphthaiene							8.68	27600	11	610	
Acenaphthylene Acenaphthene		11.23 11.52	132 86.5	12 5,2	м	31 31					
Fluorene		11.02	00.0	3.2	\$*\$	51	12,34	3760	4.1	610	
Phenanthrene							13,93	28900	5.1	610	
Anthracene		14.01	178	1.3		31					
Fluoranthene Pyrene		16.10 16.54	914 1100	3.2 3.1	м	31 31					
Benz(a)anthracene		20134	1100	314			19.11	17.6	2.7 M,J,B	610	
Chrysene		19.15	1510	0.22	м	31					
Benzo(b)fluoranthene		21,39	32.3	0.25		31					
Benzo(k)fluoranthene Benzo(e)pyrene		NotFad 21.94	<0.30 32.7	0.30 0.35	U	31 31					
Benzo(a)pyrene		22.04	3.07	0.41	1,8	31					
Perylene		22,20	2.59	0,61	J,B	31					
Indeno(1,2,3-cd)pyrene		24.19	4.92 1,98	0.89 0.63),B	31 31					
Dibenz(a,h)anthracene Benzo(g,h,i)perylene		24,23 24,72	10,7	0.64	3,B 3,B	31					
Extraction Standards				Limits				% Rec			
Naphthalene d8	300			20-150			8.65	78			
Acenaphthylene de		11.21	93	20-150							
Phenanthrene d10				30-150			13.88	102			
Anthracene-d10 Fluoranthene d10		13.97 16.06		30-150 30-150							
Benz(a)anthracene-d12		10.00	,	30-150			19,06	45			
Chrysene d12	300	19.12	57	30-150							
Benzo(b)fluoranthene-d12		21.34		30-150							
Benzo(k)fluoranthene-d12 Benzo(a)pyrene d12		21.41 21.99		30-150 30-150							
Perviene d12		22.15		30-150							
Indeno(1,2,3,cd)pyrene-d12	300	24,13		30-150							
Dibenz(a,h)anthracene-d14		24,16		30-150 30-150							
Benzo(g,h,i)perylene d12 Field Spikes		24.65	116	30-150							
			0.5	50-150							
1-Methylnaphthalene-d10 Fluorene-d10		9.88 12.29		50-150							
p-Terphenyl-d14		16.92		50-150							
EDI		Indicates t	he Estim	ated Detec	tion Limit, ba	ised on the me	asured backgro	und noise	for this target in th	is sample.	
LQI							vest calibration	levei (corr	ected for sample s	ze and dilutions)	
M					manually in		MOL				
ı						cted above the					
:		Indicates t	hat a tar	get analyte	was detecte	d below the ca	librated range.				
ŧ	3	Indicates t	hat this t	arget was	detected in t	he blank at or	ater than 10%	of the sam	ple concentration.		

						Sample	Analysis	Repor	t		
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	BLANK L2599663-4 C429 Mod, Sample Stack						Sampling I Extraction Sample Si Percent Mo Spilt Ratio	Date Date te listure	27-May-2 15-Jun-21 1 n/a 3		Approved: E. Sabljic e-signature 27-Jul-2021
Run Information		Run 1					Run 2				
Filename Run Date Final Volume Sulution Factor Analysis Units		10-210726 26-Jul-21 2 1020 1 1	22:33				10-210726 26-Jul-21 1020 5 ng	20:06			
Instrument - Column		HRMS-10 I	DB5MS#U	50423334	н		HRMS-10	DB5MS#US	0423334H		
Target Analytes		Ret. Time	Conc. ng	EDL ng F	lags	LQL ng	Ret. Time	Conc.	EDI. ng Flags	LQL ng	
Naphthaiene		8,67	1430	3,2		31					
Acenaphthylene		11.23	<18	18	ម	31					
Acenaphthene Fluorene		11,50 12,33	68.1 177	4.8 19		31 31					
Phenanthrene		13,92	402	0.45		31					
Anthracene		14.00	21,5	0,63	3	31					
Fluoranthene		16.10	51.7	0.36	м	31					
Pyrene Benz(a)anthracene		16.54 19.10	68.0 2.53	0.35 0.16	3,8	31 31					
Chrysene		19,15	8.43	0.17	J,B	31					
Benzo(b)fluoranthene		21.39	2.95	0.25	J,B	31					
Benzo(k)fluoranthene		21.44	0.936	0.29	3,B	31					
Benzo(e)pyrene Benzo(a)pyrene		21.93 22.03	3.86 2.66	0.37 0.44),В),В	31 31					
Perylene		22,19	0,803	0.50	3,8	31					
Indeno(1,2,3-cd)pyrene		24.18	3,02	0.83	M,3,B	31					
Dibenz(a,h)anthracene Benzo(g,h,i)perylene		NotFnd 24,71	<0,58 7.80	0.58 0.54	ប រ,ន	31 31					
		24,71			a,L	31					
Extraction Standards	NG		% Rec					% Rec			
Naphthalene d8	300	8.65		20-150							
Acenaphthylene d8 Phenanthrene d10	300 300	11.20 13.88		20-150 30-150							
Anthracene-d10	300	13.97									
Fluoranthene d10	300	16.05		30-150							
Benz(a)anthracene-d12		19.05									
Chrysene d12 Benzo(b)fluoranthene-d12		19.11 21.33		30-150 30-150							
Benzo(k)/luoranthene-d12		21.40		30-150							
Benzo(a)pyrene d12		21.98		30-150							
Perylene d12		22,14 24,12		30-150 30-150							
Indeno(1,2,3,cd)pyrene-d12 Dibenz(a,h)anthracene-d14	300	24.12		30-150							
Benzo(g,h,i)perviene d12	300	24,64		30-150							
Fleid Spikes											
1-Methylnaphthalene-d10	300	9.87	78	50-150							
Fluorene-d10	300	12.28	90	50-150							
	300 300	12.28 16.92 Indicates t Indicates t Indicates t Indicates t	90 69 the Estima the Lower that a pea that this c	50-150 50-150 ated Detec Quantification ik has been compound	ation Limit, b n manually in was not dete	ased on the low	vest calibration	level (com	for this target in ected for sample	this sample, size and dilutions)	
В		Indicates t	hat this t	and at use	datacted in I	the blank of sea	akas these 1004		-)		

					Laborat	ory Metho	od Blank Analysi	s Report		
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	Method Blank WG3554311-1 C429 Mod. Blank QC						Sampling Date Extraction Date Sample Size Percent Moisture Spilt Ratio	n/a 15-Jun-21 1 n/a 1	Blank	Approved: E, Sabijic e-signature 27-Jul-2021
Run Information		Run 1								
Filename		10-210726	A14							
Run Date		26-Jul-21 1								
Final Volume		1020 u	н.							
Dilution Factor		1								
Anaiysis Units		ng								
Instrument - Column		HRMS-10 D)85MS#U	50423334	н					
		Ret.	Conc.	EDL		LQL				
Target Analytes		Time	ng	ng P	lags	ng				
Naphthalene		8,68	17,0	0.32		10				
Acenaphthylene		11.23	0,761	0,22	м,з	10				
Acenaphthene		11.52	0,611	0,20	3	10				
Fluorene		12.34	0.933	0,27	1	10				
Phenanthrene Anthracene		13.92 14.01	1.80 1.08	0.12 0.14	3	10 10				
Fluoranthene		16.10	1.05	0.11	ŝ	10				
Pyrene		16.56	1.05	0.11	м, ј	10				
Benz(a)anthracene		19.11	1.88	0.17	J	10				
Chrysene		19,19	1.98	0.18	3	10				
Benzo(b)fluoranthene		21.39	1.84	0.34	с,м	10				
Benzo(k)fluoranthene Benzo(e)pyrene		21.45 21.94	1.74 1.09	0.41 0.46	3	10 10				
Benzo(a)pyrene		22.04	1.19	0.54	5	10				
Perviene		22.21	1.52	1.0	3	10				
Indeno(1,2,3-cd)pyrene		24,19	2.40	1.3	м, з	10				
Oibenz(a,h)anthracene		24.26	1,90	1,1	1	10				
Benzo(g,h,i)perylene		24.73	1,31	0.81	м,1	10				
Extraction Standards	NG		% Rec							
Naphthalene d8		8.65		20-150						
Acenaphthylene d8 Phenanthrene d10		11.21 13.88		20-150 30-150						
Anthracene-d10		13.66		30-150						
Fluoranthene d10		16.06		30-150						
Benz(a)anthracene-d12		19.06	43	30-150						
Chrysene d12		19.12		30-150						
Benzo(b)fluoranthene-d12		21.35		30-150						
Benzo(k)fluoranthene-d12 Benzo(a)pyrene d12		21.41 21.99		30-150 30-150						
Perviene d12		22.15		30-150						
Indeno(1,2,3,cd)pyrene-d12		24,13		30-150						
Dibenz(a,h)anthracene-d14		24,18		30-150						
Benzo(g,h,l)perviene d12	300	24.65	151	30-150						
Fleid Spikes	5									
1-Methylnaphthalene-d10		9.88		50-150						
Fluorene-d10		12.29		50-150						
p-Terphenyl-d14	300	16.93		50-150						
EDI		Indicates	the Estim	ated Dete	tion Limit. b	ased on the me	asured background noise fo	or this target in thi	s sample.	
LQ							est calibration level (corre			
ĥ					n manually i					
ι	1	Indicates t	that this o	ompound	was not dete	icted above the	MDL.			
	1	Indicates	that a tan	net anab#	e was detert	ed below the cal	librated cange			

					Laborat	ory Metho	od Blank Analysi	is Report			
Sampie Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	Method Blank WG3554311-4 C429 Mod. Blank QC						Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio	n/a 15-Jun-21 1 n/a 1	Blank		Approved: E. Sabijic e-signature 27-Jul-2021
Run Information		Run 1									
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column		10-210726 26-Jui-21 1020 1 ng HRMS-10 1	19:29 J.	150423334	н						
Target Analytes		Ret. Time	Conc. ng	EDL ng F	lags	LQL. ng					
Naphthalene		8.69	7,90	0.40	3	10					
Acenaphthylene		11.23	1.01	0.25	м, ј	10					
Acenaphthene		11.53	1.12	0.35	J	10					
Fluorene		12.36	0.803	0.49	1	10					
Phenanthrene Anthracene		13.93 14.02	1.80 1.96	0.15 0.18	з м,з	10 10					
Fluoranthene		16.12	0.713	0.15	درہ، 1	10					
Pyrene		16.56	0,805	0.15	м, ј	10					
Benz(a)anthracene		19,11	2,50	0.23	3	10					
Chrysene		19,19	2.17	0.23	3	10					
Benzo(b)fluoranthene		21.41	2.46	0.61].	10					
Benzo(k)fluoranthene		21.46 NotFnd	2.36 <0.92	0.76 0.92	t U	10 10					
Benzo(e)pyrene Benzo(a)pyrene		NotFnd	<1,1	1,1	U	10					
Perviene		NotFnd	<1.3	1,3	ŭ	10					
Indeno(1,2,3-cd)pyrene		NotFind	<2,4	2.4	M,U	10					
Dibenz(a,h)anthracene		. 24.26	3.17	2.3	1	10					
Benzo(g,h,l)perylene		NotFnd	<1.4	1.4	м,0	10					
Extraction Standards	NG		% Rec	Limits							
Naphthalene d8	300	8.65	76	20-150							
Acenaphthylene de	300	11.21	68	20-150							
Phenanthrene d10		13.89		30-150							
Anthracene-d10		13.98		30-150							
Fluoranthene d10		16.08		30-150 30-150							
Benz(a)anthracene-d12 Chrysene d12		19.07 19.13		30-150							
Benzo(b)fluoranthene-d12		21.35		30-150						•	
Benzo(k)fluoranthene-d12		21,42		30-150							
Benzo(a)pyrene d12	300	22.00		30-150							
Perylene d12		22,16		30-150							
Indeno(1,2,3,cd)pyrene-d12		24.14		30-150							
Dibenz(a,h)anthracene-d14 Benzo(a,h)benylene d12		24.19 24.66		30-150 30-150							
Benzo(g,h,i)perylene d12		24,00	00	30-130							
Field Spikes											
1-Methylnaphthalene-d10		9.89		50-150							
Fluarene-d10 p-Terphenyl-d14		12,29 16,94		50-150 50-150							
EDI LQI		Indicates Indicates Indicates Indicates	the Lower that a pea that this c	ated Detec Quantifica k has bee compound	ation Limit, t n manually i was not dete	ased on the low					

106

					Laboratory Co	ontrol Sample Analys	sis Report		
Sampie Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	Laboratory C WG3554311-2 C429 Mod. LCS QC		ie			Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio	n/a 15-Jun-21 1 n/a n/a 1		Approved: E. Sabijic e-signature 27-Jul-2021
			****				*	1	2) 341-2021
Run Information		Run 1 10-210726							
filename Run Date		26-Ju)-21							
final Volume		1020	uL.						
Dilution Factor		1							
Analysis Units		%							
instrument - Column		HRMS-10	DBSMS#U	504233	34H				
		Ret.		Limits					
farget Analytes	ng	Time	% Rec		Flags				
Naphthalene		8,68	104	50-150					
Acenaphthylene		11,23		50-150					
Acenaphthene		11.52		50-150					
Fluorene		12.34 13.93		50-150					
Phenanthrene Anthracene		13.93		50-150 50-150					
Fluoranthene		16.12		50-150					
Pyrene		16.56		50-150					
Benz(a)anthracene		19.11		50-150					
Chrysene		19.19		50-150					
Benzo(b)fluoranthene Benzo(k)fluoranthene		21.40 21.45		50-150 50-150					
Benzo(e)pyrene			100	34 100					
Benzo(a)pyrene		22,04	91	50-150					
Perylene									
Indeno(1,2,3-cd)pyrene		24.19		50-150					
Dibenz(a,h)anthracene Benzo(g,h,i)perylene		24,25 24,72		50-150 50-150					
		64.74							
Extraction Standards	NG		% Rec	Limits					
Naphthalene de		8.65		20-150					
Acenaphthylene da		11.21		20-150					
Phenanthrene d10 Anthracene-d10		13.89 13.98		30-150					
Fluoranthene d10		16.08		30-150					
Benz(a)anthracene-d12		19.06		30-150					
Chrysene d12	300	19.13		30-150					
Benzo(b)fluoranthene-d12		21.35		30-150					
Benzo(k)fluoranthene-d12 Benzo(a)pyrene d12		21.41 21.99		30-150 30-150					
Perviene d12		21.99		30-150					
Indeno(1,2,3,cd)pyrene-d12		24.13		30-150					
Dibenz(a,h)anthracene-d14	300	24.18		30-150					
Benzo(g,h,i)perylene d12	300	24.65	103	30-150					
field Spikes									
1-Methylnaphthalene-d10									
Fluorene-d10									
p-Terphenyl-d14									والمراجعة والمراجعة ومحار
rđi		Indicates	the Lower	Quantif	ication Limit, based on	the lowest calibration level (corre	ected for sample size and dilu	tions)	

1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567

	Certifica	te of Analysis	
ALS Project Contact: ALS Project ID: ALS WO#:	Breanne Dusureault BEST100 L2599663	Client Name: Client Address:	Best Environmental 339 Stealth Court Livermore, CA 94551
Date of Report	8-Jul-21		USA
Date of Sample Receipt	9-Jun-21	Client Contact:	Basim Asfour
		Client Project ID:	BUBBLING WELLS
MMENTS:	PCDD/F by EPA M23		
	a 1		,
	Senny		
Certified by:	-		
	Steve Kennedy		
	Technical Supervisor		

This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd.

	ALS	Life S	cience	25	
	Sam	pie Analysis sun	mary Report		
Sample Name	R1	R2	R3	BLANK	
ALS Sample ID	1.2599663-1	1.2599663-2	12599663-3	L2599663-4	
Sample Size	1	1	1	1	
Sample size units	sample	sample	sample	sample	
Percent Moisture	n/a	n/a	n/a	n/a	
Sample Matrix	Stack	Stack	Stack	Stack	
Sampling Date	25-May-21	25-May-21	27-May-21	27-May-21	
Extraction Date	15-Jun-21	15-Jun-21	15-Jun-21	15-Jun-21	
Target Analytes	þg	þg	68	Þð	
2,3,7,8-TCDD	16.9	9.79	<3.2	<4.9	
1,2,3,7,8-PeCDD	77.7	41.4	25.2	<2.8	
1,2,3,4,7,8-HxCDD	36.3	31.5	<9.4	<3.2	
1,2,3,6,7,8-HxCDD	69.0	<41	<11	<3.1	
1,2,3,7,8,9-HxCDD	62,7	63,6	<10	<3.2	
1,2,3,4,6,7,8-HpCDD	210	300	<61	<3,7	
OCDD	154	350	97,9	15.8	
2,3,7,8-TCDF	124	43.0	82.9	<3.5	
1,2,3,7,8-PeCDF	132	61.3	59.7	<1.6	
2,3,4,7,8-PeCDF	162	94.2	173	<1.5	
1,2,3,4,7,8-HxCDF	102	80.6	38.5	<1.0	
1,2,3,6,7,8-HxCDF	125	87.5	<41	<0.95	
2,3,4,6,7,8-HxCDF	112	92.4	67.4	<1.0	
1,2,3,7,8,9-HxCDF	32.1	23.8	11.1	<2.8	
1,2,3,4,6,7,8-HpCDF	177	237	77.9	<1.8	
1,2,3,4,7,8,9-HpCDF	23,7	<18	5,26	<2.3	
OCDF	35.2	75,1	17.5	<2,6	
Field Spike Standards	% Rec	% Rec	% Rec	% Rec	
37CI4-2,3,7,8-TCDD	99	93	96	94	
13C12-1,2,3,4,7,8-HxCDD	89	98	96	97	
13C12-2,3,4,7,8-PeCDF	98	82	79	104	
13C12-1,2,3,4,7,8-HxCDF	97	100	100	100	
13C12-1,2,3,4,7,8,9-HpCDF	88	93	84	105	
Extraction Standards					
13C12-2,3,7,8-TCDD	85	74	70	63	
13C12-1,2,3,7,8-PeCDD	95	77	82	72	
13C12-1,2,3,6,7,8-HxCDD	72	58	51	56	
13C12-1,2,3,4,6,7,8-HpCDD	67	61	48	64	
13C12-OCDD	71	69	46	77	
13C12-2,3,7,8-TCDF	102	73	73	63	
13C12-1,2,3,7,8-PeCDF	94	90	102	68	
13C12-1,2,3,6,7,8-HxCDF	67	56	50	54	
13C12-1,2,3,4,6,7,8-HpCDF	76	67	59	63	
Cleanup Standard					
13C12-1,2,3,7,8,9-HxCDF	69	64	56	73	
Homologue Group Totais	pg	pg	þg	P9	
Total-TCDD	461	265	177	<4,9	
Total-PeCOD	924	149	372	<2.8	
Total-HxCDD	659	451	141	<3.2	
Total-HpCDD	374	566	<2.3	<3.7	
Total-TCDF	2390	1940	1780	<3.5	
Totai-PeCDF	2010	642	1350	<1,6	
Total-HxCDF	898	634	576	<1.3	
Total-HpCDF	227	319	112	<2.3	
Toxic Equivalency - (WHO 2005)					
Lower Bound PCDD/F TEQ (WHO 2005)	218	129	99.7	0.08474	
Mid Point PCDD/F TEQ (WHO 2005)	218	133	109	5.22	
Upper Bound PCDD/F TEQ (WHO 2005)	218	133	111	10.2	

B-13″

Quality Control Summary Report									
Consulta None -	•	-							
Sample Name	Method Blank	Method Blank La	Sample						
ALS Sample ID	WG3554311-1	WG3554311-4	WG3554311-2						
Sample Size	1	1	1						
Sample size units	n/a	n/a	n/a						
Percent Moisture	n/a	n/a	n/a						
Sample Matrix	MEDIA	REAGENT	MEDIA						
Sampling Date Extraction Date	n/a 15-Jun-21	n/a 15-Jun-21	n/a 15-Jun-21						
Target Analytes	pg	pg	% Rec						
	<4.0	<1.5	86						
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	<3.0	<0.75	103						
1,2,3,4,7,8-HxCDD	<4.0	<0.75	89						
1,2,3,4,7,8-HxCDD	<3.9	<0.78	89 94						
1,2,3,7,8,9-HxCDD	<4.0	<0.99	124						
1,2,3,4,6,7,8-HpCDD	<3.5	<1.8	102						
OCDD	35.5	<7.1	89						
2,3,7,8-TCDF	<3,3	<1.1	99						
1,2,3,7,8-PeCDF	<1,9	<0.93	109						
2,3,4,7,8-PeCDF	<1,8	<1.3	100						
1,2,3,4,7,8-HxCDF	<2.0	<0,72	103						
1,2,3,6,7,8-HxCDF	<1.8	<0,67	104						
2,3,4,6,7,8-HxCDF	<2.0	<0,73	107						
1,2,3,7,8,9-HxCDF	4.85	<2.4	128						
1,2,3,4,6,7,8-HpCDF	<3.1	<0.90	96						
1,2,3,4,7,8,9-HpCDF	<4.0	<0.67	94						
OCDF	<15	2.08	98						
Field Spike Standards	% Rec	% Rec	% Rec						
37CI4-2,3,7,8-TCDD	0	0	0						
13C12-1,2,3,4,7,8-HxCDD	0	0	0						
13C12-2,3,4,7,8-PeCDF	0	0	0						
13C12-1,2,3,4,7,8-HxCDF	0	0	0						
13C12-1,2,3,4,7,8,9-HpCDF	0	0	0						
Extraction Standards									
13C12-2,3,7,8-TCDD	29	92	74						
13C12-1,2,3,7,8-PeCDD	32	108	93						
13C12-1,2,3,6,7,8-HxCDD	26	63	64						
13C12-1,2,3,4,6,7,8-HpCDD	33	77	68						
13C12-0CDD	41	86	69						
13C12-2,3,7,8-TCDF	30	99	72						
13C12-1,2,3,7,8-PeCDF	30	95	81						
13C12-1,2,3,6,7,8-HxCDF	24	60	59						
13C12-1,2,3,4,6,7,8-HpCDF	31	76	72						
Cleanup Standard									
13C12-1,2,3,7,8,9-HxCDF	33	66	68						
Homologue Group Totals	pg	pg							
Total-TCDD	<4.0	<1.5							
Totai-PeCDD	<3.0	<0.75							
Total-HxCDD	<4.0	<0.77							
Total-HpCDD	<3.5	<1.8							
Total-TCDF	<3,3	<1.1							
Total-PeCDF	<1.9	<0,93							
Total-HxCDF	4,85	<0.88							
Total-HpCDF	<4.0	<0.67							
Toxic Equivalency - (WHO 2005)									
Lower Bound PCDD/F TEQ (WHO 2005)	0.496	0.000624							
Mid Point PCDD/F TEQ (WHO 2005)	5.40	2,13							
Upper Bound PCDD/F TEQ (WHO 2005)	10,3	3,51							

						Sa	mple A	nalysis Report			
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	R1 L2599663-1 EPA M23 Sample Stack						•	Sampling Date Extraction Date Semple Size Percent Molsture Spilt Ratio	25-May-21 15-Jun-21 1 n/a 3	sample	Approved: N Ashtarl e-signature 29-Jun-2021
Run Information		Run 1									
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column		7-210625A 26-Jun-21 20 u 1 pg HRMS-7 0	09:45 IL	1221911)	4						
Target Analytes	TEF (WHO 2005)	Ret, Time	Conc. pg	EDL	flags	EMPC Pg	LQL				
2,3,7,8-TCDD	1	28,48	16.9	2.5	M,J	P9	30				
1,2,3,7,8-PeCDD	1	32.31	77.7	1.3	נ,ייז [150				
1,2,3,4,7,8-HxCDD	0.1	34.30	36.3	0.88	1		150				
1,2,3,6,7,8-HxCDD	0.1	34.35	69.0	0.85	J		150				
1,2,3,7,8,9-HxCDD	0.1	34.48	62.7	0.89	J		150				
1,2,3,4,6,7,8-HpCDD OCDD	0.01 0.0003	35.98 37.48	210 154	1.2 1.5	м,Ј,В		150 300				
2,3,7,8-TCDF	0.1	27.58	124	1.7			30				
1,2,3,7,8-PeCDF	0.03	31.40	132	0,90	3		150				
2,3,4,7,8-PeCDF	0.3	32.10	162	0.86			150				
1,2,3,4,7,8-HxCDF	0.1	33.82	102	0.71	3		150				
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.1 0.1	33.90 34.22	125 112	0.65 0.71	3		150 150				
1,2,3,7,8,9-HxCDF	0.1	34.65	32.1	0.86	, J,B		150				
1,2,3,4,6,7,8-HpCDF	0.01	35.41	177	1.2	2,2		150				
1,2,3,4,7,8,9-HpCDF	0.01	36,23	23,7	1.5	3		150				
OCDF	0.0003	37.58	35.2	0.88	м,)		300				
Field Spike Standards	pg		% Rec	Limits							
37CI4-2,3,7,8-TCDD	600	28.50		70-130							
13C12-1,2,3,4,7,8-HxCDD	6000	34.30 32.09		70-130 70-130							
13C12-2,3,4,7,8-PeCDF 13C12-1,2,3,4,7,8-HxCDF	6000 6000	33.81		70-130							
13C12-1,2,3,4,7,8,9-HpCDF	6000	36,22		70-130							
Extraction Standards											
13C12-2,3,7,8-TCDD	6000	28,47	85	40-130							
13C12-1,2,3,7,8-PeCDD	6000	32,30		40-130							
13C12-1,2,3,6,7,8-HxCDD	6000	34.35		40-130							
13C12-1,2,3,4,6,7,8-HpCDD	6000	35.97 37.48		25-130							
13C12-OCDD 13C12-2,3,7,8-TCDF	12000 6000	27.57		25-130 40-130							
13C12-1,2,3,7,8-PeCDF		31.39		40-130							
13C12-1,2,3,6,7,8-HxCDF		33.89		40-130							
13C12-1,2,3,4,6,7,8-HpCDF		35.40	76	25-130							
Cleanup Standard 13C12-1,2,3,7,8,9-HxCDF	PG . 6000	34.63	69	40-130							
toors stately job moor	0000	51.00	Conc,	EDL							
Homologue Group Totals		# peaks	Þg	þg							
Total-TCDD		8	461	2.5			30				
Total-PeCDD Total-HxCDD		8	924	1.3			150 150				
Total-HxCDD Total-HpCDD		2	659 374	0.89 1,2			150				
Total-TCDF		18	2390	1.7			30				
Total-PeCDF		15	2010	0.90			150				
Total-HxCDF		11	898	0.86			150				
Total-HpCDF		3	227	1.5			150				
Toxic Equivalency - (WHC			P 3								
Lower Bound PCDD/F TEQ Mid Point PCDD/F TEQ (Wi Upper Bound PCDD/F TEQ	10 2005)		218 218 218							17 27 27 17 17 17 17 17	
EDL TEP M		Indicates t Indicates t Indicates t	he Toxic	Equivale	ncy Facto	r		asured background noise fo TEQ Indicates t	r this target in thi: he Toxic Equivalen		
t		Indicates t	that a tan	get analy	te was de	stected be	elow the ca	lbrated range.			
В		Indicates (that this t	aroet wa	s detecte	d in the h	laok at ore	ater than 10% of the samp	le concentration.		

			<u></u>		1		5 L	.ife	Scienc	es		. Mana dan Mahan Mana dan dika dika
							Sa	mple A	analysis Report	<u></u>		ten ann eile san dh' ann
Interms 7.100 Mar 7.200 Mar <th7.200 mar<="" th=""> 7.200 Mar <th7.200 mar<="" th=""> <th7.200 mar<="" th=""> <th7.2< th=""><th>ALS Sample ID Analysis Method Analysis Type</th><th>L2599663-2 EPA M23 Sample</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Extraction Date Sample Size Percent Moisture</th><th>15-Jun-21 1 n/a</th><th>sample</th><th>N Ashtari e-signature</th></th7.2<></th7.200></th7.200></th7.200>	ALS Sample ID Analysis Method Analysis Type	L2599663-2 EPA M23 Sample							Extraction Date Sample Size Percent Moisture	15-Jun-21 1 n/a	sample	N Ashtari e-signature
Not Data Bind Mode Bind Mode Share Share S	Run Information		Run 1									
Table Model 20 U Advance 1 1 Advance 1 1 Advance 1 1 Advance 1 1 Advance 1 1 1 Advance 1 1 1 1 Advance 1 1 1 1 1 Advance 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
Introduct - colum 198/50 198/50 100/50 198/50 100/50 198/50 100/50 198/50 100/50 198/50 100/50 198/50 100/50 198/50 100/50 198/50 100/50 198/50 100/50 198/50 100/50 198/50 100/50												
Terget Anylos Terget												
Total All and all all all all all all all all all al	Instrument - Column		HRMS-7 C	DBSMSUS	1221911	н		<u> </u>				
2,3,7,47000 1 3,40 1,42 3,4 1,4	-											
1,2,3,7,8+CC0 1 3.3 3.4 3.5 1,2,3,7,8+CC0 6.3 3.4 3.6 3.6 1,2,3,7,8+CC0 6.3 3.5 3.0 4.1 3.6 1,2,3,7,8+CC0 6.3 3.5 3.0 4.1 3.6 1,2,3,7,8+CC0 6.3 3.5 3.0 4.1 3.0 1,2,3,7,8+CC0 6.3 3.5 3.0 4.1 3.0 1,2,3,7,8+CC0 6.3 3.5 3.0 1.0 3.0 1,2,3,7,8+CC0 6.3 3.5 4.0 3.0 1.0 1,2,3,7,8+CC0 6.3 3.5.2 3.0 1.0 1.0 1,2,3,7,8+CC0 6.1 3.5.2 2.1 1.0 1.0 1,2,3,7,8+CC0 6.1 3.5.2 2.1 1.0 1.0 1,2,3,7,8,7,8+CC0 6.0 3.5.1 2.7 1.0 1.0 1,2,3,7,8,7,8+CC0 6.0 3.5.1 2.7 1.0 1.0 1,2,3,7,8,7,8+CC0 6.0 3.5.1 2.7 1.0 1.0 1,2,3,7,8,7,8+CC0							pg					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
1.2.3.7.6.7.44C00 0.1 3.6.8 3.6.1 3.6.9 1.2.3.7.6.7.44C00 0.000 3.6.8 3.6.1 3.6.9 2.3.7.67 0.1 3.6.8 3.6.1 3.6.9 1.2.3.7.67.44C07 0.3 3.6.8 3.6.2 3 3.6.2 1.2.3.7.67.44C07 0.3 3.6.8 6.6.2 3 3.6.2 1.2.3.7.67.44C07 0.3 3.6.8 6.6.2 3 3.6.2 1.2.3.7.67.44C07 0.3 3.6.8 6.6.2 3 3.6.2 1.2.3.7.67.44C07 0.1 3.6.4 2.3 5.2 3 3.6.2 1.2.3.7.67.44C07 0.1 3.6.4 2.3 5.2 3 3.6.2 1.2.3.7.67.44C07 0.1 3.6.4 2.3 5.2 3 3.6.2 1.2.3.7.67.44C07 0.1 3.6.4 2.3 3.6 3.6.2 1.2.3.7.67.44C07 0.1 3.6.4 2.3 3.6.2 3.6.2 1.2.3.7.67.44C07 0.1 3.6.4 2.4 3.6.2 3.6.2 1.2.3.7.67.44C07 0.1 3.6.4 2.4 3.6.2 3.6.2 1.2.3.7.67.44C07 0.0 3.6.4 2.4 3.6.2 1.2.3.7.67.44C07 0.00												
1 0.01 30.9 30.9 3.7 10 2.3,7,4,700 0.1 7.9 30.9 30.9 2.3,7,4,700 0.1 3.0 3.2 0.1 10.0 1.3,2,7,4,7400 0.3 3.0.8 4.2 0.1 10.0 1.3,2,4,7,4,7400 0.3 3.0.8 4.2 0.1 10.0 1.3,2,4,7,4,7400 0.1 3.0.8 4.2 0.1 10.0 1.3,2,4,7,4,7400 0.1 3.6.8 4.3 1.3 10.0 1.3,2,4,7,4,7,400 0.1 3.6.8 5.3 1.0 10.0 1.3,2,4,7,4,7,400 0.1 3.6.8 5.3 1.0 10.0 1.3,2,4,7,4,7,400 0.0 3.6.8 1.0 7.0 10.0 1.3,2,4,7,4,7,400 0.0 3.6.8 1.0 7.0 10.0 1.3,2,4,7,4,7,400 0.0 3.6.8 1.0 7.0 10.0 1.3,2,4,4,7,4,400 0.0 3.6.8 1.0 7.0 10.0 1.3,2,4,4,7,4,400 0.0 3.6.8 1.0 7.0 10.0 1.3,2,4,4,7,4,400 0.0 3.6.8 1.0 7.0 10.0 1.3,2,4,4,7,4,400 0.0 3.4.9 7.4.13<	1,2,3,6,7,8-HxCDD	0.1				-	41					
0.000 0.000 7.8 9.0 90 1,2,3,7,44-000 0.3 1.44 6.0 2 1.50 2,3,7,7,44-000 0.1 3.20 4.2 0 1.50 2,3,7,7,44-000 0.1 3.20 4.2 0 1.50 2,3,7,7,44-000 0.1 3.40 5.2 3.0 1.50 2,3,7,7,44-000 0.1 3.40 2.2 3.0 1.50 2,3,7,7,44-000 0.1 3.40 2.2 3.0 1.50 1,2,3,7,7,44-000 0.01 3.42 2.0 3.00 1.50 1,2,3,7,7,7,44-000 0.01 3.42 1.8 1.50 1.50 1,2,3,7,7,7,44-000 0.01 3.42 1.0 1.50 1.50 1,51,2,4,3,7,44-000 0.00 3.32 1.0 7.40 1.0 1.00 1,51,2,4,3,7,44-000 0.00 3.32 1.0 7.40 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1						ſ						
12.3.2.4.7.4.000 0.1 3.2.4 4.0 7 1 10 12.3.4.7.4.7.400 0.1 3.2.4 4.0 1 10 12.3.4.7.4.4.000 0.1 3.2.4 4.0 1 10 12.3.4.7.4.4.000 0.1 3.2.4 4.0 1 10 12.3.4.7.4.4.000 0.1 3.2.4 4.0 1 10 12.3.4.7.4.4.000 0.1 3.5.4 4.0 1 10 12.3.4.7.4.4.000 0.1 3.5.4 4.0 1 10 12.3.4.7.4.4.000 0.1 3.5.4 4.0 1 10 12.3.4.7.4.4.000 0.0 3.5.4 2.7 1.0 10 12.3.4.7.4.4.000 0.0 3.5.4 2.7 1.0 10 12.3.4.7.4.4.000 0.0 3.5.4 2.7 1.0 10 12.3.4.7.4.4.000 0.0 3.5.4 2.7 1.0 10 12.3.4.7.4.4.000 0.0 3.5.4 2.7 1.0 10 12.3.4.7.4.4.000 0.0 3.5.3 1.0 10 12.3.4.7.4.4.000 0.0 3.2.3 1.0 10 12.3.4.7.4.4.000 0.0 3.2.3 1.0 1.0						в						
1,2,3,2,8+C00 0.3 1,2,4,1 6,1 1 10 1,2,3,4,7,8+C00 0.1 32,4 6,2 2,0 1 10 1,2,3,4,7,8+C00 0.1 32,4 3,3 1 10 1,2,3,4,7,8+C00 0.1 32,4 3,3 1 10 1,2,3,4,7,8+C00 0.1 35,4 2,3 3 10 1,2,3,4,7,8+C00 0.1 35,4 2,3 3,8 10 1,2,3,4,7,8,7+C00 0.0 35,4 2,3 3,8 10 1,2,3,4,7,8,7+C00 0.0 35,4 1,8 10 10 1,3,2,4,7,8,7+C00 0.0 35,1 9 7+10 10 1,12,2,4,7,8,7+C00 0.0 35,1 9 7+10 10 1,12,2,4,7,8,7+C00 0.0 35,3 10 7+10 1,12,2,2,7,8,7+C00 0.00 35,3 10 7+10 1,12,2,2,7,8,7+C00 0.00 35,3 10 7+10 1,12,2,2,7,8,7+C00 0.00 35,4 10 10 1,12,2,2,7,8,7+C00 0.00 35,4 10 10 1,12,2,2,7,8,7+C00 0.00 35,4 10 10 1,12,2,2,7,8,7+C00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
2,3,4,7,4+CCP 0.3 32.00 9.42 2.0 1 130 1,3,3,7,4+CCP 0.1 33.01 8.75 4.0 3 150 1,3,3,7,4+CCP 0.1 33.01 8.75 4.0 3 150 1,3,3,7,4+CCP 0.1 35.01 2.54 4.3 1 150 1,3,3,7,4+CCP 0.01 35.01 2.54 4.3 1 150 1,3,3,7,4+CCP 0.01 35.01 2.57 3 1 150 1,3,3,7,4+CCP 0.01 35.01 2.57 3 1 1 1,20,1,7,3,4+CCP 0.00 35.01 2.57 3 1 1 1,20,1,7,3,4+CCP 0.00 35.01 2.57 3 1 1 1,20,1,21,3,4,7,4+CCP 0.00 3.3.01 8 7 1 1 1,20,1,21,3,4,7,4+CCP 0.00 3.3.01 8 7 1 1 1,20,1,21,3,4,7,4+CCP 0.00 3.3.01 8 4 1 1 1,20,1,21,3,4,7,4+CCP 0.00 3.4.31 8 4 1 1 1,20,1,21,3,4,7,4+CCP 0.00 3.4.31 8 4 1 1												
1,2,3,5,2,4-x0CP 0.1 32,3 97.3 4.0 0 150 2,3,4,5,4-x0CP 0.1 34.4 2,8 5.2 1.0 150 1,2,3,7,4-x0CP 0.0 35.4 3 7.0 1.0 7,04-3,7,100 600 35.3 8 7.1 1.0 1,51,1,3,7,4-x0CP 600 35.3 8 4.1 1.0 1,51,1,3,7,4-x0CP 600 35.3 8 4.1 1.0 1,51,1,3,7,4-x0CP 600 35.4 8 4.1 1.0 1,51,1,3,7,4-x0CP 600 35.4 8 4.1 1.0 1,51,1,3,4,7,4-x0CP 600 35.4 8 4.1 1.0 1,51												
2,3,4,6,7,8+hCCP 0.1 34,23 92,4 4,3 3 100 1,2,3,4,7,8+hCCP 0.01 35,4 227 2.0 150 1,2,3,4,7,8+hCCP 0.01 35,4 227 2.0 150 1,2,3,4,7,8+hCCP 0.01 35,4 227 2.0 150 1,2,3,4,7,8+hCCP 0.00 36,3 107,57 2.0 100 764 53,7,8+hCCP 0.00 36,3 107,51 2.0 100 15121-1,2,3,7,8+hCCP 0.00 36,3 107,51 100 100 15121-1,2,3,7,8+hCCP 0.00 35,4 100 100 100 15121-1,2,3,7,8+hCCP 0.00 35,4 100 100 100 100 15121-1,2,3,7,8+hCCP 0.00 35,4 100 100 100 100 100												
1,2,2,7,8,9+HCCP 0.1 34,64 2,3 5,2 0,0 1,2,3,4,7,8,9+HCCP 0.01 36,24 418 2,3 10,0 7161 59165 581n4n4ct p 75,1 2,8 3 300 7161 59165 581n4n4ct p 75,1 2,8 3 300 7161 59165 581n4n4ct p 76,1 2,8 3 76,1 7161 591,7,7,7,7,100 600 35,21 3 79,100 10,0 13012-1,2,7,4,7,8+HCCD 600 32,62 10,0 71,100 10,0 10,0 13012-1,2,7,4,7,8+HCCD 600 32,62 10,0 71,100 10,0 10,0 10,0 13012-1,2,7,4,7,8+HCCD 600 32,31 7,10+10 10,0												
1.1.2,3,4,7,94+0CP 0.01 35.42 2.0 150 1.2.3,4,7,94+0CP 0.00 37.9 7.1 2.0 150 1.2.3,4,7,94+0CP 0.00 32.51 87.9 7.13 7.13 1.2.3,4,7,94+0CP 600 32.51 87.9 7.13 7.13 1.2.12,7,3,7,4+0CP 600 33.62 7.13 7.13 7.13 1.2.12,7,3,7,4+0CP 600 33.62 7.13 7.13 7.13 1.2.12,7,3,7,4+0CP 600 32.43 7.4 7.4 7.13 7.13 1.2.12,12,3,7,4+0CP 600 32.43 7.4 7.4 7.13 7.13 1.2.12,12,13,7,4+0CP 600 32.43 5.4 4.13 7.13 7.13 1.2.12,12,13,7,4+0CP 600 33.43 5.4 4.13 7.13 7.13 1.2.12,12,13,13,14 7.4 6.4 7.3 4.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13						-						
1,1,4,7,3,4,5,4,5,4 0.01 36,24 7.16 2.5 M,26 1 150 Prid Spike Standards pg 7.8 2.6 1 300 7714 Spike Standards pg 7.8 2.6 1 300 7714 Spike Standards pg 7.8 2.6 1 300 7714 Spike Standards 600 34.31 97 0-130 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>						3,8						
Pield Spike Standards pg V Rec. Limble 377(4-2,7,2P-TCD 600 24.51 95<70-130	1,2,3,4,7,8,9-HpCDF	0.01					18					
SVX-2.3.7.8-KC00 603 24.51 89 70.10 SVX-2.3.7.8-KC0F 600 32.31 87 70.10 SVX-2.3.7.8-KC0F 600 32.31 87 70.10 SVX-2.3.7.8-KC0F 600 32.31 87 70.10 SVX-2.3.7.8-KC0F 600 32.31 77 40.130 SVX-2.3.7.8-KC0F 6000 32.41 7 40.130 SVX-2.4.7.8-KC0F 6000 33.41 7 72.130 SVX-2.4.7.8-KC0F 6000 34.41 7 72.130 SVX-2.4.7.8-KC0F 6000 34.41 70 73.130 SVX-2.4.7.8-KC0F 6000 34.41 20 100 SVX-2.4.7.8-KC0F 6000 34.41 20 100 SVX-2.1.7.8.7-KC0F 6000	OCDF	0.0003	37.59	75.1	2.6	3		300				
13C12-12,34,74-PKC0 600 34.31 89 70-130 13C12-12,34,74-PKC0 600 33.62 100 70-130 13C12-12,34,74-PKC0 6000 33.62 100 70-130 13C12-12,34,74-PKC0 6000 32.61 37 70-130 13C12-12,34,74-PKC0 6000 32.31 77 70-130 13C12-12,34,74-PKC00 6000 32.31 77 70-130 13C12-12,34,74-PKC00 6000 32.31 77 70-130 13C12-12,34,74-PKC00 6000 32.43 84 64-130 13C12-12,34,74-PKC00 6000 32.43 84 64-130 13C12-12,34,74-PKC00 6000 32.44 72 5130 13C12-12,34,74-PKC00 6000 35.41 67 25-130 13C12-12,34,74-PKC00 6000 36.41 67 25-130												
13C12-2,3,4,7,4**COF 6000 32.10 82 70-130 13C12-2,3,4,7,4**COF 6000 32.0 33 70-130 13C12-1,2,3,7,4**COF 6000 28.48 7 40-130 13C12-1,2,3,7,2**COD 6000 34.51 34 40-130 13C12-1,2,3,7,2**COD 6000 34.55 36 40-130 13C12-1,2,3,7,2**COD 6000 34.56 26 40-130 13C12-1,2,3,7,2**COD 6000 34.64 40-130 40-130 13C12-1,2,3,7,2**COF 6000 35.5 30 73.44 13C12-1,2,3,7,2**COF 10 25 5.2 30 13C12-1,2,3,7,2**COF 10 25 5.2 30												
13:21:2:1,2,3,7,8,7:8,0+1C0 600 36.23 93 70-130 Extraction Standards												
Set and and and and a set and a												
ISC12-2,3,7,8-TCD0 6000 32.31 7 40.130 ISC12-1,2,3,7,8-TCD0 6000 37.49 60 25.130 ISC12-1,2,3,7,8-TCD0 6000 37.49 60 40.130 ISC12-1,2,3,7,8-TCD0 6000 35.41 67 25-130 ISC12-1,2,3,7,8-TCD0 6000 3 140 52 70 TG12-1,2,3,7,8-TCD0 3 140 52 70 70 TG12-16CD0 3 140 52 70 70 TG12-16CD0 2 566 4.1 150 70 TG12-16CD0 3 125 150 133 <t< td=""><td></td><td>6000</td><td>36.23</td><td>93</td><td>70-130</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		6000	36.23	93	70-130							
13C12-1,2,3,7,8-FXCD0 6000 33.31 7 40-130 13C12-1,2,3,7,8-FXCD0 6000 35.98 64 25-130 13C12-2,2,3,7,8-FXCD0 6000 27.57 7 73 40-130 13C12-1,2,3,7,8-FXCD0 6000 35.98 64 25-130 13C12-1,2,3,7,8-FXCD0 6000 35.91 64 1-30 13C12-1,2,3,7,8-FXCD0 6000 35.41 67 25-130 13C12-1,2,3,7,8-FXCD0 6000 36.41 64 4-130 Cleanup Standard pg pg pg 16 13C12-1,2,3,7,8-FXCD0 6000 3.44 4-40-130 50 13C12-1,2,3,7,8-FXCD0 100 25 50 70 101 25 5.2 30 70 1021-12,2,3,7,8-FXCD0 13 14 150 103 1	Extraction Standards											
13C12-1,2,3,5,7,8+RCDD 6000 34.35 58 40.130 13C12-2,2,3,6,7,2+RCDD 6000 37.49 69 25.130 13C12-2,3,3,7,8-TCD 6000 37.49 69 25.130 13C12-2,3,3,7,8-TCD 6000 31.40 59 40.130 13C12-1,3,3,7,8-RCDF 6000 33.40 59 40.130 13C12-1,3,3,7,8,7-RCDF 6000 35.41 67 75.130 Cleanup Standard pg 13C12-1,3,3,7,8,9-HxCDF 6000 34.44 64 40.130 Total-RCDF 6000 34.44 64 40.130 Total-RCDD 7010 25 5.2 30 Total-RCDD 7010 25 5.2 30 Total-RCDD 7010 25 5.2 30 Total-RCDD 7010 2 556 4.1 150 Total-RCDP 7014 40 5.7 30 Total-RCDP 7014 40 5.7 30 Total-RCDP 7014 56 4.1 150 Total-RCDP 7014 50 5.2 150 Total-RCDP 7014 70 5.5 150												
13:12:12,13,45,7/8-HPCDD 6000 37.49 69 26:130 13:C1:2-2,3,7,8-PCCDF 6000 37.49 69 26:130 13:C1:2-2,3,7,8-PCCDF 6000 37.49 69 26:130 13:C1:2-1,3,3,7,8-PCCDF 6000 37.40 69 40:130 13:C1:2-1,3,4,7,8-HRCDF 6000 36:44 64 40-130 Cleanup Standard pg Conc. EDL EDL 13:C1:2-1,3,3,7,8,9-HRCDF 6000 34:44 64 40-130 Total-TCDD 10 26:5 5.2 30 Total-TCDD 10 26:5 5.2 30 Total-HRCDD 2 56:6 4.1 150 Total-HRCDF 10 25:5 50 70 Total-HRCDF 14 140 57 30 Total-HRCDF 9 642 2.0 150 Total-HRCDF 9 643 5.2 150 Total-HRCDF 13 313 2.5 150 Total-HRCDF 13 313 2.5												
13(21-2,3,7,8+FCDF 6000 27,5 7 7 40-130 13(21-2,3,3,5,7-8+HCDF 6000 35,40 64-130 13(21-1,2,3,5,7,8+HCDF 6000 35,41 67 25-130 Cleanup Standard pg FDL 13(21-1,2,3,7,8,9-HCDF 6000 36,40 64 40-130 Cleanup Standard pg FDL 13(12-1,2,3,7,8,9-HCDF 6000 34,64 64 40-130 Total-F0CD 10 26 5.2 30 Total-F0CD0 10 26 5.2 30 Total-H0CD0 2 56 4.1 150 Total-H0CD0 2 56 4.1 150 Total-H0CD0 2 56 4.1 150 Total-H0CD7 9 642 5.2 150 Total-H0CD7 3 139 2.5 150 Total-H0CD7												
13(12-1,2,3,7,8+eCDF 6000 31.40 90 40-130 13(12-1,2,3,7,8,4+eCDF 6000 35.41 67 25-130 Cleanup Standard pg 13(12-1,2,3,7,8,4+eCDF 6000 35.41 67 25-130 Cleanup Standard pg 13(12-1,2,3,7,8,4+eCDF 6000 36.41 67 25-130 Cleanup Standard pg 13(12-1,2,3,7,8,9+btcOF 6000 3.464 64 0-130 13(12-1,2,3,7,8,9+btcOF 600 3.419 5.2 30 Total-ftCDD 3 149 3.2 150												
13C12-1,2,3,4,7,8+HxCDF 6000 33.90 58 40-130 Cleanup Standard pg 13C12-1,2,3,7,8,9+HxCDF 6000 34.64 64 40-130 Momologue Group Totals repeaks pg pg Total-FQCDP 10 265 5.2 30 Total-FQCDP 14 149 150 Total-FQCDF 9 642 2.0 150 Total-FQCDF 9 642 2.0 150 Total-FQCDF 9 642 2.0 150 Total-FQCDF 13 319 2.5 150 Total-FQCDF 13 129 130 129 Lawer Bound PCDD/F TEQ (WH0 2005) 129 133 130 Upper Bound PCDD/F TEQ (WH0 2005) 129 Indicates that a peak has been manually integrated. <td></td>												
Cleanup Standard pg 13C12-1,2,3,7,8,9-HxCDF 6000 34.64 64 40-130 Homologue Group Totals Image: Conc. EDL Image: Conc. EDL Total-FCDD 10 265 5.2 30 Total-FCDD 3 149 3.2 150 Total-FCDD 3 451 14 150 Total-HCDD 2 566 4.1 150 Total-HCDD 3 566 4.1 150 Total-HCDD 3 566 4.1 150 Total-HCDF 14 1540 5.7 30 Total-HCDF 3 642 2.0 150 Total-HCDF 3 643 5.2 150 Total-HCDF 3 642 2.0 150 Total-HCDF 130 130 130 130 Lower Bound PCDD/F TEQ (WHO 2005) 129 133 130 Lower Bound PCDD/F TEQ (WHO 2005) 133 133 130				58	40-130							
13C12-1,2,3,7,8,9+bCCP 6000 34.64 64 40-130 Homologue Group Totals $rest rest rest rest rest rest rest rest $	13C12-1,2,3,4,6,7,8-HpCDf	6000	35,41	67	25-130							
Homologue Group TotalsEvents # peaksDescriptionTotal-TCDO102655.230Total-PCDD31493.2150Total-HxCDO545114150Total-HxCDD25664.1150Total-HxCDF141505.730Total-HxCDF141505.730Total-HxCDF141505.730Total-HxCDF141505.730Total-HxCDF136422.0150Total-HxCDF86345.2150Total-HxCDF3129133Lower Bound PCDD/F TEQ (WHO 2005)133Upper Bound PCDD/F TEQ (WHO 2005)133Upper Bound PCDD/F TEQ (WHO 2005)133JIndicates the Toxic Equivalency TEQMIndicates that a target analyte was detected below the calibrated range.MIndicates that a target analyte was detected below the calibrated range.RIndicates that the ion abundance ratio for this computed with of the sample concentration.BIndicates that the lowest calibration level corrected for sample size, splits and dilutions.	Cleanup Standard	pg										
Homologue Group Totals # peak p g p g Total-TCDD 10 265 5.2 30 Total-PECDD 3 149 3.2 150 Total-MCDD 5 451 14 150 Total-MCDD 2 566 4.1 150 Total-MCDF 14 940 5.7 30 Total-MCDF 14 940 5.7 30 Total-MCDF 16 5.2 30 30 Total-MCDF 8 642 5.0 150 Total-MCDF 8 5.2 150 30 Lower Bound PCDD/F TEQ (WH0 2005) 133 13 313 Upper Bound PCDD/F TEQ (WH0 2005) 133 133 101 Upper Bound PCDD/F TEQ (WH0 2005) 133 133 11 Indicates that a target analyte was detected below the calibreted range. 1 Indicates that a target analyte was detected below the calibreted range. J Indicates that the Ion aburdance ratio for this compound id nor meet tha acoptance criterion.	13C12-1,2,3,7,8,9-HxCDF	6000	34,64	64	40-130							
Total-TCDD 10 265 5.2 30 Total-PeCDD 3 149 3.2 150 Total-HxCDD 5 451 14 150 Total-HxCDD 2 566 4.1 150 Total-FCDF 14 1940 5.7 30 Total-FCDF 9 642 2.0 150 Total-HxCDP 8 634 5.2 150 Total-HxCDF 3 319 2.5 150 Total-HxCDF 3 319 2.5 150 Total-HyCDF 123 133 133 Upper Bound PCDD/F TEQ (WHO 2005) 133 133 <t< td=""><td></td><td></td><td></td><td>Conc.</td><td>EDL</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				Conc.	EDL							
Total-PeCDD 3 149 3.2 150 Total-HxCDD 5 451 14 150 Total-HxCDD 2 566 4.1 150 Total-FxCDF 14 1940 5.7 30 Total-FxCDF 9 642 2.0 150 Total-HxCDF 8 634 5.2 150 Total-HxCDF 8 319 2.5 150 Total-HxCDF 13 319 2.5 150 Total-HxCDF 13 3139 2.5 150 Total-MpCDF 13 313 2.5 150 Lower Bound PCDD/F TEQ (WHO 2005) 129 133 133 Upper Bound PCDD/F TEQ (WHO 2005) 133 133 133 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates that a target analyte was detected below the calibrated range. 1 Indicates that a target analyte was detected below the calibrated range. 1 1 Indicates that a target analyte was detected below the calibrated range. 1 1 Indic	Homologue Group Totals		# peaks	pg	pg							
Total-HxCDD545114150Total-HpCDD25654.1150Total-FCDF4105.730Total-PeCDF96422.0150Total-HxCDF86345.2150Total-HpCDF86345.2150Total-PeCDF/F Teg (WHO 2005)129133Lower Bound PCDD/F TEg (WHO 2005)129Upper Bound PCDD/F TEg (WHO 2005)133Upper Bound PCDD/F TEg (WHO 2005)133TEFIndicates the Estimated Detection Llmit, based on the measured background noise for this target in this sample. TEQTEFIndicates the Estimated Detection Llmit, based on the measured background noise for this target in this sample. TEQIndicates that a target analyte was detected below the calibrated range.JIndicates that a target analyte was detected below the calibrated range.RIndicates that the Ion abundance ratio for this campound did not meet the acceptance criterion. BJIndicates that this target was detected below the calibrated range. Indicates that this target was detected below the calibrated range.LQLLower Quantification Llmit, based on the bis darget detected for sample size, splits and dilutions.												
Total-HpCDD25664.1150Total-TCDF1419405.730Total-HpCDF96422.0150Total-HpCDF33192.5150Total-HpCDF33192.5150Toxic Equivalency - (WHO 2005)129Lower Bound PCDD/F TEQ (WHO 2005)133Upper Bound PCDD/F TEQ (WHO 2005)133Upper Bound PCDD/F TEQ (WHO 2005)133EDLIndicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEFIndicates the Toxic Equivalency FactorTEQMid Point PCDD/F TEQ (WHO 2005)133Upper Bound PCDD/F TEQ (WHO 2005)133Indicates that a target analyte was detected below the calibrated range. TEFIndicates that a target analyte was detected below the calibrated range. RIndicates that the ion abundance ratic for this compound did not meet the acceptance criterion. BIndicates that this target was detected below the calibrated range. BLOULower Quantification Limit, based on the lowest calibration level concentration. LOULOULower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions.												
Total-TCDF 14 1940 S.7 30 Total-PcCDF 9 642 2.0 150 Total-HxCDF 8 634 5.2 150 Total-HpCDF 3 319 2.5 150 Toxlc Equivalency - (WHO 2005) pg												
Total-PeCDF96422.0150Total-HxCDF86345.2150Total-HpCDF33192.5150Toxic Equivalency - (WHO 2005)pgLower Bound PCDD/F TEQ (WHO 2005)129Mid Point PCDD/F TEQ (WHO 2005)133Upper Bound PCDD/F TEQ (WHO 2005)133EDLIndicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEFIndicates that a target analyte was detected below the calibrated range.JIndicates that a target analyte was detected below the calibrated range.RIndicates that the ion abundance ratio for this compound did not meet the acceptance criterion. BLQLLower Quutification Limit, based on the iowest calibration level corrected for sample sample sample sample sample sample sample. TEFJIndicates that a target analyte was detected below the calibrated range. RLQLLower Quutification Limit, based on the iowest calibration level corrected for sample												
Total-HpCDF 3 319 2.5 150 Toxlc Equivalency - (WHO 2005) pg Lower Bound PCDD/F TEQ (WHO 2005) 123 Mid Point PCDD/F TEQ (WHO 2005) 123 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ Indicates that a target analyte was detected below the calibrated range. R Indicates that the lon abundance ratio for this compound did not meet the saceptance criterion. B Indicates that this target was detected below the calibrated range. Lower Quantification Limit, based on the invest calibration level corrected for sample size, splits and dilutions.	Total-PeCDF	:		642	2.0			150				
Toxic Equivalency - (WHO 2005) pg Lower Bound PCDD/F TEQ (WHO 2005) 129 Mid Point PCDD/F TEQ (WHO 2005) 133 Upper Bound PCDD/F TEQ (WHO 2005) 133 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor M Indicates that a been manuality integrated. J Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. B Indicates that this target was detected for sample concentration. LQL Lower quantification Limit, based on the iowest calibrated news calleration level corrected for sample size, splits and dilutions.												
Lower Bound PCDD/F TEQ (WHO 2005) 129 Mid Point PCDD/F TEQ (WHO 2005) 133 Upper Bound PCDD/F TEQ (WHO 2005) 133 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ M Indicates that a peak has been manually integrated. Indicates that a target analyte was detected below the calibrated range. R Indicates that the Ion abundance ratio for this compound did not meet the acceptance criterion. B Indicates that is target analyte was detected in the biank at greater than 10% of the sample concentration, LQL Lower Quutification Limit, based on the iowest calibration level corrected for sample size, splits and dilutions.	Total-HpCD	-	3	319	2,5			120				
Mid Point PCDD/F TEQ (WHO 2005) 133 Upper Bound PCDD/F TEQ (WHO 2005) 133 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ M Indicates that a peak has been manually integrated. Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratif for this compound did not meet the acceptance criterion. B Indicates that inits target analyte was detected in the blank at greater than 10% of the sample concentration, LQL Lower Quantification Limit, based on the iowest calibration level corrected for sample size, splits and dilutions.	Toxic Equivalency - (WH	2005)		pg								
Upper Bound PCDD/F TEQ (WHO 2005) 133 EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ M Indicates that a peak has been manually integrated. J Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. B Indicates that this target was detected in the blank at greater than 10% of the sample concentration, LQL Lower Quantification Limit, based on the lowest calibrated news.												
EDL Indicates the Estimated Detection Limit, based on the measured background noise for this target in this sample. TEF Indicates the Toxic Equivalency Factor TEQ Indicates the Toxic Equivalency M Indicates that a peak has been manually integrated. J Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. B Indicates that in the same detected in the blank at greater than 10% of the sample concentration, LQL Lower Quantification Limit, based on the iowest calibration level corrected for sample size, splits and dilutions.												
TEF Indicates the Toxic Equivalency Factor TEQ Indicates the Toxic Equivalency M Indicates that a peak has been manually integrated. J Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. B Indicates that is this target was detected in the blank at greater than 10% of the sample concentration. LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions.												
J Indicates that a target analyte was detected below the calibrated range. R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. B Indicates that this target was detected in the blank at greater than 10% of the sample concentration, LQL Lower Quantification Limit, based on the iowest calibration level corrected for sample size, splits and dilutions.	TE	*	Indicates t	he Toxic	Equivater	ncy Factor						
R Indicates that the ion abundance ratio for this compound did not meet the acceptance criterion. B Indicates that this target was detected in the blank at greater than 10% of the sample concentration. LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions.	N		morcates t	nat a pea	ik nas de	en manua	ny integ	ateo.				
B Indicates that this target was detected in the blank at greater than 10% of the sample concentration. LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions.		1	Indicates t	hat a tar	get analy	te was de	tected b	elow the ca	librated range.			
LQL Lower Quantification Limit, based on the lowest calibration level corrected for sample size, splits and dilutions.			Indicates t	hat the id	on abunda	ance ratio	for this	compound	did not meet the acceptance			
											lutions	
	240											

						Sau	nple A	nalysis Report			
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	R3 L2599663-3 EPA M23 Sample Stack							Sampling Date Extraction Date Sample Size Percent Moisture Spilt Ratio	27-May-21 15-Jun-21 1 n/a 3	sample	Approved: N Ashtari e-signature 29-Jun-2021
Run Information		Run 1			i						
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column		7-210525A 26-Jun-21	11:12 Æ	12219111	4						
	Tất	Ret.	Conc.	EDL		EMPC					
Target Analytes	(WHO 2005)	Time	pg		Flags	Þđ	LQL				
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 0CCDD	1 0.1 0.1 0.01	28.48 32.31 34.30 34.45 34.45 35.97 37.48	<3.2 25.2 <9.4 <11 <10 <61 97.9	3.2 1.6 1.4 1.4 2.3 1.8	M,U J,R J,R M,J,R M,J,R J,B	9.4 11 10 61	30 150 150 150 150 150 300				
2,3,7,8-TCDF 1,2,3,7,8-PCDF 2,3,4,7,8-PCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	0.1 0.03 0.1 0.1 0.1 0.1 0.1 0.01 0.01	27.57 31,41 32,01 33,82 33,90 34,22 34,65 35,41 36,23	82.9 59.7 173 38.5 <41 67.4 11.1 77.9 5.26	4.3 3.2 3.1 2.2 2.0 2.2 2.6 2.1 2.6	נ 8,נ,א 1,8 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	41	30 150 150 150 150 150 150 150 150				
OCDF Field Spike Standards		37,58	17.5	1,9 Limits	3		300				
37Cl4-2,3,7,8-TCDD 13Cl2-1,2,3,4,7,8-HXCDD 13Cl2-2,3,4,7,8-PECDF 13Cl2-1,2,3,4,7,8-HXCDF 13Cl2-1,2,3,4,7,8-PHPCDF	6000 6000	28,48 34,30 32,09 33,81 36,22	96 96 79 100	70-130 70-130 70-130 70-130 70-130							
Extraction Standards 13C12-2,3,7,8-TCDD 13C12-1,2,3,7,8-P4CDD 13C12-1,2,3,6,7,8-HxCDD 13C12-1,2,3,4,6,7,8-HxCDD 13C12-2,3,7,8-P4CDP 13C12-2,3,7,8-P4CDF 13C12-1,2,3,7,8-P4CDF 13C12-1,2,3,4,6,7,8-HxCDF	6000 6000 5000 12000 6000 6000 6000	28.47 32.30 34.34 35.97 37.48 27.55 31.39 33.89 35.40	82 51 48 46 73 102 50	40-130 40-130 25-130 25-130 25-138 40-130 40-130 40-130 25-130							
Cleanup Standard	þa										
13C12-1,2,3,7,8,9-HxCDF	6000	34.63 # peaks	56 Conc. pg	40-130 EDL PS							
Total-TCDD Total-PeCDD Total-HxCDD Total-HpCDD Total-PCDF Total-PECDF Total-HxCDF Total-HxCDF		10 8 2 0 18 14 8 4	177 372 141 <2.3 1780 1350 576 112	3,2 1,6 1,4 2,3 4,3 3,2 2,6 2,6	U		30 150 150 150 30 150 150 150				
Toxic Equivalency ~ (WHO Lower Bound PCDD/F TEQ Mid Point PCDD/F TEQ (WH Upper Bound PCDD/F TEQ	2005) (WHO 2005) 10 2005)		P9 99,7 109 111								
EOL TEP M U		Indicates t Indicates t Indicates t Indicates t	he Toxic hat a pea	Equivalen Ik has bee	icy Factor in manual	iy integr	ated.		this target in this he Toxic Equivaler		
J R B LQL EMPC		Indicates t Indicates t Lower Qua	that the is that this t intificatio	on abunda arget was n Limit, bi	ince ratio detected ased on ti	for this (in the bi ne lowes	compound lank at grei t calibratio	brated range. did not meet the acceptance star than 10% of the sample n level corrected for sample tection limit due to interfere	e concentration. size, splits and di		

ALS Canada Ltd

L2599663 DX 210708

B-17^{of 10}

						Sa	mple A	nalysis Report			
Sample Name ALS Sample ID Analysis Method Analysis Type	BLANK L2599663-4 EPA M23 Sample							Sampling Date Extraction Date Sample Size Percent Moisture	27-May-21 15-Jun-21 1 n/a	sample	Approved: N Ashtari e-signature
Sample Matrix	Stack							Split Ratio	3		29-Jun-2021
Run Information		Run 1								میں ہے۔ میں ایک	
Filename		7-210625A									
Run Date Finai Volume		26-Jun-21 20 u	09:01 L								
Dilution Factor		1									
Analysis Units		pg									
Instrument - Column		HRMS-7 C	065MSUS	1221911H							
	TEF	Ret.	Conc.	€DL		EMPC					
Target Analytes	(WHO 2005)	Time	P9	pg F		þa	LQL				
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	1 1	NotFnd NotFnd	<4.9 <2.8	4.9 2.8	บ บ		30 150				
1,2,3,4,7,8-HxCDD	0.1	NotFnd	<3,2	3.2	ŭ		150				
1,2,3,6,7,8-HxCDD	0.1	NotFnd	<3.1	3.1	U		150				
1,2,3,7,8,9-HxCDD	0.1	NotFnd	<3.2	3.2	U		150				
1,2,3,4,6,7,8-HpCDD OCDD	0.01 0.0003	NotFnd 37.48	<3.7 15.8	3.7 3,2	ប M, J, B		150 300				
					u,,,,,, U		30				
2,3,7,8-TCDF 1,2,3,7,8-PeCDF	0.1 0.03	NotFnd NotFnd	<3.5 <1.5	3.5 1,6	u U		30 150				
2,3,4,7,8-PeCDF		NotFnd	<1.5	1.5	U		150				
1,2,3,4,7,8-HxCDF		NotFod	<1.0	1.0	U		150				
1,2,3,6,7,8-HxCDF	0.1	NotFrid	<0.96	0.96	ប ប		150 150				
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF		NotFnd 34.63	<1.0 <2.8	1.0	M,3,R	2.8	150				
1,2,3,4,6,7,8-HpCDF	0.01	NotFnd	<1.8	1.8	U		150				
1,2,3,4,7,8,9-HpCDF		NotFnd	<2.3	2.3	U		150				
OCDF	0.0003	NotFrid	<2.6	2.6	U		300				
Field Spike Standards	Pg		% Rec								
37Cl4-2,3,7,8-TCDD 13Cl2-1,2,3,4,7,8-HxCDD	600 6000	28,48 34,29		70-130 70-130							
13C12-2,3,4,7,8-PeCDF		32,09		70-130							
13C12-1,2,3,4,7,8-HxCDF		33.81		70-130							
13C12-1,2,3,4,7,8,9-HpCDF	6000	36,22	105	70-130							
Extraction Standards											
13C12-2,3,7,8-TCDD	6000	28.47		40-130							
13C12-1,2,3,7,8-PeCDD 13C12-1,2,3,6,7,8-HxCDD	6000 6000	32.30 34.34		40-130 40-130							
13C12-1,2,3,4,6,7,8-HpCDD	6000	35.97		2S-130							
13C12-0CDD 13C12-2,3,7,8-TCDF	12000 6000	37.48 27.55		25-130 40-130							
13C12-1,2,3,7,8-PeCDF		31.39		40-130							
13C12-1,2,3,6,7,8-HxCDF	6008	33,89		40-130							
13C12-1,2,3,4,6,7,8-HpCDF	6000	35,40	63	25-130							
Cleanup Standard	þg										
13C12-1,2,3,7,8,9-HxCDF	6000	34.62		40-130 EDL							
Homologue Group Totais		# peaks	Conc. pg	Pg							
Total-TCDD		0	<4.9	4.9	บ		30				
Total-PeCDD		0	<2.8	2.8	U		150				
Total-HxCDD Total-HpCDD		0 0	<3.2 <3.7	3.2 3.7	U U		150 150				
Total-TCDF		0	<3.5	3.5	υ		30				
Total-PeCDF		٥	<1.6	1.6	U		150				
Total-HxCDF Total-HpCDF		0	<1.3	1.3	u u		150				
			<2,3	2,3			150				
Toxic Equivalency - (WHC	2005)		pg								
Lower Bound PCDD/F TEQ Mid Point PCDD/F TEO (Wi			0.00474								
Upper Bound PCDD/F TEQ (W			5,22 10,2								
EDL		Indicates t	he Estimi	ited Deter	ction Lim	it, based	on the me	asured background noise fo	this target in this	s sample.	
TEF		Indicates t	he Toxic	Equivalen	cy Factor				e Toxic Equivalen		
M U		Indicates t Indicates t						EDL.			
				-							
t			-	,				librated range.	criterioc		
R 8								did not meet the acceptance ater than 10% of the sampl			
LQL								n level corrected for sample		ilutions.	
EMPC								tection limit due to interference			

B-18°

				La	iborat	ory	Methor	d Blank Analysis	Report		
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	Method Blank WG3554311-1 EPA M23 Blank MEDIA							Sampling Date Extraction Date Sample Size Percent Molsture Split Ratio	n/a 15-Jun-21 1 n/a 3	n/a	Approved: N Ashtari e-signature 29-Jun-2021
Run Information		Run 1									
Filename		7-210625A	21								
Run Date		26-Jun-21									
Final Volume		20 u	i.								
Ollution Factor Analysis Units		1 Pg									
Instrument - Column		HRMS-7 D	BSMSUS1	221911H							
	TEF	Ret.	Conc.	EDL	í	EMPC					
Target Analytes	(WHO 2005)	Time	pg	pg Fl		pg	LQL				
2,3,7,8-TCDD	1	NotFnd	<4.0	4.0	U		30				
1,2,3,7,8-PeCDD	1	NotFnd	<3.0	3.0	U		150				
1,2,3,4,7,8-HxCDD	0.1	NotFnd	<4.0	4,0	U		150				
1,2,3,6,7,8-HxCDD		NotFind	<3.9	3.9	บ บ		150 150				
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	0.1 0.01	NatFad NotFad	<4.0 <3.5	4.0 3.5	น บ		150 150				
1,2,3,4,6,7,8-ApCDD OCDD	0.0003	37,48	35,5	3.4	J		300				
2,3,7,8-TCDF	0.1	NotFrid	<3,3	3.3	บ		30				
2,3,7,8-PeCDF 1,2,3,7,8-PeCDF		NotFind	<3,5 <1,9	1.9	Ű		150				
2,3,4,7,8-PeCDF		NotFnd	<1.8	1.8	ŭ		150				
1,2,3,4,7,8-HxCDF	0.1	NotFnd	<2.0	2.0	ប		150				
1,2,3,6,7,8-HxCDP		NotFnd	<1.8	1.8	U U		150 158				
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF		NotFnd 34,64	<2.0 4.85	2.0 2.4	ں د		158				
1,2,3,4,6,7,8-HpCDF		NotFnd	<3.1	3.1	ú		150				
1,2,3,4,7,8,9-HpCDF	0.01	NotFnd	<4.0	4.0	U		150				
OCDF		37,57	<15	2.1	м,ј,r	15	300				
Field Spike Standards	pg ,		% Rec	Limits							
37CI4-2,3,7,8-TCDD			NS								
13C12-1,2,3,4,7,8-HxCDD	0		NS								
13C12-2,3,4,7,8-PeCDF 13C12-1,2,3,4,7,8-HxCDF			NS NS								
13C12-1,2,3,4,7,8,9-HpCDF			NS								
Extraction Standards											
	6000	28,46	20	40-130							
13C12-2,3,7,8-TCDD 13C12-1,2,3,7,8-PeCDD		32.28		40-130							
13C12-1,2,3,6,7,8-HxCDD	6008	34,34	26	40-130							
13C12-1,2,3,4,6,7,8-HpCDD		35.97		25-130							
13C12-OCDD 13C12-2,3,7,8-TCDF		37.48 27.54		25-130 40-130							
13C12-1,2,3,7,8-PeCDF		31.39		40-130							
13C12-1,2,3,6,7,8-HxCDF	6000	33.89		40-130							
13C12-1,2,3,4,6,7,8-HpCDF	6000	35.40	31	25-130							
Cleanup Standard	pg .										
13C12-1,2,3,7,8,9-HxCDF	6000	34.62	33	40-130							
			Conc.	EÐL							
Homologue Group Totals		# peaks	pg	P9							
Total-TCDD		. 0	<4.0	4.0	U		30				
Total-PeCDD		0	<3.0	3.0	Ű		150				
Total-HxCDD		ō	<4.0	4.0	ប		150			•	
Total-HpCDC		0	<3.5	3,5	U		150				
Total-TCDF		0	<3.3 <1.9	3.3 1.9	บ บ		30 150				
Total-PeCD Total-HxCDI		0	<1.9 4.85	2,4	0		150				
Totai-HpCD		0	<4.0	4.0	U		150				
Toxic Equivalency - (WH	0 2005)		pg								
Lower Bound PCDD/F TEO			0.496								
Mid Point PCDD/F TEQ (V			5,40								
Upper Bound PCDD/F TEC			10.3								
EDI		Indicates t	he Estima	ted Detec	tion Limit	, basec	on the me	asured background noise for	or this target in th	is sample,	
TE		Indicates t	the Toxic E	Equivalenc	y Factor				the Toxic Equivale		
N		Indicates t						50(
(indicates t	nac this co	mpound v	was not d	ecected	1 above the	EOL.			
	ļ	Indicates t	hat a tarc	et analyte	was detr	acted b	elow the ca	illbrated range.			
F								did not meet the acceptance	ce criterion.		
		1.000	- bifi const					a lavat competent day of the	فيد مناجع معام ما	lutions	
LQI EMPC								on level corrected for sample etection limit due to interfe			
EMPO		EPOLICE	maximum	russible	Joncentra	ation - e en addeo	vergred de	rection him, one to incerte	nence or positive in	a enremon restince	

ALS Canada Ltd

B-19 of 10

1 ¢g	DB5M5US	1221911H EDL			d Blank Analysis Sempling Date Extraction Date Sample Size Percent Moisture Split Ratio	n/a 15-Jun-21 1 n/a 3	n/ŝ	Approved: N Ashtari e-signature 29-Jun-2021
7-210625 26-Jun-2 20 1 99 HRMS-7 Ret. 2005) Time NatFnd NatFnd NatFnd	1 06:50 uL DBSMSUS Conc. Pg	EDL						
7-210625 26-Jun-2 20 1 99 HRMS-7 Ret. 2005) Time NatFnd NatFnd NatFnd	1 06:50 uL DBSMSUS Conc. Pg	EDL						
26-Jun-2 20 1 Pg HRMS-7 Ret. 2005) Time NotFnd NotFnd NotFnd	1 06:50 uL DBSMSUS Conc. Pg	EDL						
20 1 99 HRMS-7 Ret. 2005) Time NotFnd NotFnd NotFnd	uL DBSMSUS Conc. Pg	EDL						
Pg HRMS-7 Ret. 2005) Time NotFnd NotFnd NotFnd	Conc, pg	EDL						
HRMS-7 Ret. 2005) Time NatFnd NatFnd NatFnd	Conc, pg	EDL						
Ret. 2005) Time NotFnd NotFnd NotFnd	Conc, pg	EDL						
2005) Time NotFnd NotFnd NotFnd	þġ							
NotFnd NotFnd NotFnd		pg Fi	EMPC ags pg	LQL				
• NotFnd NotFnd		1.5	ະມີ ເບັ	30				
	<0.75	0.75	U	150				
NotFnd	<0.76	0.76	U	150				
		0.73	U M.1.R 0.99	150 150				
34.49 35,98		0.77 1,8	M,J,R 0.99 M,U 1.6	150 150				
35,98 37,50		1.8 0.91	M,U 1.6 M,J,R 7.1	150 300				
NotFnd	<1.1	1,1	U	30				
NotFnd		0.93	ŭ	30 150				
32.25	<1.3	0.88	J,R 1.3	150				
		0.72	U	150				
		0.67	U U	150				
		0.88	J,R 2.4 J,R 0.90	150 150				
NotFnd	<0.67	0.67	U	150				
		0.66	č	300				
	% Rec	Limits						
	NS							
	NS							
	NS NS							
	NS NS							
20.1-	47	40.170						
34.35	63	40-130						
35.98	77	25-130						
31.39	95	40-130						
33.89	60	40-130						
35.41	76	25-130						
34,63	66	40-130						
# peaks	Conc. PS	EDL Pg						
0		1.5	υ	30				
0	<0.75	0,75	U	150				
		0.77	U	150				
0		1.8	ម	150 30				
			U U	30 150				
0		0.88	บ	150				
-		0.67	Ŭ	150				
	32.25 NotFnd NotFnd 34.64 35.42 NotFnd 37.59 28.46 32.30 34.35 35.98 37.49 27.54 31.39 33.89 35.41 34.63 # peaks 0 0 0 0 0 0 0 0	32.25 <1.3 NotFnd <0.72 NotFnd <0.73 34.64 <2.4 35.42 <0.90 NotFnd <0.67 37.59 2.08 % Rec % Rec 28.46 92 32.30 108 34.35 63 35.98 77 37.49 86 27.54 99 31.39 95 33.89 60 35.41 76 Cone. # peaks pg 0 <1.5 0 <0.77 0 <1.8 0 <0.77 0 <1.8 0 <0.77 0 <1.8 0 <0.88 0 <0.67 Pg	32.25 <1.3 0.88 NotFnd <0.72 0.72 NotFnd <0.73 0.73 34.64 <2.4 0.88 35.42 <0.90 0.52 NotFnd <0.67 0.67 37.59 2.08 0.66 % Rec Limits NS NS NS NS NS NS NS NS NS NS	32.25 < 1.3 0.88 J,R 1.3 NotFnd <0.72 0.72 U NotFnd <0.73 0.73 U 34.64 <2.4 0.88 J,R 2.4 35.42 <0.90 0.52 J,R 0.90 NotFnd <0.67 0.67 U NotFnd <0.67 0.67 U 37.59 2.08 0.66 J *6 Rec Limits NS NS NS NS NS NS NS NS NS NS	32.25 < 1.3 0.88 J.R 1.3 150 Notified <0.72 0.72 U 150 Notified <0.73 0.73 U 150 34.64 <2.4 0.86 J.R 2.4 150 35.42 <0.90 0.52 J.R 0.90 150 Notified <0.67 0.67 U 150 37.59 2.08 0.66 J 300 % Rec Limits NS NS NS NS NS NS NS NS NS NS	32.25 < 1.3 0.88 3,R 1.3 150 Notified <0.72 0.72 U 150 Notified <0.73 0.73 U 150 34.64 <2.4 0.88 3,R 2.4 150 35.42 <0.90 0.52 3,R 0.90 150 37.59 2.08 0.66 J 300 % Rec Limits NS NS NS NS NS NS NS NS 1.33.69 60 40-130 34.63 66 40-130 35.41 76 25-130 35.41 76 25-130 35.41 76 25-130 34.63 66 40-130 35.41 76 25-130 35.41 76 25-130 34.63 66 40-130 34.63 66 40-130 35.41 76 25-130 34.63 166 40-130 34.63 166 40-130 35.41 76 25-130 34.63 166 40-130 34.63 166 40-130 35.41 76 25-130 34.63 166 40-130 34.63 166 40-130 34.63 166 40-130 35.41 76 25-130 34.63 166 40-130 35.41 76 25-130 36.61 10 37.50 150 36.75 0,75 0 36.75 0 37.70 150 37.70 150 37.7	32.25 < <1.3 0.88 J,R 1.3 150 NotFnd <0.72 0.72 U 150 NotFnd <0.73 0.73 U 150 34.64 <2.4 0.88 J,R 2.4 150 35.42 <0.05 0.52 J,R 0.90 150 37.59 2.08 0.66 J 300 *6 Rec Limits NS NS NS NS NS NS NS 108 40-130 32.30 108 40-130 35.98 77 25-130 37.49 86 25-130 33.69 66 40-130 33.139 95 40-130 33.69 66 40-130 35.41 76 25-130 34.63 66 40-130 35.41 76 25-130 34.15 1.5 U 30 0 <1.5 1.5 U 30 0 <1.5 1.5 U 30 0 <1.8 1.8 U 150 0 <1.8 1.8 U 150 0 <1.1 1.1 U 30 0 <0.77 0.77 U 150 0 <1.1 1.1 U 30 0 <0.88 0.88 U 150 0 <0.87 U 150 0 <0.67 U 15	32.25 <1.3 0.88 3, 8 1.3 150 Notified <0.72 0.72 U 150 Notified <0.73 0.73 U 150 34.64 <2.4 0.88 J, 8 2.4 150 35.42 <0.90 0.52 J, 8 0.90 150 Notified <0.67 0.57 U 150 37.59 2.08 0.66 J 300 76 Rec Limits NS NS NS NS NS NS NS NS NS 1.33 4.35 63 40-130 32.30 106 40-130 32.30 106 40-130 32.30 106 40-130 32.30 106 40-130 32.30 106 40-130 32.30 106 40-130 33.89 60 40-130 33.89 60 40-130 33.89 60 40-130 33.89 60 40-130 33.89 60 40-130 33.89 10 120 1.37 42 80 40-130 33.89 10 120 1.39 15 40-130 33.89 10 120 1.39 15 1.5 U 30 35.91 77 25-130 35.91 77 10 150 0 <0.77 0.77 U 150 0 <0.77 0.77 U 150 0 <0.77 0.77 U 150 0 <0.41 1.1 1 U 30 0 <0.64 0.88 U 150 0 <0.66 0.67 U 150 0 <0.67 0.67 U 150 0 <0.67 0.67 U 150 0 <0.66 0.67 U 150 0 <0.66 0.67 U 150 0 <0.66 0.67 U 150 0 <0.66 0.67 U 150 0 <0.67 0.67 U 150 0 <0.66 0.67 U 150 0 <0.67 0.67 U 150 0 <0.66 0.67 U 15

.

B-20 Page 9 of 10

Laboratory Control Sample Analysis Report										
					oratory Control Sample Analys	sis Report				
ALS Sample ID Analysis Method	Laboratory Co WG3554311-2 EPA M23 LCS	ntrol Sampl	ė		Sampling Date Extraction Date Sample Size Percent Molsture	n/a 15-Jun-21 1 n/a	n/a	Approved: N Ashtari e-signature		
Sample Matrix	MEDIA				Split Ratio	3		29-Jun-2021		
Run Information		Run 1								
Filename		7-210625A 26-Jun-21								
Run Date Final Volume		20 u								
Dilution Factor		1	-							
Analysis Units		%								
Instrument - Column		HRMS-7 D	85MSUS	1221911						
Target Analytes	6 8	Ret. Time	% Rec	Limits						
	600	28.48		70-130						
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	600 3000	32,31		70-130						
1,2,3,4,7,8-HxCDD	3000	34.31		70-130						
1,2,3,6,7,8-HxCDD	3000	34.37	94	70-130						
1,2,3,7,8,9-HxCDD	3000	34,48		70-130						
1,2,3,4,6,7,8-HpCDD	3000	35.96		70-130						
OCDD	6000	37.49	89	70-130						
2,3,7,8-TCDF	600	27.58	99	70-130						
1,2,3,7,8-PeCDF	3000	31.40	109	70-130						
2,3,4,7,8-PeCDF	3000	32.10		70-130						
1,2,3,4,7,8-HxCDF	3000	33.82		70-130						
1,2,3,5,7,8-HxCDF	3000 3000	33,90 34,22		70-130 70-130						
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	3000	34.22 34.64		70-130						
1,2,3,4,6,7,8-HpCDF	3000	34.04		70-130						
1,2,3,4,7,8,9-HpCDF	3000	36.23	94	70-130						
ÓCDF	6000	37.59		70-130						
Field Spike Standards	P9		% Rec	Limits						
37C14-2,3,7,8-TCDD	0		NS NS							
13C12-1,2,3,4,7,8-HxCDD 13C12-2,3,4,7,8-PeCDF	0 3		NS							
13C12-1,2,3,4,7,8-HxCDF	õ		NS							
13C12-1,2,3,4,7,8,9-HpCDF	a		NS							
Extraction Standards										
13C12-2,3,7,8-TCDD	6000	28.47	74	40-130						
13C12-1,2,3,7,8-PeCDD	6000	32.30		40-130						
13C12-1,2,3,6,7,8-HxCDD	6000	34.35		40-130						
13C12-1,2,3,4,6,7,8-HpCDD	6000	35.97		25-130						
13C12-OCDD 13C12-2,3,7,8-TCDF	12000 6000	37.48 27.55		25-130 40-130						
13C12-1,2,3,7,8-PeCDF	6000	31.39		40-130						
13C12-1,2,3,6,7,8-HxCDF	6000	33.89		40-130						
13C12-1,2,3,4,6,7,8-HpCDF	6000	35,41	72	25-130						
Cleanup Standard	pg									
13C12-1,2,3,7,8,9-HxCDF	6000	34.63	68	40-130						
					×					
R		Indicates t	hat the i	on abund	ratio for this compound did not meet the accepta	nce criterion.				

B=21110

Best Environmental ATTN: Basim Asfour 339 Stealth Court Livermore CA 94551

Environmental 🕽

Date Received: 09-JUN-21 Report Date: 13-IUL-21 13:50 (MT) Version: FINAL

Client Phone: 925-455-9474

Certificate of Analysis

Lab Work Order #: L2600614

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED BUBBLING WELLS

reams Dusineault

Breanne Dusureault Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1435 Norjohn Court, Unit 1, Burlington, ON, L7L 0E6 Canada | Phone: +1 905 331 3111 | Fax: +1 905 331 4567 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2600614-1 RUN 1							
Sampled By: Client on 26-MAY-21							
Matrix: Stack							
Miscellaneous Parameters							
Chromium, Hexavalent	0.29		0.21	ug	30-JUN-21	02-JUL-21	R5511941
L2600614-2 RUN 2							
Sampled By: Client on 26-MAY-21							
Matrix: Stack							
Miscellaneous Parameters	4.70						
Chromium, Hexavalent	0.78		0.15	ug	30-JUN-21	02-JUL-21	R5511941
L2600614-3 RUN 3							
Sampled By: Client on 26-MAY-21							
Matrix: Stack Miscellaneous Parameters							
Chromium, Hexavalent	1.21		0.16	ug	30-JUN-21	02-JUL-21	R5511941
L2600614-4 BLANK	1.41		0.10	~9	00.0014-21	02-000-21	10011041
Sampled By: Client on 26-MAY-21							
Matrix: Stack							
Miscellaneous Parameters							
Chromium, Hexavalent	<0.072		0.072	ug	30-JUN-21	02-JUL-21	R5511941
						-	
* Refer to Referenced Information for Qualifiers (if any) ar				I <u></u>			

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

B-23

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
CR-CR6-IC-BU-WT	Stack	Chromium, Hexavalent (Cr6+)	EPA 7199 / Method 306

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
Chain of Custody Numbers:	

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

B-24

Quality Control Report

			Workorder:	L260061	4	Report Date: 1	3-JUL-21	Pa	ge 1 of 3
Client:	339 Stea	ironmental Ith Court e CA 94551							
Contact:	Basim As	sfour							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CR-CR6-IC-BU	u-wr	Stack							
Batch	R5511941								
WG356904 Chromium	6-3 DUP , Hexavalent		L2600614-1 0.29	0.27		ug	5.5	10	02-JUL-21
WG356904 Chromium	16-2 LCS I, Hexavalent			100.2		%		90-110	02-JUL-21
WG356904 Chromium	16-1 MB I, Hexavalent			<0.40		ug		0.4	02-JUL-21
WG356904 Chromium	16-4 MS I, Hexavalent		L2600614-1	96.2		%		75-125	02-JUL-21

Quality Control Report

Workorder: L2600614

Report Date: 13-JUL-21

Page 2 of 3

Legend:

Legenu.	
Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration
CVS	Calibration Verification Standard
1000	Laboratory Control Rompia Duplicato

LCSD Laboratory Control Sample Duplicate

B-26

Quality Control Report

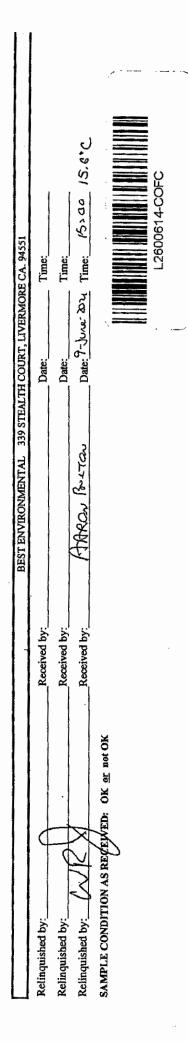
	Wor	korder: L2600614	Report Date	e: 13-JUL-	21	Pa	ge 3 of 3
Hold Time Exceedances:							
	Sample						
ALS Product Description	ai	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Speciated Metals							
Chromium, Hexavalent (Cr	6+)						
	, 1	26-MAY-21	02-JUL-21 00:00	14	37	days	EHTR
	2	26-MAY-21	02-JUL-21 00:00	14	37	days	EHTR
	3	26-MAY-21	02-JUL-21 00:00	14	37	days	EHTR
	4	26-MAY-21	02-JUL-21 00:00	14	37	days	EHTR
Legend & Qualifier Definitio	ns:						
		d hold time prior to sai	mple receipt. Field Mea mple receipt.	asurement r	ecommended	•	

EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2600614 were received on 09-JUN-21 15:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.


The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

B-27

		1	Γ				
BE PROJECT MANAGER: B Johnston	ANALYSIS	Total & Hex Chrome					
	Solution	0.1N NaOh	0.1N NaOh	0. IN NaOh	0.1N NaOh		
YGOTS	Storage Temp ^o F	Refridge	Refridge	Refridge	Refridge		
N OF CU	Volume Temp ^o F			I			
SAMPLE CHAIN OF CUSTODY	CONTAINER size / type	Poly Bottle	Poly Bottle	Poly Bottle	Poly Bottle		
	n/Source	Ż	7	7	7		
Bubbling Wells	SAMPLE ID Ruu#/Method/Fraction/Source	Run 1	Run 2	Run 3	Blank		
	ä	-	2	3	Э		
Project ID:	Analyical Lab: DATE	5/26/21	5/26/21	5/26/21	5/26/21		

Ph (925) 455-9474; Fx (925) 455-9479

B-28

1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567

Certificate of Analysis Best Environmental ALS Project Contact: Breanne Dusureault **Client Name:** ALS Project ID: BEST100 Client Address: 339 Stealth Court ALS WO#: L2599632 Livermore, CA 94551 Date of Report 29-Jun-21 United States Date of Sample Receipt 9-Jun-21 **Client Contact:** Basim Asfour **Client Project ID:** BUBBLING WELLS COMMENTS: Metals analysed via ICP-MS Method USEPA 6020B (SA 28-Jun-21) Sample Preparation via USEPA Method 29 (SA/TPH 25-Jun-21) LCB = Laboratory Control Blank LCS = Laboratory Control Sample LCSD = Laboratory Control Sample Duplicate LOR = Limit of Reporting Breasure Dussirecult Certified by: Breanne Dusureault

Results in this certificate relate only to the samples as submitted to the laboratory.

This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd.

Project Manager

ALS Environmental Sample Analysis Summary Report							
Sample Name		R1	R2	R3	BLANK	МВ	
ALS Sample ID Matrix Anaiysis Type Sampling Date Date of Receipt		L2599632-1 Stack Sample 26-May-21 9-Jun-21	L2599632-2 Stack Sample 26-May-21 9-Jun-21	L2599632-3 Stack Sample 26-May-21 9-Jun-21	L2599632-4 Stack Sample 26-May-21 9-Jun-21	L2599632-MB n/a Sample n/a n/a	
Multi-Metals via ICP-MS	LOR ug	ug	ug	ug	ug	ug	
Combined Analysis Fraction 1A + 2A							
Arsenic Beryllum Cadmium Copper Lead Nickel Selenium	1 0.2 0.1 1 0.5 0.2 2	2.72 < 1.04 47.5 42.4 7.42 13.7	1.93 < 1.11 108 89.0 26.6 25.4	1.38 < 0.783 86.0 131 15.6 4.46	< < < 0.700 2.68 <	< < < 0.461 <	

B-30°f4

	A	LS	Enu	iron	nent	al		
Sample QC Summary Report								
Sample Name			RB	LCS	LCS	LCSD	LCSD	
ALS Sample ID			RB	LCS	LCS	LCSD	LCSD	
Matrix Analysis Type			STACK Blank	STACK LCS	STACK LCS	STACK LCS	STACK LCS	
Sampling Date Date of Receipt			n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	
Multi-Metals via ICP-MS		LOR			A/ B			
Combined Analysis Fraction	1A + 2A	ug	ug	ug	% Rec	ug	% Rec	
	Arsenic	1	<	60,4	101	57.7	96	
	ryillum	0.2	<	60.5	101	58.7	98	
	dmium	0.1	<	30.0	100	29.3	98	
	Copper	1	<	61.6	102	59.2	99	
	Lead	0.5	< 200	59.2	99	55.9	93	
Se	Nickel lenium	0.2 2	0.206	61.5 55.5	102 92	59.3 54.9	98 91	

.

B-313 of 4

ALS Environmental								
			Sample	QC Summary	Report			
Sample Name			R1	R1	R1	R1	R1	R1
ALS Sample ID			L2599632-1	L2599632-1	MS	MS	MSD	MSD
Matrix			Stack	Stack	Stack	Stack	Stack	Stack
Analysis Type			Sample	Duplicate	Matrix Spike	Matrix Spike	Matrix Spike Dup	Matrix Spike Dup
Sampling Date			26-May-21	26-May-21	26-May-21	26-May-21	26-May-21	26-May-21
Date of Receipt			9-Jun-21	9-Jun-21	9-Jun-21	9-Jun-21	9-Jun-21	9-Jun-21
Muiti-Metals via ICP-MS		LOR	ug	ug	ug	% Rec	ug	% Rec
Combined Analysis Fract	ion 1A + 2	4	-	-	-			
	Arsenic	1	2.72	2.52	118	96	118	96
	Beryillum	0,2	<	<	116	97	119	99
	Cadmium	0.1	1.04	0.942	60.5	99	59.4	97
	Copper	1	47.5	46.2	164	97	166	99
	Lead	0.5	42,4	42.2	147	87	149	89
	Nickei	0.2	7.42	7.28	126	99	127	99
	Selenium	2	13.7	13.2	125	93	127	94

B-32^{4 of 4}

Atmospheric Analysis & Consulting, Inc.

CLIENT: Best EnvironmentalPROJECT NAME: Bubbling WellsAAC PROJECT NO.: 210958REPORT DATE: 06/21/2021

On June 8, 2021, Atmospheric Analysis & Consulting, Inc. received three (3) Six-Liter Silonite Canisters for Fixed Gases analysis by EPA 3C. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab No.	Return Pressure (mmHg)
R1	210958-19905	564.5
R2	210958-19906	625.0
R3	210958-19907	587.5

This analysis is performed in accordance with AAC's Quality Manual. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples.

The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data.

If you have any questions or require further explanation of data results, please contact the undersigned.

Sucha Parmar, PHD. Technical Director

This report consists of 4 pages.

1 2225 Sperry Ave., Ventura, CA 93003

www.aaclab.com • (805) 650-1642

Page 1

B-33

Atmospheric Analysis & Consulting, Inc.

Laboratory Analysis Report

CLIENT : Best Environmental PROJECT NO. : 210958 MATRIX : AIR
 SAMPLING DATE
 : 05/27/2021

 RECEIVING DATE
 : 06/08/2021

 ANALYSIS DATE
 : 06/18/2021

 REPORT DATE
 : 06/21/2021

EPA 3C

Client ID	R1	R2	· R3
ÁAC ID	210958-19905	210958-19906	210958-19907
Can Dilution Factor	1.91	1.69	2,15
Analyte	Result	Result	Result
H ₂	< 1.9 %	< 1.7 %	< 2.2 %
Ar/O ₂	16.6 %	18.5 %	17.5 %
N ₂	79.6 %	79.0 %	79.3 %
CO	< 0.2 %	< 0.2 %	< 0.2 %
CO2	3.8 %	2.6 %	. 3.2 %
CH₄	< 0.2 %	< 0.2 %	< 0.2 %

All fixed gases have been normalized to 100% on a dry basis

Sample Reporting Limit (SRL) is equal to Reporting Limit x Analysis Dil. Fac x Canister Dil. Fac

B-34

Quality Control/Quality Assurance Report

Date Analyzed	` :	06/18/2021
Analyst	:	CH/DL
Units	:	%

Instrument ID	:	TCD #1
Calb Date	:	10/05/20
Reporting Limit	:	0.1%

I - Opening Continuing Calibration Verification - EPA 3C

AACID	Analyte	E,	O ₂	N ₂	CH4	СО	CO2
	Spike Concid	9.9	10.4	20.2	10.0	10.0	10.0
CCV	Result		10.1	19.8	9,9 '	9,7	9.6
	% Rec *	98.8	96.7	98.2	98.9	97.4	95.8
- Method Blan	k - EPA 3C			- -			
HAACID	Analyte	IIIIIIIII	0,	N2	CH4	CO	CO ₂
	Concentration	ND	ND	ND	ND	ND.	ND
	Control Spike & Du	nlicate - EPA 3C					
the state of the s	Analyte	H, III	0,	N	CH.	CO	CÓ2
用用用用的用品。	Sample Conc	0.0	0.0	0.0	0.0	0.0	0.0
	Spike Conc	9.9	10.4	20.2	10.0	10.0	10.0
	LCS Result	9.8	10.3	20.3	10.1	10.0	9.8
Lab Control	LCSD Result	9.8	10.3	20.3	10,1	10.0	9.8
Standards	LCS % Rec *	98.9	99.4	100.5	101.2	99.8	98.2
1.3.9.9.9.1.1.2.2.3.9.9.4.2.3.2.2.3.2.2.3.2.2.3.2.2.3.2.2.3.2.2.3.2.2.3.2.2.3.2.2.3.2.2.3.2.2.3.2.2.3.2.2.3.2.2	S and the second se	99.0	99.1	100.6	101.3	99.8	. 98.3
	LCSD % Rec *	77.V					
	LCSD % Rec *	0.1	0.3	0.1	0.1	0.1	0.1
-Sample & Sa	% RPD(***	0.1	the second se	0.1	0.1	0.1	0.1
		0.1	the second se	0.1	0.1	0.1	0.1
	mple Duplicate - ÉP	0.1 PA 3C	0,3				
AACID =	mple Duplicate - ÉP Analyte	0.1 PA 3C	0.3	N.	IL ROUX II D	Sala Collega	GO2
AACID =	mple Duplicate - ÉP Analyte Sample	0.1 PA 3C 0.0	0,3 0,2 1.8	N 2 46.3	с н ,	0.0	CO 2 11.4
AACID	mple Duplicate - ÉP Analyte Sample Sample	0.1 PA 3C 0.0 0.0	0.3 0.3 1.8 1.8	N a 46.3 46.9	CH 0.0 0.0	0.0 0.0	11.4 11.5
AAC ID 210952-19866	mple Duplicate - ÉP Analyte Sample Sample Dup Mean	0.1 PA 3C 0.0 0.0 0.0 0.0 0.0	0.3 0.3 1.8 1.8 1.8 1.8	N ₁ 46.3 46.9 46.6	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	11.4 11.5 11.5
AAC ID 210952-19866	mple Duplicate - ÉP Analyte Sample Sample Dup Mean	0.1 PA 3C 0.0 0.0 0.0 0.0 0.0	0.3 0.3 1.8 1.8 1.8 1.8	N ₁ 46.3 46.9 46.6	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	11.4 11.5 11.5
AAC 1D 210952-19866 - Matrix Spike	mple Duplicate - ÉP Analyte Sample Sample Dup Mean Mean & Duplicate- EPA 3	0.1 PA 3C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3 1.8 1.8 1.8 1.9	46.3 46.9 46.6 1.3	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	11.4 11.5 11.5
AAC 1D 210952-19866 - Matrix Spike (mple Duplicate - EP Analyte Sample Dup Sample Dup Mean % RPD % RPD % Analyte Sample Conc Spike Conc	0.1 PA 3C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.3 1.8 1.8 1.8 1.8 1.9	46.3 46.9 46.6 1.3 CH2	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 5.7 10.0	11.4 11.5 11.5
AAC 1D 210952-19866 - Matrix Spike (mple Duplicate - EP Analyte Sample Dup Sample Dup Mean % RPD % RPD % Analyte Sample Conc Spike Conc MS Result	0.1 PA 3C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.3 1.8 1.8 1.8 1.8 1.9 23.3	46.3 46.9 46.6 1.3 CH2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11.4 11.5 11.5
AAC ID 210952-198666 - Matrix Spike AAC ID	mple Duplicate - EP Analyte Sample Dup Sample Dup Mean % RPD % RPD % Analyte Sample Conc Spike Conc MS Result	0.1 PA 3C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.3 1.8 1.8 1.8 1.8 1.9 23.3 10.1	46.3 46.9 46.6 1.3 CH 2 0.0 10.0 10.1 10.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.1 10.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11.4 11.5 11.5
AAC ID 210952-19866 - Matrix Spike AAC ID	mple Duplicate - EP Analyte Sample Dup Sample Dup Mean & Duplicate- EPA 3 Analyte Sample Conc Spike Conc MS Result MS Result	0.1 PA 3C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.3 1.8 1.8 1.8 1.8 1.9 23.3 10.1 33.9	46.3 46.9 46.6 1.3 CH2 0.0 10.0 10.1 10.3 101.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.1 10.2 100.6	CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 10.0 15.5 15.8 98.0 98.0	11.4 11.5 11.5
AAC 1D 210952-19866 - Matrix Spike	mple Duplicate - EP Analyte Sample Dup Sample Dup Mean % RPD % RPD % Analyte Sample Conc Spike Conc MS Result	0.1 PA 3C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.3 1.8 1.8 1.8 1.8 1.9 23.3 10.1 33.9 34.2	46.3 46.9 46.6 1.3 CH 2 0.0 10.0 10.1 10.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.1 10.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11.4 11.5 11.5

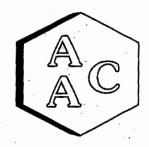
AAC D Analyte	i i i i i i i i i i i i i i i i i i i	0,	N ₂	CH.	CO	CO,
Spike Conc	9.9	10,4	20.2	10.0	10,0	10.0
CCV Result	9.9	.10.5	20.6	10.2	10.1	9.8
% Rec *	99,5	100.7	102.0	. 101.8	100.9	98.2

* Must be 85-115%

** Must be 75-125%

*** Must be < 25% ND = Not Detected

<RL = less than Reporting Limit


2225 Sperry Ave., Ventura, CA 93003

 \odot

www.aaclab.com • (805) 650-1642

Page 3

ftVormsMeidleoc.xis - 8(4)29		•		. •	• • • •	Relinquished by:	Relinquished by:	sults fo: Attn:	2004 2014 2014	SPECIAL INSTRUCTIONS: Report only the tw	-	3 5/27/21 1130	2 5/27/21 1025	1 5/27/21 920	# DATE TIME	Project ID: Analyical Lah:	
	· · ·	· ·		 FX - client v		Relinquished by: (A) CX SAMPLE CONDITION AS RECEIVED: OK or not OK			•	TRUCTIONS: Report only the two compounds		19907 RJ	19906 R2	19905 RI	SAMPLE ID Run#Method/Fraction/Source	Bubbling Wells	
		•			returned 3×	Received by:	Received by:	BES STREET			`	Summa can	Summa can	Summa can	CONTAINER size / type	SAMPLE CHAI	21
	· · · · · · · ·	· ·			c dans +			T ENVIRONMENTAL				5L Amb	51L Amb		Volume Temp of	SAMPLE CHAIN OF CUSTODY	10958
					$\frac{1}{\lambda}$	Yourter Daven		339 STEALTH COUR				TO 15	TO 15	TO 15	Method	BE PR	
					entech w/ proles	Date: 6/6/21	Date: Time: Date: Time:	BEST ENVIRONMENTIAL 339 STEALTH COURT, LIVERMORE CA. 94551	•			Benzene, Toluene	Benzene, Toluene	Benzene, Toluene	ANALYSIS	BE PROJECT MANAGER: B Johnston	Ph (925) 455-9474; Fx (925) 455-9474;
			. *												В	36	15) 455-9479

Client	: Best Environmental
Client Project Name	: Bubbling Wells
Client Project No.	: NA
AAC Project No.	: 210954
Reporting Date	: 06/14/2021

On June 08, 2021, Atmospheric Analysis & Consulting, Inc. received eight (8) samples for Anions analysis by EPA Method 26. Upon receipt the samples were assigned unique Laboratory ID numbers as follows:

Client Sample ID	AAC Sample ID
Run 1, Imp 1&2	210954-19869
Run 2, Imp 1&2	210954-19870
Run 3, Imp 1&2	210954-19871
Run 1, Imp 3&4	210954-19872
Run 2, Imp 3&4	210954-19873
Run 3, Imp 3&4	210954-19874
, Blank NaOH	210954-19875
Blank H2SO4	210954-19876

This analysis is performed in accordance with AAC's Quality Manual. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Dr. Sucha Parmar, PhD

Technical Director

This report consists of \mathfrak{I} pages.

2225 Sperry Ave., Ventura, CA 93003

www.aaclab.com • (805) 650-1642

Page 1

B-45

	· · · · · · · · · · · · · · · · · · ·
- /· .	$\bigcirc \setminus$

Laboratory Analysis Report

Receiving Date : 06/08/2021 Analysis Date : 06/09-11/2020 Report Date : 06/14/2020

Sampling Date : 05/25/2021

: Best Environmental	. Bubbling Wells	: 210954	ID/RS
Client	Client Project Name	AAC Project No.	Analyst

Anions Analysis by EPA Method 26

Citent Sample (1)	AAC Sample (D	Dilution Factor	Sample Volume (mi.)	f.Ż. (ug/Sample)	SRL. (ug/Sample)	CL1 (ug/Sample)	SRL (ag/Sample)	(əldmeş/fab) AH	(aldung,Sgo). THS	HCI (ug/Sample)	SRL. (ug/Sample)
Run I, Imp 1&2	210954-19869	5	298	NA	NA	NA.	NA	<srl< td=""><td>157</td><td>39900</td><td>153</td></srl<>	157	39900	153
Run 2, Imp 1&2	210954-19870	5	260	NA	NA	NA	NĂ	<srl< td=""><td>137</td><td>50900</td><td>134</td></srl<>	137	50900	134
Run 3, Imp 1&2	210954-19871	5.	274	NA	NA	NA	NA	253	144	43500	141
Run 1, Imp 3&4	210954-19872	5	193	<srl< td=""><td>96.5</td><td>SRL</td><td>96.5</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></srl<>	96.5	SRL	96.5	NA	NA	NA	NA
Run 2, Imp 3&4	210954-19873	5	194	<\$RL	97.0	<srl< td=""><td>97.0</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></srl<>	97.0	NA	NA	NA	NA
Run 3, Imp 3&4	210954-19874	5	196	<srl< td=""><td>98.0</td><td><srl< td=""><td>98.0</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></srl<></td></srl<>	98.0	<srl< td=""><td>98.0</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></srl<>	98.0	NA	NA	NA	NA
Blank NaOH	210954-19875	. 5	234	-SRL	117	SRL	117	WN	NA	NA	NA
Blank H2SO4	210954-19876	5	201	W	NA	NA	NA	<srl< td=""><td>106</td><td><srl< td=""><td>103</td></srl<></td></srl<>	106	<srl< td=""><td>103</td></srl<>	103
MRL - Method Reporting Limit = 0.100 ug/mL	t = 0.100 ug/mL										

Nucl. - Mathion Reporting Limit = 0.100 ug/mL SRL - Sample Reporting Limit <SRL - Analyte was analyzed for but not detected at or above the SRL - Sample Reporting Limit = 0.100 ug/mL*Sample Volume(mL)

B-46

Page 2

(805) 650-1642 www.aaclab.com • (805) 650-1642

Quality Control/Quality Assurance Report EPA Method 26

Analysis Date	: 06/09-11/2021	•	· . ·	Instrument ID	:	DIONEX IC # 1	
Analyst	: JD/RS					а. н. н. н. Т	

Calibration Verification of the 04/02/2021 Calibration

Sample ID	Analyte	Target Concentration (ug/mL)	Measured Concentration (ug/mL)	Percent Recovery
Ononing CV	Fluoride	25.0	24.0	96.1
Opening CV	Chloride	25.0	24.9	99.5
Continuing CV	Fluoride	25.0	24.6	98.3
Continuing C v	Chloride	25.0	25.8	103
Closing CV	Fluoride	25.0	24.0	96.1
	Chloride	25.0	25.4	102
Second Source	Fluoride	25.0	25.1	101
Second Source	Chloride	25.0	26.0	104

* Must be 85-115%

Page 3


B-47

2225 Sperry Ave., Ventura, CA 93003

www.aaclab.com • (805) 650-1642

135

QUALITY CONTROL/ASSURANCE REPORT

EPA Method 26

•			
Analysis Date	: 06/09-11/2021	·]	Instrument ID : DIONEX IC # 1
Analyst	: JD/RS	· .	

Method Blank Analysis

	and the third faile	
Analyte	Concentration (ug/mL)	Reporting Limit
Fluoride	<srl< td=""><td>0.100</td></srl<>	0.100
Chloride	<srl< td=""><td>0.100</td></srl<>	0.100

Laboratory Control Spike Analysis

Chloride	0.000	12.5	12.2	12.2	97.5	97.3	0.2
Fluoride	0.000	12.5	12.0 .	12.0	96.0	95.9	0.1
Anajyte	Sample Concentration (ug/ml.)	Spike Concentration: (Ug/mL)	LabiSpike Concentration (ug/mL)	Duplicate Lab Spike Concentration (ug/mL)	Spike Recovery (%)**	Duplicate Spike Recovery (%)**	of BED****

Matrix Spike Analysis (201954-19869x5)

Analyie	Sample Concentration (up/mL)	Spike Concentration: (ug/mL)	Matrix Spike Concentration (ug/mll.)	Duplicate Matrix Spike Concentration (ug/mL)	Spike Recovery (%)***	Duplione Spike Recovery (%)***	vœR₽D≯+++
Fluoride	· 0.000	12.5	11.4	11.4	90.9	91.3	0.5 .
Chloride	13.0	12.5	26.4	26.3	107	106	0.6 .

Duplicate	Sample	Analysis	
-----------	--------	----------	--

Sample ID	Analyte	Result (ug/mL)	Onplicate Result (ug/mL)	%RMD+	DP
210954-19872	Fluoride	<srl< td=""><td><srl< td=""><td>NA .</td><td>5</td></srl<></td></srl<>	<srl< td=""><td>NA .</td><td>5</td></srl<>	NA .	5
	Chloride	<srl< td=""><td><srl< td=""><td>NA</td><td>5</td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>5</td></srl<>	NA	5
210954-19869	Fluoride	<srl< td=""><td><srl< td=""><td>'NA</td><td>5</td></srl<></td></srl<>	<srl< td=""><td>'NA</td><td>5</td></srl<>	'NA	5
210754-19809	Chloride	130	. 128	1.3	5

* Must be <10%

** Must be 85-115%

*** Must be 75-125%

**** Must be < 25%

Page 4

B-48

2225 Sperry Ave., Ventura, CA 93003

.

www.aaclab.com • (805) 650-1642

 $\frac{1}{2} \log \frac{1}{2} \log \frac{1}$

Bubbling Wells Project ID:

BE PROJECT MANAGER: B Johnston

Analyical Lab:				
DATE	SAMPLE.ID Run#/Method/Fraction/Source	Method	Solution	ANALYSIS
5/25/21	9 864 Run 1, Imp 1&2	EPA M26	0.1N H2SO4	HCI, HF
5/25/21	19870 Run 2, Imp 1&2	EPA M26	0.1N H2SO4	HCI, HF
5/25/21	1 9 77 Run 3, Imp 1 & 2	EPA M26	0.1N H2SO4	HCI, HF
5/25/21	[4 872 Run 1, Imp 3&4	EPA M26	0.1N NaOH	HCI, HF
5/25/21	14873 Rm 2, Imp 3&4	EPA M26	0.1N NaOH	HCI, HF
5/25/21	[9874] Run 3, Imp3&4	EPA M26	0.1N NaOH	HCI, HF
5/25/21	l d 175 Blank	EPA M26	0.1N NaOH	
5/25/21	(9876 Blank	EPA M26	0.1N H2SO4	
Relinquished by:	Received by:	, K		Date:
Relinquished by:	Received by:	, K		Date:


Date: 6/8/21 1020

Received by:___

Relinquished by: V/C

K

B-49

Client	: Best Environmental
Client Project Name	: Bubbling Wells
Client Project No.	: NA
AAC Project No.	: 210917
Reporting Date	: 06/10/2021

On June 02, 2021, Atmospheric Analysis & Consulting, Inc. received nine (9) DNPH impinger contents for Formaldehyde and Acetaldehyde analysis by CARB Method 430. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client Sample ID	AAC Sample ID	Client Sample ID	AAC Sample ID
Run 1A	210917-19706	Run 2C	210917-19711
Run 1B	210917-19707	Run 3A	210917-19712
Run 1C	210917-19708	Run 3B	210917-19713
Run 2A	210917-19709	Run 3C	210917-19714
Run 2B	210917-19710		

This analysis is performed in accordance with AAC's Quality Manual. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

All samples were blank corrected for Formaldehyde and Acetaldehyde using the method blank value.

The DNPH solution was certified on 05/24/2021.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Several small sized peaks that are the products of NOx and DNPH were observed in the samples indicating small NOx concentrations that may have reacted with the analytes resulting in lower than expected concentrations. No other problems were encountered during receiving, preparation, and/or analysis of these samples.

The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

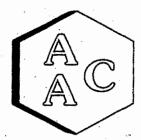
If you have any questions or require further explanation of data results, please contact the undersigned.

Dr. Sucha Parmar, Ph

Technical Director

This report consists of **b** pages.

2225 Sperry Ave., Ventura, CA 93003



www.aaclab.com • (805) 650-1642

138

Page 1

B-50

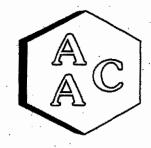
Laboratory Analysis Report CARB Method 430

Client	: Best Environmental	Sampling Date : 05/27/2021
Client Project Name	: Bubbling Wells	 Receiving Date : 06/02/2021
AAC Project No.	: 210917	Analysis Date : 06/09-10/2021
Analyst	: RS/JD	Reporting Date : 06/10/2021
Units	: ug/sample	

	f is inside as a f	Eorr	naldebyde		4.	cetaldehyde	
Client Sample ID	AAC Sample ID	Concentration (ug/sample)	Analysis Dibition Cactor		Concentration (ug/sample)	Analysis Dilution Factor	SRL (uz/sumple)
Run 1A	210917-19706	0.597	1.00	0.100	<srl< td=""><td>1.00</td><td>0.100</td></srl<>	1.00	0.100
Run 1B	210917-19707	<srl< td=""><td>1.00</td><td>0.100</td><td>0.138</td><td>1.00</td><td>0.100</td></srl<>	1.00	0.100	0.138	1.00	0.100
Run 1C	210917-19708	<srl< td=""><td>1.00</td><td>0.100</td><td><srl< td=""><td>1.00</td><td>0.100</td></srl<></td></srl<>	1.00	0.100	<srl< td=""><td>1.00</td><td>0.100</td></srl<>	1.00	0.100
Run 2A	210917-19709	0.670	1.00	0.100	1.87	1.00	0.100
Run 2B	210917-19710	<srl< td=""><td>1.00</td><td>0.100</td><td>0.211</td><td>1.00</td><td>0.100</td></srl<>	1.00	0.100	0.211	1.00	0.100
Run 2C	210917-19711	0.990	1.00	0.100	SRL (1.00	0.100
Run 3A	210917-19712	0.775	1.00	0.100	0.908	1.00	0.100
Run 3B	210917-19713	<srl< td=""><td>1.00</td><td>0.100</td><td>0.174</td><td>1.00</td><td>0.100</td></srl<>	1.00	0.100	0.174	1.00	0.100
· Run 3C	210917-19714	0.190	1.00	0.100	<srl< td=""><td>1.00</td><td>0.100</td></srl<>	1.00	0.100
AAC Trip B	3lank /	<srl< td=""><td>1.00</td><td>0.100</td><td><srl< td=""><td>1.00</td><td>0.100</td></srl<></td></srl<>	1.00	0.100	<srl< td=""><td>1.00</td><td>0.100</td></srl<>	1.00	0.100
AAC Trip S	spike	98.2 %Recovery	1.00	0.250	99.0 %Recovery	1.00	0.250

<SRL-compound was analyzed for but not detected at or above the SRL (Sample Reporting Limit)

SRL (ug/sample) = MRL (ug/mL) x Sample Volume (mL) x Analysis Dilution Factor x Method Dilution Factor Method Reporting Limit - MRL = 0.025ug/mL


All samples were blank corrected for Formaldehyde and Acetaldehyde using the method blank value.

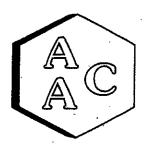
Page 2

B-50

www.aaclab.com • (805) 650-1642

Quality Control/Quality Assurance Report CARB Method 430

HPLC Calibration Verification of the 04/06/2021 Calibration


Analysis Date	: 06/09-10/2021	Instrument ID	: HPLC 01
Analyst	: RS/JD		

Sample II)	AIBBIT		Messured Concentration (ug/ml.)	Percent Recovery
Omening CV	Formaldehyde	2.50	2.54	102
Opening CV	Acetaldehyde	2.50	2.65	106
Continuing CV	Formaldehyde	2.50	2.51	100
Continuing CV	Acetaldehyde	2.50	2.63	105
Continuing CV	Formaldehyde	2.50	2.46	98.6
Containing C V	Acetaldehyde	2.50	2.61	104
Closing CV	Formaldehyde	2.50	2.47	98.6
Closing C v	Acetaldehyde	2.50	2.61	104
Closing CV	Formaldehyde	2.50	2.57	103
Closing C v	Acetaldehyde	2.50	2.72	109
Second Source	Formaldehyde	2.50	2.47	98.8
	Acetaldehyde	2.50	2.60	104

* Must be 90 - 110 %

Second Source must be 85 - 115 %

Quality Control/Quality Assurance Report CARB Method 430

nalysis Date	: 06/09-10/2021		Analyst	: RS/JD	• •	Instrument ID	: HPLC 01
· .			Laboratory Contro	ol Spike Analysis			
Andree	Songle Concentration toging in	C. NUMBER OF STREET	Helencerst tothe Coloring tothe (Iggins)	Henrice Stile Sign	Spine Reporting 1967	Spitz Pup Henrit	
Formaldehyde	0.000	1.25	1.35	1.35	108	108	0.0
Acetaldehyde	0.000	1.25	1.43	1.42	114	114	0.4

** Must be ≤ 25%

Matrix Spike Analysis (210917-19712)

ĺ		Samile		න්රාම්පාද්රණාව පිල	Descourses and a			
	HINK	1 Atlantication	産業現在はたり目前に行いた際に	Concentration				
C. C	A second states and the state of the second s	a second s						
Ì	Formaldehyde	0.104	1.25	1.33	1.33	98.1	98.1	• 0:1
l	Acetaldehyde	0.138	1.25	1,41	1.41	102	102	0.1

* Must be 75-125% ** Must be ≤ 25%

Page 4

B-52

2225 Sperry Ave., Ventura, CA 93003

www.aaclab.com • (805) 650-1642

141

Quality Control/Quality Assurance Report CARB Method 430

Analysis Date	: 06/09-10/2021		•.	Instrument ID	: HPLC 01	
Analyst	: RS/JD			•		

		Duplicate Analys	is		
			Studies a		
Sample ID	Analyza	Diamen Partors	Consection	6 Constatuation	CORPD*
210917-19708	Formaldehyde	1.0	.0.029	0.029	0.0
210917-19708	Acetaldehyde	1.0	0.058	0.057	1.2
21/0017 10710	Formaldehyde	1.0	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
210917-19710	Acetaldehyde	1.0	0:102	0.101	0.9
+ > + . +					

* Must be <20%

System and Method Blank Analysis

Sample ID	Analyze -		RU7 SRI
On an international trailer Blank	Formaldehyde	<rl< td=""><td>0.025</td></rl<>	0.025
Opening Acetonitrile Blank	Acetaldehyde	<rl< td=""><td>0.025</td></rl<>	0.025
Method Blank	Formaldehyde	<srl< td=""><td>0.010</td></srl<>	0.010
Method Blank	Acetaldehyde	0.020	0.010
Clasing Asstanituila Plank	Formaldehyde	<rl< td=""><td>0.025</td></rl<>	0.025
Closing Acetonitrile Blank	Acetaldehyde	<rl< td=""><td>0.025</td></rl<>	0.025

RL - Reporting Limit

SRL - Sample Reporting Limit

Page 5

www.aaclab.com • (805) 650-1642

B-53

Antilizi AICbxts $xarrets Inxarrets Inxarrets Inxarrets Inxarrets Inbxtsuun (denotfination fration for a contrare star) (spice)uor (spice)uor (spice)uor (spice)uor (spice)52712021 170^{\circ} T Run 16VialVialARB 430DNPHFormadelityde, Acc52712021 170^{\circ} T Run 12VialARB 430DNPHFormadelityde, Acc52712021 197^{\circ} T Run 22VialARB 430DNPHFormadelityde, Acc52712021 197^{\circ} T Run 32VialARB 430DNPHFormadelityde, Acc52712021 197^{\circ} T Run 31VialARB 430DNPH$	Project ID: Bubbling Wells	ubbling V	Wells		SAMPLE CHAI	SAMPLE CHAIN OF CUSTODY	BE PROJEC	BE PROJECT MANAGER: B Johnston
AMMAGEAD RAMPELE D RAMPELED RAMPELED RAMPELED RAMPELED RAMPELED RAMPELED RAMPELEDCONTANDER startype reartypeMethod reartypeMethod reartypeMethod $[q7)c \xi Rm 1A$ VialARB 430DNPHDNPH $[q7)c f Rm 1B$ VialARB 430DNPHDNPH $[q7)c f Rm 2B$ VialARB 430DNPHDNPH $[q7)c f Rm 2B$ VialARB 430DNPHDNPH $[q7)c Rm 2B$ VialARB 430DNPHDNPH $[q7)c Rm 2B$ VialARB 430DNPHDNPH $[q7)c Rm 3A$ VialARB 430DNPHDNPH $[q7)c Rm 3B$ VialARB 430DNPHDNPH $[q7)c Rm 3D$ VialARB 430DNPHDNPH $[q7)c Rm 3C$ VialARB 430DNPHDNPH $[q7)c Splke$ VialARB 430DNPHDNPH $[q7)c Splke$ VialARB 430DNPH $[q7)c Splke$	Analyical La	b: AAC						
$[q70c6$ Rm IA Vial ARB 430 DNPH $[170^{2}]$ Rua IB Vial ARB 430 DNPH $[170^{2}]$ Rua IB Vial ARB 430 DNPH $[170^{2}]$ Rua IC Vial ARB 430 DNPH $1^{2}70^{4}$ Rua IC Vial ARB 430 DNPH $1^{2}70^{4}$ Rua 2A Vial ARB 430 DNPH $1^{2}71c^{2}$ Rua 2C Vial ARB 430 DNPH $1^{2}71c^{2}$ Rua 3A Vial ARB 430 DNPH $1^{2}71^{2}$ Rua 3B Vial ARB 430 DNPH $1^{2}71^{2}$ Spice Vial ARB 430 DNPH $1^{2}71^{2}$	DATE		SAMI Run#/Method/	PLE ID /Fraction/Source	CONTAINER size / type	Method		ANALYSIS
	5/27/2021			п 1А	Vial	ARB 430	DNPH	Formadelhyde, Acetaldehyde
	5/27/2021			m 1B	Vial	ARB 430	DNPH	Formadelhyde, Acctaldehyde
	5/27/2021			ш 1С	Vial	ARB 430	DNPH	Formadelhyde, Acetaldehyde
71cRun 2BVialARB 430DNPH $ 97 ($ Run 2CVialARB 430DNPH $ 97 ($ Run 3AVialARB 430DNPH $ 97 ($ Run 3BVialARB 430DNPH $ 97 ($ Run 3BVialARB 430DNPH $ 97 ($ Run 3CVialARB 430DNPH $ 17 ($ SpikeVialARB 430DNPH	5/27/2021			m 2A	Vial	ARB 430	DNPH	Formadelhyde, Acetaldehyde
	5/27/2021			m 2B	Vial	ARB 430	DNPH	Formadelhyde, Acetaldehyde
$[\mathbf{a}7(2 \ \mathrm{Rm} 3\mathrm{A} \ \mathrm{Vial}]$ $\mathrm{ARB} 430$ DNPH $[\mathbf{a}7(2 \ \mathrm{Rm} 3\mathrm{B} \ \mathrm{Im} 3\mathrm{B} \ \mathrm{Vial}]$ $\mathrm{Vial} \ \mathrm{ARB} 430$ DNPH $[\mathbf{a}7]1 \ \mathrm{Rm} 3\mathrm{C} \ \mathrm{Vial} \ \mathrm{Vial}]$ $\mathrm{ARB} 430$ DNPH $[\mathbf{a}7]1 \ \mathrm{Rm} 3\mathrm{C} \ \mathrm{Vial} \ \mathrm{Vial} \ \mathrm{Vial} \ \mathrm{Vial} \ \mathrm{ARB} 430$ DNPH $[\mathbf{a}7]1 \ \mathrm{Spike} \ \mathrm{Vial} \ \mathrm{Vial} \ \mathrm{Vial} \ \mathrm{Vial} \ \mathrm{ARB} 430$ DNPH $[\mathbf{a}7]1 \ \mathrm{Spike} \ \mathrm{Spike} \ \mathrm{Vial} \ \mathrm{Vial} \ \mathrm{ARB} 430$ DNPH	5/27/2021			m 2C	Vial	ARB 430		Formadelhyde, Acctaidehyde
$[\mathbf{a}7(\mathbf{z} \ \operatorname{Rm} 3A)$ VialDNPH $[\mathbf{a}7(\mathbf{z})$ $\operatorname{Rm} 3B$ Vial $\operatorname{ARB} 430$ DNPH $[\mathbf{a}7(\mathbf{z})$ $\operatorname{Rm} 3C$ Vial $\operatorname{ARB} 430$ DNPH $[\mathbf{a}7(\mathbf{z})$ Spike Vial $\operatorname{ARB} 430$ DNPH $[\mathbf{a}7(\mathbf{z})$ Spike Vial $\operatorname{ARB} 430$ DNPH $[\mathbf{a}7(\mathbf{z})$ Spike Vial $\operatorname{ARB} 430$ DNPH						ARB 430		
[9713 Run 3BVialARB 430DNPH $ 9714'$ Run 3CVialARB 430DNPH $19715'$ SpikeVialARB 430DNPH $ 9716'$ SpikeVialARB 430DNPH $ 9716'$ SpikeVialARB 430DNPH	5/27/2021			ш 3А	Vial		DNPH	Formadelhyde, Acetaldehyde
$ \begin{vmatrix} \mathbf{r} 7 \mathbf{I} \mathbf{\gamma} & \operatorname{Run 3C} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline \mathbf{I} 7 1 5 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline \mathbf{I} 7 1 6 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline \mathbf{I} 7 1 6 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline 1 7 1 6 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline 1 7 1 6 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline 1 7 1 6 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline 1 7 1 6 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline 1 7 1 6 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline 1 7 1 6 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline 1 7 7 1 6 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline 1 7 7 1 6 & \operatorname{Spike} & \operatorname{Vial} & \operatorname{ARB 430} & \operatorname{DNPH} \\ \hline 1 7 7 7 7 7 7 7 7$	5/27/2021			m 3B	Vial	ARB 430	DNPH	Formadelhyde, Acetaldehyde
19715 Spike Vial ARB 430 DNPH 19716 Spike Vial ARB 430 DNPH	5/27/2021			m 3C	Vial	ARB 430	DNPH	Formadelhyde, Acetaldehyde
I 9 7 L Spike Vial ARB 430 DNPH I 9 7 L Spike Vial ARB 430 DNPH								
I g 7 1 (6 Spike Vial ARB 430 DNPH	5/27/2021			pike	Vial	ARB 430	HANO	Formadelhyde, Acctaldchyde
	5/27/2021			pike	Vial	ARB 430	HANQ	Formadelhyde, Acetaldehyde

Ph (925) 455-9474; Fx (925) 455-9479

1.16017

1-7 % Tol

143

CVormsVield)cocods - 6/4/99

APPENDIX C FIELD DATA SHEETS

Isokinetic Sampling Data Sheet (Method 2.3) Parelity: 6.24													, e		-100-7474
Equipment informationSample InformationLocation: $\underline{\mu} \in \mathbb{C}$ go goMater #: $\underline{\mu} \in \underline{\lambda}$ Note #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Part Back from dockPart Back from dockThink #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Part Back from dockThink #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Note #: $\underline{\lambda} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Part Back from dockPart Back from dockUpstram from disturbance: T/L Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Downstream from disturbance: T/L Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Part Back from dockProbe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Downstream from disturbance: T/L Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$			Iso	kinetic	Sampl	ling Da	ita Shee	et (Met	hod <u>2</u>	3	_)				
Equipment informationSample InformationLocation: $\underline{\mu} \in \mathbb{C}$ go goMater #: $\underline{\mu} \in \underline{\lambda}$ Note #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Part Back from dockPart Back from dockThink #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Part Back from dockThink #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Note #: $\underline{\lambda} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Part Back from dockPart Back from dockUpstram from disturbance: T/L Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Downstream from disturbance: T/L Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Part Back from dockProbe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Downstream from disturbance: T/L Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$ Probe #: $\underline{\mu} \in \underline{\lambda} \in \underline{\lambda}$	Facil	ity: R.L	45- 1. VIIS			Date: 52	75-21		Run #:		Perso	nnel	8	54	-sa
Yet grave to the set of the set o		F	acility Inform	ation	1	Y				1					
Port Dia: $2I'$ Port Height from dook Yet $2QQZ$ Cp: $0, 2XI$ Printic: $0, 0ZI$ Stack Dia: $2S_1 \leq X$ Area: Printic: V_{CQ} X_{CQ} Y_{CQ} $Y_$]					Mete	er #: LS1) Pito	t#: PZ	48		Pł	oar: ,	30.0	²
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I	Port Dia.:	211 De	pth: 5"	1							Psta	tic:	-0.0	3
Price Height from deck Stack Dia: $25 - 5$ Area: Upstream from disturbance: 71 Downstream from disturbance: 71 Price #: $[72] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Fitting:	Ler	gth:		[۵	H@: -7 -7	No:	z.#: Q\4	c I		%	O2: _	13	
Stack Dis: $25_{1.5}^{-1.5}$ Are: Mag.#: Mag.#:		Port Heigł	nt from deck:			Filter Bo)x#: 🖕	>	Dn: 0.5	05		% C	O_2 :	5	
Upstream from disturbance: Y_L Probe #: $VC_{2,4,6}$ Run Mins $\underline{I_{2,2}}$ Downstream from disturbance: Y_L Probe #: $VC_{3,4,6}$ Wint LC: \underline{O} Direct File Final LC: $\underline{VL}^{+2} \circ O_1$ Probe #: $VC_{3,6,6}$ Probe #: $VC_{3,6,6,6}$ Probe #: $VC_{3,6,6,6}$ Probe #: $VC_{3,6,6,6}$ Probe #: $VC_{3,6,6,6,6}$ Probe #: $VC_{3,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6$	S	tack Dia:	25.5 A	Irea:		Filt	er #:	Ma	g. #:]		% H	[₂O:	~6	
Initial LC: 0.01 Final LC: 1.02^{-1} Pitot LC: 0^{-1} Paint Time One Mear Mear Time, T Stack 4^{-1} Mear Soft Time, T Stack 4^{-1} Mear Soft Time, T New		Upstream	n from disturba	nce: 7)		Pro	be #: 712	us Un	ıb. #	·	R	lun M	lins	120	>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D	ownstream	n from disturba	nce: 76		Pyromet	er#: LSI)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т	nifial LC:	0.01		Final	LC:	2001				Pitot	LC:	0		
Point Time Ois Meter Meter Temp, 7 Sack Δ^{2} Δ^{4} Meter SQRT Tamp, 7 Vec. Note 1 D 514, 40D TZ_{-} $B^{5}/_{-}$ $D_{-}0_{0}$ 1.86 0.245 2.97		CFM @	(J-0) 15	"Hg			10	"Hg	Cv			_	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								8							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Point						ΔP	Δн						· · ·	Notes
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													_	_	AND
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1									
7 34 38.4 9.1 Tu 45^{-2} 0.05 1.5 Tu 0.02 0.024 20.42 0.024 20.42 55 3 9 48 446.3 32.7 Tt 1000 0.04 1.16 0.42 0.245 20.7 24.9 250 55 3 10 54 50.1 6.7 11 1005 0.04 1.15 0.40 2.44 24.9 24.9 255 3 1 0 54.0 81 Tt 1000 0.01 0.47 0.245 24.9 255 3 2 4.2 58.0 81 T8 100.0 0.01 0.47 0.245 24.9 150 3 3 12 42.3 81 T8 100.0 0.01 0.47 0.245 24.9 150 3 4 10 40.5 81 T8 100.0 0.021 0.245 24.9 150 3 4 70 20.2 82 74 10.50 0.41 <					-			1							
$1/2$ AZ_{-} E_{+} T_{4} $10cc$ 0.01 1.16 0.46 0.245 $2M$ TT $5S = 3$ 9 $4U$ 406.3 $8Z_{-}$ TT (R_{+}) 0.00 (T_{+}) 0.47 0.245 $2M$ </td <td>_</td> <td></td>	_														
4 4ℓ 4ℓ 3ℓ 2ℓ 17 $4g4$ $b.06$ $i,17$ 0.47 245 245 55 3 4ℓ 50.1 $b7$ 17 $1e65$ 0.06 115 0.46 0.244 240														_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							1								
i o 54.0 b_1 77 1020 $o.04$ 1.17 0.247 2.457 2.477 2.427 2.577 </td <td>10.</td> <td></td> <td></td> <td>0-</td> <td><u>_</u></td> <td>1013</td> <td>0,00</td> <td>1.12</td> <td>0.64</td> <td>0.015</td> <td></td> <td>670</td> <td></td> <td></td> <td></td>	10.			0-	<u>_</u>	1013	0,00	1.12	0.64	0.015		670			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- <u>-</u> -			4.1	7.7	1000	10 miles	117	0.1.7	0.245	240	242	35	3	
\vec{x} $(\vec{x}, \vec{x}, \vec{y}, \vec{y})$ \vec{y} (\vec{x}, \vec{y}) \vec{y} (\vec{x}, \vec{y}) \vec{y} <t< td=""><td></td><td>19 J 1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		19 J 1					1								
41 13 64 33 178 1901 0.24 70 244 251 572 3 5 744 10.3 81 178 970 0.04 0.247 2245 244 252 472 252 472 244 252 472 252 472 252 472 252 472 252 472 252 472 252 472 252 252 411 252 252 252 252 252 252 252 252 252 252 252 252 252 252 55 112 0.04 0.64 0.2245 2245 252 55 12 92.2 2.56 1.75 0.64 0.2245 2232 255 55 12 92.2 2.56 1.75 0.64 0.2244 2232 255 55 12 54 100 0.25 1.745 0.241 202 2252				1				-							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1							-	_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5			1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ŀ		r	1											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7							1.66	0.45	0.2215	240	250	50	4	
9 40 86.2 82 19 102 9.26 1.75 0.46 0.2415 74.257 75 5 10 54 90.7 81 18 100 0.05 1 Mc 0.41 0.2415 74.257 75 5 40 593.900 18 100 0.05 1 Mc 0.41 0.2241 259 55 5 40 593.900 100 0.05 1 Mc 0.41 0.2241 259 55 5 40 593.900 100 0.05 1 Mc 0.41 0.2241 259 55 5 40 593.900 1 0.00 1 0.2241 10	8	1 - NZ - 1 - 1 - 1				490				0,2415	241	200	52	15	1
12 34 90.2 81 12 100 0.22 120 250 55 55 40 593.900 11566 11566 11566 11566 115666 115666 115666 <	9				19	1020		1.75	0.4	0.245	24)	251		5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12		90.2	81	18	1010	0.05	146	0.61	0.224	250	290	55	5	
IIIS 6 IIIS 6 IIIII IIIIIII IIIIIIII IIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			5 93.900							<u> </u>					<u> </u>
Impinger #1 Initial Final Net Rinse Electricity YES NO Impinger #1 Initial Final Net Rinse Electricity YES NO Impinger #1 Impinger #2 Impinger #2 Impinger #2 Probe Stand YES NO Sample Vol., dscf: Impinger #2 Impinger (s) # Probe Stand YES NO MWs:	1.1					<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>		
Moisture Data Stack Information Field Calculations Initial Final Net Rinse Electricity YES NO Sample Vol., dscf: Impinger #1 0 210 20 Probe Stand YES NO % H2O: Impinger #2 100 90 -10 Port Threads YES NO MWs: Impinger(s) # Impinger(s) # Platform Ht. Stack Vel, ft/s: Flow rate, acfm: C-2 Total Net / Rinse: 27.4 Flow rate, dsfcm: C-2		1156					<u> </u>	<u></u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>
Moisture DataStack InformationField CalculationsInitialFinalNetRinseElectricityYESNOSample Vol., dscf:Impinger #1 \mathcal{O} $\mathcal{I}_1 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Probe StandYESNO% H_2O:Impinger #2 $\mathcal{I}_2 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Port ThreadsYESNOMWs:Impinger(s) # $\mathcal{I}_2 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Platform Ht.Stack Vel, ft/s:Silica Gel: $\mathcal{B}_4 \mathcal{O}$ $\mathcal{I}_2 \mathcal{I}_2 \mathcal{I}_2 \mathcal{I}_2$ $\mathcal{I}_2 \mathcal{I}_2 \mathcal$		ļ	ļ	<u> </u>						<u> </u>					
Moisture Data Stack Information Field Calculations Initial Final Net Rinse Electricity YES NO Sample Vol., dscf: Impinger #1 0 210 20 Probe Stand YES NO % H2O: Impinger #2 100 90 -10 Port Threads YES NO MWs: Impinger(s) # Impinger(s) # Platform Ht. Stack Vel, ft/s: Flow rate, acfm: C-2 Total Net / Rinse: 27.4 Flow rate, dsfcm: C-2	L		<u> </u>	· .						<u> </u>		<u> </u>			<u> </u>
Moisture DataStack InformationField CalculationsInitialFinalNetRinseElectricityYESNOSample Vol., dscf:Impinger #1 \mathcal{O} $\mathcal{I}_1 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Probe StandYESNO% H_2O:Impinger #2 $\mathcal{I}_2 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Port ThreadsYESNOMWs:Impinger(s) # $\mathcal{I}_2 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Platform Ht.Stack Vel, ft/s:Silica Gel: $\mathcal{B}_4 \mathcal{O}$ $\mathcal{I}_2 \mathcal{I}_2 \mathcal{I}_2 \mathcal{I}_2$ $\mathcal{I}_2 \mathcal{I}_2 \mathcal$		<u> </u>	<u> </u>	<u> </u>											<u> </u>
Moisture DataStack InformationField CalculationsInitialFinalNetRinseElectricityYESNOSample Vol., dscf:Impinger #1 \mathcal{O} $\mathcal{I}_1 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Probe StandYESNO% H_2O:Impinger #2 $\mathcal{I}_2 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Port ThreadsYESNOMWs:Impinger(s) # $\mathcal{I}_2 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Platform Ht.Stack Vel, ft/s:Silica Gel: \mathcal{O} $\mathcal{I}_2 \mathcal{I}_2 \mathcal{I}$	1	ļ													
Moisture DataStack InformationField CalculationsInitialFinalNetRinseElectricityYESNOSample Vol., dscf:Impinger #1 \mathcal{O} $\mathcal{I}_1 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Probe StandYESNO% H_2O:Impinger #2 $\mathcal{I}_2 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Port ThreadsYESNOMWs:Impinger(s) # $\mathcal{I}_2 \mathcal{O}$ $\mathcal{I}_2 \mathcal{O}$ Platform Ht.Stack Vel, ft/s:Silica Gel: \mathcal{O} $\mathcal{I}_2 \mathcal{I}_2 \mathcal{I}$		<u> </u>	<u> </u>		<u> </u>					<u> </u>					<u> </u>
Moisture Data Stack Information Field Calculations Initial Final Net Rinse Electricity YES NO Sample Vol., dscf: Impinger #1 0 210 20 Probe Stand YES NO % H2O: Impinger #2 100 90 -10 Port Threads YES NO MWs: Impinger(s) # Impinger(s) # Platform Ht. Stack Vel, ft/s: Flow rate, acfm: C-2 Total Net / Rinse: 27.4 Flow rate, dsfcm: C-2			ma man	+=	12	000		1-1-		0.2		I	<u> </u>		1
Initial Final Net Rinse Electricity YES NO Sample Vol., dscf: Impinger #1 0 210 200 Probe Stand YES NO % H2O: Impinger #2 100 90 -10 Port Threads YES NO % H2O: Impinger(s) # Impinger(s) # Platform Ht. Stack Vel, ft/s: Flow rate, acfm: Silica Gel: 640 12 724 C-2					2	101							_		
Impinger #1 O Z1O Z1O Probe Stand YES NO % H2O: Impinger #2 100 90 -10 Port Threads YES NO MWs: Impinger(s) #	ŀ .	· · · · ·					-		· · ·					tions	· · · · · · · · · · · · · · · · · · ·
Impinger #2 ICO 90 -10 Port Threads YES NO MWs: Impinger(s) # Platform Ht. Stack Vel, ft/s: Silica Gel: B40 872 74 C-2 Total Net / Rinse: ZZ4 Flow rate, dsfcm:			Initial		Net	Rinse		2		· ·					
Impinger(s) # Platform Ht. Impinger(s) # Stack Vel, ft/s: Silica Gel: 84(2) & 12 Z-1 Total Net / Rinse: ZZ4		-			210							-			
Impinger(s) # Stack Vel, ft/s: Silica Gel: B 12 24 Total Net / Rinse: Z 24 Flow rate, acfm: Flow rate, dsfcm:				90	-10		-		S NO		1	MWs	:		
Silica Gel: B(2) B72 24 Flow rate, acfm: C-2 Flow rate, dsfcm:					<u> </u>		-Platform	1 Ht.		-	1. 77 .	1.6/			
Total Net / Rinse: 224 Flow rate, dsfcm:				10.00	-	+		. /							
	Sili	ca Gel:		the second s	the second s		-			1	-		-	-C-	2
							-								
			TOTAL SAULD				1			/0.		101103	•		

Livermore, CA 925-455-9474

		Ino	leinatio	Corron	ling Do	to Che	at (Mat	hod 7	73)				- <u></u>
		180	kinetic	Samp	ling Da	ua Sne		100	- /	_)				
Facil	ity: Bub	phin Well's		·	Date: 5-	-25-Z		Run #:	2				145	
]	Facility Informa	ation		•	Equipn	ent Inform	nation		Sa				ation
]	Location:	IEB 50			Mete	er#: LSI) Pite	ot#: PP-1	2		P	bar:	30.0	-7
I	Port Dia.:	<u>بر</u> De Len	pth: <u>5</u> "			Yd: 0.4	92	Cp: 0.3	<u>-</u>				~0.	e g
	Fitting:	Len	gth:		Δl	H@: <u>2</u> .	Ze No:	z. #: <u>62 / 4</u>	i l		%	02:		
		nt from deck:			Filter Bo)x #:		$\begin{array}{c} Cp: \underline{\partial, \mathfrak{B}} \\ z. \#: \underline{\partial, \mathcal{A}} \\ D_n: \underline{\partial, \mathcal{A}} \\ g. \#: \\ ab. \# \end{array}$	05					1
S		25.5 A			Filt	er#:	Maj	g. #:	≤ 1		% E	I ₂ O:	8	
		n from disturba			Prot	be #: <u>r</u>	<u>40</u> Un	ıb.#		F	Cun N	lins_	120	
D	ownstream	n from disturba	nce:		Pyromet	er #:						_		
Ĭī	nitial LC:	0,015		Final	LC: 15	20.01				Pitot	LC:	Ô		
	CFM @	\$5	"Hg		A @	10	"Hg	Cy	clonic Flo		-			
							T							
Point	Тіте	Gas Meter	Meter T		Stack	ΔP	ΔĦ	Meter	SQRT		emp, °F		Vac.,	Notes
	1304	Vol, Ft ³	In	Out	Terra, "F			ACFM	ΔP	Probe			"Hg	KAN
	v	594.7	79	-17.		OOL	171	0.65	0.245				2	
Z	6	عاً. ٢	78	11	1000	0.04	1.70	0.65	0.245				2_	
13	12	602.5		<u> 18</u>	980	0.04	1.13	0-66	0.245				3	
4	(8	k.5	81	18	990	0.06	1.72	Dich	0.2415					
5	24	10.5	<u>ب</u>	78	9941	0.06	1.71	0.66	0.245					
4	30	(4.5	82	79	1004	O.C.C.	1.70	0.45	0.245	240	252	52	4	
7	36	18.5	83	-19	990	0.0%	1.72	0.64	0.245					
10:	42	22.5	83	80	1000	0.06	1.71	٥. نوب	0.245					
9	48	20.5	84	60	992	0.05	1.44	0.60	0224		_			
10	54	24.830.1	<u> </u>	81	970	0.05	1.40	0.6.1	0.224	251	250	55	3	
	60	33.7			<u> </u>									
\vdash	0	33.7	85	<u>83</u>	972	0.05	1.46	0.61	0.224				5	
Ĩ.	¥	31.3	85	83	932	0.04	1.00	0.68	0.245					
3	12	41.4	84	84	931	0.04	1.81	84.0		Z41			8	
1.1	(8	45.4	84	83	930	0.05	1.50	0.62		241		50	7	
15	24	49-)	84	84 83	930	0.05	1.51	0.62		24		152	7	
<u> </u>	30	52.8	83	80	420	0.05	1.51	0.42					17	
Ĩ	36	56.5	84	きり		0.06	1.83	0.00	0.245	25	17072	<u>></u> - :::	0	
B	42	60.5	<u>84</u> 85	85	910	0.06	1.83	0.60	0.224	250	de D	56	7	
9	48	64.5	<u><3</u>	<u>65</u> 85		0.05	1.54	0.63	0.224			54	1.	
	54	1-8-2	<u> </u>	63	9000	0.05	1.54	0.47	0.667	67		13-	+	<u> </u>
ptip	43	672.00			<u> </u>	<u> </u>		<u> </u>	<u> </u>	┼				
	1500	· · · · · · · · · · · · · · · · · · ·			<u></u>	<u> </u>						<u> </u>		·
\vdash	1200					1	<u> </u>		<u> </u>	1			1	
					1			1			1	1		
					1		<u> </u>			1		-	1	·
					1	· · · · · · · · · · · · · · · · · · ·		1				1		
	,							1	1			-		
					1	1				1	-	1	1	
L	1	77.3	R.	V	958	1	1.65		0236	1	1	L	.I	<u> </u>
				<u></u>			L	4		-	100	1		
	·		ire Data	<u> </u>	D			nation					uons	
-		Initial	Final	Net	Rinse	Electricit	-		Sample	-				,
-	inger #1	0	100	100		Probe St					H ₂ O:			
	inger #2	601	80	-20	<u> </u>	Port Thre		S NO	1	V	/Ws:			·
	inger(s) #		<u> </u>	·	<u> </u>	Platform	Ht		-	1- 77-1	ىم			
	inger(s)#	1 dames to		1.00	<u> </u>	-			Flow	k Vel				-5-
SIIIC	a Gel:	872 T-+-1)	867	15		-								<u>,-3</u>
•		Total N Total Sampl	et / Rinse:	95		-			Flow r	ate, a sokin				
		Totat Pampi	o volume.	l		<u> </u>			/01		00003.			

.

Livermore, CA 925-455-9474

Isokinetic Sampling Data Sheet (Method <u>*MZ3*</u>)

		ISO	kinetic	Samp.	ling Da	ita She	et (Mei	thod _/	<u>nzz</u>	_)				
Facili	ty: Bu	bblin Wel	13		Date: 5-	27-2	1	Run #:	3	Perso	onnel	: 2	54:	汰
		Facility Inform	ation		•	Equipn	ent Inform			S	ampli	ing Ir	form	ation
L	ocation:	IEB 50	,		Mete	er #: <u>LS)</u>	Pit	ot #: <u>P(Z4</u>	8				299	
P	ort Dia.:	<u> </u>	pth: <u>5</u>	1		Yd: 0.9	92	Cp:	the .		Pst	atic:	-0,0	>3
_	Fitting:	Len	gth:		Δ	H@: <u>7</u> .7	Z 😢 No	z. #: Q14	<u> </u>		%	O_2 :		
	-	ht from deck:	<u></u>		Filter Bo	x #:	~ ~ ~	Dn: 0.5	20		% C	:0 ₂ :		
St	ack Dia:		16a:		Filt	er #:	Ma	g. #: nb. #	\leq			I2O:		
-	Upstream	n from disturba	nce: 7)		Prol	be #: <u>PR</u>	<u>48</u> Un	nb. # <u></u>		F	Snu y	/lins_	120	
Do	ownstream	n from disturba	nce: 14		Pyromet	er #:								
In	itial LC:	0.01		Final	LC: O.	01				Pitot	LC:		0	
(CFM @	15	"Hg		M @		"Hg	Су	clonic Flo				Q.C. Sta	×
		·····											· · · ·	
Point	Time 907	Gas Meter Vol, Ft ³	Meter T		Stack	ΔP	ΔH	Meter	SQRT		`emp, °		Vac.,	Notes
. +			ln t O	Out	Temp, °F		بسرر معنور ا	ACFM	ΔP	-	Filter		"Hg	
	<u></u>	832.560	<u>69</u>	69	920	0.06	1.57		0.245					
2	6	36.3	67 68	69	980	0.06	1.55	0.62		257				
4	12.	40.0	<u>(</u> ય્ર)૦ હત્	1.13	1005	0.04	1.52	041				#1) }		
3	18	43.7		69	1051	0.00	1.49	0.61		252		46	1	
5	<u>24</u> 30	41,4	71	69	070	0.86	1.46	0.62	0.245			47 47	3	
7		51.0		69.	1062	0.06	1.47		0.245			42	21	·····
8	36	54.7	74.	10	1073	0.06	1.246	040	0.245	151	1.2.		3	
9	42.	58.3	<u> </u>	11		0.06	1.45	1	6.245			42		
7	<u>46</u> 54	41.9	74	12	1070	0.06	<u>1.44</u>	to le d	0.245		_	49	4	
14	40	42.7 69.1	12		1043	0.06	1.44	6.62	0.245	¥.2 '	25 L	21	4	
		69.1	15	72			17	0-45	0.245	14 1532	63410		11	
2	0 6	73.0	15	73	1084	0.07	1		0245			50	4	-
3			75	13	1081	8.06	1.46	0.60	0.745				4	
4	12-	76.6	1	721		0.04	1.46	1	D.245				21	
5	24	83.5	76	14	1084	40.0	1.46	0.61	0.745				5	
6	30	87.0	14	14	1078		1.47	0.63	0.245				5	
T.	36	90.5	76	14	1010		1.46	0.60	0.245				5	
8	42	94	76	75	1094	0.06	1.45	0.40	0.245				5	
9		8 97.5	<u> </u>	15	10.38		1.44	0.40	0.245					
10	64	901	76	7:5	1010	<u>مان (0)</u>	F.416 ;	0.60	0.245		200		5	
	150	904.500)		1.2			1.1.1.1.1.	0.00	0.6-13		1		2	
	1110		1	1				1	<u> </u>	1		1		1
	<u></u>					1	†			1	1	\vdash		
†		1			1							1		
					1		1				1			
					1		1			1	1	1		
			ļ			1		1			1	1		
	· · ·				1						1	1		
			1			1			1	1	-	1		
		71.940	1 72	3	1064		1.219		0.246	1			An.,	
	: ·		ire Data	· · · ·	····;		ack Infor	nation		· Tria	Id Co	Imile	tine	·
•	<u></u>	Initial	Final	Net	Rinse	Electricit					_		цопя	
r	nger #1		199		1. TURO	Probe St	-		-		H ₂ O:	_		
1777777	-	100	105	199		Port Thr					M ₂ 0: MWs:			
	D CTO- 47		102	2	<u> </u>	Platform		6 NO		Г	AT AA 8:	·		
Impir	nger#2			1.		ILIOUTID	. <u>A</u> LL.		1					
Impir Impir	nger(s)#			•		1			Cto o	6 37-1	Al-			
Impir Impir Impir	nger(s) # nger(s) #		908	21		1				k Vel rate, a				
Impir Impir Impir	nger(s)#	887	90°B	21					Flow	rate, a	acfm	:	C	-4
Impir Impir Impir	nger(s) # nger(s) #	887	et / Rinse:						Flow : Flow ra	rate, a	acfm: sfcm:	:	C	-4

	F		mpling od <u> </u>	Data Sh 30	eet			
Date: 5'-2~	Ing Well 57 7-21 3J/PB			WFLOW DOG	#12	Pbar: <u>2 °</u> % O ₂ : % CO ₂ : % H ₂ O:		
Time Meter μ 20 329. μ 25 331 μ 25 331 μ 30 324 μ 30 324 μ 30 324 μ 30 324 μ 35 336 μ 37 378 μ 379 341 μ 39 341 μ 39 341 μ 30 349 μ 340 349	Meter In 1 7° $, Y$ 72 1.0 72 1.0 72 3.4 73 8.9 73 1.4 73	PUNY emperature, °F Meter Out 7° 70 71 71 71 71	м Ч. Ітр. СЧУ	SU Vacuum, "Hg	Initial Leak Che Final Leak Che A Impinger B Impinger Silica	ck Ó Initial (0 #1: (0 #2: (10 #3: (10) Gel: (10)	CFM	S "Hg "Hg Net
					Initial Leak Ch Final Leak Che Impinge Impinge Silica	r #1: r #2: r #3: Gel:	CFM Final	"Hg "Hg Net
AL/AVG					Initial Leak Ch Final Leak Ch Impinge Impinge Impinge Silica	Initial r #1: r #2: r #3:	CFM Final Total Net:	"Hg "Hg Net
AL/AVG							ca Gel:	ca Gel:

C-6

		· · · · · · · · · · · · · · · · · · ·	·	a 1	D.	4. 01	105	1 1 10.4	201	``			
		ISO	cinetic	Sampl	ing Da	ta She	et (Met	hod <u>M</u>	300	_)			
Facil	ity: B. I	oblimblell	•	·]	Date: 5-2	3-21		Run #:	1	Personi	1el: 73	19-	st
F		Facility Informa	tion	T			ent Inform		4		pling I		_
T		LEB 52		<u> </u>	Mete		1 Pito		197		Pbar:	_	
P	Port Dia ·	<u>4</u> "Dej	oth 61			Yd: 0.9				Ţ	static:		
· ·	Fitting:		gth:	1	٨٦	I@: <u>Z.2</u>	<u> </u>	Cp: <u>o.</u>	ort	1	% O	-0.	<u>~</u>
		nt from deck:	5 ^{cu.}		Filter Bo	x #:	<u>(9</u> 110)	z. #: Q14	<u> </u>	٥/	% O ₂ : CO ₂ :		— I
	-							D _n : 0.5	<u>~</u>				
10			rea: 3,5	<u></u>		zr #:		g. #:			6 H₂O:		
		n from disturba			Prot	be #: <u>\$\$\$21</u>	UI UI	1b.#		Ru	n Mins	8	
	ownstrear	n from disturba		,	Pyromete	er #:						,	
Ŀ	itial LC:	0.01		Final	LC:	0.01				Pitot L] :	Ø	
	CFM @	15	'Hg	CFM	1@	D	"Hg	Cy	clonic Flo				*
Point	Time	Gas Meter	Meter Te	mp, °F	Stack	ΔP	Δн	Meter	SQRT		p, °F	Vac.,	Notes
	918	Vol, Ft ³	In	Out	Temp, "F			ACFM	ΔP	Prote Fil		_	
1	0	675.564	721	74).	920	0.05	1:47	O.lel	0.224		445	11	
2	Ц	79.9	7-1	14	925	0.05	1.48	0.61	0.224		445	1	
3	8	10-482.3	74	74	940	0.06	1.76	10.66	0.245		445	11	
4	12	83.0	75	75	435	0.04	1.78	ماما، ٥	0.245		45	1	·
5	16	85.6	76	74	935	0.04	1:77	0.66	0,2415		£45	11	
6	20	68.2	78	75	941	0.06	177	0.64	0.245	1	245	P	
7	Z4	90.B	79	15	(000)	0.06	1.70	0.65	0.245	1	245	1	
8	20	93.4	82	76	1010	0.06	1.69	0.45	0.245		245	1	
3	32	96.0	82	75	1030	0.06	1.67	0.65	0.245		445	1.	
10	36	98.4	82	75	1040	0.05	1.38	0.59	0.224		245	ti	<u> </u>
	. 40	701.5						1	<u> </u>	1-1-		1	<u> </u>
	0	701.0	82	76	1070	0.05	1.36	0.58	0.224		245		
2	4	3.6	82	76	1067	0.06	1.43	0.44	0.245		445		
3		6.2	84	TB	1080		1.62	0.64	0.245	+ +	245		
4		<u>6.0</u>	81	76	1070	0.06		0.44	0.245	+	245	+	
5	12			76		0.04	1	1	0.245		245	$\frac{1}{1}$	
	ما ا	<u>T11.24</u>	15	76	1045		142	0.64					
6	20	71-1	13			0.06		0,64	0.245	+ +	445	+	
7	<u>74</u>	16.4	82	16	1080	0.06		0.64	0.245		245		<u> </u>
	28	19.2		76		0.06		063	0,245	, -	245	+	<u> </u>
9	32	21.8	<u> </u>	76.	1094	0.06	1.40	0.63	0.245	+-+	441	4	
10 54	36	24,4/	82	76	1095	0.05	1.33	0.50	0.295	+-+		+	<u> </u>
54	40	726.800			<u> </u>	1	<u> </u>			+-+	-+-		
	1 - 11 1	<u> </u>			<u> </u>	<u> </u>	┼───	───	<u> </u>	╉──┼─			
	1041									+			
						<u> </u>			<u> </u>				
No.1			•		<u> </u>	<u> </u>				++			
						ļ	4			++			
	< 14					<u> </u>							
	<u> </u>	ļ		L							\square		
		51.236	78	3	10:23	1	1.61		0.240				
		Moistu	re Data			S	tack Inform	nation	- 61 S. S.S.	Field	Calcul	ations	
	N Na Ot	the second s	Final	Net	Rinse	Electrici						,1	
	inger #1	100	196	96		Probe St	•		-	% H			
	inger #2	100	150	50		Port Thr				M			
	inger #2		OWE	152		Platform				TAT			
	inger(s) #			-10-10					Ctor	k Vel, f	}/e·		
	inger(s) # :a Gel:	738.7	751 0	18.2		1				rate, ac			-7
1 mil			et / Rinse:	10.		1				ate, dsfo			
		Total Sample		164.2	L	1				sokinet			
		TOTAL DATTIC	o volume.	1		I			70.	BOUTTEL	103.		

1		Iso	kinetic	Samp	ling Da	ta She	et (Met	hod <u>m</u>	306	_)			
Facil	lity: R	abblin le	1-112		Date: 5	20	,	Run #:	2	Personn	1.52	1 00	24-
	<u></u>	Facility Inform	ation	1	2444	Equipp	nent Inform		Louiseum				ation
		IEB 50			Mete		l Pite		15		_	29.	
	Port Dia :	4m De	oth: 54					Cp: 0.84		Ps	tatic	<u>ل ا مک</u> ۲ س	203
		Ler	gth:		ΔĬ	H@: 72.	ZU No:	Z. #: 13121	<i>c</i> .		60.		
ļ		ht from deck:			Filter Bo	x #:		D.:	1	%	CO_2^2 :		
	_		Iea:		Filt	er #:	- Ma	D _n :	<u> </u>		H ₂ O:		
		n from disturba				be#: PR	49 Un	ıb.#				82	>
D		n from disturba				er #: LSA							
<u>т</u>				TP: 1	10 0	- 4						~	
Ľ	nitial LC:	0.01	1177 -		LC: 0	_01		~		Pitot LC			
	CFM @	15	"Hg	CFI	м @	0	"Hg	Cy	clonic Flo	ow Check	. <u> </u>	Contraction of the local division of the loc	
Point		Gas Meter	Meter T	етр, °F	Stack	۵P	ΔH	Meter	SQRT	Temp,	°F	Vac.,	Notes
	1155	Vol, Ft	In	Out	Temp, °F	1. 1		ACFM	ΔP	Probe Eitte		"Hg	
	0	729.3	BI	81.	1090	0.06	1.53	0.62	0.245		415	1	
Ż	ң .	31.9	50	8)	1106	0.06	1.51	0.62	0.245		245	1	
3	8	34.5	୫୦	80	1100	0.06	1,51	0.62	0.2415		445	11	
4	12	37. \	82	હર	1101	0.06	1.52	0.62	0.245		445	1	·
5	16 .	39.7	83	89	1100	20.04	1.52	0.62	0.245		445	(
6	20	42.3	24	CB.	1096	0.06	1.53	0.62	0.246		245	('	
1	24	44.7	86	80	1095	0.06	1.53	0.62	0.245		- CH		
С.	28	47.2	83	81	1095	0.06	1.53	0.62	0.245		415	1	
9.	32	49.7	86	82	1097	0.06	1-53	0.62	0.245		245	11	
10	36	52.2	87	8)	1092	0.05	1.28	0.57	0.224		4415	1	
	40	54.6						1			14~		
1	ò	54.6	88	87	1082	0.05	1.29	0.57	0.2221		-10-	1	
Z	4	57.0	80	82	1076	0.06	1.55	0.63	0.245		445	1	
3	8	59.6	30	83	1067	40,06	1.56	0.63	0.24S		145		
41	12	62.2	89	84	1076	0.06	1.54	0.63	0.245		445	\downarrow	
5	16	67.0	40	EL)	1068	0.06	1.57	0.63	0.245		445	1	
6	20	47.4	90	84	1077	0.06	1.56	0.63	0 245		245	<u> </u>	
7	24	70	91	85	1077	0.06	1.56	0.63	0.245		141	$\frac{1}{1}$	
8	28	12.41	92	85	1077	0.06	1.56	0.63	0.245	<u> </u>	415	11	
9	32	74.9	42	85	1081	0.04	1.56	0.43	0.245	4	445		ļ
N	30	17.4	92	85	1075	0.00	156.	0.63	0.245	<u> </u>	445	1	
st		779.900				0.00	ļ		·	+		<u>,</u>	ļ
	80		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>
\vdash	1.7.0					· · · · · · · · · · · · · · · · · · ·	1						<u> </u>
	1318												
 					<u> </u>								
							<u> </u>	<u> </u>					
	<u> </u>				I								
\vdash													
L]	Entra			1086			1	0.243				<u> </u>
		50.600	8	<u> </u>	1006	7	1.52	1	1	1			
	: <u></u>		ire Data				ack Inform					tions	
		Initial	Final	Net	Rinse	Electrici	•		-	Vol., dsc			
	inger #1	100	196	96		Probe St			1	% H ₂ C	-		
	inger #2	100	110	10	1	Port Thr		S NO		MW	s:		
	inger(s)#	0	2	·Z		Platform	Ht						
	inger(s) #	846,-1	111.000		· ~	-				k Vel, ft/			-0
Sind	ca Gel:	-255-0	855.0	8.6		4			1	rate, acfi			-8
1			et / Rinse:	116.6		4				ate, dsfcn			
L		Total Sampl	s volume:	I		I			701	sokinetic	5.		

0.0.0				<u> </u>	<u>'</u> D.	4. Ol	+ (7 1 - +		1 20/-	<u> </u>				
				Sampl	ıng Da	ta Shee	et (Met	noa <u>n</u>	1 206	_)		~.	1-	*
acili	ty: Bul	acility Informa	>	• • • •	Date: 5-	29-21		Run #:	<u>3</u>	Perso	nnel:	<u>છ</u>	4 5	4
			tion				ent Inform			Sa	mplin			
L	ocation:	CEB 52)	- 4	1	Mete	er #: LS11	Pito	nt#: <u>₽₹4</u>	<u>e</u>		Pb Pstat		<u> 29, 8</u>	
P	ort Dia.: _	<u>4</u> ¹ De	pth: <u>></u>			Yd: 0.99	<u>{``-</u>	Cp: <u>のい</u> z. #:	3-1					<u>~</u>
٣	Fitting:	Len it from deck:	gtn:	— I	Eilter Bo	H@: <u>2.2</u> x #:		D _n : <u>Q(L)</u>	-		% (% C(D ₂ : D ₂ : "		
		Z5.5 A	TAO.			er #:	<u>~</u>	z, #:	505		%H	_		
อเ		from disturba		— I		be #: PR-	Um		<u>~</u>	R	un M	-		<u> </u>
D		ı from disturba		— [Pyromet		<u></u>					-		
		· · ·		I						Pitot 2	τc	~		
In	itial LC:	001	ИТТ <u>—</u>	Final	LC: <u>0</u>	<u></u>	"Hg	C	clonic Flo					
	CFM @_	15	"Hg		л ш <u> </u>	2	118	رب ا						
Point	Time	Gas Meter	Meter T	emp, °F	Stack	۵P	۵Н	Meter	SQRT		emp, °F		Vac.,	Notes
	1359	Vol, Ft ³	Ĭn	Out	Temp, "F			ACFM	ΔP	Probe	Filter		"Hg	
<u>_</u>	0	780,300	BL	86	1000	0.06	1.73	0.46	0.745			45		
2	4	BZ.9	86	88 23	965	0.06	1.77	0.67 0.67	0.245	├──┤		15	$\frac{1}{2}$	
<u> ७</u> म	g	85.5	85		971	0.06	1.76	0.67	0.245	├		45	1	•
5	12	<u>88.1</u> 40.7	84 84	85	980	0.06	1.15	0.67	J 245		4		1	÷.
5	16	93.3	84	85	980	0,00	1.75	0.67	0.2245			15″	· · ·	÷
5	20 24	95.9	87	85	975	0.06	1.76	0.67	0.245	11		45	I	
8	22	98.5	87	85	976	0.06	1.76	0.67	0.245			415)	
9	32	801.1	ยา	85	973	0.06	1.76	0.67	0.245			40	1	[
p	30	3.7	87	85	970	0.05	1.47	0.61	0.245	1	4	-11	1	
	40	4.1		<u> </u>				ļ	0.224				<u> </u>	
							ļ	<u> </u>		<u> </u>				
1	0	6.1	36	85	960	0.05	1.47	0.61	0.224			45	1	1
Z	<u> </u>	8.5	85	84	946	0.06	1.76	0.67	0.245	4	ム く	155 245	<u> </u>	<u> </u>
3	8	11.2-	85	84)	965	20.06	1.76	0.67	0.245			45	\vdash	
2	12	13.8	85	84	963	0.06	<u> 1.77</u> 1.77	0.67	0.245			41	1	
5	16	16.4	<u>6></u> 84	83	460	0.06	1.77	0.67	0,245		2	415	1	
67	23	21.7	821	83	958	0.06	1.77	0.67	0.245	7	L	45	1	
B	22	24.3	85	84.	955	0.06	1.78	0.67	0.241	····	1	45	1	
9	32	269	85	84	953	0.06	ST.I	0.67	0.24	Ś	4	45	11	
ĺ٥	36	29.5	85	84	950	0.05	1.49	0.6)	0.224	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>
	42	831.9								_	<u> </u>	ļ		
		<u> </u>												1
		<u> </u>						+					+	+
	ļ		<u> ·</u>								-		+	-
	<u> ,</u>										+			1
	 , _	1	1			_			1			ĺ	1	1
							1.							
	<u> </u>	51.6	1	85	940		1.719		0,242	-				
•			ture Data		· · · · ·		tack Infor	mation	· · · · · · · · · · · · · · · · · · ·	. Fie	eld Ca	lçùla	ition	S
	· · · ·	Initial		Net	Rinse									,
Imr	inger #1	1muar	150	50		Probe S	-		-		H ₂ O	_		
-	vinger #2	100	108	8		Port Th		BS NO	С		MWs	:		
-	pinger(s) #		24	26		Platform			_					
Imp	oinger(s) #									ck Ve				~~~
	ca Gel:	756.3	167.6	10,8	_					v rate,			(9_
1			Net/Rinse						Flow	rate, (Isoki				
		Total Samp	ole Volume	e;				· · · · · · · · · · · · · · · · · · ·	70	12011		•		

BEST ENVIR	UNIVIEN I.								Liv	vermore	e, CA 925	-455-9474
	Isok	cinetic	Sampl	ing Da	ta Shee	et (Met	hod Z	26 A)			
Facility: Bu 66		. 4	-	Date: S _			Run #:	•	Person	mel· 🤇	A.	3J, K
Fa	cility Informat	ion	<u> </u>	<u> </u>		ent Inform		<u></u>			Inform	
Location: J			1	Mete		Y Pito	ot#: ∽	2		Pba	r: 36	-07
Port Dia.:	Cr. Dep	th:			Yd: La	2	Cn:	04		Pstatio	:	103
Fitting:	Leng	th:		ΔI Dill Di	1@: 1 . 	No2	ω #: (つ) Y	4 R		% O	2: <u></u>	<u> </u>
Port Height			-T/-	Filter Bo	x#:_¥		D _n :	508		% CO; % H2C		5
	Ar rom disturban		-7/1		be #: 5		ib.#				л. <u>- 6</u> 15 <u>- 6</u>	
Downstream f				Pyromet		<u> </u>			1.1	111 IVIII.	<u>ه گ</u>	<u> </u>
Initial LC:			Final	LC:	1				Ditat T	C.		
CFM @	21	Hg	CFN	1@	20	"Hg	Су	clonic Flo	w Che	ck:	6	
Point Time	Gas Meter	Meter Te	mp, "F	Stack	ΔP	ΔН	Meter	SQRT	Ter	mp, °F	Vac.,	Notes
10:22	Vol, Ft ¹	In	Out	Temp, °F			ACFM			ilter Im	· · · · · ·	
	63.611		73	876	0.06	1.55	0.67	0.245				
23	205.7			272	0.0.6	155		8.245			3	
36-	$\frac{1}{2}$		-50		0.05	1.90	0.66	0.224		_	13	
15 12 -	51 2			and the second se	-0.06		0.6Y		2502		13	
618-	12.71		75	971	0.05	1.21	0.59		2512	Yst	2	
8718 -	115.41		75	LOOV	0.05	1.18	0.59	0.224	25/2	46	3	
18 21 -	117,2	·	75	1023	0.06	1.39		6. 24S		247	3	
x 7 24 -	19.1		JÝ		0.06	1.4-1	0.65	0.245			5	
1020	121.2		76	981	0.06	1.44	0.65	0.245	<u>252</u>	2417	3	
4 50												
			<u></u>		<u> </u>				\rightarrow			<u> </u>
10-	123.0		76	1006	0.06	142	0.64	0.245	2512	ZYX	133	
2 3 -	124,91		76		0.06			0.245	25 12	242	3	
36	726.8		77	980	1	1.45	0.65		2502		3	
14 7 =	128.8		71		0.02	1.18		0.224			3	<u> </u>
5 2-	730.6		77	1957	0.06	1.46	0.69	0.245			3	<u> </u>
3 13 -	424/6		18	989	0.06	1.34	0.65	0.245	244		13	<u> </u>
7 12 -	136.7		79	1005		1.43	0.65	0.245			3	1
9 24	738.5	Í	80	1021	6.06	1.42	0.64	0.245	247	252	3	
1021	740,5		80	9.92	0.06	IT:YY	0.65	0.245	z 78	25° R.	3	
MY 30-	742.401			<u> </u>	<u> </u>	<u> </u>	<u> </u>			-+		<u> </u>
							Į	<u> </u>	┝──┼			<u> </u>
				<u> </u>	<u> </u>	t		<u> </u>				<u> </u>
				1		111		1				1
·						1.905						
	20-02		12	974	5	440		24				
11:25 -	>0,11	10			1	1.1.1	1	0,21	1			
	Moistu		· · · · ·	•••••••••••••••••••••••••••••••••••••••		ack Inforn		•••••••••••••••••••••••••••••••••••••••			ilations	
	Initial	Final	Net	Rinse	Electricit		and the second se	-			39.	443
Impinger #1	100	194	<u>– a'Å</u>		Probe Sta					I ₂ O:	110	1
Impinger #2 Impinger(s) #	100	104			Port Thre Platform				м	Ws: _	28.	10
Impinger(s) #	<u> </u>					A.A.E.a	M <u>411 17 </u>	Stac	c Vel	ft/s: 🔽	22	57
Silica Gel:	827.5	838.6	9	1	1			Flow			1.0	AND /
	Total Ne	t/Rinse:	107]			Flow ra			1	140/6
	Total Sample	Volume:						% L	sokine	tics: 7	1P	510:1
											10.1	

5

							_		
Isokinetic Samp	ling Dat	ta Shee	t (Met	hod 7	26A)			
, , , , , , , , , , , , , , , , , , , ,	•		•			-/		cA p	1 D D
Facility: Bulbling well Facility Information	Date: 5-	<u>25-2</u>	1	Run #:	<u> </u>				J/RB
)) (it is		nt Inform		<u> </u>	28	-	g Inform	
Location: <u>TEB 50</u>	<u>iviete</u>		Y Pito	t#: <u>5</u> _			PDa	ar: <u>20</u>	<u>e</u>
Port Dia.: <u>Y//</u> Depth: <u>5//</u> Fitting: Length:	1 AH	(a) 1.8	Non	# 11	151		rstati		ا کچز
Port Height from deck:	Filter Box	*** + ```	102	D _n : <u>φ</u> γγ D _n : <u>ο.</u>	45		% CC		
		r#:	Mag	- n. <u>0</u>	ادمو		% H.	$\hat{o}: \underline{\mathcal{I}}$	17
Unstream from disturbance: > 1		e #: 52		, b. #		P	un Mi		4- I
Stack Dia: 25.5° Area: 3.5° Upstream from disturbance: >1 Downstream from disturbance: >6	Pyromete		0m	0. #			111 1411		<u> </u>
			<u> </u>		1			/	
Initial LC: <u>o.o.</u> Fina	1LC: 0.	100		_		Pitot I			
CFM @ 'Hg CF	М@	20_'	Ήg	Су	clonic Flo	w Che	eck:		
Point Time Gas Meter Meter Temp, °F	Stack	ΔP	ΔH	Meter	SQRT	Te	mp, °F	Vac.,	Notes
12:04 Vol, Ft ³ In Out	Temp, °F			ACFM	ΔP	Probe F	Filter II	mp. "Hg	
1 0 744.601 80.	1094	0.06	1.22	0.60	1.245	244	2/9 <	syt 3	
2 3.0 74.4 20	922	0.06	1.22	0.62	.245	2147	50	13	
3 6.5 748.41 80	921	0.06	.38	0.63	0.2YS	24	256		
49 7503 80		0.05	1.1	0.58	0.224	2472	(5)	3	·
3 12 752.1 80	1028	0.05	1.7	0.56	0.2241			3	
6 15 753.8 80	1922	0.06	1.22	0.62	6.2Y+	之外主	25 0	3	
7 18 755.7 81	1010	0.06	170	0.62	0.245	246	250	3	
8 21 757 6 81	1994	0.06	.32	0.62	0.245	26	251	3	
9 24 759.1 81	976	0.06			0.245			3	
1027 761.8 81	952	0.06	1.35	0.63	0.245	24	251	3	
51430									
1 0 763.2 81	920	0.00	1.38	0.64	0.245				
2 3 765 82	934	0.06	137	0.63	0.245	<u>z.YY</u>	25)	13	
3 6 767.1 82		0.00		0.62	6.245	243	21	13	
Y 9 769.0 83	986		33		0.245	24		3	
5 12 770.9 83	16	0.06				ZYS		the second s	
6 5 772.2 83		0.06		0.62			~	3	<u> </u>
7 18 7748 83	1004	0.06	131	0.62	0.245			3	
821 776.7 83		0.06	1.30	0.62	0.245			3	<u> </u>
9 24 778.6 83	1009	0.06	130		0.245			3	
10 27 780.6 83	1000	0.69	1-51-	0.62	0.245	278	250	3	+
5 0 30 7-82.348				·····		$\left - \right $			
204			······			$\left \right $			
						-+	+		
					<u> </u>	-+	-+		
	0.071		120						1
37:747 81.5	983.1		1.50-		0.24-				
			ck Inform	ation · ·	N.N	Field	1 Cale	-	
Moisture Data Initial Final Net	Rinse	Electricit			Sample	and the second se			0017
	ICH180	Probe Sta	•		Campie	-	H_2O :	بليد	774-
		Port Thre			l		Ws:	<u>_8_</u>	10-
		Platform		, 10		747		28	7)
Impinger(s) # · · · · · · · · · · · · · · · · · ·		1 Janoi III			Stacl	c Vel,	ft/s	77	M
Silica Gel: 748 1 778.9 70.5	3	1			Flow				20170
Total Net / Rinse: 72.	and the second division of the second divisio	1			Flow ra		_	49	7 ~ ~
Total Sample Volume:	<u> </u>	1				okine		22.2	

DEST ENVIRONMENTAL				Livermore, CA 925	-455-9474
Isokinetic Samp	ling Data She	et (Method 2	GA)		
	-	•	. ,		
Facility: Bubbling well	Date: 5 - 25 -	21 Run #:	<u>S Pei</u>	sonnel: SAIR	
Facility Information		ment Information		Sampling Inform	
Location: IEB 50		EX Pitot #: 5		Pbar: <u>30</u> ,	0.
Port Dia.: <u>Y///</u> Depth: <u>5 '-</u> Fitting: Length:	Yd:	<u>o 2</u> Cp: <u>n. 5</u>	34	Pstatic:	ا 3مب
Fitting: Length:	AH@: 1.8	Noz. #: 01	YB	% ⁰ 2 [:]	
Port Height from deck:	Filter Box #:	$ \begin{array}{c} 1 \\ D_n \\ D_n \\ \end{array} $ $ \begin{array}{c} \\ \end{array} $ $ \begin{array}{c} \\ \\ \end{array} $ $ \begin{array}{c} \\ \\ \\ \end{array} $ $ \begin{array}{c} \\ \\ \\ \end{array} $ $ \begin{array}{c} \\ \\ \\ \end{array} $	1202	Pstatic:	\leq
Stack Dia: 25.5 Area: 3.547	Filter #:	<u> </u>	[% H ₂ O: 8, Run Mins	3
Upstream from disturbance:	Probe #: _5	2 Umb. #		Run Mins	<u> </u>
Downstream from disturbance: > 6	Pyrometer #:		1		
Initial LC: o.o. Fina	ILC: A.GO		Pit	ot LC:	
Initial LC: Image: Constraint of the second secon	M@ 20	- "Hg Cy	clonic Flow	Check:	
	T	1 1			
Point Time Gas Meter Meter Temp, °F	Stack AP	ΔH Meter	SQRT	Temp, °F Vac.,	Notes
13(34 Vol, Fr ³ in Out	Temp, °F	ACFM		be Filter Imp. "Hg	
1 0 783.294 78 78	986 0.06			A252KY53	
	7900.06		024525		
3 6 787.0 78	10010.06		0.24524		
Y 9 788.9 78	985 0.05		0.224 24	the second se	
2 2 796.6 78	978 0.05		022425		
<u> </u>	989 0.06	1.29 0.64	0.27525		
7 12 744.3 79	10020.06		0.24525		
8 21 7981 79	290 0.06				
9 24 768.1 79	948 0.06		0.2452		
10 27 800:0 79	981 0.06	1.400.64	0.2425	50255 3	
of 30			<u> </u>		
└ <u>──</u> ┤────┤────┤	<u> </u>		<u> </u>		
1 0 801.9 79	1997 0.06	1.38 0.63	0.247 23	0256283	
2 3 803.8 79	1005 0.06		0.2450		
2 6 805.7 79	986 0.06	1.39 0-64	0.24524	9255 4 3	
4 9 807.71 179	994 0.0		0.2452	19251 3	<u> </u>
5 12 809.6 80	982 0.06		0.2452		
6 15 81.5 80	1000 0.09	1.32 0.63	0.24285		L
7 18 83.4 80	292 0.06	1.39 0.64		19256 3	<u> </u>
8 21 815,4 81	926 0.06		0.2452	V8255 3	
	798 0.00			19255 3	<u> </u>
10 2-1 819.3 81	973 0.00	1.41 0.64	0.2452	5025-3	<u> </u>
30 82.274					
					<u> </u>
<u> </u>					<u> </u>
	6012	1.36			
80	1995	1.1	<u> </u>		
37,980 857	4365		0 0117		
14:38 5			0.243		
Moisture Data		stack Information	I	field Calculations	
Initial Final Net	Rinse Electric	•	Sample Vo	ol., dscf:	
Impinger #1 100 170 70	Probe S	tand YES NC		% H ₂ O:	
Impinger #2 104 4	Port Th	reads YES NC		MWs:	
Impinger(s) # O O O	Platform	n Ht.		<u></u>	
Impinger(s) #		······	Stack V	/el, ft/s:	
Silica Gel: 827.5 235.6 9.8			Flow rat	e, acfm:	-12
Total Net / Rinse: 82.	8		Flow rate	, dsfcm:	
Total Sample Volume:				cinetics:	
		······································			

	Isokinetic	Sampli	ing Da	ta Shee	et (Met	hod	29_	_)				
Facility: BU6611	ing well	·	Date: 5	- 26 -	21	Run #:		Perso				
	ty Information		Mata	<u> </u>	ent Inform			Sa	mplin			
Location: TE		~				Cp:			Pstat	ar. <u>C</u>	-1-	85
Fitting:	Length:		ΔH		Noz	.#: 0 o	ivr I		% (0 ₂ :		
Port Height from	m deck:		Filter Bo:	x #: <u>'C</u>	→	D _n :	1-202		% C0	D₂: _		دم 1 1
Stack Dia: 25	.5 - Area: 3.5	47		r #:					% H	20:	8.	0
Upstream from Downstream from	n disturbance:		Prob Pyromete	e #:	2 Um	b. #	\leq	R	un M	ins _	80	
	•	6		1	<u></u>		l					
Initial LC: 0	22 "Hg		LC: <u>0</u>	22	"Но	Cv	clonic Flo	Pitot I w Che	_			
	as Meter Meter T Vol, Ft ³ In	emp, °F Out	Stack Temp, °F	ΔP	ΔН	Meter ACFM	SQRT AP	Probe	emp, °F Filter		ас., "Нg	Notes
	8.1.54	79		0.06	Lyy	0.64	0.245				5	
	30.8	64	932	0.06	1.42	0.64		24		1	5	
3 8 83	3.4	70		0.06	1.43	0.64	the second se	245	× ×	11	21	
4 12 33	6.0	70		0.05		0,59	0.224	214	248		5	
5 16 83	A T	70		0.05	1.20	0.64	0.245	246	240		3	
6 20 84 7 24 84	12.2	72		0.06		0.64	0.245	100			5	
8 28 8	15.9	73	995	0.06	1.37	0.63	0.245				5	-
9 32 80	12.2	74		0.06		0.63	0.245				5	
	50.7	-74	1000	0,06	1.37	0.63	0.512	276	হ্যা		51	
500 40												
										-+	-1	
108	53.2	74	1024	0.06	1.25	0.63	0.245	245	25V	ars 1	5	
2 4 8	55.8	76	1065	0.06	1.32		0.245			4	5	
3 8 8	583	76	1074	0.06	1.21	0.62	0.245			<u>v</u>	5	
14-17-18	92.3	16	1062	0.06	1.32	0.62	0.245		3		옷	
7 7 8	65.8	75	1061	0.06			0245		25'1		5	
7 24 8	68.3	75	107-	10.05	1.09	0.56	0.224	2.46	250		5	
8 28 8	10.5	75	1056	0.05	1,10	0.57	0.224	248	250		5	
7 32 8	72.8	175	1088		1.30	0.61	0.245				5	
16 36 8	75.2		1094	0.06	1.24	0.61	6.2.45	<u>k-</u> 2,4	23.4	2	2	
1 10 0	11656											
	· .										1,22	
						<u> </u>	<u>\</u>				4.	
							 					
	9497	27	10		1210		21/1					
10:41	1.70 1.	5,5	1.001	0	1.318		0.241					
<u> </u>	Moisture Data			St	ack Inform				d Cal			
	Initial Final	Net	Rinse	Electricit	y YES	NO NO	Sample	Vol.,	dscf:			
Impinger #1	770.100 \$40	168		Probe Sta					H ₂ O:			1
Impinger #2	(52) (50) (52) 0	80		Port Thre Platform		s (NO	1	Ν	1Ws:			
Impinger(s) # Impinger(s) #	0 30	· 30		r lationn			Stac	k Vel	ft/s:			
Silica Gel:	77.8.8 802.3	21.5					Flow					
	Total Net / Rinse:]			Flow ra			(<u></u>	2
То	otal Sample Volume			1			% I	sokin	etics:			

156

• .

Ŀ

та́та́•,•	α <u>1'</u>	. <u>01</u>	1 (1 8 - 1	1 1 ~	, ())			
	Sampling Da	ita Shee	et (Met	hod 🚄		_)			
Facility: BW66/1119 Well	Date: 🧲	-26-7	21	Run #:	2 1			SAIB	
Facility Information			ent Ínform	nation				g Inform	
Location: IEB 50	Mete	er #: APE	Y Pite	₀t#:	2		Pba	ar: <u>·2</u> @ ic: <u>*</u> c	185
Port Dia.: 11 / Depth: <		Yd: 1.0		Cp: 🧉			Pstat	ic: <u>e</u> c	Spi
Fitting: Length:		H@: 13	S Noz	<u>. #: Фо</u>	IYB		% ($)_2:$	<u> </u>
Port Height from deck:	Filter Bo			D _n :	5651		% CC		5
Stack Dia: 25.5 " Area: 3.5	Filte	er #: <u>2</u>	Mag		\prec	~	% H ₂	0: 	0
Upstream from disturbance:	Prot	be #:	<u>z</u> Um	.b. #	_	R	un Mi	ins 8	0
Downstream from disturbance: S	6 Pyromet	er #:							
Initial LC:	Final LC: <u>6</u>	100				Pitot I	LC:	6	·
Initial LC: <u>0.00</u> "Hg	CFM @	1-2 '	'Hg	Су	clonic Flo	w Che	eck:		
		ΔΡ	ΔН	Meter	SQRT	Te	mp, °F	Vac.,	Notes
Point Time Gas Meter Meter 1 Vol, Ft ³ In	Out Temp, °F		611	ACFM	-	Probe 1		· · ·	110(03
1 0 882.38	77/084	0.06	124	0160	A-245		241<		
2 4 284.7	-76 1100	0.06		0.60	0.245	2422	Y6 .	5	
3 8 8371	75 1096	0.05		0.55	6.224	2/32	76	15	
4 2 889.2	76 1089	0.05	6.02	0.55	0.244	214	24-	5	
5 16 891.5	76 1110	0.06	121	0.60	0.245	245	241	5	
6 20 894.0	76 1091	0.06		0.60	6.245	246	248	5	
7 24 896.4	76. 1080	0.06	124		0.245	2461	2 Ý 8	5	
8 28 898.8	76 1094	0.06	123		0.245	245	254	_ 5	
9 32 90.2	77 110	0.06			0.245			5	
10 36 903.5	78 1109	0.06	1.2.2	0,60	0.245	26	2¥9_	5'	
514 40							1		
							2/12	31. 1	<u> </u>
1 0 705.9	77 1091	0.06	1.2.3		0.245			<u> </u>	
2 4 408.3	78 1082			0.60	0.245	249		<u>1 7</u>	
3 8 910.7	79 /069	0.05	1.04	<u>0.55</u> 0.55	0.224		251	- 5	1
4 16 7	79 1072	20.05	1.24	0.60		<u> </u>	<u>25 4</u> 25 2	\rightarrow	1
7 25 917	19 10/4	0.06	124	2.61		5			
7 24 920.0	80 1076	0.06	125	0.61	10,013	250		5	
8 28 922.4	80 109	0.06	1.74	0.60	0.245	-244		5	
		10.06	1.25	0.61	0.245			5	
9 32 924,9 10 36 927.3	80/079		126	0.61		250		5	
STAD YO 929 714									
				ļ					
				<u> </u>	<u> </u>	$\left - \right $			<u> </u>
				ļ	1	<u> </u>			<u> </u>
L V74.5-7-	77 1.9	+7 1	<u> , q=</u>	<u>k</u>	1.741				[
13:18 17:101	1.1 460			ſ	0.	1			
Moisture Data		St	ack Inform	nation				culations	
Initial Final	Net Rinse	Electricit		- .	Sample			47.	689
Impinger #1 100 1972-	92	Probe Sta					H ₂ O:		~
Impinger #2 102	2	Port Thre		s (NÖ	7	M	IWs:		
Impinger(s) # 0 2	· Z-	Platform	Ht		-				
Impinger(s) #		-				k Vel,			
Silica Gel: 567.7 480.2	12.2	4			Flow	-	-		
Total Net / Rinse: Total Sample Volume:		-1			Flow ra	ate, ds sokine			4
1 otal Sample volume:				، دوران	1 70 13	SUMII	uus.		

Isokinetic	Sampling Dat	ta Sheet (Me	thod 2	9)	
Facility: Brbbling Well	<u> </u>	-26-21	Run #: 3	Pe		5-BJ/R
Facility Information	Mete	Equipment Informer #: APEX Pite			Sampling Ir Pbar:	23.8^{-1}
Port Dia.: <u>4</u> /// Depth: <u>5</u> Fitting: Length:	4- X			4	Pstatic:	~ 0, 0 2
Fitting: Length:	ΔH	@: 1.85 No	Cp: 0.81 z. #: 0014	[B]	% O ₂ :	15 3
Port Height from deck:	Filter Box Filter		D _n : g. #:] كە	% UO ₂ :	5
Stack Dia: 25.54 Area: 3.5 Upstream from disturbance: >>	Prob		nb. #	-	Run Mins	8.0
Downstream from disturbance:	7 Pyromete				-	<u> </u>
Initial LC:	Final LC: c · c		a 1		tot LC:	
CFM @"Hg	CFM @	I]_"Hg	Cyclo	mic Flow	Check:	
Point Time Gas Meter Meter To 3:59 Vol. Ft ³ In		ΔP ΔH		SQRT	Temp, °F obe Filter Imp.	Vac., Notes
Vol, Fr' In 932.251	Out Temp, °F	0.06 1.29	ACFM		824124	"Hg
2 4 934.2		0.06. 1.41			102Y2	5
3 8 937.4		0.06 1.40	6.64 0	245 2	BAY	3
Y 12 940.0		0.05 1.19	0.57 0.	224 24	1) 247	<u>5</u>
2 20 9W.7		0.06 1.40	0.64 0.	245 24	1212	5
7 24 947.3	82 979	0.06.1.41	0.65 0	245 2	16 245	8
8 28 949.9		0.06 1.40	0.64 0.	2452	15246	2
9 32 952 5 10 36 958 1		0.06 1.40		2452	13246	5
0 40 72.1		0.00 1.70	0.04 0			2
	82 972	1 112	1.5	21/00	1000 010	
2 4 960.3	82 973	0.06 1.42		245 2	45250 45	5
3 8 962.9	83 972				45250	5
4 12 965.5		0.06 1.42			45 250 0	5
5 16 968.		0.06 1.45	0.65 0	295 2	Y6-248	5
7 24 973.1	81 972	0.05 1.18			14 25 4	5
8 28 975.5	81 968	0.06 1.42	0.65 0	245 2	15250	5
9 32 978.2		0.06 .43	0.65 0	2452	46251	5
10 36 980.8 Nal 40 992,408	80 28	0.06 1.43	0.650	243 2	1525 5	5
1 985/100						
E115-7 8	7 971	7 171	7	241		
15:22 21.12 01	*7 176.	1.30	1 0	161		
Moisture Data		Stack Inform			Field Calculat	tions
Initial Final		Electricity YE Probe Stand			ol., dscf: % H ₂ O:	4356
Impinger #1 100 15.7 Impinger #2 100 100	the second se	Port Threads YE	A		MWs:	<u></u>
Impinger(s) # O -1		Platform Ht.				
Impinger(s) #					Vel, ft/s:	
Silica Gel: Box . > Bok. 9 Total Net / Rinse:	6.6			Flow rat Flow rate		
Total Sample Volume:					kinetics:	
· · · · · · · · · · · · · · · · · · ·						

Bubbling Well IEB 50 TRAVERSE POINT LAYOUT (PARTICULATE) **CIRCULAR STACKS OVER 24 INCHES**

25.5 inches

32.0 inches

156.0 inches

5.00 inches

1.255 Pass

6.118 Pass

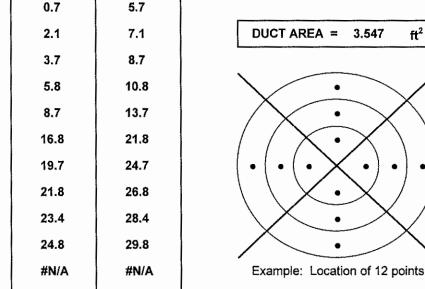
20

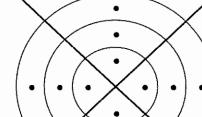
10

2 see note

0.663 Fail - relocate

Outside port


Distance (in)


Α 0 В flow Inlet

3.547

ft²

-

Note: No traverse point shall be within 1.0" of the stack walls (see Sections 11.3.1)

#N/A

Stack diameter:

Port length:

Total points:

Inside wall

Distance (in)

Points per port:

Upstream diameter (A):

Downstream diameter (B):

Number of ports being used:

Equivalent upstream diameter (A):

% Diameter

2.6

8.2

14.6

22.6

34.2

65.8

77.4

85.4

91.8

97.4

#N/A

#N/A

Equivalent downstream diameter (B):

All points at least 1.0" from stack wall:

Point

1

2

3

4

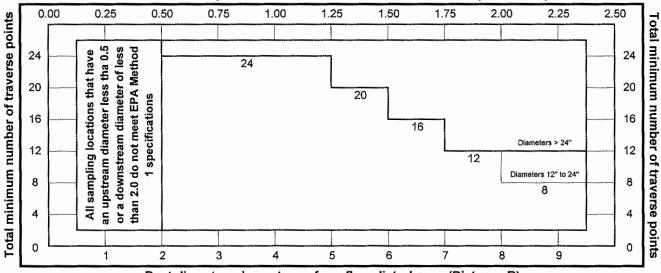
5

6

7

8

9

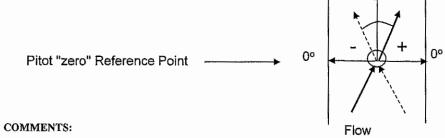

10

N/A

N/A

Duct diameters upstream from flow disturbance or stack exit (Distance A)

#N/A

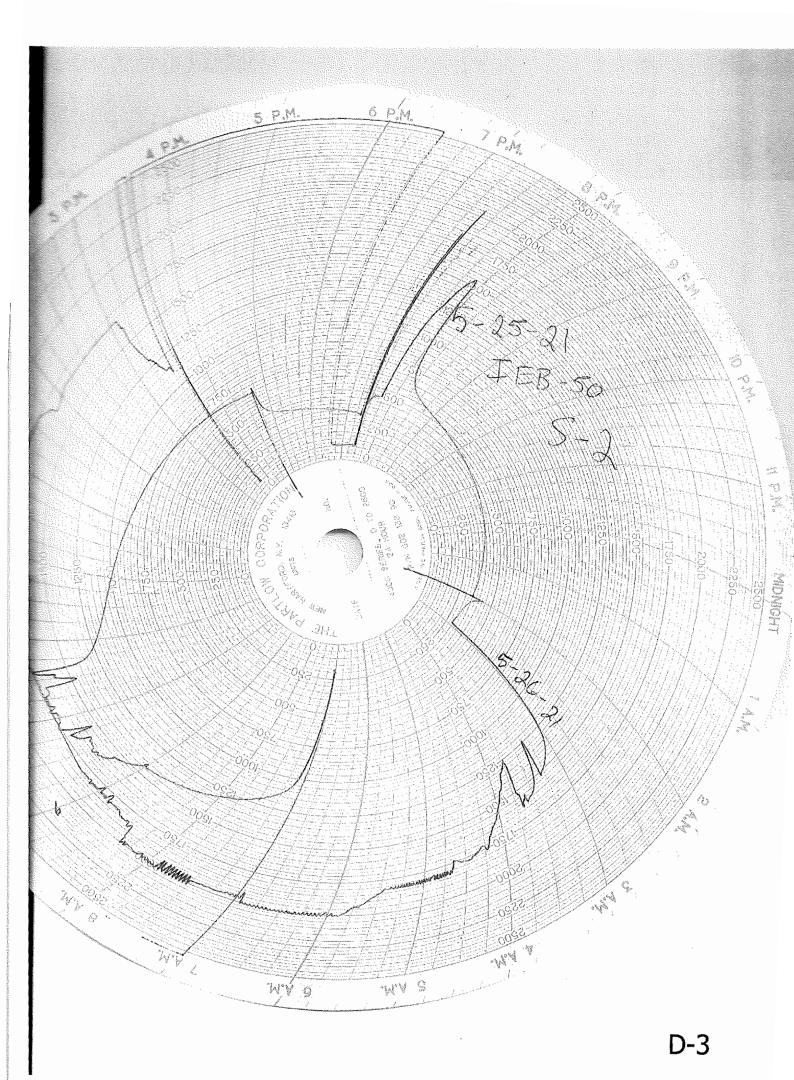


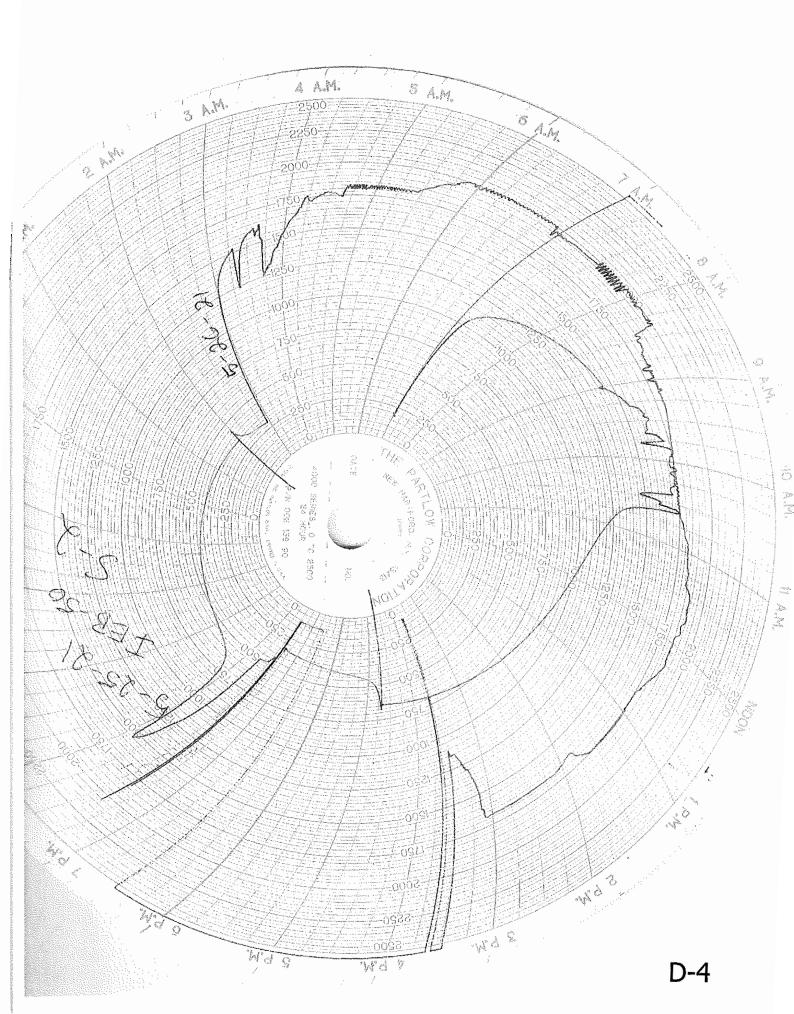
Duct diameters downstream from flow disturbance (Distance B)

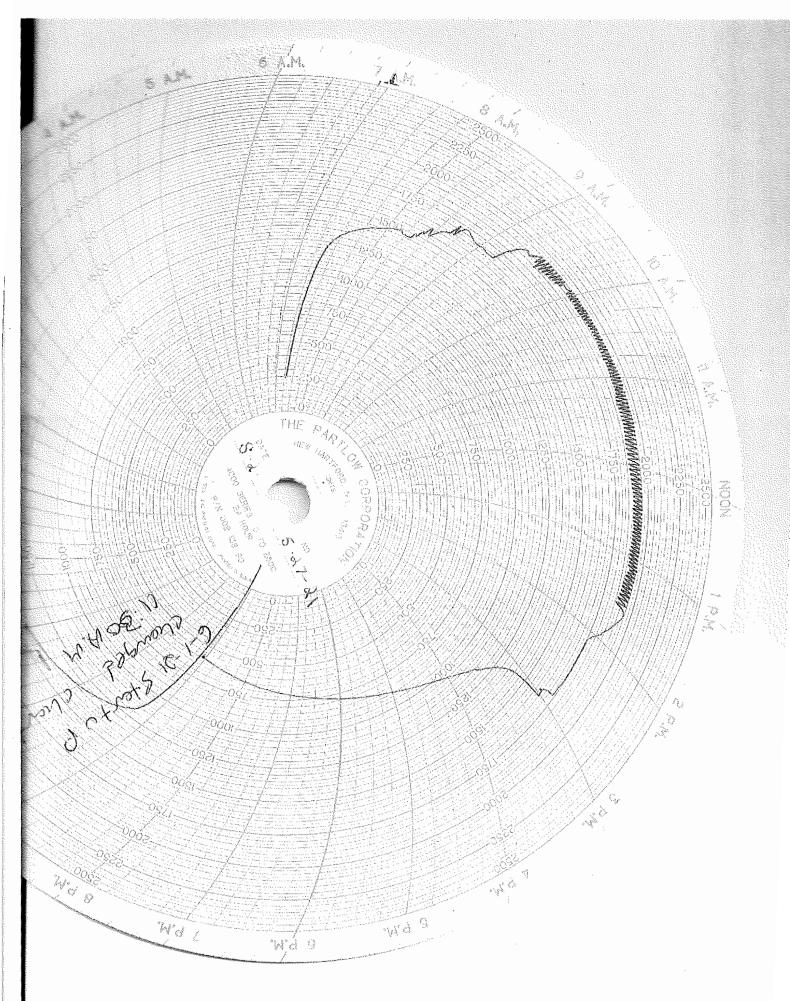
Livermore, CA 925 455-9474

1 2 3 4 5 6 7 8 7 9 9 10 10	42	Meter #	₽Z-4 \ +/-		Pitot # *P Pitot Cp:	12 48 0.8			ling Data P Static: Pitot LC:	
rti Dia. stream Dist. stream Dist. Ciock int Ciock C	Delta P Delta P Degrees C C C C	Probe #	PIZ-41	کی Angle @	Pitot Cp: Mag.#	<u>0.</u> 8				
thing Type: aek Dia. astream Dist. wastream Dist. int Ciock / Z 3 4 5 6 7 & 9 /0	"Length: "Area: Delta P Degrees O O O O O O O O O			Les Angle @	Mag.#				Pitot LC:	
ack Dia. Instream Dist. Clock (@) I Clock	"Area: Delta P Degrees O O O O O O O			Angle @		LSII			Pitot LC:	
sstream Dist. winstream Dist. (Clock (20) 1 2 3 4 4 5 6 7 9 9 1 1 2 3 4 1 2 3 4 1 5 6 7 9 7 1 1 1 1 1 1 1 1 1 1 1 1 1	Degrees			Angle @		LSI				
int Time @	Degrees			Angle @	Umb.#		[199329999	
int Time @ 1 - <td>Degrees</td> <td>Port</td> <td>+/-</td> <td>1</td> <td></td> <td></td> <td> 1</td> <td></td> <td></td> <td></td>	Degrees	Port	+/-	1			 1			
int Time @ 1 - <td>Degrees</td> <td>Port</td> <td>+/-</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>0.0000000000000000000000000000000000000</td> <td></td>	Degrees	Port	+/-	1			1		0.0000000000000000000000000000000000000	
1 Z 3 4 4 5 6 7 8 9 10 10	0 0 0 0	Port	+/-	0.0 Delta P			1			
3 41 5 6 7 8 9 9 10	0 0 0 0				T					
3 4 5 6 7 8 9 9	0 0 0 0									
4 5 6 7 8 9 7 7 8 9	е 0									
4 6 7 8 9 10	е 0									
2 6 7 8 9 10	0									
6 7 8 9 10	5									
7 & 9 /0	5									
9										
/0	0							~		
	Ø									
,	D									
1										
	0									
2	2									
3	O									
4	Z.,									
5	2									
6	0	 								
7	0									
8	2									
9	0	 		1						
10	0									
							 		 	-
		 					 1			
		 L					 ļ		 	
		 			ļ				 	
		1					 		 	
								l		

Cyclonic Flow Check Data Sheet


C-16


APPENDIX D PROCESS INFORMATION


Bubbling Well Cremation Data for IEB 50 Source Testing per BAAQMD Requirements # Pets: **Run Time Total Weight: Cremation Date:** 2,374 6.75 5/27/2021 lbs 91 hours 2,037 6.25 5/26/2021 84 lbs hours 5/25/2021 53 5.50 1,528 hours lbs 5,939 228

lbs

total:

D-5

APPENDIX E EQUIPMENT CALIBRATION

BEST ENVIRONMENTAL METHOD 5 PRE-TEST CONSOLE CALIBRATION **USING CALIBRATED CRITICAL ORIFICES**

5-POINT ENGLISH UNITS

Calibration Conditions

Meter Console Information	
Console Model Number	APEX1
Console Serial Number	
DGM Model Number	
DGM Serial Number	

00:0 튑 in Hg 30.1 14.2 5-Jan-21 Burt Kusich Time Theoretical Critical Vacuum Calibration Technician Barometric Pressure Date

	Factors/Conversions	
Std Temp	528	Å
Std Press	29.92	in Hg
Ķ	17,647	oR/in Hg

¹ For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orlice Coefficient, K', must be entered in English units, (ft^{3-o}R^{1/2})/(in.Hg*min).

				[
	Actual	Vacuum		in Hg	16	16	15	14	10		
	Amb Temp	Final	(t _{bemb})	٩Ł	73	76	64	64	64		
Critical Orifice	Amb Temp	Initial	(t _{amb})	4,	71	73	76	64	64		
	Coefficient		¥	see above2	0.2323	0.3349	0.4442	0.5883	0.8043		
	Serial	Number			SF40	SF48	SF55	SF63	SF73		
Calibration	Outlet Temp	Outlet Temp	Final	(t _{md})	4	63	65	66	67	68	
	Outlet Temp	Initial	(t _m 1)	de la	83	ន	65	99	67	Results	
Metering Conso	Volume	Final	(Vm/V)	cubic feet	902.906	911.700	918.727	923.400	928.540		
	Volume	Initial	(Vm)	cubic feet	898.350	902.906	911.700	918.727	923.400		
	DGM Orifice	ΡŲ	(P _m)	in H ₂ O	0.3	0.6	1.1	1.9	3.3		
Run Time		Elapsed	(0)	ШU	15.0	20.0	12.0	7.0	5.0		
	Metering Console	DGM Orifice Metering Console Outlet Temp Outlet Temp Critical Orifice DGM Orifice Volume Outlet Temp Outlet Temp Serial Coefficient Amb Temp	DGM Orifice Volume Volume Outlet Temp Critical Orifice DGM Orifice Volume Volume Outlet Temp Serial Coefficient Amb Temp AH Initial Final Initial Final Number Initial Final	Metering Console Metering Console Critical Orifice DGM Orifice Volume Volume Outlet Temp Catificient Amb Temp AH Initial Final Initial Final Number Initial Final (P _m) (V	Metering Console Metering Console Critical Orifice DGM Orifice Volume Volume Outlet Temp Confrice M Initial Final Outlet Temp Serial Coefficient Amb Temp M Initial Final Number Number Final Number (Pa) (Vai) (Vai) (Vai) (Vai) (Pai) (Pai) in H ₂ O Unitial Final Number K (Ian) (Pai) in H ₂ O Unitial Final Number K (Ian) (Ian)	Metering Console Metering Console Critical Orifice Critical Orifice DGM Orifice Volume Volume Outlet Temp Outlet Temp Amb Temp	Metering Console Metering Console Critical Orifice Critical Orifice Critical Orifice DGM Orifice Initial Final Unital Final Amb Temp Amb Temp	Metering Console Metering Console Metering Console Critical Orifice Critical Orifice NH Initial Final Outer Temp Serial Coefficient Amb Temp Amb Temp	Metering Console Configue Configue <th cols<="" td=""><td>Metering Console Metering Console Metering Console Context Temp Critical Orifice AH Initial Final Initial Final Critical Orifice Amb Temp Amb Temp Amb Temp Amb Temp AH Initial Final Initial Final Number Coefficient Amb Temp Amb Temp</td></th>	<td>Metering Console Metering Console Metering Console Context Temp Critical Orifice AH Initial Final Initial Final Critical Orifice Amb Temp Amb Temp Amb Temp Amb Temp AH Initial Final Initial Final Number Coefficient Amb Temp Amb Temp</td>	Metering Console Metering Console Metering Console Context Temp Critical Orifice AH Initial Final Initial Final Critical Orifice Amb Temp Amb Temp Amb Temp Amb Temp AH Initial Final Initial Final Number Coefficient Amb Temp Amb Temp

		AH®	Variation	(@H@)		0,08	0.08	0.02	-0.03	-0.15	AH@ Average
		AF	0.75 SCFM	(@HV)	in H2O	1.932	1.927	1.866	1.820	1.700	1.849
	Dry Gas Meter	Flowrate	Std & Corr	(Qm(aut)(corr))	ctm	0.303	0.436	0.581	0.774	1.058	
	Dry Ga	Calibration Factor	Variation	(AY)		-0.04	-0.04	-0.04	0.12	-0.01	Y Average
Results		Calibrati	Value	ω		0.982	0.977	0.979	1,143	1.013	1,019
			Orifice	(O _{er(atd)})	cfm	0.303	0.436	0.581	0.774	1.058	
			Critical Orifice	(VCr(etta))	cubic feet	4.547	8.720	6.969	5.415	5.288	
	Standardized Data		Dry Gas Meter	(Q _{m(std)})	cſm	0.309	0.446	0.593	0.677	1.044	
			Dry Ga	(V _{in(tabl})	cubic feet	4.631	8.928	7.122	4.736	5.218	

I certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods. CFR 40 Part 60, using the Precision Wet Test Meter # 535476, FT 40 Part 60, using the Precision Wet Test Meter # 535476, Signature: On File

1/5/2021 Date:

TYPE K THERMOCOUPLE READOUT CALIBRATION

Meter Box:Apex 1Technician:BKDate:1/5/2021Next Cal Due:7/5/2021

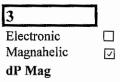
Test T/C °F	Ref. T/C °F	Difference ^o F	% Difference	Results
59	60	1	1.7	Pass
99	100	1	1.0	Pass
200	200	0	0.0	Pass
299	300	1	0.3	Pass
397	400	3	0.8	Pass
497	500	3	0.6	Pass
599	600	1	0.2	Pass
698	700	2	0.3	Pass
898	900	2	0.2	Pass
1098	1100	2	0.2	Pass
1297	1300	3	0.2	Pass
1497	1500	3	0.2	Pass
1697	1700	3	0.2	Pass

Comments:	Referance Omega tc simulator. CL300-2100f s/n 710						
Equipment Condition:	Good	🔿 Fair	() Poor	O Repaired			
Reference Thermon	neter. ASTM mer	cury in glass.			Pre Cal:	\checkmark	
Method Reference: EPA QA Handbook Vol. III: Stationary Source Specific Methods, Sect. 3.5.2.2 Post Cal:							
Tolerance Limi	ts: ±4 °F at ≤4	00oF, ±1.5% :	at ≥400oF.				
Calibration Frequer	cy: 6 Months				NIST Pyromete	r: T223406	
The results sub-	nitted herein a	are true to the	best of my knowle	edge.	ASTM Thermomete		
Technicians Sig	nature:	Robert	Jallag	ther	NIST Thermocoupl	e: OM121120934	

\ZENA-W2K\users\NEWEST CALIBRATIONS\NEWEST CAL

Differential Pressure Gauge Calibration

Meter Box: Technician: Date: ID No. Next Cal Due:	LSI 1 Burt Kusich 1/6/2021 W37VYF 7/6/2021				Scale:	5 Electronic Magnahelic dH Mag	
	+/-	Guage ∆P	Ref. Manometer	Difference ∆P	% Difference	Results	
	. +	0.94	0.94	0.0	0.0	Pass	
	+ .	1.75	1.8	0.1	1.0	Pass	
	+	3.5	3.5	0.0	0.0	Pass	
	-	0.84	0.86	0.0	0.4	Pass	
	_	1.62	1.64	0.0	0.4	Pass	
	-	4.6	4.6	0.0	0.0	Pass	
Comments:							
Equipment Condition:	Good	() Fair	O Poor	○ Repaired			
Acceptance limit	-			1	Pre Cal: Post Cal:		
Calibration Free		-	[60,App. A, Method	1.2	Post Cal:		
Cambradion 1100	queney. o monti				STD Used:	0-10" Manometer	r
The results subr	nitted herein are	e true to the bes	st of my knowledge.				
Technicians Sig	nature:	Bust Kusich					


169

E-4

Differential Pressure Gauge Calibration

Meter Box:	LSI 1
Technician:	Burt Kusich
Date:	1/6/2021
ID No.	R01081230N10
Next Cal Due:	7/6/2021

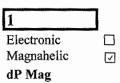
Scale:

Difference ∆P % Difference +/-Guage ∆P **Ref.** Manometer Results +0.52 0.51 0.0 -0.3 Pass +1.31 1.31 0.0 0.0 Pass +2.5 2.5 0.0 0.0 Pass 1 1 0.0 0.0 Pass -1.85 1.85 0.0 0.0 Pass _ 2.8 2.8 0.0 0.0 _ Pass

.

Comments:						
Equipment	Good	O Fair				
Condition:	G Good		O Poor	O Repaired		
Acceptance limit: Agre	e within 5% of	inclined manon	neter		Pre Cal:	\checkmark
Method Reference: Coo	le of Regulation	ns,40 PT60,App	A, Method 2		Post Cal:	
Calibration Frequency:	6 Months					
					STD Used:	0-10" Manometer
The results submitt	ted herein ar	e true to the	best of my knowledge	ð.		

Technicians Signature: Burt Kusich


170

E-5

Differential Pressure Gauge Calibration

Meter Box:	LSI 1
Technician:	Burt Kusich
Date:	1/6/2021
ID No.	W38URH
Next Cal Due:	7/6/2021

Scale:

Difference ΔP % Difference +/-Guage ∆P **Ref. Manometer** Results +0.27 0.26 0.0 -1.0 Pass +0.44 0.43 0.0 -1.0 Pass +0.86 0.86 0.0 0.0 Pass 0.2 0.2 0.0 0.0 Pass -0.56 0.55 0.0 -1.0 Pass -1 1.00 0.0 0.0 Pass -

Comments:							
Equipment	Good	O Fair	0 Parts	O Benefited			
Condition:	Cood		O Poor	O Repaired			
Acceptance limit:	Agree withir	1 5% of incli		Pre Cal:	J		
Method Reference	: Code of Re	egulations,40	PT60, App. A, Met	hod 2	Post Cal:		
Calibration Freque	ncy: 6 Mont	ths					
					STD Used:	0-10" Manometer	
The results submit	ted herein ar	e true to the	ge.				

Technicians Signature: Burt Kusich

171

TYPE K THERMOCOUPLE READOUT CALIBRATION

Meter Box:	LSI 1
Technician:	Burt Kusich
Date:	1/6/2021
Next Cal Due:	7/6/2021

Results	% Difference	Difference °F	Ref. T/C °F	Test T/C °F
Pass	0.0	0	61	61
Pass	1.0	1	100	99
Pass	-0.5	-1	200	201
Pass	0.3	1	300	299
Pass	0.3	1	400	399
Pass	0.2	1	500	499
Pass	0.7	4	600	596
Pass	0.6	4	700	696
Pass	-0.1	-1	900	901

.

Comments:		R	eferance Omega to	simulator. CL30	0-2100f s/n 710	
Equipment Condition:	l Good	🔿 Fair	O Poor	○ Repaired		
Reference Thermor	neter. ASTM mer	cury in glass.			Pre Cal:	√
Method Reference:	EPA QA Handbo	ok Vol. III: Stati	onary Source Specific	Methods, Sect. 3.5.2.	2 Post Cal:	
Tolerance Limi	ts: ±4 °F at ≤4	00oF, ±1.5%	at ≥400oF.			
Calibration Freque	ncy: 6 Months				NIST Pyrometer:	T223406
The results sub	mitted herein a	ire true to the	best of my knowle	edge.	ASTM Thermometer:	3304RM
			ñ,	- 1	NIST Thermocouple:	OM121120934

Technicians Signature:

Robert Gallagher

BEST ENVIRONMENTAL METHOD 5 PRE-TEST CONSOLE CALIBRATION	USING CALIBRATED CRITICAL ORIFICES	5-POINT ENGLISH UNITS	ole information Calibration Conditions Factors/Conversions	LSI 1 544 Temp 528 °R	Barometric Pressure 29.8 in Hg Std Press 29.92 in Hg
				LSI 1	
			Meter Console Information	Console Model Number	Console Serial Number

.

Console Model Number	SI 1	ã
Console Serial Number		ល័
DGM Model Number		Ē
DGM Serial Number		ļ
		L

Date	Time	January 6, 2021	006
Barometric Pressure		29,8	in Hg
Theoretical Critical Vacuum ¹		14.1	în Hg
Calibration Technician		Burt Kuscih	

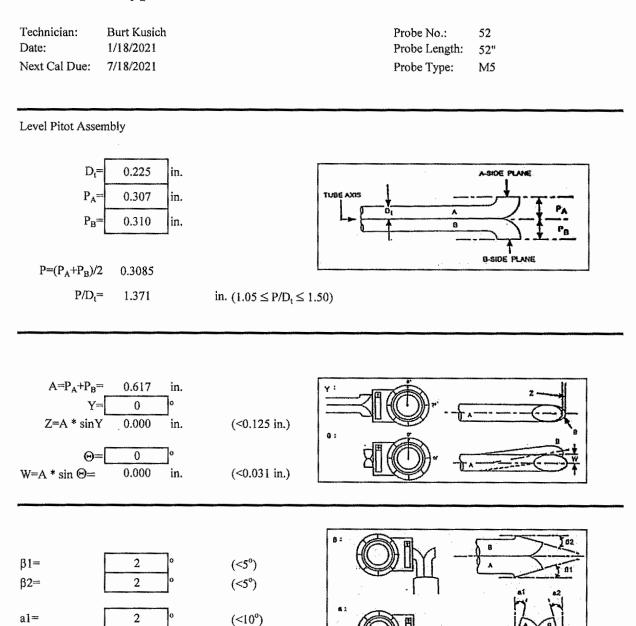
oR/in Hg n Hg

Ł

29.92 17.647

oretical Critical Vacuum shown above.	
ĥe	
acuum should be 1 to 2 in. Hg greater than the Theoretic:	
greater	
문	1
È	
3	
₽	
ė	
P P	
E	
ŝ	
Ē	
2CL	
Š	
nai	1
Act	1
he	,
s, t	
Ĕ	
res	;
alid test results, the Actual Vacuum	
đ	
vali	
'n	

¹ For valid test results, the Actual Vacuum sho	¹ For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum
² The Critical Orifice Coefficient, K', must be entered	² The Critical Orifice Coefficient, K', must be entered in English units, (ft ^{3+o} R ¹²)/[in.Hg ⁺ min).


				Calib	Calibration Data					
Run Time			Metering Console	9				Critical Orifice		
	DGM Orifice	Volume	Volume	Outlet Temp	Outlet Temp	Serial	Coefficient	Amb Temp	Amb Temp	Actual
Elapsed	ΨV	Initial	Final	Initial	Final	Number		Initial	Final	Vacuum
(0)	(FL)	(Vnu)	(Vm)	(t _{mt})	(tmg)		¥	(t _{amb})	(t _{amb})	
min	in H ₂ O	cubic feet	cubic feet	۴	۶		see above2	Ч¢	4,	in Hg
16.0	0.4	36.800	41.570	60	60	SF40	0.2323	60	60	15
13.0	0.7	41.570	47.040	60	60	SF48	0.3349	90	60	15
15.0	1.3	47.040	55.793	60	61	SF55	0.4442	60	61	15
12.0	2.3	55.793	65.088	61	60	SF63	0.5683	61	60	14
7.0	4,5	65.088	72.510	60	60	SF73	0.8043	90	60	12
				Results						

			tion	(Ø)		0	6	2	4	6	verage	
		AH @	Variation	(AAH@)		0.20	-0.19	-0.07	-0.04	60.0	∆H@ Average	
		0.75 SCFM	(@HV)	in H2O	2.476	2.088	2.210	2.241	2.371	2.277		
Dry Gas Meter	as Meter	Flowrate	Std & Corr	(Qnu(std)(con))	cfm	0.304	0.438	0.580	0.768	1.051		
	Dry G	Calibration Factor	Variation	(AY)		0.01	0.03	-0.01	-0.02	-0.02	Y Average	
Results			Calibrat	Vatue	ω		1.006	1.027	0.981	0.976	0.969	0.992
			Critical Orifice	(Q _{er(std)})	cfm	0.304	0.438	0.580	0.768	1.051		
			Critical	(Vcr(sad))	cubic feet	4.857	5.689	B.703	9.221	7.358		
	Standardized Data		Dry Gas Meter	(Q _{m(std)})	ctm	0.302	0.426	0.591	0.787	1,084		
			Dry G	(V _{m(set)})	cubic feet	4.829	5.541	8.872	9.444	7.589		

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02. Note: For Calibration Factor dHa, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

I certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR 40 Part 60, using the Precision Wet Test Meter # 535476, which in turn was calibrated using the American Bell Prover # 3785, certificate # F107, which is traceable to the National Bureau of Standards (N.I.S.T.). Signature: Burt Kusich Burteau Meter Burteau of Standards (N.I.S.T.).

1/6/2021 Date:

S-Type Pitot Tube Geometric Calibration Data Sheet

Pitot tube meets or exceeds all specifications, criteria and/or applicable design features and is hereby assigned a pitot tube
certification factor of 0.84. As per 40 CFR Pt. 60 App. A, Reference Method 2

O Repaired

(<10°)

O Poor

al & a2 (<10°), b1 & b2 (<5°). Z < 0.125 in. & W < 0.031 in.

⊖ Fair

2

Good

Tolerance limits from:

a2==

Comments:

Pitot Condition:

 Standards of Performance for New Stationary sources, Federal Register 36 (247) December 233,1971.
 Valbra, R.F., "The Effects of Impact Opening Misalignment on the Value of the Type-S Pitot Coefficie Emission Measurement Branch, Research Triangle Park, NC, October 1976.

The results submitted herein are true to the best of my knowledge.

Technicians Signature: On File

VZENA-W2K/users/NEWEST CALIBRATIONS/NEWEST CALIBRATIONS/PROBE CALS FOLDER/PR 52 MS/PR 52, 1-18-21.xisx

PROBE HEATER THERMOCOUPLE CALIBRATION

Technician:	Burt Kusich		
Date:	1/18/2021	Pitot No.:	52
		Pitot Length:	52"
Next Cal Due:	7/18/2021	Probe Type:	Pitot

Test T/C °F	Ref. T/C °F	Difference ^o F	% Difference	Results
78	78	0.0	0.0	Pass
190	192	2.0	1.0	Pass
258	260	2.0	0.8	Pass

Comments:

Equipment	Good	O Fair		
Condition:	Cood	U Fall	O Poor	O Repaired

Reference Thermometer. ASTM mercury in glass.

Method Reference: EPA QA Handbook Vol. III: Stationary Source Specific Metho, Sect. 3.5.2.2 Tolerance Limits: ± 4 °F at ≤ 4000 F, $\pm 1.5\%$ at ≥ 4000 F.

 \checkmark

Calibration Frequency: 6 Months

The results submitted herein are true to the best of my knowledge.

Technicians Signature: On File

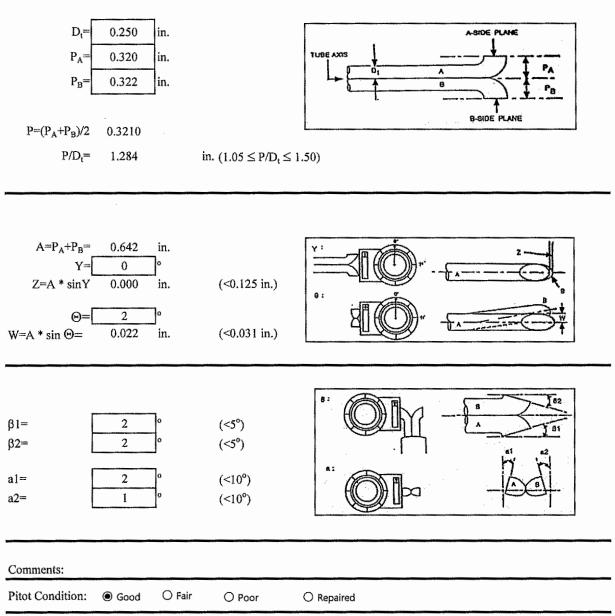
\ZENA-W2K\users\NEWEST CALIBRATIONS\NEWEST CALIBRATIONS\PROBE CALS FOLDER\PR 52 M5\PR 52, 1-18-21.xlsx

TYPE K THERMOCOUPLE CALIBRATION

Technician:	Burt Kusich		
Date:	1/18/2021	Pitot No.:	52
		Pitot Length:	52"
Next Cal Due:	7/18/2021	Probe Type:	Pitot

Test T/C °F	Ref. T/C °F	Difference °F	% Difference	Results
54	54	0.0	0.0	Pass
211	211	0.0	0.0	Pass
348	350	2.0	0.6	Pass

Comments:						
Equipment Condition:	Good	○ Fair	O Poor	O Repaired		
Reference The	rmometer. AST	M mercury in	n glass.		Pre Cal:	\checkmark
			ol. III: Stationary Sou	rce Specific M	ethe Post Cal:	
Tolerance Lim	its: ±4 °F at ≤4	00oF, ±1.5%	at ≥400oF.			
Calibration Fre	quency: 6 Mor	nths			NIST Pyrometer:	T223406
The results sub	mitted herein a	re true to the	best of my knowled	ze.	ASTM Thermometer:	3304RM
					NIST Thermocouple:	OM121120934


Technicians Signature: On File

\ZENA-W2K\users\NEWEST CALIBRATIONS\NEWEST CALIBRATIONS\PROBE CALS FOLDER\PR 52 M5\PR 52, 1-18-21.xlsx

S-Type Pitot Tube Geometric Calibration Data Sheet

Technician:	Burt Kusich	Probe No.:	48
Date:	1/18/2021	Probe Length:	48"
Next Cal Due:	7/18/2021	Probe Type:	M5

Level Pitot Assembly

Pitot tube meets or exceeds all specifications, criteria and/or applicable design features and is hereby assigned a pitot tube certification factor of 0.84. As per 40 CFR Pt. 60 App. A, Reference Method 2

a1 & a2 (<10°), b1 & b2 (<5°). Z < 0.125 in. & W < 0.031 in.

Tolerance limits from:

- 15 f

 Standards of Performance for New Stationary sources, Federal Register 36 (247) December 233,1971.
 Valbra, R.F., "The Effects of Impact Opening Misalignment on the Value of the Type-S Pitot Coefficie Emission Measurement Branch, Research Triangle Park, NC, October 1976.

The results submitted herein are true to the best of my knowledge.

Technicians Signature: On File

\ZENA-W2K\users\NEWEST CALIBRATIONS\NEWEST CALIBRATIONS\PROBE CALS FOLDER\PR 48 M5\PR 48, 1-18-21.xlsx

E-12

PROBE HEATER THERMOCOUPLE CALIBRATION

Burt Kusich		
1/18/2021	Pitot No.:	48
	Pitot Length:	48"
7/18/2021	Probe Type:	Pitot
	1/18/2021	1/18/2021Pitot No.:Pitot Length:

Test T/C °F	Ref. T/C °F	Difference °F	% Difference	Results
77	78	1.0	1.3	Pass
189	190	1.0	0.5	Pass
260	262	2.0	0.8	Pass

Comments:

Equipment Condition:	● Good	⊖ Fair	O Poor	○ Repaired

Reference Thermometer. ASTM mercury in glass.

Method Reference: EPA QA Handbook Vol. III: Stationary Source Specific Metho^[], Sect. 3.5.2.2 Tolerance Limits: ± 4 °F at ≤ 4000 F, $\pm 1.5\%$ at ≥ 4000 F.

 $\overline{\checkmark}$

Calibration Frequency: 6 Months

The results submitted herein are true to the best of my knowledge.

Technicians Signature: On File

\ZENA-W2K\users\NEWEST CALIBRATIONS\NEWEST CALIBRATIONS\PROBE CALS FOLDER\PR 48 M5\PR 48, 1-18-21.xlsx

TYPE K THERMOCOUPLE CALIBRATION

Technician:	Burt Kusich		
Date:	1/18/2021	Pitot No.:	48
		Pitot Length:	48"
Next Cal Due:	7/18/2021	Probe Type:	Pitot

Test T/C °F	Ref. T/C °F	Difference °F	% Difference	Results
54	55	1.0	1.8	Pass
212	212	0.0	0.0	Pass
330	332	2.0	0.6	Pass

Comments:						
Equipment Condition:	Good	() Fair	() Poor	○ Repaired		
Reference The	rmometer. AS7	TM mercury in	ı glass.		Pre Cal:	
Method Reference: EPA QA Handbook Vol. III: Stationary Source Specific Methc Post Cal: □ Tolerance Limits: ±4 °F at ≤4000F, ±1.5% at ≥4000F.						
Calibration Frequency: 6 Months					NIST Pyrometer	T223406
The results submitted herein are true to the best of my knowledge.			edge.	ASTM Thermometer	3304RM	
					NIST Thermocouple:	OM121120934

Technicians Signature: On File

\ZENA-W2K\users\NEWEST CALIBRATIONS\NEWEST CALIBRATIONS\PROBE CALS FOLDER\PR 48 M5\PR 48, 1-18-21.xlsx

METHOD 5 FILTER OVEN THERMOCOUPLE CALIBRATION

Technician:	Burt Kusich
Date:	1/13/2021
ID No.	4
Next Cal Due:	7/13/2021

Test T/C °F	Ref. T/C °F	Difference ^o F	% Difference	Results
82	82	0.0	0.0	Pass
181	180	-1.0	-0.6	Pass
283	282	-1.0	-0.4	Pass

Comments:	Straight Sty	le				
Equipment Condition:	Good	() Fair	O Poor	○ Repaired		
Reference The	rmometer. AST	M mercury in	glass.		Pre Cal:	Ī
Method Refere	ence: EPA QA H	Handbook Vol	. III: Stationary So	urce Specific Me	etho: Post Cal:	
Tolerance Lim	its: ±5.4 °F at a	mbient temper	rature and in hot w	ater bath.		
Calibration Fre	equency: 6 Mon	ths			NIST Pyrometer:	T223406
	• •		est of my knowled	ge.	ASTM Thermometer:	3304RM
			-		NIST Thermocouple:	OM121120934

Technicians Signature: On File

\ZENA-W2K\users\NEWEST CALIBRATIONS\NEWEST CALIBRATIONS\MS FILTER OVEN CALS FOLDER\Oven Cals.xlsx

METHOD 5 FILTER OVEN THERMOCOUPLE CALIBRATION

Technician:	Burt Kusich
Date:	1/13/2021
ID No.	6
Next Cal Due:	7/13/2021

Test T/C °F	Ref. T/C °F	Difference °F	% Difference	Results
80	81	1.0	1.2	Pass
165	166	1.0	0.6	Pass
260	262	2.0	0.8	Pass

Comments:	Straight Style	e				
Equipment Condition:	Good	O Fair	O Poor	○ Repaired		
Reference Therr	Reference Thermometer. ASTM mercury in glass.					v
Method Referen	ce: EPA QA H	andbook Vol	urce Specific M	etho Post Cal:		
Tolerance Limit	Tolerance Limits: ±5.4 °F at ambient temperature and in hot water bath.					
Calibration Frequency: 6 Months					NIST Pyrometer:	T223406
The results subn	nitted herein are	e true to the b	est of my knowled	lge.	ASTM Thermometer:	3304RM
					NIST Thermocouple:	OM121120934
Technicians Sig	nature:	On File				

\ZENA-W2K\users\NEWEST CALIBRATIONS\NEWEST CALIBRATIONS\M5 FILTER OVEN CALS FOLDER\Oven Cals.xlsx

TYPE K THERMOCOUPLE CALIBRATION

Technician:	BK
Date:	1/11/2021
ID No.	Low Flow 12
Next Cal Due:	7/11/2021

	Test T/C °F	Ref. T/C °F	Difference °F	% Difference	Results
Inlet to	34	34	0.0	0.0	Pass
Inlet to	70	71	1.0	1.4	Pass
Inlet tc	140	140	0.0	0.0	Pass
Outlet tc	35	35	0.0	0.0	Pass
Outlet tc	63	64	1.0	1.6	Pass
Outlet to	150	151	1.0	0.7	Pass

						-
Comments:						
Equipment	Good	O Fair	O Poor	O Beneired		
Condition:	0000		O Poor	O Repaired		
Reference Thermo	ometer. AST	M mercury	in glass.		Pre Cal:	2
Method Reference	: EPA QA H	Iandbook V	ource Specific M	ethe Post Cal:		
Tolerance Limits: ± 4 °F at ≤ 400 oF, $\pm 1.5\%$ at ≥ 400 oF.						
Calibration Frequency: 6 Months					NIST Pyrometer:	T223406
The results submit	tted herein a	re true to the	e best of my knowle	dge.	ASTM Thermometer:	3304RM
					NIST Thermocouple:	OM121120934
Technicians Signa	ture:	On file				

1/ZENA-W2K/users/NEWEST CALIBRATIONS/NEWEST CALIBRATIONS/DRY GAS METER CALS FOLDER/LOW FLOW # 12/Low Flow 12 CAL 1 15 2021.xism E-17

				USING C	USING CALIBRATED CRITICAL ORIFICES 5-POINT METRIC UNITS	RFICES		1			
Met	Meter Console Information				Calibration Conditions	suo				Factors/Conversions	
Console Model Number				Date	Time	January 11, 2021			Std Temp	293	¥
Console Serial Number				Barometric Pressure		740	gH mm		Std Press	760	mm Hg
DGM Model Number	14 4799	Low Flow 12		Theoretical Critical Vacuum ¹		349	gH mm		۲,	0.386	
DGM Serial Number				Calibration Technician		Ä					
For valid test results, the	Actual Vacuum should b	ie 25 to 50 mm Hg g	reater than the The	¹ For valid test results, the Actual Vacuum should be 25 to 50 mm Hg greater than the Theoretical Critical Vacuum shown above.	hown above.						
THE CHRICEL OFFICE COEFFICIER, N., MUST DE ERFERD IN METTIC UNIS, M. K. INMHG. MU).	int, N , must be entered in M	erric units, m "K _ h(n	mHg_mn).	Cali	Calibration Data		167	10. TT			
Run Time			Metering Console					Critical Orifice			
	DGM Orifice	Volume	Volume	ð	Outlet Temp	Serial	Coefficient	Amb Temp	Amb Temp	Actual	
Elapsed (0)	AH (P_)	Initial (V_)	Final (V.J)	Initial (L.)	Final	Number	ŝ	Initial	Final	Vacuum	
nіп	0 ² H mm	m.	, ur		°C	-	see above2	°C	CC CC	am Ho	
6.0000	0.2800	3610.000	4116.000	12.0	13.0	SF40	1.9310	12.0	13.0	508	
5.0000	0,6000	4116,000		13.0	13.0	SF48	2.7830		13.0	457	
5.0000	1.1000	4724.000	5526.000	13.0	13.0	SF55	3.6910		13.0	406	
5.0000	1.9000	5526.000	6574.000	13.0	14.0	SF63	4.8890		13.0	330	
5.0000	3.8000	6574.000	7938.000	14.0	14.0	SF73	6.6840		14.0	203	
ALL STOP ALL STOP				Results							
	Standardized Data	Ita			Dry G	Dry Gas Meter					
						Flowrate	© H⊽	1 1			
Dry Gas Meter	s Meter	Critica	Critical Orifice	Value	Variation	Std & Corr	.0212 m ³ w/min	Variation			
unter a contraction of the contr	niana)/ nim/finin	(V~(stal)) m ³	m ³ /min	(1)	(19)	(Company) m ³ /min	mm H2O	(D1100)			
505.641	84.273	507.414	84.569	1.004	-0.002	84.569	0.000	0.000			
606.526	121.305	608.880	121.776	1.004	-0.002	121.776	0.000	0.000			
800.095	160.019	807.538	161.508	1.009	0.004	161.508	0.000	0.000			
1043.769	208.754	1069.643	213.929	1.025	0.019	213,929	0.000	0.000			
1356.382	271.276	1451.086	292.217	. 1.077	0.072	292.217	0.000	0.000			
				1.006	Y Average		0.000	AH@ Average			
ote: For Calibration Factor Y,	the ratio of the reading of the	e calibration meter to th	e dry gas meter, accep	table tolerance of individual va	Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.						
errestify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR 40 Part 60, Whitch in turn was calibrated usion the American Bell Prover # 3785, cartificate # F107 which is traceable to t	Gas Meter was calibrated i usino the American Ball Pr	in accordance with U rover # 3785, certific	SEPA Methods, CFF ate # F107 which is I	R 40 Part 60, using the Prec	using the Precision Wet Test Meter # 11AE6. the National Bureau of Standards (N 1 S T)	6,					- Art -
	Signature	On File				Ianuary 11, 2021					

ctronic Thermometer Calibration Sheet

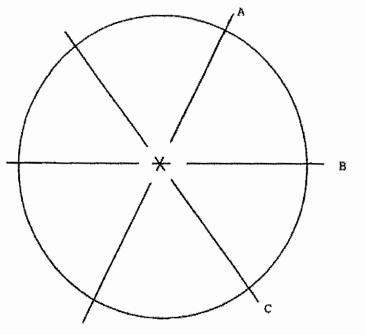
Manufacturer:	Peak Meter	Instrument I.D.:	Bill	
Model #:	PM6501	Calibration Date:	1/6/2021	
Reference Inst. I.D.	Omega CL-300	Cal. Due Date:	7/6/2021	
Operator:	B Kusich			

Reference Temp., ^o F	Instrument Temp., °F	Temp Diff.	% Diff.	Comments
100	103	3		
200	203	3		
300	303	3		
400	403	3		
500	505		0.99%	
600	606		0.99%	
700	705		0.71%	
800	805		0.62%	
900	905		0.55%	
1000	1007		0.70%	
1100	1106		0.54%	
1300	1306		0.46%	
1500	1507		0.46%	
1700	1704		0.23%	
1900	1909		0.47%	

STD - NIST Pyrometer # : COMMENTS: Std. used

223406

Calibration frequency = $6 \mod 6$


, Omega thermocouple simulator, CL300-2100f, s/n 710

 $\pm 4^{\circ}$ F for temperatures <400 °F \pm 1.5% for temperatures >400 °F

Method Reference: 40CFR60

		Nozzle Type:	Method 5	×	
Technician:	Robert Gallagher		Stainless Steel		
Date:	1/5/2020		Glass		
Nozzle No.	Q14C		Quartz	\checkmark	
Nozzle Diamete	er: 0.505		Inconel		
Next Cal Due:	1/5/2021				

Nozzle Geometric Calibration Data Sheet

	A	0.503
	В	0.505
	С	0.506
Average:		0.505
Range:		0.003

O Poor

Comments:

Nozzle

Condition:

🔿 Fair

O Repaired

Reference Method: EPA 5 (section 5.1)

Acceptance Limits: <0.004" range of 3 measurements</pre>

Good

Calibration Frequency: 12 Months


The results submitted herein are true to the best of my knowledge.

Technicians Signature:

Robert Gallagher

		Nozzle Type:	Method 5	▼
Technician:	Robert Gallagher		Stainless Steel	
Date:	1/5/2020		Glass	
Nozzle No.	Q14B		Quartz	\checkmark
Nozzle Diamete	er: 0.505		Inconel	
Next Cal Due:	1/5/2021			

Nozzle Geometric Calibration Data Sheet

O Repaired

	A	0.503
	В	0.505
	С	0.506
Average:		0.505
Range:		0.003

O Poor

Comments:

Nozzle

Condition:

Reference Method: EPA 5 (section 5.1)

Acceptance Limits: <0.004" range of 3 measurements

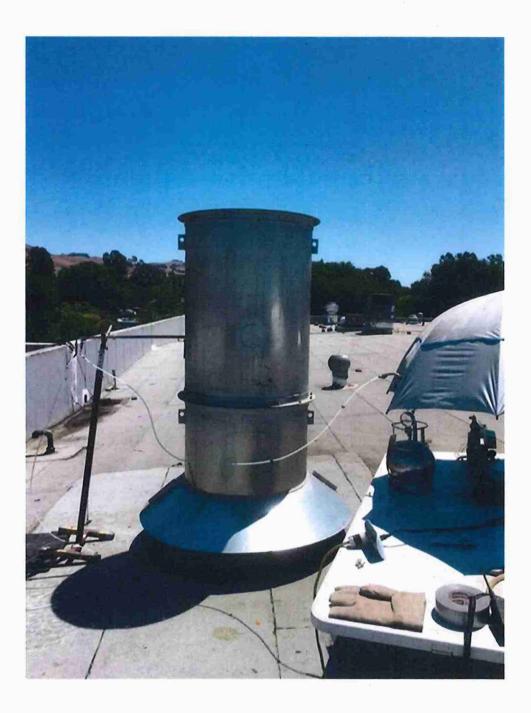
Good

Calibration Frequency: 12 Months

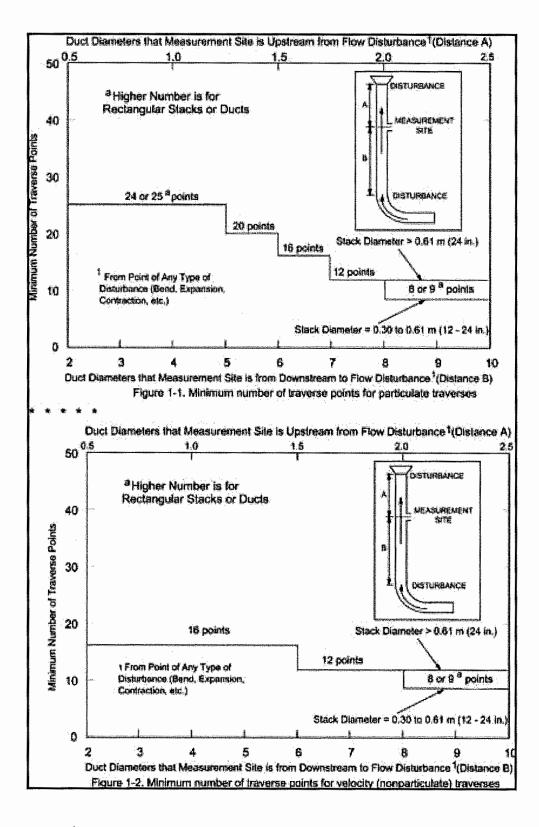
The results submitted herein are true to the best of my knowledge.

O Fair

Technicians Signature:


Robert Gallagher

E-21


APPENDIX F STACK DIAGRAMS

Bubbling Well

Cremation System IEB 50

APPENDIX G SAMPLING SYSTEM DIAGRAMS

EPA METHOD 1

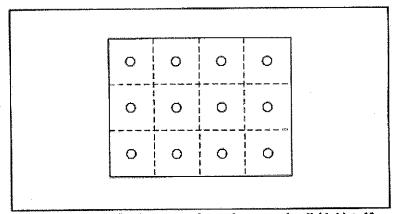
EPA METHOD 1

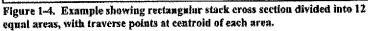
TABLE 1-1 CROSS-SECTION LAYOUT FOR RECTANGULAR STACKS

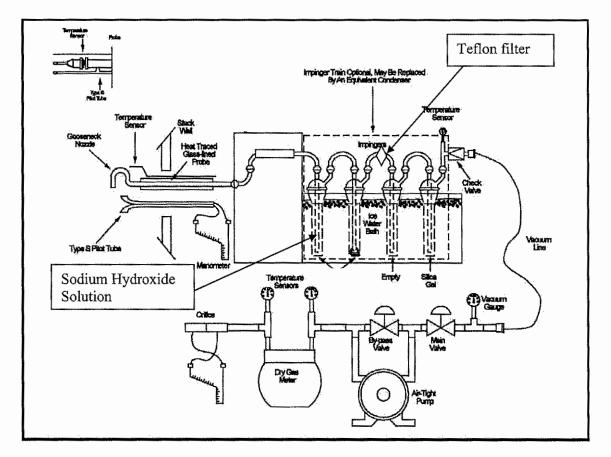
Number of tranverse points layout	Matrix
9	3×3
12	4×3
16	4×4
20	5×4
25	5×5
30	6×5
36	6×6
42	7×6
49	7×7

TABLE 1-2-LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

[Percent of stack diameter from inside wall to traverse point]

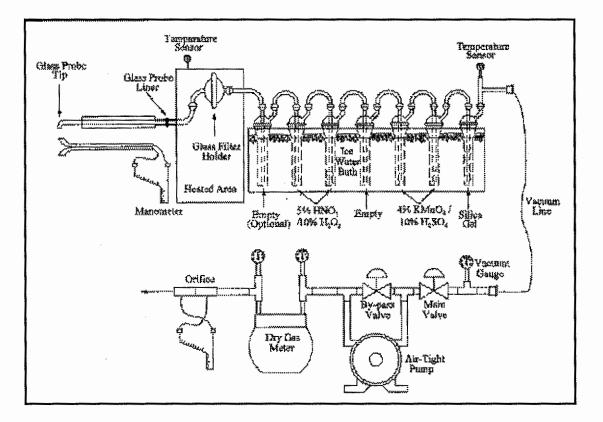

Traverse point			N	Numbe	umber of traverse points on a diameter							
number on a												
diameter	2	4	6	8	10	12	14	16	18	20	22	24
1	14.6	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3		75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4		93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5			85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6			95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7				89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.1
8				96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9					91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.0
10					97.4	88.2	79.9	71.7	61.8	38.8	31.5	27.2
11						93.3	85.4	78.0	70.4	61.2	39.3	32.3
12						97.9	90.1	83.1	76.4	69.4	60.7	39.8
13							94.3	87.5	81.2	75.0	68.5	60.2
14							98.2	91.5	85.4	79.6	73.8	67.7
15								95.1	89.1	83.5	78.2	72.8
16								98.4	92.5	87.1	82.0	77.0
17									95.6	90.3	85.4	80.6
18									98.6	93.3	88.4	83.9
19										96.1	91.3	86.8
20										98.7	94.0	89.5
21											96.5	92.1
22											98.9	94.5
23												96.8
24												98.9

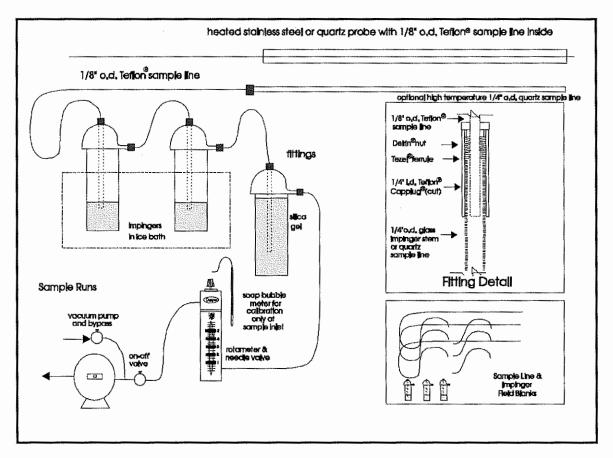

1


Traverse % of diameter Point Distance $1 \quad 4.4$ $2 \quad 14.7$ $3 \quad 29.5$ $4 \quad 70.5$ $5 \quad 85.3$ $6 \quad 93.6$

EPA METHOD 1

Figure 1-3. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.




EPA Method 306

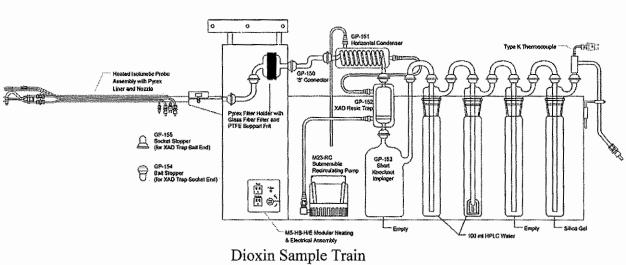
Total & Hexavalent Chromium Sampling Train

EPA Method 29

Particulate/Metals Sampling Train

CARB METHOD 430

Formaldehyde Sampling System


BEST ENVIRONMENTAL

Stack Wall

EPA METHOD TO-15


Summa Canister Sampling Train

00 # 22107

EPA Method 23

EPA Method 26A

HCl & HF Sample Train

G-10

APPENDIX H NST

Bill Johnston

From: Sent: To: Subject: Attachments: Bobby Asfour Friday, June 04, 2021 1:40 PM Bill Johnston FW: NST-6521 : NST Request-Napa Bubbling Well Contractor ST Supplemental Form.docx

From: Gloria Espena <GEspena@baaqmd.gov> Sent: Tuesday, May 25, 2021 9:10 AM To: Bobby Asfour <bobby@best-enviro.com>; Marco Hernandez <MHernandez@baaqmd.gov> Cc: Bob <box24_draw@qualibee.com> Subject: NST-6521 : NST Request-Napa Bubbling Well

From: Bobby Asfour <<u>bobby@best-enviro.com</u>> Sent: Friday, May 21, 2021 11:34 AM To: Gloria Espena <<u>GEspena@baaqmd.gov</u>>; Marco Hernandez <<u>MHernandez@baaqmd.gov</u>> Cc: Bob <<u>box24_draw@qualibee.com</u>> Subject: RE: NST Request-Napa Bubbling Well

CAUTION: This email originated from outside of the BAAQMD network. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Does BAAQMD have any comments or an NST number for this?

Let me know if you have any questions.

Thanks, *Basim Asfour (Bobby)* Best Environmental 339 Stealth Court Livermore, CA 94551 925/455-9474 x103 ph 510/719-0769 cell bobby@best-enviro.com www.best-enviro.com

Please note our new email address

This e-mail transmission contains information that is intended to be confidential and privileged. If you receive this e-mail and you are

not a named addressee please delete and otherwise erase it and any attachments from your computer system. Your assistance in correcting this error is appreciated.

NST-6521 has been assigned the pending 5/25-28/2021 work referenced below.

Also, we've introduced a new, supplemental form to be included when reports are submitted. It's just a sheet intended to help us with processing reports and prioritizing report review. The intention of the email is not to request additional testing. Please complete and submit the attached "Contractor ST Supplemental Form" with the final test report.

NST number(s) that are assigned for each source test notifications are for inner-office tracking purposes only, not an approval of the test plan. (For source testing methodologies please review permit conditions, BAAQMD Regulations and CFR, accordingly). Future notifications and report submittals should be made to GEspena@baagmd.gov and cc: MHernandez@baagmd.gov.

If you have other questions, please contact Marco Hernandez at mhernandez@baagmd.gov.

Thank you,

Gloria M. Espena

Meteorology & Measurements Source Test Section & Performance Evaluation Group The Bay Area Air Quality Management District 375 Beale Street, Ste. 600 | San Francisco, CA 94105 Ofc (415) 749-4725 | Fax (510) 758-3087 gespena@baagmd.gov | www.baagmd.gov

From: Bobby Asfour Sent: Friday, May 14, 2021 6:33 PM To: Gloria Espena (<u>GEspena@baaqmd.gov</u>) <<u>GEspena@baaqmd.gov</u>>; Marco Hernandez <<u>MHernandez@baaqmd.gov</u>> Cc: Bob <<u>box24_draw@qualibee.com</u>> Subject: NST Request-Napa Bubbling Well

Hi Gloria,

Please accept this Notification/Protocol for performing a source test at the above referenced facility. Let me know if you have any questions.

Site Number: Plant Name: Plant Contact Name: Plant Contact Phone: Testing Company: Testing Company Contact Name: Testing Company Phone: Source/Purpose: Description: Parameters & Methods: Flow Rate Hydrogen Chloride 24712 Napa Bubbling Well Bob McGuire 707-226-2380 Best Environmental Bobby Asfour 510-719-0769 Initial Compliance Animal Cremation System

EPA Method 1-4 (Concurrent) EPA Method 26A (3 x 60-min Runs) Hydrogen Fluoride Chlorinated Dibenzodioxins and Furans Polycyclic Aromatic Hydrocarbons (PAHs) Arsenic Beryllium Cadmium Copper Lead Nickel Selenium Chromium, hexavalent Benzene Toluene Acetaldehyde Formaldehyde EPA Method26A (3 x 60-min Runs) EPA Method 0023A (3 x 120-min Runs) EPA Method 0023A (3 x 120-min Runs) EPA Method 29 (3 x 75-min Runs) EPA Method 306 (3 x 75-min Runs) EPA Method 306 (3 x 75-min Runs) EPA Method TO-15 (3 x 60-min Runs) EPA Method TO-15 (3 x 60-min Runs) CARB Method 430 (3 x ~30-min Runs)

1. Minimum Expected Run times are listed above.

Planned Deviations: Test Dates: N/A May 25-28

Let me know if you have any questions.

Thanks, *Basim Asfour (Bobby)* Best Environmental 339 Stealth Court Livermore, CA 94551 925/455-9474 x103 ph 510/719-0769 cell bobby@best-enviro.com www.best-enviro.com

Please note our new email address

This e-mail transmission contains information that is intended to be confidential and privileged. If you receive this e-mail and you are not a named addressee please delete and otherwise erase it and any attachments from your computer system. Your assistance in correcting this error is appreciated.

Bobby Asfour

From:Bobby AsfourSent:Friday, May 14, 2021 6:33 PMTo:Gloria Espena (GEspena@baaqmd.gov); Marco HernandezCc:BobSubject:NST Request-Napa Bubbling Well

Hi Gloria,

Please accept this Notification/Protocol for performing a source test at the above referenced facility. Let me know if you have any questions.

Site Number:	24712
Plant Name:	Napa Bubbling Well
Plant Contact Name:	Bob McGuire
Plant Contact Phone:	707-226-2380
Testing Company:	Best Environmental
Testing Company Contact Name:	Bobby Asfour
Testing Company Phone:	510-719-0769
Source/Purpose:	Initial Compliance
Description:	Animal Cremation System
Parameters & Methods:	
Flow Rate	EPA Method 1-4 (Concurrent)
Hydrogen Chloride	EPA Method 26A (3 x 60-min Runs)
Hydrogen Fluoride	EPA Method26A (3 x 60-min Runs)
Chlorinated Dibenzodioxins and Furans	EPA Method 🖗23🏘 (3 x 120-min Runs)
Polycyclic Aromatic Hydrocarbons (PAHs)	EPA Method 🕸23 🎘 (3 x 120-min Runs)
Arsenic	EPA Method 29 (3 x 75-min Runs)
Beryllium -9.0	EPA Method 29 (3 x 75-min Runs)
Cadmium 112.4	EPA Method 29 (3 x 75-min Runs)
Copper 63.55	EPA Method 29 (3 x 75-min Runs)
Lead 207.2	EPA Method 29 (3 x 75-min Runs)
Nickel 587	EPA Method 29 (3 x 75-min Runs)
Selenium 78.96	EPA Method 29 (3 x 75-min Runs)
Chromium, hexavalent	EPA Method 306 (3 x 75-min Runs)
Benzene	EPA Method TO-15 (3 x 60-min Runs)
Toluene	EPA Method TO-15 (3 x 60-min Runs)
Acetaldehyde	CARB Method 430 (3 x ~30-min Runs)
Formaldehyde	CARB Method 430 (3 x ~30-min Runs)

1. Minimum Expected Run times are listed above.

Planned Deviations:	
Test Dates:	

N/A May 25-28

Let me know if you have any questions.

APPENDIX I PERMIT

XXX	BAY ARE	A AIR QUAL	ITY MANA	GEMENT DISTRICT
			ity to Con not a Permit to (
				Plant No. 24712 Application No. 30522
	is hereb		utive Ct, Napa, CA	
S-1 Animal Cremator, Matthews Model IEB Series 56-4S; total 3.9 MMBTU/hr, 340 lbs/hr, natural gas fired				
Equip	ment above is subi	ect to attached condit	tion no. 27310.	
	Issue date:	December 1, 2020 December 1, 2022	APPROVED BY for	Pamela Leong PAMELA J. LEONG DIRECTOR OF ENGINEERING

Start-up Notification

Instructions: At least seven days before the scheduled initial operation contact your assigned Permit Engineer via email or Complete and send this Start-up Notification to the District via fax or mail.

Engineer:	Youjin Kim, Air (Quality Engineer I	Plant No.	24712
Tel:	(415) 749-5136	Fax: (415) 749-5030	Source No.	S-1
Email:	ykim@baaqmd.go	DV .	Application No.	30522
*	eration of this equ	ipment is scheduled for	(mo	onth/day/year)
Telephone No	0	······································		
Equipment Se	erial No.			

		1000	
BAY AREA AIR QUAI	LITY MANA	GEMENT	DISTRICT
	ity to Co not a Permit to		t
		Арр	Plant No. 24712 lication No. 30522
Bubbling We 40 Exec is hereby granted an <i>Author</i>	utive Ct, Napa, (CA 94558	
S-2 Animal Cremator, Matthew, Mod natural gas fired	el IEB Series 50); total 4.4 MN	MBTU/hr, 450 lbs/hr,
Equipment above is subject to attached condition	on no. 27310.		
		Pamela	Pamela Leong
<i>Issue date:</i> December 1, 2020 <i>Expiration date:</i> December 1, 2022	Approved by	Leong	2020.12.03 08:51:29 -08'00'
Expiration aate. December 1, 2022	for		ela J. Leong dr of Engineering
Start-	up Notif	ication	
<i>Instructions</i> : At least seven days before the schedu or Complete and send this Start-up Notification to t	•	•	assigned Permit Engineer via email
Engineer: Youjin Kim, Air Quality Engineer	I		Plant No. 24712
Tel: (415) 749-5136 Fax: (415) 74	9-5030		Source No. S-2

Application No. 30522

The initial operation of this equipment is scheduled for ______ (month/day/year)
Print your first and last name ______

Telephone No.

Equipment Serial No.

Email: ykim@baaqmd.gov

I-3

BAY AREA AIR QUALIT	TY MANAGEMENT DISTRICT
	y to Construct t a Permit to Operate)
	Plant No. 24712 Application No. 30522
40 Executiv	Pet Memorial Park, Inc ve Ct, Napa, CA 94558 <i>to Construct</i> for the following equipment:
S-3 Animal Cremator, B&L Systems, Me natural gas fired	odel BLP-1000; total 4.5 MMBTU/hr, 250 lbs/hr,
Equipment above is subject to attached condition n	Pamela Pamela Leong
Issue date: December 1, 2020 Expiration date: December 1, 2022	Approved by Leong 08:52:04 -08'00'
f	for PAMELA J. LEONG DIRECTOR OF ENGINEERING
Start-u	p Notification
<i>Instructions</i> : At least seven days before the scheduled or complete and send this Start-up Notification to the I	l initial operation contact your assigned Permit Engineer via email District via fax or mail.
Engineer: Youjin Kim, Air Quality Engineer I	Plant No. 24712
Tel: (415) 749-5136 Fax: (415) 749-5	030 Source No. S-3

Email: ykim@baaqmd.gov

The initial operation of this equipment is scheduled for _____ (month/day/year)

Print your first and last name

Telephone No.

Equipment Serial No

I-4

Application No. 30522

Plant Name: Bubbling Well Pet Memorial Park nc

S-1, S-2 and S-3 Animal Cremator

Condition No. 27310 Plant No. 24712

Application No. 30522

 The owner/operator shall operate S-1, S-2, and S-3 Cremators in such a way that the total maximum firing rate of each cremator shall not exceed the following limits:

3.9 MMBtu per hr for S-1 Matthews IEB56-4S cremator 4.4 MMBtu per hr for S-2 Matthews IEB50 cremator 4.5 MMBtu per hr for S-3 B&L Systems BLP-1000 cremator (basis: Cumulative Increase; Regulation 2, Rule 5)

 The owner/operator shall ensure that the minimum stack height will be 28 feet for each of the following equipment:

S-1 Matthews IEB56-4S cremator S-2 Matthews IEB50 cremator S-3 B&L Systems BLP-1000 cremator (basis: Regulation 2, Rule 5)

3. The owner/operator shall not operate each of the following crematory equipment for more than 2,210 hours in any consecutive twelve-month period:

S-1 Matthews IEB56-45 cremator S-2 Matthews IEB50 cremator S-3 B&L Systems BLP-1000 cremator (basis: Cumulative Increase; Regulation 2, Rule 5)

4. The owner/operator shall not cremate more than the following amount of animal remains in any consecutive twelve-month period:

340 pounds per hour and 530,400 pounds per year for S-1 Matthews IEB56-4S cremator

450 pounds per hour and 561,600 pounds per year for S-2 Matthews IEB50 cremator

250 pounds per hour and 500,000 pounds per year for S-3 B&L Systems BLP-1000 cremator

(basis: Cumulative Increase; Regulation 2, Rule 5)

5. The owner/operator shall maintain the operating temperature in the secondary chamber of the S-1, S-2 and S-3 Cremators at or above 1650 degrees Fahrenheit during the cremation mode. Any temperature excursion below 1600 degrees Fahrenheit during the cremation mode will be considered a violation of this permit condition. The owner/operator shall equip the cremator with a District approved continuous temperature monitoring and recording device to ensure compliance with this condition. The location of the thermocouple shall be approved by the Source Test Section of the District. Natural gas input

c27310

Plant Name: Bubbling Well Pet Memorial Park nc

S-1, S-2 and S-3 Animal Cremator Condition No. 27310 Plant No. 24712

Application No. 30522

to the secondary chamber burner shall be increased, if necessary, to increase temperature sufficiently to control odor and visible plume. (Basis: Regulation 6-1-301, 6-1-310; TBACT)

- After the shutdown, the owner/operator shall not cremate until the S-1, S-2, or S-3 Cremator has been preheated so that the temperature in the secondary chamber is at least 1650 degrees Fahrenheit. (Basis: Regulation 6-1-301, 6-1-310; TBACT)
- 7. The owner/operator shall fire the S-1, S-2, and S-3 Cremators with natural gas only. (basis: Cumulative Increase; TBACT)
- 8. The owner/operator shall use the S-1, S-2, or S-3 Cremators to cremate animal remains with or without enclosure in associated containers. No other material contaminated with toxic air contaminants as listed by Air Resources Board, including radioactive and biohazardous waste shall be incinerated in this cremator without prior approval of the District. (basis: Cumulative Increase; Regulation 2, Rule 5)
- 9. The District may require the owner/operator of the cremator to conduct a District approved source test to determine particulate matter, hydrocarbon, NOX, CO, O2, HCl, and toxic emissions under unusual conditions, such as: obese case, disaster bags. The Source Test Section of the District shall be contacted to obtain approval for the source test method. The Source Test Section shall be notified at least 7 days in advance of any expected source test. A copy of source test report for each test shall be provided to the District within 30 days of source test date. (basis: Cumulative Increase; Regulation 2, Rule 5)
- 10. Not later than 60 days from the startup of S-1, S-2, and S-3, the owner/operator shall conduct District approved source tests to determine initial compliance with the following emission limits.

	(lb/body*)	(lb/MMBtu)
Acetaldehyde	1.30E-04	
Arsenic	3.00E-05	
Beryllium	1.40E-06	
Cadmium	1.10E-05	
Chromium, hexavalent	1.40E-05	
Copper	2.70E-05	
Formaldehyde	3.40E-05	7.35E-05
Hydrogen Chloride	7.20E-02	
Hydrogen Fluoride	6.60E-04	
Lead	6.60E-05	

c27310

_		
Condition No. 27310	Plant No. 24712	Application No. 30522
Nickel	3.80E-05	
Selenium	4.40E-05	
Chlorinated Dibenz	odioxins	
and Furans	1.40E-09	
Polvcvclic Aromati	.c	
	,	2.06E-06
Toluene		3.33E-06
	S-1, S-2 and S-3 Animal Co Condition No. 27310 Nickel Selenium Chlorinated Dibenz and Furans Polycyclic Aromati Hydrocarbons (PAHs Benzene	Nickel 3.80E-05 Selenium 4.40E-05 Chlorinated Dibenzodioxins and Furans 1.40E-09 Polycyclic Aromatic Hydrocarbons (PAHs) 4.90E-08 Benzene

*body = 150 lbs

The owner/operator shall submit the source test results to the District staff no later than 60 days after the source test. (basis: BACT, Cumulative Increase)

- 11. The owner/operator shall obtain approval for all source test procedures from the District's Source Test Section prior to conducting any tests. The owner/operator shall comply with all applicable testing requirements as specified in Volume IV of the District's Manual of Procedures. The owner/operator shall notify the District's Source Test Section, in writing, of the source test protocols and projected test dates at least 7 days prior to testing. (basis: BACT, Cumulative Increase)
- 12. The owner/operator shall have the S-1, S-2, and S-3 Cremators equipped with sampling ports and platforms, the location of which shall have the approval of the Source Test Section of the District. (Basis: Regulation 6-1-310)
- 13. The owner/operator shall have an operator present at all times during cremations. (Basis: Regulation 6-1-301)
- 14. The owner/operator shall keep the S-1, S-2, and S-3 Cremators in good working condition. The date and detailed description of the type of maintenance done on cremator shall be recorded in a District approved logbook. (basis: Regulation 6-1-301, 6-1-310)
- 15. To determine compliance with the above conditions, the owner/operator shall maintain the following records and provide all of the data necessary to evaluate compliance with the above conditions, including but not limited to daily records of the following information:

 a. Operating hours
 b. Weight of animal remains
 c. Processing rate

(basis: Regulation 1-441, Regulation 6-1-301, 6-1-310.1, Cumulative Increase, TBACT, Regulation 2, Rule 5)

c27310

c27310

Plant Name: Bubbling Well Pet Memorial Park ncS-1, S-2 and S-3 Animal CrematorCondition No. 27310Plant No. 24712

Application No. 30522

16. The owner/operator shall keep all monitoring, source test, and maintenance records as required per parts 3, 4, 5, 9, 10, 11, 14, and 15 on site for at least two years from the date of data entry, and the records shall be made available to the District staff for inspection. These recordkeeping requirements shall not replace the recordkeeping requirements contained in any applicable District regulations. (basis: Cumulative Increase, TBACT; Regulation 6-1-301, 6-1-310)

End of Conditions

211

	₩/
NO. ADDRESS OF THE OWNER OF THE OWNER OF THE OWNER	toran the

BAY AREA	
AIR QUALITY	December 3, 2020
MANAGEMENT	
DISTRICT	Bubbling Well Pet Memorial Park, Inc 2462 Atlas Peak Rd Napa, CA 94558
	Attention: David Harberts
	Authority to Construct for Permit Application No. 30522, Plant No. 24712
Required Action	Your Authority to Construct is enclosed. This Authority to Construct is not a Permit to Operate. To receive your Permit to Operate you must:
	1. Complete the Start-up Notification portion of the Authority to Construct.
	2. Send the Start-up Notification to the assigned Permit Engineer via e-mail, fax or mail at least seven days prior to operating your equipment.
	<i>Note:</i> Operation of equipment without sending the Start-up Notification to the District may result in enforcement action.
Authorization of Limited Use	The Authority to Construct authorizes operation during the start-up period from the date of initial operation indicated in your Start-up Notification until the Permit to Operate is issued, up to a maximum of 90 days. All conditions (specific or implied) included in this Authority to Construct will be in effect during the start-up period.
Contact Information	If you have any questions, please contact your assigned Permit Engineer: Youjin Kim, Air Quality Engineer I Tel: (415) 749-5136 Fax: (415) 749-5030 Email: ykim@baaqmd.gov

I-9

TABLE 5 Bubbling Wells PAH Emission Results IEB 50

TEST#	1	2	3	AVERAGE	PEF	Avg PEF
Test Date	5-25-21	5-25-21	5/27/21			
Run Time	952-1156	1304-1508	0907-1110			
Total Weight, lbs	1,5	528	2,374			
Bodies per Batch	10.2	10.2	15.8			
Run Time, hrs	2.0	2.0	2.0			
Sample Volume (DSCF)	72.882	70.325	66.153	69.786		
Sample Volume (DSCM)	2.064	1.992	1.873	1.976		
Flow Rate (DSCFM)	1,563	1,616	1,510	1,563		
Isokinetic, %	99.1	92.5	93.1	94.9		
Naphthalene,						
total ng	19600	5980	27600	17727		
(ng/dscm)	9496	3003	14732	9077		
(lbs/hr)	5.56E-05	1.82E-05	8.33E-05	5.24E-05		
(lbs/body)	1.09E-05	3.57E-06	1.05E-05	8.34E-06		
ppt, MW = 128	1790	566	2777	1711		
Acenaphthylene,						
total ng	405	40.2	132	192.4		
(ng/dscm)	196	20	70	96		
(lbs/hr)	1.15E-06	1.22E-07	3.98E-07	5.57E-07		
(lbs/body)	2.26E-07	2.40E-08	5.04E-08	1.00E-07		
ppt, $MW = 152$	31.15	3.20	11.19	15.18		
Acenaphthene,						
total ng	122	33.2	86.5	80.57		
(ng/dscm)	59.1	16.7	46.2	40.6		
(lbs/hr)	3.46E-07	1.01E-07	2.61E-07	2.36E-07		
(lbs/body)	6.80E-08	1.98E-08	3.30E-08	4.03E-08		
ppt, MW = 154	9.26	2.61	7.23	6.37		
Fluorene,						
total ng	10300	4610	3700	6203		
(ng/dscm)	4990	2315	1975	3093		
(lbs/hr)	2.92E-05	1.40E-05	1.12E-05	1.81E-05		
(lbs/body)	5.74E-06	2.75E-06	1.41E-06	3.30E-06		
ppt, MW=166	725.40	336.47	287.09	449.65		
Phenanthrene,						
total ng	18800	9120	28900	18940		
(ng/dscm)	9108	4579	15426	9705		
(lbs/hr)	5.33E-05	2.77E-05	8.72E-05	5.61E-05		
(lbs/body)	1.05E-05	5.44E-06	1.10E-05	8.98E-06		
ppt, MW=178	1234.8	620.8	2091.2	1315.6		

TABLE 5 Continued... (page 2 of 3) PAH Emission Results IEB 50

TEST#	1	2	3	AVERAGE	PEF	Avg PEF
Anthracene,						
total ng	1130	132	178	480		
(ng/dscm)	547	66	95	236		
(lbs/hr)	3.21E-06	4.01E-07	5.37E-07	1.38E-06		
(lbs/body)	6.29E-07	7.88E-08	6.79E-08	2.59E-07		
ppt, MW=178	74.22	8.98	12.88	32.03		
Fluoranthene,						
total ng	992	632	914	846		
(ng/dscm)	481	317	488	429		
(lbs/hr)	2.81E-06	1.92E-06	2.76E-06	2.50E-06		
(lbs/body)	5.53E-07	3.77E-07	3.49E-07	4.26E-07		
ppt, MW=202	57.41	37.907	58.279	51.200		
Pyrene,						
total ng	615	348	1100	688		
(ng/dscm)	298	175	587	353		
(lbs/hr)	1.74E-06	1.06E-06	3.32E-06	2.04E-06		
(lbs/body)	3.43E-07	2.08E-07	4.20E-07	3.23E-07		
ppt, MW=202	35.59	20.87	70.14	42.202		
Benzo(a)Anthracene,					0.1	
total ng	47.6	16.9	17.6	27.4		
(ng/dscm)	23.1	8.5	9.4	13.6		
(lbs/hr)	1.35E-07	5.14E-08	5.31E-08	7.99E-08		
(lbs/body)	2.65E-08	1.01E-08	6.71E-09	1.44E-08		1.44E-09
ppt, MW=228	2.441	0.9	0.994	1.444		
Chrysene					0.01	
total ng	3210	1330	1510	2017		
(ng/dscm)	1555	668	806	1010		
(lbs/hr)	9.11E-06	4.04E-06	4.56E-06	5.90E-06		
(lbs/body)	1.79E-06	7.94E-07	5.76E-07	1.05E-06		1.05E-08
ppt, MW=228	164.595	70.676	85.302	106.858		
Benzo(b)Fluoranthene,					0.1	
total ng	313.0	25.8	32.3	123.7		
(ng/dscm)	152	13	17	61		
(lbs/hr)	8.88E-07	7.84E-08	9.75E-08	3.55E-07		
(lbs/body)	1.74E-07	1.54E-08	1.23E-08	6.74E-08		6.74E-09
ppt, MW=252	14.5	1.2	1.7	5.8		
Benzo(k)Fluoranthene,					0.1	
total ng	17.2	< 0.18	< 0.15	<5.84		
(ng/dscm)	8.3	< 0.09	< 0.08	<2.83		
(lbs/hr)	4.88E-08	<5.47E-10	<4.53E-10	<1.66E-08		
(lbs/body)	9.58E-09	<1.07E-10	<5.72E-11	<3.25E-09		3.25E-10
ppt, MW=252	0.8	< 0.009	< 0.008	< 0.271		

TABLE 5 Continued... (page 3 of 3) PAH Emission Results IEB 50

TEST#	1	2	3	AVERAGE	PEF	Avg PEF
Benzo(e)Pyrene,						
total ng	267	18	33	106		
(ng/dscm)	129	9	17	52		
(lbs/hr)	7.58E-07	5.56E-08	9.87E-08	3.04E-07		
(lbs/body)	1.49E-07	1.09E-08	1.25E-08	5.74E-08		
ppt, MW=252	12.39	0.88	1.67	4.98		
Benzo(a)Pyrene,					1.0	
total ng	35.8	2.31	3.07	13.7		
(ng/dscm)	17.3	1.2	1.6	6.7		
(lbs/hr)	1.02E-07	7.02E-09	9.27E-09	3.93E-08		
(lbs/ton)	1.99E-08	1.38E-09	1.17E-09	7.50E-09		7.50E-09
ppt, MW=252	1.7	0.1	0.2	0.6		
Perylene,						
total ng	3.61	< 0.27	2.59	2.2		
(ng/dscm)	1.7	< 0.14	1.4	1.1		
(lbs/hr)	1.02E-08	<8.21E-10	7.82E-09	6.29E-09		
(lbs/body)	2.01E-09	1.61E-10	9.88E-10	1.05E-09		
ppt, MW=252	0.2	< 0.013	0.1	0.1		
Indeno(1,2,3-cd)Pyrene,						
total ng	47.50	5.8	4.9	19.4		
(ng/dscm)	23.0	2.9	2.6	9.5		
(lbs/hr)	1.35E-07	1.76E-08	1.49E-08	5.58E-08		
(lbs/body)	2.65E-08	3.46E-09	1.88E-09	1.06E-08		
ppt, MW = 276	2.012	0.3	0.2	0.8		
Dibenz(a,h)Anthracene,					1.1	
total ng	57.8	2.7	2.0	20.8		
(ng/dscm)	28.0	1.3	1.1	10.1		
(lbs/hr)	1.64E-07	8.12E-09	5.98E-09	5.94E-08		
(lbs/body)	3.22E-08	1.59E-09	7.55E-10	1.15E-08		1.21E-08
ppt, MW=278	2.4	0.1	0.1	0.9		
Benzo(ghi)Perylene,						
total ng	57.8	7.4	10.7	25.303		
(ng/dscm)	28.0	3.7	5.7	12.479		
(lbs/hr)	1.64E-07	2.25E-08	3.23E-08	7.29E-08		
(lbs/body)	3.22E-08	4.42E-09	4.08E-09	1.36E-08		
ppt, MW = 276	2.448	< 0.325	0.499	1.091		

Limit

Total PAHs, lbs/body

Total PAHs, lbs/body (PEF)

2.30E-05

3.86E-08 4.90E-08

Note

Values reported as less than (<) are calculated at one-half the reporting limit

Where,

DSCFM = Dry Standard Cubic Feet per Minute ng/dscm = nanograms per dry standard cubic meter ng/sec = Emission rate, nanograms per second ppt = part per trillion lbs/hr = pounds per hour lbs/body = pounds per body body = 150m lbs **Calculations,** ng/dscm = ng / dscm ng/sec = 0.02832 * DSCFM * ng/dscm / 60 ppt = ng/dscm * 22.4 * (Tstd. + 460) / 492 / M.W. Emission Rate, lbs/hr = ppm * MW * DSCFM * 60 / 385E6 (Tstd 68°F) Emission Factor, lbs/body = (lbs/hr *hrs/batch / body per batch

3300 Breckinridge Blvd Suite 400 Duluth, GA 30096

770.662.8509 FAX 770.662.8532 www.mvainc.com

Stack Sample Analysis

PM10 & PM2.5 Custom Particle Sizing

Particle Shape Analysis

Particulate Matter Identification

Back-Half Catch Residue Identification (M202)

Filter Debris Analysis

Ambient Air Sample Characterization

Condensable Analysis

Litigation Support

Techniques

Light Microscopy

Scanning Electron Microscopy

Transmission Electron Microscopy

Fourier Transform Infrared Spectroscopy

Confocal Raman Microscopy

White Light Interference Microscopy

Energy Dispersive X-ray Spectrometry

Fluorescence Microscopy

Ion Milling & Ultramicrotomy

Accreditations

cGMP Compliant

ISO/IEC 17025

FDA Registered

DEA Licensed

Report of Results: MVA14267

Particle Size Distribution of Filters

Prepared for:

Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 Newburyport, MA 01950

Respectfully Submitted by:

EXECUTED BY **ELECTRONIC** SIGNATURE

Jake Mosely, M.S. Research Scientist

19 August 2021

Report of Results: MVA14267

Particle Size Distribution of Filters

Introduction

On 5 August 2021 we received three fiber filters with the request that we determine their particle size distributions down to 0.5 micrometer. Upon receipt the samples were assigned the unique MVA Scientific Consultants laboratory identification numbers shown in Table 1. The analyses and data reduction were performed at MVA Scientific Consultants during the period 10 August through 19 August 2021.

Methods

The samples were prepared for analysis in accordance with MVA SOP 310, "Sample Preparation Methods for Total Particle Sizing Using Microscopical Techniques."

The particle size distribution measurements were performed using a JEOL JSM-6500F field emission scanning electron microscope operating in automated mode under the control of a Thermo Scientific Noran System 7 x-ray analysis system, utilizing MVA SOP 316, "Automated Particle Size Analysis Using the JEOL JSM-6500F FESEM and Thermo Scientific Noran System 7." The particle size data are presented in terms of particle number and in terms of estimated mass. The assumption has been made that the particles are all of similar density and therefore the particle volume distribution is equivalent to the particle mass distribution.

Results

The size distributions of the filters down to 0.5 micrometer are shown in Tables 1 and 2.

Table 1. MVA14267. Percentages of Particles in Various Average DiameterRanges by Number of Particles

MVA Sample Number	AG1248	AG1249	AG1250
Client ID	M5-R1	M5-R2	M5-R3
Average Diameter Range (µm)	Number %	Number %	Number %
0.5 - 1	66.5	59.5	60.7
>1 - 2.5	29.5	36.6	30.8
>2.5 - 5	3.6	3.6	7.0
>5 - 7.5	0.4	0.2	1.2
>7.5 - 10	0.1	0.04	0.2
>10	0.05	0.1	0.1
Total Particles	23371	22604	15252

Table 2. MVA14267. Percentages of Particles in Various Average Diameter Ranges by Mass of Particles

MVA Sample Number	AG1248	AG1249	AG1250
Client ID	M5-R1	M5-R2	M5-R3
Average Diameter Range (µm)	Mass %	Mass %	Mass %
0.5 - 1	7.4	6.2	3.7
>1 - 2.5	23.1	27.1	17.6
>2.5 - 5	20.0	16.6	35.8
>5 - 7.5	12.9	6.2	26.0
>7.5 - 10	6.4	3.3	10.4
>10	30.3	40.6	6.6

AIR QUALITY SERVICES Excess blumony - 30 minutes Sample Chain of Custody Excess blumony - 30 minutes Sample Chain of Custody Excess blumony - 30 minutes Image: control controcontrol control control control control controcontrol		5	M	ZO	TR	0					Special Ha Office Locat Standard De	indling: ion: sivery - 10 D	ays X		ĩ
Annual Fold Project Number: Fold Stritts Polos: To be emailed Fight: Number: Fold Stritts Fight: Number: Fold Stritts Fight: Number: Fold Stritts Annual Fold Stritts Email: stratteriongenentone-encome Annual Stritts Annual Fold Stritts Strints Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints Annual Strints Annual Fold Strints Annual Strints Annual Strints			AIR	QUAL	S YTI	ERVI	CES				 Express Del RUSH Deliv Delivery Ba 	ivery - 3 Day ery - Next Da ised on Sam	s ay ple Receipt at	Laboratory.	
$ \begin{array}{ $	S	amp	חפונ	nain	5 10	m>rc	And								
$\begin to the first tender of tend$: Forget-Me-Not Pet Crematory			Project Numi	Der: PROJ-0	10182		PO No.: To I	be emailed				Samples	Collected By:	
Immunication Immunication Immunication Immunication \overline{A} and \overline{A}	ager: Anthony Stratton			Site ID: Unit	EU4			Phone No.:	508-989-899	9			Mih	ke Bruni	
$ \begin{array}{ $	ults To: A. Stratton			Plant Locatic	n: Northbor	rough, MA		Email: astra	tton@montr	ose-env.com					
$ (10: 1.2 \ 1.$	ructions:						Sa	imple Contain	ner		Analysis		Page_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Matrix Info:	A = Air	1 = H2SO4	2 = NaOH	3 = Filter	4 = Acetone									
D. C. Composity D. C. Composity D. C. Composity Method:	1		6 = Hexanes		C = Charcoal	* = Other									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	G = Grab C = Composite	Q = Quality	· Control / E	3 anks											
	Sample ID	Date	Time	Volume	Type	Matrix	Glass	Plastic	Other	Method:	Method:	Method:	2	Votes:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1242	121/2021			3			x		SEM					
$A \in \mathcal{L} \otimes A$ $TZ110001$ 3 X </td <td>AG1249</td> <td>121/2021</td> <td></td> <td></td> <td>e</td> <td></td> <td></td> <td>×</td> <td></td> <td>SEM</td> <td></td> <td></td> <td>Please prov</td> <td>vide particle size</td> <td></td>	AG1249	121/2021			e			×		SEM			Please prov	vide particle size	
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0		12112021						×		SEM			distribution	analysis via SEM	
Image: Second								:							
Image: constraint of the state of the s															
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $															
Image: constraint of the state of the s															
Image: constraint of the sector of the se															
Image: constraint of the state of the s															
Image: constraint of the state of the s															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{ $															
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1													
Date: Time y Received By: Date: Time: S S y R R R R S S y R R R R R Y R															
Date: Time V Received By: Date: Time: Srow y y y y y Srow y y y y Srow y y y															
S-3-34 Kody priving 3/5/2421 2:05 An a lead a Ambient	A Relinquished By:		Date:	Time	11	~ ~	Received By			, Date:	Time:		Sample Condit	tion Upon Receipt:	
lced a Ambient Iced a Ambient	Maxin	30	Her-		Kon	Jun 1	erner	05		5	2:00 Am		Ambient		
Iced a Ambient					•	11		4		1.			Ambient	D .	
													Ambient		

April 5, 2023

Subject: Compliance Testing / MassDEP Test Report Client/Test Site: Gateway Services, Inc. / Forget-Me-Not Crematorium Test Site Montrose Document Number NE013AS-022280-RT-1414

Enclosed please find the compliance Test Report for one pet crematory unit/retort (EU5) operating at the Forget-Me-Not Crematorium facility in Northborough, MA. This test report documents the details of the testing that was performed by Montrose Air Quality Services, LLC (Montrose) on behalf of Gateway Services, Inc. (Gateway) for this source. All testing was conducted as planned on February 14, 2023.

The hard copy and/or electronic distribution for this test plan is as follows.

Name	Company/Agency	No. of Hard Copies	Electronic Copy
Michelle (Shelly) Walker	Gateway Services, Inc.		Emailed PDF / 04-05-2023 walkerm@gatewayservicesinc.com
Thomas Hannah General Mailbox	MassDEP CERO 8 New Bond Street Worcester, MA 01606		<u>Emailed PDF / 04-05-2023</u> Thomas.hannah@mass.gov cero.air@mass.gov

If you have any questions, feel free to call me at (978) 499-9300 x11303 to discuss.

Sincerely,

Vir 2

David A. Caron, QSTI District & Client Project Manager Montrose Air Quality Services, LLC

SOURCE TEST REPORT COMPLIANCE TESTING FORGET-ME-NOT CREMATORIUM, INC. – EU5 NORTHBOROUGH, MASSACHUSETTS

Prepared For:

Client: Gateway Services, Inc. <u>Facility / Test Site Address:</u> Forget-Me-Not Pet Crematorium, Inc. 80 Lyman Street Northborough, MA 01532

For Submittal To:

MassDEP, Central Regional Office

8 New Bond Street Worcester, MA 01606

Prepared By:

Montrose Air Quality Services, LLC 2 New Pasture Rd., Unit 5 Newburyport, MA 01950

Document Number: Test Date: Submittal Date: NE013AS-022280-RT-1414 February 14, 2023 April 5, 2023

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	David 2 2	Date:	04/05/23	
Name:	David Caron	Title:	District & Client Project Manager	

I have reviewed, technically and editorially, details, calculations, results, conclusions, and other appropriate written materials contained herein. I hereby certify that, to the best of my knowledge, the presented material is authentic, accurate, and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

Signature:	ANSMA	Date:	04/05/23
Name:	Anthony Stratton	Title:	Client Project Manager

TABLE OF CONTENTS

<u>SEC</u>		<u>v</u>	PAGE
1.0	INTF	RODUCTION	6
	1.1	PROGRAM OVERVIEW AND OBJECTIVES	6
	1.2	TECHNICAL APPROACH DISCUSSION	6
	1.3	KEY PERSONNEL	8
	1.4	REPORT ORGANIZATION	9
2.0	SOU	IRCE AND SAMPLING LOCATION DESCRIPTIONS	10
	2.1	FACILITY AND SOURCE DESCRIPTION	10
	2.2	FLUE GAS SAMPLING LOCATION – EU5	10
	2.3	OPERATING CONDITIONS AND PROCESS DATA	10
3.0	SAM	IPLING AND ANALYTICAL PROCEDURES	12
	3.1	OVERVIEW	12
	3.2	TOTAL PARTICULATE MATTER – METHODS 5 AND 202	12
		3.2.1 Description of Isokinetic Sampling Equipment and Test Procedures	14
		3.2.2 Sampling Equipment	14
		3.2.3 Sampling Procedures	15
		3.2.4 Moisture Determination	17
	3.3	CEMS TEST PROCEDURES	17
		3.3.1 O ₂ , CO ₂ , NO _x and CO Sampling and Calibration Procedures	
		3.3.2 CEMS Sampling System Description	19
		3.3.2.1 Pollutant/Diluent Monitoring	
		3.3.2.2 Sample Delivery and Conditioning System	
		3.3.2.3 Calibration System	
		3.3.2.4 Data Acquisition System	
	3.4	Visual Emissions – EPA Method 9	
		3.4.1 Position	
		3.4.2 Field Records	
		3.4.3 Observations	
		3.4.4 Qualifications	
4.0	TES	T DISCUSSIONS AND RESULTS	
	4.1	FIELD TEST DEVIATIONS AND EXCEPTIONS	
	4.2	PRESENTATION OF RESULTS – COMPLIANCE / FULL LOAD	22
5.0	QUA	LITY ASSURANCE AND REPORTING	23
	5.1	SAMPLING AND ANALYTICAL QA/QC	
	5.2	EQUIPMENT MAINTENANCE AND CALIBRATION	23
		5.2.1 Equipment Inspection and Maintenance	23
		5.2.2 Equipment Calibrations	
	5.3	AUDIT SAMPLES	24

5.4	DATA ANALYSIS, VALIDATION, AND UNCERTAINTY	24
5.5	ISOKINETIC SAMPLING	24
	5.5.1 Particulate Matter	25
5.6	CEMS QA	27
	5.6.1 Calibration Gases	27
	5.6.2 Determination of Stratification	27
	5.6.3 NO _x Converter Efficiency Tests	27
	5.6.4 Instrumental Monitoring	27
	5.6.5 Sampling Setup	28
	5.6.6 Calibration Criteria – O ₂ , CO ₂ , NO _x and CO	28
5.7	EMISSION RATE CALCULATIONS	29
	5.7.1 Grains/dscf	29
	5.7.2 ppmvd@7%O ₂ Emission Rate Calculation	29

LIST OF TABLES

1-1	SUMMARY OF TEST PROGRAM – EU5	7
1-2	SUMMARY OF AVERAGE COMPLIANCE RESULTS – EU5	7
1-3	TEST PERSONNEL AND OBSERVERS ¹	9
4-1	INDIVIDUAL RUN EMISSIONS RESULTS – EU5	22
5-1	QA/QC Procedures for PM & CPM / EPA Methods 5 & 202	26

LIST OF FIGURES

2-1	SAMPLING LOCATION AND TRAVERSE POINTS – EU5	.11
3-1	US EPA METHOD 5/202 SAMPLING TRAIN	.14

LIST OF APPENDICES

A – EMISSION CALCULATIONS AND FIELD DATA SHEETS

- A.1 M5/202
- A.2 CEMS Parameters
- A.3 Visual Emission Data Sheets
- A.4 Facility Data

B – LABORATORY ANALYSES – PM/CPM

C – QUALITY ASSURANCE

- C.1 Cylinder Gas and Equipment Certification Sheets
- C.2 NO_x Converter and Cyclonic Flow Checks
- C.3 AETB Documentation

D - FACILITY MASSDEP FINAL AIR QUALITY PLAN APPROVAL

E - PARTICLE SIZE DISTRIBUTION REPORT FROM 7/21/21 TESTING ON A SIMILAR SOURCE / EU4

1.0 INTRODUCTION

1.1 PROGRAM OVERVIEW AND OBJECTIVES

Montrose Air Quality Services, LLC's (Montrose) was retained by Gateway Services, Inc. to perform compliance emission testing services on their behalf at the Forget-Me-Not Pet Crematorium in Northborough, MA. Testing was conducted to demonstrate the compliance status of:

 Particulate Matter (PM), PM≤10 microns (PM₁₀), PM≤2.5 microns (PM_{2.5}), Oxides of Nitrogen (NO_x), Carbon Monoxide (CO) and opacity from the facility's newly installed retort (EU5) while operating on natural gas to satisfy the testing requirements specified under Item 3 of Table 3 in the facility's permit, except as otherwise noted. See "Important Note" in Section 1.2 with respect to PM₁₀ and PM_{2.5} emission rate calculations.

Testing was conducted on February 14, 2023 in strict accordance with Montrose Test Protocol NE013AS-022280-PP-509, MassDEP and/or Environmental Protection Agency (EPA) requirements, including the EPA Quality Assurance Handbook and the individual EPA Methods as found in 40 CFR 60, Appendix A, except as noted otherwise, as applicable.

1.2 TECHNICAL APPROACH DISCUSSION

Compliance was demonstrated through the conduct of a three-run test set in accordance with EPA instrumental monitoring test methodologies. Specifically, Montrose conducted three 60-minute test runs while the retort was operated at \geq 80% maximum rated production capacity (\geq 200 lb/hr). Each test run was comprised of the Continuous Emission Monitoring System (CEMS) instrumental monitoring for the determination of Oxygen (O₂), Carbon Dioxide (CO₂), Oxides of Nitrogen (NO_x) and Carbon Monoxide (CO) on a concentration or mass basis in accordance with EPA Methods 3A (O₂ and CO₂), 7E (NO_x) and 10 (CO) 40CFR60, Appendix A. Concurrent with each CEMS test run, Montrose conducted isokinetic front/back half Particulate Matter (PM)/Condensable Particulate Matter (CPM) sampling in accordance with test Methods 5 and 202, respectively, while additionally conducting concurrent opacity readings in accordance with EPA Method 9. A summary of the run configuration and test parameters are presented in Table 1-1, while a compliance summary in units of applicable standard is presented in Table 1-2.

Test Date	Unit ID/ Test Location	Test Parameters	EPA Test Methods	No. of Runs	Duration (Minutes)
		PM/CPM	1-5/202 ¹	3	60
		O ₂ and CO ₂	ЗA	3	60
02/14/2023	EU5	NOx	7E	3	60
		CO	10	3	60
		Opacity	9	3	60

TABLE 1-1 SUMMARY OF TEST PROGRAM – EU5

¹ – PM _{2.5} and PM₁₀ emission rates have been estimated based upon the particle sizing results documented in Appendix E and discussed under the "Important Note" in this section.

TABLE 1-2SUMMARY OF AVERAGE COMPLIANCE RESULTS – EU5February 14, 2023

Pollutant	Test Method	Applicable Standard	MassDEP	
			Test Result	Limit
PM	5	g/dscf@7%O ₂	0.028	0.05
СРМ	202	NA	0.003	NA
PM ₁₀ ¹	by calculation	g/dscf@7%O ₂	0.02	0.04
PM _{2.5} ²	by calculation	g/dscf@7%O ₂	0.01	0.02
со	10	ppmvd@7%O ₂	16.8	50
NO _x	7E	ppmvd@7%O ₂	133.4	100
Opacity	9	%	0.0	See footnote ²

¹ – See "Important Note" below.

² – Opacity Limit is <5%, except >5% to \leq 20% for \leq 2 consecutive minutes during any one hour.

Important Note: Per prior discussions with MassDEP, neither PM_{10} or $PM_{2.5}$ is directly determinable for this source due to the stack being less than minimum stack diameter of 26.5" as identified in Method 201A, in combination with the logistics of the test location (requires the use of an articulating lift) which will not allow for the simultaneous measurement of flow in accordance with Method 1A (combined with a modified sampling configuration). As such, per MassDEP request; the results for total PM, have been speciated to PM_{10} and $PM_{2.5}$ using the percentages included in the application that were obtained from preliminary testing performed on one of the existing units during the initial phases of this overall project. Per Table 2 of the report in Appendix E of this document, the $PM_{2.5}$ and PM_{10} represented 28.37 and 74.17 percent of total PM on a mass basis.

1.3 KEY PERSONNEL

A list of key project participants is presented below:

Facility/Client Information

Source Location:	Forget-Me-Not Crematorium, Inc.	
	80 Lyman Street	
	Northborough, MA 01532	
Client Contact:	Mr. Michelle (Shelly) Walker	
Client Telephone:		
Client Email:	walkerm@gatewayservicesinc.com	

Agency Information

Regulatory Agency: Agency Contact:	MassDEP, CERO Mr. Thomas Hannah
Telephone:	(508) 767-2845
Email:	thomas.hannah@mass.gov

Testing Company Information

Testing Firm:Montrose Air Quality Services, LLC (Montrose)Contact:Mr. David Caron, QSTITitle:Client Project ManagerTelephone:(978) 302-6128 x11303Email:dcaron@montrose-env.com

Test personnel and observers are summarized in Table 1-3.

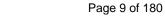

Name	Affiliation	Role/Responsibility	
David Caron	Montrose	Project Manager/Field Team Leader/ VE Reader / Qualified Individual (QI)/Reporting	
Anthony Stratton	Montrose	CEMS Operation and Sample Train Recovery / Report QA	
Hunter Stetz	Montrose	Job Preparation and Onsite Technician	
Connor Melican	Montrose	Job Preparation and Onsite Technician	
Thomas Hannah	MassDEP	Onsite Observer	

TABLE 1-3 TEST PERSONNEL AND OBSERVERS¹

1.4 **REPORT ORGANIZATION**

NE013AS-022280-RT-1414

The remainder of this Final Report is divided into four additional sections. Section 2 presents source and sampling point descriptions. A description of the flue gas monitoring procedures is provided in Section 3, Section 4 presents individual run summaries, while Section 5 addresses the quality assurance/quality control aspects of the program. A copy of all emission PM/CPM calculations, CEMS emission calculations, visual emission data and facility data is presented in Indices 1-4 of Appendix A, respectively. Additionally, PM/CPM laboratory analyses are presented in Appendix B, while all quality assurance/quality control documentation are presented in Appendix C. Lastly, copies of the MassDEP Conditional Approval letter and the 2021 particle sizing report that is being used as a means of estimating particle size loading in the current program are presented in Appendices D and E, respectively.

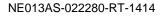
2.0 SOURCE AND SAMPLING LOCATION DESCRIPTIONS

2.1 FACILITY AND SOURCE DESCRIPTION

For facility and source descriptions, please reference Sections 1 and 2, respectively of the facility's Final Air Quality Plan Approval presented in Appendix D of this test report.

2.2 FLUE GAS SAMPLING LOCATION – EU5

All compliance emission sampling was conducted in a round vertical section of the 20.4" diameter exhaust stack. The test location was equipped with two 4.0" diameter sampling ports installed at 90° to each other on the same horizontal plane. The test location was 10.0 (204") equivalent diameters downstream and 4.0 (81") equivalent diameters upstream from the closest bend or expected pollution concentration change.


In addition, acceptable cyclonic flow conditions were confirmed as part of the test in accordance with EPA Method 1, Section 11.4. Lastly, a CEMS stratification was performed as part of the test program in accordance with EPA Section 8.1 of EPA Method 7E. CEMS sampling points were chosen based on these results ensuring that all emission results were representative throughout the duration of the test program. Figure 2-1 below summarizes the Method 1 upstream and downstream distances, as well as providing a more detailed schematic of the test location

2.3 OPERATING CONDITIONS AND PROCESS DATA

During each test run, the facility recorded electronically and/or manually the required test parameters at regular intervals to accurately document operating conditions throughout the test program. Included were:

- Material processed (lbs)
- Primary and secondary chamber temperatures (F)

A full presentation of facility data is presented in Appendix A4 of this report.

		Stack Configuration			
\square	Description	Distance	Equivalent Diameters		
	Upstream (A)	81"	4.0		
	Downstream (B)	204"	10.0		
	Diameter (C)	20.4"	NA		
	Number of Ports	2	NA		
← C →	Flow	Flow Traverse Points (per diameter)			
	Traverse Points	% of diameter	Distance (inches)		
Sampling Ports	1	4.4	0.9		
	2	14.6	3.0		
↑ [′] _B	3	29.6	6.1		
	4	70.4	14.4		
Flow	5	85.4	17.5		
	6	95.6	19.6		
		CEMS Stratification Points			
	Traverse Points	% of diameter	Distance (inches)		
	1	16.7	3.4		
	2	50.0	10.2		
	3	83.3	17.0		
	¹ - Final CEMS traverse p stratification test.	points were based upon the	results of the		

FIGURE 2-1 SAMPLING LOCATION AND TRAVERSE POINTS – EU5

3.0 SAMPLING AND ANALYTICAL PROCEDURES

3.1 OVERVIEW

This stack testing program consisted of conducting a set of three 60-minute test runs while the unit was operating at \geq 80% of normal operating capacity. Each test run was comprised of CEMS monitoring for O₂, CO₂, CO and NO_x in conjunction with concurrent PM, CPM and opacity determinations. This section provides greater detail to the CEMS, isokinetic sampling and opacity procedures/components that comprised this test program.

3.2 TOTAL PARTICULATE MATTER – METHODS 5 AND 202

Particulate matter and condensable particulate matter were measured using a single sampling train that met the specifications of EPA Methods 1 through 5 and EPA Method 202 (dry impinger method). This included the determination of the proper number of sampling points and their locations in the stack (RM1), stack velocity and volumetric flow rate (RM2), stack gas molecular weight (RM3A) and stack gas moisture content (RM4). The sampling train was an EPA Method 5 train (PM), modified to include the specific requirements of Method 202 (CPM). During each test run, sampling was conducted isokinetically at the traverse points identified in Figure 2-1. A total of 12 traverse points were sampled during each Method 5/202 run. Run lengths were selected in order to ensure sufficient sample collection to meet method objectives.

The Method 5 sampling train components included an air-cooled probe, quartz nozzle, inconel union with graphite ferrules, quartz probe liner, cyclone bypass, tared glass fiber filter, glass fiber filter holder with Teflon support, and a double 90° glass connector equipped with a thermocouple.

The Method 202 sampling train components included a water-jacketed coil condenser, a dry highvolume hybrid impinger, a dry modified Greenburg-Smith impinger, an untared Teflon filter in a glass filter holder with a Teflon support and a back-half thermocouple, a modified Greenburg-Smith impinger containing 100 ml of DI water, and a Greenburg-Smith impinger containing approximately 200 grams of silica gel.

Prior to mobilization, all glassware was cleaned with soapy water, rinsed with tap water, DI H_2O , acetone and finally hexane. Once onsite, but prior to the initiation of sampling, a field train proof blank was collected as described in Section 8.4.5.11 and 8.4.5.12 of Method 202. This consisted of rinsing all glassware components twice from the PM filter holder back half through the CPM dry filter holder front half with DI H_2O into one container, and then again with acetone (once) and hexane (twice) into another container.

Prior to the initiation of testing an initial traverse was conducted in order to choose a nozzle size from which an isokinetic correlation was established. The sampling train was carefully assembled and successfully leak checked to achieve a leak rate of less than 0.02 cfm. After the probe and filter box reached the desired operating temperature of 248°F (±25°F) and the process operation was verified to be ready, the probe was placed in the stack, and isokinetic sampling was initiated.

During sampling, the Method 5 filter outlet temperature, which was measured using the thermocouple located at the filter holder outlet, was maintained at approximately 248°F. The Method 202 dry filter temperature was maintained between 65°F and 85°F (ideally as closely as possible to 85°F as possible) by adjusting the amount and temperature of the water that was

circulated through the coil condenser as well as the speed of the blower that was used to cool the probe. The silica gel outlet temperature was kept below 68°F.

Following each test run, the sampling train was leak checked at the highest vacuum observed during the test run. The sampling train components were disassembled, sealed with Teflon tape, and brought to our field lab. Once disassembled, the Method 5 filter was placed in a petri dish and labeled, and the nozzle, probe and front half filter holder (Method 5 filter) were thoroughly brushed and rinsed with acetone into a container and labeled for identification.

The volume of the condensate in the first two impingers was determined. The condensate from both impingers was then poured into impinger 2 and subsequently purged along with CPM filter for one hour at a rate of greater than 14 liters per minute. The remaining third and fourth impingers were measured for moisture gain and discarded.

Following the purge, the contents of impinger 2 was poured into a sample recovery bottle (Method 202 Container A). The Teflon dry filter was removed and placed in a labeled container (Method 202 Container C). The coil condenser, impingers 1 and 2 and the front half of the dry filter holder were rinsed twice with DI water into Container A. Lastly, these components were rinsed once with acetone and twice with hexane into a separate container (Method 202 Container B).

Following recovery of the first test run, this same sampling train was fully loaded, measured, reloaded, purged, and recovered in the identical manner of a normal test run. This sample was then identified as a field train recovery blank for EPA Method 202. The resulting CPM value reported by the laboratory for this train was used for blank correcting the CPM values (Per Section 9.10 of the method the maximum correction of 2.0mg).

All PM and CPM samples were shipped under COC to Enthalpy Analytical in North Carolina for analysis.

PM and CPM Blank Correction Guidance:

- **Filterable/front half PM** Per Method 5, the maximum blank correction for acetone was 0.001% by weight.
- **Condensable PM** Per Method 202, a blank correction based upon the results of the field train blank recovery train may be made up to a maximum correction of 2.0mg.

Figure 3-1 below presents a schematic of the PM/CPM sampling train described above.

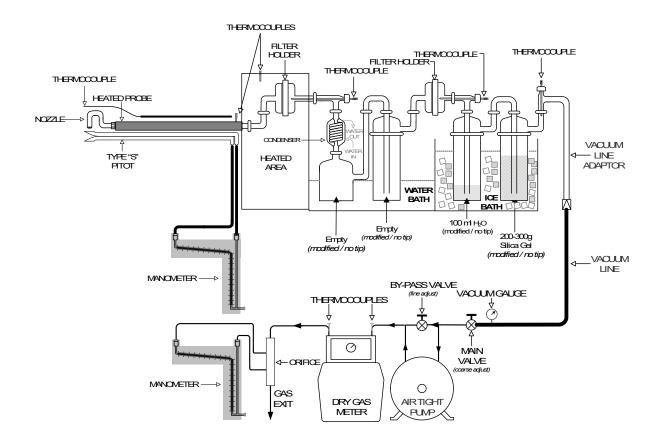


FIGURE 3-1 US EPA METHOD 5/202 SAMPLING TRAIN

3.2.1 Description of Isokinetic Sampling Equipment and Test Procedures

The following subsections describe the isokinetic sampling equipment, as well as a description of its use.

3.2.2 Sampling Equipment

The design specifications of the isokinetic sampling train met all the requirements of EPA's Reference Method 5 as found in the Federal Regulations under Section 40 CFR 60 Appendix A, as amended. The following is a description of the individual pieces of equipment that comprised the sampling train.

- Nozzle The nozzle was constructed of quartz glass and was calibrated prior to testing.
- **Probe** An air-cooled probe was equipped with a quartz glass liner of sufficient length to reach all of the required traverse points.
- **Heating System** The probe and filter temperatures were maintained at 248° + 25°F throughout testing. These temperatures were monitored by use of a thermocouple (located on the back half of the filter and probe sheath) and temperature readout.

- Front Half Filter (Method 5) Tared Glass Fiber filter.
- Back Half Filter (Method 202) Untared 47mm Teflon.
- **Condenser (Method 5/202)** A Method 23 type condenser followed by a water dropout impinger and three modified Greenburg-Smith impingers. Impingers 1 and 2 were initially empty, impinger 3 was initially loaded with 100ml of water and the fourth impinger contained 200-300g of silica gel.
- **Pitot Tube** A S-type pitot tube was used to measure all gas velocities at the traverse points identified in Figure 2-1. The pitot tubes met all of the dimensional criteria set forth in Method 2, and therefore a coefficient of 0.84 was used.
- **Pitot Lines** The pitot tube was connected to a manometer via leak free Tygon and/or teflon tubing.
- **Manometer** An inclined manometer capable of measuring up to ten inches of water column pressure drop was used.
- **Thermocouple** A "K" type thermocouple was used to monitor the stack temperature at each traverse point.
- **Umbilical** An umbilical consisting of a gas sample line, tygon pitot lines, K-type thermocouple wire, and electrical cords were used to connect the sampling train to the metering console,
- **Metering Console** A vacuum gauge, inclined manometer, leak-free pump, calibrated thermocouples, and a calibrated dry gas meter are the basic components used to meter the dry sample gas through the system.
- **Gas Molecular Weight Determination** The O₂ and CO₂ content of the sample gas were measured in accordance with EPA Method 3A.

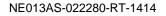
3.2.3 Sampling Procedures

All sampling procedures were conducted in strict accordance with the Methods prescribed in the Code of Federal Regulations as found in 40CFR60 as amended, where available. The following is the sequence of events that occurred prior to and during the actual tests.

- 1. **Traverse Points** The traverse points were calculated and marked in accordance with Method 1 or Performance Specification, as applicable.
- 2. **Preliminary Traverse** A preliminary traverse was conducted. Readings included the pressure drops and gas temperatures (used for selecting proper nozzle size).
- 3. Cyclonic Flow For the test location, a cyclonic flow check was conducted in accordance with Section 11.4 of EPA Method 1. In summary, at each traverse (See Figure 2-1) point the probe was rotated perpendicular to the cross-sectional area of the stack (This is zero degrees). The probe was then rotated (if necessary) until a null pitot reading was obtained. The angle for each point was then recorded and then the absolute value of each angle was used to calculate an overall average cyclonic flow angle for the source. For the test location to be deemed acceptable, this average angle is required to be no more than 20 degrees.
- 4. **Static Pressure –** Static pressure was determined utilizing a S-type pitot tube. The probe was rotated until a null reading was observed and then the negative or positive side was

opened in order to ascertain the static pressure of the stack. If removing the negative pitot resulted in a positive deflection, then the static pressure was recorded as a positive. Conversely, if the positive pitot was removed in order to ascertain a positive deflection then the static pressure was recorded as a negative.

- 5. **Barometric Pressure -** The barometric pressure was determining using National Weather Service from Boston, MA (KBOS), adjusted for port elevation.
- 6. **Nomograph** Once the above information was obtained, the nomograph (or computer program) for the actual test was setup to correlate the isokinetic relationships.
- 7. Sampling Train Set-Up:
 - (a) The filter was placed in the filter holder and visually checked.
 - (b) The impingers were loaded in accordance with the method. Volumes were recorded on the field data sheets.
 - (c) Approximately 200 grams of silica gel was placed in the final impinger. Exact weights were logged on the field data sheets.
 - (d) Crushed ice was placed around the impingers (on the dry side of the impinger bucket).
 - (e) Once the entire train was assembled, the probe and hot box heaters were turned on.
- Pre-Test Leak Check Metering System Once the heater box reached the desired temperature for testing, the system was leak checked at fifteen inches of vacuum (15"Hg). The meter was observed for movement over a 60-second period. A leak rate of less than 0.02 CFM was achieved prior to the start of sampling.
- 9. Pre-Test Leak Check Pitot System All pre and post-test pitot leak-checks were conducted as follows: (1) blow through the pitot impact opening until at least 7.6 cm (3.0 in.) H₂0 velocity head registered on the manometer; then, close off the impact opening. The pressure was required to remain stable for at least 15 seconds to be considered valid; (2) the same was then done for the static pressure side, except using suction to obtain the minimum of 7.6 cm (3.0 in.) H₂0.
- 10. **Final Check** When sampling was ready to commence, plant operations were checked to confirm that the facility was operating at the desired capacity.
- 11. **Sampling** Sampling occurred isokinetically at an approximate rate of 0.75 dcfm. At least once during each traverse point (but at no more than 5-minute intervals), the dry gas meter volume, system vacuum, dry gas meter temperatures (in and out), stack temperature, and filter outlet / probe temperatures were recorded for the duration of each test run.
- 12. **Post-Test Leak Check** At the completion of each test run, the metering system was leak checked at the highest vacuum recorded during that run for a 60-second period. The actual leak rate was then recorded on the field data sheet. All leak checks less than 0.02 CFM were considered acceptable. The pitot tube was also leak checked as described above.
- 13. **Sample Recovery** All samples were recovered according to the respective Reference Method procedures. Additional recovery procedures may be found in Section 5 of this report.
- 14. **Isokinetic Rate** Once all sample recovery was completed (including moisture determination), calculations were conducted to determine the percent isokinetic sampling rate of the test run.


3.2.4 Moisture Determination

A moisture determination for each test run was made in accordance with Method 4 (modified for Method 5/202). A synopsis of the procedure is presented below.

- 1. Sample Train Preparation Sample train preparation consisted of the following:
 - Place 100ml of DiH₂0 in impinger 3.
 - Place approximately 200 grams of silica gel in the fourth impinger.
 - Record Initial weights on the field data for each impinger.
 - Assemble entire sampling train.
- 2. **Pre-Test Leak Check** The system was leak checked at fifteen inches of vacuum (15"Hg). A leak rate of less than 0.02 CFM was achieved prior to the start of sampling.
- 3. **Sampling** A sample was collected at a rate determined by the isokinetic relationship (approximately 0.75cfm) while recording sample gas volume, stack temperature, filter temperatures, system vacuum and dry gas meter temperatures (in and out) at each sample point.
- 4. **Post-Test Leak Check** Upon completion of each test run, the system was leak checked at or above the highest vacuum recorded during that run. All leak checks were required to meet the criteria of less than or equal to 0.02 CFM to be considered valid.
- 5. **Sample Recovery** The impingers were recovered gravimetrically for determination of net condensate gain.

3.3 CEMS TEST PROCEDURES

Figure 3-2 below presents a schematic of the Montrose's CEMS system configuration during this test program, while the remainder of this section outlines all procedures associated with the CEMS portion of the compliance test program.

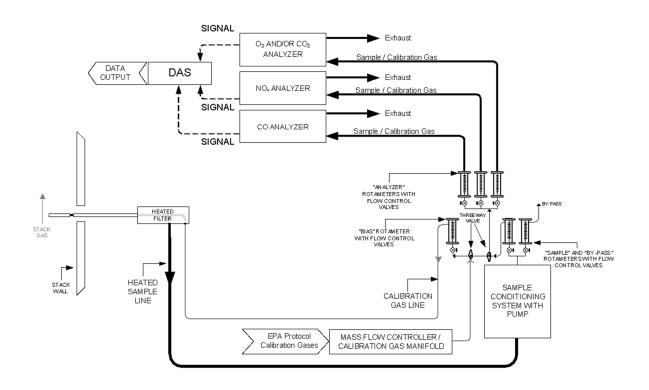


FIGURE 3-2 US EPA METHOD 3A, 7E, AND 10 SAMPLING TRAIN

3.3.1 O₂, CO₂, NO_x and CO Sampling and Calibration Procedures

The reference method O_2 , CO_2 , NO_x and CO CEMS analyzers were calibrated through both a direct and system calibration procedure to ensure the validity of all data collected. First, each instrument was calibrated directly (not through the system) with zero and two upscale points, as follows:

- 1. Deliver zero gas to respective analyzers until stable response is obtained, then adjust each analyzer's zero potentiometer or equivalent to read as close to zero as possible.
- 2. Deliver span (highest value) gas to respective analyzers until stable response is obtained, then adjust each instrument's span potentiometer or equivalent to read as close to the cylinder value as possible.
- 3. Deliver mid-level gas to respective analyzers until stable response is obtained, then calculate if the observed value meets 2% linearity criteria specified by the method. If the calibration meets the linearity criteria, then proceed to system calibration procedures. Otherwise, take corrective action and repeat direct calibration procedures for analyzers not meeting the linearity criteria.

Following a successful direct calibration of the instruments a system calibration was conducted, as follows:

- 4. Deliver zero gas through the entire sampling system, record the respective analyzer responses and calculate the respective analyzer calibration biases.
- 5. Deliver a representative upscale calibration gas through the entire system, record the respective analyzer responses and calculate the respective analyzer calibration biases.

If initial bias criteria were satisfactorily met, a sampling run was initiated following a sufficient purge of the sampling line with stack gas (a minimum of twice the system response time). Following each sampling run a subsequent system calibration was conducted as follows:

- 6. Deliver zero gas through the entire sampling system, record the respective analyzer response and calculate the respective analyzer calibration drift and biases.
- 7. Deliver a representative upscale (same gas cylinder as step 5) calibration gas through the entire system, record the respective analyzer responses and calculate the respective analyzer calibration drift and biases.

If all linearity, calibration drift, and calibration bias criteria were met then the collected data was considered valid. Each test run was required to be bracketed by system calibrations. If calibration criteria were not met, the data collected would not be considered valid, corrective action would have been taken and all calibration steps would have been repeated.

3.3.2 CEMS Sampling System Description

The following is a description of the transportable continuous emissions monitoring system that was used to quantify each of the diluents/pollutants that comprised this test program.

3.3.2.1 Pollutant/Diluent Monitoring

In general, the sample was extracted, analyzed, and recorded in accordance with the applicable instrumental analyzer procedures. All calibrations were conducted utilizing EPA Protocol G1 gases. The results of calibrations were used to determine the acceptability of the test data. Each analyzer used during this test program are detailed below.

<u>Oxygen</u> - Oxygen was monitored in accordance with and EPA Method 3A, 40CFR60, Appendix A. Montrose complied with instrumental analyzer procedure 3A utilizing a California Analytical Instruments (CAI) Model 600 paramagnetic oxygen analyzer (or equivalent) operated on a 0-25% range.

<u>Carbon Dioxide</u> - Carbon dioxide was monitored in accordance with EPA Method 3A, 40 CFR 60, Appendix A. Montrose complied with instrumental analyzer procedure 3A utilizing a CAI Model 600 non-dispersive infrared (NDIR) carbon dioxide analyzer (or equivalent) operated on a 0-20% range.

<u>Carbon Monoxide</u> – Carbon Monoxide was monitored in accordance with EPA Method 10, 40CFR60, Appendix A. Montrose complied with instrumental analyzer procedure 10 utilizing a Model 48i CO monitor operated on a 0-200 range.

<u>**Oxides of Nitrogen**</u> – Oxides of Nitrogen was monitored in accordance with EPA Method 7E, 40CFR60, Appendix A. Montrose complied with instrumental analyzer procedure 7E utilizing a Model 42iHL chemiluminescent NO_x monitor operated a 0-200 ppm range.

3.3.2.2 Sample Delivery and Conditioning System

- **Sample Probe** A stainless-steel probe of sufficient length to sample at the traverse points specified in Figure 2-1.
- **Filter** A spun glass fiber filter contained in a heated sheath. The filter was located between the sample probe and sample line, it is designed to remove particulate from the gas stream.
- **Sample Line** 3/8" Teflon tubing in a heated sample line designed to transport the sample gas from the probe to the sample conditioning system (in the CEMS trailer).
- **Condenser** A thermo-electrically designed chiller was used to reduce the sample dew point to four degrees Celsius. The chiller is located just prior to the main sample pump.
- **Sample Pump** A diaphragm type vacuum pump to draw gas from the probe through the conditioning system and to the analyzers. The pump head is stainless steel, the valve disks are Viton and the diaphragm are Teflon coated.
- **Sample Distribution System** A series of flow meters, valves and backpressure regulators allows the operator to maintain constant flow and pressure conditions during sampling and calibration.

3.3.2.3 Calibration System

- **Calibration Gases** EPA Protocol Gases certified in accordance with EPA Protocol G1 procedures.
- **Calibration System** A series of manual valves designed to deliver a specified gas either directly to an analyzer or through the entire sampling system by activating the appropriate valve sequence.
- **Calibration Line** Teflon line (1/4") run in parallel to the sample line.
- **Calibration Tee** Stainless steel tee (3/8") located between the probe and the filter that allows the operator to inject calibration gas through the entire sampling system. Excess calibration gas exits the probe eliminating any potential over pressurization.

3.3.2.4 Data Acquisition System

• **Software** – lotech data acquisition system (DAQ 56). This system is programmed to collect data once per every two seconds, while reporting 1-minute averages. This software operates in a Windows environment.

3.4 Visual Emissions – EPA Method 9

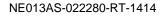
Visual Emission (VE)/opacity testing consisted of conducting three 60-minute test runs, for the determination of opacity emissions in accordance with EPA Method 9 test procedures. As such, each 60-minute test run was comprised of 240 consecutive readings collected at 15 second intervals. At the conclusion of each test run, ten 6-minute block averages were calculated by averaging each consecutive set of 24 readings (no overlapping data points). Each resulting value was subsequently compared to the facility's operating permit to determine the compliance status of the unit with respect to opacity emissions.

The following subsections present the procedures that were adhered to in order to ensure the accuracy of the opacity readings

3.4.1 Position

The qualified observer shall stand at a distance sufficient to provide a clear view of the emissions with the sun oriented in the 140° sector to his back. Consistent with maintaining the above requirement, the observer shall, as much as possible, make their observations from a position such that the line of vision is approximately perpendicular to the plume's direction.

3.4.2 Field Records


The observer shall record the name of the plant, emission location, facility type, observer's name and affiliation, and the date on the field data sheet. The time, estimated wind speed, description of the sky conditions and plume background are recorded on the field data sheet at the time opacity readings are initiated and completed.

3.4.3 Observations

Opacity observations shall be made at the point of greatest opacity in that portion of the plume where condensed water vapor is not present. Observations were recorded to the nearest 5% at 15-second intervals throughout each test run.

3.4.4 Qualifications

All readings were conducted by an observer with a valid Visual Emission Evaluator (VEE) certification. A copy of their VEE certification is presented in Appendix C3 of this report.

4.0 TEST DISCUSSIONS AND RESULTS

4.1 FIELD TEST DEVIATIONS AND EXCEPTIONS

No field deviations or exceptions from the test plan or test methods occurred during this test program.

4.2 PRESENTATION OF RESULTS – COMPLIANCE / FULL LOAD

The average/compliance results were previously compared to the applicable permit limits in Table 1-2 are based upon the respective three run averages presented in Table 4-1. All emissions have been reported in units of applicable standard. All supporting emission calculations and field data sheets are presented in Appendix A, while the PM/CPM laboratory analyses and associated quality assurance documentation in Appendices B and C, respectively.

Parameter	Units	R1	R2	R3	
Test Date	MM/DD/YY	2/14/23	2/14/23	2/14/23	A
Start Time	HH:MM	10:50	13:35	15:40	Average
End Time	HH:MM	12:07	14:56	16:50	
РМ	gr/dscf@7%O ₂	0.0334	0.0200	0.0292	0.0275
СРМ	gr/dscf@7%O ₂	0.0031	0.0025	0.0046	0.0034
CO	ppmvd@7%O ₂	32.8	9.4	8.2	16.8
NO _x	ppmvd@7%O ₂	165.5	127.1	107.5	133.4
Opacity	%	0.0	0.0	0.0	0.0
		- Additional Sampli	ng Parameters -		
Stack Flow	dscfh	50,344	48,815	47,667	48,942
Stack Temp	F	1190.2	1112.0	1106.2	1136.1
Stack Moist.	%	7.2	7.9	8.8	8.0
Stack Velocity	ft/sec	20.9	19.5	19.1	19.8
Stack O ₂	%	13.53	14.30	14.63	14.15
Stack CO ₂	%	5.24	4.18	3.91	4.44
Isokinetic Rate	%	90.75	98.39	91.95	93.70
		- Facility	Data -		
Parameter	Units	R1	R2	R3	Average
	Actual, lbs	232.7	244.1	223.0	233.3
Loading	Max. Rating, lbs	250	250	250	NA
	% of Max.	93.1	97.6	89.2	93.3

TABLE 4-1INDIVIDUAL RUN EMISSIONS RESULTS – EU5

5.0 QUALITY ASSURANCE AND REPORTING

5.1 SAMPLING AND ANALYTICAL QA/QC

Montrose Air Quality Services (MAQS), its management, and employees are committed to consistently providing the highest quality services to our clients that is delivered with honesty and integrity. These services result in data that are accurate, precise, timely, and legally defensible in support of our clients' environmental compliance, engineering evaluation, and other needs. A corporate culture of quality and continuous improvement is maintained as a positive and desirable aspect of business operations.

All calculations were conducted in strict accordance with the equations found in the individual Methods. Strict QA/QC protocols were followed during all phases of this project. These protocols included:

- QA objectives for measurement data;
- Data reduction;
- Internal QC;
- Calibration of equipment;
- Corrective action, if necessary; and
- Use of standardized field data sheets.

These specific procedures in addition to Montrose's usual high standard of quality control aid to validate the results obtained during this test program. As the majority of our emissions testing work are done for compliance purposes, strict QC procedures are incorporated into our everyday work performance.

The remainder of this section summarizes the standard QA aspects of our test programs and may contain components that are not applicable to this test program.

5.2 EQUIPMENT MAINTENANCE AND CALIBRATION

Our Quality Assurance Program is in place to ensure consistent standards for our equipment maintenance, calibration schedule, quality control acceptance limits, and any necessary corrective action. Below are specific examples of our control system.

5.2.1 Equipment Inspection and Maintenance

- Each critical piece of field equipment is assigned a unique identification number to allow tracking of its calibration history.
- All field equipment is visually inspected prior to testing and includes pre-test calibration checks.
- Glassware is visually inspected prior to testing.
- Preliminary stack flow and temperature measurements were taken to assure correct isokinetic sampling.
- Reagents are made fresh daily, when required. A new reagent blank is retained for every new stock of reagent.

5.2.2 Equipment Calibrations

Montrose's meter boxes, pitot tubes, thermocouples and barometers are maintained in accordance with specifications set forth in EPA "Quality Assurance Handbook for Air Pollution Measurement Systems - Volume III Stationary Source Specific Methods" Section 3.3.5 dated January 15, 1980 and with manufactures suggested procedures. A summary is presented below:

- Dry Gas Meter and Orifice Meter/EPA Method 5 All dry gas meters are calibrated using calibrated critical orifices, according to 40 CFR 60, Appendix A, Method 5, Section 16.2. The orifice meters in the meter control boxes are calibrated against the calibrated critical orifices and checked against the dry gas meters to which they are attached.
- **Balance** All analytical balances used for weighing impingers are calibrated in the field against ANSI Class 3 weights.
- **Thermocouples –** All type K thermocouples are calibrated against an NIST-traceable digital thermometer at either two or three points, depending on the application of the thermocouple.
- **S-type or Standard Pitot Tubes** All standard and Type "S" stainless steel pitot tubes are designed to meet the dimensional criteria set forth in Method 2, therefore a coefficient of 0.99 (standard) or 0.84 (Type "S") was used.

5.3 AUDIT SAMPLES

When required by the test method, Montrose obtains EPA TNI SSAS audit samples from an accredited provider for analysis along with the samples. The audit samples are stored, shipped, and analyzed along with the emissions samples collected during the test program. The audit sample analysis results are reported along with the emissions results for the samples collected during the test program.

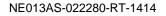
5.4 DATA ANALYSIS, VALIDATION, AND UNCERTAINTY

Montrose converts the raw field data and laboratory analysis data to reporting units consistent with the permit or subpart. Calculations are made using proprietary computer spreadsheets or data acquisition systems. Data entry are double-checked, and example calculations are performed to spot-check the calculations for accuracy.

Both qualitative and quantitative factors contribute to field measurement uncertainty and should be taken into consideration when interpreting test program results. Whenever possible, Montrose personnel reduce the impact of these uncertainty factors through the use of approved and validated test methods. In addition, Montrose personnel perform routine instrument and equipment calibrations and ensure that the calibration standards, instruments, and equipment used during test events meet, at a minimum, test method specifications as well as the specifications of our Quality Manual and ASTM D 7036-04. Limitations of the various methods, instruments, equipment, and materials to be utilized during this test have been reasonably considered, but the ultimate impact of the cumulative uncertainty to the final data may not be quantifiable.

5.5 ISOKINETIC SAMPLING

Montrose's entire equipment inventory is on a schedule of routine maintenance and calibration. This includes meter boxes, thermocouples, barometers, pitot tubes and sampling nozzles. Meter



boxes are calibrated over a full range of flow rates against a wet test meter or critical orifices every six months. Thermocouples are calibrated as specified in the EPA Handbook against NIST-traceable mercury in glass thermometer. Pitot tubes are visually inspected for conformance to the dimensional criteria specified in EPA Method 2. All pitot tubes used by Montrose meet these criteria and are assigned a pitot tube coefficient of 0.84. Pitot tubes which do not meet the criteria are either repaired or discarded. All nozzles are calibrated in the field immediately before use with calipers using a minimum of three diameters. If they do not meet the required maximum allowable range of .004 inches between points, then they are machined to fit these criteria, or are discarded if determined to be beyond repair.

Sample train recovery procedures were conducted in accordance with the specific methods. Chain of custody documentation was initiated in the field and maintained on all samples from their recovery through inter-laboratory transfer until their final analysis. Analysis was conducted in accordance with the specific methods using proper laboratory procedures. Subcontracted laboratory work was conducted by qualified analytical laboratories. Analytical results were used to calculate stack gas pollutant concentrations and emission rates. All calculations were conducted in strict accordance with the equations found in the individual methods. All calculations were conducted on a computer, and the input data was checked by a person other than the individual who originally input the data.

5.5.1 Particulate Matter

Particulate Matter testing was conducted in accordance with EPA Methods 5 and 202 in a combined sampling train. Specifically, Method 1 was used for the selection of traverse points, Method 2 was used for the determination of volumetric flow, Method 3A was used for the collection of fixed gases and Method 4 was followed in order to determine sample stream moisture content. A description of the QA/QC procedures to be adhered to for each PM/CPM test run is presented in Table 5-1.

TABLE 5-1
QA/QC Procedures for PM & CPM / EPA Methods 5 & 202

Task	Procedure
Glassware/ Teflon Preparation	 Wash all glassware and Teflon components in warm, soapy water. Rinse clean with tap water. Rinse thoroughly with DI water. Rinse all back half / impingers glassware with acetone and hexane. Allow to dry and seal with Teflon.
Sampling Train Set up	 Load/assemble sampling train components in field lab (See Section 4). Re-seal components and send up to stack. Finish assembling train on stack. Leak check train with Teflon tape on finger.
Sampling Train Operation	 Operate sampling train between 0.5 and 1.0 cfm. Leak check train. Seal train components with Teflon.
Sampling Train Recovery	 Place Filter into EPA Method 5 container #1. Rinse nozzle through front half of filter holder with acetone into EPA Method 5 container #2. Purge sampling train (condenser coil through back half of CPM filter) with nitrogen for 60 minutes at a rate of ≥14 LPM. Recover Impingers 1 and 2 sampling train contents into EPA Method 202 container #1. Rinse sampling train from condenser coil through front half of condensable filter housing with DI H₂O into EPA Method 202 container #1. Rinse sampling train from condenser coil through front half of condensable filter housing with acetone (once) and hexane (twice) into EPA Method 202 container #3. Collect proof, reagent and/or field blanks as required.
Sample Identification And Shipping	 Identify all samples by stack, method, runs no. fraction and contents. Generate chain of custody form identifying all samples. Transport or ship samples to analytical laboratory.
PM/CPM Sample Analysis	 Receive samples, verify chain of custody/contents. Evaporate front half acetone rinse in tared beaker. Desiccate filters and beakers for 24 hours. Weigh at six-hour intervals until two consecutive weights agree by ±0.5 mg. CPM samples analyzed in accordance with Method 202 as per selected laboratories SOPs.

5.6 CEMS QA

Specific procedures are followed to ensure the validity of the CEMS data collected for this task. The following subsections outline the specific procedures and performance criteria that were utilized to maintain quality assurance throughout the program.

5.6.1 Calibration Gases

All calibration gases utilized during the test program are prepared according to EPA Protocol quality standards. The gas specification sheets supplied by the vendor are presented in Appendix C1.

5.6.2 Determination of Stratification

All compliance CEMS sampling points were determined concurrently with run 1 program via a stratification check conducted in accordance with Section 8.1.2 of EPA Method 7E, 40CFR 60, Appendix A. As such, a heated single holed probe was traversed for at least 2 times the system response time (5-minutes/point) at 16.7, 50 and 83.3 percent of the stack diameter (prior to the initiation of compliance testing). An average pollutant (CO or NO_x) or diluent (O₂ or CO₂) concentration was determined for each point and subsequently compared to the average pollutant/diluent concentration of all three points. If each point differed by no more than 5% or 0.5ppm (CO/NO_x)/0.3% (O₂/CO₂) from the mean pollutant concentration (whichever is less restrictive) then the gas stream was considered unstratified and sampling was conducted from the point which most closely matches the average. If each point (for either diluent or pollutant) differed by no more than 10% or 1.0ppm (CO/NO_x)/0.5% (O₂/CO₂) then the gas stream was considered at 3 points during each test run (16.7, 50 and 83.3% of stack diameter). If these criteria weren't met, then the gas stream was considered stratified and testing was conducted in accordance with Table 1-1 or 1-2 of Method 1. The results of the stratification tests are presented in Appendix C2.

Note: Per Section 8.1.2 of EPA Method 7: "If testing for multiple pollutants or diluents at the same site, a stratification test using only one pollutant or diluent satisfies this requirement." This unit met the most stringent criteria during this test program. Hence, a single point sampling strategy was employed throughout.

5.6.3 NO_x Converter Efficiency Tests

The chemiluminescent NO_x analyzer used by the reference method during the conduct of the test program was subjected to a NO_x converter efficiency test onsite in accordance with Section 8.2.4.1 (NO₂ bottle method) of EPA Method 7E, 40CFR 60, Appendix A. The analyzer met the converter efficiency requirement of \geq 90%. A copy of the test results is presented in Appendix C2.

5.6.4 Instrumental Monitoring

The reference method CEMS system was leak-checked prior to the initiation of testing. This ensured that a representative sample from the stack was being delivered to the monitors. The calibration drift/bias checks provided a continuous check of data quality throughout the remainder of the test program.

CEMS data quality was assured throughout the test program by following procedures delineated in Instrumental Analyzer Procedures/Methods $3A (O_2 \text{ and } CO_2)$, $7E (NO_x)$, 10 (CO). A summary of the QA portion of the test program is presented below.

5.6.5 Sampling Setup

The following procedures were conducted during the initial phase of the program

- **Sample Point Selection** All sample points were selected in accordance with Method 7E based upon the results of the stratification test.
- Leak Check Prior to the initiation of testing the reference method CEMS system was leak checked from the end of the sample probe. If a leak were detected, it was traced, fixed and the procedure was repeated until successful.
- System Response Time Prior to the initiation of sampling a Reference Method (RM) CEMS response time (in seconds) was determined. Response time is the amount of time required for the RM CEMS to reach 95% of the final stable upscale and downscale values. The longer of the upscale and downscale response times was reported as the system response time. During the test program, the reference method CEMS was allowed to sample a minimum of 2 times the RM CEMS response time prior to the initiation of any sampling runs.

5.6.6 Calibration Criteria – O₂, CO₂, NO_x and CO

The following subsections present the CEMS criteria for O_2 , CO_2 , NO_x and CO that must be adhered to throughout the conduct of the test program.

Analyzer Calibration Error (ACE) – At the beginning of each test day an analyzer calibration error (direct calibration) was conducted for each analyzer by introducing zero and an upscale calibration gas upstream from the respective analyzers and calibrating the respective analyzers to the corresponding calibration gas value. A mid-range gas was then injected to the respective analyzers in order to demonstrate linearity. The maximum allowable calibration error was 2% of instrument span. If this limit were not achieved, corrective action would have been taken and the procedure would have been repeated until successful. Analyzer calibration error was calculated as follows:

$$ACE = \frac{(C_{Dir} - C_v)}{CS} \times 100$$

Where:

- C_{Dir} = Measured concentration of a calibration gas (low, mid, or high) when introduced in direct calibration mode, ppmvd.
- C_v = Manufacturer certified concentration of a calibration gas (low, mid, or high), ppmvd.

CS = Calibration span, ppmvd.

• Sampling System Bias (SB) – Following the performance of the analyzer calibration error a system bias check was conducted by introducing sampling gas through the entire sampling system (system calibration) and comparing the response of the analyzer's

calibration error with that of the system calibration. The maximum allowable calibration error is 5% of instrument span. If this limit were not achieved, the test run would have been voided and corrective action would have been taken. If analyzer adjustments were made the analyzer calibration error and system bias checks would have been repeated until the calibration met the EPA Method 7E criteria. System bias was calculated as follows:

$$SB = \frac{(C_s - C_{Dir})}{CS} \times 100$$

Where:

- C_s = Measured concentration of a calibration gas (low, mid, or high) when introduced in system calibration mode, ppmvd.
- Calibration Drift (D) Prior to and following each test run a system calibration was conducted in order to determine calibration drift during each test period. The maximum allowable calibration drift is 3% of instrument span. If the calibration drift were exceeded, corrective action would have been taken. If any analyzer adjustments were made, a new analyzer calibration error and system bias check would have been conducted. Calibration drift was calculated as follows:

$$D = |SB_{final} - SB_{iniital}| \times 100$$

5.7 EMISSION RATE CALCULATIONS

The following equations were followed when calculating compliance emission rates during this test program.

5.7.1 Grains/dscf

All PM emissions rates during this test program will be calculated on a grains per dry standard cubic foot basis in accordance with the following equation.

E=PM (0.0154) / DGM

Where:

E = PM pollutant emission rate (gr/dscf)
 PM = Net gain in particulate matter for test run in milligrams
 DOM = Data Mater) (classifier)

DGM = Dry Gas Meter Volume for test run (dscf)

5.7.2 ppmvd@7%O₂ Emission Rate Calculation

Emissions (ppmvd) corrected to $7\%O_2$ basis will be calculated in accordance with the following equation.

$$E = Cd[\frac{13.9}{20.9 - \%02}]$$

Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

Where:

Е	=	pollutant emission rate, $ppm_{vd}@15\%O_2$
C_{d}	=	pollutant concentration, ppm_{vd}
O_{2d}	=	concentration of oxygen, $\%_{vd}$

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name:	Mr. David Caron, QSTI
Title:	Client Project Manager
Region:	Northeast
Email:	Dcaron@montrose-env.com
Phone:	(978) 499-9300 x11303

Name:	Mr. Anthony Stratton, QSTI
Title:	Client Project Manager
Region:	Northeast
Email:	astratton@montrose-env.com
Phone:	(978) 499-9300 x11304

Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

APPENDIX A

Emission Calculations and Field Data Sheets

Indices

- 1 Emission Calculations and Field Data Sheets M5/202
- 2 Emission Calculations and Field Data Sheets CEMS Parameters
- 3 Visual Emission Data Sheets
- 4 Facility Data

Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

Index A.1 - Emission Calculations and Field Data Sheets – M5/202

Facility/Site:	Gateway Services / Forget-M	/le-Not			2/14/23
Source:	EU5			Start Time:	
Run No.:	EU5-M5/202-R1			Stop Time:	12:07
				BI	LANKS
	FILTER	BEAKER			ACETONE*
Sample ID :	27420	39613		27423	39616
FINAL(g):	0.43161	2.400574		0.39661	2.346751
TARE (g) :	0.40086	2.390485		0.39627	2.346640
NET (g):	0.03075	0.010089	-	0.00034	
				nk Rinse (ml):	114
				one Blank (g):	89.4
		PM attributable to ac			0.08
				rrection (mg):	0.09 78
		V	Jume	of Rinse (ml):	/0
$M_n - A_r = M_n$		O ₂	=	13.53	
		CO2	=		%vd
M _n (mg)** =	40.84	Vs	=	20.89	
A _r (mg) =	0.08	As	=	2.27	ft ²
		V _m st	td =	35.419	dscf
M _n (mg)** =	40.76				
C _s =	(2.205 E-6) (M _n) / (V _m std)		=	2.54E-06	lb/dscf
Cs' =	0.0154 (Mn) /(VmStd)		=	0.0177	gr/dscf
Cs' @7%O ₂ =	0.0154 (Mn) /(VmStd)		=	0.0334	gr/dscf@7%O ₂

Particulate Emission Calculations - Method 5

Facility/Site:	Gateway Services / Forget-M	le-Not								
Source:	EU5				Start Time:					
Run No.:	EU5-M5/202-R2				Stop Time:	14:56				
					BI					
	FILTER	BEAKER				ACETONE*				
Sample ID :	27421	39614			27423	39616				
FINAL(g):	0.4214	2.4053			0.3966	2.34675				
TARE (g) :	0.3993	2.4044		_	0.3963	2.34664				
NET (g):	0.0222	0.0008			0.0003	0.00011				
					ık Rinse (ml):					
					ne Blank (g):	89.4				
		PM attributable to				0.03				
		Max. allo			rrection (mg):	0.09				
			Vo	olume	of Rinse (ml):	27				
$M_n - A_r = M_n$		C) ₂	=	14.30	%vd				
		C	O ₂	=	4.18	%vd				
M _n (mg)** =	23.00	V	's	=	19.45	ft/sec				
A _r (mg) =	0.03	А	s	Ξ	2.27	ft ²				
			-	d =	37.234	dscf				
M _n (mg)** =	22.97	-								
C _s =	(2.205 E-6) (M _n) / (V _m std)			=	1.36E-06	lb/dscf				
Cs' =	0.0154 (Mn) /(VmStd)			=	0.0095	gr/dscf				
Cs' @7%O ₂ =	0.0154 (Mn) /(VmStd)			=	0.0200	gr/dscf@7%O ₂				

Particulate Emission Calculations - Method 5

Facility/Site:	Date:	2/14/23			
Source:	EU5			Start Time:	
Run No.:	EU5-M5/202-R3			Stop Time:	16:50
				BI	ANKS
	<u>FILTER</u>	BEAKER			ACETONE*
Sample ID :	27422	39615		27423	39616
FINAL(g):	0.4229	2.3946		0.3966	2.34675
TARE (g) :	0.3985	2.3898		0.3963	2.34664
NET (g):	0.0243	0.0048		0.0003	0.00011
				k Rinse (ml):	114
				ne Blank (g):	89.4
		PM attributable f			0.08
		Max. a		rection (mg):	0.09
			Volume o	f Rinse (ml):	78
$M_n - A_r = M_n$	10.5		O ₂ =	14.63	%vd
		(CO ₂ =	3.91	%vd
M _n (mg)** =	29.13		V _s =	19.11	
A_r (mg) =	0.08		A _s =	2.27	ft²
,			V _m std =	33.979	dscf
M _n (mg)** =	29.05				
C _s =	(2.205 E-6) (M _n) / (V _m std)	,	=	1.89E-06	lb/dscf
Cs' =	0.0154 (Mn) /(VmStd)		=	0.0132	gr/dscf
Cs' @7%O ₂ =	0.0154 (Mn) /(VmStd)		= '	0.0292	gr/dscf@7%O ₂

Particulate Emission Calculations - Method 5

Essility/Sites		Cotoword	Services / Earact	Me Not	Date:		2/14/23	
Facility/Site: Source:		EU5	Services / Forget-		Start Time:		2/ 14/23 10:50	
Run No.:		EU5-M5/2	02-R1		Stop Time:		12:07	
			r					
T _s (°F)		1190.2	O ₂ (%vd)	= 13.53	V _m (dcf)		34.096	
T _s (°R)	=	1650.2	CO ₂ (%vd)	= 5.24	ΔH (Abs) ("Hg)			
T _m (°F)		47.0	CO (%vd)	= 0			29.72	
		507.0	N₂ (%vd)	= 81.23			0.2087	
V _I (Total gain)	=	58.5	C _p	= 0.84	Y	=	1.0016	
V _I (adj. for sat.)	=	NA	Run Time (min.)	= 60	A _n (ft ²)	=	0.001760	
V _m std	=	((T _{std})(V _m)(Υ)(Δ Η Λ	Abs)		=	35.419	dscf
			(P _{std})(T _m)		-			
V atd	_	0 04706 ()	/ _I Total gain)			=	2.753	ecf
V _w std	-	0.04700 (1	/ Total gailt)				2.100	501
B _{ws}	=	V _{w (std)} / V	/m _(std) + Vw _(std)			=	0.072	
Р	_	h. donn i	eblee			=	NA	
B _{ws}	=	by steam t	ables			-	INA	
1 - B _{ws}	=	1 - B _{ws}				=	0.928	
M _d	=		(%CO ₂)					
		0.320 0.280	(%O ₂) (%N ₂ + %CO)			=	20 370	lb/lb-mole
		0.200	$(701N_2 + 7000)$			-	29.379	SIDIN-UIUE
M _s	=	M _d (1-B _{ws})	+ 18 (B _{ws})			-	28.559	lb/lb-mole
G	=	SQRT (Ts	(abs)/Ps Ms)			=	1.394	
Vs	=	85.49 (C _p)	(G) (SQRT∆ P)			=	20.895	fps
-		•						-
Q _s	Π	3600 (1-B	_{vs})(V _s)(A)(T _{std} P _s /	P _{std} T _s (abs))		=	50,344	dscfh
1	=	(T _s) (V _m std) (P _{std})	100		=	90.75	%Isokineti
-			$(A_n) (P_s) 60 (1-B)$.)			
			•					

$\frac{(P_{std})(T_m)}{(P_{std})(T_m)} = 3.209 \text{ scf}$ $B_{vs} = V_{w_{(std)}} / Vm_{(std)} + Vw_{(std)} = 0.079$ $B_{vs} = by \text{ steam tables} = NA$ $1 - B_{vs} = 1 - B_{ws} = 0.921$ $M_d = 0.440 (\%CO_2) \\ 0.320 (\%O_2) \\ 0.280 (\%N_2 + \%CO) = 29.242 \text{ lb/lb-mole}$ $M_s = M_d (1-B_{ws}) + 18 (B_{ws}) = 28.349 \text{ lb/lb-mole}$ $G = SQRT (Ts(abs)/Ps Ms) = 1.366$ $V_s = 85.49 (C_p) (G) (SQRT\Delta P) = 19.452 \text{ fps}$ $Q_s = 3600 (1-B_{ws})(V_s)(A)(T_{std} P_s/P_{std} T_s(abs)) = 48.815 \text{ dscfh}$	Facility/Site: Source: Run No.:		Gateway S EU5 EU5-M5/20	Services / Forget-l 02-R2	Me-Not	Date: Start Time: Stop Time:	2/14 13:3 14:8	35
$\begin{split} & \begin{array}{lllllllllllllllllllllllllllllllllll$	T (°E)	_	1112.0	0 (%)(d)	- 14 30	V (def)	= 36 (176
$\begin{split} & \prod_{r=0}^{m} (^{r}F) &= 50.1 & CO(\%vd) &= 0 & P_{s}("Hg) &= 29.72 \\ SQRT \Delta P &= 0.1983 \\ Y &= 1.0016 \\ A_{n}(f^{2}) &= 0.01760 \\ \hline & (r_{std})(r_{m}) &= 66.2 \\ P_{n} &= 0.84 \\ P_{n} &= 0.001760 \\ \hline & (P_{std})(T_{m}) &=$								
$T_{std} (^{\circ}R) = 510.1 \\ N_{2} (^{\circ}vd) = 81.52 \\ C_{p} = 0.84 \\ Run Time (min.) = 60 \\ N_{n} (ft^{2}) = 0.001760 \\ T_{n} (ft^{2}) = 0.0017$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
V ₁ (adj. for sat.) = NA Run Time (min.) = 60 A _n (ft ²) = 0.001760 V _m std = $(T_{std})(V_m)(Y)(\Delta H Abs)$ (P _{std})(T _m) = 37.234 dscf V _w std = 0.04706 (V, Total gain) = 3.209 scf B _{ws} = V _{w (std)} / Vm (std) + VW (std) = 0.079 B _{ws} = by steam tables = NA 1 - B _{ws} = 1 - B _{ws} = 0.921 M _d = 0.440 (%CO ₂) 0.320 (%O ₂) 0.280 (%N ₂ + %CO) = 29.242 lb/lb-mole M _s = M _d (1-B _{ws}) + 18 (B _{ws}) = 1.366 V _s = 85.49 (C _p) (G) (SQRT\Delta P) = 19.452 fps Q _s = 3600 (1-B _{ws})(V _s)(A)(T _{std} P _s /P _{std} T _s (abs)) = 48.815 dscfh								
$\frac{(P_{std})(T_m)}{(P_{std})(T_m)} = 3.209 \text{ scf}$ $B_{vs} = 0.04706 (V_1 \text{ Total gain}) = 0.079$ $B_{vs} = V_{w(std)} / Vm_{(std)} + Vw_{(std)} = 0.079$ $B_{vs} = by \text{ steam tables} = NA$ $1 - B_{vs} = 1 - B_{ws} = 0.921$ $M_d = 0.440 (\%CO_2) \\ 0.320 (\%O_2) \\ 0.280 (\%N_2 + \%CO) = 29.242 \text{ lb/lb-mole}$ $M_s = M_d (1-B_{ws}) + 18 (B_{ws}) = 28.349 \text{ lb/lb-mole}$ $G = SQRT (Ts(abs)/Ps Ms) = 1.366$ $V_s = 85.49 (C_p) (G) (SQRT\Delta P) = 19.452 \text{ fps}$ $Q_s = 3600 (1-B_{ws})(V_s)(A)(T_{std} P_s/P_{std} T_s(abs)) = 48.815 \text{ dscfh}$ $I = (T_s) (V_m \text{ std}) (P_{std}) 100 = 98.4 \text{ \%lsokinetic}$					= 60	A _n (ft²)	= 0.00	01760
$\frac{(P_{std})(T_m)}{(P_{std})(T_m)} = 3.209 \text{ scf}$ $B_{vs} = 0.04706 (V_1 \text{ Total gain}) = 0.079$ $B_{vs} = V_{w(std)} / Vm_{(std)} + Vw_{(std)} = 0.079$ $B_{vs} = by \text{ steam tables} = NA$ $1 - B_{vs} = 1 - B_{ws} = 0.921$ $M_d = 0.440 (\%CO_2) \\ 0.320 (\%O_2) \\ 0.280 (\%N_2 + \%CO) = 29.242 \text{ lb/lb-mole}$ $M_s = M_d (1-B_{ws}) + 18 (B_{ws}) = 28.349 \text{ lb/lb-mole}$ $G = SQRT (Ts(abs)/Ps Ms) = 1.366$ $V_s = 85.49 (C_p) (G) (SQRT\Delta P) = 19.452 \text{ fps}$ $Q_s = 3600 (1-B_{ws})(V_s)(A)(T_{std} P_s/P_{std} T_s(abs)) = 48.815 \text{ dscfh}$ $I = (T_s) (V_m \text{ std}) (P_{std}) 100 = 98.4 \text{ \%lsokinetic}$								
$V_{w} \text{ std} = 0.04706 (V_{1} \text{ Total gain}) = 3.209 \text{ scf}$ $B_{ws} = V_{w (std)} / Vm_{(std)} + Vw_{(std)} = 0.079$ $B_{ws} = by \text{ steam tables} = NA$ $1 - B_{ws} = 1 - B_{ws} = 0.921$ $M_{d} = 0.440 (\%CO_{2}) \\ 0.320 (\%O_{2}) \\ 0.280 (\%N_{2} + \%CO) = 29.242 \text{ lb/lb-mole}$ $M_{s} = M_{d} (1 - B_{ws}) + 18 (B_{ws}) = 28.349 \text{ lb/lb-mole}$ $G = SQRT (Ts(abs)/Ps Ms) = 1.366$ $V_{s} = 85.49 (C_{p}) (G) (SQRT\Delta P) = 19.452 \text{ fps}$ $Q_{s} = 3600 (1 - B_{ws})(V_{s})(A)(T_{std} P_{s}/P_{std} T_{s}(abs)) = 48,815 \text{ dscfh}$ $I = (T_{s}) (V_{m} \text{ std}) (P_{std}) 100 = 98.4 \text{ \% lsokinetic}$	V _m std	=	(Abs)		=	37.234 dscf
$B_{ws} = V_{w (std)} / Vm_{(std)} + Vw_{(std)} = 0.079$ $B_{ws} = by steam tables = NA$ $1 - B_{ws} = 1 - B_{ws} = 0.921$ $M_{d} = 0.440 (\%CO_{2}) \\ 0.320 (\%O_{2}) \\ 0.280 (\%N_{2} + \%CO) = 29.242 \text{ lb/lb-mole}$ $M_{s} = M_{d} (1 - B_{ws}) + 18 (B_{ws}) = 28.349 \text{ lb/lb-mole}$ $G = SQRT (Ts(abs)/Ps Ms) = 1.366$ $V_{s} = 85.49 (C_{p}) (G) (SQRT\Delta P) = 19.452 \text{ fps}$ $Q_{s} = 3600 (1 - B_{ws})(V_{s})(A)(T_{std} P_{s}/P_{std} T_{s}(abs)) = 48.815 \text{ dscfh}$ $I = (T_{s}) (V_{m} \text{ std}) (P_{std}) 100 = 98.4 \% \text{ lsokinetic}$				(P _{std})(I _m)				
$H_{ws} = by \text{ steam tables} = NA$ $1 - B_{ws} = 1 - B_{ws} = 0.921$ $M_{d} = 0.440 (\%CO_{2}) \\ 0.320 (\%O_{2}) \\ 0.280 (\%N_{2} + \%CO) = 29.242 \text{ lb/lb-mole}$ $M_{s} = M_{d} (1 - B_{ws}) + 18 (B_{ws}) = 28.349 \text{ lb/lb-mole}$ $M_{s} = SQRT (Ts(abs)/Ps Ms) = 1.366$ $V_{s} = 85.49 (C_{p}) (G) (SQRT\Delta P) = 19.452 \text{ fps}$ $Q_{s} = 3600 (1 - B_{ws})(V_{s})(A)(T_{std} P_{s'}/P_{std} T_{s}(abs)) = 48.815 \text{ dscfh}$ $H = (T_{s}) (V_{m} \text{ std}) (P_{std}) 100 = 98.4 \text{ \%lsokinetic}$	V _w std	=	0.04706 (\	/ _I Total gain)			=	3.209 scf
$\begin{array}{llllllllllllllllllllllllllllllllllll$	B _{ws}	=	V _{w (std)} / \	/m _(std) + Vw _(std)			=	0.079
$M_{d} = 0.440 (\%CO_{2}) \\ 0.320 (\%O_{2}) \\ 0.280 (\%N_{2} + \%CO) = 29.242 \text{ lb/lb-mole}$ $M_{s} = M_{d} (1-B_{ws}) + 18 (B_{ws}) = 28.349 \text{ lb/lb-mole}$ $G = SQRT (Ts(abs)/Ps Ms) = 1.366$ $V_{s} = 85.49 (C_{p}) (G) (SQRT\Delta P) = 19.452 \text{ fps}$ $Q_{s} = 3600 (1-B_{ws})(V_{s})(A)(T_{std} P_{s}/P_{std} T_{s}(abs)) = 48.815 \text{ dscfh}$ $I = (T_{s}) (V_{m} \text{ std}) (P_{std}) 100 = 98.4 \text{ \%lsokinetic}$	B _{ws}	-	by steam t	ables			=	NA
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 - B _{ws}	=	1 - B _{ws}				=	0.921
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M _d	=	0.440	(%CO ₂)				
$M_{s} = M_{d} (1-B_{ws}) + 18 (B_{ws}) = 28.349 \text{ ib/lb-mole}$ $G = SQRT (Ts(abs)/Ps Ms) = 1.366$ $V_{s} = 85.49 (C_{p}) (G) (SQRT\Delta P) = 19.452 \text{ fps}$ $Q_{s} = 3600 (1-B_{ws})(V_{s})(A)(T_{std} P_{s}/P_{std} T_{s}(abs)) = 48,815 \text{ dscfh}$ $I = (T_{s}) (V_{m} \text{ std}) (P_{std}) 100 = 98.4 \text{ %lsokinetic}$	-		0.320	(%O ₂)				
G = SQRT (Ts(abs)/Ps Ms) = 1.366 V_s = 85.49 (C_p) (G) (SQRT Δ P) = 19.452 fps Q_s = 3600 (1-B_ws)(V_s)(A)(T_{std} P_s/P_{std} T_s(abs)) = 48,815 dscfh I = (T_s) (V_m std) (P_{std}) 100 = 98.4 %lsokinetic			0.280	(%N ₂ + %CO)			=	29.242 lb/lb-mole
$V_{s} = 85.49 (C_{p}) (G) (SQRT\Delta P) = 19.452 \text{ fps}$ $Q_{s} = 3600 (1-B_{ws})(V_{s})(A)(T_{std} P_{s}/P_{std} T_{s}(abs)) = 48,815 \text{ dscfh}$ $I = (T_{s}) (V_{m} \text{ std}) (P_{std}) 100 = 98.4 \text{ %Isokinetic}$	M _s	=	M _d (1-B _{ws})	+ 18 (B _{ws})			=	28.349 lb/lb-mole
$Q_{s} = 3600 (1-B_{ws})(V_{s})(A)(T_{std} P_{s}/P_{std} T_{s}(abs)) = 48,815 dscfh$ $= (T_{s}) (V_{m} std) (P_{std}) 100 = 98.4 % lsokineti$	G	=	SQRT (Ts	(abs)/Ps Ms)			=	1.366
$= (T_{s}) (V_{m} \text{ std}) (P_{std}) 100 = 98.4 \text{ %Isokinet}$	Vs	=	85.49 (C _p)	(G) (SQRT∆ P)			=	19. 452 fps
	Q _s	=	3600 (1-B _v	_{vs})(V _s)(A)(T _{std} P _s /ł	P _{std} T _s (abs))		=	48,815 dscfh
	1	=					=	98.4 %Isokineti

Facility/Site: Source: Run No.:		Gateway S EU5 EU5-M5/20	Services / Forget- 02-R3	Me-Not	Date: Start Time: Stop Time:		2/14/23 15:40 16:50	
T _s (°F)	=	1106.2	O ₂ (%vd)	= 14.63	V _m (dcf)	= (33.123	
		1566.2	CO ₂ (%vd)	= 3.91	ΔH (Abs) ("Hg)	= 2	29.79	
		53.3	CO (%vd)	= 0			29.72	
	=	513.3	N₂ (%vd)	= 81.46	SQRT & P	= (0.1947	
V _I (Total gain)	=	70.0	C _p	= 0.84	Y	= '	1.0016	
V _I (adj. for sat.)	=	NA	Run Time (min.)	= 60	A _n (ft ²)	= (0.001760	
V _m std	=	(T _{std})(V _m)(Y)(Δ Η Λ (P _{std})(T _m)	Abs)	•••	=	33.979	dscf
V _w std	=	0.04706 (\	$V_{\rm I}$ Total gain)			=	3.294	scf
B _{ws}	=	V _{w (std)} / \	/m _(std) + Vw _(std)			=	0.088	
B _{ws}	=	by steam t	ables			=	NA	
1 - B _{ws}	=	1 - B _{ws}				=	0.912	
M _d	-	0.320	(%CO ₂) (%O ₂) (%N ₂ + %CO)			=	29.211	lb/lb-mole
M _s	=	M _d (1-B _{ws})	+ 18 (B _{ws})			=	28.220	lb/lb-mole
G	=	SQRT (Ts	(abs)/Ps Ms)			=	1.367	
Vs	=	85.49 (C _p)	(G) (SQRT∆ P)			=	19.111	fps
Q _s	=	3600 (1-B _v	_{vs})(V _s)(A)(T _{std} P _s /	P _{std} T _s (abs))		=	47,667	dscfh
I	=	$\frac{(}{(T_{std}) (V_s)}$	T _s) (V _m std) (P _{std}) (A _n) (P _s) 60 (1-B	100 _{ws}) (Run Time	.)	=	92.0	%Isokineti

Isokinetic Calculations

		• <u>Ir</u>	iput Data	<u>l</u>	_			_
Facility/Site: Source:	Gateway Servic EU5	_	le-Not		Start Time:			
Run No.:	EU5-M5/202-R1	J			Stop Time:	12:07		
		Traverse	Delta P	Square Root	Delta H	Dry Gas Met	er Temps.	Stack
Stack Diameter ("):	20.4	Point	("H₂O)	Deita P	("H₂O)	iniet (F)	Outlet (F)	Temp. (F)
Stack Area (ft ²) :	2.27							
Nozzle Diameter ("):	0.568	A1	0.05	0.22	1.2	44	43	1209
Pitot Coefficient:	0.84	2	0.05	0.22	1.2	44	43	1192
		3	0.06	0.24	1.4	44	42	1190
Initial Impinger Volume/We		4	0.06	0.24	1.4	45	43	1185
Impinger 1 (ml)	377.0	5	0.03	0.17	0.7	47	43	1183
Impinger 2 (ml)	595.5	6	0.04	0.20	0.9	48	44	1180
Impinger 3 (ml)	711.7	B1	0.04	0.20	0.9	49	46	1185
Impinger 4 (ml)	814.5	2	0.05	0.22	1.2	51	47	1191
Impinger 5 (ml)	-	3	0.05	0.22	1.2	52	48	1195
Impinger 6 (ml)	-	4	0.04	0.20	0.9	53	48	1199
Impinger 7 (g)	-	5	0.03	0.17	0.7	53	48	1190
		6	0.03	0.17	0.7	53	49	1183
Final Impinger Volume/Wei	ghts:							
Impinger 1 (ml)	413.1							
Impinger 2 (ml)	599.6							
Impinger 3 (ml)	718.9							
Impinger 4 (ml)	825.6							
Impinger 5 (ml)	-							
Impinger 6 (ml)	-							
Impinger 7 (g)	-							
% O ₂ (Outlet) :	13.53							
% CO₂ (Outlet):	5.24							
% CO (Outlet) :	0							
Bar. Pressure ("Hg):	29.72							
Static Pressure ("H ₂ O):	-0.06							
No. of Traverse Points:	12							
Run Duration (minutes):	60							
Meter Vol. Final (dcf): Leak Check Volume (dcf): Meter Vol. Initial (dcf):	95.397 0.000 61.301							
	AVERAGE:		0.044	0.21	1.02	48.6	45.3	1190.2

		In	put Data	<u>l</u>				
Facility/Site: Source: Run No.:	Gateway Service EU5 EU5-M5/202-R2	-	e-Not		Date: Start Time: Stop Time:			
		Traverse	Delta P	Square Root	Delta H	Dry Gas Mete	er Temps	Stack
Stack Diameter ("):	20.4	Point	("H₂O)	Delta P	("H₂O)	Inlet (F)	Outlet (F)	Temp. (F)
Stack Area (ft ²) :	2.27							
Nozzle Diameter ("):	0.568	A1	0.06	0.24	1.4	46	45	1202
Pitot Coefficient:	0.84	2	0.04	0.20	0.9	47	46	1186
		3	0.03	0.17	0.7	48	46	1165
Initial Impinger Volume/We	eights:	4	0.03	0.17	0.7	49	46	1085
Impinger 1 (ml)	383.2	5	0.04	0.20	0.9	51	47	1045
Impinger 2 (ml)	516.1	6	0.05	0.22	1.2	51	47	935
Impinger 3 (ml)	701.4	B1	0.04	0.20	0.9	49	50	1121
Impinger 4 (ml)	812.5	2	0.04	0.20	0.9	54	50	1139
Impinger 5 (ml)	-	3	0.03	0.17	0.7	55	51	1137
Impinger 6 (ml)	-	4	0.06	0.24	1.4	56	51	1155
Impinger 7 (g)	- 1	5	0.03	0.17	0.7	57	52	1090
		6	0.03	0.17	0.7	57	52	1084
Final Impinger Volume/We	iahts:							
Impinger 1 (ml)	421.4							
Impinger 2 (ml)	524.0							
Impinger 3 (ml)	713.0							
Impinger 4 (ml)	823.0							
Impinger 5 (ml)	-							
Impinger 6 (ml)								
Impinger 7 (g)	-							
impinger / (g)								
% O_2 (Outlet) :	14.30							
% CO ₂ (Outlet):	4.18							
% CO (Outlet) :	0							
Bar. Pressure ("Hg):	29.72							
Static Pressure ("H ₂ O):	-0.06							
No. of Traverse Points:	12							
Run Duration (minutes):	60							
Meter Vol. Final (dcf): Leak Check Volume (dcf): Meter Vol. Initial (dcf):	131.959 0.000 95.883							
	AVERAGE:		0.04	0.20	0.92	51.7	48.6	1112.0

Facility/Site: Source: Run No.: Stack Diameter ("):	Gateway Service EU5 EU5-M5/202-R3	-	e-Not		Date:	0/4 4/00			
Stack Diameter ("):				Date: 2/14/23 Start Time: 15:40 Stop Time: 16:50					
Stack Diameter ("):		Traverse	Delta P	Square Root	Delta H	Dry Gas Mete	er Temps.	Stack	
	20.4	Point	("H2O)	Deita P	("H2O)	inlet (F)	Outlet (F)	Temp. (F)	
Stack Area (ft ²) :	2.27								
Nozzle Diameter ("):	0.568	A1	0.05	0.22	1.3	51	50	1126	
Pitot Coefficient:	0.84	2	0.04	0.20	1.0	52	50	1120	
		3	0.04	0.20	1.0	54	50	1132	
nitial Impinger Volume/We	eights:	4	0.04	0.20	1.0	55	51	1139	
mpinger 1 (ml)	364.7	5	0.05	0.22	1.3	55	51	1092	
mpinger 2 (ml)	613.3	6	0.03	0.17	0.8	56	52	950	
mpinger 3 (ml)	707.6	B1	0.04	0.20	1.0	55	52	1130	
mpinger 4 (ml)	815.2	2	0.03	0.17	0.8	56	52	1140	
mpinger 5 (ml)	-	3	0.05	0.22	1.3	56	53	1137	
mpinger 6 (ml)	_	4	0.03	0.17	0.8	57	52	1145	
mpinger 7 (g)	- 1	5	0.03	0.17	0.8	56	53	1113	
	L	6	0.03	0.17	0.8	57	53	1050	
- Final Impinger Volume/Wei	iahts:		0.00	••••					
mpinger 1 (ml)	408.7								
mpinger 2 (ml)	620.8								
mpinger 3 (ml)	715.2								
mpinger 4 (ml)	826.1								
mpinger 5 (ml)									
mpinger 6 (ml)									
mpinger 7 (g)	-								
$% O_2 $ (Outlet) :	14.63								
% CO ₂ (Outlet):	3.91								
% CO (Outlet) :	0								
Bar. Pressure ("Hg):	29.72								
Static Pressure ("H ₂ O):	-0.06								
No. of Traverse Points:	12								
Run Duration (minutes):	60								
Meter Vol. Final (dcf):	166.360								
_eak Check Volume (dcf):	0.000								
Meter Vol. Initial (dcf):	133.237								
	AVERAGE:		0.04	0.19	0.96	55.0	51.6	1106.2	

/ r	Ref. °F	N N		Continuity w/ Proper Polarity		Pump Vacuum, in. Hg		4	4	2 2	4	4	6	<u>, </u>	4	4	4										001AS-QMS-FM-225
Page /	Ambient °F	Ste		□ ☐ Continuity w/ Pi > 7 < 8 < 15	770	(=10/* +/0F)	59	65	66	68	14	£	27	<u>1</u> 2	¹ 2	68	69					-					001A
		18-5 mt 18-2	7 2024	N		Dry Gas Meter Temperature, °F Inlet I Outlet	3	5	47	22	44	97	イク	48	48	48	49										
	ALT 011 TC ID: Stack <u>/605/91</u> Probe <u>/605191</u> Fliter Box <u>HØ-5</u>	Filter Exit <u>HB - 5</u> Meter outlet <u>EF - 7</u>	Impinger Exit	Continuity Check	DIES: 4 01		44	44	44	47	84	49	ŝ	22	53 2	22	5	ŀ					 				
			- L	11	1	Impinger Exit Temp, °F -	45	2h	87	20	43	42	Щ	42	чЧ	ťЧ	44										
	BE									3 1/2	258	240	268	249	248	245	251										1
dnetic)	Ambient Temp, "F Ref. Barometer ID Procipitation, Y LN, type	Mid	000	bass) -	Filter Temp, °F Box I Exit	245-2	250-	250-	- 5 / 7										 							ader
Field Datasheet (Isokinetic)	Ambient Temp, °F Ref. Barometer ID				\$1 	Probe Temp, "F	253	250	250		250	<u>h</u>	255	252	250	840	8	1				~					Team Leader
Field Dat	le cler	P 25	E @ > 3 %		me, ft ³				·	185 74				N				· ·						_		 	J-a-l
5/202	10.0 10.0				eck vo	Stack	2	119	677	~// //	180	118	1191	119.	1199	1190	1183	1 i	_								
EPA Met	nditions re, in. H ₂ O essure, in. I Direction	ilter Temp Range, ^{°F} Equipment Checks	Pitot (+), pass @ in. H ₂ O Pitot (-), pass @ in. H ₂ O	riiot visual inspection Nozzle visual inspection Meter ofm @ in Но	mediate leal	Orifice Pressure Differential, AH		1.2	51	2 C 2 C	0.1	011	12	12	1.9	50	1,0 1,1			 -							Checked By
الم	Sampling Conditions Static Pressure, In. H ₂ O <u>- O</u> Barometric Pressure, In. Hg <u>O</u> Wind Speed / Direction	Probe / Filter Temp Range, °F Equipment Checks				[►]	11/5	11/5	1:28	1. 58	0.92	0.92	1.15	115	0.92	0.69	0.69)					_				
			016 1,889	n 0.84	/ei þ∡vyes	Velocity Head, ∆P in H₂O	0.05	005	9.06	0.06	04	0,04	5	5	붬	3	5										Specifications
	5- 572780		Meterbox Y <u>/ 00/</u> Meterbox AH@, in. H ₂ O	Nozzle diameter, Dn, in Pitot coefficient, Cp	Manometer zero and level 124 yes K-Factor 2,7			0	o.	0	0.	0	50.0	0-0	60.04	600	0.03			 					_		Accuracy
	l 2 L	Our //1/3 Calibration	Meterbox Y Meterbox At	Nozzle diameter, Dn, Pitot coefficient, Cp	K-Factor	DGM Reading, Vm, ft ³	61.301		9. tg	7.17	10.6	P30.PF	±18	34,9	7.6	90.3	6.ch	95,397			· · = .						VLegibility /
OSE RVICES	1 6	Operator <i>O</i> 4	~	1		Clock Time 24hr	1050				- <u> </u> 1 5) <u>1-</u>	8	8	8	91		1207 9:	,			•					
A LONTROSE	rtion -73 P y Face ocation E	oment IDs	EE-2 UMB-100-	Pitot / Probe ID ^{off} 1 2514	001	Elapsed Clo Time		S	01	15	25	0	35	й0	5	50	\$										QA/QC Check: Completeness
An C	Project Information Date $2 - l - l - 23$ Customer/Facility $F3$ Unit ID/Sample Location	Run # / Sampling Equipment IDs	Meterbox ID Umbilical ID Uf	Nozzle ID Pitot / Probe ID	Manometer ID 6 Sensitivity	Traverse Ele Point# T	A i d		+	2 5			2 3		5h b	5 5	6 55	d 2								Averages	/QC Check:
۲	Projec Date Custor Unit ID	Run # Sampl	Mete Umb	Pitot	Man	<u>Б</u> д	Å			-		8	Ľ													\ ₹	8 B

5/202

263

アクア・ 一日の 「日の 「日の 「日の 「日の 「日の 「日の 「日の 「	ulti, m)	Static Pressure, in. H ₂ O		15 4	Amhiant Ta		(Ref. °F
ient, Cp ient, Cp ient, Cp ient, Cp ient, Cp	Ind		ľ	0440			1 S 44	Star Star	Stack <u>/605///</u>			
H@, in. I teter, Dr tent, Cp zero and ng,	Probe	Wind Speed / Direction			1 1	15			Box 18-5	- ~ ~		
H@, in. I heter, Dr zero and ng,		Probe / Filter Temp Range, °F	o Range, °F	247 775	~				Filter Exit >1.52			,
H@, in. I heter, Dr ient, Cp ient, Cp and '7 '7	1.0016	Equipme Pitot (+), p	Equipment Checks Pitot (+), pass @ in. H ₂ O	1 0	A. D	PIW (1)	TIL @ 73	2 4	Meter outlet CC-	7906	й И	× m
ient, Cp ient, Cp zero and Dg,	0 1.589	Pitot (-), p	Pitot (-), pass @ in. H ₂ O	0) 71	<u>~</u> , ~		<u>1</u> 2/@>7	2	Other 3[3]			
ient, Cp Zero and CS ng,	1 1	Pitot visu	Pitot visual inspection	EZ pass		siger 🗆	E pass		Ref. Thermometer ID	er ID		
zero ano 7.5 ng,	0,84	Nozzle vis	Nozzle visual inspection			Z pass			Continuity Check			er Polarity
n e	level 🕅 yes	Meter, cfr	Meter, cfm @ in. Hg	0,002 @ 11	₿ <i>N</i> " /	0	0.002@10	2	Notes: 🗶 6 S	H M	282	
ģ		Intermedi	Intermediate leak check volume, ft ³	k volume, ft ³	}	(7		t	6	F		ć
	Velocity Head,	Orifice Pressure Differential. AH	•	Stack Temp,	Probe Temp,	Filter Temp, °F		Impinger Exit	Dry Gas Meter Temperature, °F			Pump Vacuum,
95 993	∆P in H₂O	Target	<u>.</u>	ĥ.	L	Box		Temp, °F		Outlet	<u>★ (4,)</u>	in. Hg
10011	0,06	li 38	1.4	1202	254		272	39	46	4 <	66	Μ
	0.04	0.92	0.9	1/86	255		042.	41	th	96	66	n
	5.0.0	0.64	£.0	1165	248		258	46	48	46	66	Μ
		69.0	t.0	5801	250		250	48	49	94	68	7
108.9 6	40.0	6.92	6.0	Shol	2.50		262	Ś	51	47	2	3
	0.05	1.15	1.2	935	250		256	Ца	3	ቲአ	67	3
920	oroy	29.0	0.9	1121	253	4	50	43	49	л0 ХО	\$	M
	hore	200	6.0	M39	252		270	ЧЧ	54	<0 0	6 5	M
		0.69	6,7	1137	250			45	N N	21	65	М
	20.06	1:38	41	1155	249		238	47	56	51	66	Μ
	0.03		5.0	1090	253		765	48	5 4	SZ	67	3
	0.03		0.7	1084	252		268	49	57	rs	73	M
131.959			l			Ì]	1	
-												
						-						
						+						
						-						
						-						
							-					
										2 Y		
		-										

-2015

R347

Production Sampling Conditions $2 \cdot l' \eta$ <		ו ופוח המופטווממי ליהמעווומיול	NITHUG		-	Page	-	
Project $P(U) \leq -0.2ABC$ Samping conditions Project $P(U) \leq -0.2ABC$ Samping conditions colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" <td colspa="</td"><td></td><td></td><td></td><td></td><td></td><td></td><td>L</td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td>							L
antifeding \mathcal{L} <th c<="" td=""><td>Sampling Conditions Static Pressure in H₂O</td><td>つ, O し Ambient Temp. "F</td><td>me. "F db</td><td>ALT 011 IC ID: Stack //CO5/9</td><td>ـــــــــــــــــــــــــــــــــــــ</td><td>Ambient F Kei.</td><td>r T</td></th>	<td>Sampling Conditions Static Pressure in H₂O</td> <td>つ, O し Ambient Temp. "F</td> <td>me. "F db</td> <td>ALT 011 IC ID: Stack //CO5/9</td> <td>ـــــــــــــــــــــــــــــــــــــ</td> <td>Ambient F Kei.</td> <td>r T</td>	Sampling Conditions Static Pressure in H ₂ O	つ, O し Ambient Temp. "F	me. "F db	ALT 011 IC ID: Stack //CO5/9	ـــــــــــــــــــــــــــــــــــــ	Ambient F Kei.	r T
Barnelle Location $U^- S^ U^- U^- S^ U^- U^- S^-$ Requirement Los Operator $U^- U^- S^ U^- S^-$ In Europhone (Los Environment Character Environment Character In D $U^- W^- B^- U^- U^- U^- (V)^- (V)^$	(1, Mt) Barometric Pressure, in. Hg			Probe 160514	5141 2	さんて	Ń	
\mathcal{F} Operator $\mathcal{O} \sim \sqrt{g/s}$ Product Flange, F $\mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$ Production of the set of the flange of the set	Wind Speed / Direction		Precipitation, Y (N, type	Filter Box h	HB-5	י 1	- (
Equipment IDsEquipment ChecksCalibrationEquipment ChecksPart (1), pass (0, h, H)Part (2), pass (0, h, H		725		Filter Exit	3132	7/ 7	s	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Equipment Checks	Pre	Mid Post	Meter outlet	E-7	7- 2- 2-	2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2< @ J	0	Impinger Exit	206E	オノイ	×	
Image: Contract of the coefficient	1, 889		5 B B 33	÷	5 (が 一 次	74	
le la $10 \frac{1605/4/1}{\text{CE} - 2}$ Plut conditient. Che 0.244 Norzie visual inspection 10^{10} le la 10^{10} 10^{10} le la 10^{10} 10^{10} le la 10^{10} 10^{10} le la 10^{10} 10^{10} 10^{10} le la 10^{10} 10^{10	0.568		D pase 2 pass	Ref. Thermometer ID	r	1815-2538(í o	
$\overline{\mathcal{E}}^{-}$ Manometer zero and level K/vest Mater and level K Bool Mater and level Mat	0.84	LL pass	2 pass / Er pass	Continuity Check	D	Continuity w/ Proper Polarity	olarity	
$c.c^{1}$ ktrader $2\mathfrak{S}$ Intermediate leak of heck volume, frame Bapsed Clock Time DGM Reading, velocity Head, and intermediate leak of heck volume, frame Stark Term, restructure Stack Term, restructure Termediate leak of heck volume, restructure Termediate leak of heck volume, restructure Termediate leak of heck volume, restructure 0 154/10 1732 0.05 1.25 1.26 1/20 1 1 1 1 0.05 1.25 1/20 1/120 2 1 1951.0 0.07 1.25 1.25 1/120 2 1 1 1 0.03 0.75 0.75 1/132 2 1 1 1 0.05 0.05 1/132 1/145 2 1 1 1 1 1 1 1 1 2 1		0,003 @ 12 " (@ 0.007@ /	1 🖞 Notes: 💥 6	652758	55 F		
Elapsed Clock Time DGM Reacting, velocity Head, and time vmi. t^2 Confice Pressure startements. Stack Term, translet		volume, ft ³	- (-					
Time 24tr Vm, R^3 $\Delta \mathrm{P}$ in H_QO Target from the Actual Actua Actual Actual Actua Actual Actual Actua Actua Actua	Orifice Pressure	ack Temp, Probe Temp,	Filter Temp, "F Imp	Impinger Exit Temper	Dry Gas Meter	LEICTER P	Vacinim	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Target Actual				Outlet		in. Hg	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.25 1	1126 256	1 270 (15 21	50	65	4	
(b) 139.5 hob $1co$ Lo 1151 $1c$ 147.2 0.04 Loo Loo 1792 26 147.5 0.05 $L25$ $L25$ 1092 26 148.1 0.03 0.75 0.8 950 26 151.0 0.07 0.25 0.75 0.8 1170 36 151.0 0.07 0.75 0.75 0.8 1175 40 156.0 0.03 0.75 0.8 1145 40 166.260 -0.03 0.75 0.8 1173 56 166.360 -0.03 0.75 0.8 1173 60 165.360 $$ $$ $$ $$ -10003 0.03 0.75 0.8 1075 1113 0.03 0.75 0.8 1075 1001 166.360 $$ $$ $$ -10003 0.75 0.8 1075 1001 0.03 0.75 0.8 1050 1001 0.03 0.75 0.8 1050 <	1,00,1		270 6	11 52	50	65 (۲.	
$ \zeta$ $ \gamma_{2,i}\lambda$ 0.04 $i.0\infty$ $i.2$ $i.2$ $i.92$ $2i$ $ 195,7$ 0.05 $i.25$ $i.2$ $i.92$ $2i$ $ 195,7$ 0.03 $i.75$ $i.2$ $i.92$ $3i$ $ 51,0$ 0.04 $i.ee$ $i.0$ $ 170$ $3i$ $ 55,5$ 0.03 0.75 0.8 $ 140$ $4i$ $ 55,0$ 0.03 0.75 0.8 $ 113$ $4i$ $ 56,0$ 0.03 0.75 0.75 0.8 $ 113$ $4i$ $ 65,10$ 0.03 0.75 0.75 0.8 $ 113$ 55 $ 66,360$ 0.03 0.75 0.75 0.8 $ 113$ 60 $ 65,360$ 0.03 0.75 0.8 $ 105$ 60 $ 65,360$ 0.03 0.75 0.8 $ 105$ 100 $166,360$ 0.03 0.75 0.8 108 100 $166,360$ 0.03 0.75 0.8 100	1 00/		1 250 4	3 54	So	65 4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07 007		h 25C	Š	. ۶/	66 4		
26 149.1 0.03 0.75 0.6 450 70 151.0 0.07 0.75 0.8 1130 75 153.5 0.03 0.75 0.8 1140 71 153.5 0.03 0.75 0.75 113 75 166.7 0.05 0.75 0.8 1113 75 166.340 0.05 0.75 0.8 1113 60 165.360 0.05 0.775 0.8 1113 60 166.360 $$ $$ $$ $$ 60 166.360 7 0.775 0.8 1113 1117 0.03 0.775 0.8 1113 1000 166.360 $$ $$ $$ $$ 1000 166.360 7 7 $$ $$ 1000 166.360 7 7 7 $$ 1000 166.360 7 7	1.25 13			46 55	5/	68 5	~	
36 $ 51.0$ 0.04 $l.\infty$ 0.8 $1/40$ 35 $ 53.5$ 0.03 0.75 0.8 $1/40$ 40 $ 55.6$ 0.05 0.75 $l.32$ $1/30$ 40 $ 56.0$ 0.03 0.75 0.8 $1/13$ 58 $ 66.360$ 0.03 0.75 0.8 $1/13$ 50 165.360 $$ $$ $$ $$ $$ 60 165.360 -0.03 0.75 0.8 1050 60 166.360 $$ $$ $$ $$ $$ 60 166.360 $$ $$ $$ $$ $$ $$ 60 165.60 $$ $$ $$ $$ $$ $$ 60 165.60 $$ $$ $$ $ 60$ 165.0 166.360 $ -$	80 540				52	_		
35 153.5 0.03 0.75 0.75 113 40 156.0 0.05 0.75 0.75 113 45 156.0 0.03 0.75 0.75 1113 50 161.7 0.03 0.75 0.75 1113 50 161.7 0.03 0.75 0.75 0.75 50 165.360 $$ $$ $$ $$ 60 165.360 7 $$ $$ $$ 60 165.360 7 $$ $$ $$ $$ 60 165.360 7 $$ $$ $$ $$ $$ 1 7 7 7 7 7 7 60 165.360 7 7 7 7 7 -1000 10003 0.031 0.031 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011	1,00		254 0		ž	66 3		
ψ 156.0 0.05 1.25 1.75 113 ψ 159.0 0.03 0.45 0.8 113 x 161.7 0.03 0.75 0.75 113 x 161.7 0.03 0.75 0.75 113 x 161.7 0.03 0.75 0.75 113 x 166.360 $$ $$ $$ $$ 60 165.360 $$ $$ $$ $$ 60 165.360 $$ $$ $$ $$ 60 165.360 $$ $$ $$ $$ 100 166.360 $$ $$ $$ $$ 100 165.00 $$ $$ $$ $$ $$ 100 165.00 166.360 $$ $$ $$ $$ 100 100.30 100.30 100.30 100.30 100.30 100.30 100.30 100	0.75				ZZ	66 3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,251	(37 252 L	1 245 V	15 56	SZ	~		
x_0 161.7 0.05 0.75 0.8 1113 55 163.4 0.05 0.75 0.8 1050 60 165.360 $$ $$ $$ $$ 60 165.360 $$ $$ $$ $$ 60 166.360 $$ $$ $$ $$ 101 1003 0.05 0.75 0.8 10050 101 1003 1003 1003 1003 1003 1003 101 1003 1003 1003 1003 1003 1003 1003 101 1003 <	8.0 Stio			46 57	ŚЗ	68 4		
S 163.4 0.03 0.75 2.5 1050 60 166.360 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>0.75</td> <td>113 249</td> <td>254 4</td> <td>47 56</td> <td>53</td> <td>68 4</td> <td></td>	0.75	113 249	254 4	47 56	53	68 4		
60 1650	0.75	152 050	マイチ ち	ts 84	r N	69 4	T	
						-		
			-					
				-				
				-				
Averades								
Averades								
Averades								
		- -						
QAVQC Check: Completeness Legiblity Accuracy Specifications Checked By	Specificatio	1 Team Leader	eader P-2			001AS-QMS-FM-225	S-FM-225	

yoc/3

 $\overline{}$

¢

265

	4	METHOD 5/2			1. NI		AC A
Client:	Calling	Service	9	City / State:	worthe	orveigh,	MVF
Source:	7	FUS		Project No.:	Oll	200 - 1	
Run No.:			Sample Date:	7-14-202	3	Recovery Date:	2-142023
Impinger Type:	Knockout	Modified GS	Modifled GS				
mL of Water	0	0	100	1	and the second secon	The state of the state	Silica Gel
Final Wt. (g)	413,1	577.19	/18.9				8250
Initial Wt. (g)	377.0	595.5	711.7	n de la color na deserva de la color na de la color de			814.5
Net Welght (g)	36.(4.(2.2				11:1
Moisture	Impingers Total:	(g)		isture Silica Gel:	(g)	Total:	58.5 (9)
Description of Impln	ger Contents:		normal		Total DI H ₂ O	added for purge.:	(102) (ml)
Description of Partic	ulate on Filter:		1:5ht		Rec	overed & Sealed:	Ø or N
Method 5 Filter I.D. N	io.:		027 420)		CPM Filter ID No.:	NA
Probe Rinse Contair	er No.:			-	Liquid Leve	Marked / Sealed:	<u>O</u> or N
Impinger Contents C	ontainer No. 1:				•	Marked / Sealed:	
Impinger Contents C	Container No. 2:		$- \prec$		-Liquid-Love	LMarked / Sealed:	<u> </u>
Run No.:	_	-	Sample Date:	2-14-21	233	Recovery Date:	2-14-202
Impinger Type:	Knockout	Modified GS	Modified GS				
mL of Water	0	0				T	Silica Gel
Final Wt. (g)	421.4	529.0	/(3.0				8750
initial Wt. (g)	383.)	516,1	701.4	영문 영화		an a	8175
Net Weight (g)	38.2	7.9	11.6				10.5
Moistura	Impingers Total:	(g)	J Ma	isture Silica Gel:	(g)	Total:	(S. Z (g)
Description of Impin			AASTRA			- added for purge.:	
Description of Partic	ulate on Filter:		light		Red	overed & Sealed:	Tor N
Method 5 Filter I.D.	lo.:		0374	H	. 3	CPM Filter ID No.:	M
Probe Rinse Contair	ier No.:			,	Liquid Leve	Marked / Sealed:	O or N
Impinger Contents C	ontainer No. 1:				Liquid Leve	l Marked / Sealed:	🕜 or N
Impinger Contents C	ontainer No. 2:		$- \times$			Marked / Sealed:	YorN
Run No.:	3		Sample Date:	2-14-20	23	Recovery Date:	2-14-702
Impinger Type:	Knockout	Modified GS	Modified GS				
mL of Water	0	0	100				Silica Gei
Final Wt. (g)	408.7	6708	7150	e California			8 26-1
Initiai Wt. (g)	364,7	6133	707.6	an a			815:2
Net Weight (g)	IM.O	75	7.0				10.9
		()**	- - 		1_1	Tatalı	70.0(9)
Moisture Description of Impin	Impingers Totai:	(g)	- name	lsture Silica Gel:		Total: added for purge.:	
Description of Partic	•		- Told		-	covered & Sealed:	
Description of Partic			0274	12	•	CPM Filter ID No.:	IA
Mothod 5 Eliter I D			Vale	ð		I Marked / Sealed:	
Method 5 Filter I.D. I Probe Rinse Contair					=	Marked / Sealed:	2
Probe Rinse Contain	Container No. 1:				-	Marked / Sealed+	
			$\underline{\times}$				
Probe Rinse Contalı Impinger Contents C Impinger Contents C		Probe Rinse				Filter:	\sim
Probe Rinse Contali Impinger Contents C Impinger Contents C LAB BLAN	Container No. 2: KS COLLECTED:					-	
Probe Rinse Contain Impinger Contents C Impinger Contents C LAB BLAN FI	Container No. 2: KS COLLECTED: ELD BALANCE			UDIT REQUIRE	EMENTS (EPA	- M. 4 Section 10.3)	
Probe Rinse Contain Impinger Contents C Impinger Contents C LAB BLAN FI	Container No. 2: KS COLLECTED: ELD BALANCE Field Balance ID:	E & CALIBRAT	ION WEIGHT A	UDIT REQUIRE Field Bal	EMENTS (EPA	- M. 4 Section 10.3) 0.5 grams	
Probe Rinse Contain Impinger Contents C Impinger Contents C LAB BLAN FI	Container No. 2: KS COLLECTED: ELD BALANCE	A CALIBRAT	VIG206	UDIT REQUIRE Field Bal Field Weigi	EMENTS (EPA	- M. 4 Section 10.3) 0.5 grams (Pre) 999 (

Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

Index A.2 - Emission Calculations and Field Data Sheets – CEMS Parameters

acility/Site:	Gateway Services / Forget-Me-Not EU5	Date: Start Time:	2/14/23 10:50
Run No.:	EU5-M5/202-R1	Stop Time:	12:07
O _{2,} %v	d = 13.53	a sa sa sa ka 1919 ya sa	
CO ₂ ,%v	d = 5.24		
CO,ppmv	d = 17.4		
NO _x ,ppmvo	d = 87.8		
Carbon Monoxid	<u>e</u> (ppmvd((13.9/(20.9-%O ₂))	= 32.	8 ppmvd@7%O ₂

Facility/Site: Source: Run No.:	Gateway Services / Forget-Me-Not EU5 EU5-M5/202-R2	Date: Start Time: Stop Time:	2/14/23 13:35 14:56
O _{2,} %vd =	= 14.30		
CO ₂ ,%vd =	= 4.18		
CO,ppmvd =	= 4.5		
NO _x ,ppmvd =	= 60.3		
Corbon Monovido		= 9	4 ppmvd@7%O₂
<u>Carbon Monoxide</u> opmvd@7%O₂ =(p			

Gateway Services / Forget-Me-Not EU5	Date: Start Time:	2/14/23 15:40
EU5-M5/202-R3	Stop Time:	16:50
- 14.63	and the second	
= 3.91		
= 3.7		
= 48.4		
	EU5-M5/202-R3 = 14.63 = 3.91 = 3.7	EU5-M5/202-R3 Stop Time: = 14.63 = 3.91 = 3.7

Instrumental Analyzer Monitoring Data (not corrected for calibrations)

acility/Site:	Gateway Servic	ces / Forget-Me	-Not		Date: Stort Time:	2/14/23
Source:	EU5 EU5 M5/202 P	1			Start Time: Stop Time:	10:50 12:07
Run No.:	EU5-M5/202-R		со	NO _x		12.07
Date/Time	(%vd)	(%vd)	(ppmvd)	(ppmvd)		
Datorinit	(7012)	(/010)	(PP)	(PP	_	
2/14/2023 10:50:29 AM	14.62	4.23	5.35	47.11		
2/14/2023 10:51:29 AM	13.06	5.38	5.86	52.65		
2/14/2023 10:52:29 AM	10.42	7.68	6.98	121.84		
2/14/2023 10:53:29 AM	11.77	7.06	9.25	158.07		
2/14/2023 10:54:29 AM	12.57	6.48	10.87	149.12		
2/14/2023 10:55:29 AM	12.60	6.34	10.77	134.23		
2/14/2023 10:56:29 AM	12.73	6.15	10.30	115.87		
2/14/2023 10:57:29 AM	12.93	5.98	10.40	97.94		
2/14/2023 10:58:29 AM	13.26	5.70	10.28	90.00		
2/14/2023 10:59:29 AM	13.48	5.47	9.84	81.42		
2/14/2023 11:00:29 AM	13.62	5.33	9.84	77.51		
2/14/2023 11:01:29 AM	13.69	5.24	9.64	73.31		
2/14/2023 11:02:29 AM	13.68	5.22	47.87	69.78		
2/14/2023 11:03:29 AM	13.72	5.18	9.94	67.34		
2/14/2023 11:04:29 AM	13.70	5.16	10.05	65.95		
2/14/2023 11:05:29 AM	13.83	5.07	10.23	64.00		
2/14/2023 11:06:29 AM	13.88	5.01	10.02	59.56		
2/14/2023 11:07:29 AM	13.91	4.97	10.03	56.51		
2/14/2023 11:08:29 AM	14.09	4.82	10.64	55.59		
2/14/2023 11:09:29 AM	14.22	4.71	10.51	48.95		
2/14/2023 11:10:29 AM	14.51	4.47	10.42	44.16		
2/14/2023 11:11:29 AM	12.78	5.78	10.52	100.12		
2/14/2023 11:12:29 AM	11.71	6.87	11.44	104.02		
2/14/2023 11:13:29 AM	10.11	8.32	11.42	184.16		
2/14/2023 11:14:29 AM	9.89	8.51	12.00	183.66		
2/14/2023 11:15:29 AM	10.34	8.17	13.12	180.32		
2/14/2023 11:16:29 AM	10.72	7.86	15.79	169.79		
2/14/2023 11:17:29 AM	12.10	6.79	17.90	157.30		
2/14/2023 11:18:29 AM	13.41	5.82	17.25	139.71		
2/14/2023 11:10:29 AM	14.09	5.31	15.19	120.61		
2/14/2023 11:20:29 AM	14.00	0.01	10.10	120.01	port change	
2/14/2023 11:21:29 AM					port change	
2/14/2023 11:22:29 AM					port change	
2/14/2023 11:22:29 AM					port change	
2/14/2023 11:23:29 AM					port change	
2/14/2023 11:25:29 AM					port change	
2/14/2023 11:26:29 AM					port change	
2/14/2023 11:27:29 AM					port change	
2/14/2023 11:28:29 AM					port change	
2/14/2023 11:29:29 AM					port change	
2/14/2023 11:29:29 AM					port change	
2/14/2023 11:30:29 AM					port change	
2/14/2023 11:31:29 AM					port change	
2/14/2023 11:33:29 AM	1				port change	
2/14/2023 11:33:29 AM					port change	
2/14/2023 11:34:29 AM					port change	
2/14/2023 11:35:29 AM					port change	
2/14/2023 11:36:29 AM	13.28	5.74	19.23	71.61	Port Gliange	
2/14/2023 11:37:29 AM	13.20	5.61	19.23	74.63		
2/14/2023 11:39:29 AM	13.62	5.36	20.47	69.81	1	
2/14/2023 11:39:29 AM 2/14/2023 11:40:29 AM	13.76	5.30	19.34	66.71		[
2/14/2023 11:40:29 AM	13.76	5.03	17.74	63.65		
2/14/2023 11:42:29 AM	14.09	4.88	20.17	60.93		

Instrumental Analy	vzer Monitoring	Data (not	corrected for	calibrations)
--------------------	-----------------	-----------	---------------	---------------

Facility/Site: Gateway Services / Forget-Me-Not						2/14/23
Source:	EU5					
Run No.:	EU5-M5/202-R1	Stop Time:	12:07			
n 11 11 11 11 11 11 11 11 11 11 11 11 11	0 ₂	CO ₂	CO	NOx		
Date/Time	(%vd)	(%vd)	(ppmvd)	(ppmvd)		
2/14/2023 11:44:29 AM	14.29	4.66	22.37	57.13		
2/14/2023 11:45:29 AM	14.50	4,49	21.45	53.42		
2/14/2023 11:46:29 AM	14.56	4.42	21.86	50.81		
2/14/2023 11:47:29 AM	14.68	4.31	22.12	47.81		
2/14/2023 11:48:29 AM	14.82	4.20	24.11	45.38		
2/14/2023 11:49:29 AM	14.84	4.16	24.12	42.88		
2/14/2023 11:50:29 AM	14.99	4.05	23.90	40.29		
2/14/2023 11:51:29 AM	14.85	4.16	24.63	37.86		
2/14/2023 11:52:29 AM	14.80	4.11	25.70	51.52		
2/14/2023 11:53:29 AM	14.40	4.52	25.14	44.47		
2/14/2023 11:54:29 AM	11.70	6.65	25.35	78.16		
2/14/2023 11:55:29 AM	13.09	5.87	29.72	108.82		
2/14/2023 11:56:29 AM	14.02	5.18	27.90	72.50		
2/14/2023 11:57:29 AM	13.79	5.09	23.94	50.62		
2/14/2023 11:58:29 AM	14.06	4.80	24.17	55.28		
2/14/2023 11:59:29 AM	14.52	4.45	24.49	71.58		
2/14/2023 12:00:29 PM	14.80	4.23	25.08	78.37		
2/14/2023 12:01:29 PM	15.32	3.88	24.91	79.43		
2/14/2023 12:02:29 PM	14.25	4.61	24.59	82.31		
2/14/2023 12:03:29 PM	12.52	6.04	24.16	114.36		
2/14/2023 12:04:29 PM	14.58	4.78	27.17	144.22		
2/14/2023 12:05:29 PM	14.84	4.48	24.73	123.43		
2/14/2023 12:06:29 PM	14.50	4.54	23.87	105.14		
Run Averages:	13.51	5.39	17.79	86.22		

acility/Site:		ces / Forget-Me	-Not			2/14/23
Source: Run No.:	EU5 EU5-M5/202-R2				Start Time: 13:35 Stop Time: 14:56	
	O_2 O_2 O_2 O_3					
Date/Time	(%vd)	(%vd)	(ppmvd)	(ppmvd)		
2/14/2023 1:35:29 PM	16.74	2.62	7.76	17.95		
2/14/2023 1:36:29 PM	15.65	3.33	8.01	32.86		
2/14/2023 1:37:29 PM	16.11	3.06	8.31	29.25		
2/14/2023 1:38:29 PM	16.04	3.14	7.85	27.81		
2/14/2023 1:39:29 PM	16.26	3.00	7.41	30.13		
2/14/2023 1:40:29 PM	16.30	2.96	7.13	28.59 64.58		
2/14/2023 1:41:29 PM	15.74	3.33	6.58			
2/14/2023 1:42:29 PM	17.11	2.54	5.78	112.15		
2/14/2023 1:43:29 PM	17.12	2.57 3.37	5.09 4.62	64.54 49.51		
2/14/2023 1:44:29 PM	15.91	4.00	4.82	62.68		
2/14/2023 1:45:29 PM 2/14/2023 1:46:29 PM	15.11 15.64	3.71	5.01	64.13		
2/14/2023 1:47:29 PM 2/14/2023 1:47:29 PM	15.72	3.65	4.67	61.50		
2/14/2023 1:47:29 PM 2/14/2023 1:48:29 PM	14.35	4.59	5.22	69.36		
2/14/2023 1:49:29 PM	14.35	4.55	4.76	76.50		
2/14/2023 1:50:29 PM	13.04	5.80	4.58	76.70		
2/14/2023 1:50:29 PM	13.27	5.68	4.58	76.13		
2/14/2023 1:51:29 PM	13.38	5.61	4.64	73.26		
2/14/2023 1:53:29 PM	13.90	5.19	4.61	73.18		
2/14/2023 1:54:29 PM	14.25	4.87	4.51	75.41		
2/14/2023 1:55:29 PM	14.65	4.54	4.62	78.68		
2/14/2023 1:56:29 PM	14.84	4.38	4.70	79.10		
2/14/2023 1:57:29 PM	15.17	4.12	4.71	75.02		
2/14/2023 1:58:29 PM	15.38	3.92	4.74	68.56		
2/14/2023 1:59:29 PM	15.38	3.95	4.98	60.25		
2/14/2023 2:00:29 PM	15.03	4.08	5.07	59.17		
2/14/2023 2:01:29 PM	12.26	6.37	4.97	67.75		
2/14/2023 2:02:29 PM	12.49	6.34	5.09	90.22		
2/14/2023 2:03:29 PM	13.05	5.95	5.10	84.53		
2/14/2023 2:04:29 PM	13.34	5.67	4.84	78.97		
2/14/2023 2:05:29 PM					port change	
2/14/2023 2:06:29 PM					port change	
2/14/2023 2:07:29 PM					port change	
2/14/2023 2:08:29 PM					port change	
2/14/2023 2:09:29 PM					port change	
2/14/2023 2:10:29 PM					port change	
2/14/2023 2:11:29 PM			1		port change	
2/14/2023 2:12:29 PM					port change	
2/14/2023 2:13:29 PM					port change	
2/14/2023 2:14:29 PM					port change	
2/14/2023 2:15:29 PM					port change	
2/14/2023 2:16:29 PM					port change	
2/14/2023 2:17:29 PM					port change	
2/14/2023 2:18:29 PM		1			port change	
2/14/2023 2:19:29 PM					port change	
2/14/2023 2:20:29 PM					port change	
2/14/2023 2:21:29 PM		1			port change	
2/14/2023 2:22:29 PM					port change port change	
2/14/2023 2:23:29 PM					port change	
2/14/2023 2:24:29 PM 2/14/2023 2:25:29 PM	13.72	4.85	2.49	61.22		
2/14/2023 2:25:29 PM 2/14/2023 2:26:29 PM	13.72	6.22	3.15	65.29		
2/14/2023 2:26.29 PM 2/14/2023 2:27:29 PM	11.32	5.84	3.79	68.72		
2/14/2023 2:28:29 PM	12.06	5.73	4.09	69.01		1

Facility/Site: Gateway Services / Forget-Me-Not						Date: 2/14/23	
ource: EU5					Start Time: 13:35		
Run No.:	EU5-M5/202-R2				Stop Time:	14:56	
	0 ₂	CO ₂	CO	NOx			
Date/Time	(%vd)	(%vd)	(ppmvd)	(ppmvd)			
0/4 //0000 0:00:00 PM	11.89	5.81	4.03	72.52			
2/14/2023 2:29:29 PM		5.76	4.03	74.34			
2/14/2023 2:30:29 PM	11.95		4.14	74.34			
2/14/2023 2:31:29 PM	12.20	5.60	4.37	69.84			
2/14/2023 2:32:29 PM	12.28	5.55					
2/14/2023 2:33:29 PM	12.41	5.46	4.11	69.47			
2/14/2023 2:34:29 PM	12.45	5.42	4.23	66.99			
2/14/2023 2:35:29 PM	12.70	5.26	4.08	64.82			
2/14/2023 2:36:29 PM	12.42	5.39	4.12	64.27			
2/14/2023 2:37:29 PM	12.48	5.36	4.31	62.98			
2/14/2023 2:38:29 PM	12.63	5.25	4.34	60.92			
2/14/2023 2:39:29 PM	12.89	5.08	4.26	57.80			
2/14/2023 2:40:29 PM	12.79	5.13	4.12	56.06			
2/14/2023 2:41:29 PM	15.91	3.32	5.64	52.38			
2/14/2023 2:42:29 PM	15.24	3.81	5.14	65.67			
2/14/2023 2:43:29 PM	16.35	3.14	4.90	60.03			
2/14/2023 2:44:29 PM	15.72	3.53	4.28	53.96			
2/14/2023 2:45:29 PM	13.80	4.50	3.86	43.91			
2/14/2023 2:46:29 PM	14.12	4.28	3.81	40.72			
2/14/2023 2:47:29 PM	14.26	4.19	3.78	37.32			
2/14/2023 2:48:29 PM	14.34	4.15	3.72	36.11			
2/14/2023 2:49:29 PM	14.36	4.09	3.71	36.40			
2/14/2023 2:50:29 PM	15.75	3.37	5.36	30.11			
2/14/2023 2:51:29 PM	14.23	4.14	4.14	35.83			
2/14/2023 2:52:29 PM	15.49	3.45	3.85	31.33			
2/14/2023 2:53:29 PM	15.52	3.41	3.66	29.69			
2/14/2023 2:54:29 PM	15.20	3.63	4.20	29.12			
2/14/2023 2:55:29 PM	14.70	3.82	4.12	34.44			
Run Averages:	14.27	4.45	4.79	58.72			

Instrumental Analyzer Monitoring Data (not corrected for calibrations)

Facility/Site:	Gateway Servic EU5	es / Forget-Me	-Not		Date: Start Time:	2/14/23
Source: Run No.:	EU5-M5/202-R	3			Start Time: Stop Time:	
	O2	CO ₂	со	NOx		
Date/Time	(%vd)	(%vd)	(ppmvd)	(ppmvd)		
	17.50	0.00	4.00	40.00		
2/14/2023 3:40:29 PM	17.53	2.23	4.32	12.80		
2/14/2023 3:41:29 PM	14.89	3.95	4.74	47.89		
2/14/2023 3:42:29 PM	16.59	2.88	3.56	59.32		
2/14/2023 3:43:29 PM	16.09	3.35	3.49	43.78		
2/14/2023 3:44:29 PM	15.41	3.80	3.42	54.33		
2/14/2023 3:45:29 PM	15.53	3.74	3.33	56.77		
2/14/2023 3:46:29 PM	15.74	3.58	3.38	54.53		
2/14/2023 3:47:29 PM	15.89	3.46	3.39	50.39		
2/14/2023 3:48:29 PM	16.18	3.27	3.40	45.75		
2/14/2023 3:49:29 PM	16.01	3.42	3.68	45.61		
2/14/2023 3:50:29 PM	15.32	3.76	3.71	55.53		
2/14/2023 3:51:29 PM	15.62	3.74	3.30	60.59		
2/14/2023 3:52:29 PM	15.62	3.75	3.28	58.19		
2/14/2023 3:53:29 PM	15.41	3.86	3.32	58.45		
2/14/2023 3:54:29 PM	15.35	3.84	3.44	59.12	1	
2/14/2023 3:55:29 PM	14.94	4.19	3.67	60.21	1	
2/14/2023 3:56:29 PM	14.83	4.20	3.65	55.99		
2/14/2023 3:57:29 PM	15.48	3.83	3.64	57.38		
2/14/2023 3:58:29 PM	15.78	3.61	3.60	44.94		
2/14/2023 3:59:29 PM	15.75	3.61	3.53	38.89		
2/14/2023 4:00:29 PM	14.20	4.83	3.93	43.53		
2/14/2023 4:01:29 PM	14.64	4.34	3.96	54.53		
2/14/2023 4:02:29 PM	15.12	4.18	3.99	43.13		
2/14/2023 4:03:29 PM	12.27	6.33	3.77	48.58		
2/14/2023 4:04:29 PM	12.55	6.32	3.83	90.92		
2/14/2023 4:05:29 PM	12.79	6.21	3.85	84.50		
2/14/2023 4:06:29 PM	13.28	5.78	3.80	82.05		
2/14/2023 4:07:29 PM	13.47	5.54	3.69	71.42		
2/14/2023 4:08:29 PM	11.47	6.64	3.64	53.73		
2/14/2023 4:09:29 PM	11.47	0.04	0.01		port change	
2/14/2023 4:09:29 PM					port change	
2/14/2023 4:10:29 PM					port change	
2/14/2023 4:11:29 PM					port change	
					port change	
2/14/2023 4:13:29 PM						
2/14/2023 4:14:29 PM					port change	
2/14/2023 4:15:29 PM					port change	
2/14/2023 4:16:29 PM					port change	
2/14/2023 4:17:29 PM					port change	
2/14/2023 4:18:29 PM	44.50		4.00	56.40	port change	
2/14/2023 4:19:29 PM	14.53	4.31	4.30	56.40		1
2/14/2023 4:20:29 PM	12.97	5.16	3.81	73.44	1	
2/14/2023 4:21:29 PM	13.22	5.03	3.68	50.00	1	
2/14/2023 4:22:29 PM	13.21	5.04	3.69	49.33		
2/14/2023 4:23:29 PM	13.09	5.08	3.70	48.46		
2/14/2023 4:24:29 PM	12.90	5.20	3.73	46.46		
2/14/2023 4:25:29 PM	11.81	5.80	3.84	52.51		
2/14/2023 4:26:29 PM	12.23	5.53	3.93	53.33		
2/14/2023 4:27:29 PM	15.23	3.79	4.59	50.77		
2/14/2023 4:28:29 PM	14.26	4.38	4.75	55.13		
2/14/2023 4:29:29 PM	14.47	4.22	4.30	45.25		
2/14/2023 4:30:29 PM	14.86	4.02	3.87	38.60		
2/14/2023 4:31:29 PM	14.79	4.06	4.53	39.07		
2/14/2023 4:32:29 PM	14.03	4.37	4.19	38.59		
2/14/2023 4:33:29 PM	14.65	4.09	6.02	34.72	1	1

Facility/Site:	Gateway Servic	es / Forget-Me	-Not		Date: 2/14/23
Source:	EU5	-			Start Time: 15:40
Run No.:	EU5-M5/202-R3	3			Stop Time: 16:50
	O ₂	CO ₂	СО	NOx	
Date/Time	(%vd)	(%vd)	(ppmvd)	(ppmvd)	
2/14/2023 4:34:29 PM	14.16	4.27	4.40	38.51	
2/14/2023 4:35:29 PM	14.63	4.10	5.98	31.33	
2/14/2023 4:36:29 PM	13.27	4.80	4.10	34.26	
2/14/2023 4:37:29 PM	13.82	4.49	3.97	33.38	
2/14/2023 4:38:29 PM	13.75	4.52	3.82	34.30	
2/14/2023 4:39:29 PM	13.57	4.61	3.76	34.12	
2/14/2023 4:40:29 PM	13.74	4,49	3.76	33.29	
2/14/2023 4:41:29 PM	15.46	3.53	5.55	28.04	
2/14/2023 4:42:29 PM	15.42	3.54	4.04	28.69	
2/14/2023 4:43:29 PM	15.37	3.64	4.90	38.40	
2/14/2023 4:44:29 PM	14.65	3.97	4.67	30.91	
2/14/2023 4:45:29 PM	15.26	3.63	3.96	23.69	
2/14/2023 4:46:29 PM	15.07	3.73	3.59	23.11	
2/14/2023 4:47:29 PM	14.85	3.82	3.52	24.11	
2/14/2023 4:48:29 PM	15.38	3.52	3.37	22.61	
2/14/2023 4:49:29 PM	15.82	3.26	3.38	22.03	
Run Averages:	14.57	4.27	3.93	46.76	

Instrumental Analyzer Monitoring Data (not corrected for calibrations)

Facility / Site:	Gateway S	ervices / F	orget-Me-	Date:	2/1/	1/23
Source:	EU5			Date.	£/1-	120
Diluent/Pollutant		O ₂	CO ₂	co	NOx	
Monitor Range (Program		25	20	1000	200	
Monitor Range (Effective, pe		21.00	18.98	191.4	189.0	
-	Low Level	Analyzer C	alibration	Error		
Cylinder Value		0.00	0.00	0.0	0.0	
Response		0.05	0.00	0.0	0.0	
ÂĊĔ		0.24	0.00	0.00	0.00	
Calibration Status (Pas	s/Fail)	Pass	Pass	Pass	Pass	
· · · · · · · · · · · · · · · · · · ·		Analyzer C	alibration	Error		
Cylinder Value (Mid	1)	11.08	9.43	94.0	93.6	
Analyzer Response (I	/id)	11.00	9.40	95.4	91.9	
ACE		-0.38	-0.16	0.73	-0.90	
Calibration Status (Pas	s/Fail)	Pass	Pass	Pass	Pass	
-	High Leve	Analyzer C	alibration	Error		
Cylinder Value (High/S		21.00	18.98	191.4	189.0	
Analyzer Response (H	ligh)	21.00	18.95	192.2	188.9	
ACE	<u> </u>	0.00	-0.16	0.42	-0.05	
Calibration Status (Pas	s/Fail)	Pass	Pass	Pass	Pass	
	Mid Leve	Gas Range	e Assessm	ent		
Cylinder Value (Mid	i)	11.08	9.43	94.0	93.6	
Cylinder Value (High/S		21.00	18.98	191.4	189.0	
Mid Level Gas (Percentage		52.8%	49.7%	49.1%	49.5%	
Calibration Gas Status (P	ass/Fail)	Pass	Pass	Pass	Pass	
	System C					
Use Mid or High Span (M	l or H)	M	M	M	М	

Analyzer Calibration Error Checks (ACE)

Facility/Site: Gateway Services / Forget-M Source: EU5	e-Not		Date: Start Time:	2/14/23 10:50	
Run No.: EU5-M5/202-R1			Stop Time:	12:07	
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)	CO (ppmvd)	NO _x (ppmvd)	
Instrument Span =	21.00	18.98	191.4	189.0	
Analyzer Zero Response =	0.05	0.00	0.0	0.0	
Analyzer Span Response =	11.00	9.40	95.4	91.9	
Initial Sytem Zero Response =	0.05	0.15	0.1	0.0	
Final System Zero Response =	0.02	0.39	0.3	0.4	
Average Zero Response (C _o) =	0.04	0.27	0.2	0.2	
Initial Sytem Span Response =	11.05	9.50	95.0	92.5	
Final System Span Response =	11.09	9.47	95.2	91.3	
Average Span Response (C _m) =	11.07	9.49	95.1	91.9	
Calibration gas values (C _{ma}) =	11.08	9.43	94.0	93.6	
System Bias (SB) and Drift Calculations:	0.00	0.79	0.05	0.00	
Initial Zero Bias (SB _i) =					
Final Zero Bias (SB _{final}) =		2.05	0.16	0.21	
Zero Drift (D) =		1.26	0.10	0.21	
Initial Span Bias (SB _i) =		0.53	-0.21	0.32	
Final Span Bias (SB _{final}) =	0.43	0.37	-0.10	-0.32	
Span Drift (D) =	0.19	0.16	0.10	0.63	
Uncorrected Ave. (C _{Avg}) =	13.51	5.39	17.79	86.22	
Corrected Ave.= $C_{gas} = (C_{Avg}-C_o)(C_{ma}/(C_m-C_o)) =$	13.53	5.24	17.42	87.81	

CEMS Pre/Post-Test Bias/Drift Calibration Checks and Calculations

Facility/Site: Source:	Gateway Services / Forget-Me EU5	-Not		Date: Start Time:	2/14/23 13:35
Run No.:	EU5-M5/202-R2			Stop Time:	14:56
	Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)	CO (ppmvd)	NO _x (ppmvd)
	Instrument Span =	21.00	18.98	191,4	189.0
	Analyzer Zero Response =	0.05	0.00	0.0	0.0
	Analyzer Span Response =	11.00	9.40	95.4	91.9
	Initial Sytem Zero Response =	0.02	0.39	0.3	0.4
	Final System Zero Response =	0.05	0.40	0.3	0.5
	Average Zero Response (C _o) =	0.04	0.40	0.3	0.5
	Initial Sytem Span Response =	11.09	9.47	95.2	91.3
	Final System Span Response =	11.04	9.61	95.0	90.4
	Average Span Response (C _m) =	11.07	9.54	95.1	90.9
System Bias	Calibration gas values (C _{ma}) = s (SB) and Drift Calculations:	11.08	9.43	94.0	93.6
<u>Oystem Bidt</u>	Initial Zero Bias (SB _i) =	-0.14	2.05	0.16	0.21
	Final Zero Bias (SB _{final}) =	0.00	2.11	0.16	0.26
	Zero Drift (D) =	0.14	0.05	0.00	0.05
	Initial Span Bias (SB _i) =	0.43	0.37	-0.10	-0.32
	Final Span Bias (SB _{final}) =	0.19	1.11	-0.21	-0.79
	Span Drift (D) =	0.24	0.74	0.10	0.48
	Uncorrected Ave. (C_Avg) =	14.27	4.45	4.79	58.72
Corrected Ave	$e_{a} = C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) =$	14.30	4.18	4.46	60.34

CEMS Pre/Post-Test Bias/Drift Calibration Checks and Calculations

,

Facility/Site:	Gateway Services / Forget-Me	-Not			2/14/23	
Source:	EU5			Start Time:		
Run No.:	EU5-M5/202-R3	*****		Stop Time:	16:50	
	Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)	CO (ppmvd)	NOx (ppmvd)	
	Instrument Span =	21.00	18.98	191.4	189.0	
	Analyzer Zero Response =	0.05	0.00	0.0	0.0	
	Analyzer Span Response =	11.00	9.40	95.4	91.9	
	Initial Sytem Zero Response =	0.05	0.40	0.3	0.5	
	Final System Zero Response =	0.02	0.48	0.1	1.1	
	Average Zero Response (C _o) =	0.04	0.44	0.2	0.8	
	Initial Sytem Span Response =	11.04	9.61	95.0	90.4	
	Final System Span Response =	11.04	9.75	94.6	88.8	
	Average Span Response (C _m) =	11.04	9.68	94.8	89.6	
Svotom Pice	Calibration gas values (C _{ma}) = s (SB) and Drift Calculations:	11.08	9.43	94.0	93.6	
<u>oystem bias</u>	Initial Zero Bias (SB _i) =	0.00	2.11	0.16	0.26	
	Final Zero Bias (SB _{final}) =	-0.14	2.53	0.05	0.58	
	Zero Drift (D) =	0.14	0.42	0.00	0.32	
	Initial Span Bias (SB _i) =	0.43	0.37	-0.21	-0.79	
	Final Span Bias (SB _{final}) =	0.19	1.11	-0.42	-1.64	
	Span Drift (D) =	0.24	0.74	0.21	0.85	
	Uncorrected Ave. (C _{Avg}) =	14.57	4.27	3.93	46.76	
Corrected Ave	$e_{a}=C_{gas}=(C_{Avg}-C_{o})(C_{ma}/(C_{m}-C_{o}))=$	14.63	3.91	3.71	48.45	

CEMS Pre/Post-Test Bias/Drift Calibration Checks and Calculations

MONTROSE AIR QUALITY SERVICES

Client/Site: Gateway Services / Forget-Me-not

EU5 Source: Analyzer Calibration Error (ACE) – Reference Method

Ν

Date:

Operator:

Pollutant/Diluent:	O2 (%vd)	(þ v %	CO ₂ (%vd)	(bvå)	CO (ppmvd)	(pymo	NO _X (p	NO _X (ppmvd)	
Analyzer ID:	NAZ 1	274.91	2 AAT WEAT	2#2	160	W#2	TECC	TEO W#2 TECO 42142	
Calibrations:	Cylinder Value (Cv)	Analyzer Response (C _{DIR})	Cylinder Value Analyzer (Cv) (C _{DIR})	Analyzer Response (C _{DIR})	Cylinder Value Analyzer (C _v) (C _{DIR})	Analyzer Response (C _{DIR})	Cylinder Value (C,)	Analyzer Response (C _{DIR})	
Low/Zero	0.00	0.05	0.00	0.00	0.0	0,0	0.0	0,0	
Mid	11.08	11,02)	9.43	940	9.43 9.40 94.0 95.4 93.6 91.9	95. Y	93.0	<u> 91</u> , 9	
High	21.00	21,02	21,020 18.98 18.95 191.4	18.95	191.7	192.2	192.2 189.0 189.3	188.3	
					/			•	

Upscale (seconds): RM Response Time:

 \mathcal{A}

 $\widetilde{\mathcal{N}}$ Downscale (seconds):

Note: System Response Time is the longer of the upscale and downscale response times. Performed during initial zero and bias checks:

CU≥

19,43

1081

EB 011 7102

Cylinder No.

818

10012

5B 006 4990

2

19.0 9%6

191.4

EB m30050 EB 0089224

191

94,0

EB 00 89224

Diluent/Pollutant Concentrations(s)

Protocol Gases Used During Program:

202 Range selected for analyzer operation: Š 25 8 20 ő 25 õ

Analyzer Calibration Error (ACE) Acceptance Criteria: ≤ ± 2%

Where: $ACE = [(C_{Dir} - C_v)/CS] * 100\%$

REV 11/8/17 AMS

CEMS DATASHEETS AMS (rev 11-8-17)

			·									
NE013AS-					M M	MONTROSE AIR QUALITY SERVICES	SERVICES			Ŭ Ċ.		
	Gateway Services / Forget-Me-not	rvices / Forg	et-Me-not		2124	51247 pt 1 900 - 905	900 -9	60	Operator:		New ,	
	EU5						905-310 410-915	Ň	Date:	2/14	123	
Test Series ID:		M						2		-		
			Systen	n Bias (SB)/	'Drift (D) As	System Bias (SB)/Drift (D) Assessments – Reference Method	Referen	ce Method				
	Run	Run Time	02 (O ₂ (%vd)	CO2	CO ₂ (%vd)	1) 00	CO (ppmvd)	NO _X ((NO _X (ppmvd)		
DI unu Pag	Start	End	Zero (C _s)	Upscale (C _s)	Zero (C _s)	Zero (C _s) Upscale (C _s)	Zero (C _s)	Zero (Cs) Upscale (Cs)	in the second	Zero (C _s) Upscale (C _s)		1
ି କ୍ଷା Gas Concentration ୦୦			0.00	11.08	0.00	57.6	0.0	940	0.0	93,6		····· ·
Inditial Response			0.05	11.05	0.15	05%	0,1	95.0	りつ	92,5		
Run 1 Final	050	7021	C0.0	11,09	0.39	447	Q V	6:56	Ĵ, Ĵ	91.3		,
						~			,			

Sampling System Bias (SB) Criteria: $\leq \pm 5\%$ of span for zero and upscale gas, where: Where: SB = [(C_a -C_{Db})/CS] * 100%

 $D = \left| SB_{final} - SB_i \right|$

<u>Zero and Calibration Drift (D) Criteria:</u> ≤± 3% of span, where

90.4

0 N

95.0

0.0

10, 10 CV, 0

11.04

1450 0.05

1335

Run 2 Final

8

-

946

Õ

9.75

0,48

102

0.09

1650

OF 2'

Run 3 Final

Run 4 Final

Run 5 Final

Run 6 Final

, CEMS DATASHEETS AMS (rev 11-8-17)

REV 11/8/17 AMS

282

Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

Index A.3 – Visual Emission Data Sheets

		(L) F		CAVIC							
Source Name: Gatenlag	Date:	z /14 /	23	Start Ti	me /0	250		End Tir	ne 🗾	200	
Address: 86 Lyingh				onds				Seco	onds		
sity: North bos or ch	Min	0	15	30	45	Min	0	15	30	45	
State: MA 105	-	0	. 0	0		31	AD.	Ø	Ð	O	113
Zip: (3/532	2	Ö	0	U U	0	32	Q	Ø	J		
	3		O	$\frac{0}{2}$		33	0	()			
	4				0	34	0	8	0	Ŷ	
Source ID#: EV5		0	0	0		35			0	$-\mathbf{Q}$	
Describe Emission Point: / Stack	5	0	0	D	0		Ð	0	0	g	
start vertical Street End Gene	6	Ó	0	0	0	36	Ð.	<u>0</u>	\mathcal{Q}	0	
leight Above Ground Level	7	0	12	0	O	37	0	Ð	ð	0-	
Start <u>30</u> ' Stop 11	8		Ø	0	0	38	Ð	\mathcal{O}	Ð	Q_{-}	
Height Relative to Observer	9		0	0	\circ	39	\overline{O}	00	\bigcirc	$\hat{\mathbf{O}}$	
Start ~ ZS Stop	10	O	6	0	0	40	00	Ō	2	Ð	
Distance From Observer 4	11	\bigcirc	D	O	Ð	41	Ø	Ø	\mathcal{O}	\mathcal{O}	
Start ~75 Stop	12	Ð	0	D	0	42	Ď	0	O	\mathcal{O}	
Describe Emissions	13	Ð	0	0	0	43	0	0	0	0	
Start MM Vizigel Stop	14	D	0	0	0	44	Ø	0	0	0	
Emissions Color	15	9	0	Ø	0	45	D	O	12	$\overline{\Lambda}$	
Start non & Vische Stop 11	16		0	0	Õ	46	0	Ø	0	6	
Plume Type Continuous	17	Ő	0	0	0	47	0	8	0	0	
	17				-	47	0	Ð	0	0	
Fugitive Intermittent	10	<u> </u>	0	0	Q	40				_	
			0	0	0	49 50	0	0	0	8	
f Water Droplets Attached Detached	. 20		Ø	Q.	D		0	Q	Ø		
Point of Plume at which Opacity	21	Ð	$\mathcal{O}_{\mathcal{O}}$	Ø	\bigcirc	51	0	Ð	0	0	
was Determined	22	Ō	0	0	D	52	Ø	0	Ø	\mathcal{O}	
	23	O	D	0	Θ	53	-O_	\bigcirc	0	\mathcal{O}	
Descibe Background	24		(2	0	ŏ	54	Ō_	0	0	0	
Start But Sky Stop "	25		20	ŏ	Ō	55	ŏ	D	0	\mathcal{O}	
Sky Conditions	26	Ð	O	0	O	56	O	0	0	<u>.</u>	
Start porty cluron stop 11	27	Ø	<i>i</i> Ø	0	0	57	Õ	0	0	0	
Mind Speed	28	$\left \right. \right. $	Õ	N	\overline{O}	58	Ð	$\overline{0}$	0	2	
Start 5-10 Fran Ilbert Stop " Wind Direction NZ	29	Ð	17	Õ	0	59	0	D	Ω	0	
Wind Direction //2.0			5		0		Õ	n	$\left \right\rangle$	$\overline{\mathcal{D}}$	1200
Start from west stop		ge Opac	ity For	Highest		L I	Ø	<u> </u>			1200
Ambient Temperature		er of Re				%	0	Ø			
Start 4% Stop 4		Of Opa					1		um C	<u> </u>	
			-		\sim	·	20	wer-			
Wet Bulb Temperature		ver's Na		11)	A.S.	<u>wia</u>	//1				
Start Stop		ver's Sig	nature	tent	xai	<u>es y</u>	un	2			
RH %	Date:			arg		2114	23	- 1			
Emission Point $(\mathcal{P}) \stackrel{\mathcal{C}}{\downarrow} \stackrel{\mathcal{E}}{\vdash} \mathcal{P}$		ization	na	2PPC	500		ATR	<u>150</u>	<i>i</i> =		
Emission Point	Certifie		no	$\frac{1}{\sqrt{2}}$	zm	<u> </u>	Date	10/21	122		
I (Q	Varifie		•				Date				
Draw Arrow North	Comm	nents									
	1										
With											
140°	1										
E. UTO F.A.	\mathcal{N}										
Sun Location 50 50											

Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303

www.montrose-env.com

 \mathcal{V}

~

	Data		177	Start Ti	<u></u>	335		End Tir	ma		
Source Name: Gateway Generices Address: So be income	Date.	<u>~ 4 </u>	Seco			<u> </u>			onds		
Address: 80 hr man City: Northbaro	Min	0			45	Min	0			45	
State: //A 1333		Ø	0	0	0	31	Ø	0	\mathcal{O}		1425
Zip: 01532	2	0	0	0	$\overline{)}$	32		0		\mathbf{O}	1920
Phone: $202 24(-04)$	3		U U	0 U		33	8	Ð	0	0	
Source ID#: EVS	4	0	$\overline{0}$		0	34	Ø	Ð	0	\tilde{o}	
Describe Emission Point:	5	0	0	9	0	35	Õ	Ð	Ď	\tilde{o}	
Start 1/ ortical Stretend Sam	6		(9	0	is	36	Ð	Ð	Ô	õ	
Height Above Ground Level	7	ð	0	0	()	37	Õ	Ð	Õ	0	
Start ~ 301 Stop Serve	8	0	0	Θ	Õ	38	0	6	0	Ø	
Height Relative to Observer	9		0	0	0	39	0	0	0	D	
Start NZ5 Stop Sund	10		Õ	0	0	40	Q	0	0	O_	
Distance From Observer	11	Ø	Ó	Ô	Õ	41	Ø	0	0	$\Box o$	
Start w75 Stop Same	12	0	Ø	Ø	0	42	Ð	0	Ō	Õ	
Describe Emissions	13	Q	Ð	0	0	43	Ð	c2	Ō	\overline{O}	
Start None V13, Gle Stop Seene	14		0	Õ	0	44	O	0	Ø	0	
Emissions Color	15	Ø	0	ତ	O	45	0	Ø	Ð	Ō.	
Start June VIGING Stop Same	16		0	0	\mathcal{O}	46	Ø	\mathcal{O}	Ø	0	
Plume Type Continuous	17	0	0		\mathcal{Q}	47	Ø	0	0	00	
Fugitive Intermittent	18		O	0	0	48	Ø	\bigcirc	Ø		
Water Droplets YES	19		0	0	0	49	<u>`</u>	Q	0	0	4
If Water Droplets Attached Detached	20		0	0	6	50		D	0	0	-
Point of Plume at which Opacity	21	8	0	0	O	51	0	O	0	O	-
was Determined	22		D	0	Q	52 53	Ø	0	0	$-\mathcal{O}$	
Start ORX + Stop Sarp	23 24		0	\circ	0	54	Ð	Ø	<u> </u>	$ \phi$	-
Descibe Background	24		0	0	D	55	0	<u>a</u>	0	Ø	-
Start Blue Sky Stop Som Sky Conditions	25	0	0	0	\circ	56	\overline{D}	0	Q	0	ł
	20		0	0	0	57	00	0	0	0	4
Start CHEW Stop Sch Wind Speed Start Call Stop Gunf	27	0 0	0	0	00	58	0	0	0	0	
Start Calm Stop Gund	20		0	0	-	59		Ø	0	0	
Wind Direction	30		0	0	0	60	Q 1 9		2	5	1435
Start Ward Stop Sang		<u> </u>	ity For I						<u> </u>		1900
Ambient Temperature			adings		5	%	$\mathcal{O}_{\mathcal{O}}$				1
Start 48 Stop 48			acity Rea				0	Maxim	im (· ``	4
Wet Bulb Temperature			me (prii		Ω.	d	Ca			/	1
Start Stop		ver's Sig			<u>Joan</u>		-	N. M	~		
RH %	Date:		natare	-2/11	1E g	LAR		<u>~</u> //~	Contraction of the	2	
		ization		<u>~119</u>	12 X	1051	0		, (
Emission Point 150 F BN	Certifie		01.0	rrisc	$\sim \sim \sim \sim$	<u> </u>	Date	1/1	2/72		
	Varifie			1.1.10			Date	-181	1-00		1
Draw Arrow North	Comm	-									1
140°											
Sun Location											
· · · · · · · · · · · · · · · · · · ·											_

• Sun

Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303

www.montrose-env.com

Source Name: Casteria Scources	Date:	2/14	1/23	Start Ti	me /	570	,	End Tir	me 10	50	
Address: 70 L man		<i>/ / /</i>		onds					onds		1
City: North Lorough	Min	0	,		45	Min	0	15	30	45	1
State: MA	1		0	0		31	Ø	0	0	0	162
Zip: 01532	2	0	0	0	8	32	0	0	0	0	f
Phone: 702 241-1041	3	0	0	0	0	33	0	0	Ø		
Source ID#: EUS	4	0	0	0	0	34		D	0	00	
Describe Emission Point:	5	0	0	0	0	35	0	Õ	0	$\overline{\mathbf{C}}$	1
Start Vertical Steel End Game	6	0	0	$\overline{0}$		36	0	$\overline{\mathbf{a}}$	0	$\overline{\mathcal{O}}$	1
Height Above Ground Level	7	0	\overline{o}	0	0	37	0	12	õ	~	1
Start ~ 30 Stop 1	8		0	$\overline{\mathcal{O}}$	0	38	04	0	Õ	S	1
	9		Ő	0	0	39		E	X	ð	1
Height Relative to Observer \mathfrak{c} (Start $\mathfrak{s} \mathfrak{s} \mathfrak{s}$ Stop	10		0	0	\overline{O}	40	Q	Ð		0	1
Distance From Observer		0	0	0	\mathcal{O}	41	40	0	14	ð	1
Start N/N Stop	12	0	0		_	42	\odot	$\frac{0}{0}$		0	1
Describe Emissions /	13	0	0	0	00	43	0	0	8	8	1
Start None Visch / Stop	14		0	D	0 0	44	0	00		0	1
Emissions Color	15		0	1	0	45			ø		1
				0		46	Ô	$-\frac{2}{2}$		S	-
Start None Visible Stop	16	0	0	0	0	·····		0	$ \mathcal{Q} $	2	4
Plume Type Continuous			0	0	0	47	0	0	ð	8	4
Fugitive Intermittent	7/18		0	0	0	48	\mathcal{O}	Q	\mathcal{O}	\overline{O}	-
Water Droplets YES	19		0	0	0	49	Q	Ø	0	\leq	-
If Water Droplets Attached Detached	20		0	0	0	50	<u>Ø</u>	Q	ð	$\downarrow O$	-
Point of Plume at which Opacity	- 21	/ O	0	0	0	51 52	O	\mathcal{O}	8	8	4
was Determined	22	0	0	Q	0	52	_Q	$\frac{2}{2}$			4
Start Dexit Stop 11	23		10	0	\overline{o}	54	0		Ø	00	-
Descibe Background	24		$ \mathcal{O} $	0	0	55		Q	0		4
Start Clear blue Stop	25		$\left \begin{array}{c} \mathcal{O} \\ \mathcal{O} \end{array} \right $	0	0	56	0	- Ò	0	Q	4
Sky Conditions	20		0	0	0	50	8	-	0	0	4
Start Clour Stop		0	D	Ð	0		<u>Ó</u>	0	D	Q	-
Wind Speed Start MM Stop	28	ł	0	0	0	58	0	Q	8	Q	4
start Peor Stop	29		0	0	0	59 60	0	0	$ \circ$	Ø	1.00
Wind Direction	30		0	Ø	0		0	Ő	6	\odot	1650
Start //// Stop			city For			Ľ					4
Ambient Temperature	_		eadings		5		$\underline{\mathcal{O}}$				4
Start 52 Stop 5			acity Rea		71		2,	Maxim	um 🥻	<u> </u>	4
Wet Bulb Temperature			ime (pri	nt)	pa	JIA.	Ga	pr-			4
Start Stop : Fr		ver's Sig	gnature		_pl	ave	× (un	\sim		4
RH % - N 20 0	Date:		7	1/1/2	23						4
· 1/		ization	• 4		-M	stro					4
Emission Point	Certifi		May	150	<u>n</u>		Date	10/2	<u>1727 -</u>		4
	Varifie	d By					Date		-		1
Draw Arrow North	Comr	nents									
F.J. 20	1										1
140°											
Sun Location											

Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303 <u>www.montrose-env.com</u>

Facility:	Gateway Services / Forget-Me-Not							
Site:	Northborough, MA							
Source:	EU5							
Reader:		/ Montrose	Air Quality Sei	vices				
Date:	2/14/23							
Run No.:	1							
Start Time:	10:50							
End Time:	12:06							
	i <u>jern</u> e estancer				anta anna a sua a			
Operating Description	<u>Time</u>	<u>Minute</u>	<u>Reading</u>	<u>VE (%)</u>	<u>6-min ave. (%)</u>			
	10:50:00	1.0	1	0				
	10:50:15	1.0	2	0				
	10:50:30	1.0	3	0				
	10:50:45	1.0	4	0				
	10:51:00	2.0	1	0				
	10:51:15	2.0	2	0				
	10:51:30	2.0	3	0				
	10:51:45	2.0	4	0				
	10:52:00	3.0	1	0				
	10:52:15	3.0	2	0				
	10:52:30	3.0	3	0				
	10:52:45	3.0	4	0				
	10:53:00	4.0	1	0				
	10:53:15	4.0	2	0				
	10:53:30	4.0	3	0				
	10:53:45	4.0	4	0				
	10:54:00	5.0	1	0				
	10:54:15	5.0	2	0				
	10:54:30	5.0	3	0				
	10:54:45	5.0	4	0				
	10:55:00	6.0	1	0				
	10:55:15	6.0	2	0				
	10:55:30	6.0	3	0				
	10:55:45	6.0	4	0	0.0			
	10:56:00	7.0	1	0				
	10:56:15	7.0	2	0				
	10:56:30	7.0	3	0				
	10:56:45	7.0	4	0				
	10:57:00	8.0	1	0				
	10:57:15	8.0	2	0				
	10:57:30	8.0	3	0				
	10:57:45	8.0	4	0				

Facility:	Gateway Services / Forget-Me-Not							
Site:	Northborough, MA EU5							
Source:								
Reader:	David Caron	/ Montrose	Air Quality Ser	vices				
Date:	2/14/23							
Run No.:	1							
Start Time:	10:50							
End Time:	12:06	· · · ·						
Operating Description	Time	<u>Minute</u>	<u>Reading</u>	<u>VE (%)</u>	<u>6-min ave. (%)</u>			
	10:58:00	9.0	1	0				
	10:58:15	9.0	2	0				
	10:58:30	9.0	3	0				
	10:58:45	9.0	4	0				
	10:59:00	10.0	1	0				
	10:59:15	10.0	2	0				
	10:59:30	10.0	3	0				
	10:59:45	10.0	4	0				
	11:00:00	11.0	1	0				
	11:00:15	11.0	2	0				
	11:00:30	11.0	3	0				
	11:00:45	11.0	4	0				
	11:01:00	12.0	1	0				
	11:01:15	12.0	2	0				
	11:01:30	12.0	3	0				
	11:01:45	12.0	4	0	0.0			
	11:02:00	13.0	1	0				
	11:02:15	13.0	2	0				
	11:02:30	13.0	3	0				
	11:02:45	13.0	4	0				
	11:03:00	14.0	1	0				
	11:03:15	14.0	2	0				
	11:03:30	14.0	3	0				
	11:03:45	14.0	4	0				
	11:04:00	15.0	1	0				
	11:04:15	15.0	2	0				
	11:04:30	15.0	3	0				
	11:04:45	15.0	4	0				
	11:05:00	16.0	1	0				
	11:05:15	16.0	2	0				
	11:05:30	16.0	3	0				
	11:05:45	16.0	4	0				

Facility:	Gateway Services / Forget-Me-Not							
Site:	Northborough, MA EU5							
Source:								
Reader:	David Caron	/ Montrose	Air Quality Se	rvices				
Date:	2/14/23							
Run No.:	1							
Start Time:	10:50							
End Time:	12:06	· · · · · · · · · · · · · · · · · · ·						
Operating Description	Time	<u>Minute</u>	<u>Reading</u>	<u>VE (%)</u>	<u>6-min ave. (%)</u>			
	11:06:00	17.0	1	0				
	11:06:15	17.0	2	0				
	11:06:30	17.0	3	0				
	11:06:45	17.0	4	0				
	11:07:00	18.0	1	0				
	11:07:15	18.0	2	0				
	11:07:30	18.0	3	0				
	11:07:45	18.0	4	0	0.0			
	11:08:00	19.0	1	0				
	11:08:15	19.0	2	0				
	11:08:30	19.0	3	0				
	11:08:45	19.0	4	0				
	11:09:00	20.0	1	0				
	11:09:15	20.0	2	0				
	11:09:30	20.0	3	0				
	11:09:45	20.0	4	0				
	11:10:00	21.0	1	0				
	11:10:15	21.0	2	0				
	11:10:30	21.0	3	0				
	11:10:45	21.0	4	0				
	11:11:00	22.0	1	0				
	11:11:15	22.0	2	0				
	11:11:30	22.0	3	0				
	11:11:45	22.0	4	0				
	11:12:00	23.0	1	0				
	11:12:15	23.0	2	0				
	11:12:30	23.0	3	0				
	11:12:45	23.0	4	0				
	11:13:00	24.0	1	0				
	11:13:15	24.0	2	0				
	11:13:30	24.0	3	0				
	11:13:45	24.0	4	0	0.0			

Facility: Site: Source: Reader: Date: Run No.:	Gateway Ser Northboroug EU5 David Caron 2/14/23 1	gh, MA	et-Me-Not Air Quality Se	rvices	
Start Time:	10:50				
End Time:	12:06		<u></u>		
Operating Description	<u>Time</u>	<u>Minute</u>	<u>Reading</u>	<u>VE (%)</u>	<u>6-min ave. (%)</u>
	11:14:00	25.0	1	0	
	11:14:15	25.0	2	0	
	11:14:30	25.0	3	0	
	11:14:45	25.0	4	0	
	11:15:00	26.0	1	0	
	11:15:15	26.0	2	0	
	11:15:30	26.0	3	0	
	11:15:45	26.0	4	0	
	11:16:00	27.0	1	0	
	11:16:15	27.0	2	0	
	11:16:30	27.0	3	0	
	11:16:45	27.0	4	0	
	11:17:00	28.0	1	0	
	11:17:15	28.0	2	0	
	11:17:30	28.0	3	0	
	11:17:45	28.0	4	0	
	11:18:00	29.0	1	0	
	11:18:15	29.0	2	0	
	11:18:30	29.0	3	0	
	11:18:45	29.0	4	0	
	11:19:00	30.0	1	0	
	11:19:15	30.0	2	0	
	11:19:30	30.0	3	0	
	11:19:45	30.0	4	0	0.0
P	ause for port cha	nge			
	11:36:00	31.0	1	0	
	11:36:15	31.0	2	0	
	11:36:30	31.0	3	0	
	11:36:45	31.0	4	0.	
	11:37:00	32.0	1	0	

Facility:	Gateway Services / Forget-Me-Not							
Site:	Northborough, MA EU5							
Source:								
Reader:	David Caron	/ Montrose	Air Quality Se	rvices				
Date:	2/14/23							
Run No.:	1							
Start Time:	10:50							
End Time:	12:06							
Operating Description	Time	Minute	<u>Reading</u>	<u>VE (%)</u>	<u>6-min ave. (%)</u>			
	11:37:15	32.0	2	0				
	11:37:30	32.0	3	0				
	11:37:45	32.0	4	0				
	11:38:00	33.0	- 1	0				
	11:38:15	33.0	2	· 0				
	11:38:30	33.0	3	0				
	11:38:45	33.0	4	0				
	11:39:00	34.0	, 1	0				
	11:39:15	34.0	2	ů 0				
	11:39:30	34.0	3	0				
	11:39:45	34.0	4	0				
	11:40:00	35.0	1	Õ				
	11:40:15	35.0	2	0				
	11:40:30	35.0	3	0				
	11:40:45	35.0	4	0				
	11:41:00	36.0	1	0				
	11:41:15	36.0	2	0				
	11:41:30	36.0	3	0				
	11:41:45	36.0	4	0	0.0			
	11:42:00	37.0	1	0	••••			
	11:42:15	37.0	2	0				
	11:42:30	37.0	3	0				
	11:42:45	37.0	4	0				
	11:43:00	38.0	1	0				
	11:43:15	38.0	2	0				
	11:43:30	38.0	3	0				
	11:43:45	38.0	4	0				
	11:44:00	39.0	1	0				
	11:44:15	39.0	2	0				
	11:44:30	39.0	3	0				
	11:44:45	39.0	4	0				
	11:45:00	40.0	1	0				

Facility:	Gateway Services / Forget-Me-Not								
Site:	Northboroug	Northborough, MA							
Source:	EU5								
Reader:	David Caron	/ Montrose /	Air Quality Se	rvices					
Date:	2/14/23								
Run No.:	1								
Start Time:	10:50								
End Time:	12:06		a an	antan ang ang ang ang ang ang ang ang ang a	and a second				
Operating Description	Time	Minute	Reading	<u>VE (%)</u>	<u>6-min ave. (%)</u>				
	11:45:15	40.0	2	0					
	11:45:30	40.0	3	0					
	11:45:45	40.0	4	0					
	11:46:00	41.0	1	0					
	11:46:15	41.0	2	0					
	11:46:30	41.0	3	0					
	11:46:45	41.0	4	0					
	11:47:00	42.0	1	0					
	11:47:15	42.0	2	0					
	11:47:30	42.0	3	0					
	11:47:45	42.0	4	0	0.0				
	11:48:00	43.0	1	0					
	11:48:15	43.0	2	0					
	11:48:30	43.0	3	0					
	11:48:45	43.0	4	0					
	11:49:00	44.0	1	0					
	11:49:15	44.0	2	0					
	11:49:30	44.0	3	0					
	11:49:45	44.0	4	0					
	11:50:00	45.0	1	0					
	11:50:15	45.0	2	0					
	11:50:30	45.0	3	0					
	11:50:45	45.0	4	0					
	11:51:00	46.0	1	0					
	11:51:15	46.0	2	0					
	11:51:30	46.0	3	0					
	11:51:45	46.0	4	0					
	11:52:00	47.0	1	0					
	11:52:15	47.0	2	0					
	11:52:30	47.0	3	0					
	11:52:45	47.0	4	0					
	11:53:00	48.0	1	0					

Facility:	Gateway Services / Forget-Me-Not								
Site:	Northborough, MA EU5								
Source:									
Reader:	David Caron	/ Montrose	Air Quality Se	rvices					
Date:	2/14/23								
Run No.:	1								
Start Time:	10:50								
End Time:	12:06			· · ·					
Operating Description	Time	<u>Minute</u>	<u>Reading</u>	<u>VE (%)</u>	<u>6-min ave. (%)</u>				
	11:53:15	48.0	2	0					
	11:53:30	48.0	3	0					
	11:53:45	48.0	4	0	0.0				
	11:54:00	49.0	1	0					
	11:54:15	49.0	2	0					
	11:54:30	49.0	3	0					
	11:54:45	49.0	4	0					
	11:55:00	50.0	1	0					
	11:55:15	50.0	2	0					
	11:55:30	50.0	3	0					
	11:55:45	50.0	4	0					
	11:56:00	51.0	1	0					
	11:56:15	51.0	2	0					
	11:56:30	51.0	3	0					
	11:56:45	51.0	4	0					
	11:57:00	52.0	1	0					
	11:57:15	52.0	2	0					
	11:57:30	52.0	3	0					
	11:57:45	52.0	4	0					
	11:58:00	53.0	1	0					
	11:58:15	53.0	2	0					
	11:58:30	53.0	3	0					
	11:58:45	53.0	4	0					
	11:59:00	54.0	1	0					
	11:59:15	54.0	2	0					
	11:59:30	54.0	3	0					
	11:59:45	54.0	4	0	0.0				
	12:00:00	55.0	1	0					
	12:00:15	55.0	2	0					
	12:00:30	55.0	3	0					
	12:00:45	55.0	4	0					
	12:01:00	56.0	1	0					

Facility:	Gateway Services / Forget-Me-Not						
Site:	Northborough, MA						
Source:	EU5						
Reader:	David Caron	/ Montrose	Air Quality Se	rvices			
Date:	2/14/23						
Run No.:	1						
Start Time:	10:50						
End Time:	12:06		· ·	· · · · · · · · · · · · · · · · · · ·			
Operating Description	Time	<u>Minute</u>	Reading	<u>VE (%)</u>	<u>6-min ave. (%)</u>		
	12:01:15	56.0	2	0			
	12:01:30	56.0	3	0			
	12:01:45	56.0	4	0			
	12:02:00	57.0	1	0			
	12:02:15	57.0	2	0			
	12:02:30	57.0	3	0			
	12:02:45	57.0	4	0			
	12:03:00	58.0	1	0			
	12:03:15	58.0	2	0			
	12:03:30	58.0	3	0			
	12:03:45	58.0	4	0			
	12:04:00	59.0	1	0			
	12:04:15	59.0	2	0			
	12:04:30	59.0	3	0			
	12:04:45	59.0	4	0			
	12:05:00	60.0	1	0			
	12:05:15	60.0	2	0			
	12:05:30	60.0	3	0			
	12:05:45	60.0	4	0	0.0		
Max. 6-Minute Average:					0.0		

Facility:	Gateway Services / Forget-Me-Not							
Site:	Northborough, MA							
Source:	EU5							
Reader:	David Caron	/ Montrose /	Air Quality Sei	rvices				
Date:	2/14/23							
Run No.:	2							
Start Time:	13:35							
End Time:	14:55				· · · · · · · · · · · · · · · · · · ·			
Operating Description	<u>Time</u>	<u>Minute</u>	<u>Reading</u>	<u>VE (%)</u>	<u>6-min ave. (%)</u>			
	13:35:00	1.0	1	0				
	13:35:15	1.0	2	0				
	13:35:30	1.0	3	0				
	13:35:45	1.0	4	0				
	13:36:00	2.0	1	0				
	13:36:15	2.0	2	0				
	13:36:30	2.0	3	0				
	13:36:45	2.0	4	0				
	13:37:00	3.0	1	0				
	13:37:15	3.0	2	0				
	13:37:30	3.0	3	0				
	13:37:45	3.0	4	0				
	13:38:00	4.0	1	0				
	13:38:15	4.0	2	0				
	13:38:30	4.0	3	0				
	13:38:45	4.0	4	0				
	13:39:00	5.0	1	0				
	13:39:15	5.0	2	0				
	13:39:30	5.0	3	0				
	13:39:45	5.0	4	0				
	13:40:00	6.0	1	0				
	13:40:15	6.0	2	0				
	13:40:30	6.0	3	0				
	13:40:45	6.0	4	0	0.0			
	13:41:00	7.0	1	0				
	13:41:15	7.0	2	0				
	13:41:30	7.0	3	0				
	13:41:45	7.0	4	0				
	13:42:00	8.0	1	0				
	13:42:15	8.0	2	0				
	13:42:30	8.0	3	0				
	13:42:45	8.0	4	0				

Facility:	Gateway Services / Forget-Me-Not								
Site:	Northborough, MA EU5								
Source:									
Reader:		/ Montrose /	Air Quality S	ervices					
Date:	David Caron / Montrose Air Quality Services 2/14/23								
Run No.:	2								
Start Time:	13:35								
End Time:	14:55								
	13:43:00	9.0	1	0					
	13:43:15	9.0	2	0					
	13:43:30	9.0	3	0					
	13:43:45	9.0	4	0					
	13:44:00	10.0	1	0					
	13:44:15	10.0	2	0					
	13:44:30	10.0	3	0					
	13:44:45	10.0	4	0					
	13:45:00	11.0	1	0					
	13:45:15	11.0	2	0					
	13:45:30	11.0	3	0					
	13:45:45	11.0	4	0					
	13:46:00	12.0	1	0					
	13:46:15	12.0	2	0					
	13:46:30	12.0	3	0					
	13:46:45	12.0	4	0	0.0				
	13:47:00	13.0	1	0					
	13:47:15	13.0	2	0					
	13:47:30	13.0	3	0					
	13:47:45	13.0	4	0					
	13:48:00	14.0	1	0					
	13:48:15	14.0	2	0					
	13:48:30	14.0	3	0					
	13:48:45	14.0	4	0					
	13:49:00	15.0	1	0					
	13:49:15	15.0	2	0					
	13:49:30	15.0	3	0					
	13:49:45	15.0	4	0					
	13:50:00	16.0	1	0					
	13:50:15	16.0	2	0					
	13:50:30	16.0	3	0					
	13:50:45	16.0	4	0					

Facility: Site: Source: Reader:	Gateway Services / Forget-Me-Not Northborough, MA EU5 David Caron / Montrose Air Quality Services						
Date:	2/14/23						
Run No.:	2						
Start Time:	13:35						
End Time:	14:55			a a start de la composition de la compo			
	13:51:00	17.0	1	0			
	13:51:15	17.0	2	0			
	13:51:30	17.0	3	0			
	13:51:45	17.0	4	0			
	13:52:00	18.0	1	0			
	13:52:15	18.0	2	0			
	13:52:30	18.0	3	0			
	13:52:45	18.0	4	0	0.0		
	13:53:00	19.0	1	0			
	13:53:15	19.0	2	0			
	13:53:30	19.0	3	0			
	13:53:45	19.0	4	0			
	13:54:00	20.0	1	0			
	13:54:15	20.0	2	0			
	13:54:30	20.0	3	0			
	13:54:45	20.0	4	0			
	13:55:00	21.0	1	0			
	13:55:15	21.0	2	0			
	13:55:30	21.0	3	0			
	13:55:45	21.0	4	0			
	13:56:00	22.0	1	0			
	13:56:15	22.0	2	0			
	13:56:30	22.0	3	0			
	13:56:45	22.0	4	0			
	13:57:00	23.0	1	0			
	13:57:15	23.0	2	0			
	13:57:30	23.0	3	0			
	13:57:45	23.0	4	0			
	13:58:00	24.0	1	0			
	13:58:15	24.0	2	0			
	13:58:30	24.0	3	0			
	13:58:45	24.0	4	0	0.0		
	13:59:00	25.0	1	0			
	13:59:15	25.0	2	0			

Facility:	Gateway Services / Forget-Me-Not								
Site:	Northborough, MA								
Source:	EU5								
Reader:		/ Montrose A	ir Quality Se	ervices					
Date:	David Caron / Montrose Air Quality Services 2/14/23								
Run No.:	2								
Start Time:	13:35								
End Time:	14:55								
				- <u></u>					
	13:59:30	25.0	3	0					
	13:59:45	25.0	4	0					
	14:00:00	26.0	1	0					
	14:00:15	26.0	2	0					
	14:00:30	26.0	3	0					
	14:00:45	26.0	4	0					
	14:01:00	27.0	1	0					
	14:01:15	27.0	2	0					
	14:01:30	27.0	3	0					
	14:01:45	27.0	4	0					
	14:02:00	28.0	1	0					
	14:02:15	28.0	2	0					
	14:02:30	28.0	3	0					
	14:02:45	28.0	4	0					
	14:03:00	29.0	1	0					
	14:03:15	29.0	2	0					
	14:03:30	29.0	3	0					
	14:03:45	29.0	4	0					
	14:04:00	30.0	1	0					
	14:04:15	30.0	2	0					
	14:04:30	30.0	3	0					
	14:04:45	30.0	4	0	0.0				
	Pause for port chan	ige							
	14:25:00	31.0	1	0					
	14:25:15	31.0	2	0					
	14:25:30	31.0	3	0					
	14:25:45	31.0	4	0					
	14:26:00	32.0	1	0					
	14:26:15	32.0	2	0					
	14:26:30	32.0	3	0					
	14:26:45	32.0	4	0					
	14:27:00	33.0	1	0					

Facility:	Gateway Services / Forget-Me-Not							
Site:	Northborough, MA							
Source:	EU5							
Reader:	David Caron	/ Montrose	Air Quality Se	rvices				
Date:	2/14/23							
Run No.:	2							
Start Time:	13:35							
End Time:	14:55							
	14:27:15	33.0	2	0				
	14:27:30	33.0	3	0				
	14:27:45	33.0	4	0				
	14:28:00	34.0	1	0				
	14:28:15	34.0	2	0				
	14:28:30	34.0	3	0				
	14:28:45	34.0	4	0				
	14:29:00	35.0	1	0				
	14:29:15	35.0	2	0				
	14:29:30	35.0	3	0				
	14:29:45	35.0	4	0				
	14:30:00	36.0	1	0				
	14:30:15	36.0	2	0				
	14:30:30	36.0	3	0				
	14:30:45	36.0	4	0	0.0			
	14:31:00	37.0	1	0				
	14:31:15	37.0	2	0				
	14:31:30	37.0	3	0				
	14:31:45	37.0	4	0				
	14:32:00	38.0	1	0				
	14:32:15	38.0	2	0				
	14:32:30	38.0	3	0				
	14:32:45	38.0	4	0				
	14:33:00	39.0	1	0				
	14:33:15	39.0	2	0				
	14:33:30	39.0	3	0				
	14:33:45	39.0	4	0				
	14:34:00	40.0	1	0				
	14:34:15	40.0	2	0				
	14:34:30	40.0	3	0				
	14:34:45	40.0	4	0				
	14:35:00	41.0	1	0				
	14:35:15	41.0	2	0				
	14:35:30	41.0	3	0				

Facility:	Gateway Serv	vices / Forge	et-Me-Not				
Site:	Northborough, MA EU5						
Source:							
Reader:	David Caron	/ Montrose /	Air Quality Se	rvices			
Date:	2/14/23						
Run No.:	2						
Start Time:	13:35						
End Time:	14:55						
			· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		
	14:35:45	41.0	4	0			
	14:36:00	42.0	1	0			
	14:36:15	42.0	2	0			
	14:36:30	42.0	3	0			
	14:36:45	42.0	4	0	0.0		
	14:37:00	43.0	1	0			
	14:37:15	43.0	2	0			
	14:37:30	43.0	3	0			
	14:37:45	43.0	4	0			
	14:38:00	44.0	1	0			
	14:38:15	44.0	2	0			
	14:38:30	44.0	3	0			
	14:38:45	44.0	4	0			
	14:39:00	45.0	1	0			
	14:39:15	45.0	2	0			
	14:39:30	45.0	3	0			
	14:39:45	45.0	4	0			
	14:40:00	46.0	1	0			
	14:40:15	46.0	2	0			
	14:40:30	46.0	3	0			
	14:40:45	46.0	4	0			
	14:41:00	47.0	1	0			
	14:41:15	47.0	2	0			
	14:41:30	47.0	3	0			
	14:41:45	47.0	4	0			
	14:42:00	48.0	1	0			
	14:42:15	48.0	2	0			
	14:42:30	48.0	3	0			
	14:42:45	48.0	4	0	0.0		
	14:43:00	49.0	1	0			
	14:43:15	49.0	2	0			
	14:43:30	49.0	3	0			
	14:43:45	49.0	4	0			
	14:44:00	50.0	1	0			

Facility:	Gateway Services / Forget-Me-Not							
Site:	Northborough, MA EU5							
Source:								
Reader:	David Caron	/ Montrose	Air Quality S	ervices				
Date:	2/14/23							
Run No.:	2							
Start Time:	13:35							
End Time:	14:55							
			i ni na na secondario de com					
	14:44:15	50.0	2	0				
	14:44:30	50.0	3	0				
	14:44:45	50.0	4	0				
	14:45:00	51.0	1	0				
	14:45:15	51.0	2	0				
	14:45:30	51.0	3	0				
	14:45:45	51.0	4	0				
	14:46:00	52.0	1	0				
	14:46:15	52.0	2	0				
	14:46:30	52.0	3	0				
	14:46:45	52.0	4	0				
	14:47:00	53.0	1	0				
	14:47:15	53.0	2	0				
	14:47:30	53.0	3	0				
	14:47:45	53.0	4	0				
	14:48:00	54.0	1	0				
	14:48:15	54.0	2	0				
	14:48:30	54.0	3	0				
	14:48:45	54.0	4	0	0.0			
	14:49:00	55.0	1	0				
	14:49:15	55.0	2	0				
	14:49:30	55.0	3	0				
	14:49:45	55.0	4	0				
	14:50:00	56.0	1	0				
	14:50:15	56.0	2	0				
	14:50:30	56.0	3	0				
	14:50:45	56.0	4	0				
	14:51:00	57.0	1	0				
	14:51:15	57.0	2	0				
	14:51:30	57.0	3	0				
	14:51:45	57.0	4	0				
	14:52:00	58.0	1	0				
	14:52:15	58.0	2	0				
	14:52:30	58.0	3	0				

vices / Forge h, MA / Montrose /							
/ Montrose /							
	Air Quality S	ervices					
2/14/23							
58.0	4	0					
59.0	1	0					
59.0	2	0					
59.0	3	0					
59.0	4	0					
60.0	1	0					
60.0	2	0					
60.0	3	0					
60.0	4	0	0.0				
			0.0				

Facility:	Gateway Services / Forget-Me-Not						
Site:	Northborou	jn, MA					
Source:	EU5						
Reader:	David Caron / Montrose Air Quality Services						
Date:	2/14/23						
Run No.:	3						
Start Time:	15:40						
End Time:	16:50		·				
Operating Description	<u>Time</u>	<u>Minute</u>	<u>Reading</u>	<u>VE (%)</u>	<u>6-min ave. (%)</u>		
	15:40:00	1.0	1	0			
	15:40:15	1.0	2	0			
	15:40:30	1.0	3	0			
	15:40:45	1.0	4	0			
	15:41:00	2.0	1	0			
	15:41:15	2.0	2	0			
	15:41:30	2.0	3	0			
	15:41:45	2.0	4	0			
	15:42:00	3.0	1	0			
	15:42:15	3.0	2	0			
	15:42:30	3.0	3	0			
	15:42:45	3.0	4	0			
	15:43:00	4.0	1	0			
	15:43:15	4.0	2	0			
	15:43:30	4.0	3	0			
	15:43:45	4.0	4	0			
	15:44:00	5.0	1	0			
	15:44:15	5.0	2	0			
	15:44:30	5.0	3	0			
	15:44:45	5.0	4	0			
	15:45:00	6.0	1	0			
	15:45:15	6.0	2	0			
	15:45:30	6.0	3	0			
	15:45:45	6.0	4	0	0.0		
	15:46:00	7.0	1	0			
	15:46:15	7.0	2	0			
	15:46:30	7.0	3	0			
	15:46:45	7.0	4	0			
	15:47:00	8.0	1	0			
	15:47:15	8.0	2	0			
	15:47:30	8.0	3	0			
	15:47:45	8.0	4	0			

Facility:	Gateway Services / Forget-Me-Not								
Site:	Northboroug	h, MA							
Source:	EU5								
Reader:	David Caron / Montrose Air Quality Services								
Date:	2/14/23								
Run No.:	3								
Start Time:	15:40								
End Time:	16:50								
	15:48:00	9.0	1	0					
	15:48:15	9.0	2	0					
	15:48:30	9.0	3	0					
	15:48:45	9.0	4	0					
	15:49:00	10.0	1	0					
	15:49:15	10.0	2	0					
	15:49:30	10.0	3	0					
	15:49:45	10.0	4	0					
	15:50:00	11.0	1	0					
	15:50:15	11.0	2	0					
	15:50:30	11.0	3	0					
	15:50:45	11.0	4	0					
	15:51:00	12.0	1	0					
	15:51:15	12.0	2	0					
	15:51:30	12.0	3	0					
	15:51:45	12.0	4	0	0.0				
	15:52:00	13.0	1	0					
	15:52:15	13.0	2	0					
	15:52:30	13.0	3	0					
	15:52:45	13.0	4	0					
	15:53:00	14.0	1	0					
	15:53:15	14.0	2	0					
	15:53:30	14.0	3	0					
	15:53:45	14.0	4	0					
	15:54:00	15.0	1	0					
	15:54:15	15.0	2	0					
	15:54:30	15.0	3	0					
	15:54:45	15.0	4	0					
	15:55:00	16.0	1	0					
	15:55:15	16.0	2	0					
	15:55:30	16.0	3	0					
	15:55:45	16.0	4	0					

Facility:	Gateway Serv	vices / Forge	t-Me-Not				
Site:	Northboroug						
Source:	EU5						
Reader:	David Caron	Montrose A	ir Quality Serv	vices			
Date:	2/14/23						
Run No.:	3						
Start Time:	15:40						
End Time:	16:50			an a			
	15:56:00	17.0	1	0			
	15:56:15	17.0	2	0			
	15:56:30	17.0	3	0			
	15:56:45	17.0	4	0			
	15:57:00	18.0	1	0			
	15:57:15	18.0	2	0			
	15:57:30	18.0	3	0			
	15:57:45	18.0	4	0	0.0		
	15:58:00	19.0	1	0			
	15:58:15	19.0	2	0			
	15:58:30	19.0	3	0			
	15:58:45	19.0	4	0			
	15:59:00	20.0	1	0			
	15:59:15	20.0	2	0			
	15:59:30	20.0	3	0			
	15:59:45	20.0	4	0			
	16:00:00	21.0	1	0			
	16:00:15	21.0	2	0			
	16:00:30	21.0	3	0			
	16:00:45	21.0	4	0			
	16:01:00	22.0	1	0			
	16:01:15	22.0	2	0			
	16:01:30	22.0	3	0			
	16:01:45	22.0	4	0			
	16:02:00	23.0	1	0			
	16:02:15	23.0	2	0			
	16:02:30	23.0	3	0			
	16:02:45	23.0	4	0			
	16:03:00	24.0	1	0			
	16:03:15	24.0	2	0			
	16:03:30	24.0	3	0			
	16:03:45	24.0	4	0	0.0		
	16:04:00	25.0	1	0			
	16:04:15	25.0	2	0			

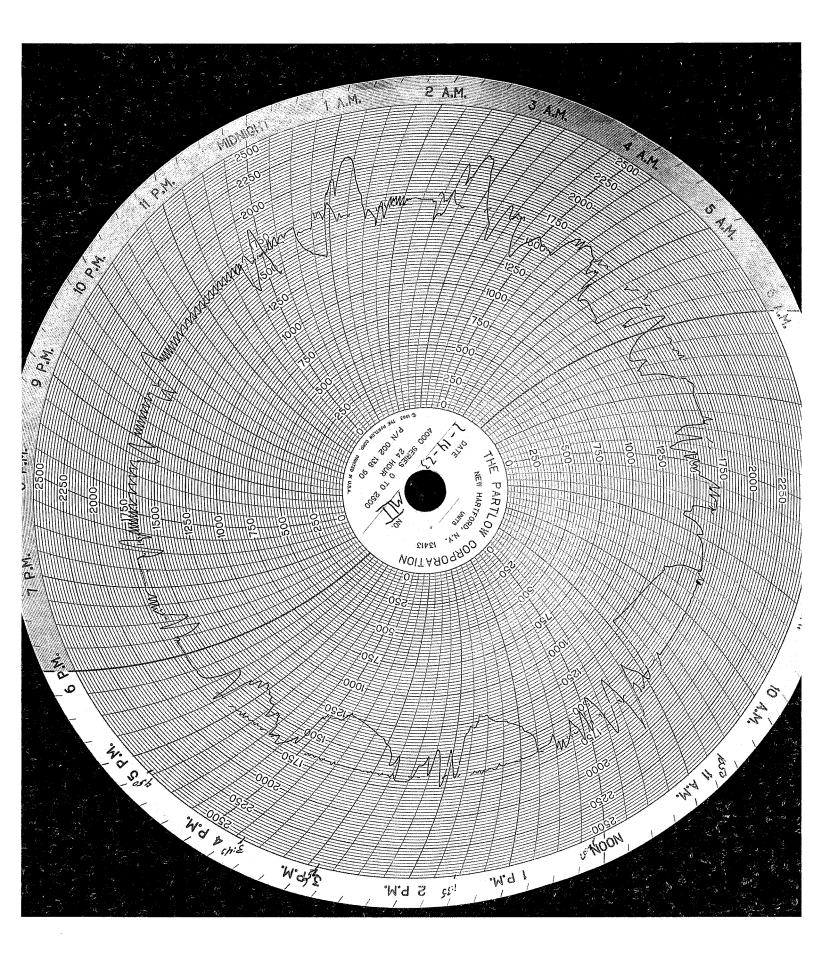
Facility:	Gateway Services / Forget-Me-Not							
Site:	Northboroug	-						
Source:	EU5							
Reader:	David Caron	/ Montrose /	Air Quality S	ervices				
Date:	2/14/23							
Run No.:	3							
Start Time:	15:40							
End Time:	16:50		· · · · ·					
	16:04:30	25.0	3	0				
	16:04:45	25.0	4	0				
	16:05:00	26.0	1	0				
	16:05:15	26.0	2	0				
	16:05:30	26.0	3	0				
	16:05:45	26.0	4	0				
	16:06:00	27.0	1	0				
	16:06:15	27.0	2	0				
	16:06:30	27.0	3	0				
	16:06:45	27.0	4	0				
	16:07:00	28.0	1	0				
	16:07:15	28.0	2	0				
	16:07:30	28.0	3	0				
	16:07:45	28.0	4	0				
	16:08:00	29.0	1	0				
	16:08:15	29.0	2	0				
	16:08:30	29.0	3	0				
	16:08:45	29.0	4	0				
	16:09:00	30.0	1	0				
	16:09:15	30.0	2	0				
	16:09:30	30.0	3	0				
	16:09:45	30.0	4	0	0.0			
	Pause for port chan	ige						
	16:20:00	31.0	1 .	0				
	16:20:15	31.0	2	0				
	16:20:30	31.0	3	0				
	16:20:45	31.0	4	0				
	16:21:00	32.0	1	0				
	16:21:15	32.0	2	0				
	16:21:30	32.0	3	0				
	16:21:45	32.0	4	0				
	16:22:00	33.0	1	0				

Facility:	Gateway Services / Forget-Me-Not							
Site:	Northborough, MA							
Source:	EU5							
Reader:		/ Montrose Ai	r Quality S	ervices				
Date:	2/14/23							
Run No.:	3							
Start Time:	15:40							
End Time:	16:50							
	16:22:15	33.0	2	0				
	16:22:30	33.0	3	0				
	16:22:45	33.0	4	0				
	16:23:00	34.0	1	0				
	16:23:15	34.0	2	0				
	16:23:30	34.0	3	0				
	16:23:45	34.0	4	0				
	16:24:00	35.0	1	0				
	16:24:15	35.0	2	0				
	16:24:30	35.0	3	0				
	16:24:45	35.0	4	0				
	16:25:00	36.0	1	0				
	16:25:15	36.0	2	0				
	16:25:30	36.0	3	0				
	16:25:45	36.0	4	0	0.0			
	16:26:00	37.0	1	0				
	16:26:15	37.0	2	0				
	16:26:30	37.0	3	0				
	16:26:45	37.0	4	0				
	16:27:00	38.0	1	0				
	16:27:15	38.0	2	0				
	16:27:30	38.0	3	0				
	16:27:45	38.0	4	0				
	16:28:00	39.0	1	0				
	16:28:15	39.0	2	0				
	16:28:30	39.0	3	0				
	16:28:45	39.0	4	0				
	16:29:00	40.0	1	0				
	16:29:15	40.0	2	0				
	16:29:30	40.0	3	0				
	16:29:45	40.0	4	0				
	16:30:00	41.0	1	0				
	16:30:15	41.0	2	0				
	16:30:30	41.0	3	0				

Facility:	Gateway Services / Forget-Me-Not							
Site:	Northborough, MA							
Source:	EU5							
Reader:	David Caron	/ Montros	e Air Quality Se	ervices				
Date:	2/14/23							
Run No.:	3							
Start Time:	15:40							
End Time:	16:50							
	16:30:45	41.0	4	0				
	16:31:00	42.0	1	0				
	16:31:15	42.0	2	0				
	16:31:30	42.0	3	0				
	16:31:45	42.0	4	0	0.0			
	16:32:00	43.0	1	0				
	16:32:15	43.0	2	0				
	16:32:30	43.0	3	0				
	16:32:45	43.0	4	0				
	16:33:00	44.0	1	0				
	16:33:15	44.0	2	0				
	16:33:30	44.0	3	0				
	16:33:45	44.0	4	0				
	16:34:00	45.0	1	0				
	16:34:15	45.0	2	0				
	16:34:30	45.0	3	0				
	16:34:45	45.0	4	0				
	16:35:00	46.0	1	0				
	16:35:15	46.0	2	0				
	16:35:30	46.0	3	0				
	16:35:45	46.0	4	0				
	16:36:00	47.0	1	0				
	16:36:15	47.0	2	0				
	16:36:30	47.0	3	0				
	16:36:45	47.0	4	0				
	16:37:00	48.0	1	0				
	16:37:15	48.0	2	0				
	16:37:30	48.0	3	0				
	16:37:45	48.0	4	0	0.0			
	16:38:00	49.0	1	0				
	16:38:15	49.0	2	0				
	16:38:30	49.0	- 3	0				
	16:38:45	49.0	4	0				
	16:39:00	50.0	1	0				

Facility:	Gateway Services / Forget-Me-Not								
Site:	Northborough, MA								
Source:	EU5								
Reader:		David Caron / Montrose Air Quality Services							
Date:	2/14/23								
Run No.:	3								
Start Time:	15:40								
End Time:	16:50								
	<u> </u>								
	16:39:15	50.0	2	0					
	16:39:30	50.0	3	0					
	16:39:45	50.0	4	0					
	16:40:00	51.0	1	0					
	16:40:15	51.0	2	0					
	16:40:30	51.0	3	0					
	16:40:45	51.0	4	0					
	16:41:00	52.0	1	0					
	16:41:15	52.0	2	0					
	16:41:30	52.0	3	0					
	16:41:45	52.0	4	0					
	16:42:00	53.0	1	0					
	16:42:15	53.0	2	0					
	16:42:30	53.0	3	0					
	16:42:45	53.0	4	0					
	16:43:00	54.0	1	0					
	16:43:15	54.0	2	0					
	16:43:30	54.0	3	0					
	16:43:45	54.0	4	0	0.0				
	16:44:00	55.0	1	0					
	16:44:15	55.0	2	0					
	16:44:30	55.0	3	0					
	16:44:45	55.0	4	0					
	16:45:00	56.0	1	0					
	16:45:15	56.0	2	0					
	16:45:30	56.0	3	0					
	16:45:45	56.0	4	0					
	16:46:00	57.0	1	0 0					
	16:46:15	57.0	2	0 0					
	16:46:30	57.0	2	0					
	16:46:45	57.0	4	0					
	16:47:00	58.0	4	0					
	16:47:15	58.0 58.0	2	0					
	16:47:30	58.0 58.0	2 3	0					
	10.47.30	06.U	3	U					

Facility:	Gateway Services / Forget-Me-Not							
Site:	Northborough, MA							
Source:	EU5							
Reader:	David Caron	/ Montrose	Air Quality Serv	ces				
Date:	2/14/23							
Run No.:	3							
Start Time:	15:40							
End Time:	16:50							
	16:47:45	58.0	4	0				
	16:48:00	59.0	1	0				
	16:48:15	59.0	2	0				
	16:48:30	59.0	3	0				
	16:48:45	59.0	4	0				
	16:49:00	60.0	1	0				
	16:49:15	60.0	2	0				
	16:49:30	60.0	3	0				
	16:49:45	60.0	4	0	0.0			
Max. 6-Minute Average:					0.0			


Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

Index A.4 – Facility Data

	CI	hamber Weights (Ib	os)
Chamber	Run 1	Run 2	Run 3
1	92.0	90.0	90.0
2	50.3	71.0	50.0
3	50.0	41.4	33.0
4	21.2	26.0	30.0
5	19.2	15.7	20.0
Total Weight (lbs)	232.7	244.1	223.0

EU5 Process Weights - 02/14/23

Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

APPENDIX B

LABORATORY ANALYSES - PM/CPM

Montrose Air Quality Services, LLC – Newburyport

2 New Pasture Road Unit #5 Newburyport, MA 01950

Forget-Me-Not / EU5

Northborough, MA Client Project # PROJ-022280

> Analytical Report (0223-150)

Particulate Matter

Condensable Particulate Matter

Enthalpy Analytical, LLC

Phone: (919) 850 - 4392 / Fax: (919) 850 - 9012 / www.enthalpy.com 800-1 Capitola Drive Durham, NC 27713-4385 I certify that to the best of my knowledge all analytical data presented in this report:

- Have been checked for completeness
- Are accurate, error-free, and legible
- Have been conducted in accordance with approved protocol, and that all deviations and analytical problems are summarized in the appropriate narrative(s)

This analytical report was prepared in Portable Document Format (.PDF). This report shall not be reproduced except in full without approval of the laboratory. This will provide assurance that parts of a report are not taken out of context.

MCross

Report Issued: 3/7/23

Summary of Results

EA Job# 0223-150 Page 3 of 18 Page 97 of 180

Company: Montrose Air Quality Services, LLC - Newburyport

Job No.: 0223-150 EPA Method 5

Client No.: PROJ-022280 Site: Forget-Me-Not/EU5-Northborough, MA

Summary Report

	M5-R1	M5-R2	M5-R3	M5-Filter- Blank
Net Filter Catch (mg)	30.75	22.16	24.33	0.34
Net Front Rinse (mg)	10.01	0.81	4.72	N/A
Total Particulate (mg)	40.8	23.0	29.1	0.3

0223-150 EPA Method 5

Company: Montrose Air Quality Services, LLC - Newburyport

Job No.: 0223-150 EPA Method 202

Client No.: PROJ-022280 Site: Forget-Me-Not/EU5-Northborough, MA

Summary Report

	M202-R1	M202-R2	M202-R3
Net Organic Catch (mg)	2.63	1.03	1.54
Net Inorganic (mg)	3.11	3.87	5.08
CPM (mg)	5.7	4.9	6.6
TB Corrected CPM (mg)	3.7	2.9	4.6

	FTRB	M202-Proof
Net Organic Catch (mg)	1.40	0.48
Net Inorganic (mg)	1.46	2.29
CPM (mg)	2.9	2.8

0223-150 EPA Method 202

Results

EA Job# 0223-150 Page 6 of 18 Page 100 of 180

Company: Montrose Air Quality Services, LLC - Newburyport Job No.: 0223-150 EPA Method 5 Client No.: PROJ-022280 Site: Forget-Me-Not/EU5-Northborough, MA

Results

	М	5-R1	м	5-R2	M	5-R3	M5-Fi	lter-Blank
Filter ID	027420		027421		027422		027423	
Final Weight 1 (g)	0.43189	3/3/23 07:27	0.42136	3/3/23 07:28	0.42266	3/3/23 07:29	0.39682	3/3/23 07:30
Final Weight 2 (g)	0.43161	3/6/23 08:14	0.42143	3/6/23 08:14	0.42287	3/6/23 08:15	0.39661	3/6/23 08:16
Tare (g)	0.40086	8/22/22 12:50	0.39927	8/22/22 12:51	0.39854	8/22/22 12:51	0.39627	8/22/22 12:52
Net Filter Catch (mg)	30.75		22.16		24.33		0.34	
Beaker No.	39613		39614		39615			
Weight 1 (g)	2.400611	3/3/23 07:30	2.405262	3/3/23 07:31	2.394571	3/3/23 07:31		
Weight 2 (g)	2.400574	3/6/23 08:18	2.405260	3/6/23 08:18	2.394561	3/6/23 08:19		
Tare (g)	2.390485	2/22/23 14:46	2.404424	2/22/23 14:46	2.389764	2/22/23 14:47		
Acetone Volume (mL)	78		27		78			
Acetone Blank (g)	0.00008		0.00003		0.00008			
Net Front Rinse (mg)	10.01		0.81		4.72			
Total Particulate (mg)	40.76		22.97		29.05		0.34	

0223-150 EPA Method 5

Company: Montrose Air Quality Services, LLC - Newburyport Job No.: 0223-150 EPA Method 5

Client No.: PROJ-022280 Site: Forget-Me-Not/EU5-Northborough, MA

	In Ho	use
Beaker	39611	
Weight 1 (g)	2.404669	3/3/23 07:36
Weight 2 (g)	2.404696	3/6/23 08:26
Tare	2.404584	2/22/23 14:45
Residue (g)	0.00011	
Vol. (mL)	200	
Max. Residue	0.00158	
	Clien	it's
Beaker	39616	
Weight 1 (g)	2.346875	3/3/23 07:31
Weight 2 (g)	2.346751	3/6/23 08:20
Tare	2.346640	2/22/23 14:47
Residue (g)	0.00011	
Vol. (mL)	114	
Max. Residue	0.00090	

Reagent Blanks - Acetone

0223-150 EPA Method 5

Company: Montrose Air Quality Services, LLC - Newburyport

Job No.: 0223-150 EPA Method 202

Client No.: PROJ-022280 Site: Forget-Me-Not/EU5-Northborough, MA

Results

	M2	M202-R1	M2	M202-R2	M2	M202-R3	ــــ	FTRB	M20	M202-Proof
Organic Beaker Number	39606		39607		39608		39609		39610	
Initial Solvent Volume (mL)	110		100		74		66		110	
Org. Final Weight 1 (g) 2.376075	2.376075	3/3/23 07:35	2.388560	3/3/23 07:35	2.399538	3/3/23 07:36	2.345809	3/3/23 07:36	2.360915	3/3/23 07:36
Org. Final Weight 2 (g) 2.376051	2.376051	3/6/23 08:25	2.388604	3/6/23 08:25	2.399549	3/6/23 08:25	2.345788	3/6/23 08:26	2.360956	3/6/23 08:26
Tare (g)	2.373419	Tare (g) 2.373419 2/22/23 14:42	2.387575	.387575 2/22/23 14:43	2.398009	2.398009 2/22/23 14:43	2.344389	2.344389 2/22/23 14:44	2.360472	2.360472 2/22/23 14:44
Organic Catch (mg)	2.63		1.03		1.54		1.40		0.48	
Inorganic Beaker Number	39600		39601		39602		39603		39604	
Weight 1 (g)	2.459179	Weight 1 (g) 2.459179 3/3/23 07:32	2.455087	3/3/23 07:33	2.332042	3/3/23 07:33	2.404666	3/3/23 07:34	2.377820	3/3/23 07:34
Weight 2 (g) 2.459098	2.459098	3/6/23 08:22	2.454877	3/6/23 08:23	2.331694	3/6/23 08:24	2.404618	3/6/23 08:24	2.377726	3/6/23 08:24
Tare (g)	2.455990	Tare (g) 2.455990 2/22/23 14:40	2.451009	451009 2/22/23 14:40	2.326614	2/22/23 14:41	2.403156	2.403156 2/22/23 14:41	2.375435	2.375435 2/22/23 14:41
Initial Water Vol. (mL)	279		274		246		214		66	
Water Added by Lab (mL)	75		75		75		75		75	
Net Inorganic Catch (mg)	3.11		3.87		5.08		1.46		2.29	
Condensable Particulate (mg)	5.74		4.90		6.62		2.86		2.78	
TB Corrected CPM (mg)	3.74		2.90		4.62					
								-		

Company: Montrose Air Quality Services, LLC - Newburyport Job No.: 0223-150 EPA Method 202 Client No.: PROJ-022280 Site: Forget-Me-Not/EU5-Northborough, MA

Reagent Blanks

In House

	Ac	etone	N	/ater	He	exane
Beaker	39611		39605		39612	
Weight 1 (g)	2.404669	3/3/23 07:36	2.371686	3/3/23 07:34	2.387180	3/3/23 07:37
Weight 2 (g)	2.404696	3/6/23 08:26	2.371649	3/6/23 08:25	2.387202	3/6/23 08:27
Tare (g)	2.404584	2/22/23 14:45	2.371405	2/22/23 14:42	2.387075	2/22/23 14:45
Residue (g)	0.00011		0.00024		0.00013	
Vol. (mL)	200		250		225	
Max. Residue (g)	0.00016		0.00025		0.00015	

Client's

	Ac	etone
Beaker	39616	
Weight 1 (g)	2.346875	3/3/23 07:31
Weight 2 (g)	2.346751	3/6/23 08:20
Tare (g)	2.346640	2/22/23 14:47
Residue (g)	0.00011	
Vol. (mL)	114	
Max. Residue (g)	0.00009	

0223-150 EPA Method 202

Narrative Summary

NE013AS-022280-RT-1414

EA Job# 0223-150 Page 11 of 18 Page 105 of 180

Enthalpy Analytical Narrative Summary

Company	MAQS – Newburyport	Client #	PROJ-022280
Analyst	ССВ	Job #	0223-150
Parameters	EPA Method 5	# Samples	3 Runs + Blanks

Custody Alyssa Miller received the samples on 2/17/23 and 2/21/23 after being relinquished by Montrose Air Quality Services, LLC – Newburyport. The samples were received at 19.6 and 21.2 °C respectively. The samples were in good condition.

Prior to, during, and after analysis, the samples were kept under lock with access only to authorized personnel by Enthalpy Analytical, LLC.

Analysis The samples were analyzed for Particulate Matter using the analytical procedures in EPA Method 5, Determination of Particulate Matter Emissions from Stationary Sources.

The filter fractions were weighed on Balance 2 (Mettler Toledo, Model AB265-S, Serial# 1125163272) and the rinse fractions were weighed on Balance 8 (Sartorius Model ME5-OCE, Serial # 23104965). Both balances are certified by Mettler Toledo through July 31, 2023.

QC Notes The samples catch weights were adjusted using the corresponding reagent blank correction value. A mathematically determined (theoretical) maximum value was calculated and compared with the actual value measured for the reagent blank. The lower of the two values was used as the blank correction value, which was then factored by the sample volume divided by the reagent blank volume, and subtracted from the sample catch weight. An acetone blank was received and used as described.

The laboratory also analyzed an acetone blank alongside the samples. It is not used to correct any results.

Reporting Notes These gravimetric analyses are considered to be accurate to ± 0.5 mg. Therefore, negative catch weights between 0 and -0.5 mg are set to zero and no investigation is undertaken. Negative catch weights less than -0.5 mg are investigated. There were no fractions with negative catch weights.

These analyses met the requirements of the TNI Standard. Any deviations from the requirements of the reference method or TNI Standard have been stated above.

The results presented in this report are representative of the samples as provided to the laboratory.

EA Job# 0223-150 Page 12 of 18 Page 106 of 180

Enthalpy Analytical Narrative Summary

Company MAQ	S – Newburyport	Client #	PROJ-0022280
Analyst CCB		Job #	0223-150
Parameters EPA	Method 202	# Samples	5 Runs
Custody	relinquished by Montr	rose Air Quality S	a 2/17/23 and 2/21/23 after being Services, LLC – Newburyport. The °C respectively. The samples were
		-	samples were kept under lock with Enthalpy Analytical, LLC.
Analysis	analytical procedures	in EPA Method 2	nsable Particulate Matter using the 202, Determination of Condensable cources (40 CFR Part 51, Appendix
	All samples were weig 23104965), certified by		(Sartorius Model ME 5-F, Serial # through July 31, 2023.
QC Notes	method specifies that	blank correction determined for	analyzed with these samples. The s are accomplished by subtracting the 'Field Train Blank' or 2 mg ght.
	this project. Laborate	ory reagent blan reported for all t	he EPA Method 5 associated with ks were dried down with these hese blanks, but none are used to lts.
	A proof blank was a adjusted or used to adj		m the client. The results are not 1lts.
Reporting Notes	negative catch weight investigation is under	ts between 0 and taken. Negative c ere no fractions w	be accurate to ± 0.5 mg. Therefore, 1 -0.5 mg are set to zero and no atch weights less than -0.5 mg are with negative catch weights for this
			the TNI Standard. Any deviations method or TNI Standard have been
	The results presented provided to the laborat		e representative of the samples as

General Reporting Notes

The following are general reporting notes that are applicable to all Enthalpy Analytical, LLC data reports, unless specifically noted otherwise.

- Any analysis which refers to the method as *"Type"* represents a planned deviation from the reference method. For instance a Hydrogen Sulfide assay from a Tedlar bag would be labeled as *"EPA Method 16-Type"* because Tedlar bags are not mentioned as one of the collection options in EPA Method 16.
- The acronym *MDL* represents the Minimum Detection Limit. Below this value the laboratory cannot determine the presence of the analyte of interest reliably.
- The acronym *LOQ* represents the Limit of Quantification. Below this value the laboratory cannot quantitate the analyte of interest within the criteria of the method.
- The acronym ND following a value indicates a non-detect or analytical result below the MDL.
- The letter **J** in the Qualifier or Flag column in the results indicates that the value is between the MDL and the LOQ. The laboratory can positively identify the analyte of interest as present, but the value should be considered an estimate.
- The letter E in the Qualifier or Flag column indicates an analytical result exceeding 100% of the highest calibration point. The associated value should be considered as an estimate.
- Sample results are presented 'as measured' for single injection methodologies, or an average value if multiple injections are made. If all injections are below the MDL, the sample is considered non-detect and the ND value is presented. If one, but not all, are below the MDL, the MDL value is used for any injections that are below the MDL. For example, if the MDL is 0.500 and LOQ is 1.00, and the instrument measures 0.355, 0.620, and 0.442 the result reported is the average of 0.500, 0.620, and 0.500 - i.e. 0.540 with a J flag.
- When a spike recovery (Bag Spike, Collocated Spike Train, or liquid matrix spike) is being calculated, the native (unspiked) sample result is used in the calculations, as long as the value is above the MDL. If a sample is ND, then 0 is used as the native amount (not the MDL value).
- The acronym **DF** represents Dilution Factor. This number represents dilution of the sample during the preparation and/or analysis process. The analytical result taken from a laboratory instrument is multiplied by the DF to determine the final undiluted sample results.
- The addition of *MS* to the Sample ID represents a Matrix Spike. An aliquot of an actual sample is spiked with a known amount of analyte so that a percent recovery value can be determined. The MS analysis indicates what effect the sample matrix may have on the target analyte, i.e. whether or not anything in the sample matrix interferes with the analysis of the analyte(s).

EA Job# 0223-150 Page 14 of 18 Page 108 of 180

General Reporting Notes (continued)

- The addition of *MSD* to the Sample ID represents a Matrix Spike Duplicate. Prepared in the same manner as a MS, the use of duplicate matrix spikes allows further confirmation of laboratory quality by showing the consistency of results gained by performing the same steps multiple times.
- The addition of *LD* to the Sample ID represents a Laboratory Duplicate. The analyst prepares an additional aliquot of sample for testing and the results of the duplicate analysis are compared to the initial result. The result should have a difference value of within 10% of the initial result (if the results of the original analysis are greater than the LOQ).
- The addition of *AD* to the Sample ID represents an Alternate Dilution. The analyst prepares an additional aliquot at a different dilution factor (usually double the initial factor). This analysis helps confirm that no additional compound is present and coeluting or sharing absorbance with the analyte of interest, as they would have a different response/absorbance than the analyte of interest.
- The Sample ID *LCS* represents a Laboratory Control Sample. Clean matrix, similar to the client sample matrix, prepared and analyzed by the laboratory using the same reagents, spiking standards and procedures used for the client samples. The LCS is used to assess the control of the laboratory's analytical system. Whenever spikes are prepared for our client projects, two spikes are retained as LCSs. The LCSs are labeled with the associated project number and kept in-house at the appropriate temperature conditions. When the project samples are received for analysis, the LCSs are analyzed to confirm that the analyte could be recovered from the media, separate from the samples which were used on the project and which may have been affected by source matrix, sample collection, and/or sample transport.
- Significant Figures: Where the reported value is much greater than unity (1.00) in the units expressed, the number is rounded to a whole number of units, rather than to 3 significant figures. For example, a value of 10,456.45 ug catch is rounded to 10,456 ug. There are five significant digits displayed, but no confidence should be placed on more than two significant digits. In the case of small numbers, generally 3 significant figures are presented, but still only 2 should be used with confidence. Many neat materials are only certified to 3 digits, and as the mathematically correct final result is always 1 digit less than all its pre-cursors 2 significant figures are what are most defensible.
- Manual Integration: The data systems used for processing will flag manually integrated peaks with an "M". There are several reasons a peak may be manually integrated. These reasons will be identified by the following two letter designations on sample chromatograms, if provided in the report. The peak was *not integrated* by the software "NI", the peak was *integrated incorrectly* by the software "II" or the *wrong peak* was integrated by the software "WP". These codes will accompany the analyst's manual integration stamp placed next to the compound name on the chromatogram.

Sample Custody

NE013AS-022280-RT-1414

EA Job# 0223-150 Page 16 of 18 Page 110 of 180

	S	n Aldme	B Chi	ain o	Sample Chain of Custody] ≤ \$			• Office • Stand • Expre • RUSt	- Office Location: - Standard Delivery - 10 - Express Delivery - 3 D. - RUSH Delivery - Next I - Delivery Based on Sa	- Office Location: B. Newburyport, MA - Standard Dalivery - 10 Days - Standard Dalivery - 3 Days - Standard Delivery - 3 Days - RUSH Delivery - Next Day - RUSH Delivery Based on Sample Receipt at Laboratory.	
Client Name:	Gatewar	Gateway Services	Bester Hard						-			
Project Manager:	Davic	David Caron	Site ID:	liver	FR0J-022280 Formet-Me-Not / Et IK	280 1. Et ik	PO No.:		to be provided by Cathy Wray	y Cathy Wray	Samples Collected By: Dave	
Report Results To:	Davic	David Caron	Plant Location:	ion:	Northborough, MA	L MA	Email:		(978) 499-9300 x11	3300 ×11	Caron / Anthony Stra	
Spacial Instructions.										Door Nuclear		peiwo
Matrix Info:	4 - 4					ŝ	Sample Container		Anaiyala	ala 		ycku
	A - Af	1 = H2504	3 = NaOH	u = Filler	4 = Acetone							a tai
	5 - Water	6 - Hexanes	TAX - X	C = Charcoal	- Other							
e	ste Q = Qu	C = Composite Q = Quality Control / Blanks	Blanks									R elq
	Date	Time	Valume	Type	Matrix	Glass	Plastic	Other Met	Method: Method:	od: Method:		msZ
M5-FILIBI-KI	2/14/23	10:50-12:07			filter		×		5			
CUCM	2114123	10:21-00:01	_	υ	acetone	×			ъ.			
	214403	10:21-05:01	measure	0	acetone/hexane	×			202			
M202-CPM filter-R1	214112	10.21-00.01	measure	5	ā		×	2	202			
	C214112	10:20-12:07		0	filter		×	5	202			
	214123	13:35-14:56			fiter		×		cr L			
Man	2114123	13:35-14:56		0	acetone	×			2		1 J. M. J. M.	Renult12
M202-imm/Di cinco D2	21/4/23	13:35-14:56		0	acetone/hexane	×		21	202		GUTSA CENO	- offer
	5714112	10:31-14:00	measure	0	ō		×	202	Я		CI-20 Emmil	5-1-23
M5-Filter-R3	01403	10.41-00.01		ы	filter		×	202	2	_		
	C214112	10:40-18:01			filter		×	5			@ 21.2°C 00	utul 2
M202	C214112	15:40-16:50	measure	0	acetone	×		5			and cende	tes,
M202-imp/Di dose-R3		10:40-10:50	measure	0	aceton/hexane	×		202	2		19mm3 02-21-23	1-23
	T	10:01-05:01	measure	0	ā		×	202	2			
M2U2-U-M INBI-K3	2/14/23	15:40-16:50		U	filter		×	202	2			
	67/61/7	AN	measure		ā		×	202	2			
	575112	AN AN	measure		acetone/hexane	×		202	2			
FTRB-solvent inset	C21412	E S	measure		ō		×	202	8			
	2/14/23	AN AN	a name		acetone/hexane	×		202	2			
J M5-filter-Blank	2/14/23	AN			filer		×	502				
B Acetone-Blank	2/14/23	AN	measure		acetone	×	×					
								<u> </u> 				
Relingujéhad By:	7	Date:	Time `		Recei	Received Bur			10 22			
David Caron / Kul	Ţ	2/16/23			Olucie m muller	1000		01122	20 100		sample Condition Upon Receipt:	eipt: I
~			/Ψ	60	4			EXIMEN	0001 64	Do Iced		9~
Montroae Air Quality Services - 2 New Pasture Road, Unit 6 Newburroort MA 01950 - 377 456 eron - 5 ore ann ann	2 New Pastu	tre Road, Uni	t & Newburn	bort MA 0181	1 - 878 449 8100 - E-	- 076 ADD 05		ALL SUPPORT SUPPORT			a Ambient a.C	

This Is The Last Page Of This Report.

EA Job# 0223-150 Page 18 of 18 Page 112 of 180 Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

APPENDIX C

Quality Assurance

Indices

- 1 Cylinder Gas and Equipment Certification Sheets
- 2 CEMS Stratification, NO_x Converter and Cyclonic Flow Checks
- **3** AETB Documentation

Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

Appendix C.1

Cylinder Gas and Equipment Certification Sheets

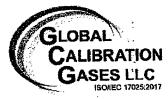
- 1

our First Choice for Gases, Welding & Innovative Solutions Since 1929

PurityPlus

EPA Protocol

Gas Mixture


Method: This standard was analyzed according to EPA Traceability Prelocol for Assay and Certification of Gaseous Calibration Standards, Procedure G1 (May 2012).

Components	Requested Concentration	Certified Concentration	Expanded Uncertainty (rel)	Assay Dates
Carbon Dioxide	9.5%	9.43%	0.7%	06/16/22
Oxygen	11%	11.08%	0.7%	06/16/22
Nitrogen	Balance	Balance	-	-
Reference Standard	Cylinder #	Concentration	Expanded Uncertainty	Expiration Date
Carbon Dioxide/ GMIS	CC105858	11.99%	0.5%	10/20/28
Carbon Dioxide/ SRM	CAL016053	15.63%	0.2%	02/07/25
Oxygen/ GMIS	EB0047724	12.53%	0.5%	11/08/27
Oxygen/ SRM	CAL015787	20.72%	0.2%	08/23/21
Instrument/ Model	Serial Number	Last Date Calibrate	d Analytical M	ductivity
Micro GC/ Agilent	US020002031	6/16/2022	Thermal Con	
Teledyne/ 3000MA	345133	6/16/2022	Paramagnetic	

This mixture was prepared gravimetrically using a high load high sensitivity electronic scale. Prior to filling the scale is verified for accuracy throughout the target mass range against applicable NIST traceable weights, calibrated to ASTM E617-97 Echelon 1 tolerances.

This report states accurately the results of the investigation made upon the material submitted to the analytical laboratory. Every effort has been made to determine objectively the information requested. However, in connection with this report, there shall be to liability in excess of the established charge for this service.

The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology (NIST). The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. These materials comply with the requirements for emission testing per 40CFR1065.750. Do not use this standard when cylinder pressure is below 100 psig.

Produced and assayed by: Global Calibration Gases LLC. 1090 Commerce Blvd N Sarasota, Florida 34243 PGVP Vendor ID.: N22022

Analyst: Signature on file

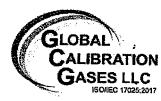
Approved for release: 06/16/2022

PlurityPlus

EPA Protocol

Gas Mixture

Customer: Maine Oxy/ Spec Air Reference#: 060722WZ-6 CGA: 590 Certification Date: 06/16/2022 Customer PO#: 432679 Expiration Date: 06/16/2030 Cylinder #: EB0064990 Pressure, psig: 2000


Method: This standard was analyzed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards, Procedure G1 (May 2012).

Components	Requested Concentration	Certified Concentration	Expanded Uncertainty (rel)	Assay Dates
Carbon Dioxide	19%	18.98%	0.7%	06/16/22
Oxygen	21%	21.00%	0.5%	06/16/22
Nitrogen	Balance	Balance	-	-
Reference Standard	Cylinder #	Concentration	Expanded Uncertainty	Expiration Date
Carbon Dioxide/ GMIS	EB0053919	18.02%	0.4%	02/11/29
Carbon Dioxide/ RGM	GN000008	20.00%	0.2%	03/09/22
Oxygen/ GMIS	GN0006236	20.99%	0.4%	11/26/23
Oxygen/ SRM	CAL015787	20.72%	0.2%	08/23/21
Instrument/ Model	Serial Number	Last Date Calibrate	d Analytical Me	
Micro GC/ Agilent	US020002031	6/16/2022	Thermal Cond	
Teledyne/3000MA	345133	6/16/2022	Paramagnetic	

This mixture was prepared gravimetrically using a high load high sensitivity electronic scale. Prior to filling the scale is verified for accuracy throughout the target mass range against applicable NIST traceable weights, calibrated to ASTM E617-97 Echelon 1 tolerances.

This report states accurately the results of the investigation made upon the material sulmitted to the analytical laboratory. Every effort has been made to determine objectively the information requested. However, in connection with this report, there shell be no fability in excess of the established charge for this service.

The calibration results published in this certificate were obtained using equipment and tandards capable of producing results that are traceable to National Institute of Standards and Technology (NIST). The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. These materials comply with the requirements for emission testing per 40CFR1065.750. Do not use this standard when cylinder pressure is below 100 psig.

Produced and assayed by: Global Calibration Gases LLC. 1090 Commerce Blvd N Sarasota, Florida 34243 PGVP Vendor ID.: N22022

Analyst: Signature on file

Approved for release: 06/16/2022

EPA Protocol

Gas Mixture

Your First Choice for Gases, Welding & Innovative Solutions Since 1929 "Purity**Plus**"

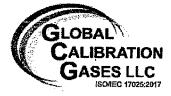
Customer: CGA: 660 Customer PO #: Cylinder #:

Maine Oxy/ Spec Air 425275 EB0089224

Reference #: Certification Date: Expiration Date: Pressure, psig:

033022WZ-7 04/18/2022 04/18/2030 2000

Non-Dispersive Infrared


Method: This standard was analyzed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards, Procedure G1 (May 2012).

Components Nitric Oxide NOx Sulfur Dioxide Carbon Monoxide Nitrogen	Requested Concentration 92.5ppm 92.5ppm 92.5ppm 92.5ppm Balance	Certified Concentration 93.6ppm 93.6ppm 92.5ppm 94.0ppm Balance	Expanded Uncertainty 1.0% 1.0% 1.2% 0.9%	Assay Dates 04/11/22, 04/18/22 04/11/22, 04/18/22 04/11/22, 04/18/22 04/11/22
Reference Standard Nitric Oxide/ GMIS Oxides of Nitrogen/ GMIS Nitric Oxide/ SRM Oxides of Nitrogen/ SRM Sulfur Dioxide/ GMIS Sulfur Dioxide/ SRM Carbon Monoxide/ SRM	Cylinder # GN0005017 GN0005017 CAL017400 CAL017400 EB0096611 FF28126 EB0126847 CAL018039	Concentration 99.4ppm 99.8ppm 244.5ppm 244.7ppm 101.2ppm 490.9ppm 90.2ppm 98.85ppm	Expanded Uncertainty 0.8% 0.8% 0.5% 0.5% 1.0% 0.8% 0.7% 0.4%	Expiration Date 10/30/23 10/30/23 11/02/15 11/02/15 01/10/25 10/05/26 02/11/29 09/25/22
Instrument/ Model CAI/ 600 Horiba/ VIA-510 Rosemount/ NGA 2000	Serial Number Y09003 MAID39C8 3005333138	Last Date Calibra 4/18/2022 4/18/2022 4/11/2022	Chemilun Non-Disp	al Method ninescence ersive Infrared ersive Infrared

This mixture was prepared gravimetrically using a high load high sensitivity electronic scale. Prior to filling the scale is verified for accuracy throughout the target mass range against applicable NIST traceable weights, calibrated to ASTM E617-97 Echelon 1 tolerances.

This report states accurately the results of the investigation made upon the material submitted to the analytical laboratory. Every effort has been made to determine objectively the information requested. However, in connection with this report, there shall be no liability in excess of the established charge for this service.

The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology (NIST). The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. These materials comply with the requirements for emission testing per 40CFR1065.750. Do not use this standard when cylinder pressure is below 100 psig.

Produced and assayed by: Global Calibration Gases LLC. 1090 Commerce Blvd N. Sarasota, Florida 34243 USA PGVP Vendor ID.: N22022

Analyst: Signature on file

Approved for release: 04/19/22

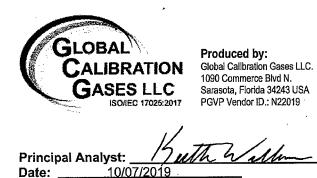
EPA Protocol

Your First Choice for Gases, Welding & Innovative Solutions Since 1929

Customer:	Main
CGA:	660
Customer PO#:	3439
Cylinder #:	EB00

*M*aine Oxy/ Spec Air 660 843975 EB0030050 **Gas Mixture**

Air Reference#: 091319SY-I Certification Date: 10/07/2019 Expiration Date: 10/07/2027 Pressure, psig: 2000


Method: This standard was analyzed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards, Procedure G1 (May 2012).

Components Nitric Oxide Oxides of Nitrogen Sulfur Dioxide Carbon Monoxide Nitrogen	Requested Concentration 190ppm 190ppm 190ppm 190ppm Balance	Certified Concentration 188.6ppm 189.0ppm 193.1ppm 191.4ppm Balance	Expanded Uncertaint 0.9% 0.9% 1.2% 0.9%	y Assay Dates 9/30/19, 10/7/19 9/30/19, 10/7/19 9/30/19, 10/7/19 9/30/19 -
Reference Standard Nitric Oxide/ GMIS Oxides of Nitrogen/ GMIS Nitric Oxide/ SRM Oxides of Nitrogen/ SRM Sulfur Dioxide/ GMIS Sulfur Dioxide/ SRM Carbon Monoxide/ SRM	Cylinder # EB0021614 EB0021614 CAL017400 CAL017400 EB0096615 FF28126 EB0040769 FF30742	Concentration 199.0ppm 200.0ppm 244.5ppm 244.7ppm 202.2ppm 490.9ppm 244.9ppm 247.1ppm	Expanded Uncertaint 0.7% 0.7% 0.5% 0.5% 1.0% 0.8% 0.5% 0.5% 0.2%	y Expiration Date 10/30/23 10/30/23 11/02/15 11/02/15 01/10/25 01/15/17 12/22/25 03/26/18
Instrument/ Model CAI/ 600 Horiba/ VIA-510 Micro GC/ Inficon	Serial Number Y09003 MAID39C8 70082698	Last Date Calibra 10/7/2019 10/7/2019 9/30/2019	Che Non-	ytical Method niluminescence Dispersive Infrared mal Conductivity

These mixtures were prepared gravimetrically using a high load high sensitivity electronic scale. Prior to filling the scale is verified for accuracy throughout the target mass range against applicable NIST traceable weights. We certify that the weights are calibrated to ASTM E617-97 Echelon 1 tolerances.

This report states accurately the results of the investigation made upon the material submitted to the analytical laboratory. Every effort has been made to determine objectively the information requested. However, in connection with this report, Global Calibration Gases LLC shall have no liability in excess of the established charge for this service. Assayed at Global Calibration Gases LLC, Sarasota, Florida.

The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology (NIST) and through NIST to the International System of Units (SI). The expanded uncertainties, if included on this certificate, use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. If uncertainties are not included on this certificate, they are available upon request. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. Calibration certificates without signatures are not valid. This calibration meets the requirements of ISO/IEC 17025:2017. Do not use this standard when cylinder pressure is below 100 psig.

Principal Reviewer: Date: 10/07/2

"PurityPlus"

EPA Protocol

Gas Mixture

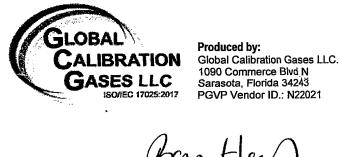
Customer:	Maine Oxy/ Spec-Air	Reference#:	041221TH-11
CGA:	660	Certification Date:	04/23/2021
Customer PO#:	397699	Expiration Date:	04/23/2024
Cylinder #:	EB0056140	Pressure, psig:	2000
3		r ressure, poig.	2000

Method: This standard was analyzed according to EPA Tracezeility Protocol for Assey and Certification of Gaseous Calibration Standards, Procedure G1 (May 2012).

Components Nitrogen Dioxide	Requested Concentration 50ppm	Certified Concentration 49.7ppm	Expanded Uncertain 1.8%	nty Assay Dates 4/16/21, 4/23/21
Air	Balance	Balance	-	· _
Reference Standard Nitrogen Dioxide/ GMIS	Cylinder # EB0097397	Concentration 47.8ppm	Expanded Uncertainty 1.7%	Expiration Date 09/21/21
Nitrogen Dioxide/ PRM	D562925	75.0ppm	1.5%	02/02/19
Instrument/ Model	Serial Number	Last Date Calib	prated	Analytical Method

CAI/ 600

Serial Number Y09003


Last Date Calibrated 4/23/2021

Analytical Method Chemiluminescence

These mixtures were prepared gravimetrically using a high load high sensitivity electronic scale. Prior to filling the scale is verified for accuracy throughout the target mass range against applicable NIST traceable weights. We certify that the weights are calibrated to ASTM E617-97 Echelon 1 tolerances.

This report states accurately the results of the investigation made upon the material submitted to the analytical laboratory. Every effort has been made to determine objectively the information requested. However, in connection with this report, Global Calibration Gases LLC shall have no liability in excess of the established charge for this service. Assayed at Global Calibration Gases LLC, Sarasota, Florida.

The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology (NIST). The expanded uncertainties, if included on this certificate, use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. These materials comply with the requirements for emission testing per 40CFR1065.750. Do not use this standard when cylinder pressure is below 100 psig.

Principal Analyst: Date: 04/23/2

Principal Reviewer: Date: 04/23/202

Method 5 Module Calibration Using Critical Orifices

Module: EE-2					
Cal. Date: 12/20/2022	Cal. Date: 12/20/2022 Exp. Date: 6/20/2023		Technician: Hunter Stetz		
			•	(signature	e on file)
Orifice Number	UJ-40	UJ-48	UJ-55	UJ-63	UJ-73
Orifice Coefficient, K'	0.2321	0.3428	0.4401	0.5936	0.8109
Meter Volume (cf)		······································			
Initial	195.639	198.563	202.914	227.254	216.090
Final	198.563	202.914	208.513	234.986	226.469
Total Volume, V_m (cf)	2.924	4.351	5.599	7.732	10.379
DGM Inlet Temp. (°F)					
Initial	50	55	59	71	68
Final	53	57	61	72	72
DGM Outlet Temp. (°F)					
Initial	49	53	56	69	63
Final	51	55	58	70	65
•					
Avg. DGM Temp., T _m (°F)	50.6	54.8	58.1	70.4	66.5
-	**				
Ambient Temp., <i>T_{amb}</i> (°F)	66	64	69	69	68
Bar. Pressure, <i>P _{bar}</i> (in. Hg)	30.29	30.29	30.29	30.29	30.29
ΔН	0.31	0.66	1.10	2.00	3.60
Vacuum (in. Hg)	24	23	21	19	15
Time, θ (min.)	10.0	10.0	10.0	10.0	10.0
•		•			
Std. Meter Vol., V _{m(std)} (dscf)	3.063	4.525	5.792	7.830	10.629
Std. Or. Vol., V _{cr(std)} (dscf)	3.065	4.536	5.796	7.817	10.689
Y	1.0007	1.0023	1.0007	0.9983	1.0056
∆Н@	1.95	1.88	1.91	1.87	1.83
Y Error (+/02)	0.001	-0.001	0.001	0.003	-0.004
ΔH@ Error (+/20)	-0.058	0.008	-0.022	0.015	0.057
•					
Average Y	1.0016			Y Pass/Fail	PASS
Average ΔH@	1.889]	Δ.	H@ Pass/Fail	PASS
		-			

 $V_{cr(std)} = K' \cdot P_{bar} \cdot \theta / \sqrt{(T_{amb} + 460)}$ Y = V_{cr(std)} / V_{m(std)}

 $V_{m(std)} = 17.64 \cdot V_m \cdot (P_{bar} + \Delta H / 13.6) / (T_m + 460)$ $\Delta H@=0.0319 \cdot \Delta H \cdot (T_m + 460) \cdot \theta^2 / (P_{bar} Y^2 V_m^2)$

Montrose Air Quality Services, LLC

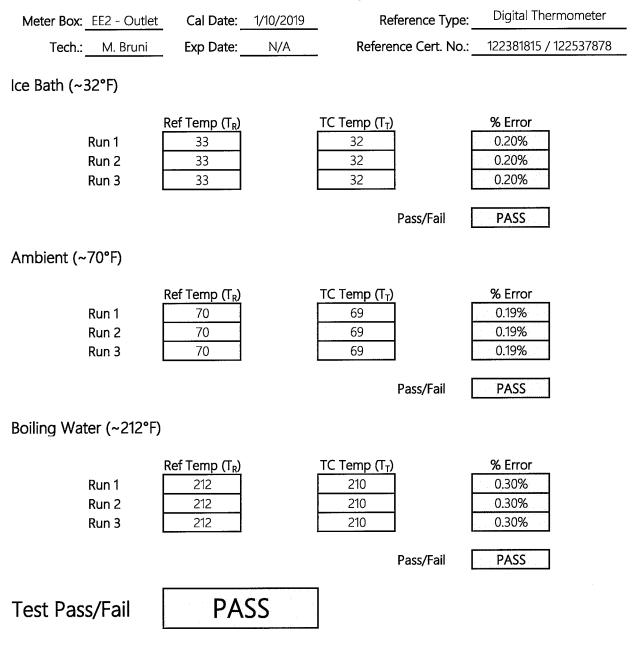
2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303

Method 5 Module Post-Calibration Using Critical Orifices

Module ID:	EE-2	Date:	3/22/2023	Technician:	H. Stetz	
Project ID:	22280	Source ID:	EU-5	Signature:	on file	
Orifice Cal Date:	2/1/23	-				
		_	Run 1	Run 2	Run 3	
Orifice Number			UJ-55	UJ-55	UJ-55	
Orifice Coefficient, K'			0.4387	0.4387	0.4387	
Meter Volume (cf)						
Initial			238.643	244.113	249.630	
Final			244.113	249.630	255.745	
Total Volume, V _m (cf)			5.470	5.517	6.115	
DGM Inlet Temp. (°F)		_				
Initial			53	56	60	
Final			55	58	62	
DGM Outlet Temp. (°F)		_				
Initial			50	53	56	
Final			52	55	58	
Avg. DGM Temp., T _m (°F)			52.3	55.3	58.6	
		_				
Ambient Temp., T _{amb} (°F)		Ē	68	68	68	
Bar. Pressure, P _{bar} (in. Hg)			30.43	30.43	30.43	
ΔH			1.10	1.10	1.10	
Vacuum (in. Hg)			21.0	21.0	21.0	
Time, θ (min.)			10.00	10.00	11.00	
		_				
Std. Meter Vol., V _{m(std)} (dscf))		5.750	5.765	6.348	
Std. Or. Vol., V _{cr(std)} (dscf)			5.810	5.810	6.391	
Y			1.0105	1.0077	1.0066	
∆H@			1.934	1.922	1.910	
Y Error (+/02)			0.002	0.001	0.002	
ΔH@ Error (+/05)			0.006	0.000	-0.006	
Avg. Y: 1.0083	Pre-Cal Y:	1.0016	Post Y Diff.:	0.67%	Y Pass/Fail:	PASS
	Pre-Cal <i>AH@:</i>	1.8890	Post ∆H@ Diff.:	1.74%	L	
V _{cr(std)} = K' • P _{bar} • θ I √	(T+ 460)		V = 17 64 • 1	/ _m • (P _{bar} + ΔΗ / 13.6) /	/ (T _ + 460)	
$\mathbf{Y} = \mathbf{V}_{cr(std)} / \mathbf{V}_{m(std)}$	(amb · 400)			$H \cdot (T_m + 460) \cdot \theta^2 / (P_1)$		
I ─ V cr(std) I V m(std)			ചന്ത്ര – 0.039 • മി	······································	bar IV m)	

Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303 www.montrose_env.com

Meter Box Thermocouple Calibration					
Meter Box: EE2 - Inl	et Cal Date:/	Reference Type:	Digital Thermometer		
		N/A Reference Cert. No.:			
lce Bath (~32°F)					
Run 1 Run 2 Run 3	Ref Temp (T _R) 33 33 33 33	TC Temp (T _T) 34 34 34	% Error -0.20% -0.20% -0.20%		
		Pass/Fail	PASS		
Ambient (~70°F)					
Run 1 Run 2 Run 3	Ref Temp (T _R) 70 70 70 70	TC Temp (T _T) 68 68 68	% Error 0.38% 0.38% 0.38%		
		Pass/Fail	PASS		
Boiling Water (~212	°F)				
Run 1 Run 2 Run 3	Z12 212 212 212 212	TC Temp (T ₁) 210 210 210	% Error 0.30% 0.30% 0.30%		
		Pass/Fail	PASS		
Test Pass/Fail	PASS	S			

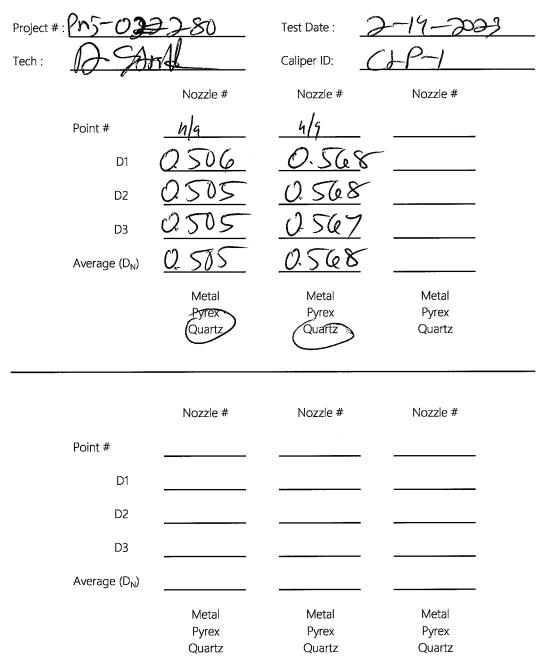

Calibration tolerance for each run is 1.5%.

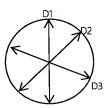
% Error = (((T_R + 460) - (T_T + 460)) / (T_R + 460)) • 100 Calibration conducted in accordance with EPA Method 2, Section 10.3.

> Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303

AIR QUALITY SERVICES

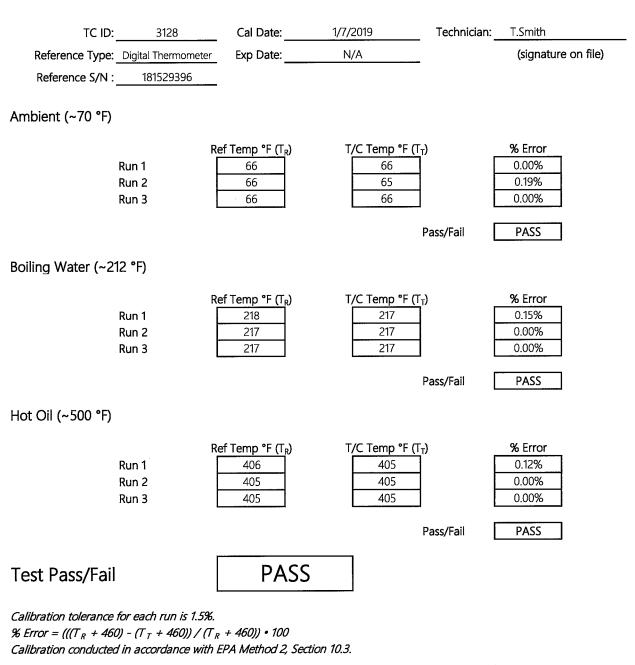
Meter Box Thermocouple Calibration


Calibration tolerance for each run is 1.5%. % Error = (((T_R + 460) - (T_T + 460)) / (T_R + 460)) • 100 Calibration conducted in accordance with EPA Method 2, Section 10.3.


Montrose Air Quality Services

2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303

NOZZLE CALIBRATION SHEET


 $Dn = \underline{D_1 + D_2 + D_3}{3}$

The difference between the highest and lowest numbers shall not exceed 0.004 in.

Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303

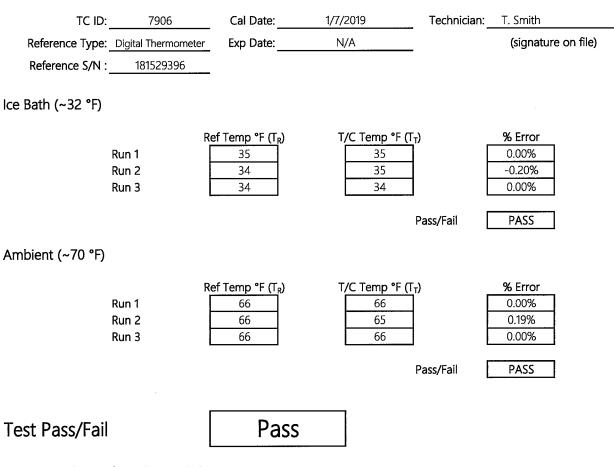
Back Half Thermocouple Calibration

Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303 www.montrose-env.com

TC ID:	3131	Cal Date:	1/7/2019	Technician:	T.Smith
Reference Type:	Digital Thermomete	rExp Date:	N/A		(signature on file)
Reference S/N :	181529396	_			
Ambient (~70 °F)					
	Run 1 Run 2 Run 3	Ref Temp °F (T _R) 66 65 66	T/C Temp °F (T _T 65 65 65		% Error 0.19% 0.00% 0.19%
Boiling Water (~2	12 °F)			Pass/Fail	PASS
	Run 1 Run 2 Run 3	Ref Temp °F (T _R) 218 218 217	T/C Temp °F (T 218 217 217) Pass/Fail	% Error 0.00% 0.15% 0.00% PASS
Hot Oil (~500 °F)					
	Run 1 Run 2 Run 3	Ref Temp °F (T _R) 409 408 407	T/C Temp °F (T _T 408 407 407) Pass/Fail	% Error 0.12% 0.12% 0.00%
Test Pass/Fail		PASS		L	
Calibration tolerance for each run is 1.5%. % Error = (((T _R + 460) - (T _T + 460)) / (T _R + 460)) • 100					

% Error = (((T_R + 460) - (T_T + 460)) / (T_R + 460)) • 100 Calibration conducted in accordance with EPA Method 2, Section 10.3.

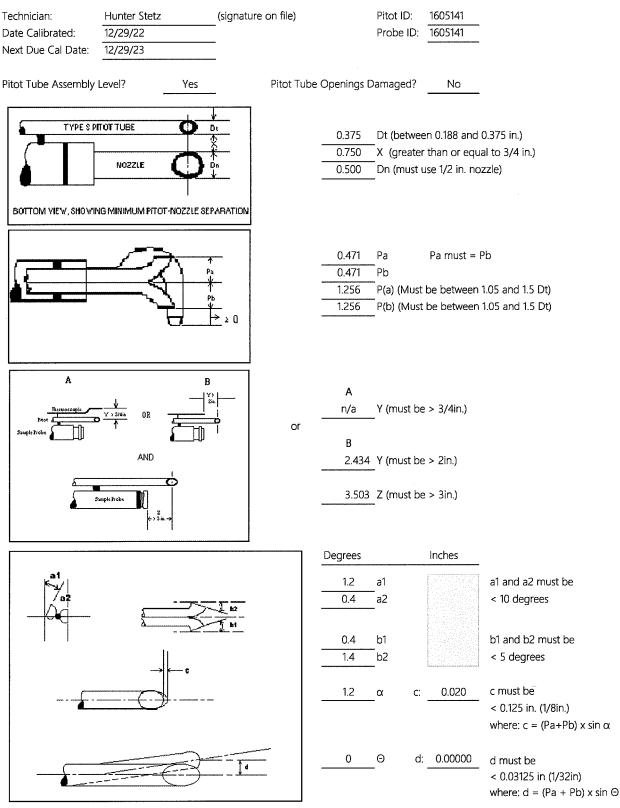
> Montrose Air Quality Servies, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303 www.montrose-env.com


TC ID:	3132	Cal Date:	1/7/2019	Technician:	T.Smith
Reference Type:	Digital Thermometer	er Exp Date:	N/A		(signature on file)
Reference S/N :	181529396				
Ambient (~70 °F)					
	Run 1 Run 2 Run 3	Ref Temp °F (T _R) 66 66 66	T/C Temp °F (T 65 65 65	т) -	% Error 0.19% 0.19% 0.19%
				Pass/Fail	PASS
Boiling Water (~2	12 °F)				
	Run 1 Run 2 Run 3	Ref Temp °F (T _R) 214 214 214 214	T/C Temp °F (T 213 213 213	τ) Pass/Fail	% Error 0.15% 0.15% 0.15% PASS
Hot Oil (~500 °F)					
	Run 1 Run 2 Run 3	Ref Temp °F (T _R) 405 405 406	T/C Temp °F (T 405 405 405		% Error 0.00% 0.00% 0.12%
				Pass/Fail	PASS
Test Pass/Fail		PASS			
Calibration tolerance for each run is 1.5%. % Error = (((T _R + 460) - (T _T + 460)) / (T _R + 460)) • 100					

% Error = (((T_R + 460) - (T_T + 460)) / (T_R + 460)) • 100 Calibration conducted in accordance with EPA Method 2, Section 10.3.

> Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303 www.montrose-env.com

4th Impinger Adapter Thermocouple Calibration


Calibration tolerance for each run is 1.5%. % Error = (((T_R + 460) - (T_T + 460)) / (T_R + 460)) • 100 Calibration conducted in accordance with EPA Method 2, Section 10.3.

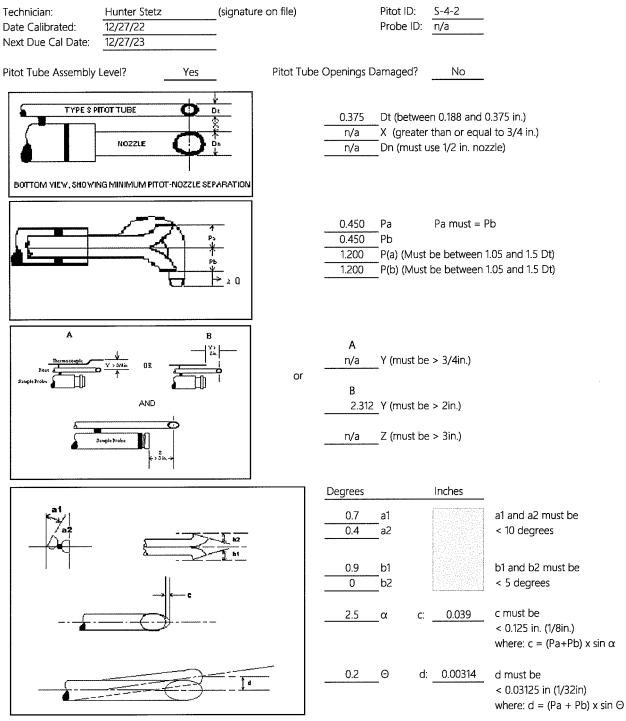
Montrose Air Quality Services, LLC

2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303 www.montrose-env.com

Method 5 Probe Type S Pitot Calibration

* All calibrations are in accordance with CFR Pt.60, App.A, Meth.2, sect4.1.2 (Type S Pitot Calibration)

TC ID:	1605141	Cal Date:	6/7/2019	Technician:	T.Smith
Reference Type:	Lollipop	Exp Date:	N/A		(signature on file)
Reference S/N :	160214423				
Ambient (~70 °F)					
	Run 1 Run 2 Run 3	Ref Temp °F (T _R) 74 74 74 74	T/C Temp °F (T _T) 74 74 74 74		% Error 0.00% 0.00% 0.00%
			F	Pass/Fail	PASS
Boiling Water (~21	2 °F)				
	Run 1 Run 2 Run 3	Ref Temp °F (T _R) 213 213 212	T/C Temp °F (T _T) 213 213 213 213		% Error 0.00% 0.00% -0.15%
			F	Pass/Fail	PASS
Hot Oil (~300-500	°F)				
	Run 1 Run 2 Run 3	Ref Temp °F (T _R) 320 320 319	T/C Temp °F (T _T) 320 320 320		% Error 0.00% 0.00% -0.13%
			F	Pass/Fail	PASS
Test Pass/Fail		PASS			
Calibration tolerance for each run is 1 5%					


Calibration tolerance for each run is 1.5%. % Error = (((T_R + 460) - (T_T + 460)) / (T_R + 460)) • 100

Calibration conducted in accordance with EPA Method 2, Section 10.3.

MAQS Newburyport 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303 www.montrose-env.com

Type S Pitot Calibration

* All calibrations are in accordance with CFR Pt.60, App.A, Meth.2, sect4.1.2 (Type S Pitot Calibration)

Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303 www.montrose-env.com

	CALIBRATED DEVICE
	CALIBRATED DEVICE SERIAL NUMBER
	MODEL
	TECHNICIAN
	CALIBRATION DATE
02/14/23	CALIBRATION DUE DATE
	LABORATORY BAROMETRIC PRESSURE (IN HG)
	LABORATORY TEMPERATURE (DEG F)
RF-DPR-001	PRIMARY STANDARD ID
04/14/21	PRIMARY STANDARD CALIBRATION DATE
04/14/22	PRIMARY STANDARD NEXT CALIBRATION DUE DATE
CALIBRATION S	STANDARD: RF-DPR-001, SN 12111032

AS FOUND

		% ERROR (IF >1
		DEG,
		REPROGRAM
Reference	CP215228	DEVICE
Angle	Angle Read	SETPOINTS)
0.0	0.0	0.0
10.0	10.1	0.1
20.0	20.1	0.1
30.0	30.1	0.1
40.0	40.0	0.0
50.0	50.1	0.1
60.0	60.1	0.1
70.0	70.0	0.0
80.0	80.0	0.0
90.0	90.0	0.0

		% ERROR (IF
		>1 DEG,
		REPROGRAM
		DEVICE
Reference Angle	Angle Read	SETPOINTS)
100.0	100.1	0.1
110.0	110.2	0.2
120.0	120.1	-0,1
130.0	130.1	0.1
140.0	140.0	0.0
150.0	150.2	0.2
160.0	160.1	0.1
170.0	170.2	0.2
180.0	180.2	0.2

Does the instrument require adjustment?

🗌 YES 🗹 NO

If YES then make adjustments and complete the AS LEFT section.

If NO then the AS LEFT values are the same as AS FOUND and no further calibration is necessary.

als the loop

AS LEFT		
		% ERROR (IF >1
		DEG,
		REPROGRAM
Reference	CP215228	DEVICE
Angle	Angle Read	SETPOINTS)
0.0	0.0	0.0
10.0	10.1	0.1
20.0	20.1	0.1
30.0	30.1	0.1
40.0	40.0	0.0
50.0	50.1	0.1
60.0	60.1	0.1
70.0	70.0	0.0
80.0	80.0	0.0
90.0	90.0	0.0

		% ERROR (IF >1 DEG, REPROGRAM DEVICE
Reference Angle	Angle Read	SETPOINTS)
100.0	100.1	0.1
110.0	110.2	0.2
120.0	120.1	0.1
130.0	130.1	0.1
140.0	140.0	0.0
150.0	150.2	0.2
160.0	160.1	0.1
170.0	170.2	0.2
180.0	180.2	0.2

Approved By:

MONTROSE AIR QUALITY SERVICES

TEMPERATUE	
	CALIBRATED DEVICE
181529396	CALIBRATED DEVICE SERIAL NUMBER
TRACEABLE	MAKE
S04823	MODEL
	TECHNICIAN
	CALIBRATION DATE
	CALIBRATION DUE DATE
	LABORATORY BAROMETRIC PRESSURE (IN HG)
	LABORATORY TEMPERATURE (DEG F)
	THERMOCOUPLE TYPE
	LOWER RANGE LIMIT (Deg. F)
	UPPER RANGE LIMIT (Deg. F)
	STANDARD ID
	STANDARD CALIBRATION DATE
	STANDARD NEXT CALIBRATION DUE DATE
	ANDARD: OMEGA CL3512A CALIBRATOR
CALIBRATION ST.	ANDARD S/N: T-11000062

OUTPUT AS FOUND

Actual			
Temperature	Temperature Read	ERROR (IF >1%	
Read on Device	on Standard (Deg.	(ABSOLUTE),	
(Deg. F)	F)	ADJUST DEVICE)	
11.4	11.2	-0.04	
68.0	68.1	0.02	
107.4	107.6	0.04	
174.5	173.5	-0.16	
308.1	308.0	-0.01	
377.2	377.0	-0.02	

OUTPUT AS LEF	Г	
Actual		
Temperature	Temperature	ERROR (IF >1%
Read on Device	Read on Standard	(ABSOLUTE),
(Deg. F)	(Deg. F)	ADJUST DEVICE)
11.4	11.2	-0.04
68.0	68.1	0.02
107.4	107.6	0.04
174.5	173.5	-0.16
308,1	308.0	-0.01
377.2	377.0	-0.02

Does the instrument require adjustment? I YES INO If YES then make adjustments and complete the AS LEFT section. If NO then the AS LEFT values are the same as AS FOUND and no further calibration is

ask Land Approved By:

201 Wolf Drive • P.O. Box 87 • Thorofare, NJ 08086-0087 • Phone: 856-686-1600 • Fax: 856-686-1601 • www.troemner.com • e-mail: troemner@troemner.com

Page 1 of 7 Pages Weight

Robotic Calibration

Certificate Number Date of Calibration

SECTION 3: PERSON PERFORMING WORK

220569385B-2 11-Apr-2022

SECTION 1: NAME AND ADDRESS OF CUSTOMER

Montrose Air Quality Services 2 New Pasture Rd Unit 5 Newburyport MA 01950

SECTION 2: APPROVED SIGNATORY

Lynn Dickerson, Metrologist

SECTION 4: CERTIFICATE INFORMATION

Description of Masses: ASTM Weight

Accuracy Class	: ASTM E617-18 Class 3	Date Received	: 18-Mar-2022
Order Number	: PO-025749	Date of Calibration	: 11-Apr-2022
Construction	: Two Piece	Date of Issue	: 18-Apr-2022
Material	: Stainless Steel	Weight Range	: 1kg -

SECTION 5: ENVIRONMENTAL CONDITIONS DURING TEST

Temperature: 21.68 °C

Pressure: 764.84 mm Hg

Relative Humidity: 44%

SECTION 6: PERTINENT INFORMATION

The Weights listed on this calibration report have been compared to reference mass standards that are traceable to the SI through the National Institute of Standards and Technology under Test No. 684/289871-17.

Reference standards and balances used to perform the calibration are listed in Section 10.

The weights calibrated for this report have been calibrated in accordance with Troemner's calibration process. The calibration performed meets the criteria as described in the current revisions of ASTM Ê617 and OIML R111.

This calibration also meets specifications as outlined in ISO/IEC 17025, ANSI/NCSL Z540-1-1994, and applicable documents.

This certificate of calibration shall not be reproduced except in full, without the written approval of Troemner, LLC. This certificate of calibration must not be used by the customer to claim product endorsement by NIST, NVLAP or any agency of the U.S. government.

CALIBRATION NVLAP LAB CODE (USO130)

201 Wolf Drive • P.O. Box 87 • Thorofare, NJ 08086-0087 • Phone: 856-686-1600 • Fax: 856-686-1601 • www.troemner.com • e-mail: troemner@troemner.com

Page 2 of 7 Pages Weight

Certificate Number 2 Date of Calibration 1

220569385B-2 11-Apr-2022

NAME AND ADDRESS OF CUSTOMER

Montrose Air Quality Services 2 New Pasture Rd Unit 5 Newburyport MA 01950

SECTION 7: TRUE MASS (MASS IN VACUUM) CALIBRATION DATA

Nominal	Serial	True Mass	As Left	Density ¹	Uncertainty
Mass Value	Notes Number	As Found		of Weight	(+ or -)
1 kg	1000119206	999.99970 g	999.99970 g	8.0300 g/cm ³	0.50 mg

201 Wolf Drive • P.O. Box 87 • Thorofare, NJ 08086-0087 • Phone: 856-686-1600 • Fax: 856-686-1601 • www.troemner.com • e-mail: troemner@troemner.com

Page 3 of 7 Pages Weight

Certificate Number 22056 Date of Calibration 11-Ap

220569385B-2 11-Apr-2022

NAME AND ADDRESS OF CUSTOMER

Montrose Air Quality Services 2 New Pasture Rd Unit 5 Newburyport MA 01950

SECTION 8: CONVENTIONAL MASS CALIBRATION VALUE VS. REFERENCE DENSITY 8000 kg/m³

Nominal	Serial	Conventional		Uncertainty	Tolerance
Mass Value No	otes Number	As Found	As Left	(+ or -)	(+ or -)
1 kg	1000119206	1000.00026 g	1000.00026 g	0.50 mg	10.0000 mg

NVLA DE CODE 1950130

201 Wolf Drive • P.O. Box 87 • Thorofare, NJ 08086-0087 • Phone: 856-686-1600 • Fax: 856-686-1601 • www.troemner.com • e-mail: troemner@troemner.com

Page 4 of 7 Pages Weight

Certificate Number 220569 Date of Calibration 11-Apr

220569385B-2 11-Apr-2022

NAME AND ADDRESS OF CUSTOMER

Montrose Air Quality Services 2 New Pasture Rd Unit 5 Newburyport MA 01950

SECTION 9: CONVENTIONAL MASS CALIBRATION DATA VS. REFERENCE DENSITY 8000 kg/m³

Nominal	Serial	Conventional Mas	ss Correction	Uncertainty	Tolerance
Mass Value N	lotes Number	As Found	As Left	(+ or -)	(+ or -)
1 kg	1000119206	0.26 mg	0.26 mg	0.50 mg	10.0000 mg

201 Wolf Drive • P.O. Box 87 • Thorofare, NJ 08086-0087 • Phone: 856-686-1600 • Fax: 856-686-1601 • www.troemner.com • e-mail: troemner@troemner.com

Page 5 of 7 Pages Weight

Certificate Number 220569385B-2 Date of Calibration 11-Apr-2022

NAME AND ADDRESS OF CUSTOMER

Montrose Air Quality Services 2 New Pasture Rd Unit 5 Newburyport MA 01950

SECTION 10: CALIBRATION PROCEDURE DATA

Nominal	Serial	Standard	Cal	Balance	Cal	Procedure
Mass Value	Number	Set No.	Due	Used	Due	Used
1 kg	1000119206	S124	01-Jul-2022	A1000XXL-135	01-Jan-2023	Multi A-B

201 Wolf Drive • P.O. Box 87 • Thorofare, NJ 08086-0087 • Phone: 856-686-1600 • Fax: 856-686-1601 • www.troemner.com • e-mail: troemner@troemner.com

Page 6 of 7 Pages Weight

Certificate Number Date of Calibration 220569385B-2 11-Apr-2022

NAME AND ADDRESS OF CUSTOMER

Montrose Air Quality Services 2 New Pasture Rd Unit 5 Newburyport MA 01950

SECTION 11: GENERAL INFORMATION

This calibration was performed in Troemner's High Precision Level I Mass Metrology Laboratory at 201 Wolf Drive, Thorofare, New Jersey 08086 unless otherwise noted on the Addendum. The internal procedures used are CAL-CLASSI and METR-MAP.

SECTION 12: DEFINITIONS AND TERMS

TRUE MASS - The mass of a weight as if it were measured in a vacuum. Also known as Mass in a Vacuum.

CONVENTIONAL MASS - The conventional value of the result of weighing in air in accordance to International Recommendation OIML D 28. For a weight taken at 20 °C, the conventional mass is the mass of a reference weight of a density of 8000 kg/m³ which it balances in air of a density of 1.2 kg/m³.

AS FOUND TRUE MASS - The measured value of the mass(es) as they were received by Troemner.

AS LEFT TRUE MASS - The measured value of the mass(es) after adjustment, repair, or replacement when necessary. The As Found True Mass will equal the As Left True Mass if the mass(es) did not require adjustment, repair or replacement.

NOMINAL MASS - The mass value as marked on the weight.

CORRECTION - The difference between the conventional mass value of a weight and its nominal value. A positive correction indicates that the conventional mass value is greater than the nominal value by the amount of the correction.

AS FOUND CONVENTIONAL MASS CORRECTION - The conventional correction of the result, as it was received by Troemner, of weighing in air in accordance to International Recommendation D 28. For a weight taken at 20 °C, the conventional mass is the mass of a reference weight of density 8000 kg/m³. which it balances in air density of 1.2 kg/m³. If the customer requires cleaning prior to calibration, the after cleaning correction would be reported.

AS LEFT CONVENTIONAL MASS CORRECTION - The conventional correction of the result, after adjust-, ment repair, or replacement of weighing in air in accordance to International Recommendation D 28. For a weight taken at 20 °C, the conventional mass is the mass of a reference weight of density 8000 kg/m³ which it balances in air density of 1.2 kg/m³. The As Found will equal the As Left Conventional Mass Correction if the mass(es) did not require adjustment, repair or replacement.

(continued on next page)

CALIBRATION NVLAP LAB CODE 1050130

201 Wolf Drive • P.O. Box 87 • Thorofare, NJ 08086-0087 • Phone: 856-686-1600 • Fax: 856-686-1601 • www.troemner.com • e-mail: troemner@troemner.com

Page 7 of 7 Pages Weight

Certificate Number Date of Calibration 220569385B-2 11-Apr-2022

NAME AND ADDRESS OF CUSTOMER

Montrose Air Quality Services 2 New Pasture Rd Unit 5 Newburyport MA 01950

SECTION 12: DEFINITIONS AND TERMS (continued)

UNCERTAINTY - Non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used. The uncertainty is calculated in accordance with NIST TechNote 1297 using a coverage factor of k = 2 (k = 2 defines an interval having a level of confidence of approximately 95 percent). The uncertainty does not include possible effects of magnetism.

TOLERANCE - Defines the limits in which the correction value and the uncertainty must fall to meet the tolerance specification for the given Class.

AS FOUND CONVENTIONAL MASS VALUE - The measured value of the mass(es) as they were received by Troemner, of weighing in air in accordance to International Recommendation OIML D 28. For a weight taken at 20 °C, the conventional mass is the mass of a reference weight of density 8000 kg/m³ which it balances in air density of 1.2 kg/m³. If the customer requires cleaning prior to calibration, the after cleaning value would be reported.

AS LEFT CONVENTIONAL MASS VALUE - The measured value of the mass(es) after they were adjusted, repaired or replaced when necessary, of weighing in air in accordance to International Recommendation OIML D 28. For a weight taken at 20 °C, the Conventional Mass is the mass of a reference weight of density 8000 kg/m³ which it balances in air density of 1.2 kg/m³. The As Found will equal the As Left Conventional Mass Value if the mass(es) did not require adjustment, repair or replacement.

ASTM E617 - Weights meet the tolerance specification for ASTM E617. Weights 2kg - 1g screened for magnetism using a Gaussmeter.

SECTION 13: ADDENDUM

As Found data taken after cleaning with alcohol. Supplementary to certificate # 220569385B-1 s/n amended Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

Appendix C.2

CEMS Stratification, NO_x Converter and Cyclonic Flow Checks

Source: EU5 Start Time: 9:00 Run No.: Stratification Check Stop Time: 9:15 Date/time (%wd) 13:39 2/14/2023 9:00:29 AM 13:39 2/14/2023 9:00:29 AM 13:39 2/14/2023 9:01:29 AM 13:23 2/14/2023 9:01:29 AM 13:41 2/14/2023 9:03:29 AM 13:41 2/14/2023 9:03:29 AM 13:47 2/14/2023 9:05:29 AM 13:49 3-min.avg 13:46 13:48 2/14/2023 9:06:29 AM 13:38 2/14/2023 9:07:29 AM 13:34 2/14/2023 9:09:29 AM 13:49 3-min.avg 13:42 2/14/2023 9:10:29 AM 13:49 3-min.avg 13:42 2/14/2023 9:11:29 AM 14:12 2/14/2023 9:12:29 AM 14:08 2/14/2023 9:12:29 AM 14:12 3-min.avg 14:14 14:14 P1 Average 13:67 <th>Facility/Site:</th> <th>Gateway Services / Forget-Me-Not</th> <th>Date: 2/14/23</th>	Facility/Site:	Gateway Services / Forget-Me-Not	Date: 2/14/23
Run No.: Stratification Check Stop Time: 9:15 Date/time Q2 (%w) Q2 (%w) Stop Time: 9:15 2/14/2023 9:00:29 AM 13.39 12/14/2023 9:01:29 AM 13.23 12/14/2023 9:02:29 AM 13.41 12/14/2023 9:02:29 AM 13.41 12/14/2023 9:05:29 AM 13.47 13.49 3-min. avg 13.46 2/14/2023 9:05:29 AM 13.42 13.42 2/14/2023 9:05:29 AM 13.38 12/14/2023 9:05:29 AM 13.37 12/14/2023 9:05:29 AM 13.38 12/14/2023 9:05:29 AM 13.49 3-min. avg 13.49 13.49 13.49 13.49 14.14 3-min. avg 13.42 14/2023 9:05:29 AM 13.49 3-min. avg 13.42 14/2023 9:10:29 AM 14.49 2/14/2023 9:11:29 AM 14.12 14/2023 14:29 AM 14.12 2/14/2023 9:13:29 AM 14.14 14:12 14:12 14:14 14:12 14:14 14:12 14:14 14:14 14:14 14:14 14:14 14:14 14:14 14:14 </th <th></th> <th></th> <th></th>			
Date/time O2 (%vd) 2/14/2023 9:00:29 AM 13.39 13.23 2/14/2023 9:01:29 AM 13.23 2/14/2023 9:02:29 AM 13.41 2/14/2023 9:03:29 AM 13.41 2/14/2023 9:03:29 AM 13.47 2/14/2023 9:06:29 AM 13.49 3-min. avg 13.46 2/14/2023 9:05:29 AM 13.38 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:06:29 AM 13.49 3-min. avg 13.49 3/14/2023 9:09:29 AM 13.49 3/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.49 3/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:12:29 AM 14.12 3/14/2023 9:13:29 AM 14.12 3-min. avg 14.14 14.12 3-min. avg 14.14 Average			
Date/time (%.d)			
2/14/2023 9:00:29 AM 13.39 2/14/2023 9:01:29 AM 13.23 2/14/2023 9:02:29 AM 13.41 2/14/2023 9:03:29 AM 13.47 2/14/2023 9:03:29 AM 13.47 2/14/2023 9:03:29 AM 13.47 2/14/2023 9:05:29 AM 13.46 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:06:29 AM 13.40 2/14/2023 9:06:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min.avg 13.42 2/14/2023 9:09:29 AM 13.49 3-min.avg 13.42 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:13:29 AM 14.12 2/14/2023 9:13:29 AM 14.12 3-min.avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 13.42 Pt 3 Average 13.42 P	Date/time		
2/14/2023 9:01:29 AM 13.23 2/14/2023 9:02:29 AM 13.41 2/14/2023 9:04:29 AM 13.47 2/14/2023 9:04:29 AM 13.49 3-min. avg 13.46 2/14/2023 9:05:29 AM 13.42 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:06:29 AM 13.33 2/14/2023 9:06:29 AM 13.37 2/14/2023 9:07:29 AM 13.37 2/14/2023 9:09:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.12 3-min. avg 14.14 14.12 3-min. avg 14.14 14.12 Pt 1 Average 13.67 13.42 Pt 3 Average 13.67 12.99 upper 5% bound 12.99 14.36 <	Datertime	(750)	
2/14/2023 9:01:29 AM 13.23 2/14/2023 9:02:29 AM 13.41 2/14/2023 9:04:29 AM 13.47 2/14/2023 9:04:29 AM 13.49 3-min. avg 13.46 2/14/2023 9:05:29 AM 13.42 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:06:29 AM 13.33 2/14/2023 9:06:29 AM 13.37 2/14/2023 9:07:29 AM 13.37 2/14/2023 9:09:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.12 3-min. avg 14.14 14.12 3-min. avg 14.14 14.12 Pt 1 Average 13.67 13.42 Pt 3 Average 13.67 12.99 upper 5% bound 12.99 14.36 <	2/14/2023 9:00:29 AM	13 39	
2/14/2023 9:02:29 AM 13.41 2/14/2023 9:03:29 AM 13.47 2/14/2023 9:04:29 AM 13.49 3-min. avg 13.46 2/14/2023 9:05:29 AM 13.42 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:07:29 AM 13.37 2/14/2023 9:09:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.49 3-min. avg 14.12 2/14/2023 9:11:29 AM 14.08 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 14.12 3-min. avg 14.14 14.12 3-min. avg 14.14 14.14 Pt 1 Average 13.46 14.14 Average 13.67 12.99 upper 5% bound 14.36			
2/14/2023 9:03:29 AM 13.47 2/14/2023 9:04:29 AM 13.49 3-min. avg 13.46 2/14/2023 9:05:29 AM 13.42 2/14/2023 9:05:29 AM 13.38 2/14/2023 9:05:29 AM 13.37 2/14/2023 9:05:29 AM 13.37 2/14/2023 9:05:29 AM 13.40 2/14/2023 9:05:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:13:29 AM 14.12 2/14/2023 9:13:29 AM 14.12 3-min. avg 14.14 14.12 3-min. avg 14.14 14.12 3-min. avg 14.14 14.14 Average 13.67 12.99 upper 5% bound 12.99 14.36			
2/14/2023 9:04:29 AM 13.49 3-min. avg 13.46 2/14/2023 9:05:29 AM 13.42 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:06:29 AM 13.37 2/14/2023 9:07:29 AM 13.37 2/14/2023 9:08:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.42 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:13:29 AM 14.12 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:13:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 14.14 Average 13.46 Pt 3 Average 13.46 Iverage 13.67 Iverage 13.67 Iverage 13.67 Iverage 13.67 Iverage 14.36		13.47	
3-min. avg 13.46 2/14/2023 9:05:29 AM 13.42 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:07:29 AM 13.37 2/14/2023 9:07:29 AM 13.37 2/14/2023 9:08:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.22 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 13.42 Nupper 5% bound 12.99 upper 5% bound 12.99 upper 5% bound 14.36		13.49	
2/14/2023 9:05:29 AM 13.42 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:07:29 AM 13.37 2/14/2023 9:08:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:13:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.42 Pt 3 Average 13.42 Pt 3 Average 13.42 upper 5% bound 12.99 upper 5% bound 14.36			
2/14/2023 9:05:29 AM 13.42 2/14/2023 9:06:29 AM 13.38 2/14/2023 9:07:29 AM 13.37 2/14/2023 9:08:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:13:29 AM 14.12 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.42 Pt 3 Average 13.42 Pt 3 Average 13.42 Pt 3 Average 13.67 lower 5% bound 12.99 upper 5% bound 14.36	3-min. avg	13.46	
2/14/2023 9:06:29 AM 13.38 2/14/2023 9:07:29 AM 13.37 2/14/2023 9:08:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min.avg 13.42 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:13:29 AM 14.08 2/14/2023 9:13:29 AM 14.12 2/14/2023 9:13:29 AM 14.12 3-min.avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 14.14 Average 13.67 lower 5% bound 12.99 upper 5% bound 12.99 upper 5% bound 14.36			
2/14/2023 9:07:29 AM 13.37 2/14/2023 9:08:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 13.46 Pt 3 Average 13.67 lower 5% bound 12.99 upper 5% bound 12.99 upper 5% bound 14.36	2/14/2023 9:05:29 AM	13.42	
2/14/2023 9:08:29 AM 13.40 2/14/2023 9:09:29 AM 13.49 3-min. avg 13.42 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:13:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 13.42 Average 13.42 Mupper 5% bound 12.99 14.36 14.36	2/14/2023 9:06:29 AM	13.38	
2/14/2023 9:09:29 AM 13.49 3-min.avg 13.42 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:13:29 AM 14.12 3-min.avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 13.67 lower 5% bound 12.99 upper 5% bound 12.99 14.36 14.36	2/14/2023 9:07:29 AM	13.37	
3-min. avg 13.42 2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 13.42 Average 13.46 http://www.sbound 12.99 upper 5% bound 12.99 upper 5% bound 14.36	2/14/2023 9:08:29 AM	13.40	
2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 13.42 I 3.42 14.14 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 14.14 Average 13.67 Iower 5% bound 12.99 upper 5% bound 14.36	2/14/2023 9:09:29 AM	13.49	
2/14/2023 9:10:29 AM 13.88 2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 13.42 I 3.42 14.14 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 14.14 Average 13.67 Iower 5% bound 12.99 upper 5% bound 14.36			
2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 14.14 Average 13.67 Iower 5% bound 12.99 upper 5% bound 14.36	3-min. avg	13.42	
2/14/2023 9:11:29 AM 14.12 2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 14.14 Average 13.67 Iower 5% bound 12.99 upper 5% bound 14.36			
2/14/2023 9:12:29 AM 14.08 2/14/2023 9:13:29 AM 14.22 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 14.14 Average 13.42 pt 3 Average 14.14 Average 13.42 pt 3 Average 14.14 Average 13.67 lower 5% bound 12.99 upper 5% bound 14.36			
2/14/2023 9:13:29 AM 14.22 2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 14.14 Average 13.42 It 4.14 14.14 Average 13.42 It 3 Average 14.14 Average 13.67 Iower 5% bound 12.99 upper 5% bound 14.36			
2/14/2023 9:14:29 AM 14.12 3-min. avg 14.14 Pt 1 Average 13.46 Pt 2 Average 13.42 Pt 3 Average 14.14 Average 13.67 lower 5% bound 12.99 upper 5% bound 14.36		1 1	
3-min. avg14.14Pt 1 Average13.46Pt 2 Average13.42Pt 3 Average14.14Average13.67lower 5% bound12.99upper 5% bound14.36		1 1	
Pt 1 Average13.46Pt 2 Average13.42Pt 3 Average14.14Average13.67lower 5% bound12.99upper 5% bound14.36	2/14/2023 9:14:29 AM	14.12	
Pt 1 Average13.46Pt 2 Average13.42Pt 3 Average14.14Average13.67lower 5% bound12.99upper 5% bound14.36	0		
Pt 2 Average13.42Pt 3 Average14.14Average13.67lower 5% bound12.99upper 5% bound14.36	3-min. avg	14.14	
Pt 2 Average13.42Pt 3 Average14.14Average13.67lower 5% bound12.99upper 5% bound14.36	Bt 1 Average	12.46	
Pt 3 Average14.14Average13.67lower 5% bound12.99upper 5% bound14.36		1 1	
Average13.67lower 5% bound12.99upper 5% bound14.36	-		
lower 5% bound12.99upper 5% bound14.36	FLO Average	14.14	
lower 5% bound12.99upper 5% bound14.36	Average	13.67	
upper 5% bound 14.36			
Status Pass			
	Status	Pass	

Method 7E - NO $_2$ to NO Conversion Efficiency / Post-Test Check

Client: Galency	-Forset Pie pro	Analyzer ID: Ters 4	2:112# 2-Date:	2-14-2023
Location: Month	bit de	Operator: D-St	the start Time:	1739
Source:	bopoist, M2	Project #: 022	281) End Time:	1744
EUS	and the second			I
NO ₂ Cylinder No.	NO ₂ Cylinder Value, ppm	Instrument Response, ppm	% Efficiency	Pass/Fail
EB 0156146	49.7	47.7	96 D	Pass
			-	

 $EffNO2 = CDir/CV \times 100$ [Eq. 7E-7]

EffNO2 must be ≥90 Percent. [per Section 13.5 of Method 7E)

where:

 C_{Dir} = Measured concentration of a calibration gas when introduced in direct calibration mode, ppmv.

 C_v = Manufacturer certified concentration of a calibration gas (low, mid, or high), ppmv.

NO2 converter check was performed in accordance with 40 CFR Part 60, Appendix A, Method 7E, Section 8.2.4.1

Cyclonic Flow Field Data Sheet

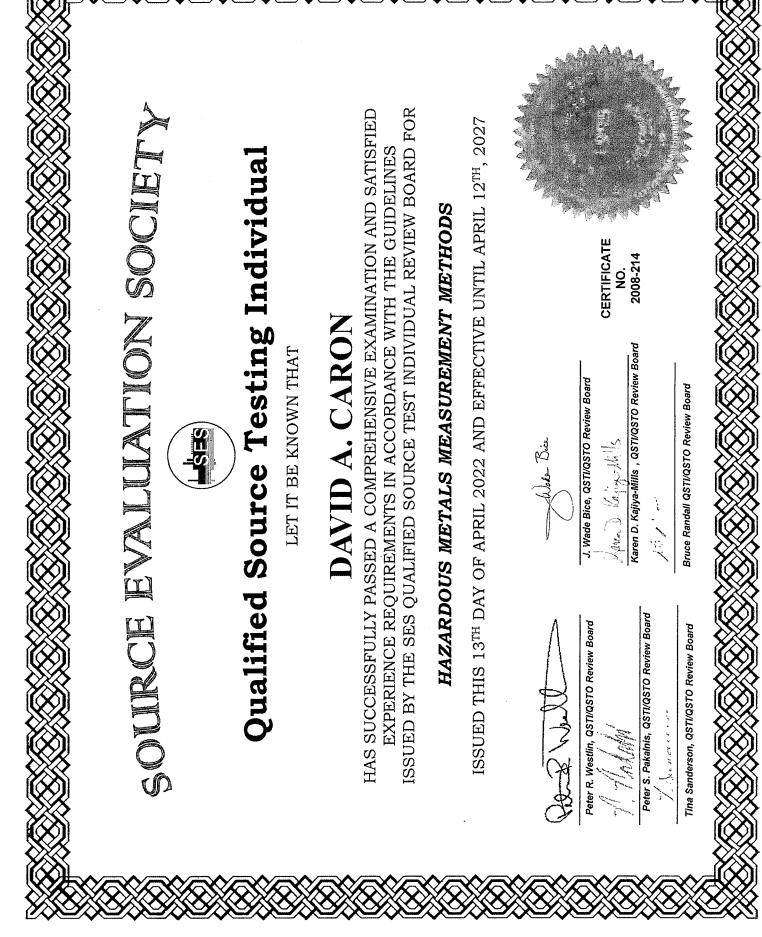
	HARRY ME LART
	FORGET-ME -NOT
	NORTHBOROUGH, MA
Source:	EUS
Test Location:	OUTLET
Duct Diameter:	20.4 "
Test Number:	PRE
Test Time:	1600 - 1615
Test Date:	2-13-23
Testers:	CM/HS
Angle Finder ID:	PP-1 5-4-2
Pitot Number:	5-4-2
Pitot Coefficient:	
Ambient Temperature:	
Wet Bulb Temp:	
Barometric Pressure:	
Duct Static Pressure:	
	Pre / Post
Leak Checks:	VV IV

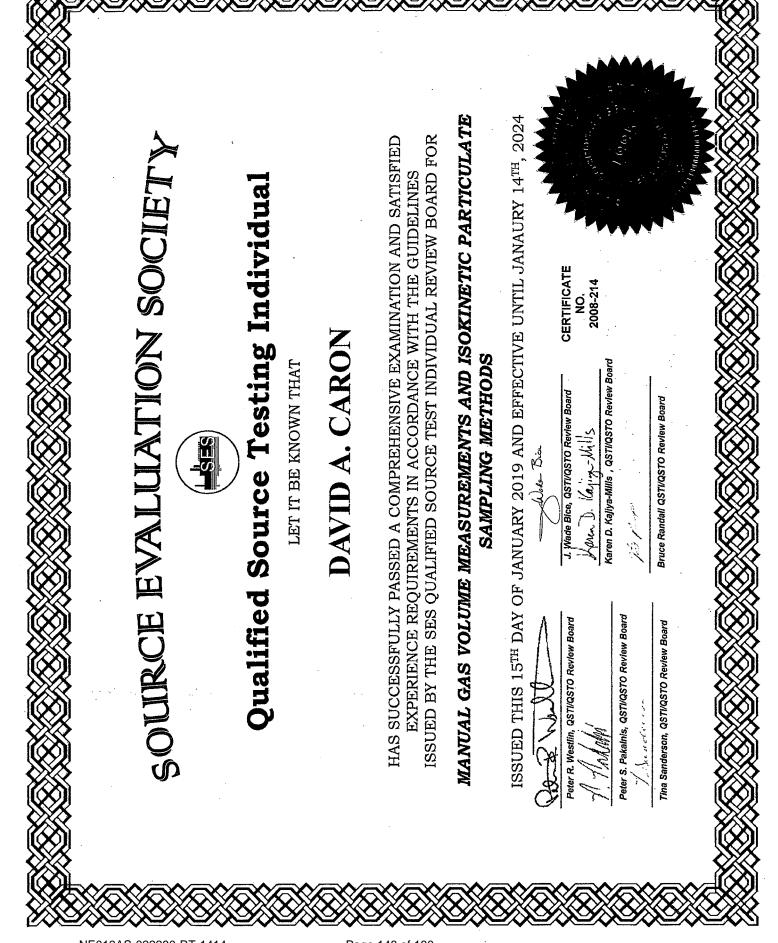
Port Number	Traverse Point	Velocity Pressure	Stack Temp.	Cyclonic Angle
A1				13
2				8
3				5 6
4				
9				2
6				11 7
BI				
2				4
7			···· /	6
<u>4</u> 5				в Ч
6				3

Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 • Newburyport, MA 01950 • T: (978) 499-9300 • F: (978) 499-9303

www.montrose-env.com

Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report


Appendix C.3


AETB Documentation

American Association for Laboratory Accreditation American Association for Laboratory Accreditation American Association for Laboratory Accreditation Analysis and Association for Laboratory Accreditation Astarback and an Association for Laboratory Accreditation Astarback and Astarback and Association for Laboratory Accreditation Accredited Air Emission Testing Body Accredited Air Emission Testing Body Accredited Air Emission Testing Body Astarback and Astarback and Astarbac	In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.	Presented this 4 th day of February 2022.	This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.
---	--	--	--

CONTRACTOR OF CONTRACTOR

SOURCE EVALUATION SOCIETY

Qualified Source Testing Individual

LET IT BE KNOWN THAT

DAVID A. CARON

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES

GASEOUS POLLUTANTS INSTRUMENTAL SAMPLING METHODS

ISSUED THIS 16TH DAY OF OCTOBER 2018 AND EFFECTIVE UNTIL OCTOBER 15TH, 2023

Peter R. Westlin, QSTI/QSTO Review Board

A That all it

^beter S. Pakalnis, QSTI/QSTO Review Board

L Ber reador and

Tina Sanderson, QSTI/QSTO Review Board

Hand. Kajin-Mills

CERTIFICATE

2008-214

Karen D. Kajiya-Milis , QSTI/QSTO Review Board The planter

Bruce Randall QSTI/QSTO Review Board

October 24, 2022

David Caron Montrose Air Quality Services, LLC 2 New Pasture Rd. Ste 5 Newburyport, MA 01950

Re: Visible Emissions Observer Training and Certification

Dear David:

CONGRATULATIONS on passing the certification requirements for the Visible Emission Training held in Rye, New Hampshire on October 21, 2022. Morrison Environmental Engineering, Inc. is pleased to provide the enclosed certification, which is valid for six months.

MEE makes every effort to provide the highest quality training in the most efficient manner possible. In an effort to continually improve our Smoke School sessions, we always welcome any input you may have. Also, if you have any questions, feel free to call or email us.

We typically hold Spring Smoke School sessions during the month of April, and the registration notices go out by the end of February. We will be sending out notifications by email or you can check our website at <u>morrisonenvironmental.com</u>. We provide on-line registration or you can print a registration form and send or fax it to us.

We hope to see you in the Spring!

Sincerely,

alan Monison

Alan Morrison Vice President

Continuing Education Credit: 1 Professional Development Hour

Qualified Individual Conformance Statement

1 David Curry, as a QI (Qualified Individual) sign this Conformance Statement to verify that each of the test projects that I perform, and each of the test projects performed under my supervision will conform with the Montrose Air Quality Services Management System, the test methods applicable to the testing, and ASTM D 7036-04.

I realize that as a Qualified Individual I have the proper knowledge to perform these tests correctly, and that I am held to a high standard of integrity.

QI Signature

Date

Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

APPENDIX D

FACILITY MASSDEP FINAL AIR QUALITY PLAN APPROVAL

NE013AS-022280-RT-1414

Commonwealth of Massachusetts Executive Office of Energy & Environmental Affairs

Department of Environmental Protection

Central Regional Office • 8 New Bond Street, Worcester MA 01606 • 508-792-7650

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Bethany A. Card Secretary

Martin Suuberg Commissioner

August 30, 2022

Ms. Sarah Streeter Forget-Me-Not Pet Cremation, LLC 80 Lyman Street Northborough, MA 01532

Northborough

RE:

ePlace Authorization #: AQ02C-0000005 Application #: 20-AQ02C-0003-APP Approval #.: CE-20-015 Class: NM25 FMF No.: 442938 FINAL AIR QUALITY PLAN APPROVAL

Dear Ms. Streeter:

The Massachusetts Department of Environmental Protection ("MassDEP"), Bureau of Air and Waste, has reviewed your Non-major Comprehensive Plan Application ("Application") listed above. This Application concerns the proposed construction and operation of one new animal crematory unit (retort) at your cremation facility located at 80 Lyman Street in Northborough, Massachusetts ("Facility"). The Application bears the seal and signature of Christopher Bannon, Massachusetts Registered Professional Engineer Number 55078.

This Application was submitted in accordance with 310 CMR 7.02 Plan Approval and Emission Limitations as contained in 310 CMR 7.00 "Air Pollution Control" regulations adopted by MassDEP pursuant to the authority granted by Massachusetts General Laws, Chapter 111, Section 142 A-O, Chapter 21C, Section 4 and 6, and Chapter 21E, Section 6. MassDEP's review of your Application has been limited to air pollution control regulation compliance and does not relieve you of the obligation to comply with any other regulatory requirements.

MassDEP has determined that the Application is administratively and technically complete and that the Application is in conformance with the Air Pollution Control regulations and current air pollution control engineering practice, and hereby grants this **Plan Approval** for said Application, as submitted, subject to the conditions listed below.

This information is available in alternate format. Contact Glynis Bugg at 617-348-4040. TTY# MassRelay Service 1-800-439-2370 MassDEP Website: www.mass.gov/dep

Printed on Recycled Paper

Please review the entire Plan Approval, as it stipulates the conditions with which the Facility owner/operator ("Permittee") must comply in order for the Facility to be operated in compliance with this Plan Approval.

On July 21, 2022, public notice was published on the MassDEP website for public review and comment on the proposed Non-Major Plan Approval (ePlace Application number: 20-AQ02C-0003-APP) for your Facility located at 80 Lyman Street in Northborough, MA. The comment period ended August 20, 2022.

No comments were submitted.

1. DESCRIPTION OF FACILITY AND APPLICATION

A. FACILITY HISTORY AND DESCRIPTION

Forget-Me-Not Pet Cremation LLC is an existing pet crematory which has been in operation since 2007. The Facility currently operates one (1) Mathews Cremation Division Power Pak II cremation unit approved under Plan Approval Transmittal No. W133332 dated September 4, 2007, two (2) Crawford C1000P cremation units approved under Plan Approval Transmittal No. W229538 dated October 14, 2009, and one (1) American Crematory Equipment Co. A-400-P XL cremation unit approved under Plan Approval Transmittal No. X265131 dated August 17, 2015. Plan Approval Transmittal No. X265131 approved two (2) American Crematory Equipment Co. A-400-P XL cremation units, however, only one of the approved cremation units was installed. This Application proposes to revise operational restrictions, emission limits, and stack exhaust parameters on the four existing cremation units.

Additionally, this Application proposes to install and operate one (1) new animal crematory retort. The proposed unit is a Mathews Environmental Solutions IEB Series 32-5S and is designated as Emission Unit No.5 ("EU5"). The retort unit is designed with six individual cremation chambers for the cremation of animal remains only. Each chamber is equipped with its own combustion system which allows each chamber to operate independently of the others. The retort's primary chamber #1 is equipped with an Eclipse Model TJ-75 burner which uses natural gas as its only fuel of use at a maximum firing rate of 600,000 British thermal units ("Btu") per hour. The retorts primary chambers #2 through #5 are each equipped with an Eclipse Model TJ-50 burner which uses natural gas only at a maximum firing rate of 450,000 Btu per hour. The retort's secondary chamber is equipped with an Eclipse Model TJ-150 burner which uses natural gas only at a maximum firing rate of 1,200,000 Btu per hour. The retort's secondary chamber is equipped with an Eclipse Model TJ-150 burner which uses natural gas only at a maximum firing rate of 1,200,000 Btu per hour. The retort's secondary chamber is equipped with an Eclipse Model TJ-150 burner which uses natural gas only at a maximum firing rate of 1,200,000 Btu per hour. The unit is designed to provide a minimum exhaust gas residence time of 1 second at the minimum operating temperature of 1,600 degrees Fahrenheit.

This plan application and approval addresses the installation and operation of EU5, and revised operational limits and emission limits on existing retorts. The Facility has proposed and MassDEP approves Best Available Control Technology ("BACT") as defined in Table 2.

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 3 of 22

This Plan Approval, AQ02C-0000005, supersedes the following Plan Approvals: W133332 dated September 4, 2007, W229538 dated October 14, 2009, and X265131 dated August 17, 2015, in their entirety, with the exception that all plan application materials submitted as part of these Plan Approvals become part of this Plan Approval AQ02C-0000005.

B. REGULATORY REQUIREMENTS

1. State Requirements

Best Available Control Technology ("BACT")

MassDEP has determined that meeting the requirements as stated in this Application for the proposed installation and subsequent operation of EU5 represents BACT.

Air Dispersion Modeling

The Permittee has conducted an air dispersion modeling analysis to demonstrate that the simultaneous operation of the five cremation retorts, EU1 through EU5, will not cause an exceedance of any National Ambient Air Quality Standard (NAAQS).

The modeling assumes a worst-case condition of all five units operating simultaneously six (6) days per week (Monday through Saturday) between the hours of 7 AM to 7 PM (approx. 3,744 hours per year). Additionally, EUs 3, 4, & 5 were modeled simultaneously for all remaining hours in the year for a total of 8,760 hours per year.

Modeling was conducted for the following criteria pollutants: Nitrogen Dioxide (NO₂), Particulate Matter less than or equal to 2.5 microns in diameter (PM_{2.5}), and Particulate Matter less than or equal to 10 microns in diameter (PM₁₀).

The modeling results, based on the emissions of each pollutant and stack heights proposed by the Permittee, indicated that the emissions associated with the proposed three new retorts, when added to monitored background values and compared to the NAAQS, will not cause or contribute to a condition of air pollution with respect to the criteria pollutant emissions.

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 4 of 22

2. <u>EMISSION UNIT IDENTIFICATION</u>

Each Emission Unit ("EU") identified in Table 1 is subject to and regulated by this Plan Approval:

	Table 1					
EU	Description	Design Capacity	Pollution Control Device			
	<u>Crematory Retort:</u> Mathews Cremation Division Power Pak II	Maximum total weight of animal remains per batch: 750 pounds per batch ³	· · · · · · · · · · · · · · · · · · ·			
	<u>Primary Combustion Chamber</u> <u>Burner:</u>	Primary Combustion Chamber Burner:				
11	One (1) Eclipse Model TJ75 natural gas fired burner	1.4 MMBtu/hr	None			
	Secondary Combustion Chamber Burner:	Secondary Combustion Chamber Burner:				
	One (1) Eclipse Model TJ150 natural gas fired burner	1.2 MMBtu/hr				
	Crematory Retort: Crawford C1000P	Maximum total weight of animal remains per cremation unit per batch: 600 pounds per batch ³				
	Primary Combustion Chamber Burner:	Primary Combustion Chamber Burner:				
2 ¹ and 3 ¹	One (1) Eclipse Model TJ50 natural gas fired burner	0.5 MMBtu/hr	None			
	Secondary Combustion Chamber Burner:	Secondary Combustion Chamber Burner:				
	One (1) Eclipse Model TJ150 natural gas fired burner	1.5 MMBtu/hr				

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 5 of 22

	Table 1					
EU	Description	Design Capacity	Pollution Control Device			
	Crematory Retort: American Crematory Equipment Co. Model A-400-P XL	Maximum total weight of animal remains per cremation unit per hour: 470 pounds per hour ³				
	Primary Combustion Chamber Burner:	Primary Combustion Chamber Burner:				
41	Eight (8) Eclipse Model TJ0502 natural gas fired burner	0.5 MMBtu/hr (each) 4.0 MMBtu/hr (combined)	None			
	Secondary Combustion Chamber Burner:	Secondary Combustion Chamber Burner:				
	One (1) Eclipse Model TJ0200 natural gas fired burner	2 MMBtu/hr				
	<u>Crematory Retort:</u> Mathews Environmental Solutions IEB Series 32-5S	Maximum total weight of animal remains per cremation unit per hour: 250 pounds per hour ³				
	<u>Primary Combustion Chamber</u> <u>Burner #1:</u>	Primary Combustion Chamber Burners:				
	Eclipse Model TJ-75 natural gas fired burner	0.6 MMBtu/hr (Burner#1), 0.45 MMBtu/hr (Burner #2 through#5),				
52	Primary Combustion Chamber Burners #2-#5:	2.4 MMBtu/hr (combined)	None			
	Eclipse Model TJ-50 natural gas fired burner					
	<u>Secondary Combustion Chamber</u> <u>Burner:</u>	Secondary Combustion Chamber Burner:				
	Eclipse Model TJ-150 natural gas fired burner	1.2 MMBtu/hr				

Table 1 Key:

EU = Emission Unit

MMBtu/hr = millions of British thermal units per hour

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 6 of 22

Table 1 Notes:

- 1. Existing Unit
- 2. Proposed unit, approved herein
- 3. For EU1-EU3, maximum batch weight is the equipment's stated design capacity. For EU4, batch weight was not available so the pounds cremated per hour value was used instead. For EU5, the batch weight is 1,000 lb/batch, however, since batch weight varies the 250 pound per hour value was used in Table 1.

3. <u>APPLICABLE REQUIREMENTS</u>

A. OPERATIONAL, PRODUCTION and EMISSION LIMITS

The Permittee is subject to, and shall not exceed the Operational, Production, and Emission Limits as contained in Table 2:

	Table 2				
EU	Operational / Production Limit	Air Contaminant	Emission Limit ¹		
		РМ	0.05 gr/dscfm @ 7% O ₂ , 0.05 TPM, 0.57 TPY		
	1. ≤ 200 pounds Cremations per hour	PM ₁₀	0.04 gr/dscfm @ 7% O _{2,} 0.04 TPM, 0.44 TPY		
	2. ≤ 31.9 tons Cremations per month 3. ≤ 374.4 tons Cremations per any Consecutive 12- Month Period 4. 3744 hours per year 5. Operation restricted to Monday-Saturday from 7:00am – 7:00 pm	2. \leq 31.9 tons Cremations per month	PM _{2.5}	0.02 gr/dscfm @ 7% O ₂ , 0.02 TPM, 0.20 TPY	
1		NO _x	63 ppmvd ² , 0.05 TPM, 0.59 TPY		
		5. Operation restricted to Monday-Saturday from 7:00am – 7:00	СО	0.16 TPM, 1.87 TPY	
			SO_2	0.04 TPM, 0.47 TPY	
		VOC	0.05 TPM, 0.56 TPY		

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 7 of 22

		Table 2	
EU	Operational / Production Limit	Air Contaminant	Emission Limit ¹
		РМ	0.05 gr/dscfm @ 7% O _{2,} 0.07 TPM, 0.79 TPY
		PM_{10}	0.04 gr/dscfm @ 7% O _{2,} 0.05 TPM, 0.62 TPY
	 ≤175 pounds cremations per hour 27.9 tons Cremations 	PM _{2.5}	0.02 gr/dscfm @ 7% O _{2,} 0.02 TPM, 0.29 TPY
2	per month 3. 327.6 tons Cremations per any Consecutive 12-Month Period	NO _x	38 ppmvd², 0.04 TPM, 0.49 TPY
	 4. 3744 hours per year 5. Operation restricted to Monday-Saturday from 7:00am - 7:00 pm 	со	0.14 TPM, 1.64 TPY
		SO ₂	0.03 TPM, 0.41 TPY
		VOC	0.04 TPM, 0.49 TPY
		РМ	0.05 gr/dscfm @ 7% O _{2,} 0.16 TPM, 1.86 TPY
 ≤175 pounds cremations per hour 65.1 tons Cremations per month 766.5 tons Cremations per any Consecutive 12-Month Period 	2. 65.1 tons Cremations per month	PM ₁₀	0.04 gr/dscfm @ 7% O _{2,} 0.12 TPM, 1.45 TPY
	per any Consecutive	PM _{2.5}	0.02 gr/dscfm @ 7% O _{2,} 0.06 TPM, 0.67 TPY
	NO _x	38 ppmvd ² , 0.10 TPM, 1.16 TPY	

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 8 of 22

	Table 2				
EU	Operational / Production Limit	Air Contaminant	Emission Limit ¹		
		СО	0.33 TPM, 3.83 TPY		
3		SO ₂	0.08 TPM, 0.96 TPY		
		VOC	0.10 TPM, 1.15 TPY		
	 Maximum total weight of animal remains per hour: 470 pounds per hour 174.8 tons Cremations per month 2058.6 tons Cremations per any Consecutive 12-Month Period 	РМ	0.05 gr/dscfm @ 7% O _{2,} 0.17 TPM, 1.95 TPY		
		PM ₁₀	0.04 gr/dscfm @ 7% O _{2,} 0.13 TPM, 1.52 TPY		
4		PM _{2.5}	0.02 gr/dscfm @ 7% O _{2,} 0.06 TPM, 0.70 TPY		
		NOx	150 ppmvd @ 7% O ₂ 0.18 TPM, 2.07 TPY		
		СО	0.08 TPM, 0.97 TPY		
		SO ₂	0.22 TPM, 2.57 TPY		
		VOC	0.26 TPM, 3.09 TPY		
5	1. ≤ 250 pounds Cremations per hour	РМ	0.05 gr/dscf @ 7% O ₂ 0.23 TPM 2.65 TPY ⁴		

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 9 of 22

Table 2				
EU	Operational / Production Limit	Air Contaminant	Emission Limit ¹	
	 2. ≤ 93 tons Cremations per month 3. ≤ 1,095 tons Cremations per any 	PM_{10}	0.04 gr/dscf @ 7% O _{2,} 0.18 TPM, 2.07 TPY	
	Consecutive 12- Month Period	PM _{2.5}	0.02 gr/dscf @ 7% O2, 0.08 TPM, 0.95 TPY	
5		NO _x	$ \leq 100 \text{ ppmvd } @ 7\% \text{ O}_2^5 \\ \leq 0.16 \text{ TPM} \\ \leq 1.88 \text{ TPY}^4 $	
		СО	$ \le 50.0 \text{ ppmvd } @ 7\% \text{ O}_2 \\ \le 0.11 \text{ TPM} \\ \le 1.32 \text{ TPY} $	
		SO_2	0.12 TPM, 1.37 TPY	
		VOC	0.14 TPM, 1.64 TPY	
1,2,3	1. NA	Opacity ³	≤10%	
4,5	1. NA	Opacity ³	\leq 5%, except > 5% to \leq 20% for \leq 2 consecutive minutes during any one hour	
Facility- wide	 Minimum Secondary Chamber Temperature ≥ 1,600 Degrees Fahrenheit per unit ≤ 1,270 pounds Cremations per hour ≤ 392.7 tons Cremations per Month 	РМ	0.66 TPM 7.81 TPY	
		PM10	0.52 TPM, 6.10 TPY	
		PM _{2.5}	0.24 TPM, 2.81 TPY	

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 10 of 22

Table 2					
EU	Operational / Production Limit	Air Contaminant	Emission Limit ¹		
Facility- wide	 4. ≤ 4,622.1 tons Cremations per any Consecutive 12 Month Time Period 5. ≤ 9.90 MMft3 Natural Gas usage Per Month⁴ 6. ≤ 116.51 MMft3 Natural Gas usage per any Consecutive Twelve Month Time Period⁴ 	NOx	0.53 TPM 6.19 TPY		
		СО	0.82 TPM 9.63TPY		
		SO ₂	0.49 TPM, 5.78 TPY		
		VOC	0.59 TPM, 6.93 TPY		

Table 2 Key:

EU = Emission Unit	PM = Total Particulate Matter
$PM_{2.5}$ = Particulate Matter less than or equal to 2.5 microns in diameter includes filterable and condensable fractions	PM_{10} = Particulate Matter less than or equal to 10 microns in diameter
ppmvd = parts per million by volume, dry basis,	gr/dscf = grains per dry standard cubic foot, corrected to 7 percent oxygen
CO = Carbon Monoxide	$NO_x = Nitrogen Oxides$
$O_2 = Oxygen$	°F = Degrees Fahrenheit
MMft3 = million cubic feet	> = greater than
TPM = tons per calendar month	TPY = tons per consecutive 12-month period
% = percent	\geq = greater than or equal to
\leq = less than or equal to	$SO_2 = Sulfur Dioxide$
VOC - Valatile Organic Compounds	

VOC = Volatile Organic Compounds

Table 2 Notes:

- 1. Emission limits in TPM and TPY are based on the approved gr/dscf and ppmvd BACT emission limits, stack test data, or AP-42 emission factors and unrestricted operation of 8760 hours per year at maximum capacity for EU3-5 and 3744 hours per year at maximum capacity for EU1-2.
- 2. EU1-EU3 NO_x short-term limits oxygen content is unknown. EU1-EU3 were permitted between 2007-2009 and the short-term NO_x limit for these units were not included in the original Approvals. The pound per hour emission rates for these units were included in this current Plan Approval (ePLACE Authorization: AQ02C-0000005) as they were used in the air dispersion modeling for this Plan Approval. NO_x short term emission

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 11 of 22

rates used in the modeling and Table 2 were derived from NO_x emission factors found in the USEPA publication *AP-42*: Compilation of Air Emissions Factors, 5th Edition, Table 2.1-12 for multiple chamber industrial/commercial combustor.

- 3. Opacity is exclusive of uncombined water vapor.
- 4. Natural gas usage is based on a proposed maximum natural gas heat input of 11.6 MMBtu/hr (EU3-EU5) 8760 hours per 12-month period and 4.3 MMBtu/hr (EU1-EU2) 3744 hours per 12-month period.
- 5. Based on the emissions test results, MassDEP may re-evaluate the NO_x BACT determination (NO_x ppm limit) for EU5.

B. <u>COMPLIANCE DEMONSTRATION</u>

The Permittee is subject to, and shall comply with, the monitoring, testing, record keeping, and reporting requirements as contained in Tables 3, 4, and 5:

Table 3							
EU	EU Monitoring and Testing Requirements						
1,2,3	1. The permittee shall equip each COMS and DAS with both audible and visual alarms to alert the operator whenever opacity exceeds ten (10) percent opacity.						
	2. The permittee shall equip each COMS and DAS with both an audible and a visual alarm set to alert the operator(s) whenever opacity exceeds either of the following two alarm points:						
4,5	 a. The first alarm point shall be triggered when the opacity has exceeded five (5) percent opacity for more than any two consecutive one minute periods during any one clock hour time period, without exceeding twenty (20) percent; b. The second alarm point shall be triggered when the opacity exceeds twenty (20) percent for any period of time. 						
	 The Permittee shall conduct emissions compliance testing on the new cremation retort to demonstrate compliance with the PM, PM₁₀, PM_{2.5}, NO_x, CO, and opacity emission limitations as contained in Table 2 of this Plan Approval. All compliance testing for particulate shall include the condensable fraction. 						
5	4. The Permittee shall conduct emissions compliance testing within sixty (60) days after the installation of the retort is completed but no later than 180 days after the retort is installed and operational. Testing shall be conducted in accordance with the requirements and procedures set forth by appropriate EPA Reference Test Methods, 40 CFR Part 60 Subpart A, 40 CFR Part 51, Appendix M, Air Pollution Control Regulations 310 CMR 7.00, Section 7.13 and this Plan Approval. The opacity testing shall be conducted in accordance with the requirements and procedures as contained in 40 CFR 60 Subpart A, Method 9. The dates and times for conducting the emission tests shall be coordinated with MassDEP personnel of this Office for a mutually agreed upon schedule for testing.						

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 12 of 22

	Table 3				
EU	Monitoring and Testing Requirements				
	Temperature Monitoring System chamber thermocouple is located monitor temperatures at the com during each complete cremation	peratures in the primary and secondary chambers with Continuous is (CTMS) during each complete cremation cycle. If the primary d at a combined exit from the primary chambers, the Permittee shall bined exit with a Continuous Temperature Monitoring System (CTMS) cycle. A complete cremation cycle shall include burn-down and cool- the manufacturer, or the time required to consume all combustible			
		econdary chamber temperature monitor, or thermocouple, with both alert the operator(s) whenever a temperature deviation occurs.			
1,2,3,4,5	chamber thermocouple to prever primary chamber burner during	rimary chamber burner is electronically interlocked with the secondary at ignition of the primary chamber burner or to automatically shut off the the burn cycle should the secondary chamber thermocouple detect a um required temperature as stated in Table 2 of this Plan Approval.			
	The Permittee shall monitor the opacity of the stack gas from each retort, during each complete cremation cycle, using its own dedicated full scale (0-100%) Continuous Opacity Monitoring Systems (COMS) with associated Data Acquisition System (DAS) or circular chart recorder which shall include the corresponding date and time. A complete cremation cycle shall include burn-down and cool-down time as recommended by the manufacturer, or the time required to consume all combustible material, whichever is greater.				
		COMS in an appropriate sampling location in the ductwork or stack to te opacity measurement when the crematory retort is operating.			
1,2,3,4,5	nanometers (nm). The r than 10 percent of the p b. The light source shall b c. The output signal from milliamp format, and	have a peak and mean spectral response between 500 and 600 response at any wavelength below 400 nm or above 700 nm shall be less			
1,-,-,-,-,-		in electronic interlock automatically prevents ignition of the primary chamber burner during the burn cycle whenever opacity exceeds the			
	Operating and Maintenance Pro- including the air pollution contro operation and function before pr	crematory retorts in accordance with the manufacturer's Standard cedures (SOMP). The Permittee shall check all crematory equipment of and continuous opacity monitoring equipment daily for proper roceeding with the cremation process. The photovoltaic eye on the d daily or as frequently as necessary to obtain accurate opacity readings.			

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 13 of 22

	Table 3				
EU	Monitoring and Testing Requirements				
1,2,3,4,5	13. The Permittee shall maintain the crematory retorts as necessary and ensure that they are kept in good working condition. The temperature monitoring equipment shall be calibrated at a frequency and maintained in accordance with manufacturer's recommendations to ensure continuous compliance with the temperature limits in Table 2 of this Approval. The COMS shall be calibrated in the field on a quarterly basis by performing clear path calibration that is conducted manually for the zero and for a span point that is between twenty (20) and thirty (30) percent transmission using a certified neutral density filter. Said quarterly calibrations shall be conducted between January 1 st through March 31 st , April 1 st through June 30 th , July 1 st through September 30 th , and October 1 st through December 31 st of every year.				
	14. The Permittee shall monitor on a daily, monthly, and consecutive twelve-month period basis the pounds cremated in each crematory retort.				
	15. The Permittee shall monitor on a daily, monthly, and consecutive twelve-month period basis the natural gas consumption for each crematory retort.				
	16. The Permittee shall monitor all operations to ensure sufficient information is available to comply with 310 CMR 7.12 Source Registration and 310 CMR 7.71 Greenhouse Gas Reporting.				
Facility-	17. If and when MassDEP requires it, the Permittee shall conduct emission testing in accordance with USEPA Reference Test Methods and Regulation 310 CMR 7.13.				
wide	 At least 30 days prior to emission testing, the Permittee shall submit to MassDEP for written approval a stack emission pretest protocol. 				
	19. Within 60 days after emission testing, the Permittee shall submit to MassDEP a final stack emission test results report.				

Table 3 Key:

EU = Emission Unit	CMR = Code of Massachusetts Regulations
$PM_{2.5}$ = Particulate Matter less than or equal to 2.5 microns in diameter includes filterable and condensable fractions	PM_{10} = Particulate Matter less than or equal to 10 microns in diameter
CO = Carbon Monoxide	NO _x = Nitrogen Oxides
SOMP = Standard Operating and Maintenance Procedures DAS = Data Acquisition System	CTMS – Continuous Temperature Monitoring System COMS = Continuous Opacity Monitoring System
nm = nanometer	% = percent
USEPA = United States Environmental Protection Agency	PM = Total Particulate Matter

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 14 of 22

Table 4						
EU		Record Keeping Requirements				
	1.	The Permittee shall record the start time and end time for each retort on a daily basis to demonstrate compliance with Table 2 operational limits.				
1 and 2	2.	The Permittee shall record the operating hours on a weekly and consecutive 12-month basis to demonstrate compliance with Table 2 operational limits.				
	3.	The Permittee shall record temperatures continuously in the secondary chambers of each cremation retort during each complete cremation cycle. If the Permittee digitally records these temperatures, the Permittee shall use a computerized DAS and data logger and the DAS shall log at least one data point (for each temperature) every 15 seconds.				
	4.	The Permittee shall record continuously the opacity of the stack gas from each retort during each complete cremation cycle.				
		a. If the Permittee digitally records opacity, the Permittee shall use a DAS and digital recorder that records opacity on a full scale of 0%-100%. The digital recorder shall record the opacity readings with corresponding dates and times on a continuous basis. All data shall be stored in electronic format using a hard drive or comparable storage device.				
1,2,3,4,5		b. If the Permittee records opacity using a circular chart recorder, the Permittee shall record opacity on a full scale of 0%-100%. The circular chart recorder shall record the opacity readings with corresponding dates and times on a continuous basis. The Permittee shall record all startups, shutdowns and malfunctions on the circular chart recorder, all charts shall be stored on-site.				
	5.	The Permittee shall identify in all records, the cremation retort and show the date, start and end time of each cremation cycle, and shall contain the name of the operator who performed the cremation.				
	6.	The Permittee shall maintain on site and accessible at, or near the subject equipment, at all times, a copy of this Approval letter and the SOMP for all air-emissions-related equipment at the Facility. The SOMP for each crematory retort shall include start-up or pre-heat, cremation loading, burn-down cycle procedures and photovoltaic eye cleaning frequency as well as descriptions of the temperature monitors, opacity monitors and all interlocks.				
	7.	The Permittee shall keep on-site records of all preventive or corrective maintenance, calibration checks, adjustments, and evaluations performed on each retort and each retort's temperature and opacity monitors, including dates and detailed descriptions of what maintenance was performed.				
	8.	The Permittee shall record the date and pounds cremated each day in each crematory retort. The Permittee shall maintain detailed records of what was cremated, weight, time, and date of cremation.				
1,2,3,4,5	9.	The Permittee shall record on a monthly and consecutive 12-month basis the natural gas consumption for each crematory retort.				
	10.	The Permittee shall maintain on-site documentation, including dated operator's certificates, showing that each operator at the Facility has received training in the proper operation and in the manufacturer's SOMP for said retorts. Said documentation shall be kept onsite throughout each operator's employment, as well as for at least five (5) years after termination of employment.				

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 15 of 22

Table 4				
EU	Record Keeping Requirements			
	11. The Permittee shall maintain adequate records on-site to demonstrate compliance status with all operational, production, and emission limits contained in Table 2 above. Records shall also include the actual emissions of air contaminant(s) emitted for each calendar month and for each consecutive twelve-month period (current month plus prior eleven months). These records shall be compiled no later than the 15 th day following each month. An electronic version of a MassDEP approved record keeping form, in Microsoft Excel format, may be downloaded at https://www.mass.gov/guides/massdep-facility-wide-emission-restrictions-caps-reporting#-application-&-notification-forms			
	12. The Permittee shall maintain records of monitoring and testing as required by Table 3.			
Facility- wide	13. The Permittee shall maintain a record of all malfunctions affecting air contaminant emission rates on the approved EU(s) and monitoring equipment. At a minimum, the records shall include: date and time the malfunction occurred; description of the malfunction; corrective actions taken; the date and time corrective actions were initiated and completed; and the date and time emission rates and monitoring equipment returned to compliant operation.			
	 The Permittee shall maintain records to ensure sufficient information is available to comply with 310 CMR 7.12 Source Registration. 			
	15. The Permittee shall maintain records required by this Plan Approval on-site for a minimum of five (5) years.			
	16. The Permittee shall make records required by this Plan Approval available to MassDEP and USEPA personnel upon request.			

Table 4 Key:

EU = Emission Unit SOMP = Standard Operating and Maintenance Procedure DAS = Data Acquisition System CMR = Code of Massachusetts Regulations PCD = Pollution Control Device USEPA = United States Environmental Protection Agency % = percent

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 16 of 22

Table 5				
EU	Reporting Requirements			
	 The Permittee shall submit to MassDEP any changes to the SOMP within seven (7) days of commencement of the modification(s). 			
	 The Permittee shall submit to MassDEP all information required by this Plan Approval over the signature of a "Responsible Official" as defined in 310 CMR 7.00 and shall include the Certificat statement as provided in 310 CMR 7.01(2)(c). 	ion		
Facility- wide	3. The Permittee shall notify the Central Regional Office of MassDEP, BAW Permit Chief by tele 508-767-2845, email, Thomas.Hannah@mass.gov and CERO.Air@mass.gov, as soon as possil no later than one (1) business days after discovery of an exceedance(s) of Table 2 requirement written report shall be submitted the BAW Permit Chief at MassDEP within three (3) business thereafter and shall include: identification of exceedance(s), duration of exceedance(s), reason exceedance(s), corrective actions taken, and action plan to prevent future exceedance(s).			
	4. The Permittee shall report every three years to MassDEP, in accordance with 310 CMR 7.12, all information as required by the Source Registration/Emission Statement Form. The Permittee shal therein any minor changes (under 310 CMR 7.02(2)(e), 7.03, 7.26, etc.), which did not require Pla Approval.			
	 The Permittee shall provide a copy to MassDEP of any record required to be maintained by this 1 Approval within 30-days from MassDEP's request. 			
	6. The Permittee shall submit to MassDEP for approval a stack emission pretest protocol, at least 30 prior to emission testing, for emission testing as defined in Table 3 Monitoring and Testing Requirements.	days		
	7. The Permittee shall submit to MassDEP a final stack emission test results report, within 45 days a emission testing, for emission testing as defined in Table 3 Monitoring and Testing Requirements			

Table 5 Key:

EU = Emission Unit SOMP = Standard Operating and Maintenance Procedures BAW = Bureau of Air and Waste CMR = Code of Massachusetts Regulations

SPECIAL TERMS AND CONDITIONS

A. The Permittee is subject to, and shall comply with, the Special Terms and Conditions as contained in Table 6 below:

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 17 of 22

	Table 6					
EU	Special Terms and Conditions					
3	1. The Permittee shall replace the currently deteriorated stack at the present location no later than 30 days upon issuance of this Plan Approval, or after the retort is moved to a new location, whichever is sooner.					
5	2. The Permittee shall ensure that, prior to operation of EU5, said retort is equipped with temperature and opacity monitoring and recording devices that comply with the requirements contained in Table 3 and Table 4 above.					
	3. The Permittee shall ensure that each primary chamber burner is electronically interlocked with the secondary chamber thermocouple to prevent ignition of the primary chamber burner or to automatically shut off the primary chamber burner during the burn cycle should the secondary chamber thermocouple detect a temperature less than the minimum required temperature as stated in Table 2 of this Plan Approval.					
	4. The Permittee shall implement an Operator Training Program to train personnel who will be operating any of the crematory retorts in the proper operation and in the manufacturer's SOMP for said retorts. Said training shall be given by a representative from the manufacturer of the crematory retort or another qualified organization. The training shall include the following elements:					
1,2,3,4,5	 a. principles of combustion; b. operating monitors and controls; c. operating sequence under normal conditions; d. safety and operating procedures under foreseeable upset conditions (e.g. power or fuel interruption, burner malfunction, visible emissions, high and low temperature incidents, etc.); e. regulatory requirements; f. calibration, adjustment and replacement of thermocouples; g. preventative maintenance practices and procedures and recommended frequency; and h. record keeping requirements and procedures; i. calibration, adjustment and replacement of opacity monitors; j. cleaning of the photovoltaic eye on the opacity monitor; and k. procedures to take when the alarm activates due to temperature or opacity deviations. 					
	Minimum training criteria shall include hands-on control of the retort for at least two (2) operating cycles in order to complete the program and receive an operator's certificate. All training shall be equipment specific. If an existing crematory retort is modified, the operator(s) must be re-trained to operate the modified retort.					
	5. The Permittee shall have an operator who has completed the Operator Training Program present at all times during cremations. The cremation operator shall take any necessary action, including shutdown of the equipment, to ensure that the Facility operates in compliance with the temperature and opacity limits contained within this Approval.					
	 The Permittee shall utilize the crematory retorts only for animal-remains-related-material and their container. No other material shall be incinerated in the crematory retorts. 					

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 18 of 22

	Table 6				
EU	Special Terms and Conditions				
	7. The Permittee shall locate the thermocouple in each retort's secondary chamber at a position that defines a chamber volume, as measured between the secondary chamber burner and the downstream thermocouple, sufficient to provide a minimum exhaust gas residence or retention time of 1.0 second at 1,600 degrees Fahrenheit.				
	8. The Permittee shall locate the thermocouple in each retort's secondary chamber at the exit end of each combustion zone in order to measure each chamber's representative temperature and not be otherwise impacted by the flame's radiant heat effect.				
	9. In the event of a malfunction or breakdown of a retort or the associated monitoring equipment, the Permittee shall not initiate any new cremations in said retort until repairs are completed and normal operation can be restored.				
1,2,3,4,5	10. The Permittee shall incinerate only containers, including cremation pouches that contain no chlorinated plastics.				
	11. The Permittee shall burn Natural Gas in the retorts as the only fuel.				
	12. The Permittee shall develop a Quality Assurance/Quality Control (QA/QC) plan to ensure that the thermocouple in each retort's primary and secondary chambers, as well as the COMS systems, are maintained and calibrated in accordance with the manufacturer's requirements.				
	13. In accordance with 310 CMR 7.04(4)(a), the Permittee shall inspect and maintain the retorts in accordance with the manufacturer's recommendations and test for efficient operation at least once in each calendar year.				
	14. This Plan Approval, AQ02C-0000005, supersedes the following Plan Approvals: W133332 dated September 4, 2007, W229538 dated October 14, 2009, and X265131 dated August 17, 2015, in their entirety, with the exception that all plan application materials submitted as part of these Plan Approvals become part of this Plan Approval AQ02C-0000005.				

Table 6 Key:

EU = Emission Unit SOMP = Standard Operating and Maintenance Procedures COMS = Continuous Opacity Monitoring System CMR = Code of Massachusetts Regulations

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 19 of 22

- B. The Permittee shall install and use an exhaust stack, as required in Table 7, on each of the Emission Units that is consistent with good air pollution control engineering practice and that discharges so as to not cause or contribute to a condition of air pollution. Each exhaust stack shall be configured to discharge the gases vertically and shall not be equipped with any part or device that restricts the vertical exhaust flow of the emitted gases, including, but not limited to, rain protection devices known as "shanty caps" and "egg beaters."
- C. The Permittee shall install and utilize exhaust stacks with the following parameters, as
- D. contained in Table 7, for the Emission Units that are regulated by this Plan Approval:

Table 7						
EU	Stack Height Above Ground (feet)Stack Inside Exit Dimensions (inches)Nominal Stack Gas Exit Velocity (feet per second)		Nominal Stack Gas Exit Temperature Range (°F)			
1	28	30	6.9 - 8.3	900-1600		
2	26	18	36.8-44.2	1400-1600		
3	26	18	36.8-44.2	1400-1600		
4	32	23	20.5-24.6	799-1199		
5	32	20.4	32.1-38.5	755-1132		

Table 7 Key:

EU = Emission Unit

°F = Degree Fahrenheit

4. <u>GENERAL CONDITIONS</u>

The Permittee is subject to, and shall comply with, the following general conditions:

A. Pursuant to 310 CMR 7.01, 7.02, 7.09 and 7.10, should any nuisance condition(s), including but not limited to smoke, dust, odor or noise, occur as the result of the operation of the Facility, then the Permittee shall immediately take appropriate steps including shutdown, if necessary, to abate said nuisance condition(s).

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 20 of 22

- B. If asbestos remediation/removal will occur as a result of the approved construction, reconstruction, or alteration of this Facility, the Permittee shall ensure that all removal/remediation of asbestos shall be done in accordance with 310 CMR 7.15 in its entirety and 310 CMR 4.00.
- C. If construction or demolition of an industrial, commercial or institutional building will occur as a result of the approved construction, reconstruction, or alteration of this Facility, the Permittee shall ensure that said construction or demolition shall be done in accordance with 310 CMR 7.09(2) and 310 CMR 4.00.
- D. Pursuant to 310 CMR 7.01(2)(b) and 7.02(7)(b), the Permittee shall allow MassDEP and / or USEPA personnel access to the Facility, buildings, and all pertinent records for the purpose of making inspections and surveys, collecting samples, obtaining data, and reviewing records.
- E. This Plan Approval does not negate the responsibility of the Permittee to comply with any other applicable Federal, State, or local laws or regulations now or in the future.
- F. The Application is incorporated into this Plan Approval by reference. Should there be any differences between the Application and this Plan Approval, the Plan Approval shall govern.
- G. Pursuant to 310 CMR 7.02(3)(k), MassDEP may revoke this Plan Approval if the construction work is not commenced within two years from the date of issuance of this Plan Approval, or if the construction work is suspended for one year or more.
- H. This Plan Approval may be suspended, modified, or revoked by MassDEP if MassDEP determines that any condition or part of this Plan Approval is being violated.
- I. Pursuant to 310 CMR 7.01(3) and 7.02(3)(f), the Permittee shall comply with all conditions contained in this Plan Approval. Should there be any differences between provisions contained in the General Conditions and provisions contained elsewhere in the Plan Approval, the latter shall govern.

5. MASSACHUSETTS ENVIRONMENTAL POLICY ACT

MassDEP has determined that the filing of an Environmental Notification Form (ENF) with the Secretary of Energy & Environmental Affairs, for air quality control purposes, was not required prior to this action by MassDEP. Notwithstanding this determination, the Massachusetts Environmental Policy Act (MEPA) and 301 CMR 11.00, Section 11.04, provide certain "Fail-Safe Provisions," which allow the Secretary to require the filing of an ENF and/or an Environmental Impact Report (EIR) at a later time.

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 21 of 22

6. <u>APPEAL OF DECISION</u>

This Decision is an action of MassDEP. If you are the applicant, an aggrieved person who has submitted written comments, where applicable, or a ten persons group that has submitted written comments, where applicable, you may request an adjudicatory hearing in accordance with 310 CMR 7.51(1). A request for a hearing must be made in writing and postmarked within twenty-one (21) days of the date of issuance of this Decision.

Under 310 CMR 1.01(6)(b), the request for adjudicatory hearing must state clearly and concisely the facts which are the grounds for the request, and the relief sought. Additionally, the request must state why the Decision is not consistent with applicable laws and regulations. In the request, an aggrieved person must state with specificity the basis of his or her claim of aggrievement. A ten persons group that files a request for an adjudicatory hearing must include affidavits from each person of the group stating their intent to be a part of the group and to be represented by the group's authorized representative. The request must comply with all other requirements of 310 CMR 1.01.

The issues raised in the request for adjudicatory hearing are limited to the subject matter of this Decision and are limited further to the issues raised during the public comment period. If the issue was not raised during the public comment period, the issue may be raised upon showing that it was not reasonably possible with due diligence to have raised such matter during the public comment period or for good cause shown.

The hearing request along with a valid check payable to Commonwealth of Massachusetts in the amount of one hundred dollars (\$100.00) and a completed Adjudicatory Hearing Fee Transmittal Form found at <u>http://www.mass.gov/eea/docs/dep/service/adr/adjherfm.doc</u> must be mailed to:

Commonwealth of Massachusetts Department of Environmental Protection P.O. Box 4062 Boston, MA 02211

An aggrieved person or a ten persons group shall send a copy of the request for an adjudicatory hearing by first class mail to the Applicant and MassDEP's contact person listed in the Decision.

The request will be dismissed if the filing fee is not paid, unless the appellant is exempt or granted a waiver as described below.

The filing fee is not required if the appellant is a city or town (or municipal agency), county, district of the Commonwealth of Massachusetts, the Massachusetts Bay Transportation Authority, federally recognized Indian tribe housing authority, effective January 14, 1994, or a municipal housing authority. MassDEP may waive the adjudicatory hearing filing fee for a person who shows that paying the fee will create an undue financial hardship. A person seeking

Forget-Me-Not Pet Cremation, LLC August 30, 2022 - Plan Approval ePlace Authorization #. AQ02C-0000005 Approval No. CE-20-015 Page 22 of 22

a waiver must file, together with the hearing request as provided above, a request for the waiver of the fee and an affidavit setting forth the facts believed to support the claim of undue financial hardship as specified in 310 CMR 4.06(2).

Should you have any questions concerning this Plan Approval, please contact Randa Kallin by telephone at 508-767-2760, or by email at <u>Randa.Kallin@mass.gov</u> and <u>CERO.Air@mass.gov</u>.

Pando Kalli-

Randa Kallin Permit Writer Bureau of Air and Waste

agal

Thomas A. Hannah Permit Chief Bureau of Air and Waste

ecc: Northborough Board of Health Northborough Fire Department MassDEP/Boston - Yi Tian Amy Gilmartin – Regency Family Christopher Bannon, PE, Capaccio Environmental Engineering, Inc. Lynn Sheridan, Capaccio Environmental Engineering, Inc. Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

APPENDIX E

PARTICLE SIZE DISTRIBUTION REPORT FROM 7/21/21 TESTING ON A SIMILAR SOURCE / EU4

3300 Breckinridge Blvd Suite 400 Duluth, GA 30096

770.662.8509 FAX 770.662.8532 www.mvainc.com

Stack Sample Analysis

PM10 & PM2.5 Custom Particle Sizing

Particle Shape Analysis

Particulate Matter Identification

Back-Half Catch Residue Identification (M202)

Filter Debris Analysis

Ambient Air Sample Characterization

Condensable Analysis

Litigation Support

Techniques

Light Microscopy

Scanning Electron Microscopy

Transmission Electron Microscopy

Fourier Transform Infrared Spectroscopy

Confocal Raman Microscopy

White Light Interference Microscopy

Energy Dispersive X-ray Spectrometry

Fluorescence Microscopy

Ion Milling & Ultramicrotomy

Accreditations

cGMP Compliant

ISO/IEC 17025

FDA Registered

DEA Licensed

Report of Results: MVA14267

Particle Size Distribution of Filters

Prepared for:

Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 Newburyport, MA 01950

Respectfully Submitted by:

EXECUTED BY **ELECTRONIC** SIGNATURE

Jake Mosely, M.S. Research Scientist

19 August 2021

Report of Results: MVA14267

Particle Size Distribution of Filters

Introduction

On 5 August 2021 we received three fiber filters with the request that we determine their particle size distributions down to 0.5 micrometer. Upon receipt the samples were assigned the unique MVA Scientific Consultants laboratory identification numbers shown in Table 1. The analyses and data reduction were performed at MVA Scientific Consultants during the period 10 August through 19 August 2021.

Methods

The samples were prepared for analysis in accordance with MVA SOP 310, "Sample Preparation Methods for Total Particle Sizing Using Microscopical Techniques."

The particle size distribution measurements were performed using a JEOL JSM-6500F field emission scanning electron microscope operating in automated mode under the control of a Thermo Scientific Noran System 7 x-ray analysis system, utilizing MVA SOP 316, "Automated Particle Size Analysis Using the JEOL JSM-6500F FESEM and Thermo Scientific Noran System 7." The particle size data are presented in terms of particle number and in terms of estimated mass. The assumption has been made that the particles are all of similar density and therefore the particle volume distribution is equivalent to the particle mass distribution.

Results

The size distributions of the filters down to 0.5 micrometer are shown in Tables 1 and 2.

Table 1. MVA14267. Percentages of Particles in Various Average DiameterRanges by Number of Particles

MVA Sample Number	AG1248	AG1249	AG1250
Client ID	M5-R1	M5-R2	M5-R3
Average Diameter Range (µm)	Number %	Number %	Number %
0.5 - 1	66.5	59.5	60.7
>1 - 2.5	29.5	36.6	30.8
>2.5 - 5	3.6	3.6	7.0
>5 - 7.5	0.4	0.2	1.2
>7.5 - 10	0.1	0.04	0.2
>10	0.05	0.1	0.1
Total Particles	23371	22604	15252

Table 2. MVA14267. Percentages of Particles in Various Average Diameter Ranges by Mass of Particles

MVA Sample Number	AG1248	AG1249	AG1250
Client ID	M5-R1	M5-R2	M5-R3
Average Diameter Range (µm)	Mass %	Mass %	Mass %
0.5 - 1	7.4	6.2	3.7
>1 - 2.5	23.1	27.1	17.6
>2.5 - 5	20.0	16.6	35.8
>5 - 7.5	12.9	6.2	26.0
>7.5 - 10	6.4	3.3	10.4
>10	30.3	40.6	6.6

Special Handling: • Office Location: • Standard Delivery - 10 Days X • Express Delivery - 3 Days C • RUSH Delivery - Next Day • • • RUSH Delivery Based on Sample Receipt at Laboratory.		Mike Bruni		Page1of1_				Notes:	Diease provide particle size	distribution analysis via SEM	<u> </u>										Sample Condition Upon Receipt	a Ambient a C								
Special Handling: • Office Location: • Standard Delivery - 10 Days • Express Delivery - 3 Day • RUSH Delivery - Next Day • RUSH Delivery Based on Sample				ŝis				d: Method:						 								Phy load								
Special Hand • Office Location: • Standard Deliver • Express Delivery • RUSH Delivery • Delivery Baser			com	Analysis				od: Method:						 							B: TMB:	WO SOIL INC								
MONTROSE AIR QUALITY SERVICES Sample Chain of Custody	bd	-8996	Email: astratton@montrose-env.com						2	SEN SEU				_	_				_			. Date:	3121							
	PO No.: To be emailed	Phone No.: 508-989-8996		ntainer				ic Other									_		 											
	PO No.	Phone	Email: ;	Sample Container				ā	× >	<	< 								 _		id By:	ming								
		Site ID: Unit EU4	VA .		lone			ix Glass	_					_							Received By:	pma.								
	:0J-010182		thborough, I				ter 4 = Acetone	rcoal *= other		e Matrix	_					_	_	_	_	_			1.	Kortu						
	Project Number: PROJ-010182		cation: Nor	Plant Location: Northborough, MA			H 3=Filter	D C = Charcoal	Г	e Type	m r		°			_			_											
	Project /	Site ID:	Plant Loc	Plant Loc	Plant Lot	Plant Lo	Plant Lot	Plant Lot		4 2 = NaOH	es X=XAD	/ Blanks	Volume		<u> </u>											Time				
	-												1 = H2SO4	6 = Hexanes	ality Contro	Time			-			 				-			Date:	6-2-8
								A = Air 5 = Water	5 = Water	ite Q = Qui							 													
	Client Name: Forget-Me-Not Pet Crematory	Project Manager: Anthony Stratton	Report Results To: A. Stratton	Special Instructions:	Matrix Info:		G = Grab C = Composite Q = Quality Control / Blanks	Sample ID	M5-R1 A-16TX		OCTO Y EX-CM										1.1.1 Beilingulahed By:	MON H								

Gateway Services, Inc. – Northborough, MA Test Site Compliance Testing, EU5 – Final Report

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact the following individual by email or phone.

- Name: Mr. David A. Caron
 - Title: District & Client Project Manager
- Region: Northeast
- Email: dcaron@montrose-env.com
- Phone: (978) 499-9300 x11303
- Name: Mr. Anthony Stratton
 - Title: Client Project Manager
- Region: Northeast
 - Email: mbruni@montrose-env.com
- Phone: (978) 499-9300 x11304

ACORD	

CERTIFICATE OF LIABILITY INSURANCE

DATE (MM/DD/YYYY)

				<u> </u>		_	1.	/8/2024				
THIS CERTIFICATE IS ISSUED AS A MAT CERTIFICATE DOES NOT AFFIRMATIVE BELOW. THIS CERTIFICATE OF INSUR REPRESENTATIVE OR PRODUCER, AND T	Y OF	R NEGATIVELY AMEND, DOES NOT CONSTITUT	EXTE	ND OR ALT	ER THE CO	VERAGE AFFORDED B	Y THE	POLICIES				
IMPORTANT: If the certificate holder is an ADDITIONAL INSURED, the policy(ies) must have ADDITIONAL INSURED provisions or be endorsed.												
If SUBROGATION IS WAIVED, subject to												
this certificate does not confer rights to th						•						
PRODUCER			CONTA NAME:	СТ								
Marsh & McLennan Agency LLC				o, Ext): 704-36	5 6213	FAX						
5605 Carnegie Blvd Suite 300						(A/C, No):						
Charlotte NČ 28209			ADDRESS: macerts@marshmma.com									
				NAIC #								
			INSURE	10677								
INSURED		GATESERV	INSURE	20281								
Gateway Services USA, LLC; 222394536	Dela	ware LLC	INSURE	55555								
4283929 Delaware, LLC; See Remarks 2 Daniels Way				R D : Accident				12304				
Cranston RI 02921								12004				
			INSURE									
	<u> </u>		INSURE	RF:								
		E NUMBER: 2116738197				REVISION NUMBER:						
THIS IS TO CERTIFY THAT THE POLICIES OF INDICATED. NOTWITHSTANDING ANY REQUI CERTIFICATE MAY BE ISSUED OR MAY PER EXCLUSIONS AND CONDITIONS OF SUCH POL	REME TAIN,	NT, TERM OR CONDITION THE INSURANCE AFFORD	OF AN ED BY	Y CONTRACT	OR OTHER I S DESCRIBEI	DOCUMENT WITH RESPEC	ст то у	WHICH THIS				
				POLICY EFF (MM/DD/YYYY)	POLICY EXP (MM/DD/YYYY)	LIMIT	s					
B X COMMERCIAL GENERAL LIABILITY Y	Y	36074055		12/19/2023	12/19/2024	EACH OCCURRENCE	\$ 2,000	.000				
CLAIMS-MADE X OCCUR						DAMAGE TO RENTED	\$ 2,000	,				
CLAIMS-MADE CCCOR						PREMISES (Ea occurrence)		,				
						MED EXP (Any one person)	\$ 10,00					
						PERSONAL & ADV INJURY	\$ 2,000	,				
GEN'L AGGREGATE LIMIT APPLIES PER:						GENERAL AGGREGATE	\$2,000	,000				
X POLICY PRO- JECT LOC						PRODUCTS - COMP/OP AGG	\$2,000	,000				
OTHER:							\$					
A AUTOMOBILE LIABILITY Y	Y	EBA0615259		12/19/2023	12/19/2024	COMBINED SINGLE LIMIT (Ea accident)	\$2,000	,000				
X ANY AUTO						BODILY INJURY (Per person)	\$					
OWNED SCHEDULED						BODILY INJURY (Per accident)	\$					
AUTOS ONLY AUTOS HIRED NON-OWNED						PROPERTY DAMAGE	\$					
AUTOS ONLY AUTOS ONLY						(Per accident)	\$					
				12/19/2023	40/40/0004							
		MPR2346764		12/19/2023	12/19/2024	EACH OCCURRENCE	\$8,000					
EXCESS LIAB CLAIMS-MADE						AGGREGATE	\$8,000	,000				
DED X RETENTION \$ 0							\$					
D WORKERS COMPENSATION AND EMPLOYERS' LIABILITY	Y	10007017903		8/9/2023	8/9/2024	X PER OTH- STATUTE ER						
						E.L. EACH ACCIDENT	\$ 1,000	,000				
OFFICER/MEMBER EXCLUDED?	`					E.L. DISEASE - EA EMPLOYEE	\$ 1,000	,000				
If yes, describe under DESCRIPTION OF OPERATIONS below						E.L. DISEASE - POLICY LIMIT	\$ 1,000					
							÷.,500	,- = =				
						- D						
DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES Orchard Hill Memorial Park, LLC	ACORE	0 101, Additional Remarks Schedu	le, may b	e attached if more	e space is require	ed)						
A Memorial Service, LLC												
Brandywine Green, LLC DBA Valley Pet Memo	rial Se	ervices, LLC										
Cremanimo Inc. FFPLS Lafayette, LLC												
FFPLS Las Vegas, LLC												
FFPLS Quakertown, LLC												
Final Gift USA, LLC See Attached												
			0.00									
CERTIFICATE HOLDER CANCELLATION												
Maryland Department of the E Land Management Administra	THE	SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS.										
Technical Services & Operatio	ns Pr	rogram		RIZED REPRESE								
1800 Washington Blvd. Ste 65 Baltimore MD 21230	0											
	Countrary Steel											

ACORD 25 (2016/03)

© 1988-2015 ACORD CORPORATION. All rights reserved.

AGENCY CUSTOMER ID: GATESERV

LOC #:

AĆ	ORD
AC	

Pet Loss Services North Americ Pet Memorial Park, Inc. Regency- Akron, LLC Regency- Albany, LLC Regency- Chicago, LLC Regency- Denver, LLC Regency- Flagstaff, LLC Regency- Flagstaff, LLC Regency- Florence, LLC Regency- Houston, LLC Regency- Loveland, LLC Regency- Loveland, LLC Regency- Pensacola, LLC Regency- Pensacola, LLC Regency- Pensacola, LLC Regency- Portland, LLC Regency Pet, LLC Riverbend Pet Crematory, LLC The S. Morris Co

The S. Morris Co Treasured Pets GP

D -- -- -

ADDITIONAL		RKS SCHEDULE Page 1 of 1								
AGENCY Marsh & McLennan Agency LLC		NAMED INSURED Gateway Services USA, LLC; 222394536 Delaware LLC 4283929 Delaware, LLC; See Remarks								
POLICY NUMBER		2 Daniels Way Cranston RI 02921								
CARRIER	NAIC CODE									
		EFFECTIVE DATE:								
ADDITIONAL REMARKS										
THIS ADDITIONAL REMARKS FORM IS A SCHEDULE TO ACC FORM NUMBER: 25 FORM TITLE: CERTIFICATE OF		ISURANCE								
Forget-Me-Not Pet Cremation, LLC Gateway Services Inc. Greenbrier Pet Loss Services, LLC Hartsdale Crematory, LLC Hinsdale Animal Cemetery & Crematory, Inc. Loving Hearts Pet Cremation Services, LLC New York Pet Memorial Park, LLC Orchard Hill Memorial Park, LLC Paws & Cherish- Florida, LLC Pet Crematory Agency, LLC Pet Loss Services North America, LLC										

**HIRED AUTO/Physical damage limit \$100,000 included with a \$1,000 deductible

DEPARTMENT OF PLANNING & ZONING PLANNING | ZONING | LAND PRESERVATION | FOREST CONSERVATION | GIS

January 9, 2024

Misty Sirch 2 Daniels Way Cranston, RI 02921

RE: Request for Zoning Confirmation for 19712 Shepherdstown Pike, Boonsboro, MD 21713

To Whom it may Concern,

In response to your request for information regarding the above referenced property, we have researched our files and present the following:

- The current zoning classification for the subject property is Preservation District which is governed by Article 5C of the Washington County Zoning Ordinance.
- The subject property was granted approval by the Board of Zoning Appeals for the special exception use of a crematorium. No limits on the number of ovens were placed on the property.
- Additional permits would be required if additional equipment is installed on the property.

This information was researched on January 9, 2023 by the undersigned per request and as a public service. The undersigned certifies that the above information contained herein is believed to be accurate and is based upon or relates to the information supplied by the requestor. The Authority assumes no liability for errors or omissions. All information was obtained from public records which may be inspected during regular business hours.

Sincerely,

Katie Rathvon Zoning Coordinator

747 Northern Avenue | Hagerstown, MD 21742 | P: 240.313.2430 | F: 240.313.2431 | TDD: 7-1-1

PETER ANDERSON 7652 Old National Pike Boonsboro, MD 21716

Appellant

OPINION

This action is a request for a special exception to establish a crematory business, "Agape Pet Services," for animals. The subject property is located at the north side of MD Rt. 34, 1,500 feet east of Wheeler Road, is owned by First Brethren Church of Hagerstown, and is zoned Environmental Preservation.

A public hearing was held before a full Board on April 12, 2006. The Appellant offered evidence and testimony in support of the appeal. Opponents offered evidence and testimony in opposition to the appeal.

FINDINGS OF FACT

The following findings of fact are made by the Board, based upon the testimony given and all data and other evidence presented, and upon a study of the specific property involved, as well as the neighborhood:

1. This action is essentially as set forth above.

2. Filed with the Board and incorporated with the record herein was the Notice of Appeal and supporting documentation.

3. This appeal was duly advertised in *The Herald-Mail*.

4. Appellant proposes operation of a small pet crematory on the property.

5. The crematory will be odorless and smokeless, and will not produce any dust.

6. The only waste produced by operation of the crematory is calcium.

7. Since the crematory started operations, they have had three Environmental Protection Agency inspections with no problems.

8. There are no measurable emissions created by the crematory.

- 9. The Appellant produced four exhibits:
 - a. A letter discussing the technology;
 - b. An aerial photograph of the property;
 - c. A letter of support from Bast Funeral Home; and
 - d. A letter of support from the Reese's.

10. The property is 50 acres in area and is wooded. Thus, existing trees provide natural screening.

11. The two neighboring property owners have no objections.

12. The Appellant is planning to live on the property.

13. The only traffic will be a driver making one trip each day. There are no plans for a pet cemetery.

14. There are no streams or wetlands on the property.

15. The proposed building will be 46'x60' with a small office.

16. The proposed use is compatible with the existing neighborhood and consistent with the Comprehensive Plan.

17. Opponents to the request argued that the crematory is located near Crystal Grottoes and is not compatible with the neighborhood. The property is a rocky area, and there will be a problem with runoff if waste is spread.

18. In rebuttal, the Appellant stated that there will be approximately two coffee can amounts of waste generated daily.

19. Received and filed with the Board was correspondence from Kathy A. Kroboth, Zoning Coordinator, advising that the proposed use was not inconsistent with the Comprehensive Plan.

RATIONALE

The Board has authority to grant a special exception pursuant to Section 25.2(b) of the Zoning Ordinance for Washington County, Maryland. A special exception is defined

as "a grant of a specific use that would not be appropriate generally or without restriction; and shall be based upon a finding that the use conforms to the plan and is compatible with the existing neighborhood." Section 28.62. Section 25.6 of the Ordinance directs the Board to consider the following factors, as applicable, in rendering its decision: (a) The number of people residing or working in the immediate area concerned; (b) the orderly growth of a community; (c) traffic conditions and facilities; (d) the effect of such use upon the peaceful enjoyment of people in their homes; (e) the conservation of property values; (f) the effect of odors, dust, gas, smoke, fumes, vibrations, glare and noise upon the use of surrounding property values; (g) the most appropriate use of land and structure; (h) the decision of the courts; (I) the purpose of these regulations as set forth herein; (j) the type and kind of structures in the vicinity where public gatherings may be held, such as schools, churches and the like.

In the instant appeal, the Appellant has met his burden for the grant of a special exception. The crematory operation will be odorless, smokeless, and non-obtrusive, and it has operated without incident for approximately the past four years in another location. Furthermore, the property is of sufficient size to isolate the use, and existing trees will screen it from neighboring views. The neighboring property owners do not object to the proposal. The opposition's argument that a pet crematory is incompatible with an Environmental Preservation district is unpersuasive. No evidence was presented to show that the location of the crematory at this site would cause more adverse effects than would location of the same use at any other location in the district. Thus, under the holding of *Schultz v. Pritts*, the approval of this appeal is appropriate. Based upon all of the testimony and evidence presented, this Board finds that the subject request does not adversely affect the public health, safety, security, morals, or general welfare, nor does it result in dangerous traffic conditions, or jeopardize the life and property of neighborhood residents.

Accordingly, having considered all of the factors set forth in Section 25.6 of the Zoning Ordinance, this request for a special exception to establish a crematory business, "Agape Pet Services," for animals is hereby GRANTED WITH CONDITIONS AS SET FORTH BELOW this 11th day of May, 2006.

<u>Conditions</u>

1. The building shall be screened.

2. A 300' setback from the road is required.

3. The forest conservation requirements shall be met on site at the subject property and shall not be met via waiver.

4. Any signs identifying the business shall not be illuminated.

BOARD OF ZONING APPEALS By: Spence Perry, Chair

COMMONWEALTH OF VIRGINIA STATE CORPORATION COMMISSION

AT RICHMOND, DECEMBER 28, 2019

The State Corporation Commission has found the accompanying articles of merger submitted on behalf of

Agape Pet Services of Virginia LLC

to comply with the requirements of law and confirms payment of all required fees. Therefore, it is ORDERED that this

CERTIFICATE OF MERGER

be issued and admitted to record with the articles of merger in the Office of the Clerk of the Commission, effective January 1, 2020. When the merger becomes effective, each of the following:

Agape Pet Services of Virginia LLC

is merged into Agape Pet Services LLC (a MD Limited Liability Company not registered in VA), which continues to exist under the laws of MARYLAND with the name Agape Pet Services LLC, and the separate existence of each merged entity ceases.

STATE CORPORATION COMMISSION

By Jourith Willia pegalmann

Commissioner

Commonwealth of Virginia State Corporation Commission Office of the Clerk Entity ID: 34881989 Filing Number: 191228178485 Filing Date/Time: 12/28/2019 04:58 PM Effective Date/Time: 01/01/2020 12:01 AM

ARTICLES OF MERGER

Agape Pet Services of Virginia LLC, a Virginia limited liability company with and into Agape Pet Services LLC, a Maryland limited liability company

Pursuant to Section 13.1-1072, these Articles of Merger are made effective as of January 1, 2020, by Agape Pet Services of Virginia LLC, a Virginia limited liability company ("Disappearing Company") and Agape Pet Services LLC, a Maryland limited liability company ("Surviving Company").

Article 1. The Plan of Merger is set forth as Exhibit A attached hereto.

Article 2. The merger shall affect no change in the Articles of Organization of the Surviving Company.

Article 3. The merger shall be effective as of January 1, 2020, and was adopted by the Disappearing Company and the Surviving Company, effective as of January 1, 2020.

Article 4. The Plan of Merger was adopted by the Disappearing Company in accordance with the provisions of Section 13.1-1071 of the Code of Virginia.

Article 5. The Plan of Merger is permitted by the State of Maryland.

Remainder of page intentionally left blank. Signatures follow on next page.

Commonwealth of Virginia State Corporation Commission Office of the Clerk Entity ID: 84881989 Filling Mumber: 191228178486 Filling Date/Time: 12/28/2019 04:56 PM Effective Date/Time: 01/01/2020 12:01 AM

AGAPE PET SERVICES LLC By: Gateway US Holdings, Inc., Sole Member

<u>Tille</u> 10 11 lister Presiller Title: _

.

.

AGAPE PET SERVICES OF VIRGINIA LLC By: Gateway US Holdings, Inc., Sole Member

37 By: _ KIRI 77,ntin Name: Pusider Title: ___ Vice

•

Commonwealth of Virginia State Corporation Commission Office of the Clerk Entity ID: S4891889 Filing Number: 191228178485 Filing Date/Time: 1228/2019 04:66 PM Effective Date/Time: 01/01/2020 12:01 AM

PLAN OF MERGER

Pursuant to Section 13.1-1070 of the Virginia Limited Liability Company Act this Plan of Merger (the "Plan") is made effective as of January 1, 2020 between Agape Pet Services LLC, a Maryland limited liability company (the "Surviving Company") and Agape Pet Services of Virginia LLC, a Virginia limited liability company (the "Disappearing Company"), (the Surviving Company and Disappearing Company are sometimes hereinafter referred to as the "Constituent Entities"), who agree as follows:

1. Recitals.

a) The Surviving Company was organized in the State of Maryland on February
3, 2002. The Surviving Company has (a) Nine Hundred (800) Voting Units issued and
cutstanding and (b) One Hundred (100) Profit Interests Units issued and cutstanding ((a) and
(b) collectively, the "Surviving Company Units").

b) The Disappearing Company was organized in the Commonwealth of Virginia on August 21, 2013. The Disappearing Company has (a) Nine Hundred (900) Voting Units issued and outstanding and (b) One Hundred (100) Profit Interests Units issued and outstanding ((a) and (b) collectively, the "Disappearing Company Units").

d) The Constituent Entities deem it advisable and for the benefit of their respective entities that the Disappearing Company merge with and into the Surviving Company on the terms and conditions hereinafter set forth (the "Merger").

e) Gateway US Holdings, Inc., a Delaware corporation is the sole owner of all of the Disappearing Company Units and all of the Surviving Company Units.

2. <u>Merger</u>. At the effective time of the Merger, the Disappearing Company shall be merged with and into the Surviving Company and the Surviving Company shall continue its existence under the laws of the State of Maryland.

3. <u>Certificate of Formation</u>. The Merger shall effect no change in the Certificate of Formation of the Surviving Company.

4. Terms of Merger.

a) The Disappearing Company Units issued and outstanding at the effective time of the Merger shall be cancelled and retired. The Surviving Company Units shall be unaffected by the Merger.

b) The Surviving Company shall be liable for the payment of any required franchise taxes that are due and payment by Disappearing Company.

5. <u>Right to Abandon Merger</u>. This Plan may be terminated and the Merger abandoned at any time by mutual agreement of the Constituent Entities.

6. <u>Right to Amend Plan of Merger</u>. This Plan may be amended at any time prior to the filing of the Certificate of Merger by mutual agreement of the Constituent Entitles.

7. <u>Effective Time of Merger</u>. The Merger shall be effective as of 12:01 a.m. on January 1, 2020.

:

:

1

÷

Commonwealth of Virginia State Corporation Commission Office of the Clark • Entity ID: S4891989 Filing Number: 191229178465 Filing Date/Time: 12/28/2019 04:56 PM Effective Date/Time: 01/01/2020 12:01 AM

Signed as of the date specified above.

٠.

AGAPE PET SERVICES OF VIRGINIA LLC

By; 1.2 Kelli Name: Charts Title: ____ Vice PICS deat

AGAPE PET SERVICES LLC

è

THE REAL 1 By: ____ Name: _ <u>K/1</u> Ŷ Clin b Diesident Title: ____ Vie

COMMONWEALTH OF VIRGINIA STATE CORPORATION COMMISSION

AT RICHMOND, DECEMBER 28, 2019

The State Corporation Commission has found the accompanying articles of merger submitted on behalf of

Agape Pet Services LLC

to comply with the requirements of law and confirms payment of all required fees. Therefore, it is ORDERED that this

CERTIFICATE OF MERGER

be issued and admitted to record with the articles of merger in the Office of the Clerk of the Commission, effective January 1, 2020. When the merger becomes effective, each of the following:

Agape Pet Services of Virginia LLC

is merged into Agape Pet Services LLC, which continues to exist under the laws of MARYLAND with the name Agape Pet Services LLC, and the separate existence of each merged entity ceases.

STATE CORPORATION COMMISSION

Jagduann By 🔇

Commissioner

Commonwealth & Hirginia

I Certify the Following from the Records of the Commission:

The foregoing is a true copy of the articles of merger filed in the Clerk's Office of the Commission on December 28, 2019 by Agape Pet Services of Virginia LLC effective as of January 1, 2020.

Nothing more is hereby certified.

Signed and Sealed at Richmond on this Date: January 3, 2020

Joel H. Peck, Clerk of the Commission

MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

SUPPLEMENT TO DOCKET #03-24

- COMPANY: Brandywine Green, LLC dba Agape Pet Services
- LOCATION: 19712 Shepherdstown Pike Boonsboro, Maryland 21713
- APPLICATION: Installation of five (5) animal crematories to replace three (3) existing crematories.

ITEM	DESCRIPTION
1	Notice of Tentative Determination, Opportunity to Request a Public Hearing, and Opportunity to Submit Written Comments
2	Fact Sheet and Tentative Determination
3	Draft Permit to Construct and Conditions
4	Supplemental Information References List
5	Privilege Log – Not Applicable

MARYLAND DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF TENTATIVE DETERMINATION, OPPORTUNITY TO REQUEST A PUBLIC HEARING, AND OPPORTUNITY TO SUBMIT WRITTEN COMMENTS

FIRST NOTICE

The Department of the Environment, Air and Radiation Administration (ARA) has completed its review of an application for a Permit to Construct submitted by Brandywine Green, LLC dba Agape Pet Services on February 26, 2024 for the installation of five animal crematories to replace three existing animal crematories. The proposed installation will be located at 19712 Shepherdstown Pike, Boonsboro, Maryland 21713.

Pursuant to Section 1-604, of the Environment Article, Annotated Code of Maryland, the Department has made a tentative determination that the Permit to Construct can be issued and is now ready to receive public comment on the application. Copies of the Department's tentative determination, the application, the draft permit to construct with conditions, and other supporting documents are available for public inspection on the Department's website. Look for Docket # 03-24 at the following link:

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

In accordance with HB 1200/Ch. 588 of 2022, the applicant provided an environmental justice (EJ) Score for the census tract in which the project is located using the Maryland EJ Screening Tool. The EJ Score, expressed as a statewide percentile, was shown to be 37.7 which the Department has verified. This score considers three demographic indicators, minority population above 50%, poverty rate above 25% and limited English proficiency above 15% to identify underserved communities. Multiple environmental health indicators are used to identify overburdened communities. The Department's review of the environmental and socioeconomic indicators contributing to that EJ score is included in the tentative determination that is available for public inspection.

Interested persons may request a public hearing and/or submit written comments on the tentative determination. Requests for a public hearing must be submitted in writing and must be received by the Department no later than 20 days from the date of this notice. A requested public hearing will be held virtually using teleconference or internet-based conferencing technology unless a specific request for an in-person public hearing is received. Written comments must be received by the Department no later than 30 days from the date of this notice.

Interested persons may request an extension to the public comment period. The extension request must be submitted in writing and must be received by the Department no later than 30 days from the date of this notice or within 5 days after the hearing (if a hearing is requested), whichever is later. The public comment period may only be extended one time for a 60-day period.

All requests for a public hearing, requests for an extension to the public comment period, and all written comments should be directed to the attention of Ms. Shannon Heafey, Air Quality Permits Program by email to shannon.heafey@maryland.gov or by mail to the Air and Radiation Administration, 1800 Washington Boulevard, Baltimore, Maryland 21230. Further information may be obtained by calling Ms. Shannon Heafey at 410-537-4433.

Christopher R. Hoagland, Director Air and Radiation Administration

MARYLAND DEPARTMENT OF ENVIRONMENT AIR AND RADIATION ADMINISTRATION

FACT SHEET AND TENTATIVE DETERMINATION BRANDYWINE GREEN, LLC DBA AGAPE PET SERVICES

PROPOSED INSTALLATION OF FIVE (5) ANIMAL CREMATORIES

I. INTRODUCTION

The Maryland Department of the Environment (the "Department") received an application from Brandywine Green, LLC dba Agape Pet Services on February 26, 2024, for a Permit to Construct for the installation of five animal crematories to replace three existing animal crematories. The proposed installation will be located at 19712 Shepherdstown Pike, Boonsboro, Maryland 21713.

A notice was placed in <u>Hagerstown Herald</u> on June 14, 2024 and again on June 21, 2024 announcing an opportunity to request an informational meeting to discuss the application for a Permit to Construct. An informational meeting was not requested.

As required by law, all public notices were also provided to elected officials in all State, county, and municipality legislative districts located within a one-mile radius of the facility's property boundary.

The Department has reviewed the application and has made a tentative determination that the proposed facility is expected to comply with all applicable air quality regulations. A notice will be published to provide the public with opportunities to request a public hearing and to comment on the application, the Department's tentative determination, the draft permit conditions, and other supporting documents. The Department will not schedule a public hearing unless a legitimate request is received.

If the Department does not receive any comments that are adverse to the tentative determination, the tentative determination will automatically become a final determination. If adverse comments are received, the Department will review the comments, and will then make a final determination with regard to issuance or denial of the permit. A notice of final determination will be published in a newspaper of general circulation in the affected area. The final determination may be subject to judicial review pursuant to Section 1-601 of the Environment Article, Annotated Code of Maryland.

II. CURRENT STATUS AND PROPOSED INSTALLATION

A. Current Status

Agape Pet Services currently operates an existing pet cremation facility that includes the following permitted equipment:

- One (1) Facultatieve Technologies ISI-1600 animal crematory rated at 240 pounds per hour
- One (1) Matthews Model IEB-40 animal crematory rated at 350 pounds per hour
- Three (3) B&L BLP 750 M5 animal crematories rated at 200 pounds per hour

B. Proposed Modification

Agape Pet Services is proposing to install five (5) new animal crematories, fired with liquified petroleum gas and remove the three (3) B&L BLP 750 M5 animal crematories for a total of seven (7) animal crematories at the site. The new units are as follows:

- One (1) Matthews Model IEB-56 animal crematory rated at 400 pounds per hour
- Two (2) Matthews Model PPjr animal crematories rated at 75 pounds per hour each
- Two (2) Therm Tec IS18P6 animal crematory rated at 300 pounds per hour each

Each of the new animal crematories will be equipped with a secondary combustion chamber capable of meeting at least a 1.0 second retention time and a minimum operating temperature of 1600 °F. The animal crematories must be equipped with temperature sensors and monitors to continuously measure and record the temperature of the secondary combustion chamber. Exhaust gases must be vented out of a stack at a height of at least 35 feet from the ground to ensure proper dispersion of exhaust gases.

III. APPLICABLE REGULATIONS

The proposed installations are subject to all applicable Federal and State air quality control regulations, including, but not limited to the following:

- (a) COMAR 26.11.01.07C, which requires that the Permittee report to the Department occurrences of excess emissions.
- (b) COMAR 26.11.02.13A(1), which requires that the Permittee obtain from the Department, and maintain and renew as required, a valid State permit-to-operate.

- (c) COMAR 26.11.02.19C & D, which require that the Permittee submit to the Department annual certifications of emissions, and that the Permittee maintain sufficient records to support the emissions information presented in the submittals.
- (d) COMAR 26.11.06.08 and 26.11.06.09, which generally prohibit the discharge of emissions beyond the property line in such a manner that a nuisance or air pollution is created.
- (e) COMAR 26.11.08.04A(1), which prohibits the Permittee to cause or permit the discharge of emissions from any incinerator, other than water in an uncombined form which is greater than 20 percent opacity.

Exceptions. The requirements do not apply to emissions during start-up, or adjustments or occasional cleaning of control equipment if:

- (1) The visible emissions are not greater than 40 percent opacity; and
- (2) The visible emissions do not occur for more than 6 consecutive minutes in any 60-minute period.
- (f) COMAR 26.11.08.05A(1) & A(3), which limits the concentration of particulate matter in any exhaust gases to not more than 0.10 grains per standard cubic foot of dry exhaust gas.
- (g) COMAR 26.11.15.05, which requires that the Permittee implement "Best Available Control Technology for Toxics" (T BACT) to control emissions of toxic air pollutants.
- (h) COMAR 26.11.15.06, which prohibits the discharge of toxic air pollutants to the extent that such emissions would unreasonably endanger human health.

IV. GENERAL AIR QUALITY

The U.S. Environmental Protection Agency (EPA) has established primary and secondary National Ambient Air Quality Standards (NAAQS) for six (6) criteria pollutants, i.e., sulfur dioxide, particulate matter, carbon monoxide, nitrogen dioxide, ozone, and lead. The primary standards were established to protect public health, and the secondary standards were developed to protect against non-health effects such as damage to property and vegetation.

The Department utilizes a statewide air monitoring network, operated in accordance with EPA guidelines, to measure the concentrations of criteria pollutants in Maryland's ambient air. The measurements are used to project statewide ambient air quality, and currently indicate that Washington County complies with the NAAQS for sulfur dioxide, particulate matter, carbon monoxide, nitrogen dioxide, ozone, and lead.

With regard to toxic air pollutants (TAPs), screening levels (i.e., acceptable ambient concentrations for toxic air pollutants) are generally established at 1/100 of allowed worker exposure levels (TLVs)¹. The Department has also developed additional screening levels for carcinogenic compounds. The additional screening levels are established such that continuous exposure to the subject TAP at the screening level for a period of 70 years is expected to cause an increase in lifetime cancer risk of no more than 1 in 100,000.

V. ENVIRONMENTAL JUSTICE ANALYSIS

The concept behind the term environmental justice (EJ) is that regardless of race, color, national origin, or income, all Maryland residents and communities should have an equal opportunity to enjoy an enhanced quality of life. How to assess whether equal protection is being applied is the challenge.

Communities surrounded by a disproportionate number of polluting facilities puts residents at a higher risk for health problems from environmental exposures. It is important that residents who may be adversely affected by a proposed source be aware of the current environmental issues in their community in order to have meaningful involvement in the permitting process. Resources may be available from government and private entities to ensure that community health is not negatively impacted by a new source located in the community.

Extensive research has documented that health disparities exist between demographic groups in the United States, such as differences in mortality and morbidity associated with factors that include race/ethnicity, income, and educational attainment.

The Maryland General Assembly passed HB 1200, effective October 1, 2022, that adds to MDE's work incorporating diversity, equity and inclusion into our mission to help overburdened and underserved communities with environmental issues. In accordance with HB 1200/Ch, 588 of 2022, the applicant provided an environmental justice (EJ) Score for the census tract in which the proposed source is located using the Maryland EJ Screening Tool. The EJ Score, expressed as a statewide percentile, was shown to be 37.7, which the Department has verified. This score considers three demographic indicators, minority population above 50%, poverty rate above 25% and limited English proficiency above 15%, to identify underserved communities.

To account for other sources of pollution surrounding the proposed source, the Department conducted an additional EJ Score analysis to evaluate the impact of other sources located within 1 mile of the proposed source. The highest EJ Score in a census tract located within 1 mile of the proposed source, expressed as a statewide percentile, was shown to be 37.7.

¹ TLVs are threshold limit values (exposure limits) established for toxic materials by the American Conference of Governmental Industrial Hygienists (ACGIH). Some TLVs are established for short-term exposure (TLV – STEL), and some are established for longer-term exposure (TLV – TWA), where TWA is an acronym for time-weight average.

An EJ Score of 37.7 indicates that the proposed installations are located in an area that is not disproportionately impacted by sources of pollution or at a higher risk of health problems from environmental exposures than other areas in Maryland. The Department has reviewed the air quality impacts from this proposed installation and has determined that the proposed installations will meet all applicable air quality standards.

VI. COMPLIANCE DEMONSTRATION AND ANALYSIS

The proposed installation must comply with all State imposed emissions limitations and screening levels, as well as the NAAQS. The Department has conducted an engineering and air quality review of the application. The emissions were projected based on U.S. EPA-approved emissions factors for crematory operations. The conservative U.S. EPA's SCREEN3 model was also used to project the maximum ground level concentrations from the proposed installation, which were then compared to the screening levels and the NAAQS.

- **A. Estimated Emissions** The maximum emissions of criterial pollutants from the proposed installation, including the proposed installation, are listed in Table I.
- **B.** Compliance with National Ambient Air Quality Standards The maximum ground level concentrations for particulate matter, sulfur dioxide, oxides of nitrogen, carbon monoxide, and volatile organic compounds based on the emissions from the proposed installation, are listed in column 2 of Table II. The combined impact of the proposed installation, and the ambient background concentration for each pollutant shown in column 3 of Table II, is less than the NAAQS for each pollutant shown in column 4.
- C. Compliance with Air Toxics Regulations The premises wide toxic air pollutants of concern that would be emitted from this facility are listed in column 1 of Table III. The predicted maximum off-site ambient concentrations of these toxic air pollutants are shown in column 4 of Table III, and in each case the maximum concentration is less than the corresponding screening level for the toxic air pollutant shown in column 3.

VII. TENTATIVE DETERMINATION

Based on the above information, the Department has concluded that the proposed installations will comply with all applicable Federal and State air quality control requirements. In accordance with the Administrative Procedure Act, the Department has made a tentative determination to issue the Permit to Construct.

Enclosed with the tentative determination is a copy of the draft Permit to Construct.

TABLE I PROJECTED MAXIMUM EMISSIONS FROM THE PROPOSED INSTALLATION

	PROJECTED MAXIMUM EMISSIONS			
POLLUTANT	(lbs/day)	(tons/year)		
Oxides of Nitrogen (NO _X)	355	64.8		
(includes Nitrogen Dioxide – NO ₂)				
Carbon Monoxide (CO)	298	54		
Sulfur Dioxide (SO ₂)	21.9	4.0		
Total Particulate Matter (PM)	52.3	9.6		
(includes PM-10 and PM-2.5)				
Volatile Organic Compounds (VOC)	45	8.2		

TABLE II

PROJECTED IMPACT OF EMISSIONS OF CRITERIA POLLUTANTS FROM THE PROPOSED INSTALLATION ON AMBIENT AIR QUALITY

POLLUTANTS	MAXIMUM OFF-SITE GROUND LEVEL CONCENTRATIONS CAUSED BY EMISSIONS FROM PROPOSED PROCESS (µg/m ³)	BACKGROUND AMBIENT AIR CONCENTRATIONS (µg/m³)*	NATIONAL AMBIENT AIR QUALITY STANDARDS (NAAQS) (µg/m ³)
Nitrogen Dioxide (NO ₂)	annual avg \rightarrow 11.6	annual avg \rightarrow 28	annual avg \rightarrow 100
Carbon Monoxide (CO)	1-hour max → 121 8-hour max→ 85	1-hour max.→ 2977 8-hour max.→ 1260	1-hour max.→ 40,000 8-hour max.→ 10,000
Sulfur Dioxide (SO ₂)	24-hour max \rightarrow 3.6 annual avg \rightarrow 0.7	24-hour max $\rightarrow 5$ annual avg $\rightarrow 0.8$	24-hour max \rightarrow 366 annual avg \rightarrow 78.5
Particulate Matter (PM ₁₀)	24-hour max \rightarrow 4.5	24-hour max. \rightarrow 101	24-hour max. \rightarrow 150

*Background concentrations were obtained from Maryland air monitoring stations as follows:

 $NO_2 \rightarrow$ Monitoring Station on Old Court Rd, Lochern

 $PM_{10} \rightarrow$ Monitoring Station Hillen Rd, Baltimore City

CO and SO₂ \rightarrow Monitoring Station in Essex, Baltimore County

TABLE III PREDICTED MAXIMUM OFF-SITE AMBIENT CONCENTRATIONS FOR TOXIC AIR POLLUTANTS EMITTED FROM THE FACILITY

TOXIC AIR POLLUTANTS EMITTED FROM THE FACILITY			
Toxic Air Pollutant	PROJECTED WORST- CASE FACILITY-WIDE EMISSIONS (lbs/hr)	SCREENING LEVELS (μg/m³)	PREDICTED MAXIMUM OFF-SITE GROUND LEVEL CONCENTRATIONS (µg/m ³)
Acenaphthene (CAS No. 83329)	0.0000011	20.3 (8-hr)	0.0000076 (8-hr)
Acenaphthylene (CAS No. 208968)	0.0000067	24.6 (8-hr)	0.000046 (8-hr)
Acetaldehyde (CAS No. 75070)	0.0014	450 (1-hr) 2300 (8-hr) 5 (annual)	0.014 (1-hr) 0.0095 (8-hr) 0.00083 (annual)
Anthracene (CAS No. 120127)	0.0000032	20 (8-hr)	0.000022 (8-hr)
Antimony (CAS No. 7440360)	0.0003	5 (8-hr)	0.0021 (8-hr)
Arsenic (CAS No. 7440382)	0.00062	0.1 (8-hr) 0.002 (annual)	0.0042 (8-hr) 0.00037 (annual)
Barium (CAS No. 7440393)	0.00026	5 (8-hr)	0.0018 (8-hr)
Benzo (g,h,i) perylene (CAS No. 191242)	0.0000044	20 (8-hr)	0.000003 (8-hr)
Beryllium (CAS No. 7440417)	0.000026	0.0005 (8-hr) 0.004 (annual)	0.00018 (8-hr) 0.000016(annual)
Cadmium (CAS No. 7440439)	0.0022	0.02 (8-hr) 0.006 (annual)	0.016 (8-hr) 0.0013 (annual)
Chromium (CAS No. 7440473)	0.0003	5 (8-hr)	0.0021 (8-hr)
Chromium VI (CAS No. 18540299)	0.00014	0.01 (8-hr) 0.0008 (annual)	0.00096 (8-hr) 0.000083 (annual)
Cobalt (CAS No. 7440484)	0.00014	0.2 (8-hr)	0.00093 (8-hr)
Copper (CAS No. 7440508)	0.00029	2 (8-hr)	0.002 (8-hr)
Fluoranthene (CAS No. 206440)	0.0000021	82 (8-hr)	0.000014 (8-hr)
Fluorene (CAS No. 86737)	0.0000042	20 (8-hr)	0.000029 (8-hr)
Formaldehyde (CAS No. 50000)	0.00034	20.3 (8-hr) 0.8 (annual)	0.0023 (8-hr) 0.0002 (annual)
Hydrogen Chloride (CAS No. 7647010)	3.02	29.8 (1-hr) 165 (8-hr)	29.6(1-hr) 20.7 (8-hr)
Hydrogen Fluoride (CAS No. 7664393)	0.011	16.4 (1-hr) 4.1 (8-hr)	0.11 (1-hr) 0.078 (8-hr)
Lead (CAS No. 7439921)	0.015	0.5 (8-hr)	0.11 (8-hr)
Molybdenum (CAS No. 7439987)	0.00017	5 (8-hr)	0.0011 (8-hr)
Nickel (CAS No. 7440020)	0.00038	1 (8-hr)	0.0027 (8-hr)
Phenanthrene (CAS No. 85018)	0.000023	9.8 (8-hr)	0.00016 (8-hr)

Toxic Air Pollutant	PROJECTED WORST- CASE FACILITY-WIDE EMISSIONS (Ibs/hr)	SCREENING LEVELS (μg/m³)	PREDICTED MAXIMUM OFF-SITE GROUND LEVEL CONCENTRATIONS (µg/m ³)
Pyrene (CAS No. 129000)	0.0000016	20 (8-hr)	0.000011 (8-hr)
Selenium (CAS No. 7782492)	0.00045	2 (8-hr)	0.0031 (8-hr)
Silver (CAS No. 7440224)	0.000073	0.1 (8-hr)	0.0005 (8-hr)
Thallium (CAS No. 7440280)	0.00086	0.2 (8-hr)	0.0059 (8-hr)
Vanadium (CAS No. 7440622)	0.00058	0.5 (8-hr)	0.004 (8-hr)
Zinc (CAS No. 7440666)	0.0041	1000 (1-hr) 500 (8-hr)	0.04 (1-hr) 0.028 (8-hr)
Total Dioxins and Furans (CAS No. 174016)	0.00000014	0.0008 (8-hr)	0.00000096 (8-hr)

The values represent maximum facility-wide emissions of toxic air pollutants during any 1-hour period of facility operation.

The values are based on worst-case emissions from the proposed facility and were predicted by EPA's SCREEN3 model, which provides conservative estimations concerning the impact of pollutants on ambient air quality.

DRAFT PERMIT

Wes Moore

Serena McIlwain

Air and Radiation Administration

1800 Washington Boulevard, Suite 720

Baltimore, MD 21230

Construction Permit	Operating Permit
PERMIT NO. As Listed on Page 2	DATE ISSUED:
PERMIT FEE: 1500.00	EXPIRATION DATE: In accordance with COMAR 26.11.02.04B
LEGAL OWNER & ADDRESS Brandywine Green, LLC dba Agape Pet Services 2 Daniels Way Cranston, RI 02921 Attention: Ms. Emily Larkin Environmental Permitting Manager	SITE Agape Pet Services 19712 Shepherdstown Pike Boonsboro, MD 21713 AI # 31943

SOURCE DESCRIPTION

Animal Crematory Facility. This Permit authorizes the installation of five (5) crematories to replace three (3) existing crematories.

This Permit supersedes all previous Permits to Construct issued to Premises Number 043-0046.

This Permit includes limitations on annual throughput in order that Brandywine Green, LLC may be recognized as a synthetic minor source with respect to emissions of oxides of nitrogen.

This source is subject to the conditions described on the attached pages.

Page 1 of 11

Program Manager

Director, Air and Radiation Administration

<u>INDEX</u>

- Part A General Provisions
- Part B Applicable Regulations
- Part C Construction Conditions
- Part D Operating Conditions
- Part E Notifications and Monitoring
- Part F Record Keeping and Reporting
- Part G Temporary Permit-To-Operate Conditions

This permit covers the following registered installations:

ARA Registration No.	Description	Installation Date
043-0468-2-0039	Facultatieve Technologies ISI-1600 animal crematory* rated at 240pounds per hour	2008
043-0468-2-0040	Matthews Model IEB-40 animal crematory'*rated at 350 pounds per hour	2013
043-0468-1-0042	Matthews Model PPJr animal crematory rated at 75 pounds per hour	2024
043-0468-1-0043	Matthews Model PPJr animal crematory rated at 75 pounds per hour	2024
043-0468-2-0047	Matthews Model IEB-56 animal crematory rated at 400 pounds per hour	2024
043-0468-2-0048	Therm Tec IS18P6 animal crematory rated at 300 pounds per hour	2024
043-0468-2-0049	Therm Tec IS18P6 animal crematory rated at 300 pounds per hour	2024

Part A – General Provisions

- (1) The following Air and Radiation Administration (ARA) permit-to-construct application forms and supplemental information are incorporated into this permit by reference:
 - (a) All valid applications for Emission Point Data (Form 5 EP) received at the Department prior to issuance of this permit. This includes the Form 5EP applications received February 26, 2024, for the installation of five (5) animal crematories.

- (b) All valid applications for Incinerators (Form 10) received at the Department prior to issuance of this permit. This includes the Form 10 applications received February 26, 2024, for the installation of five (5) animal crematories.
- (c) All valid Supplemental Information proof of zoning, site plan, and process diagram received at the Department prior to issuance of this permit. This includes information the emission data, modeling and toxics reporting received February 26, 2024, for the installation of five (5) animal crematories.

If there are any conflicts between representations in this permit and representations in the applications, the representations in the permit shall govern. Estimates of dimensions, volumes, emissions rates, operating rates, feed rates and hours of operation included in the applications do not constitute enforceable numeric limits beyond the extent necessary for compliance with applicable requirements.

- (2) Upon presentation of credentials, representatives of the Maryland Department of the Environment (the "Department") and the Washington County Health Department shall at any reasonable time be granted, without delay and without prior notification, access to the Permittee's property and permitted to:
 - (a) inspect any construction authorized by this permit;
 - (b) sample, as necessary to determine compliance with requirements of this permit, any materials stored or processed on-site, any waste materials, and any discharge into the environment;
 - (c) inspect any monitoring equipment required by this permit;
 - (d) review and copy any records, including all documents required to be maintained by this permit, relevant to a determination of compliance with requirements of this permit;
 - (e) obtain any photographic documentation or evidence necessary to determine compliance with the requirements of this permit; and
 - (f) exercise its right of entry through use of an unmanned aircraft system to conduct inspections, collect samples, or make visual observations through photographic or video recordings to determine compliance with the requirements of this permit.

- (3) The Permittee shall notify the Department prior to increasing quantities and/or changing the types of any materials referenced in the application or limited by this permit. If the Department determines that such increases or changes constitute a modification, the Permittee shall obtain a permit-to-construct prior to implementing the modification.
- (4) Nothing in this permit authorizes the violation of any rule or regulation or the creation of a nuisance or air pollution.
- (5) If any provision of this permit is declared by proper authority to be invalid, the remaining provisions of the permit shall remain in effect.
- (6) This permit supersedes all previous permits-to-construct issued to premises number 043-0468.
- (7) Subsequent to issuance of this permit, the Department may impose additional and modified requirements that are incorporated into a State permit-to-operate issued pursuant to COMAR 26.11.02.13.

Part B – Applicable Regulations

- (1) This source is subject to all applicable federal air pollution control requirements.
- (2) This source is subject to all applicable federally enforceable State air pollution control requirements including, but not limited to, the following regulations:
 - (a) COMAR 26.11.01.04A(1) which provides that the Department may request sufficient testing to determine compliance with air quality regulations.
 - (b) COMAR 26.11.01.07C, which requires that the Permittee report to the Department occurrences of excess emissions.
 - (c) COMAR 26.11.02.04B, which states that a permit to construct or an approval expires if, as determined by the Department:
 - (i) Substantial construction or modification is not commenced within 18 months after the date of issuance of the permit or approval, unless the Department specifies a longer period in the permit or approval;

- (ii) Construction or modification is substantially discontinued for a period of 18 months after the construction or modification has commenced; or
- (iii) The source for which the permit or approval was issued is not completed within a reasonable period after the date of issuance of the permit or approval.
- (d) COMAR 26.11.02.09A, which requires that the Permittee obtain a permit-to-construct if an installation is to be modified in a manner that would cause changes in the quantity, nature, or characteristics of emissions from the installation as referenced in this permit.
- (e) COMAR 26.11.08.04A(1), which prohibits the Permittee to cause or permit the discharge of emissions from any incinerator, other than water in an uncombined form which is greater than 20 percent opacity.

Exceptions. The requirements do not apply to emissions during startup, or adjustments or occasional cleaning of control equipment if:

- (i) The visible emissions are not greater than 40 percent opacity; and
- (ii) The visible emissions do not occur for more than 6 consecutive minutes in any 60-minute period.
- (f) COMAR 26.11.08.05A(1) & A(3) which requires the Permittee to limit the discharge of particulate matter to 0.10 grains per dry standard cubic foot or less when adjusted to 12 percent carbon dioxide.
- (3) This source is subject to all applicable State-only enforceable air pollution control requirements including, but not limited to, the following regulations:
 - (a) COMAR 26.11.02.13A(1), which requires that the Permittee obtain from the Department, and maintain and renew as required, a valid State permit-to-operate.
 - (b) COMAR 26.11.02.19C & D, which require that the Permittee submit to the Department annual certifications of emissions, and that the Permittee maintain sufficient records to support the emissions information presented in such submittals.

- (c) COMAR 26.11.06.08 and 26.11.06.09, which generally prohibit the discharge of emissions beyond the property line in such a manner that a nuisance or air pollution is created.
- (d) COMAR 26.11.15.05, which requires that the Permittee implement "Best Available Control Technology for Toxics" (T – BACT) to control emissions of toxic air pollutants.
- (e) COMAR 26.11.15.06, which prohibits the discharge of toxic air pollutants to the extent that such emissions would unreasonably endanger human health.

Part C – Construction Conditions

- (1) Except as otherwise provided in this part, the five (5) animal crematories that are replacing the three (3) existing animal crematories, shall be constructed in accordance with specifications included in the incorporated applications and in accordance with the specifications provided by the vendor and manufacturer.
- (2) The crematories shall be designed to limit particulate matter emissions to no more than 0.10 grains per standard cubic foot dry, adjusted to 12 percent carbon dioxide.
- (3) The crematories shall be equipped with a secondary combustion chamber capable of achieving a retention time of at least 1.0 second, and an operating temperature of at least 1600 °F.
- (4) The crematories shall be equipped with temperature sensors and recorders to continuously monitor and record the temperature of the secondary combustion chamber during operation.
- (5) The crematory stacks shall be built to discharge exhaust at least 35 feet above the ground.

Part D – Operating Conditions

(1) Except as otherwise provided in this part, all registered equipment shall be operated in accordance with specifications included in the application and any operating procedures recommended by equipment vendors unless the Permittee obtains from the Department written authorization for alternative operating procedures.

- (2) The Permittee shall keep the seven (7) animal crematories properly maintained and in good working condition so as to ensure full and continuous compliance with all applicable regulations.
- (3) Premises wide emissions of oxides of nitrogen (NO_x) shall be less than 100 tons in any rolling 12-month period.
- (4) The Permittee shall comply with the following premises-wide operational limitations unless the Permittee can demonstrate, to the satisfaction of the Department, that compliance with all applicable air quality regulations and standards can be achieved at other conditions:
 - (a) Only animal remains shall be cremated.
 - (b) The Permittee shall not cremate more than 1,500 lbs of animal remains per hour.
 - (c) The Permittee shall not cremate more than 12,000 lbs of animal remains in any 8-hour period.
 - (d) The Permittee shall not cremate more than 10,000,000 lbs of animal remains in any rolling 12-month period.
 - (e) The Permittee shall not combust any halogenated plastics, including polyvinyl chloride (PVC) body bags or PVC pipes.
 - (f) The Permittee shall not combust any hazardous waste, or hospital, medical, and infectious waste as defined in COMAR 26.11.08.01B(18).
 - (g) The Permittee shall determine the weight of the remains to be cremated prior to each cremation.
 - (h) The Permittee shall utilize the secondary chamber of the incinerator to comply with the T-BACT requirements of COMAR 26.11.15.05.
 - (i) Prior to the initiation of cremation in the primary chamber, the secondary chamber shall be preheated until the gases leaving the secondary chamber attain a temperature of at least 1600 °F.
 - (j) While remains are being cremated, the Permittee shall maintain a secondary chamber temperature of at least 1600 °F.

- (k) The Permittee shall set the recycle time for the cremation so that animal remains will not be cremated at a rate exceeding the throughput in 3(b, c, or d) above.
- (I) The exhaust gases from all crematory stacks shall discharge at least 35 feet above the ground.

Part E – Notifications and Monitoring

- (1) The Permittee shall notify the Department of the initial start-up date of the five (5) animal crematories within fifteen (15) days after the date.
- (2) While remains are cremated, the temperature of the flue gases at the outlet of the secondary combustion chambers shall be continuously monitored and recorded on a chart recorder or other continuous record keeping device. The records shall show the dates and times of all recorded temperature readings.

Part F – Record Keeping and Reporting

- (1) The Permittee shall maintain for at least five (5) years, and shall make available to the Department upon request, records of the following information for the animal crematories:
 - (a) Charts or other continuous records of the flue gas temperature at the outlet of the secondary combustion chambers. The records must show the date and start time of each cremation.
 - (b) A daily log of the following information:
 - (i) the date and start time of each cremation;
 - (ii) the approximate weight of each charge;
 - (iii) the total weight cremated per hour;
 - (iv) the total weight cremated per 8 hours;
 - (v) the total weight cremated per rolling 12-month period; and
 - (vi) the duration of each cremation cycle.

- (2) The Permittee shall maintain at the facility for at least five (5) years, and shall make available to the Department upon request, records necessary to support annual certifications of emissions and demonstrations of compliance for toxic air pollutants. Such records shall include, if applicable, the following:
 - mass emissions rates for each regulated pollutant, and the total mass emissions rate for all regulated pollutants for each registered source of emissions;
 - (b) accounts of the methods and assumptions used to quantify emissions;
 - (c) all operating data, including operating schedules and production data, that were used in determinations of emissions;
 - (d) amounts, types, and analyses of all fuels used;
 - (e) any records, the maintenance of which is required by this permit or by State or federal regulations, that pertain to the operation and maintenance of continuous emissions monitors, including:
 - (i) all emissions data generated by such monitors;
 - (ii) all monitor calibration data;
 - (iii) information regarding the percentage of time each monitor was available for service; and
 - (iv) information concerning any equipment malfunctions.
 - (f) information concerning operation, maintenance, and performance of air pollution control equipment and compliance monitoring equipment, including:
 - (i) identifications and descriptions of all such equipment;
 - (ii) operating schedules for each item of such equipment;
 - (iii) accounts of any significant maintenance performed;
 - (iv) accounts of all malfunctions and outages; and
 - (v) accounts of any episodes of reduced efficiency.

- (g) limitations on source operation or any work practice standards that significantly affect emissions; and
- (h) other relevant information as required by the Department.
- (3) The Permittee shall submit to the Department by April 1 of each year a certification of emissions for the previous calendar year. The certifications shall be prepared in accordance with requirements, as applicable, adopted under COMAR 26.11.01.05 1 and COMAR 26.11.02.19D.
 - (a) Certifications of emissions shall be submitted on forms obtained from the Department.
 - (b) A certification of emissions shall include mass emissions rates for each regulated pollutant, and the total mass emissions rate for all regulated pollutants for each of the facility's registered sources of emissions.
 - (c) The person responsible for a certification of emissions shall certify the submittal to the Department in the following manner:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

- (4) The Permittee shall submit to the Department by April 1 of each year a written certification of the results of an analysis of emissions of toxic air pollutants from the Permittee's facility during the previous calendar year. Such analysis shall include either:
 - (a) a statement that previously submitted compliance demonstrations for emissions of toxic air pollutants remain valid; or
 - (b) a revised compliance demonstration, developed in accordance with requirements included under COMAR 26.11.15 & 16, that accounts for changes in operations, analytical methods, emissions

determinations, or other factors that have invalidated previous demonstrations.

(5) The Permittee shall report, in accordance with requirements under COMAR 26.11.01.07, occurrences of excess emissions to the Compliance Program of the Air and Radiation Administration.

Part G – Temporary Permit-to-Operate Conditions

- (1) This permit-to-construct shall also serve as a temporary permit-to-operate that confers upon the Permittee authorization to operate the five (5) animal crematories, for a period of up to 180 days after initiating operation of the first unit.
- (2) During the effective period of the temporary permit-to-operate the Permittee shall operate the new installation as required by the applicable terms and conditions of this permit-to-construct, and in accordance with operating procedures and recommendations provided by equipment vendors.
- (3) The Permittee shall submit to the Department an application for a State permitto-operate no later than 60 days prior to expiration of the effective period of the temporary permit-to-operate.

MARYLAND DEPARTMENT OF THE ENVIRONMENT

MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION

SUPPLEMENTAL INFORMATION REFERENCES

The Code of Maryland Regulations (COMAR) is searchable by COMAR citation at the following Division of State Documents website: <u>https://dsd.maryland.gov/Pages/default.aspx</u>

The Code of Federal Regulations (CFR), including New Source Performance Standards (NSPS) at 40 CFR, Part 60 and National Emission Standards for Hazardous Air Pollutants (NESHAP) at 40 CFR, Parts 61 and 63, is searchable by CFR citation at the following U.S. Government Publishing Office website: http://www.ecfr.gov

Information on National Ambient Air Quality Standards (NAAQS) is located at the following U.S. Environmental Protection Agency (EPA) website: <u>https://www.epa.gov/criteria-air-pollutants/naaqs-table</u>

Information on Maryland's Ambient Air Monitoring Program is located at the following Maryland Department of the Environment website: http://mde.maryland.gov/programs/Air/AirQualityMonitoring/Pages/index.aspx

Information on the U.S. EPA's Screen3 computer model and other EPA-approved air dispersion models is located at the following U.S. EPA website: https://www.epa.gov/scram/air-quality-dispersion-modeling-screening-models

Information on the U.S. EPA TANKS Emission Estimation Software is located at the following U.S. EPA website:

https://www.epa.gov/air-emissions-factors-and-quantification/tanks-emissionsestimation-software-version-5

Information on the U.S. EPA Emission Factors and AP-42 is located at the following U.S. EPA website:

https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-airemission-factors