MARYLAND OFFICE



October 1, 2018

Ms. Ellen Jackson Oil Control Program Maryland Department of the Environment 1800 Washington Blvd. Baltimore, Maryland 21230

#### RE: POST-REMEDIATION EVALUATION REPORT

Former Citgo/ Carroll Wally's 19200 Middletown Road Parkton, Maryland OCP Case #2006-0319-BA

Dear Ms. Jackson,

Groundwater & Environmental Services, Inc. (GES), on behalf of Carroll Independent Fuel Co. (Carroll), respectfully submits this *Post-Remediation Evaluation Report* for the abovementioned facility (Site). This report also contains updated System Restart Criteria Summary tables for benzene and methyl tert-butyl ether (MTBE) related to the Third Quarter 2018 (3Q2018) monitoring event conducted at the Site from August 20-24, 2018.

Several key observations and conclusions presented in the attached *Post-Remediation Evaluation Report* are as follows:

- No assigned system restart criteria for benzene or MTBE were exceeded for the 3Q2018 monitoring event. It is concluded that the Wally's groundwater system has stabilized since the deactivation of the Wally's groundwater pump and treat (P&T) remediation system in November 2016 and that no significant constituent "rebound" conditions, which could affect surrounding potable well water quality, are expected to occur in the future.
- Review of Mann-Kendall statistical analyses for benzene and MTBE indicate no increasing trends for either constituent within the Wally's monitoring network for data collected since the Wally's P&T system shutdown event occurring November 2016.
- Onsite monitoring well MW-5, which has demonstrated historically variable concentrations of benzene and MTBE, appears to be locally isolated and gradually reducing in CoC concentration over time. Well MW-5 does not appear a significant source to adjacent monitoring wells and offsite potable wells.
- Review of isocontour plots of MTBE concentration in monitoring and potable wells comprising the Wally's network, from 2005 to present (3Q2018), indicate a significant reduction in MTBE "footprint" which has continued to reduce after the November 2016 P&T remediation system shutdown event.

Ms. Ellen Jackson OCP Case #2006-0319-BA September 28, 2018 Page 2 of 2



Based on the observations and conclusions presented in the attached report, GES, on behalf of Carroll, proposes significant modifications to the current Wally's monitoring program which includes:

- the removal of 24 monitoring wells from the monitoring well network including MW-5B, 7B, 8A, 8B, 9A, 9B, 10B, 11A, 12B, 13A, 13B, 14A, 16A, 17A, 18A, 19A, 19B, 20B, 21, 23, 24B, 25B, 1608R and RW-3,
- the removal of two (2) former recover wells RW-1 and RW-2,
- quarterly monitoring for ten (10) wells including MW-4, 5, 7A, 11B, 15, 16B, 17B, 18B, 22 and RW-4,
- annual monitoring for seven (7) wells including MW-1, 2, 3, 6, 10A, 14B and 20A,
- the removal of nine (9) potable wells from the monitoring program including 1614, 1616, 1620, 1624 and 1717 Rayville and 19119, 19124, 19201 and 19222 Middletown Road,
- the removal of Carroll from maintenance responsibility for the 1612 Rayville Road POET system (to remain quarterly influent sampling only); and
- the transition to low-flow sampling procedures for all remaining wells in the Wally's monitoring program.

In addition, GES requests permission to start decommission activities for the inactive Wally's P&T groundwater remediation system which currently occupies the Wally's site but includes infrastructure which extends to offsite properties including 1606 and 1608 Rayville Road.

GES appreciates the MDE's time to review the *Post-Remediation Evaluation Report* and the Department's consideration of the significant modifications to the Wally's monitoring program presented herein. If you have further questions or require any additional information, please contact the undersigned at 800-220-3606, extension 3726, or Herb Meade at 410-261-5450.

Sincerely,

Peter Reichardt Project Manager

Enclosure

 c: Ellen Jackson – MDE (3 additional hard copies & CDs) Kevin Koepenick – Baltimore County DEPS (CD) Herb Meade – Carroll Independent Fuel (e-copy) Jerry Phillips – 19200 Middletown Road (CD) File – GES-MD (PSID # 715790) Carroll Independent Fuels Co.

# **Post-Remediation Evaluation Report**

Former Citgo / Carroll Wally's 19200 Middletown Rd., Parkton, Baltimore Co., MD 21120

October 1, 2018







#### **Post Remediation Evaluation Report**

Former Citgo/ Carroll Wally's 19200 Middletown Rd. Parkton, Baltimore Co., Maryland 21120

Prepared for: Carroll Independent Fuel Co. 2700 Loch Raven Blvd. Baltimore, MD 21228

Maryland Department of the Environment -Oil Control Program 1800 Washington Blvd. Baltimore, MD 21230

MDE Case No. 2006-0319-BA

Prepared by: Groundwater & Environmental Services, Inc. 1350 Blair Dr., Ste. A Odenton, MD 21113 TEL: 800-220-3606 www.gesonline.com

Date: October 1, 2018

Pete Reichardt Project Manager - Geologist

il R 1 hermon

Dan Drennan, PE Sr. Project Engineer



## Table of Contents

| 1 | E   | xecutive Summary                                          | .1 |
|---|-----|-----------------------------------------------------------|----|
| 2 | Ir  | ntroduction                                               | .1 |
| 3 | S   | ystem Restart Criteria – Post-Remedial Monitoring Period  | .2 |
| 4 | N   | Iann-Kendall Statistical Trend Analysis                   | .2 |
|   | 4.1 | MTBE Trend Evaluation                                     | .2 |
|   | 4.2 | Benzene Trend Evaluation                                  | .3 |
|   | 4.3 | Benzene at Monitoring Well MW-5                           | .4 |
| 5 | N   | ITBE Time-Series Plots                                    | .5 |
| 6 | Ρ   | roposed Monitoring Program Changes                        | .5 |
|   | 6.1 | Reductions to the Wally's Groundwater Monitoring Program  | .5 |
|   | 6.2 | Revised Wally's Monitoring Network                        | .6 |
|   | 6.3 | Proposed Monitoring Well Low-Flow Sampling                | .7 |
|   | 6.4 | Reductions to the Wally's Potable Well Monitoring Program | .8 |
| 7 | R   | emediation System Decommissioning                         | .9 |
| 8 | S   | ummary and Conclusions1                                   | 10 |

### **Figures**

Figure 1 – Location of Proposed Monitoring Program Modifications

## **Tables**

- Table 1A System Restart Criteria Summary Benzene
- Table 1B System Restart Criteria Summary MTBE
- Table 2 Monitoring Well Sample Frequency and Method Summary
- Table 3 Well Specifications Summary

## Appendices

- Appendix A Concentration Hydrographs
- Appendix B Mann-Kendall Analyses
- Appendix C GWSDAT MTBE Time-Series Plots
- Appendix D Monitoring and Former Recover Well Completion Logs

Post-Remediation Evaluation Report Former Citgo/ Carroll Wally's, MDE Case No. 2006-0319-BA 19200 Middletown Rd., Parkton, MD



## Acronyms

| 3Q2018 | Third Quarter 2018                                |
|--------|---------------------------------------------------|
| CoC    | Constituent-of-Concern                            |
| GES    | Groundwater & Environmental<br>Services, Inc.     |
| GWSDAT | Groundwater Spatio-Temporal Data<br>Analysis Tool |
| HRGWUA | High Risk Groundwater Use Area                    |
| MDE    | Maryland Department of the Environment            |
| MTBE   | Methyl tert-butyl ether                           |
| P&T    | Pump and Treat                                    |
| µg/L   | micrograms per liter                              |



## **1** Executive Summary

Since the shutdown of the Wally's pump and treat (P&T) groundwater remediation system on November 2, 2016, seven (7) comprehensive monitoring and potable sampling events have been completed, which has established a significant analytical dataset to evaluate the post–remedial water quality conditions occurring within the Wally's study area.

Review of the post-remedial analytical dataset for the Site, including data recently finalized for the Third Quarter 2018 (3Q2018) monitoring event indicate that the "rebound" of target constituentsof-concern (CoCs), including methyl tert-butyl ether (MTBE) and benzene in groundwater, has been relatively muted since the shutdown of the Wally's P&T system. In addition, the groundwater regime within the Wally's study area appears stabilized with ongoing reductions to CoCs. This observation of stable and reducing CoC analytical trends is support by Mann-Kendall statistical analyses performed for all monitoring, former recovery and potables wells that had detectable concentrations of benzene and methyl tert-butyl ether since the shutdown of the Wally's P&T system on November 2, 2016. (Wells with a history of non-detect CoC values were not evaluated via Mann-Kendall.)

In addition, a time-series isocontour plot of MTBE concentrations for all monitoring and potable wells, from a period of 2005 to 2018, is included with this report. These time-series plots demonstrate that the historical MTBE plume footprint associated to the Wally's case has reduced significantly over time and that MTBE concentrations in groundwater have continued to reduce after the Wally's P&T system went offline in November 2016.

Of primary significance to this report is the observation that surrounding potable wells routinely sampled since the November 2016 system shutdown event have not demonstrated any significant increases of target CoCs in influent concentrations.

In summary, there are no indications that the deactivation of the Wally's groundwater P&T remediation treatment system in November 2016 has created an unsafe condition for surrounding potable wells. The observations and conclusions presented in this report will support Carroll's petition to the Maryland Department of the Environment (MDE) to: 1) make further modifications and reductions to the existing Wally's monitoring program and, 2) to remove the inactive groundwater P&T system at the Site.

## 2 Introduction

Currently, the post-remedial monitoring program maintained by Groundwater & Environmental Services, Inc. (GES), on behalf of Carroll Independent Fuel (Carroll), for the Former Citgo/ Wally's BP facility, 19200 Middletown Rd, Parkton, Maryland (Site), includes the following:

- forty-three (43) onsite and offsite monitoring and former recovery wells,
- two (2) point-of-entry treatment (POET) residential water supply systems; and
- seven (7) potable supply wells.



The most recent monitoring event held for the Site occurred from August 20 to 24, 2018 as the 3Q2018 monitoring event. (A full report of the 3Q2018 monitoring event will be submitted to the MDE by November 15, 2018.) A preliminary presentation of benzene and MTBE analytical results for all monitoring and former recovery wells sampled during the 3Q2018 monitoring event can be reviewed in the updated System Restart Criteria Summary tables included with this correspondence as **Table 1A** and **Table 1B**, respectively. Updated monitoring well and potable well concentration hydrographs for benzene and MTBE through the 3Q2018 are also included as **Appendix A**.

## 3 System Restart Criteria – Post-Remedial Monitoring Period

GES has conducted seven (7) <u>comprehensive</u> (full list) monitoring events through 3Q2018 since the Wally's P&T remediation system was deactivated on November 2, 2016 (noting that an eighth event occurring 3Q2017 was completed using the reduced "semi-annual" well list.) For each quarterly period since deactivation, GES has submitted System Restart Criteria Summary tables to the MDE, which have provided an initial analytical assessment of benzene and MTBE concentrations occurring in monitoring wells for a given period. (The MDE has also been kept abreast of quarterly potable supply well analytical results related to the Wally's monitoring program as the Department is copied on all report correspondence sent to the tested property owners.) The most recent System Restart Criteria Summary tables for 3Q2018 monitoring period are included as **Tables 1A** and **1B**.

Review of the 3Q2018 System Restart Criteria Summary tables indicate that no exceedances of system restart criteria for benzene or MTBE occurred at any monitoring wells for the period. It is noted that no restart criteria exceedances have occurred since the 2Q2017 monitoring period.

## 4 Mann-Kendall Statistical Trend Analysis

The Mann-Kendall analysis is a statistical method used to identify monotonic upward or downward trend in a dataset from a common population. A series of Mann-Kendall trend analyses were performed for benzene and MTBE concentrations at those monitoring, former recovery and potable wells which have elicited detectable concentrations (i.e. >non-detect) since system shutdown on November 2, 2016. The Mann-Kendall analyses for select monitoring, recovery and potable wells are included as **Appendix B**.

### 4.1 MTBE Trend Evaluation

A series of "short-term" Mann-Kendall analyses for MTBE was performed for 32 monitoring and former recovery wells and for all 14 potable wells as these specific wells had demonstrated at least one detectable concentration of MTBE since the November 2016 shutdown of the Wally's P&T system.



In summary:

- eight (8) monitoring wells (MW-3, MW-5, MW-7A, MW-7B, MW-14B, MW-15, MW-16A, MW-22), one (1) recovery well (RW-2) and three (3) potable wells (PW-01, 1612 and 1616 Rayville Rd.) exhibited a "decreasing" trend with a 95% or greater confidence factor,
- six (6) monitoring wells (MW-2, MW-8A, MW-16B, MW-23, RW-3, 1608R), one (1) recovery well (RW-1) and two (2) potable wells (1717 Rayville Road and 19119 Middletown Road) demonstrated "probably decreasing" trend with a confidence factor of greater than 90% but less than 95%.

The remaining wells analyzed for MTBE trend via Mann-Kendall demonstrated either "stable" or "no trend" determinations. It is noted that <u>no increasing MTBE trends</u> were determined among any of the monitoring, former recovery or potable wells datasets evaluated via Mann-Kendall.

### 4.2 Benzene Trend Evaluation

For benzene, 16 monitoring and former recovery wells were evaluated via Mann-Kendall as these specific wells had demonstrated at least one detectable concentration of benzene since the November 2016 shutdown of the Wally's P&T system. (No potable wells demonstrated any detections of benzene during the last seven monitoring events and therefore were not evaluated via Mann-Kendall.)

In summary:

- three (3) monitoring wells (MW-10B, MW-15 and MW-16A) exhibited a "decreasing" benzene trend with a 95% or greater confidence factor; and
- two (2) monitoring wells (MW-5, and MW-22) demonstrated "probably decreasing" trend with a confidence interval of greater than 90% but less than 91%.

The remaining eleven (11) wells analyzed for benzene trend via Mann-Kendall demonstrated either "stable" or "no trend" determinations. No increasing benzene trends were noted among any of the monitoring well datasets evaluated via Mann-Kendall.

Furthermore, review of the attached **Table 1A – System Restart Criteria Summary** for benzene indicates that <u>none</u> of the forty-three (43) monitoring wells sampled since November 2016 system shutdown have exceeded system restart criteria for benzene (established at 25 micrograms per liter ( $\mu$ g/L) for all monitoring wells.) It is acknowledged that monitoring well MW-5 came close to exceeding its assigned system restart criteria during the 2Q2017 event (reaching a concentration of 24  $\mu$ g/L). Further discussion of benzene at monitoring well MW-5 is provided in **Section 4.3**.

It is important to emphasize that <u>none</u> of the approximately 100 <u>influent</u> drinking water samples, collected among the case's 14 potables wells, over the last seven (7) events (since the shutdown of the Wally's P&T system in November 2016), have demonstrated any <u>benzene</u> detections.



### 4.3 Benzene at Monitoring Well MW-5

As was noted in December 12, 2017 MDE correspondence titled Second Quarter 2017 Monitoring Report – Request to Modify Groundwater Monitoring Response, benzene at onsite monitoring well MW-5 reached 24  $\mu$ g/L during the 2Q2017 monitoring event. This benzene concentration of 24  $\mu$ g/L was close to the assigned system restart criteria set for this well at 25  $\mu$ g/L. Since the November 2, 2018 system shutdown event, benzene has been sampled at monitoring well MW-5 a total of nine (9) times and has ranged in concentration from a peak value of 24  $\mu$ g/L (2Q2017) to a value of 1.6  $\mu$ g/L which occurred during the most recent monitoring event conducted in 3Q2018.

Review of the MW-5 concentration hydrograph presented in **Appendix A** indicates the following:

- both benzene and MTBE concentration in MW-5 rise and fall in tandem over time indicating proximity to a common source zone,
- both constituents have an inverse relationship with depth-to-water level measurements (i.e. water levels rise in a given quarter and benzene and MTBE concentrations reduce); and
- the Wally's groundwater P&T system, over the course of its two operation periods (occurring Nov. 2011 to July 2014 and Feb. 2015 to Nov. 2016) seem to have little, discernable effect on benzene and MTBE trends at the MW-5 monitoring well.

Due to the apparent lack of historical P&T system influence at MW-5, a "long-term" Mann Kendal statistical evaluation of benzene at MW-5 (2Q2009 to 3Q2018) is included with the "short term" Mann-Kendall analyses provided in **Appendix A**. Review of the "long term" Mann-Kendall analysis of benzene at MW-5 indicates a "no trend" determination. (For comparative purposes, a "short term" Mann Kendall evaluation of benzene at MW-5 was discussed in **Section 4.2** and is presented in **Appendix A**.)

Further review of Mann-Kendall analyses of benzene in monitoring wells surrounding/local to MW-5 (when detectable) indicates no evidence of increasing trend. Please see the site map, attached as **Figure 1** – **Location of Proposed Monitoring Program Modifications**, to review those wells in proximity to monitoring well MW-5.

In summary:

- elevated dissolved benzene in groundwater is localized near MW-5 but does not appear to affect surrounding monitoring and potable wells; and,
- the historically variable concentration of benzene at MW-5 is expected to remain below levels of concern (<25 µg/L) and will likely continue to gradually reduce over time, barring no future petroleum releases at the Site.



## 5 MTBE Time-Series Plots

In order to view the Wally's MTBE groundwater plume behavior over time, GES utilized the open source Groundwater Spatio-Temporal Data Analysis Tool (GWSDAT) to plot quarterly constituent MTBE concentrations at the Site from 2005 to present (3Q2018). The GWSDAT graphical output for the Wally's evaluation is included as **Appendix C**. When reviewing the time-series MTBE plots, please note the following:

- Each plot includes both monitoring well and potable well (influent) concentrations collected within a given period.
- The plot area for a given slide only encompasses those wells active within the monitoring network at that particular time. Therefore, plot slides prior to June 2011 (before the monitoring network was completely established) are reduced in area.
- Historical MTBE was processed in GWSDAT model using threshold criteria of 10 µg/L which is denoted as a red contour interval on the plot slides.
- The interpolated plume "center" for MTBE is represented as a "+" symbol on the corresponding plot slide and can be used to evaluate plume movement over time.
- Wells that are bolded in red text indicate an anomalous value identified by the GWSDAT algorithm for a given plot slide.

In summary, review of the GWSDAT time-series plots indicates that the historical Wally's MTBE footprint has significantly reduced over time and that these reductions have continued to occur after the Wally's P&T groundwater remediation system went offline in November 2016.

## 6 Proposed Monitoring Program Changes

### 6.1 Reductions to the Wally's Groundwater Monitoring Program

Considering the stable and/or downward CoC trends as summarized in **Section 3.0 and 4.0** since Wally's P&T system deactivation and the significant reduction of MTBE footprint which continues to date (**Section 5.0**), GES formally petitions the MDE for the reductions and modifications to the current Wally's monitoring well program which are summarized with supporting rationale in the table, on the next page.



#### Monitoring and Former Recover Wells Proposed for Reduction or Elimination from the Wally's Monitoring Program

| Location                                                                        | Request                                                                                    | Rationale                                                                                                                                                            |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring wells (16): MW-5B,<br>MW-8A, MW-8B, MW-9B, MW-                       | Discontinue groundwater monitoring and sampling activities.                                | MTBE has not historically exceeded 20 $\mu$ g/L.                                                                                                                     |
| 12B, MW-13A, MW-13B, MW-<br>14A, MW-17A, MW-19A, MW-<br>19B, MW-20B, MW-21, MW- | Abandon wells from network.                                                                | Benzene has not historically exceeded 5<br>μg/L.                                                                                                                     |
| 24B, MW-25B and RW-3                                                            |                                                                                            | Mann-Kendall analysis of analytical data<br>demonstrates a "possibly decreasing",<br>"stable" or "no trend" determination.                                           |
| Monitoring wells (4): MW-9A,<br>MW-11A, MW-18A and MW-23                        | Discontinue groundwater monitoring and sampling activities.                                | MTBE has not been above 5.1 µg/L in last 2 years.                                                                                                                    |
|                                                                                 | Abandon wells from network.                                                                | Benzene has never been above 5 µg/L.                                                                                                                                 |
|                                                                                 |                                                                                            | Mann-Kendall analysis of analytical data demonstrates a "possibly decreasing", "stable" or "no trend" determination.                                                 |
| Former Recover wells (2): RW-<br>1 and RW-2                                     | Discontinue groundwater<br>monitoring gauging and sampling.<br>Abandon wells from network. | RW-1 is redundant to MW-4.<br>RW-2 is redundant to MW-7A.                                                                                                            |
| Monitoring wells (5): MW-7B,<br>MW-10B, MW-11A, MW-16A,<br>and MW-18A           | Discontinue groundwater<br>monitoring gauging and sampling.<br>Abandon wells from network. | MW-7B is redundant to MW-7A.<br>MW-10B is redundant to MW-10A.<br>MW-11A is redundant to MW-11B.<br>MW-16A is redundant to MW-16B.<br>MW-18A is redundant to MW-18B. |
| Monitoring well 1608R                                                           | Discontinue groundwater<br>monitoring gauging and sampling.<br>Abandon well from network.  | Bedrock well is isolated from productive fractures in the area* and demonstrates a continued decreasing trend for MTBE.                                              |

\*Please see GES correspondence Replacement Potable Well Installation Report dated July 10, 2013

### 6.2 Revised Wally's Monitoring Network

Based on the elimination of monitoring and former recovery wells as proposed in **Section 6.1**, a revised Wally's groundwater monitoring network, with supporting rationale, is presented in the table, on the next page.



#### Monitoring and Former Recover Wells Proposed for the Revised Wally's Monitoring Program

| Location                                                                                                 | Request                                                 | Rationale                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring wells (7) MW-1, MW-2,<br>MW-3, MW-6, MW-10A, MW-14B<br>and MW-20A                             | Reduce from quarterly to an annual monitoring frequency | This grouping of wells was selected<br>for an annual sampling frequency<br>based on their moderate levels of<br>recent CoC concentration and their<br>spatial distribution within the<br>historical plume footprint.<br>A sub-set of these wells are also                                  |
|                                                                                                          |                                                         | candidates as future High-Risk<br>Groundwater Use Area (HRGUA)<br>wells.                                                                                                                                                                                                                   |
| Monitoring wells (10) MW-4, MW-5,<br>MW-7A, MW-11B, MW-15, MW-<br>16B, MW-17B, MW-18B, MW-22<br>and RW-4 | Continue quarterly monitoring                           | This grouping of wells will allow for<br>continued observation of CoC<br>reductions in select areas of the<br>historical plume footprint where<br>benzene and/or MTBE remain<br>relatively elevated.<br>A sub-set of these wells are also<br>possible candidates as future<br>HRGUA wells. |

A summary of current and proposed monitoring and potable well sampling frequencies are included in the attached **Table 2- Monitoring Well Sample Frequency and Method Summary**. A map highlighting those wells proposed for removal or reduction from the current Wally's monitoring program are presented as **Figure 1 – Locations of Proposed Monitoring Program Modifications**. To assist the MDE with review of the proposed wells for reduction and/or elimination, a table of Wally's monitoring and former recover well specifications is included as **Table 3**. Available well completion logs (excluding MW-5B) for the current Wally's network are also provided as **Appendix D**.

### 6.3 Proposed Monitoring Well Low-Flow Sampling

Currently, 20 monitoring wells are sampled via low-flow procedures while 22 monitoring wells are conventionally purged/ sampled and one (1) well (1608R) is a grab-only sample collection. The monitoring well purge water is currently treated and discharged through the Wally's P&T remediation system which is operated just a few days per quarter to accommodate purge water processing.

In anticipation of the removal of the Wally's P&T remediation system (as proposed in later **Section 7.0**), GES wishes to reduce high volumes of purge water during future groundwater monitoring events at the Site. With reductions to the monitoring network as proposed (**Section 6.2**), future low-flow water could be contained to just a few 55-gal drums per monitoring period. These purge



drums would be temporarily stored onsite in properly labelled (non-hazardous material) 55-gallon steel drums which would ultimately be transported to a qualified waste facility for treatment and disposal.

An updated Monitoring Well Sample Frequency and Method Summary, included as **Table 2**, contains details of the current and proposed sample methods for each monitoring well within the network. Please note that GES has selected new target, low-flow intake intervals (based on screen midpoint) for those wells proposed to remain in the network but which were conventionally purged and sampled in the past.

### 6.4 Reductions to the Wally's Potable Well Monitoring Program

Based low-level concentrations and stabilization of CoCs (MTBE) in select potable wells as summarized in **Section 4.1**, GES has prepared a summary of recommended modifications to the Wally's potable monitoring program in the table below.

| Location                                         | Request                                                                                                     | Rationale                                                                                                                                                                               |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1612 Rayville Road                               | Release Carroll from POET<br>maintenance responsibility.<br>Continue quarterly influent<br>monitoring only. | The 1612 Rayville Rd. well<br>proposed is selected for<br>discontinuation of treatment due to<br>declining and historically low-levels<br>of target CoCs including benzene<br>and MTBE. |
| 19119, 19124, 19201 and 19222<br>Middletown Road | Release from routine sampling.                                                                              | MTBE concentrations are<br>recurrently non-detect to low-level<br>(<0.2 ug/L).                                                                                                          |
|                                                  |                                                                                                             | Mann-Kendall analysis (for those<br>wells with detectable<br>concentrations) do not demonstrate<br>increasing MTBE trend.                                                               |
|                                                  |                                                                                                             | There is no indication that these<br>potable wells are at risk from<br>increasing MTBE related to the<br>historical Wally's release.                                                    |

#### Potable Wells Proposed for Reduction or Elimination from the Wally's Monitoring Program



| Location                                                   | Request                       | Rationale                                                                                                                                                                                                               |
|------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1614, 1616, 1620, 1624 and 1717<br>Rayville Road           | Release from routine sampling | MTBE concentrations are recurrently non-detect to low-level (<0.2 ug/L).                                                                                                                                                |
|                                                            |                               | Mann-Kendall analysis (for those wells with detectable concentrations) do not demonstrate increasing MTBE trend.                                                                                                        |
|                                                            |                               | There is no indication that these<br>potable wells are at risk from<br>increasing MTBE related to the<br>historical Wally's release.                                                                                    |
| 19200 Middletown Road supply wells PW-1, PW-2 and PW-3     | Change to annual sampling     | Potable well PW-01 has gradually<br>reduced in MTBE concentration<br>since P&T shutdown. Supply wells<br>PW-02 and PW-03 are recurrently<br>non-detect to low-level (<0.2 ug/L).                                        |
|                                                            |                               | Mann-Kendall analysis (for those wells with detectable concentrations) to not demonstrate increasing MTBE trend.                                                                                                        |
|                                                            |                               | There is no indication that these<br>potable wells are at risk from<br>increasing MTBE related to the<br>historical Wally's release.                                                                                    |
| Point of treatment (POET) system<br>for 1606 Rayville Road | Continue quarterly monitoring | While this treated potable location<br>has reduced three orders-of-<br>magnitude in MTBE concentration<br>since 2005, continued operation and<br>quarterly monitoring of the POET<br>system is recommended at this time |

An updated **Monitoring and Potable Well Sample Frequency and Method Summary**, included as **Table 2** to this report, summarizes both current and proposed sample frequency changes for the Wally's monitoring well program. A map noting those monitoring, former recovery and potable wells to be removed, reduced in frequency and/or to remain in the monitoring network is presented as Figure **1**.

## 7 Remediation System Decommissioning

Based on the current benzene and MTBE concentration trends exhibited in the monitoring well network and the fact that no significant increases in target CoC concentrations are evident in the Wally's potable well monitoring network since the November 2016 P&T system shutdown event, GES recommends decommissioning and removal of the Wally's groundwater system.



## 8 Summary and Conclusions

Per goals set forth in the October 16, 2016 *Wally's Monitoring & Remedial Work Plan*, GES has reevaluated the historical Wally's groundwater analytical dataset, in conjunction with the areal distribution of the existing Wally's monitoring network. This evaluation has primarily focused on the analytical dataset which has accumulated over the last seven (7) <u>comprehensive</u> monitoring events for the Site since the shutdown of the Wally's P&T remediation system on November 2, 2016.

In summary:

- For the most recent 3Q2018 groundwater monitoring event, no assigned system restart criteria for either benzene or MTBE were exceeded this period. In fact, no system restart criteria have been exceed since 2Q2017. It is concluded that the Wally's groundwater system has stabilized since the deactivation of the Wally's groundwater P&T remediation system in November 2016 and that no severe CoC "rebound" conditions, which could affect surrounding potable well water quality, are expected to occur in the future.
- Evaluation of monitoring well, recover well and potable well concentrations of benzene and MTBE via Mann-Kendall statistical analyses indicate no increasing trends for either constituent, within the Wally's monitoring network, since the Wally's P&T system shutdown.
- Onsite monitoring well MW-5, which has demonstrated historically variable concentrations of benzene and MTBE, appears to be: 1) locally isolated, 2) is gradually reducing in CoC concentration and 3) does not appear as a significant source to adjacent monitoring wells and offsite potable wells.
- Review of time-series graphical plots of MTBE concentration in monitoring and potable wells for the Wally's monitoring network from 2005 to present (3Q2018) indicates a significant reduction in MTBE "footprint" over time which has continued to reduce after the November 2016 P&T remediation system shutdown event.

Based on these observations and conclusions, GES, on behalf of Carroll, has proposed significant changes to the current Wally's monitoring program which include:

- the removal of 26 monitoring wells from the monitoring well network including MW-5B, 6, 7B, 8A, 8B, 9A, 9B, 10B, 11A, 12B, 13A, 13B, 14A, 16A, 17A, 18A, 19A, 19B, 20A, 20B, 21, 23, 24B, 25B, 1608R and RW-3,
- the removal of two (2) formerly active recover wells RW-1 and RW-2,
- quarterly monitoring for ten (10) wells including MW-4, 5, 7A, 11B, 15, 16B, 17B, 18B, 22 and RW-4,
- annual monitoring for seven (7) wells including MW-1, 2, 3, 6, 10A, 14B and 20A,



- the removal of nine (9) potable wells from the monitoring program including 1614, 1616, 1620, 1624 and 1717 Rayville and 19119, 19124, 19201 and 19222 Middletown Road,
- the removal of Carroll from maintenance responsibility for the 1612 Rayville Road POET system (to remain quarterly influent sampling only); and
- the transition to low-flow sampling procedures for all remaining wells in the Wally's monitoring program.

In addition, GES requests permission to start decommission activities for the inactive Wally's P&T groundwater remediation system which currently occupies the Wally's site but includes infrastructure which extends to offsite properties including 1606 and 1608 Rayville Road.

GES appreciates the MDE's time to review this post-remediation evaluation and the Department's consideration of this significant monitoring modification request for the Wally's case. GES intends to work with the Department to provide any additional information or assistance that maybe needed to support the requested reductions. GES feels that the seven (7) comprehensive monitoring events conducted since the system shutdown in November 2016 have provided enough supporting analytical data to substantiate the significant reductions to monitoring program and the permanent removal of the Wally' P&T system as proposed.



## References

- Environmental Alliance, multiple historical case files and reports for the Wally's site generated prior to 2011
- GES, Second Quarter 2018 Monitoring Report, Carroll Independent Fuel Wally's, 19200 Middletown Road, Parkton, Maryland, OCP Case #2006-0319-BA2, Aug. 15, 2018
- GES, Replacement Potable Well Installation Report, Wally's BP (Former Citgo), 19200 Middletown Road, Parkton, Maryland, OCP Case #2006-0319-BA, Facility ID #4593, July 10, 2013
- GSI Environmental Inc., GSI Mann-Kendall Toolkit, <u>https://www.gsi-net.com/en/software/free-software/gsi-mann-kendall-toolkit.html</u>
- GWSDAT, https://www.api.org/oil-and-natural-gas/environment/clean-water/groundwater/gwsdat

Post-Remediation Evaluation Report Former Citgo/ Carroll Wally's, MDE Case No. 2006-0319-BA 19200 Middletown Rd., Parkton, MD



## Figures



#### **LEGEND**

- CATCH BASIN
- W POTABLE WELL
- TANK FIELD WELL
- MONITORING WELL •
- $\boxtimes$ **RECOVERY WELL**
- SOIL VAPOR EXTRACTION WELL  $\odot$
- ABANDONED MONITORING WELL
- $\square$ INJECTION POINT
- UNDERGROUND SANITARY SEWER LINE - ss —
- ST----UNDERGROUND STORM SEWER LINE
- T UNDERGROUND TELEPHONE LINE
- UE----UNDERGROUND ELECTRIC LINE
- OHU -OVERHEAD UTILITIY LINE
  - SYSTEM SHED
  - INFILTRATION GALLERY
- JB REMEDIAL SYSTEM JUNCTION BOX

-MONITORING OR POTABLE WELL REQUESTED FOR REMOVAL FROM PROGRAM -MONITORING WELL REQUESTED FOR QUARTERLY SAMPLING O -MONITORING WELL REQUESTED FOR ANNUAL SAMPLING O -POTABLE WELL (1612 RAYVILLE RD.) REQUESTED FOR POET RELEASE-QUARTERLY INFLUENT SAMPLING ONLY



Post-Remediation Evaluation Report Former Citgo/ Carroll Wally's, MDE Case No. 2006-0319-BA 19200 Middletown Rd., Parkton, MD





#### Table 1A

#### SYSTEM RESTART CRITERIA - BENZENE

#### Carroll Motor Fuels - Wally's 19200 Middletown Rd., Parkton, MD

| Benzene          |           |            |           |        |           |        |           |        |                |                  |                                      |                                         |                                            |                                 |                                          |                               |                                         |                                          |                                            |                                          |                                           |                                           |
|------------------|-----------|------------|-----------|--------|-----------|--------|-----------|--------|----------------|------------------|--------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|------------------------------------------|-------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|
| Well             | 3Q2014    | 4Q2014     | 1Q2015    | 2Q2015 | 3Q2015    | 4Q2015 | 1Q2016    | 2Q2016 | 8Q Mean        | 8Q Mean<br>x%150 | Established<br>Restart<br>Criteria** | 3Q2016<br>Event<br>(8/1/16 -<br>8/4/16) | 4Q2016<br>Event<br>(11/7/16 -<br>11/11/16) | Resample<br>Event<br>12/13/2016 | 1Q2017<br>Event<br>(1/6/17 -<br>1/10/17) | Resample<br>Event<br>4/5/2017 | 2Q2017<br>Event<br>(5/3/17 -<br>5/9/17) | 3Q2017<br>Event<br>(7/31/17 -<br>8/3/17) | 4Q2017<br>Event<br>(11/6/17 -<br>11/14/17) | 1Q2018<br>Event<br>(2/12/18-<br>2/16/18) | 2Q2018<br>Event<br>(6/11/18 -<br>6/18/18) | 3Q2018<br>Event<br>(8/20/18 -<br>8/24/18) |
|                  | (µg/L)    | (µg/L)     | (µg/L)    | (µg/L) | (µg/L)    | (µg/L) | (µg/L)    | (µg/L) | (µg/L)         | (µg/L)           | (µg/L)                               | (µg/L)                                  | (µg/L)                                     | (µg/L)                          |                                          | (µg/L)                        | (µg/L)                                  | (µg/L)                                   | (µg/L)                                     | (µg/L)                                   | (µg/L)                                    | (µg/L)                                    |
| MW-5             | 28.3      | 9.6        | 5.6       | 13     | 12        | 12     | 18        | 13     | 14             | 21               | 25                                   | 8.7                                     | 8.0                                        | -                               | 21                                       | 20                            | 24                                      | 2.8                                      | 3.6                                        | 11                                       | 7                                         | 1.6                                       |
| MW-17B           | 2.1       | 10.2       | 0.6       | 8.4    | 6.9       | 4.4    | 6.7       | 2.6    | 5.2            | 7.8              | 25                                   | 4.4                                     | 0.7                                        | -                               | 0.3 J                                    | -                             | 5.7                                     | 4.9                                      | 0.9                                        | 4.7                                      | 0.2 J                                     | 3                                         |
| MW-14B           | 7.3       | 3.4        | 1.9       | 3.5    | 3.3       | 2.1    | 2.1       | 2      | 3.2            | 4.8              | 25                                   | 1.2                                     | 1                                          | -                               | 1.1                                      | -                             | 0.4 J                                   | 1.2                                      | 0.4 J                                      | 1.1                                      | 0.1 J                                     | 2.6                                       |
| MW-18B           | 8.8       | 1          | 5.6       | 1.9    | 2.2       | 3.2    | 0.1       | 0.1    | 2.9            | 4.3              | 25                                   | 3.1 J                                   | 0.1 J                                      | -                               | 0.1 J                                    | -                             | 0.3 J                                   | ND<0.1                                   | 2.9 J                                      | 2.2 J                                    | 0.1 J                                     | 1.2 J                                     |
| MW-1608R         | 1.0       | 1.0        | 1.0       | 0.6    | 5.0       | 5.0    | 3.0       | 2.0    | 2.3            | 3.5              | 25                                   | ND<2.0                                  | ND<2.0                                     | -                               | ND<1.0                                   | -                             | ND<0.2                                  | ND<0.2                                   | ND<0.5                                     | ND<1.0                                   | ND<0.5                                    | ND<0.5                                    |
| MW-16A           | 1.0       | 6.4        | 1.8       | 4.3    | 2.0       | 1.1    | 1.0       | 0.1    | 2.2            | 3.3              | 25                                   | 0.2 J                                   | 1.0 J                                      | 2.6                             | 0.7 J                                    | -                             | 0.7 J                                   | ND<0.1                                   | ND<0.5                                     | ND<0.5                                   | ND<0.1                                    | ND<0.05                                   |
| MW-15            | 2.0       | 8.9        | 0.2       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 1.4            | 2.2              | 25                                   | ND<0.1                                  | ND<0.3                                     | -                               | 0.1 J                                    | ND<0.2                        | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-7B            | 1.7       | 1.8        | NS        | 1.2    | 1.1       | 1.0    | 1.0       | 0.1    | 1.1            | 1.7              | 25                                   | 0.1 J                                   | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-22            | 1         | 4.8        | 1.8       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 1.0            | 1.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | 2.5                             | 1.6                                      | 1.4 J                         | 2.0                                     | 0.8                                      | ND<0.1                                     | 0.2 J                                    | ND<0.1                                    | 0.4 J                                     |
| RW-4*            | 1.6       | 0.6        | 1.5       | 1.0    | 1.0       | 0.5    | 0.2       | 0.1    | 0.8            | 1.2              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | 0.1 J                                   | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-16B           | 1.3       | 1.2        | 2.9       | 0.1    | 0.2       | 0.1    | 0.1       | 0.1    | 0.8            | 1.1              | 25                                   | ND<0.1                                  | ND<0.2                                     | -                               | 0.2 J                                    | -                             | 0.3 J                                   | 0.5 J                                    | 0.2 J                                      | 0.3 J                                    | 0.1 J                                     | 0.1 J                                     |
| MW-10A           | 1.0       | 1.0        | 1.0       | 0.1    | 0.1       | 0.1    | 0.1       | 0.5    | 0.5            | 0.7              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | 0.3 J                                    | 0.8                           | ND<0.1                                  | 0.7                                      | 0.1 J                                      | 1.6                                      | 1                                         | ND<0.05                                   |
| MW-10B           | 1.0       | 1.0        | 0.1       | 0.1    | 0.9       | 0.2    | 0.1       | 0.1    | 0.4            | 0.7              | 25                                   | 0.6                                     | 0.5                                        | -                               | ND<0.1                                   | ND<0.1                        | 0.2 J                                   | ND<0.1                                   | ND<0.1                                     | 0.1 J                                    | ND<0.1                                    | ND<0.05                                   |
| MW-3             | 1.4       | 1.0        | 0.6       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.4            | 0.7              | 25                                   | ND<0.1                                  | 0.4 J                                      | 0.6                             | 0.3 J                                    | 0.3 J                         | ND<0.1                                  | 0.2 J                                    | 2.0                                        | 2.1                                      | 1.0                                       | 0.3 J                                     |
| RW-1             | 1.0       | 1.0        | 0.1       | 0.4    | 0.3       | 0.2    | 0.1       | 0.1    | 0.4            | 0.6              | 25                                   | ND<0.1                                  | ND<0.1                                     | ND<0.1                          | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | 0.1 J                                      | 0.1 J                                    | ND<0.1                                    | ND<0.05                                   |
| MW-24B           | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-4             | 1.0       | 1.0        | 0.2       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-7A            | 1.0       | 1.0        | 0.2       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-19A           | 1.0       | 1.0        | NS        | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.4            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-19B           | 1.0       | 1.0        | NS        | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.4            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| RW-2*            | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-1             | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-2             | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-11A           | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-11B           | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-14A           | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-18A           | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-20A           | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25                                   | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-20B           | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25<br>25                             | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-21            | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25<br>25                             | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-23            | 1.0       | 1.0        | 0.1       | 0.1    | 0.1       | 0.1    | 0.1       | 0.1    | 0.3            | 0.5              | 25<br>25                             | ND<0.1                                  | ND<0.1                                     | -                               | 0.2 J                                    | -                             | 0.1 J                                   | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-25B<br>MW-5B  | 1.0<br>NS | 1.0<br>1.0 | 0.1<br>NS | 0.1    | 0.1<br>NS | 0.1    | 0.1<br>NS | 0.1    | 0.3<br>0.3     | 0.5<br>0.5       | 25<br>25                             | 0.1 J<br>NS                             | 0.1 J<br>ND<0.1                            | -                               | ND<0.1<br>ND<0.1                         | -                             | 0.1 J<br>ND<0.1                         | 0.1 J<br>NS                              | 0.1 J<br>ND<0.1                            | 0.1 J<br>ND<0.1                          | ND<0.1<br>ND<0.1                          | ND<0.05<br>ND<0.05                        |
| MW-6             |           |            |           | -      |           | _      | NS        | -      |                |                  | _                                    |                                         | -                                          | -                               |                                          | -                             |                                         |                                          |                                            | ND<0.1<br>ND<0.1                         |                                           |                                           |
| MW-8A            | NS        | 1.0        | NS        | 0.1    | NS<br>NS  | 0.1    | NS        | 0.1    | 0.3            | 0.5              | 25<br>25                             | NS<br>NS                                | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | NS<br>NS                                 | ND<0.1                                     |                                          | ND<0.1                                    | ND<0.05                                   |
| MW-8B            | NS<br>NS  | 1.0        | NS        | 0.1    | NS        | 0.1    | NS        | 0.1    | 0.3            | 0.5<br>0.5       | 25<br>25                             |                                         | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | NS                                       | ND<0.1<br>ND<0.1                           | ND<0.1                                   | ND<0.1<br>ND<0.1                          | ND<0.05                                   |
| MW-9A            | NS        | 1.0        | NS        | 0.1    | NS        | 0.1    | NS        | 0.1    | 0.3            |                  |                                      | NS<br>NS                                | ND<0.1                                     | -                               | ND<0.1<br>ND<0.1                         | -                             | ND<0.1<br>ND<0.1                        | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05<br>ND<0.05                        |
| MW-9A            | NS        | 1.0<br>1.0 | NS<br>NS  | 0.1    | NS        | 0.1    | NS        | 0.1    | 0.3            | 0.5<br>0.5       | 25<br>25                             | NS<br>NS                                | ND<0.1<br>ND<0.1                           | -                               | ND<0.1<br>ND<0.1                         | -                             | ND<0.1                                  | NS                                       | ND<0.1                                     | ND<0.1<br>ND<0.1                         | ND<0.1<br>ND<1.0                          | ND<0.05<br>ND<0.5                         |
| MW-12B           | NS        | 1.0        | NS        |        | NS        | 0.1    | NS        | 0.1    | 0.3            | 0.5              | 25                                   | NS                                      | ND<0.1                                     | -                               | ND<0.1<br>ND<0.1                         |                               | ND<0.1                                  | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<1.0<br>ND<0.1                          | ND<0.5<br>ND<0.05                         |
| MW-126           | NS        | 1.0        | NS        | 0.1    | NS        | 0.1    | NS        | 0.1    | 0.3            | 0.5              | 25                                   | NS                                      | ND<0.1                                     | -                               | ND<0.1<br>ND<0.1                         | -                             | ND<0.1                                  | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05<br>ND<0.05                        |
| MW-13A<br>MW-13B | NS        | 1.0        | NS        | 0.1    | NS        | 0.1    | NS        | 0.1    | 0.3            | 0.5              | 25                                   | NS                                      | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-13B<br>MW-17A | NS        | 1.0        | NS        | 0.1    | NS        | 0.1    | NS        | 0.1    | 0.3            | 0.5              | 25                                   | NS                                      | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| RW-3             | NS        | 1.0        | NS        | 0.1    | NS        | 0.1    | NS        | 0.1    | 0.3            | 0.5              | 25                                   | NS                                      | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                  | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
|                  |           |            |           |        |           | -      |           | -      | ration for the |                  |                                      | 110                                     |                                            | -                               |                                          | -                             |                                         | 110                                      |                                            |                                          |                                           | 10.00                                     |

\*Where multiple samples were collected in a given quarter (i.e., RW-2 & RW-4), the average concentration for the quarter is presented. \*\*A minimum restart criteria for benzene of 25 μg/L is used when the calculated 8Q average falls below 25 μg/L.

Note: Non detect values are presented as the detection limit.

NS= Not Sampled

Red bold indicates exceedance of system restart criteria



#### Table 1B

#### SYSTEM RESTART CRITERIA - MTBE

#### Carroll Motor Fuels - Wally's 19200 Middletown Rd., Parkton, MD

| MTBE           |        |            |            |        |            |        |        |            |            |                  |                                      |                                         |                                            |                                 |                                          |                               |                                          |                                          |                                            |                                          |                                           |                                           |
|----------------|--------|------------|------------|--------|------------|--------|--------|------------|------------|------------------|--------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|------------------------------------------|-------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|
| Well           | 3Q2014 | 4Q2014     | 1Q2015     | 2Q2015 | 3Q2015     | 4Q2015 | 1Q2016 | 2Q2016     | 8Q Mean    | 8Q Mean<br>x%150 | Established<br>Restart<br>Criteria** | 3Q2016<br>Event<br>(8/1/16 -<br>8/4/16) | 4Q2016<br>Event<br>(11/7/16 -<br>11/11/16) | Resample<br>Event<br>12/13/2016 | 1Q2017<br>Event<br>(1/6/17 -<br>1/10/17) | Resample<br>Event<br>4/5/2017 | 2Q2017<br>Event<br>(5/4/17 -<br>5/10/17) | 3Q2017<br>Event<br>(7/31/17 -<br>8/3/17) | 4Q2017<br>Event<br>(11/6/17 -<br>11/14/17) | 1Q2018<br>Event<br>(2/12/18-<br>2/16/18) | 2Q2018<br>Event<br>(6/11/18 -<br>6/18/18) | 3Q2018<br>Event<br>(8/20/18 -<br>8/24/18) |
|                | (µg/L) | (µg/L)     | (µg/L)     | (µg/L) | (µg/L)     | (µg/L) | (µg/L) | (µg/L)     | (µg/L)     | (µg/L)           | (µg/L)                               | (µg/L)                                  | (µg/L)                                     | (µg/L)                          | (µg/L)                                   | (µg/L)                        | (µg/L)                                   | (µg/L)                                   | (µg/L)                                     | (µg/L)                                   | (µg/L)                                    | (µg/L)                                    |
| MW-1608R       | 1,880  | 2,010      | 1,500      | 1,600  | 1,200      | 1,300  | 1,800  | 520        | 1,476      | 2,214            | 2,214                                | 680                                     | 700                                        | -                               | 810                                      | -                             | 350                                      | 580                                      | 450                                        | 480                                      | 430                                       | 360                                       |
| MW-18B         | 4,420  | 23         | 2,300      | 400    | 55         | 190    | 50     | 9.8        | 931        | 1,396            | 1,396                                | 1,200                                   | 15                                         | -                               | 29                                       | -                             | 76                                       | 13                                       | 850                                        | 830                                      | 22                                        | 430                                       |
| RW-4*          | 2,068  | 1,245      | 1,500      | 1,110  | 347        | 283    | 140    | 73         | 846        | 1,269            | 1,269                                | 58                                      | 25                                         | -                               | 38                                       | -                             | 56                                       | 42                                       | 26                                         | 30                                       | 33                                        | 25                                        |
| MW-16A         | 241    | 1,460      | 980        | 1,900  | 680        | 500    | 300    | 120        | 773        | 1,159            | 1,159                                | 86                                      | 500                                        | 1,100                           | 300                                      | -                             | 510                                      | 260                                      | 360                                        | 190                                      | 4.0                                       | 0.2 J                                     |
| MW-16B         | 1,470  | 939        | 1,200      | 33     | 64         | 22     | 46     | 9.2        | 473        | 709              | 709                                  | 36                                      | 160                                        | -                               | 170                                      | -                             | 110                                      | 200                                      | 42                                         | 100                                      | 59                                        | 56                                        |
| MW-15          | 2      | 1,040      | 200        | 1.4    | 1.3        | 0.6    | 0.4    | 0.6        | 156        | 234              | 234                                  | 0.3 J                                   | 110                                        | -                               | 240                                      | 200                           | 140                                      | 83                                       | 31                                         | 25                                       | 16                                        | 0.3 J                                     |
| MW-7B          | 174    | 139        | NS         | 210    | 150        | 170    | 160    | 7.9        | 144        | 217              | 217                                  | 25                                      | 11                                         | -                               | 4.4                                      | -                             | 3.7                                      | ND<0.1                                   | 2.0                                        | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-14B         | 95.7   | 153        | 91         | 190    | 140        | 110    | 110    | 110        | 125        | 187              | 187                                  | 90                                      | 100                                        | -                               | 96                                       | -                             | 80                                       | 82                                       | 64                                         | 70                                       | 66                                        | 32                                        |
| MW-22          | 11.1   | 253        | 210        | 1.0    | 0.5        | 0.2    | 0.4    | 0.8        | 60         | 89               | 100                                  | 0.1 J                                   | 23                                         | 100                             | 500                                      | 370                           | 87                                       | 53                                       | 7.0                                        | 22                                       | 3                                         | 6.3                                       |
| MW-7A          | 11.5   | 63.2       | 210        | 67     | 62         | 41     | 1.5    | 0.8        | 57         | 86               | 100                                  | 0.8                                     | 8.4                                        | -                               | 23                                       | -                             | 4.1                                      | 3.9                                      | ND<0.1                                     | 2.5                                      | 1.9                                       | 0.7                                       |
| RW-1           | 17.2   | 17.8       | 31         | 130    | 50         | 52     | 14     | 0.3        | 39         | 59               | 100                                  | 12                                      | 21                                         | 43                              | 13                                       | -                             | 5.3                                      | 5.7                                      | 22                                         | 32                                       | 3.4                                       | 1.2                                       |
| RW-2*          | 11.7   | 119        | 98         | 30     | 16         | 15     | 8.6    | 6.0        | 38         | 57               | 100                                  | 6.1                                     | 5.1                                        | -                               | 12                                       | -                             | 5.0                                      | 2.1                                      | 1.9                                        | 4.6                                      | 2.5                                       | 1.4                                       |
| MW-3           | 149    | 88.9       | 24         | 17     | 9          | 2.7    | 0.5    | 0.8        | 36         | 55               | 100                                  | 0.3 J                                   | 140                                        | 36                              | 15                                       | 17                            | 17                                       | 14                                       | 55                                         | 43                                       | 8.3                                       | 8.1                                       |
| MW-11B         | 70.7   | 3.9        | 48         | 4.2    | 2.6        | 37     | 2.3    | 28         | 25         | 37               | 100                                  | 26                                      | 2.3                                        | -                               | 25                                       | -                             | 1.6                                      | 9.5                                      | 14                                         | 17                                       | 16                                        | 0.9                                       |
| MW-4           | 42.9   | 22.9       | 27         | 22     | 14         | 23     | 3.3    | 11         | 21         | 31               | 100                                  | 0.9                                     | 0.7                                        | -                               | 9.4                                      | -                             | 0.8                                      | 1                                        | 5.8                                        | 2.9                                      | 1.4                                       | 0.7                                       |
| MW-10A         | NS     | 76.5       | 42         | 0.3    | 0.1        | 0.6    | 1.2    | 9.2        | 19         | 28               | 100                                  | 0.1 J                                   | 0.3 J                                      | -                               | 11                                       | 19                            | ND<0.1                                   | 17                                       | 1.4                                        | 37                                       | 13                                        | ND<0.05                                   |
| MW-1           | 14     | 15.9       | 9.6        | 23     | 18         | 14     | 5.3    | 7.4        | 13         | 20               | 100                                  | 5.3                                     | 5.5                                        | -                               | 0.9                                      | -                             | 0.5 J                                    | 0.6                                      | 5.3                                        | 6.5                                      | 0.4 J                                     | 0.2 J                                     |
| MW-17B         | 6.6    | 15.7       | 4.6        | 18     | 12         | 9.2    | 13     | 6.3        | 11         | 16               | 100                                  | 8.7                                     | 2.8                                        | -                               | 2                                        | -                             | 10                                       | 9.7                                      | 2.0                                        | 7.8                                      | 1.1                                       | 5.3                                       |
| MW-5           | 7.1    | 5.0        | 2.1        | 18     | 12         | 13     | 13     | 8.4        | 10         | 15               | 100                                  | 8.5                                     | 5.5                                        | -                               | 13                                       | 14                            | 9.7                                      | 1.0 J                                    | 0.8                                        | 5.0                                      | 2.8 J                                     | 0.8                                       |
| MW-10B         | 23     | 6.9        | 2.5        | 3.1    | 25         | 4.9    | 0.8    | 1.3        | 8.4        | 13               | 100                                  | 12                                      | 10                                         | -                               | 0.1 J                                    | 0.5                           | 2.8                                      | 0.9                                      | 0.7                                        | 1.9                                      | ND<0.1                                    | ND<0.05                                   |
| MW-18A         | 11.8   | 9.5        | 5.0        | 15     | 6.5<br>3.5 | 2.8    | 9.2    | 1.6        | 7.7        | 12               | 100<br>100                           | 0.4 J                                   | 1.9                                        | -                               | 3.7                                      | -                             | 5.1                                      | 1.4                                      | 0.8                                        | 3.4<br>0.1 J                             | 2.6                                       | 3.9                                       |
| MW-24B         | 1.0    | 3.4<br>2.2 | 1.0        | 0.4    |            | 1.9    | 1.8    | 0.6        | 1.7        | 2.5              | 100                                  | 0.2 J                                   | 0.8                                        | -                               | 0.6                                      | -                             | ND<0.1                                   | ND<0.1                                   | ND<0.1<br>ND<0.1                           |                                          | 1.6                                       | 0.6                                       |
| MW-11A         | 4.8    | 1.0        | 1.5<br>0.8 | 1.1    | 0.6        | 0.6    | 0.6    | 1.1<br>0.6 | 1.6<br>0.9 | 2.3<br>1.3       | 100                                  | 1.1<br>0.7                              | 0.6                                        | -                               | 0.6                                      | -                             | 0.1 J<br>0.9                             | 0.2 J<br>0.7                             | 0.4 J                                      | ND<0.1<br>0.5                            | 0.2 J<br>0.7                              | 0.4 J<br>0.6                              |
| MW-20A<br>MW-2 | 1.0    | 1.0        | 0.8        | 1.2    | 0.7        | 0.8    | 0.8    | 0.0        | 0.9        | 1.3              | 100                                  | 0.7<br>0.5 J                            | 0.0<br>0.4 J                               | -                               | ND<0.1                                   | -                             | ND<0.1                                   | 0.7<br>ND<0.1                            | 0.4 J<br>0.1 J                             | 0.5<br>0.1 J                             | 0.7<br>ND<0.1                             | 0.0<br>ND<0.05                            |
| MW-6           | NS     | 1.0        | NS         | 0.3    | NS         | 0.2    | NS     | 0.9        | 0.8        | 1.0              | 100                                  | NS                                      | 0.4 3                                      | -                               | 0.4 J                                    | -                             | 0.9                                      | ND<0.1                                   | 0.15                                       | 0.15                                     | 0.7                                       | 2.5                                       |
| MW-8A          | NS     | 1.0        | NS         | 0.5    | NS         | 0.3    | NS     | 0.3        | 0.7        | 0.8              | 100                                  | NS                                      | 0.0 J                                      | -                               | 0.4 J                                    | -                             | 0.3 J                                    | NS                                       | 0.0<br>0.2 J                               | 0.3<br>0.2 J                             | 0.7<br>0.2 J                              | ND<0.05                                   |
| MW-23          | 1.0    | 1.1        | 1.0        | 0.0    | 0.1        | 0.1    | 0.1    | 0.0        | 0.0        | 0.0              | 100                                  | ND<0.1                                  | ND<0.1                                     | -                               | 2.6                                      | _                             | 2.8                                      | 1.6                                      | 0.5                                        | 0.2 J                                    | 0.2 J                                     | 0.1 J                                     |
| MW-20B         | 1.0    | 1.0        | 0.1        | 0.1    | 0.1        | 0.1    | 0.3    | 0.1        | 0.4        | 0.6              | 100                                  | ND<0.1                                  | 0.2 J                                      |                                 | ND<0.1                                   | _                             | 0.4 J                                    | 0.3 J                                    | 0.3 J                                      | 0.3 J                                    | 0.2 J                                     | 0.1 J                                     |
| MW-19B         | 1.0    | 1.0        | NS         | 0.1    | 0.1        | 0.1    | 0.0    | 0.3        | 0.4        | 0.6              | 100                                  | ND<0.1                                  | ND<0.1                                     | _                               | ND<0.1                                   | _                             | ND<0.1                                   | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-19B         | 1.0    | 1.0        | NS         | 0.1    | 0.1        | 0.1    | 0.1    | 0.0        | 0.4        | 0.5              | 100                                  | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | _                             | ND<0.1                                   | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-13A         | NS     | 1.0        | NS         | 0.3    | NS         | 0.2    | NS     | 0.2        | 0.4        | 0.6              | 100                                  | NS                                      | 0.1 J                                      | _                               | 0.1 J                                    | _                             | 0.1 J                                    | NS                                       | 0.1 J                                      | ND<0.1                                   | 0.1 J                                     | 0.1 J                                     |
| MW-14A         | 1.0    | 1.0        | 0.2        | 0.1    | 0.1        | 0.1    | 0.1    | 0.1        | 0.3        | 0.5              | 100                                  | ND<0.1                                  | ND<0.1                                     | -                               | 0.5 J                                    | -                             | 0.1 J                                    | 0.1 J                                    | 0.1 J                                      | 0.1 J                                    | ND<0.1                                    | 0.06 J                                    |
| MW-8B          | NS     | 1.0        | NS         | 0.2    | NS         | 0.1    | NS     | 0.1        | 0.4        | 0.5              | 100                                  | NS                                      | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                   | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-17A         | NS     | 1.0        | NS         | 0.2    | NS         | 0.1    | NS     | 0.1        | 0.4        | 0.5              | 100                                  | NS                                      | 0.1 J                                      | -                               | 0.1 J                                    | -                             | 0.1 J                                    | NS                                       | ND<0.1                                     | 0.1 J                                    | ND<0.1                                    | 0.07 J                                    |
| MW-21          | 1.0    | 1.0        | 0.1        | 0.1    | 0.1        | 0.1    | 0.1    | 0.1        | 0.3        | 0.5              | 100                                  | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                   | ND<0.1                                   | 0.1 J                                      | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-25B         | 1.0    | 1.0        | 0.1        | 0.1    | 0.1        | 0.1    | 0.1    | 0.1        | 0.3        | 0.5              | 100                                  | ND<0.1                                  | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                   | ND<0.1                                   | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-5B          | NS     | 1.0        | NS         | 0.1    | NS         | 0.1    | NS     | 0.1        | 0.3        | 0.5              | 100                                  | NS                                      | ND<0.1                                     | -                               | ND<0.1                                   | -                             | 0.2 J                                    | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-9A          | NS     | 1.0        | NS         | 0.1    | NS         | 0.1    | NS     | 0.1        | 0.3        | 0.5              | 100                                  | NS                                      | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                   | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-9B          | NS     | 1.0        | NS         | 0.1    | NS         | 0.1    | NS     | 0.1        | 0.3        | 0.5              | 100                                  | NS                                      | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                   | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<1.0                                    | ND<0.5                                    |
| MW-12B         | NS     | 1.0        | NS         | 0.1    | NS         | 0.1    | NS     | 0.1        | 0.3        | 0.5              | 100                                  | NS                                      | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                   | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | ND<0.05                                   |
| MW-13B         | NS     | 1.0        | NS         | 0.1    | NS         | 0.1    | NS     | 0.1        | 0.3        | 0.5              | 100                                  | NS                                      | ND<0.1                                     | -                               | ND<0.1                                   | -                             | ND<0.1                                   | NS                                       | ND<0.1                                     | ND<0.1                                   | ND<0.1                                    | 0.07 J                                    |
| RW-3           | NS     | 1.0        | NS         | 0.1    | NS         | 0.1    | NS     | 0.1        | 0.3        | 0.5              | 100                                  | NS                                      | 0.2 J                                      | -                               | 0.3 J                                    | -                             | 0.1 J                                    | NS                                       | 0.2 J                                      | 0.2 J                                    | 0.1 J                                     | ND<0.05                                   |

\*Where multiple samples were collected in a given quarter (i.e., RW-2 & RW-4), the average concentration for the quarter is presented. \*\*A minimum restart criteria for MTBE of 100 μg/L is used when the calculated 8Q average falls below 100 μg/L.

Note: Non detect values are presented as the detection limit. MTBE= methyl tert-butyl ether NS= Not Sampled Red bold indicates exceedance of system restart criteria



#### Table 2

#### MONITORING WELL SAMPLING METHOD SUMMARY

Carroll Fuels - Wally's Citgo 19200 Middletown Rd Parkton, MD

| Well ID  | Well Diameter<br>(in) | Sample Frequency<br>Prior to Post-<br>Remedial Period | Proposed<br>Sample<br>Frequency | Sample Method & Target<br>Interval Prior to Post-<br>Remedial Period | Target Low Flow Sample<br>Interval |
|----------|-----------------------|-------------------------------------------------------|---------------------------------|----------------------------------------------------------------------|------------------------------------|
| MW-1     | 2                     | Quarterly                                             | Annual                          | Purge & Grab sample                                                  | LF Interval (47' to 52')           |
| MW-2     | 2                     | Quarterly                                             | Annual                          | Purge & Grab sample                                                  | LF Interval (47' to 52')           |
| MW-3     | 2                     | Quarterly                                             | Annual                          | Purge & Grab sample                                                  | LF Interval (52-57')               |
| MW-4     | 2                     | Quarterly                                             | Quarterly                       | Purge & Grab sample                                                  | LF Interval (47' to 52')           |
| MW-5     | 4                     | Quarterly                                             | Quarterly                       | Purge & Grab sample                                                  | LF Interval (43-48')               |
| MW-5B    | 6                     | SA (2Q & 4Q)                                          | REMOVE                          | Purge & Grab sample                                                  | N/A                                |
| MW-6     | 2                     | SA (2Q & 4Q)                                          | Annual                          | Purge & Grab sample                                                  | LF Interval (47' to 52')           |
| MW-7A    | 6                     | Quarterly                                             | Quarterly                       | Purge & Grab sample                                                  | LF Interval (55-60')               |
| MW-7B    | 6                     | Quarterly                                             | REMOVE                          | LF Interval (95-100')                                                | N/A                                |
| MW-8A    | 6                     | SA (2Q & 4Q)                                          | REMOVE                          | Purge & Grab sample                                                  | N/A                                |
| MW-8B    | 6                     | SA (2Q & 4Q)                                          | REMOVE                          | LF Interval (90-95')                                                 | N/A                                |
| MW-9A    | 6                     | SA (2Q & 4Q)                                          | REMOVE                          | LF Interval (55-60')                                                 | N/A                                |
| MW-9B    | 6                     | SA (2Q & 4Q)                                          | REMOVE                          | LF Interval (95-100')                                                | N/A                                |
| MW-10A   | 6                     | Quarterly                                             | Annual                          | Purge & Grab sample                                                  | LF Interval (52-57')               |
| MW-10B   | 6                     | Quarterly                                             | REMOVE                          | LF Interval (90-95')                                                 | N/A                                |
| MW-11A   | 6                     | Quarterly                                             | REMOVE                          | LF Interval (50-55')                                                 | N/A                                |
| MW-11B   | 6                     | Quarterly                                             | Quarterly                       | LF Interval (85-90')                                                 | LF Interval (85-90')               |
| MW-12B   | 6                     | SA (2Q & 4Q)                                          | REMOVE                          | LF Interval (90-95')                                                 | N/A                                |
| MW-13A   | 6                     | SA (2Q & 4Q)                                          | REMOVE                          | LF Interval (50-55')                                                 | N/A                                |
| MW-13B   | 6                     | SA (2Q & 4Q)                                          | REMOVE                          | LF Interval (85-90')                                                 | N/A                                |
| MW-14A   | 6                     | Quarterly                                             | REMOVE                          | Purge & Grab sample                                                  | N/A                                |
| MW-14B   | 6                     | Quarterly                                             | Annual                          | LF Interval (85-90')                                                 | LF Interval (85-90')               |
| MW-15    | 6                     | Quarterly                                             | Quarterly                       | LF Interval (80-85')                                                 | LF Interval (80-85')               |
| MW-16A   | 6                     | Quarterly                                             | REMOVE                          | Purge & Grab sample                                                  | N/A                                |
| MW-16B   | 6                     | Quarterly                                             | Quarterly                       | LF Interval (110-115')                                               | LF Interval (110-115')             |
| MW-17A   | 6                     | SA (2Q & 4Q)                                          | REMOVE                          | LF Interval (55-60')                                                 | N/A                                |
| MW-17B   | 6                     | Quarterly                                             | Quarterly                       | LF Interval (85-90')                                                 | LF Interval (85-90')               |
| MW-18A   | 6                     | Quarterly                                             | REMOVE                          | Purge & Grab sample                                                  | N/A                                |
| MW-18B   | 6                     | Quarterly                                             | Quarterly                       | LF Interval (100-110')                                               | LF Interval (100-110')             |
| MW-19A   | 6                     | Quarterly                                             | REMOVE                          | LF Interval (40-50')                                                 | N/A                                |
| MW-19B   | 6                     | Quarterly                                             | REMOVE                          | LF Interval (105-115')                                               | N/A                                |
| MW-20A   | 6                     | Quarterly                                             | Annual                          | LF Interval (40-50')                                                 | LF Interval (40-50')               |
| MW-20B   | 6                     | Quarterly                                             | REMOVE                          | LF Interval (105-115')                                               | N/A                                |
| MW-21    | 2                     | Quarterly                                             | REMOVE                          | Purge & Grab sample                                                  | N/A                                |
| MW-22    | 2                     | Quarterly                                             | Quarterly                       | Purge & Grab sample                                                  | LF Interval (40-45')               |
| MW-23    | 4                     | Quarterly                                             | REMOVE                          | Purge & Grab sample                                                  | N/A                                |
| MW-24B   | 6                     | Quarterly                                             | REMOVE                          | Purge & Grab sample                                                  | N/A                                |
| MW-25B   | 6 8                   | Quarterly                                             | REMOVE                          | Purge & Grab sample                                                  | N/A<br>N/A                         |
| MW-1608R | 8                     | Quarterly                                             | REMOVE                          | Grab Sample                                                          | N/A                                |
| RW-1     | 6                     | Quarterly                                             | REMOVE                          | Purge & Grab sample                                                  | N/A<br>N/A                         |
| RW-2     | 6                     | Quarterly                                             | REMOVE<br>REMOVE                | Purge & Grab sample                                                  | N/A<br>N/A                         |
| RW-3     | 6                     | SA (2Q & 4Q)                                          |                                 | Purge & Grab sample                                                  |                                    |
| RW-4     | 6                     | Quarterly                                             | Quarterly                       | Purge & Grab sample                                                  | LF Interval (65-70')               |

' = feet

fbg = feet below grade in = inches

LF = Low Flow

N/A =Not Applicable

SA = Semi-annual

**Bold** = Well proposed for sampling frequency modification

REMOVE =Well proposed for removal from groundwater monitoring network



#### Table 3

#### MONITORING WELL CONSTRUCTION DETAILS

Carroll Fuels - Wally's Citgo 19200 Middletown Rd Parkton, MD

| Well ID | Well Install Date | Well Diameter/<br>Material (Inches-<br>PVC/Open) | Fotal Depth Of Well<br>from Ground<br>Surface (ft) | Depth to T.O.S.<br>from Ground<br>Surface (ft) | Depth to B.O.S.<br>from Ground<br>Surface (ft) | Drilling method | Depth to Bedrock<br>(ft) | Depth of Potential<br>Water-Bearing<br>Zones (ft) <sup>1</sup> | Initial Water Depth<br>(ft)* | Geophysics (Y/N) | Packer Testing<br>(Y/N) | Comments                     |
|---------|-------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------|--------------------------|----------------------------------------------------------------|------------------------------|------------------|-------------------------|------------------------------|
|         | F                 |                                                  | _                                                  |                                                |                                                |                 |                          |                                                                |                              | -                |                         |                              |
| MW-1    | 08/09/05          | 2-PVC                                            | 62                                                 | 37                                             | 62                                             | Air Rotary      | 33                       | 47, 52-54                                                      | 41.25                        | N                | N                       |                              |
| MW-2    | 08/10/05          | 2-PVC                                            | 62                                                 | 40                                             | 60                                             | Air Rotary      | 34                       | 43, 47-49, 54                                                  | 42.66                        | N                | N                       |                              |
| MW-3    | 08/09/05          | 2-PVC                                            | 62                                                 | 42                                             | 62                                             | Air Rotary      | 32                       | 52, 57                                                         | 41.35                        | N                | N                       |                              |
| MW-3S   | 08/30/06          | 2-PVC                                            | 30                                                 | 5                                              | 30                                             | Air Rotary      | 28                       | NE****                                                         | Dry                          | N                | N                       | Abandoned 01/23/08           |
| MW-4    | 11/09/05          | 2-PVC                                            | 61                                                 | 40                                             | 60                                             | Air Rotary      | 36                       | 42-44, 46-47                                                   | 40.79                        | N                | N                       |                              |
| MW-5    | 11/09/05          | 2-PVC                                            | 51                                                 | 30.5                                           | 50.5                                           | Air Rotary      | 18                       | 33.5, 36-37,39                                                 | 40.75                        | N                | N                       |                              |
| MW-5B   | 07/02/08          | 6- OPEN **                                       | 100                                                | 70                                             | 100                                            | Air Rotary      | 20                       | 51, 64, 80, 89, 92, 95                                         | Dry                          | N                | N                       |                              |
| MW-6    | 11/10/05          | 2-PVC                                            | 62                                                 | 40.5                                           | 60.5                                           | Air Rotary      | 24                       | 50-52, 54                                                      | 43.74                        | N                | N                       |                              |
| MW-7A   | 08/29/06          | 6-OPEN**                                         | 65                                                 | 40                                             | 65                                             | Air Rotary      | 37                       | 46-51, 55-56, 60-62                                            | 44.47                        | Y                | Y                       | Geophysics 46, 51            |
| MW-7B   | 08/31/06          | 6-OPEN**                                         | 120^                                               | 70                                             | 120                                            | Air Rotary      | 38                       | 101, 216                                                       | >200                         | Y                | Y                       | Reconstructed July-08        |
| MW-8A   | 08/29/06          | 6-OPEN**                                         | 65                                                 | 40                                             | 65                                             | Air Rotary      | 48                       | 48-53, 60-62                                                   | 41.94                        | Y                | Y                       | Geophysics 48, 53, 62        |
| MW-8B   | 08/29/06          | 6-OPEN**                                         | 100                                                | 73.5                                           | 100                                            | Air Rotary      | 48                       | 85, 94                                                         | 95.78                        | Y                | Y                       | Geophysics 85, 94            |
| MW-9A   | 08/30/06          | 6-OPEN**                                         | 62                                                 | 40                                             | 65                                             | Air Rotary      | 33                       | 40-51, 56-58                                                   | 41.04                        | Y                | Y                       | Geophysics 51, 56            |
| MW-9B   | 08/30/06          | 6-OPEN**                                         | 120^                                               | 72                                             | 120                                            | Air Rotary      | 33                       | 99, 141, 186-190, 220                                          | >200                         | Y                | Y                       | Geophysics 99, 141, 186, 220 |
| MW-10A  | 05/08/07          | 6-OPEN**                                         | 62                                                 | 40                                             | 62                                             | Air Rotary      | 36                       | 60-61                                                          | 35.77                        | Ν                | Ν                       |                              |
| MW-10B  | 05/08/07          | 6-OPEN**                                         | 100                                                | 70                                             | 100                                            | Air Rotary      | 38                       | NE****                                                         | 89                           | Ν                | Ν                       |                              |
| MW-11A  | 06/26/08          | 6-OPEN**                                         | 60                                                 | 40                                             | 60                                             | Air Rotary      | 30                       | NE****                                                         | 44.53                        | Ν                | Ν                       |                              |
| MW-11B  | 06/26/08          | 6-OPEN**                                         | 100                                                | 70                                             | 100                                            | Air Rotary      | 30                       | 80, 85, 90                                                     | 41.6                         | Ν                | Ν                       |                              |
| MW-12B  | 07/02/08          | 6-OPEN**                                         | 100                                                | 70                                             | 100                                            | Air Rotary      | 31                       | 64                                                             | >75                          | Ν                | Ν                       |                              |
| MW-13A  | 07/01/08          | 6-OPEN**                                         | 60                                                 | 40                                             | 60                                             | Air Rotary      | 38                       | 50, 53                                                         | 41.5                         | Ν                | Ν                       |                              |
| MW-13B  | 07/01/08          | 6-OPEN**                                         | 100                                                | 70                                             | 100                                            | Air Rotary      | 38                       | 50, 53, 72, 80, 90                                             | >75                          | Ν                | Ν                       |                              |
| MW-14A  | 06/27/08          | 6-OPEN**                                         | 60                                                 | 40                                             | 60                                             | Air Rotary      | 38                       | 54, 57, 60                                                     | 41.18                        | Ν                | N                       |                              |
| MW-14B  | 06/27/08          | 6-OPEN**                                         | 100                                                | 70                                             | 100                                            | Air Rotary      | 38                       | 54, 57, 60, 78, 81, 89                                         | >75                          | Ν                | Ν                       |                              |
| MW-15   | 05/12/10          | 6-OPEN**                                         | 120                                                | 40.5                                           | 120                                            | Air Rotary      | 28                       | 54, 57, 77, 85                                                 | 54                           | Y                | Ν                       | Geophysics 55-60             |
| MW-16A  | 05/17/10          | 6-OPEN**                                         | 65                                                 | 40.5                                           | 65                                             | Air Rotary      | 34                       | 49-50, 55, 58-59                                               | 49                           | Ν                | N                       |                              |
| MW-16B  | 05/18/10          | 6-OPEN**                                         | 120                                                | 70.5                                           | 120                                            | Air Rotary      | 32                       | 54.5, 56, 75, 112-113                                          | 75                           | Ν                | Ν                       |                              |
| MW-17A  | 05/14/10          | 6-OPEN**                                         | 65                                                 | 40.5                                           | 65                                             | Air Rotary      | 27                       | 55, 57, 63.5                                                   | 55                           | N                | N                       |                              |
| MW-17B  | 05/17/10          | 6-OPEN**                                         | 120                                                | 70.5                                           | 120                                            | Air Rotary      | 26                       | 55, 62, 64.5, 69.5, 87                                         | 87                           | N                | N                       |                              |
| MW-18A  | 05/13/10          | 6-OPEN**                                         | 65                                                 | 40.5                                           | 65                                             | Air Rotary      | 25                       | 51-52, 54-55, 63.5                                             | 51                           | N                | N                       |                              |
| MW-18B  | 05/14/10          | 6-OPEN**                                         | 120                                                | 70.5                                           | 120                                            | Air Rotary      | 25.5                     | 48, 50.5, 53, 57.5, 66-69, 85, 103, 109, 112                   | 90                           | Ν                | Ν                       |                              |
| MW-19A  | 06/13/11          | 6-OPEN**                                         | 55                                                 | 31                                             | 55                                             | Air Rotary      | 17.5                     | 31, 41, 45, 48, 51                                             | NA                           | N                | N                       |                              |
| MW-19B  | 06/10/11          | 6-OPEN**                                         | 120                                                | 70                                             | 120                                            | Air Rotary      | 19                       | 87, 91, 95                                                     | NA                           | N                | N                       |                              |
| MW-20A  | 06/10/11          | 6-OPEN**                                         | 55                                                 | 31                                             | 55                                             | Air Rotary      | 25                       | 45, 48                                                         | NA                           | N                | N                       |                              |
| MW-20B  | 06/09/11          | 6-OPEN**                                         | 120                                                | 70                                             | 120                                            | Air Rotary      | 22                       | 74, 76, 114                                                    | NA                           | N                | N                       |                              |
| RW-1    | 05/20/10          | 6-OPEN**                                         | 120                                                | 40.5                                           | 120                                            | Air Rotary      | 23                       | 44-47, 106                                                     | NO                           | N                | N                       |                              |



#### Table 3

#### MONITORING WELL CONSTRUCTION DETAILS

Carroll Fuels - Wally's Citgo 19200 Middletown Rd Parkton, MD

| Well ID       | Well Install Date | Well Diameter/<br>Material (Inches-<br>PVC/Open) | Total Depth Of Well<br>from Ground<br>Surface (ft) | Depth to T.O.S.<br>from Ground<br>Surface (ft) | Depth to B.O.S.<br>from Ground<br>Surface (ft) | Drilling method | Depth to Bedrock<br>(ft) | Depth of Potential<br>Water-Bearing<br>Zones (ft) <sup>1</sup> | Initial Water Depth<br>(ft)* | Geophysics (Y/N) | Packer Testing<br>(Y/N) | Comments                           |
|---------------|-------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------|--------------------------|----------------------------------------------------------------|------------------------------|------------------|-------------------------|------------------------------------|
| RW-2          | 05/19/10          | 6-OPEN**                                         | 120                                                | 40.5                                           | 120                                            | Air Rotary      | 29                       | 43-47, 86-87, 100.5-101.5                                      | NO                           | Ν                | N                       |                                    |
| RW-3          | 05/20/10          | 6-OPEN**                                         | 120                                                | 40.5                                           | 120                                            | Air Rotary      | 25                       | 46-48, 61-62.5, 72.5, 91                                       | 47                           | Ν                | N                       |                                    |
| RW-4***       | NA                | 6-OPEN**                                         | 84.7                                               | 44                                             | 84.7                                           | NA              | NA                       | 45, 60, 66                                                     | NA                           | Y                | N                       | Geophysics 45, 60, 66              |
| MW-21         | 11/9/11           | 2                                                | 45                                                 | 20                                             | 45                                             | Air Rotary      | 15                       | NE****                                                         | 33                           | Ν                | N                       |                                    |
| MW-22         | 11/9/11           | 2                                                | 45                                                 | 20                                             | 45                                             | Air Rotary      | 15                       | NE****                                                         | 37                           | Ν                | Ν                       |                                    |
| MW-23         | 1/10/11           | 4                                                | 60                                                 | 20                                             | 60                                             | Air Rotary      | 20                       | NE****                                                         | 41                           | Ν                | N                       |                                    |
| MW-24B        | 11/9/11           | 6-OPEN**                                         | 120                                                | 60                                             | 120                                            | Air Rotary      | 20                       | 60                                                             | 96                           | Ν                | N                       |                                    |
| MW-25B        | 1/10/11           | 6-OPEN**                                         | 120                                                | 60                                             | 120                                            | Air Rotary      | 20                       | 60                                                             | >100                         | Ν                | N                       |                                    |
| 1608R         | 5/7/13            | 8-OPEN**                                         | 402                                                | 82.26                                          | 402                                            | Air Rotary      | 79.26                    | NE****                                                         | NO                           | Ν                | N                       |                                    |
| 1606 Rayville | NA                | 6-OPEN**                                         | 135.7                                              | 27                                             | 135.7                                          | NA              | NA                       | 43, 59, 62, 74, 98, 113                                        | NA                           | Y                | N                       | Geophysics 43, 59, 62, 74, 98, 113 |
| 1612 Rayville | NA                | 6-OPEN**                                         | 114                                                | 23                                             | 114                                            | NA              | NA                       | 63, 70, 83, 96, 101                                            | NA                           | Y                | N                       | Geophysics 63, 70, 83, 96, 101     |

\* = Depth to water measured during first sampling event

\*\* = Steel casing grouted to open hole depth

\*\*\* = The well at 1608 Rayville Road is a former potable well location and will be now referred to as RW-4

 $^{\circ}$  = Well reconstruction completed on 07/03/08

1 = Water-bearing zones determined by field observations during well installation and/or down-hole geophysics (see comments column for depths by geophysics)

B.O.S. = Bottom of Screen (or open borehole)

ft = Feet

N = No

NA = Not Available

NE \*\*\*\* = None Encountered

NO = Not Observed

NAVD 88 = Maryland State Coordinate System, National Aerial Vertical Data 1988.

T.O.S. = Top of Screen (or open borehole)

Y = Yes





## Appendix A – Concentration Hydrographs

#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-1**



GES

#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-2**





Groundwater & Environmental Services, Inc.

#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD



GES

#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-5B**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-5**





Groundwater & Environmental Services, Inc.

#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD



GES

#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-7B**



Depth to Water (ft)

GES
#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-8B**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-9A**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-9B**





#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-10B**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-11A**





Depth to Water (ft)

#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-11B**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD



Depth to Water (ft)



#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-13A**



Depth to Water (ft)



#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-13B**





#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-14B**





#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-16A**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-16B**



Depth to Water (ft)



#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-17B**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-18A**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD



# GES

#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-21**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-22**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-23**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-24B**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## **Monitoring Well MW-25B**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD



Depth to Water (ft)



Groundwater & Environmental Services, Inc.

#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD





Groundwater & Environmental Services, Inc.

#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

# Recovery Well RW-4 (Former 1608 Potable Well)





#### **CONCENTRATION HYDROGRAPHS**





#### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD



GES

Groundwater & Environmental Services, Inc.
### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

# 1614 Rayville Road Influent





### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD





Groundwater & Environmental Services, Inc.

### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

# **1620** Rayville Road Influent





### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

# 1624 Rayville Road Influent





### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD





Groundwater & Environmental Services, Inc.

### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD





### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD



### 19124 Middletown Road Influent



### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

### 19201 Middletown Road Influent





Groundwater & Environmental Services, Inc.

### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

### 19222 Middletown Road Influent





Groundwater & Environmental Services, Inc.

### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD



# 19200 Middletown Road PW-01 Influent



### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## 19200 Middletown Road PW-02 Influent





### **CONCENTRATION HYDROGRAPHS**

Carroll Motor Fuels - Wally's 19200 Middletown Rd Parkton, MD

## 19200 Middletown Road PW-03 Influent





Post-Remediation Evaluation Report Former Citgo/ Carroll Wally's, MDE Case No. 2006-0319-BA 19200 Middletown Rd., Parkton, MD



# Appendix B – Mann-Kendall Analyses

|                  | 16-Jul-18                    |                 |                 |                |                |                        | Job ID: 4031    |              |          |  |
|------------------|------------------------------|-----------------|-----------------|----------------|----------------|------------------------|-----------------|--------------|----------|--|
|                  | Parkton/Wally<br>Amelia Ryan | /'S             |                 |                |                | Consi<br>Concentration |                 | yl tert-Buty | /I Ether |  |
| -                | bling Point ID: P            | W-01            |                 |                |                |                        | <u></u>         |              | J<br>    |  |
| Sampling         | Sampling                     |                 |                 | METH           |                |                        | CONCENT         |              |          |  |
| Event            | Date                         |                 | <u> </u>        | IVIE I H       | IL IERI-BU     | JTYL ETHER             | CONCENT         | ka non (ug/i | L)       |  |
| 1 2              | 11/09/2016<br>01/24/2017     | 2<br>1.5        |                 |                |                |                        |                 |              |          |  |
| 3                | 05/03/2017                   | 1.2             |                 |                |                |                        |                 |              |          |  |
| 4                | 11/08/2017                   | 0.8             |                 |                |                |                        |                 |              |          |  |
| 5                | 02/16/2018                   | 0.72            |                 |                |                |                        |                 |              |          |  |
| 6                | 05/08/2018                   | 0.7             |                 |                |                |                        |                 |              |          |  |
| 7 8              | 08/24/2018                   | 0.5             |                 |                |                |                        |                 |              |          |  |
| 9                |                              |                 |                 |                |                |                        |                 |              |          |  |
| 10               |                              |                 |                 |                |                |                        |                 |              |          |  |
| 11               |                              |                 |                 |                |                |                        |                 |              |          |  |
| 12               |                              |                 |                 |                |                |                        |                 |              |          |  |
| 13               |                              |                 |                 |                |                |                        |                 |              |          |  |
| 14<br>15         |                              |                 |                 |                |                |                        |                 |              |          |  |
| 16               |                              |                 |                 |                |                |                        |                 |              |          |  |
| 17               |                              |                 |                 |                |                |                        |                 |              |          |  |
| 18               |                              |                 |                 |                |                |                        |                 |              |          |  |
| 19               |                              |                 |                 |                |                |                        |                 |              |          |  |
| 20<br>Coefficien | t of Variation:              | 0.51            |                 |                |                |                        |                 |              |          |  |
|                  | I Statistic (S):             | -21             |                 |                |                |                        |                 |              |          |  |
|                  | dence Factor:                | 100.0%          |                 |                |                |                        |                 |              |          |  |
| Concen           | tration Trend:               | Decreasing      |                 |                |                |                        |                 |              |          |  |
|                  |                              |                 |                 |                |                |                        |                 |              |          |  |
|                  | 10                           |                 |                 |                | PW-01          |                        |                 |              |          |  |
|                  |                              |                 |                 |                |                |                        |                 |              |          |  |
|                  | C I                          |                 |                 |                |                |                        |                 |              | _        |  |
|                  | oncentration (ug/L)          |                 |                 |                |                |                        |                 |              |          |  |
|                  | 2                            |                 |                 |                |                |                        |                 |              |          |  |
|                  | uo 1                         |                 |                 | +              |                |                        |                 |              |          |  |
|                  |                              |                 |                 |                |                |                        |                 |              |          |  |
|                  | Itra                         |                 |                 |                |                | •                      |                 | $\frown$     |          |  |
|                  | e                            |                 |                 |                |                |                        |                 |              |          |  |
|                  | ou l                         |                 |                 |                |                |                        |                 |              |          |  |
|                  | ပိ                           |                 |                 |                |                |                        |                 |              |          |  |
|                  | 0.1                          |                 | _               | _              |                | _                      |                 |              | _        |  |
|                  | 08/16                        | 11/16           | 03/17           | 06/17          | 09/17          | 12/17                  | 04/18           | 07/18        | 10/18    |  |
|                  |                              |                 |                 |                |                |                        |                 |              |          |  |
|                  |                              |                 |                 |                | Sampling       | g Date                 |                 |              |          |  |
|                  |                              |                 |                 |                |                |                        |                 |              |          |  |
| es:              |                              |                 |                 |                | Cara da st     |                        |                 | 4 1 - 42     |          |  |
| pact four ind    | ependent samplir             | ng events per w | ell are require | ed for calcula | ting the trend | d. Methodolog          | gy is valid for | 4 to 40 sam  | ples.    |  |



|                   | 16-Jul-18           |        |       |       |            |               | Job ID: 4031               |             |          |       |
|-------------------|---------------------|--------|-------|-------|------------|---------------|----------------------------|-------------|----------|-------|
|                   | Parkton/Wally       | /'s    |       |       |            |               | tituent: Meth              |             | /I Ether |       |
| -                 | Amelia Ryan         |        |       |       |            | Concentration | i Units: <mark>ug/L</mark> |             |          |       |
|                   | oling Point ID: P   | N-03   |       |       |            |               |                            |             |          |       |
| Sampling<br>Event | Sampling<br>Date    |        |       | METH  | YL TERT-BI | UTYL ETHER    |                            | ATION (ug/l | L)       |       |
| 1                 | 11/09/2016          | 0.1    |       |       |            |               |                            |             | 1        |       |
| 2                 | 01/24/2017          | 0.1    |       |       |            |               |                            |             |          |       |
| 3                 | 05/03/2017          | 0.1    |       |       |            |               |                            |             |          |       |
| 4                 | 11/08/2017          | 0.1    |       |       |            |               |                            |             |          |       |
| 5                 | 02/16/2018          | 0.074  |       |       |            | -             |                            |             | -        |       |
| 6                 | 05/08/2018          | 0.1    |       |       |            |               |                            |             |          |       |
| 7 8               | 08/24/2018          | 0.1    | +     |       |            | +             |                            |             | ł        |       |
| 9                 | ├                   |        | 1     |       |            |               |                            |             |          |       |
| 10                | 1                   |        | 1     |       |            |               |                            |             | ł        |       |
| 11                |                     |        | 1     |       |            | 1             |                            |             |          |       |
| 12                |                     |        |       |       |            |               |                            |             |          |       |
| 13                |                     |        |       |       |            |               |                            |             |          |       |
| 14                |                     |        |       |       |            |               |                            |             |          |       |
| 15                | ┞────┝              |        |       |       |            |               |                            |             |          |       |
| 16<br>17          | ├                   |        | +     |       |            | +             |                            |             | 1        |       |
| 17                |                     |        |       |       |            |               |                            |             |          |       |
| 19                |                     |        |       |       |            |               |                            |             |          |       |
| 20                | + +                 |        | 1     |       |            |               |                            |             | 1        |       |
| Coefficien        | t of Variation:     | 0.10   |       |       |            |               |                            |             |          |       |
|                   | Il Statistic (S):   | -2     |       |       |            |               |                            |             |          |       |
| Confi             | dence Factor:       | 55.7%  |       |       |            |               |                            |             |          |       |
| Concen            | tration Trend:      | Stable |       |       |            |               |                            |             |          |       |
|                   |                     |        |       |       |            |               |                            |             |          |       |
|                   | 1                   |        |       |       | PW-03      |               |                            |             |          |       |
|                   |                     |        |       |       |            |               |                            |             |          | PW-03 |
|                   | Ĵ l                 |        |       |       |            |               |                            |             |          |       |
|                   | oncentration (ug/L) |        |       |       |            |               |                            |             |          |       |
|                   | ے ا                 |        |       |       |            |               |                            |             |          |       |
|                   | uo or               | •      |       |       |            |               |                            |             |          |       |
|                   | 0.1 t               | •      | •     | -     |            |               |                            | •           |          |       |
|                   | tr                  |        |       |       |            |               |                            |             |          |       |
|                   | en                  |        |       |       |            |               |                            |             |          |       |
|                   | 20                  |        |       |       |            |               |                            |             |          |       |
|                   |                     |        |       |       |            |               |                            |             |          |       |
|                   | Ŭ                   |        |       |       |            |               |                            |             |          |       |
|                   | 0.01 +              | 14/4/  | 02/47 | 0//47 | 00/47      | 10/47         | 04/10                      | 07/10       | 10/10    |       |
|                   | 08/16               | 11/16  | 03/17 | 06/17 | 09/17      | 12/17         | 04/18                      | 07/18       | 10/18    |       |
|                   |                     |        |       |       | Sampling   | a Date        |                            |             |          |       |
|                   |                     |        |       |       |            | 5 - 410       |                            |             |          |       |









| Facility Name: Parkton/Wally's Constituent: MethylierBurg/LifeBurg/Constituent: MethylierBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg/LifeBurg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | luation Date: | 16-Jul-18          |                  |            |                | Job I              | D: 403162       |              |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|------------------|------------|----------------|--------------------|-----------------|--------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | acility Name: | Parkton/Wall       | /'s              |            |                | Constituer         | nt: Methyl tert | -Butyl Ether |               |
| Sampling<br>Event      Sampling<br>Delta      METHYL TERT-BUTYL ETHER CONCENTRATION (ug/L)        1      1108/2016      0.2      Image: Concentration (ug/L)        2      01/24/2017      0.2      Image: Concentration (ug/L)        4      1108/2016      0.2      Image: Concentration (ug/L)        4      1108/2017      0.2      Image: Concentration (ug/L)        8      10      Image: Concentration (ug/L)      Image: Concentration (ug/L)        11      Image: Concentration (ug/L)      Image: Concentration (ug/L)      Image: Concentration (ug/L)        12      Image: Concentration (ug/L)      Image: Concentration (ug/L)      Image: Concentration (ug/L)      Image: Concentration (ug/L)        13      Image: Concentration (ug/L)        14      Image: Concentration (ug/L)      Image: Concentration (ug/L)      Image: Concentration (ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                    |                  |            |                | Concentration Unit | s: ug/L         |              |               |
| Event    Date    MELTIC TERRISOTE LITER GOULENTRATION (uglt)      1    11082016    0.2      3    05:032017    0.2      4    11082017    0.2      5    02:162018    0.1      6    05:082018    0.2      7    08:24/2018    0.1      10    1    1      111    1    1      122    1    1      131    1    1      133    1    1      134    1    1      135    1    1      134    1    1      135    1    1      136    1    1      137    1    1      138    1    1      139    1    1      200    0.25    1      131    1    1    1      135    1    1    1      136    1    1    1    1      200    0.25    1    1    1      139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Samp          | oling Point ID: 16 | 20 Rayville Road | d          |                |                    |                 |              |               |
| $\frac{1}{2}$ 01/24/2017 0.2<br>$\frac{1}{2}$ 05/03/2017 0.2<br>$\frac{1}{4}$ 11/08/2017 0.2<br>$\frac{1}{5}$ 02/16/2018 0.1<br>$\frac{1}{6}$ 05/08/2018 0.2<br>$\frac{1}{7}$ 08/24/2018 0.1<br>$\frac{1}{10}$ 0.1 |               |                    |                  | N          | IETHYL TERT-BI | JTYL ETHER COI     | NCENTRATION     | l (ug/L)     |               |
| 2 01/24/2017 0.2<br>4 11/08/2017 0.2<br>5 021/62018 0.1<br>6 05/08/2018 0.2<br>7 08/24/2018 0.1<br>10 0 0 0<br>10 0 0 0<br>11 0 0 0 0<br>12 0 0 0<br>13 0 0 0 0<br>14 0 0 0 0<br>15 0 0 0<br>16 0 0 0<br>17 0 0<br>14 0 0 0 0 0<br>15 0 0 0<br>16 0 0 0<br>17 0 0<br>17 0 0<br>17 0 0<br>17 0 0<br>10 0 0 0 0<br>18 0 0 0 0<br>19                                                                                                                                                                                                                                                                                                                |               |                    | 0.2              | 1          |                |                    |                 |              |               |
| 3 0503/2017 0.2<br>5 02/16/2018 0.1<br>8 0508/2018 0.2<br>8 0508/2018 0.2<br>8 0508/2018 0.2<br>8 02/16/2018 0.1<br>8 02/16/2018 0.1<br>1 0 0 0 0<br>1 1 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br>1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                    |                  |            |                |                    |                 |              |               |
| 4    11/08/2017    0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                    |                  |            |                | 1                  |                 |              |               |
| 6    05/08/2018    0.2    Image: constraint of the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4             | 11/08/2017         |                  |            |                |                    |                 |              |               |
| 7    08/24/2018    0.1    Image: constraint of the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                    |                  |            |                |                    |                 |              |               |
| 8    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                    |                  |            |                |                    |                 |              |               |
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>16<br>16<br>17<br>18<br>19<br>20<br>Coefficient of Variation:<br>18<br>19<br>20<br>Coefficient of Variation:<br>0.25<br>39<br>20<br>Coefficient of Variation:<br>0.25<br>39<br>20<br>Confidence Factor:<br>Stable<br>16<br>16<br>17<br>18<br>19<br>20<br>Concentration Trend:<br>Stable<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 08/24/2018         | 0.1              |            |                |                    | _               |              |               |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>16<br>17<br>18<br>19<br>20<br>Coefficient of Variation:<br>0.25<br>19<br>20<br>Coefficient of Variation:<br>0.25<br>88.1%<br>Coefficient of Variation:<br>0.25<br>88.1%<br>Confidence Factor:<br>Concentration Tred:<br>Stable<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>19<br>19<br>10<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                    |                  |            |                |                    |                 |              |               |
| 11  12  14  15    13  14  16  17    16  16  16    17  16  16    18  19  10    20  10  10    Coefficient of Variation:  0.25    .9  88.1%    Confidence Factor:  Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | ↓↓                 |                  |            |                |                    |                 |              |               |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>Coefficient of Variation:<br>Ann-Kendal Statistic (S):<br>Confidence Factor:<br>Confidence Factor:<br>Confidence Factor:<br>Stable<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.27<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.2                                                                          |               | ┨────┤─            |                  |            |                | +                  |                 |              |               |
| 13  14  14  14    14  15  16  17    16  17  16  17    17  18  19  10    20  10  10  10    Coefficient of Variation:<br>Jaan Kendall Statistic (S):<br>Confidence Factor:<br>Concentration Trend:  0.25  10    38.1%  16  10  10    10  10  10  10    10  10  10  10    11  10  10  10    120  10  10  10    131  10  10  10    132  10  10  10    133  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ┨────┤─            |                  |            |                | +                  | -               |              |               |
| 14  16  17    16  17    18  16    17  16    18  16    19  16    20  16    Coefficient of Variation:<br>Aan-Kendall Statistic (S):<br>Bas.1%  9    20  0.25    Confidence Factor:<br>Concentration Trend:  9    38.1%  16    Stable  16    10  11/16    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17    0.1  0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | ├───┼─             |                  |            |                |                    |                 |              |               |
| 15    16    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ├                  |                  |            |                |                    |                 |              |               |
| 16    17    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ├                  |                  |            |                | +                  |                 |              |               |
| 17<br>18<br>19<br>20<br>Coefficient of Variation:<br>tann-Kendall Statistic (S):<br>Confidence Factor:<br>Stable<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                    |                  |            |                | 1                  | +               |              |               |
| 18    19    10    10    10    10      20    Coefficient of Variation:    0.25    9    10    10    10      Iann-Kendall Statistic (S):    .9    88.1%    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10 <td< td=""><td></td><td><u>├</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u>├</u>           |                  |            |                |                    |                 |              |               |
| 19<br>20<br>Coefficient of Variation:<br>fan-Kendall Statistic (S):<br>Confidence Factor:<br>Concentration Trend:<br>Stable<br>1620 Rayville Road<br>1620 Rayville Road<br>1018<br>1018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                    |                  |            |                | 1                  | 1               |              |               |
| 20<br>Coefficient of Variation:<br>Jann-Kendall Statistic (5):<br>Confidence Factor:<br>Concentration Trend:<br>Stable<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                    |                  |            |                | 1                  |                 |              |               |
| Coefficient of Variation:<br>Jann-Kendall Statistic (S):<br>Confidence Factor:<br>Stable<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                    |                  |            |                | 1                  |                 |              |               |
| Confidence Factor<br>Concentration Trend:<br>Stable<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coefficien    | t of Variation:    | 0.25             |            |                |                    |                 |              |               |
| Concentration Trend: Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                    |                  |            |                |                    |                 |              |               |
| (TO) UD<br>1620 Rayville Road<br>1620 Rayville Road<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Confi         | dence Factor:      | 88.1%            |            |                |                    |                 |              |               |
| () () () () () () () () () () () () () (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Concen        | tration Trend:     | Stable           |            |                |                    |                 |              |               |
| (The field Ray in the f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 1_                 |                  |            |                |                    |                 |              |               |
| Output (10)<br>0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                    |                  |            | 1620 Rayville  | Koad               |                 |              | 1620 Rayville |
| C<br>0.1<br>08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | $\overline{}$      |                  |            |                |                    |                 |              | Nodu          |
| O.1<br>08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | ۲                  |                  |            |                |                    |                 |              |               |
| O.1<br>08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | ň                  |                  |            |                |                    |                 |              |               |
| O.1<br>08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | <u> </u>           |                  |            |                |                    |                 |              |               |
| O.1<br>08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | <u>.</u>           |                  |            |                |                    |                 |              |               |
| C<br>0.1<br>08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | at                 |                  |            |                |                    |                 |              |               |
| C<br>0.1<br>08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Jt                 |                  |            |                |                    |                 |              |               |
| C<br>0.1<br>08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | ie i               | ++               | •          |                |                    | $\wedge$        |              |               |
| O.1<br>08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | bu l               |                  |            |                | $\sim$             |                 |              |               |
| 0.1<br>08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 8                  |                  |            |                | $\sim$             |                 |              |               |
| 08/16 11/16 03/17 06/17 09/17 12/17 04/18 07/18 10/18<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                    |                  |            |                | <b>▼</b>           | ·               |              |               |
| Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                    | 11/1/            | 02/17 0//1 | 7 00/17        | 12/17              | 4/10 07/        | 10 10/10     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 08/16              | 11/16            | 03/17 06/1 | / 09/17        | 12/17 0            | 4/18 0//1       | 10 10/18     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                    |                  |            | Sampling       | g Date             |                 |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                    |                  |            |                |                    |                 |              |               |
| es: ast four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                    |                  |            |                |                    |                 |              |               |

|             | : 16-Jul-18                      |      |            |       |       |                 |                       | Job ID: 4031   |             | 1.54                     |                       |
|-------------|----------------------------------|------|------------|-------|-------|-----------------|-----------------------|----------------|-------------|--------------------------|-----------------------|
|             | : Parkton/<br>CAmelia R          |      |            |       |       |                 | Cons<br>Concentratior | tituent: Meth  |             | yl Ether                 |                       |
| -           |                                  |      | Rayville R |       |       |                 |                       | i onito. ug/ L |             |                          |                       |
| ampling     | Sampling                         |      | Rayville R | oad   |       |                 |                       |                |             |                          |                       |
| Event       | Date                             |      |            |       | METH  | IYL TERT-BI     | UTYL ETHER            | CONCENT        | RATION (ug/ | L)                       |                       |
| 1           | 11/08/201                        |      | 0.1        |       |       |                 |                       |                |             |                          |                       |
| 2           | 01/24/201 05/03/201              |      | 0.1        |       |       |                 |                       |                |             |                          |                       |
| 4           | 11/08/201                        |      | 0.1        |       |       |                 |                       |                |             |                          |                       |
| 5           | 03/23/201                        | 8    | 0.1        |       |       |                 |                       |                |             |                          |                       |
| 6           | 05/08/201                        |      | 0.1        |       |       |                 | _                     |                |             |                          |                       |
| 7<br>8      | 08/24/201                        | 8    | 0.1        |       |       |                 |                       |                |             |                          |                       |
| 9           |                                  |      |            |       |       |                 |                       |                |             |                          |                       |
| 10          |                                  |      |            |       |       |                 |                       |                |             |                          |                       |
| 11          | _                                |      |            |       |       |                 | _                     |                |             |                          |                       |
| 12<br>13    |                                  |      |            |       |       |                 |                       |                |             |                          |                       |
| 14          |                                  |      |            |       |       |                 |                       |                |             |                          |                       |
| 15          |                                  |      |            |       |       |                 |                       |                |             |                          |                       |
| 16          | -                                |      |            |       |       |                 |                       |                |             |                          |                       |
| 17<br>18    |                                  |      |            |       |       |                 |                       |                |             |                          |                       |
| 10          |                                  |      |            |       |       |                 |                       |                |             |                          |                       |
| 20          |                                  |      |            |       |       |                 |                       |                |             |                          |                       |
|             | nt of Variatio                   |      | 0.00       |       |       |                 |                       |                |             |                          |                       |
|             | all Statistic (S<br>idence Facto |      | 0<br>37.9% |       |       |                 |                       |                |             |                          |                       |
|             | ntration Tren                    |      | Stable     |       |       |                 |                       |                |             |                          |                       |
| ooncer      |                                  | u.   | Stubic     |       |       |                 |                       |                |             |                          |                       |
|             | 1                                | -    |            |       | 16    | 24 Rayville     | Road                  |                |             |                          |                       |
|             |                                  |      |            |       | 10    | E i i kay villo | - Ttoda               |                |             |                          | 1624 Rayville<br>Road |
|             | Ĵ                                |      |            |       |       |                 |                       |                |             |                          |                       |
|             | oncentration (ug/L)              |      |            |       |       |                 |                       |                |             |                          |                       |
|             | 2                                |      |            |       |       |                 |                       |                |             |                          |                       |
|             | uo                               |      |            |       |       |                 |                       |                |             |                          |                       |
|             | ati                              |      |            |       |       |                 |                       |                |             |                          |                       |
|             | J.                               |      |            |       |       |                 |                       |                |             |                          |                       |
|             | cei                              |      |            |       |       |                 |                       |                |             |                          |                       |
|             | ũ                                |      |            |       |       |                 |                       |                |             |                          |                       |
|             | Ũ                                |      |            |       |       |                 |                       |                |             |                          |                       |
|             | 0.1                              | +    |            | •     | •     | 00/17           | 10/17                 |                | 07/10       |                          |                       |
|             | 0                                | 8/16 | 11/16      | 03/17 | 06/17 | 09/17           | 12/17                 | 04/18          | 07/18       | 10/18                    |                       |
|             |                                  |      |            |       | -     | Samplin         | g Date                |                |             |                          |                       |
|             |                                  |      |            |       |       |                 |                       |                |             |                          |                       |
| 5:          |                                  |      |            |       |       |                 |                       |                |             |                          |                       |
| st four ind | -                                |      | -          | -     |       | -               | d. Methodolo          |                |             | ples.<br>Increasing or E |                       |



| aluation Date: | 16-Jul-18<br>Parkton/Wally                   |                   |                 |                 |               | Const          | Job ID: 4031<br>ituent: Meth | 62          | d Ether         |              |
|----------------|----------------------------------------------|-------------------|-----------------|-----------------|---------------|----------------|------------------------------|-------------|-----------------|--------------|
|                | Amelia Ryan                                  | 3                 |                 |                 | ,             | Concentration  |                              |             |                 |              |
| -              | oling Point ID: 19                           | 119 Middletc      | wn Road         |                 |               | 1              |                              |             | -               |              |
| Sampling       | Sampling                                     |                   |                 | METH            | VI TERT-RI    | JTYL ETHER     | CONCENTR                     | ATION (ug/  |                 |              |
| Event<br>1     | Date<br>11/09/2016                           | 0.2               | 1               |                 |               |                | CONCENT                      | union (ug/  | -/              |              |
| 2              | 01/24/2017                                   | 0.2               |                 |                 |               | -              |                              |             | -               |              |
| 3              | 05/03/2017                                   | 0.2               |                 |                 |               |                |                              |             | 1               |              |
| 4              | 11/08/2017                                   | 0.1               |                 |                 |               |                |                              |             | 1               |              |
| 5              | 03/23/2018                                   | 0.1               |                 |                 |               |                |                              | _           |                 |              |
| 6              | 05/08/2018                                   | 0.1               |                 |                 |               |                |                              |             |                 |              |
| 7              | 08/24/2018                                   | 0.1               | <b> </b>        |                 |               | <b></b>        |                              |             | <b></b>         |              |
| 8              | $\mid  \mid  \mid$                           |                   |                 |                 |               |                |                              |             | +               | <u> </u>     |
| 9<br>10        | ├                                            |                   | +               |                 |               | +              |                              |             | +               | <u> </u>     |
| 10             |                                              |                   | -               |                 |               | -              |                              |             | -               |              |
| 12             | <del>   </del>                               |                   | +               |                 |               | +              |                              |             | 1               |              |
| 13             | <u>†                                    </u> |                   |                 |                 |               | 1              | <del></del>                  |             | 1               |              |
| 14             |                                              |                   | 1               |                 |               | 1              |                              |             | 1               |              |
| 15             |                                              |                   |                 |                 |               |                |                              |             |                 |              |
| 16             | <u> </u>                                     |                   | <u> </u>        |                 |               | <u> </u>       |                              |             | ļ               |              |
| 17             |                                              |                   | <u> </u>        |                 |               | <u> </u>       |                              |             | <b></b>         |              |
| 18             | ├                                            |                   | +               |                 |               | +              |                              |             |                 | <u> </u>     |
| 19<br>20       | <u>├</u>                                     |                   | +               | <u> </u>        |               | +              | <del></del>                  |             | +               | <u> </u>     |
|                | t of Variation:                              | 0.37              |                 |                 |               |                |                              |             |                 |              |
|                | Il Statistic (S):                            | -12               |                 |                 |               |                |                              |             |                 |              |
| Confi          | dence Factor:                                | 94.9%             |                 |                 |               |                |                              |             |                 |              |
| Concen         | tration Trend: Pro                           | b. Decreasing     |                 |                 |               |                |                              |             |                 |              |
|                | 1                                            |                   |                 |                 |               |                |                              |             |                 |              |
|                | 1                                            |                   |                 | 19119           | 9 Middletov   | vn Road        |                              |             |                 |              |
|                | ~                                            |                   |                 |                 |               |                |                              |             |                 | Middletown   |
|                | 7                                            |                   |                 |                 |               |                |                              |             |                 |              |
|                | ôn                                           |                   |                 |                 |               |                |                              |             |                 |              |
|                | č                                            |                   |                 |                 |               |                |                              |             |                 |              |
|                | oncentration (ug/L)                          |                   |                 |                 |               |                |                              |             |                 |              |
|                | ati                                          |                   |                 |                 |               |                |                              |             |                 |              |
|                | ntr                                          |                   |                 |                 |               |                |                              |             |                 |              |
|                | ie                                           | •                 | +               |                 |               |                |                              |             |                 |              |
|                | buo                                          |                   |                 |                 |               |                |                              |             |                 |              |
|                | ပိ                                           |                   |                 |                 |               |                |                              |             |                 |              |
|                | 0.1                                          |                   |                 |                 |               |                |                              | <b>_</b> _  |                 |              |
|                | 08/16                                        | 11/16             | 03/17           | 06/17           | 09/17         | 12/17          | 04/18                        | 07/18       | 10/18           |              |
|                |                                              |                   |                 |                 |               |                |                              |             |                 |              |
|                |                                              |                   |                 | ļ               | Sampling      | j Date         |                              |             |                 |              |
|                |                                              |                   |                 |                 |               |                |                              |             |                 |              |
| tes:           |                                              |                   |                 |                 |               |                |                              |             |                 |              |
|                | ependent samplin                             |                   | -               |                 | -             | -              |                              |             |                 |              |
| ifidence in T  | rend = Confidence                            | e (in percent) th | nat constituent | t concentration | on is increas | ing (S>0) or d | ecreasing (S                 | <0): >95% = | Increasing or [ | Decreasing;  |
|                | ly Increasing or D                           |                   | acing < 0.0%    | and \$50 = N    | lo Trond: < C | 0% S<0 and     | COV > 1 = 1                  | No Trend: < | 90% and COV     | < 1 = Stable |

| Facility Name:      Parkton/Wally's      Constituent:      Methyl tert-Butyl Ether        Concentration Units:      ug/L      Concentration Units:      ug/L        Sampling      Sampling      METHYL TERT-BUTYL ETHER CONCENTRATION (ug/L)      Image: Constituent:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling Point ID:      19124 Middletown Road        Sampling      Sampling      METHYL TERT-BUTYL ETHER CONCENTRATION (ug/L)        1      11/09/2016      0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sampling<br>Event      Sampling<br>Date      METHYL TERT-BUTYL ETHER CONCENTRATION (ug/L)        1      11/09/2016      0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Event      Date      METHIC TERT-BOTIL ETHER CONCENTRATION (UgL)        1      11/09/2016      0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1    11/09/2016    0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3    05/03/2017    0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4    11/08/2017    0.2      5    02/16/2018    0.14      6    05/08/2018    0.1      7    08/24/2018    0.1      9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5    02/16/2018    0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6    05/08/2018    0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7    08/24/2018    0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11  12  13  14  15    14  16  16  16    17  16  16    18  16  16    19  10  10    20  10  10    Coefficient of Variation:  0.35    Confidence Factor:  76.4%    Concentration Trend:  Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17  18  19    19  19  10    20  10  10    Coefficient of Variation:  0.35    Itann-Kendall Statistic (S):  -6    Confidence Factor:  76.4%    Concentration Trend:  Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18  Image: constraint of the second |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20  Image: Coefficient of Variation: 0.35    Jann-Kendall Statistic (S): -6    Confidence Factor: 76.4%    Concentration Trend: Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Coefficient of Variation:    0.35    Image: Confidence Sector:    -6      Ann-Kendall Statistic (S):    -6    Image: Confidence Sector:    76.4%      Concentration Trend:    Stable    Image: Concentration Trend:    Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Confidence Factor:  76.4%    Concentration Trend:  Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Concentration Trend: Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Concentration (ugl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                  | 16-Jul-18                                |               |         |       |            |               | Job ID: 4031    |              |          |            |
|------------------|------------------------------------------|---------------|---------|-------|------------|---------------|-----------------|--------------|----------|------------|
|                  | Parkton/Wall                             | /'S           |         |       |            |               | ituent: Meth    |              | /I Ether |            |
| ducted By:       | Amelia Ryan                              |               |         |       |            | Concentration | Units: ug/L     |              | J        |            |
| Samp             |                                          | 201 Middletov | vn Road |       |            |               |                 |              |          |            |
| ampling<br>Event | Sampling<br>Date                         |               |         | METH  | YL TERT-BI | JTYL ETHER    | CONCENTR        | RATION (ug/l | L)       |            |
| 1                | 11/08/2016                               | 0.2           |         |       |            | 1             |                 |              | T        |            |
| 2                | 01/25/2017                               | 0.1           |         |       |            |               |                 |              |          |            |
| 3                | 05/03/2017                               | 0.1           |         |       |            |               |                 |              |          |            |
| 4                | 11/07/2017                               | 0.1           |         |       |            |               |                 |              |          |            |
| 5                | 03/30/2018                               | 0.1           |         |       |            |               |                 |              |          |            |
| 6<br>7           | 05/08/2018                               | 0.1           |         |       |            |               |                 |              |          |            |
| 8                | 08/21/2018                               | 0.1           |         |       |            | 1             |                 |              |          |            |
| 9                |                                          |               |         |       |            |               |                 |              |          |            |
| 10               | <u> </u>                                 |               |         |       |            |               |                 |              | 1        |            |
| 11               |                                          |               |         |       |            |               |                 |              |          |            |
| 12               |                                          |               |         |       |            |               |                 |              |          |            |
| 13               |                                          |               |         |       |            |               |                 |              |          |            |
| 14               |                                          |               |         |       |            |               |                 |              |          |            |
| 15               |                                          |               |         |       |            |               |                 |              |          |            |
| 16               |                                          |               |         |       |            |               |                 |              |          |            |
| 17<br>18         |                                          |               |         |       |            |               |                 |              |          |            |
| 19               |                                          |               |         |       |            |               |                 |              |          |            |
| 20               |                                          |               |         |       |            |               |                 |              |          |            |
|                  | of Variation:                            | 0.33          |         |       |            |               |                 |              |          |            |
| ann-Kendall      | Statistic (S):                           | -6            |         |       |            |               |                 |              |          |            |
| Confic           | lence Factor:                            | 76.4%         |         |       |            |               |                 |              |          |            |
| Concent          | ration Trend:                            | Stable        |         |       |            |               |                 |              |          |            |
|                  |                                          |               |         |       |            |               |                 |              |          |            |
|                  | 1                                        |               |         | 1920  | 1 Middleto | wn Road       |                 |              |          |            |
|                  |                                          |               |         |       |            |               |                 |              | _        | Middletown |
|                  |                                          |               |         |       |            |               |                 |              |          |            |
|                  | oncentration (ug/L                       |               |         |       |            |               |                 |              | _        |            |
| •                | 2                                        |               |         |       |            |               |                 |              | _        |            |
|                  | 5                                        |               |         |       |            |               |                 |              |          |            |
|                  | Ĕ                                        |               |         |       |            |               |                 |              |          |            |
|                  | tra                                      |               |         |       |            |               |                 |              |          |            |
|                  | en e | •             |         |       |            |               |                 |              | _        |            |
|                  | č                                        |               |         |       |            |               |                 |              |          |            |
|                  | ō                                        |               |         |       |            |               |                 |              |          |            |
|                  | ŭ                                        |               |         |       |            |               |                 |              |          |            |
|                  | 0.1                                      | 4 4 4 4       | 00/17   | 0(117 | 00/17      | 40/17         | 04/10           | 07/10        | 10/12    |            |
|                  | 08/16                                    | 11/16         | 03/17   | 06/17 | 09/17      | 12/17         | 04/18           | 07/18        | 10/18    |            |
|                  |                                          |               |         |       | Samplin    | n Date        |                 |              |          |            |
|                  |                                          |               |         |       | - amping   | Julio         |                 |              |          |            |
|                  |                                          |               |         |       |            |               |                 |              |          |            |
| 5:               |                                          |               |         |       |            |               | gy is valid for |              |          |            |

| acility Name: F<br>onducted By: A | arkton/Wall      |              |         |       | Job ID: 403162<br>Constituent: Methyl tert-Butyl Ether |                        |          |              |          |            |  |
|-----------------------------------|------------------|--------------|---------|-------|--------------------------------------------------------|------------------------|----------|--------------|----------|------------|--|
| muucicu Dy.                       |                  | /s           |         |       |                                                        | Const<br>Concentration |          | yl tert-Buty | /I Ether |            |  |
|                                   |                  |              |         |       |                                                        | Concentration          |          |              | ]        |            |  |
|                                   |                  | 222 Middleto | wn Road |       |                                                        |                        |          |              |          |            |  |
| Sampling<br>Event                 | Sampling<br>Date |              |         | METH  | YL TERT-B                                              | UTYL ETHER             | CONCENTR | ATION (ug/   | L)       |            |  |
|                                   | 11/08/2016       | 0.1          |         |       |                                                        |                        |          |              |          |            |  |
|                                   | 01/24/2017       | 0.1          |         |       |                                                        | -                      |          |              |          |            |  |
|                                   | 11/08/2017       | 0.1          |         |       |                                                        |                        |          |              |          |            |  |
|                                   | 02/16/2018       | 0.074        |         |       |                                                        |                        |          |              |          |            |  |
|                                   | 05/08/2018       | 0.1          |         |       |                                                        |                        |          |              |          |            |  |
|                                   | 08/24/2018       | 0.1          |         |       |                                                        |                        |          |              |          |            |  |
| 8                                 |                  |              |         |       |                                                        |                        |          |              |          |            |  |
| 9<br>10                           |                  |              |         |       |                                                        |                        |          |              |          |            |  |
| 10                                |                  |              |         |       |                                                        |                        |          |              |          |            |  |
| 12                                |                  |              |         |       |                                                        |                        |          |              |          |            |  |
| 13                                |                  |              |         |       |                                                        |                        |          |              |          |            |  |
| 14                                |                  |              |         |       |                                                        |                        |          |              |          |            |  |
| 15                                |                  |              |         |       |                                                        | _                      |          |              |          |            |  |
| 16<br>17                          |                  |              |         |       |                                                        |                        |          |              |          |            |  |
| 18                                |                  |              |         |       |                                                        |                        |          |              |          |            |  |
| 19                                |                  |              |         |       |                                                        |                        |          |              |          |            |  |
| 20                                |                  |              |         |       |                                                        |                        |          |              |          |            |  |
| Coefficient of                    |                  | 0.10         |         |       |                                                        |                        |          |              |          |            |  |
| Mann-Kendall S                    | • /              | -2           |         |       |                                                        | _                      |          |              |          |            |  |
|                                   | nce Factor:      | 55.7%        |         |       |                                                        |                        |          |              |          |            |  |
| Concentra                         | ation Trend:     | Stable       |         |       |                                                        |                        |          |              |          |            |  |
|                                   | 1                |              |         |       |                                                        |                        |          |              |          |            |  |
|                                   | 1                |              |         | 19222 | 2 Middleto                                             | wn Road                |          |              | — г      | 19222      |  |
| _                                 |                  |              |         |       |                                                        |                        |          |              | Y        | Middletown |  |
| oncentration (und)                | Ĩ.               |              |         |       |                                                        |                        |          |              |          |            |  |
|                                   | 22               |              |         |       |                                                        |                        |          |              |          |            |  |
| )                                 |                  |              |         |       |                                                        |                        |          |              |          |            |  |
|                                   | 0.1              |              | •       | •     |                                                        |                        |          |              | _        |            |  |
| at<br>at                          | 5                |              |         |       |                                                        |                        |          |              |          |            |  |
| t.                                | _                |              |         |       |                                                        |                        |          |              | _        |            |  |
| a                                 |                  |              |         |       |                                                        |                        |          |              |          |            |  |
|                                   |                  |              |         |       |                                                        |                        |          |              | _        |            |  |
| č                                 | 5                |              |         |       |                                                        |                        |          |              |          |            |  |
|                                   | 0.01             |              |         | _     |                                                        |                        |          | _            |          |            |  |
|                                   | 08/16            | 11/16        | 03/17   | 06/17 | 09/17                                                  | 12/17                  | 04/18    | 07/18        | 10/18    |            |  |
|                                   |                  |              |         |       | Somelie                                                | a Data                 |          |              |          |            |  |
|                                   |                  |              |         |       | Samplin                                                | y Date                 |          |              |          |            |  |











|              | e: 16-Jul-18         |            |       |              |           |               | lob ID: 40316 |             |          |        |   |
|--------------|----------------------|------------|-------|--------------|-----------|---------------|---------------|-------------|----------|--------|---|
| acility Name | e: Parkton/Wa        | lly's      |       |              |           | Const         | ituent: Meth  |             | /I Ether |        |   |
| onducted By  | y: Amelia Ryar       | า          |       |              | (         | Concentration | Units: ug/L   |             |          |        |   |
| Sam          | pling Point ID:      | MW-5       |       |              |           |               |               |             |          |        |   |
| Sampling     | Sampling             |            |       | METHY        | L TERT-BL | JTYL ETHER    | CONCENTR      | ATION (ua/l | _)       |        |   |
| Event<br>1   | Date 11/10/2016      | 5.5        |       |              |           |               |               |             | ,        |        |   |
| 2            | 01/26/2017           | 13.0       |       |              |           |               |               |             |          |        |   |
| 3            | 04/05/2017           | 13.0       |       |              |           |               |               |             |          |        |   |
| 4            | 05/09/2017           | 9.7        |       |              |           |               |               |             |          |        |   |
| 5            | 08/01/2017           | 1.0        |       |              |           |               |               |             |          |        |   |
| 6            | 11/09/2017           | 0.8        |       |              |           |               |               |             |          |        |   |
| 7            | 02/16/2018           | 5.0        |       |              |           |               |               |             |          |        |   |
| 8            | 06/14/2018           | 2.8        |       |              |           |               |               |             |          |        |   |
| 9<br>10      | 08/24/2018           | 0.8        |       |              |           |               |               |             |          |        |   |
| 10           | +                    |            |       |              |           |               |               |             |          |        |   |
| 12           | + +                  |            |       |              |           |               |               |             |          |        |   |
| 13           | 1                    |            |       |              |           |               |               |             |          |        |   |
| 14           |                      |            |       |              |           |               |               |             |          |        |   |
| 15           |                      |            |       |              |           |               |               |             |          |        |   |
| 16           |                      |            |       |              |           |               |               |             |          |        |   |
| 17           |                      |            |       |              |           |               |               |             |          |        |   |
| 18           |                      |            |       |              |           |               |               |             |          |        |   |
| 19<br>20     | +                    |            |       |              |           |               |               |             |          |        |   |
|              | nt of Variation:     | 0.89       |       |              |           |               |               |             |          |        |   |
|              | all Statistic (S):   | -19        |       |              |           |               |               |             |          |        |   |
|              | fidence Factor:      | 97.0%      |       |              |           |               |               |             |          |        |   |
|              | ntration Trend:      | Decreasing |       |              |           |               |               |             |          |        |   |
| Concer       |                      | Decreasing |       |              |           |               |               |             |          |        |   |
|              | 100 -                |            |       |              | MW-5      |               |               |             | _        |        |   |
|              |                      |            |       |              |           |               |               |             |          | → MW-5 | 4 |
|              | (T)                  |            |       |              |           |               |               |             |          |        |   |
|              | <b>6</b> 10 -        |            |       |              |           |               |               |             | _        |        |   |
|              | $\tilde{\mathbf{c}}$ |            |       | $\mathbf{N}$ |           | •             |               |             |          |        |   |
|              | ō                    |            |       |              |           |               |               |             |          |        |   |
|              | ati                  |            |       | -            |           |               |               |             | _        |        |   |
|              |                      |            |       |              |           |               |               |             | _        |        |   |
|              | e .                  |            |       | •            |           |               |               | *           |          |        |   |
|              | bu                   |            |       |              |           |               |               |             |          |        |   |
|              | Concentration (ug/L  |            |       |              |           |               |               |             |          |        |   |
|              | 0.1                  | I          |       |              |           |               |               |             |          |        |   |
|              | 0.1 +                | 6 11/16    | 03/17 | 06/17        | 09/17     | 12/17         | 04/18         | 07/18       | 10/18    |        |   |
|              | 00/10                | 11/10      | 03/17 | 00/17        | 07/17     | 12/17         | 04/10         | 0//10       | 10/10    |        |   |
|              |                      |            |       | S            | amplin    | g Date        |               |             |          |        |   |

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, 3. Ground Water, 41(3):355-367, 2003.







1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.




2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.











2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.







| luation Date: 16-Jul-18                                  |                                   |                       |                    | Job ID: 403162<br>Constituent: Methyl tert-Butyl Ether |                         |                |              |          |          |  |
|----------------------------------------------------------|-----------------------------------|-----------------------|--------------------|--------------------------------------------------------|-------------------------|----------------|--------------|----------|----------|--|
| acility Name: Parkton/Wally's<br>nducted By: Amelia Ryan |                                   |                       |                    |                                                        | Consti<br>Concentration |                | yl tert-Buty | /I Ether |          |  |
| -                                                        |                                   |                       |                    |                                                        | Concentration           |                |              | J        |          |  |
|                                                          | oling Point ID:                   | MW-13A                |                    |                                                        |                         |                |              |          |          |  |
| ampling<br>Event                                         | Sampling<br>Date                  |                       | Γ                  | METHYL TERT-B                                          | UTYL ETHER              | CONCENTR       | ATION (ug/l  | L)       |          |  |
| 1                                                        | 11/10/2016                        | 0.1                   |                    |                                                        |                         |                |              |          |          |  |
| 2                                                        | 01/25/2017                        | 0.1                   |                    |                                                        | _                       |                |              |          |          |  |
| 3                                                        | 05/04/2017<br>11/06/2017          | 0.1                   |                    |                                                        |                         |                |              |          |          |  |
| 5                                                        | 02/12/2018                        | 0.1                   |                    |                                                        |                         |                |              |          |          |  |
| 6                                                        | 06/12/2018                        | 0.1                   |                    |                                                        |                         |                |              |          |          |  |
| 7                                                        | 08/20/2018                        | 0.1                   |                    |                                                        |                         |                |              |          |          |  |
| 8                                                        |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
| 9<br>10                                                  | <u>├</u>                          |                       |                    |                                                        |                         |                |              |          |          |  |
| 10                                                       |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
| 12                                                       | <u>∤</u>                          |                       |                    |                                                        |                         |                |              | 1        |          |  |
| 13                                                       |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
| 14                                                       |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
| 15                                                       |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
| 16<br>17                                                 |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
| 18                                                       |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
| 19                                                       |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
| 20                                                       |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
|                                                          | t of Variation:                   | 0.00                  |                    |                                                        | _                       |                |              |          |          |  |
|                                                          | I Statistic (S):<br>dence Factor: | 0<br>37.9%            |                    |                                                        | _                       |                |              |          |          |  |
|                                                          | tration Trend:                    | Stable                |                    |                                                        |                         |                |              |          |          |  |
| Concert                                                  | tration frend:                    | Stable                |                    |                                                        |                         |                |              |          |          |  |
|                                                          | 1                                 |                       |                    | MW-13                                                  | ٨                       |                |              |          |          |  |
|                                                          |                                   |                       |                    | 10100-102                                              | ~                       |                |              |          | → MW-13A |  |
|                                                          | <b>-</b>                          |                       |                    |                                                        |                         |                |              |          |          |  |
|                                                          | oncentration (ug/L)               |                       |                    |                                                        |                         |                |              |          |          |  |
|                                                          | n)                                |                       |                    |                                                        |                         |                |              |          |          |  |
|                                                          | 5                                 |                       |                    |                                                        |                         |                |              |          |          |  |
|                                                          | tic                               |                       |                    |                                                        |                         |                |              | -        |          |  |
|                                                          | tra                               |                       |                    |                                                        |                         |                |              |          |          |  |
|                                                          | ent                               |                       |                    |                                                        |                         |                |              | _        |          |  |
|                                                          | Č                                 |                       |                    |                                                        |                         |                |              |          |          |  |
|                                                          | ō                                 |                       |                    |                                                        |                         |                |              |          |          |  |
|                                                          | Ŭ<br>0.1 —                        |                       |                    |                                                        | ••                      |                |              |          |          |  |
|                                                          | 0.1 +                             | 11/16                 | 03/17 06/          | 17 09/17                                               | 12/17                   | 04/18          | 07/18        | 10/18    |          |  |
|                                                          | 00/10                             | 11/10                 | 03/17 00/          |                                                        |                         | 04/10          | 07/10        | 10/10    |          |  |
|                                                          |                                   |                       |                    | Samplin                                                | g Date                  |                |              |          |          |  |
|                                                          |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
| s:                                                       |                                   |                       |                    |                                                        |                         |                |              |          |          |  |
| of four ind                                              | ependent sampli                   | ing events per well a | are required for c | alculating the tren                                    | d. Methodolog           | y is valid for | 4 to 40 samp | oles.    |          |  |

| luation Date:     |                          |        |       |       |             |               | Job ID: 4031 |              |         |       |
|-------------------|--------------------------|--------|-------|-------|-------------|---------------|--------------|--------------|---------|-------|
|                   | Parkton/Wall             | /'s    |       |       |             |               | ituent: Meth | yl tert-Buty | I Ether |       |
| onducted By:      | Amelia Ryan              |        |       |       |             | Concentration | Units: ug/L  |              | J       |       |
| Samp              | oling Point ID:          | MW-13B |       |       |             |               |              |              |         |       |
| Sampling<br>Event | Sampling<br>Date         |        |       | METH  | IYL TERT-BI | JTYL ETHER    | CONCENTR     | ATION (ug/l  | L)      |       |
| 1                 | 11/10/2016               | 0.1    |       |       |             |               |              |              |         |       |
| 2                 | 01/25/2017               | 0.1    |       |       |             |               |              |              |         |       |
| 3                 | 05/04/2017               | 0.1    |       |       |             |               |              |              |         |       |
| 4                 | 11/06/2017               | 0.1    |       |       |             |               |              |              |         |       |
| 5                 | 02/12/2018               | 0.1    |       |       |             |               |              |              |         | <br>  |
| 6<br>7            | 06/12/2018<br>08/20/2018 | 0.1    | -     |       |             | -             |              |              |         |       |
| 8                 | 08/20/2018               | 0.07   |       |       |             |               |              |              |         |       |
| 9                 | <u>├</u>                 |        |       |       |             |               |              |              |         |       |
| 10                | <u> </u>                 |        | 1     |       |             | 1             |              |              |         |       |
| 11                | 1 1                      |        | 1     |       |             |               |              |              |         |       |
| 12                |                          |        |       |       |             |               |              |              |         |       |
| 13                |                          |        |       |       |             |               |              |              |         |       |
| 14                |                          |        |       |       |             |               |              |              |         |       |
| 15                |                          |        |       |       |             |               |              |              |         |       |
| 16                |                          |        |       |       |             |               |              |              |         |       |
| 17                |                          |        |       |       |             |               |              |              |         |       |
| 18                |                          |        |       |       |             |               |              |              |         | <br>  |
| 19<br>20          | +                        |        |       |       |             |               |              |              |         |       |
|                   | t of Variation:          | 0.12   |       |       |             |               |              |              |         |       |
|                   | Il Statistic (S):        | -6     |       |       |             |               |              |              |         |       |
|                   | dence Factor:            | 76.4%  |       |       |             |               |              |              |         |       |
|                   | tration Trend:           | Stable |       |       |             |               |              |              |         |       |
| CONCER            |                          | Stable |       |       |             |               |              |              |         |       |
|                   | 1                        |        |       |       | MW-13E      | 3             |              |              |         | <br>_ |
|                   |                          |        |       |       |             |               |              |              |         | <br>в |
|                   |                          |        |       |       |             |               |              |              |         |       |
|                   | 6                        |        |       |       |             |               |              |              |         |       |
|                   | n)                       |        |       |       |             |               |              |              |         |       |
|                   | oncentration (ug/L)      |        |       |       |             |               |              |              |         |       |
|                   | 0.1 -                    | •      | •     | •     | -           | •             |              | $\sim$       |         |       |
|                   | L I I                    |        |       |       |             |               |              |              |         |       |
|                   | in a                     |        |       |       |             |               |              |              |         |       |
|                   | ů.                       |        |       |       |             |               |              |              |         |       |
|                   |                          |        |       |       |             |               |              |              |         |       |
|                   | ŭ                        |        |       |       |             |               |              |              |         |       |
|                   | 0.01                     |        |       |       |             |               |              |              |         |       |
|                   | 08/16                    | 11/16  | 03/17 | 06/17 | 09/17       | 12/17         | 04/18        | 07/18        | 10/18   |       |
|                   |                          |        |       |       |             |               |              |              |         |       |
|                   |                          |        |       |       | Sampling    | g Date        |              |              |         |       |
|                   |                          |        |       |       |             |               |              |              |         |       |
|                   |                          |        |       |       |             |               |              |              |         |       |



| uation Date       | 16-Jul-18                |                 |                |                    |                         | Job ID: 403162       | •              |              |           |
|-------------------|--------------------------|-----------------|----------------|--------------------|-------------------------|----------------------|----------------|--------------|-----------|
|                   | Parkton/Wall             | v's             |                |                    | Cons                    | tituent: Methyl      | tert-Butyl Eth | er           |           |
|                   | Amelia Ryan              |                 |                |                    |                         | n Units: ug/L        |                |              |           |
| -                 | pling Point ID:          | MW-14B          |                |                    |                         |                      |                |              |           |
|                   |                          | WW-14D          |                |                    |                         |                      |                |              |           |
| Sampling<br>Event | Sampling<br>Date         |                 |                | METHYL             | TERT-BUTYL ETHER        | R CONCENTRA          | TION (ug/L)    |              |           |
| 1                 | 11/10/2016               | 100             |                |                    |                         |                      |                |              |           |
| 2                 | 01/25/2017               | 96              |                |                    |                         |                      |                |              |           |
| 3                 | 05/08/2017               | 80              |                |                    |                         |                      |                |              |           |
| 4<br>5            | 07/31/2017<br>11/09/2017 | 82<br>64        |                |                    |                         |                      |                |              |           |
| 6                 | 02/15/2018               | 70              |                |                    |                         |                      |                |              |           |
| 7                 | 06/14/2018               | 66              |                |                    |                         |                      |                |              |           |
| 8                 | 08/21/2018               | 32              |                |                    |                         |                      |                |              |           |
| 9                 | $\downarrow$             |                 |                |                    |                         |                      |                |              |           |
| 10<br>11          | +                        |                 |                |                    |                         |                      |                |              |           |
| 12                |                          |                 |                |                    |                         |                      |                |              |           |
| 13                | 1                        |                 |                |                    |                         |                      |                |              |           |
| 14                |                          |                 |                |                    |                         |                      |                |              |           |
| 15                |                          |                 |                |                    |                         |                      |                |              |           |
| 16                | + +                      |                 |                |                    |                         |                      |                |              |           |
| 17<br>18          | + +                      |                 |                |                    |                         |                      |                |              |           |
| 19                |                          |                 |                |                    |                         |                      |                |              |           |
| 20                | 1                        |                 |                |                    |                         |                      |                |              |           |
|                   | nt of Variation:         | 0.29            |                |                    |                         |                      |                |              |           |
|                   | II Statistic (S):        | -22             |                |                    |                         |                      |                |              |           |
|                   | idence Factor:           | 99.8%           |                |                    |                         |                      |                |              |           |
| Concer            | ntration Trend:          | Decreasing      |                |                    |                         |                      |                |              |           |
|                   | 100                      | •               |                |                    |                         |                      |                |              |           |
|                   | 100                      |                 |                |                    | /W-14B                  |                      |                |              | MW-14B    |
|                   |                          |                 |                |                    |                         |                      |                |              | 10100-148 |
|                   | <b>२</b> ⊢               |                 |                |                    |                         |                      |                |              |           |
|                   | 6n                       |                 |                |                    |                         |                      |                |              |           |
|                   | )<br>L                   |                 |                |                    |                         |                      |                |              |           |
|                   | . <b>O</b> 10            |                 |                |                    |                         |                      |                |              |           |
|                   | oncentration (ug/L)      |                 |                |                    |                         |                      |                |              |           |
|                   | ut l                     |                 |                |                    |                         |                      |                |              |           |
|                   | e                        |                 |                |                    |                         |                      |                |              |           |
|                   | Lo lo                    |                 |                |                    |                         |                      |                |              |           |
|                   | Ŭ                        |                 |                |                    |                         |                      |                |              |           |
|                   | 1 +                      |                 |                |                    |                         |                      |                | 1            |           |
|                   | 08/16                    | 11/16           | 03/17          | 06/17              | 09/17 12/17             | 04/18                | 07/18 10/      | /18          |           |
|                   |                          |                 |                | Sa                 | mpling Date             |                      |                |              |           |
|                   |                          |                 |                | Ju                 |                         |                      |                |              |           |
| tes:              |                          |                 |                |                    |                         |                      |                |              |           |
| east four ind     | lependent sampli         | ng events per w | ell are requir | ed for calculating | the trend. Methodolo    | ngy is valid for 4 t | to 40 samples. |              |           |
|                   |                          |                 |                |                    | s increasing (S>0) or a |                      |                | -            | -         |
| 10/ = Drohol      | hly Increasing or        | Prohably Decrea | eina < 00%     | and \$20 = No T    | rend; < 90%, S≤0, and   | d COV > 1 = No       | Trend: < 90% a | nd COV < 1 = | Stable    |



| aluation Date     | e: 16-Jul-18         |              |              | Trend Analy       | ID: <b>403162</b>   |       |                 |
|-------------------|----------------------|--------------|--------------|-------------------|---------------------|-------|-----------------|
|                   | e: Parkton/Wal       | lv'e         |              |                   | nt: Methyl tert-But |       |                 |
| onducted By       | y: Amelia Ryan       | 19.5         |              | Concentration Uni | ts: ug/l            |       |                 |
|                   | -                    |              |              | oblicentiation on |                     | _     |                 |
|                   | npling Point ID:     | MW-15        |              |                   |                     |       |                 |
| Sampling<br>Event | Sampling<br>Date     |              | METHYL TER   | T-BUTYL ETHER CO  | NCENTRATION (ug     | 'L)   |                 |
| 1                 | 11/07/2016           | 110          |              |                   |                     |       |                 |
| 2                 | 01/30/2017           | 240          |              |                   |                     |       |                 |
| 3                 | 04/05/2017           | 200          |              |                   |                     |       |                 |
| 4                 | 05/10/2017           | 140          |              |                   |                     |       |                 |
| 5                 | 08/03/2017           | 83           |              |                   |                     |       |                 |
| 6                 | 11/14/2017           | 31           |              |                   |                     |       |                 |
| 7                 | 02/16/2018           | 25           |              |                   |                     |       |                 |
| 8                 | 06/18/2018           | 16           |              |                   |                     |       |                 |
| 9                 | 08/23/2018           | 0.3          |              |                   |                     |       |                 |
| 10                |                      |              |              |                   |                     |       | _               |
| 11<br>12          |                      |              |              |                   |                     |       |                 |
| 12                |                      |              |              |                   |                     |       |                 |
| 13                |                      |              |              |                   |                     |       | _               |
| 15                |                      |              |              |                   |                     |       |                 |
| 16                |                      |              |              |                   |                     |       |                 |
| 17                |                      |              |              |                   |                     |       |                 |
| 18                |                      |              |              |                   |                     |       |                 |
| 19                |                      |              |              |                   |                     |       |                 |
| 20                |                      |              |              |                   |                     |       |                 |
|                   | nt of Variation:     | 0.91         |              |                   |                     |       |                 |
|                   | all Statistic (S):   | -30          |              |                   |                     |       |                 |
| Con               | fidence Factor:      | 100.0%       |              |                   |                     |       |                 |
| Conce             | ntration Trend:      | Decreasing   |              |                   |                     |       |                 |
|                   | -                    |              |              | •                 |                     |       | •               |
|                   | 1000                 |              | MW           | -15               |                     |       | MM/ 15          |
|                   |                      |              | •            |                   |                     |       | <b>→→</b> MW-15 |
|                   |                      |              |              |                   |                     |       |                 |
|                   | Concentration (ug/L) | ▼            |              |                   |                     |       |                 |
|                   | n)                   |              |              |                   |                     |       |                 |
|                   | L                    |              |              |                   |                     |       |                 |
|                   | - <sup>10</sup>      |              |              |                   |                     |       |                 |
|                   | La                   |              |              |                   |                     |       |                 |
|                   | int                  |              |              |                   |                     |       |                 |
|                   | <b>ප</b> 1 -         |              |              |                   |                     |       |                 |
|                   | ŭ                    |              |              |                   |                     |       |                 |
|                   | ŭ                    |              |              |                   | <b></b>             |       |                 |
|                   | 0.1                  |              | ł            |                   |                     |       |                 |
|                   | 08/16                | 5 11/16 03/1 | 7 06/17 09/1 | ,<br>7 12/17 (    | 04/18 07/18         | 10/18 |                 |
|                   | 00,10                |              |              |                   |                     |       |                 |
|                   |                      |              | Samp         | ling Date         |                     |       |                 |

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;  $\geq$  90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV  $\geq$  1 = No Trend; < 90% and COV < 1 = Stable.

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.



|                   | e: <mark>16-Jul-18</mark><br>e: <mark>Parkton/Wa</mark> l | lv's            |            |                    | ID: 403162<br>ent: Methyl tert-B | utvl Ether |                   |
|-------------------|-----------------------------------------------------------|-----------------|------------|--------------------|----------------------------------|------------|-------------------|
| adding Name       | Amelia Ryar                                               | 1y 3<br>1       |            | Concentration Un   |                                  |            |                   |
|                   |                                                           |                 |            |                    |                                  |            |                   |
|                   | pling Point ID:                                           | MW-16A          |            |                    |                                  |            |                   |
| Sampling<br>Event | Sampling<br>Date                                          |                 | METHYL T   | ERT-BUTYL ETHER CC | <b>ONCENTRATION (</b> u          | g/L)       |                   |
| 1                 | 11/10/2016                                                | 500             |            |                    |                                  |            |                   |
| 2                 | 12/13/2016                                                | 1,100           |            |                    |                                  |            |                   |
| 3                 | 01/26/2017                                                | 300             |            |                    |                                  |            |                   |
| 4                 | 05/09/2017                                                | 510             |            |                    |                                  |            |                   |
| 5                 | 08/02/2017                                                | 260             |            |                    |                                  |            | _                 |
| 6<br>7            | 11/09/2017                                                | 360             |            |                    |                                  |            |                   |
| 7<br>8            | 02/16/2018<br>06/14/2018                                  | <u>190</u><br>4 |            |                    |                                  |            |                   |
| 9                 | 08/24/2018                                                | 0.2             |            | <u> </u>           |                                  |            |                   |
| 10                | 00/24/2010                                                | 0.2             |            |                    |                                  |            |                   |
| 11                | + +                                                       |                 |            |                    |                                  |            |                   |
| 12                |                                                           |                 |            |                    |                                  |            |                   |
| 13                |                                                           |                 |            |                    |                                  |            |                   |
| 14                |                                                           |                 |            |                    |                                  |            |                   |
| 15                |                                                           |                 |            |                    |                                  |            |                   |
| 16                | ┥───┤                                                     |                 |            |                    |                                  |            |                   |
| 17                | ┥───┼                                                     |                 |            |                    |                                  |            |                   |
| 18<br>19          | +                                                         |                 |            |                    |                                  |            |                   |
| 20                | +                                                         | I               |            | <u> </u>           |                                  |            |                   |
|                   | nt of Variation:                                          | 0.93            |            |                    |                                  |            |                   |
|                   | all Statistic (S):                                        | -26             |            |                    |                                  |            |                   |
|                   | fidence Factor:                                           | 99.7%           |            |                    |                                  |            |                   |
| Conce             | ntration Trend:                                           | Decreasing      |            |                    |                                  |            |                   |
| 00100             |                                                           | Boorousing      |            |                    |                                  |            |                   |
|                   | 10000 <sub>-</sub>                                        |                 | ι          | 1W-16A             |                                  |            |                   |
|                   |                                                           |                 | TV         |                    |                                  |            | <b>───</b> MW-16A |
|                   | <b>1</b> 1000 -                                           | *               |            |                    |                                  |            |                   |
|                   | 1/6                                                       |                 |            |                    |                                  |            |                   |
|                   | Concentration (ug/L)                                      |                 |            |                    |                                  |            |                   |
|                   | <u> </u>                                                  |                 |            |                    |                                  |            |                   |
|                   | ii                                                        |                 |            |                    |                                  |            |                   |
|                   | - 01 <b>Tat</b>                                           |                 |            |                    |                                  |            |                   |
|                   | uti                                                       |                 |            |                    |                                  |            |                   |
|                   | ie i                  |                 |            |                    |                                  |            |                   |
|                   | <b>u</b> <sup>1</sup>                                     |                 |            |                    |                                  |            |                   |
|                   | ပိ                                                        |                 |            |                    |                                  |            |                   |
|                   | 0.1                                                       |                 |            |                    | _                                |            |                   |
|                   | 08/16                                                     | 5 11/16 03/     | 17 06/17 ( |                    | 04/18 07/18                      | 10/18      |                   |
|                   |                                                           |                 |            |                    |                                  |            |                   |

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;  $\geq$  90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV  $\geq$  1 = No Trend; < 90% and COV < 1 = Stable.

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.





2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.



| aluation Date:    | 16-Jul-18           |        |       |          |             |               | Job ID: 4031               | 62          |          |        |
|-------------------|---------------------|--------|-------|----------|-------------|---------------|----------------------------|-------------|----------|--------|
| acility Name:     | Parkton/Wall        | y's    |       |          |             |               | tituent: Meth              |             | /I Ether |        |
| onducted By:      | Amelia Ryan         |        |       |          | (           | Concentration | ı Units: <mark>ug/L</mark> |             |          |        |
| Samp              | oling Point ID:     | MW-17A |       |          |             |               |                            |             |          |        |
| Sampling<br>Event | Sampling<br>Date    |        |       | METH     | IYL TERT-BI | JTYL ETHER    |                            | RATION (ug/ | L)       |        |
| 1                 | 11/08/2016          | 0.1    | 1     |          |             | T             |                            |             | T        |        |
| 2                 | 01/27/2017          | 0.1    |       |          |             | -             |                            |             |          |        |
| 3                 | 05/08/2017          | 0.1    |       |          |             |               |                            |             |          |        |
| 4                 | 11/09/2017          | 0.1    |       |          |             |               |                            |             |          |        |
| 5                 | 02/13/2018          | 0.1    |       |          |             | <u> </u>      |                            |             |          |        |
| 6                 | 06/13/2018          | 0.1    | 1     |          |             | ┥────         |                            |             |          |        |
| 7                 | 08/21/2018          | 0      |       |          |             | ┥────         |                            |             | ł        |        |
| 8                 | ╞───┤               |        | -     |          |             | +             |                            |             |          |        |
| 9<br>10           | +                   |        | +     | <u> </u> |             | +             |                            |             | +        |        |
| 10                | <u>├</u>            |        |       |          |             | +             |                            |             | +        |        |
| 12                | 1                   |        |       |          |             | -             |                            |             |          |        |
| 13                |                     |        |       |          | -           | -             |                            |             |          |        |
| 14                |                     |        |       |          |             | -             |                            |             |          |        |
| 15                |                     |        |       |          |             |               |                            |             |          |        |
| 16                |                     |        |       |          |             |               |                            |             |          |        |
| 17                |                     |        |       |          |             |               |                            |             |          |        |
| 18                |                     |        |       |          |             |               |                            |             |          |        |
| 19                | <b>↓</b>            |        |       |          |             |               |                            |             |          |        |
| 20<br>Coofficion  | t of Variation:     | 0.12   |       |          |             |               |                            |             |          |        |
|                   | I Statistic (S):    | -6     |       |          |             | -             |                            |             |          |        |
|                   | dence Factor:       | 76.4%  |       |          |             |               |                            |             |          |        |
|                   | tration Trend:      | Stable |       |          |             |               |                            |             |          |        |
| Concert           |                     | SIGNIE |       |          |             |               |                            |             |          |        |
|                   | 1                   |        |       |          | MW-17/      | ۹             |                            |             |          |        |
|                   | -                   |        |       |          |             |               |                            |             |          | MW-17A |
|                   | <b>ר</b>            |        |       |          |             |               |                            |             |          |        |
|                   | )ĝ                  |        |       |          |             |               |                            |             |          |        |
|                   | 2                   |        |       |          |             |               |                            |             |          |        |
|                   | n                   |        |       |          |             |               |                            |             |          |        |
|                   | oncentration (ug/L) | •      | •     | +        |             | <b>•</b>      |                            | ~           |          |        |
|                   | L I                 |        |       |          |             |               |                            | ~           |          |        |
|                   | E I                 |        |       |          |             |               |                            |             |          |        |
|                   | <u>ຮ</u>            |        |       |          |             |               |                            |             | _        |        |
|                   |                     |        |       |          |             |               |                            |             |          |        |
|                   | Ŭ                   |        |       |          |             |               |                            |             |          |        |
|                   | 0.01                |        |       |          |             |               |                            |             | _        |        |
|                   | 08/16               | 11/16  | 03/17 | 06/17    | 09/17       | 12/17         | 04/18                      | 07/18       | 10/18    |        |
|                   |                     |        |       |          | Samplin     | a Dato        |                            |             |          |        |
|                   |                     |        |       |          | Sampling    | JDale         |                            |             |          |        |
|                   |                     |        |       |          |             |               |                            |             |          |        |
| es:               |                     |        |       |          |             |               |                            |             |          |        |



Ground Water, 41(3):355-367, 2003.



Ground Water, 41(3):355-367, 2003.



1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.



1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;  $\geq$  90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV  $\geq$  1 = No Trend; < 90% and COV < 1 = Stable.

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.















2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.



| valuation Date    | : <b>16-Jul-18</b>       |              |               | Trend Analys         | 403162          |          |        |
|-------------------|--------------------------|--------------|---------------|----------------------|-----------------|----------|--------|
|                   | Parkton/Wal              | ly's         |               |                      | Methyl tert-But | yl Ether |        |
| Conducted By      | : Amelia Ryan            |              |               | Concentration Units: |                 |          |        |
| Sam               | pling Point ID:          | MW-24B       |               |                      |                 |          |        |
| Sampling<br>Event | Sampling<br>Date         |              | METHYL TERT   | -BUTYL ETHER CONC    | CENTRATION (ug/ | L)       |        |
| 1                 | 11/10/2016               | 0.8          |               |                      |                 | [        | 1      |
| 2                 | 01/26/2017               | 0.6          |               |                      |                 |          |        |
| 3                 | 05/09/2017               | 0.1          |               |                      |                 |          |        |
| 4                 | 08/02/2017               | 0.1          |               |                      |                 | ļ        |        |
| 5                 | 11/08/2017               | 0.1          |               |                      |                 |          | -      |
| <u>6</u><br>7     | 02/16/2018<br>06/14/2018 | 0.1<br>1.6   |               |                      |                 |          |        |
| 8                 | 06/14/2018               | 0.6          |               |                      |                 | +        |        |
| 9                 | 00/24/2010               | 0.0          |               |                      |                 | 1        |        |
| 10                | + +                      |              |               |                      |                 | 1        |        |
| 11                |                          |              |               |                      |                 |          |        |
| 12                |                          |              |               |                      |                 |          |        |
| 13                |                          |              |               |                      |                 |          |        |
| 14                |                          |              |               |                      |                 |          |        |
| 15                |                          |              |               |                      |                 |          |        |
| 16<br>17          |                          |              |               |                      |                 |          |        |
| 17                |                          |              |               |                      |                 |          |        |
| 19                |                          |              |               |                      |                 |          |        |
| 20                |                          |              |               |                      |                 |          |        |
| Coefficier        | nt of Variation:         | 1.06         |               |                      |                 |          |        |
| Mann-Kenda        | II Statistic (S):        | -1           |               |                      |                 |          |        |
| Conf              | idence Factor:           | 50.0%        |               |                      |                 |          |        |
| Concer            | ntration Trend:          | No Trend     |               |                      |                 |          |        |
|                   | 10 -                     |              |               |                      |                 |          |        |
|                   | 10                       |              | MW-2          | 24B                  |                 |          | MW-24B |
|                   | •                        |              |               |                      |                 | _        |        |
|                   | ۲<br>۲                   |              |               |                      |                 |          |        |
|                   | Concentration (ug/L)     |              |               |                      |                 |          |        |
|                   | <u> </u>                 |              |               |                      | *               |          |        |
|                   |                          |              |               |                      |                 |          |        |
|                   | , ati                    |              |               |                      |                 |          |        |
|                   | tra                      |              |               |                      | /               | _        |        |
|                   | en                       |              |               |                      |                 | _        |        |
|                   | Č                        |              |               |                      |                 |          |        |
|                   | 10                       |              |               |                      |                 |          |        |
|                   |                          |              |               |                      |                 |          |        |
|                   | 0.1                      | 11/1/ 00/1   |               | 10/17 01             | 10 07/10        | 10/10    |        |
|                   | 08/16                    | 5 11/16 03/1 | 7 06/17 09/17 | 12/17 04/            | 18 07/18        | 10/18    |        |
|                   |                          |              | Sampl         | ing Date             |                 |          |        |
|                   |                          |              | Jumpi         |                      |                 |          |        |

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</li>
3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.


















## Appendix C – GWSDAT Time Series Plots - MTBE



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)









Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)







Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)


Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=NA (kg/ft); Plume Area=NA (ft^2)



Plume Mass=0.19242 (kg/ft); Plume Area=84756 (ft^2)



Plume Mass=0.16917 (kg/ft); Plume Area=77143 (ft^2)



Plume Mass=0.14678 (kg/ft); Plume Area=66177 (ft^2)







Plume Mass=0.071568 (kg/ft); Plume Area=59747 (ft^2)



Plume Mass=0.049712 (kg/ft); Plume Area=55691 (ft^2)





Plume Mass=0.019613 (kg/ft); Plume Area=42999 (ft^2)



Plume Mass=0.011441 (kg/ft); Plume Area=36576 (ft^2)



Plume Mass=0.0061258 (kg/ft); Plume Area=29619 (ft^2)





## Appendix D – Monitoring and Former Recovery Well Completion Logs

|       |                  | K                  | Dat<br>Dat<br>Tot<br>Bot<br>Bec<br>Ele | <b>og of Boring</b><br>te Started:<br>te Completed:<br>tal Depth (ft):<br>ring Diameter<br>drock Depth (f<br>evation (ft-msl)<br>mark: | 7/<br>8/<br>62<br>(in): 6<br>t): 32 | 25/2005 P<br>/9/2005 E<br>2.00 L<br>3 E                                                                                                                                                                                                                                                                                                                                                          | roject Code<br>roject Nam<br>orilled By:<br>.ogged By:<br>orill Rig:<br>orill Method<br>ampling Me | e: Carroll F<br>Bedford<br>Andrew<br>IR T3W | uel - Parkton<br>Well Drilling<br>Applebaum<br>y |
|-------|------------------|--------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|
| Depth | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                                         | PID Units                           | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                      | Interpreted<br>Lithology                                                                           | Well<br>Construction                        | Comments                                         |
|       | 1<br>2<br>3<br>4 |                    | 8<br>6<br>12<br>4                      | 20 21 23 24<br>18 14 20 21<br>7 15 20 24<br>24 50/5                                                                                    | 0.0<br>0.0<br>0.0                   | ML: Asphalt, tan silty fine<br>sand and large gravel (fill).<br>ML: Red brown fine sandy<br>silt, damp.<br>ML: Brown micaceous silt<br>with some fine sand,<br>damp.<br>SAPROLITE: Green<br>brown micaceous silt,<br>some fine to medium sand<br>(mica schist), rock<br>fragments, zones of tan<br>coloration.<br>SCHIST: Harder drilling,<br>competent green mica<br>schist like rock with soft |                                                                                                    |                                             | Background air PID 0.0.                          |
| -40   |                  |                    |                                        |                                                                                                                                        |                                     | tan zones at 47' & 52'-54'.                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                                             |                                                  |
| -50   |                  |                    |                                        |                                                                                                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |                                             |                                                  |
| -55 - |                  | ****               |                                        |                                                                                                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |                                             |                                                  |
| -60 - |                  |                    |                                        |                                                                                                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                  | 3333                                                                                               |                                             |                                                  |

.

|                 | <u>Л</u><br>/о   | K                  | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Elev | g of Borin<br>e Started:<br>e Completed:<br>al Depth (ft):<br>ing Diameter<br>lrock Depth (f<br>vation (ft-msl)<br>nark: | 7.<br>8.<br>6<br>(in): 6<br>ft): 3. | /25/2005 P<br>/10/2005 D<br>2.00 L<br>4 D                                                                                                                    | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:Bedford Well DrillingLogged By:Andrew ApplebaumDrill Rig:IR T3WDrill Method:Air rotaryGampling Method:N/A |                      |                         |  |
|-----------------|------------------|--------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|--|
| Depth           | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                    | Blow<br>Counts                                                                                                           | PID Units                           | Lithological<br>Description                                                                                                                                  | Interpreted<br>Lithology                                                                                                                                                 | Well<br>Construction | Comments                |  |
| -5<br>-10       |                  |                    |                                         |                                                                                                                          |                                     | ML: Asphalt, tan fine<br>sandy silt and gravel (fill).<br>ML: Red brown fine sandy<br>silt, micaceous, damp.<br>ML: Tan silty fine sand,<br>micaceous, damp. |                                                                                                                                                                          |                      | Background air PID 0.0. |  |
| -15 -           |                  |                    |                                         |                                                                                                                          |                                     | ML: Green micaceous silt<br>with fine-medium sand,<br>rock fragments.                                                                                        |                                                                                                                                                                          |                      |                         |  |
| -25             |                  |                    |                                         |                                                                                                                          |                                     | SAPROLITE: Green mica schist, harder drilling with rock fragments.                                                                                           |                                                                                                                                                                          |                      |                         |  |
| -30             |                  |                    |                                         |                                                                                                                          |                                     | SCHIST: Competent<br>green mica schist like<br>rock, micaceous silt with                                                                                     |                                                                                                                                                                          |                      |                         |  |
| -40 -           |                  |                    |                                         |                                                                                                                          |                                     | fine sand and rock<br>fragments with soft zones<br>at 43', 47-49'and 54'.                                                                                    |                                                                                                                                                                          |                      |                         |  |
| -50 -           |                  |                    |                                         |                                                                                                                          |                                     |                                                                                                                                                              |                                                                                                                                                                          |                      |                         |  |
| -55<br>-<br>-60 |                  |                    |                                         |                                                                                                                          |                                     |                                                                                                                                                              |                                                                                                                                                                          |                      |                         |  |

|                                                             |                  | R                  | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Ele | g of Borin<br>te Started:<br>te Completed:<br>al Depth (ft):<br>ting Diameter<br>lrock Depth (<br>vation (ft-msl<br>mark: | 8,<br>8,<br>6;<br>(in): 6<br>ft): 3; | /9/2005<br>/9/2005<br>2.00                                                                                                                                                                                                                                                                                                              | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:Bedford Well DrillingLogged By:Andrew ApplebaumDrill Rig:IR T3WDrill Method:Air rotarySampling Method:N/A |                      |                         |  |
|-------------------------------------------------------------|------------------|--------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|--|
| Depth                                                       | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                            | PID Units                            | Lithological<br>Description                                                                                                                                                                                                                                                                                                             | Interpreted<br>Lithology                                                                                                                                                 | Well<br>Construction | Comments                |  |
| 0-<br>-5-<br>-10 -<br>-15 -<br>-20 -<br>-25 -               |                  |                    |                                        |                                                                                                                           | 35.2<br>42.6<br>47.6                 | ML: Asphalt, tan silty fine<br>sand and large gravel (fill)<br>ML: Red brown fine sandy<br>silt, damp.<br>ML: Brown micaceous silt<br>with some fine sand,<br>damp.<br>ML: Green micaceous silt<br>damp.<br>SAPROLITE: As above<br>with tan mica schist<br>colored zones, presence<br>of rock fragments, harder<br>drilling with depth. |                                                                                                                                                                          |                      | Background air PID 0.0. |  |
| -30 -<br>-35 -<br>-40 -<br>-45 -<br>-50 -<br>-55 -<br>-60 - |                  |                    |                                        |                                                                                                                           | 39.5                                 | SCHIST: Harder drilling,<br>small rock fragments,<br>green mica schist like rock<br>with soft tan zones<br>observed at 52' & 57'.                                                                                                                                                                                                       |                                                                                                                                                                          |                      |                         |  |

|            |                  | b                  | Dat<br>Dat<br>Tot<br>Bor<br>Bec<br>Ele | g of Boring<br>te Started:<br>te Completed:<br>al Depth (ft):<br>fing Diameter<br>frock Depth (f<br>vation (ft-msl)<br>nark: | 1<br>1<br>(in): 6<br>(t): 3 | 1/09/05     Pr       1/09/05     Dr       1.00     Lo       0     Dr       6     Dr              | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:Earth Matters, Inc.Logged By:Andrew ApplebaumDrill Rig:Simco 2800Drill Method:Air rotarySampling Method:N/A |                      |                                                                                                                                                                              |  |
|------------|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Depth      | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                               | PID Units                   | Lithological<br>Description                                                                      | Interpreted<br>Lithology                                                                                                                                                   | Well<br>Construction | Comments                                                                                                                                                                     |  |
| -10<br>-15 |                  |                    |                                        |                                                                                                                              | 0.0                         | ASPHALT<br>MH: Red brown to brown<br>micaceous silt, some rock<br>fragments, dry.                |                                                                                                                                                                            |                      | Background PID 0.0.<br>Set 2" Sch. 40 PVC well at 60'<br>with 20' of 0.02"-slot screen,<br>40' of casing. #2 sand 61'-37',<br>bentonite 37'-1', cement/<br>manhole 1'-grade. |  |
| -20 -      |                  |                    |                                        |                                                                                                                              |                             |                                                                                                  |                                                                                                                                                                            |                      |                                                                                                                                                                              |  |
| -25 -      |                  |                    |                                        |                                                                                                                              | 102                         | SAPROLITE: tan,<br>micaceous weathered<br>rock, dry.                                             |                                                                                                                                                                            |                      |                                                                                                                                                                              |  |
| -35 -      |                  |                    |                                        |                                                                                                                              | 95                          | SCHIST: Greenish brown                                                                           | <u> </u>                                                                                                                                                                   |                      |                                                                                                                                                                              |  |
| -40 -      |                  |                    |                                        |                                                                                                                              |                             | to green mica schist,<br>some soft zones at 42'-44'<br>& 46'-47' with brown<br>coloration, damp. |                                                                                                                                                                            |                      |                                                                                                                                                                              |  |
| -45 -      |                  |                    |                                        |                                                                                                                              |                             |                                                                                                  |                                                                                                                                                                            |                      |                                                                                                                                                                              |  |
| -50        |                  |                    |                                        |                                                                                                                              |                             |                                                                                                  |                                                                                                                                                                            |                      |                                                                                                                                                                              |  |
| -55 -      |                  |                    |                                        |                                                                                                                              |                             |                                                                                                  |                                                                                                                                                                            |                      |                                                                                                                                                                              |  |
| -60        | ł                |                    |                                        |                                                                                                                              |                             |                                                                                                  |                                                                                                                                                                            | · · ·                |                                                                                                                                                                              |  |

|               |                  | 6                  | Dat<br>Dat<br>Tot<br>Bor<br>Bec<br>Ele | g of Boring<br>te Started:<br>te Completed:<br>al Depth (ft):<br>ring Diameter<br>lrock Depth (f<br>vation (ft-msl)<br>nark: | 1<br>1<br>5<br>(in): 6<br>it): 1 | 1/09/05     Pr       1/09/05     Dr       1.00     Lo       8     Dr                                                          | oject Code<br>oject Nam<br>illed By:<br>ogged By:<br>ill Rig:<br>ill Methoo<br>mpling Mo | e: Carroll F<br>Earth Ma<br>Andrew<br>Simco 28 |                                                                                                                                                                                      |
|---------------|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth         | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                               | PID Units                        | Lithological<br>Description                                                                                                   | Interpreted<br>Lithology                                                                 | Well<br>Construction                           | Comments                                                                                                                                                                             |
| 0             |                  |                    |                                        |                                                                                                                              |                                  | ASPHALT<br>MH: Brown micaceous silt,<br>some rock fragments, dry.                                                             |                                                                                          |                                                | Background air PID 0.0.<br>Set 2" Sch. 40 PVC well at<br>50.5' with 20' of 0.02"-slot<br>screen, 30' of casing. #2 sand<br>51'-28', bentonite 28'- 1',<br>cement / manhole 1'-grade. |
| -15           |                  |                    |                                        |                                                                                                                              | 38.7                             | SAPROLITE: greenish<br>brown to brown weathered<br>rock, dry.                                                                 |                                                                                          |                                                |                                                                                                                                                                                      |
| -20           |                  |                    |                                        |                                                                                                                              | 424                              | SCHIST: Tan to green<br>mica schist. Soft damp<br>zones at 33.5', 36'-37' &<br>39', all have strong<br>petroleum odor. Harder |                                                                                          |                                                |                                                                                                                                                                                      |
| -25           |                  |                    |                                        |                                                                                                                              |                                  | drilling 41.5'-51'.                                                                                                           |                                                                                          |                                                |                                                                                                                                                                                      |
| -30           |                  |                    |                                        |                                                                                                                              |                                  |                                                                                                                               |                                                                                          |                                                |                                                                                                                                                                                      |
| -35 -         |                  |                    |                                        |                                                                                                                              |                                  |                                                                                                                               |                                                                                          |                                                |                                                                                                                                                                                      |
| -40<br>-<br>- |                  |                    |                                        |                                                                                                                              |                                  |                                                                                                                               |                                                                                          |                                                |                                                                                                                                                                                      |
| -45 -         |                  |                    |                                        |                                                                                                                              |                                  |                                                                                                                               |                                                                                          |                                                |                                                                                                                                                                                      |
| -50 -         |                  |                    |                                        |                                                                                                                              |                                  |                                                                                                                               | SSS ?                                                                                    |                                                |                                                                                                                                                                                      |

|       |                  | R                  | Dat<br>Dat<br>Tot<br>Bor<br>Bec<br>Ele | g of Boring<br>te Started:<br>te Completed:<br>al Depth (ft):<br>fing Diameter<br>frock Depth (f<br>vation (ft-msl)<br>nark: | 1<br>62<br>( <b>in):</b> 6<br><b>ft):</b> 24 | 1/10/05 ]<br>1/10/05 ]<br>2.00 ]<br>4 ]                                              | Project Co<br>Project Na<br>Drilled By<br>Logged By<br>Drill Rig:<br>Drill Meth<br>Sampling | me: Carroll I<br>: Earth M<br>: Andrew<br>Simco 2 | 1                                                                                                                          |
|-------|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Depth | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                               | PID Units                                    | Lithological<br>Description                                                          | Interpreted<br>Lithology                                                                    | Well<br>Construction                              | Comments                                                                                                                   |
| 0-    |                  |                    |                                        |                                                                                                                              | 0.0                                          | ASPHALT                                                                              |                                                                                             |                                                   | Background air PID 0.0.                                                                                                    |
| -5    |                  |                    |                                        |                                                                                                                              | 0.2                                          | GRAVEL: & fines.<br>MH: Brown to tan                                                 |                                                                                             |                                                   | Set 2" Sch. 40 PVC well at<br>60.5' with 20' of 0.02"-slot<br>screen, 40' of casing. #2 sand<br>62'-37', bentonite 37'-1', |
| -10 - |                  |                    |                                        |                                                                                                                              |                                              | micaceous silt, rock<br>fragments, dry.<br>MH: Red brown to tan                      |                                                                                             |                                                   | cement / manhole 1'-grade.                                                                                                 |
| -15 - |                  |                    |                                        |                                                                                                                              | 7.9                                          | micaceous silt with rock<br>fragments, dry.                                          |                                                                                             |                                                   |                                                                                                                            |
| -20 - |                  |                    |                                        |                                                                                                                              |                                              | SAPROLITE: brown to<br>greenish brown weathered<br>rock with rock fragments,<br>dry. | d                                                                                           |                                                   |                                                                                                                            |
| -25 - |                  |                    |                                        |                                                                                                                              | 22.9                                         | SCHIST: Greenish mica<br>schist, dry. Brownish soft<br>zone 33'-34', no water.       |                                                                                             |                                                   |                                                                                                                            |
| -30 - |                  |                    |                                        |                                                                                                                              |                                              | Broken rock fragments<br>50'-52', fracture.<br>Cuttings darker & damp a<br>54'.      | t                                                                                           |                                                   |                                                                                                                            |
| -35 - |                  |                    |                                        |                                                                                                                              |                                              |                                                                                      |                                                                                             |                                                   |                                                                                                                            |
| -40   |                  |                    |                                        |                                                                                                                              |                                              |                                                                                      |                                                                                             |                                                   |                                                                                                                            |
| -45 - |                  |                    |                                        |                                                                                                                              |                                              |                                                                                      |                                                                                             |                                                   |                                                                                                                            |
| -50   |                  |                    |                                        |                                                                                                                              |                                              |                                                                                      |                                                                                             |                                                   |                                                                                                                            |
| -55 - |                  |                    |                                        |                                                                                                                              |                                              |                                                                                      |                                                                                             |                                                   |                                                                                                                            |
| -60   |                  |                    |                                        |                                                                                                                              |                                              |                                                                                      |                                                                                             |                                                   |                                                                                                                            |

۰.

|                          | <u>/</u> 6       | k                  | Dat<br>Dat<br>Tot:<br>Bor<br>Bed<br>Elev | g of Borin<br>e Started:<br>e Completed:<br>al Depth (ft):<br>ing Diameter<br>rock Depth (<br>vation (ft-msl<br>nark: | 0<br>6<br>(in): 1<br>ft): 3 | 8/28/06<br>8/29/06<br>5.00<br>0"/6"<br>7                                                                                                   | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |                                                                                                                         |  |  |
|--------------------------|------------------|--------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth                    | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                     | Blow<br>Counts                                                                                                        | PID Units                   | Lithological<br>Description                                                                                                                | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments                                                                                                                |  |  |
| 0-<br>                   |                  |                    |                                          |                                                                                                                       | <0.1                        | GRAVEL: Asphalt and<br>gravel subbase, fill.<br>ML: Clayey silt, orange to<br>brown, no plasticity, low<br>moisture, soap-like<br>texture. |                                                                                                                                                            |                      | 6" steel conductor casing from<br>40'-0', bentonite-cement grout<br>tremie piped from 40'-3', open<br>borehole 65'-40'. |  |  |
| -10 -<br>-<br>-<br>-15 - |                  |                    |                                          |                                                                                                                       | <0.1                        | SAPROLITE: Harder<br>drilling, saprolite silty<br>sand-like cuttings,<br>micaceous throughout, no<br>water.                                |                                                                                                                                                            |                      |                                                                                                                         |  |  |
| -10<br>-<br>-<br>-20 –   |                  |                    |                                          |                                                                                                                       | <0.1                        | SAPROLITE: As above, red.                                                                                                                  |                                                                                                                                                            |                      |                                                                                                                         |  |  |
| -25                      |                  |                    |                                          |                                                                                                                       |                             | SAPROLITE: As above, tan.                                                                                                                  |                                                                                                                                                            |                      |                                                                                                                         |  |  |
| -30 -                    |                  |                    |                                          |                                                                                                                       |                             | SAPROLITE: As above,<br>slightly faster drilling, no<br>water.<br>SAPROLITE: As above,<br>brown-tan.                                       |                                                                                                                                                            |                      |                                                                                                                         |  |  |

|                                           |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Elev | g of Borin<br>e Started:<br>e Completed<br>al Depth (ft):<br>ing Diameter<br>rock Depth<br>vation (ft-ms)<br>nark: | 0<br>: 0<br>: 6<br>r (in): 1<br>(ft): 3 | 8/28/06<br>8/29/06<br>5.00<br>0"/6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |          |  |
|-------------------------------------------|------------------|--------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--|
| Depth                                     | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                    | Blow<br>Counts                                                                                                     | PID Units                               | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments |  |
| -35 -<br>-40 -<br>-45 -<br>-50 -<br>-55 - |                  |                    |                                         |                                                                                                                    | <0.1                                    | SCHIST: Harder drilling<br>with larger rock-like<br>cuttings, begin weathere<br>schist, cuttings angular.<br>SCHIST: Brown cuttings<br>likely fracture/top of<br>competent bedrock.<br>SCHIST: Gray, harder<br>schist drilling, more coar-<br>and angular cuttings.<br>SCHIST: As above, tan,<br>appr. 1/2 gallon of water<br>SCHIST: As above, tan,<br>appr. 1/2 gallon of water<br>SCHIST: As above, gray<br>SCHIST: As above, gray<br>harder drilling.<br>SCHIST: As above, soft<br>brown, softer zone.<br>SCHIST: As above, soft<br>brown zone.<br>SCHIST: As above, gray |                                                                                                                                                            |                      |          |  |

|                |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed | g of Borir<br>e Started:<br>e Completed<br>al Depth (ft):<br>ing Diameter<br>lrock Depth ( | 0<br>: 0<br>2<br>r (in): 1<br>(ft): 3 | 8/24/06 1   8/31/06 1   42.00 1   0"/6" 1   8 1                                                                             | Project Code<br>Project Nama<br>Drilled By:<br>Logged By:<br>Drill Rig:<br>Drill Method | e: Carroll F<br>Eichelber<br>Jason Ya<br>T450W | ple                                                                                                                            |
|----------------|------------------|--------------------|---------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                |                  |                    | Ele<br>Rer                      | vation (ft-ms<br>nark:                                                                     | l): 9<br>                             | 1.77 5                                                                                                                      | Sampling Me                                                                             | thod: N/A                                      | I                                                                                                                              |
| Depth          | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)            | Blow<br>Counts                                                                             | PID Units                             | Lithological<br>Description                                                                                                 | Interpreted<br>Lithology                                                                | Well<br>Construction                           | Comments                                                                                                                       |
| 0-             |                  |                    |                                 |                                                                                            | <0.1                                  | GRAVEL: Asphalt and gravel subbase.                                                                                         |                                                                                         |                                                | Complete well with 6" steel<br>casing from 70'-0', bentonite-<br>cement grout tremie piped 70'-<br>3', open borehole 242'-70'. |
| -5-<br>-10 -   |                  |                    |                                 |                                                                                            |                                       | ML: Clayey silt, orange to<br>brown, micaceous, soap-<br>like texture, no plasticity,<br>slight moisture, soft<br>drilling. |                                                                                         |                                                | 3, open borenole 242-70.                                                                                                       |
| -15 -<br>-20 - |                  |                    |                                 |                                                                                            | <0.1                                  | SAPROLITE: Harder with<br>depth, fine grained<br>cuttings with similar soapy<br>texture, more drill chatter,<br>no water.   |                                                                                         |                                                |                                                                                                                                |
| -25 -<br>-30 - |                  |                    |                                 |                                                                                            |                                       | SAPROLITE: As above,<br>slightly soft zone, less<br>chatter.                                                                |                                                                                         |                                                |                                                                                                                                |
| -35 -          |                  |                    |                                 |                                                                                            |                                       | SAPROLITE: As above,<br>coarser cuttings, harder<br>drilling with more chatter.                                             |                                                                                         |                                                |                                                                                                                                |
| -40 -          |                  |                    |                                 |                                                                                            | <0.1                                  | SCHIST: Greenish brown,<br>hard drilling.                                                                                   |                                                                                         |                                                |                                                                                                                                |
| -45 -          |                  |                    |                                 |                                                                                            |                                       | SCHIST: As above, soft zone, no water.                                                                                      |                                                                                         |                                                |                                                                                                                                |
| -50 -          |                  |                    |                                 |                                                                                            |                                       | SCHIST: As above,<br>greenish brown, hard<br>drilling.                                                                      |                                                                                         |                                                |                                                                                                                                |
| -55            |                  |                    |                                 |                                                                                            |                                       | SCHIST: As above, drill<br>chatter (harder) with                                                                            |                                                                                         |                                                |                                                                                                                                |
| -60 -          |                  |                    |                                 |                                                                                            | <0.1                                  | depth.                                                                                                                      |                                                                                         |                                                |                                                                                                                                |
| -65 -          |                  |                    |                                 |                                                                                            |                                       | SCHIST: Slight soft zone,<br>likely water bearing (<0.5<br>gpm).                                                            |                                                                                         |                                                |                                                                                                                                |
| -70 -          |                  |                    |                                 |                                                                                            |                                       | SCHIST: More coarse<br>grained cuttings, loose,<br>some wet zones.                                                          |                                                                                         |                                                |                                                                                                                                |
| -75 -          |                  |                    |                                 |                                                                                            |                                       | SCHIST: Dry cuttings.                                                                                                       |                                                                                         |                                                |                                                                                                                                |
| -80 -          |                  |                    |                                 |                                                                                            |                                       | SCHIST: Harder drilling,                                                                                                    |                                                                                         |                                                |                                                                                                                                |

|                      |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bec<br>Ele | g of Borin<br>e Started:<br>e Completed:<br>al Depth (ft):<br>ing Diameter<br>lrock Depth (<br>vation (ft-msl<br>nark: | 0<br>2<br>(in): 1<br>ft): 3 | 8/24/06<br>8/31/06<br>42.00<br>0"/6"<br>8                                                                          | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |          |  |  |
|----------------------|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--|--|
| Depth                | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                         | PID Units                   | Lithological<br>Description                                                                                        | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments |  |  |
| -85 -                |                  |                    |                                        | anton 1994 - 1 - 1                                                                                                     | <0.1                        | competent bedrock gray<br>schist, no discernable<br>fractures or water bearing<br>zone, slight moisture at<br>82'. |                                                                                                                                                            |                      |          |  |  |
| -90 -<br>-95 -       |                  |                    |                                        |                                                                                                                        |                             | SCHIST: As above, dusty cuttings, micaceous.                                                                       |                                                                                                                                                            |                      |          |  |  |
| -100 -               |                  |                    |                                        |                                                                                                                        | <0.1                        |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |
| -105 -               |                  |                    |                                        |                                                                                                                        |                             |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |
| -110 -               |                  |                    |                                        |                                                                                                                        |                             |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |
| -115 -<br>-<br>120 - |                  |                    | -                                      |                                                                                                                        |                             |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |
| -125 -               |                  |                    |                                        |                                                                                                                        | <0.1                        |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |
| -130 -               |                  |                    |                                        |                                                                                                                        |                             |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |
| -135 -               |                  |                    |                                        |                                                                                                                        |                             |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |
| -140 -               |                  |                    |                                        |                                                                                                                        | <0.1                        |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |
| -145 -               |                  |                    |                                        |                                                                                                                        |                             |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |
| -150 -               |                  |                    |                                        |                                                                                                                        |                             |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |
| -155 -<br>-160 -     |                  |                    |                                        |                                                                                                                        | <0.1                        |                                                                                                                    |                                                                                                                                                            |                      |          |  |  |

.
| 7      |                  | 2                  | Dat<br>Dat<br>Tot<br>Bor<br>Bec<br>Ele | g of Borin<br>e Started:<br>e Completed:<br>al Depth (ft):<br>ing Diameter<br>lrock Depth (<br>vation (ft-ms)<br>nark: | 08/24/<br>08/31/<br>242.00<br>(in): 10"/6"<br>ft): 38 | 06<br>06<br>)               | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |          |  |  |
|--------|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--|--|
| Depth  | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                         | PID Units                                             | Lithological<br>Description | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments |  |  |
| -165 - |                  |                    |                                        |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      | ******** |  |  |
| 170 -  |                  |                    |                                        |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      |          |  |  |
| 175 -  |                  |                    |                                        |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      |          |  |  |
| 180 -  |                  |                    |                                        |                                                                                                                        | <0.1                                                  |                             |                                                                                                                                                            |                      |          |  |  |
| 185 -  |                  |                    |                                        |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      |          |  |  |
| 190 -  |                  |                    | -                                      |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      |          |  |  |
| 195 -  |                  |                    |                                        |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      |          |  |  |
| 200 -  |                  |                    |                                        |                                                                                                                        | <0.1                                                  |                             |                                                                                                                                                            |                      |          |  |  |
| 205 -  |                  |                    |                                        |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      |          |  |  |
| 210    |                  |                    |                                        |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      |          |  |  |
| 215 -  |                  |                    |                                        |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      |          |  |  |
| 220 -  |                  |                    |                                        |                                                                                                                        | <0.1                                                  |                             |                                                                                                                                                            |                      |          |  |  |
| 225 -  |                  |                    |                                        |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      |          |  |  |
| 235 -  |                  |                    |                                        |                                                                                                                        |                                                       |                             |                                                                                                                                                            |                      |          |  |  |
| 240 -  |                  |                    |                                        |                                                                                                                        | <0.1                                                  |                             |                                                                                                                                                            |                      |          |  |  |

|                     |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Ele | g of Borin<br>e Started:<br>e Completed:<br>al Depth (ft):<br>ing Diameter<br>irock Depth (<br>vation (ft-msl<br>nark: | 0<br>6<br>(in): 1<br>ft): 3 | 8/28/06<br>8/29/06<br>5.00<br>0<br>0                                                                                                                                                                            | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                                            |                                                                                                                               |  |
|---------------------|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Depth               | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                         | PID Units                   | Lithological<br>Description                                                                                                                                                                                     | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction                       | Comments                                                                                                                      |  |
| -5-                 |                  |                    |                                        |                                                                                                                        | <0.1                        | GRAVEL: roadbase fill<br>material.<br>ML: Clayey silt, reddish<br>brown, micaceous, no<br>plasticity, low moisture,<br>easy drilling.<br>SAPROLITE: light brown<br>slight drill chatter, soap-<br>like texture. |                                                                                                                                                            |                                            | Complete well with 6" steel<br>casing from 40'-0', bentonite-<br>cement grout tremie piped 40'-<br>3', open borehole 65'-40'. |  |
| -10 -<br>-<br>-15 - |                  |                    |                                        |                                                                                                                        | <0.1                        | SAPROLITE: As above,<br>dark brown.                                                                                                                                                                             |                                                                                                                                                            |                                            |                                                                                                                               |  |
| -20                 |                  |                    |                                        |                                                                                                                        | <0.1                        | SAPROLITE: As above,<br>more drill chatter, light tar<br>SAPROLITE: As above,<br>bronze, no water.                                                                                                              | n.                                                                                                                                                         | and an |                                                                                                                               |  |
| -25                 |                  |                    |                                        |                                                                                                                        |                             | SAPROLITE: As above, light tan.                                                                                                                                                                                 |                                                                                                                                                            |                                            |                                                                                                                               |  |
| -30 -               |                  |                    |                                        |                                                                                                                        |                             | SCHIST: As above,<br>bronze, no water, slightly<br>harder drilling with few                                                                                                                                     |                                                                                                                                                            |                                            |                                                                                                                               |  |

|                    |                  | K                  | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Ele | g of Borin<br>e Started:<br>e Completed<br>al Depth (ft):<br>ing Diameter<br>lrock Depth (<br>vation (ft-msl<br>nark: | 0<br>: 0<br>6<br>r (in): 1<br>(ft): 3 | 8/28/06<br>8/29/06<br>5.00<br>0<br>0                                                                                 | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |          |  |
|--------------------|------------------|--------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--|
| Depth              | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                        | PID Units                             | Lithological<br>Description                                                                                          | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments |  |
|                    |                  |                    |                                        |                                                                                                                       |                                       | weathered bedrock<br>cuttings.                                                                                       |                                                                                                                                                            |                      |          |  |
| -40<br>-<br>-<br>- |                  |                    |                                        |                                                                                                                       | <0.1                                  |                                                                                                                      |                                                                                                                                                            |                      |          |  |
| -45 -              |                  |                    |                                        |                                                                                                                       |                                       |                                                                                                                      |                                                                                                                                                            |                      |          |  |
| -50<br>-           |                  |                    |                                        |                                                                                                                       |                                       | SCHIST: As above, harde<br>drilling, bronze, some<br>small gravel sized<br>cuttings, <0.25 gpm.<br>SCHIST: As above, |                                                                                                                                                            |                      |          |  |
| -55                |                  |                    |                                        |                                                                                                                       |                                       | tannish gray.<br>SCHIST: As above, gray,<br>dusty cuttings.                                                          |                                                                                                                                                            |                      |          |  |
| -60 -              |                  |                    |                                        |                                                                                                                       | <0.1                                  | SCHIST: As above,<br>brown, possible water<br>bearing.<br>SCHIST: As above, gray.                                    |                                                                                                                                                            |                      |          |  |
| -65                |                  |                    |                                        |                                                                                                                       |                                       |                                                                                                                      |                                                                                                                                                            |                      |          |  |

|                                                                                                                     |                  | Ż                  | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Elev | g of Borin<br>e Started:<br>e Completed<br>al Depth (ft):<br>ing Diameter<br>lrock Depth (<br>vation (ft-msl<br>nark: | 0<br>: 0<br>1<br>: (in): 1<br>ft): 3 | 8/24/06<br>8/29/06<br>00.00<br>0"/6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------|------------------|--------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Depth                                                                                                               | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                    | Blow<br>Counts                                                                                                        | PID Units                            | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments                                                                                                                              |
| -10 -<br>-10 -<br>-15 -<br>-20 -<br>-25 -<br>-30 -<br>-30 -<br>-35 -<br>-<br>-40 -<br>-<br>-40 -<br>-<br>-<br>-45 - |                  |                    |                                         |                                                                                                                       | <0.1                                 | GRAVEL: and road base<br>fill.<br>MH: Clayey silt, reddish<br>brown, no plasticity, low<br>moisture, micaceous, easy<br>drilling.<br>SAPROLITE: light brown,<br>more drill chatter, harder.<br>SAPROLITE: As above,<br>dark brown.<br>SAPROLITE: As above,<br>harder drilling, light tan.<br>SAPROLITE: As above,<br>bronze.<br>SAPROLITE: As above,<br>bronze.<br>SAPROLITE: As above,<br>light tan.<br>SCHIST: As above,<br>bronze with few<br>weathered rock cuttings,<br>slightly harder drilling. |                                                                                                                                                            |                      | Complete well with 6" steel<br>casing from 73.5'-0",<br>bentonite-cement grout<br>tremie piped 73.5'-3", open<br>borehole 100'-73.5'. |

| 7                    |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Elev | g of Borin<br>e Started:<br>e Completed<br>al Depth (ft):<br>ing Diameter<br>rock Depth (<br>vation (ft-ms)<br>nark: | 0<br>: 0<br>1<br>( <b>in):</b> 1<br>( <b>ft):</b> 3 | 8/24/06<br>8/29/06<br>00.00<br>0"/6"<br>0                                                                     | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |          |
|----------------------|------------------|--------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| Depth                | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                    | Blow<br>Counts                                                                                                       | PID Units                                           | Lithological<br>Description                                                                                   | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments |
| -50                  |                  |                    |                                         |                                                                                                                      |                                                     | water, weathered schist.<br>SCHIST: As above,<br>tannish gray.                                                |                                                                                                                                                            |                      |          |
| -55 -<br>-<br>-      |                  |                    |                                         |                                                                                                                      |                                                     | SCHIST: As above, gray,<br>dusty cuttings, harder.                                                            |                                                                                                                                                            |                      |          |
| -60 ~<br>-<br>-      |                  |                    |                                         |                                                                                                                      | <0.1                                                | SCHIST: As above,<br>brown.                                                                                   |                                                                                                                                                            |                      |          |
| -65 -<br>-<br>-<br>- |                  |                    |                                         |                                                                                                                      |                                                     | SCHIST: As above, gray.                                                                                       |                                                                                                                                                            |                      |          |
| -70<br>-<br>-        |                  |                    |                                         |                                                                                                                      |                                                     | SCHIST: As above, dark<br>gray, hard drilling, coarse<br>angular cuttings, not as<br>soapy in texture, slight |                                                                                                                                                            |                      |          |
| -75 -<br>-<br>-      |                  |                    |                                         |                                                                                                                      |                                                     | moisture, no<br>discernable fractures.                                                                        |                                                                                                                                                            |                      |          |
| - 80<br><br>-<br>-   |                  |                    |                                         |                                                                                                                      | <0.1                                                |                                                                                                               |                                                                                                                                                            |                      |          |
| -85<br>-<br>-<br>-   |                  |                    |                                         |                                                                                                                      |                                                     |                                                                                                               |                                                                                                                                                            |                      |          |
| -90 –<br>            |                  |                    |                                         |                                                                                                                      |                                                     |                                                                                                               |                                                                                                                                                            |                      |          |
| -95<br>-             |                  |                    |                                         |                                                                                                                      |                                                     |                                                                                                               |                                                                                                                                                            |                      |          |
| - 00                 |                  |                    |                                         |                                                                                                                      | <0.1                                                |                                                                                                               |                                                                                                                                                            |                      |          |

|                 |                  | k                  | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Elev | g of Borin<br>e Started:<br>e Completed<br>al Depth (ft):<br>ing Diameter<br>rock Depth (<br>vation (ft-ms)<br>nark: | 0<br>0<br>6<br>r (in): 1<br>(ft): 3 | 8/29/06     P       8/30/06     I       5.00     I       0"/6"     I       3     I                                | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                                        |                                                                                                                               |  |
|-----------------|------------------|--------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Depth           | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                    | Blow<br>Counts                                                                                                       | PID Units                           | Lithological<br>Description                                                                                       | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction                   | Comments                                                                                                                      |  |
| -0              |                  |                    |                                         |                                                                                                                      | <0.1                                | GRAVEL: and soil fill, road base.                                                                                 |                                                                                                                                                            |                                        | Complete well with 6" steel<br>casing from 40'-0', bentonite-<br>cement grout tremie piped 40'-<br>3', open borehole 65'-40'. |  |
| -5-<br>-        |                  |                    |                                         |                                                                                                                      |                                     | ML: Clayey silt, no<br>mosture, low plasticity,<br>micaceous.                                                     |                                                                                                                                                            |                                        |                                                                                                                               |  |
| <br>-10<br>-    |                  |                    |                                         |                                                                                                                      | <0.1                                | SAPROLITE: Reddish<br>brown, silty sand like<br>cuttings, low moisture,<br>soapy texture, continued<br>micaceous. |                                                                                                                                                            |                                        |                                                                                                                               |  |
| -15 -<br>-<br>- |                  |                    |                                         |                                                                                                                      |                                     |                                                                                                                   |                                                                                                                                                            | 11111111111111111111111111111111111111 |                                                                                                                               |  |
| -20 -           |                  |                    |                                         |                                                                                                                      | <0.1                                | SAPROLITE: As above,<br>orange brown, little<br>harder.                                                           |                                                                                                                                                            |                                        |                                                                                                                               |  |
| -25 -<br>-<br>- |                  |                    |                                         |                                                                                                                      |                                     | SAPROLITE: As above, light tan to orange to tan.                                                                  |                                                                                                                                                            |                                        |                                                                                                                               |  |
| -30<br>-        |                  |                    |                                         |                                                                                                                      |                                     | SAPROLITE: As above, soft, easy drilling.                                                                         |                                                                                                                                                            |                                        |                                                                                                                               |  |

| 1                                                                  | <b>/</b> 0       |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Elev<br>Ren | g of Borin<br>e Started:<br>e Completed:<br>al Depth (ft):<br>ing Diameter<br>brock Depth (<br>vation (ft-ms)<br>nark: | 0<br>6<br>(in): 1<br>(ft): 3 | 8/29/06<br>8/30/06<br>5.00<br>0"/6"<br>3                                                                                                                                                                 | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |          |  |
|--------------------------------------------------------------------|------------------|--------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--|
| Depth                                                              | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                           | Blow<br>Counts                                                                                                         | PID Units                    | Lithological<br>Description                                                                                                                                                                              | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments |  |
| -35                                                                |                  |                    |                                                |                                                                                                                        | <0.1                         | SCHIST: weathered,<br>bronze, harder, more rock<br>fragments.<br>SCHIST: As above, harde<br>drilling 37'-40', soft 40'-50                                                                                |                                                                                                                                                            |                      |          |  |
| -50 -<br>-<br>-55 -<br>-<br>-<br>-60 -<br>-<br>-<br>-<br>-<br>65 - |                  |                    |                                                |                                                                                                                        | <0.1                         | SCHIST: As above,<br>harder, light tan.<br>SCHIST: As above,<br>tannish gray, coarser<br>cuttings, harder drilling.<br>SCHIST: As above,<br>brown, softer.<br>SCHIST: Harder gray<br>bedrock, competent. |                                                                                                                                                            |                      |          |  |

,

|                |                  | K                  | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Ele | g of Borin<br>e Started:<br>e Completed:<br>al Depth (ft):<br>ing Diameter<br>lrock Depth (<br>vation (ft-msl<br>nark: | 0<br>: 0<br>2<br>: (in): 1<br>ft): 3 | 8/05/06     I       8/30/06     I       42.00     I       0"/6"     I       3     I                                      | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |                                                                                                                                |
|----------------|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Depth          | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                         | PID Units                            | Lithological<br>Description                                                                                              | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments                                                                                                                       |
| 0-             |                  |                    |                                        |                                                                                                                        | <0.1                                 | GRAVEL: and soil road base, fill.                                                                                        |                                                                                                                                                            |                      | Complete well with 6" steel<br>casing from 72'-0', bentonite-<br>cement grout tremie piped 72'-<br>3', open borehole 242'-72'. |
| -5-<br>-10-    |                  |                    |                                        |                                                                                                                        |                                      | ML: Clayey silt, orange<br>brown, low plasticity,<br>micaceous, low moisture.                                            |                                                                                                                                                            |                      |                                                                                                                                |
| -15 -<br>-20 - |                  |                    |                                        |                                                                                                                        | <0.1                                 | SAPROLITE: reddish<br>brown with drill chatter<br>(harder), silty sand like<br>cuttings, low moisture,<br>soapy texture. |                                                                                                                                                            |                      |                                                                                                                                |
| -25            |                  |                    |                                        |                                                                                                                        | <0.1                                 | SAPROLITE: As above,<br>orange brown, little<br>harder, orange 27'-28', tan<br>28'-29'.                                  |                                                                                                                                                            |                      |                                                                                                                                |
| -30 -<br>-35 - |                  |                    |                                        |                                                                                                                        |                                      | SAPROLITE: As above, softer, easy drilling.                                                                              |                                                                                                                                                            |                      |                                                                                                                                |
| -40            |                  |                    |                                        |                                                                                                                        | <0.1                                 | SCHIST: weathered,<br>bronze, harder, more rock<br>fragments.                                                            |                                                                                                                                                            |                      |                                                                                                                                |
| -45            |                  |                    |                                        |                                                                                                                        |                                      | SCHIST: As above, harder<br>drilling 37'-40', softer 40'-<br>50'.                                                        |                                                                                                                                                            |                      |                                                                                                                                |
| -50 -          |                  |                    |                                        |                                                                                                                        |                                      | SCHIST: As above, light tan.                                                                                             |                                                                                                                                                            |                      |                                                                                                                                |
| -55 -          |                  |                    |                                        |                                                                                                                        |                                      | SCHIST: As above,<br>tannish gray, coarser<br>cuttings, harder drilling.                                                 |                                                                                                                                                            |                      |                                                                                                                                |
| -60 -          |                  |                    |                                        |                                                                                                                        | <0.1                                 | SCHIST: As above,<br>brown, soft drilling.                                                                               |                                                                                                                                                            |                      |                                                                                                                                |
| -65 -          |                  |                    |                                        |                                                                                                                        |                                      | SCHIST: Harder gray<br>bedrock drilling.                                                                                 |                                                                                                                                                            |                      |                                                                                                                                |
| -70 -          |                  |                    |                                        |                                                                                                                        |                                      | SCHIST: Slower drilling, chlorite gray green color.                                                                      |                                                                                                                                                            |                      |                                                                                                                                |
| -75 -          |                  |                    |                                        |                                                                                                                        |                                      | SCHIST: As above, tan.                                                                                                   |                                                                                                                                                            |                      |                                                                                                                                |
| -80            |                  |                    |                                        |                                                                                                                        |                                      | SCHIST: Gray green, hard                                                                                                 |                                                                                                                                                            |                      |                                                                                                                                |

|                         |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Elev | g of Borin<br>e Started:<br>e Completed:<br>al Depth (ft):<br>ing Diameter<br>irock Depth (<br>vation (ft-ms)<br>nark: | 0<br>: 0<br>2<br>• (in): 1<br>ft): 3 | 8/05/06<br>8/30/06<br>42.00<br>0"/6"             | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |          |  |  |
|-------------------------|------------------|--------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--|--|
| Depth                   | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                    | Blow<br>Counts                                                                                                         | PID Units                            | Lithological<br>Description                      | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments |  |  |
| -85 -<br>-90 -<br>-95 - |                  |                    |                                         |                                                                                                                        | <0.1                                 | chatter, bedrock, very<br>dusty, minor moisture. |                                                                                                                                                            |                      |          |  |  |
| -100 -                  |                  |                    |                                         |                                                                                                                        | <0.1                                 |                                                  |                                                                                                                                                            |                      |          |  |  |
| -105 -                  |                  |                    |                                         |                                                                                                                        |                                      |                                                  |                                                                                                                                                            |                      |          |  |  |
| 110 -                   |                  |                    |                                         |                                                                                                                        |                                      |                                                  |                                                                                                                                                            |                      |          |  |  |
| -115 -                  |                  |                    |                                         |                                                                                                                        |                                      |                                                  |                                                                                                                                                            |                      |          |  |  |
| -120 -                  | 4                |                    |                                         |                                                                                                                        | <0.1                                 |                                                  |                                                                                                                                                            |                      |          |  |  |
| -125 -                  |                  |                    |                                         |                                                                                                                        |                                      |                                                  |                                                                                                                                                            |                      |          |  |  |
| -130 -                  |                  |                    |                                         |                                                                                                                        |                                      |                                                  |                                                                                                                                                            |                      |          |  |  |
| -135 -                  |                  |                    |                                         |                                                                                                                        |                                      |                                                  |                                                                                                                                                            |                      |          |  |  |
| -140 -                  |                  |                    |                                         |                                                                                                                        | <0.1                                 |                                                  |                                                                                                                                                            |                      |          |  |  |
| -145 -                  |                  |                    |                                         |                                                                                                                        |                                      |                                                  |                                                                                                                                                            |                      |          |  |  |
| -150 -                  |                  |                    |                                         |                                                                                                                        |                                      |                                                  |                                                                                                                                                            |                      |          |  |  |
| -155 -                  |                  |                    |                                         |                                                                                                                        |                                      |                                                  |                                                                                                                                                            |                      |          |  |  |
| -160 -                  | -                |                    |                                         |                                                                                                                        | <0.1                                 |                                                  |                                                                                                                                                            |                      |          |  |  |

|                                                                                                                                      |                  |                    | Dat<br>Dat<br>Tot<br>Bot<br>Bec<br>Ele | g of Borin<br>te Started:<br>te Completed:<br>tal Depth (ft):<br>ring Diameter<br>drock Depth (<br>vation (ft-ms)<br>mark: | 0<br>2<br>(in): 1<br>ft): 3 | 8/05/06<br>8/30/06<br>42.00<br>0"/6"<br>3                                                                                       | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T450WDrill Method:Air rotarySampling Method:N/A |                      |          |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| Depth                                                                                                                                | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                             | PID Units                   | Lithological<br>Description                                                                                                     | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments |
| -165<br>-170<br>-175<br>-175<br>-180<br>-185<br>-190<br>-195<br>-195<br>-200<br>-205<br>-210<br>-215<br>-220<br>-225<br>-220<br>-225 |                  |                    |                                        |                                                                                                                            | <0.1                        | SCHIST: As above, soft<br>drilling with no chatter, no<br>water observed.<br>SCHIST: As above, hard<br>drilling, some moisture. |                                                                                                                                                            |                      |          |
| -235 -                                                                                                                               |                  |                    |                                        |                                                                                                                            | <0.1                        |                                                                                                                                 |                                                                                                                                                            |                      |          |

|       |                  | 2                  | LO<br>Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Elev<br>Rem | e: 1962<br>e: Carroll Fu<br>Eichelber<br>Jason Yaj<br>IR-T4<br>l: Air rotary<br>ethod: N/A | ple       |                                                                                                                                                                                                                                                               |                          |                      |             |
|-------|------------------|--------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|-------------|
| Depth | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                                 | Blow<br>Counts                                                                             | PID Units | Lithological<br>Description                                                                                                                                                                                                                                   | Interpreted<br>Lithology | Well<br>Construction | Comments    |
| 0     |                  |                    |                                                      |                                                                                            | <0.1      | FILL: asphalt and gravel<br>subbase<br>MH: clayey silt, light tan,<br>micaceous, medium soft,<br>medium plasticity<br>ML: tan and ligh red silt,<br>medium soft, no plasiticity<br>some schist gravel<br>gragments. gravel sized<br>ML: light brown/tan color |                          |                      |             |
| En    | viror            | men                | tal Al                                               | liance, Ind                                                                                | <br>C.    | chatter, tan saprolite                                                                                                                                                                                                                                        |                          |                      | Page 1 of 2 |

|            |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Ele | g of Borin<br>e Started:<br>e Completed:<br>al Depth (ft):<br>ing Diameter<br>lrock Depth (f<br>vation (ft-msl<br>nark: | 0:<br>0:<br>62<br>( <b>in</b> ): 10<br><b>ft</b> ): 30 | 5/08/07<br>5/08/07<br>2.00<br>0" to 40', 6" to 62'<br>6'                    | Project Code<br>Project Nam<br>Drilled By:<br>Logged By:<br>Drill Rig:<br>Drill Method<br>Sampling Me | roject Name:Carroll Fuel - Parktonrilled By:Eichelbergersogged By:Jason Yaplerill Rig:IR-T4 |                                                 |  |
|------------|------------------|--------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|--|
| Depth      | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                          | PID Units                                              | Lithological<br>Description                                                 | Interpreted<br>Lithology                                                                              | Well<br>Construction                                                                        | Comments                                        |  |
| -35 -      | -                |                    |                                        |                                                                                                                         |                                                        | SCHIST: constant chatte<br>bronze color, weathered<br>schist bedrock        | r,                                                                                                    |                                                                                             |                                                 |  |
| -40 -<br>- | -                |                    |                                        |                                                                                                                         | <0.1                                                   | SCHIST: SAA                                                                 |                                                                                                       |                                                                                             |                                                 |  |
| -45 -<br>- |                  |                    |                                        |                                                                                                                         | 12.8                                                   |                                                                             |                                                                                                       |                                                                                             |                                                 |  |
| -50 -<br>- | -                |                    |                                        |                                                                                                                         |                                                        | SCHIST: SAA, more constant chatter                                          |                                                                                                       |                                                                                             |                                                 |  |
| -55 -<br>- |                  |                    |                                        |                                                                                                                         | 2.7                                                    | SCHIST: regular chatter                                                     |                                                                                                       |                                                                                             |                                                 |  |
| -60 -<br>- |                  |                    |                                        |                                                                                                                         | <0.1                                                   | SCHIST: no chatter,<br>fracture<br>SCHIST: regular chatter,<br>grey bedrock |                                                                                                       |                                                                                             | Note: water noticed after<br>waiting 30 seconds |  |

| 1               |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Ele | e Started:<br>e Completed:<br>al Depth (ft): | 100.00<br>(in): 10" to 70', 6" to 100'<br>t): 38' |                                                                                                            |    | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:IR-T4Drill Method:Air rotarySampling Method:N/A |                      |          |  |
|-----------------|------------------|--------------------|----------------------------------------|----------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--|
| Depth           | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                               | PID Units                                         | Lithological<br>Description                                                                                |    | Interpreted<br>Lithology                                                                                                                                   | Well<br>Construction | Comments |  |
| -0<br><br>      |                  |                    |                                        |                                              |                                                   | FILL: asphalt and gravel<br>subbase<br>MH: clayey silt, light tan,                                         | _/ | × × >                                                                                                                                                      |                      |          |  |
| -5<br>-<br>-    |                  |                    |                                        |                                              | <0.1                                              | micaceous, medium soft,<br>medium plasticity                                                               |    |                                                                                                                                                            |                      |          |  |
| -10             |                  |                    |                                        |                                              | <0.1                                              | ML: tan and light red silt,<br>medium soft, no plasticity<br>some schist gravel<br>fragments, gravel sized |    |                                                                                                                                                            |                      |          |  |
| -15 -           |                  |                    |                                        |                                              | <0.1                                              | ML: SAA, color change to                                                                                   | o  |                                                                                                                                                            |                      |          |  |
| -               |                  |                    |                                        |                                              |                                                   | ML: begin drill chatter<br>ML: SAA, bronze color                                                           |    |                                                                                                                                                            |                      |          |  |
| -20 —<br>-<br>- |                  |                    |                                        |                                              | <0.1                                              | ML: SAA, tan color                                                                                         |    |                                                                                                                                                            |                      |          |  |
| -25<br>-<br>-   |                  |                    |                                        |                                              | <0.1                                              | ML: SAA, red color                                                                                         |    |                                                                                                                                                            |                      |          |  |
| -30 -<br>       |                  |                    |                                        |                                              | <0.1                                              | SAPROLITE: more drill<br>chatter, light tan/grey<br>color, saprolite                                       |    |                                                                                                                                                            |                      |          |  |
| -35<br>-<br>-   |                  |                    |                                        |                                              |                                                   |                                                                                                            |    |                                                                                                                                                            |                      |          |  |
| -40             |                  |                    |                                        |                                              |                                                   | SCHIST: light<br>brown/green mica schist,<br>highly weathered                                              | ,  |                                                                                                                                                            |                      |          |  |
| -45<br>         |                  |                    |                                        |                                              | 7.9                                               |                                                                                                            |    |                                                                                                                                                            |                      |          |  |
| -50 -           |                  |                    |                                        |                                              | 8.9                                               | SCHIST: SAA, light grey harder, good chatter                                                               |    |                                                                                                                                                            |                      |          |  |

|                           |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bec<br>Ele | g of Borin<br>te Started:<br>te Completed:<br>al Depth (ft):<br>ting Diameter<br>lrock Depth (<br>vation (ft-msl<br>nark: | 0:<br>0:<br>1(<br>(in): 10<br>ft): 3: | 5/08/07<br>5/08/07<br>00.00<br>0" to 70', 6" to 100'                                                                    | Drill Method: Air rotary<br>Sampling Method: N/A |                      |          |  |
|---------------------------|------------------|--------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|----------|--|
| Depth                     | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                            | PID Units                             | Lithological<br>Description                                                                                             | Interpreted<br>Lithology                         | Well<br>Construction | Comments |  |
| -55 -                     |                  |                    |                                        |                                                                                                                           | <0.1                                  | SCHIST: hard drilling                                                                                                   |                                                  |                      |          |  |
| -70<br><br><br>-75        |                  |                    |                                        |                                                                                                                           |                                       | SCHIST: steady chatter,<br>harder drilling continued<br>grey schist, no noticable<br>fractures or water bearin<br>zones |                                                  |                      |          |  |
| -<br>-<br>- 80-<br>-<br>- |                  |                    |                                        |                                                                                                                           |                                       |                                                                                                                         |                                                  |                      |          |  |
| -85 -<br>-<br>-<br>-      |                  |                    |                                        |                                                                                                                           |                                       |                                                                                                                         |                                                  |                      |          |  |
| -90 -<br>-<br>-           |                  |                    |                                        |                                                                                                                           |                                       |                                                                                                                         |                                                  |                      |          |  |
| -95<br><br><br>-100       |                  |                    |                                        |                                                                                                                           |                                       |                                                                                                                         |                                                  |                      |          |  |

|                                                               |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bec<br>Ele | g of Boring<br>te Started:<br>te Completed:<br>al Depth (ft):<br>ring Diameter<br>lrock Depth (f<br>vation (ft-ms)<br>nark: | 0<br>0<br>( <b>in):</b> 1(<br><b>it):</b> 3 | 6/26/08<br>6/26/08<br>0.00<br>0" to 40'; 6" to 60'                                                                                                                                                                                               | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T555Drill Method:Air rotarySampling Method:Cutting observation |                      |                                                                                                                                                                                            |  |
|---------------------------------------------------------------|------------------|--------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Depth                                                         | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                              | DIA                                         | Lithological<br>Description                                                                                                                                                                                                                      | Interpreted<br>Lithology                                                                                                                                                  | Well<br>Construction | Comments                                                                                                                                                                                   |  |
| -10 -<br>-20 -<br>-25 -                                       |                  |                    |                                        |                                                                                                                             | <0.1<br><0.1                                | OL: Grass and clay.<br>ML: Orange-brown silt with<br>few gravel.<br>SAPROLITE: As above,<br>maroon-brown fine sand to<br>silt cuttings, saprolite<br>(weathered schist).<br>SAPROLITE: As above,<br>steady drill chatter, slight<br>mica flakes. |                                                                                                                                                                           |                      | Well set at 60' with open<br>borehole 60'-40', steel<br>casing 40'-surface.<br>Bentonite-cement grout 40'-<br>1', concrete 1'-surface.<br>Note: no discernable water<br>bearing fractures. |  |
| -30 -<br>-30 -<br>-35 -<br>-<br>-35 -<br>-<br>-<br>-<br>-40 - |                  |                    |                                        |                                                                                                                             | <0.1                                        | SCHIST: Harder drilling,<br>bronze color.                                                                                                                                                                                                        |                                                                                                                                                                           |                      |                                                                                                                                                                                            |  |
| -45 -<br>-50 -                                                |                  |                    |                                        |                                                                                                                             | <0.1                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                           |                      |                                                                                                                                                                                            |  |
| -55 -<br>-55 -<br>-<br>-<br>-60 -                             |                  |                    |                                        |                                                                                                                             | <0.1                                        | SCHIST: Gray color cutting                                                                                                                                                                                                                       | 5.                                                                                                                                                                        |                      |                                                                                                                                                                                            |  |

|                           |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bec<br>Ele | g of Boring<br>te Started:<br>te Completed:<br>tal Depth (ft):<br>ring Diameter<br>lrock Depth (f<br>vation (ft-ms]<br>mark: | 0<br>0<br>1<br>( <b>in</b> ): 1<br><b>i</b> t): 3 | 6/26/08<br>6/26/08<br>00.00<br>0" to 70'; 6" to 100'                                                                                                                                                                                                                                         | Drill Method: Air rotary<br>Sampling Method: Cutting observation |                      |                                                                                                                                                                                              |  |
|---------------------------|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Depth                     | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                               | aiq                                               | Lithological<br>Description                                                                                                                                                                                                                                                                  | Interpreted<br>Lithology                                         | Well<br>Construction | Comments                                                                                                                                                                                     |  |
| -10<br>10<br>10<br>15<br> |                  |                    |                                        |                                                                                                                              | <0.1<br><0.1<br><0.1                              | OL: Grass and clay.         ML: Orange-brown silt with few gravel.         SAPROLITE: As above, maroon-brown fine sand to silt cuttings, saprolite (weathered schist).         SAPROLITE: As above, steady drill chatter, slight mica flakes.         SCHIST: Harder drilling, bronze color. |                                                                  |                      | Well set at 100' with open<br>borehole 100'-70', steel<br>casing 70'-surface.<br>Bentonite-cement grout 70'-<br>1', concrete 1'-surface.<br>Note: no discernable water<br>bearing fractures. |  |
| -<br>50                   |                  |                    |                                        | lliance. In                                                                                                                  | <0.1                                              |                                                                                                                                                                                                                                                                                              |                                                                  |                      | Page 1 of 2                                                                                                                                                                                  |  |

| 1      |        |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Ele | g of Boring<br>the Started:<br>the Completed:<br>al Depth (ft):<br>ring Diameter<br>lrock Depth (f<br>vation (ft-ms)<br>nark: | 0<br>0<br>1(<br>( <b>in</b> ): 1(<br>f <b>t</b> ): 3 | 6/26/08<br>6/26/08<br>00.00<br>0" to 70'; 6" to 100'<br>0                                                             | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T555Drill Method:Air rotarySampling Method:Cutting observation |                      |          |  |  |
|--------|--------|--------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--|--|
| Sample | Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                                | DIA                                                  | Lithological<br>Description                                                                                           | Interpreted<br>Lithology                                                                                                                                                  | Well<br>Construction | Comments |  |  |
|        |        |                    |                                        |                                                                                                                               | <0.1                                                 | SCHIST: Gray color cuttings                                                                                           |                                                                                                                                                                           |                      |          |  |  |
| 5 -    |        |                    |                                        |                                                                                                                               | <0.1                                                 | SCHIST: As above, small<br>fracture at 80' bgs.<br>SCHIST: As above, small<br>fracture at 85' bgs, brown<br>cuttings. |                                                                                                                                                                           |                      |          |  |  |
|        |        |                    |                                        |                                                                                                                               |                                                      | SCHIST: As above, small fracture at 90' bgs.                                                                          |                                                                                                                                                                           |                      |          |  |  |

|                                                                                                 |                  |                    | Da<br>Da<br>Tot<br>Bo<br>Bec<br>Ele | g of Boring<br>te Started:<br>te Completed:<br>tal Depth (ft):<br>ring Diameter<br>drock Depth (f<br>vation (ft-ms)<br>mark: | 0<br>0<br>1(<br>( <b>in</b> ): 1(<br>f <b>t</b> ): 3 | 7/02/08     P       7/02/08     D       00.00     L       0" to 70'; 6" to 100'     D       1     D                                       | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T555Drill Method:Air rotarySampling Method:Cutting observation |                                        |                                                                                                                                                                                              |  |  |
|-------------------------------------------------------------------------------------------------|------------------|--------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth                                                                                           | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                | Blow<br>Counts                                                                                                               | DIA                                                  | Lithological<br>Description                                                                                                               | Interpreted<br>Lithology                                                                                                                                                  | Well<br>Construction                   | Comments                                                                                                                                                                                     |  |  |
| 0-<br>-5-                                                                                       |                  |                    |                                     |                                                                                                                              | <0.1<br><0.1                                         | FILL: Asphalt and gravel fill.<br>ML: Light brown silt,<br>micaceous, no plasticity,<br>medium soft with many schist<br>gravel fragments. |                                                                                                                                                                           | ////////////////////////////////////// | Well set at 100' with open<br>borehole 100'-70', steel<br>casing 70'-surface.<br>Bentonite-cement grout 70'-<br>1', concrete 1'-surface.<br>Note: no discernable water<br>bearing fractures. |  |  |
| -10 -<br>-<br>-<br>-15 -<br>-                                                                   |                  |                    |                                     |                                                                                                                              | <0.1                                                 | ML: As above, maroon-brown color.                                                                                                         |                                                                                                                                                                           |                                        |                                                                                                                                                                                              |  |  |
| -<br>-20 -<br>-<br>-                                                                            |                  |                    |                                     |                                                                                                                              |                                                      | SAPROLITE: As above,<br>bronze color.                                                                                                     |                                                                                                                                                                           |                                        |                                                                                                                                                                                              |  |  |
| -25 -<br>-<br>-<br>-                                                                            |                  |                    |                                     |                                                                                                                              | <0.1                                                 |                                                                                                                                           |                                                                                                                                                                           |                                        |                                                                                                                                                                                              |  |  |
| -30 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                  |                    |                                     |                                                                                                                              |                                                      | SCHIST: Harder drilling, gray color, schist bedrock.                                                                                      |                                                                                                                                                                           |                                        |                                                                                                                                                                                              |  |  |
| -40 –                                                                                           |                  |                    |                                     |                                                                                                                              |                                                      |                                                                                                                                           |                                                                                                                                                                           |                                        |                                                                                                                                                                                              |  |  |
| -<br>-45<br>-<br>-                                                                              |                  |                    |                                     |                                                                                                                              | <0.1                                                 |                                                                                                                                           |                                                                                                                                                                           |                                        |                                                                                                                                                                                              |  |  |
| <u>د</u> م _                                                                                    | •                |                    |                                     | llionco In                                                                                                                   |                                                      |                                                                                                                                           | 55555                                                                                                                                                                     |                                        | Dage 1 of 2                                                                                                                                                                                  |  |  |

|                                   |                  | iel - Parkton<br>gers<br>ble<br>oservation |                      |                |      |                                                                                        |                          |                                        |             |
|-----------------------------------|------------------|--------------------------------------------|----------------------|----------------|------|----------------------------------------------------------------------------------------|--------------------------|----------------------------------------|-------------|
| Depth                             | Sample<br>Number | Sample<br>Interval                         | Recovery<br>(inches) | Blow<br>Counts | DIA  | Lithological<br>Description                                                            | Interpreted<br>Lithology | Well<br>Construction                   | Comments    |
| -55 -<br>-55 -<br>-<br>-<br>-60 - |                  |                                            |                      |                |      | SCHIST: As above, bronze color.                                                        |                          |                                        |             |
| -<br>-<br>-65<br>-                |                  |                                            |                      |                | <0.1 | SCHIST: As above, gray<br>color.<br>SCHIST: As above, possible<br>fracture at 64' bgs. | B                        | ###################################### |             |
| -70<br>-<br>-<br>-                |                  |                                            |                      |                |      |                                                                                        |                          |                                        |             |
| -75<br><br><br>-80                |                  |                                            |                      |                | <0.1 |                                                                                        |                          |                                        |             |
| -<br>-<br>-<br>-85<br>-           |                  |                                            |                      |                |      |                                                                                        |                          |                                        |             |
| -90<br>-90<br>-                   |                  |                                            |                      |                |      |                                                                                        |                          |                                        |             |
| -95<br>-<br>-<br>-                |                  |                                            |                      |                |      |                                                                                        |                          |                                        |             |
| -100 -                            |                  |                                            |                      |                | <0.1 |                                                                                        |                          |                                        |             |
| E                                 | nviro            | nmer                                       | ntal A               | lliance, In    | ıc.  |                                                                                        |                          |                                        | Page 2 of 2 |

|                                                   |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bec<br>Ele | g of Boring<br>te Started:<br>te Completed:<br>al Depth (ft):<br>ring Diameter<br>lrock Depth (f<br>vation (ft-ms)<br>nark: | 0<br>6<br>(in): 1<br>(it): 3 | 6/27/08<br>6/27/08<br>0.00<br>0" to 40'; 6" to 60'<br>8                                                                                                                           | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T555Drill Method:Air rotarySampling Method:Cutting observation |                      |                                                                                                                                        |  |  |
|---------------------------------------------------|------------------|--------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth                                             | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                              | DIA                          | Lithological<br>Description                                                                                                                                                       | Interpreted<br>Lithology                                                                                                                                                  | Well<br>Construction | Comments                                                                                                                               |  |  |
| 0-<br>-5-<br>-10-<br>-15-<br>-20-<br>-25-<br>-30- |                  |                    |                                        |                                                                                                                             | <0.1<br><0.1                 | FILL: Asphalt and gravel fill<br>material.<br>ML: Light tan, silt, no<br>plasticity, micaceous, soft.<br>SAPROLITE: Maroon-brown<br>saprolite, weathered schist,<br>and bedbrock. |                                                                                                                                                                           |                      | Well set at 60' with open<br>borehole 60'-40', steel<br>casing 40'-surface.<br>Bentonite-cement grout 40'-<br>1', concrete 1'-surface. |  |  |
| -<br>-<br>-35 —                                   |                  |                    |                                        |                                                                                                                             |                              |                                                                                                                                                                                   |                                                                                                                                                                           |                      |                                                                                                                                        |  |  |
| -40 -<br>-                                        |                  |                    |                                        |                                                                                                                             | <0.1                         | SCHIST: Gray-green, harde<br>drilling, schist bedrock.                                                                                                                            |                                                                                                                                                                           |                      |                                                                                                                                        |  |  |
| -45 –<br>-                                        |                  |                    |                                        |                                                                                                                             | <0.1                         |                                                                                                                                                                                   |                                                                                                                                                                           |                      |                                                                                                                                        |  |  |
| -50 -<br>-                                        |                  |                    |                                        |                                                                                                                             |                              | SCHIST: As above, slight fracture at 50' bgs.                                                                                                                                     |                                                                                                                                                                           |                      |                                                                                                                                        |  |  |
| -55 -<br>-<br>-                                   |                  |                    |                                        |                                                                                                                             |                              | SCHIST: As above, slight fracture at 53' bgs.                                                                                                                                     |                                                                                                                                                                           |                      |                                                                                                                                        |  |  |
| -60 -                                             |                  |                    |                                        |                                                                                                                             | <0.1                         |                                                                                                                                                                                   |                                                                                                                                                                           |                      |                                                                                                                                        |  |  |

| 1                                                           |                  |                    | Dat<br>Dat<br>Tot<br>Bot<br>Bec<br>Ele | g of Boring<br>te Started:<br>te Completed:<br>tal Depth (ft):<br>ring Diameter<br>lrock Depth (f<br>vation (ft-ms)<br>mark: | 00<br>00<br>10<br>( <b>in):</b> 10<br>f <b>t):</b> 33 | 6/27/08<br>6/27/08<br>00.00<br>0" to 70'; 6" to 100'<br>8                                                                                                                         | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T555Drill Method:Air rotarySampling Method:Cutting observation |                                        |                                                                                                                                          |  |
|-------------------------------------------------------------|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Depth                                                       | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                               | DIA                                                   | Lithological<br>Description                                                                                                                                                       | Interpreted<br>Lithology                                                                                                                                                  | Well<br>Construction                   | Comments                                                                                                                                 |  |
| 0-<br>-5-<br>-10-<br>-15-<br>-15-<br>-15-<br>-<br>-20-<br>- |                  |                    |                                        |                                                                                                                              | <0.1 <0.1                                             | FILL: Asphalt and gravel fill<br>material.<br>ML: Light tan, silt, no<br>plasticity, micaceous, soft.<br>SAPROLITE: Maroon-brown<br>saprolite, weathered schist,<br>and bedbrock. |                                                                                                                                                                           | 11111111111111111111111111111111111111 | Well set at 100' with open<br>borehole 100'-70', steel<br>casing 70'-surface.<br>Bentonite-cement grout 70'-<br>1', concrete 1'-surface. |  |
| -25 -<br>-<br>                                              |                  |                    |                                        |                                                                                                                              |                                                       | SAPROLITE: As above, ligh tan.                                                                                                                                                    |                                                                                                                                                                           |                                        |                                                                                                                                          |  |
| -35 -<br>-40 -<br>-<br>-45 -<br>-<br>-<br>45 -              |                  |                    |                                        |                                                                                                                              | <0.1                                                  | SCHIST: Gray-green, harde<br>drilling, schist bedrock.                                                                                                                            |                                                                                                                                                                           |                                        |                                                                                                                                          |  |

|                                                                                               |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Elev | g of Borin<br>e Started:<br>e Completed:<br>al Depth (ft):<br>ing Diameter<br>lrock Depth (<br>vation (ft-msl<br>nark: | 0<br>10<br>(in): 10<br>ft): 3 | 6/27/08<br>6/27/08<br>00.00<br>0" to 70'; 6" to 100' | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T555Drill Method:Air rotarySampling Method:Cutting observation |                      |          |  |
|-----------------------------------------------------------------------------------------------|------------------|--------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--|
| nepru                                                                                         | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                    | Blow<br>Counts                                                                                                         | DIA                           | Lithological<br>Description                          | Interpreted<br>Lithology                                                                                                                                                  | Well<br>Construction | Comments |  |
|                                                                                               |                  |                    |                                         |                                                                                                                        |                               | SCHIST: As above, slight fracture at 50' bgs.        |                                                                                                                                                                           |                      |          |  |
| 5 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                  |                    |                                         |                                                                                                                        | <0.1                          | SCHIST: As above, slight<br>fracture at 53' bgs.     |                                                                                                                                                                           |                      |          |  |
| 5 -                                                                                           |                  |                    |                                         |                                                                                                                        |                               | SCHIST: As above, slight fracture at 72' bgs.        |                                                                                                                                                                           |                      |          |  |
| 0                                                                                             |                  |                    |                                         |                                                                                                                        | <0.1                          | SCHIST: As above, slight fracture at 80' bgs.        |                                                                                                                                                                           |                      |          |  |
| 90  <br>   <br>   <br>   <br>   <br>   <br>   <br>   <br>   <br>                              |                  |                    |                                         |                                                                                                                        |                               | SCHIST: As above, slight fracture at 90' bgs.        |                                                                                                                                                                           |                      |          |  |
| 0 -                                                                                           |                  |                    |                                         |                                                                                                                        | <0.1                          |                                                      |                                                                                                                                                                           |                      |          |  |

|                                           |                  |                    | Dat<br>Dat<br>Tot<br>Bot<br>Bec<br>Ele | g of Boring<br>te Started:<br>te Completed:<br>al Depth (ft):<br>ring Diameter<br>lrock Depth (f<br>vation (ft-msl)<br>nark: | 0<br>0<br>(in): 1(<br>it): 3 | 6/26/08<br>6/26/08<br>0.00<br>0" to 40'; 6" to 60'                                                                                               | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T555Drill Method:Air rotarySampling Method:Cutting observation |                      |                                                                                                                                                                                            |  |
|-------------------------------------------|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Depth                                     | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                               | DIA                          | Lithological<br>Description                                                                                                                      | Interpreted<br>Lithology                                                                                                                                                  | Well<br>Construction | Comments                                                                                                                                                                                   |  |
| -10 -<br>-10 -<br>-15 -<br>-20 -<br>-25 - |                  |                    |                                        |                                                                                                                              | <0.1<br><0.1                 | FILL: Asphalt and gravel fill<br>material.<br>ML: Clayey silt, stiff, low<br>plasticity.<br>ML: Silt, no plasticity, tan to<br>brown, micaceous. |                                                                                                                                                                           |                      | Well set at 60' with open<br>borehole 60'-40', steel<br>casing 40'-surface.<br>Bentonite-cement grout 40'-<br>1', concrete 1'-surface.<br>Note: no discernable water<br>bearing fractures. |  |
| -30 -                                     |                  |                    |                                        |                                                                                                                              |                              | SAPROLITE: Slight color<br>change to bronze-green,<br>more chatter, graphitic<br>texture.<br>SAPROLITE: As above, slig                           |                                                                                                                                                                           |                      |                                                                                                                                                                                            |  |
| -35 -                                     |                  |                    |                                        |                                                                                                                              | <0.1                         | SAPROLITE: As above, slig<br>fracture at 32' bgs.<br>SAPROLITE: As above, slig<br>fracture at 34' bgs.                                           |                                                                                                                                                                           |                      |                                                                                                                                                                                            |  |
| -40 -                                     |                  |                    |                                        |                                                                                                                              |                              | SCHIST: Gray cuttings, more chatter, highly micaceous schist.                                                                                    | e                                                                                                                                                                         |                      |                                                                                                                                                                                            |  |
| -45 -                                     |                  |                    |                                        |                                                                                                                              |                              |                                                                                                                                                  |                                                                                                                                                                           |                      |                                                                                                                                                                                            |  |
| -50 -                                     |                  |                    |                                        |                                                                                                                              | <0.1                         |                                                                                                                                                  |                                                                                                                                                                           |                      |                                                                                                                                                                                            |  |
| -55 -                                     |                  |                    |                                        |                                                                                                                              |                              | SCHIST: As above, slight<br>fracture at 54' bgs.<br>SCHIST: As above, slight                                                                     |                                                                                                                                                                           |                      |                                                                                                                                                                                            |  |
| -60 -                                     |                  |                    |                                        |                                                                                                                              |                              | fractures at 57' and 60' bgs.                                                                                                                    |                                                                                                                                                                           |                      |                                                                                                                                                                                            |  |

|                                                                                                 |                  | 2                  | Dat<br>Dat<br>Tot<br>Bot<br>Bec<br>Ele | og of Boring<br>te Started:<br>te Completed:<br>tal Depth (ft):<br>ring Diameter<br>drock Depth (f<br>wation (ft-ms)<br>mark: | 0<br>0<br>( <b>in</b> ): 1<br>( <b>i</b> t): 3 | 6/26/08<br>6/26/08<br>00.00<br>0" to 70'; 6" to 100'                                                                                                                          | Project Code:1962Project Name:Carroll Fuel - ParktonDrilled By:EichelbergersLogged By:Jason YapleDrill Rig:T555Drill Method:Air rotarySampling Method:Cutting observation |                      |                                                                                                                                                                                              |  |
|-------------------------------------------------------------------------------------------------|------------------|--------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Depth                                                                                           | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                                | DIA                                            | Lithological<br>Description                                                                                                                                                   | Interpreted<br>Lithology                                                                                                                                                  | Well<br>Construction | Comments                                                                                                                                                                                     |  |
| 0<br>-5<br>-10                                                                                  |                  |                    |                                        |                                                                                                                               | <0.1<br><0.1                                   | FILL: Asphalt and gravel fill<br>material.<br>ML: Clayey silt, stiff, low<br>plasticity.<br>ML: Silt, no plasticity, tan to<br>brown, micaceous.                              |                                                                                                                                                                           |                      | Well set at 100' with open<br>borehole 100'-70', steel<br>casing 70'-surface.<br>Bentonite-cement grout 70'-<br>1', concrete 1'-surface.<br>Note: no discernable water<br>bearing fractures. |  |
| -10 -<br>-15 -<br>-<br>-20 -                                                                    |                  |                    |                                        |                                                                                                                               |                                                |                                                                                                                                                                               |                                                                                                                                                                           |                      |                                                                                                                                                                                              |  |
| -20<br>25<br>                                                                                   |                  |                    |                                        |                                                                                                                               | <0.1                                           | SAPROLITE: Slight color<br>change to bronze-green,<br>more chatter, graphitic                                                                                                 |                                                                                                                                                                           |                      |                                                                                                                                                                                              |  |
| -35 -<br>-35 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            |                  |                    |                                        |                                                                                                                               | <0.1                                           | texture.<br>SAPROLITE: As above, slig<br>fracture at 32' bgs.<br>SAPROLITE: As above, slig<br>fracture at 34' bgs.<br>SCHIST: Gray cuttings, mor<br>chatter, highly micaceous | ht                                                                                                                                                                        |                      |                                                                                                                                                                                              |  |
| -45 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                  |                    |                                        |                                                                                                                               | <0.1                                           | schist.                                                                                                                                                                       |                                                                                                                                                                           |                      |                                                                                                                                                                                              |  |

|   |                  |                    | Dat<br>Dat<br>Tot<br>Bor<br>Bed<br>Ele | g of Boring<br>te Started:<br>te Completed:<br>cal Depth (ft):<br>ring Diameter<br>lrock Depth (f<br>vation (ft-ms)<br>nark: | 0<br>0<br>10<br>( <b>in</b> ): 10<br>( <b>it</b> ): 3 | 6/26/08<br>6/26/08<br>00.00<br>0" to 70'; 6" to 100'                                                                                                                                                                                                                                                                     | Project Code:1962Project Name:Carroll Fuel - ParktoDrilled By:EichelbergersLogged By:Jason Yaple00'Drill Rig:T555Drill Method:Air rotarySampling Method:Cutting observation |                      |          |
|---|------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
|   | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches)                   | Blow<br>Counts                                                                                                               | DID                                                   | Lithological<br>Description                                                                                                                                                                                                                                                                                              | Interpreted<br>Lithology                                                                                                                                                    | Well<br>Construction | Comments |
|   |                  |                    |                                        |                                                                                                                              | <0.1                                                  | SCHIST: As above, slight<br>fracture at 54' bgs.<br>SCHIST: As above, slight<br>fracture at 57' bgs.<br>SCHIST: As above, slightly<br>soft drilling at 60' bgs.<br>SCHIST: As above, small<br>fracture at 78' bgs.<br>SCHIST: As above, small<br>fracture at 81' bgs.<br>SCHIST: As above, small<br>fracture at 81' bgs. |                                                                                                                                                                             |                      |          |
| _ |                  |                    |                                        |                                                                                                                              | <0.1                                                  |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |                      |          |

|                                                                                                 |                  | Da<br>Da<br>To<br>Bo<br>Be | og of Boi<br>ate Started:<br>ate Complet<br>otal Depth (f<br>oring Diame<br>edrock Dept<br>evation (ft-a<br>sea level-N | 0<br>ed: 0<br>ft): 1<br>eter (in): 1<br>h (ft): 2<br>above mea | 5/11/10<br>5/12/10<br>20.00<br>0/6<br>8<br><b>n</b>                                                                                                                        | Project Code:<br>Project Name:<br>Drilled By:<br>Logged By:<br>Drill Rig:<br>Drill Method:<br>Sampling Method<br>Permit Number: | 1962<br>Carroll Fuel - Pa<br>Eichelbergers<br>Andrew Applel<br>IR T4W<br>Air rotary<br>I:N/A<br>N/A |                                                                                                    |
|-------------------------------------------------------------------------------------------------|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Depth                                                                                           | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                                    | QIA                                                            | Lithological<br>Description                                                                                                                                                | Interpreted<br>Lithology                                                                                                        | Well<br>Construction                                                                                | Comments                                                                                           |
| -10 -<br>-20 -<br>-25 -                                                                         |                  |                            |                                                                                                                         | 0.0<br>0.0                                                     | TOPSOIL: Grass &<br>ML: Red brown mic<br>silt, grades into sap<br>dry.<br>SAPROLITE: Light<br>saprolite, dry, soft 1<br>19'.<br>SAPROLITE: Redd<br>saprolite, soft, dry, o | aceous<br>rolite,<br>brown<br>4-16' &                                                                                           |                                                                                                     | Background PID 0.0 units.                                                                          |
| -30 -                                                                                           |                  |                            |                                                                                                                         | 0.0                                                            | 23' and hard at 24'.<br>SCHIST: Gray brow<br>bedrock, hard, dry.                                                                                                           |                                                                                                                                 |                                                                                                     |                                                                                                    |
| -35 -                                                                                           |                  |                            |                                                                                                                         | 0.0                                                            | SCHIST: Olive gray<br>dry.                                                                                                                                                 | v schist,                                                                                                                       | KONDROND                                                                                            |                                                                                                    |
| -40 -                                                                                           |                  |                            |                                                                                                                         | 0.0                                                            | SCHIST: Light brow<br>dry to damp.                                                                                                                                         | vn schist,                                                                                                                      |                                                                                                     | Set 6" steel casing to 40.5'<br>and grout in place. Well<br>completed as open<br>borehole to 120'. |
| ·45 -<br>-<br>-                                                                                 |                  |                            |                                                                                                                         |                                                                |                                                                                                                                                                            |                                                                                                                                 |                                                                                                     |                                                                                                    |
| .50 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                  |                            |                                                                                                                         | 0.0                                                            | SCHIST: Gray brow<br>soft & hard alternati<br>water at 54-57'.                                                                                                             |                                                                                                                                 |                                                                                                     |                                                                                                    |

|                                                                                                |                  | Da<br>Da<br>To<br>Bo<br>Be | og of Bon<br>nte Started:<br>nte Complet<br>otal Depth (foring Diame<br>edrock Dept<br>evation (ft-a<br>sea level-N | 0<br>ed: 0<br>ft): 1<br>eter (in): 1<br>h (ft): 2<br>above mea | 5/11/10     Pr       5/12/10     Di       20.00     Lo       0/6     Di       8     Di       n     Sa                                                                 |                              | 1962<br>Carroll Fuel - Park<br>Eichelbergers<br>Andrew Appleba<br>IR T4W<br>Air rotary<br>:N/A<br>N/A |          |
|------------------------------------------------------------------------------------------------|------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------|----------|
| Depth                                                                                          | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                                | OId                                                            | Lithological<br>Description                                                                                                                                           | Interpreted<br>Lithology     | Well<br>Construction                                                                                  | Comments |
| -60 -<br>-65 -<br>-70 -<br>-75 -<br>-80 -<br>-85 -                                             |                  |                            |                                                                                                                     | 0.0                                                            | SCHIST: Olive brown s<br>damp.<br>SCHIST: Blue gray sch<br>alternating with gray sc<br>brown at 77'-possible w<br>bearing zone, soft at 85<br>possible water bearing. | ist<br>hist,<br>/ater<br>5'- |                                                                                                       |          |
| -90 -<br>-95 -<br>100 -<br>105 -                                                               |                  |                            |                                                                                                                     | 0.0                                                            | SCHIST: Blue schist, h<br>and dry.                                                                                                                                    |                              |                                                                                                       |          |
| 10 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                  |                            |                                                                                                                     | 0.0                                                            | SCHIST: Gray schist, h<br>and dry.                                                                                                                                    | iard                         |                                                                                                       |          |

| alternating hard & soft spots.         -15         -20         -20         -25         -30         -35         -36         -37         -38         SCHIST: Olive brown to gray brown schist, harder drilling with depth. Soft spot at 42:         -40         -40         -50         -50         -50         -55         -60 |       |                  | Da<br>Da<br>To<br>Bo<br>Be | og of Boi<br>ate Started:<br>ate Complet<br>otal Depth (foring Diame<br>edrock Dept<br>evation (ft-s<br>sea level-N | 0<br>ed: 0<br>ft): 6<br>eter (in): 1<br>h (ft): 3<br>above mea | 5/10/10<br>5/17/10<br>5.00<br>0/6<br>4<br><b>n</b>                                                                                                                                                                                                                                                                              | Project Code:<br>Project Name:<br>Drilled By:<br>Logged By:<br>Drill Rig:<br>Drill Method:<br>Sampling Met<br>Permit Numbe                            | Carroll Fu<br>Eichelbe<br>Andrew<br>IR T4W<br>Air rotar<br>hod:N/A<br>er: N/A | ergers<br>Applet |                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------|
| -5-<br>-10-<br>-10-<br>-10-<br>-10-<br>-15-<br>-20-<br>-25-<br>-30-<br>-35-<br>-35-<br>-55-<br>-60-<br>-60-                                                                                                                                                                                                                   | Depth | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                                | OL                                                             |                                                                                                                                                                                                                                                                                                                                 | Interpreted                                                                                                                                           | A Constr<br>I                                                                 |                  | Comments                                                                             |
|                                                                                                                                                                                                                                                                                                                               | -     |                  |                            |                                                                                                                     |                                                                | ML: Brown micaced<br>with trace sand.<br>SAPROLITE: Brow<br>saprolite with relict<br>structure, dry to dar<br>alternating hard & s<br>SAPROLITE: Light<br>gray brown saprolit<br>damp.<br>SCHIST: Olive brow<br>brown schist, harde<br>with depth. Soft spo<br>SCHIST: Blue gray<br>brown schist with s<br>50-51' and fractures | bus silt<br>n<br>rock<br>mp,<br>soft spots.<br>brown to<br>e, dry to<br>wn to gray<br>er drilling<br>ot at 42'.<br>& olive<br>oft spot at<br>s at 49- |                                                                               |                  | Set 6" steel casing in<br>borehole to 40.5' and grout<br>in place. Well completed as |

|       |                  | Da<br>Da<br>To<br>Bo<br>Be | bg of Bor<br>te Started:<br>te Complet<br>tal Depth (f<br>ring Diame<br>drock Dept<br>evation (ft-a<br>sea level-N | 0:<br>ed: 0:<br>t): 6:<br>ter (in): 10<br>h (ft): 3-<br>ibove mean | 5/10/10<br>5/17/10<br>5.00<br>0/6<br>4<br><b>n</b> | Project C<br>Project N<br>Drilled B<br>Logged B<br>Drill Rig:<br>Drill Met<br>Sampling<br>Permit N | ame:<br>y:<br>y:<br>hod:<br>Method: | 1962<br>Carroll Fuel - Par<br>Eichelbergers<br>Andrew Applet<br>IR T4W<br>Air rotary<br>N/A<br>N/A |          |
|-------|------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------|----------|
| Depth | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                               | QId                                                                | Lithological<br>Description                        |                                                                                                    | Interpreted<br>Lithology            | Well<br>Construction                                                                               | Comments |

|                             |                  | Da<br>Da<br>To<br>Bo<br>Be | bg of Bor<br>ate Started:<br>ate Complete<br>atal Depth (f<br>bring Diame<br>drock Dept<br>evation (ft-a<br>sea level-N | 0.<br>ed: 0.<br>it): 1<br>ter (in): 1<br>h (ft): 3. | 5/17/10         Project           5/18/10         Drilled           20.00         Logged           0         Drill Ri           2         Drill M           n         Sampli | Name:CBy:EBy:Mg:IIethod:Ang Method: | 962<br>Carroll Fuel - Par<br>Cichelbergers<br>Megan Brown<br>R T4W<br>A T4W<br>A T/A<br>M/A | •kton                     |
|-----------------------------|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|
| Depth                       | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                                    | OIA                                                 | Lithological<br>Description                                                                                                                                                  | Interpreted<br>Lithology            | Well<br>Construction                                                                        | Comments                  |
| 0-<br>-<br>-5-              |                  |                            |                                                                                                                         | 0.0                                                 | TOPSOIL: Grass & topsoil.<br>ML: Orange brown<br>micaceous silt.                                                                                                             |                                     | K OK OK OK OK OK                                                                            | Background PID 0.0 units. |
| -<br>10 -<br>-<br>-<br>15 - |                  |                            |                                                                                                                         | 0.0                                                 | SAPROLITE: Red brown<br>micaceous saprolite, dry,<br>small blue rock fragments.                                                                                              |                                     | XON ON ON ON ON                                                                             |                           |
| 20 -                        |                  |                            |                                                                                                                         | 0.0                                                 | SAPROLITE: Brown & olive<br>brown saprolite with rock<br>fragments.                                                                                                          |                                     | CON CONTRACTION CONTRACTION CONTRACTION CONTRACTION                                         |                           |
| 30 -                        |                  |                            |                                                                                                                         |                                                     |                                                                                                                                                                              |                                     |                                                                                             |                           |
| 35 -                        |                  |                            |                                                                                                                         | 0.0                                                 | SCHIST: Gray brown to olive brown schist. 38-41' soft.                                                                                                                       |                                     |                                                                                             |                           |
| 40 -                        |                  |                            |                                                                                                                         |                                                     |                                                                                                                                                                              |                                     | AN AN AN<br>AN AN AN                                                                        |                           |
| 45 -                        |                  |                            |                                                                                                                         |                                                     |                                                                                                                                                                              |                                     |                                                                                             |                           |
| 50 -                        |                  |                            |                                                                                                                         | 0.0                                                 | SCHIST: Alternating blue<br>gray & olive brown schist,<br>more competent. 54.5<br>minimal water. After 56'<br>water free flowing ~20-25                                      |                                     | OR O                                                    |                           |
| .55 -                       |                  |                            |                                                                                                                         | 0.0                                                 | gpm by driller.                                                                                                                                                              |                                     |                                                                                             |                           |

|                                                                                                             |                  | Da<br>Da<br>To<br>Bo<br>Bo | bg of Bo<br>te Started:<br>te Complet<br>tal Depth (f<br>ring Diame<br>drock Dept<br>vation (ft-a<br>sea level-N | 0.<br>ed: 0.<br>ft): 1<br>ter (in): 1<br>h (ft): 3. | 5/17/10<br>5/18/10<br>20.00<br>0<br>2<br><b>n</b>                                             | Project Co<br>Project Na<br>Drilled By<br>Logged By<br>Drill Rig:<br>Drill Meth<br>Sampling D<br>Permit Nu | me:         C           :         E           ':         N           I         I           od:         A           Method:         N           mber:         N | 962<br>Carroll Fuel - Par<br>Eichelbergers<br>Aegan Brown<br>R T4W<br>Air rotary<br>V/A | kton                                                                                                    |
|-------------------------------------------------------------------------------------------------------------|------------------|----------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Depth                                                                                                       | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                             | DIA                                                 | Lithological<br>Description                                                                   |                                                                                                            | Interpreted<br>Lithology                                                                                                                                       | Well<br>Construction                                                                    | Comments                                                                                                |
| -60<br>-65<br>-70<br>-77<br>-75<br>-80<br>-90<br>-90<br>-95<br>-100<br>-105<br>-110<br>-115<br>-110<br>-120 |                  |                            |                                                                                                                  | 0.0                                                 | SCHIST: Gray schis<br>hard drilling with fra-<br>noted at 75' and 112<br>and soft spot at 104 | ctures<br>2-113'                                                                                           |                                                                                                                                                                |                                                                                         | Set 6" dia. steel casing to<br>70.5' and grout in place.<br>Well completed as open<br>borehole to 120'. |
|                                                                                                             | vironm           | ental Al                   | liance, I                                                                                                        | nc.                                                 | L                                                                                             | I                                                                                                          |                                                                                                                                                                |                                                                                         | Page 2 of 2                                                                                             |

|                          |                  | Da<br>Da<br>To<br>Bo<br>Be | te Started:<br>te Complet<br>tal Depth (fring Diame<br>drock Dept<br>evation (ft-a<br>sea level-N | 0<br>ft): 6<br>ft): 6<br>eter (in): 1<br>th (ft): 2<br>above mea | 5/13/10     1       5/14/10     1       5.00     1       0/6     1       7     1       n     2          | Project Name:<br>Drilled By:<br>Logged By:<br>Drill Rig:<br>Drill Method:<br>Sampling Method: | 1962<br>Carroll Fuel-Park<br>Eichelbergers<br>Andrew Applet<br>IR T4W<br>Air rotary<br>N/A<br>N/A |                                                                               |
|--------------------------|------------------|----------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Depth                    | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                              | OL                                                               | Lithological<br>Description                                                                             | Interpreted<br>Lithology                                                                      | Well<br>Construction                                                                              | Comments                                                                      |
| 0-<br>-5-<br>-10-        |                  |                            |                                                                                                   | 8:8                                                              | TOPSOIL: Grass & to<br>ML: Light brown to re<br>brown micaceous silt<br>some sand, dry to da            | ddish with                                                                                    |                                                                                                   | Background PID 0.0 units.                                                     |
| -15 -<br>-20 -           |                  |                            |                                                                                                   | 0.0                                                              | SAPROLITE: Brown<br>saprolite, relict rock<br>structure, dry with da<br>brown damp spots at<br>and 20'. | rk                                                                                            |                                                                                                   |                                                                               |
| -25 -                    |                  |                            |                                                                                                   | 0.0                                                              | SAPROLITE: Gray bi<br>mica saprolite, harde<br>drilling, dry.                                           |                                                                                               |                                                                                                   |                                                                               |
| -30 -                    |                  |                            |                                                                                                   | 0.0                                                              | SCHIST: Light brown<br>harder drilling with de<br>soft spot at 39.5', dry                               | pth,                                                                                          |                                                                                                   |                                                                               |
| -35 -                    |                  |                            |                                                                                                   |                                                                  |                                                                                                         |                                                                                               | K D K D K D K                                                                                     |                                                                               |
| -40 -                    |                  |                            |                                                                                                   | 0.0                                                              | SCHIST: Blue gray so<br>dry.                                                                            | chist,                                                                                        |                                                                                                   | Set 6" steel casing to 40.5'<br>and grout in place. Well<br>completed as open |
| -45 -                    |                  |                            |                                                                                                   | 0.0                                                              | SCHIST: Alternating<br>gray & olive brown so<br>dry.                                                    |                                                                                               |                                                                                                   | borehole to 65'.                                                              |
| -50 -                    |                  |                            |                                                                                                   |                                                                  | SCHIST: Blue gray so<br>with soft spots at 55'                                                          |                                                                                               |                                                                                                   |                                                                               |
| -55 -                    |                  |                            |                                                                                                   |                                                                  |                                                                                                         |                                                                                               |                                                                                                   |                                                                               |
| -60 -<br>-<br>-<br>-65 - |                  |                            |                                                                                                   | 0.0                                                              | SCHIST: Dark brown wet.                                                                                 | schist,                                                                                       |                                                                                                   | Water collected in borehole when adding drill rods.                           |

|                                  |                  | Da<br>Da<br>To<br>Bo<br>Be | og of Bon<br>ate Started:<br>ate Complet<br>otal Depth (for<br>oring Diame<br>edrock Dept<br>evation (ft-a<br>sea level-M | 6         ted:       0         ft):       1         eter (in):       1         th (ft):       2         above mea | 05/14/10<br>05/17/10<br>20.00<br>0/6<br>26<br>m<br>785.17                                                                                                                                                    | Project Code:<br>Project Name:<br>Drilled By:<br>Logged By:<br>Drill Rig:<br>Drill Method:<br>Sampling Method<br>Permit Number: | 1962<br>Carroll Fuel-Park<br>Eichelbergers<br>Andrew Applet<br>IR T4W<br>Air rotary<br>:N/A<br>N/A |                                                                                                                                 |
|----------------------------------|------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Depth                            | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                                      | QL                                                                                                                | Lithological<br>Description                                                                                                                                                                                  | Interpreted<br>Lithology                                                                                                        | Well<br>Construction                                                                               | Comments                                                                                                                        |
| -10 -<br>-10 -<br>-15 -<br>-20 - |                  |                            |                                                                                                                           | 0.0<br>0.0<br>0.0                                                                                                 | TOPSOIL: Grass &<br>ML: Light brown to r<br>brown micaceous si<br>some sand, dry to d<br>ML: Same as above<br>to saprolite.<br>SAPROLITE: Browr<br>saprolite with relict r<br>structure, dry, soft s<br>18'. | reddish<br>It with<br>amp.<br>e, grades                                                                                         |                                                                                                    | Background PID 0.0 units.<br>Set 6" steel casing to 70.5'<br>and grout in place.<br>Completed as open<br>borehole well to 120'. |
| -25 -                            |                  |                            |                                                                                                                           | 0.0                                                                                                               | SAPROLITE: Gray I<br>mica saprolite, hard<br>dry.<br>SCHIST: Light brow<br>schist, dry.                                                                                                                      | drilling,                                                                                                                       |                                                                                                    |                                                                                                                                 |
| -35 -                            |                  |                            |                                                                                                                           | 0.0                                                                                                               | SCHIST: Blue gray<br>dry.                                                                                                                                                                                    | schist,                                                                                                                         |                                                                                                    |                                                                                                                                 |
| -45 -                            |                  |                            |                                                                                                                           | 0.0                                                                                                               | SCHIST: Blue gray<br>brown alternating so<br>darker schist indicat<br>spots, possible wate<br>bearing zones at 55<br>64.5' and 69.5'.                                                                        | chist with<br>ting soft<br>er                                                                                                   |                                                                                                    |                                                                                                                                 |
| -55 -                            |                  |                            | liance I                                                                                                                  |                                                                                                                   |                                                                                                                                                                                                              |                                                                                                                                 |                                                                                                    |                                                                                                                                 |

|                                                                                                                     |                  | Dat<br>Dat<br>Tot<br>Bot<br>Ele | og of Bo<br>te Started:<br>te Complet<br>tal Depth (<br>ring Diame<br>drock Dept<br>evation (ft-a<br>sea level-M | 0<br>ted: 0<br>ft): 1<br>eter (in): 1<br>th (ft): 2<br>above mea | 5/14/10     1       5/17/10     1       20.00     1       0/6     1       6     1       n     5 | Logged By:<br>Drill Rig:<br>Drill Method:<br>Sampling Method:<br>Permit Number: | 1962<br>Carroll Fuel-Park<br>Eichelbergers<br>Andrew Applet<br>IR T4W<br>Air rotary<br>N/A<br>N/A |                                               |
|---------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Depth                                                                                                               | Sample<br>Number | Sample<br>Interval              | Recovery<br>(inches)                                                                                             | GI                                                               | Lithological<br>Description                                                                     | Interpreted<br>Lithology                                                        | Well<br>Construction                                                                              | Comments                                      |
| -60<br>-65<br>-70<br>-77<br>-75<br>-80<br>-85<br>-90<br>-95<br>-100<br>-105<br>-110<br>-115<br>-110<br>-115<br>-120 |                  |                                 |                                                                                                                  | 0.0                                                              | SCHIST: Gray schist,<br>dry, with fracture note<br>87'.                                         | , hard, ed at                                                                   |                                                                                                   | Note water in borehole<br>when add drill rod. |
|                                                                                                                     | ironm            | ental Al                        | liance, I                                                                                                        | nc.                                                              |                                                                                                 |                                                                                 |                                                                                                   | Page 2 of 2                                   |

| uting 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample<br>Number | Sample | Recovery (inches) | କ୍ଲ<br>୦.୦<br>୦.୦ | Lithological<br>Description<br>TOPSOIL: Grass & to<br>ML: Brown micaceous<br>grades to saprolite, dr<br>damp.<br>SAPROLITE: Light br<br>saprolite with remnan<br>structure & soft spots<br>10' and 18'.                     | s silt,<br>y to<br>own<br>t rock | Well<br>Construction | Comments Background PID 0.0 units                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -5 - 10 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 |                  |        |                   |                   | ML: Brown micaceous<br>grades to saprolite, dr<br>damp.<br>SAPROLITE: Light br<br>saprolite with remnan<br>structure & soft spots                                                                                           | s silt,<br>y to<br>own<br>t rock |                      | Background PID 0.0 units                                                                                                                                                                               |
| 35 -<br>40 -<br>45 -<br>50 -<br>55 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |        |                   | 0.0               | SAPROLITE: Brown<br>saprolite, harder, with<br>spot at 24'.<br>SCHIST: Gray brown<br>gray schist, harder, w<br>brownish soft spot at 3<br>51-52' and 54-55'.<br>SCHIST: Blue gray so<br>hard, with brownish so<br>at 63.5'. | and<br>ith<br>36-37',            |                      | Set 6" steel casing and<br>grouted in place. Well<br>completed as open<br>borehole to 65'.<br>First water at 51-52' and<br>54-55', observed water in<br>borehole when changed<br>drill rods at 64-65'. |
| 50 -<br>50 -<br>55 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |        |                   |                   |                                                                                                                                                                                                                             |                                  |                      |                                                                                                                                                                                                        |

|                                                                |                  | Da<br>Da<br>To<br>Bo<br>Be | og of Bo<br>te Started:<br>te Complet<br>tal Depth (f<br>ring Diame<br>drock Dept<br>evation (ft-a<br>sea level-N | 0<br>(aed: 0<br>(ft): 1<br>(ft): 1<br>(ft): 2<br>(h) (ft): 2<br>(above mea | 5/13/10<br>5/14/10<br>20.00<br>0/6<br>5.5<br><b>n</b>                                                                                                                                                                                                                                                                                                                                                                                             | Project Code:<br>Project Name:<br>Drilled By:<br>Logged By:<br>Drill Rig:<br>Drill Method:<br>Sampling Method<br>Permit Number: | 1962<br>Carroll Fuel-Park<br>Eichelbergers<br>Andrew Applel<br>IR T4W<br>Air rotary<br>I:N/A<br>N/A |                           |
|----------------------------------------------------------------|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------|
| Depth                                                          | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                              | G                                                                          | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                       | Interpreted<br>Lithology                                                                                                        | Well<br>Construction                                                                                | Comments                  |
| 0<br>-5-<br>-5-<br>-10-<br>-10-<br>-10-<br>-10-<br>-10-<br>-10 |                  |                            |                                                                                                                   | 0.0<br>0.0                                                                 | TOPSOIL: Grass & t<br>ML: Brown micaceou<br>grades into saprolite<br>relict rock structure,<br>damp.<br>SAPROLITE: Light b<br>mica saprolite, dry to<br>SAPROLITE: Dark b<br>mica saprolite, dry to<br>SAPROLITE: Gray s<br>dry, with soft spot at<br>SCHIST: Alternating<br>brown & gray schist<br>spots at 31-32' and 4<br>fractures at 48' and 9<br>SCHIST: Alternating<br>gray & olive brown s<br>with potential fractur<br>57.5' and 66-69'. | us silt<br>with<br>dry to<br>prown<br>o damp.<br>caprolite,<br>25'.<br>gray<br>with soft<br>41';<br>50.5'.                      |                                                                                                     | Background PID 0.0 units. |
| eo<br>Env                                                      | vironm           | ental Al                   | liance, I                                                                                                         | nc.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |                                                                                                     | Page 1 of 2               |
|                                                                                                      |                  | Date<br>Date<br>Tot<br>Bon<br>Bec<br>Ele | og of Bo<br>te Started:<br>te Complet<br>tal Depth (<br>ring Diame<br>drock Dept<br>vation (ft-a<br>sea level-N | 0<br>(aed: 0<br>(ft): 1<br>(ft): 1<br>(ft): 2<br>(h) (ft): 2<br>(above mea | 5/13/10<br>5/14/10<br>20.00<br>0/6<br>5.5<br><b>n</b>                                         | Project Code:<br>Project Name:<br>Drilled By:<br>Logged By:<br>Drill Rig:<br>Drill Method:<br>Sampling Method<br>Permit Number: | 1962<br>Carroll Fuel-Park<br>Eichelbergers<br>Andrew Applet<br>IR T4W<br>Air rotary<br>:N/A<br>N/A |                                                                                               |
|------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Depth                                                                                                | Sample<br>Number | Sample<br>Interval                       | Recovery<br>(inches)                                                                                            | OId                                                                        | Lithological<br>Description                                                                   | Interpreted<br>Lithology                                                                                                        | Well<br>Construction                                                                               | Comments                                                                                      |
| -60<br>-65<br>-70<br>-75<br>-75<br>-80<br>-90<br>-95<br>-100<br>-105<br>-110<br>-115<br>-115<br>-120 |                  |                                          |                                                                                                                 | 0.0                                                                        | SCHIST: Gray schis<br>dry, with soft spot at<br>being a water bearing<br>103', 109' and 112'. | : 85'<br>ng zone,                                                                                                               |                                                                                                    | Well campleted as open<br>borehole to 120'.<br>Water in borehole when<br>changing drill rods. |
|                                                                                                      | ironm            | ental All                                | liance, I                                                                                                       | •                                                                          | <u> </u>                                                                                      | I                                                                                                                               |                                                                                                    | Page 2 of 2                                                                                   |

|                                                                        |                    | Log of Boring: M<br>Date Started:<br>Date Completed:<br>Total Depth (ft):<br>Boring Diameter (in):<br>Bedrock Depth (ft):<br>Elevation (ft-amsl) |                                        | 6/13/11         Project           6/13/11         Drilled           55         Logged           10/6         Drill Ri           17.5         Drill M           761.83         Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Name: V<br>By: E<br>By: N<br>g: I<br>ethod: A<br>ng Method:N | 962<br>Vally's Citgo<br>Eichelbergers<br>Megan Brown<br>ngersoll Rand<br>Air Rotary<br>J/A<br>J/A | T4                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>Sample<br>Number                                              | Sample<br>Interval | Recovery<br>(inches)                                                                                                                             | QId                                    | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Interpreted<br>Lithology                                     | Well<br>Construction                                                                              | Comments                                                                                                                                                                                                                                                                                                                       |
| -5<br>-10<br>-15<br>-20<br>-25<br>-30<br>-35<br>-40<br>-45<br>-50<br>- |                    |                                                                                                                                                  | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | TOPSOIL         ML: Brown silt with rocks, moist to wet         SAPROLITE: Brown, micaceous silty saprolite         BEDROCK: Schist, varying brown to brown-grey         17.5' more competent         21-22' fractured zone, no observable water         24' grey schist         No observable water         28' Increased amount of rocks to surface         31-52' Broken/fractured rock observed         36' Light brown         41' Brown, fracture, no observable water         45' Brown, fracture, no observable water         48' Brown, fracture, no observable water         51' Brown, fracture, no         BEDROCK: More competen         grey schist |                                                              |                                                                                                   | Background PID 0.0 units.<br>Well Construction -<br>Flushmount:<br>- 6" diameter 1/4" thick<br>steel casing placed from 0<br>to 31-ft. bgs.<br>- Grout placed from 0 to<br>31-ft. bgs.<br>- Open borehole from 31 to<br>55-ft. bgs.<br>During drilling, observed<br>well yield < 0.5 gpm<br>Terminated boring at 55-ft.<br>bgs |

Page 1 of 1

| h<br>ber<br>le                                                                                      | 2        |                                                                                                                                                                                                                                                             | Sampling Method: N<br>Permit Number: N                                           | Air Rotary<br>J/A<br>J/A | Γ4                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>Sample<br>Sample                                                                           | (inches) | Lithologica<br>Descriptior                                                                                                                                                                                                                                  | 2 2                                                                              | Well<br>Construction     | Comments                                                                                                                                                                                  |
| -5-<br>-10-<br>-15-<br>-20-<br>-25-<br>-30-<br>-35-<br>-30-<br>-35-<br>-40-<br>-45-<br>-50-<br>-55- |          | SAPROLITE: Med<br>brown, very micac<br>saprolite, dry<br>BEDROCK: Schis<br>brown and brown-<br>grey. Dry<br>22-26' Grey, broke<br>28.5' Fracture, no<br>observable water<br>36' Little small cla<br>(indication of wate<br>37' soft<br>55' Little small cla | eous silt,<br>ium<br>eous<br>t, light<br>grey to<br>en section<br>y balls<br>er) |                          | Background PID 0.0 units.<br>Well Construction -<br>Flushmount:<br>- 6" diameter 1/4" thick<br>steel casing placed from 0 to<br>70-ft. bgs.<br>- Open borehole from 70 to<br>120-ft. bgs. |
|                                                                                                     |          | BEDROCK: Comp<br>schist, blue-grey,                                                                                                                                                                                                                         | betent<br>dry to very                                                            |                          |                                                                                                                                                                                           |

|                                           |                  | D<br>D<br>T<br>B<br>B<br>B | og of Bor<br>ate Started:<br>ate Complet<br>otal Depth (f<br>oring Diame<br>edrock Dept<br>levation (ft-a | 6.<br>ed: 6.<br>`t): 1<br>ter (in): 1<br>h (ft): 1 | /10/11         Project           /10/11         Drilled           20         Logged           0/6         Drill R           9         Drill N           52         80 | t Name:<br>  By:<br>  By:<br> ig: | 1962<br>Wally's Citgo<br>Eichelbergers<br>Megan Brown<br>Ingersoll Rand '<br>Air Rotary<br>N/A<br>N/A | Γ4                                                   |
|-------------------------------------------|------------------|----------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Depth                                     | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                      | DIG                                                | Lithological<br>Description                                                                                                                                           | Interpreted<br>Lithology          | Well<br>Construction                                                                                  | Comments                                             |
| -65 -<br>-70 -<br>-75 -<br>-80 -<br>-85 - |                  |                            |                                                                                                           |                                                    | dry<br>59' Increased amount of roc<br>fragments<br>65' Very light brown-grey<br>76' Brown                                                                             | :k                                |                                                                                                       |                                                      |
| -90 –                                     |                  |                            |                                                                                                           |                                                    | 87' Possible fracture, no<br>observable water<br>91' Fracture, no observable                                                                                          |                                   |                                                                                                       |                                                      |
| -95                                       |                  |                            |                                                                                                           |                                                    | water<br>95' Fracture, no observable<br>water                                                                                                                         |                                   |                                                                                                       |                                                      |
| -100 -                                    |                  |                            |                                                                                                           |                                                    |                                                                                                                                                                       |                                   |                                                                                                       | During drilling, observed<br>well yield was <0.5 gpm |
| -105 -                                    |                  |                            |                                                                                                           |                                                    | 109' Brown-grey                                                                                                                                                       |                                   |                                                                                                       |                                                      |
| -110 -<br>-<br>-                          |                  |                            |                                                                                                           |                                                    |                                                                                                                                                                       |                                   |                                                                                                       |                                                      |
| -115 -                                    |                  |                            |                                                                                                           |                                                    |                                                                                                                                                                       |                                   |                                                                                                       | Terminated boring at 120-<br>ft. bgs                 |
| -120 –<br>Env                             | vironm           | ental A                    | lliance, l                                                                                                | Inc.                                               |                                                                                                                                                                       |                                   |                                                                                                       | Page 2 of 2                                          |

|                                                   |                  | D<br>D<br>T<br>B<br>B | og of Bor<br>ate Started:<br>ate Complete<br>otal Depth (f<br>oring Diame<br>edrock Dept<br>levation (ft-a | ed: 6<br>t): 5<br>ter (in): 1<br>h (ft): 2 | 6/9/11         Project N           6/10/11         Drilled E           55         Logged I                                                                                                                                                              |                             | 1962<br>Wally's Citgo<br>Eichelbergers<br>Megan Brown<br>Ingersoll Ran<br>Air Rotary<br>od:N/A<br>:: N/A | 1                                                                                                                                                                                                                                   |
|---------------------------------------------------|------------------|-----------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth                                             | Sample<br>Number | Sample<br>Interval    | Recovery<br>(inches)                                                                                       | QIA                                        | Lithological<br>Description                                                                                                                                                                                                                             | Interpreted                 | 60 Well<br>Construction                                                                                  | Comments                                                                                                                                                                                                                            |
| 0-<br>-5-<br>-10-<br>-15-<br>-20-<br>-25-<br>-30- |                  |                       |                                                                                                            | 0.0<br>0.0                                 | TOPSOIL: Grass an<br>ML: Brown, very mic<br>silt, some rock<br>SAPROLITE: Brown<br>micaceous saprolite<br>small to large rocks,<br>no free water<br>BEDROCK: Schist<br>Light brown to brow<br>27' Indications of wa<br>balls)<br>30' Trace water (large | n, silty,<br>with<br>moist, |                                                                                                          | Background PID 0.0 units.<br>Well Construction -<br>Flushmount:<br>- 6" diameter 1/4" thick<br>steel casing placed from 0<br>to 30-ft. bgs.<br>- Grout placed from 0 to<br>30-ft. bgs.<br>- Open borehole from 30 to<br>55-ft. bgs. |
| -35                                               |                  |                       |                                                                                                            |                                            | 42' Soft, fractured z<br>observable water<br>45' Waterbearing fra                                                                                                                                                                                       |                             |                                                                                                          |                                                                                                                                                                                                                                     |
| -45 -<br>-50 -                                    |                  |                       |                                                                                                            |                                            | 48' Fracture; potent<br>bearing zone                                                                                                                                                                                                                    |                             |                                                                                                          | Approximate well yield<br>greater than 30 gpm durir<br>well development<br>Terminated boring at 55-f<br>bgs                                                                                                                         |

Page 1 of 1

|                    |                  | D<br>D<br>T<br>B<br>B | og of Bor<br>pate Started:<br>pate Complete<br>otal Depth (f<br>oring Diame<br>sedrock Depth<br>Devation (ft-a | ed: 6<br>t):<br>ter (in):<br>h (ft): 2 | 5/8/11         Pro.           5/9/11         Dril           120         Log           10/6         Dril           22         Dril           750.46         San                                                                                                 | ject Name: N<br>lled By: E<br>ged By: N<br>ll Rig: I<br>ll Method: A<br>ppling Method: N | 962<br>Vally's Citgo<br>Eichelbergers<br>Megan Brown<br>ngersoll Rand<br>Air Rotary<br>V/A<br>V/A |                                                                                                                                                                                                                                      |  |  |
|--------------------|------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth              | Sample<br>Number | Sample<br>Interval    | Recovery<br>(inches)                                                                                           | QId                                    | Lithological<br>Description                                                                                                                                                                                                                                    | Interpreted<br>Lithology                                                                 | Well<br>Construction                                                                              | Comments                                                                                                                                                                                                                             |  |  |
| -10<br>5<br>10<br> |                  |                       |                                                                                                                | 0.0                                    | TOPSOIL<br>SAPROLITE: Brown,<br>micaceous, silty saprolite<br>3-16' Darker brown, very<br>with some rock fragment<br>16-22' Medium brown,<br>micaceous, little rock<br>fragments<br>BEDROCK: Schist, vary<br>brown, brown-grey & gre<br>more competent with de | r soft<br>is AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                        |                                                                                                   | Background PID 0.0 units.<br>Well Construction -<br>Flushmount:<br>- 6" diameter 1/4" thick<br>steel casing placed from 0<br>to 70-ft. bgs.<br>- Grout placed from 0 to<br>70-ft. bgs.<br>- Open borehole from 70 to<br>120-ft. bgs. |  |  |
| -30                |                  |                       |                                                                                                                | 0.0                                    | <ul> <li>34' Dark brown</li> <li>36' evidence of water (cl balls)</li> <li>40' competent rock</li> </ul>                                                                                                                                                       |                                                                                          |                                                                                                   |                                                                                                                                                                                                                                      |  |  |
| -45                |                  |                       |                                                                                                                |                                        | 46' Waterbearing fractur<br>51-52' Possible waterbe<br>fracture                                                                                                                                                                                                |                                                                                          |                                                                                                   |                                                                                                                                                                                                                                      |  |  |

Page 1 of 2



| G               | E                    |                                          | WEL                          | LLC                  | <b>)</b> G        |                                  |         | ID NO.        | MW-                               | 21                               |         |
|-----------------|----------------------|------------------------------------------|------------------------------|----------------------|-------------------|----------------------------------|---------|---------------|-----------------------------------|----------------------------------|---------|
| Grou            | Indwa                | ter and Enviro                           | nmenta                       | I Service            | s, Inc.           |                                  |         |               |                                   | Page 1                           | of 1    |
| PRO.            | JECT:                | Carroll Fuels Wa                         | ally's                       |                      | WATE              | ER DEPTH:                        | 33.81   |               | DTAL DEP                          |                                  |         |
| ADD<br>JOB      |                      | 19200 Middletov                          | vn Road, l                   | Parkton M            |                   | HOLE DIA.:                       | 6"      |               | ASING EL<br>ELL DIA.:             |                                  | 59      |
| Logge           |                      | 0402643<br>Adam Denn                     | vic                          |                      |                   | Method:                          | Air Ro  |               | ELL DIA                           | 2                                |         |
| Dates           | Drilled:             | 11/9/2011                                | 115                          |                      |                   | g Method:                        | N/A     | iai y         |                                   |                                  |         |
|                 | ng Comp<br>Permit #: | any: B.L. Myers<br>BA-95-4065            |                              |                      |                   | ss. System:                      | Unified | l Soil Classi | fication Sy                       | stem                             |         |
|                 | Sample               | Field Screen:                            |                              |                      | Field Sc          | reening:                         |         |               |                                   |                                  |         |
| Depth<br>(feet) | Interval<br>(feet)   | Total Organic<br>Volatiles (ppm)<br>0 30 | Blow<br>Counts               | Recovery<br>(inches) |                   | Sample Litholog                  | у       | Stratigraphy  | Comments                          | Completion I                     | Details |
| 0-              |                      |                                          |                              |                      |                   |                                  |         |               | 1                                 | <u>т т</u>                       |         |
| -               |                      |                                          | Air<br>Rotary-Not            |                      | · · · · · ·       | Reddish brown S<br>moist.        | SILT,   | Silt          | Air-knifed 0-                     | Concrete 0-<br>0.5'<br>Bentonite |         |
| -               |                      |                                          | Applicable                   |                      | · _ · · · ·       |                                  |         |               | 5' for utility<br>clearance       | Seal 0.5-18                      |         |
| 5-              |                      |                                          |                              |                      |                   | Reddish brown S                  | SILT,   | Silt          |                                   |                                  |         |
| -               |                      |                                          |                              |                      | · · · ·           | moist.                           |         |               |                                   | Solid Sch.                       |         |
| -<br>10 -       | -                    |                                          |                              |                      |                   |                                  |         |               |                                   | 40 PVC<br>Riser 0-20'            |         |
| -               | -                    |                                          |                              |                      | · · · · ·         |                                  |         |               |                                   |                                  |         |
| -               |                      |                                          |                              |                      |                   |                                  |         |               |                                   |                                  |         |
| 15 -            |                      |                                          |                              |                      | <u>}}}}</u>       | Grey Rock                        |         | Schist        |                                   |                                  |         |
| -               |                      |                                          |                              |                      |                   |                                  |         |               |                                   |                                  |         |
| 20 -            |                      |                                          |                              |                      |                   |                                  |         |               |                                   | #2 Sand                          |         |
| -               |                      |                                          |                              |                      |                   |                                  |         |               |                                   | Pack 18-45'                      |         |
|                 |                      |                                          |                              |                      |                   |                                  |         |               |                                   |                                  |         |
| - 25            |                      |                                          |                              |                      |                   |                                  |         |               |                                   |                                  |         |
| -               |                      |                                          |                              |                      |                   |                                  |         |               |                                   |                                  |         |
| 30 -            |                      |                                          |                              |                      |                   |                                  |         |               |                                   | 20-Slot Sch.                     |         |
| -               |                      |                                          |                              |                      |                   |                                  |         |               |                                   | 40 PVC<br>Screen 20-<br>45'      |         |
| - 35            |                      |                                          |                              |                      |                   |                                  |         |               | Static water<br>depth<br>(33.81') |                                  |         |
| -               |                      |                                          |                              |                      |                   |                                  |         |               | (00.01)                           |                                  |         |
| -               |                      |                                          |                              |                      |                   |                                  |         |               |                                   |                                  |         |
| 40 -            |                      |                                          |                              |                      |                   |                                  |         |               |                                   |                                  |         |
| -               |                      |                                          |                              |                      |                   |                                  |         |               |                                   |                                  |         |
| 45 -            |                      |                                          |                              |                      | <u> </u>          |                                  |         |               |                                   | Cap 45'                          |         |
| • • •           |                      |                                          | <u> </u>                     |                      |                   | 1 1 1 77                         |         |               |                                   |                                  |         |
| LEG             | END                  | $\frac{Proportion I}{Trace} = <10\%$     | <u>Description</u><br>Some = |                      | <u>S</u><br>Water | Symbol Key:<br>Level             | T       |               | g = feet belo = not avail         |                                  |         |
|                 |                      | Little = $<25\%$                         | And $= 5$                    |                      | Sample            | e Location                       | ×       | ppr           | n = parts pe<br>= inches          |                                  |         |
| Well            | ID: M                | <b>1W-21</b> 21                          |                              |                      |                   | <b>Environme</b><br>on, Maryland |         |               | IC.                               | 733 p.1o                         | f 1     |

| GE                                         | 3 1                                  | WELL LO                         | <b>)</b> G                                                       | ID NO.                              | MW-2                                         | 22                                          |
|--------------------------------------------|--------------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------------------|----------------------------------------------|---------------------------------------------|
| Groundw                                    | ater and Enviro                      | nmental Service                 | es, Inc.                                                         |                                     |                                              | Page 1 of 1                                 |
|                                            | Carroll Fuels Wa                     | -                               | WATER DEPTH: 37.14                                               |                                     | OTAL DEP                                     |                                             |
| ADDRESS<br>JOB NO.                         | 5: 19200 Middletow<br>0402643        | n Road, Parkton N               | 1D<br>BOREHOLE DIA.: 6''                                         |                                     | ASING EL.<br>'ELL DIA.:                      | : 801.21<br>2''                             |
| Logged By:                                 | Adam Denn                            | is                              |                                                                  | Rotary                              |                                              |                                             |
| Dates Drilled                              | l: 11/9/2011<br>npany: B.L. Myers    |                                 | Sampling Method: N/A                                             |                                     |                                              |                                             |
| Well Permit                                |                                      |                                 | Soil Class. System: Unif<br>Field Screening:                     | ied Soil Class                      | ification Sys                                | tem                                         |
| Depth<br>(feet) Sampl<br>Interva<br>(feet) |                                      | Blow<br>Counts (inches)         | Sample Lithology                                                 | Stratigraphy                        | Comments                                     | Completion Details                          |
| 0                                          |                                      |                                 |                                                                  |                                     |                                              |                                             |
| -                                          |                                      | Air<br>Rotary-Not<br>Applicable | Reddish brown SILT,<br>moist.                                    | Silt                                | Air-knifed 0-<br>5' for utility<br>clearance | Concrete 0-<br>0.5'                         |
| 5-                                         |                                      |                                 | Reddish brown SILT,<br>moist.                                    | Silt                                |                                              | Bentonite<br>Seal 0.5-18'                   |
| 10 -                                       |                                      |                                 |                                                                  |                                     |                                              | Solid Sch.<br>40 PVC<br>Riser 0-20'         |
| 15 -                                       |                                      |                                 | Grey Rock                                                        | Schist                              | _                                            |                                             |
| 20 -                                       |                                      |                                 |                                                                  |                                     |                                              | #2 Sand<br>Pack 18-45'                      |
| 25 -                                       |                                      |                                 |                                                                  |                                     |                                              |                                             |
| 30 -                                       |                                      |                                 |                                                                  |                                     |                                              | 20-Slot Sch.<br>40 PVC<br>Screen 20-<br>45' |
| 35 -                                       |                                      |                                 |                                                                  |                                     | Static water<br>depth                        |                                             |
| 40 -                                       |                                      |                                 |                                                                  |                                     | (37.14')                                     |                                             |
| 45                                         |                                      |                                 | 3888                                                             |                                     |                                              | Cap 45'                                     |
| IDODAL                                     | Proportion I                         | Descriptions                    | Sumbol Kovy                                                      | ~                                   | C                                            | 1                                           |
| LEGENI                                     | $\frac{Proportion 1}{Trace} = <10\%$ | Some = $<50\%$                  | Symbol Key:<br>Water Level                                       | NA                                  | g = feet belov<br>A = not availa             | able                                        |
|                                            | Little = <25%                        | And = 50%                       | Sample Location 🛛 🔀                                              |                                     | m = parts per<br>= inches                    | million                                     |
| Well ID:                                   | <b>MW-22</b> 21                      |                                 | v <b>ater &amp; Environmental</b><br>urt, Crofton, Maryland 800. | <b>Services, Ir</b><br>.220.3606 Fa |                                              | 733 p. 1 of 1                               |

| GES                                                               | V V                                                                | VELI                            | L LO                 | G       |                           |                           | ID NO.                                                      | MW-2                                         | 23                                                  |         |
|-------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|----------------------|---------|---------------------------|---------------------------|-------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|---------|
| Groundwate                                                        | er and Enviror                                                     | mental                          | Service              | s, Inc. |                           |                           |                                                             |                                              | Page 1                                              | of 1    |
| ADDRESS: 1                                                        | Carroll Fuels Wa<br>19200 Middletowr<br>)402643                    | •                               | arkton M             | D       | R DEPTH:<br>HOLE DIA.:    | 41'<br>6''                | CA                                                          | OTAL DEP<br>ASING EL.<br>ELL DIA.:           | : <b>798.</b> 7                                     | 70      |
| Logged By:<br>Dates Drilled:<br>Drilling Compar<br>Well Permit #: | Adam Denni<br>11/10/2011<br>ny: B.L. Myers<br>BA-95-4066           | 8                               |                      | -       | g Method:<br>ss. System:  | Air Rot<br>N/A<br>Unified | tary<br>Soil Classi                                         | fication Sys                                 | stem                                                |         |
| Depth<br>(feet) Sample<br>Interval<br>(feet)                      | Field Screen:<br>Total Organic<br>Volatiles (ppm)<br><u>0</u> 3000 | Counts                          | Recovery<br>(inches) |         | Sample Lithology          | у                         | Stratigraphy                                                | Comments                                     | Completion I                                        | Details |
| 0<br>                                                             |                                                                    | Air<br>Rotary-Not<br>Applicable |                      |         | Reddish brown S<br>moist. | ,                         | Silt                                                        | Air-knifed 0-<br>5' for utility<br>clearance | Concrete 0-<br>0.5'<br>Bentonite                    |         |
| 10-                                                               |                                                                    |                                 |                      |         | Reddish brown S<br>moist. | SILT,                     | Silt                                                        |                                              | Seal 0.5-18'<br>Solid Sch.<br>40 PVC<br>Riser 0-20' |         |
| 15                                                                |                                                                    |                                 |                      |         |                           |                           |                                                             |                                              |                                                     |         |
| 25                                                                |                                                                    |                                 |                      |         | Light brown ROC           | СК                        | Schist                                                      |                                              | #2 Sand<br>Pack 18-60'                              |         |
| 30                                                                |                                                                    |                                 |                      |         |                           |                           |                                                             |                                              | 20-Slot Sch.<br>40 PVC<br>Screen 20-<br>60'         |         |
| 40 -                                                              |                                                                    |                                 |                      |         | Grey ROCK<br>Brown ROCK   |                           | -                                                           | Static water<br>depth (41')                  | -                                                   |         |
| 45                                                                |                                                                    |                                 |                      |         |                           |                           |                                                             |                                              |                                                     |         |
| 55 -                                                              |                                                                    |                                 |                      |         |                           |                           |                                                             |                                              |                                                     |         |
| 60                                                                |                                                                    |                                 |                      |         |                           |                           |                                                             |                                              | Cap 60'                                             |         |
| LEGEND                                                            | <u>Proportion D</u><br>Trace = <10%<br>Little = <25%               | <u>s:</u><br>:50%<br>%          | Water                |         | ×                         | NA<br>ppn                 | g = feet belov<br>= not availa<br>n = parts per<br>= inches | able                                         |                                                     |         |
| Well ID: M                                                        | W-23 <sub>214</sub>                                                |                                 |                      |         | Environme<br>n, Maryland  |                           |                                                             | IC.                                          | 733 p.1o                                            | of 1    |

| GES                                          |                                                           | <b>VELL LC</b>                   | )G                                                     | ID NO.                           | MW-2                            | 24B                                    |
|----------------------------------------------|-----------------------------------------------------------|----------------------------------|--------------------------------------------------------|----------------------------------|---------------------------------|----------------------------------------|
| Groundwat                                    | er and Enviro                                             | nmental Service                  | s, Inc.                                                |                                  |                                 | Page 1 of 1                            |
| PROJECT:                                     | Carroll Fuels Wa                                          | lly's                            | WATER DEPTH: 96.50                                     |                                  | OTAL DEP                        |                                        |
|                                              |                                                           | n Road, Parkton M                |                                                        |                                  | ASING EL.                       | : 801.25<br>6''                        |
| JOB NO. (<br>Logged By:                      | 0402643                                                   | •                                | BOREHOLE DIA.: 10"<br>Drilling Method: Air Ro          |                                  | ELL DIA.:                       | 0                                      |
| Dates Drilled:                               | Adam Denni<br>11/9/2011                                   | IS                               | Drilling Method: Air Ro<br>Sampling Method: N/A        | otary                            |                                 |                                        |
|                                              | ny: B.L. Myers                                            |                                  |                                                        | d Soil Class                     | ification Sys                   | stem                                   |
| Well Permit #:                               | BA-95-4067                                                |                                  | Field Screening:                                       |                                  | 1                               |                                        |
| Depth<br>(feet) Sample<br>Interval<br>(feet) | Field Screen:<br>Total Organic<br>Volatiles (ppm)<br>0300 | Blow Recovery<br>Counts (inches) | Sample Lithology                                       | Stratigraphy                     | Comments                        | Completion Details                     |
| 0                                            |                                                           | 1                                |                                                        |                                  | 1                               |                                        |
| 5-                                           |                                                           | Air<br>Rotary-Not<br>Applicable  | Reddish brown SILT,                                    | Silt                             | Air-knifed 0-<br>5' for utility | Concrete                               |
| 10                                           |                                                           |                                  | Reddish brown SILT,<br>moist.                          |                                  | clearance                       |                                        |
| 15                                           |                                                           |                                  |                                                        |                                  |                                 |                                        |
| 20                                           |                                                           |                                  | Grey ROCK.                                             | Schist                           | -                               |                                        |
| 25                                           |                                                           |                                  |                                                        | Schist                           |                                 |                                        |
| 30                                           |                                                           |                                  |                                                        |                                  |                                 | Steel                                  |
| 35                                           |                                                           |                                  |                                                        |                                  |                                 | Casing<br>Grouted in<br>Place          |
| 40                                           |                                                           |                                  | Light grey ROCK.                                       |                                  |                                 | Steel<br>Casing<br>Grouted in<br>Place |
| 45                                           |                                                           |                                  |                                                        |                                  |                                 |                                        |
| 50                                           |                                                           |                                  |                                                        |                                  |                                 |                                        |
| 55 -<br>60 -                                 |                                                           |                                  |                                                        |                                  |                                 | Steel                                  |
| 65                                           |                                                           |                                  | Dark grey ROCK, wet and muddy.                         | ł                                |                                 | Casing<br>Depth (60')                  |
| 70                                           |                                                           |                                  |                                                        |                                  |                                 |                                        |
| 75                                           |                                                           |                                  |                                                        |                                  |                                 |                                        |
| 80                                           |                                                           |                                  |                                                        |                                  |                                 |                                        |
| 85                                           |                                                           |                                  |                                                        |                                  |                                 |                                        |
| 90                                           |                                                           |                                  |                                                        |                                  |                                 |                                        |
| 95                                           |                                                           |                                  |                                                        |                                  | Static water                    | Open<br>Borehole                       |
| 100                                          |                                                           |                                  |                                                        |                                  | depth<br>(96.50')               |                                        |
| 105                                          |                                                           |                                  |                                                        |                                  |                                 |                                        |
| 110                                          |                                                           |                                  |                                                        |                                  |                                 |                                        |
| 115                                          |                                                           |                                  | 2222                                                   |                                  |                                 |                                        |
| 120 -                                        | • · ·                                                     | · · · · ·                        |                                                        |                                  | ·                               |                                        |
| LEGEND                                       | Proportion D                                              | -                                | Symbol Key:                                            |                                  | g = feet below                  |                                        |
|                                              | Trace = $<10\%$                                           | Some = $<50\%$                   | Water Level <b>Sample Location</b>                     |                                  | A = not availa<br>m = parts per |                                        |
|                                              | Little = $<25\%$                                          | And = 50%                        | Sample Location 🛛 🔀                                    |                                  | = inches                        | -                                      |
| Well ID: M                                   | IW-24B 214                                                |                                  | ater & Environmental S<br>att, Crofton, Maryland 800.2 | <b>ervices, Ir</b><br>20.3606 Fa |                                 | 733 p. 1 of 1                          |

| GES                                          | V V                                                    | VELL                            | LOG                                    |                                                |           | ID NO.                           | MW-2                            | 25B                    |  |  |
|----------------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------------|------------------------------------------------|-----------|----------------------------------|---------------------------------|------------------------|--|--|
| Groundwat                                    | er and Environ                                         | mental S                        | ervices, Inc.                          |                                                |           |                                  |                                 | Page 1 of 1            |  |  |
|                                              | Carroll Fuels Wal                                      | •                               |                                        | ER DEPTH:                                      | >100'     |                                  | TAL DEP                         |                        |  |  |
|                                              | 19200 Middletown<br>0402643                            | Road, Par                       |                                        | EHOLE DIA.:                                    | · 10''    |                                  | ASING EL.<br>ELL DIA.:          | : 802.80<br>6''        |  |  |
| Logged By:                                   | Adam Dennis                                            | 5                               |                                        | g Method:                                      | Air Ro    |                                  |                                 | 0                      |  |  |
| Dates Drilled:                               | 11/9/2011-11/                                          | 10/2011                         | Sampli                                 | ng Method:                                     | N/A       | -                                |                                 |                        |  |  |
| Well Permit #:                               | B.L. Myers<br>BA-95-4068                               |                                 |                                        | Soil Class. System: Unific<br>Field Screening: |           |                                  | d Soil Classification System    |                        |  |  |
| Depth<br>(feet) Sample<br>Interval<br>(feet) | Field Screen:<br>Total Organic<br>Volatiles (ppm)<br>0 | Counts (in                      | ecovery<br>nches)                      | Sample Litholog                                | ÿ         | Stratigraphy                     | Comments                        | Completion Details     |  |  |
| 0                                            |                                                        |                                 |                                        |                                                |           |                                  |                                 |                        |  |  |
| 5                                            |                                                        | Air<br>Rotary-Not<br>Applicable | ······································ | Reddish brown<br>moist.                        | SILT,     | Silt                             | Air-knifed 0-<br>5' for utility | Concrete               |  |  |
| 10                                           |                                                        |                                 |                                        | Reddish brown                                  | SILT,     |                                  | clearance                       | Concrete               |  |  |
| 15                                           |                                                        |                                 | · · · · · · · · · · · · · · · · · · ·  |                                                |           |                                  |                                 |                        |  |  |
| 20                                           |                                                        |                                 |                                        | Grey ROCK.                                     |           | Schist                           |                                 |                        |  |  |
| 25                                           |                                                        |                                 |                                        |                                                |           |                                  |                                 |                        |  |  |
| 30                                           |                                                        |                                 |                                        |                                                |           |                                  |                                 | Steel<br>Casing        |  |  |
| 35 -<br>40 -                                 |                                                        |                                 |                                        |                                                |           |                                  |                                 | Grouted in<br>Place    |  |  |
| 45                                           |                                                        |                                 |                                        | Light grey ROC                                 | K.        |                                  |                                 |                        |  |  |
| 50                                           |                                                        |                                 |                                        |                                                |           |                                  |                                 |                        |  |  |
| 55                                           |                                                        |                                 |                                        |                                                |           |                                  |                                 |                        |  |  |
| 60                                           |                                                        |                                 |                                        | Dark grey ROCI                                 | K moist   | -                                |                                 | Steel Casing           |  |  |
| 65                                           |                                                        |                                 |                                        |                                                | n, molot. |                                  |                                 | Depth (60')            |  |  |
| 70                                           |                                                        |                                 |                                        | Fine White ROC                                 | CK, moist | -                                |                                 |                        |  |  |
| 75                                           |                                                        |                                 |                                        |                                                |           |                                  |                                 |                        |  |  |
| 80 -<br>85 -                                 |                                                        |                                 |                                        | Grey ROCK.                                     |           |                                  |                                 |                        |  |  |
| 90                                           |                                                        |                                 |                                        |                                                |           |                                  |                                 |                        |  |  |
| 95                                           |                                                        |                                 |                                        |                                                |           |                                  |                                 | Open      <br>Borehole |  |  |
| 100                                          |                                                        |                                 |                                        |                                                |           | -                                |                                 |                        |  |  |
| 105                                          |                                                        |                                 |                                        | Grey ROCK.                                     |           |                                  |                                 |                        |  |  |
| 110                                          |                                                        |                                 |                                        |                                                |           |                                  | Apparent                        |                        |  |  |
| 115                                          |                                                        |                                 |                                        |                                                |           |                                  | Water Depth<br>>100'            |                        |  |  |
| 120 -                                        |                                                        |                                 |                                        |                                                |           | 1                                | <u> </u>                        |                        |  |  |
| LEGEND                                       | Proportion De                                          | -                               |                                        | Symbol Key:                                    |           |                                  | g = feet below                  |                        |  |  |
|                                              | Trace = <10%<br>Little = <25%                          | Some = $<50$                    | - / -                                  | Level<br>le Location                           | <b>▼</b>  |                                  | a = not availa<br>n = parts per |                        |  |  |
|                                              | Little = <23%                                          | And = 50%                       |                                        |                                                |           | in.                              | = inches                        |                        |  |  |
| Well ID: M                                   | IW-25B 214                                             |                                 | undwater &<br>lge Court, Croft         |                                                |           | e <b>rvices, In</b><br>0.3606 Fa |                                 | 733 p. 1 of 1          |  |  |









|                                                                    |                                          | Da<br>Da<br>To<br>Bo<br>Be | og of Bon<br>ate Started:<br>ate Complet<br>atal Depth (foring Diame<br>drock Dept<br>evation (ft-a<br>sea level-N | 0<br>ed: 0<br>ft): 1<br>eter (in): 1<br>h (ft): 2<br>above mea | 5/19/10         Pr           5/20/10         Dr           20.00         Lo           0/6         Dr           3         Dr           n         Sa                                                                                                                          | oject Name: C<br>illed By: E<br>gged By: N<br>ill Rig: I | 962<br>Carroll Fuel - Par<br>Cichelbergers<br>Megan Brown<br>R T4W<br>Ar T4W<br>Air rotary<br>I/A | kton                      |  |  |
|--------------------------------------------------------------------|------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------|--|--|
| Depth                                                              | Sample<br>Number                         | Sample<br>Interval         | Recovery<br>(inches)                                                                                               | G                                                              | Lithological<br>Description                                                                                                                                                                                                                                                | Interpreted<br>Lithology                                 | Well<br>Construction                                                                              | Comments                  |  |  |
| -10<br>-10<br>-15<br>-20<br>-25<br>-30<br>-35<br>-40<br>-45<br>-55 |                                          |                            |                                                                                                                    | 0.0<br>0.0<br>0.0                                              | ASPHALT<br>ML: Brown silt with rock<br>fragments.<br>SAPROLITE: Red-brow<br>saprolite, micaceous, d<br>Very soft 10-13' and 18<br>olive brown 20-23'.<br>SCHIST: Olive brown s<br>soft at 34'. Soft fracture<br>area 44-47'.<br>SCHIST: Gray brown se<br>dry. Soft 52-53'. | rn<br>ry.<br>-19',<br>chist,<br>d                        |                                                                                                   | Background PID 0.0 units. |  |  |
| - 60                                                               |                                          |                            |                                                                                                                    | 0.0                                                            | very dry.                                                                                                                                                                                                                                                                  |                                                          |                                                                                                   |                           |  |  |
|                                                                    | Environmental Alliance, Inc. Page 1 of 2 |                            |                                                                                                                    |                                                                |                                                                                                                                                                                                                                                                            |                                                          |                                                                                                   |                           |  |  |

| 7                                                         | Da<br>Da<br>To<br>Bo<br>Be | og of Bon<br>the Started:<br>the Complete<br>that Depth (for<br>endrock Dept<br>evation (ft-a<br>sea level-M | 0<br>(aed: 0<br>(ft): 1<br>(ft): 1<br>(ft): 2<br>(h (ft): 2<br>(above mea | 5/19/10         Project           5/20/10         Drilled           20.00         Logged           0/6         Drill Rig           3         Drill Me           n         Samplir | Name:<br>By:<br>By:<br>g:<br>ethod:<br>ng Method:<br>Number: | 1962<br>Carroll Fuel - Parkto<br>Eichelbergers<br>Megan Brown<br>IR T4W<br>Air rotary<br>N/A<br>N/A | n        |
|-----------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------|
| Depth<br>Sample<br>Number                                 | Sample<br>Interval         | Recovery<br>(inches)                                                                                         | 뎹                                                                         | Lithological<br>Description                                                                                                                                                       | Interpreted<br>Lithology                                     | Well<br>Construction                                                                                | Comments |
| 50<br>55<br>70<br>70<br>75<br>75                          |                            |                                                                                                              | 0.0                                                                       | SCHIST: Gray brown schist.<br>72-73' brown, very slight<br>hydrocarbon odor.                                                                                                      |                                                              |                                                                                                     |          |
| 3 –<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br> |                            |                                                                                                              | 0.0                                                                       | SCHIST: Olive brown schist.                                                                                                                                                       |                                                              |                                                                                                     |          |
| 5 -                                                       |                            |                                                                                                              | 0.0                                                                       | SCHIST: Gray brown schist,<br>more competent.<br>SCHIST: Olive brown schist.                                                                                                      |                                                              |                                                                                                     |          |
| 0 -                                                       |                            |                                                                                                              | 0.0                                                                       | Moist at 90'.<br>SCHIST: Gray brown schist.<br>93-94.5' blue gray. 100-                                                                                                           |                                                              |                                                                                                     |          |
| 5 -<br>-<br>-<br>0 -                                      |                            |                                                                                                              | 0.0                                                                       | 103.5 olive brown. 103.5-105<br>blue gray. 106 brown,<br>possible fracture. 109.5-110<br>olive brown.                                                                             |                                                              |                                                                                                     |          |
| 5 -                                                       |                            |                                                                                                              |                                                                           |                                                                                                                                                                                   |                                                              |                                                                                                     |          |
|                                                           |                            |                                                                                                              | 0.0                                                                       | SCHIST: Olive brown schist.                                                                                                                                                       |                                                              |                                                                                                     |          |
| 5 -<br>-<br>-<br>-<br>0 -                                 |                            |                                                                                                              | 0.0                                                                       |                                                                                                                                                                                   |                                                              |                                                                                                     |          |

|                          | <b>A</b>         | Da<br>Da<br>Ta<br>Ba<br>Ba | og of Bor<br>ate Started:<br>ate Complet<br>otal Depth (foring Diame<br>edrock Dept<br>evation (ft-a<br>sea level-N | (<br>ed: (<br>ft): 1<br>eter (in): 1<br>h (ft): 2<br>above mea | 05/18/10<br>05/19/10<br>120.00<br>10/6<br>29<br><b>an</b>                                                                                                                                                                                                                                                                                                                                                           | Project Code:<br>Project Name:<br>Drilled By:<br>Logged By:<br>Drill Rig:<br>Drill Method:<br>Sampling Method<br>Permit Number: | 1962<br>Carroll Fuel - Pa<br>Eichelbergers<br>A. Applebaum/<br>IR T4W<br>Air rotary<br>:N/A<br>N/A |                                                                                                                                 |
|--------------------------|------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Depth                    | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                                | DIA                                                            | Lithological<br>Description                                                                                                                                                                                                                                                                                                                                                                                         | Interpreted<br>Lithology                                                                                                        | Well<br>Construction                                                                               | Comments                                                                                                                        |
| 0-<br>-5-<br>5-<br>      |                  |                            |                                                                                                                     | 8:8<br>0.0<br>0.0                                              | ASPHALT: and road<br>gravel.<br>ML: Brown micaceo<br>with trace sand, dry.<br>SAPROLITE: Light t<br>saprolite, dry.<br>SAPROLITE: Darke<br>saprolite, dry to dam<br>SAPROLITE: Reddi<br>to brown saprolite, h<br>drilling, damp.<br>SCHIST: Gray brow<br>dry.<br>SCHIST: Olive brow<br>dry.<br>SCHIST: Olive brow<br>dry.<br>SCHIST: Olive brow<br>dry.<br>SCHIST: Olive brow<br>dry.<br>SCHIST: Olive brow<br>dry. | us silt<br>prown<br>r brown<br>np.<br>sh brown<br>narder<br>n schist,<br>m schist,<br>tured<br>schist.<br>n schist.             |                                                                                                    | Background PID 0.0 units.<br>Set 6" steel casing at 40.5'<br>and grout in place. Well<br>completed as open<br>borehole to 120'. |
| -<br>- 55<br>-<br>-<br>- |                  |                            |                                                                                                                     | 0.6                                                            | SCHIST: Blue gray :                                                                                                                                                                                                                                                                                                                                                                                                 | schist.                                                                                                                         |                                                                                                    |                                                                                                                                 |

|               |                  | Da<br>Da<br>To<br>Bo<br>Be | bg of Bon<br>the Started:<br>the Complet<br>that Depth (1<br>bring Diame<br>drock Dept<br>evation (ft-a<br>sea level-M | 0<br>ed: 0<br>ft): 1<br>eter (in): 1<br>h (ft): 2<br>above mea | 5/18/10         Projection           5/19/10         Drille           20.00         Loggeting           0/6         Drill           9         Drill           n         Samp | ed By:<br>Rig:<br>Method:<br>ling Method<br>it Number: | 1962<br>Carroll Fuel - Parkto<br>Eichelbergers<br>A. Applebaum/M.<br>IR T4W<br>Air rotary<br>N/A<br>N/A |          |
|---------------|------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|
| nepril        | Sample<br>Number | Sample<br>Interval         | Recovery<br>(inches)                                                                                                   | G                                                              | Lithological<br>Description                                                                                                                                                  | Interpreted<br>Lithology                               | Well<br>Construction                                                                                    | Comments |
| 0_            |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| 5 -           |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| י<br>-<br>- כ |                  |                            |                                                                                                                        | 0.6                                                            |                                                                                                                                                                              |                                                        |                                                                                                         |          |
|               |                  |                            |                                                                                                                        |                                                                | SCHIST: Gray brown schis<br>dry. 86-87' brown, fractured                                                                                                                     | t,                                                     |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| ; -           |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              | 2222                                                   |                                                                                                         |          |
| )<br>-        |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        | 0.5                                                            |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| ; -           |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        |                                                                | SCHIST: Blue gray schist.                                                                                                                                                    |                                                        |                                                                                                         |          |
| ) _           |                  |                            |                                                                                                                        |                                                                | 87-88' soft.                                                                                                                                                                 | 3333                                                   |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -<br>-<br>5   |                  |                            |                                                                                                                        |                                                                | SCHIST: Gray brown schis                                                                                                                                                     | t.                                                     |                                                                                                         |          |
| ' _           |                  |                            |                                                                                                                        |                                                                | SCHIST: Blue gray schist.<br>95-120' blue gray schist,                                                                                                                       |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        | 0.6                                                            | 100.5-101.5 brown, soft<br>fractured area, 118-119                                                                                                                           |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        |                                                                | olive brown schist.                                                                                                                                                          |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| _             |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        | 0.7                                                            |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        | 0.6                                                            |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| -             |                  |                            |                                                                                                                        | 0.6                                                            |                                                                                                                                                                              |                                                        |                                                                                                         |          |
| ) –           |                  |                            |                                                                                                                        |                                                                |                                                                                                                                                                              |                                                        |                                                                                                         |          |

| ASPHAL1<br>ML: Silt & large gravel to<br>cobbles, micaceous, dry.<br>0.5-8' brown to orange<br>brown, 8-14' very soft, red<br>brown, very micaceous.<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                | Da<br>Da<br>To<br>Bo<br>Be | og of Boi<br>ate Started:<br>ate Complet<br>otal Depth (f<br>oring Diame<br>edrock Dept<br>evation (ft-a<br>sea level-N | 0<br>ed: 0<br>ft): 1<br>ster (in): 1<br>h (ft): 2<br>above mea | 5/19/10     I       15/20/10     I       20.00     I       0/6     I       15     I       n     S                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | 1962<br>Carroll Fuel - Pa<br>Eichelbergers<br>Megan Brown<br>IR T4W<br>Air rotary<br>N/A<br>N/A | rkton    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------|
| ASPHALT<br>ML: Silt & large gravel to<br>cobbles, micaceous, dy.<br>0.5-8' brown, to range<br>brown, -k14' very soft, red<br>brown, -k14' very soft, red<br>brown, -k14' very soft, red<br>brown & red brown<br>saprolite, dry, micaceous.<br>23-25' olive brown & red brown<br>saprolite, dry, micaceous.<br>23-25' brown to orange<br>brown. 38-39' soft.<br>SCHIST: Olive brown schist.<br>440 -<br>40 -<br>40 -<br>40 -<br>50 - | Depth<br>Sample<br>Number                         | Sample<br>Interval         | Recovery<br>(inches)                                                                                                    | OIA                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Interpreted<br>Lithology                                                                                                     |                                                                                                 | Comments |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5<br>-10<br>-15<br>-20<br>-25<br>-30<br>-330<br> |                            |                                                                                                                         | 0.1<br>0.0<br>0.2                                              | ML: Silt & large grave<br>cobbles, micaceous, o<br>0.5-8' brown to orang<br>brown, 8-14' very soft<br>brown, very micaceou<br>SAPROLITE: Alternat<br>orange brown & red b<br>saprolite, dry, micace<br>23-25' olive brown.<br>SCHIST: Olive brown<br>34-35' brown to orang<br>brown. 38-39' soft.<br>SCHIST: Gray brown<br>46-48' brown, soft frac<br>zone. 49.5-51' very dr<br>SCHIST: Olive brown<br>more competent, mois<br>SCHIST: Blue gray so | dry.<br>e<br>, red<br>is.<br>ing<br>rown<br>ous.<br>schist.<br>ge<br>schist.<br>tured<br>y.<br>schist.<br>schist.<br>schist. |                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                |                            |                                                                                                                         | 0.0                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DIE                                                                                                                          |                                                                                                 |          |

|                                                                                                                                                                                                                                                                                              |                  | Dat<br>Dat<br>Tot<br>Boy<br>Bec<br>Ele | bg of Bor<br>te Started:<br>te Complet<br>tal Depth (if<br>ring Diame<br>drock Dept<br>evation (ft-a<br>sea level-N | 0<br>ed: 0<br>ft): 1<br>ter (in): 1<br>h (ft): 2<br>above mea | 5/19/10         Pro           5/20/10         Dril           20.00         Log           0/6         Dril           5         Dril           n         Sam  | lled By:<br>gged By:<br>ll Rig:<br>ll Method:<br>npling Method:<br>mit Number: | 1962<br>Carroll Fuel - Par<br>Eichelbergers<br>Megan Brown<br>IR T4W<br>Air rotary<br>N/A<br>N/A | kton                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------|
| Depth                                                                                                                                                                                                                                                                                        | Sample<br>Number | Sample<br>Interval                     | Recovery<br>(inches)                                                                                                | DIA                                                           | Lithological<br>Description                                                                                                                                 | Interpreted<br>Lithology                                                       | Well<br>Construction                                                                             | Comments                              |
| -60 -<br>-65 -<br>-65 -<br>-70 -<br>-70 -<br>-75 -<br>-80 -<br>-80 -<br>-85 -<br>-<br>-90 -<br>-<br>-90 -<br>-<br>-90 -<br>-<br>-100 -<br>-<br>-<br>-100 -<br>-<br>-<br>-110 -<br>-<br>-<br>-110 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                  |                                        |                                                                                                                     | 0.0<br>0.0<br>0.0<br>0.0                                      | SCHIST: Gray brown sch<br>62.5-64' very dry.<br>SCHIST: Alternating gray<br>brown & blue gray schist<br>72.5 very soft, possible<br>fracture. 91' fracture. | y                                                                              |                                                                                                  | Well yields approximately<br>4-5 gpm. |
| -120 –<br>Env                                                                                                                                                                                                                                                                                | vironm           | ental Al                               | liance, I                                                                                                           | nc.                                                           |                                                                                                                                                             |                                                                                |                                                                                                  | Page 2 of 2                           |

|                               |                  | Dat<br>Dat<br>Tot<br>Bot<br>Bec<br>Ele | <b>Og of Bo</b><br>te Started:<br>te Complet<br>tal Depth (f<br>ring Diame<br>drock Dept<br>evation (ft-r<br>mark: | 0<br>ed: 0<br>ft): 3<br>eter (in): 8<br>h (ft): 2 | 6/15/09         Proje           6/15/09         Drille           7.00         Logg           3/4"         Drill           9         Drill | Method:<br>oling Method  | 1962<br>Carroll Fuel - Pau<br>Eichelbergers<br>Jason Yaple<br>T4<br>Air Rotary<br>I: Direct observa |                                                                                                                                     |
|-------------------------------|------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Depth                         | Sample<br>Number | Sample<br>Interval                     | Recovery<br>(inches)                                                                                               | PID/ FID                                          | Lithological<br>Description                                                                                                               | Interpreted<br>Lithology | Well<br>Construction                                                                                | Comments                                                                                                                            |
| 0                             | 1<br>2           |                                        |                                                                                                                    | 0.0                                               | FILL: Asphalt and gravel<br>sub-base<br>ML: Red brown silty fire sa<br>with large gravel rock<br>fragments throughout, moi                |                          |                                                                                                     | Set 4" diameter 20 slot<br>screen 22-37', casing 0-22',<br>#2 sand 20-37', hydrated<br>bentonite hole plug 1-20',<br>concrete 0-1'. |
| -10 -<br>-<br>-<br>-<br>-15 - | 3<br>4           |                                        |                                                                                                                    | 0.0                                               | ML: Same as above, more<br>regular drill chatter lighter/<br>tan color<br>ML: Same as above, marc                                         |                          |                                                                                                     |                                                                                                                                     |
| -<br>-20 -<br>-<br>-          | 5                |                                        |                                                                                                                    | 0.0                                               | SAPROLITE: Brown/ gree<br>saprolite, regular chatter,<br>easy drilling, similar texture<br>to above                                       |                          |                                                                                                     | Terminate borehole @ 37'<br>BGS                                                                                                     |
| -25 -                         |                  |                                        |                                                                                                                    | 0.0                                               |                                                                                                                                           |                          |                                                                                                     |                                                                                                                                     |
| -30 -<br>-                    | 6                |                                        |                                                                                                                    | 0.5                                               | SCHIST: Gray sandy<br>cuttings with gravel bedroo<br>fragments micaceous schi<br>graphitic texture                                        | ck<br>st,                |                                                                                                     |                                                                                                                                     |
| -<br>-35 -<br>-               |                  |                                        |                                                                                                                    | 0.0                                               |                                                                                                                                           |                          |                                                                                                     |                                                                                                                                     |

|                          |                  | Da<br>Da<br>Ta<br>Ba<br>Ba<br>El | og of Boi<br>ate Started:<br>ate Complet<br>otal Depth (f<br>oring Diame<br>edrock Dept<br>evation (ft-n<br>emark: | 0<br>eed: 0<br>ft): 3<br>eter (in): 8<br>h (ft): 2 | 6/15/09         Proje           6/15/09         Drille           7.00         Logg           3/4"         Drill           6         Drill | Method:<br>bling Method  | 1962<br>Carroll Fuel - Par<br>Eichelbergers<br>Jason Yaple<br>T4<br>Air Rotary<br>: Direct observa |                                                                                                                                     |
|--------------------------|------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Depth                    | Sample<br>Number | Sample<br>Interval               | Recovery<br>(inches)                                                                                               | PID/ FID                                           | Lithological<br>Description                                                                                                               | Interpreted<br>Lithology | Well<br>Construction                                                                               | Comments                                                                                                                            |
| -5 -                     | 1<br>2           |                                  |                                                                                                                    | 0.0                                                | FILL: Asphalt and gravel s<br>base<br>ML: Brown and maroon sil<br>and sand with many rock<br>fragments                                    |                          |                                                                                                    | Set 4" diameter 20 slot<br>screen 22-37', casing 0-22',<br>#2 sand 21-37', hydrated<br>bentonite hole plug 1-21',<br>concrete 0-1'. |
| -10 -<br>-<br>-<br>-15 - |                  |                                  |                                                                                                                    | 0.0                                                |                                                                                                                                           |                          |                                                                                                    |                                                                                                                                     |
| -<br>-<br>-20 –          | 3                |                                  |                                                                                                                    | 0.0                                                | SAPROLITE: Gray green<br>and brown weatherd schis<br>(saprolite) sandy silt cuttin<br>more drill chatter                                  | t<br>gs                  |                                                                                                    |                                                                                                                                     |
| -                        | 4<br>5           |                                  |                                                                                                                    | 0.0                                                | SAPROLITE: Tan color<br>same as above<br>SAPROLITE: Dark brown                                                                            |                          |                                                                                                    |                                                                                                                                     |
| -25 -                    | 6                |                                  |                                                                                                                    | 0.0                                                | SCHIST: Gray micaceous                                                                                                                    |                          |                                                                                                    | Terminate borehole @ 37'                                                                                                            |
| -30 -                    |                  |                                  |                                                                                                                    | 0.0                                                | schist steady drill chatter,<br>graphitic texture                                                                                         |                          |                                                                                                    |                                                                                                                                     |
| -35 -                    |                  |                                  |                                                                                                                    | 0.0                                                |                                                                                                                                           |                          |                                                                                                    |                                                                                                                                     |

|                               |                  | Da<br>Da<br>To<br>Bo<br>Be<br>Elo | og of Borin<br>ate Started:<br>ate Completed<br>otal Depth (ft)<br>oring Diamete<br>edrock Depth<br>evation (ft-me<br>emark: | (i)<br>(i)<br>(i)<br>(ft):<br>(i)<br>(i)<br>(i)<br>(i)<br>(i)<br>(i)<br>(i)<br>(i)<br>(i)<br>(i) | 06/15/09         Pr           06/15/09         Du           37.00         Lo           8 3/4"         Du           33         Du | oject Code:<br>oject Name:<br>tilled By:<br>ogged By:<br>till Rig:<br>till Method:<br>mpling Method | 1962<br>Carroll Fuel - Pau<br>Eichelbergers<br>Jason Yaple<br>T4<br>Air Rotary<br>I: Direct observa |                                                                                                                                     |
|-------------------------------|------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Depth                         | Sample<br>Number | Sample<br>Interval                | Recovery<br>(inches)                                                                                                         | PID/ FID                                                                                         | Lithological<br>Description                                                                                                      | Interpreted<br>Lithology                                                                            | Well<br>Construction                                                                                | Comments                                                                                                                            |
| -5 -                          | 1<br>2           |                                   |                                                                                                                              | 0.0                                                                                              | FILL: Asphalt and grave<br>ML: Light brown/maroo<br>with sand and gravel<br>fragments                                            |                                                                                                     |                                                                                                     | Set 4" diameter 20 slot<br>screen 22-37', casing 0-22',<br>#2 sand 21-37', hydrated<br>bentonite hole plug 1-21',<br>concrete 0-1'. |
| -10 -<br>-<br>-<br>-15 -<br>- | 3<br>4           |                                   |                                                                                                                              | 0.0<br>0.0                                                                                       | ML: Same as above, ta<br>red<br>SAPROLITE: Saprolite<br>bedrock schist weather<br>high mica content gray                         | ed                                                                                                  |                                                                                                     |                                                                                                                                     |
| -20 -<br>-<br>-<br>-          |                  |                                   |                                                                                                                              | 0.0                                                                                              |                                                                                                                                  |                                                                                                     |                                                                                                     |                                                                                                                                     |
| -25 -                         |                  |                                   |                                                                                                                              |                                                                                                  |                                                                                                                                  |                                                                                                     |                                                                                                     |                                                                                                                                     |
| -30 -                         | 5                |                                   |                                                                                                                              | 0.0                                                                                              | SCHIST: Gray and brow<br>steady drilling chatter, s<br>bedrock                                                                   | wn<br>schist                                                                                        |                                                                                                     | Terminate borehole @ 37'                                                                                                            |
| -                             | ironm            | ental Al                          | lliance, In                                                                                                                  | с.                                                                                               |                                                                                                                                  |                                                                                                     |                                                                                                     | Page 1 of 1                                                                                                                         |

|                          |                  | Da<br>Da<br>To<br>Bo<br>Be<br>Elo | <b>Dg of Bor</b><br>the Started:<br>the Complet<br>tal Depth (f<br>ring Diame<br>drock Dept<br>evation (ft-r<br>mark: | ed: ()<br>(t): 3<br>(ter (in): 8<br>h (ft): 3<br>nsl): 1<br>N/A | 06/15/09     P       06/15/09     D       07.00     L       83/4"     D       81     D                                          |               | 1962<br>Carroll Fuel - Pa<br>Eichelbergers<br>Jason Yaple<br>T4<br>Air Rotary<br>d: Direct observa |                                                                                                                                     |
|--------------------------|------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Depth                    | Sample<br>Number | Sample<br>Interval                | Recovery<br>(inches)                                                                                                  | PID/ FID                                                        | Lithological<br>Description                                                                                                     | Interpreted   | Well<br>Construction                                                                               | Comments                                                                                                                            |
| 0-<br>-<br>-5-<br>-      | 1<br>2           |                                   |                                                                                                                       | 0.0                                                             | ASPHALT: Asphalt an<br>gravel<br>ML: Light brown and r<br>silt with sand and grav<br>fragments, high micac<br>soft, non-plastic | naroon<br>/el |                                                                                                    | Set 4" diameter 20 slot<br>screen 22-37', casing 0-22',<br>#2 sand 21-37', hydrated<br>bentonite hole plug 1-21',<br>concrete 0-1'. |
| -10 -                    | 3                |                                   |                                                                                                                       | 0.0                                                             | ML: Same as above, t<br>red zones                                                                                               | an and        |                                                                                                    |                                                                                                                                     |
| -15 -<br>-<br>-<br>-20 - | 4                |                                   |                                                                                                                       |                                                                 | SAPROLITE: Gray gra<br>highly micaceous wea<br>schist bedrock saprolit<br>graphitic texture cuttin                              | thered /      |                                                                                                    |                                                                                                                                     |
| -25 –                    | 5                |                                   |                                                                                                                       | 0.0                                                             | SAPROLITE: Tan san<br>above                                                                                                     | ne as         |                                                                                                    |                                                                                                                                     |
| -                        | 6                |                                   |                                                                                                                       |                                                                 | SAPROLITE: Gray sa<br>above                                                                                                     | me as         |                                                                                                    | Terminate borehole @ 37'<br>BGS                                                                                                     |
| -30 -<br>-<br>-          | 7                |                                   |                                                                                                                       | 0.0                                                             | SCHIST: Gray schist<br>bedrock, harder drill ch<br>highly micaceous                                                             | hatter,       |                                                                                                    |                                                                                                                                     |
| -35 -                    |                  |                                   |                                                                                                                       |                                                                 |                                                                                                                                 |               |                                                                                                    |                                                                                                                                     |

|                  | 1                |                    |                      | Date<br>Date<br>Tota<br>Bor<br>Bed<br>Elev | e Starto<br>e Comj<br>al Dept<br>ing Dia | ed:       05/19/10       Pr         pleted:       05/19/10       Dr         h (ft):       37.00       Lo         nmeter (in):       8       Dr         epth (ft):       27       Dr   | roject Co<br>roject Na<br>rilled By:<br>ogged By<br>rill Rig:<br>rill Rig:<br>rill Meth<br>ampling I | me: Carroll Fue<br>Eichelberge<br>Simon Mul<br>Diedrich D | ers<br>len<br>-50 Turbo/IR T4W<br>n auger/Air rotary                                                                                                                                                                          |
|------------------|------------------|--------------------|----------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth            | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches) | Blow<br>Counts                             | PID                                      | Lithological<br>Description                                                                                                                                                           | Interpreted<br>Lithology                                                                             | Well<br>Construction                                      | Comments                                                                                                                                                                                                                      |
| 0-<br>-2-<br>-4- | -                |                    |                      |                                            |                                          | NO RECOVERY: 0-5 feet not<br>logged - soil was cleared for<br>utilities using a Soft-dig<br>vacuum with soil returned to<br>borehole before initiating<br>hollow-stem auger drilling. |                                                                                                      |                                                           | Background PID 0.0<br>units.<br>Set well at 37' with 4"<br>dia. 0.010-slot<br>screen from 7-37'<br>and casing to<br>surface. Backfilled<br>with sandpack from<br>5.9-37' bentonite<br>from 3-5.9' and<br>concrete to surface. |
| -6               | - 1              |                    | 18                   | 3-2-2-3                                    | 0.0<br>0.0<br>0.0                        | SM: Pink, gray & white<br>mottled saprolitic fine sand<br>with some mica, some silt<br>and trace coarse gravel with<br>lens of black & light orange<br>material at 7.2-7.3'.          |                                                                                                      |                                                           |                                                                                                                                                                                                                               |
| -8               | - <b>2</b>       |                    | 22                   | 4-5-6-6                                    | 0.0<br>0.0<br>0.0<br>0.0                 | SM: Black, orange, white & gray mottled fine sand with some silt, some mica & trace fine gravel.                                                                                      |                                                                                                      |                                                           |                                                                                                                                                                                                                               |
| -10 –            | - 3              |                    | 19                   | 4-5-5-7                                    | 0.0<br>3.9<br>2.1                        | SW: Pink, black & white<br>mottled fine sand with some<br>mica, some fine gravel, no<br>odor, some black & orange<br>material due to oxidation.                                       |                                                                                                      |                                                           |                                                                                                                                                                                                                               |
| 10               | - 4              |                    | 17                   | 13-41-50/5                                 | 138<br>69.7                              | SAPROLITE: Red fine<br>saprolitic sand with some fine<br>gravel, foliated schist at<br>11.5', faint odor of lubricant,<br>no petroleum odor, some<br>mica.                            |                                                                                                      |                                                           |                                                                                                                                                                                                                               |

|              | 1                |                    |                      | Date<br>Date<br>Tota<br>Bori<br>Bedi<br>Elev | Start<br>Comj<br>l Dept<br>ng Dia | ed:       05/19/10         pleted:       05/19/10         h (ft):       37.00         ameter (in):       8         repth (ft):       27                                                                                                                            |                               | me: Carroll Fuel<br>Eichelberge<br>Simon Mull<br>Diedrich D-                                                                                                      | rs<br>en<br>50 Turbo/IR T4W<br>n auger/Air rotary |
|--------------|------------------|--------------------|----------------------|----------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Depth        | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches) | Blow<br>Counts                               | DID                               | Lithological<br>Description                                                                                                                                                                                                                                        | Interpreted<br>Lithology      | Well<br>Construction                                                                                                                                              | Comments                                          |
| -12<br>-14 - | - 5              |                    | 10                   | 28-50/5                                      | 102<br>3.6<br>4.1                 | SAPROLITE: Fine white,<br>black & pink mottled sand<br>with fine gravel, grading to<br>brown at end of split spoon.<br>SAPROLITE: Gray, white,<br>black, orange & pink mottleo<br>weathreed schist with mica,<br>some orange & black<br>coloring due to oxidation. |                               |                                                                                                                                                                   |                                                   |
| -16 -        | - <b>6</b>       |                    | 24                   | 8-15-36-45                                   | 0.0<br>0.0<br>4.2                 | SAPROLITE: White, orange<br>black & gray mottled<br>weathered schist, trace<br>quartz gravel.<br>SAPROLITE: Red, orange,                                                                                                                                           | , ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | .     .       .     .       .     .       .     .       .     .       .     .       .     .       .     .       .     .       .     .       .     .       .     . |                                                   |
| -18 –        | - 7              |                    | 9                    | 29-50/5                                      | 0.0<br>0.0<br>0.0                 | black, white & gray mottled<br>weathered schist with mica.<br>SAPROLITE: Black, white &<br>orange mottled fine saprolitie<br>sand with some silt, some<br>mica.                                                                                                    |                               |                                                                                                                                                                   |                                                   |
| -20 -        | - 8              |                    | 13                   | 17-48-50/3                                   | 14.5<br>137<br>115                | SAPROLITE: Gray, white & light brown mottled fine saprolitic sand, some mica, weathered schist.                                                                                                                                                                    |                               |                                                                                                                                                                   |                                                   |
| -22 -        | 9                |                    | 20                   | 28-30-46-50/5                                | 1.9<br>6.2<br>2.3<br>2.5          | SAPROLITE: Same as<br>above.<br>SAPROLITE: Gray & white<br>mottled weathered schist,<br>foliated with orange & black<br>coloring from oxidation, with<br>mica.                                                                                                     |                               |                                                                                                                                                                   |                                                   |
| -24 –        | - 10             |                    | 6                    | 48-50/3                                      | 0.0                               | SAPROLITE: Gray & white<br>mottled, foliated, weathered<br>schist, some black coloring<br>due to oxidation, with mica.                                                                                                                                             |                               |                                                                                                                                                                   |                                                   |

|       | 1                |                    |                      | Data<br>Data<br>Tota<br>Bor<br>Bed<br>Elev | e Start<br>e Comj<br>al Dept<br>ing Dia | bleted:         05/19/10           h (ft):         37.00           ameter (in):         8           epth (ft):         27 |                          | ame:       Carroll Fuel         y:       Eichelberge         y:       Simon Mull         Diedrich D- | rs<br>en<br>50 Turbo/IR T4W<br>n auger/Air rotary |
|-------|------------------|--------------------|----------------------|--------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Depth | Sample<br>Number | Sample<br>Interval | Recovery<br>(inches) | Blow<br>Counts                             | DIA                                     | Lithological<br>Description                                                                                               | Interpreted<br>Lithology | Well<br>Construction                                                                                 | Comments                                          |
| -26 - | -                |                    | 5                    | 45-50/3                                    | 2.5                                     | SAPROLITE: Same as<br>above with some orange<br>coloring from oxidation.                                                  |                          |                                                                                                      |                                                   |
| -28 - | -                |                    |                      |                                            | 0.0                                     | SCHIST: Blue gray schist.                                                                                                 |                          |                                                                                                      |                                                   |
| -30 - | -                |                    |                      |                                            |                                         |                                                                                                                           |                          |                                                                                                      |                                                   |
| -32 - | -                |                    |                      |                                            |                                         |                                                                                                                           |                          |                                                                                                      |                                                   |
| -34 – | -                |                    |                      |                                            |                                         |                                                                                                                           |                          |                                                                                                      |                                                   |
| -36 - | -                |                    |                      |                                            |                                         | SCHIST: Softer olive brown<br>schist.                                                                                     |                          |                                                                                                      |                                                   |
|       |                  |                    |                      |                                            |                                         |                                                                                                                           |                          |                                                                                                      |                                                   |