APPENDIX E.

Sanborn Fire Insurance Maps

Environmental Risk Information & Imaging Services 505 HUNTMAR PARK DRIVE, SUITE 200 • HERNDON, VA 20170 • 703-834-0600 • 1-800-989-0403 • FAX: 703-834-0606

Environmental Risk Information & Imaging Services 505 HUNTMAR PARK DRIVE, SUITE 200 • HERNDON, VA 20170 • 703-834-0600 • 1-800-989-0403 • FAX: 703-834-0606

Environmental Risk Information & Imaging Services 505 HUNTMAR PARK DRIVE, SUITE 200 • HERNDON, VA 20170 • 703•834•0600 • 1•800•989•0403 • FAX: 703•834•0606

Environmental Risk Information & Imaging Services 505 HUNTMAR PARK DRIVE, SUITE 200 • HERNDON, VA 20170 • 703-834-0600 • 1-800-989-0403 • FAX: 703-834-0606

Environmental Risk Information & Imaging Services 505 HUNTMAR PARK DRIVE, SUITE 200 • HERNDON, VA 20170 • 703-834-0600 • 1-800-989-0403 • FAX: 703-834-0606

THE REPRODUCTION OF THE SANBORN FIRE INSURANCE MAPS HAS BEEN MADE BY PERMISSION OF EDR SANBORN, INC., THE COPYRIGHT HOLDER, IN ACCORDANCE WITH THE TERMS AND CONDITIONS OF AN AGREEMENT BETWEEN ENVIRONMENTAL RISK INFORMATION & IMAGING SERVICES AND EDR SANBORN, INC. DATED AUGUST 1, 1991, EDR SANBORN, INC. MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THE SANBORN MAPS, INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PAPTURE OF A PAPTURE OF THE PROPERTY OF THE EDISON INSTITUTE, DEARBORN, MICHIGAN, AND MAY FURTHER REPRODUCED WITHOUT PERMISSION.

Environmental Risk Information & Imaging Services 505 HUNTMAR PARK DRIVE, SUITE 200 • HERNDON, VA 20170 • 703-834-0600 • 1-800-989-0403 • FAX: 703-834-0606

THE REPRODUCTION OF THE SANBORN FIRE INSURANCE MAPS HAS BEEN MADE BY PERMISSION OF EDR SANBORN, INC., THE COPYRIGHT HOLDER, IN ACCORDANCE WITH THE TERMS AND CONDITIONS OF AN AGREEMENT BETWEEN ENVIRONMENTAL RISK INFORMATION & IMAGING SERVICES AND EDR SANBORN, INC. DATED AUGUST 1, 1991. EDR SANBORN, INC. MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY INFORMATION FOR WARRANTIES OF A PAPTICIII AR REPRESENTATIONS OR WARRANTIES OF ANY INFORMATION FOR ANY INFO

Environmental Risk Information & Imaging Services 505 HUNTMAR PARK DRIVE, SUITE 200 • HERNDON, VA 20170 • 703-834-0600 • 1-800-989-0403 • FAX: 703-834-0606

THE REPRODUCTION OF THE SANBORN FIRE INSURANCE MAPS HAS BEEN MADE BY PERMISSION OF EDR SANBORN, INC., THE COPYRIGHT HOLDER, IN ACCORDANCE WITH THE TERMS AND CONDITIONS OF AN AGREEMENT BETWEEN ENVIRONMENTAL RISK INFORMATION & IMAGING SERVICES AND EDR SANBORN, INC. DATED AUGUST 1, 1991. EDR SANBORN, INC. MAKES NO AND CONDITIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, WITH REGRAND TO THE SANBORN MAPS, INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SANBORN AND SANBORN MAPS ARE TRADEMARKS OF EDR SANBORN INC. THE MANUFACTURERS' MUTUAL MAPS ARE THE PROPERTY OF THE EDISON INSTITUTE, DEARBORN, MICHIGAN, AND MAY NOT BE FURTHER REPRODUCED WITHOUT PERMISSION.

SANBORN

- 9 - 1

Environmental Risk Information & Imaging Services 505 HUNTMAR PARK DRIVE, SUITE 200 • HERNDON, VA 20170 • 703-834-0600 • 1-800-989-0403 • FAX: 703-834-0606

THE REPRODUCTION OF THE SANBORN FIRE INSURANCE MAPS HAS BEEN MADE BY PERMISSION OF EDR SANBORN, INC., THE COPYRIGHT HOLDER, IN ACCORDANCE WITH THE TERMS AND CONDITIONS OF AN AGREEMENT BETWEEN ENVIRONMENTAL RISK INFORMATION & IMAGING SERVICES AND EDR SANBORN, INC. DATED AUGUST 1, 1991. EDR SANBORN, INC. MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLED, WITH REGARD TO THE SANBORN MAPS, INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SANBORN AND SANBORN MAPS ARE TRADEMARKS OF EDR SANBORN, INC. THE MANUFACTURERS' MULLUL MAPS ARE THE PROPERTY OF THE EDISON INSTITUTE, DEARBORN, MICHIGAN, AND MY FURTHER REPRODUCED WITHOUT PERMISSION.

SANBORN

APPENDIX F.

Historical Topographic Maps

EDR Historical Topographic Map Report

Frederick Brick Works 184 East South Street Frederick, MD 21701

Inquiry Number: 1898628.4

April 10, 2007

The Standard in Environmental Risk Management Information

440 Wheelers Farms Rd Milford, Connecticut 06461

Nationwide Customer Service

Telephone:

1-800-352-0050

Fax:

1-800-231-6802

Internet:

www.edrnet.com

EDR Historical Topographic Map Report

Environmental Data Resources, Inc.s (EDR) Historical Topographic Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topographic Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the early 1900s.

Thank you for your business.
Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

TARGET QUAD

JAMSVILLE NAME:

MAP YEAR: 1909

15 SERIES:

SCALE:

1:62500

SITE NAME: Frederick Brick Works

184 East South Street ADDRESS:

Frederick, MD 21701

39.4066 / 77.4022 LAT/LONG:

CLIENT: CONTACT: Hydro-Terra, Inc. GARY PARKS

INQUIRY#: 1898628.4

TARGET QUAD

FREDERICK NAME:

7.5

1:24000

MAP YEAR: 1953

SERIES:

SCALE:

SITE NAME: Frederick Brick Works ADDRESS: 184 East South Street

Frederick, MD 21701

39.4066 / 77.4022 LAT/LONG:

CLIENT:

Hydro-Terra, Inc. GARY PARKS

CONTACT: INQUIRY#:

1898628.4

N

TARGET QUAD

NAME: FREDERICK

MAP YEAR: 1971 PHOTOREVISED FROM:1953

SERIES: 7.5

SCALE:

1:24000

SITE NAME: Frederick Brick Works

ADDRESS: 184 East South Street

Frederick, MD 21701

LAT/LONG: 39.4066 / 77.4022

Works CLIENT: Street CONTACT: Hydro-Terra, Inc. GARY PARKS

INQUIRY#:

GARY PARKS 1898628.4

TARGET QUAD

NAME: **FREDERICK** MAP YEAR: 1985

PHOTOREVISED FROM:1953

SERIES: SCALE:

7.5 1:24000 SITE NAME:

Frederick Brick Works 184 East South Street ADDRESS:

Frederick, MD 21701

39.4066 / 77.4022 LAT/LONG:

CLIENT: CONTACT: Hydro-Terra, Inc. GARY PARKS

INQUIRY#:

TARGET QUAD

FREDERICK NAME:

MAP YEAR: 1993 **REVISED FROM:1953** SERIES: 7.5

SCALE:

1:24000

SITE NAME: Frederick Brick Works 184 East South Street ADDRESS:

Frederick, MD 21701

LAT/LONG: 39.4066 / 77.4022 CLIENT: CONTACT: Hydro-Terra, Inc. **GARY PARKS**

INQUIRY#:

1898628.4

APPENDIX G. Bay Environmental Corporation Test Pit Logs & Chemical Analyses

Test Pit Number	TP Depth (Feet)	Description	Sample Number/ Depth/Material
TP-1	4.5	1.5 ft of fill material: bricks, composted trash; 3 ft of natural soils.	FBW-TP-1-1/4.5 ft/soil (not analyzed)
TP-2	14	Main bottle dig area. Evidence of burned trash, ash, coal, bottles, clay pots, cans, brick. Visible layers of deposited fill materials. Depth to natural undisturbed soil varied from 11 to 13 ft over the length of the pit, averaged 10 ft.	fBW-TP-2-1/10.5 ft/ fill FBW-TP-2-2/12.5 ft/ trash and clayey soil interface
TP-3	il.	1 ft of top soil to limestone bedrock	
TP-4	1	1 ft of top soil to limestone bedrock	
TP-5	2	1 ft of top soil to natural soils and limestone bedrock	
TP-6	2	1 ft of top soil to natural soils and limestone bedrock	
TP-7	2	1 ft of top soil to natural soils and limestone bedrock	
TP-8	4	Bottle Pit Location. Evidence of fill. 0.5 ft top soil; 0.5 ft burned layer; 1 ft earthy fill; 2 ft layer of mixed fill, scant bottles, evidence of burned materials	
TP-9	8	1 ft of top soil; 7 ft of layered fill materials to bedrock (at angle in pit). Brick, burned composted trash, ash, pottery shards, cementitious deposits	
TP-10	3	1 ft of top soil; 2 ft of apparently undisturbed soil. Evidence of quartz deposits	
TP-11	11	1 ft of top soil;10 ft layer of fill: burned clinker, bottles, coal, bones, bats, ash, trash, dirt	
TP-12	5	.5 ft of top soil; 1 ft layer of fill-brick, burned fill materials, ash, metal rebar. Bedrock at angle starting at depth of 3 ft. Natural clayey soils at about 2.5 ft.	FBW-TP-12-1/3 ft/soil (not analyzed)
TP-13	8	1 ft of mixed gravel and top soil; 5 ft layer of mixed fill: soil, roots, wooden stake; moist gray clayey sand with smooth gravel (creek material?); metal strap; reddish clayey soil at 6 ft below grade; perched water table at 6.25 ft below grade. No evidence of burned fill or trash.	FBW TP-13-1/6.25 ft/soil water interface
TP-14	9	1 ft of mixed gravel and top soil; 4.5 ft layer of mixed fill: soil, concrete rubble, smooth rebar; 0.5 ft of fill layer: brick, wood debris, tree limbs, brush, soil; 3 ft of different soil layer, silty soil with traces clay; Terra cotta pipe at 8 ft below grade. No evidence of burned fill or trash; primarily construction debris	
TP-15	2	0.5 ft of mixed gravel and top soil to limestone bedrock	

Test Pit	TP Depth (Feet)	Description	Sample Number/ Depth/Material
Number TP-16	3	0.5 ft of mixed gravel and top soil; 1 ft fill material: primarily soil with fine to medium gravel	
TP-17	5.5	3 in, of top soil; 0.5 ft of gray-ash fill material; 5 ft layer of fill material: composted trash, soil, bottles, newer screw top bottles, brick, ash, shoe leather, pottery shards, oyster shells, brick.	10 4/15 8/
TP-18	15	5 ft layer of dark fill materials: primarily soil with small pieces glass, brick, pottery plate, cup, wood; 2 ft layer of fill; 9 ft of various garbage layers: 7 ft below grade: Miller and Pepsi cans, Strohman's plastic bread wrapper, motor oil paper label, clothing, plastic, evidence of burning, ash, metal straps, bottles, tar paper; 5 ft trash layers trash. 9 ft below grade: 1 ft ash layer with burned trash and brick; 10 ft below grade: brick, ash, bottles, burned bottles, cinder block, metal pieces, concrete, Mrs. Filbert's plastic butter tub, Coke cans, about 12 metal frames with heavy glass over label with Etchison & Son, dated 1964; date, person's name and age given in years, months and days (ash boxes from reported funeral home?) 11 ft below grade: styrofoam, large bricked construction debris; Nehi soda bottle, screw top bottles, clothing, tire 12 ft below grade: Pabst Blue Ribbon beer bottle, green plastic toy-watch strap, wood, Sunbeam bread wrapper, styrofoam cup, aluminum pull top from can, plastic, evidence of burned trash. 13 ft below grade: brick, ash, rubble, wood, bottles, cinder block, trash, four tires, vinyl chair cover, plastic garbage bags, metal strap. 13.5 ft below grade: soil, brick pieces, black top, (not as much garbage); natural soils apparent (reddish brown, fine to medium silty sand), Marvel bread wrapper	FBW-TP-18-1/15 ft/fill and soil
TP-19	10	10 ft layered fill material: rock, brick. Fill and rubble at grade. 8 ft below grade: layer of dark silty soils, leaf matter. 10 ft below grade: resistance-apparent bedrock or large fill material. No evidence of burned fill or trash; primarily construction debris	
TP-20	7.5	1 ft of top soil, tree roots, rich humus; 6 ft layer of trash: ash burned material, metal, clam shell, plates, cork-top bottles, screw-top bottles, light bulbs. Apparent natural soil at 7 ft below grade	FBW-TP-20-1 /7 ft soil

Test Pit	TP Depth (Feet)	Description	Sample Number/ Depth/Material
Number	10.5	0.5 ft layer of top soil with red brick dust mixed in; 10 ft layer of fill: burned debris, screw top bottles, metal pieces, High's Dairy styrofoam cup, milk bottles, porcelain door knob, melted Pepsi bottle, brick debris. Bedrock at 10.5 ft below grade (bedrock ledge sloping west to east in test pit with west being closer to grade)	22.10.5.0/
ГР-22	8.5		FBW-TP-22-1/8.5 ft/ fill
TP-23	the shandared manitoring well FBW-1. 0.5 ft layer of		FBW-TP-23-1/8 ft/fill
TP-24	3	Apparent natural soils	
TP-25	9.5	Trash and evidence of burned trash at ground surface. 0.5 ft layer of top soil; 1 ft layer of light brown fine to medium silty sand; 0.5 layer of composted fill; 2 ft layer of soil and fill: brick, oyster shells, ash, milk bottle; 3.5 ft layer of fill: ash, bottles, brick-block, castoria bottle, burned trash, metal pieces; natural soils at 7.5 ft below grade.	FBW-TP-25-1/8 ft/ natural soil
TP-26	3.5	Edge of Bottle Pit Area. 1 in. layer of brick, fill and composted soils; 2.5 ft of apparently natural soils	
TP-27	3	1 in. layer of top soil, 2 ft of apparently natural soils	
TP-28	12	Base of Kline Fill Plateau. 2 ft layer of fill: large pieces of limestone, some brick; 3 ft layer of dark brown fill: soil and brick; 3 in. metal pipe at 3 ft below grade; 5 ft mixed fill layers of moist dark gray fine to medium silty sand with gravel, brick bits, charred wood bits, rounded stone, bricks, a metal strap, wood pieces. Fill material continued.	FBW-TP-28-1/10 ft/ fill
TP-29	3	Edge of Bottle Pit Area. 1 in. layer of top soil, 2 ft of apparently natural soils	
TP-30	5	Bottle Pit Area. 0.5 ft layer of top soil; 2 ft layer of fill: composted trash, ash, metal can top, bottles, brick, oyster shells; 2 ft layer of fill; 0.5 ft layer of dark reddish silty sand at 5 ft below grade. Bible found at surface dated 1966	

ble 2. Soil–Summar							Sample	Number				_
Compound	RBC ¹	Hazard Rating	2-1	2-2	13-1	18-1	20-1	22-1	23-1	25-1	28-1	AH-1
RCRA Metals (mg/kg)								In the second				
rsenic	3.8	a, b*,c,	5.5	ND	ND	2.4	0.7	9.0	1.1	ND	ND	ND
arium	1.4x10 ⁵	b*, c	350	53	39	110	70	430	170	20	31	55
Chromium ³	3.1x10 ⁶	a*,b*,c,	9.6	10	4.4	5.6	7.2	14	6.7	2.7	2.3	17
 Lead	NR	b*, c, d	490	10	10	150	59	810	120	7	12	6.5
/Iercury	NR	С	0.7	ND	ND	0.1	ND	0.5	ND	ND	ND	ND
Selenium	1 x10 ⁴	a*,c*, d	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND
Semi-Volatile Organic		L			-	1.						
Acenaphthylene	1.2x10 ⁸	c, d	ND	ND	ND	ND	ND	63e	ND	ND	ND	ND
Anthracene	6.1x10 ⁸	c, d	ND	ND	46e	ND	ND	ND	ND	ND	120e	ND
Benzo(a)anthracene	7,800	a, c, d	91e	ND	98e	450e	ND	1400	150e	ND	310e	ND
Benzo(b)fluoranthene	7,800	a, c, d	130e	ND	160e	400e	ND	2300	110e	ND	310e	ND
Benzo(k)fluoranthene	78,000	a, c, d	1.70e	ND	150e	470e	ND	1800	ND	ND	380e	ND
Benzo(g,h,i)perylene	NR	c, d	ND	ND	ND	ND	ND	620	ND	ND	ND	ND
Benzo(a)pyrene	780	a, c, d	140e	ND	140e	520e	ND	2000	150e	ND	310e	ND
Chrysene	7.8x10 ⁵	c, d	130e	ND	130e	450e	ND	1600	160e	ND	290e	ND
Fluoranthene	8.2x10 ⁷	c, d	220e	ND	260e	810e	ND	1800	210e	ND	530e	ND
Fluorene	8.2x10 ⁷	c, d	ND	ND	ND	ND	ND	ND	ND	ND	41e	ND
Phenanthrene	NR	c, d	190e	ND	210e	750e	ND	260e	120e	ND	330e	ND
Pyrene	6.1×10^7	c, d	190e	ND	260e	890e	ND	1900	350e	ND	480e	ND
Volatile Organic Com												_
Benzene	1 x10 ⁵	The second secon	5	ND	2e	4e	ND	8	2e	2e	2e	1e
sec-Butylbenzene	8.2 x10 ⁷	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	2 x10 ⁸	b, d	3e	ND	ND	1e	ND	5	ND	ND	ND	ND
Methylene chloride	7.6x10 ^s	a, c, d	11b	ND	4eb	6b	2eb	7 <i>b</i>	5b	4eb	7b	4eb

							Sample	Number				
Compound	RBC ¹	Hazard Rating	2-1	1 2-2	13-1	18-1	20-1	22-1	23-1	25-1	28-1	AH-1
	NI	NL	2e	ND	ND	ND	ND	2e	ND	ND	ND	ND
Methyl-t-butyl ether	NL	-		-	-	10	ND	4e	le	ND	ND	ND
Tetrachloroethene	1.1x10 ⁵	a, c, d	2e	ND	ND	le	ND			-	1	5
Toluene	4.1x108	a, c, d	22	1e	6	12	3e	39	7	6	6	3
1,2,4-	1 x10 ⁸	None	ND	ND	ND	ND	ND	2e	ND	ND	ND	ND
Trimethylbenzene				-		+	NID	12e	2e	ND	ND	ND
Xylenes, total	4.1x10°	b, c	6е	ND	ND	1e	ND	120	1 26	1,12	1	

Notes:

- 1. RBC = EPA Risk Based Concentration. RBCs are listed for industrial soil. Except for RCRA metals, soils are reported in units of $\mu g/kg$.
- 2. Hazard Ratings: a Carcinogen; b Hazardous substance; c Hazardous waste or hazardous-waste constituents; d Priority toxic pollutant.
- * Indicates rating applies to some but not all compounds associated with this chemical.
- 3. Risk-based concentration reported for Chromium III. The RBC for Chromium VI is 6,100 mg/kg.
- 4. Semi-volatile organic compounds can be formed in any hydrocarbon combustion process and may be released from oil spills. The major sources include refuse burning and coal refuse heaps.
- 5. Concentrations in **bold** are detected compounds. Concentrations in highlighted cells exceed allowable limits.
- 6. b found in blank, suspected lab artifact; e estimated value, less than reporting limit.
- 7. mg/kg (milligrams per kilogram) is equivalent to parts per million (ppm) and μ g/kg (micrograms per kilogram) is equivalent to parts per billion (ppb).
- 8. ND-not detected; NL-not listed; NR-not reported

Table 3. Ground Water -Summary of Identified Chemical Compounds and Concentrations

able 3. Ground Wate				Sample Nu	mber/Date	
Compound	MCL ¹	Hazard Rating ²	FBW-2 01/27/1999	FBW-3 01/27/1999	FBW-3 ³ 01/27/1999	FBW-3 03/2/1999
RCRA Metals (μg/L)		1				
Barium	2,000	b*, c	41	130	NA	130
Chromium (total)	100	a*, b*, c,	ND	12	NA	ND
Semi-Volatile Organic	Compounds (μg/L)			T	
2-Methylnapthalene	NL	NL	ND	ND	NA	3e
Volatile Organic Comp	ounds (µg/L)				T	T
Benzene	5	a, b, c, d	ND	ND	1e	1e
sec-Butylbenzene	NR	NL	ND	ND	2e	9
Isopropylbenzene	NR	NL	ND	ND	2e	6
p-Isopropyltoluene	NL	NL	ND	ND	1e	2e
Methylene chloride	5	a, c, d	ND	12eb	ND	ND
Methyl-t-butyl ether	30	NL	ND	90	97	. 67
n-Propylbenzene	NR	NL	ND	ND	ND	6
Tetrachloroethene	5	a, c, d	ND	ND	3e	ND

^{1.} The Maximum Contaminant Level is the maximum permissible level of a contaminant in water, which is delivered to any user of a public water system.

^{2.} Hazard Ratings: a-carcinogen; b-hazardous substance; c-hazardous waste or hazardous-waste constituents; d-priority toxic pollutant.

^{*}Indicates the rating applies to some but not all compounds associated with this compound.

^{3.} The sample was analyzed February 18, 1999.

^{4.} Concentrations in **bold** are detected compounds. Concentrations in highlighted cells exceed allowable limits.

^{5.} b - found in blank, suspected lab artifact; e - estimated value, less than reporting limit.

^{6.} μ g/L (micrograms per liter) is equivalent to parts per billion (ppb).

^{7.} ND-not detected; NL-not listed; NR-not reported

APPENDIX H.

KCI Technologies Chemical Analyses

Industrial Maryland Ppm	Non-Residential CSS ^{\$} Ppm Ppm E20.0	TCLP						
Ppm	CSSs ppm ppm ppm e20.0							
Ppm	ppm ppm 620.0							
Ppm			DB-1	DB-2	DB-3	DB-4	DB-6 ¹¹	RB-1
Ppm		47	0'-12' 0	0' - 12'	4'-11'	0' - 10.5'	4'-11'	Rinsate
Ppm			5/14/2001 5/	5/11/2001	5/10/2001	5/9/2001	5/10/2001	5/9/2001
Ppm			10:20	9:30	9:40	10:15	9:50	10:00
### ppm ppm ppm ppm ppm ppm ppm ppm ppm								
Popularie Popu		mdd	шдд	mdd	mdd	mdd	mdd	mdd
Ppm			240米	230	※第0/5	120	2000 320	QN
Ppm								
Ppm				-				
Ppint Ppin	maa	mdd	qdd	qdd	qdd	qdd	qdd	qdd
letals (1311/6010B) ppm ppm ppm ppm ppm ppm ppm ppm ppm pp			CN	0.44	QN	QN	- QN	ND
Popm								
ppm					1	1	4	1
m	ш	mdd	mdd	mdd	Hidd	mdd	Indd	IIIdd
m		5.0	Q.	2	ON	Q	Q	2
Im		100.0	2	2	QN	Q	Q	Q
Um		1.0	-ND	- QN	QN	ND	2	Q.
Mercury (1311/7471A) Mercury (1311/7471A) Ppm Ppm Ppm In Metals (6010B) Ppm Ppm Ppm Co. 4 3.33 Co. 4 3.33 Co. 5500.0 140000.0 1000.0 1000.0 1000.0 1000.0 110000.0 11000.0 11000.0 11000.0 11000.0 11000.0 11000.0 11000.0 1100		5.0	- ÑD	Q	QN	ΔN	QN	QN
Mercury (1311/7471A) ppm ppm ppm ppm ppm ppm ppm ppm ppm pp		5.0	ΔÑ	2	NO	QN	2.2	ΩN
Mercury (1311/7471A) ppm ppm ppm ppm ry Metals (6010B) ppm ppm ppm ppm ppm ppm ppm ppm ppm pp		1.0	QN	- Q	CN	ND	- QN	Q.
Mercury (1311/7471A) ppm ppm ppm ppm ppm ry ry reference (6010B) ppm ppm ppm ppm ppm ppm ppm ppm ppm pp		5.0	N	ND	ON	Q	Ω	QN
Mercury (1311/7471A) ppm ppm ppm ppm ppm ry								
Metals (6010B) ppm	Hada Hada	maa						
Metals (6010B) ppm ppm ppm 0.4 7.38 - - 5500.0 140000.0 - - 1m² 39.0 1000.0 - 1m³ 230.0 6100.0 -		0.2	QN	QN QN	ON	QN	QN	QN.
Metals (6010B) ppm ppm ppm 104 0.4 3.8 - 5500.0 140000.0 - - 1m² 39.0 1000.0 - 1m² 230.0 6100.0 -				-				
ppm		a a a	maa	muu	man	maa	maa	maa
14000.0 - 5500.0 14000.0 - 5500.0 14000.0 - 5500.0 1000.0 - 530.0 6100.0 - 530.0 6100.0 - 530.0 6100.0 - 530.0 6100.0 - 530.0 6100.0 - 530.0 6100.0 - 530.0 6100.0 - 530.0 6100.0 - 530.0 6100.0 - 6100.0 6100.0	Short Sport Sport	200	SAMPACE.	and A county for	See A O see of	Section Bridge	100	CN
m" 39.0 140000.0 - 10		i i	-	070	0.4	470	1	2 2
1000.0 - 100			+	200	100	2 6	3	2 5
230.0 6100.0 -	-		0.46	7.7	7.7	0.00	0.40	2 :
			14	20		18	6	2
000001	新		1,800	017		nc/	081	2 :
	_		9.	-	Q.	9.	0.34	2
	100.0		0.32	2.1	0.15	0.45	0.17	ON O
Merciny (7471A)			1					
mdd mdd	ша ррт	шdd			Egg-	mdd	mdd	mdd
TO CO COLORESTOR COLOR	1		6.3	0.28	- 95.0 m	10.49	0.39	2

Shading indicates contaminant levels above RBCs and/or SSLs

A *-" indicates no information is available.

ND = Non-Delect

NA = Not Analyzed

(1) = Risk-Based Concentrations for Residential (EPA Region III dated 10/7/99)

(2) = Risk-Based Concentrations for Industrial (EPA Region III dated 10/7/99)

(3) = Manyland Standard for the Protection of Groundwater (Interim Final Guidance dated December 2000)

(4) = State of Manyland Standard for the Environment Cleanup Standards for Non-Residential Soil, (Interim Final Guidance dated December 2000)

(5) = State of Manyland Department of the Environment Cleanup Standards for Non-Residential Soil, (Interim Final Guidance dated December 2000)

(5) = State of Manyland Department of the Environment Cleanup Standards for Non-Residential Soil, (Interim Final Guidance dated December 2000)

(6) = Toxicity Characteristic Leaching Procedure Regulatory Limits

(7) = MBCs and CSS Based on Cadmium in Water

(9) = RBCs and CSS Based on Chromium III

(10) = RBCs and CSS Based on Mercuric Chloride

(11) = DB-6 is a duplicate of DB-3

Page___1_ of ____

KCI "S	Surface Soil Subsurface Soil Sediment agoon / Pond Other		Page! of
Project Site Name <u>Foot Street</u> Source Location <u>Boring</u> DB-	Extention 1	Project Site Number	0197/14-I
		Composite Sample D	ata
Sample Method:	Sample		Color / Description
epth Sampled:	0-2	10:00	
Sample Date & Time:	4-6	10:05	
5/14/01	6-8	10:08	
Sampled By:	8-10	10:12	
ampies 27.	10-12	10:18	
Signatures:			
Type of Sample Low Concentration High Concentration Grab Composite Grab - Composite Analysis:	Description of S	Sample Data on: (Sand, Clay, Dry, Moist, Fredium to Sample Location ROB-1	Open aran
		Organic	Inorganic
	Date Shipped		
	Time Shipped		
	Lab		
· ·	Volume		8

☐ Surface Soil
☐ Subsurface Soil
☐ Sediment

Page_____ of _____

	agoon / Pond Other		Ву	7EM
Project Site Name <u>EAST STREET</u> Source Location <u>BORING DB</u>		Project Site	e Number <i>OL</i>	97114-I
304,00				
Sample Method:			Sample Data	
spoon + jan	Sample	Time	Color /	Description
Depth Sampled:	0.0'-20'	0900	Damp to moist	very stiff L
Sample Date & Time:	2.01 - 4.01	0905		Drawn SILT +
5/11/01 0930	4.0' - 6.0'	99 10	ashur, trace	wood + road
Sampled By:	60'-80'	0915		
TEN	80'-10.0'	0933		
Signatures: Magain	10-0' -120'	3925	Ų/	
Type of Sample				
☐ Low Concentration☐ High Concentration			L	
☐ Grab		Samp	le Data	
	Color Description	: (Sand, Clay,	Dry, Moist, Wet, et	tc.)
☐ Grab - Composite	Rinun Dang to	mont yery	alift to med	clff SILT washer
	Description of Sa	ample Location	on	
Analysis:				
PAH= (8771)				
RCRA & motals (6010 + 7471)		- //		
TPH (418.1)	9	ravel re	300	
TCLP Metals (1311)		mon	~~~	
		1		
		i		
	N180'	1		
		į.		
		1.	77-2	
		*	., , ,	
		Or	ganic	Inorganic
	Date Shipped	1		
	Time Shipped			
	Lab			
	Lau			
<u> </u>	Volume			

☐ Surface Soil

Page__/__ of ____

KCI Sec	surface Soil diment doon / Pond er		Ву	TEM
Project Site Name TAST STREET E		Project Sit	e Number 🙇	197/14-I
Source Location BORING DR-3				
- Mathod:		I The same of the	Sample Data	/ D vistion
Sample Method:	Sample	Time	Color	/ Description
Depth Sampled: 4/)' - // 0 '	4.0' - 6.0'	0405	Moist mad	. still to still
Sample Date & Time:	6.0' - 8.1)	0910	glass tree	T of ashan
5 16 01 0940	80 -10.0	0930		
Sampled By:	10.0' - 11.0'	0750	tragasta	
TEN "		1		
Signatures:				
San of Sample				
Type of Sample			1	
☐ Low Concentration				
- un l Concentration		0	-le Doto	
☐ High Concentration ☐ Grab	To saviatio	IC-ad Clas	ple Data v. Dry, Moist, Wet,	etc.)
M Composite	Color Description	11. (Sarid, Ola)	141 511	T m/ ashon frogrant
☐ Grab - Composite	Description of S	ample Loca	tion	
	Description of S	ampie Loos		
Analysis:	-	/ /		
0. 1507	_ /	/,		
PCLA & Metal (6010 + 7471)	_ /	~/ ~	E.	
204 (148.1)	- /	2	E,	
TCIP Metal (1311)	-	9	>	
	- '	2	~	
		i	7	
	-	1	7	
	brick works		>	
	works / W	DB-3	>	
	7//	/	6-3	
			Organic	Inorganic
- 1 2 2 11	200		Organic	
Deplicate Sample taken	Date Shipped			
£ DR-2.	Time Shipped			
1 VID-5	Lab			()
Deplicate Sample taken of DB-3; DB-6	Volume			
VV V	Volume			

☐ Surface Soil

Page____/_ of __/__

KCI G Sec	surface Soil liment oon / Pond er		Ву _	TEM
roject Site Name <u>FAST STREET</u> EXT	PNDED	Project Sit	e Number <u>019</u>	17/14-I
ource Location BORING DB-4				
		Composite	Sample Data	
ample Method:	Sample	Time	Color / [Description
Depth Sampled:		0940	Fassil	
0'-10,5	00-05	0945	1. Moist soft	brown SNET and
Sample Date & Time:	2.0'-4.0'	0950	ashan brick	francist rock
5/9/01 10.12 am	4.0'-6.0'	0955	francit	,
Sampled By:	6.0' - 8.0'	1000	/	
(Blue	8.0 - 10.D'	1005		
Signatures:) III 0/	10.0'-10.5'	1010	\downarrow	
Grab A Composite Grab - Composite Analysis: PAHs / 8270) RCRA 8 Motals (6010 + 7471) - HH (418.1) TCLP puletals (1311)	Brand Mrist, & Description of S	oft brown	DB-4	high to the state of the state
	1	þ	4	Inorganic
			Organic	morganio
l	Date Shipped			
	Time Shipped Lab	_		
	Volume			× 1

KCI TECHNOLOGIES	Subs Subs Lago Othe	on / Pond		Page of
Project Site Name East	St. F.	stension S	Project Site Nu	umber <u>019 7/14-I</u>
Source Location	/			
Sample Method: Szorn + Jar Depth Sampled: (8'-20'		Sample	Composite San	nple Data Color / Description
Sample Date & Title.	×.			
Sampled By: Signatures:				
Type of Sample Low Concentration High Concentration Grab Composite Grab - Composite Analysis:			Sample on: (Sand, Clay, Dry	, Moist, Wet, etc.)
			Orga	anic Inorganic
		Date Shipped Time Shipped Lab		
,		Volume		

APPENDIX I.

Descriptions of Areas on Figure 2

DRAWING NOTES

Attached is a drawing titled "Environmental/Geotechnical Description of Frederick Brick Works, Inc. Property" which shows Frederick Brick's property divided into areas exhibiting varying environmental and geotechnical features. The features observed in each of the areas are described below. Also presented is a discussion of remedial and construction measures that may be needed in rendering the areas suitable for mixed commercial/residential development. These findings are based on the results of subsurface investigations, analysis of the chemical and engineering properties of fill soil, and air-photo interpretation. Subsurface investigations completed to date include the excavation of 60 test pits and the completion of 28 hollow-stem auger borings and 24 airtrack borings by Hillis-Carnes Engineering Associates of Frederick, Bay Environmental, and KCI. Testing work consists of the chemical analysis of 13 soil/fill samples collected by Bay Environmental and KCI and engineering characterization of fill materials by Hillis-Carnes. The drawing and this associated presentation of findings were prepared by Hydro-Terra with assistance from Hillis-Carnes in describing geotechnical features and construction practices.

AREA A-1 (Approx. 31.3 Acres, No Fill Except Along Railroad Right-of-Way)

Environmental Features: The area is agricultural and has not been disturbed by clay mining or waste disposal. No soil contamination of consequence is anticipated.

Geotechnical Features: A closed depression containing trash exists on adjoining property southwest of the area, and the depression intrudes onto Frederick Brick's property. Sinkholes appear to be present on adjoining property southeast of the area.

Remedial/Construction Measures: Environmental conditions should not warrant remedial action. Should sinkhole potential become a concern, use of deep foundations or mat foundations under buildings and placement of geofabric under roadways and critical fills might be required.

AREA A-2 (Approx. 1.3 Acres, No Fill)

Environmental Features: The area consists of a depression which probably is a remnant of a drainageway that once ran along the west side of the property. No waste of any consequence was found in the depression. Environmental conditions are unlikely to impede development of this area.

Geotechnical Features: No evidence of past or current sinkholes was observed.

Remedial/Construction Measures: It is unlikely that measures will need to be taken to remedy environmental conditions. Development would probably necessitate placement of an engineered fill. In lieu of the placement of a clean-soil fill, the depression could be

filled with waste materials removed from other areas of the property during grading that have suitable engineering properties. Per the presumptive remedial actions adopted by MDE under their Voluntary Cleanup Program (VCP), a one-story, lightly-loaded commercial building could be placed directly over the compacted waste even though the chemical quality of the waste exceeded cleanup standards. A multi-story building may require a deep foundation. Alternatively, use of the area as a paved parking lot or open space would, under the VCP, require capping contaminated waste with two and three feet of clean soil, respectively. The presence of this depression will probably facilitate development of the rest of the property.

AREA A-3 (Approx. 12.9 Acres, Est. Fill Depths: 0 to 10.5 Feet)

Environmental Features: Auger borings show soil fill over the area, containing, in some locations, rejected bricks. Environmental conditions significantly impeding development are not apparent. On the retail portion of the area, leaking underground storage tanks containing petroleum products were removed. In these limited areas, some petroleum-contaminated soil might be encountered during earthwork.

Geotechnical Features: No evidence of past or present sinkholes was observed. Bedrock is shallow in some locations and would impede excavation, should excavation be planned at these locations.

Remedial/Construction Measures: Minor amounts of petroleum-contaminated soil may have to be removed. Foundation conditions should not significantly impede development.

AREA A-4 (Approx. 3.3 Acres, Little or No Fill)

Environmental Features: Little or no fill of environmental significance is anticipated.

Geotechnical Features: No past or present sinkholes were observed. Elevated bedrock in areas could impede excavation, if excavations were planned.

Remedial/Construction Measures: Environmental conditions should not necessitate remedial action. Foundation conditions should not significantly impede development.

AREA B-1 (Approx. 10.0 Acres, Est. Fill Depth: 0 to 34 Feet)

Environmental Features: No municipal or brick-manufacturing wastes were observed in fill within this area, but limited amounts of very old waste could be present along the northern edge of the Kline fill at a depth not likely, in its present state, to result in significant human exposure during development. The Kline fill contains mostly soil from offsite construction sites. The soil contains some construction and land-clearing debris

consisting of mostly concrete, asphalt, and stone. Lesser amounts of wood and topsoil are scattered within the fill, material that might result in pockets of elevated methane concentration. However, the poorly-permeable clayey cover soil and the apparent lack of concentrated pockets of wood suggest that methane may not be a significant problem over much of the fill. Presence of inorganic and organic contaminants in the fill soil at concentrations of concern is unlikely.

Geotechnical Features: No past or current sinkholes were observed. The Kline fill was not constructed as an engineered fill, and, consequently, excessive ground settlement might occur under buildings constructed on the fill in its present state.

Remedial/Construction Measures: In dealing with environmental and geotechnical concerns, two options are apparent:

- 1. Should methane concentrations be relatively low, construct buildings on deep foundations, develop area for commercial use only, restrict use of basements, and install a relatively inexpensive vapor control system under the buildings similar to the type used to control radon gas.
- 2. Should methane concentration be relatively high over much of the fill, remove the fill and separate the methane-producing organic materials and the solid wastes that impede soil compaction. Use the remaining soil as clean-soil for capping waste material, treating other environmental or geotechnical conditions on the property, or constructing structural fills. Reconstruct the fill with waste materials from other areas having suitable engineering properties, including ash after being mixed with soil to make it a suitable material for constructing an engineered fill. If sinkhole development is a concern, install geofabric under the fill.

A considerable amount of clean soil could be obtained from the Kline fill area, and a significant amount of waste materials could be used in reconstructing the fill in a manner allowing commercial and residential development. Availability of the Kline fill as a source of borrow material for use in constructing engineered fills, capping wastes, and amending ash-laden waste in Area B-1 should facilitate development of the property. It could be the preferred option even if methane is not found to be a concern. Access to a portion of the low ground south of the Kline fill for disposal of excavated wastes should also facilitate development of the property.

AREA B-2 (Approx. 4.2 Acres, Est. Fill Depth: 0 to 10 Feet))

Environmental Features: The fill consists mostly of soil and demolition debris from construction sites. Some wood was observed in the fill which could be generating methane. It is unlikely that organic and inorganic contaminants of concern will be encountered at levels above their risk-based concentrations (RBCs).

Geotechnical Features: No past or current sinkholes were observed. Since the fill was not constructed as an engineered fill, excessive ground settlement could occur under structures built in this area.

Remedal/Construction Measures: Excavate any methane "hot spots" and backfill with clean soil and/or stable rubble. Excavate fill from beneath all building sites and backfill with suitably compacted clean soil having a permeability less than the surrounding fill. Restrict use of basements and require installation of a vapor-control system under the floor slabs and, should some organic material remain under open spaces, around the perimeters of the buildings. Remove the methane-producing material from excavated fill material, and dispose of the remaining soil and waste in Areas B-1 and A-2 as previously discussed. Alternatively, bury the remaining material under open spaces and/or roadways in the manner permitted by MDE.

AREA B-3 (Approx. 1.3 Acres, Est. Fill Depth: 0 to 9 Feet)

Environmental Features: Fill consists mostly of demolition debris and reject brick. Less soil is present than in Area B-2, and more wood waste was observed. Some coal ash is present in places. Methane concentration is likely to be the environmental concern rather than the presence of organic and inorganic contaminants above their RBCs.

Geotechnical Features: Same as B-2.

Remedial/Construction Measures: Same as B-2.

AREA C (Approx. 12.9 Acres, Est. Fill Depth: 0 to 16.5+ Feet)

Environmental Features: This area contains the oldest buried waste on the property. The fill consists primarily of a mixture of soil, coal ash, municipal solid waste composed mostly of composted organic materials and glass, and rejected brick. Considering the age and makeup of the fill, methane generation is probably not a problem. Screening-level sampling of fill material by Frederick Brick and the State Highway Administration has shown elevated levels (above RBCs) of lead, arsenic, mercury, and polynuclear aromatic hydrocarbon at some locations within this area. The likely source of the elevated chemical concentrations is probably the mix of coal ash and degraded municipal waste.

Geotechnical Features: No evidence of past or present sinkholes was observed in this area, although a sinkhole may be present on adjoining property to the west of the area. The pits scattered over the area appear to be dug by bottle collectors. Testing of ash samples showed dry unit weights below 100 pcf and elevated organic content which would require excavation and blending with clean soils to render the material acceptable for use in structural fills.

Remedial/Construction Measures: The presence of chemicals in some samples at concentrations above regulatory standards does not indicate the need for presumptive remedial actions as defined by MDE in their VCP, or that there are adverse human-health risks associated with exposure to the fill material, only that they are chemicals of potential concern. Should a more extensive sampling program be undertaken, pursuant to a more rigorous human-health risk evaluation, the calculated 95% upper-concentration-limits (95% UCLs) for these chemicals may be below levels requiring presumptive remedial action. Even if the 95% UCLs for one or more chemicals were found above the VCP cleanup standard, a quantitative human-health risk assessment could find the risks are within the acceptable ranges established by the U.S. Environmental Protection Agency and MDE.

The presence of low-density ash with elevated organic content within the fill material will negate dynamic compaction as a means of stabilizing the fill prior to construction. Since the area will probably be developed principally for commercial use and methane is expected not to be a problem, use of deep foundations will probably be the most costeffective foundation-construction practice. Even if it is found that a chemical in the fill exceeds the regulatory standard, the floor slab of a building can be placed directly on the fill material, thus eliminating the need to remove and dispose of the material. However, should the 95% UCL concentration of one or more chemicals exceed regulatory standards, it would be necessary, unless a risk assessment indicates otherwise, to remove some fill material from open spaces and under roadways and to cap the remaining fill with clean soil. An alternative to deep foundations would be to excavate the ash-laden fill from beneath building locations, mix clean soil with the ash, and place the mixed material in the excavations as engineered fills. This should allow for use of strip foundations rather than deep foundations. Excess material, whether generated from foundation and utility construction or from grading, could, with some soil amendment, be disposed of under clean fill in Areas B-1 and A-2.

AREA D (Approx. 2.8 Acres, Est. Fill Depth: 0 to 15+ Feet)

Environmental Features: The area is underlain by a mixture of municipal solid waste, construction and demolition debris, coal ash, and soil. Wood and other organic material capable of generating methane are present. The fill was probably placed in the late 1960s and early 1970s. The age and composition of the fill material indicated that methane could be present in the fill at elevated concentrations. The presence of organic and inorganic contaminants at levels above regulatory standards is probably less likely than in Area C.

Geotechnical Features: No evidence of past or present sinkholes was observed. Since the fill was not placed as an engineered fill and due to the presence of organic material, construction of buildings on the fill is probably not feasible.

Remedial/Construction Measures: Methane concentration will probably necessitate excavation of the site to remove the methane-generating waste under and around building

sites, backfilling with compacted low-permeability soils, and installation of a vapor-control system under and/or around the buildings. Use of basements would need to be restricted. Use of the area or portions of it for open space would only require capping with clean soil. Construction of parking garages would probably be permitted, but deep foundations would likely be required.

APPENDIX J.

Hydro-Terra, Inc. Test Pit Logs

DRAFT
System 6\Projects\01020 Fred Brick\Test Pit Logs

Test Pit	Total Depth	Description of Materials Encountered
Identification TP-31	(Feet) 9.5 Refusal,	Sparse vegetation on surface; Red & brown clay,
17-31	Fill Material	silt, sand, cobbles, concrete and asphalt; black
	1 III Wateriai	plastic bag at 4 ft.; broken brick at 7 ft.; refusal at
		9.5 ft.; red clayey chunks at bottom (probably still
		in fill material); No municipal waste observed.
		Rubble outcrops downslope just above drainage to
		south. No odor. 0.0 ppm with PID ¹ .
TTD 20	5.0 Refusal,	0-8" Surface debris (bottles and trash); dark gray
TP-32	Native Soil at	sandy Silt with plant roots; 8"-5' light brown clayey
	Base	Silt, trace sand, flat thinly bedded limestone chunks
	Dasc	throughout; few animal bones. No odor. 0.0 ppm.
TD 22	10 f Entent of	0-8" Gray organic silt with plant roots; 8"-5"
TP-33	12.5 Extent of	Medium tan silty Sand with scattered older bottles,
	back hoe	few bones; 5'-12.5' Tan/orange silty Clay with small
	reach, Native	platey limestone sheets. No odor. 0.0 ppm.
	Soil 5-12.5 ft.?	0-2.5' Brown silty Sand, boulders, small logs; 2.5'-
TP-34	8.5 Refusal,	5.0' slight treated lumber odor; silty Sand with some
	Native Soil	5.0' slight treated lumber odd, sitty Sand with some
	near Base	stone; 5.0'-8.5' Brown silty Sand, little mixed clay;
		7.5-8.5 ft. plates of thinly bedded gray limestone.
		0.0 ppm.
TP-35	4.5 Refusal,	0-2 ft. Brown silty Sand, rock cobble to boulder
	Kline Fill Area	size, shopping cart at 2 ft.; 2-4.5 ft. Same with gray
		limestone mixed in. Gray platey limstone at base,
		couldn't determine if native or fill. 0.0 ppm.
TP-36	8.0 Refusal,	Brown, orange, gray, silty Sand, little clay, small to
	Kline Fill Area	cobble size rocks (some gray limestone), 20% stone
		rest soil matrix with little clay content, cloth rag and
		small wood log at 2 ft. 0.0 ppm.
TP-37	11.5 Native?	0-10" Brown organic sandy Silt; 10"-4' brown
		sandy Silt to silty Sand, some bottles (old); 4 to
		11.5 ft. orange silty fine Sand, trace clay, layer of
		platey gray limestone at 7 ft.; No waste material
		after 5.5 ft. Orange silty Clay at 11.5 ft. 0.0 ppm.
TP-38	9.0 Refusal,	0-1.5 ft. Reddish brown sandy Silt, some gravel;
	Native at	1.5-2.5 ft. Some burned wood & ash - chemical
	Base?	odor; 2.5-9.0 ft. brown silty Sand, little to no waste
		material, live roots to 7 ft.; limestone layer at 9.0 ft.
ľ.		Shallow limestone outcrop approx. 75 ft NNE. 0.0
		ppm.
TP-39	8.5 Refusal,	0-3.5 ft. Brown and light gray silty Sand (ash?),
	Undisturbed	jars/bottles, few animal bones and red brick; 80%
	from 3.5-8.5 ft.	ash and soil; 3.5-8.5 ft. Red and tan silty Clay
	10111 5.5 0.5 11.	(native), chunks of thin bedded limestone at 4-4.5
		ft., Thin bedded limestone at 8.5 ft. 0.0 ppm. No
		odor.
		ouoi.
		II. Jan 7

DRAFT

Test Pit	Total Depth	Description of Materials Encountered
Identification	(Feet)	the Court remulation
TP-40	8.0 Refusal	0-5.0 ft. Brown to light brown silty Sand, very loose (ash), bottles & jars mixed in upper 5 ft. very little metal, 5'-8' tan on weathered gray on fresh surface thin bedded limestone (native). 0.0 ppm, No odor.
TP-41	8.0 Refusal	0-6.0 ft. Brown silty Sand (ash?), mixed bottles, live tree roots to 5.5 ft., minor metal tubing; 6-8 ft. tan silty Clay (native). (Logged pit after digging). 0.0 ppm. No odor.
TP-42	8.0 Refusal	0-3.0 ft. Brown & light brown silty Sand, few bottles, minor metal and red brick, 85% ash/soil, very loose; 3-8.0 ft. tan to light orange clayey Silt (natural), thin bedded limestone at base. (Near base of landfilled area). (Logged pit after digging). 0.0 ppm. No odor.
TP-43	11.5 Extent of Reach, Depression	Brown to light orange silty Clay, layer of thinly bedded and one massive piece of limestone at 4.5 ft.; moist, light red/orange silty Clay to 11.5 ft. (native); no landfill material observed, no odor, 0.0 ppm.
TP-44	4.5 Refusal	0-1.5 ft. Brown, sandy Silt (fill); 1.5-4.5 light orange, clayey Silt, large chunks of massive limestone (not natural deposit, dumped); No trash, no odor, 0.0 ppm.
TP-45	10.5 Refusal	0-9.0 ft. Brown and gray lumpy silty size ASH?, very loose, 18 in. layer of orange clayey soil from 1.5-3.0 ft.; Ash to 9.0 ft.; 9.0-10.5 red Clay with thinly bedded limestone layers near bottom of pit; Some bottles and minor landfill material to 9.0 ft., 90% of material is ash; No odor, 0.0 ppm.
TP-46	7.5 Refusal	0-6.0 Household trash (bottles, glass, clay tile, brick, mattress spring, metal straps, little plastic bottles, etc.), Ash seam at approx. 2.0 ft.; 6.0-7.5 tan, dry, Silt (may be natural); 80% material soil and/or ash; No odor, 0.0 ppm.
TP-47A&B	1.0 & 3.5 Refusal	Attempted two test pits approx. 10 ft. apart because of shallow refusal on TP-47A. 0-8 in. dark gray organic woodland soil, hit platey limestone and refusal at 1.0 ft.; Moved 10 feet, hit refusal at 3.5 ft. (limestone layer), No garbage observed; No odors, 0.0 ppm.

Test Pit	Total Depth	Description of Materials Encountered
Identification	(Feet)	CI in the side of depression 0
TP-48 ²	11.0 Extent of Reach, in Depression	Outcrops of Limestone either side of depression, 0-11.0 Tan silt with plates of thin bedded weathered tan limestone, dry, darker orange material in last foot (10-11 ft.), lumps of clay also present, 11.0 bottom of pit, didn't encounter well cemented bed during excavation, may be sinkhole, No garbage encountered in test pit; Surface trash near pit and probably landfilled trash around perimeter of pit. No odor.
TP-49	13.0 Extent of Reach	0-8" Dark organic Silt, 8"-5.0' tan Ash with glass bottles, bricks, little metal (ash is dry and very fine and loose, blows in wind easily); 5-13.0 ft. Mostly red bricks (broken or halves) mixed with ash matrix and little re crushed brick powder; pit was caving from 5.0 ft. making observations at bottom difficult.
TP-50	13.0 Extent of Reach	0-6" Thin layer of organic woodland soil; 6"-13' Gray and tan Ash (silty grained), dry and powdery, few bottles, very minor metal, live plant roots to 7 ft., Red/orange soil at very bottom of pit (may be native material), caving badly at 13.0 ft. No odors.
TP-51	12.5 Refusal	0-12.5 ft. Brown, very moist, loose Silt and Ash (Approx. 30% ash), brick, glass, pottery, compressed paper slabs (partially burned?). No odors.
TP-52	5.0 Refusal	Brown, moist, loose, Silt & ash, broken bricks, pottery shards, very little glass, no wood, no metal; 5.0 ft. refusal (massive limestone boulder). No odors.
TP-53	2.5 Refusal	Brown and tan/yellow silt, gray tin bedded limestone pieces throughout, minor charcoal at 1.5-2.0 ft., single layer of brick at 1.0 ft. No odor.
TP-54	3.2 Refusal	0-1.5 ft. Tan & brown Silt, little clay, with small chunck of gray platey limestone; 1.5-3.2 ft. mostly red Brick, little wood, few 4"-5" diam. asphalt pieces; 3.2 ft Refusal (Brick waste rubble at bottom). No garbage observed. No odor.
TP-55	4.5 Refusal	0-3.5 ft. Light brown & red, Silt, some platey limestone chunks to 8" diam., trace clay, one piece of small steel plate; rare broken brick pieces; 3.5-4.5 Tan Silt, gray limestone at 4.5 ft. (Refusal). No odor.
TP-56	1.5 ft. Refusal, Excavated through water	Excavated through standing water in shallow trenc along old railroad service line. 0-1.5 ft. Tan Clay, gray limestone pieces, broken red brick, No odor. Couldn't see base because of water.

DRAFT

Test Pit Identification	Total Depth (Feet)	Description of Materials Encountered
TP-57	1.5 Refusal	0-1.5 ft. Tan fine mortar sand, to gray limestone, little red clay chunks, water entering pit from surrounding pool. Couldn't see base of hole because of water. No odor. Located immediately west of unloading trestle at Frederick Brick Works facility.

¹ PID is photoionization detector that is capable of measuring total volatile organic compound (VOCs) concentrations within a determinable range of compounds.

² Test pitsTP-48 through TP-57 were not checked with PID for VOCs. PID not available on that date.

Appendix K.

Kline Fill Test Pit Logs and Chemical Analysis Report

tapering to shallower depths towards the tree-lines to the east and west. The fill consisted mostly of a sandy silt soil matrix with considerable construction fill and rubble including, but not limited to, concrete, brick, rebar, ash, shot-rock, and crushed aggregate (i.e. CR-6). Some organics (branches, roots, etc.) were encountered, but generally appeared to be minimal. Perched water was encountered in several of the test pits at depths between 4 to 8 feet below existing grade.

The four test pits excavated on Parcel 9 indicated the presence of natural ground. This parcel was observed to be agricultural field and appeared to consist of orange-brown clayey silt underlying a 12*-16" plow zone.

Logs of the test pits are provided in the Appendix. Photographs of typical conditions are on file at our office and are available upon request.

Table 1: Summary of Fill Depths

TO CONTRACT OF SECURITY OF SEC			#EGDI-#54(BbBloWa
TP-1 K	6	TP-18 K	0
TP-2 K	9.5	TP-19 K	2
TP-3 K	20.5	TP-20 K	2
TP-4 K	6.5	TP21 K	25
TP-5 K	10	TP-22 K	17.5
TP-6 K	4.5	TP-23 K	34
TP-7K	5.5	TP-24 /C	12
TP-8 K	4	TP-25 K	17
TP-9 K	4.5	TP-26 /	13
TP-10 K	4	TP-27 K	14
TP-11 K	0	TP-28 K	8.5
TP-12 /	0	TP-29 K	19
TP-13 K	6	TP-30 K	20.5
TP-14 K	9	TP-31 K	25
TP-15 L	2.5	TP-32 K	29
TP-16 /	7	TP-33 K	29.5
TP-17 K	0	TP-34 /	30.5

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-1		
Location	Frederick, Maryland	· · · · · · · · · · · · · · · · · · ·	Job#	03905A		
Datum Surf. Elev.	MSL 309.6	Equipment: PC 220		Inspector		
Date Started	March 1, 2005			Date Completed	March 1, 2005	

ſ	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	7
-	200 50	Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6"	NOTES	
	309.60 306.1 303.6	Sandy SILT with brick and rock fragments (ML) [FILL]	2.5	BLOWS 6	Natural Ground	
			10.0			
			15.0			
			20.0			

Encountered	n/a	1111111111111
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-2 /	
Location	Frederick, Maryland		Job#	03905A	
Datum Surf. Elev. Date Started	MSL 307.65 March 1, 2005	Equipment: PC 220		Inspector Date Completed	

CLEV	CON BECODIDATION	DEDTU	SAMPLE	BORING & SAMPLING	7
ELEV.	SOIL DESCRIPTION	DEPTH	BLOWS 6"	NOTES	1
307.65	Color, Moisture, Density, Size, Proportion SURFACE	SCALE 0.0	BLOWS 6	MOTES	-
307.05	SURPACE	1 0.0			
		_		At Alask Bank	
				Along Haul Road	
		_			-
		_			
		2.5			I_
)				
	Silty Sand with				
	Brick, rock fragments, rebar, and	_			
	trace lumber [FILL] (SM)				1
	Itrace idinoer [FILL] (SW)	-			-
		5.0			-
				B. 4.44.5	
		_		Photo 1 taken	-
					-
		_			
i i	f	7.5			_
					_
298.7		9.0			
	Tan, sandy SILT (ML)	1 5.5 —	ł	Natural Ground	-
202.7	Tall, saidy Oici (Mic)	10.0	}	Material Crossing	1-
297.7		10.0			
		-			-
	Bottom of hole @ 10.0 ft				-
W 1		-			-
	1	_			-
		12.5			-
					_
		_			1
		_			
	}	15.0			1
		10.0			1-
		_			
		-			-
()					-
				1	_
		17.5			-
			1	_	_
				ľ.	
		_			
			ı		

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-3 K	V	
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Elev.	MSL 305.8	Equipment: PC 220		Inspector	E. Schabert	
Date Started	March 1 2005			Date Completed	March 1, 2005	

1.	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
L		Color, Moisture, Density, Size, Proportion SURFACE	SCALE	BLOWS 6"	NOTES	_
	305.80	SURFACE	0.0			
	285.8 284.3	Silty rock fragments with metal, plastic bags, brick wood mixed with ash (GM) [FILL] Tan sandy SiLT[ML] Bottom of hole @ 21.5 ft	5.0		Photo 2 taken (excavated material)	

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works	7/31	Test Pit#	TP-4 /C		
Location	Frederick, Maryland		4 doL	03905A		
Datum	MSL	Equipment: PC 220		- Inspector	E. Schaberl	700
Surf, Elev. Date Starter	302.3 March 1, 2005			Date Completed		

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	1
302.30	Color, Moisture, Density, Size, Proportion SURFACE	SCALE 0.0	BLOWS 6"	NOTES	-
	Mulch, rock, brick, metal, silty SAND (SM) [FILL]	2.5		Test pit tapers to NG @ grade against tree line beneath thin layer of mulch	
		5.0		-	=
295.8	Tan sandy SILT [ML]	6.5		Natural Ground	
	Bottom of hole @ 7.5 ft	10.0			
		=			
		12.5			=
		15.0			
		17.5			E
		20.0			<u></u>

Ground Water Depth

Encountered n/a
After n/a

TEST PIT LOG

Project	Frederick Brick Works	75	Test Pit#	TP-5 K	
Location	Frederick, Maryland		Job#	03905A	
Datum	MSL	Equipment: PC 220			
Surf. Elev.	307.6	Eddiburg 1 0 220		Inspector	E. Schaberl
Date Started	March 1, 2005			Date Completed	March 1, 2005

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
	Color, Moisture, Density, Size, Proportion SURFACE	SCALE	BLOWS 6	NOTES	
307.60	SURFACE	0.0			_
-		2.5			
	brick, metal, and rock fragments with silty SAND (SM) [FILL]	5.0	ŧ		
		7.5			-
		_		Photo 3 taken	
	Tan, sandy SILT (ML)	10.0		Bag sample taken @ 10.5 ft Natural Ground	-
	Bottom of hole @ 10.5 ft	12.5			
		15.0			-
	Α.	17.5			-
		20.0		_	

Encountered	nla	
After	n/a	

TEST PIT LOG

Project Location	Frederick Brick Works Frederick, Maryland		Test Pit# Job#	TP-6 K 03905A	
Datum Surf. Elev.	MSL 301.7 d March 1 2005	Equipment PC 220	- K. 17: 10:5	Inspector Date Completed	

					BORING & SAMPLING	1
	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	NOTES	ļ
ļ		Color, Moisture, Density, Size, Proportion SURFACE	SCALE	BLOWS 6"	NOTES	1
	301.70	SURFACE	0.0			
		Brick, rock, metal, etc.; BROWN sitty SAND (SM) [FILL]	2.5		Woods Test pit tapers into NG at grade on far wooded side (north)	E
	298.2 297.2	Тап, sandy SILT (ML)	3.5 <u> </u>		Natural Ground	
11		Bottom of hole @ 4.5 ft	5.0			
			7.5			
			_			E
<u>-</u>	T/6		10.0			
=		6	12.5	-		
=			15.0			
			17.5		•	
=			20.0			

Encountered	n/a	
After	n/a	7.50

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-7 K		
Location	Frederick, Maryland		Job#	03905A	_,,_	
Datum Surf. Flori	MSL 306.4	Equipment: PC 220		Inspector	E. Schaberl	
Surf. Elev. Date Started	March 1, 2005			Date Completed		

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
	Color Moisture Density Size Proportion	SCALE	BLOWS 6"	NOTES	1
 306.40	Color, Moisture, Density, Size, Proportion SURFACE	0.0			
	Brick, glass, and metal with ash [FILL]	2.5		Woods Old landfill, not Kline, fill Photo 4 taken	
	Tan, sandy SILT (ML) Bottom of hole @ 6.0 ft	5.0 5.5 6.0 7.5		Natural Ground	
		10.0			E
		12.5	-	1	E
		16.0			
		17.5			

—	Jui 14	*****	-op.
Encountered	n/a		
After	n/a		

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-8 /		
Location	Frederick, Maryland		Job#	03905A		_
Datum Surf. Elev.	MSL 309.1	Equipment: PC 220		Inspector	E. Schaberi	
Date Started	March 1, 2005			Date Completed	March 1, 2005	

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	1
1	Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6"	NOTES	
309.10	Color, Moisture, Density, Size, Proportion SURFACE	0.0			
305.1	Sility SAND with Wood, brick, concrete, rock fragments [FILL] (Kline fill) Old landfill with trash	2.5			
	(FILL)	7.5			-
300.6		8.5	1		
	Refusal on rock @ 8.5 ft	10.0			
		15.0			
		17.5			
į.		20.0			

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-9 K		
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Elev.	MSL 310.9	Equipment PC 220		- Inspector		
Data Started	March 1 2005			Date Completed	March 1, 2005	-100

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	\neg
LLEV.	Color Moieture Density Size Proportion	SCALE	BLOWS 6"	NOTES	
310.90	Color, Moisture, Density, Size, Proportion SURFACE	0.0	DECTION		1
010.00	Mulch	0.0			-
309.9		1.0	1		_
309.9		1.0			-
1			-	MDD 124.2	·
-	C'11 CAND - 10 - 1 C 1-		-}	OM 10.6%	-
	Silty SAND with rock fragments, trace	2.5	-	OM 10.6%	
	organics (SM) [FILL]	-	-		-
1		-	-}		1-
			-}		1-
306.4		4.5	-]]
	Natural Ground	5.0			
1	Bottom of hole @ 4.5 ft	-			
		_			
		_			
		-			
		7.5	1		1_
		_	1		
		_	1		
			1		
i i	l Y	10.0	1		1
			1		
		-	1		
		_			
					100
		12.5	1		-
		, 11,0	1		1-
			1		1
		_	1		
		_	1		-
		15.0	1		
	-	13.0	1		-
		-	1		_
					-
	i i i i i i i i i i i i i i i i i i i	_	•		-
		4	1		-
	3	17.5	-		1-
		_			
			-		-
		n	-		-
		_			-
		20.0			_ _

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works	*	Test Pit#	TP-10 /<		
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Elev.	MSL 306.6 d March 1, 2005	Equipment: PC 220		Inspector Date Completed	E. Schaberl March 1, 2005	

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	1
	Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6"	NOTES)
306.6	Color, Moisture, Density, Size, Proportion SURFACE	0.0			
305.	Mulch	1.5		Test pit tapers to mulch from natural ground towards woods	
	Tan, sandy SILT with rock fragments (ML)	2.5			=
302.	3	4.0			F
	Bottom of hole @ 4.0 ft	5.0			
					Ξ
=					-
_[7.5			
_					_
					匚
	1	10.0			-
	Í				
	i e			1	-
_		12.5			_
		_			
_		-			-
		15.0			
4					
_					
_					_
_		17.5			-
_					_
-		_			
-		20.0		5 500	_

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-11 K		
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Eleva Date Started	MSL 300.4 March 1, 2005	Equipment: PC 220		Inspector Date Completed	E. Schaberi March 1, 2005	

					Y ====================================	_
	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
		Color, Moisture, Density, Size, Proportion SURFACE	SCALE	BLOWS 6"	NOTES	-
_	300.40	SURFACE	0.0			
_		Topsoil = 6"	l –			-
_					Base of mulch pile	-
		Tan, sandy SILT with rock fragments	· -		Natural Ground	_
		(ML)			i	
	297.9		2.5			
_					i	<u> </u>
		Bottom of hole @ 2.5 ft			1	_
_					1	
					1	_
			5.0			
-					1	
			_			-
	-					
		j		1		-
			7.5	ſ	ĺ	-
		l				
						_
		N	_	1		
	j	(6)	10.0		`}	
		il il	i –	Į.		
			_			
			_			-
			12.5			
				1	1]—
			-			
			_			1000
			_			-
			15.0			
		1	_		1	-
				.)	1	
			1	Į.	1	-
				.1	1	
			17.5			-
		1		1		
_		}		1	J	
7				1	1	
-			20.0			
			4010	ــــــــــــــــــــــــــــــــــــــ		

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-12 K		
Location	Frederick, Maryland	9-27	Job#	03905A		
Datum Surf. Elev.	MSL 303.2	Equipment: PC 220		Inspector		
Date Starte				Date Completed	March 1, 2005	

,						_
1	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	1
- 1		Color, Moisture, Density, Size, Proportion SURFACE	SCALE	BLOWS 6"	NOTES	_
	303.20	SURFACE	0.0			
	300.7	Topsoif = 6" Tan, sandy SILT with rock fragments (ML)	2.5		Bottom of hill Natural Ground	
		Battom of hole @ 2.5 ft	5.0			
			-			
			7.5			
- 1	ğ		10.0			
			12.5			
			15.0			E
			17.5			
			20.0		2	

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-13 /		
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Elev.	MSL 291	Equipment: PC 220		Inspector	E. Schaberl	
Date Started				Date Completed	March 1, 2005	

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	٦
	Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6*	NOTES	_
291.00	SURFACE	0.0			_ _
291.00	Color, Moisture, Density, Size, Proportion SURFACE Brown, silty SAND with concrete, brick and debris [FILL] Bottom of hole @ 6.0 ft	5.0	BLOWS 6*	Natural Ground	
		15.0			
		20.0			

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-14 ~		
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Elev. Date Starte	MSL 278.1 d March 1, 2005	Equipment: PC 220		Inspector Date Completed	E. Schaberl March 1, 2005	

				DODING A GAMPING	_1
ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
	Color, Moisture, Density, Size, Proportion SURFACE	SCALE	BLOWS 6"	NOTES	
 278.10	SURFACE	0.0			
	Brown, silty SAND with rock fragments, concrete, and wood (SM) [FILL]	2.5		Woods, toe of hill	
269.1 268.6	Tan, sandy SILT (ML) Bottom of hole @ 9.5 ft	7.5 9.0 9.5 10.0 12.5		Natural Ground	
		15.0			
		17.5			

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-15 K		
Location	Frederick, Maryland		Job#	03905A		
	1000000			Ų.		
Datum Surf. Elev.	MSL 276.5	Equipment: PC 220		Inspector	E. Schaberl	
Date Started				Date Completed	March 1, 2005	

EI	LEV.	SOIL DESCRIPTION	DEPT	ГН	SAMPLE	BORING & SAMPLING	
2-	70.50	Color, Moisture, Density, Size, Proportion	SCAL	E.	BLOWS 6"	NOTES	
	273.0 273.5	SURFACE Brown, silty SAND, trace brick, rock fragments, and organics (SM) [FILL] Tan sandy SILT (ML) Bottom of hole @ 3.0 ft	2.5 3.0			Naturat Ground	
			7.5				
			12.5 _				
			17.5 20.0 _				

Encountered After	n/a
	n/a

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-16 /		
Location	Frederick, Maryland		Job#	03905A		
Datum	MSL	Equipment: PC 220				
Surf. Elev.	278.6			Inspector	E. Schaberl	
Date Starte				Date Completed	March 1, 2005	

,				DAMBI E	BORING & SAMPLING	7
	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	NOTES	
		Color, Moisture, Density, Size, Proportion SURFACE	SCALE	BLOWS 6"	NOTES	-
	278.60	SURFACE	0.0			
		Fine silty SAND with shot rack (SM) [FILL]	2.5			
	271.6	Tan sandy SILT (ML)	7.0 7.5 9.0		Natural Ground	
_	269.6	Bottom of hole @ 9.0 ft	10.0			
			12.5			
_			20.0			_

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pi#	TP-17 K		
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Elev. Date Started	MSL 272.7 March 1, 2005	Equipment: PC 220	<u> </u>	Inspector Date Completed	E. Schabert March 1, 2005	

1	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
		Color, Moisture, Density, Size, Proportion SURFACE	SCALE	BLOWS 6"	NOTES	
	272.70	SURFACE	0.0			
	270.2	Topsoil ≈ 1" Tan, sandy SILT, trace rock fragments (ML)	2.5		Natural Ground	
=		Bottam of hole @ 2.5 ft	7 =			E
			5.0			
=			7.5			
	į		10.0			
			12.5			
=	€.		15.0			
		i.e.)	17.5			
			20.0			

Encountered	n/a	 22
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works	Test Pit#				
Location	Frederick, Maryland		Job #	03905A		
Datum Surf. Elev. Date Starte	MSL 274,8 d March 11, 2005	Equipment: PC 220		Inspector Date Completed		

ELEV.	SOIL DESCRIPTION Color Moisture Density Size Proportion	DEPTH	SAMPLE BLOWS 6"	BORING & SAMPLING NOTES	
274.80	Color, Moisture, Density, Size, Proportion SURFACE	0.0].
272.8	Topsoil = 0" Tan, sandy S!LT, trace rock fragments	2.0		Natural Ground	
	Bottom of hole @ 2.0 ft	2.5			-
		5.0			-
		7.5			
		10.0			
		12.5			
		15.0			
		17.5			
		20.0	-		

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project Location	Frederick Brick Works Frederick, Maryland	_	Test Pit# Job#	TP-19 K 03905A	
Datum Surf. Elev. Date Started	295.8	ent: <u>PC 220</u>		Inspector Date Completed	E. Schaberi March 1, 2005
ELEV.	SOIL DESCRIPTION Color, Moisture, Density, Size, Proporti	DEPTH on SCALE	SAMPLE		& SAMPLING TES
295.80	SURFACE	0.0			77.

- [ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
		Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6"	NOTES	_
	295.80	Color, Moisture, Density, Size, Proportion SURFACE	0.0			
		Shot rock mixed with reddish brown,	_	5-2-2		
		wet, sandy CLAY (CL)				
			_	VI		
	293.3	A THE RESERVE THE PARTY OF THE	2.5			
		B.O.H. @ 2.5			Natural Ground	
_			-			-
			_			-
			_			
		,	5.0			
					220	
			_			-
			-			
			7.5			
						-
			_			-
22.1						
					l	
_			10.0		ì	
			_		ł	-
			_			_
						-
					1	-
-			12.5	1	1	
			_		1	-
		1	-	ļ	1	_
-			15.0			
			15.0			
						-
_			-			
-		-	_			_
			17.5		_	_
			17.5			
			l —	1	1	-
				1	}	-
-					ł.	_
-			-		-	-
			20.0			

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works	W	Test Pit#	TP-20 /	_
Location	Frederick, Maryland		Job#	03905A	 _
Datum Surf, Elev. Date Starter	MSL 280.2 March 1, 2005	Equipment PC 220		Inspector Date Completed	_

1	FIFT.	COIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
	ELEV.	SOIL DESCRIPTION	SCALE	BLOWS 6"	NOTES	1
1	280.20	Color, Moisture, Density, Size, Proportion SURFACE	0.0	DCOVIO 0	110120	-
	280.20	OURFACE	J.0			
		Brown and reddish brown, sandy	- 1			-
		SILT, trace clay and rock fragments				_
-	070.0	SIL1, trace day and rock tragments	2.0			-
-	278.2	(ML)			Natural Ground	_
		B.O.H. @ 2'	2.5		Natural Growing	
_			-		ĺ	
-			-		1	_
E				1		
_					=	
			5.0			
_				1		-
			-			
			d			
_						_
			7.5			
		<u>_</u>	-			-
-			l –			-
			_			
		1	10.0			
				i	1	-
_			l			-
						_
_			l –			-
			12.5			-
_			l –			-
=		1		1		
_			_			-
_			_			
			15.0			
						_
			_		1	
			17.5		_	
	ł	1			1	_
				-		_
			1 =			
_						_
-			20.0			

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project Frederick Brick Works Location Frederick, Maryland Job # 0390	R
- 1	5A
SUIT FIRV SUM.D	spector E. Schaberl Impleted March 2, 2005

SOLL DESCRIPTION SCALE SAMPLE SAMPLE SAMPLE SCALE BLOWS 6" NOTES							_
304.80 SURFACE 5.0 Brown, sitty SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0 20.0 Photo 5 taken 24.5 273.8 Tan, sandy SiLT (ML) Bottom of hole @ 25.0 ft 35.0 35.0	ĺ	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
S.0			Color, Maisture, Density, Size, Proportion	SCALE	BLOWS 6"	NOTES	
Brown, slity SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0		304.80	SURFACE	0.0			
Brown, slity SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0	_						-
Brown, slity SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0	_						
Brown, slity SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0							-
Brown, slity SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0	_					On a comple taken	
Brown, sitty SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0 20.0 Photo 5 taken 24.5 279.8 Tan, sandy SiLT (ML) Bottom of hole @ 25.0 ft 30.0 35.0				5.0		Bag sample taken	
Brown, sitty SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0 20.0 Photo 5 taken 24.5 279.8 Tan, sandy SiLT (ML) Bottom of hole @ 25.0 ft 30.0 35.0	_			_		1	_
Brown, sitty SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0 20.0 Photo 5 taken 24.5 279.8 Tan, sandy SiLT (ML) Bottom of hole @ 25.0 ft 30.0 35.0	_			_			
Brown, sitty SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0 20.0 Photo 5 taken 24.5 279.8 Tan, sandy SiLT (ML) Bottom of hole @ 25.0 ft 30.0 35.0		1		_	1		
Brown, sitty SAND with rock fragments, concrete, and wood (SM) [FILL] 15.0 20.0 Photo 5 taken 24.5 279.8 Tan, sandy SiLT (ML) Bottom of hole @ 25.0 ft 30.0 35.0				-			-
Concrete, and wood (SM) [FILL]	_			10.0	ŀ		
Concrete, and wood (SM) [FILL]	_			=	1	i	
15.0			Brown, silty SAND with rock fragments,	_			-
20.0 Photo 5 taken	-		concrete, and wood (SM) [FILL]	_			
20.0 Photo 5 taken				150	f	ľ	_
280.3 279.8 Tan, sandy SiLT (ML) 25.0 Bottom of hole @ 25.0 ft 30.0 35.0 35.0				13.0			
280.3 279.8 Tan, sandy SiLT (ML) 25.0 Bottom of hole @ 25.0 ft 30.0 35.0 35.0	-				\$		
280.3 279.8 Tan, sandy SiLT (ML) 25.0 Bottom of hole @ 25.0 ft 30.0 35.0 35.0	-			-			-02
280.3 279.8 Tan, sandy SiLT (ML) 25.0 Bottom of hole @ 25.0 ft 30.0 35.0 35.0	-			_	1		7
280.3 279.8 Tan, sandy SiLT (ML) 25.0 Bottom of hole @ 25.0 ft 30.0 35.0 35.0				20.0	1	Photo 5 taken	
279.8 Tan, sandy SiLT (ML) Bottom of hole @ 25.0 ft 30.0 35.0				20.0	ł		
279.8 Tan, sandy SiLT (ML) Bottom of hole @ 25.0 ft 30.0 35.0	-			_			
279.8 Tan, sandy SiLT (ML) Bottom of hole @ 25.0 ft 30.0 35.0	_		8			1	10000
279.8 Tan, sandy SiLT (ML) Bottom of hole @ 25.0 ft 30.0 35.0	-	280.3		24.5			
Bottom of hole @ 25.0 ft 30.0 35.0	-	270 R	Tan sandy SILT (MI.)			Natural Ground	
30.0	_	270.0	Turi, sarray STET (ME)				
30.0	-	i	Bottom of hole @ 25.0 ft		1	1	
35.0							
35.0	-					1	
	_			30.0		1	
	_						
				_			_
						I .	-
				l _		li .	
				35.0			
				_	.		_
_ 40.0							-
40.0			5	_			_
40.0		1	ł –	_	1		_
				40.0			

Ground Water Depth

Encountered n/a
After n/a

TEST PIT LOG

Project Location	Frederick Brick Works Frederick, Maryland		Test Pit# Job#	TP-22 / 03905A	
Datum Surf. Elev. Date Started	MSL 304.8 March 2, 2005	Equipment; PC 220		Inspector Date Completed	

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	7
LLEVA	Color Moisture Density Size Proportion	SCALE	BLOWS 6"	NOTES	┚
304.80	Color, Moisture, Density, Size, Proportion SURFACE	0.0]_
	Brown to dark brown, silty SAND, trace clay, wood, and rock fragments (ML) [FILL]	5.0		Bag sample taken Photo 6 taken @ stock pile	
287.3	Tan, sandy SILT with rock fragments (ML Bottom of hole @ 18.5 ft	15.0 17.5 18.5 20.0		Natural Ground	
-		25.0			-
-		35.0	-	***	

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-23 /		
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Elev.	MSL 301,2 March 1 2005	Equipment: PC 220	- Auto	Inspector	E. Schabert	
Date Started	March 1 2005			Date Completed	March 1 2005	

1	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	-1
		Color, Moisture, Density, Size, Proportion	SCALE			1
	301.20	SURFACE		100000	NOTES	-
	297.2 295.7 293.2	SURFACE Brown, silty SAND with rock fragments, trace brick (SM) [FILL]	4.0 5.0 5.5 8.0		Photo 6 taken Small bag sample taken at 8.9 ft	
	281.2	Brown, sandy SILT with large rock, trace brick (ML) [FILL]	15.0		Photo 7 taken	
		Sandy CLAY with gravel, trace brick (CL)	25.0			
	268.7 267.2	Brown, sandy SILT with rock and gravel (ML) Sandy, wet, CLAY with wood and roots (CL) Bottom of hole @ 34.0 ft	30.0 32.5 34.0 35.0		Natural Ground	
	3		40.0			

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-24 K	<u> </u>	
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Elev.	MSL 307.8 1 March 2 2005	Equipment: PC 220		Inspector Date Completed	E, Schaberl March 2, 2005	

	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	7
	ELEV.	Color Maisture Pensity Size Proportion	SCALE	BLOWS 6"	NOTES	
)	307.80	Color, Moisture, Density, Size, Proportion SURFACE	0.0	BEOTIO		-
	307.00	OBIN AGE	0.0		in the same of the	-
-		Mulch	_	1		-
-		Mulci	-			-
-	305.8	1	2.0			_
	303.6		2.5			_
-			4.5			
			-			_
-			=			_
		i i				-
			5.0			
			3.0			
****			-		_	-
		OF THE STATE OF THE COURT OF THE			MDD 130.1	_
	-	Shot rock with silty SAND (SM) [fill]	_		OM 8.1%	-
-				i i	OM 6.1%	_
			7.5			
_			•			-
			_			-
						_
~					-	-
_			10.0		,	
						_
_			-			-
			_			
_	295.8		12.0			
_		Tan, sandy SILT (ML)	12.5		Natural Ground	
_	294.8		13.0			_
						_
		Battom of hole @ 13.0 ft	_			_
			15.0			
						_
						_
~						
			17.5			
-						
			- 1	Į.	1	
~			20.0		N	
			20.0			

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-25 K	
Location	Frederick, Maryland		Job#	03905A	
Datum Surf. Elev. Date Started	MSL 306.3 March 2, 2005	Equipment: PC 220		Inspector Date Completed	E. Schabert March 2, 2005

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
	Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6"	NOTES	-
306.30	SURFACE	0.0			_ -
303.8	Orange brown, moist, SILT with sand, trace rock fragments (ML) [FILL]	2.5			
	Brown and gray brown, silty SAND with rock and pockets of gravel, trace brick (SM) [FILL]	5.0		Bag sample taken @ 3.0 to 3.5 ft	, , , , ,
300.8		5.5			
		1 -			ľ
		7.5	÷		
	Brown, silty ROCK FRAGMENTS with sand (GM) [FILL]	10.0			
		12.5			-
	8	15.0			-
	Tan, SILT with sand and rock fragments (ML)	17.0 17.5 18.0		Natural Ground	
	Bottom of hole @ 18.0 ft			,	-
		20.0		177	-

Encountered	n/a				
After	n/a				

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-26 /<		
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Elev.	MSL	Equipment: PC 220		Inspector	E. Schaberl	
Date Started	March 2, 2005			Date Completed	March 2, 2005	

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	7
306.20	Color, Moisture, Density, Size, Proportion SURFACE	SCALE 0.0	BLOWS 6"	NOTES	
-	Brown, rocky SAND with silt, concrete, rebar, and brick (SM)	2.5			
	control story (comy	7.5		Photo 8 taken	
		10.0			
292.2	Tan, SILT with sand and rock fragments (ML) Bottom of hole @ 14.0 ft	12.5 13.0 14.0 15.0		Natural Ground	
		17.5			
		20.0		1	_

Ground Water Depth

Encountered n/a
After n/a

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-27 /		
Location	Frederick, Maryland		Job#	03905A		
Datum	MSL	Equipment: PC 220		Inspector	E. Schaberl	
Surf. Elev. Date Started	March 3 2005			Date Completed	March 3, 2005	

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
	Color, Moisture, Density, Size, Proportion SURFACE	SCALE	BLOWS 6"	NOTES	ļ
	SURFACE	0.0			-
		2.5		Perched water @ 4.0 ft	
-	Brown, silty SAND with rock fragments, trace concrete, rebar, and brick (SM) [FILL]	7.5			
	Battom of hole @ 14.0 ft	12.5 14.0 15.0		Natural Ground	
-		17.5			
-		20.0]_

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-28 /		
Location	Frederick, Maryland		Job #	03905A		
Datum Surf. Elev. Date Starte	MSL 310 March 3, 2005	Equipment: PC 220		Inspector Date Completed	E. Schaberl March 3, 2005	

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING
	Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6"	NOTES
310.00	Color, Moisture, Density, Size, Proportion SURFACE	0.0		
		2.5		
	Brown, silty SAND, trace lumber, brick, and rock fragments (SM) [FILL]	5.0		
301.5	Tan, sandy SILT (ML)	7.5 8.5 9.0		Natural Ground
301.0	Bottom of hole @ 9.0 ft	10.0		0.60
-		12.5		
		15.0	-	
		17.5	-	
_		20.0		

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works Frederick, Maryland		Tast Pit# Job#	TP-29 K		
Location				03905A		
Datum Conf. Flori	MSL	Equipment PC 220		<u></u>	E O-hahad	
Surf. Elev. Date Started	March 3, 2005			Inspector Date Completed	E. Schaberl March 3, 2005	

į	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	ī
	2224		SCALE	BLOWS 6"		
	305.70	Calor, Moisture, Density, Size, Proportion SURFACE	0.0			1
	303.7 302.7	Brown, silty SAND with rock fragments (SM) [FILL] Gray stone, CR-6	2.5 3.0 4.0			
			5.0			
			7.5			
	1	Brown, silty SAND with rock fragments, trace brick, concrete, and rebar (SM) [FILL]	12.5			
			15.0			
	288.7		17.5 19.0			
	286.2	Tan, sandy SILT (ML) Bottom of hole @ 19.5 ft	19.5 20.0		Natural Ground	

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-30 /		
Location	Frederick, Maryland		Job#	03905A		
Datum	MSL	Equipment: PC 220	i ili	- Inspector	E. Schaberl	
Surf. Elev.	March 3 2005			Date Completed		

г	ri ri	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	7
	ELEV.	Sole Description	SCALE	BLOWS 6"		
ŀ		Color, Moisture, Density, Size, Proportion SURFACE	0.0	100000		
-		Brown and orange brown, silty CLAY	0.0			
-		with sand (CL) [FILL]	2.0			
-		with said (or) [i icc]		1		
			_	-}	ł	
			5.0	-		-
			3.0	-		
_		- I GAND with	-	-		
		Brown and gray rock SAND with	_	-	ł	
-		silt, some concrete (SM) [FILL]	-	-		
_		_		-		_
			10.0	-		
				-	Di 4 40 Asless	
_			1 -	-1	Photo 10 taken	
			_	-1	1	_
			_			
			15.0	_		
			_	_	1	-
_			_	_	1	
_		Shot rock with silty SAND (SM)				_
					ľ	_
-			20.0		li -	
-		Tan, sandy SILT (ML)	21.0		Natural Ground	
		ran, sandy out (may		7)	1	
		Bottom of hole @ 21.0 ft	_		1	_
-		Bottom di fiole & 21.0 it	-		1	
-			25.0	-		
			20.0	-	1	
=			-	-		
		1	S-1	=		
_		k.	-	-		
		1		-	1	
			30.0	-	1	
		A contract of the contract of	1 -	-1	-	
			-	-		
			-	_	1	
						_
-		1	35.0	_	1	
		1		_		
V==		1				
_	ř		0.0		l .	_
-	11		40.0			
			70,0			

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-31 /		
Location	Frederick, Maryland		Job#	03905A		
Datum Surf. Elev.	MSL 297.3	Equipment: PC 220		Inspector		
Date Started	March 3 2005			Date Completed	March 3 2005	

Γ	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	1
1		Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6"	NOTES	
Γ	297.30	SURFACE .	0.0			_
		Orange brown SILT with clay, trace sand (ML) [FILL]	_		-	1
-	_294.3	Dark brown, SILT with sand, rebar, brick,	3.0		Photo 11 taken	-
-	292.3	concrete, and asphalt (ML) [FILL]	5.0		Photo 12 taken	-
		Gray brown, silty SAND with			2x6x1 concrete encountered	-
		debris (SM) [FILL]	10.0		Perched groundwater @ 8.0 ft	
-	284.3		13.0			_
		Orange brown, SILT with sand and rock fragments (SM) [FILL]	15.0			-
-	_279.8		17.5			_
		Gray brown, silty SAND with rock fragments (SM) [FILL]	20.0			_
			_		Photo 13 taken	-
	272.3 271.3	Tan, sandy SILT (ML)	25.0 26.0		Natural Ground	_
		Bottom of hole @ 26.0 ft	_			=
			30.0			
						_
			35.0		·	=
			_			
- 100 F			40.0			-

Ground Water Depth

Encountered n/a
After n/a

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-32 /<		
Location	Frederick, Maryland		# doL	03905A		
Datum Surf Slov	MSL	Equipment: PC 220		Inspector	E. Schaberl	
Surf. Elev. Date Started	March 4, 2005			Date Completed	March 4, 2005	

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING
	Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6*	NOTES
= 0.	SURFACE	0.0		
	Dark brown, silty SAND with rock fragments, brick, and concrete (SM) [FILL]	6.0		N.M. 20.9% NM 22.2%
	Orange brown, CLAY with rock fragments and brown, sandy SILT with rock fragments (CL/ML) [FILL]	10.0		Bulk bag sample taken MDD= 119.7 O.M. 13.8%
	* -	16.0		NM 16.8%
	Orange SILT with sand (ML) [FILL]	19.0 20.0		NM 15.3 % NM 13.1%
	Brown, sandy SILT with rock fragments and concrete (ML) [FILL]	25.0	-	NM 19.3%
	Orange silty CLAY w/sand and RF (CL) Silty ROCK FRAGMENTS with sand	27.0		NM 12.6% NM 13.0% Natural Ground NM 18.6%
	Bottom of hole @ 29.5 ft	_		
		35.0		
		40.0		

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-33K	Ware And
Location	Frederick, Maryland	1	Job#	03905A	
Datum Surf. Elev.	MSL 303 March 3, 2005	Equipment: PC 220		Inspector Date Completed	E. Schaberl March 3, 2005

r	ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	
- 1	ELEV.		SCALE	BLOWS 6"	NOTES	
1		Color, Moisture, Density, Size, Proportion	0.0	BLOWES		7
_	303.00	SURFACE Dark brown, silty SAND with rock fragments (SM) [FILL]	2.5		1	=
=		Orange brown, SILT with sand and rock fragments (ML) [FILL]	5.0			_
=	298.0 297.0	Gray, SAND with silt (SM) [FILL]	6.0			=
			10.0			=
_		Brown, sandy SILT with rock fragments (ML) [FILL]				=
_			15.0		Ŷ	
_			-			=
=	283.0		20.0			_
=			_			=
		Silty SAND with rock fragments (SM) [FILL]	25.0			=
=	274.0 273.0	Tan, SILT with sand (ML)	29.0 _ 30.0 _	_	Natural Ground	
=		Bottom of hole @ 30.0 ft	-	-		
			35.0			_
=			-			
			40.0			

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project Location	Frederick Brick Works Frederick, Maryland		Test Pit# Job#	03905A		
Datum Surf. Elev. Date Started	MSt. March 4, 2005	Equipment PC 220		Inspector Date Completed	E. Schaberl March 4, 2005	

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	7
ELEV.	Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6"	NOTES	
	SURFACE	0.0	DECTIO C		1_
299.90	Brown, sandy SILT with rock				1-
297.4	fragments (ML) [FILL] Brown, silty CLAY with sand and	2.5			_
294.9	rock fragments (CL) [FILL]	5.0			=
	Reddish brown, sandy SILT with rock fragments and concrete (ML) [FILL]	7.6		Perched water @ 6.0 - 7.0 ft	
				,	
	Silty SAND with rock fragments and brown, sandy CLAY (SM/CL) [FILL]	10.0			=
287.4		12.5			-
286.4	CR-6 [FILL]	13.5			-
	O	15.0	-	Mix	
	Brown, sandy SILT with rock fragments (ML) [FILL]	_		MDD 125.2 OM 11.3	-
		o 	1	OW TI.S	_
279.9		20.0	-		-
		_			-
		=			-
	Gray brown, CLAY with sand and rock fragments (CL) [FILL]	25.0			F
		-	-		-
000.0		30.0			-
269.9 268.9	Tan, sandy SILT with rock fragments (M			Natural Ground	-
	Bottom of hole @ 31.0 ft	_			-
		35.0	1		-
		_	_		-
		_	-		-
		40.0		V.	

Encountered	n/a
After	n/a

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-A1	
Location	Frederick, Maryland		Job #	03905A	
Datum Surf. Elev. Date Started	MSL March 4, 2005	Equipment: PC 220		Inspector Date Completed	E, Schaberl March 4, 2005

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	7
LCCA	Color Maisture Density Size Proportion	SCALE	BLOWS 6"	NOTES	_
	Color, Maisture, Density, Size, Proportion SURFACE	0.0			
	Plow zone = 12"	228			_
-	I	-	1 1		_
-			1		
-		-	1		
_	A COUNTY (TOTAL)	2.5	1 1		
-	Orange brown, clayey SILT (ml)	2.5	1		
_		_			-
_	i	-			-
_		-	.		
_		_			_
5.0		5.0			-
	Bottom of hole @ 5.0 ft		. 1		-
			. 1		_
					-
_	1	7.5	1		
-		0	1		
-		2-mic	1		_
-	1	_	1 1		
-	1	_	1 1		
-1		10.0	1 1		
-		10.0	1 1		
		-	1 1		-
_	1		-		
_}	1		-))		
_	1		-		_
_1		12.5	- 1		-
		_	-		-
		-	-		
			- 1		
		_	- 1		-
		15.0			
		7=	_		
- 1					
					_
					_
_		17.5		1	
	}		7		
		I -	1 1		
-	l .	-	-		
	1	1 -	-		
		-	-		
	1	20.0			!_

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	1P-2 / 03905A	-
Location	Frederick, Maryland		Job #	035007	
Datum S. d. Flov	MSL	Equipment: PC 220		Inspector	E. Schabert March 4, 2005
Surf. Elev. Date Started	March 4, 2005			Date Combleted	March 4, 2005

	BORING & SAMPLING NOTES	SAMPLE BLOWS 6"	DEPTH SCALE	SOIL DESCRIPTION	ELEV.
		BCOTTO	0.0	Color, Moisture, Density, Size, Proportion	
_			0.0	Color, Moisture, Density, Size, Proportion SURFACE	
		1	_		
					1
_		1	· -	i	
-		1	_		
-		1 1	2.5	Orange brown, clayey SILT (ML)	
-		1		Orange broant, orange	
1-		1 - 1			
-		1 1			
_			\	2	
_		1 1	5.0	1	
- 1			3.0)	5.0
		1	_		
			j -	Bottom of hole @ 5.0 ft	
			:=		
-		-(1	
- 1		-	7.5		
1		-	1 -		
-	V.	-1	-		
1		_	_		
1		_			
-			10.0		
-					
ŀ	}			İ	
			_		
			12.5		
	l		1217	3	
1	1	-	-	Ĭ	
	l .	-	-	I .	
	1	-1	-		
	1	-	AED T		
		-	15.0		
	}	-{	-		
		-1			*:
		-1	-		
	1	-1	-		
	1	4	17.5		
				A.	
	T				
	1				
1)	U		1	1	
			20.0		1

Encountered	n/a	
After	n/a	

TEST PIT LOG

Project	Frederick Brick Works		Test Pit#	TP-A3		
Location	Frederick, Maryland		Job #	03905A		
Datum	MSL	Equipment: PC 220		Innoctes	E. Schaberi	
Surf. Elev. Date Started	March 4, 2005			Inspector Date Completed		

ELEV.	SOIL DESCRIPTION	DEPTH	SAMPLE	BORING & SAMPLING	٦
	Color, Moisture, Density, Size, Proportion	SCALE	BLOWS 6"	NOTES	
	Color, Moisture, Density, Size, Proportion SURFACE	0.0			
	Plow zone = 16" Orange brown, dayey SILT (ML)	2.5			
5.0		5.0			
	Bottom of hole @ 5.0 ft				
		7.5	^		
		10.0			
		12.5			
		15.0			=
		17.5	-		
		20.0	3		

Encountered	n/a	
After	n/a	

HIFTIS - CARNES INC.

TEST PIT LOG

			20.0		
-		-	_ ""	1	
_	1	1-	-		
1,500,000	1	-	_		
	1	-	_		-
	i i				
	1	17	2.71		_
-		1			
_		į-			
		-			
25.00		0 -	_		<u> </u>
-		1.			
			15.0		—
T-1				1	I—
			 2		ļ
		1	-	1	
		·	_		
	3		15.5	1	-
555			_ ,,,		_
			_	l l	-
_					
_				l li	
-		i i			
			10.01	1	
-			_	'	
			_		
		1	_		
-					
	ł	1	G. T		_
_					<u> </u>
-	·	1 1	_		
				Bottom of hole @ 5.0 ft	
			_		
		<	0.3		0.8
-		-	03		
-		1			_
-				1	
					-
-	1				
-			2.5	Orange brown, clayey SILT (ML)	
	9		-		
				1	
1722				1	
-	1		_	Plow zone = 14"	-
-		<u> </u>	to the control of		
			0.0	SURFACE SURFACE	
	SETON	BLOWS 6"	SCALE	Color, Moisture, Density, Size, Proportion	.,
	BORING & SAMPLING	SAMPLE	HT430	SOIL DESCRIPTION	V3.13
	Om last 1	-			
					. מוני מופים
	te Completed March 4, 2005	₽()		March 4, 2005	Suff. Elev.
	Inspector E. Schaberi			WZF Edgibuleuc I	
			C 220	MSL Equipment: F	,. 0
				Frederick, Maryland	Location
	A30650) # dol			_
	× 4A-91	tire 129T	_	Frederick Brick Works	Project
	21				

n/a

E\n

Ground Water Depth

benetruoora∃ netiA

Mr. Clayton Minnick General Manager Frederick Brick Works, Inc. 184 East South Street Frederick, Maryland 21701

RE: Environmental Inspection of Cline Fill

Dear Clayton:

During the period of March I through March 4, 2005 Hydro-Terra inspected the excavation of 29 test pits (TP-5 through TP-34) completed on the Cline fill located in Frederick Maryland on property owned by Frederick Brick. The purpose of the inspection was to ascertain the possible existence of elevated levels of inorganic and organic contaminants in the fill soil and also to assess whether wood present in the fill might result in elevated levels of methane in the fill. The environmental inspection was performed by Thomas R. Mills, a professional engineer and geologist employed by Hydro-Terra.

Field Observations

The test pits were dug to the base of the fill, and the excavated soil was visually inspected for evidence of possible contamination. Additionally, the soil was periodically checked with a photoionization detector (PID) for the presence of organic vapors (VOCs). No organic vapors were detected in the soil from any of the inspected test pits. Also, no visual evidence of contamination from organic compounds or inorganic chemicals was noted.

Some wood was observed in the test pits and was estimated to occupy less than one percent of the volume of the fill soil.

Testing of Soil Samples

Composite soil samples were obtained from the excavated soil at three test pits (TP-27, TP-29, and TP-32) and analyzed by Phase Separation Science for the presence of VOCs, semi-volatile organic compounds (SVOCs), and eight metals (RCRA metals). The concentrations of detected constituents were compared to residential and non-

Mr. Clayton Minnick March 17, 2005 Page 2 of 4

residential cleanup standards for soil developed by the Maryland Department of the Environment (MDE) and used in their Voluntary Cleanup Program.

No VOCs were detected in any of the samples. A few SVOCs, all polynuclear aromatic hydrocarbons (PAHs), were detected in the samples from TP-27 and TP-32. In both cases, the concentrations of the PAHs were below their detection limits and, therefore, are estimated concentrations. None of the PAHs exceed their residential or non-residential cleanup standards. These PAHs are commonly present in urban soils and are mostly formed from the combustion of fossil fuels. No other SVOCs were detected in the samples.

Two metals of potential concern (arsenic and mercury) were detected at concentrations above their cleanup standards. A third metal, total chromium, may also exceed a cleanup standard in one of the test pit samples. Lead and barium were also detected, but at concentrations below their cleanup standards.

AIDE's risk-derived residential and non-residential cleanup standards for arsenic concentrations were 3.4 ppm at TP-27, 6.3 ppm at TP-29, and 18 ppm at TP-32. All of the concentrations were 3.4 ppm at TP-27, 6.3 ppm at TP-29, and 18 ppm at TP-32. All of residential standard, and two also exceed the non-residential standard. The anticipated typical concentration (ATC) or background concentration of arsenic in soil at other sampled sites in Western Maryland (including Frederick County) is reported by MDE to be 11 ppm. The average concentration of arsenic from the three test pit samples is 9.2 ppm. A participant in the voluntary cleanup program can propose to MDE that the ATC be used in place of the cleanup standard.

The residential and non-residential cleanup standards for mercury are 0.1 and 0.12 ppm, respectively. At TP-27 and TP-32, the detected concentrations were 0.13 ppm, slightly above both cleanup standards. No mercury was detected in the sample from TP-29. The average mercury concentration is 0.103 when, as is proper, the metal is assumed to be present at TP-29 at one half the detection limit of 0.1 ppm. The average concentration is still slightly above the residential standard, but below the non-residential standard. No ATC exists for mercury in Western Maryland, but they do exist for Eastern Maryland and Central Maryland at concentrations of 0.51 and 0.14 ppm, respectively.

Total chromium was detected in TP-29 at a concentration that might exceed the residential cleanup standard for one of two types of chromium (chromium VI) that comprise total chromium. The other form of chromium is chromium III. The total standard for chromium VI is 23 ppm, and the non-residential standards is 61 ppm. At TP-29, the non-residential standard is not exceeded, but the residential standard could be exceeded depending on how much chromium VI is present in the sample. At present, the

laboratory is determining the concentration of chromium VI in the TP-29 sample. The result will be reported separately. Total chromium was also detected in the samples from TP-27 and TP-32, but at concentrations that cannot exceed a residential or non-residential standard for any form of chromium.

The laboratory reports are attached to the back of this report.

Conclusions & Recommendations

Based on the amount of wood observed in the fill soil, it is unlikely that methane is present at concentrations of public-health/safety concern in most, if not all, of the fill placed by Cline. However, in the event the fill is to remain, a more definitive determination is recommended. The determination should be made by installing with a Geoprobe 10 to 15 one-inch diameter, gas-monitoring wells to a depth of approximately 12 feet and monitoring the wells for the presence of methane monthly for three months.

The results of the limited sampling and testing of fill soils indicate that at some residential and metals are present at concentrations above residential and non-residential cleanup standards. However, if the comparative or exposure concentration for metals of potential concern were statistically determined from a larger set of samples, as concentrations do not exceed the cleanup standards, it may be found that the exposure concentration for each metal of potential concern would be the 95 percent upper confidence limit of the mean concentration. For a representative exposure concentration to be determined, collection and analysis of samples taken from depths of 0 to 1 and 4 to 5 feet at about 15 locations would probably be needed. If exposure concentration did not exceed cleanup standards, it could be strongly argued that no remediation is required. If one or more concentrations exceeded cleanup standards, a presumptive remedial action would be required over the entire fill. The most appropriate presumptive remedial action allowed the fill with three feet of clean soil underlain by a geofabic marker horizon.

For costing p urposes, it should be assumed at this time that, in the event the fill in our opinion would be "hot spot" removal.

Prior to MDE's approval of encapsulation or any other remedial option, including use of the fill soil in roadway construction, it is highly probable that downgradient ground-water quality will need to be investigated. This would involve installation of one or two wells near the south end of the property and testing of the water to determine if metals or other constituents of potential concern are leaching into the ground water at concentrations exceeding drinking-water standards.

Mr. Clayton Minnick March 17, 2005 Page 4 of 4

Should it be decided that the fill or a portion of the fill should be removed by the state and used for highway construction, another environmental approach involving the entire property should be considered. The approach would be to remove 15 or more feet of material from the Cline fill. Excavation would be followed by the placement on the fill site of a compacted layer of largely inert ash and solid waste removed by other areas on the property and possibly mixed with cement-kiln dust. The waste material would then be covered by 6 to 8 feet of clean soil.

More thorough sampling of the areas containing buried wastes will be required by MDE, and it should be anticipated that some environmental problems will be identified. Should ground-water contamination and/or a methane problem not be found, the remedial outcome in the waste areas will likely be encapsulation. After stabilization of the waste deper materials, encapsulation could occur in the areas containing the waste or at a deeper depth in the area of the Cline fill, provided, in the latter case, that the state removes all or a portion of the Cline fill. Offsite disposal of waste material would probably cost on the order of \$70 a ton for disposal alone and should be avoided, if at all possible.

Before any further environmental investigation of the Cline fill or any other portions of the property, it is recommended that Frederick Brick participate in MDE's Voluntary Cleanup Program. The entry fee is \$6,000, and, by following their approach, it is expected that analytical costs would be reduced by approximately 40 percent. There is also a liability benefit that would have a beneficial effect on land value.

If you have any questions, please give me a call.

Sincerely,

HYDRO-TERRA, INC.

Thomas R. Mills, PE, PG President

Trm/05060

1 attachment
cc: T. MacHamer
D. Schestag
J. Cheok