

Food Waste Prevention, Rescue and Recovery as a Climate Change Solution

Roni Neff, PhD

Associate Professor, Environmental Health & Engineering Johns Hopkins Bloomberg School of Public Health Johns Hopkins Center for a Livable Future

MD Food Recovery Summit 2021

Multiscale RECIPES for Sustainable Food Systems

RECIPES: Resilient, Equitable, and Circular Innovations with Partnership and Education Synergies

Public health research, education, and practice for a healthier, more sustainable food system

Food waste research network

- > 40 researchers, 14 institutions
- Launched October 1, 2021, 5 year, \$15M ۲ (National Science Foundation)
- Goal to address key research questions needed to address wasted food & advance sustainable food systems; includes focus on regions, rural-urban interconnections, partnerships

https://clf.jhsph.edu/

https://Wastedfood.American.edu

Wasted food is a climate priority

Climate change is an existential threat

Impacts already here

- Heat, drought, floods, wildfires
- Impacts on food production, food supplies, food prices, nutritional quality of food

How climate change and extreme weather are crimping America's pie supply res Wheat, honey, fruit fillings, dairy,

vanilla.....

Business

"Mother Nature bats last." -Janice Ebbingsole, King Arthur flour

Washington Post, 11/17/21

Zack Wittman for The Washington Post

Global Estimates: Intergovernmental Panel on Climate Change 2021

21–37% of global GHG emissions attributable to food system.

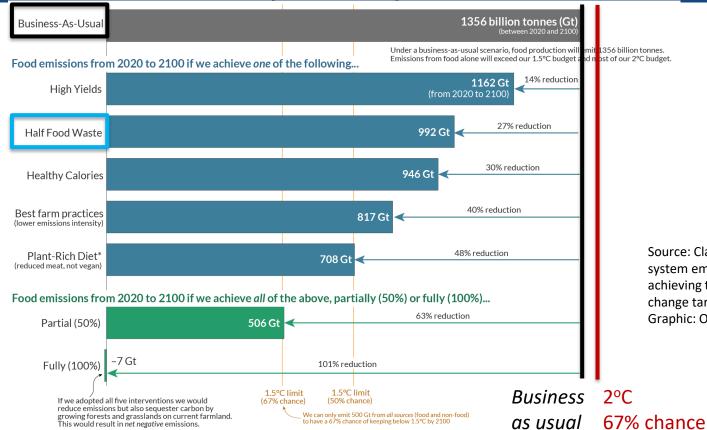
5

2010–2016, global food loss and waste = 8–10% of total anthropogenic GHG emissions

Environmental Impacts of U.S. Food Waste: SEPA What resources go into a year of food loss and waste in the U.S.?

*excluding impacts of waste management, such as landfill methane emissions

Greenhouse gas emissions of more than 42 coal-fired power plants Enough water and energy to supply more than 50 million homes



The **amount of fertilizer** used in the U.S. to grow all plantbased foods for U.S. human consumption

An **area of agricultural land** equal to California and New York

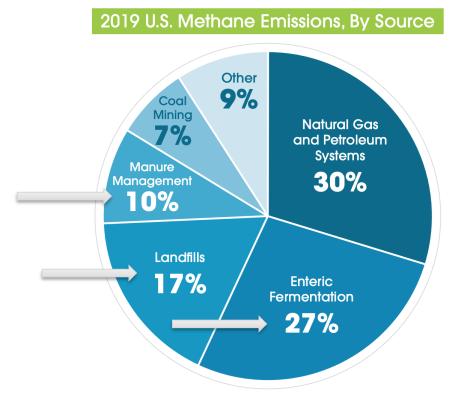
By 2100, food consumes nearly entire global GHG "budget"

Source: Clark et al 2020. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. *Science*. Graphic: OurWorldinData.org

7

50% reduction food loss & waste = #1 ranked climate change solution, Project Drawdown (based on 2°C scenario)

* Gigatons CO2 Equivalent Reduced / Sequestered (2020-2050)

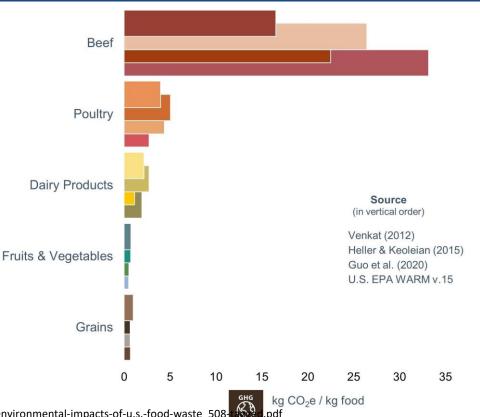

SOLUTION	 SECTOR(S) 	 SCENARIO 1* 	SCENARIO 2 *
-Reduced Food Waste	Food, Agriculture, and Land Use / Land Sinks	87.45	94.56
realiti and Education	Health and Education	85.42	85.42
Plant-Rich Diets	Food, Agriculture, and Land Use / Land Sinks	65.01	91.72
Refrigerant Management	Industry / Buildings	57.75	57.75
Tropical Forest Restoration	Land Sinks	54.45	85.14
Onshore Wind Turbines	Electricity	47.21	147.72
Alternative Refrigerants	Industry / Buildings	43.53	50.53
Utility-Scale Solar Photovoltaics	Electricity	42.32	119.13
Improved Clean Cookstoves	Buildings	31.34	72.65
Distributed Solar Photovoltaics	Electricity	27.98	68.64
Silvopasture	Land Sinks	26.58	42.31
Peatland Protection and Rewetting	Food, Agriculture, and Land Use / Land Sinks	26.03	41.93
Tree Plantations (on Degraded Land)	Land Sinks	22.24	35.94
Temperate Forest Restoration	Land Sinks	19.42	27.85
Concentrated Solar Power	Electricity	18.60	23.96
Insulation	Electricity / Buildings	16.97	19.01
Managed Grazing	Land Sinks	16.42	26.01
LED Lighting	Electricity	16.07	17.53

https://drawdown.org /solutions/table-ofsolutions

8

"Cutting methane is the strongest lever we have to slow climate change over the next 25 years" Inger Andersen, Executive Director of UNEP.

9

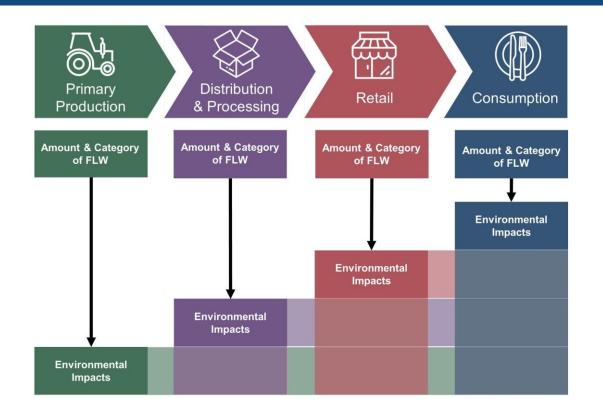

Food Loss & Waste GHG: 3 Components

- 1. Food production
- 2. Supply chain, post-production activities
- 3. Disposition, food recovery hierarchy

11

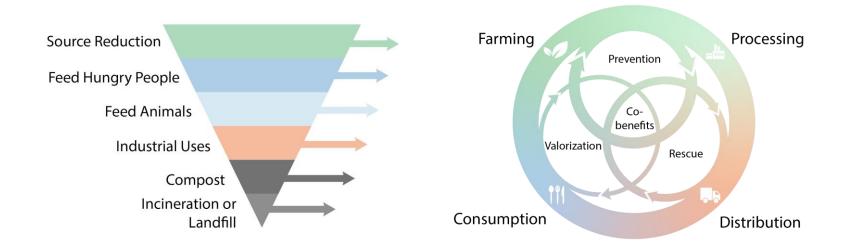
Food production: GHG emissions vary by item (among other things)

- Why is beef so high?: enteric fermentation (cattle belching), manure, feed production
- Reducing beef waste > impact per lb vs vegetable waste...
- BUT we waste much higher % of vegs than beef


https://www.epa.gov/system/files/documents/2021-11/from-farm-to-kitchen-the-environmental-impacts-of-u.s.-food-waste_508-Data from Guo et al. (2020) obtained from personal communication with X. Guo (March 23, 2021).

Supply chain: Food accumulates "embodied" GHG emissions

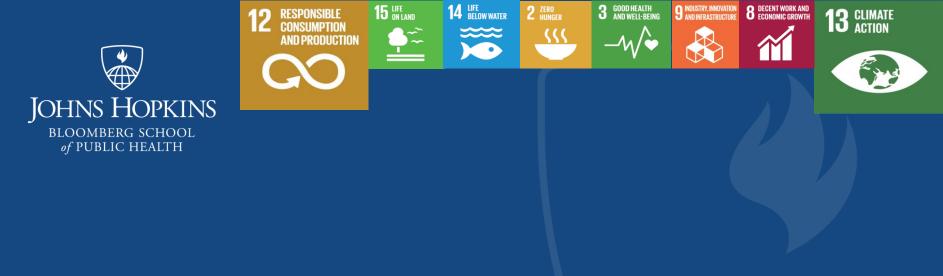
 → Waste later in food chain has greater GHG impact


12

→ Most waste
 among
 consumers

Solutions toward top of hierarchy have most GHG impact

Goal of circularity, obtaining resources shouldn't detract from goal of source reduction



Source: Multiscale RECIPES

Food Loss & Waste GHG: 3 Components

1. Food production

- Nuance in "which foods"
- Key message: Biggest GHG benefit = avoided production
- 2. Supply chain, post-production activities
 - Embodied emissions: processing packaging transport cold storage cooking, etc.
 - ► 85% GHG from landfilled FW is from pre-disposal (EPA)
 - Key message: Biggest GHG benefit = consumer level
- 3. Disposition decay, transport emissions across food recovery hierarchy
 - Some landfill alternatives also avoid production emissions
 - Key message: Biggest GHG benefit=prevention

Food waste solutions and climate impact: GHG benefits often greatest at bottom of food supply chain, top of food recovery hierarchy

"Savings" from Halving U.S. Food Loss and Waste

(excluding impacts of waste management, such as landfill methane emissions)

ReFED Insights Engine – Top Ten Solutions for GHG Avoided

Top Ten Solutions | GHG EMISSIONS AVOIDED IN MTCO2e

				11.5	M PORTIO	N SIZES
		7	5M MEAL KI		PORITO	14 512 25
		7.4		ER EDUCATION		VS
	4.9M	CENTRALIZE	D COMPOSTI	NG		
	4.8M	MANUFACTU	RING BYPRO	DUCT UTILIZAT	TION (UPCY	CLING)
	4.8M	WASTE TRACH	KING (FOODSE	ERVICE)		
3.(6M PACKAG	E DESIGN				
2.9M	MARKDOWN	ALERT APPLI	CATIONS			
2.8M	ENHANCED DI	EMAND PLAN	NING			
2.7M S	TANDARDIZE	D DATE LABE	LS			
1	1	1	1	1		
2M	4M	6M	8M	10M	12M	MTCO2e

REFED: Top 10 solutions vary with goal

	11.5M PORTION SIZES
	7.5M MEAL KITS
	7.4M CONSUMER EDUCATION CAMPAIGNS
4.9M	CENTRALIZED COMPOSTING
4.8M	MANUFACTURING BYPRODUCT UTILIZATION (UPCYCLING)
4.8M	WASTE TRACKING (FOODSERVICE)
3.6M PACKA	GE DESIGN
2.9M MARKDOWN	ALERT APPLICATIONS

GHG avoided:

- 1. Portion size
- 2. Meal kits
- 3. Consumer education campaigns

	\$9B PORTION SIZES
	\$6.5B MEAL KITS
	\$6.1B CONSUMER EDUCATION CAMPAIGNS
	\$5.2B ENHANCED DEMAND PLANNING
	\$5.1B IMPERFECT & SURPLUS PRODUCE CHANNELS
\$	4.5B DONATION EDUCATION
\$3.8B	WASTE TRACKING (FOODSERVICE)
\$3.8B	MARKDOWN ALERT APPLICATIONS

\$3.88 MARKDOWN ALERT APPLICATIONS \$2.78 BUYER SPECIFICATION EXPANSION \$2.78 MANUFACTURING BYPRODUCT UTILIZATION (UPCYCLING)

Top Ten Solutions | TONS WASTE DIVERTED

2B

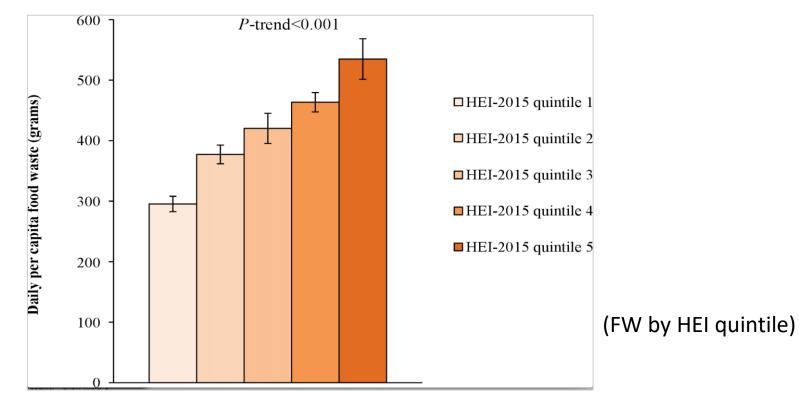
Top Ten Solutions I NET FINANCIAL BENEFIT

				13.8M	CENTRALIZED	сомі
	3.8M	CENTRALIZED ANA	EROBIC DIGESTI	ON		
	3M CO	DIGESTION AT WAST	TEWATER TREAT	MENT PLANTS		
	2.9M IMP	ERFECT & SURPLUS F	RODUCE CHAN	NELS		
	2.4M PORTI	ON SIZES				
1.	9M MANUFA	TURING BYPRODUC	T UTILIZATION	(UPCYCLING)		
1.7	MEAL KITS	5				
.4M	CONSUMER	EDUCATION CAMPA	IGNS			
.2M	ENHANCED I	DEMAND PLANNING				
1M	DONATION E	DUCATION				
	214	614	014	1214	4614	TON

ITCO2e

10R

DOLLARS


Net financial benefit:

- 1. Portion size
- 2. Meal kits
- 3. Consumer education campaigns

Tons waste diverted:

- 1. Centralized composting
- 2. Centralized AD
- Co-digestion at wastewater treatment plants

Be aware of solution tradeoffs; Ex: Waste rises with healthy eating

Conrad Z, Niles MT, Neher DA, Roy ED, Tichenor NE, Jahns L. 2018, Relationship between food waste, diet quality, and environmental sustainability. PLoS ONE 13(4): e0195405. https://doi.org/10.1371/journal.pone.0195405

Maryland, Conclusions

HB 264 Organics Recycling Legislation

- Requires covered entities generating at least two tons of organic waste per week to arrange for disposal alternatives – such as reduction, donation, animal feed, composting or anaerobic digestion – by January 2023.
- From GHG perspective, greatest benefit from increasing source reduction, donation

					11.5	M PORTIO	N SIZES
			7.	5M MEAL KI	TS		
			7.4	M CONSUM	ER EDUCATION	CAMPAIG	NS
		4.9M	CENTRALIZE	D COMPOSTI	NG		
		4.8M	MANUFACTU	RING BYPRO	DUCT UTILIZA	TION (UPCY	CLING)
		4.8M	WASTE TRACK	(ING (FOODSE	ERVICE)		
	3.	6M PACKAG	E DESIGN				
	2.9M	MARKDOWN	ALERT APPLIC	CATIONS			
	2.8M	ENHANCED D	EMAND PLAN	NING			
	2.7M S	TANDARDIZE	D DATE LABEI	_S			
	1			1		1	
)	2M	4M	6M	8M	10M	12M	MTCO

Requires state to achieve minimum 40% reduction in statewide GHG emissions from 2006 levels by 2030
 Stretch goal: 50%

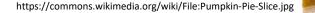
"Food scraps reduction activities should be prioritized in the checklist. They should be given the same status as yard trimmings reduction activities in terms of providing credit."

The Greenhouse Gas Emissions Reduction Act

2030 GGRA Plan

Prepared for:

Governor Larry J. Hogan State of Maryland

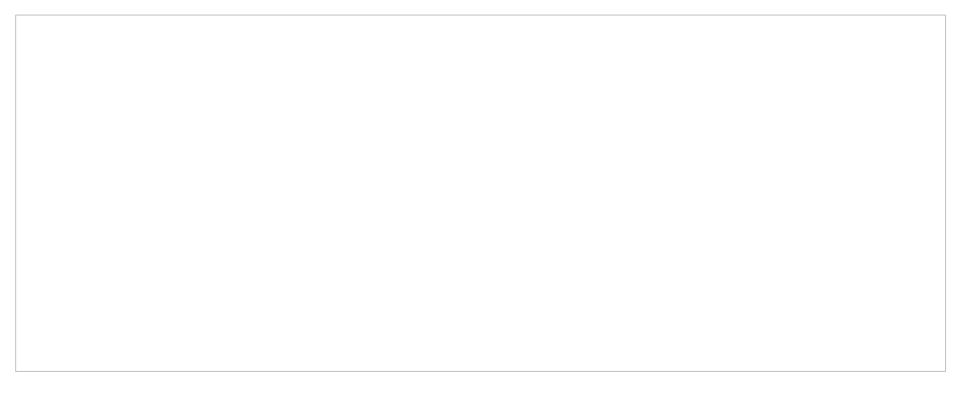

and the Maryland General Assembly

February 19, 2021

Conclusions

Good news story here: Wasted food has been highlighted as one of most important opportunities for addressing climate change

- It's complex, many tradeoffs
- Need much more data, evaluation of intervention impacts
- Climate change crisis creates impetus to focus efforts, shift stronger incentives toward where GHG benefits greatest:
 - Top of food recovery hierarchy [source reduction]
 - Bottom of food supply chain [consumers]
- It's not either/or! Need to pie-le on strong, coordinated efforts at *every* stage of hierarchy and supply chain, from every sector, business, organization, consumer


Thank You!

- Contact: Roni Neff <u>Rneff1@jhu.edu</u>
- RECIPES Food Waste Research Network <u>https://wastedfood.American.edu</u>

► Johns Hopkins Center for a Livable Future <u>https://clf.jhsph.edu</u>

THE WHITE HOUSE OFFICE OF DOMESTIC CLIMATE POLICY U.S. METHANE EMISSIONS REDUCTION ACTION PLAN

CRITICAL AND COMMONSENSE STEPS TO CUT POLLUTION AND CONSUMER COSTS, WHILE BOOSTING GOOD-PAYING JOBS AND AMERICAN COMPETITIVENESS

NOVEMBER 2021

 COP 26: global agreement to cut methane emissions 30% by 2030

 US plan includes section on reducing food waste in landfills, discusses national food waste 50% reduction target, but not very specific.

THE WHITE HOUSE WASHINGTON

whitehouse.gov