

GenOn Mid-Atlantic, LLC Morgantown Generating Station 12620 Crain Hwy. Newburg, Maryland 20620

70171450 0000 36815262

Certified Mail/Return Receipt Requested

Mr. Ed Dexter Maryland Department of the Environment Land Management Administration 1800 Washington Boulevard, Suite 605 Baltimore MD 21230-1719

February 26, 2020

Re: 2019 CCB Tonnage Report for GenOn Mid-Atlantic, LLC's Morgantown Generating Station.

Dear Mr. Dexter,

Pursuant to COMAR 26.04.10.08, enclosed please find the 2019 CCB Tonnage Report for GenOn Mid-Atlantic, LLC's Morgantown Generating Station.

If you have any questions regarding this report, please contact me at 301-843-4670, or at debra.knight@genon.com.

Regards,

Debra Knight

Senior Environmental Analyst

GenOn Mid-Atlantic, LLC

RECEIVED

MAR 03 2020

SOLID WASTEPROGRAM

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Land Management Administration • Solid Waste Program

1800 Washington Boulevard • Suite 605 • Baltimore, Maryland 21230-1719

410-537-3315 • 800-633-6101 x3315 • www.mde.maryland.gov

Coal Combustion Byproducts (CCBs) Annual Generator Tonnage Report Instructions for Calendar Year 2019

The following is general information relating to the requirement for reporting quantities of coal combustion byproducts (CCBs) that were managed in the State of Maryland during calendar year 2019. Please answer the questions on the form provided, attaching additional information and any requested supplemental information to the back of the form. Note that the form requires both volume and weight of the CCBs produced. If you know one of these parameters but not the others, for example, you have the tonnage produced but not the volume, you may calculate the other parameter; however, please provide the calculations and assumptions that you used in your estimate. Questions can be directed to the Solid Waste Program at (410) 537-3315 or via email at ed.dexter@maryland.gov.

<u>I. Background.</u> This requirement that generators of CCBs submit an annual report was instituted in the Code of Maryland Regulations COMAR 26.04.10.08, that was promulgated effective December 1, 2008. The regulation requires that any non-residential generator of CCBs submit a report to the Department by March 1 of each year describing the manner in which CCBs generated within the State were managed during the preceding calendar year. Additional information and specific instructions follow. For more detailed information, please refer to COMAR 26.04.10.08.

II. General Information and Applicability.

A. Definitions. CCBs are defined in COMAR 26.04.10.02B as:

- "(3) Coal Combustion Byproducts. (a) "Coal combustion byproducts" means the residue generated by or resulting from the burning of coal.
- (b) "Coal combustion byproducts" includes fly ash, bottom ash, boiler slag, pozzolan, and other solid residuals removed by air pollution control devices from the flue gas and combustion chambers of coal burning furnaces and boilers, including flue gas desulfurization sludge and other solid residuals recovered from flue gas by wet or dry methods."

A generator of CCBs is defined in COMAR 26.04.10.02B as:

- "(9) Generator.
- (a) "Generator" means a person whose operations, activities, processes, or actions create coal combustion byproducts.
- (b) "Generator" does not include a person who only generates coal combustion byproducts by burning coal at a private residence."

Page 1 of 6

3-Jan-20 TTY Users: 800-735-2258

CCB Tonnage Report – 2019

B. Applicability. If you or your company meets the definition of a generator of CCBs as defined above, you must provide the information as required below. For the purposes of this report, "you" shall hereinafter refer to the generator defined above. Please note that COMAR 26.04.10.08 requires generators of CCBs to submit an annual report to the Department concerning the disposition of the CCBs that they generated the previous year. THIS INCLUDES CCBS THAT WERE NOT SEPARATELY COLLECTED BUT WERE PRODUCED BY THE BURNING OF COAL AND WERE DIRECTLY CONTRIBUTED TO A PRODUCT, such as cement. Where the amount cannot be directly measured, estimates based on the amount of coal burned can be used. The method of determining the volume of CCBs produced must be described.

III. Required Information. The following information must be provided to the Department by March 1, 2020:

A. Contact information:		
Facility Name: Morgantown Generating Station		
Name of Permit Holder: GenOn Mid-Atlantic LL	.C	
Facility Address: 12620 Crain Highway		
Street	et .	
Facility Address: Newburg City	Maryland State	20664 Zip
County: Charles		
Contact Information (Person filing report or Envir	conmental Manager)	
Facility Telephone No.: 301-843-4670	_ Facility Fax No.: <u>301-843-4552</u>	
Contact Name: Debra Knight		
Contact Title: Senior Environmental Specialist		
Contact Address: 12620 Crain Highway Stree	et	
Contact Address: Newburg City	Maryland State	20664 Zip
Contact Email: debra.knight@genon.com		-
Contact Telephone No.: 301-843-4670	Contact Fax No.: 301-843-4552	

For questions on how to complete this form, please contact the Solid Waste Program at 410-537-3315

3-Jan-20

TTY Users: 800-735-2258

Page 2 of 6

CCB Tonnage Report - 2019

B. A description of the process that generates the CCBs, including the type of coal or other raw material that generates the CCBs. If the space provided is insufficient, please attach additional
pages:
See Attachment A.

C. The volume and weight of CCBs generated during calendar year 2019, including an identification of the different types of CCBs generated and the volume of each type generated. If the space provided is insufficient, please attach additional pages in a similar format. If converting from volume to weight or weight to volume, please provide your calculations and assumptions.

<u>Table I: Volume and Weight of CCBs Generated for Calendar Year 2019:</u> Please note that this table includes both the volume and weight of the types of CCBs your facility produces.

Volume	and Weight of CCBs Ge	enerated for Calendar Y	ear 2019
FlyAsh Type of CCB	BottomAsh Type of CCB	On-Spec Gypsum Type of CCB	WWTP Fines Type of CCB
45,186 Volume of CCB, in Cubic Yards	9,563 Volume of CCB, in Cubic Yards	35,898 Volume of CCB, in Cubic Yards	910 Volume of CCB, in Cubic Yards
45,186 Weight of CCB, in Tons	9,563 Weight of CCB, in Tons	70,125 Weight of CCB, in Tons	1,778 Weight of CCB, in Tons

3-Jan-20

TTY Users: 800-735-2258

CCB Tonnage Report – 2019

Additional notes:

CCB Tonnages are reported in dry short tons. CCB volumes are reported in dry Cubic Yards.

WWTP Tons represent fines from the Flue Gas Desulfurization's Waste Water Treatment

Volumes of Flyash in Dry Cubic Yards are calculated from dry short tons using a density of 1.0

Tons/Dry CY.

Volumes of Bottom Ash in Dry Cubic Yards are calculated from dry short tons using a density of 1.0 Tons/Dry CY.

<u>Volumes of On-Spec Gypsum and WWTP Fines are calculated from dry short tons using a density of 1.95 Tons/Dry CY.</u>

- D. Descriptions of any modeling or risk assessments, or both, conducted relating to the CCBs or their use that were performed by you or your company during the reporting year. Please attach this information to the report.
- E. Copies of all laboratory reports of all chemical characterizations of the CCBs. Please attach this information to the report.
- F. A description of how you disposed of or used your CCBs in calendar year 2019, identifying:
- (a) The types and volume of CCBs disposed of or used (if different than described in Paragraph C above) including any CCBs stored during the previous calendar year, the location of disposal, mine reclamation and use sites, and the type and volume of CCBs disposed of or used at each site:

FlyAsh: Ash produced at the Morgantown Generating Station is processed at the on-site STAR Facility, where the ash is beneficiated by reduced it in weight through high-temperature combustion. A total of 45,186 tons of flyash were generated at Morgantown in 2019, and was reduced in weight to 40,781 tons. All of this ash was sold to SEFA (headquartered in Columbia, SC) for beneficial use as cementitious material for concrete and concrete products in Maryland and in six other states. Ash from GenOn's Chalk Point generating station is also beneficiated at the STAR facility, and the Chalk Point tonnages of flyash are addressed in the Chalk Point CCB Report.

Bottom Ash: 9,563 tons of dry bottom ash was generated in 2019, all of which were disposed of at Waste Management's Amelia Landfill, located in Jesterville, Va.

On-Spec Gypsum: 70,125 tons of On-Spec Gypsum were generated at Morgantown in 2019, and 1,528 tons were stored on-site at the end of 2019. Of this total, 84,978 tons were transported by barge to Continental, located in Buchanan, NY for use in the manufacture of wallboard, and a total of 16,381 tons were stored on site at the end of 2018.

WWTP Fines produced in 2019 was 1,778 tons, all of which was disposed of at Waste Management's Amelia Landfill located in Jetersville, Va.

and (b) The different uses by type and volume of CCBs:

FlyAsh:	
Volume: 40,781 tons of Morgantown generated flyash sold,	
Uses:	

3-Jan-20 TTY Users: 800-735-2258

CCB Tonnage Report – 2019

1) 40 701 1
1) 40,781 tons beneficially used as a Supplementary cementitious material for concrete and
concrete products, 4,783 tons of which were used in Md., and 35,998 tons beneficially used in six other states.
six outer states.
On-Spec Gypsum:
Volume: 84,978 tons sold
Use: Wallboard
Obe. Wallookka
If the space provided is insufficient, please attach additional pages in a similar format.
G. A description of how you intend to dispose of or use CCBs in the next 5 years, identifying:
(a) The times and inclumes of CCDs intended to be disposed of an used the location of
(a) The types and volume of CCBs intended to be disposed of or used, the location of
intended disposal, mine reclamation and use sites, and the type and volume of CCBs intended to
be disposed of or used at each site:
FlyAsh: Approximately 45,200 dry tons to be generated at Morgantown and 16,400 dry tons to
be imported from Chalk Point Generating Station, all to be processed at the STAR facility and
sold to SEFA, headquartered in Columbia, SC.
Bottom Ash: Anticipate 9,600 tons to be generated and disposed of at Waste Management's
Amelia Landfill, located in Jesterville, Va.
On-Spec Gypsum: Anticipate approximately 70,000 dry tons to be generated and transported
by barge to Continental, located in Buchanan, NY.
WWTP Fines: Approximately 1,800 dry tons to be generated and disposed of at Waste
Management's Amelia Landfill located in Jetersville, Va.
and (b) The different intended uses by type and volume of CCBs.
FlyAsh:
Volume: Approximately 40,782 dry tons of Morgantown generated flyash to be sold
Uses: 1) All used as a Supplementary cementitious material for concrete and concrete
products.
On-Spec Gypsum:
Volume: Approximately 70,000 tons to be sold
Use: Wallboard

If the space provided is insufficient, please attach additional pages in a similar format.

3-Jan-20 TTY Users: 800-735-2258

CCB Tonnage Report – 2019

<u>IV. Signature and Certification</u>. An authorized official of the generator must sign the annual report, and certify as to the accuracy and completeness of the information contained in the annual report:

This is to certify that, to the be any attached documents are tr	est of my knowledge, the information contained in ue, accurate, and complete.	this report and
Signature Signature	Greg Staggers, General Manager, Morgantown Generating Station 301-843-4521 Name, Title, & Telephone No. (Print or Type) Gregory.staggers@genon.com Your Email Address	_ 2/27/20 _ Date

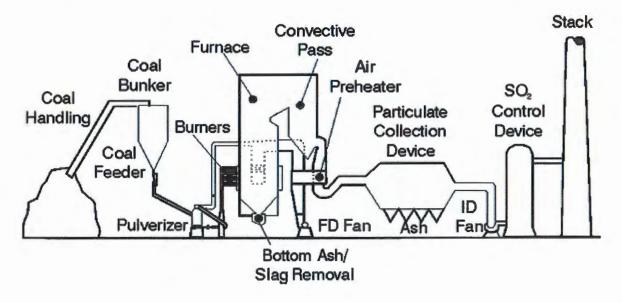
V: Attachments (please list):

A)Morgantown Generating Station Process Description

B)Microbac Report #19E:1507: Analyses of Fly Ash, Bottom Ash, Gypsum, and WWTP Fines

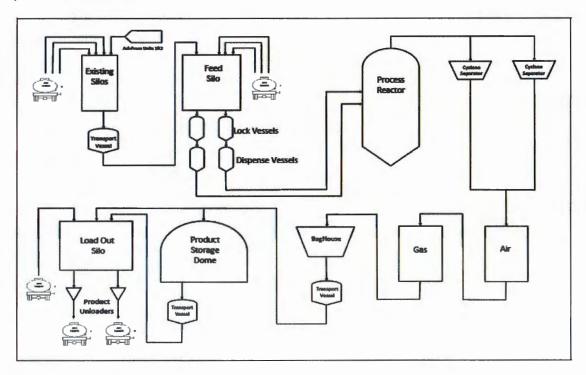
3-Jan-20

TTY Users: 800-735-2258


Attachment A

Morgantown Generating Station 12620 Crain Highway, Newburg, Charles County, MD. 20664 301-843-4600

The Morgantown Generating Station is located on the Potomac River, just south of Rt. 301 at the Harry W. Nice Bridge near the town of Newburg in Charles County, MD. The facility is engaged in the generation of electrical energy for sale. The primary SIC code is 4911. There are two tangentially fired supercritical steam units each firing bituminous coal. Each unit is rated at 640 MWs (base loaded) and each is equipped with a superheater, single reheat, and economizer. Pollution control devices on both units include low NOx burners with Separated Over-Fired Air (SOFA) and Selective Catalytic Reduction (SCR) for control of oxides of nitrogen (NOx); and electrostatic precipitators (ESP) for the control of particulate matter. A Wet Scrubber (FGD) was installed and went in service on both units in late 2009. Units 1 & 2 exhausts through the scrubber stack or, when the FGD is not in service, through separate 700 ft. stacks.


Coal is currently delivered by both rail and by barge. The rail cars are emptied using a rotary dumper, then transferred by conveyor and dravo to either a storage pile or fed directly to the units' bunker. The barge unloading facility consists of a dock, an unloader, a transfer system, and a rail loading system and a rail loading facility. The barge unloading transfer and distribution system is integrated into Morgantown's existing coal handling system.

The illustration below shows a simple schematic diagram for a typical pulverized coal combustion system. The coal is prepared by grinding to a very fine consistency for combustion.

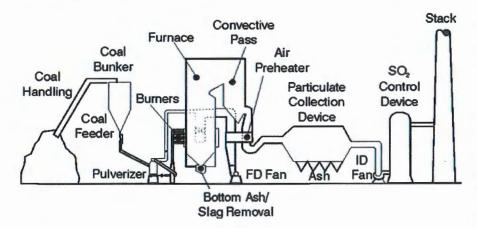
The CCBs currently produced and used are a result of the combustion of pulverized coal.

Ash is formed in the boiler while coal combusts. In general, pulverized coal combustion results in approximately 10% ash, of which 65%–90% is fly ash, and the remainder is coarser bottom ash. Bottom ash is a coarse material and falls to the bottom of the boiler. Fly ash is finer than bottom ash and is carried along the combustion process with flue gas. Particulate collection devices remove fly ash from the flue gas and the collected ash is transferred to one of two ash silos. Silo fly ash is sent to the Staged Turbulent Air Reactor (STAR) facility (which is located onsite) where volatiles are burned off from the ash to make it more marketable for sale. Ash from the STAR facility is stored in on-site storage silos until it can be sold. A diagram of the STAR process is shown below.

The bottom ash is conveyed out of the bottom of the boiler via a drag chain conveyor. The bottom ash is then either prepared for sale or disposed of out of state

Gypsum is a byproduct of SO2 removal by the Flue Gas Desulfurization (FGD) system, commonly known as a scrubber. Morgantown uses wet scrubbers for SO2 removal. Wet scrubbing uses a slurry of limestone alkaline sorbent to remove SO2, - as well as some mercury contaminants - from the air stream. The byproduct - gypsum - is conveyed to a storage dome temporarily and then sent via barge to Continental, located in Buchannan, New York to be

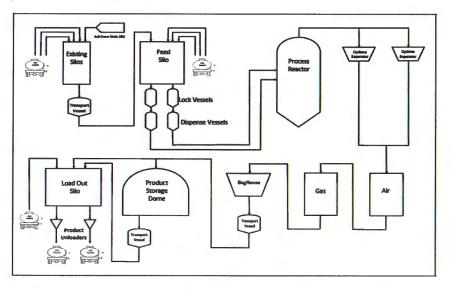
made into wallboard. Gyspum that doesn't meet the specifications for wallboard production is transported for disposal to Waste Management's Amelia Landfill in Virginia. Waste Water Treatment Plant Fines (WWTP Fines) are removed from the Scrubber's WWTP as needed and transported to Waste Management's Amelia Landfill in Virginia for disposal.


Attachment A

Morgantown Generating Station 12620 Crain Highway, Newburg, Charles County, MD. 20664 301-843-4600

The Morgantown Generating Station is located on the Potomac River, just south of Rt. 301 at the Harry W. Nice Bridge near the town of Newburg in Charles County, MD. The facility is engaged in the generation of electrical energy for sale. The primary SIC code is 4911. There are two tangentially fired supercritical steam units each firing bituminous coal. Each unit is rated at 640 MWs (base loaded) and each is equipped with a superheater, single reheat, and economizer. Pollution control devices on both units include low NOx burners with Separated Over-Fired Air (SOFA) and Selective Catalytic Reduction (SCR) for control of oxides of nitrogen (NOx); and electrostatic precipitators (ESP) for the control of particulate matter. A Wet Scrubber (FGD) was installed and went in service on both units in late 2009. Units 1 & 2 exhausts through the scrubber stack or, when the FGD is not in service, through separate 700 ft. stacks.

Coal is currently delivered by both rail and by barge. The rail cars are emptied using a rotary dumper, then transferred by conveyor and dravo to either a storage pile or fed directly to the units' bunker. The barge unloading facility consists of a dock, an unloader, a transfer system, and a rail loading system and a rail loading facility. The barge unloading transfer and distribution system is integrated into Morgantown's existing coal handling system.


The illustration below shows a simple schematic diagram for a typical pulverized coal combustion system. The coal is prepared by grinding to a very fine consistency for combustion.

Attachment A

The CCBs currently produced and used are a result of the combustion of pulverized coal.

Ash is formed in the boiler while coal combusts. In general, pulverized coal combustion results in approximately 10% ash, of which 65%–90% is fly ash, and the remainder is coarser bottom ash. Bottom ash is a coarse material and falls to the bottom of the boiler. Fly ash is finer than bottom ash and is carried along the combustion process with flue gas. Particulate collection devices remove fly ash from the flue gas and the collected ash is transferred to one of two ash silos. Silo fly ash is either sent to the Staged Turbulent Air Reactor (STAR) facility (which is located on-site) where volatiles are burned off from the ash to make it more marketable for sale, off-loaded for disposal at the Brandywine Ash Site located 29 miles north in Prince Georges County, or to Waste Management's Amelia Landfill, located in Jesterville, Va. Ash from the STAR facility is stored in on-site storage silos until it can be sold. A diagram of the STAR process is shown below.

The bottom ash is conveyed out of the bottom of the boiler via a drag chain conveyor. The bottom ash is then either prepared for sale, or disposed of out of state, or sent to the Brandywine Ash Site, where it can be used in the construction of flyash disposal cells.

Gypsum is a byproduct of SO2 removal by the Flue Gas Desulfurization (FGD) system, commonly known as a scrubber. Morgantown uses wet scrubbers for SO2 removal. Wet

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Font color: Red, Strikethrough

Formatted: Font color: Red

Formatted: Strikethrough

Page 2 of 3

scrubbing uses a slurry of limestone alkaline sorbent to remove SO2, - as well as some mercury contaminants - from the air stream. The byproduct - gypsum - is conveyed to a storage dome temporarily and then sent via barge to Continental, located in Buchannan, New York to be made into wallboard. Gyspum that doesn't meet the specifications for wallboard production is transported for disposal to Waste Management's Amelia Landfill in Virginia. Waste Water Treatment Plant Fines (WWTP Fines) are removed from the Scrubber's WWTP as needed and transported to Waste Management's Amelia Landfill in Virginia for disposal.

CERTIFICATE OF ANALYSIS

19E1507

Genon - Morgantown

Project Name: Ash/Gypsum/Filter Cake

Emmanuel Lim

Project / PO Number: 4503528576

Morgantown Generating Station, 12620 Crain Hwy

Received: 05/28/2019

Newburg, MD 20664

Reported: 06/11/2019

Case Narrative

Microbac Laboratories, Inc. - Chicagoland

The Matrix Spike and Matrix Spike Duplicate samples failed the accuracy criteria for sulfur. This bias is due to the high indigenous analyte concentration (relative to the spike amount). The following sample was spiked:

Laboratory ID Sample Name

19F0329-03 19

19E1507-03 (Gypsum)

Analytical Testing Parameters

Client Sample ID:	Fly Ash			
Sample Matrix:	Solid	Collected By:	Customer	
Lab Sample ID:	19E1507-01	Collection Date:	05/27/2019 10:00	

Wet Chemistry	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst
Method: SM 2540 G-11								
% Solids	100.2		0.05	% by Weight		05/30/19 1509	05/31/19 1330	EIP
Method: SW-846 9045D								
pH	9.01		0.100	pH Units		05/30/19 0900	05/30/19 1130	DPG
Mercury, Total by EPA 7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst
Method: EPA 7471A								
Mercury	0.12		0.025	mg/kg dry		05/29/19 1107	05/30/19 1352	APS
Metals, Total by EPA 6000/7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst
Method: EPA 3050B/EPA 6010B								
Aluminum	14000		49	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Antimony	<20		20	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Arsenic	97		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Barium	170		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Beryllium	<9.8		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Cadmium	<4.9		4.9	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Calcium	12000		98	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Chromium	46		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Cobalt	<9.8		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Copper	36		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Iron	29000		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Lead	18		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS

Microbac Laboratories, Inc.

2101 Van Deman Street | Baltimore, MD 21224 | 410.633.1800 p | www.microbac.com

Page 1 of 15

CERTIFICATE OF ANALYSIS 19E1507

Client Sample ID:	Fly Ash
Sample Matrix:	Solid

Sample Matrix: Solid Lab Sample ID: 19E1507-01					Collecti Collecti		omer 7/2019 10:00	
Metals, Total by EPA 6000/7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Lithium	27		9.8	mg/kg dry	B12	05/31/19 0922	06/05/19 1404	APS
Magnesium	1200		98	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Manganese	71		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Nickel	32		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Potassium	1800		98	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Selenium	<20		20	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Silver	<2.0		2.0	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Sodium	900		98	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Thallium	<9.8		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Vanadium	110		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
Zinc	42		9.8	mg/kg dry		05/31/19 0922	06/05/19 1404	APS
TCLP Extraction by EPA 1311	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Method: EPA 1311								
TCLP Extraction	COMPLETE D			N/A		05/29/19 1615	05/30/19 1022	APS
TCLP Metals by 6000/7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Method: EPA 6010B								
Arsenic	0.30		0.20	mg/L		05/30/19 1616	05/31/19 1254	APS
Barium	0.46		0.20	mg/L	B16	05/30/19 1616	05/31/19 1254	APS
Cadmium	<0.10		0.10	mg/L		05/30/19 1616	05/31/19 1254	APS
Chromium	0.25		0.20	mg/L		05/30/19 1616	05/31/19 1254	APS
Lead	<0.20		0.20	mg/L		05/30/19 1616	05/31/19 1254	APS
Selenium	<0.40		0.40	mg/L		05/30/19 1616	05/31/19 1254	APS
Silver	<0.040		0.040	mg/L		05/30/19 1616	05/31/19 1254	APS
Method: EPA 7470A								
Mercury	<0.0020	0.20	0.0020	mg/L		06/03/19 1130	06/03/19 1559	APS
Ar	alyses Subcontrac	cted to: Micro	obac Labor	atories Inc.,	- Marietta	, OH		
Anions by Ion Chromatography	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys

Anions by Ion Chromatography	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst
Method: EPA 9056A								
Chloride	<20.2		20.2	mg/kg dry	D1	06/05/19 1530	06/06/19 0111	KWD
Sulfate as SO4	11700		303	mg/kg dry	D1	06/05/19 1530	06/06/19 0206	KWD
General Parameters	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst

Method: ASTM D2216-10

Microbac Laboratories, Inc.

2101 Van Deman Street | Baltimore, MD 21224 | 410.633.1800 p | www.microbac.com

Page 2 of 15

CERTIFICATE OF ANALYSIS

19E1507

Client Sample ID: Fly Ash

Sample Matrix: Solid **Collected By:**

Customer

Lab Sample ID:

19E1507-01

05/27/2019 10:00

Collection Date:

Units Analyzed Analyst **General Parameters** Result Limit(s) RL Note Prepared 1.00 % by Weight 06/05/19 1407 06/06/19 0820 Percent Solids 99.0 KMG

Analyses Subcontracted to: Microbac Laboratories, Inc. - Chicagoland

Metals	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst
Method: SW-846 6010C								
Sulfur	3500		4.7	mg/Kg		06/07/19 0825	06/10/19 1411	RPL
Wet Chemistry	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst
Method: SM 2540 G-1997								
Percent Solids	100		0.10	wt%		06/07/19 1336	06/10/19 1035	DAT

CERTIFICATE OF ANALYSIS 19E1507

Client Sample ID:

Bottom Ash

Sample Matrix:

Solid

Collected By:

Customer

Lab Sample ID: 19E1507-02					Collecti	on Date: 05/27	/2019 11:00	
Wet Chemistry	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Method: SM 2540 G-11								
% Solids	72.16		0.05	% by Weight		05/30/19 1509	05/31/19 1330	EIP
Method: SW-846 9045D								
рН	10.8		0.100	pH Units		05/30/19 0900	05/30/19 1130	DPG
Mercury, Total by EPA 7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Method: EPA 7471A				***************************************				
Mercury	<0.033		0.033	mg/kg dry		05/29/19 1107	05/30/19 1354	APS
Metals, Total by EPA 6000/7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Method: EPA 3050B/EPA 6010B								
Aluminum	8900		60	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Antimony	<24		24	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Arsenic	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Barium	72		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Beryllium	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Cadmium	<6.0		6.0	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Calcium	6900		120	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Chromium	16		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Cobalt	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Copper	16		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Iron	43000		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Lead	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Lithium	12		12	mg/kg dry	B 12	05/31/19 0922	06/05/19 1408	APS
Magnesium	570		120	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Manganese	80		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Nickel	21		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Potassium	910		120	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Selenium	<24		24	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Silver	<2.4		2.4	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Sodium	360		120	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Thallium	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Vanadium	27		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
Zinc	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1408	APS
TCLP Extraction by EPA 1311	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys

Method: EPA 1311

Microbac Laboratories, Inc.

2101 Van Deman Street | Baltimore, MD 21224 | 410.633.1800 p | www.microbac.com

Page 4 of 15

CERTIFICATE OF ANALYSIS 19E1507

Client Sample ID: Bottom Ash

Sample Matrix: Solid Collected By: Customer

				Collecti	on Date: 05/27	/2019 11:00	
Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
COMPLETE D			N/A		05/29/19 1615	05/30/19 1022	APS
Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
<0.20		0.20	mg/L		05/30/19 1616	05/31/19 1257	APS
0.28		0.20	mg/L	B16	05/30/19 1616	05/31/19 1257	APS
<0.10		0.10	mg/L		05/30/19 1616	05/31/19 1257	APS
<0.20		0.20	mg/L		05/30/19 1616	05/31/19 1257	APS
<0.20		0.20	mg/L		05/30/19 1616	05/31/19 1257	APS
<0.40		0.40	mg/L		05/30/19 1616	05/31/19 1257	APS
<0.040		0.040	mg/L		05/30/19 1616	05/31/19 1257	APS
<0.0020	0.20	0.0020	mg/L		06/03/19 1130	06/03/19 1601	APS
nalyses Subcontrac	cted to: Micro	bac Labo	ratories Inc., -	Marietta	, ОН		
Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
14.6		3.5	mg/kg dry		06/05/19 1530	06/06/19 0224	KWD
922		17.3	mg/kg dry		06/05/19 1530	06/06/19 0224	KWD
Result	Limit(s)	DI.					
		RL	Units	Note	Prepared	Analyzed	Analys
		KL	Units	Note	Prepared	Analyzed	Analys
57.9		1.00	Units % by Weight	Note	Prepared 06/05/19 1407	Analyzed 06/06/19 0820	Analys KMG
57.9 nalyses Subcontrad	cted to: Micro	1.00	% by Weight		06/05/19 1407		
	cted to: Micro	1.00	% by Weight		06/05/19 1407		кмс
nalyses Subcontrac		1.00 obac Labo	% by Weight	Chicago	06/05/19 1407	06/06/19 0820	KMG
nalyses Subcontrac		1.00 obac Labo	% by Weight	Chicago	06/05/19 1407	06/06/19 0820	кмс
nalyses Subcontrad		1.00 bbac Labo RL	% by Weight ratories, Inc Units	Chicago	06/05/19 1407 land Prepared	06/06/19 0820 Analyzed	KMG Analys
nalyses Subcontrac Result 550	Limit(s)	1.00 bbac Labo RL 4.2	% by Weight ratories, Inc Units mg/Kg	Chicago Note	06/05/19 1407 land Prepared 06/07/19 0825	06/06/19 0820 Analyzed 06/10/19 1416	Analys
	COMPLETE D Result <0.20 0.28 <0.10 <0.20 <0.40 <0.040 <0.0040 <0.0020 malyses Subcontract Result 14.6 922	COMPLETE D Result Limit(s) <0.20 0.28 <0.10 <0.20 <0.40 <0.040 <0.040 <0.0020 0.20 malyses Subcontracted to: Micro Result Limit(s) 14.6 922	Result Limit(s) RL	Result Limit(s) RL Units COMPLETE D N/A N/A N/A N/A N/A	Result Limit(s) RL Units Note COMPLETE D N/A N/A Note Result Limit(s) RL Units Note <0.20	Result Limit(s) RL Units Note Prepared	Result Limit(s) RL Units Note Prepared Analyzed

Microbac Laboratories, Inc.

2101 Van Deman Street | Baltimore, MD 21224 | 410.633.1800 p | www.microbac.com

Page 5 of 15

CERTIFICATE OF ANALYSIS

19E1507

Client Sample ID:

Gypsum

Sample Matrix:	Solid	Collected By:	Customer
Lab Sample ID:	19E1507-03	Collection Date:	05/27/2019 13:00

Wet Chemistry	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Method: SM 2540 G-11								
% Solids	76.07		0.05	% by Weight		05/30/19 1509	05/31/19 1330	EIP
Method: SW-846 9045D								
pH	7.73		0.100	pH Units		05/30/19 0900	05/30/19 1130	DPG
Mercury, Total by EPA 7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Method: EPA 7471A								
Mercury	0.50		0.030	mg/kg dry		05/29/19 1107	05/30/19 1357	APS
Metals, Total by EPA 6000/7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst
Method: EPA 3050B/EPA 6010B								
Aluminum	560		61	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Antimony	<24		24	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Arsenic	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Barium	43		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Beryllium	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Cadmium	<6.1		6.1	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Calcium	280000		1200	mg/kg dry		05/31/19 0922	06/05/19 1443	APS
Chromium	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Cobalt	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Copper	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Iron	2200		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Lead	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Lithium	<12		12	mg/kg dry	B13	05/31/19 0922	06/05/19 1411	APS
Magnesium	510		120	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Manganese	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Nickel	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Potassium	190		120	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Selenium	<24		24	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Silver	<2.4		2.4	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Sodium	120		120	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Thallium	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Vanadium	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
Zinc	<12		12	mg/kg dry		05/31/19 0922	06/05/19 1411	APS
TCLP Extraction by EPA 1311	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys

Method: EPA 1311

Microbac Laboratories, Inc.

2101 Van Deman Street | Baltimore, MD 21224 | 410.633.1800 p | www.microbac.com

Page 6 of 15

CERTIFICATE OF ANALYSIS

19E1507

			10	L 1001						
Client Sample ID: Sample Matrix: Lab Sample ID:	Gypsum Solid 19E1507-03					Collecti	ed By: ion Date:	Custo 05/27	omer /2019 13:00	
TCLP Extraction by E	EPA 1311	Result	Limit(s)	RL	Units	Note	Prepare	eđ	Analyzed	Analys
TCLP Extraction		COMPLETE D			N/A		05/29/19 1	1615	05/30/19 1022	APS
TCLP Metals by 6000 Methods	/7000 Series	Result	Limit(s)	RL	Units	Note	Prepare	eđ	Analyzed	Analys
Method: EPA 6010B										
Arsenic		<0.20		0.20	mg/L		05/30/19	1616	05/31/19 1301	APS
Barium		<0.20		0.20	mg/L	B15	05/30/19	1616	05/31/19 1301	APS
Cadmium		<0.10		0.10	mg/L		05/30/19	1616	05/31/19 1301	APS
Chromium		<0.20		0.20	mg/L		05/30/19	1616	05/31/19 1301	APS
Lead		<0.20		0.20	mg/L		05/30/19	1616	05/31/19 1301	APS
Selenium		<0.40		0.40	mg/L		05/30/19	1616	05/31/19 1301	APS
Silver		<0.040		0.040	mg/L		05/30/19	1616	05/31/19 1301	APS
Method: EPA 7470A										
Mercury		<0.0020	0.20	0.0020	mg/L		06/03/19	1130	06/03/19 1603	APS
		Analyses Subcontrac	ted to: Micro	obac Labo	ratories Inc., -	Marietta	, OH			
Anions by Ion Chrom	natography	Result	Limit(s)	RL	Units	Note	Prepare	ed	Analyzed	Analys
Method: EPA 9056A										
Chloride		151		27.5	mg/kg dry	D1	06/05/19	1530	06/06/19 0243	KWD
Sulfate as SO4		20400		413	mg/kg dry	D1	06/05/19	1530	06/06/19 0301	KWD
General Parameters		Result	Limit(s)	RL	Units	Note	Prepare	ed	Analyzed	Analys
Method: ASTM D2216	6-10									
Percent Solids		72.6		1.00	% by Weight		06/05/19	1407	06/06/19 0820	KMG
		Analyses Subcontrac	cted to: Micro	obac Labo	oratories, Inc	Chicago	oland			
Metals		Result	Limit(s)	RL	Units	Note	Prepare	ed	Analyzed	Analys
Method: SW-846 6010	OC									
Sulfur		130000		460	mg/Kg		06/07/19	0825	06/10/19 1420	RPL
Wet Chemistry		Result	Limit(s)	RL	Units	Note	Prepare	ed	Analyzed	Analys
Method: SM 2540 G-1	1997									
Percent Solids		75		0.10	wt%		06/07/19	1336	06/10/19 1035	DAT

Microbac Laboratories, Inc.

2101 Van Deman Street | Baltimore, MD 21224 | 410.633.1800 p | www.microbac.com

Page 7 of 15

CERTIFICATE OF ANALYSIS

19E1507

Client Sample ID:

WWTP Filter Cake

Sample Matrix:

Solid

Collected By:

Customer

Lab Sample ID: 19E1507-04					Collecti	on Date: 05/2	7/2019 14:00	
Wet Chemistry	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Method: SM 2540 G-11								,
% Solids	52.34		0.05	% by Weight		05/30/19 1509	05/31/19 1330	EIP
Method: SW-846 9045D								
pH	7.97		0.100	pH Units		05/30/19 0900	05/30/19 1130	DPG
Mercury, Total by EPA 7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Method: EPA 7471A								
Mercury	23		0.95	mg/kg dry		05/29/19 1107	05/30/19 1406	APS
Metals, Total by EPA 6000/7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys
Method: EPA 3050B/EPA 6010B								
Aluminum	12000		100	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Antimony	<42		42	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Arsenic	50		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Barium	560		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Beryllium	<21		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Cadmium	<10		10	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Calcium	220000		2100	mg/kg dry		05/31/19 0922	06/05/19 1446	APS
Chromium	63		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Cobalt	<21		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Copper	40		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Iron	25000		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Lead	<21		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Lithium	<21		21	mg/kg dry	B13	05/31/19 0922	06/05/19 1415	APS
Magnesium	15000		210	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Manganese	780		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Nickel	83		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Potassium	3800		210	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Selenium	110		42	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Silver	<4.2		4.2	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Sodium	410		210	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Thallium	<21		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Vanadium	57		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
Zinc	100		21	mg/kg dry		05/31/19 0922	06/05/19 1415	APS
TCLP Extraction by EPA 1311	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analys

Method: EPA 1311

Microbac Laboratories, Inc.

2101 Van Deman Street | Baltimore, MD 21224 | 410.633.1800 p | www.microbac.com

Page 8 of 15

CERTIFICATE OF ANALYSIS

19E1507

Client Sample ID:	WWTP Filter Cake
-------------------	------------------

					Collecti	-	omer 7/2019 14:00	
TCLP Extraction by EPA 1311	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst
TCLP Extraction	COMPLETE D			N/A		05/29/19 1615	05/30/19 1022	APS
TCLP Metals by 6000/7000 Series Methods	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst
Method: EPA 6010B								
Arsenic	<0.20		0.20	mg/L		05/30/19 1616	05/31/19 1318	APS
Barium	<0.20		0.20	mg/L	B15	05/30/19 1616	05/31/19 1318	APS
Cadmium	<0.10		0.10	mg/L		05/30/19 1616	05/31/19 1318	APS
Chromium	<0.20		0.20	mg/L		05/30/19 1616	05/31/19 1318	APS
Lead	<0.20		0.20	mg/L		05/30/19 1616	05/31/19 1318	APS
Selenium	<0.40		0.40	mg/L		05/30/19 1616	05/31/19 1318	APS
Silver	<0.040		0.040	mg/L		05/30/19 1616	05/31/19 1318	APS
Method: EPA 7470A								
Mercury	<0.0020	0.20	0.0020	mg/L		06/03/19 1130	06/03/19 1610	APS
Anions by Ion Chromatography	Result	Limit(s)	RL	Units	Note	Prepared	Analyzed	Analyst
Method: EPA 9056A	1790		40.2	malka dar	D1	06/05/19 1530	06/06/19 0319	
Chloride Sulfate as SO4	30700		1010	mg/kg dry mg/kg dry	Di	00/03/19 1330		
						06/05/19 1530	06/06/19 0337	KWD
General Parameters	Result	Limit(s)	RL	Units	Note	06/05/19 1530 Prepared		
	Result	Limit(s)	RL		Note		06/06/19 0337	KWD
	Result 49.6	Limit(s)	RL		Note		06/06/19 0337	KWD
Method: ASTM D2216-10			1.00	Units % by Weight		Prepared 06/05/19 1407	06/06/19 0337 Analyzed	KWD Analysi
Method: ASTM D2216-10 Percent Solids	49.6		1.00	Units % by Weight		Prepared 06/05/19 1407	06/06/19 0337 Analyzed	KWD Analysi
Method: ASTM D2216-10 Percent Solids Metals	49.6 Analyses Subcontrac	cted to: Micro	1.00 obac Labo	Units % by Weight	Chicago	Prepared 06/05/19 1407	06/06/19 0337 Analyzed 06/06/19 0820	Analysi KMG
Method: ASTM D2216-10 Percent Solids Metals	49.6 Analyses Subcontrac	cted to: Micro	1.00 obac Labo	Units % by Weight	Chicago	Prepared 06/05/19 1407	06/06/19 0337 Analyzed 06/06/19 0820	Analysi KMG
Metals Method: SW-846 6010C	49.6 Analyses Subcontrac	cted to: Micro	1.00 bbac Labo	Units % by Weight ratories, Inc Units	Chicago	Prepared 06/05/19 1407 bland Prepared	06/06/19 0337 Analyzed 06/06/19 0820 Analyzed	Analysi KMG

Microbac Laboratories, Inc.

2101 Van Deman Street | Baltimore, MD 21224 | 410.633.1800 p | www.microbac.com

Page 9 of 15

CERTIFICATE OF ANALYSIS

19E1507

Results in bold have exceeded a limit defined for this project. Limits are provided for reference but as regulatory limits change frequently, Microbac Laboratories, Inc. advises the recipient of this report to confirm such limits and units of concentration with the appropriate Federal, state or local authorities before acting on the data.

Definitions

B12:

Target analyte detected in initial calibration blank >2.2 times the MDL but less than the reporting limit. Concentration

found in the samples was 10 times the concentration found in the blank. No impact on data.

B13: Target analyte detected in initial calibration blank >2.2 times the MDL but less than the reporting limit. Sample result was

less than the reporting limit. No impact on data.

B15: Target analyte detected in method blank >2.2 times the MDL but less than the reporting limit. Sample result was less

than the reporting limit. No impact on data.

Target analyte detected in method blank >2.2 times the MDL but less than the reporting limit. B16:

Dilution was performed due to matrix interference. D1:

Minimum Detection Limit MDL:

RL: Reporting Limit

Project Requested Certification(s)

Microbac Laboratories, Inc. - Baltimore

Microbac Laboratories, Inc. - Chicagoland

3045.01

3045.02 E-10397

E871126

Florida - NELAC

A2LA (Biology)

A2LA (Chemistry)

KS NELAP

Report Comments

Samples were received in proper condition and the reported results conform to applicable accreditation standard unless otherwise noted.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included.

Reviewed and Approved By:

Evelyn Shinas Customer Relationship Coordinator Reported: 06/11/2019 12:04

Microbac Laboratories, Inc.

2101 Van Deman Street | Baltimore, MD 21224 | 410.633.1800 p | www.microbac.com

Page 10 of 15

Project:

Sampled by (PRINT):

CHAIN OF CUSTODY RECORD

		 _	_	_	-	-
mŀ	ner .					

iomber

19E150-1

			Instructions on back
Lab Report Address	Invoice Address	Turnaround Time	TO BE COMPLETED BY MICROBAC
Client Name: Genon Morgan town	Client Name:	[] Routine (5 to 7 business days)	Temperature Upon Receipt (°C) 2
		[] RUSH* (notify lab)	1.6
Address: 12620 Crain Highway	Address:		Holding Time
city, State, Zip: Hewburg MO 20664	City, State, Zip:	(needed by)	Samples Received on Ice Yes No N/A
contact: James Albritain	Contact:	Report Type	Custody Seals Intact? Yes No N/A
Telephone No.: 301 -843 -4560	Telephone No.:	[]Results Only []Level 1 []Level 2	[]Level3 []Level 4 []EDD

Send Report via: [] Mail [] Fax [] e-mail (address)

Conditional on the Carlotte

Send Invoice via: [] Mail [] Fax [] e-mail (address)

Compliance Monitoring? [] Yes [] No

Location: PO No.:
Sampler

Signature:

Sampler Phone

() Agency/Program

No.:

* Matrix Types: Soil/Solid (S), Sludge, Oil, Wipe, Drinking Water (DW), Groundwater (GW), Surface Water (SW), Waste Water (WW), Other (specify)
** Preservative Types: (1) HNO3, (2) H2SO4, (3) HCl, (4) NaOH, (5) Zinc Acetate, (6) Methanol, (7) Sodium Bisulfate, (8) Sodium Thiosulfate, (9) Hexane, (U) Unpreserved

REQUESTED ANALYSIS Collected Lab IO Client Sample ID 1000 5-27-19 Bottom ash 1100 1300 Gu psum 1400 () I clazercious : I i Norein Page 11 of 15 rev.12/26/2017

Cooler Receipt Form / Sample Effective Date: 11/30/2016 Acceptance & Noncompliance Form Page 1 of 1 Receipt Date / Time: 00 28 00 150 Work Order #19 E0129/0142 0143 0289 1488 Number of Coolers Received: Client: Gener Margantons Form Completed By: N. Microbac □ Client □ UPS □ FedEx Shipper: YES/NO/NA Custody Tape Intact: YES! NO Containers Intact: XES/NO/NA Sample Received on Ice or refrigerated: Infrared (IR) Temperature: 3.6 °C YESY NO Chain of Custody Present with shipment: YES/NO Sample Bottle IDs agree with COC: YES NO / Not Checked Preservation requirements met: YES) NO (If No, contact client immediately) Correct Number of Containers / Sample Volume: YES INO / NA Headspace in container: Water Soil Wipes Oil Filter Solid Type of Sample: Sludge Food Swab Other Container Type / Quantity: H2SO4 2 HNO3 Unpreserved Unpreserved 4 H2SO4 HNO3 H2SO4 HNO3 Unpreserved Unpreserved **H2SO4** HNO3 H2SO4 4 HNO3 E - Unpreserved HNO3 Unpreserved **H2SO4** H-**H2SO4** HNO3 Unpreserved Unpreserved HNO3 **H2SO4** HNO3 **H2SO4** M- Unpreserved HNO3 H2SO4 Unpreserved **H2SO4** HNO3 W- 4 Unpreserved HCI HCI / Ascort V - _ Unpreserved Unpreserved NaTHIO (Checked at t S-___ Unpreserved NaTHIO (Checked at t NaTHIO NaTHIO/E SN- Unpreserved Unpreserved HN03 **H2SO4** Willow HNO3 **H2SO4** Unpreserved H2SO4 HNO3 · Unpreserved Describe preservation requirements not met: All Acid preserved < 2 pH NaOH preserve Sample ID: H2SO4 H H₂SO₄ HI Sample ID: H2SO4 H Sample ID: H2SO4 H Sample ID: H2SO4 - Sulfuric Acid, HNO3 - Nitric Acid, NaOl Describe Anomalies: Contact information / Summary of Actions: Contact By: Date / Time: Contact: Comments:

Microbac Laboratories, Inc., Bah

Page 12 of 15

Control # 606-03

SUBCONTRACT ORDER 19E1507

SENDING LABORATORY:

Microbac Laboratories, Inc. - Baltimore

2101 Van Deman Street Baltimore, MD 21224 Phone: 410.633.1800

Project Manager: Jake Mason

RECEIVING LABORATORY:

Microbac - OVD 158 Starlite Dr Marietta, OH 45750 Phone: (800) 373-4071

Project Info:

Project Name:

Special Project

Project No:

Ash/Gypsum/Filter Cake

Client:

Project Type: Project Location:

Matrix: Solid

Genon - Morgantown **ENV-WasteWater**

Maryland (South)

Report TAT:

Due: 06/06/2019 17:00

Sampled: 05/27/2019 10:00

Sample ID: 19E1507-01

Method

Analysis Due

Expires

Network \$

CI IC

Chloride

SW-846 9056A 0.1 mg/kg

06/05/2019 16:00

06/24/2019 10:00

\$ 16.80

Analysis

Sample split for subout

SO4 IC Sulfate as SO4 SW-846 9056A 0.1 mg/kg

06/05/2019 16:00

06/24/2019 10:00

\$ 16.80

Sample split for subout

Sample ID: 19E1507-02

Method

Matrix: Solid

Sampled: 05/27/2019 11:00 **Expires**

Network \$

CI_IC

Analysis

SW-846 9056A

Analysis Due

Chloride

0.1 mg/kg

06/05/2019 16:00

06/24/2019 11:00 \$ 16.80

Sample split for subout

SO4 IC

Sulfate as SO4

SW-846 9056A 0.1 mg/kg

06/05/2019 16:00

06/24/2019 11:00

\$ 16.80

Sample split for subout

Sample ID: 19E1507-03

Matrix: Solid

Sampled: 05/27/2019 13:00

Analysis

Method

Analysis Due

Expires

Network \$

CI IC

SW-846 9056A

06/05/2019 16:00

06/24/2019 13:00

\$ 16.80

Chloride Sample split for subout

SO4 IC

0.1 mg/kg

Sulfate as SO4

SW-846 9056A 0.1 mg/kg

06/05/2019 16:00 06/24/2019 13:00 \$ 16.80

Sample split for subout

SUBCONTRACT ORDER 19E1507

Sample ID: 19E1507-04

Matrix: Solid

Sampled: 05/27/2019 14:00

Analysis	Method	Analysis Due	Expires	Network \$
CI_IC Chloride	SW-846 9056A 0.1 mg/kg	06/05/2019 16:00	06/24/2019 14:00	\$ 16.80
Sample split for subout				
SO4_IC Sulfate as SO4	SW-846 9056A 0.1 mg/kg	06/05/2019 16:00	06/24/2019 14:00	\$ 16.80

Released By Date Received By Date

Received By Date

SUBCONTRACT ORDER 19E1507

SENDING LABORATORY:

Microbac Laboratories, Inc. - Baltimore

2101 Van Deman Street Baltimore, MD 21224 Phone: 410.633.1800

Project Manager: Jake Mason

Microbac - CGL 250 West 84th Drive Merrillville, IN 46410 Phone: (219) 769-8378

RECEIVING LABORATORY:

Proiect Info:

Project Name: Special Project

Project No:

Ash/Gypsum/Filter Cake

Client:

Genon - Morgantown Project Type:

Matrix: Solid

ENV-WasteWater Maryland (South)

Report TAT: 7

Due: 06/06/2019 17:00

Sampled: 05/27/2019 10:00

Sample ID: 19E1507-01

Method

Analysis Due

Expires

Network \$

M S ICP

Sulfur

Analysis

EPA 6010B 0.04 mg/kg

Project Location:

06/05/2019 16:00

11/23/2019 10:00

\$ 22,40

Sample split for subout

Sample ID: 19E1507-02

Sample ID: 19E1507-03

Matrix: Solid

Sampled: 05/27/2019 11:00

Analysis

Method

Analysis Due

Expires

Network \$

M_S_ICP

EPA 6010B 0.04 mg/kg 06/05/2019 16:00

11/23/2019 11:00

\$ 22.40

Sample split for subout

Matrix: Solid

Sampled: 05/27/2019 13:00

Analysis

Method

Analysis Due

Expires

Network \$

M S ICP

Sulfur

EPA 6010B 0.04 mg/kg 06/05/2019 16:00

11/23/2019 13:00

\$ 22.40

Sample split for subout

Sample ID: 19E1507-04

Matrix: Solid

Sampled: 05/27/2019 14:00

Analysis

Method

Analysis Due

Expires

Network \$

M_S_ICP

EPA 6010B

06/05/2019 16:00

11/23/2019 14:00

Sulfur

0.04 mg/kg

\$ 22,40

Sample split for subout

86/05/19

Date

Released By

Date

Received By

Date