# PHASE II INVESTIGATION REPORT

# AREA A: PARCEL A15 TRADEPOINT ATLANTIC SPARROWS POINT, MARYLAND

Prepared For:



**TRADEPOINT ATLANTIC** 6995 Bethlehem Boulevard Sparrows Point, Maryland 21219

Prepared By:



#### **ARM GROUP LLC**

9175 Guilford Road Suite 310 Columbia, Maryland 21046

ARM Project No. 21010115

**Respectfully Submitted:** 

ann Barn

Joshua M. Barna, G.I.T. Project Geologist

Kay Sull

Kaye Guille, P.E., PMP Senior Engineer

Revision 1 - August 28, 2023

# **TABLE OF CONTENTS**

| 1.0 | INTRODUCTION |         |                                                |    |
|-----|--------------|---------|------------------------------------------------|----|
|     | 1.1.         | Site H  | listory                                        | 2  |
|     | 1.2.         | Object  | tives                                          |    |
| 2.0 | ENV          | IRONN   | MENTAL SETTING                                 | 4  |
|     | 2.1.         | Land    | Use and Surface Features                       | 4  |
|     | 2.2.         | Regio   | nal Geology                                    |    |
|     | 2.3.         | Site G  | eology/Hydrogeology                            |    |
| 3.0 |              |         | STIGATION                                      |    |
|     | 3.1.         | Sampl   | le Target Identification                       | 6  |
|     | 3.2.         | Soil Ir | nvestigation                                   | 7  |
|     | 3.3.         | Groun   | ndwater Investigation                          |    |
|     | 3.4.         | Surfac  | ce Water Investigation                         | 9  |
|     | 3.5.         |         | ient Investigation                             |    |
|     | 3.6.         | Manag   | gement of Investigation-Derived Waste (IDW)    |    |
| 4.0 | ANA          | -       | CAL RESULTS                                    |    |
|     | 4.1.         | Soil C  | Conditions                                     | 11 |
|     |              | 4.1.1.  | Soil Conditions: Organic Compounds             | 11 |
|     |              | 4.1.2.  |                                                |    |
|     |              | 4.1.3.  | Soil Conditions: Results Summary               | 12 |
|     | 4.2.         | Groun   | ndwater Conditions                             | 12 |
|     |              | 4.2.1.  | Groundwater Conditions: Organic Compounds      | 12 |
|     |              | 4.2.2.  | Groundwater Conditions: Inorganic Constituents | 13 |
|     |              |         | Groundwater Conditions: Results Summary        |    |
|     | 4.3.         | Surfac  | ce Water Conditions                            | 14 |
|     |              | 4.3.1.  | Surface Water Conditions: Organic Compounds    | 14 |
|     |              | 4.3.2.  | 8                                              |    |
|     |              |         | Surface Water Conditions: Results Summary      |    |
|     | 4.4.         | Sedim   | ent Conditions                                 |    |
|     |              | 4.4.1.  |                                                |    |
|     |              | 4.4.2.  | 8                                              |    |
|     |              | 4.4.3.  | , , , , , , , , , , , , , , , , , , ,          |    |
| 5.0 |              |         | BILITY ASSESSMENT                              |    |
|     |              |         | Verification                                   |    |
|     | 5.2.         |         | Validation                                     |    |
|     |              |         | Usability                                      |    |
| 6.0 | FIN          | DINGS   | AND RECOMMENDATIONS                            |    |



# TABLE OF CONTENTS (CONT.)

| 6     | .1. Soil            | 23 |
|-------|---------------------|----|
| 6     | .2. Groundwater     | 24 |
| 6     | .3. Surface Water   | 24 |
| 6     | .4. Sediment        | 25 |
| 6     | .5. Recommendations | 25 |
| 7.0 R | EFERENCES           | 26 |

### FIGURES

| Figure 1  | Area A & Area B Parcels                     | Following Text |
|-----------|---------------------------------------------|----------------|
| Figure 2  | 1916 Shoreline Map                          | Following Text |
| Figure 3  | 1952 Aerial Imagery                         | Following Text |
| Figure 4  | Groundwater Sample Locations                | Following Text |
| Figure 5  | Groundwater Elevations                      | Following Text |
| Figure 6  | Soil Sample Locations                       | Following Text |
| Figure 7  | Sediment and Surface Water Sample Locations | Following Text |
| Figure 8  | Soil PAL Exceedances                        | Following Text |
| Figure 9  | Groundwater PAL Exceedances                 | Following Text |
| Figure 10 | Surface Water PAL Exceedances               | Following Text |
| Figure 11 | Sediment PAL Exceedances                    | Following Text |

### TABLES

| Table 1  | Groundwater Elevation Data                      | .Following Text |
|----------|-------------------------------------------------|-----------------|
| Table 2  | Historical Site Drawing Details                 | .Following Text |
| Table 3  | Field Shifted Boring Locations                  | .Following Text |
| Table 4  | Summary of Organics Detected in Soil            | .Following Text |
| Table 5  | Summary of Inorganics Detected in Soil          | .Following Text |
| Table 6  | Summary of Soil PAL Exceedances                 | .Following Text |
| Table 7  | Summary of Organics Detected in Groundwater     | .Following Text |
| Table 8  | Summary of Inorganics Detected in Groundwater   | .Following Text |
| Table 9  | Vapor Intrusion Comparison                      | .Following Text |
| Table 10 | Summary of Organics Detected in Surface Water   | .Following Text |
| Table 11 | Summary of Inorganics Detected in Surface Water | .Following Text |
| Table 12 | Summary of Organics Detected in Sediment        | .Following Text |
| Table 13 | Summary of Inorganics Detected in Sediment      | .Following Text |
| Table 14 | Rejected Analytical Results                     | .Following Text |



# TABLE OF CONTENTS (CONT.)

#### **APPENDICES**

| Appendix A | Final Sampling Plan Summary                               | .Following Text |
|------------|-----------------------------------------------------------|-----------------|
| Appendix B | Soil Boring & Piezometer/Well Construction Logs           | .Following Text |
| Appendix C | PID Calibration Log                                       | .Following Text |
| Appendix D | Groundwater Purge & Multiparameter Meter Calibration Logs | .Following Text |
| Appendix E | QA/QC Tracking Log                                        | .Following Text |
| Appendix F | Evaluation of Data Completeness                           | .Following Text |

### **ELECTRONIC ATTACHMENTS**

| Soil Laboratory Certificates of Analysis          | Electronic Attachment |
|---------------------------------------------------|-----------------------|
| Soil Data Validation Reports                      | Electronic Attachment |
| Groundwater Laboratory Certificates of Analysis   | Electronic Attachment |
| Groundwater Data Validation Report                | Electronic Attachment |
| Surface Water Laboratory Certificates of Analysis | Electronic Attachment |
| Surface Water Data Validation Report              | Electronic Attachment |
| Sediment Laboratory Certificates of Analysis      | Electronic Attachment |
| Sediment Data Validation Reports                  | Electronic Attachment |
|                                                   |                       |



# **1.0 INTRODUCTION**

ARM Group LLC (ARM), on behalf of Tradepoint Atlantic (TPA), has completed the Phase II Investigation on the portion of the Tradepoint Atlantic property (formerly Sparrows Point Terminal, LLC) that has been designated as Area A: Parcel A15 (the Site). Parcel A15 is comprised of 61.3 acres of the approximately 3,100-acre former plant property located as shown on **Figure 1**. The High Head Reservoir occupies most of the parcel (approximately 40.4 acres), with the remaining portion (20.9 acres) occupied by land. There are two brick pumping stations within Parcel A15 at the southwest and southeastern sides of the tract, and an electrical substation is present just northwest of the southwestern pump station. There is also an unused aboveground tank containing hypochlorite solution in a diked structure at the northeastern side of the reservoir along Reservoir Road.

The Phase II Investigation was performed in accordance with procedures outlined in the approved Phase II Investigation Work Plan for Area A: Parcel A15 (Revision 1 dated September 30, 2022). This Work Plan was approved by the Maryland Department of the Environment (MDE) and United States Environmental Protection Agency (USEPA) via email on October 6, 2022.

Results from this investigation phase are included and discussed in this report. The investigations were implemented in compliance with requirements pursuant to the following:

- Administrative Consent Order between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the MDE effective September 12, 2014; and
- Settlement Agreement and Covenant Not to Sue (SA) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the USEPA effective November 25, 2014.

Parcel A15 is part of the acreage that was removed (Carveout Area) from inclusion in the Multimedia Consent Decree between Bethlehem Steel Corporation, the USEPA, and the MDE (effective October 8, 1997) as documented in correspondence received from the USEPA on September 12, 2014. Based on this agreement, the USEPA has determined that no further investigation or corrective measures will be required under the terms of the Consent Decree for the Carveout Area. However, the SA reflects that the property within the Carveout Area will remain subject to USEPA's Resource Conservation and Recovery Act Corrective Action authorities.

An application to enter the full Tradepoint Atlantic property (3,100 acres) into the MDE's Voluntary Cleanup Program was submitted to the MDE and delivered on June 27, 2014. The property's current and anticipated future use is Tier 3 (Industrial) and plans for the full Tradepoint Atlantic property include continued demolition and redevelopment over the next several years.



Tradepoint Atlantic has developed an initial master plan that shows potential future development areas across the entire Tradepoint Atlantic property. This master plan is a working document, and it is expected to undergo subsequent revisions in the future. The most recent plan does not show any proposed development within Parcel A15.

### **1.1. SITE HISTORY**

From the late 1800s until 2012, the production and manufacturing of steel was conducted at Sparrows Point. Iron and steel production operations and processes at Sparrows Point included raw material handling, coke production, sinter production, iron production, steel production, and semi-finished and finished product preparation. In 1970, Sparrows Point was the largest steel facility in the United States, producing hot and cold rolled sheets, coated materials, pipes, plates, and rod and wire. The steel making operations at Sparrows Point ceased in fall 2012.

In 1916, groundcover in Parcel A15 was comprised of approximately 60% natural soils based on the approximate shoreline of the Sparrows Point Peninsula, as shown on **Figure 2** (adapted from Figure 2-20 on the Description of Current Conditions (DCC) Report prepared by Rust Environment and Infrastructure, dated January 1998).

Historical operations on Site primarily consisted of the High Head Reservoir, which occupied approximately 66% of the 61.3 acres of Parcel A15. The Reservoir was constructed between 1916 and 1952 as an industrial facility to receive effluent from the Back River Wastewater Treatment Plant (BRWWTP). The reservoir was constructed by damming and expanding a bay formerly present on the northeastern side of Humphrey Creek. The Phase I Environmental Site Assessment (ESA) prepared by Weaver Boos Consultants dated May 19, 2014, identified one Recognized Environmental Condition (REC) on the adjacent Parcel A8. As shown **on Figure 3**, Finding 243, REC 11B identifies a discharge pipe leading from beneath the Air Production Facility to the High Head Reservoir. According to the Phase I ESA (Weaver Boos), oily surface water was observed in the discharge area during a site visit. Booms were placed around the discharge pipe, although oil was observed on both sides of the booms. As shown **on Figure 3**, the Phase I ESA also identified one REC (Finding 281, REC 28A) to the northeast of Parcel A15. There were seven underground storage tanks of unknown contents (listed as out of use) on the adjacent non-TPA property.

There are two pumping stations currently located within Parcel A15, along with an aboveground storage tank in a concrete containment structure. The storage tank contained hypochlorite solution for treatment of water in the reservoir has not been used for several years. Each pumping station has an associated sub-station. The oxygen plant/Air Products facility had been present west of Parcel A15 in Parcel A8 and has previously been assessed (refer to the Parcel A8 Phase II Investigation Report, Revision 1, dated November 11, 2017). Runoff from multiple properties, including TPA parcels A2, A8, A13, and A14, the non-TPA property along the northeast boundary, and I-695 to the south, appears to be collected in the High Head Reservoir. The reservoir is fed by



treated effluent from the BRWWTP operated by Baltimore City. While the steel plant was operational, treated effluent stored in the reservoir was used as an industrial water source. The reservoir continues to receive effluent from the BRWWTP. The effluent flows into the northeastern portion of the reservoir through two pipes (96-inch pipe and 60-inch pipe). There is currently no industrial Process Water discharged to the pond on Parcel A15. Water from the High Head Reservoir is discharged directly to National Pollutant Discharge Elimination System (NPDES) permitted Outfall 014.

The Site's layout in 1952 is shown in the aerial imagery presented in **Figure 3**. Pumping Station #2 and the sub-station, which are visible in the recent aerial imagery shown on **Figure 4**, had not yet been constructed in 1952. The High Head Reservoir appears to occupy the same area as was observed in the site walk. There is no evidence that iron and steel industrial processes were completed within the boundary of Parcel A15.

### **1.2.** OBJECTIVES

The objective of this Phase II Investigation was to characterize the nature and extent of potential contamination or hazardous conditions for future tenants or personnel working on the Site. A summary table of the site investigation locations, including the sample identification numbers and the analyses performed, is provided as **Appendix A**. Throughout the Phase II Investigation, 17 soil borings (34 soil samples), three temporary groundwater collection points and three permanent monitoring wells, 12 sediment sample locations, and eight surface water sample locations were collected and analyzed. This report includes a summary of the work performed, including the environmental setting, site investigation methods, analytical results and data usability assessment, and findings and recommendations.



# 2.0 ENVIRONMENTAL SETTING

#### 2.1. LAND USE AND SURFACE FEATURES

The Tradepoint Atlantic property consists of the former Sparrows Point steel mill. Interviews conducted as part of the Phase I ESA stated that no hazardous materials or petroleum products were known to be disposed of within Parcel A15.

The Site is primarily occupied by the High Head Reservoir, which was created as an industrial facility to receive effluent from the BRWWTP. Ground surface elevations at the Site range from approximately 5 to 14 feet above mean sea level (amsl). Generally, elevations on Site slope inwards towards the surface water body. Higher elevations are observed along Reservoir Road and the I-695 highway in the southern portion of the Site.

According to Figure B-2 of the Stormwater Pollution Prevention Plan Revision 8 dated April 30, 2020, surface water runoff from the Site flows into the High Head Reservoir. Discharge from the High Head Reservoir is controlled by a Baltimore City NPDES permit.

#### **2.2. REGIONAL GEOLOGY**

The Site is located within the Atlantic Coastal Plain Physiographic Province (Coastal Plain). The western boundary of the Coastal Plain is the "Fall Line", which separates the Coastal Plain from the Piedmont Plateau Province. The Fall Line runs from northeast to southwest along the western boundary of the Chesapeake Bay, passing through Elkton (MD), Havre de Grace (MD), Baltimore City (MD), and Laurel (MD). The eastern boundary of the Coastal Plain is the off-shore Continental Shelf.

The unconsolidated sediments beneath the Site belong to the Talbot Formation (Pleistocene), which is then underlain by the Cretaceous formations which comprise the Potomac Group (Patapsco Formation, Arundel Formation, and the Patuxent Formation). The Potomac Group formations are comprised of unconsolidated sediments of varying thicknesses and types, which may be several hundred feet to several thousand feet thick. These unconsolidated formations may overlie deeper Mesozoic and/or Precambrian bedrock. Depth to bedrock is approximately 700 feet within the Site.

### **2.3. SITE GEOLOGY/HYDROGEOLOGY**

The approximate shoreline of the Sparrows Point Peninsula in 1916 is shown in **Figure 2** (adapted from Figure 2-20 in the DCC Report prepared by Rust Environment and Infrastructure dated January 1998). In general, the encountered subsurface geology was comprised of non-native fill materials including slag, sand, and gravel, as well as natural soils including fine-grained sediments (clays and silts) and coarse-grained sediments (sands). Shallow groundwater was observed in soil borings at varying depths ranging from approximately 0.5 to 9 feet below ground surface (bgs)



across the Site; however, groundwater was not encountered at every location. Soil boring observation logs are provided in **Appendix B**.

Groundwater in Parcel A15 was investigated via the installation of three temporary groundwater sample collection points (commonly referred to as piezometers). Sample locations where piezometers were installed included A15-015-PZ, A15-016-PZ, and A15-019-PZ. Three historical groundwater monitoring wells (SG03-PDM007, SG04-PDM008, and SW-099-MWS) were sampled along with the temporary piezometers. **Figure 4** shows an aerial view of the six groundwater locations sampled in December 2022 and January 2023. The temporary groundwater sample collection points and the existing permanent well were surveyed by a Maryland-licensed surveyor. Surveyed top of casing and ground surface elevations for all applicable locations can be found in **Table 1**, along with the depth to water measurements.

A groundwater elevation map was constructed for the shallow hydrogeologic zone based on field measurements. The localized groundwater elevations are shown in **Figure 5**. Due to access restrictions, surface water stage measurements of the lake were not conducted.



# 3.0 SITE INVESTIGATION

A total of 34 soil samples (from 17 soil boring locations), 12 sediment samples, six groundwater samples, and eight surface water samples were collected for analysis as part of this Phase II Investigation. However, 33 of the 34 soil samples were analyzed; the remaining soil sample was placed on hold, and analysis was not required based on the results of the shallower soil sample.

This Phase II Investigation followed the procedures included in the Quality Assurance Project Plan (QAPP) Revision 4 dated May 31, 2022, which was approved by the agencies to support the investigation and remediation of the Tradepoint Atlantic property. Information regarding the project organization, field activities and sampling methods, sampling equipment, sample handling and management procedures, the selected laboratory and analytical methods, quality control and quality assurance procedures, and reporting requirements are described in detail in the approved Work Plans and the QAPP.

All site characterization activities were conducted under the property wide Tradepoint Atlantic Health and Safety Plan.

## **3.1. SAMPLE TARGET IDENTIFICATION**

Previous activities within and around the buildings and facilities located on the Tradepoint Atlantic property may have been historical sources of environmental contamination. If present, source areas were identified as targets for sampling through a careful review of historical documents. When a sampling target was identified, a soil boring was placed at or next to its location using Geographic Information System software (ArcMap Version 10.6).

Sampling targets included, as applicable, 1) RECs shown on the REC Location Map provided in Weaver Boos' Phase I ESA, 2) additional findings (non-RECs) from the Phase I ESA which were identified as potential environmental concerns, and 3) Solid Waste Management Units and Areas of Concern identified from the DCC Report prepared by Rust Environment and Infrastructure.

Four sets of historical drawings were also reviewed to identify potential sampling targets for the Site. These drawings included the 5000 Set (Plant Arrangement), the 5100 Set (Plant Index), the 5500 Set (Plant Sewer Lines), and a set of drawings indicating coke oven gas distribution drip leg locations. Drip legs are points throughout the distribution system where coke oven gas condensate was removed from the gas pipelines. The condensate from the drip legs was typically discharged to drums, although it is possible some spilled out of the drums and onto the ground. There were no drip legs identified within the Site boundary. ARM also reviewed a list of former polychlorinated biphenyl (PCB)-containing equipment on the property via a historical PCB Inventory Map. There were no PCB-containing areas identified at the Site from the PCB Inventory Map.



A summary of the specific drawings covering the Site is presented in **Table 2**. Sampling target locations were identified if the historical drawings depicted industrial activities or a specific feature at a location that may have been a source of environmental contamination. Sampling targets were also identified during the pre-investigation site visit. Additional sample locations were distributed to provide complete coverage of the Site and to fill in areas with insufficient coverage. A summary table of the investigation plan, along with the applicable boring identification numbers and the analyses performed, has been provided as **Appendix A**. The density of soil borings met the requirements set forth in QAPP Worksheet 17 - Sampling Design and Rationale. Per the requirements given in the Work Plan, a minimum of 14 borings were required to provide coverage of the Site. A total of 17 soil borings were completed during the Phase II Investigation.

During the completion of fieldwork, it was necessary to shift some borings from the approved locations given in the Work Plan, primarily due to equipment refusal and/or access restrictions. **Table 3** provides the identification numbers of the field adjusted borings, the coordinates of the proposed and final locations, and the distance/direction of the field shifts.

### **3.2.** SOIL INVESTIGATION

Continuous core soil borings were advanced at 17 locations across the Site to assess the presence or absence of soil contamination, and to assess the vertical distribution of any encountered contamination (**Figure 6**). The 17 continuous core soil borings were advanced to a maximum depth of 20 feet bgs using the Geoprobe<sup>®</sup> MC-7 Macrocore soil sampler (surface to 10 feet bgs) and the Geoprobe<sup>®</sup> D-22 Dual-Tube Sampler (depths >10 feet bgs). At each of the 17 boring locations, each soil core was visually inspected and screened with a hand-held photoionization detector (PID) prior to logging soil types. Soil boring logs have been included as **Appendix B**, and the PID calibration log has been included as **Appendix C**.

In each boring, one shallow sample was collected from the 0 to 2-foot depth interval in accordance with the approved Work Plan. If unsuitable surface cover materials (such as asphalt pavement) were present, the first 1 foot of soil beneath this layer was collected as the shallow sample. An underlying sample was collected from the 4- to 5-foot depth interval from each continuous core soil boring but could be adjusted based on field observations. If the PID or other field observations indicated contamination to exist at a depth greater than 3 feet bgs but less than 9 feet bgs, and above the water table, the sample from the deeper 4- to 5-foot interval was shifted to the alternate depth interval. One additional sample was collected from the 9- to 10-foot depth interval if groundwater had not been encountered. The 10-foot bgs samples were held by the laboratory prior to analysis in accordance with the requirements given in the Parcel A15 Work Plan. These project-specific requirements for the analysis of 10-foot bgs samples are further described below. It should be noted that soil samples were not collected from a depth that was below the water table. Shallow groundwater was observed in soil cores at depths as shallow as 0.5 feet. Therefore, some 4- to 5-foot samples were not able to be collected at all locations.



Soil sampling activities were conducted in accordance with the procedures and methods referenced in **Field Standard Operating Procedure (SOP) Numbers 008, 009, 012, and 013** provided in Appendix A of the QAPP. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times. Down-hole soil sampling equipment was decontaminated after soil sampling had been concluded at each location, according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Each soil sample collected during this investigation was submitted to Alpha Analytical Services, Inc. for analysis. The 10-foot bgs samples were held prior to analysis in accordance with the Parcel A15 Work Plan requirements. Excluding these deep samples, the remaining soil samples were analyzed for Target Compound List (TCL) semi-volatile organic compounds (SVOCs) and polynuclear aromatic hydrocarbons (PAHs) via USEPA Methods 8270 and 8270 SIM, Oil & Grease via USEPA Method 9071, total petroleum hydrocarbon (TPH) diesel range organics (DRO) and gasoline range organics (GRO) via USEPA Method 8015, Target Analyte List (TAL) Metals via USEPA Methods 3050, Mercury via USEPA Method 7471, hexavalent chromium via USEPA Method 7196, and cyanide via USEPA Method 9012. The shallow soil samples collected across the Site from the 0- to 2-foot bgs interval were analyzed for PCBs via USEPA Method 8082. Samples from any depth interval with a sustained PID reading of greater than 10 ppm were also analyzed for TCL volatile organic compounds (VOCs) via USEPA Method 8260.

If the PID reading from the deep (9- to 10-foot bgs) sampling interval was less than 10 ppm, all parameters were held by the laboratory pending the analysis of the overlying samples. If the deep sampling interval exhibited a sustained PID reading of 10 ppm or greater, the sample was released to be analyzed for VOCs, SVOCs, TPH-DRO, TPH-GRO, and Oil & Grease. However, the samples for metals and cyanide were still held by the laboratory pending the analysis of the overlying samples. If the preliminary laboratory results from the 4- to 5-foot bgs (or field adjusted) interval indicated exceedances of the Project Action Limits (PALs) for any constituents, the held sample from the deep interval was then released to be analyzed for those constituents that exhibited PAL exceedances in the overlying sample.

### **3.3. GROUNDWATER INVESTIGATION**

Three shallow temporary groundwater piezometers (A15-015-PZ, A15-016-PZ, and A15-019-PZ) and three existing groundwater monitoring wells (SG03-PDM007, SW-099-MWS, and SG04-PDM008) were sampled to characterize groundwater around the perimeter of the Site. Existing monitoring wells SG03-PDM007, SW-099-MWS, and SG04-PDM008 were inspected by ARM personnel on January 24, 2022, and prior to sampling, and was found to be in good condition. The locations where shallow groundwater samples were collected in this Phase II investigation are provided in **Figure 4**.



Piezometer installation activities were conducted in accordance with the procedures and methods referenced in **Field SOP Number 028** provided in Appendix A of the QAPP. The piezometers were installed at each location using the Geoprobe<sup>®</sup> DT22 Dual Tube sampling system. During the installation of each piezometer, soil types were logged and screened with a hand-held PID. The piezometer construction logs have been included as part of **Appendix B**.

Following the installation of each sample collection point, the 0-hour depth to water was documented and the collection point was checked for the presence of non-aqueous phase liquid (NAPL) using an oil-water interface probe in accordance with the methods referenced in **Field SOP Number 019** provided in Appendix A of the QAPP. After the installation of each sample collection point, down-hole equipment was decontaminated according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Groundwater samples were collected at each location in accordance with methods referenced in **Field SOP Number 006** provided in Appendix A of the QAPP; which employed the use of laboratory supplied sample containers and preservatives, a peristaltic pump, dedicated sample tubing, and a water quality multiparameter meter with a flow-through cell. Groundwater samples submitted for analysis of dissolved metals were filtered in the field with an in-line 0.45-micron filter. The sampling and purge logs have been included in **Appendix D**. Calibration of the multiparameter meter was performed before the start of each day of the sampling event. Documentation of the multiparameter meter calibration is included in **Appendix D**.

Groundwater samples were submitted to Alpha to be analyzed for VOCs via USEPA Method 8260, SVOCs via USEPA Method 8270, Oil & Grease via USEPA Method 1664, TPH-DRO/GRO via USEPA Methods 5030 and 8015, TAL-dissolved metals via USEPA Methods 6010 and Mercury via USEPA Method 7470, dissolved hexavalent chromium via USEPA Method 7196, total cyanide via USEPA Method 9012, and available cyanide via USEPA Method 9014. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

### 3.4. SURFACE WATER INVESTIGATION

A total of eight surface water samples were collected from the approximate locations in **Figure 7**. Samples were collected in accordance with the procedures referenced in the QAPP Worksheet 21 – Field SOPs, SOP No. 4 – Surface Water Sampling. Samples were collected from the middle of the water column at each proposed location. The water depth was approximated using a boat oar and ranged from 5 to 6 feet deep. Samples were collected using a peristaltic pump with a weighted end to place the tubing at the correct depth.

All surface water samples were analyzed for VOCs, SVOCs, PAHs, TAL-Dissolved Metals, Oil & Grease, TPH-DRO, TPH-GRO, dissolved hexavalent chromium, total cyanide, and available cyanide. Analytical methods, sample containers, preservatives, and holding times for the sample



analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

#### **3.5. SEDIMENT INVESTIGATION**

A total of 12 sediment samples were collected within the High Head Reservoir. Each of the sediment samples were collected as a grab sample from the top 12 inches of accumulated sediment in the bottom surface of the High Head Reservoir with a Ponar dredge as described in Section 4.2.3 of SOP No. 3. provided in Appendix A of the QAPP.

Each sediment sample was analyzed for VOCs via USEPA Method 8260, SVOCs and PAHs via USEPA Methods 8270 and 8270 SIM, TAL-Metals via USEPA Method 3050, Mercury via USEPA Method 7471, Oil & Grease via USEPA Method 9071, TPH-DRO and TPH-GRO via USEPA Method 8015, PCBs via USEPA Method 8082, hexavalent chromium via USEPA Method 7196, and cyanide via USEPA Method 9012. Analytical methods, sample containers, preservatives, and holding times for the analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

#### **3.6.** MANAGEMENT OF INVESTIGATION-DERIVED WASTE (IDW)

Purged groundwater IDW generated during this Phase II Investigation was containerized in 55gallon (DOT-UN1A2) drums. This aqueous IDW will be characterized and removed from the Site via a vacuum truck. Excess soil boring cuttings were used to fill the boreholes, so containerization was not required.



# 4.0 ANALYTICAL RESULTS

#### **4.1. SOIL CONDITIONS**

Soil analytical results were screened against PALs established in the property wide QAPP (or other direct guidance from the agencies; i.e., TPH/Oil & Grease) to determine PAL exceedances. PALs are generally based on the USEPA's Regional Screening Levels (RSLs) for the Composite Worker exposure to soil. RSLs for cadmium and chromium have been updated recently and therefore the PALs for these constituents have also been updated. These updates have not yet been reflected in the QAPP. The Composite Worker is defined by the USEPA as a long-term receptor exposed during the workday who is a full-time employee that spends most of the workday conducting maintenance activities (which typically involve on-site exposures to surface soils) outdoors.

The analytical results for the detected soil parameters are summarized and compared to the PALs in **Table 4** (Organics) and **Table 5** (Inorganics). The laboratory Certificates of Analysis (including Chains of Custody) and Data Validation Reports (DVRs) have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to results in the attached summary tables.

#### 4.1.1. Soil Conditions: Organic Compounds

No soil PID readings exceeded 10 ppm at any soil boring location, so no soil VOC samples were collected from Parcel A15.

**Table 4** provides a summary of SVOCs detected above the laboratory's reporting limits (RLs) in the soil samples collected from across the Site. There were no SVOCs detected above their respective PALs.

Shallow soil samples collected across the Site from the 0- to 2-foot bgs interval were analyzed for PCBs. **Table 4** provides a summary of PCBs detected above the laboratory's RLs. There were no PCBs detected above their PALs.

**Table 4** provides a summary of the TPH/Oil & Grease detections above the laboratory's RLs in the soil samples collected from across the Site. There were no PAL exceedances of TPH-DRO, TPH-GRO, or Oil & Grease. Additionally, no physical evidence of NAPL was observed in any soil cores completed during this investigation.

### 4.1.2. Soil Conditions: Inorganic Constituents

**Table 5** provides a summary of inorganic constituents detected above the laboratory's RLs in the soil samples collected from across the Site. One inorganic constituent (arsenic) was detected above its respective PAL in multiple soil samples. Arsenic was detected above (or equal to) its PAL of 3



mg/kg in 28 of the 33 samples where it was analyzed, with a maximum detection of 8.48 mg/kg in A15-020-SB-4. Arsenic was the only inorganic PAL exceedance. The inorganic PAL exceedances are shown on **Figure 8**.

### 4.1.3. Soil Conditions: Results Summary

**Table 4**, and **Table 5** provide summaries of the detected organic and inorganics compounds in the soil samples submitted for laboratory analysis, while **Figure 8** presents the soil sample results that exceeded the PALs. PAL exceedances in soil within Parcel A15 were limited to one metal (arsenic) which is considered only slightly above naturally occurring concentrations in the region. **Table 6** provides a summary of results for all PAL exceedances in soil, including maximum values and detection frequencies. VOCs, SVOCs, PCBs, TPH-DRO/GRO, and Oil & Grease were not detected above their respective PALs (as applicable) and are not considered to be soil contaminants in Parcel A15.

Lead, PCBs, and TPH/Oil & Grease are subject to special requirements as designated by the agencies: lead results above 10,000 mg/kg are subject to additional delineation (and possible excavation), PCB results above 50 mg/kg are subject to delineation and excavation, and TPH/Oil & Grease results above 6,200 mg/kg should be evaluated for the potential presence and mobility of NAPL in any future development planning:

- There were no locations where detections of lead exceeded 10,000 mg/kg.
- There were no locations where detections of PCBs exceeded 50 mg/kg.
- There were no locations where detections of TPH-DRO/GRO or Oil & Grease exceeded 6,200 mg/kg. Additionally, no physical evidence of NAPL was observed in any soil cores completed during this investigation.

### **4.2.** GROUNDWATER CONDITIONS

Groundwater analytical results were screened against PALs established in the property wide QAPP to determine PAL exceedances. The analytical results for the detected groundwater parameters are summarized and compared to the PALs in **Table 7** (Organics) and **Table 8** (Inorganics). The laboratory Certificates of Analysis (including Chains of Custody) and DVRs have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to results in the attached summary tables.

### 4.2.1. Groundwater Conditions: Organic Compounds

**Table 7** provides a summary of VOCs identified in groundwater samples above the laboratory's RLs. There was one VOC (trichloroethene) identified as above its respective PAL (5  $\mu$ g/L) in one



groundwater sample (A15-015-PZ) at a concentration of 9.5  $\mu$ g/L. The VOC PAL exceedance is shown in **Figure 9**.

**Table 7** provides a summary of SVOCs identified in the groundwater samples above the laboratory's RLs. A total of two SVOCs (benz[a]anthracene and naphthalene) were identified above their respective PALs (0.03  $\mu$ g/L and 0.12  $\mu$ g/L, respectively) in three groundwater samples: A15-016-PZ (benz[a]anthracene concentration of 0.03 J  $\mu$ g/L), SG04-PDM008 (naphthalene concentration of 3.4  $\mu$ g/L), and SW-099-MWS (naphthalene concentration of 0.19  $\mu$ g/L). The SVOC PAL exceedances are shown in **Figure 9**.

**Table 7** provides a summary of the TPH/Oil & Grease detections in groundwater above the laboratory's RLs. TPH-GRO and Oil & Grease were not detected above the PAL at any sample locations. TPH-DRO was identified above the PAL (47  $\mu$ g/L) in five of the six sampled groundwater locations, with a maximum detection of 210  $\mu$ g/L (with a corresponding "J" flag) in SW-099-MWS. Each location was checked for the potential presence of NAPL using an oil-water interface probe prior to sampling. During these checks, NAPL was not detected in any of the groundwater sampling locations. The TPH-DRO PAL exceedances are shown on **Figure 9**.

### 4.2.2. Groundwater Conditions: Inorganic Constituents

**Table 8** provides a summary of inorganic constituents detected in groundwater above the laboratory's RLs. Four dissolved metals (cobalt, iron, lead, and manganese) were detected above their respective aqueous PALs (6  $\mu$ g/L, 14,000  $\mu$ g/L, 15  $\mu$ g/L, and 430  $\mu$ g/L, respectively). Cobalt, iron, and manganese are typically associated with slag fill material. Cobalt had PAL exceedances at three locations (A15-015-PZ, A15-016-PZ, and SW-099-MWS), with the maximum detection of 52.94  $\mu$ g/L at SW-099-MWS. Iron, lead, and manganese were detected above their PALs at A15-016-PZ, with concentrations of 16,000  $\mu$ g/L for iron, 38.19  $\mu$ g/L for lead, and 1,478  $\mu$ g/L for manganese. The inorganic PAL exceedances are shown on **Figure 9**.

### 4.2.3. Groundwater Conditions: Results Summary

**Table 7** and **Table 8** provide summaries of the parameters detected in the groundwater samples from Parcel A15, and **Figure 9** presents the locations and aqueous results that exceeded the PALs. The PAL exceedances within Parcel A15 consisted of one VOC (trichloroethene), two SVOCs (benz[a]anthracene and naphthalene), TPH-DRO, and four dissolved metals (cobalt, iron, lead, and manganese).

None of the aqueous results exceeded the individual vapor intrusion (VI) target cancer risk (TCR) or target hazard quotient (THQ) criteria as specified by the Vapor Intrusion Screening Level (VISL) Calculator. Following the initial screening, a cumulative VI risk assessment was also performed for each individual sample location, with the results separated by cancer risk versus non-cancer hazard. All compounds with detections (and corresponding VISLs) were included in



the computation of the cumulative cancer risk, and all compounds with detections exceeding 10% of the THQ level were included in the evaluation of non-cancer hazard. None of the cumulative VI cancer risks were greater than 1E-5 and none of the VI non-cancer hazards exceeded the 10% THQ level. The cumulative VI comparisons are provided in **Table 9**.

The presence and absence of groundwater impacts within the Site boundaries have been adequately described. Groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized). Based on the relatively low-level analytical results identified during this investigation, there do not appear to be ongoing sources of groundwater contamination present. Overall, there are no plans for development within the Site so there is no vapor intrusion risk to potential workers.

## **4.3. SURFACE WATER CONDITIONS**

The surface water samples were screened against the PALs established in the QAPP (for groundwater) to determine potential direct exposure risks. The surface water analytical results were additionally compared to the National Recommended Water Quality Criteria (NRWQC) Aquatic Life Chronic Criteria for Freshwater. The analytical results for the detected parameters are summarized and compared to the PALs and the Aquatic Life Chronic Criteria for Freshwater in **Table 10** (Organics) and **Table 11** (Inorganics). No detections were observed for any organics that have established NRWQC screening levels. The laboratory Certificates of Analysis (including Chains of Custody) and DVRs have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to results in the attached summary tables.

### 4.3.1. Surface Water Conditions: Organic Compounds

**Table 10** provides a summary of VOCs identified in groundwater samples above the laboratory's RLs. A total of three VOCs (bromodichloromethane, chloroform, and dibromochloromethane) were identified above their respective PALs for each of the eight surface water samples. Bromodichloromethane was detected above the PAL of 0.13  $\mu$ g/L with a maximum detection of 0.86  $\mu$ g/L in A15-001-SW. Chloroform was detected above the PAL of 0.22  $\mu$ g/L with a maximum detection of 1.2  $\mu$ g/L also in A15-001-SW. Dibromochloromethane was detected above the PAL of 0.17  $\mu$ g/L with a maximum detection of 0.89  $\mu$ g/L at A15-001-SW as well. The VOC PAL exceedances are shown in **Figure 10**. Overall, these chlorinated compounds are likely associated with receipt of the discharge from the Back River Wastewater Treatment Plant.

**Table 10** provides a summary of SVOCs identified in the surface water samples above the laboratory's RLs. A total of two SVOCs (benz[a]anthracene and naphthalene) were identified above their respective PALs for multiple surface water samples. Benz[a]anthracene was detected above its PAL of 0.03  $\mu$ g/L in two samples (A15-008-SW and A15-012-SW), with values of 0.07  $\mu$ g/L and 0.04  $\mu$ g/L, respectively. Naphthalene was detected above its PAL of 0.12  $\mu$ g/L in two samples (A15-007-SW and A15-010-SW) with a detection of 0.17  $\mu$ g/L and 0.13  $\mu$ g/L, respectively. The SVOC PAL exceedances are shown in **Figure 10**.



**Table 10** provides a summary of the TPH/Oil & Grease detections in groundwater above the laboratory's RLs. TPH-GRO was not detected above the PAL at any sample locations. TPH-DRO was identified above the PAL in four surface water locations (A15-006-SW, A15-008-SW, A15-010-SW, and A15-012-SW) with a maximum concentration of 870  $\mu$ g/L detected in A15-006-SW. Oil & Grease was detected above its respective PAL of 47  $\mu$ g/L in one location (A15-004-SW) with a concentration of 5,800  $\mu$ g/L. Note that the Oil & Grease RL is 3,600  $\mu$ g/L, which is higher than the PAL. The TPH/Oil & Grease PAL exceedance is shown in **Figure 10**.

#### 4.3.2. Surface Water Conditions: Inorganic Constituents

**Table 11** provides a summary of inorganic constituents detected in surface water above the laboratory's RLs. No dissolved metals were detected above their respective aqueous PALs or NRWQC screening levels.

#### 4.3.3. Surface Water Conditions: Results Summary

**Table 10** and **Table 11** provide summaries of the parameters detected in the surface water samples from Parcel A15, and **Figure 10** presents the locations and aqueous results that exceeded the PALs. The surface water PAL exceedances for Parcel A15 consisted of three VOCs (bromodichloromethane, chloroform, and dibromochloromethane), two SVOCs (benz[a]anthracene and naphthalene), TPH-DRO, and Oil & Grease. Note that the observed Oil & Grease PAL exceedance occurred at A15-004-SW, which is the sample nearest to the area of previously noted oily surface water discharge and associated booms.

The detection of constituents in the surface water samples are not a significant concern at this time. The PALs specified in the QAPP are based upon drinking water use, which is not a potential exposure pathway for surface water at the Site. There is no indirect exposure risk via the consumption of organisms impacted by the surface water constituents because fishing does not occur in this area. Therefore, no additional action or remediation is proposed at this time with regard to the surface water in the High Head Reservoir.

#### **4.4. SEDIMENT CONDITIONS**

The analytical results for the detected sediment parameters from Parcel A15 are summarized and compared to the soil PALs and also the Biological Technical Assistance Group (BTAG) Freshwater Sediment Screening Benchmark values in **Table 12** (Organics) and **Table 13** (Inorganics). The laboratory Certificates of Analysis (including Chains of Custody) and DVRs have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to results in the attached summary tables.



## 4.4.1. Sediment Conditions: Organic Compounds

**Table 12** provides a summary of VOCs identified in sediment samples above the laboratory's RLs. Comparison of sediment samples to PALs and Freshwater BTAG Screening Values took place during this Phase II investigation. No VOCs were identified above their respective PALs in any sediment samples. Three BTAG exceedances were detected for VOCs (carbon disulfide, chlorobenzene, and xylenes) across seven sample locations.

**Table 12** provides a summary of SVOCs identified in sediment samples above the laboratory's RLs. Sediment samples values were compared to PALs and BTAG Screening Values. No SVOCs were identified above their respective PALs in any sediment samples. There were sixteen SVOC BTAG exceedances observed across multiple sediment sample locations.

**Table 12** provides a summary of PCBs identified in the sediment samples above the laboratory's RLs. PCBs were detected above the PALs in six of the 12 sediment samples, for one or more of the following PCB mixtures: Aroclor 1248, Aroclor 1254, Aroclor 1260 and total PCBs. Aroclor 1248 was detected above its PAL in one sediment sample location: A15-011-SD with a concentration of 5.3 J mg/kg. Aroclor 1254 was detected above its PAL in four sediment sample locations, with a maximum concentration of 6.41 mg/kg at A15-011-SD. Aroclor 1260 was detected above its PAL in three sediment sample locations, with a maximum concentration of 2.73 mg/kg at A15-011-SD. Total PCBs were detected above its PAL in six sediment sample locations, with a maximum value of 14.4 mg/kg at A15-011-SD. The PCB PAL exceedances are shown in **Figure 11**. Each sediment sample also exceeded the BTAG Screening Value for total PCBs.

**Table 12** provides a summary of the TPH/Oil & Grease detections in sediment above the laboratory's RLs. TPH-GRO was not identified above its PAL in any sediment samples. TPH-DRO was identified above the PAL at one sediment sample location (A15-007-SB) with a detection of 10,000 mg/kg (with an associated "J" flag). Oil & Grease exceedances were observed at all 12 sediment sample locations, with a maximum detection of 82,400 mg/kg (with an associated "J +" flag) at A15-011-SD. The TPH/Oil & Grease PAL exceedances are shown on **Figure 11**.

### 4.4.2. Sediment Conditions: Inorganic Constituents

**Table 13** provides a summary of inorganic constituents detected in sediment above the laboratory's RLs. Comparison of sediment samples to PALs and Freshwater BTAG Screening Values took place during this Phase II investigation. Two metals (arsenic and lead) were detected above their respective PAL. Arsenic was detected above the PAL in 11 of the 12 sediment sample locations with a maximum observed value of 23.8 mg/kg (with an associated "J" flag) at A15-010-SD. Lead was detected in four sample locations (A15-001-SD, A15-007-SD, A15-010-SD, and A15-012-SD) with a maximum observed value of 2,790 mg/kg, (with associate "J" flag) at A15-010-SD. The inorganic PAL exceedances are shown on **Figure 11**. It should be noted that



hexavalent chromium results from each sediment sample were rejected due to matrix interference. Of the inorganic constituents for the sediment samples, there were 13 BTAG exceedances across multiple sediment sample locations.

### 4.4.3. Sediment Conditions: Results Summary

**Table 12** and **Table 13** provide summaries of the parameters detected in the sediment samples from Parcel A15, and **Figure 11** presents the locations and results that exceeded the PALs. The sediment PAL exceedances for Parcel A15 consisted of four PCB mixtures (Aroclor 1248, Aroclor 1254, Aroclor 1260 and total PCBs), TPH-DRO, Oil & Grease, and two metals (arsenic and lead). The maximum detections for PCBs were all at location A15-011-SD. The maximum detection for metals were all at A15-010-SD. Only one DRO exceedance was observed in the sediment at A15-007-SD, located on the eastern portion of the reservoir. Overall, Oil & Grease exceedances are not localized to a particular area of the reservoir, suggesting that there does not appear to be a single source area for these impacts. It should be noted that hexavalent chromium results from each sediment sample were rejected due to matrix interference.

Since the sediments are below the water surface, there is no direct exposure pathway for a current worker to encounter the sediments. There is also no indirect exposure risk via the consumption of organisms potentially impacted by the pond sediments because fishing does not occur in this area. Therefore, no additional action or remediation is proposed at this time with regard to the pond sediments and human health.

Sediment exceedances for BTAG screening values included three exceedances for VOCs, 16 exceedances for SVOCs, one exceedance for PCBs, and 13 exceedances for metals. Each compound identified as an exceedance of the BTAG values was detected above its applicable criterion in at least two samples. As mentioned in Section 1.1, High Head Reservoir is largely fed by treated effluent from the BRWWTP. There is no current Process Watter discharged to the pond in Parcel A15. Potential impacts to ecological receptors do not appear to be related to Sparrows Point activities. In addition, future development plans indicate that treated effluent from the BCWWTP will bypass the High Head Reservoir, and the High Head Reservoir may be filled in.



# 5.0 DATA USABILITY ASSESSMENT

The approved property wide QAPP specified a process for evaluating data usability in the context of meeting project goals. Specifically, the goal of the Phase II Investigation is to determine if potentially hazardous substances or petroleum products (VOCs, SVOCs, PCBs, metals, cyanide, or TPH/Oil & Grease) are present in Site media (soil/sediment and groundwater) at concentrations that could pose an unacceptable risk to Site receptors. Individual results are compared to the PALs established in the QAPP (i.e., the USEPA RSLs), or based on other direct guidance from the agencies, to identify the presence of PAL exceedances in each environmental medium.

Quality assurance and quality control (QA/QC) samples were collected during the field studies to evaluate field/laboratory variability. A summary of QA/QC samples associated with this investigation has been included as **Appendix E**. The following QA/QC samples were required by the QAPP to support the data validation:

- Trip Blank at a rate of one per cooler with VOC samples per day
  - Soil/Sediment VOCs only
  - Water VOCs only
- Blind Field Duplicate at a rate of one per twenty samples
  - Soil/Sediment VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, PCBs, hexavalent chromium, and cyanide
  - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide
- Matrix Spike/Matrix Spike Duplicate at a rate of one per twenty samples
  - Soil/Sediment VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, PCBs, and hexavalent chromium
  - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, and hexavalent chromium
- Field Blank and Equipment Blank at a rate of one per twenty samples
  - Soil/Sediment VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide
  - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide

The QA/QC samples were collected and analyzed in accordance with the QAPP Worksheet 12 – Measurement Performance Criteria, QAPP Worksheet 20 – Field Quality Control, and QAPP Worksheet 28 – Analytical Quality Control and Corrective Action.



## 5.1. DATA VERIFICATION

A verification review was performed on documentation generated during sample collection and analysis. The verification included a review of field logbooks, field data sheets, and Chains of Custody to ensure that all planned samples were collected, and to ensure consistency with the field methods and decontamination procedures specified in the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP. In addition, calibration logs were reviewed to ensure that field equipment was calibrated at the beginning of each day and re-checked as needed. The logs have been provided in **Appendix C** (PID calibration log) and **Appendix D** (multiparameter meter calibration logs).

The laboratory deliverables were reviewed to ensure that all records specified in the QAPP as well as necessary signatures and dates are present. Sample receipt records were reviewed to ensure that the sample condition upon receipt was noted, and any missing/broken sample containers (if any) were noted and reported according to plan. The data packages were compared to the Chains of Custody to verify that results were provided for all collected samples. The data package case narratives were reviewed to ensure that all exceptions (if any) are described.

### 5.2. DATA VALIDATION

USEPA Stage 2B data validation was completed for a representative 30% (minimum) of the environmental sample analyses performed by Alpha and ALS and supporting Level IV Data Package information by Environmental Data Quality Inc. (EDQI). The DVRs provided by EDQI have been included as electronic attachments.

Sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. The Stage 2B review was performed as outlined in "Guide for Labeling Externally Validated Laboratory Analytical Data for Superfund Use", EPA-540-R-08-005. Results have been validated or qualified according to general guidance provided in "USEPA National Functional Guidelines for Inorganic Superfund Data Review (ISM02.1)", USEPA October 2013. Region III references this guidance for validation requirements. This document specifies procedures for validating data generated for Contract Laboratory Program (CLP) analyses. The approved property wide QAPP dated April 5, 2016, and the quality control requirements specified in the methods and associated acceptance criteria were also used to evaluate the non-CLP data.

The Alpha Analytical Services, Inc. laboratory facility implements quality assurance and reporting requirements through the TNI certification program with the State of Pennsylvania; which is accepted by Maryland. Since late-January 2017, these requirements include the flagging of contaminants with a "B" qualifier when an analyte is detected in an associated laboratory method blank, regardless of the level of the contaminant detected in the sample. A method blank is analyzed at a rate of one blank for each 20 sample analytical batch. The USEPA has previously specified that results flagged with the "B" qualifier do not represent legitimate detections. They



have also specified that results flagged with a "JB" qualifier are invalid, and any such results should be revised to display the "B" qualifier only.

Although elevated sample results may be "B" qualified by the laboratory as non-detects (due to low-level blank detections), EDQI corrects any erroneous "B" qualifiers during the data validation procedure to avoid under-reporting analytical detections. EDQI removes the "B" qualifiers for relevant samples according to the guidance given in the table below. Therefore, a result originally flagged with a "B" qualifier in the laboratory certificate may be reported as a legitimate detection without this qualifier. Likewise, a result originally flagged with a "JB" qualifier in the laboratory certificate may be reported as a "J" qualifier if the erroneous "B" qualifier can be eliminated but would be reported as a "B" qualified non-detect result if the original "B" qualifier is legitimate.

| Blank Result           | Sample Result                    | Qualifying Action       |
|------------------------|----------------------------------|-------------------------|
| Result less than RL    | Result less than RL              | Result is Qualified "B" |
| Result less than KL    | Result greater than RL           | Remove "B"              |
| Result greater than RL | Result less than Blank Result    | Result is Qualified "B" |
| Kesuit greater than KL | Result greater than Blank Result | Remove "B"              |

RL = Reporting Limit

As directed by EDQI, ARM has reviewed all non-validated laboratory reports (those which were not designated to be reviewed by EDQI) and applied the same validation corrections to any relevant "B" or "JB" qualified results. This review of the non-validated data ensures that any elevated detections of parameters, including those which may exceed the PALs, are not mistakenly reported as non-detect values simply because they did not undergo the formal validation procedure by EDQI. ARM has also revised the non-validated results to eliminate any laboratory-specific, non-standardized qualifiers (L2, 6c, ip, 4c, etc.), which are customarily removed by EDQI during the validation procedure.

### 5.3. DATA USABILITY

The data were evaluated with respect to the quality control elements of precision, bias, representativeness, comparability, completeness, and sensitivity relative to data quality indicators and performance measurement criteria outlined in QAPP Worksheet 12 – Measurement Performance Criteria. The following discussion details deviation from the performance measurement criteria, and the impact on data quality and usability.

The measurement performance criteria of precision and bias were evaluated in the data validation process as described in the DVRs provided as electronic attachments. Where appropriate, potential limitations in the results have been indicated through final data flags. These flags indicate whether



particular data points were quantitative estimates, biased high/low, associated with blank contamination, etc. Individual data flags are provided with the results in the detection summary tables. A qualifier code glossary is included with the DVRs provided by EDQI. Particular results may have been marked with the "R" flag if the result was deemed to be unreliable and was not included in any further data evaluation. The analytical soil, sediment, and groundwater results that were rejected during data validation are provided in **Table 14**. A discussion of data completeness (the proportion of valid data) is included below.

Representativeness is a measure of how accurately and precisely the data describe the Site conditions. Representativeness of the samples submitted for analysis was ensured by adherence to standard sampling techniques and protocols, as well as appropriate sample preservation prior to analysis. The sampling was conducted in accordance with the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP. Specific Field SOPs applicable to the assessment of representativeness include **Field SOP Numbers 003, 006, 008, 009, 010, 011, 017, and 024**. Review of the field notes and laboratory sample receipt records indicated that sample collection at the Site was representative, with no significant deviations from the SOPs.

Comparability describes the degree of confidence in comparing two sets of data. Comparability is maintained across multiple datasets by the use of consistent sampling and analytical methods across multiple project phases. Comparability of sample results was ensured through the use of approved standard sampling and analysis methods outlined in the QAPP. QA/QC protocols help to maintain the comparability of datasets, and in this case were assessed via blind duplicates, blank samples, and spiked samples, where applicable. Any significant deviations from the QAPP are noted in the DVRs.

Sensitivity is a determination of whether the analytical methods and quantitation limits will satisfy the requirements of the project. The laboratory reports were reviewed to verify that reporting limits met the quantitation limits for specific analytes provided in QAPP Worksheet #15 – Project Action Limits and Laboratory-Specific Detection/Quantitation Limits. In general, the laboratory reporting limits met the detection and quantitation limits specified in the QAPP.

Completeness is expressed as a ratio of the number of valid data points to the total number of analytical data results. Non-usable ("R" flagged) data results were determined through the data validation process. The approved QAPP specifies that the completeness of data is assessed by professional judgement but should be greater than or equal to 90%. Data completeness for each compound is provided in **Appendix F**. This evaluation of completeness includes only the representative 30% (minimum) of sample results which were randomly selected for validation.

All soil and surface water compounds had completeness ratios greater than 90%. Only two analytes had completeness ratios less than 90% (selenium in groundwater (50%) and hexavalent chromium in sediment (0%)). Neither of these parameters had PAL exceedances in any samples collected



across the Site. Overall, the soil, groundwater, sediment, and surface water data can be used as intended, and no significant data gaps were identified.



# 6.0 FINDINGS AND RECOMMENDATIONS

The objective of the Parcel A15 Phase II Investigation was to characterize the nature and extent of contamination at the Site. During the Phase II Investigation, a total of 34 soil samples (from 17 soil boring locations), 12 sediment samples, 6 groundwater samples, and eight surface water samples were collected for analysis. However, 33 of the 34 soil samples were analyzed; the remaining soil sample was placed on hold, and analysis was not required based on the results of the shallower soil sample. The sampling and analysis plan for the parcel was developed to target specific features that represented a potential release of hazardous substances and/or petroleum products to the environment, as well as providing general site coverage.

Soil and sediment samples were analyzed for VOCs, SVOCs, TPH-DRO/GRO, Oil & Grease, TAL-Metals, hexavalent chromium, cyanide, and PCBs, in accordance with the requirements of the project-specific soil sampling plan. Groundwater and surface water samples were analyzed for VOCs, SVOCs, TPH-DRO/GRO, Oil & Grease, TAL metals, dissolved hexavalent chromium, total cyanide, and available/amenable cyanide.

High Head Reservoir was constructed as an industrial facility to receive effluent from the BRWWTP. High Head Reservoir discharges into the TMC and ultimately is treated at the HCWWTP. Currently, the City of Baltimore is looking to bypass the High Head Reservoir and instead pipe directly to one of the stormwater outfalls. Future development plans may likely include filling the High Head Reservoir.

#### 6.1. SOIL

The concentrations of constituents in the soil have been characterized by the Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

PCB concentrations are below levels that would warrant delineation and evaluation of a removal remedy (50 mg/kg). Additionally, lead concentrations were below the mandatory delineation threshold (10,000 mg/kg). No further action is required with respect to PCBs or lead at the Site. VOCs, SVOCs, PCBs, TPH-DRO/GRO, and Oil & Grease were not detected above their respective PALs and are not considered to be significant soil contaminants at the Site. No physical evidence of NAPL was observed in any soil cores completed during this investigation.

PAL exceedances in soil within Parcel A15 were limited to one metal (arsenic). The maximum concentration of arsenic was 8.48 mg/kg, within sample A15-020-SB-4. Arsenic exceedances were detected in almost every sample, but only slightly above naturally occurring concentrations in the region.



### **6.2.** GROUNDWATER

The concentrations of constituents in the groundwater have been characterized by this Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment. NAPL was not detected at any of the groundwater sample locations included in either investigation.

PAL exceedances in groundwater consisted of one VOC (trichloroethene), two SVOCs (benz[a]anthracene and naphthalene), TPH-DRO, and four dissolved metals (cobalt, iron, lead, and manganese). Trichloroethene exceeded its PAL of 5  $\mu$ g/L at A15-015-PZ with a detection of 9.5  $\mu$ g/L. Benz[a]anthracene was detected right at the PAL exceedance limit value of 0.03  $\mu$ g/L at A15-016-PZ, while naphthalene was observed in two locations (SG04-PDM008 and SW-099-MWS) with a detections of 3.4  $\mu$ g/L and 0.19  $\mu$ g/L, respectively. TPH-DRO was identified above the PAL in five groundwater locations with a maximum detection of 2,100  $\mu$ g/L in SW-099-MWS), 16,000  $\mu$ g/L for iron (A15-016-PZ), 38.19  $\mu$ g/L for lead (A15-016-PZ), and 1,478  $\mu$ g/L for manganese(A15-016-PZ). Cobalt had exceedances at multiple locations, but the remaining inorganic exceedances were identified at a single location (A15-016-PZ).

Groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized); therefore, there is no potential for direct human exposure. If future construction/excavation leads to potential construction worker exposures to groundwater, health and safety plans should be implemented to limit exposure risk. The groundwater data were screened to determine whether any cumulative (or individual) sample results exceeded the USEPA VI TCR (carcinogen) or THQ (non-carcinogen) Screening Levels. No VI exceedances were observed. Overall, there are no plans for development within the Site so there is no VI risk to potential workers.

### 6.3. SURFACE WATER

The concentrations of constituents in the surface water have been characterized by this Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

PAL Exceedances in surface water consisted of three VOCs (bromodichloromethane, chloroform, and dibromochloromethane), two SVOCs (benz[a]anthracene and naphthalene), TPH-DRO, and Oil & Grease. The maximum detections for each listed VOC were: 0.86  $\mu$ g/L for bromodichloromethane, 1.2  $\mu$ g/L for chloroform, and 0.89 for dibromochloromethane  $\mu$ g/L, all at a single location (A15-001-SW). Benz[a]anthracene was detected above the PAL exceedance limit value of 0.03  $\mu$ g/L in two samples (A15-008-SW and A15-012-SW), with values of 0.07  $\mu$ g/L and 0.04  $\mu$ g/L, respectively. Naphthalene was observed in two locations (A15-007-SW and A15-010-SW) with a detection of 0.17  $\mu$ g/L and 0.13  $\mu$ g/L, respectively. DRO exceeded its PAL of 47  $\mu$ g/L in four surface sample locations with a maximum detection of detection of 870  $\mu$ g/L (A15-006-SW).



The surface water in High Head Reservoir is not used for any purpose, therefore there are no potentially complete exposure pathways for human health. No additional action or remediation is proposed at this time with regard to the surface water in the High Head Reservoir.

### 6.4. SEDIMENT

The concentrations of constituents in the sediment have been characterized by this Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

PAL exceedances in the sediment consisted of four PCB mixtures (Aroclor 1248, Aroclor 1254, Aroclor 1260, and total PCBs), TPH-DRO, Oil & Grease, and two metals (arsenic and lead). TPH-DRO concentrations were only elevated at A15-007-SD, with an exceedance of 10,000 mg/kg. Oil & Grease sediment concentrations were elevated at every location. The maximum Oil & Grease concentration was observed at A15-011-SD at 82,400 mg/kg.

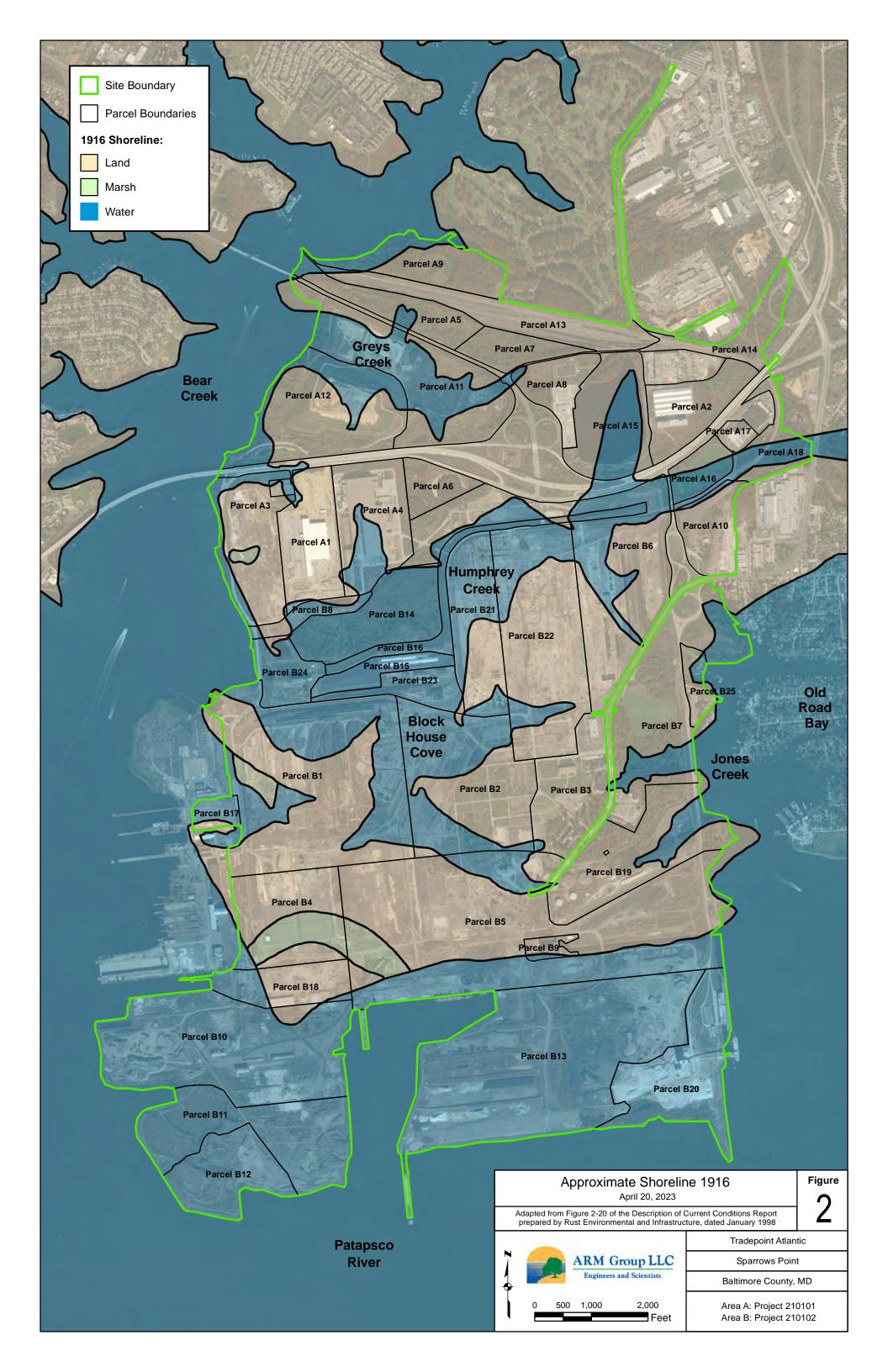
There is no direct exposure pathway for a current worker to encounter the sediments, and there is also no indirect exposure risk via the consumption of organisms because fishing does not occur in this area. Therefore, no additional action or remediation with regard to human health is warranted or proposed. There is no current Process Water discharged to the pond on Parcel A15 and there is no record/indication of any historical industrial activity on Parcel A15. Potential impacts to ecological receptors do not appear to be related to Sparrows Point activities. No additional action or remediation is proposed at this time with regard to ecological receptors.

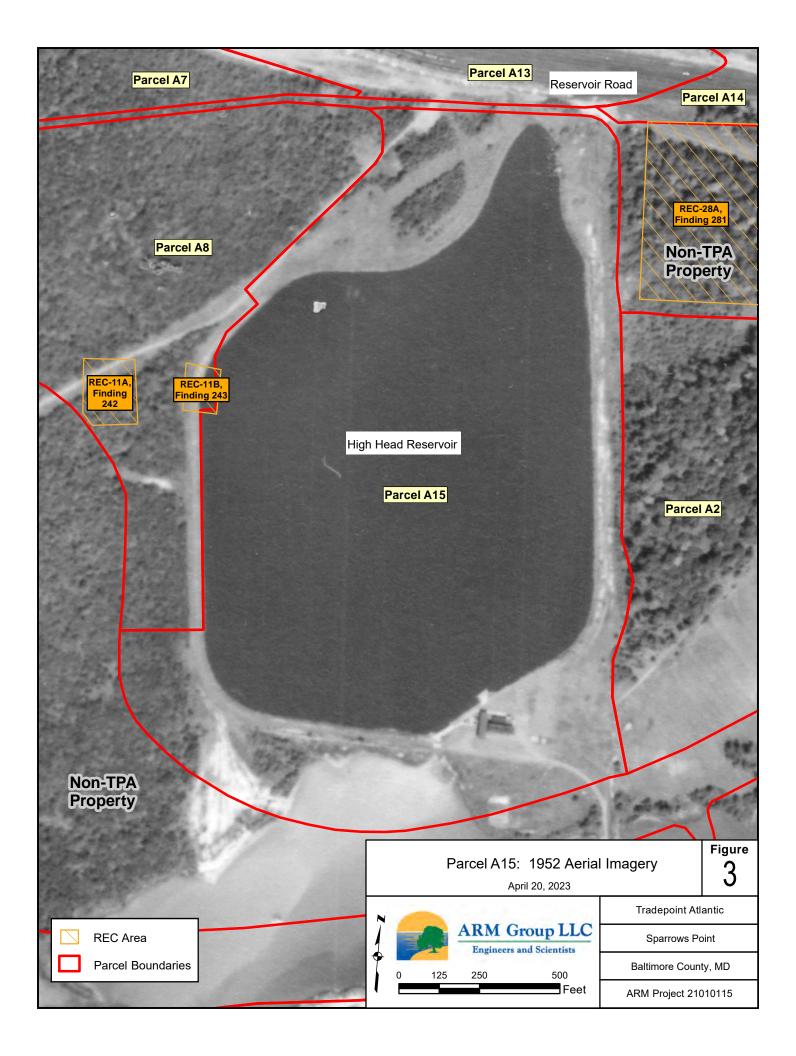
#### **6.5. RECOMMENDATIONS**

Sufficient remedial investigation data has been collected to evaluate the nature and extent of possible constituents of concern in Parcel A15. The presence and absence of soil, groundwater, surface water, and sediment impacts within Parcel A15 have been adequately described and further investigation at the Site is not warranted to characterize overall conditions. Recommendations for the Site are as follows:

• At multiple locations in the High Head Reservoir, sediment and surface water sample results exceeded the PALs and BTAG screening levels. The PALs are related to human health; there are no potentially complete exposure pathways for a worker to encounter sediments and surface water in the ponds. No additional action or remediation with regard to human health is proposed at this time. While there are BTAG exceedances; any potential impacts to ecological receptors do not appear to be related to Sparrows Point activities. In addition, future development plans indicate that treated effluent from the BCWWTP will bypass the High Head Reservoir, and the High Head Reservoir may be filled in. Additional characterization may be required during future redevelopment (if redevelopment is proposed for Parcel A15) to ensure proper management of sediments if they are to be excavated, particularly those with elevated Oil & Grease and PCB results.




## 7.0 REFERENCES

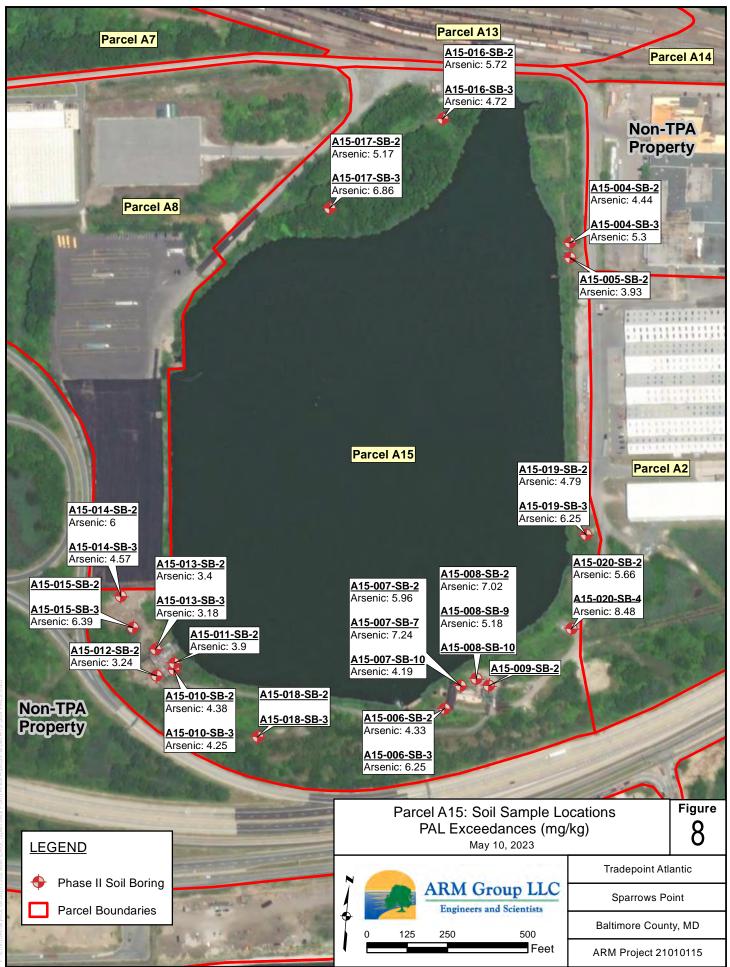

- ARM Group LLC (2022). *Phase II Investigation Work Plan Area A: Parcel A15*. Revision 1. September 30, 2022.
- ARM Group Inc. (2016). *Quality Assurance Project Plan Sparrows Point Terminal Site*. Revision 3. April 5, 2016.
- ARM Group LLC (2020). Stormwater Pollution Prevention Plan. Revision 8. April 30, 2020.
- Rust Environment and Infrastructure (1998). *Description of Current Conditions: Bethlehem Steel Corporation*. Final Draft. January 1998.
- USEPA (2017). Vapor Intrusion Screening Level Calculator version 3.5 (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls).
- Weaver Boos Consultants (2014). Phase I Environmental Site Assessment: Former RG Steel Facility. Final Draft. May 19, 2014.

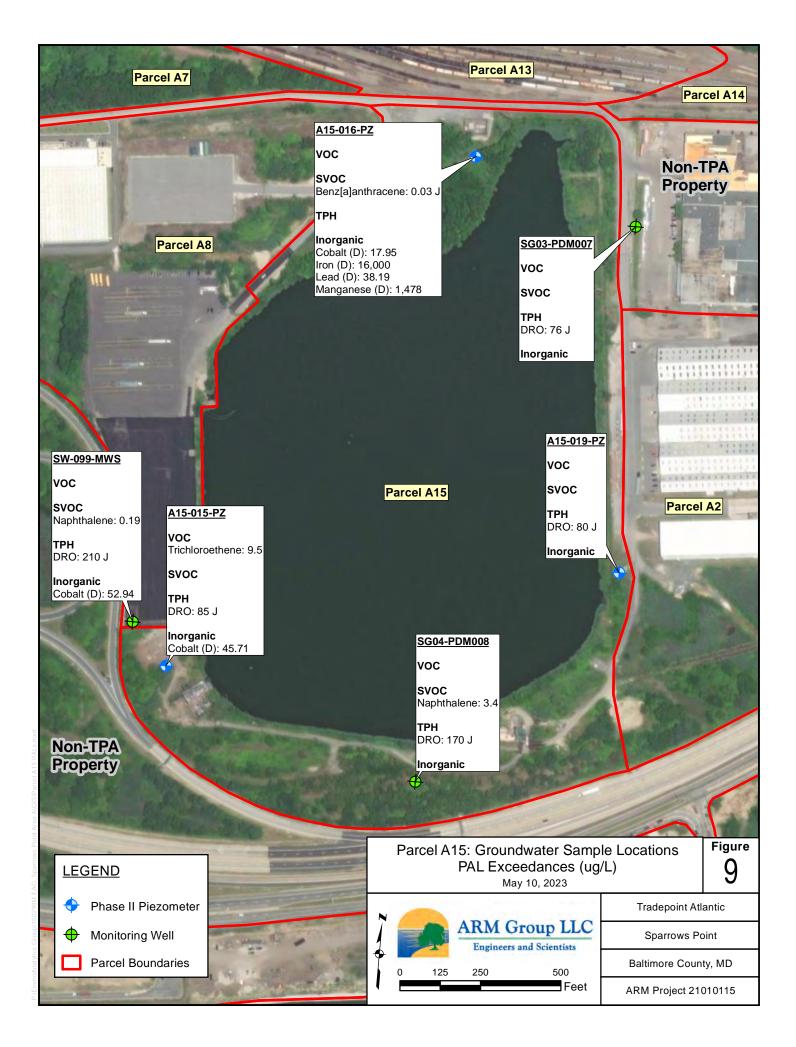


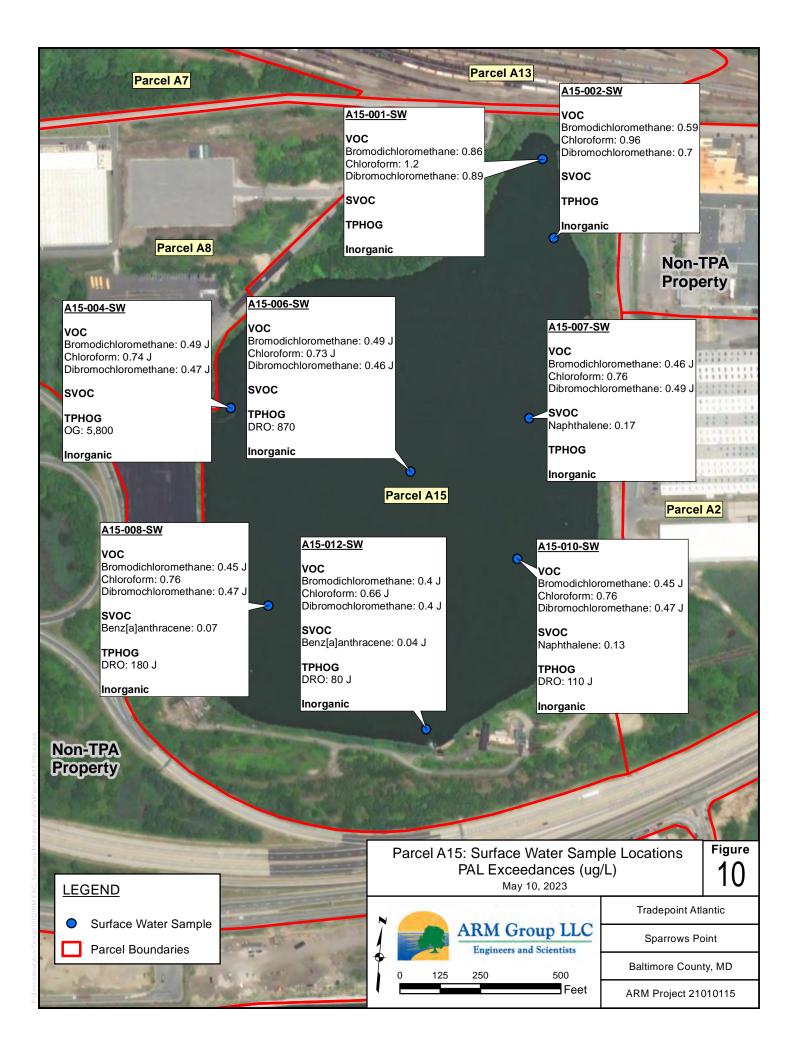
# FIGURES

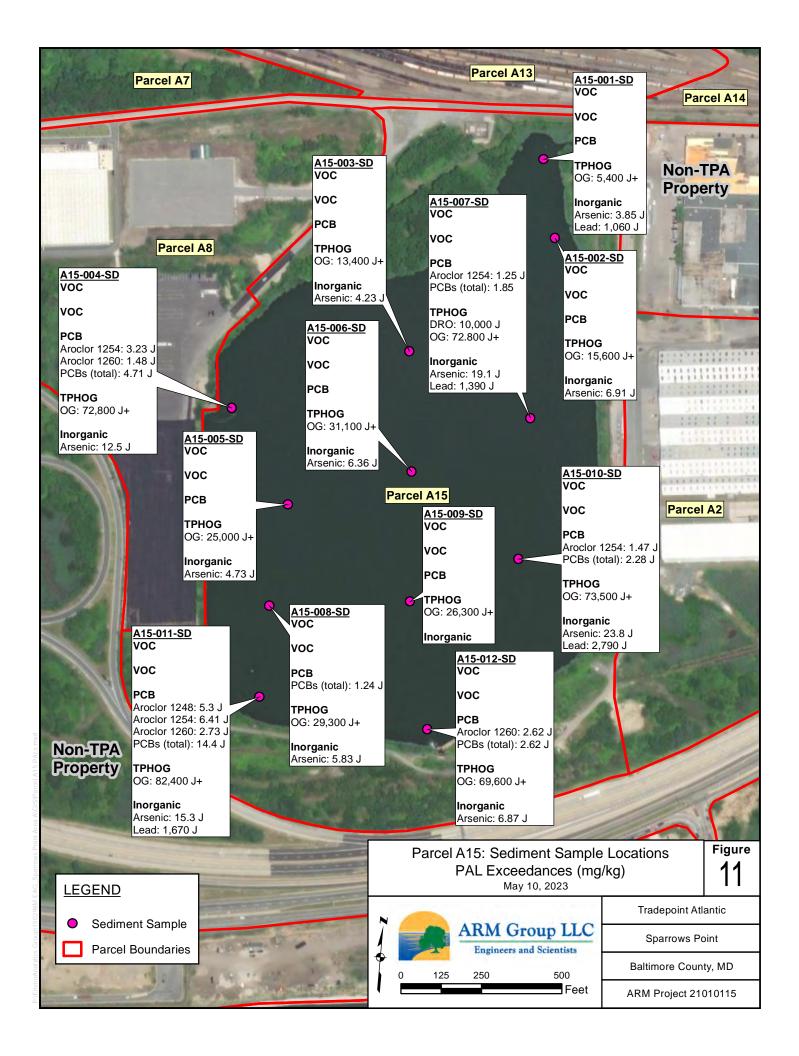

















### **TABLES**

| G             |                                               | ΓABLE 1<br>ER ELEVATIO                           | N DATA                      |                                         |
|---------------|-----------------------------------------------|--------------------------------------------------|-----------------------------|-----------------------------------------|
| Location Name | <u>TOC</u><br><u>Elevation</u><br>(feet AMSL) | <u>Ground</u><br><u>Elevation</u><br>(feet AMSL) | <u>Measured</u><br>DTW (ft) | Groundwater<br>Elevation<br>(feet AMSL) |
| A15-015-PZ    | 14.17                                         | 11.33                                            | 7.04                        | 7.13                                    |
| A15-016-PZ    | 12.76                                         | 10.53                                            | 2.65                        | 10.11                                   |
| A15-019-PZ    | 10.61                                         | 8.18                                             | 5.19                        | 5.42                                    |
| SG03-PDM007   | 13.93                                         | 12.09                                            | 5.19                        | 8.74                                    |
| SG04-PDM008   | 7.50                                          | 4.84                                             | 5.85                        | 1.65                                    |
| SW-099-MWS    | 17.68                                         | 14.01                                            | 10.49                       | 7.19                                    |

DTW = Depth to water

TOC = Top of casing

AMSL = Above mean sea level

# Table 2 - Parcel A15Historical Site Drawing Details

| <u>Set Name</u> | Typical Features Shown                                          | <u>Drawing</u><br><u>Number</u> | <u>Original</u><br>Date Drawn | Latest<br>Revision Date |
|-----------------|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------------------------|
|                 |                                                                 | 5051                            | 6/1/1960                      | 3/19/1982               |
|                 | Roads, water bodies,                                            | 5052                            | 6/30/1959                     | 3/11/1982               |
| Plant           | building/structure footprints,                                  | 5056                            | 1/27/1959                     | 3/11/1982               |
| Arrangement     | electric lines, above-ground pipelines                          | 5057                            | 4/27/1959                     | 3/11/1982               |
|                 | (e.g., steam, nitrogen, etc.)                                   | 5061                            | 2/8/1962                      | 3/11/1982               |
|                 |                                                                 | 5062                            | 2/8/1962                      | 3/11/1982               |
|                 |                                                                 | 5151                            | Unknown                       | 2/21/2008               |
|                 |                                                                 | 5152                            | Unknown                       | 2/25/2008               |
| Plant           | Roads, water bodies, demolished                                 | 5156                            | Unknown                       | 11/10/2008              |
| Index           | buildings/structures, electric lines,<br>above-ground pipelines | 5157                            | Unknown                       | 11/10/2008              |
|                 |                                                                 | 5161                            | Unknown                       | 3/6/2008                |
|                 |                                                                 | 5162                            | Unknown                       | 3/6/2008                |
|                 |                                                                 | 5551                            | 9/16/1959                     | 3/5/1976                |
|                 |                                                                 | 5552                            | 9/16/1959                     | 3/9/1976                |
| Plant           | Same as above plus trenches,                                    | 5556                            | 4/5/1961                      | 2/41/76                 |
| Sewer Lines     | sumps, underground piping (includes pipe materials)             | 5557                            | Unknown                       | 2/2/1976                |
|                 |                                                                 | 5561                            | 2/5/1976                      | 2/5/1976                |
|                 |                                                                 | 5562                            | 3/15/1976                     | 3/15/1976               |

# Table 3 - Parcel A15Field Shifted Boring Locations

|             |                          | Proposed        | Location*      | Final Lo        | ocation*  | Reloca             | ation |                                |
|-------------|--------------------------|-----------------|----------------|-----------------|-----------|--------------------|-------|--------------------------------|
| Location ID | Sample Target            | <u>Northing</u> | <u>Easting</u> | <u>Northing</u> | Easting   | Distance<br>& Dire |       | <u>Reason for Shift</u>        |
| A15-004-SB  | Underground Storage Tank | 574,114         | 1,463,310      | 574,141         | 1,463,324 | 29                 | SE    | Inaccessible due to Vegetation |
| A15-005-SB  | Underground Storage Tank | 574,101         | 1,463,310      | 574,094         | 1,463,329 | 16                 | NE    | Inaccessible due to Vegetation |
| A15-016-SB  | Parcel A15 Coverage      | 574,491         | 1,462,880      | 574,490         | 1,462,897 | 21                 | Е     | Overhead Utility               |
| A15-017-SB  | Parcel A15 Coverage      | 574,196         | 1,462,460      | 574,183         | 1,462,572 | 111                | Е     | Overhead Utility               |
| A15-018-SB  | Parcel A15 Coverage      | 572,547         | 1,462,480      | 572,527         | 1,462,492 | 23                 | SE    | Inaccessible due to Topography |
| A15-019-SB  | Parcel A15 Coverage      | 573,192         | 1,463,460      | 573,241         | 1,463,453 | 49                 | Ν     | Inaccessible due to Vegetation |
| A15-020-SB  | Parcel A15 Coverage      | 573,677         | 1,463,370      | 572,946         | 1,463,433 | 734                | S     | Inaccessible due to Fence      |

\*Reported northings and eastings are not survey accurate. Coordinates are reported in NAD 1983 Maryland State Plane (US feet).

# Table 4 - Parcel A15Summary of Organics Detected in Soil

| Demonster                        | I.I. de | DAI     | A15-004-SB-2* | A15-004-SB-3* | A15-005-SB-2* | A15-006-SB-2 | A15-006-SB-3 | A15-007-SB-2 | A15-007-SB-7 | A15-008-SB-2 | A15-008-SB-9 | A15-009-SB-2 |
|----------------------------------|---------|---------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Parameter                        | Units   | PAL     | 11/8/2022     | 11/8/2022     | 11/8/2022     | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   |
| Semi-Volatile Organic Compounds/ | \       |         |               |               |               |              |              |              |              |              |              |              |
| 2-Methylnaphthalene              | mg/kg   | 3,000   | 0.0028 J      | 0.0076 U      | 0.0046 J      | 0.01         | 0.0026 J     | 0.008 U      | 0.0082 U     | 0.0078 U     | 0.0023 J     | 0.0064 J     |
| 3&4-Methylphenol(m&p Cresol)     | mg/kg   | 41,000  | 0.28 U        | 0.27 U        | 0.26 U        | 0.28 U       | 0.27 U       | 0.29 U       | 0.29 U       | 0.28 U       | 0.29 U       | 0.27 U       |
| Acenaphthene                     | mg/kg   | 45,000  | 0.0078 U      | 0.0076 U      | 0.0016 J      | 0.0021 J     | 0.0076 U     | 0.008 U      | 0.0082 U     | 0.0078 U     | 0.0074 J     | 0.0074 U     |
| Acenaphthylene                   | mg/kg   | 45,000  | 0.026         | 0.0076 U      | 0.033         | 0.012        | 0.0076 U     | 0.008 U      | 0.0082 U     | 0.0078 U     | 0.008 U      | 0.0018 J     |
| Anthracene                       | mg/kg   | 230,000 | 0.014         | 0.0076 U      | 0.015         | 0.011        | 0.00068 J    | 0.008 U      | 0.0082 U     | 0.0078 U     | 0.008 U      | 0.0022 J     |
| Benz[a]anthracene                | mg/kg   | 21      | 0.064         | 0.0076 U      | 0.076         | 0.085        | 0.0052 J     | 0.0048 J     | 0.0082 U     | 0.0024 J     | 0.008 U      | 0.0064 J     |
| Benzaldehyde                     | mg/kg   | 120,000 | 0.26 U        | 0.25 U        | 0.24 U        | 0.054 J      | 0.25 U       | 0.26 U       | 0.27 U       | 0.26 U       | 0.26 U       | 0.24 U       |
| Benzo[a]pyrene                   | mg/kg   | 2.1     | 0.06          | 0.0076 U      | 0.076         | 0.072        | 0.0038 J     | 0.0034 J     | 0.0082 U     | 0.0019 J     | 0.008 U      | 0.0071 J     |
| Benzo[b]fluoranthene             | mg/kg   | 21      | 0.076         | 0.0076 U      | 0.096         | 0.099        | 0.005 J      | 0.0039 J     | 0.0082 U     | 0.0025 J     | 0.008 U      | 0.013        |
| Benzo[g,h,i]perylene             | mg/kg   |         | 0.028         | 0.0076 U      | 0.034         | 0.044        | 0.0034 J     | 0.0021 J     | 0.0082 U     | 0.0011 J     | 0.008 U      | 0.007 J      |
| Benzo[k]fluoranthene             | mg/kg   | 210     | 0.027         | 0.0076 U      | 0.027         | 0.032        | 0.0014 J     | 0.0014 J     | 0.0082 U     | 0.0078 U     | 0.008 U      | 0.0028 J     |
| Carbazole                        | mg/kg   |         | 0.2 U         | 0.19 U        | 0.18 U        | 0.2 U        | 0.19 U       | 0.2 U        | 0.2 U        | 0.2 U        | 0.2 U        | 0.18 U       |
| Chrysene                         | mg/kg   | 2,100   | 0.045         | 0.0076 U      | 0.056         | 0.059        | 0.0033 J     | 0.0039 J     | 0.0082 U     | 0.0016 J     | 0.008 U      | 0.0087       |
| Dibenz[a,h]anthracene            | mg/kg   | 2.1     | 0.0088        | 0.0076 U      | 0.01          | 0.012        | 0.0076 U     | 0.008 U      | 0.0082 U     | 0.0078 U     | 0.008 U      | 0.0018 J     |
| Di-n-butylphthalate              | mg/kg   | 82,000  | 0.2 U         | 0.19 U        | 0.18 U        | 0.2 U        | 0.19 U       | 0.2 U        | 0.2 U        | 0.2 U        | 0.2 U        | 0.18 U       |
| Fluoranthene                     | mg/kg   | 30,000  | 0.095         | 0.0076 U      | 0.1           | 0.13         | 0.0055 J     | 0.0053 J     | 0.00066 J    | 0.0032 J     | 0.0012 J     | 0.013        |
| Fluorene                         | mg/kg   | 30,000  | 0.002 J       | 0.0076 U      | 0.0022 J      | 0.0035 J     | 0.0076 U     | 0.008 U      | 0.001 J      | 0.0078 U     | 0.0012 J     | 0.001 J      |
| Indeno[1,2,3-c,d]pyrene          | mg/kg   | 21      | 0.041         | 0.0076 U      | 0.051         | 0.06 J       | 0.004 J      | 0.0027 J     | 0.0082 UJ    | 0.0016 J     | 0.008 U      | 0.0083       |
| Naphthalene                      | mg/kg   | 8.6     | 0.0095        | 0.0076 U      | 0.016         | 0.016        | 0.0027 J     | 0.0015 J     | 0.0082 U     | 0.0078 U     | 0.033        | 0.0063 J     |
| Phenanthrene                     | mg/kg   |         | 0.021         | 0.0076 U      | 0.024         | 0.052        | 0.0035 J     | 0.0021 J     | 0.00086 J    | 0.0016 J     | 0.0011 J     | 0.0087       |
| Pyrene                           | mg/kg   | 23,000  | 0.079         | 0.0076 U      | 0.085         | 0.11         | 0.0052 J     | 0.0046 J     | 0.0082 U     | 0.0029 J     | 0.001 J      | 0.012        |
| PCBs                             |         |         |               |               |               |              |              |              |              |              |              |              |
| Aroclor 1248                     | mg/kg   | 0.94    | 0.0379 U      | N/A           | 0.0378 U      | 0.0184 J     | N/A          | 0.038 U      | N/A          | 0.0395 U     | N/A          | 0.036 U      |
| Aroclor 1254                     | mg/kg   | 0.97    | 0.0379 U      | N/A           | 0.0378 U      | 0.0225 J     | N/A          | 0.038 U      | N/A          | 0.0395 U     | N/A          | 0.036 U      |
| Aroclor 1260                     | mg/kg   | 0.99    | 0.0379 U      | N/A           | 0.0378 U      | 0.0376 J     | N/A          | 0.038 U      | N/A          | 0.0395 U     | N/A          | 0.0192 J     |
| Aroclor 1268                     | mg/kg   |         | 0.0379 U      | N/A           | 0.0378 U      | 0.0161 J     | N/A          | 0.038 U      | N/A          | 0.0395 U     | N/A          | 0.012 J      |
| PCBs (total)                     | mg/kg   | 0.97    | 0.0379 U      | N/A           | 0.0378 U      | 0.0946 J     | N/A          | 0.038 U      | N/A          | 0.0395 U     | N/A          | 0.0312 J     |
| TPH/Oil & Grease                 |         |         |               |               |               |              |              |              |              |              |              |              |
| Diesel Range Organics            | mg/kg   | 6,200   | 6.2 B         | 4.2 B         | 6.5 B         | 36 B         | 6.4 B        | 3.7 B        | 3.4 B        | 8.2 B        | 6.5 B        | 5.1 B        |
| Gasoline Range Organics          | mg/kg   | 6,200   | 2 B           | 0.5 B         | 1.1 B         | 0.62 B       | 0.73 B       | 0.62 B       | 0.63 B       | 0.69 B       | 0.97 B       | 0.62 B       |
| Oil & Grease                     | mg/kg   | 6,200   | 410           | 231 U         | 422           | 251          | 388          | 295          | 224 U        | 239 U        | 244 U        | 210          |

### **Detections in bold**

Values in red indicate an exceedance of the Project Action Limit (PAL) U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported. J: The positive result reported for this analyte is a quantitative estimate.

N/A indicates that the parameter was not analyzed for this sample \*indicates non-validated data

^PAH compounds were analyzed via SIM

B: This analyte was not detected substantially above the level of the associated method blank or field blank.

# Table 4 - Parcel A15Summary of Organics Detected in Soil

| Demonstern                                   | I.I. it a | DAI     | A15-010-SB-2* | A15-010-SB-3* | A15-011-SB-2* | A15-012-SB-2* | A15-013-SB-2* | A15-013-SB-3* | A15-014-SB-2* | A15-014-SB-3* | A15-015-SB-2* | A15-015-SB-3* |
|----------------------------------------------|-----------|---------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Parameter                                    | Units     | PAL     | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    |
| Semi-Volatile Organic Compounds <sup>4</sup> | <b>\</b>  |         |               |               |               |               |               |               |               |               |               |               |
| 2-Methylnaphthalene                          | mg/kg     | 3,000   | 0.0037 J      | 0.008 U       | 0.078 U       | 0.039 U       | 0.022 J       | 0.0079 U      | 0.011         | 0.038         | 0.006 J       | 0.0081 U      |
| 3&4-Methylphenol(m&p Cresol)                 | mg/kg     | 41,000  | 1.4 U         | 0.29 U        | 2.8 U         | 1.4 U         | 0.84 U        | 0.28 U        | 0.28 U        | 0.3 U         | 0.26 U        | 0.29 U        |
| Acenaphthene                                 | mg/kg     | 45,000  | 0.0079 U      | 0.008 U       | 0.078 U       | 0.039 U       | 0.023 U       | 0.0079 U      | 0.0078        | 0.12          | 0.0095        | 0.0081 U      |
| Acenaphthylene                               | mg/kg     | 45,000  | 0.0035 J      | 0.001 J       | 0.078 U       | 0.039 U       | 0.02 J        | 0.0079 U      | 0.0066 J      | 0.007 J       | 0.0025 J      | 0.0081 U      |
| Anthracene                                   | mg/kg     | 230,000 | 0.003 J       | 0.0017 J      | 0.013 J       | 0.039 U       | 0.024         | 0.00087 J     | 0.024         | 0.03          | 0.076         | 0.0081 U      |
| Benz[a]anthracene                            | mg/kg     | 21      | 0.012         | 0.0037 B      | 0.13          | 0.039 U       | 0.1           | 0.002 B       | 0.088         | 0.22          | 0.66          | 0.00093 B     |
| Benzaldehyde                                 | mg/kg     | 120,000 | 1.3 U         | 0.26 U        | 2.6 U         | 1.3 U         | 0.78 U        | 0.26 U        | 0.26 U        | 0.27 U        | 0.24 U        | 0.27 U        |
| Benzo[a]pyrene                               | mg/kg     | 2.1     | 0.0093        | 0.008 U       | 0.12          | 0.039 U       | 0.1           | 0.0016 J      | 0.093         | 0.46          | 0.71          | 0.0081 U      |
| Benzo[b]fluoranthene                         | mg/kg     | 21      | 0.017         | 0.0045 B      | 0.18          | 0.039 U       | 0.12          | 0.002 B       | 0.1           | 0.4           | 0.72          | 0.0081 U      |
| Benzo[g,h,i]perylene                         | mg/kg     |         | 0.0079 U      | 0.0026 J      | 0.067 J       | 0.0094 J      | 0.074         | 0.0013 J      | 0.055         | 0.32          | 0.34          | 0.0081 U      |
| Benzo[k]fluoranthene                         | mg/kg     | 210     | 0.0079 U      | 0.0012 J      | 0.053 J       | 0.039 U       | 0.036         | 0.00075 J     | 0.035         | 0.14          | 0.27          | 0.0081 U      |
| Carbazole                                    | mg/kg     |         | 0.98 U        | 0.2 U         | 1.9 U         | 0.98 U        | 0.59 U        | 0.2 U         | 0.19 U        | 0.21 U        | 0.06 J        | 0.2 U         |
| Chrysene                                     | mg/kg     | 2,100   | 0.014         | 0.0096        | 0.14          | 0.039 U       | 0.093         | 0.0013 B      | 0.073         | 0.18          | 0.54          | 0.0081 U      |
| Dibenz[a,h]anthracene                        | mg/kg     | 2.1     | 0.003 J       | 0.008 U       | 0.022 J       | 0.039 U       | 0.02 J        | 0.0079 U      | 0.018         | 0.096         | 0.11          | 0.0081 U      |
| Di-n-butylphthalate                          | mg/kg     | 82,000  | 0.92 J        | 0.2 U         | 1.9 U         | 0.98 U        | 0.59 U        | 0.2 U         | 0.19 U        | 0.21 U        | 0.18 U        | 0.2 U         |
| Fluoranthene                                 | mg/kg     | 30,000  | 0.013         | 0.01          | 0.24          | 0.0076 B      | 0.2           | 0.0025 B      | 0.16          | 0.2           | 0.88          | 0.0013 B      |
| Fluorene                                     | mg/kg     | 30,000  | 0.0079 U      | 0.002 J       | 0.078 U       | 0.039 U       | 0.005 J       | 0.0079 U      | 0.0076 J      | 0.02          | 0.012         | 0.0081 U      |
| Indeno[1,2,3-c,d]pyrene                      | mg/kg     | 21      | 0.011         | 0.0016 J      | 0.085         | 0.039 U       | 0.087         | 0.0015 J      | 0.073         | 0.42          | 0.46          | 0.0081 U      |
| Naphthalene                                  | mg/kg     | 8.6     | 0.0053 J      | 0.0033 J      | 0.078 U       | 0.039 U       | 0.053         | 0.0079 U      | 0.017         | 0.054         | 0.0072 J      | 0.0081 U      |
| Phenanthrene                                 | mg/kg     |         | 0.0048 B      | 0.0097        | 0.035 B       | 0.0039 B      | 0.097         | 0.0021 B      | 0.084         | 0.097         | 0.32          | 0.00085 B     |
| Pyrene                                       | mg/kg     | 23,000  | 0.013         | 0.0088        | 0.22          | 0.007 B       | 0.2           | 0.0019 B      | 0.15          | 0.2           | 0.82          | 0.0011 B      |
| PCBs                                         |           |         |               |               |               |               |               |               |               |               |               |               |
| Aroclor 1248                                 | mg/kg     | 0.94    | 0.0638        | N/A           | 0.0356 J      | 0.0196 J      | 0.109 U       | N/A           | 0.0395 U      | N/A           | 0.0357 U      | N/A           |
| Aroclor 1254                                 | mg/kg     | 0.97    | 0.0256 J      | N/A           | 0.0313 J      | 0.0227 J      | 0.109 U       | N/A           | 0.0258 J      | N/A           | 0.0357 U      | N/A           |
| Aroclor 1260                                 | mg/kg     | 0.99    | 0.0388 U      | N/A           | 0.0384 U      | 0.0382 U      | 0.109 U       | N/A           | 0.0187 J      | N/A           | 0.0357 U      | N/A           |
| Aroclor 1268                                 | mg/kg     |         | 0.0388 U      | N/A           | 0.0384 U      | 0.0382 U      | 0.109 U       | N/A           | 0.0092 J      | N/A           | 0.0357 U      | N/A           |
| PCBs (total)                                 | mg/kg     | 0.97    | 0.0894 J      | N/A           | 0.0669 J      | 0.0423 J      | 0.109 U       | N/A           | 0.0537 J      | N/A           | 0.0357 U      | N/A           |
| TPH/Oil & Grease                             |           |         |               |               |               |               |               |               |               |               |               |               |
| Diesel Range Organics                        | mg/kg     | 6,200   | 23 J          | 39            | 350           | 140           | 14 J          | 39 U          | 15 J          | 130           | 65            | 41 U          |
| Gasoline Range Organics                      | mg/kg     | 6,200   | 0.83 B        | 0.72 B        | 0.88 B        | 1 B           | 0.77 B        | 0.8 B         | 1 B           | 1.9 B         | 0.84 B        | 0.65 B        |
| Oil & Grease                                 | mg/kg     | 6,200   | 1,950         | 312           | 1,060         | 666           | 380           | 290           | 878           | 879           | 438           | 235           |

### **Detections in bold**

Values in red indicate an exceedance of the Project Action Limit (PAL) U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported. J: The positive result reported for this analyte is a quantitative estimate.

N/A indicates that the parameter was not analyzed for this sample \*indicates non-validated data

^PAH compounds were analyzed via SIM

B: This analyte was not detected substantially above the level of the associated method blank or field blank.

### Table 4 - Parcel A15 Summary of Organics Detected in Soil

| Deverseter                       | I Inite  | DAI     | A15-016-SB-2* | A15-016-SB-3* | A15-017-SB-2* | A15-017-SB-3* | A15-018-SB-2 | A15-018-SB-3 | A15-019-SB-2 | A15-019-SB-3 | A15-020-SB-2 | A15-020-SB-4 |
|----------------------------------|----------|---------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Parameter                        | Units    | PAL     | 11/8/2022     | 11/8/2022     | 11/8/2022     | 11/8/2022     | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   |
| Semi-Volatile Organic Compounds^ | <b>N</b> |         |               |               |               |               |              |              |              |              |              |              |
| 2-Methylnaphthalene              | mg/kg    | 3,000   | 0.01          | 0.008 U       | 0.0075 U      | 0.0071 U      | 0.02 U       | 0.025 U      | 0.0036 J     | 0.0076 U     | 0.037 U      | 0.0076 U     |
| 3&4-Methylphenol(m&p Cresol)     | mg/kg    | 41,000  | 0.16 J        | 0.29 U        | 0.27 U        | 0.26 U        | 0.72 U       | 0.9 U        | 0.28 U       | 0.27 U       | 1.3 U        | 0.27 U       |
| Acenaphthene                     | mg/kg    | 45,000  | 0.0076 U      | 0.008 U       | 0.0075 U      | 0.0071 U      | 0.02 U       | 0.025 U      | 0.0077 U     | 0.0076 U     | 0.037 U      | 0.0076 U     |
| Acenaphthylene                   | mg/kg    | 45,000  | 0.0065 J      | 0.008 U       | 0.0012 J      | 0.0071 U      | 0.02 U       | 0.025 U      | 0.003 J      | 0.0076 U     | 0.037 U      | 0.0076 U     |
| Anthracene                       | mg/kg    | 230,000 | 0.0071 J      | 0.008 U       | 0.0016 J      | 0.0071 U      | 0.02 U       | 0.025 U      | 0.0013 J     | 0.002 J      | 0.037 U      | 0.0076 U     |
| Benz[a]anthracene                | mg/kg    | 21      | 0.026         | 0.0024 J      | 0.0091        | 0.0071 U      | 0.0085 J     | 0.005 J      | 0.008        | 0.0037 J     | 0.0085 J     | 0.0076 U     |
| Benzaldehyde                     | mg/kg    | 120,000 | 0.051 J       | 0.26 U        | 0.25 U        | 0.23 U        | 0.66 U       | 0.82 U       | 0.25 U       | 0.25 U       | 1.2 U        | 0.25 U       |
| Benzo[a]pyrene                   | mg/kg    | 2.1     | 0.025         | 0.002 J       | 0.0088        | 0.0071 U      | 0.0076 J     | 0.0032 J     | 0.0094       | 0.0028 J     | 0.012 J      | 0.0076 U     |
| Benzo[b]fluoranthene             | mg/kg    | 21      | 0.035         | 0.0026 J      | 0.011         | 0.0071 U      | 0.0097 J     | 0.0046 J     | 0.0098       | 0.0031 J     | 0.015 J      | 0.0076 U     |
| Benzo[g,h,i]perylene             | mg/kg    |         | 0.017         | 0.0013 J      | 0.0063 J      | 0.0071 U      | 0.0055 J     | 0.025 U      | 0.0068 J     | 0.0026 J     | 0.015 J      | 0.0076 U     |
| Benzo[k]fluoranthene             | mg/kg    | 210     | 0.011         | 0.0008 J      | 0.004 J       | 0.0071 U      | 0.0034 J     | 0.025 U      | 0.0035 J     | 0.0023 J     | 0.0044 J     | 0.0076 U     |
| Carbazole                        | mg/kg    |         | 0.19 U        | 0.2 U         | 0.19 U        | 0.18 U        | 0.5 U        | 0.62 U       | 0.19 U       | 0.19 U       | 0.92 U       | 0.19 U       |
| Chrysene                         | mg/kg    | 2,100   | 0.024         | 0.0019 J      | 0.008         | 0.0071 U      | 0.006 J      | 0.0027 J     | 0.0063 J     | 0.0026 J     | 0.016 J      | 0.0076 U     |
| Dibenz[a,h]anthracene            | mg/kg    | 2.1     | 0.0041 B      | 0.008 U       | 0.0019 B      | 0.0071 U      | 0.02 U       | 0.025 U      | 0.0015 J     | 0.0021 J     | 0.037 U      | 0.0076 U     |
| Di-n-butylphthalate              | mg/kg    | 82,000  | 0.19 U        | 0.2 U         | 0.19 U        | 0.18 U        | 0.5 U        | 0.62 U       | 0.19 U       | 0.19 U       | 0.92 U       | 0.19 U       |
| Fluoranthene                     | mg/kg    | 30,000  | 0.053         | 0.0037 J      | 0.016         | 0.0071 U      | 0.0095 J     | 0.0058 J     | 0.015        | 0.0038 J     | 0.011 J      | 0.00061 J    |
| Fluorene                         | mg/kg    | 30,000  | 0.0018 J      | 0.008 U       | 0.0075 U      | 0.0071 U      | 0.02 U       | 0.025 U      | 0.0077 U     | 0.0015 J     | 0.037 U      | 0.0076 U     |
| Indeno[1,2,3-c,d]pyrene          | mg/kg    | 21      | 0.02          | 0.0017 J      | 0.0078        | 0.0071 U      | 0.0074 J     | 0.003 J      | 0.0084       | 0.0034 J     | 0.011 J      | 0.0076 UJ    |
| Naphthalene                      | mg/kg    | 8.6     | 0.015         | 0.008 U       | 0.0021 J      | 0.0071 U      | 0.02 U       | 0.025 U      | 0.0082       | 0.0015 J     | 0.037 U      | 0.0076 U     |
| Phenanthrene                     | mg/kg    |         | 0.024         | 0.0014 J      | 0.0081        | 0.0071 U      | 0.0043 J     | 0.0032 J     | 0.0054 J     | 0.0031 J     | 0.0042 J     | 0.00072 J    |
| Pyrene                           | mg/kg    | 23,000  | 0.043         | 0.0035 J      | 0.014         | 0.0005 J      | 0.0084 J     | 0.0047 J     | 0.013        | 0.0036 J     | 0.013 J      | 0.0076 U     |
| PCBs                             |          |         |               |               |               |               |              |              |              |              |              |              |
| Aroclor 1248                     | mg/kg    | 0.94    | 0.0374 U      | N/A           | 0.0359 U      | N/A           | 0.0344 U     | N/A          | 0.0377 U     | N/A          | 0.0368 U     | N/A          |
| Aroclor 1254                     | mg/kg    | 0.97    | 0.0374 U      | N/A           | 0.0359 U      | N/A           | 0.00465 J    | N/A          | 0.0377 U     | N/A          | 0.0368 U     | N/A          |
| Aroclor 1260                     | mg/kg    | 0.99    | 0.0105 J      | N/A           | 0.0359 U      | N/A           | 0.00873 J    | N/A          | 0.0377 U     | N/A          | 0.0368 U     | N/A          |
| Aroclor 1268                     | mg/kg    |         | 0.0374 U      | N/A           | 0.0359 U      | N/A           | 0.0344 U     | N/A          | 0.0377 U     | N/A          | 0.0368 U     | N/A          |
| PCBs (total)                     | mg/kg    | 0.97    | 0.0105 J      | N/A           | 0.0359 U      | N/A           | 0.0134 J     | N/A          | 0.0377 U     | N/A          | 0.0368 U     | N/A          |
| TPH/Oil & Grease                 |          |         |               |               |               |               |              |              |              |              |              |              |
| Diesel Range Organics            | mg/kg    | 6,200   | 13 B          | 8.9 B         | 5 B           | 3.7 B         | 2.6 B        | 4.5 B        | 5.4 B        | 4.1 B        | 44           | 3.6 B        |
| Gasoline Range Organics          | mg/kg    | 6,200   | 0.68 B        | 0.85 B        | 0.87 B        | 0.87 B        | 1 B          | 0.92 B       | 0.61 B       | 0.59 B       | 0.67 B       | 0.62 B       |
| Oil & Grease                     | mg/kg    | 6,200   | 313           | 255           | 305           | 218 U         | 394          | 312          | 214 U        | 231 U        | 200 U        | 212 U        |

#### **Detections in bold**

Values in red indicate an exceedance of the Project Action Limit (PAL)

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported. J: The positive result reported for this analyte is a quantitative estimate.

N/A indicates that the parameter was not analyzed for this sample \*indicates non-validated data

^PAH compounds were analyzed via SIM

B: This analyte was not detected substantially above the level of the associated method blank or field blank.

# Table 5 - Parcel A15Summary of Inorganics Detected in Soil

| ~           |       | <b>D</b> / <b>Y</b> | A15-004-SB-2* | A15-004-SB-3* | A15-005-SB-2* | A15-006-SB-2 | A15-006-SB-3 | A15-007-SB-2 | A15-007-SB-7 | A15-007-SB-10* | A15-008-SB-2 | A15-008-SB-9 | A15-008-SB-10* |
|-------------|-------|---------------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|----------------|
| Parameter   | Units | PAL                 | 11/8/2022     | 11/8/2022     | 11/8/2022     | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022     | 12/20/2022   | 12/20/2022   | 12/20/2022     |
| Metals      |       |                     |               |               | -<br>         |              |              |              | -<br>        |                |              |              | -<br>          |
| Aluminum    | mg/kg | 1,100,000           | 15,100        | 7,640         | 16,300        | 8,170        | 9,640        | 8,010        | 11,900       | N/A            | 8,560        | 11,000       | N/A            |
| Arsenic     | mg/kg | 3                   | 4.44          | 5.3           | 3.93          | 4.33         | 6.25         | 5.96         | 7.24         | 4.19           | 7.02         | 5.18         | 1.88           |
| Barium      | mg/kg | 220,000             | 176           | 34.2          | 165           | 74.9         | 23.7         | 29.7         | 32.1         | N/A            | 38.3         | 29.2         | N/A            |
| Beryllium   | mg/kg | 2,300               | 1.8           | 0.472         | 1.85          | 0.542        | 0.541        | 0.399 J      | 0.626        | N/A            | 0.604        | 0.579        | N/A            |
| Cadmium     | mg/kg | 100                 | 0.36 J        | 0.887 U       | 0.442 J       | 0.459 J      | 0.157 J      | 0.212 J      | 0.172 J      | N/A            | 0.326 J      | 0.145 J      | N/A            |
| Chromium    | mg/kg | 1,800,000           | 30.2          | 13.4          | 29.4          | 17           | 16.1         | 14.5         | 21.2         | N/A            | 19.2         | 18.2         | N/A            |
| Chromium VI | mg/kg | 6.3                 | 0.253 J       | 1.06          | 0.912 U       | 0.849 J-     | 0.65 J-      | 0.64 J-      | 1.18 J-      | N/A            | 0.513 J-     | 0.757 J-     | N/A            |
| Cobalt      | mg/kg | 350                 | 5.34          | 3.7           | 2.84          | 4.98         | 6.48         | 3.94         | 5.06         | N/A            | 7.32         | 5.05         | N/A            |
| Copper      | mg/kg | 47,000              | 14.2          | 6.12          | 11.9          | 15           | 10.4         | 11.4         | 10.2         | N/A            | 71.6         | 10.1         | N/A            |
| Iron        | mg/kg | 820,000             | 28,200        | 14,600        | 18,400        | 9,750        | 16,300       | 14,400       | 19,000       | N/A            | 15,200       | 13,700       | N/A            |
| Lead        | mg/kg | 800                 | 18.5          | 9.21          | 23.2          | 32.7         | 19.4         | 22.7         | 11.5         | N/A            | 28.3         | 15.2         | N/A            |
| Manganese   | mg/kg | 26,000              | 2,300         | 57.2          | 2,790         | 477          | 77.4         | 65.3         | 64.4         | N/A            | 680          | 52           | N/A            |
| Mercury     | mg/kg | 350                 | 0.06 J        | 0.075 U       | 0.093         | 0.06 J       | 0.221        | 0.088 U      | 0.081 U      | N/A            | 0.081 U      | 0.087 U      | N/A            |
| Nickel      | mg/kg | 22,000              | 8.87          | 6.42          | 5.24          | 7.1          | 11.6         | 7            | 9.54         | N/A            | 19.3         | 10.7         | N/A            |
| Selenium    | mg/kg | 5,800               | 0.583 J       | 1.77 U        | 0.914 J       | 1.86 U       | 1.74 U       | 1.88 U       | 1.99 U       | N/A            | 1.82 U       | 1.9 U        | N/A            |
| Silver      | mg/kg | 5,800               | 0.466 U       | 0.444 U       | 0.441 U       | 0.464 U      | 0.435 U      | 0.471 U      | 0.496 U      | N/A            | 0.456 U      | 0.476 U      | N/A            |
| Thallium    | mg/kg | 12                  | 0.679 J       | 1.77 U        | 0.279 J       | 1.86 U       | 1.74 U       | 1.88 U       | 1.99 U       | N/A            | 1.82 U       | 1.9 U        | N/A            |
| Vanadium    | mg/kg | 5,800               | 161           | 30.9          | 146           | 216          | 22.3         | 22.9         | 30.6         | N/A            | 68.2         | 27.1         | N/A            |
| Zinc        | mg/kg | 350,000             | 79.6          | 21.4          | 158           | 68.6         | 41.8         | 34           | 28.6         | N/A            | 39.6         | 31.6         | N/A            |

### **Detections in bold**

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

**Project Action Limit (PAL)** 

Values in red indicate an exceedance of the

B: This analyte was not detected substantially above the level of the associated method blank or field blank.

N/A indicates that the parameter was not analyzed for this sample \*indicates non-validated data

J-: The positive result reported for this analyte is a quantitative estimate, but may be biased low.

# Table 5 - Parcel A15Summary of Inorganics Detected in Soil

| D           |       | DII       | A15-009-SB-2 | A15-010-SB-2* | A15-010-SB-3* | A15-011-SB-2* | A15-012-SB-2* | A15-013-SB-2* | A15-013-SB-3* | A15-014-SB-2* | A15-014-SB-3* | A15-015-SB-2* | A15-015-SB-3* |
|-------------|-------|-----------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Parameter   | Units | PAL       | 12/20/2022   | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    | 12/21/2022    |
| Metals      |       |           |              |               |               |               |               |               |               |               |               |               |               |
| Aluminum    | mg/kg | 1,100,000 | 6,670        | 11,800        | 12,200        | 22,000        | 18,600        | 6,300         | 12,300        | 10,700        | 13,000        | 7,560         | 15,200        |
| Arsenic     | mg/kg | 3         | 0.88 U       | 4.38          | 4.25          | 3.9           | 3.24          | 3.4           | 3.18          | 6             | 4.57          | 1.85          | 6.39          |
| Barium      | mg/kg | 220,000   | 61.4         | 68.8          | 50.2          | 200           | 219           | 43.9          | 33.8          | 61.4          | 61.2          | 92.6          | 172           |
| Beryllium   | mg/kg | 2,300     | 0.663        | 0.771         | 0.701         | 3.14          | 2.22          | 0.422 J       | 0.44 J        | 0.788         | 0.565         | 0.625         | 0.605         |
| Cadmium     | mg/kg | 100       | 1.54         | 0.205 J       | 0.155 J       | 1.35          | 0.635 J       | 0.342 J       | 0.102 J       | 0.373 J       | 0.963         | 1.43          | 0.18 J        |
| Chromium    | mg/kg | 1,800,000 | 669          | 19.2          | 18.4          | 28.8          | 660           | 36.9          | 13.4          | 76.7          | 171           | 531           | 22.6          |
| Chromium VI | mg/kg | 6.3       | 2.59 J-      | 0.972 U       | 0.964 U       | 0.952 U       | 0.946 U       | 1.12          | 0.192 J       | 0.948 U       | 0.769 J       | 0.757 J       | 0.926 J       |
| Cobalt      | mg/kg | 350       | 1.55 J       | 5.46          | 5.23          | 2.04          | 2.26          | 4.88          | 3.22          | 5             | 6.14          | 4.89          | 4.25          |
| Copper      | mg/kg | 47,000    | 21           | 9.53          | 10.1          | 38.2          | 14.5          | 10.2          | 6.9           | 20.5          | 19.1          | 56.6          | 13.2          |
| Iron        | mg/kg | 820,000   | 145,000      | 14,700        | 12,800        | 19,900        | 38,100        | 11,600        | 12,600        | 24,400        | 36,700        | 105,000       | 18,300        |
| Lead        | mg/kg | 800       | 17.9         | 13.4          | 13.3          | 113           | 31.1          | 30.8          | 9.61          | 29.2          | 59.9          | 108           | 11.5          |
| Manganese   | mg/kg | 26,000    | 22,400       | 554           | 394           | 2,530         | 22,300        | 704           | 55.2          | 2,170         | 5,520         | 24,700        | 41.6          |
| Mercury     | mg/kg | 350       | 0.071 U      | 0.081 U       | 0.068 J       | 0.231         | 0.09 U        | 0.202         | 0.091 U       | 0.089 U       | 0.08 U        | 0.073 U       | 0.08 U        |
| Nickel      | mg/kg | 22,000    | 6.84         | 7.92          | 8.58          | 10.9          | 4.73          | 6.71          | 7.49          | 15            | 15.7          | 21.8          | 9.06          |
| Selenium    | mg/kg | 5,800     | 0.76 J       | 0.432 J       | 0.248 J       | 1.38 J        | 1.15 J        | 1.89 U        | 1.84 U        | 1.79 U        | 1.92 U        | 0.53 J        | 1.89 U        |
| Silver      | mg/kg | 5,800     | 0.44 U       | 0.462 U       | 0.454 U       | 0.503         | 0.652         | 0.472 U       | 0.46 U        | 0.448 U       | 0.411 J       | 0.879         | 0.472 U       |
| Thallium    | mg/kg | 12        | 1.76 U       | 1.85 U        | 1.81 U        | 1.8 U         | 2.52          | 1.89 U        | 1.84 U        | 1.79 U        | 1.92 U        | 1.05 J        | 1.89 U        |
| Vanadium    | mg/kg | 5,800     | 409          | 36.8          | 27.6          | 57.2          | 2,170         | 35.4          | 19.5          | 185           | 463           | 1,320         | 37            |
| Zinc        | mg/kg | 350,000   | 83.7         | 46            | 49            | 3,280         | 274           | 78.4          | 21.2          | 66.8          | 102           | 157           | 26.3          |

### **Detections in bold**

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample \*indicates non-validated data B: This analyte was not detected substantially above the level of the associated method blank or field blank.

J-: The positive result reported for this analyte is a quantitative estimate, but may be biased low.

# Table 5 - Parcel A15Summary of Inorganics Detected in Soil

| D           | TT 1  | DAL       | A15-015-SB-10* | A15-016-SB-2* | A15-016-SB-3* | A15-017-SB-2* | A15-017-SB-3* | A15-018-SB-2 | A15-018-SB-3 | A15-019-SB-2 | A15-019-SB-3 | A15-020-SB-2 | A15-020-SB-4 |
|-------------|-------|-----------|----------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Parameter   | Units | PAL       | 12/21/2022     | 11/8/2022     | 11/8/2022     | 11/8/2022     | 11/8/2022     | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   | 12/20/2022   |
| Metals      |       |           |                |               |               |               |               |              |              |              |              |              |              |
| Aluminum    | mg/kg | 1,100,000 | N/A            | 8,720         | 10,500        | 8,260         | 10,800        | 22,100       | 52,600       | 9,620        | 8,940        | 6,480        | 10,200       |
| Arsenic     | mg/kg | 3         | 3.22           | 5.72          | 4.72          | 5.17          | 6.86          | 1.26         | 2.58         | <b>4.79</b>  | 6.25         | 5.66         | 8.48         |
| Barium      | mg/kg | 220,000   | N/A            | 57.5          | 46.2          | 49.5          | 88.1          | 163          | 175          | 47.3         | 27.6         | 59.3         | 18.7         |
| Beryllium   | mg/kg | 2,300     | N/A            | 0.569         | 0.43 J        | 0.506         | 1.08          | 2.32         | 3.48         | 0.539        | 0.485        | 0.501        | 0.471        |
| Cadmium     | mg/kg | 100       | N/A            | 0.594 J       | 0.183 J       | 0.11 J        | 0.259 J       | 0.825 U      | 0.947 U      | 0.155 J      | 0.158 J      | 0.431 J      | 0.159 J      |
| Chromium    | mg/kg | 1,800,000 | N/A            | 46.2          | 20.6          | 14.1          | 17.6          | 44.9         | 15.3         | 14           | 19.8         | 18.3         | 20.3         |
| Chromium VI | mg/kg | 6.3       | N/A            | 0.927 U       | 0.971 U       | 0.362 J       | 0.523 J       | 0.281 J-     | 1 UJ         | 1.1 J-       | 0.312 J-     | 0.888 UJ     | 0.918 J-     |
| Cobalt      | mg/kg | 350       | N/A            | 9.01          | 4.23          | 2.97          | 18            | 0.652 J      | 0.255 J      | 5.56         | 4.32         | 4.3          | 3.32         |
| Copper      | mg/kg | 47,000    | N/A            | 29.8          | 17.6          | 4.91          | 16.8          | 5.93         | 4.11         | 9.64         | 9.69         | 21           | 10.1         |
| Iron        | mg/kg | 820,000   | N/A            | 25,500        | 11,600        | 14,400        | 17,300        | 8,450        | 5,830        | 12,500       | 15,200       | 12,400       | 20,200       |
| Lead        | mg/kg | 800       | N/A            | 34.4          | 21.3          | 10.2          | 47.5          | 0.843 J      | 6.13         | 13           | 11.5         | 69.7         | 11           |
| Manganese   | mg/kg | 26,000    | N/A            | 2,220         | 174           | 80.4          | 1,000         | 4,660        | 4,650        | 112          | 340          | 310          | 42.4         |
| Mercury     | mg/kg | 350       | N/A            | 0.128         | 0.26          | 0.058 J       | 0.191         | 0.07 U       | 0.075 J      | 0.081 U      | 0.078 U      | 0.346        | 0.074 U      |
| Nickel      | mg/kg | 22,000    | N/A            | 10.3          | 6.55          | 5.08          | 10.4          | 1.47 J       | 1.95 J       | 8.38         | 8.59         | 7.29         | 7.1          |
| Selenium    | mg/kg | 5,800     | N/A            | 1.81 U        | 1.88 U        | 1.78 U        | 1.7 U         | 0.527 J      | 0.452 J      | 1.89 U       | 1.82 U       | 0.284 J      | 0.301 J      |
| Silver      | mg/kg | 5,800     | N/A            | 0.284 J       | 0.47 U        | 0.445 U       | 0.241 J       | 0.266 J      | 0.474 U      | 0.473 U      | 0.456 U      | 0.39 J       | 0.454 U      |
| Thallium    | mg/kg | 12        | N/A            | 1.81 U        | 1.88 U        | 1.78 U        | 1.7 U         | 1.65 U       | 1.89 U       | 1.89 U       | 1.82 U       | 1.73 U       | 1.82 U       |
| Vanadium    | mg/kg | 5,800     | N/A            | 59            | 25.8          | 23.4          | 29.1          | 321          | 162          | 21.8         | 43.6         | 23.6         | 28.8         |
| Zinc        | mg/kg | 350,000   | N/A            | 173           | 76.9          | 26.2          | 60.3          | 1.52 J       | 36.2         | 47.2         | 37.4         | 146          | 26.4         |

### **Detections in bold**

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample \*indicates non-validated data B: This analyte was not detected substantially above the level of the associated method blank or field blank.

J-: The positive result reported for this analyte is a quantitative estimate, but may be biased low.

|                  |             | SUMMAR                                       | TABLE 6<br>RY OF SOIL PAL EX                      | CEEDANCES                                |                   |     |             |
|------------------|-------------|----------------------------------------------|---------------------------------------------------|------------------------------------------|-------------------|-----|-------------|
| <u>Parameter</u> | <u>CAS#</u> | <u>Frequency of</u><br><u>Detections (%)</u> | <u>Frequency of PAL</u><br><u>Exceedances (%)</u> | <u>Sample ID of</u><br><u>Max Result</u> | <u>Max Result</u> | PAL | <u>Unit</u> |
| Arsenic          | 7440-38-2   | 97                                           | 85                                                | A15-020-SB-4                             | 8.48              | 3   | mg/kg       |

# Table 7 - Parcel A15Summary of Organics Detected in Groundwater

| Davantetar                      | I In ita | DAI   | A15-015-PZ* | A15-016-PZ* | A15-019-PZ* | SG03-PDM007* | SG04-PDM008 | SW-099-MWS |
|---------------------------------|----------|-------|-------------|-------------|-------------|--------------|-------------|------------|
| Parameter                       | Units    | PAL   | 1/4/2023    | 1/4/2023    | 1/4/2023    | 12/30/2022   | 12/29/2022  | 1/19/2023  |
| Volatile Organic Compounds      |          |       |             |             |             |              |             |            |
| 1,1-Dichloroethane              | µg/L     | 2.7   | 1.2         | 0.75 U      | 0.75 U      | 0.75 U       | 0.75 U      | 1          |
| 1,1-Dichloroethene              | μg/L     | 7     | 1.6         | 0.5 U       | 0.5 U       | 0.5 U        | 0.5 U       | 1.2        |
| 1,2-Dichloroethene (Total)      | µg/L     | 70    | 0.52        | 0.5 U       | 0.5 U       | 0.5 U        | 0.5 U       | 0.5 U      |
| Benzene                         | µg/L     | 5     | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U        | 0.19 J      | 0.3 J      |
| Carbon disulfide                | µg/L     | 810   | 5 U         | 0.31 J      | 5 U         | 5 U          | 5 U         | 5 U        |
| cis-1,2-Dichloroethene          | µg/L     | 70    | 0.52        | 0.5 U       | 0.5 U       | 0.5 U        | 0.5 U       | 0.5 U      |
| Isopropylbenzene                | µg/L     | 450   | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U        | 0.5 U       | 0.55       |
| Toluene                         | μg/L     | 1,000 | 0.75 U      | 0.75 U      | 0.75 U      | 0.75 U       | 0.28 J      | 0.75 U     |
| Trichloroethene                 | μg/L     | 5     | 9.5         | 0.5 U       | 0.5 U       | 0.5 U        | 0.5 U       | 0.19 J     |
| Semi-Volatile Organic Compounds | ^        |       |             |             |             |              |             |            |
| 2,4-Dimethylphenol              | μg/L     | 360   | 5 U         | 5 U         | 5 U         | 5 U          | 20          | 5 UJ       |
| 2-Methylnaphthalene             | μg/L     | 36    | 0.1 U       | 0.1 U       | 0.1 U       | 0.1 U        | 0.16        | 0.02 J     |
| 2-Methylphenol                  | μg/L     | 930   | 5 U         | 5 U         | 5 U         | 5 U          | 1.3 J       | 5 U        |
| 3&4-Methylphenol(m&p Cresol)    | μg/L     | 930   | 5 U         | 5 U         | 5 U         | 5 U          | 12          | 5 U        |
| Acenaphthene                    | μg/L     | 530   | 0.1 U       | 0.1 U       | 0.04 J      | 0.1 U        | 0.07 J      | 0.19       |
| Acenaphthylene                  | μg/L     | 530   | 0.1 U       | 0.02 J      | 0.1 U       | 0.1 U        | 0.03 J      | 0.1 U      |
| Anthracene                      | µg/L     | 1,800 | 0.1 U       | 0.05 J      | 0.03 J      | 0.1 U        | 0.02 J      | 0.03 B     |
| Benz[a]anthracene               | μg/L     | 0.03  | 0.05 U      | 0.03 J      | 0.05 U      | 0.05 U       | 0.05 U      | 0.05 U     |
| Benzo[a]pyrene                  | μg/L     | 0.2   | 0.1 U       | 0.02 J      | 0.1 U       | 0.1 U        | 0.1 U       | 0.1 U      |
| Benzo[b]fluoranthene            | μg/L     | 0.25  | 0.02 J      | 0.04 J      | 0.05 U      | 0.05 U       | 0.05 U      | 0.05 U     |
| Benzo[g,h,i]perylene            | µg/L     |       | 0.1 U       | 0.02 J      | 0.1 U       | 0.1 U        | 0.1 U       | 0.1 U      |
| Benzo[k]fluoranthene            | μg/L     | 2.5   | 0.1 U       | 0.02 J      | 0.1 U       | 0.1 U        | 0.1 U       | 0.1 U      |
| Chrysene                        | µg/L     | 25    | 0.1 U       | 0.02 J      | 0.1 U       | 0.1 U        | 0.1 U       | 0.1 U      |
| Fluoranthene                    | μg/L     | 800   | 0.1 U       | 0.03 B      | 0.12        | 0.1 U        | 0.04 J      | 0.1 U      |
| Fluorene                        | μg/L     | 290   | 0.1 U       | 0.1 U       | 0.04 J      | 0.1 U        | 0.07 J      | 0.61       |
| Indeno[1,2,3-c,d]pyrene         | µg/L     | 0.25  | 0.1 U       | 0.03 J      | 0.1 U       | 0.1 U        | 0.1 U       | 0.1 U      |
| Naphthalene                     | µg/L     | 0.12  | 0.1 U       | 0.1 U       | 0.1 U       | 0.1 U        | 3.4         | 0.19       |
| Phenanthrene                    | μg/L     |       | 0.05 U      | 0.05 U      | 0.03 B      | 0.05 U       | 0.11        | 0.11       |
| Pyrene                          | µg/L     | 120   | 0.1 U       | 0.02 J      | 0.38        | 0.1 U        | 0.03 J      | 0.03 J     |
| ТРН                             |          |       |             |             |             |              |             |            |
| Diesel Range Organics           | µg/L     | 47    | 85 J        | 500 U       | 80 J        | 76 J         | 170 J       | 210 J      |
| Gasoline Range Organics         | µg/L     | 47    | 26 B        | 20 B        | 26 B        | 35 B         | 31 B        | 42 B       |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

\* indicates non-validated data

- ^ PAH compounds were analyzed via SIM
- U: This analyte was not detected in the sample. The numeric value repesents the sample quantitation/detection limit.
- J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

# Table 8 - Parcel A15Summary of Inorganics Detected in Groundwater

|                      | TT    | DAI    | A15-015-PZ* | A15-016-PZ* | A15-019-PZ* | SG03-PDM007* | SG04-PDM008 | SW-099-MWS |
|----------------------|-------|--------|-------------|-------------|-------------|--------------|-------------|------------|
| Parameter            | Units | PAL    | 1/4/2023    | 1/4/2023    | 1/4/2023    | 12/30/2022   | 12/29/2022  | 1/19/2023  |
| Metals               |       |        |             |             |             |              |             |            |
| Aluminum, Dissolved  | µg/L  | 20,000 | 363         | 10,900      | 102         | 7.67 J       | 1,210       | 214        |
| Antimony, Dissolved  | μg/L  | 6      | 4 U         | 4 U         | 4 U         | 0.4762 J     | 4 U         | 0.5913 J   |
| Arsenic, Dissolved   | µg/L  | 10     | 4.588       | 4.528       | 3.481       | 2.954        | 0.7354      | 8.853      |
| Barium, Dissolved    | µg/L  | 2,000  | 21.87       | 257.8       | 17.33       | 31.44        | 73.21       | 29.71      |
| Beryllium, Dissolved | µg/L  | 4      | 0.2054 J    | 2.606       | 0.5 U       | 0.5 U        | 0.5 U       | 1.486      |
| Cadmium, Dissolved   | μg/L  | 5      | 0.28        | 0.239       | 0.2 U       | 0.2 U        | 0.2 U       | 0.146 J    |
| Chromium, Dissolved  | µg/L  | 100    | 0.8502 J    | 31.55       | 0.2886 J    | 0.5949 J     | 1 U         | 1.112      |
| Cobalt, Dissolved    | µg/L  | 6      | 45.71       | 17.95       | 2.399       | 0.3946 J     | 0.5 U       | 52.94      |
| Copper, Dissolved    | µg/L  | 1,300  | 0.9212 J    | 31.1        | 0.4616 J    | 2.095        | 1 U         | 0.8403 J   |
| Iron, Dissolved      | µg/L  | 14,000 | 10,800      | 16,000      | 5,820       | 127          | 22.6 J      | 9,570      |
| Lead, Dissolved      | µg/L  | 15     | 0.516 J     | 38.19       | 1 U         | 1 U          | 1 U         | 0.9063 J   |
| Manganese, Dissolved | µg/L  | 430    | 306.6       | 1,478       | 170.1       | 5.243        | 1.553       | 328.9      |
| Mercury, Dissolved   | μg/L  | 2      | 0.2 U       | 0.266       | 0.2 U       | 0.2 U        | 0.2 U       | 0.2 U      |
| Nickel, Dissolved    | µg/L  | 390    | 58.1        | 37.62       | 2.269       | 1.302 J      | 0.6844 J    | 80.68      |
| Selenium, Dissolved  | μg/L  | 50     | 5 U         | 10.1        | 5 U         | 4.79 J       | 5 R         | 1.84 J     |
| Thallium, Dissolved  | μg/L  | 2      | 1 U         | 0.1645 J    | 1 U         | 0.1963 J     | 1 U         | 1 U        |
| Vanadium, Dissolved  | µg/L  | 86     | 5 U         | 68.39       | 5 U         | 18.61        | 29.52       | 1.66 J     |
| Zinc, Dissolved      | µg/L  | 6,000  | 57.3        | 86.41       | 10 U        | 10 U         | 10 U        | 109.7      |

### **Detections in bold**

Values in red indicate an exceedance of the Project Action Limit (PAL) \*indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. J: The positive result reported for this analyte is a quantitative estimate.

R: The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this compound/analyte in the sample.

### Table 9 Cumulative Vapor Intrusion Criteria Comparison

|                    |      |                                          |                                 | A15-01       | 15-PZ       | A15-0        | 16-PZ       | A15-019-PZ   |             | SG03-PDM007  |             | SG04-PDM008  |             | SW-099-MWS   |             |
|--------------------|------|------------------------------------------|---------------------------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|
| Parameter          | Туре | Organ Systems                            | VI Screening<br>Criteria (ug/L) | Conc. (ug/L) | Cancer Risk |
| Cancer Risk        |      |                                          |                                 |              |             |              |             |              |             |              |             |              |             |              |             |
| 1,1-Dichloroethane | VOC  | None Specified                           | 330                             | 1.2          | 4.E-08      | 0.75 U       | 0           | 1            | 3.E-08      |
| Benzene            | VOC  | Immune                                   | 69                              | 0.5 U        | 0           | 0.19 J       | 3.E-08      | 0.3 J        | 4.E-08      |
|                    |      | Cumulative Vapor Intrusion               | n Cancer Risk                   |              | 4E-08       |              | 0E+00       |              | 0E+00       |              | 0E+00       |              | 3E-08       |              | 7E-08       |
| Non-Cancer Hazard  |      |                                          |                                 |              |             |              |             |              |             |              |             |              |             |              |             |
| Trichloroethene    | VOC  | Cardiovascular;<br>Developmental; Immune | 22                              | 9.5          | 0.4         | 0.5 U        | 0           | 0.19 J       | 0.009       |
|                    | Cu   | mulative Vapor Intrusion Non-C           | ancer Hazard                    |              | 0           |              | 0           |              | 0           |              | 0           |              | 0           |              | 0           |

Highlighted values indicate exceedances of the cumulative vapor intrusion criteria: TCR > 1E-05 or THI > 1

Conc. = Concentration

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

# Table 10 - Parcel A15Summary of Organics Detected in Surface Water

| D (                         | <b>T</b> T <b>*</b> | DAI    | A15-001-SW | A15-002-SW | A15-004-SW    | A15-006-SW    | A15-007-SW    | A15-008-SW*   | A15-010-SW*   | A15-012-SW*   |
|-----------------------------|---------------------|--------|------------|------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Parameter                   | Units               | PAL    | 1/17/2023  | 1/17/2023  | 1/17/2023     | 1/17/2023     | 1/17/2023     | 1/18/2023     | 1/18/2023     | 1/18/2023     |
| Volatile Organic Compounds  |                     |        |            |            |               |               |               |               |               |               |
| Acetone                     | μg/L                | 14,000 | 3.9 J      | 3.8 J      | 3 J           | 3 J           | 3.4 J         | 3 J           | 3.2 J         | 2.5 J         |
| Bromodichloromethane        | μg/L                | 0.13   | 0.86       | 0.59       | <b>0.49 J</b> | 0.49 J        | <b>0.46 J</b> | <b>0.44 J</b> | 0.45 J        | <b>0.4 J</b>  |
| Bromoform                   | μg/L                | 3.3    | 1.6 J      | 1.4 J      | 1.3 J         | 1.3 J         | 1.3 J         | 1.2 J         | 2 U           | 2 U           |
| Bromomethane                | μg/L                | 7.5    | 1 UJ       | 1 UJ       | 1 UJ          | 0.27 J        | 0.27 J        | 1 U           | 1 U           | 0.3 J         |
| Carbon disulfide            | μg/L                | 810    | 0.33 J     | 5 U        | 5 U           | 5 U           | 5 U           | 5 U           | 5 U           | 5 U           |
| Chloroform                  | μg/L                | 0.22   | 1.2        | 0.96       | <b>0.74 J</b> | 0.73 J        | 0.76          | <b>0.74 J</b> | 0.76          | 0.66 J        |
| Dibromochloromethane        | μg/L                | 0.17   | 0.89       | 0.7        | <b>0.47 J</b> | <b>0.46 J</b> | <b>0.49 J</b> | <b>0.48 J</b> | <b>0.47 J</b> | <b>0.4 J</b>  |
| Semi-Volatile Organic Compo | ounds^              |        |            |            |               |               |               |               |               |               |
| 2-Methylnaphthalene         | μg/L                | 36     | 0.1 U      | 0.1 U      | 0.1 U         | 0.1 U         | 0.05 J        | 0.1 U         | 0.06 J        | 0.05 J        |
| Acenaphthene                | μg/L                | 530    | $0.1 \ U$  | 0.1 U      | 0.1 U         | 0.1 U         | 0.1 U         | $0.1 \ U$     | 0.1 U         | 0.03 J        |
| Acenaphthylene              | μg/L                | 530    | $0.1 \ U$  | 0.1 U      | 0.1 U         | 0.1 U         | 0.02 J        | 0.03 J        | $0.1 \ U$     | 0.04 J        |
| Anthracene                  | μg/L                | 1,800  | $0.1 \ U$  | 0.1 U      | 0.1 U         | 0.1 U         | 0.03 J        | $0.1 \ U$     | 0.1 U         | 0.05 J        |
| Benz[a]anthracene           | μg/L                | 0.03   | 0.05 U     | 0.05 U     | 0.05 U        | 0.05 U        | 0.02 J        | 0.07          | 0.02 J        | <b>0.04 J</b> |
| Benzo[a]pyrene              | μg/L                | 0.2    | $0.1 \ U$  | 0.1 U      | 0.1 U         | 0.1 U         | 0.1 U         | 0.04 J        | 0.1 U         | 0.02 J        |
| Benzo[b]fluoranthene        | μg/L                | 0.25   | 0.05 U     | 0.05 U     | 0.05 U        | 0.05 U        | 0.05 U        | 0.04 J        | 0.05 U        | 0.02 J        |
| Benzo[g,h,i]perylene        | μg/L                |        | $0.1 \ U$  | 0.1 U      | 0.1 U         | 0.1 U         | 0.1 U         | 0.02 J        | 0.1 U         | 0.1 U         |
| Benzo[k]fluoranthene        | μg/L                | 2.5    | $0.1 \ U$  | 0.1 U      | 0.1 U         | 0.1 U         | 0.1 U         | 0.02 J        | 0.1 U         | 0.01 J        |
| Chrysene                    | μg/L                | 25     | $0.1 \ U$  | 0.1 U      | 0.1 U         | 0.1 U         | 0.01 J        | 0.05 J        | 0.1 U         | 0.02 J        |
| Fluoranthene                | μg/L                | 800    | $0.1 \ U$  | 0.05 J     | 0.02 J        | 0.1 U         | 0.03 J        | 0.06 J        | 0.02 J        | 0.05 J        |
| Fluorene                    | μg/L                | 290    | $0.1 \ U$  | 0.02 J     | 0.02 J        | 0.1 U         | 0.04 J        | 0.1 U         | 0.1 U         | 0.05 J        |
| Indeno[1,2,3-c,d]pyrene     | μg/L                | 0.25   | 0.1 U      | 0.1 U      | 0.1 U         | 0.1 U         | 0.1 U         | 0.02 J        | 0.1 U         | 0.1 U         |
| Naphthalene                 | μg/L                | 0.12   | 0.07 J     | 0.09 J     | 0.07 J        | 0.06 J        | 0.17          | 0.1 U         | 0.13          | 0.06 J        |
| Phenanthrene                | μg/L                |        | 0.03 J     | 0.05       | 0.03 J        | 0.05 U        | 0.05 J        | 0.04 J        | 0.05 U        | 0.12          |
| Pyrene                      | μg/L                | 120    | $0.1 \ U$  | 0.04 J     | 0.02 J        | 0.1 U         | 0.03 J        | 0.07 J        | 0.02 J        | 0.05 J        |
| TPH/Oil & Grease            |                     |        |            |            |               |               |               |               |               |               |
| Diesel Range Organics       | μg/L                | 47     | 140 B      | 93 B       | 130 B         | 870           | 90 B          | 180 J         | 110 J         | 80 J          |
| Gasoline Range Organics     | μg/L                | 47     | 20 B       | 19 B       | 23 B          | 21 B          | 23 B          | 20 B          | 20 B          | 18 B          |
| Oil & Grease                | μg/L                | 47     | 3,600 U    | 3,600 U    | 5,800         | 3,600 U       |

### **Detections in bold**

Values in red indicate an exceedance of the Project Action Limit (PAL)

\* indicates non-validated data

^ PAH compounds were analyzed via SIM

U: This analyte was not detected in the sample. The numeric value repesents the sample quantitation/detection limit.

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

# Table 11 - Parcel A15Summary of Inorganics Detected in Surface Water

| Donomotor            | Linita | PAL    | NRWQC      | A15-001-SW | A15-002-SW | A15-004-SW | A15-006-SW | A15-007-SW | A15-008-SW* | A15-010-SW* | A15-012-SW* |
|----------------------|--------|--------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|
| Parameter            | Units  | PAL    | Freshwater | 1/17/2023  | 1/17/2023  | 1/17/2023  | 1/17/2023  | 1/17/2023  | 1/18/2023   | 1/18/2023   | 1/18/2023   |
| Metals               |        |        |            |            |            |            |            |            |             |             |             |
| Aluminum, Dissolved  | μg/L   | 20,000 |            | 10.3       | 10         | 9.06 J     | 8.99 J     | 9.12 J     | 9.93 J      | 9.08 J      | 10.9        |
| Antimony, Dissolved  | μg/L   | 6      |            | 4 U        | 4 U        | 4 U        | 4 U        | 4 U        | 0.8088 B    | 0.7259 B    | 0.7678 B    |
| Arsenic, Dissolved   | μg/L   | 10     | 150        | 0.5 U      | 0.3402 J    | 0.2296 J    | 0.2047 J    |
| Barium, Dissolved    | μg/L   | 2,000  |            | 14.69      | 14.22      | 13.67      | 13.5       | 13.41      | 15.3        | 14.11       | 13.56       |
| Chromium, Dissolved  | μg/L   | 100    | 74         | 0.414 J    | 0.3504 J   | 0.2238 J   | 0.2806 J   | 0.3597 J   | 0.1806 J    | 0.2064 J    | 0.297 J     |
| Cobalt, Dissolved    | µg/L   | 6      |            | 0.569      | 0.6343     | 0.6803     | 0.5962     | 0.6087     | 0.6582      | 0.7062      | 0.692       |
| Copper, Dissolved    | μg/L   | 1,300  |            | 0.945 B    | 0.9443 B   | 0.9359 B   | 0.8763 B   | 1.186      | 0.9216 J    | 0.995 J     | 1.02        |
| Iron, Dissolved      | μg/L   | 14,000 | 1,000      | 31.2 B     | 28.1 B     | 30.2 B     | 22.4 B     | 28.2 B     | 33.7 J      | 30.8 J      | 34.8 J      |
| Manganese, Dissolved | μg/L   | 430    |            | 1.541      | 1.675      | 0.9707 J   | 1.164      | 0.593 J    | 1.058       | 1.35        | 1 U         |
| Nickel, Dissolved    | μg/L   | 390    | 52         | 3.47       | 3.784      | 3.534      | 3.425      | 3.306      | 3.574       | 3.202       | 3.562       |
| Thallium, Dissolved  | μg/L   | 2      |            | 1 U        | 1 U        | 1 U        | 1 U        | 1 U        | 0.2193 B    | 1 U         | 0.2116 B    |
| Vanadium, Dissolved  | μg/L   | 86     |            | 1.734 J    | 5 U        | 5 U        | 5 U        | 5 U        | 5 U         | 5 U         | 5 U         |
| Zinc, Dissolved      | μg/L   | 6,000  | 120        | 8.115 J    | 11.03      | 6.933 J    | 6.816 J    | 6.887 J    | 7.399 J     | 5.664 J     | 5.813 J     |

#### **Detections in bold**

Values in red indicate an exceedance of the Project Action Limit (PAL)

Values indicate an exceedance of National Recommended Water Quality Criteria (NRWQC) Aquatic Life Chronic Criteria for Freshwater Screening Value

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value repesents the sample quantitation/detection limit.

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

### Table 12 - Parcel A15 Summary of Oorganics Detected in Sediment

|                                  | П              | 1         | BTAG          | A15-001-SD    | A15-002-SD           | A15-003-SD           | A15-004-SD | A15-005-SD          | A15-006-SD           | A15-007-SD | A15-008-SD | A15-009-SD | A15-010-SD | A15-011-SD | A15-012-SD |
|----------------------------------|----------------|-----------|---------------|---------------|----------------------|----------------------|------------|---------------------|----------------------|------------|------------|------------|------------|------------|------------|
| Parameter                        | Units          | PAL       | Freshwater    | 1/17/2023     | 1/17/2023            | 1/17/2023            | 1/17/2023  | 1/17/2023           | 1/17/2023            | 1/17/2023  | 1/18/2023  | 1/18/2023  | 1/18/2023  | 1/18/2023  | 1/18/2023  |
| Volatile Organic Compounds       |                |           | Fieshwater    | 1/1//2025     | 1/1//2023            | 1/1//2023            | 1/1//2023  | 1/17/2023           | 1/1//2023            | 1/17/2025  | 1/10/2023  | 1/10/2023  | 1/10/2025  | 1/10/2023  | 1/10/2025  |
| 1,2,4-Trichlorobenzene           | malta          | 110       | 2.1           | 0.00052 J     | 0.012 UJ             | 0.014 UJ             | 0.035 UJ   | 0.016 UJ            | 0.016 UJ             | 0.017 UJ   | 0.016 UJ   | 0.02 UJ    | 0.021 UJ   | 0.031 UJ   | 0.026 UJ   |
| 1,2-Dichlorobenzene              | mg/kg<br>mg/kg | 9,300     | 0.0165        | 0.00052 J     | 0.012 UJ<br>0.0011 J | 0.014 UJ<br>0.014 UJ | 0.035 UJ   | 0.0059 J            | 0.016 UJ             | 0.017 UJ   | 0.016 UJ   | 0.02 UJ    | 0.021 UJ   | 0.031 UJ   | 0.026 UJ   |
| 1,3-Dichlorobenzene              |                | 9,500     | 4.43          |               | 0.0011 J<br>0.001 J  |                      |            | 0.0059 J<br>0.016 J | 0.0016 J<br>0.0044 J | 0.017 UJ   |            | 0.02 UJ    | 0.021 0J   | 0.031 UJ   | 0.020 0J   |
|                                  | mg/kg          | 11        | 4.43<br>0.599 | 0.0036 UJ     |                      | 0.014 UJ             | 0.035 UJ   |                     |                      |            | 0.016 UJ   |            |            |            |            |
| 1,4-Dichlorobenzene              | mg/kg          |           | 0.599         | 0.0015 J      | 0.0071 J             | 0.0046 J             | 0.016 J    | 0.057 J             | 0.02 J               | 0.12 J     | 0.0034 J   | 0.0056 J   | 0.059 J    | 0.044 J    | 0.02 J-    |
| 2-Butanone (MEK)                 | mg/kg          | 190,000   |               | 0.031 J       | 0.28 J               | 0.4 J                | 1.5 J      | 0.87 J              | 1.1 J                | 1.7 J      | 0.3 J      | 0.65 J     | 2.2 J      | 2 J        | 1.5 J-     |
| Acetone                          | mg/kg          | 670,000   |               | <b>0.11 J</b> | 0.95 J               | 1.4 J                | 5.6 J      | 11 J                | 3.6 J                | 10 J       | 0.98 J     | 2.5 J      | 14 J       | 14 J       | 6.4 J      |
| Benzene                          | mg/kg          | 5.1       | 0.0000.51     | 0.0009 UJ     | 0.0025 J             | 0.0036 UJ            | 0.0031 J   | 0.0034 J            | 0.0015 J             | 0.0077 J   | 0.004 UJ   | 0.005 UJ   | 0.0083 J   | 0.0078 J   | 0.004 J-   |
| Carbon disulfide                 | mg/kg          | 3,500     | 0.000851      | 0.018 UJ      | 0.062 UJ             | 0.071 UJ             | 0.18 UJ    | 0.099 J             | 0.084 J              | 0.2 J      | 0.08 UJ    | 0.1 UJ     | 0.28 J     | 0.3 J      | 0.15 J-    |
| Chlorobenzene                    | mg/kg          | 1,300     | 0.00842       | 0.00024 J     | 0.0047 J             | 0.0019 J             | 0.05 J     | 0.12 J              | 0.072 J              | 0.18 J     | 0.0028 J   | 0.0046 J   | 0.042 J    | 0.019 J    | 0.064 J-   |
| Ethylbenzene                     | mg/kg          | 25        | 1.1           | 0.00036 J     | 0.001 J              | 0.0021 J             | 0.0026 J   | 0.0048 J            | 0.0021 J             | 0.014 J    | 0.008 UJ   | 0.0025 B   | 0.0068 J   | 0.0084 J   | 0.013 UJ   |
| Isopropylbenzene                 | mg/kg          | 9,900     | 0.086         | 0.001 J       | 0.0027 J             | 0.00093 J            | 0.0095 J   | 0.024 UJ            | 0.0077 J             | 0.084 UJ   | 0.008 UJ   | 0.01 UJ    | 0.032 J    | 0.015 J    | 0.024 J-   |
| Methyl Acetate                   | mg/kg          | 1,200,000 |               | 0.0072 UJ     | 0.025 UJ             | 0.028 UJ             | 0.071 UJ   | 0.032 UJ            | 0.032 UJ             | 0.034 UJ   | 0.032 UJ   | 0.04 UJ    | 0.041 UJ   | 0.17 J     | 0.052 UJ   |
| Styrene                          | mg/kg          | 35,000    | 0.559         | 0.0018 UJ     | 0.0062 UJ            | 0.0071 UJ            | 0.018 UJ   | 0.0018 B            | 0.0018 B             | 0.0035 B   | 0.008 UJ   | 0.01 UJ    | 0.01 UJ    | 0.016 UJ   | 0.013 UJ   |
| Toluene                          | mg/kg          | 47,000    |               | 0.0018 UJ     | 0.0062 UJ            | 0.0071 UJ            | 0.018 UJ   | 0.0075 J            | 0.008 UJ             | 0.011 J    | 0.008 UJ   | 0.01 UJ    | 0.01 UJ    | 0.016 UJ   | 0.013 UJ   |
| Xylenes                          | mg/kg          | 2,800     | 0.0252        | 0.0018 UJ     | 0.019 J              | 0.0071 UJ            | 0.037 J    | 0.15 J              | 0.063 J              | 0.4 J      | 0.008 UJ   | 0.0064 J   | 0.18 J     | 0.082 J    | 0.21 J     |
| Semi-Volatile Organic Compounds^ |                |           |               |               |                      |                      |            |                     |                      |            |            |            |            |            |            |
| 1,1-Biphenyl                     | mg/kg          | 200       | 1.22          | 0.64 UJ       | 1.7 UJ               | 5.2 UJ               | 2.9 UJ     | 2 UJ                | 7.2 UJ               | 7.6 UJ     | 2.1 UJ     | 2.1 UJ     | 0.16 J     | 2.6 UJ     | 2.5 UJ     |
| 2-Methylnaphthalene              | mg/kg          | 3,000     | 0.0202        | 0.25 J        | 0.11 J               | 0.13 J               | 0.14 J     | 0.11 J              | 0.16 J               | 0.95 J     | 0.35 J     | 0.14 J     | 0.57 J     | 1.7 J      | 0.57 J     |
| 3&4-Methylphenol(m&p Cresol)     | mg/kg          | 41,000    |               | 0.41 UJ       | 1 UJ                 | 3.3 UJ               | 0.32 J     | 1.3 UJ              | 4.6 UJ               | 4.8 UJ     | 0.18 J     | 0.15 J     | 0.25 J     | 0.3 J      | 0.48 J     |
| 4-Chloroaniline                  | mg/kg          | 11        |               | 0.28 UJ       | 0.73 UJ              | 2.3 UJ               | 1.3 UJ     | 0.89 UJ             | 0.66 J               | 5 J        | 0.31 J     | 0.93 UJ    | 2.2 J      | 7.6 J      | 2.5 J-     |
| Acenaphthene                     | mg/kg          | 45,000    | 0.0067        | 0.37 J        | 0.038 J              | 0.033 J              | 0.079 J    | 0.027 J             | 0.051 J              | 0.76 J     | 0.071 J    | 0.035 J    | 0.69 J     | 1.4 J      | 0.26 J     |
| Acenaphthylene                   | mg/kg          | 45,000    | 0.0059        | 0.11 J        | 0.03 J               | 0.027 J              | 0.051 J    | 0.024 J             | 0.062 J              | 0.18 J     | 0.081 J    | 0.043 J    | 0.15 J     | 0.35 J     | 0.11 J     |
| Anthracene                       | mg/kg          | 230,000   | 0.0572        | 0.27 J        | 0.079 J              | 0.064 J              | 0.069 J    | 0.048 J             | 0.058 J              | 0.8 J      | 0.2 J      | 0.083 J    | 0.92 J     | 1.9 J      | 0.35 J     |
| Benz[a]anthracene                | mg/kg          | 21        | 0.108         | 0.6 J         | 0.15 J               | 0.16 J               | 0.12 J     | 0.098 J             | 0.066 J              | 0.74 J     | 0.3 J      | 0.16 J     | 0.89 J     | 4.1 J      | 0.44 J     |
| Benzo[a]pyrene                   | mg/kg          | 2.1       | 0.15          | 0.49 J        | 0.15 J               | 0.12 J               | 0.078 J    | 0.081 J             | 0.048 J              | 0.3 J      | 0.23 J     | 0.16 J     | 0.35 J     | 2 J        | 0.24 J     |
| Benzo[b]fluoranthene             | mg/kg          | 21        | 0.0272        | 0.3 J         | 0.2 J                | 0.17 J               | 0.12 J     | 0.11 J              | 0.066 J              | 0.45 J     | 0.37 J     | 0.21 J     | 0.64 J     | 3 J        | 0.4 J      |
| Benzo[g,h,i]perylene             | mg/kg          |           | 0.17          | 0.34 J        | 0.12 J               | 0.068 J              | 0.1 UJ     | 0.071 UJ            | 0.13 UJ              | 0.093 UJ   | 0.15 J     | 0.11 J     | 0.047 UJ   | 0.22 UJ    | 0.045 UJ   |
| Benzo[k]fluoranthene             | mg/kg          | 210       | 0.24          | 0.08 J        | 0.06 J               | 0.066 J              | 0.032 J    | 0.039 J             | 0.022 J              | 0.15 J     | 0.11 J     | 0.064 J    | 0.21 J     | 1.1 J      | 0.13 J     |
| bis(2-Ethylhexyl)phthalate       | mg/kg          | 160       | 0.18          | 1.9 J         | 3 J                  | 1.2 J                | 14 J       | 3.7 J               | 6.1 J                | 25 J       | 9.2 J      | 3.9 J      | 18 J       | 44 J       | 30 J-      |
| Chrysene                         | mg/kg          | 2,100     | 0.166         | 0.4 J         | 0.14 J               | 0.19 J               | 0.12 J     | 0.083 J             | 0.062 J              | 0.55 J     | 0.28 J     | 0.14 J     | 0.69 J     | 3.2 J      | 0.39 J-    |
| Dibenz[a,h]anthracene            | mg/kg          | 2.1       | 0.033         | 0.041 J       | 0.029 UJ             | 0.023 J              | 0.1 UJ     | 0.071 UJ            | 0.13 UJ              | 0.093 UJ   | 0.037 UJ   | 0.037 J    | 0.047 UJ   | 0.22 J     | 0.045 UJ   |
| Fluoranthene                     | mg/kg          | 30.000    | 0.423         | 1.3 J         | 0.3 J                | 0.19 J               | 0.39 J     | 0.2 J               | 0.23 J               | 2.9 J      | 0.037 UJ   | 0.31 J     | 0.047 UJ   | 12 J       | 0.045 UJ   |
| Fluorene                         | mg/kg          | 30,000    | 0.0774        | 0.46 J        | 0.062 J              | 0.058 J              | 0.1 J      | 0.049 J             | 0.08 J               | 0.96 J     | 0.15 J     | 0.06 J     | 0.97 J     | 2.3 J      | 0.35 J     |
| Indeno[1,2,3-c,d]pyrene          | mg/kg          | 21        | 0.017         | 0.17 J        | 0.13 J               | 0.084 J              | 0.1 UJ     | 0.065 J             | 0.13 UJ              | 0.093 UJ   | 0.037 UJ   | 0.037 UJ   | 0.047 UJ   | 0.22 UJ    | 0.14 J     |
| Naphthalene                      | mg/kg          | 8.6       | 0.176         | 0.05 J        | 0.075 J              | 0.087 J              | 0.096 J    | 0.082 J             | 0.1 J                | 0.54 J     | 0.24 J     | 0.094 J    | 0.36 J     | 0.39 J     | 0.14 J     |
| Phenanthrene                     | mg/kg          | 0.0       | 0.204         | 0.05 J        | 0.19 J               | 0.13 J               | 0.35 J     | 0.002 J<br>0.14 J   | 0.18 J               | 3.2 J      | 0.41 J     | 0.17 J     | 3.2 J      | 8 J        | 1.1 J-     |
| Pyrene                           | mg/kg          | 23,000    | 0.195         | 1.8 J         | 0.33 J               | 0.19 J               | 0.42 J     | 0.21 J              | 0.26 J               | 3 J        | 0.76 J     | 0.31 J     | 3.6 J      | 12 J       | 1.8 J-     |
| PCBs                             | iiig/kg        | 23,000    | 0.195         | 1.0 J         | 0.55 3               | 0.19 J               | 0.42 J     | 0.21 J              | 0.20 J               | 53         | 0.70 J     | 0.31 J     | 5.0 5      | 12 J       | 1.0 J-     |
| Aroclor 1248                     | malka          | 0.94      | r             | 0.362 J       | 0.399 UJ             | 0.402 UJ             | 0.745 UJ   | 0.461 UJ            | 0.562 UJ             | 0.658 UJ   | 0.182 UJ   | 0.177 UJ   | 0.243 UJ   | 5 2 T      | 0.604 UJ   |
|                                  | mg/kg          | -         |               |               |                      |                      |            |                     |                      |            |            |            |            | 5.3 J      |            |
| Aroclor 1254                     | mg/kg          | 0.97      |               | 0.337 J       | 0.559 J              | 0.318 J              | 3.23 J     | 0.435 J             | 0.434 J              | 1.25 J     | 0.753 J    | 0.434 J    | 1.47 J     | 6.41 J     | 0.604 UJ   |
| Aroclor 1260                     | mg/kg          | 0.99      | 0.0500        | 0.0982 J      | 0.354 J              | 0.205 J              | 1.48 J     | 0.292 J             | 0.26 J               | 0.604 J    | 0.486 J    | 0.312 J    | 0.809 J    | 2.73 J     | 2.62 J     |
| PCBs (total)                     | mg/kg          | 0.97      | 0.0598        | 0.797 J       | 0.913 J              | 0.523 J              | 4.71 J     | 0.727 J             | 0.694 J              | 1.85 J     | 1.24 J     | 0.746 J    | 2.28 J     | 14.4 J     | 2.62 J     |
| TPH/Oil & Grease                 |                | 1         | 1             |               |                      |                      | 1          |                     |                      |            | 1          |            | 1          |            |            |
| Diesel Range Organics            | mg/kg          | 6,200     |               | 710 J         | 820 J                | 590 J                | 5,000 J    | 1,300 J             | 1,100 J              | 10,000 J   | 160 J      | 72 J       | 2,800 J    | 3,300 J    | 3,500 J    |
| Gasoline Range Organics          | mg/kg          | 6,200     |               | 2.1 B         | 5.3 B                | 8.4 B                | 50 J       | 120 J               | 16 B                 | 110 J      | 14 B       | 27 B       | 240 J      | 140 J      | 48 J       |
| Oil & Grease                     | mg/kg          | 6,200     |               | 5,400 J+      | 15,600 J+            | 13,400 J+            | 72,800 J+  | 25,000 J+           | 31,100 J+            | 72,800 J+  | 29,300 J+  | 26,300 J+  | 73,500 J+  | 82,400 J+  | 69,600 J+  |

#### **Detections in bold**

Values in red indicate an exceedance of the Project Action Limit (PAL)

Values indicate an exceedance of the Freshwater Biological Technical Assistance Group (BTAG) Screening Value

All Samples Validated

^ PAH compounds were analyzed via SIM

U: This analyte was not detected in the sample. The numeric value repesents the sample quantitation/detection limit.

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J+: The positive result reported for this analyte is a quantitative estimate, but may be biased high.

J-: The positive result reported for this analyte is a quantitative estimate, but may be biased low.

### Table 13 - Parcel A15Summary of Inorganics Detected in Sediment

| D         | II. to | DAI       | BTAG       | A15-001-SD | A15-002-SD | A15-003-SD | A15-004-SD | A15-005-SD    | A15-006-SD | A15-007-SD | A15-008-SD | A15-009-SD | A15-010-SD     | A15-011-SD     | A15-012-SD |
|-----------|--------|-----------|------------|------------|------------|------------|------------|---------------|------------|------------|------------|------------|----------------|----------------|------------|
| Parameter | Units  | PAL       | Freshwater | 1/17/2023  | 1/17/2023  | 1/17/2023  | 1/17/2023  | 1/17/2023     | 1/17/2023  | 1/17/2023  | 1/18/2023  | 1/18/2023  | 1/18/2023      | 1/18/2023      | 1/18/2023  |
| Metals    |        |           |            |            |            |            |            |               |            |            |            |            |                |                |            |
| Aluminum  | mg/kg  | 1,100,000 |            | 11,000 J   | 11,500 J   | 7,500 J    | 13,600 J   | 7,900 J       | 9,040 J    | 17,000 J   | 11,800 J   | 10,400 J   | 20,300 J       | 12,500 J       | 13,300 J   |
| Antimony  | mg/kg  | 470       | 2          | 33.2 UJ    | 17.5 UJ    | 18.4 UJ    | 63.7 J     | 7.87 J        | 47.1 J     | 23.6 J     | 13.8 J     | 6.42 J     | 15.4 J         | 27.5 J         | 70.5 J     |
| Arsenic   | mg/kg  | 3         | 9.8        | 3.85 J     | 6.91 J     | 4.23 J     | 12.5 J     | <b>4.73 J</b> | 6.36 J     | 19.1 J     | 5.83 J     | 2.4 J      | 23.8 J         | 15.3 J         | 6.87 J     |
| Barium    | mg/kg  | 220,000   |            | 131 J      | 337 J      | 294 J      | 1,170 J    | 488 J         | 658 J      | 1,690 J    | 706 J      | 601 J      | 1,160 J        | 950 J          | 1,620 J    |
| Beryllium | mg/kg  | 2,300     |            | 1 J        | 1.08 B     | 0.799 B    | 0.941 B    | 0.928 B       | 0.737 B    | 1.4 B      | 1.6 J      | 1.47 J     | 2.42 J         | 1.68 J         | 1.65 J     |
| Cadmium   | mg/kg  | 100       | 0.99       | 1.87 J     | 6.53 J     | 7.17 J     | 47.5 J     | 12.3 J        | 23.2 J     | 38.8 J     | 19 J       | 16.3 J     | 43.3 J         | 35.7 J         | 27.6 J     |
| Chromium  | mg/kg  | 1,800,000 | 43.4       | 86.8 J     | 521 J      | 383 J      | 1,160 J    | 596 J         | 432 J      | 3,320 J    | 1,050 J    | 803 J      | 3,430 J        | 1,440 J        | 2,230 J    |
| Cobalt    | mg/kg  | 350       | 50         | 4.39 J     | 13.2 J     | 11.9 J     | 15.3 J     | 14.8 J        | 15.7 J     | 23.1 J     | 19.7 J     | 18.2 J     | 24.3 J         | 21.1 J         | 19.5 J     |
| Copper    | mg/kg  | 47,000    | 31.6       | 53.5 J     | 506 J      | 423 J      | 1,850 J    | 1,300 J       | 640 J      | 3,530 J    | 1,240 J    | 934 J      | 3,790 J        | 2,100 J        | 2,370 J    |
| Iron      | mg/kg  | 820,000   | 20,000     | 13,300 J   | 116,000 J  | 41,800 J   | 124,000 J  | 52,400 J      | 79,900 J   | 76,000 J   | 79,100 J   | 65,300 J   | 65,100 J       | 54,500 J       | 72,000 J   |
| Lead      | mg/kg  | 800       | 35.8       | 1,060 J    | 474 J      | 288 J      | 727 J      | 410 J         | 381 J      | 1,390 J    | 720 J      | 557 J      | <b>2,790 J</b> | <b>1,670 J</b> | 711 J      |
| Manganese | mg/kg  | 26,000    | 460        | 712 J      | 578 J      | 450 J      | 643 J      | 549 J         | 493 J      | 604 J      | 783 J-     | 694 J-     | 834 J-         | 577 J-         | 550 J-     |
| Mercury   | mg/kg  | 350       | 0.18       | 0.501 J    | 1.86 J     | 2.15 J     | 4.66 J     | 3.44 J        | 3.27 J     | 9.52 J     | 5.02 J-    | 4.01 J-    | 14.9 J-        | 19.6 J-        | 7.8 J-     |
| Nickel    | mg/kg  | 22,000    | 22.7       | 8.23 J     | 27.5 J     | 23.3 J     | 119 J      | 68.1 J        | 52 J       | 402 J      | 55.4 J     | 40.1 J     | 525 J          | 109 J          | 251 J      |
| Selenium  | mg/kg  | 5,800     | 2          | 1.09 J     | 4.85 J     | 2.83 J     | 11.6 J     | 3.14 J        | 7.34 J     | 8.18 J     | 5.97 J     | 3.52 J     | 5.02 J         | 4.46 J         | 8.29 J     |
| Silver    | mg/kg  | 5,800     | 1          | 1.64 J     | 13.9 J     | 15.4 J     | 93.4 J     | 27 J          | 46.7 J     | 105 J      | 48.3 J     | 36.1 J     | 112 J          | 122 J          | 70.6 J     |
| Thallium  | mg/kg  | 12        |            | 2.66 UJ    | 1.83 J     | 1.87 J     | 2.25 J     | 1.39 J        | 2.11 J     | 11 UJ      | 2.63 J     | 8.6 UJ     | 2 J            | 10.4 UJ        | 10.6 UJ    |
| Vanadium  | mg/kg  | 5,800     |            | 32.3 J     | 66.9 J     | 31.1 J     | 41.3 J     | 38.5 J        | 28.9 J     | 51.3 J     | 60.8 J     | 42.2 J     | 85.2 J         | 54.3 J         | 46 J       |
| Zinc      | mg/kg  | 350,000   | 121        | 756 J      | 1,120 J    | 1,080 J    | 3,090 J    | 1,490 J       | 1,660 J    | 6,080 J    | 2,300 J    | 1,970 J    | 7,010 J        | 5,080 J        | 3,350 J    |

#### **Detections in bold**

Values in red indicate an exceedance of the Project Action Limit (PAL)

Values indicate an exceedance of the Freshwater Biological Technical Assistance Group (BTAG) Screening Value

All Samples Validated

U: This analyte was not detected in the sample. The numeric value repesents the sample quantitation/detection limit.

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J-: The positive result reported for this analyte is a quantitative estimate, but may be biased low.

# Table 14 - Parcel A15Rejected Analytical Results

| Sample ID    | Parameter                 | <u>Result</u><br>(mg/kg) | <u>PAL</u><br>(mg/kg) | Exceeds<br>PAL? |
|--------------|---------------------------|--------------------------|-----------------------|-----------------|
| A15-001-SD   | Chromium VI               | 1.38                     | 6.3                   | no              |
| A15-002-SD   | Chromium VI               | 3.6                      | 6.3                   | no              |
| A15-003-SD   | Chromium VI               | 3.85                     | 6.3                   | no              |
| A15-004-SD   | Chromium VI               | 6.25                     | 6.3                   | no              |
| A15-005-SD   | Chromium VI               | 4.3                      | 6.3                   | no              |
| A15-006-SD   | Chromium VI               | 5.19                     | 6.3                   | no              |
| A15-007-SD   | Chromium VI               | 5.67                     | 6.3                   | no              |
| A15-008-SD   | Chromium VI               | 4.6                      | 6.3                   | no              |
| A15-009-SD   | Chromium VI               | 4.47                     | 6.3                   | no              |
| A15-010-SD   | Chromium VI               | 5.84                     | 6.3                   | no              |
| A15-011-SD   | Chromium VI               | 5.48                     | 6.3                   | no              |
|              | 2,4-Dinitrophenol         | 5.4                      | 1,600                 | no              |
| A15-012-SD   | Chromium VI               | 5.44                     | 6.3                   | no              |
|              | Hexachlorocyclopentadiene | 3.2                      | 7.5                   | no              |
| A15-020-SB-2 | 2,4-Dinitrophenol         | 4.4                      | 1,600                 | no              |
| A15-020-5D-2 | Hexachlorocyclopentadiene |                          | 7.5                   | no              |
| SG04-PDM008  | Selenium                  | 5                        | 50                    | no              |

Note: There were no rejected results for surface water sample results.

### **APPENDIX A**

| $1 a \mu \alpha = 3 0 \mu \beta a \mu \beta \mu \beta \beta \alpha \mu \eta \eta \alpha$ | Table 1 | - Soil | Sampling | Summar |
|------------------------------------------------------------------------------------------|---------|--------|----------|--------|
|------------------------------------------------------------------------------------------|---------|--------|----------|--------|

| Source Area/<br>Description | REC &<br>Finding/<br>SWMU/<br>AOC | Figure or Drawing<br>of Reference                   | Rationale                                                                                                                                 | Number of<br>Locations | Sample<br>Locations           | Boring Depth                                 | Sample Depth                                                                                                      | Analytical<br>Parameters:<br>Soil Samples                              |
|-----------------------------|-----------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Underground<br>Storage Tank | REC 28A,<br>Finding 281           | 2019 Site Visit                                     | Investigate potential impacts related to a tank of unknown contents at the Site (potential leaks or releases).                            | 2                      | A15-004<br>and<br>A15-005     | Total depth of<br>20 feet or<br>groundwater. | 0-2', 4-5', 9-10' bgs.<br>4-5' interval may be adjusted in the field based<br>on observations or field screening. | VOC <sup>^</sup> , SVOC, PAHs,<br>Metals, DRO/GRO,<br>O&G, PCBs (0-2') |
| Pumping Station<br>#1       |                                   | Site Visit, Aerial,<br>Drawings 5057,<br>5157, 5557 | Investigate potential impacts related to the<br>pumping station and its associated electrical<br>equipment (potential leaks or releases). | 4                      | A15-006<br>through<br>A15-009 | Total depth of<br>20 feet or<br>groundwater. | 0-2', 4-5', 9-10' bgs.<br>4-5' interval may be adjusted in the field based<br>on observations or field screening. | VOC <sup>^</sup> , SVOC, PAHs,<br>Metals, DRO/GRO,<br>O&G, PCBs (0-2') |
| Pumping Station<br>#2       |                                   | Site Visit, Aerial,<br>Drawings 5056,<br>5156, 5556 | Investigate potential impacts related to the<br>pumping station and its associated electrical<br>equipment (potential leaks or releases). | 4                      | A15-010<br>through<br>A15-013 | Total depth of 20 feet or groundwater.       | 0-2', 4-5', 9-10' bgs.<br>4-5' interval may be adjusted in the field based<br>on observations or field screening. | VOC <sup>^</sup> , SVOC, PAHs,<br>Metals, DRO/GRO,<br>O&G, PCBs (0-2') |
| Electrical Sub-<br>Station  |                                   | Site Visit, Aerial,<br>Drawings 5056,<br>5156, 5556 | Investigate potential impacts related to the<br>sub-station and its associated electrical<br>equipment (potential leaks or releases).     | 2                      | A15-014<br>and<br>A15-015     | Total depth of 20 feet or groundwater.       | 0-2', 4-5', 9-10' bgs.<br>4-5' interval may be adjusted in the field based<br>on observations or field screening. | VOC <sup>^</sup> , SVOC, PAHs,<br>Metals, DRO/GRO,<br>O&G, PCBs (0-2') |
| Parcel A15<br>Coverage      |                                   | N/A                                                 | Investigate potential impacts related to<br>unknown historical activities, and<br>characterize soil in areas not previously<br>sampled.   | 5                      | A15-016<br>through<br>A15-020 | Total depth of<br>20 feet or<br>groundwater. | 0-2', 4-5', 9-10' bgs.<br>4-5' interval may be adjusted in the field based<br>on observations or field screening. | VOC <sup>^</sup> , SVOC, PAHs,<br>Metals, DRO/GRO,<br>O&G, PCBs (0-2') |
|                             |                                   |                                                     | Total:                                                                                                                                    | 17                     |                               |                                              |                                                                                                                   |                                                                        |

Soil Borings Sampling Density Requirements (from **Worksheet 17 - Sampling Design and Rationale**)

*No Engineered Barrier (16-40 acres): 1 boring per 1.5 acres with no less than 15 borings. Engineered Barrier (N/A)* 

No Engineered Barrier (20.9 acres) = **14 borings required, 17 completed** Includes Building Footprints (0.2 acres) Reservoir (40.4 acres) VOCs - Volatile Organic Compounds (Target Compound List) by EPA Method 8260C
^VOCs are only collected if the PID reading exceeds 10 ppm
SVOCs - Semivolatile Organic Compounds (Target Compound List) by EPA Method 8270D
PAHs - Polycyclic Aromatic Hydrocarbons by EPA Method 8270D SIM
Metals - (Target Analyte List plus Hexavalent Chromium and Cyanide)
by EPA Method 6010D/6010B; 7196A; 9012B
O&G - Oil and Grease by EPA Method 9071B
DRO/GRO - Diesel Range Organics/Gasoline Range Organics by EPA Method 8015D
PCBs - Polychlorinated Biphenyls by EPA Method 8082A
bgs - Below Ground Surface

|                              | REC &                    |                                                           |                               | Groundwa               | ter Sampling Sum          |                                                |                                                             |                                                                                             |
|------------------------------|--------------------------|-----------------------------------------------------------|-------------------------------|------------------------|---------------------------|------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Source Area/<br>Description  | Finding/<br>SWMU/<br>AOC | Figure or<br>Drawing of<br>Reference                      | Condition of Existing Well    | Number of<br>Locations | Sample<br>Locations       | Boring Depth                                   | Screen Interval                                             | Analytical Parameters:<br>Groundwater Samples                                               |
| Electrical Sub-<br>Station   |                          | Site Visit,<br>Aerial,<br>Drawings<br>5056, 5156,<br>5556 | N/A                           | 1                      | A15-015-PZ                | Total depth of<br>7 feet below<br>water table. | 7 feet below<br>water table to 3 feet<br>above water table. | VOC, SVOC, PAHs,<br>Metals (total/dissolved),<br>Cyanide (total/available),<br>O&G, DRO/GRO |
| Parcel A15<br>Coverage       |                          | N/A                                                       | N/A                           | 2                      | A15-016-PZ,<br>A15-019-PZ | Total depth of<br>7 feet below<br>water table. | 7 feet below<br>water table to 3 feet<br>above water table. | VOC, SVOC, PAHs,<br>Metals (total/dissolved),<br>Cyanide (total/available),<br>O&G, DRO/GRO |
| Existing Well<br>SG03-PDM007 |                          | N/A                                                       | Refer to Well Inspection Form | 1                      | SG03-PDM007               | 18.5 feet bgs                                  | 8.5 ft to 18.5 ft bgs                                       | VOC, SVOC, PAHs,<br>Metals (total/dissolved),<br>Cyanide (total/available),<br>O&G, DRO/GRO |
| Existing Well<br>SW-099-MWS  |                          | N/A                                                       | Refer to Well Inspection Form | 1                      | SW-099-MWS                | 23 feet bgs                                    | 3 ft to 23 ft bgs                                           | VOC, SVOC, PAHs,<br>Metals (total/dissolved),<br>Cyanide (total/available),<br>O&G, DRO/GRO |
| Existing Well<br>SG04-PDM008 |                          | N/A                                                       | Refer to Well Inspection Form | 1                      | SG04-PDM008               | 12 feet bgs                                    | 2 ft to 12 ft bgs                                           | VOC, SVOC, PAHs,<br>Metals (total/dissolved),<br>Cyanide (total/available),<br>O&G, DRO/GRO |
|                              |                          |                                                           | Total:                        | 6                      |                           |                                                |                                                             |                                                                                             |

Table 2 - Groundwater Sampling Summary

Field measurements include pH, DO, ORP, conductivity, temperature. Metals analysis will include dissolved hexavalent chromium VOCs - Volatile Organic Compounds (Target Compound List) by EPA Method 8260C SVOCs - Semivolatile Organic Compounds (Target Compound List) by EPA Method 8270D PAHs - Polycyclic Aromatic Hydrocarbons by EPA Method 8270D SIM Metals - (Target Analyte List plus Hexavalent Chromium by EPA Method 6010D/6010B; 7196A; 9012B O&G - Oil and Grease by EPA Method 9071B DRO/GRO - Diesel Range Organics/Gasoline Range Organics by EPA Method 8015D

| Source Area/<br>Description    | REC &<br>Finding/<br>SWMU/<br>AOC | Figure or<br>Drawing of<br>Reference | Rationale                                                                                               | Number<br>of<br>Locations | Sample<br>Locations                                | Reservoir Depth | Sample Depth             | Analytical<br>Parameters:<br>Sediment Samples                   |
|--------------------------------|-----------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------|-----------------|--------------------------|-----------------------------------------------------------------|
| Historic Effluent<br>Locations | N/A                               | Aerials,<br>Drawing<br>5500          | Investigate potential impacts in<br>the vicinity of historic effluent<br>locations.                     | 2                         | A15-001-SD<br>and A15-002-<br>SD                   | Assumed <10'    | 0-6" below reservoir bed | VOC <sup>^</sup> , SVOC, PAHs,<br>Metals, DRO/GRO,<br>O&G, PCBs |
| Air Products<br>Discharge Pipe | REC 11B                           | Aerials, site<br>visit               | Investigate potential impacts<br>related to historic discharges<br>and the previously identified<br>REC | 1                         | A15-004-SD                                         | Assumed <10'    | 0-6" below reservoir bed | VOC <sup>^</sup> , SVOC, PAHs,<br>Metals, DRO/GRO,<br>O&G, PCBs |
| Pumping<br>Stations            | N/A                               | Aerials, site<br>visit               | Investigate potential impacts in<br>the vicinity of historic and<br>current effluent locations.         | 2                         | A15-011-SD<br>and A15-012-<br>SD                   | Assumed <10'    | 0-6" below reservoir bed | VOC <sup>^</sup> , SVOC, PAHs,<br>Metals, DRO/GRO,<br>O&G, PCBs |
| Parcel A15<br>Coverage         | N/A                               | N/A                                  | Investigate potential impacts in<br>Industrial Water Reservoir<br>sediment.                             | 7                         | A15-003-SD,<br>A15-005-SD<br>through<br>A15-010-SD | Assumed <10'    | 0-6" below reservoir bed | VOC^, SVOC, PAHs,<br>Metals, DRO/GRO,<br>O&G, PCBs              |
|                                |                                   |                                      | Total:                                                                                                  | 12                        |                                                    |                 |                          |                                                                 |

Table 3 - Sediment Sampling Summary

Total area of Reservoir: 40.4 acres

VOCs - Volatile Organic Compounds (Target Compound List) by EPA Method 8260C

^VOCs are only collected if the PID reading exceeds 10 ppm

SVOCs - Semivolatile Organic Compounds (Target Compound List)

by EPA Method 8270D

PAHs - Polycyclic Aromatic Hydrocarbons by EPA Method 8270D SIM

Metals - (Target Analyte List plus Hexavalent Chromium and Cyanide)

by EPA Method 6010D/6010B; 7196A; 9012B

O&G - Oil and Grease by EPA Method 9071B

DRO/GRO - Diesel Range Organics/Gasoline Range Organics by EPA Method 8015D

PCBs - Polychlorinated Biphenyls by EPA Method 8082A

| Table 4 - Surface V | Water Sampling Summary |
|---------------------|------------------------|
|---------------------|------------------------|

| Source Area/<br>Description    | REC &<br>Finding/<br>SWMU/<br>AOC | Figure or<br>Drawing of<br>Reference | Rationale                                                                                               | Number<br>of<br>Locations | Sample Locations                                                                                                | Reservoir Depth | Sample Depth           | Analytical<br>Parameters:<br>Surface Water Samples                                    |
|--------------------------------|-----------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------------------------------------------------------------------------------|
| Historic Effluent<br>Locations | N/A                               | Aerials,<br>Drawing<br>5500          | Investigate potential impacts in the vicinity of historic effluent locations.                           | 2                         | A15-001-SW and A15-<br>002-SW                                                                                   | Assumed <10'    | Middle of water column | VOC, SVOC, PAHs,<br>Metals (dissolved),<br>Cyanide (total/available),<br>O&G, DRO/GRO |
| Air Products<br>Discharge Pipe | REC 11B                           | Aerials, site<br>visit               | Investigate potential impacts<br>related to historic discharges<br>and the previously identified<br>REC | 1                         | A15-004-SW                                                                                                      | Assumed <10'    | Middle of water column | VOC, SVOC, PAHs,<br>Metals (dissolved),<br>Cyanide (total/available),<br>O&G, DRO/GRO |
| Parcel A15<br>Coverage         | N/A                               | N/A                                  | Investigate potential impacts in<br>Industrial Water Reservoir<br>surface water.                        | 5                         | A15-006-SW, A15-007-<br>SW, A15-008-SW,<br>A15-010-SW and A15-<br>012-SW (colocated with<br>sediment locations) | Assumed <10'    | Middle of water column | VOC, SVOC, PAHs,<br>Metals (dissolved),<br>Cyanide (total/available),<br>O&G, DRO/GRO |
|                                |                                   |                                      | Total:                                                                                                  | 8                         |                                                                                                                 |                 |                        |                                                                                       |

Total area of Reservoir: 40.4 acres

Field measurements include pH, DO, ORP, conductivity, temperature. Metals analysis will include dissolved hexavalent chromium VOCs - Volatile Organic Compounds (Target Compound List) by EPA Method 8260C SVOCs - Semivolatile Organic Compounds (Target Compound List)

by EPA Method 8270D

PAHs - Polycyclic Aromatic Hydrocarbons by EPA Method 8270D SIM

Metals - (Target Analyte List plus Hexavalent Chromium and Cyanide)

by EPA Method 6010D/6010B; 7196A; 9012B

O&G - Oil and Grease by EPA Method 9071B

DRO/GRO - Diesel Range Organics/Gasoline Range Organics by EPA Method 8015D

### **APPENDIX B**

|                          | P                      | -                 | A Group<br>incers and Scien |                                     | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc. | Date<br>Weather:<br>Total Depth<br>Depth to W | (ft):       | : 11/8/2022<br>: Sunny, 60s<br>: 10' bgs<br>: 5' bgs |
|--------------------------|------------------------|-------------------|-----------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|------------------------------------------------------|
| E                        | Boring                 | g ID: /           | A15-004-S                   | BB                                  | Driller<br>Drilling Equipment                                                                               | : Kevin<br>: Geoprobe 78220T                                                                                           |                                               |             |                                                      |
|                          |                        |                   | (page 1                     | of 1)                               |                                                                                                             |                                                                                                                        |                                               |             |                                                      |
| Depth (ft.)              | % Recovery             | PID Reading (PPM) | Sample No/Interval          |                                     | DES                                                                                                         | SCRIPTION                                                                                                              |                                               |             | REMARKS                                              |
| 0                        |                        | 0.3               | A15-004-SB-2                | (0-2')<br>Gray GR/<br>plasticity,   | FILL<br>AVEL (slag) and light<br>low cohesion, moder                                                        | brown silt with sand (fine), n<br>ately stiff                                                                          | o<br>(DAMP)                                   |             |                                                      |
| 2-<br>-<br>3-<br>-<br>4- | 55                     | 0.1               | A15-004-SB-3                | cohesion                            | Light gray/b<br>nd (fine), trace gravel,<br>o Recovery                                                      | rown SILT<br>very stiff, no plasticity, low                                                                            | (DAMP)                                        |             |                                                      |
| 5<br>6<br>7              |                        | 1.9<br>0.1        |                             | (5-8.1')<br>Trace sai<br>2-3" stiff | nd (fine), very soft to s                                                                                   | y SILT<br>oft, no plasticity, cohesive, t                                                                              | oottom<br>(WET)                               | Wet at 5' I | ogs                                                  |
| -<br>8—<br>-<br>9—<br>-  | 60                     | 0.1               |                             | (8.1-10')                           | No Recovery                                                                                                 |                                                                                                                        |                                               |             |                                                      |
|                          | prehole D<br>low grour |                   | bgs due to water.<br>e      | L<br>End of Bo                      | pring                                                                                                       |                                                                                                                        |                                               | L           |                                                      |

| ARM Group LLC<br>Engineers and Scientists |            |                          |                       |                                    | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company<br>Driller | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc.<br>: Kevin | Date<br>Weather:<br>Total Depth<br>Depth to Wa | : 11/8/2022<br>: Sunny, 60s<br>(ft): : 5' bgs<br>ater (0hr.): : 2.5' bgs |  |
|-------------------------------------------|------------|--------------------------|-----------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|--|
| E                                         | Boring     | g ID: /                  | A15-005-S             |                                    | Drilling Equipment                                                                                                     | : Geoprobe 78220T                                                                                                                 |                                                |                                                                          |  |
|                                           |            | Γ                        | (page 1               | of 1)                              |                                                                                                                        |                                                                                                                                   |                                                |                                                                          |  |
| Depth (ft.)                               | % Recovery | PID Reading (PPM)        | Sample No/Interval    |                                    | DES                                                                                                                    | REMARKS                                                                                                                           |                                                |                                                                          |  |
| 0                                         |            |                          |                       | (0-3.4')<br>Gray SAN<br>brown silt | FIL<br>ND (fine) to coarse GF<br>t, loose, no plasticity,                                                              | RAVEL (slag), with some ligh                                                                                                      | nt<br>DAMP/WET)                                |                                                                          |  |
| 1—                                        |            | 0.3                      | A15-005-SB-2          |                                    |                                                                                                                        |                                                                                                                                   |                                                |                                                                          |  |
| - 2-                                      |            | 2.4                      |                       |                                    |                                                                                                                        |                                                                                                                                   |                                                |                                                                          |  |
|                                           | 100        | 2.0                      |                       |                                    |                                                                                                                        |                                                                                                                                   |                                                | Wet at 2.5' bgs                                                          |  |
| - 4                                       |            | 1.5                      |                       | (3.4-5)<br>Some sai                | Light gra<br>nd (fine), very stiff, no                                                                                 | y/brown SILT<br>plasticity, low cohesion                                                                                          | (DAMP)                                         |                                                                          |  |
| - 5-                                      |            | 0.5                      |                       |                                    |                                                                                                                        |                                                                                                                                   |                                                |                                                                          |  |
| -                                         |            |                          |                       | End of Bo                          | bring                                                                                                                  |                                                                                                                                   |                                                |                                                                          |  |
| 6-                                        |            |                          | ana aliya ta ya t     |                                    |                                                                                                                        |                                                                                                                                   |                                                |                                                                          |  |
|                                           |            | oepth: 5 b<br>nd surface | gs due to water.<br>e |                                    |                                                                                                                        |                                                                                                                                   |                                                |                                                                          |  |

| E              | P                     | -                 | A Group<br>ineers and Scien |                                      | Client: Tradepoint AtlanticDate: 12/20/22ARM Project No.: 21010115Weather:: Sunny, 30sProject Description: A15 Phase IITotal Depth (ft):: 10' bgsSite Location: Sparrows Point, MDDepth to Water (0hr.):: 4.5' bgsARM Representative: L. ParkerDepth to Water (0hr.):: 4.5' bgs |
|----------------|-----------------------|-------------------|-----------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E              | Boring                | JD:               | A15-006-S                   | B                                    | Drilling Company       : Green Services, Inc.         Driller       : Don         Drilling Equipment       : Geoprobe 78220T                                                                                                                                                    |
|                |                       |                   | (page 1                     | of 1)                                |                                                                                                                                                                                                                                                                                 |
| Depth (ft.)    | % Recovery            | PID Reading (PPM) | Sample No/Interval          |                                      | DESCRIPTION REMARKS                                                                                                                                                                                                                                                             |
| 0              |                       | 0.7               | A15-006-SB-2                | (0.4-0.9')                           | TOP SOIL<br>matter (roots), brown silt, with some sand<br>Dark to light brown clayey SILT<br>d (fine), moderately stiff, low cohesion, low plasticity<br>(DAMP)                                                                                                                 |
| 2-             |                       | 0.6               |                             |                                      | FILL<br>AVEL (slag), some light brown sand (fine), moderately<br>cohesion, no plasticity (DAMP/WET)                                                                                                                                                                             |
| -<br>3-        | 85                    | 0.5               | A15-006-SB-3                | With san                             | d (fine), trace gravel and sand lenses, very stiff to stiff,<br>bhesive in moist region, no plasticity, low cohesion (DAMP)                                                                                                                                                     |
| -<br>4-        |                       | 0.3               |                             |                                      |                                                                                                                                                                                                                                                                                 |
| -<br>5-        |                       |                   |                             |                                      | lo Recovery Wet at 4.5' bgs                                                                                                                                                                                                                                                     |
| 6-             |                       | 0.2               |                             | (5-6.8')<br>Intermitte<br>(10" to 15 | Light brown/gray SILT<br>ent black layers, some sand (fine), trace sand lenses<br>5"), soft, low cohesion, low plasticity (DAMP)                                                                                                                                                |
| -              |                       | 0.0               |                             |                                      |                                                                                                                                                                                                                                                                                 |
| 7-<br>-<br>8-  | 85                    | 0.0               |                             | of moistu                            | Brown and dark gray sandy SILT<br>ganic matter, trace sand (fine) and gravel, varying layers<br>ire, plastic/cohesive where moist, very to moderately<br>cohesion, no plasitcity (DAMP)                                                                                         |
| -<br>9-        |                       | 0.0               |                             |                                      |                                                                                                                                                                                                                                                                                 |
| -              |                       |                   |                             | (9.3-10')                            | No Recovery                                                                                                                                                                                                                                                                     |
| 10<br>-<br>11- |                       |                   | 1                           | End of Bo                            | oring                                                                                                                                                                                                                                                                           |
| Total Bo       | orehole D<br>ow groun | -                 | -                           | . Max planne                         | ed depth reached.                                                                                                                                                                                                                                                               |

| ARM Group LLC<br>Engineers and Scientists |                        |                   |                       |                                                   | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company<br>Driller | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc.<br>: Don | Date<br>Weather:<br>Total Depth ( | : 12/20/22<br>: Sunny, 30s<br>(ft): : 10' bgs |
|-------------------------------------------|------------------------|-------------------|-----------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------|
| E                                         | Boring                 | g ID: /           | A15-007-S             | BB                                                | Drilling Equipment                                                                                                     | : Geoprobe 78220T                                                                                                               |                                   |                                               |
|                                           |                        |                   | (page 1               | of 1)                                             |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| Depth (ft.)                               | % Recovery             | PID Reading (PPM) | Sample No/Interval    |                                                   | DES                                                                                                                    | SCRIPTION                                                                                                                       |                                   | REMARKS                                       |
| 0-                                        |                        |                   |                       | (0-0.4')                                          | TOP S                                                                                                                  | SOIL                                                                                                                            |                                   |                                               |
| - 1-                                      |                        | 0.7               | A15-007-SB-2          | Brown sil<br>(0.4-10')<br>Dark gray<br>plastic/co | t, with some sand<br>Light brow<br>/ (16-20"), trace lense                                                             | n/gray SILT,<br>ss of sand (fine), soft to stiff,<br>ore sand present within the                                                | DAMP/WET)                         |                                               |
| -                                         |                        | 0.3               |                       | weilayer                                          | s, low conesion, low p                                                                                                 | Jasticity (i                                                                                                                    | JAIVIF/WET)                       |                                               |
| 2-                                        |                        |                   |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| _                                         | 80                     | 0.0               |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| 3-                                        |                        | 0.4               |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| 4-                                        |                        | 0.1               |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| 4                                         |                        |                   |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| 5—                                        |                        |                   |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| -                                         |                        | 0.3               |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| 6-                                        |                        |                   |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| -                                         |                        | 1.0               | A15-007-SB-7          |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| 7-                                        |                        |                   |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| -                                         | 100                    | 0.7               |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| 8-                                        |                        |                   |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| -                                         |                        | 0.3               |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| 9-                                        |                        | 0.0               | A15-007-SB-10         |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| 10-                                       |                        | 0.0               |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
| -                                         |                        |                   |                       | End of Bo                                         | oring                                                                                                                  |                                                                                                                                 |                                   |                                               |
| 11-                                       |                        |                   |                       |                                                   |                                                                                                                        |                                                                                                                                 |                                   |                                               |
|                                           | orehole D<br>low grour |                   | bgs. Max planned<br>e | depth reac                                        | hed.                                                                                                                   |                                                                                                                                 |                                   |                                               |

|                           | Ą                      | -                 | M Group<br>rineers and Scien  |                                      | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company<br>Driller | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc.<br>: Don | Date<br>Weather:<br>Total Depth | : 12/20/22<br>: Sunny, 30s<br>(ft): : 15' bgs |
|---------------------------|------------------------|-------------------|-------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|
| E                         | Boring                 | g ID: /           | A15-008-S                     | BB                                   | Drilling Equipment                                                                                                     | : Geoprobe 78220T                                                                                                               |                                 |                                               |
|                           |                        |                   | (page 1                       | of 1)                                |                                                                                                                        |                                                                                                                                 |                                 |                                               |
| Depth (ft.)               | % Recovery             | PID Reading (PPM) | Sample No/Interval            |                                      | DES                                                                                                                    | SCRIPTION                                                                                                                       |                                 | REMARKS                                       |
| 0                         | 60                     | 0.4<br>0.2<br>0.2 | A15-008-SB-2                  | (0.3-2.8')<br>Trace sa               | nd (fine), trace gravel,                                                                                               | t brown SILT<br>variation in moisture levels<br>ow cohesion, no plasticity,<br>(                                                | s,<br>stiff to<br>DAMP/WET)     |                                               |
| 3-<br>-<br>4-<br>5-       |                        |                   |                               |                                      | o Recovery                                                                                                             |                                                                                                                                 |                                 |                                               |
| -<br>6<br>7               | 50                     | 0.6               |                               |                                      |                                                                                                                        |                                                                                                                                 |                                 |                                               |
| 8-<br>-<br>9-<br>-<br>10- |                        | 0.7               | A15-008-SB-9<br>A15-008-SB-10 |                                      | nd (fine), plastic/cohe<br>, no plasticity                                                                             | brown SILT<br>sive where damp, soft to sti                                                                                      | iff, low<br>(DAMP)              |                                               |
| -<br>11-<br>-<br>12-      |                        | 0.3<br>0.1        |                               | (10.8-11.<br>Trace sat<br>plasiticty | nd (fine), soft, low coh<br>6') Dark b<br>nd (fine), gravel, organ                                                     | rown SILT<br>nic matter, soft, low cohesio                                                                                      | (DAMP)                          |                                               |
| -<br>13—<br>-<br>14—<br>- | 65                     | 0.2               |                               | Trace gra<br>(12.9-13.<br>Some silt  | avel, soft, low conhesi                                                                                                | D (fine)                                                                                                                        | W SILT<br>(WET)<br>(WET)        |                                               |
|                           | prehole D<br>low grour |                   | bgs. Max planned<br>e         | End of Bo                            |                                                                                                                        |                                                                                                                                 |                                 |                                               |

|                          | Ą                      | -                 | A Group<br>incers and Scie |                                                       | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company | : Green Services, Inc.                                 | Date<br>Weather:<br>Total Depth<br>Depth to Wa | : 12/20/22<br>: Sunny, 30s<br>(ft): : 5' bgs<br>ater (0hr.): : 1' bgs  |
|--------------------------|------------------------|-------------------|----------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------|
| E                        | Boring                 | g ID: A           | A15-009-S                  | SB                                                    | Driller<br>Drilling Equipment                                                                               | : Don<br>: Geoprobe 78220T                             |                                                |                                                                        |
|                          |                        |                   | (page 1                    | of 1)                                                 |                                                                                                             |                                                        |                                                | L                                                                      |
| Depth (ft.)              | % Recovery             | PID Reading (PPM) | Sample No/Interval         |                                                       | DESCRIPTION                                                                                                 |                                                        |                                                | REMARKS                                                                |
| 0                        |                        | 1.6               | A15-009-SB-2               | (0.3-0.9')<br>Drak brov                               | FIL<br>organic matter, browr<br>FIL<br>wn GRAVEL, some sa<br>ion, no plasticity                             | n silt, with some sand                                 | (DAMP)                                         | Wet at 1' bgs observed within<br>boring hole.<br>Only sampled from top |
| 1-<br>-<br>2-<br>-<br>3- | 60                     | 1.2               |                            | 2",very st<br>(2.7-2.9')<br>soft, low (<br>(2.9-3.2') | e sand (fine), increase<br>iff to stiff, low cohesio<br>Black SILT and S<br>cohesion, no plasiticty<br>Fl   | e in sand and gravel within th<br>n, low plasticity (C | 1' of core.                                    |                                                                        |
| 4                        |                        |                   |                            | ∖plasticity<br>(3.2-5') N                             | o Recovery                                                                                                  |                                                        | (WET)/                                         |                                                                        |
| 6-                       |                        |                   |                            | End of Bo                                             | pring                                                                                                       |                                                        |                                                |                                                                        |
|                          | brehole D<br>low grour |                   | gs due to water.<br>e      |                                                       |                                                                                                             |                                                        |                                                |                                                                        |

|             |                        | Eng               | A Group<br>incers and Scie | ntists                                | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company<br>Driller<br>Drilling Equipment | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc.<br>: Don<br>: Geoprobe 78220T | Date<br>Weather:<br>Total Depth | : 12/21/22<br>: Sunny, 30s<br>(ft): : 5' bgs |
|-------------|------------------------|-------------------|----------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|
|             |                        |                   | (page 1                    | of 1)                                 |                                                                                                                                              |                                                                                                                                                      |                                 |                                              |
| Depth (ft.) | % Recovery             | PID Reading (PPM) | Sample No/Interval         |                                       | DESCRIPTION                                                                                                                                  |                                                                                                                                                      |                                 | REMARKS                                      |
| -0          |                        | 0.4               |                            | plasticity<br>(0.2-1')                | Brown GRAV                                                                                                                                   | L<br>D,organic matter, no cohesio<br>EL and silty SAND<br>e, soft to very stiff, no cohesi                                                           | (WET)                           | Water at surface of boring hole.             |
| 1-          |                        | 0.4               | A15-010-SB-2               | (1-4.6')<br>Trace sar<br>very stiff t | Light gray and mottle<br>nd and gravel (slag), v<br>to soft where wet, low                                                                   | ed black clayey SILT<br>variations in moisture observ<br>cohesion, no plasticity                                                                     | /ed,<br>(WET)                   |                                              |
| - 3-        | 100                    | 0.6               | A15-010-SB-3               |                                       |                                                                                                                                              |                                                                                                                                                      |                                 |                                              |
| - 4         |                        | 0.4               |                            |                                       |                                                                                                                                              |                                                                                                                                                      |                                 |                                              |
| - 5-        |                        | 0.1               |                            | cohesion                              | , no plasticity                                                                                                                              | L<br>k gray silt and sand (fine), lo                                                                                                                 | ose, no<br>(WET)                | Possible groundwater.                        |
| 6-          | probal-                | onth: 5 t         |                            | End of Bo                             | pring                                                                                                                                        |                                                                                                                                                      |                                 |                                              |
|             | orehole D<br>low grour |                   | gs due to water.<br>e      |                                       |                                                                                                                                              |                                                                                                                                                      |                                 |                                              |

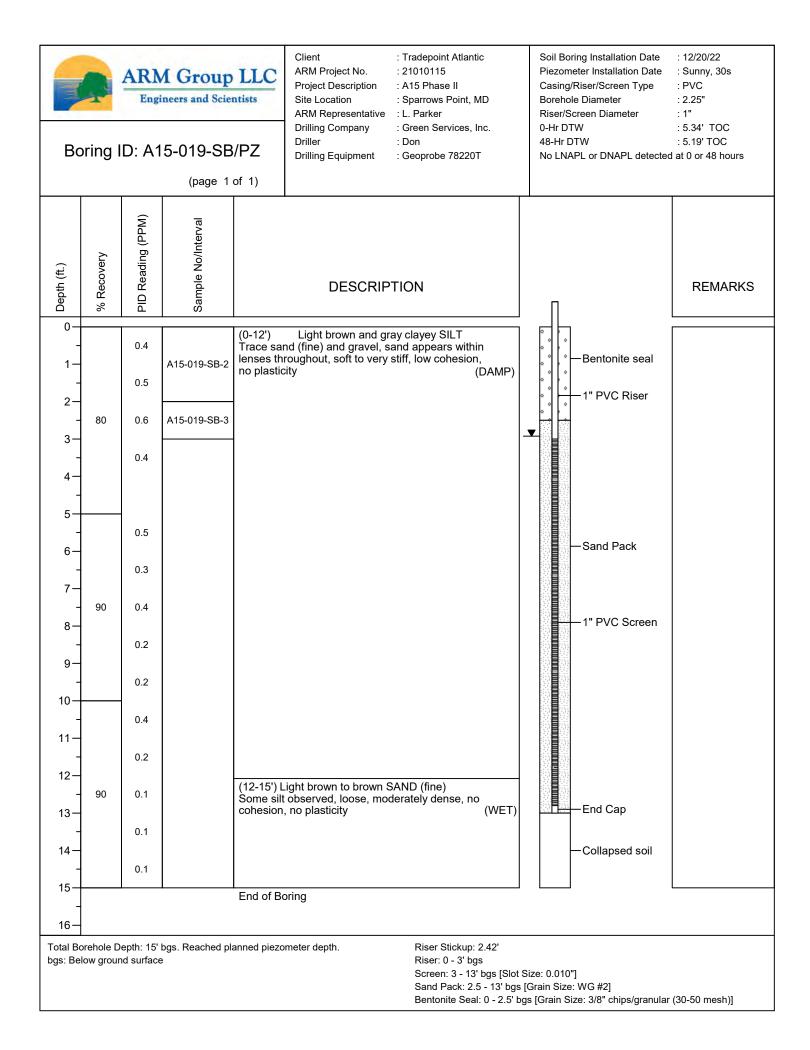
|             |                        | Eng               | A Group<br>incers and Scie | ntists                                  | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company<br>Driller | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc.<br>: Don | Date<br>Weather:<br>Total Depth | : 12/21/22<br>: Sunny, 30s<br>(ft): : 5' bgs                        |
|-------------|------------------------|-------------------|----------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|
| E           | Boring                 | g ID: /           | A15-011-S                  |                                         | Drilling Equipment                                                                                                     | : Geoprobe 78220T                                                                                                               |                                 |                                                                     |
|             |                        |                   | (page 1                    | of 1)                                   |                                                                                                                        |                                                                                                                                 |                                 |                                                                     |
| Depth (ft.) | % Recovery             | PID Reading (PPM) | Sample No/Interval         |                                         | DESCRIPTION                                                                                                            |                                                                                                                                 |                                 | REMARKS                                                             |
| 0-          |                        |                   |                            | (0-0.3')<br>Brown sil                   | FIL<br>ty SAND and gravel,                                                                                             | L<br>organic matter, loose, no co                                                                                               | hesion,                         |                                                                     |
| _           |                        | 0.6               |                            | no plastic<br>(0.3-1.1')<br>Gray GR     | Sity<br>FI                                                                                                             | LL<br>I (fine), trace brown silt, mod                                                                                           | (WET)                           |                                                                     |
| 1           |                        | 1.0               | A15-011-SB-2               | (1.1-2.8')<br>Light gray<br>plasticity, | FIL<br>y silt, gravel (slag) wit<br>very stiff to stiff                                                                | L<br>hin the first 9", low cohesion                                                                                             | , no<br>(DAMP)                  | Water at surface of boring hole.<br>Not believed to be groundwater. |
| 2-          |                        |                   |                            |                                         |                                                                                                                        |                                                                                                                                 |                                 |                                                                     |
| -           | 60                     | 0.3               |                            |                                         |                                                                                                                        |                                                                                                                                 |                                 |                                                                     |
| 3—          |                        |                   |                            | (2.8-5') N                              | o Recovery                                                                                                             |                                                                                                                                 |                                 |                                                                     |
| -           |                        |                   |                            |                                         |                                                                                                                        |                                                                                                                                 |                                 |                                                                     |
| 4—          |                        |                   |                            |                                         |                                                                                                                        |                                                                                                                                 |                                 |                                                                     |
| 5-          |                        |                   |                            |                                         |                                                                                                                        |                                                                                                                                 |                                 |                                                                     |
| - 6-        |                        |                   |                            | End of Bo                               | bring                                                                                                                  |                                                                                                                                 |                                 |                                                                     |
| Total Bo    | orehole D<br>low grour |                   | gs due to water.<br>e      |                                         |                                                                                                                        |                                                                                                                                 |                                 |                                                                     |

|             | <b>A</b>               | -                 | A Group<br>ineers and Scien |                                                | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc. | Date<br>Weather:<br>Total Depth<br>Depth to Wa | : 12/21/22<br>: Sunny, 30s<br>(ft): : 5' bgs<br>ater (0hr.): : 0.5' bgs |
|-------------|------------------------|-------------------|-----------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|
| E           | Boring                 | g ID: A           | A15-012-S                   |                                                | Driller<br>Drilling Equipment                                                                               | : Don<br>: Geoprobe 78220T                                                                                             |                                                |                                                                         |
|             |                        |                   | (page 1                     | of 1)                                          |                                                                                                             |                                                                                                                        |                                                |                                                                         |
| Depth (ft.) | % Recovery             | PID Reading (PPM) | Sample No/Interval          |                                                | DESCRIPTION                                                                                                 |                                                                                                                        |                                                | REMARKS                                                                 |
| 0           |                        | 0.3               | A15-012-SB-2                | dense, no<br>(0.8-5')<br>Gray and<br>increased | wn to brown silty SAN<br>c cohesion, no plastic<br>Fl<br>light brown SILT and                               | LL<br>silty SAND, intermittent laye<br>astic/cohesive where damp,                                                      | (WET)<br>ers of<br>stiff to<br>DAMP/WET)       | Wet at 0.5' bgs                                                         |
| - 2-        |                        | 0.1               |                             |                                                |                                                                                                             |                                                                                                                        |                                                |                                                                         |
| _           | 100                    | 0.0               |                             |                                                |                                                                                                             |                                                                                                                        |                                                |                                                                         |
| 3-          |                        | 1.0               |                             |                                                |                                                                                                             |                                                                                                                        |                                                |                                                                         |
| 4           |                        | 0.5               |                             |                                                |                                                                                                             |                                                                                                                        |                                                |                                                                         |
| 5           |                        |                   |                             | End of Bo                                      | oring                                                                                                       |                                                                                                                        |                                                |                                                                         |
| Total Bo    | orehole D<br>low grour |                   | ogs due to water.<br>e      |                                                |                                                                                                             |                                                                                                                        |                                                |                                                                         |

|             | P          | -                 | A Group            |                                   | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker            | Date<br>Weather:<br>Total Depth | : 12/21/22<br>: Sunny, 30s<br>(ft): : 5' bgs |
|-------------|------------|-------------------|--------------------|-----------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|
| E           | Boring     | g ID: /           | A15-013-S          | SB                                | Drilling Company<br>Driller<br>Drilling Equipment                                       | : Green Services, Inc.<br>: Don<br>: Geoprobe 78220T                                                    |                                 |                                              |
|             |            |                   | (page 1            | of 1)                             |                                                                                         |                                                                                                         |                                 |                                              |
| Depth (ft.) | % Recovery | PID Reading (PPM) | Sample No/Interval |                                   | DES                                                                                     | SCRIPTION                                                                                               |                                 | REMARKS                                      |
| 0-          |            | 0.4               |                    | (0-1.2')<br>Rubble (o<br>moderate | FIL<br>concrete and brick), so<br>ely dense, no cohesion                                | ome brown silt and sand                                                                                 | loose to<br>(DAMP)              |                                              |
| 1           |            | 0.3               | A15-013-SB-2       | intermitte                        | nd (fine), trace fine sa<br>nt layers of increased                                      | nt brown SILT<br>nd lenses, trace gravel s<br>moisture content, plastic<br>rery stiff, low cohesion, no | c/cohesive                      |                                              |
| 2-          | 90         | 0.3               | A15-013-SB-3       |                                   |                                                                                         |                                                                                                         |                                 |                                              |
| 3-          |            | 0.0               |                    |                                   |                                                                                         |                                                                                                         |                                 |                                              |
| 4-          |            |                   |                    |                                   |                                                                                         |                                                                                                         |                                 |                                              |
| -           |            |                   |                    | (4.3-5') N                        | o Recovery                                                                              |                                                                                                         |                                 |                                              |
| 5-          |            | 1                 |                    | End of Bo                         | pring                                                                                   |                                                                                                         |                                 |                                              |
| 6-          | orehole D  | enth: 5' P        | ngs Reached low    | el of nerciev                     | ed area groundwater.                                                                    |                                                                                                         |                                 |                                              |
|             | low grour  |                   |                    |                                   | aa araa groundwater.                                                                    |                                                                                                         |                                 |                                              |

|             | <b>A</b>               | -                 | A Group<br>incers and Scie |                                       | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc. | Date<br>Weather:<br>Total Depth | : 12/21/22<br>: Sunny, 30s<br>(ft): : 5' bgs |
|-------------|------------------------|-------------------|----------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|
| E           | Boring                 | g ID: /           | A15-014-S                  | SB                                    | Driller<br>Drilling Equipment                                                                               | : Don<br>: Geoprobe 78220T                                                                                             |                                 |                                              |
|             |                        |                   | (page 1                    | of 1)                                 |                                                                                                             |                                                                                                                        |                                 |                                              |
| Depth (ft.) | % Recovery             | PID Reading (PPM) | Sample No/Interval         |                                       | DESCRIPTION                                                                                                 |                                                                                                                        |                                 | REMARKS                                      |
| 0-          |                        |                   |                            | (0-0.8')<br>GRAVEI                    |                                                                                                             | ILL<br>ose, no cohesion, no plastic                                                                                    | itv                             |                                              |
| _           |                        | 0.6               |                            |                                       |                                                                                                             |                                                                                                                        | (DAMP)                          |                                              |
|             |                        | 0.0               |                            |                                       |                                                                                                             |                                                                                                                        |                                 |                                              |
| 1-          |                        |                   | A15-014-SB-2               | (0.8-1.7')<br>Gray GR                 | AVEL slag, some ligh                                                                                        | LL<br>t to dark brown brown silt an                                                                                    | d sand,                         |                                              |
|             |                        |                   |                            | dense to                              | moderately dense, no                                                                                        | o cohesion, no plasticity (\                                                                                           | VET/DAMP)                       |                                              |
| _           |                        | 1.3               |                            | (1.7-2.2')                            |                                                                                                             | ILL                                                                                                                    |                                 |                                              |
| 2-          |                        |                   |                            | Light brow                            |                                                                                                             | l (slag) and sand (coarse), s                                                                                          |                                 |                                              |
|             |                        |                   |                            | (2.2-2.7')                            | F                                                                                                           | ILL                                                                                                                    |                                 |                                              |
| -           | 90                     | 0.5               | A15-014-SB-3               | Dark brow                             | wn GRAVEL (slag) an<br>no cohesion                                                                          | nd sand (fine), moderately de                                                                                          | ense, no<br>(DAMP)              |                                              |
| 3-          |                        |                   |                            | (2.7-4.4')<br>Trace sai<br>no plastic | nd (fine), plastic/cohe                                                                                     | own SILT<br>sive where wet, stiff, low coł                                                                             | nesion,<br>(DAMP)               |                                              |
| 5           |                        |                   |                            |                                       | nty.                                                                                                        |                                                                                                                        | (DAMF)                          |                                              |
| -           |                        | 0.3               |                            |                                       |                                                                                                             |                                                                                                                        |                                 |                                              |
|             |                        |                   |                            |                                       |                                                                                                             |                                                                                                                        |                                 |                                              |
| 4-          |                        |                   |                            |                                       |                                                                                                             |                                                                                                                        |                                 |                                              |
| _           |                        |                   |                            | (4.4-5') N                            | o Recovery                                                                                                  |                                                                                                                        |                                 |                                              |
|             |                        |                   |                            |                                       |                                                                                                             |                                                                                                                        |                                 |                                              |
| 5-          |                        |                   |                            | End of Bo                             | oring                                                                                                       |                                                                                                                        |                                 |                                              |
|             |                        |                   |                            |                                       |                                                                                                             |                                                                                                                        |                                 |                                              |
|             |                        |                   |                            |                                       |                                                                                                             |                                                                                                                        |                                 |                                              |
| 6-          |                        |                   |                            |                                       |                                                                                                             |                                                                                                                        |                                 |                                              |
|             | orehole D<br>low grour |                   |                            |                                       |                                                                                                             |                                                                                                                        |                                 |                                              |
|             |                        |                   |                            |                                       |                                                                                                             |                                                                                                                        |                                 |                                              |

| E                       | P          | -                      | M Group              |                                        | Site Location       : Sparrows Point, MD         ARM Representative       : L. Parker         Drilling Company       : Green Services, Inc. |                                                                   |                     | Soil Boring Installation Date<br>Piezometer Installation Date<br>Casing/Riser/Screen Type<br>Borehole Diameter<br>Riser/Screen Diameter<br>0-Hr DTW |                       |             | : 12/21/22<br>: 12/21/22<br>: PVC<br>: 2.25"<br>: 1"<br>: 7.60' TOC |
|-------------------------|------------|------------------------|----------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|---------------------------------------------------------------------|
| Bo                      | oring I    | ID: A′                 | 15-015-SB            | /PZ                                    | Driller<br>Drilling Equipment                                                                                                               | : Don<br>: Geoprobe 78220                                         | )T                  |                                                                                                                                                     | r DTW<br>NAPL or DNAI | PL detected | : 7.04' TOC<br>d at 0 or 48 hours                                   |
|                         |            |                        | (page 1              | of 1)                                  |                                                                                                                                             |                                                                   |                     |                                                                                                                                                     |                       |             | 1                                                                   |
| Depth (ft.)             | % Recovery | PID Reading (PPM)      | Sample No/Interval   |                                        | DESCRIP                                                                                                                                     | TION                                                              |                     | П                                                                                                                                                   |                       |             | REMARKS                                                             |
| 0                       |            | 6.5<br>3.9             | A15-015-SB-2         | and grave<br>plasticity                | FILL<br>ight brown clayey SII<br>I, moderately dense,                                                                                       | low cohesion, no                                                  |                     |                                                                                                                                                     | 0<br>0<br>0           |             |                                                                     |
| 2-<br>-<br>3-           | 100        | 0.1                    | A15-015-SB-3         |                                        | FILL<br>n or black GRAVEL<br>y dense, no cohesion                                                                                           |                                                                   |                     |                                                                                                                                                     | 0<br>0                |             |                                                                     |
| 4—<br>-<br>5—           |            | 0.0                    |                      | Some gra<br>cohesion,                  | Mottled light brown/g<br>vel, trace sand, stiff<br>no plasticity<br>Light brown claye                                                       | to very stiff, low                                                | (DAMP)              | <b>.</b>                                                                                                                                            | 0<br>0                |             |                                                                     |
| 6-<br>7-                |            | 0.0                    |                      |                                        | lasticity, low plasticit                                                                                                                    | ý                                                                 | (DAMP)              |                                                                                                                                                     | Bentonit              | e seal      |                                                                     |
| -<br>8<br>-             | 100        | 0.0<br>0.0             |                      | (7-10') Lig<br>Trace amo<br>plasticity | ht brown/gray clayey<br>punts of gravel, stiff,                                                                                             | silty SAND to SI<br>ow cohesion, lov                              | LT<br>v<br>(DAMP)   |                                                                                                                                                     | 1" PVC                | Riser       |                                                                     |
| 9-<br>-<br>10-          |            | 0.0                    | A15-015-SB-10        | (10-10.2')                             | Light brown or                                                                                                                              |                                                                   |                     |                                                                                                                                                     | 0                     |             |                                                                     |
| 11—<br>-<br>12—         |            | 0.0                    |                      | (10.2-13')                             | e sand, stiff, low cohe<br>Light brown t<br>d (fine) and gravel, ir                                                                         | o gray clayey SIL                                                 | (DAMP)              |                                                                                                                                                     | 0<br>0                |             |                                                                     |
| -<br>13—<br>-<br>14—    | 60         | 0.0                    |                      | depth, sof                             | tion of sand and grav<br>t to stiff, low cohesion<br>o Recovery                                                                             |                                                                   | g<br>(DAMP)         |                                                                                                                                                     | °<br>°                |             |                                                                     |
| -<br>15<br>-<br>16<br>- |            | 0.0                    |                      | (15-18.4')<br>Soft, cohe               | Light gray sa<br>sive, low plasticity, ir<br>tion with depth                                                                                |                                                                   | (WET)               |                                                                                                                                                     | -Sand Pa              | ack         |                                                                     |
| 17—<br>-<br>18—         | 100        | 0.0                    |                      |                                        |                                                                                                                                             |                                                                   |                     |                                                                                                                                                     | -1" PVC               | Screen      |                                                                     |
| 19-<br>20-              |            | 0.0                    |                      | No coheśi                              | Light reddish/brown<br>on, no plasticity                                                                                                    | silty SAND (fine)                                                 | (WET)               |                                                                                                                                                     | End Car               | )           |                                                                     |
| <br>21—                 |            |                        |                      | End of Bo                              | ring                                                                                                                                        |                                                                   |                     |                                                                                                                                                     |                       |             |                                                                     |
| otal Bo                 |            | epth: 20'<br>nd surfac | bgs. Found wate<br>e | r-bearing san                          | nd layer.                                                                                                                                   | Riser Stickup<br>Riser: 0 - 15'<br>Screen: 15 - 3<br>Sand Pack: 1 | bgs<br>20' bgs [Slo |                                                                                                                                                     |                       |             |                                                                     |


Sand Pack: 14 - 20' bgs [Grain Size: WG #2] Bentonite Seal: 0 - 14' bgs [Grain Size: 3/8" chips/granular (30-50 mesh)]

|                                      | -                                     | Eng                             | A Group                      | ntists                                                     | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company<br>Driller | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc.<br>: Kevin    | Piezon<br>Casing<br>Boreho |                              | : 11/8/22<br>: 11/8/22<br>: PVC<br>: 2.25"<br>: 1"<br>: 5.60' TOC<br>: 5.75' TOC                                                                                                                      |
|--------------------------------------|---------------------------------------|---------------------------------|------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bo                                   | oring I                               | D: A1                           | 5-016-SB                     |                                                            | Drilling Equipment                                                                                                     | : Geoprobe 78220T                                                                                                                    | No LN                      | APL or DNAPL detected        | d at 0 or 48 hours                                                                                                                                                                                    |
|                                      |                                       |                                 | (page 1                      | of 1)                                                      |                                                                                                                        |                                                                                                                                      |                            |                              |                                                                                                                                                                                                       |
| Depth (ft.)                          | % Recovery                            | PID Reading (PPM)               | Sample No/Interval           |                                                            | DESCRIP                                                                                                                | TION                                                                                                                                 | Π                          |                              | REMARKS                                                                                                                                                                                               |
| 0<br>1<br>2<br>3<br>4                | 65                                    | 0.1<br>0.1<br>0.1               | A15-016-SB-2<br>A15-016-SB-3 | (0.4-2')<br>With som<br>no plastic<br>(2-3.3')<br>Moderate | d and gravel, loose, n<br>Light gray/bro<br>e silty sand (fine), mo<br>ity, low cohesion<br>Light brown sil            | Light brown silty SAND (fine)                                                                                                        |                            |                              |                                                                                                                                                                                                       |
| 5                                    | 100                                   | 0.1<br>0.2<br>0.1<br>0.0<br>0.3 |                              | (no cohes<br>(5.4-10') I<br>Dense, th<br>Iow cohes         | Light brown clayey sill<br>in layer of gravel nea<br>sion, no plasticity                                               | e), stiff, no plasticty,<br>(DAMP)<br>y SAND (fine)<br>r bottom of section,<br>(DAMP/WET)                                            |                            | —Sand Pack<br>—1" PVC Screen | Wet at 6' bgs<br>Note piezometer<br>was initially<br>installed with a<br>screen interval<br>5-15' bgs. 0-Hr<br>groundwater was<br>observed above<br>the screened<br>interval, so the<br>PVC riser and |
| -<br>11-<br>12-<br>13-<br>13-<br>14- | 90                                    | 0.1<br>0.2<br>0.2<br>0.1        |                              | Moderate<br>concentrit<br>cohesion<br>(13.8-15')           | ) Light gray/brown silty                                                                                               | veased silt<br>plasticity, low<br>(WET)                                                                                              |                            | —End Cap                     | screen was<br>shifted upward 2.4'<br>to be screened<br>over the water<br>table.                                                                                                                       |
| -<br>15—                             |                                       |                                 |                              | woderate                                                   | ly dense, no plasticity                                                                                                | , no cohesion (WET)                                                                                                                  |                            |                              |                                                                                                                                                                                                       |
|                                      |                                       |                                 |                              | End of Bo                                                  | oring                                                                                                                  |                                                                                                                                      |                            |                              |                                                                                                                                                                                                       |
| 16-                                  |                                       |                                 |                              |                                                            |                                                                                                                        |                                                                                                                                      |                            |                              |                                                                                                                                                                                                       |
| Extende                              | orehole D<br>ed to 15' t<br>low grour | o set PZ                        |                              |                                                            |                                                                                                                        | Riser Stickup: 2.23'<br>Riser: 0 - 2.6' bgs<br>Screen: 2.6 - 12.6' bgs [S<br>Sand Pack: 3 - 15' bgs [C<br>Bentonite Seal: 0 - 3' bgs | Grain Size:                | WG #2]                       | 30-50 mesh)]                                                                                                                                                                                          |

|               | A                      | -                 | A Group<br>incers and Scien |                                     | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc. | Date<br>Weather:<br>Total Depth<br>Depth to W | (ft):       | : 11/8/22<br>: Sunny, 30s<br>: 10' bgs<br>: 5' bgs |
|---------------|------------------------|-------------------|-----------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|----------------------------------------------------|
| E             | Boring                 | g ID: A           | 415-017-S                   | BB                                  | Driller<br>Drilling Equipment                                                                               | : Kevin<br>: Geoprobe 78220T                                                                                           |                                               |             |                                                    |
|               |                        |                   | (page 1                     | of 1)                               |                                                                                                             |                                                                                                                        |                                               |             |                                                    |
| Depth (ft.)   | % Recovery             | PID Reading (PPM) | Sample No/Interval          |                                     | DESCRIPTION                                                                                                 |                                                                                                                        |                                               |             | REMARKS                                            |
| 0             |                        | 0.8               | A15-017-SB-2                | (0-5')<br>With som<br>gravel, ve    | Light gray/b<br>e silty sand (fine), trac<br>ery stiff to stiff, no plas                                    | ce amounts of sand (fine) an                                                                                           | d<br>(DAMP)                                   |             |                                                    |
| 2-            |                        | 1.1               |                             |                                     |                                                                                                             |                                                                                                                        |                                               |             |                                                    |
| 3-            | 100                    | 4.0<br>2.0        | A15-017-SB-3                |                                     |                                                                                                             |                                                                                                                        |                                               |             |                                                    |
| 4-            |                        | 0.6               |                             |                                     |                                                                                                             |                                                                                                                        |                                               |             |                                                    |
| 5             |                        | 1.5               |                             | (5-9.5')<br>Some silt               | Light gray//<br>y sand (fine), soft to s                                                                    | brown SILT<br>tiff, low plasticity, low cohesi                                                                         | on (WET)                                      | Wet at 5' I | ogs                                                |
| 6-<br>-<br>7- |                        | 1.7               |                             |                                     |                                                                                                             |                                                                                                                        |                                               |             |                                                    |
| -<br>8-       | 100                    | 1.0               |                             |                                     |                                                                                                             |                                                                                                                        |                                               |             |                                                    |
| 9-            |                        | 3.4               |                             |                                     |                                                                                                             |                                                                                                                        |                                               |             |                                                    |
| -<br>10       |                        | 4.3               |                             | (9.5-10')<br>Loose, no<br>End of Bo | Light brown S<br>cohesion, no plastic<br>pring                                                              | AND (fine)<br>ty                                                                                                       | (WET)                                         |             |                                                    |
|               | prehole D<br>low grour |                   | bgs due to water<br>e       |                                     |                                                                                                             |                                                                                                                        |                                               |             |                                                    |

| Image: constraint of the second se |                                                       | RM Group<br>Engineers and Scien<br>D: A15-018-S<br>(page 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B                                                                                                                                                                                                                                                                                                    | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company<br>Driller<br>Drilling Equipment                                                                                                                                                                                                                                                           | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc.<br>: Don<br>: Geoprobe 78220T                                                                                                                                          | Date<br>Weather:<br>Total Depth (f                                                                                        | : 12/20/22<br>: Sunny, 30s<br>ft): : 20' bgs |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 13       (10-37)       Truth Top SOL         4       15-018-58-2       (0-30)       FILL         80       0.3       A15-018-58-3       (0-00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | Reading (PPM)<br>ple No/Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                           | REMARKS                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | A15-018-SB-2<br>0.3 A15-018-SB-3<br>0.0 A15-018-SB-3<br>0.0 A15-018-SB-10<br>0.0 A15-018-SB-10<br>0.1 A15-018-SB-10<br>0.0 A15-018-58-58-58-58-58-58-58-58-58-58-58-58-58 | Brown SII<br>(0.3-0.5')<br>Brown G<br>plasticity<br>(0.5-0.7')<br>Light redd<br>dense, nd<br>(0.7-3.3')<br>Gray GR/<br>(fine), loo<br>(3.3-10')<br>With tracc<br>cohesion<br>(10-11.8')<br>With tracc<br>cohesion,<br>(11.8-11.9<br>Some silt<br>cohesion,<br>(11.9-18.1)<br>With sand<br>plastic/co | LT with some sand, o<br>FILL<br>RAVEL, and silty san<br>FILL<br>dish brown silty SANE<br>o cohesion, no plastic<br>FILL<br>AVEL (slag), with som<br>se to moderately den<br>Light brown a<br>e amounts of sand (fil<br>Gray clay<br>e sand, soft to stiff, lo<br>O<br>D) Black brow<br>, trace gravel and org<br>no plasticity<br>D) Reddish brow<br>d (fine), variation in m<br>hesive where wet, low | rganic matter (roots)<br>d (fine), loose, no cohesic<br>o, with gray gravel modera<br>ty<br>ne dark brown and black s<br>se, no cohesion, no plasti<br>nd gray SILT<br>ne), dry, very stiff, no plas<br>vey SILT<br>w plastciity, low cohesion<br>vn SAND (fine)<br>anic matter, moderately d | (DAMP)<br>ttely<br>(DAMP)<br>ilty sand<br>city (DAMP)<br>ticity, no<br>(DAMP)<br>ense, no<br>(DAMP)<br>ense, no<br>(DAMP) |                                              |

Total Borehole Depth: 20' bgs. Reached max extended depth. bgs: Below ground surface



|                | Ą          | -                       | A Group<br>incers and Scien |                                   | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Drilling Company          | : Tradepoint Atlantic<br>: 21010115<br>: A15 Phase II<br>: Sparrows Point, MD<br>: L. Parker<br>: Green Services, Inc. | Date<br>Weather:<br>Total Depth<br>Depth to Wa | (ft):       | : 12/20/22<br>: Sunny, 30s<br>: 10' bgs<br>: 9' bgs |
|----------------|------------|-------------------------|-----------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-----------------------------------------------------|
| E              | Boring     | g ID: /                 | A15-020-S                   | B                                 | Driller<br>Drilling Equipment                                                                                        | : Don<br>: Geoprobe 78220T                                                                                             |                                                |             |                                                     |
|                |            |                         | (page 1                     | of 1)                             |                                                                                                                      |                                                                                                                        |                                                |             |                                                     |
| Depth (ft.)    | % Recovery | PID Reading (PPM)       | Sample No/Interval          |                                   | DES                                                                                                                  | SCRIPTION                                                                                                              |                                                |             | REMARKS                                             |
| 0              |            | 0.6                     | A15-020-SB-2                | Low cohe<br>(0.3-10')<br>Trace sa | Dark brown silty SANI<br>esion, no plastcity<br>Dark to light bro<br>nd (fine), plastic/cohes<br>sion, no plasticity | D (fine) and GRAVEL<br>wn and gray SILT<br>sive where damp, stiff to ve                                                | (DAMP)<br>ery stiff,<br>(DAMP)                 | Roots/Org   | anic Matter                                         |
| 2-             |            | 0.4                     |                             |                                   |                                                                                                                      |                                                                                                                        |                                                |             |                                                     |
| -              | 100        | 0.3                     |                             |                                   |                                                                                                                      |                                                                                                                        |                                                |             |                                                     |
| 3              |            | 0.4                     | A15-020-SB-4                |                                   |                                                                                                                      |                                                                                                                        |                                                |             |                                                     |
| 5-             |            | 0.1                     |                             |                                   |                                                                                                                      |                                                                                                                        |                                                |             |                                                     |
| 6-             |            | 0.1                     |                             |                                   |                                                                                                                      |                                                                                                                        |                                                |             |                                                     |
| -<br>7-        |            | 0.1                     |                             |                                   |                                                                                                                      |                                                                                                                        |                                                |             |                                                     |
| -<br>8-        | 90         | 0.4                     |                             |                                   |                                                                                                                      |                                                                                                                        |                                                |             |                                                     |
| -<br>9-        |            | 0.1                     |                             |                                   |                                                                                                                      |                                                                                                                        |                                                | Wet at 9' t | ngs                                                 |
| -<br>10-       |            | 0.3                     |                             |                                   |                                                                                                                      |                                                                                                                        |                                                |             |                                                     |
| 10<br>-<br>11- |            |                         |                             | End of Bo                         | oring                                                                                                                |                                                                                                                        |                                                |             |                                                     |
|                |            | epth: 10'<br>nd surface | bgs. Reached pla<br>e       | anned deptr                       | ı.                                                                                                                   |                                                                                                                        |                                                |             |                                                     |

# **APPENDIX C**

| PROJECT NAME    | : Area A, Paro      | cel A15 Phase II |                  | SAMPLER NA  | AME: L. Parker            |               |          |
|-----------------|---------------------|------------------|------------------|-------------|---------------------------|---------------|----------|
| PROJECT NUMB    | <b>ER:</b> 2101011  | 5                |                  | DATE: Decen | nber 2022                 | <b>PAGE</b> 1 | _of _1_  |
| DATE/TIME       | SAMPLER<br>INITIALS | PID SERIAL #     | FRESH<br>AIR CAL | STANDARD    | STANDARD<br>CONCENTRATION | METER READING | COMMENTS |
| 12/20/2022 8:00 | LEP                 | 42222            | 0.0              | Isobutylene | 100 ppm                   | 100.0         | _        |
| 12/21/2022 8:00 | LEP                 | 42222            | 0.0              | Isobutylene | 100 ppm                   | 98.5          | -        |
|                 |                     |                  |                  |             |                           |               |          |
|                 |                     |                  |                  |             |                           |               |          |
|                 |                     |                  |                  |             |                           |               |          |
|                 |                     |                  |                  |             |                           |               |          |
|                 |                     |                  |                  |             |                           |               |          |

# **APPENDIX D**

|                                                                                                                                                                                                                                            |                          | 'low Sampli<br>urge Log                                                                                                                                                                                           | ing          |                                                                                                                                                                                         | ARM Group<br>Enterprises LLC<br>Engineers and Scientists                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                |                                                                                       |                 |                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|--|
| Well Number:                                                                                                                                                                                                                               | NJ-00                    | 18-MW5                                                                                                                                                                                                            |              |                                                                                                                                                                                         | Project Name: A 15 Phase D 64                                                                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                |                                                                                       |                 |                                               |  |
| Well Diameter                                                                                                                                                                                                                              |                          | <u>IV I 14-</u>                                                                                                                                                                                                   |              |                                                                                                                                                                                         | Project Number: 210/11/5                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                |                                                                                       |                 |                                               |  |
| Depth to Produ                                                                                                                                                                                                                             | ict (ft): Aom            |                                                                                                                                                                                                                   |              |                                                                                                                                                                                         |                                                                                                                                                                                                                    | 1/22                                                                                                                                                                                     |                                                                                                                                                                |                                                                                       |                 |                                               |  |
| Depth to Water                                                                                                                                                                                                                             |                          | 0                                                                                                                                                                                                                 | <b>1 1 1</b> |                                                                                                                                                                                         | One Well V                                                                                                                                                                                                         | /olume (gal)                                                                                                                                                                             |                                                                                                                                                                | 8                                                                                     |                 |                                               |  |
| Product Thickn                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                   |              |                                                                                                                                                                                         | Flow Rate (                                                                                                                                                                                                        | · · · · ·                                                                                                                                                                                | 300                                                                                                                                                            |                                                                                       |                 |                                               |  |
| Depth to Botto                                                                                                                                                                                                                             | m (ft):                  | 1:05                                                                                                                                                                                                              |              |                                                                                                                                                                                         | Length of ti                                                                                                                                                                                                       | me Purged (                                                                                                                                                                              | (min)                                                                                                                                                          | 40                                                                                    |                 |                                               |  |
|                                                                                                                                                                                                                                            |                          |                                                                                                                                                                                                                   | F            | PURGING                                                                                                                                                                                 | RECORD                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                |                                                                                       |                 |                                               |  |
| Time                                                                                                                                                                                                                                       | (gallons) (feet) (°C)    |                                                                                                                                                                                                                   |              |                                                                                                                                                                                         | Specific<br>Conductance<br>(ms/cm)<br>± 3%                                                                                                                                                                         | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3                                                                                                                                                   | ORP<br>(mV)<br>± 10                                                                                                                                            | Turbidity<br>(NTU)<br>± 10% or < 5                                                    | Com             | ments                                         |  |
| 50                                                                                                                                                                                                                                         |                          |                                                                                                                                                                                                                   | 12.54        | 7.52                                                                                                                                                                                    | 0.142                                                                                                                                                                                                              | 14.09                                                                                                                                                                                    | 5                                                                                                                                                              | 93.4                                                                                  | 100             |                                               |  |
| 155                                                                                                                                                                                                                                        |                          | 10,52                                                                                                                                                                                                             | 14/2         | 1.39                                                                                                                                                                                    | 0 619                                                                                                                                                                                                              | 4.1-5                                                                                                                                                                                    | 33                                                                                                                                                             | 101.6                                                                                 |                 | <u>                                      </u> |  |
| 200                                                                                                                                                                                                                                        |                          | 10.53                                                                                                                                                                                                             | 10 17        | 125                                                                                                                                                                                     | 6 6.13                                                                                                                                                                                                             | 3.57                                                                                                                                                                                     | 76                                                                                                                                                             | Ca1                                                                                   | 1               | +1                                            |  |
| 105                                                                                                                                                                                                                                        |                          | 1. 11                                                                                                                                                                                                             | 12142        | 6.4.                                                                                                                                                                                    | A C10                                                                                                                                                                                                              |                                                                                                                                                                                          | 76                                                                                                                                                             | 120 C                                                                                 | 3               | +1                                            |  |
|                                                                                                                                                                                                                                            |                          | 10.2-                                                                                                                                                                                                             | 15-13        | 6.14                                                                                                                                                                                    | U. 617                                                                                                                                                                                                             | 3,32                                                                                                                                                                                     |                                                                                                                                                                | 69.5                                                                                  | 2.9             |                                               |  |
| 1218                                                                                                                                                                                                                                       |                          | 1012                                                                                                                                                                                                              | 15/14        | 6.04                                                                                                                                                                                    | 0.677                                                                                                                                                                                                              | 2,00                                                                                                                                                                                     | 75                                                                                                                                                             | 58.6                                                                                  | ļ               |                                               |  |
| 25                                                                                                                                                                                                                                         |                          | 10,57                                                                                                                                                                                                             | 15/14        | 5,97                                                                                                                                                                                    | 0.677                                                                                                                                                                                                              | 2.97                                                                                                                                                                                     | 73                                                                                                                                                             | 60.2                                                                                  | 7               |                                               |  |
| 220                                                                                                                                                                                                                                        |                          | . 1                                                                                                                                                                                                               | 15.35        | 5.92                                                                                                                                                                                    | 0:657                                                                                                                                                                                                              | 289                                                                                                                                                                                      | 74_                                                                                                                                                            | 57.8                                                                                  | 1 3             |                                               |  |
| 1225                                                                                                                                                                                                                                       |                          |                                                                                                                                                                                                                   | 15,47        | 5,88                                                                                                                                                                                    | 0661                                                                                                                                                                                                               | 2.88                                                                                                                                                                                     | 74                                                                                                                                                             | 5%.4                                                                                  |                 |                                               |  |
|                                                                                                                                                                                                                                            |                          | 1/1                                                                                                                                                                                                               |              |                                                                                                                                                                                         | V ~ V                                                                                                                                                                                                              |                                                                                                                                                                                          | <u>                                      </u>                                                                                                                  |                                                                                       |                 |                                               |  |
|                                                                                                                                                                                                                                            |                          |                                                                                                                                                                                                                   |              | •                                                                                                                                                                                       |                                                                                                                                                                                                                    | · · · ·                                                                                                                                                                                  | - 1                                                                                                                                                            |                                                                                       |                 | <u>  </u>                                     |  |
|                                                                                                                                                                                                                                            |                          |                                                                                                                                                                                                                   | SAMPLE R     | ECORD AI                                                                                                                                                                                | ND WELL DI                                                                                                                                                                                                         | ETAILS                                                                                                                                                                                   |                                                                                                                                                                | 1                                                                                     | 1               |                                               |  |
| Samp                                                                                                                                                                                                                                       | le ID                    | Time Co                                                                                                                                                                                                           |              |                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                          | 1 Inspectio                                                                                                                                                    | on                                                                                    |                 |                                               |  |
|                                                                                                                                                                                                                                            |                          |                                                                                                                                                                                                                   | /            | Well bac I                                                                                                                                                                              | and formed and                                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                                                                                                | out hazards. I                                                                        | f no,           |                                               |  |
|                                                                                                                                                                                                                                            |                          | la sur ing 🥐                                                                                                                                                                                                      |              | TAA CII Has (                                                                                                                                                                           | seen tound at                                                                                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                |                                                                                       |                 | 11/1                                          |  |
|                                                                                                                                                                                                                                            | 241-39C                  | 1235                                                                                                                                                                                                              |              |                                                                                                                                                                                         | the comment                                                                                                                                                                                                        | ts section.                                                                                                                                                                              |                                                                                                                                                                |                                                                                       |                 |                                               |  |
|                                                                                                                                                                                                                                            | 098-19W5                 |                                                                                                                                                                                                                   |              | explain in                                                                                                                                                                              | the comment                                                                                                                                                                                                        | ts section.<br>Well F                                                                                                                                                                    | Pad Condi                                                                                                                                                      | ition                                                                                 |                 |                                               |  |
| Sw-1                                                                                                                                                                                                                                       | Sampling P               | Parameters                                                                                                                                                                                                        |              | explain in<br>Good: no                                                                                                                                                                  | the comment                                                                                                                                                                                                        | ts section.<br>Well F<br>s and is slop                                                                                                                                                   | ping                                                                                                                                                           |                                                                                       |                 |                                               |  |
| Sw-0<br>Parameter                                                                                                                                                                                                                          |                          | Parameters<br>Parameter                                                                                                                                                                                           |              | explain in<br>Good: no<br>Fair: some                                                                                                                                                    | the comment<br>visible cracks<br>visible crack                                                                                                                                                                     | ts section.<br>Well F<br>s and is slop                                                                                                                                                   | ping                                                                                                                                                           |                                                                                       |                 |                                               |  |
| Parameter<br>TCL-VOCs                                                                                                                                                                                                                      | Sampling P               | Parameters<br>Parameter<br>Dissolved Zn                                                                                                                                                                           |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav                                                                                                                                      | the comment<br>visible cracks<br>visible crack<br>vily cracked                                                                                                                                                     | ts section.<br>Well F<br>s and is slop<br>ks and/or no                                                                                                                                   | ping<br>ot sloping                                                                                                                                             | 5                                                                                     |                 |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO                                                                                                                                                                                                           | Sampling P               | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd                                                                                                                                                                 |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa                                                                                                                        | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b                                                                                                                                    | ts section.<br>Well F<br>s and is slop<br>ks and/or no                                                                                                                                   | ping<br>ot sloping                                                                                                                                             | 5                                                                                     |                 |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO                                                                                                                                                                                                | Sampling P               | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and                                                                                                                                                     |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl                                                                                                         | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace                                                                                                                            | ts section.<br>Well F<br>s and is slop<br>ks and/or no                                                                                                                                   | ping<br>ot sloping                                                                                                                                             | 5                                                                                     |                 |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G                                                                                                                                                                                         | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene                                                                                                                                      |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa                                                                                                                        | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace                                                                                                                            | ts section.<br>Well P<br>s and is slop<br>ks and/or no<br>puried by sin                                                                                                                  | ping<br>ot sloping<br>te activitio                                                                                                                             | es                                                                                    |                 |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Fotal Cyanide                                                                                                                                                                        | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,                                                                                                                              |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r                                                                                          | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace<br>missing                                                                                                                 | ts section.<br>Well F<br>s and is slop<br>ks and/or no<br>buried by sin<br>Well Ca                                                                                                       | ping<br>ot sloping<br>te activitie<br>asing Con                                                                                                                | es<br>dition                                                                          |                 |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs                                                                                                                                                           | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL                                                                                                                 |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r                                                                                          | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace<br>missing                                                                                                                 | ts section.<br>Well F<br>s and is slop<br>ks and/or no<br>buried by sin<br>well Ca<br>mage and vi                                                                                        | ping<br>ot sloping<br>te activition<br>asing Con-<br>isibly mar                                                                                                | es<br>dition<br>rked with the                                                         | Well ID         |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Fotal Cyanide<br>TCL SVOCs<br>TAL Metals                                                                                                                                             | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and                                                                                                   |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r                                                                                          | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace<br>missing                                                                                                                 | ts section.<br>Well F<br>s and is slop<br>ks and/or no<br>buried by sin<br>well Ca<br>mage and vi                                                                                        | ping<br>ot sloping<br>te activitie<br>asing Con                                                                                                                | es<br>dition<br>rked with the                                                         | Well ID         | 1.0                                           |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>TOtal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury                                                                                                                              | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,                                                                                       |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f                                                                           | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace<br>missing<br>free from dan                                                                                                | ts section.<br>Well F<br>s and is slop<br>ks and/or no<br>buried by sid<br>buried by sid<br>well Ca<br>nage and vi<br>Wel                                                                | ping<br>ot sloping<br>te activition<br>asing Con-<br>isibly mar<br>Il Condition                                                                                | es<br>dition<br>rked with the                                                         |                 |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Fotal Cyanide<br>TCL SVOCs<br>TAL Metals                                                                                                                                             | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,                                                                           |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f                                                                           | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace<br>missing<br>free from dan                                                                                                | ts section.<br>Well P<br>s and is slop<br>ks and/or no<br>buried by sid<br>well Ca<br>mage and vi<br>Wel<br>H gal/ft - 2" LE                                                             | ping<br>ot sloping<br>ite activitie<br>asing Con-<br>isibly mar<br>Il Conditic<br>D. = 0.163 ga<br>gal/fi                                                      | es<br>dition<br>rked with the<br>on<br>d(ft - 4" t.D. = 0.6                           |                 |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)                                                                                                                   | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,                                                               |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f                                                                           | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace<br>missing<br>free from dan                                                                                                | ts section.<br>Well P<br>s and is slop<br>ks and/or no<br>buried by sid<br>well Ca<br>mage and vi<br>Wel<br>H gal/ft - 2" LE                                                             | ping<br>ot sloping<br>ite activitie<br>asing Con-<br>isibly mar<br>Il Conditic<br>D. = 0.163 ga<br>gal/fi                                                      | es<br>dition<br>rked with the<br>on                                                   |                 |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Fotal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals                                                                                                     | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,                                                   |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f                                                                           | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace<br>missing<br>free from dan<br>ne 1°1 D = 0.04                                                                             | ts section.<br>Well P<br>s and is slop<br>ks and/or no<br>buried by sid<br>well Ca<br>mage and vi<br>Wel<br>H gal/ft - 2" LE<br>ft x                                                     | ping<br>ot sloping<br>ite activitie<br>asing Con-<br>isibly mar<br>il Conditic<br>D = 0 163 ga<br>gal/ft<br>gal/ft =                                           | es<br>dition<br>rked with the<br>on<br>d(ft - 4" t.D. = 0.6                           | 65] gal/ft - 6' |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Fotal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals                                                                                                     | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,                                           |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f                                                                           | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace<br>missing<br>free from dan<br>ne 1°1 D = 0.04                                                                             | ts section.<br>Well P<br>s and is slop<br>ks and/or no<br>buried by sid<br>well Ca<br>mage and vi<br>Wel<br>H gal/ft - 2" LE<br>ft x                                                     | ping<br>ot sloping<br>ite activitie<br>asing Con-<br>isibly mar<br>il Conditic<br>D = 0 163 ga<br>gal/ft<br>gal/ft =                                           | es<br>dition<br>tked with the<br>on<br>al(ft - 4" I.D. = 0 6                          | 65] gal/ft - 6' |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>TOtal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury                                                                                      | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,                            |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing volum<br>Well is str<br>identified                              | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace<br>missing<br>free from dan<br>ne 1°1 D = 0.04                                                                             | ts section.<br>Well F<br>s and is slop<br>ks and/or no<br>buried by sin<br>Well Ca<br>mage and vi<br>Well<br>I gal/ft - 2" LE<br>ft x<br>ind: not ben                                    | ping<br>ot sloping<br>ite activition<br>asing Con-<br>isibly mar<br>isibly mar<br>il Condition<br>D. = 0.163 ga<br>gal/fi<br>gal/fi<br>gal/fi<br>t, broken     | es<br>dition<br>rked with the<br>on<br>drft - 4" 1.D = 0.6<br>(gal)<br>, and no block | 65] gal/ft - 6' |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)                                                                       | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,<br>Chloride,               |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing is f<br>Casing Volum<br>Well is str<br>identified<br>Well is be | the comment<br>visible cracks<br>visible crack<br>vily cracked<br>ad has been b<br>lace<br>missing<br>free from dan<br>ne 1° 1 D = 0.04                                                                            | ts section.<br>Well F<br>s and is slop<br>ks and/or no<br>buried by site<br>well Ca<br>mage and vi<br>Well<br>I gal/ft - 2" 1.0<br>ft x<br>und: not ben<br>but is able t                 | ping<br>ot sloping<br>ite activitie<br>asing Con-<br>isibly mar<br>il Conditic<br>D = 0 163 ga<br>gal/fi<br>gal/fi<br>to be used                               | es<br>dition<br>rked with the<br>on<br>drft - 4" 1.D = 0.6<br>(gal)<br>, and no block | 65] gal/ft - 6' |                                               |  |
| Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent                                                         | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,                            |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing volum<br>Well is str<br>identified<br>Well is ber               | the comment<br>visible cracks<br>visible cracked<br>ad has been b<br>lace<br>missing<br>free from dan<br>ne: 1 I D = 0.04<br>ucturally sou                                                                         | ts section.<br>Well F<br>s and is slop<br>ks and/or no<br>buried by sid<br>Well Ca<br>mage and vi<br>Wel<br>Il gal/ft - 2" LE<br>ft x<br>ind: not ben<br>but is able to<br>bot able to b | ping<br>ot sloping<br>ite activitie<br>asing Con-<br>isibly mar<br>isibly mar<br>ll Conditic<br>D = 0 163 ga<br>gal/fi<br>gal/fi =<br>nt, broken<br>to be used | es<br>dition<br>rked with the<br>on<br>drft - 4" 1.D = 0.6<br>(gal)<br>, and no block | 65] gal/ft - 6' |                                               |  |
| Sw-0<br>Parameter<br>TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>TOtal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(total)<br>Hexavalent<br>Chromium | Sampling P<br>Collected? | Parameters<br>Parameter<br>Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,<br>Chloride,<br>Turbidity, |              | explain in<br>Good: no<br>Fair: some<br>Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing volum<br>Well is str<br>identified<br>Well is ber               | the comment<br>visible cracks<br>visible cracks<br>vily cracked<br>ad has been b<br>lace<br>missing<br>free from dan<br>ne: 1 T D = 0.04<br>fucturally sour-<br>nt or broken l<br>oken and is no<br>ocked and is n | ts section.<br>Well F<br>s and is slop<br>ks and/or no<br>buried by sid<br>Well Ca<br>mage and vi<br>Wel<br>Il gal/ft - 2" LE<br>ft x<br>ind: not ben<br>but is able to<br>bot able to b | ping<br>ot sloping<br>ite activitie<br>asing Con-<br>isibly mar<br>isibly mar<br>ll Conditic<br>D = 0 163 ga<br>gal/fi<br>gal/fi =<br>nt, broken<br>to be used | es<br>dition<br>rked with the<br>on<br>drft - 4" 1.D = 0.6<br>(gal)<br>, and no block | 65] gal/ft - 6' |                                               |  |

| Marriell         |            | 'low Sampl<br>urge Log | ing          |             |                                    |                    | Ent          | RM Group<br>erprises LL0<br>ters and Scienti |                          | C                   |
|------------------|------------|------------------------|--------------|-------------|------------------------------------|--------------------|--------------|----------------------------------------------|--------------------------|---------------------|
| Well Number:     | - C /. 04  | PDM 00                 | 28           |             | Project Nar                        | ne: Als.           | hale II      | 5                                            |                          |                     |
| Well Diameter (  |            | 12                     |              |             | Project Nur                        | nber 🤉 🕽 🚺         |              |                                              |                          |                     |
| Depth to Produc  |            |                        |              |             |                                    | 19/22              |              |                                              |                          | - 77 -              |
| Depth to Water   |            | 8                      |              |             |                                    | /olume (gal)       | : Dc         | 17-                                          |                          |                     |
| Product Thickn   |            |                        |              |             | Flow Rate (                        |                    | .70          | (                                            |                          |                     |
| Depth to Botton  |            | 1.96                   |              |             |                                    | ime Purged (       |              | 50                                           |                          |                     |
| Deptil to Botton | n (n).     | 190                    |              | URGING      |                                    | inic i diged (     |              |                                              | 124 102                  |                     |
|                  |            |                        | -            | onding      |                                    |                    |              | T 1                                          |                          |                     |
|                  | Volume     | DTW                    | <b>.</b>     | pН          | Specific                           | Dissolved          | ORP          | Turbidity                                    |                          |                     |
| Time             | Purged     | DTW<br>(feet)          | Temp<br>(°C) | (s.u.)      | Conductance<br>(ms/cm)             | Oxygen<br>(mg/L)   | (mV)         | (NTU)                                        | Com                      | nents               |
|                  | (gallons)  | (leet)                 | (0)          | ± 0.1       | ± 3%                               | ± 0.3              | ± 10         | ± 10% or < 5                                 |                          |                     |
|                  |            |                        |              | 11 40       | 0 1912                             |                    |              |                                              |                          | 1                   |
| 1305             |            | 5 90                   | 13.98        | 11.58       | 3.485                              | 1.04               |              | 112.0                                        |                          | <b></b>             |
| 310              |            |                        | 14.20        | 1158        | 3.170                              | 0.59               | 1226         | 5.55                                         |                          |                     |
| 715              |            | DA 1                   | 4.02         | 11 52       | 2.772                              | 0.41.              | -216         | 4.32                                         |                          |                     |
|                  |            | 1 1                    | 1 10         | 11 - 7 -    | 2.255                              |                    | 1910         | 251                                          |                          |                     |
| 1300             |            | +                      | 15.40        | 14          | 6.60-                              | 0.44               | 1710         |                                              |                          |                     |
| 1525             |            |                        | 13.43        | 11.40       | 6.01                               | 0.45               | 1-189        | 3.04                                         | 11                       | <b> </b>            |
| 330              |            |                        | 13.50        | 11.41       | 2.059                              | 0.4%               | 1177         | 2.93                                         | 7                        |                     |
| 1335             |            |                        | 13,54        | 1141        | 2.051                              | 0 45               | - 18/4       | 2.04                                         | 6                        |                     |
| 1340             |            |                        | 17.35        |             | 2.041                              | A 47               | -199         | 199                                          | $\overline{\mathcal{V}}$ |                     |
| 740              |            |                        | (),30        | μ.τι        | 2.041                              | 0.16               | 100          | 1. 1 /                                       | -                        | <u> </u>            |
|                  |            | •                      |              |             |                                    |                    | ļ            |                                              | _                        | ļ                   |
|                  |            |                        |              |             |                                    |                    |              |                                              |                          |                     |
|                  |            |                        | SAMPLE R     | ECORD A     | ND WELL D                          | ETAILS             |              |                                              |                          |                     |
| Sampl            | e ID       | Time Co                | ollected     |             | and a state of the                 | Wel                | l Inspecti   | on                                           | 1.1                      |                     |
| 57.04-           | PPMOOR     |                        | 1            | Well has l  | been found a                       | nd is access       | sible with   | out hazards. If                              | no,                      |                     |
|                  |            | 135                    | 5            | explain in  | the commen                         | its section.       |              |                                              |                          | V                   |
|                  |            | 1.22.                  |              |             |                                    | Well I             | Pad Cond     | ition                                        |                          |                     |
|                  | Sampling   | Parameters             |              | Good: no    | visible crack                      | s and is slo       | ping         |                                              |                          |                     |
| Parameter        | Collected? | Parameter              | Collected?   | Fair: some  | e visible crac                     | ks and/or n        | ot sloping   | 3                                            |                          |                     |
| TCL-VOCs         |            | Dissolved Zn           |              | Poor: hear  | vily cracked                       |                    |              |                                              |                          | 1                   |
| TPH-GRO          |            | and Cd                 |              |             | ad has been                        | buried by si       | te activiti  | es                                           |                          | 8                   |
| TPH-DRO          |            | BTEX and               |              | Bolts in p  |                                    |                    |              |                                              |                          | <del>  &lt; -</del> |
| O&G              |            | naphthalene            |              | Bolts are   |                                    |                    |              |                                              |                          | <u> </u>            |
| Total Cyanide    |            | VOC,                   |              |             |                                    | Well Ca            | asing Con    | dition                                       |                          | <u> </u>            |
| TCL SVOCs        |            | SVOC, TAL              |              | Casing is   | free from da                       |                    |              | rked with the V                              | Vell ID                  |                     |
|                  |            | Metals and             |              | Saong 15    |                                    |                    | ll Conditi   |                                              |                          | <del>- Y</del>      |
| TAL Metals       |            | mercury,               |              | <u> </u>    |                                    |                    |              |                                              |                          |                     |
| and Mercury      |            | Sulfate,               |              | Casing Volu | me $I^{**}I_{\cdot}D_{\cdot}=0.04$ | 41 gal/ft - 2" I I | D = 0.163  g | al/ft - 4'' I.D = 0.65                       | 53 gal/ft - 6            | 1.D = 1.4           |
| (total)          |            | Nitrate,               |              |             |                                    | 0 -                | gal/ft       | (gal)                                        |                          |                     |
| TAL Metals       |            | Ammonia,               |              |             | _                                  | п х                | gatri        | (gar)                                        |                          |                     |
| and Mercury      |            | COD,                   |              | Well is st  | ructurally so                      | und: not bei       | nt, broker   | i, and no block                              | age                      | -                   |
| (dissolved)      |            | Alkalinity,            |              | identified  | •                                  |                    |              |                                              | _                        |                     |
| Hexavalent       |            | Chloride,              |              |             | ent or broken                      | hut is able        | to he use    | d                                            |                          | <u>+</u>            |
| Chromium         |            | Turbidity,             |              |             | oken and is                        |                    |              | -                                            |                          | +                   |
| PCB              |            |                        |              |             | ocked and is                       |                    |              |                                              |                          | <u> </u>            |
| Matrix Spike     | · · · · ·  | TDS,                   |              | Cap is pre  |                                    |                    | or useu      |                                              |                          |                     |
| DURINE NOTE      |            | Specific               |              |             |                                    |                    |              |                                              |                          | NS                  |
|                  | 1          | Conductance            | 1            | wen pern    | nit is present                     |                    |              |                                              |                          |                     |
| Duplicate        | C I        | - <b>Q</b>             |              |             |                                    |                    |              |                                              |                          |                     |
| Duplicate        | Comments:  | - <b>`</b> .           |              |             |                                    |                    |              |                                              |                          |                     |
|                  | Comments:  | 7                      | <            |             |                                    |                    |              |                                              |                          |                     |

|                 |                               | ow Sampl<br>arge Log | ing          |                       |                                            |                                            | Ente                | RM Group<br>erprises LL<br>cers and Scient | .C              |               |
|-----------------|-------------------------------|----------------------|--------------|-----------------------|--------------------------------------------|--------------------------------------------|---------------------|--------------------------------------------|-----------------|---------------|
| Well Number:    | A15-016-                      | 82                   |              |                       | Project Nan                                | ne: 45                                     | - Mar               | μ·Π·G                                      | レ               | *<br>         |
| Well Diameter   |                               |                      |              |                       | Project Nun                                |                                            | 010115              |                                            |                 |               |
| Depth to Produc |                               |                      |              |                       | Date:                                      | 14/22                                      |                     |                                            |                 |               |
| Depth to Water  |                               | .5                   |              |                       |                                            | olume (gal)                                | 0.5                 | -                                          |                 |               |
| Product Thickn  |                               |                      |              |                       | Flow Rate (                                |                                            | 300                 |                                            |                 |               |
| Depth to Botton |                               | 4,95                 |              |                       |                                            | me Purged (                                |                     | 5                                          |                 |               |
| Depth to Botton | ii (ii).                      | 1113                 |              | URGING                |                                            | ine i uigeu (                              |                     |                                            |                 |               |
|                 |                               |                      |              | UNGING                | 1                                          |                                            |                     | 1                                          |                 |               |
| Time            | Volume<br>Purged<br>(gallons) | DTW<br>(feet)        | Temp<br>(°C) | pH<br>(s.u.)<br>± 0.1 | Specific<br>Conductance<br>(ms/cm)<br>± 3% | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3     | ORP<br>(mV)<br>± 10 | Turbidity<br>(NTU)<br>± 10% or < 5         | Com             | nents         |
| 1455            | 6,4                           |                      | 10.95        | 6.44                  | 0,292                                      | 7.19                                       | 69                  | OK                                         | YUKB.           |               |
| 1500            | 6,79                          | 4.95                 | 9.36         | 6.64                  | 0.251                                      | 7,40                                       | 83                  | 100.3                                      | Clove           | alar.         |
| 1505            | 1.10                          | 6.2-                 | 0.7-         |                       |                                            | 6.34                                       | 89                  | 80.9                                       | - ISVAL/        | [ <i>c eu</i> |
|                 |                               | 5,32                 | 7.82         | 6.49                  | 0.234                                      |                                            |                     |                                            |                 |               |
| 1510            | 1.59                          | 5,50                 | 7.83         | 6.35                  | 0,231                                      | 5.96                                       | 98                  | 71.6                                       |                 |               |
| 1515            | 1.98                          | 3183                 | 10.01        | 6.23                  | 0.229                                      | 1.91                                       | 99                  | 59,7                                       |                 |               |
| 520             | Z. 38                         | 594                  | 10.07        | G.16                  | 0.7.77                                     | 145                                        | 90                  | 602                                        |                 |               |
|                 |                               | 2 1 m                |              |                       | 1 224                                      |                                            | +                   | 1.4.9                                      |                 | <del> </del>  |
| 1525            | 2,77                          | 6.18                 |              | 6.06                  | 0.276                                      | 4.6                                        | 64                  |                                            | 7               |               |
| 530             | 2.17                          | 6.22                 | 10.23        | 6.04                  | 0,226                                      | 4.11                                       | 104                 | 65.3                                       | 5               |               |
| 535             | 3037                          |                      | 10,25        | 6.03                  | 6.224                                      | 4.0Z                                       | 105                 | 57.9                                       | $\mathcal{C}$   |               |
| •               |                               |                      |              |                       |                                            |                                            |                     |                                            |                 |               |
|                 |                               |                      | SAMPLE R     | ECORD AN              | ND WELL D                                  | ETAILS                                     | -                   |                                            | -               |               |
| Sampl           | e ID                          | Time Co              |              |                       |                                            | the second day in the second second second | Inspection          | on                                         |                 |               |
|                 |                               |                      | /            | Well has b            | peen found a                               |                                            |                     | out hazards. I                             | f no.           |               |
| A[5-01          | 6-12                          | 1535                 | •            |                       | the commen                                 | ts section.                                | ad Condi            |                                            | ,               |               |
|                 | Sampling P                    | arameters            |              | Good: no              | visible crack                              | s and is slo                               | ping                |                                            |                 |               |
| Parameter       | Collected?                    | Parameter            | Collected?   |                       | visible crac                               |                                            |                     |                                            |                 |               |
| TCL-VOCs        |                               | Dissolved Zn         |              |                       | ily cracked                                |                                            |                     |                                            |                 |               |
| TPH-GRO         |                               | and Cd               |              |                       | ad has been l                              | puried by si                               | te activiti         | <br>PS                                     |                 |               |
| TPH-DRO         |                               | BTEX and             |              | Bolts in pl           |                                            | Junica by St                               |                     | ~~                                         |                 |               |
| 0&G             |                               | naphthalene          |              | Bolts are 1           |                                            |                                            |                     |                                            |                 |               |
|                 |                               | VOC,                 |              |                       | mssing                                     | Wall Ca                                    | sing Con            | dition                                     |                 | I             |
| Total Cyanide   |                               | SVOC, TAL            |              | Cooling               | frag from 1-                               |                                            | sing Con            | thed with the                              | Wall ID         | 1             |
| TCL SVOCs       |                               | Metals and           |              | Casing is             | nee nom dal                                |                                            | ~                   |                                            | W CH ID         |               |
| TAL Metals      |                               | mercury,             |              | L                     |                                            | Wel                                        | l Condition         | มก                                         |                 |               |
| and Mercury     |                               |                      |              | Casing Volun          | ne: 1" LD. = 0.04                          | 41 gal/ft - 2" I.I                         | o. = 0.163 ga       | d/ft - 4" [.D. = 0.6                       | 553 gal/ft - 6' | . D. = 1      |
| (total)         |                               | Sulfate,             |              |                       |                                            |                                            | gal/ft              | <i>i</i>                                   |                 |               |
| TAL Metals      |                               | Nitrate,             |              |                       |                                            | ît x                                       | gal/tt =            | =(gal)                                     |                 |               |
| and Mercury     |                               | Ammonia,             |              | Well is str           | ncturally sou                              | ind: not ber                               | at. broken          | , and no bloc                              | kage            |               |
| (dissolved)     |                               | COD,                 |              | identified            |                                            |                                            |                     | ,                                          |                 |               |
| Hexavalent      |                               | Alkalinity,          |              |                       | nt or broken                               | hut is shis                                | to ho was           |                                            |                 |               |
| Chromium        |                               | Chloride,            |              |                       | oken and is r                              |                                            |                     | J                                          |                 |               |
|                 |                               | Turbidity,           |              |                       |                                            |                                            |                     |                                            |                 |               |
| PCB             |                               | TDS,                 |              |                       | ocked and is                               | not able to                                | usea                |                                            |                 |               |
| Matrix Spike    |                               | Specific             |              | Cap is pre            |                                            |                                            |                     |                                            |                 | -             |
| Duplicate       |                               | Conductance          |              | Well perm             | nit is present                             |                                            |                     |                                            |                 | 1             |
| Sampled By      | Comments:                     |                      |              |                       |                                            |                                            |                     |                                            |                 |               |

| 1                                                                                                                                                                                                                     |                               | 'low Sampl<br>urge Log                                                                                                                                                                                   | ing          |                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                 | Ent                                                                                          | RM Group<br>erprises LL<br>cers and Scient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C              |            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|--|--|
| Well Number:                                                                                                                                                                                                          | A 15-1                        | 015- P2 -                                                                                                                                                                                                | 1            |                                                                                                                                                                    | Project Nan                                                                                                                                                                   | ne: AIS                                                                                                         | Phase 7                                                                                      | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |            |  |  |
| Well Diameter                                                                                                                                                                                                         |                               |                                                                                                                                                                                                          |              |                                                                                                                                                                    | Project Nur                                                                                                                                                                   |                                                                                                                 | 21010                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            |  |  |
| Depth to Produ                                                                                                                                                                                                        | uct (ft): No                  | 4                                                                                                                                                                                                        |              |                                                                                                                                                                    | Date: 1 4 22                                                                                                                                                                  |                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            |  |  |
| Depth to Wate                                                                                                                                                                                                         | r (ft): 1                     | .04                                                                                                                                                                                                      |              |                                                                                                                                                                    | One Well Volume (gal): O. 6 3                                                                                                                                                 |                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            |  |  |
| Product Thick                                                                                                                                                                                                         |                               |                                                                                                                                                                                                          |              |                                                                                                                                                                    | Flow Rate (mL/min) 308                                                                                                                                                        |                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            |  |  |
| Depth to Botto                                                                                                                                                                                                        |                               | 22.60                                                                                                                                                                                                    |              |                                                                                                                                                                    | Length of ti                                                                                                                                                                  |                                                                                                                 |                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -              |            |  |  |
| المراقيق                                                                                                                                                                                                              |                               |                                                                                                                                                                                                          |              | PURGING                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                 | ()                                                                                           | - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              | -          |  |  |
| Time                                                                                                                                                                                                                  | Volume<br>Purged<br>(gallons) | DTW<br>(feet)                                                                                                                                                                                            | Temp<br>(°C) | pH<br>(s.u.)<br>± 0.1                                                                                                                                              | Specific<br>Conductance<br>(ms/cm)<br>± 3%                                                                                                                                    | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3                                                                          | ORP<br>(mV)<br>± 10                                                                          | Turbidity<br>(NTU)<br>± 10% or < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Com            | ments      |  |  |
| 1320                                                                                                                                                                                                                  | DA                            | 17.07                                                                                                                                                                                                    | 15.56        | 593                                                                                                                                                                | 8.610                                                                                                                                                                         | O GIA                                                                                                           | 12                                                                                           | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |            |  |  |
| 1325                                                                                                                                                                                                                  | 2-20                          | 7.09                                                                                                                                                                                                     | 15/1         | 629                                                                                                                                                                | 0.01                                                                                                                                                                          | 0,00                                                                                                            | 01-                                                                                          | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |            |  |  |
|                                                                                                                                                                                                                       | 0119                          |                                                                                                                                                                                                          | 13.00        | 5101                                                                                                                                                               | 0.010                                                                                                                                                                         | 0.01                                                                                                            | 26                                                                                           | 072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>       | <u> </u>   |  |  |
| 1330                                                                                                                                                                                                                  | 1.19                          | 9.09                                                                                                                                                                                                     | 15.75        | 177                                                                                                                                                                | 0.645                                                                                                                                                                         | 0,50                                                                                                            | 27                                                                                           | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |            |  |  |
| 335                                                                                                                                                                                                                   | 1.59                          | 7.09                                                                                                                                                                                                     | 5,76         | 5.96                                                                                                                                                               | 0.658                                                                                                                                                                         | 0.50                                                                                                            | 28                                                                                           | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |            |  |  |
| 340                                                                                                                                                                                                                   | 1.98                          | 7.09                                                                                                                                                                                                     | 15.81        | 5.61                                                                                                                                                               | 0. 1.19                                                                                                                                                                       | 2 57                                                                                                            | 29                                                                                           | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _              |            |  |  |
| 1345                                                                                                                                                                                                                  | 2.38                          | 1,                                                                                                                                                                                                       | 15.79        | 570                                                                                                                                                                | 6.680                                                                                                                                                                         | 0,55                                                                                                            | 20                                                                                           | OK 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < cod          | 10         |  |  |
|                                                                                                                                                                                                                       | 2 22                          | 1 -0                                                                                                                                                                                                     |              | 6.70                                                                                                                                                               |                                                                                                                                                                               |                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            |  |  |
| (350)                                                                                                                                                                                                                 | 6.14                          | 9.09                                                                                                                                                                                                     | 15.65        | 15,66                                                                                                                                                              | 0,675                                                                                                                                                                         | 0.66                                                                                                            | 33                                                                                           | 02 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 514            | ડરંગી      |  |  |
| 1355                                                                                                                                                                                                                  | 314                           | 7.04                                                                                                                                                                                                     | 15.66        | 5.65                                                                                                                                                               | 0.699                                                                                                                                                                         | 0.68                                                                                                            | 34                                                                                           | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |            |  |  |
|                                                                                                                                                                                                                       |                               | -                                                                                                                                                                                                        |              |                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                 |                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |            |  |  |
| 2                                                                                                                                                                                                                     |                               |                                                                                                                                                                                                          | SAMPLE R     | ECORD AN                                                                                                                                                           | ND WELL DI                                                                                                                                                                    | ETAILS                                                                                                          |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            |  |  |
| Sampl                                                                                                                                                                                                                 | le ID                         | Time Co                                                                                                                                                                                                  |              | -                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                                 | Inspecti                                                                                     | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | -          |  |  |
| A15-01                                                                                                                                                                                                                | 5- 17.1                       | 12.15                                                                                                                                                                                                    |              |                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                 | ible with                                                                                    | out hazards. If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | no,            |            |  |  |
| H13-01.                                                                                                                                                                                                               | 5 721                         | 1410                                                                                                                                                                                                     |              | explain in                                                                                                                                                         | the comment                                                                                                                                                                   | the second se | 10 1                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _              | -          |  |  |
|                                                                                                                                                                                                                       | Compline                      | ) a via ma a tama                                                                                                                                                                                        |              | Certine                                                                                                                                                            | 2.21.1                                                                                                                                                                        |                                                                                                                 | ad Cond                                                                                      | ition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |            |  |  |
|                                                                                                                                                                                                                       | Sampling I                    |                                                                                                                                                                                                          |              |                                                                                                                                                                    | visible cracks                                                                                                                                                                |                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            |  |  |
| Parameter                                                                                                                                                                                                             | Collected?                    | * drameter                                                                                                                                                                                               | Collected?   |                                                                                                                                                                    | visible crack                                                                                                                                                                 | ks and/or no                                                                                                    | ot sloping                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            |  |  |
|                                                                                                                                                                                                                       |                               |                                                                                                                                                                                                          |              | Poor heav                                                                                                                                                          | ily cracked                                                                                                                                                                   |                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            |  |  |
| TCL-VOCs                                                                                                                                                                                                              |                               | Dissolved Zn                                                                                                                                                                                             |              | -                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                                 |                                                                                              | and the second se |                |            |  |  |
| TCL-VOCs<br>TPH-GRO                                                                                                                                                                                                   |                               | and Cd                                                                                                                                                                                                   |              | Unsure: pa                                                                                                                                                         | nd has been b                                                                                                                                                                 | ouried by sit                                                                                                   | e activiti                                                                                   | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -              |            |  |  |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO                                                                                                                                                                                        |                               | and Cd<br>BTEX and                                                                                                                                                                                       | - 25         | Unsure: pa<br>Bolts in pl                                                                                                                                          | nd has been b<br>ace                                                                                                                                                          | ouried by sit                                                                                                   | e activiti                                                                                   | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |            |  |  |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G                                                                                                                                                                                 |                               | and Cd<br>BTEX and<br>naphthalene                                                                                                                                                                        |              | Unsure: pa                                                                                                                                                         | nd has been b<br>ace                                                                                                                                                          | ouried by sit                                                                                                   | e activiti                                                                                   | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |            |  |  |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide                                                                                                                                                                |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,                                                                                                                                                                |              | Unsure: pa<br>Bolts in pl<br>Bolts are n                                                                                                                           | nd has been b<br>ace<br>nissing                                                                                                                                               | Well Ca                                                                                                         | sing Con                                                                                     | dition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |            |  |  |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide                                                                                                                                                                |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SV()( TAL                                                                                                                                                   |              | Unsure: pa<br>Bolts in pl<br>Bolts are n                                                                                                                           | nd has been b<br>ace<br>nissing                                                                                                                                               | Well Ca                                                                                                         | sing Con                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Well ID        |            |  |  |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Fotal Cyanide                                                                                                                                                                |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metors and                                                                                                                                     |              | Unsure: pa<br>Bolts in pl<br>Bolts are n                                                                                                                           | nd has been b<br>ace<br>nissing                                                                                                                                               | Well Ca<br>nage and vi                                                                                          | sing Con                                                                                     | dition<br>ked with the V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Well ID        |            |  |  |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury                                                                                                                      |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SV()( TAL                                                                                                                                                   |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f                                                                                                            | nd has been b<br>ace<br>nissing<br>îree from dan                                                                                                                              | Well Ca<br>nage and vi<br>Well                                                                                  | sing Con<br>sibly mai<br>Conditio                                                            | dition<br>ked with the V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | I.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)                                                                                                                      |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metasis and<br>mercury,                                                                                                                        |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f                                                                                                            | nd has been b<br>ace<br>nissing<br>îree from dan                                                                                                                              | Well Ca<br>nage and vi<br>Well<br>1 gal/ft - 2" I.D                                                             | sing Con<br>sibly man<br>Conditio<br>= 0.163 ga<br>gal/ft                                    | dition<br>ked with the V<br>on<br>$I/ft - 4^{\circ} I.D. = 0.65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | I.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Otal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals                                                                                                         |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC TAL<br>Metws and<br>mercury,<br>Sulfate,                                                                                                               |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f                                                                                                            | id has been b<br>ace<br>nissing<br>free from dan                                                                                                                              | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D                                                             | sing Con<br>sibly mar<br>Conditio<br>= 0.163 ga<br>gal/ft<br>gal/ft =                        | dition<br>ked with the V<br>on<br>al/ft - 4" I.D. = 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53 gal/ft ~ 6" | I.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>TOtal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals                                                                                                        |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metos and<br>mercury,<br>Sulfate,<br>Nitrate,                                                                                                  |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f<br>Casing Volum<br>Well is stru                                                                            | id has been b<br>ace<br>nissing<br>free from dan                                                                                                                              | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D                                                             | sing Con<br>sibly mar<br>Conditio<br>= 0.163 ga<br>gal/ft<br>gal/ft =                        | dition<br>ked with the V<br>on<br>$I/ft - 4^{\circ} I.D. = 0.65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53 gal/ft ~ 6" | I.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>TOtal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals                                                                                                        |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC TAL<br>Metors and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,                                                                                      |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f                                                                                                            | id has been b<br>ace<br>nissing<br>free from dan                                                                                                                              | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D                                                             | sing Con<br>sibly mar<br>Conditio<br>= 0.163 ga<br>gal/ft<br>gal/ft =                        | dition<br>ked with the V<br>on<br>al/ft - 4" I.D. = 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53 gal/ft ~ 6" | I.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury                                                                                         |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metris and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,                                                              |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f<br>Casing Volum<br>Well is stru<br>identified                                                              | id has been b<br>ace<br>nissing<br>free from dan                                                                                                                              | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D<br>ft x<br>nd: not ben                                      | sing Con<br>sibly mai<br>Conditio<br>= 0.163 ga<br>gal/ft<br>gal/ft<br>gal/ft =<br>t, broken | dition<br>ked with the V<br>on<br>l/ft - 4" I.D. = 0.69<br>(gal)<br>, and no block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 gal/ft ~ 6" | I.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)                                                                          |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVUC TAL<br>Metass and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,<br>Chloride,                                                  |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f<br>Casing Volum<br>Well is stru<br>identified<br>Well is ber                                               | id has been b<br>ace<br>nissing<br>free from dan<br>ie: 1" I.D. = 0.04<br>ucturally sou                                                                                       | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D<br>ft x<br>ft x<br>nd: not ben<br>but is able t             | sing Con<br>sibly mar<br>Conditio<br>= 0.163 ga<br>gal/ft<br>gal/ft =<br>t, broken           | dition<br>ked with the V<br>on<br>l/ft - 4" I.D. = 0.69<br>(gal)<br>, and no block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 gal/ft ~ 6" | I.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Otal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent                                                             |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metris and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,                                                              |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f<br>Casing Volum<br>Well is stru<br>identified<br>Well is ber<br>Well is bro                                | id has been b<br>ace<br>nissing<br>free from dan<br>ie: 1" I.D. = 0.04<br>ucturally sour<br>it or broken I<br>sken and is no                                                  | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D<br>ft x<br>nd: not ben<br>but is able t<br>ot able to be    | sing Con<br>sibly mar<br>Conditio<br>gal/ft<br>gal/ft<br>t, broken<br>o be used              | dition<br>ked with the V<br>on<br>l/ft - 4" I.D. = 0.69<br>(gal)<br>, and no block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 gal/ft ~ 6" | 1.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Otal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent<br>Chromium<br>PCB                                          |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVGC TAL<br>Meters and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,<br>Chloride,<br>Turbidity,<br>TDS,                            |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f<br>Casing Volum<br>Well is stru<br>identified<br>Well is ber<br>Well is bro                                | to be                                                                                                                                     | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D<br>ft x<br>nd: not ben<br>but is able t<br>ot able to be    | sing Con<br>sibly mar<br>Conditio<br>gal/ft<br>gal/ft<br>t, broken<br>o be used              | dition<br>ked with the V<br>on<br>l/ft - 4" I.D. = 0.69<br>(gal)<br>, and no block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 gal/ft ~ 6" | 1.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Otal Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent<br>Chromium<br>PCB                                          |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metods and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,<br>Chloride,<br>Turbidity,                                   |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f<br>Casing Volum<br>Well is stru-<br>identified<br>Well is bro<br>Well is bro<br>Well is bro<br>Cap is pres | id has been b<br>ace<br>nissing<br>free from dan<br>ie: 1" I.D. = 0.04<br>ucturally sour-<br>ucturally sour-<br>the or broken 1<br>oken and is no-<br>cked and is re-<br>sent | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D<br>ft x<br>nd: not ben<br>but is able t<br>ot able to be    | sing Con<br>sibly mar<br>Conditio<br>gal/ft<br>gal/ft<br>t, broken<br>o be used              | dition<br>ked with the V<br>on<br>l/ft - 4" I.D. = 0.69<br>(gal)<br>, and no block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 gal/ft ~ 6" | I.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent<br>Chromium<br>PCB<br>Matrix Spike                         |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC TAL<br>Metass and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,<br>Chloride,<br>Turbidity,<br>TDS,<br>Specific<br>Conductance |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f<br>Casing Volum<br>Well is stru-<br>identified<br>Well is bro<br>Well is bro<br>Well is bro<br>Cap is pres | to be                                                                                                                                     | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D<br>ft x<br>nd: not ben<br>but is able t<br>ot able to be    | sing Con<br>sibly mar<br>Conditio<br>gal/ft<br>gal/ft<br>t, broken<br>o be used              | dition<br>ked with the V<br>on<br>l/ft - 4" I.D. = 0.69<br>(gal)<br>, and no block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 gal/ft ~ 6" | I.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent<br>Chromium<br>PCB<br>Matrix Spike<br>Duplicate |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Methys and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,<br>Chloride,<br>Turbidity,<br>TDS,<br>Specific               |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f<br>Casing Volum<br>Well is stru-<br>identified<br>Well is bro<br>Well is bro<br>Well is bro<br>Cap is pres | id has been b<br>ace<br>nissing<br>free from dan<br>ie: 1" I.D. = 0.04<br>ucturally sour-<br>ucturally sour-<br>the or broken 1<br>oken and is no-<br>cked and is re-<br>sent | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D<br>ft x<br>nd: not ben<br>but is able t<br>ot able to be    | sing Con<br>sibly mar<br>Conditio<br>gal/ft<br>gal/ft<br>t, broken<br>o be used              | dition<br>ked with the V<br>on<br>l/ft - 4" I.D. = 0.69<br>(gal)<br>, and no block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 gal/ft ~ 6" | 1.D. = 1.4 |  |  |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent<br>Chromium<br>PCB<br>Matrix Spike<br>Duplicate |                               | and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC TAL<br>Metass and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinity,<br>Chloride,<br>Turbidity,<br>TDS,<br>Specific<br>Conductance |              | Unsure: pa<br>Bolts in pl<br>Bolts are n<br>Casing is f<br>Casing Volum<br>Well is stru-<br>identified<br>Well is bro<br>Well is bro<br>Well is bro<br>Cap is pres | id has been b<br>ace<br>nissing<br>free from dan<br>ie: 1" I.D. = 0.04<br>ucturally sour-<br>ucturally sour-<br>the or broken 1<br>oken and is no-<br>cked and is re-<br>sent | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D<br>ft x<br>nd: not ben<br>but is able t<br>ot able to be    | sing Con<br>sibly mar<br>Conditio<br>gal/ft<br>gal/ft<br>t, broken<br>o be used              | dition<br>ked with the V<br>on<br>l/ft - 4" I.D. = 0.69<br>(gal)<br>, and no block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 gal/ft ~ 6" | I.D. = 1.4 |  |  |

|                 |                               | low Sampl<br>urge Log | ing          |                       |                                    | -                             | Ent                     | RM Group<br>erprises LL<br>ters and Scient | C              |          |  |  |
|-----------------|-------------------------------|-----------------------|--------------|-----------------------|------------------------------------|-------------------------------|-------------------------|--------------------------------------------|----------------|----------|--|--|
| Well Number:    | 415.019-1                     | 2                     |              |                       | Project Nan                        | ne: AS P                      | hop IF                  | .64                                        |                |          |  |  |
| Well Diameter   |                               |                       |              |                       | Project Nur                        |                               |                         |                                            |                |          |  |  |
| Depth to Produ  |                               |                       |              |                       | Date: 1 4/22                       |                               |                         |                                            |                |          |  |  |
| Depth to Water  |                               | <u>~</u>              |              |                       | One Well Volume (gal): (7, 39      |                               |                         |                                            |                |          |  |  |
| Product Thickn  |                               | 1                     |              |                       | Flow Rate (mL/min) <b>300</b>      |                               |                         |                                            |                |          |  |  |
|                 |                               |                       |              |                       |                                    |                               |                         |                                            |                |          |  |  |
| Depth to Bottor | n (tt): \T                    | 105                   | 1            | PURGING               | Length of ti<br>RECORD             | me Purged (                   | (min) 5                 | 5                                          |                |          |  |  |
| Time            | Volume<br>Purged<br>(gallons) | DTW<br>(feet)         | Temp<br>(°C) | рН<br>(s.u.)<br>± 0.1 | Specific<br>Conductance<br>(ms/cm) | Dissolved<br>Oxygen<br>(mg/L) | ORP<br>(mV)<br>± 10     | Turbidity<br>(NTU)<br>± 10% or < 5         | Com            | nents    |  |  |
| 11 -            |                               | /= A /                | 15 / 0       |                       | ± 3%                               | ±0.3                          |                         |                                            |                |          |  |  |
| 1155            | 0.9                           | 5.46                  | 12.00        | 5,84                  | 0.535                              | 2.09                          | - 17                    | OR                                         |                | <u> </u> |  |  |
| 1200            | 0.79                          | 5,39                  | 15,42        | 6.18                  | 0.521                              | 1.40                          | - 23                    | OR                                         |                |          |  |  |
| 205             | 1 19                          | 5,33                  | 15.25        | 6.32                  | 0.516                              | 0.59                          | -31                     | OR                                         |                |          |  |  |
|                 | 150                           |                       | 15.25        | 6.34                  | 0.515                              | 0.57                          |                         |                                            |                |          |  |  |
| 210             | 1. 27                         | 5.32                  |              |                       |                                    |                               | -32                     | or                                         |                |          |  |  |
| 215             | 1.18                          | 5.32                  | 15.17        | 639                   | 0.55                               | 0.59                          | - 35                    | 210                                        | 7              | <u> </u> |  |  |
| 1220            | 2.38                          | 5.33                  | 15.17        | 6.42                  | 0,514                              | 0.78                          | -30                     | οř-                                        |                |          |  |  |
| 225             | 7 25                          |                       | 5,14         | 6.43                  | 0,516                              | 0.88                          | - 33                    | OK                                         | 11/            |          |  |  |
| 660             | 6.17                          |                       | <u> </u>     |                       | 10,010                             | V100                          |                         | 0/-                                        |                |          |  |  |
|                 |                               |                       |              |                       |                                    |                               |                         |                                            |                |          |  |  |
|                 |                               |                       |              |                       |                                    |                               |                         |                                            |                | <u> </u> |  |  |
|                 |                               |                       |              |                       |                                    |                               |                         |                                            |                |          |  |  |
|                 |                               |                       |              | ECORD A               | ND WELL D                          |                               |                         |                                            |                |          |  |  |
| Sampl           | e ID                          | Time Co               | ollected     |                       |                                    | Wel                           | l Inspecti              | on                                         |                |          |  |  |
| AL- NO          | .07                           | 1                     |              | Well has              | een found a                        | nd is access                  | sible with              | out hazards. It                            | fno,           | [        |  |  |
| A15-019         | -YZ                           | 1240                  |              | explain in            | the commen                         | ts section.                   |                         |                                            |                |          |  |  |
| 1.10            |                               |                       |              |                       |                                    |                               | Pad Cond                | ition                                      |                |          |  |  |
|                 | Sampling F                    | arameters             |              | Good: no              | visible crack                      | s and is slo                  | ping                    |                                            |                |          |  |  |
| Parameter       | Collected?                    | Parameter             | Collected?   |                       | e visible crac                     |                               |                         | r                                          |                |          |  |  |
| TCL-VOCs        | Contector.                    | Dissolved Zn          |              |                       | vily cracked                       |                               |                         | <b>`</b>                                   |                |          |  |  |
| TPH-GRO         |                               | and Cd                |              |                       | ad has been b                      | urial by ci                   | te activiti             | 95                                         |                |          |  |  |
|                 | ł                             |                       | <br>         |                       |                                    | Juneo by Si                   |                         | C5                                         | <u> </u>       |          |  |  |
| TPH-DRO         |                               | BTEX and              |              | Bolts in p            |                                    |                               |                         |                                            |                | <u> </u> |  |  |
| 0&G             |                               | naphthalene           |              | Bolts are             | missing                            |                               |                         |                                            |                |          |  |  |
| Fotal Cyanide   |                               | VOC,                  |              |                       |                                    |                               | asing Con               |                                            |                |          |  |  |
| TCL SVOCs       |                               | SVOC, TAL             |              | Casing is             | free from da                       | nage and v                    | isib <b>ly</b> ma       | ked with the                               | Well ID        |          |  |  |
| TAL Metals      |                               | Metals and            |              |                       |                                    | Wel                           | ll Conditi              | on                                         |                |          |  |  |
| and Mercury     | 1.0.0.0                       | mercury,              |              |                       |                                    |                               |                         |                                            | E1 - U0 - 0    |          |  |  |
| (total)         |                               | Sulfate,              |              | casing Volur          | ne: $1 - 1.D_1 = 0.04$             | Hi ga⊮tt - 2‴ I.I             | D. = 0.163 ga<br>gal/ft | $1/ft - 4^{11} I.D. = 0.6$                 | 55 gai/it - 6' | I.D. = 1 |  |  |
|                 |                               | Nitrate,              |              |                       |                                    | ft_x                          | -                       | (gal)                                      |                |          |  |  |
| TAL Metals      |                               | Ammonia,              |              |                       |                                    |                               |                         |                                            |                |          |  |  |
| and Mercury     |                               | COD,                  |              |                       | ructurally sou                     | ind: not bei                  | nt, broken              | , and no blocl                             | cage           |          |  |  |
| (dissolved)     | 1.1.1.1.1                     | Alkalinity,           |              | identified            |                                    |                               |                         |                                            |                | 1        |  |  |
| Hexavalent      | 1                             | Chloride,             |              | Well is be            | ent or broken                      | but is able                   | to be use               | d 🔪                                        |                |          |  |  |
| Chromium        |                               | Turbidity,            |              |                       | oken and is r                      |                               |                         | /                                          |                | <u> </u> |  |  |
| PCB             | 1                             | TDS,                  |              |                       | ocked and is                       |                               |                         |                                            | <u> </u>       | -        |  |  |
| Matrix Spike    |                               | Specific              |              | Cap is pre            |                                    |                               |                         |                                            |                | +        |  |  |
| Duplicate       |                               | Conductance           |              |                       | nit is present                     |                               |                         |                                            |                | +        |  |  |
| Sampled By      | Comments:<br>SAV              |                       | r gh         | the J                 |                                    |                               | 5                       |                                            |                |          |  |  |

|                                                                                                                                                                                                                       |                               | low Sampl<br>urge Log                                                                                                                                                                                    | ling         |                                                                                                                                                                |                                                                                                                                                                             |                                                                                                              | Ent                                                                                                            | RM Group<br>erprises LL<br>ters and Scient                                      | .C                     |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|------------|
|                                                                                                                                                                                                                       |                               |                                                                                                                                                                                                          |              |                                                                                                                                                                |                                                                                                                                                                             |                                                                                                              |                                                                                                                |                                                                                 |                        | _          |
| Well Number:                                                                                                                                                                                                          | <u>S607</u>                   | - PPMC                                                                                                                                                                                                   | 07           |                                                                                                                                                                | Project Nan                                                                                                                                                                 |                                                                                                              | 5 124                                                                                                          | th # 6                                                                          | v                      |            |
| Well Diameter                                                                                                                                                                                                         |                               | V                                                                                                                                                                                                        |              |                                                                                                                                                                | Project Nur                                                                                                                                                                 |                                                                                                              | 210/101                                                                                                        | 15                                                                              |                        |            |
| Depth to Produ                                                                                                                                                                                                        |                               |                                                                                                                                                                                                          |              |                                                                                                                                                                |                                                                                                                                                                             | 70/22                                                                                                        |                                                                                                                | 1                                                                               |                        |            |
| Depth to Water<br>Product Thickn                                                                                                                                                                                      |                               | 17                                                                                                                                                                                                       |              |                                                                                                                                                                |                                                                                                                                                                             | olume (gal)                                                                                                  |                                                                                                                | 9                                                                               |                        |            |
|                                                                                                                                                                                                                       |                               | 0.04                                                                                                                                                                                                     |              | _                                                                                                                                                              | Flow Rate (                                                                                                                                                                 | ,                                                                                                            | 300                                                                                                            | 1.4                                                                             |                        | _          |
| Depth to Botton                                                                                                                                                                                                       | n (II):                       | 9,94                                                                                                                                                                                                     |              | PURGING                                                                                                                                                        | -                                                                                                                                                                           | me Purged                                                                                                    | (min)                                                                                                          | 40                                                                              |                        |            |
|                                                                                                                                                                                                                       |                               |                                                                                                                                                                                                          |              | CROING                                                                                                                                                         | 1                                                                                                                                                                           | Disting                                                                                                      |                                                                                                                |                                                                                 |                        | _          |
| Time                                                                                                                                                                                                                  | Volume<br>Purged<br>(gallons) | DTW<br>(feet)                                                                                                                                                                                            | Temp<br>(°C) | pH<br>(s.u.)<br>± 0.1                                                                                                                                          | Specific<br>Conductance<br>(ms/cm)<br>± 3%                                                                                                                                  | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3                                                                       | ORP<br>(mV)<br>± 10                                                                                            | Turbidity<br>(NTU)<br>± 10% or < 5                                              | Comn                   | nents      |
| 1130                                                                                                                                                                                                                  |                               | 5.47                                                                                                                                                                                                     | 14.94        | 642                                                                                                                                                            | 0.892                                                                                                                                                                       | 10,30                                                                                                        | 230                                                                                                            | 54.6                                                                            |                        |            |
| 120                                                                                                                                                                                                                   |                               | 545                                                                                                                                                                                                      | 15 46        | 7.20                                                                                                                                                           | 0.771                                                                                                                                                                       | 1.55                                                                                                         | 200                                                                                                            | 29.2                                                                            | ++                     |            |
| 1140                                                                                                                                                                                                                  |                               | 1- x.m                                                                                                                                                                                                   |              | 2 7-                                                                                                                                                           |                                                                                                                                                                             |                                                                                                              | 100                                                                                                            | 67.6                                                                            |                        |            |
| 1140                                                                                                                                                                                                                  |                               | 2.42                                                                                                                                                                                                     | 15.27        | 4,22                                                                                                                                                           | 0.869                                                                                                                                                                       | 109                                                                                                          | 148                                                                                                            | 63.6                                                                            | <u> </u>               |            |
| 175                                                                                                                                                                                                                   |                               | 5.45                                                                                                                                                                                                     | 15.3 G       | 7,42                                                                                                                                                           | 0.867                                                                                                                                                                       | 0.90                                                                                                         | 59                                                                                                             | 20.0                                                                            |                        |            |
| 1150                                                                                                                                                                                                                  |                               | 545                                                                                                                                                                                                      | 15.61        | 747                                                                                                                                                            | 0.870                                                                                                                                                                       | 0.81                                                                                                         | 149                                                                                                            | 35.5                                                                            | Tu16.                  | -          |
| 1155                                                                                                                                                                                                                  |                               | 5,45                                                                                                                                                                                                     | 15.71        | 7.52                                                                                                                                                           | 0.868                                                                                                                                                                       | 0.79                                                                                                         | 156                                                                                                            | 41.5                                                                            |                        |            |
| 1200                                                                                                                                                                                                                  |                               | 545                                                                                                                                                                                                      | 15.27        | 3.54                                                                                                                                                           | 0.868                                                                                                                                                                       | 2.90                                                                                                         | 155                                                                                                            | 40.3                                                                            |                        |            |
| 17.05                                                                                                                                                                                                                 |                               | 5 200                                                                                                                                                                                                    | 15.90        |                                                                                                                                                                | 0.868                                                                                                                                                                       | A 70                                                                                                         | 154                                                                                                            | 40.0                                                                            | 11                     |            |
| 1000                                                                                                                                                                                                                  |                               | P . 1 8                                                                                                                                                                                                  |              | 7.00                                                                                                                                                           |                                                                                                                                                                             | 0.47                                                                                                         | 127                                                                                                            | 10.0                                                                            |                        |            |
| -                                                                                                                                                                                                                     |                               | <u> </u>                                                                                                                                                                                                 |              |                                                                                                                                                                |                                                                                                                                                                             |                                                                                                              | <u> </u>                                                                                                       |                                                                                 |                        |            |
|                                                                                                                                                                                                                       |                               |                                                                                                                                                                                                          | SAMPLE D     | CODD 41                                                                                                                                                        | ND WELL DI                                                                                                                                                                  | PTAILO                                                                                                       |                                                                                                                |                                                                                 |                        |            |
| Sampl                                                                                                                                                                                                                 | e ID                          | Time Co                                                                                                                                                                                                  |              | ECORD AI                                                                                                                                                       | ID WELL DI                                                                                                                                                                  |                                                                                                              | Inspectio                                                                                                      | h                                                                               |                        | _          |
| 5603-0                                                                                                                                                                                                                | 0007                          | C                                                                                                                                                                                                        | 0            | Well has h                                                                                                                                                     | een found ar                                                                                                                                                                |                                                                                                              |                                                                                                                | out hazards. If                                                                 | fno                    |            |
| 5001                                                                                                                                                                                                                  |                               | 5603                                                                                                                                                                                                     |              |                                                                                                                                                                | the comment                                                                                                                                                                 |                                                                                                              | ioie with                                                                                                      | Sut hazarda. h                                                                  | ,                      |            |
|                                                                                                                                                                                                                       |                               | Z 15                                                                                                                                                                                                     | 5            | subsetti II                                                                                                                                                    | sommen                                                                                                                                                                      |                                                                                                              | ad Condi                                                                                                       | tion                                                                            |                        | -          |
| -                                                                                                                                                                                                                     |                               | the second se                                                                                          |              | Good: no                                                                                                                                                       | visible cracks                                                                                                                                                              |                                                                                                              |                                                                                                                |                                                                                 |                        | ~          |
|                                                                                                                                                                                                                       | Sampling P                    |                                                                                                                                                                                                          | 0.11 . 10    |                                                                                                                                                                | visible cracl                                                                                                                                                               |                                                                                                              |                                                                                                                |                                                                                 |                        |            |
| Parameter                                                                                                                                                                                                             | Sampling P<br>Collected?      | Parameter                                                                                                                                                                                                | Collected?   | I an some                                                                                                                                                      |                                                                                                                                                                             |                                                                                                              |                                                                                                                | ,                                                                               |                        |            |
| Parameter<br>TCL-VOCs                                                                                                                                                                                                 | A REAL PROPERTY AND INCOME.   | Parameter<br>Dissolved Zn                                                                                                                                                                                | Collected?   |                                                                                                                                                                |                                                                                                                                                                             |                                                                                                              |                                                                                                                |                                                                                 |                        |            |
| TCL-VOCs                                                                                                                                                                                                              | A REAL PROPERTY AND INCOME.   | Dissolved Zn                                                                                                                                                                                             |              | Poor: heav                                                                                                                                                     | vily cracked                                                                                                                                                                | ouried by sit                                                                                                | te activiti                                                                                                    | es                                                                              |                        |            |
| TCL-VOCs<br>TPH-GRO                                                                                                                                                                                                   | Collected?                    |                                                                                                                                                                                                          |              | Poor: heav<br>Unsure: pa                                                                                                                                       | vily cracked<br>ad has been b                                                                                                                                               | ouried by si                                                                                                 | te activiti                                                                                                    | es                                                                              |                        |            |
| TCL-VOCs                                                                                                                                                                                                              | Collected?                    | Dissolved Zn<br>and Cd                                                                                                                                                                                   |              | Poor: heav                                                                                                                                                     | vily cracked<br>ad has been b<br>ace                                                                                                                                        | ouried by si                                                                                                 | te activiti                                                                                                    | es                                                                              |                        |            |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO                                                                                                                                                                                        | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and                                                                                                                                                                       |              | Poor: heav<br>Unsure: pa<br>Bolts in pl                                                                                                                        | vily cracked<br>ad has been b<br>ace                                                                                                                                        |                                                                                                              | te activiti                                                                                                    |                                                                                 |                        |            |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G                                                                                                                                                                                 | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene                                                                                                                                                        |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r                                                                                                         | vily cracked<br>ad has been b<br>ace<br>nissing                                                                                                                             | Well Ca                                                                                                      | sing Con                                                                                                       |                                                                                 | Well ID                |            |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs                                                                                                                                                   | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,                                                                                                                                                |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r                                                                                                         | vily cracked<br>ad has been b<br>ace<br>nissing                                                                                                                             | Well Ca<br>nage and vi                                                                                       | sing Con                                                                                                       | dition<br>ked with the '                                                        | Well ID                |            |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals                                                                                                                                     | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,                                                                                                         |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is t                                                                                          | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan                                                                                                            | Well Ca<br>nage and vi<br>Wel                                                                                | sing Con<br>sibly mar<br>l Conditic                                                                            | dition<br>ked with the v                                                        |                        | <br>/      |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs                                                                                                                                                   | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,                                                                                             |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is t                                                                                          | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan                                                                                                            | Well Ca<br>nage and vi<br>Wel                                                                                | sing Con<br>sibly mar<br>l Conditic                                                                            | dition<br>ked with the '                                                        |                        | [.D. = 1.  |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)                                                                                                           | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,                                                                                 |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is t                                                                                          | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan                                                                                                            | Well Ca<br>nage and vi<br>Wel<br>I gal/ft - 2" I.E                                                           | sing Con-<br>sibly mar<br>l Conditic<br>D. = 0. 163 ga<br>gal/ft                                               | dition<br>ked with the v                                                        |                        | [,D. = 1,- |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals                                                                                                        | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,                                                                     |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing Volum                                                                          | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan<br>ne: 1" I.D. = 0.04                                                                                      | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D<br>ft_x                                                  | sing Condisibly mar<br>l Condition<br>0. = 0.163 ga<br>gaUft<br>gaUft =                                        | dition<br>ked with the<br>on<br>l/ft - 4" I.D. = 0.6<br>(gal)                   |                        | [.D. = 1,- |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury                                                                                         | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,                                                             |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing Volum<br>Well is str                                                           | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan<br>ne: 1" I.D. = 0.04                                                                                      | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.D<br>ft_x                                                  | sing Condi<br>sibly mar<br>l Condition<br>0. = 0.163 ga<br>gaUft<br>gaUft =                                    | dition<br>ked with the<br>on<br>1/ft - 4" I.D. = 0.6                            |                        | I.D. = 1.  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)                                                                          | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinit <sub>r</sub> ,                                 |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing Volun<br>Well is str<br>identified                                             | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan<br>ne: 1" I.D. = 0.04<br>ucturally sou                                                                     | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.C<br>ft x<br>nd: not ben                                   | sing Condisibly mar<br>l Conditic<br>p. = 0.163 ga<br>gal/ft<br>gal/ft =<br>t, broken                          | dition<br>ked with the<br>on<br>l/ft - 4" I.D. = 0.6<br>(gal)<br>, and no block |                        | 1.D. = 1.  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent                                                            | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinit <sub>1</sub> ,<br>hloride,                     |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing Volun<br>Well is str<br>identified<br>Well is be                               | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan<br>he: 1" I.D. = 0.04<br>ucturally sou                                                                     | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.C<br>ft x<br>nd: not ben<br>but is able t                  | sing Condi<br>sibly mar<br>l Condition<br>D = 0.163 ga<br>gaUft<br>gaUft<br>t, broken                          | dition<br>ked with the<br>on<br>l/ft - 4" I.D. = 0.6<br>(gal)<br>, and no block |                        | I.D. = 1.  |
| TCL-VOCs<br>TPH-GRO<br>O&CG<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(total)<br>Hexavalent<br>Chromium                                                   | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinit <sub>s</sub> ,<br>hloride,<br>furbidity,       |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing Volum<br>Well is str<br>identified<br>Well is be<br>Well is br                 | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan<br>ne: 1" I.D. = 0.04<br>ucturally sou<br>ucturally sou<br>nt or broken<br>oken and is n                   | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.C<br>ft x<br>nd: not ben<br>but is able to<br>ot able to b | sing Condisibly mar<br>sibly mar<br>l Condition<br>. = 0.163 ga<br>gal/ft<br>gal/ft<br>t, broken<br>to be used | dition<br>ked with the<br>on<br>l/ft - 4" I.D. = 0.6<br>(gal)<br>, and no block |                        | I.D. = 1.  |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent<br>Chromium<br>PCB                                         | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinit,<br>hloride,<br>i'urbidity,<br>TDS,            |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing Volun<br>Well is str<br>identified<br>Well is be<br>Well is bo                 | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan<br>ne: 1" I.D. = 0.04<br>ucturally sou<br>ucturally sou<br>nt or broken<br>oken and is n<br>ocked and is s | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.C<br>ft x<br>nd: not ben<br>but is able to<br>ot able to b | sing Condisibly mar<br>sibly mar<br>l Condition<br>. = 0.163 ga<br>gal/ft<br>gal/ft<br>t, broken<br>to be used | dition<br>ked with the<br>on<br>l/ft - 4" I.D. = 0.6<br>(gal)<br>, and no block |                        | I.D. = 1.  |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent<br>Chromium<br>PCB<br>Matrix Spike              | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinit,<br>hloride,<br>furbidity,<br>TDS,<br>Specific |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing Volun<br>Well is str<br>identified<br>Well is bro<br>Well is blo<br>Cap is pre | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan<br>ne: 1" I.D. = 0.04<br>ucturally sou<br>ucturally sou<br>nt or broken<br>oken and is n<br>ocked and is s | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.C<br>ft x<br>nd: not ben<br>but is able to<br>ot able to b | sing Condisibly mar<br>sibly mar<br>l Condition<br>. = 0.163 ga<br>gal/ft<br>gal/ft<br>t, broken<br>to be used | dition<br>ked with the<br>on<br>l/ft - 4" I.D. = 0.6<br>(gal)<br>, and no block | 53 gal/ft - 6"<br>kage | V          |
| TCL-VOCs<br>TPH-GRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent<br>Chromium<br>PCB                                         | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinit,<br>hloride,<br>i'urbidity,<br>TDS,            |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing Volun<br>Well is str<br>identified<br>Well is bro<br>Well is blo<br>Cap is pre | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan<br>ne: 1" I.D. = 0.04<br>ucturally sou<br>ucturally sou<br>nt or broken<br>oken and is n<br>ocked and is s | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.C<br>ft x<br>nd: not ben<br>but is able to<br>ot able to b | sing Condisibly mar<br>sibly mar<br>l Condition<br>. = 0.163 ga<br>gal/ft<br>gal/ft<br>t, broken<br>to be used | dition<br>ked with the<br>on<br>l/ft - 4" I.D. = 0.6<br>(gal)<br>, and no block | 53 gal/ft - 6"<br>kage | I.D. = 1   |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent<br>Chromium<br>PCB<br>Matrix Spike<br>Duplicate | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinit,<br>hloride,<br>furbidity,<br>TDS,<br>Specific |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing Volun<br>Well is str<br>identified<br>Well is bro<br>Well is blo<br>Cap is pre | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan<br>ne: 1" I.D. = 0.04<br>ucturally sou<br>ucturally sou<br>nt or broken<br>oken and is n<br>ocked and is s | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.C<br>ft x<br>nd: not ben<br>but is able to<br>ot able to b | sing Condisibly mar<br>sibly mar<br>l Condition<br>. = 0.163 ga<br>gal/ft<br>gal/ft<br>t, broken<br>to be used | dition<br>ked with the<br>on<br>l/ft - 4" I.D. = 0.6<br>(gal)<br>, and no block | 53 gal/ft - 6"<br>kage | V          |
| TCL-VOCs<br>TPH-GRO<br>TPH-DRO<br>O&G<br>Total Cyanide<br>TCL SVOCs<br>TAL Metals<br>and Mercury<br>(total)<br>TAL Metals<br>and Mercury<br>(dissolved)<br>Hexavalent<br>Chromium<br>PCB<br>Matrix Spike              | Collected?                    | Dissolved Zn<br>and Cd<br>BTEX and<br>naphthalene<br>VOC,<br>SVOC, TAL<br>Metals and<br>mercury,<br>Sulfate,<br>Nitrate,<br>Ammonia,<br>COD,<br>Alkalinit,<br>hloride,<br>furbidity,<br>TDS,<br>Specific |              | Poor: heav<br>Unsure: pa<br>Bolts in pl<br>Bolts are r<br>Casing is f<br>Casing Volun<br>Well is str<br>identified<br>Well is bro<br>Well is blo<br>Cap is pre | vily cracked<br>ad has been b<br>ace<br>nissing<br>free from dan<br>ne: 1" I.D. = 0.04<br>ucturally sou<br>ucturally sou<br>nt or broken<br>oken and is n<br>ocked and is s | Well Ca<br>nage and vi<br>Well<br>I gal/ft - 2" I.C<br>ft x<br>nd: not ben<br>but is able to<br>ot able to b | sing Condisibly mar<br>sibly mar<br>l Condition<br>. = 0.163 ga<br>gal/ft<br>gal/ft<br>t, broken<br>to be used | dition<br>ked with the<br>on<br>l/ft - 4" I.D. = 0.6<br>(gal)<br>, and no block | 53 gal/ft - 6"<br>kage | V          |

Project Name Area A Parcel A15 Phase II

Date <u>1/4/23</u>

WeatherFog, 40sCalibrated byT. Palank

Serial Number 018952

Instrument YSI 556 MPS

| Parameters                                                       | Morning<br>Calibration | Morning Temperature | End of Day<br>Calibration<br>Check | End of Day<br>Temperature |
|------------------------------------------------------------------|------------------------|---------------------|------------------------------------|---------------------------|
| Specific<br>Conductance<br>Standard #1                           | 4.49                   | 46°                 | 4.311                              | 56°                       |
| Specific<br>Conductance<br>Standard #2                           | -                      |                     | -                                  |                           |
| pH (7)                                                           | 7.00                   |                     | 7.13                               |                           |
| pH (4)                                                           | 4.00                   |                     | 4.04                               |                           |
| pH(10)                                                           | 10.00                  |                     | 10.20                              |                           |
| ORP<br>Zobel Solution                                            | 240.0                  |                     | 240.9                              |                           |
| Dissolved<br>Oxygen 100%<br>water saturated<br>air mg/L          | 8.58¥                  |                     | 9.06¥                              |                           |
| Dissolved<br>Oxygen Zero<br>Dissolved<br>Oxygen<br>Solution mg/L | 0.0¥                   |                     | 0.0¥                               |                           |
| Barometric<br>Pressure inches<br>Hg                              | 29.92                  |                     | 29.80                              |                           |
| Turbidity #1<br>(0 NTU)                                          | 0.00                   |                     | -0.05 <sup>¥</sup>                 |                           |
| Turbidity #2<br>(1 NTU)                                          | 1.00                   |                     | $0.51^{\text{¥}}$                  |                           |
| Turbidity #3<br>(10 NTU)                                         | 10.00                  |                     | 9.42 <sup>¥</sup>                  |                           |

<sup>¥</sup>Turbidity is outside of the post-calibration acceptance criteria. DO was recorded as mg/L. Values displayed on field purge logs may be inaccurate.

Project Name Area A Parcel A15 Phase II

Date 1/19/23

WeatherRain, 40sCalibrated byT. Palank

Serial Number 018952

Instrument YSI 556 MPS

| Parameters                                                       | Morning<br>Calibration | Morning Temperature | End of Day<br>Calibration<br>Check | End of Day<br>Temperature |
|------------------------------------------------------------------|------------------------|---------------------|------------------------------------|---------------------------|
| Specific<br>Conductance<br>Standard #1                           | 1.413                  | 40°                 | 1.252                              | 43°                       |
| Specific<br>Conductance<br>Standard #2                           | -                      |                     | -                                  |                           |
| pH (7)                                                           | 7.00                   |                     | 7.17                               |                           |
| pH (4)                                                           | 4.00                   |                     | 4.21                               |                           |
| pH(10)                                                           | 10.00                  |                     | 10.26                              |                           |
| ORP<br>Zobel Solution                                            | 240.0                  |                     | 243.4                              |                           |
| Dissolved<br>Oxygen 100%<br>water saturated<br>air mg/L          | 9.45 <sup>¥</sup>      |                     | 8.27 <sup>¥</sup>                  |                           |
| Dissolved<br>Oxygen Zero<br>Dissolved<br>Oxygen<br>Solution mg/L |                        |                     |                                    |                           |
| Barometric<br>Pressure inches<br>Hg                              | 30.02                  |                     |                                    |                           |
| Turbidity #1<br>(0 NTU)                                          | 0.00                   |                     | $0.54^{\text{¥}}$                  |                           |
| Turbidity #2<br>(1 NTU)                                          | 1.00                   |                     | $1.44^{\text{¥}}$                  |                           |
| Turbidity #3<br>(10 NTU)                                         | 10.00                  |                     | 10.54 <sup>¥</sup>                 |                           |

<sup>¥</sup>Turbidity is outside of the post-calibration acceptance criteria. DO was recorded as mg/L. Values displayed on field purge logs may be inaccurate.

Project Name Area A Parcel A15 Phase II

Date <u>12/29/22</u>

WeatherSunny, 30sCalibrated byT. Palank

Serial Number 018952

Instrument YSI 556 MPS

| Parameters                                                       | Morning<br>Calibration | Morning Temperature | End of Day<br>Calibration<br>Check | End of Day<br>Temperature |
|------------------------------------------------------------------|------------------------|---------------------|------------------------------------|---------------------------|
| Specific<br>Conductance<br>Standard #1                           | 4.49                   | 31°                 | 4.307                              | 48°                       |
| Specific<br>Conductance<br>Standard #2                           | -                      |                     | -                                  |                           |
| pH (7)                                                           | 7.00                   |                     | 7.08                               |                           |
| pH (4)                                                           | 4.00                   |                     | 4.22                               |                           |
| pH(10)                                                           | 10.00                  |                     | 10.20                              |                           |
| ORP<br>Zobel Solution                                            | 240.0                  |                     | 238.7                              |                           |
| Dissolved<br>Oxygen 100%<br>water saturated<br>air mg/L          | 9.09¥                  |                     | 9.68¥                              |                           |
| Dissolved<br>Oxygen Zero<br>Dissolved<br>Oxygen<br>Solution mg/L | 0.0¥                   |                     |                                    |                           |
| Barometric<br>Pressure inches<br>Hg                              | 30.36                  |                     | 30.29                              |                           |
| Turbidity #1<br>(0 NTU)                                          | 0.00                   |                     | $0.06^{\text{F}}$                  |                           |
| Turbidity #2<br>(1 NTU)                                          | 1.00                   |                     | $0.42^{\text{¥}}$                  |                           |
| Turbidity #3<br>(10 NTU)                                         | 10.00                  |                     | 7.36 <sup>¥</sup>                  |                           |

<sup>¥</sup>Turbidity is outside of the post-calibration acceptance criteria. DO was recorded as mg/L. Values displayed on field purge logs may be inaccurate.

Project Name Area A Parcel A15 Phase II

Date 12/30/22

Weather Sunny, 30s Calibrated by T. Palank

Serial Number 018952

Instrument YSI 556 MPS

| Parameters                                                       | Morning<br>Calibration | Morning Temperature | End of Day<br>Calibration<br>Check | End of Day<br>Temperature |
|------------------------------------------------------------------|------------------------|---------------------|------------------------------------|---------------------------|
| Specific<br>Conductance<br>Standard #1                           | 4.49                   | 34°                 | 4.304                              | 54°                       |
| Specific<br>Conductance<br>Standard #2                           | -                      |                     | -                                  |                           |
| pH (7)                                                           | 7.00                   |                     | 7.22                               |                           |
| pH (4)                                                           | 4.00                   |                     | 4.40                               |                           |
| pH(10)                                                           | 10.00                  |                     | 10.10                              |                           |
| ORP<br>Zobel Solution                                            | 240.0                  |                     | 242.0                              |                           |
| Dissolved<br>Oxygen 100%<br>water saturated<br>air mg/L          | 9.39¥                  |                     | 9.86 <sup>¥</sup>                  |                           |
| Dissolved<br>Oxygen Zero<br>Dissolved<br>Oxygen<br>Solution mg/L | 0.0¥                   |                     | 0.18¥                              |                           |
| Barometric<br>Pressure inches<br>Hg                              | 30.32                  |                     | 30.24                              |                           |
| Turbidity #1<br>(0 NTU)                                          | 0.00                   |                     | 0.01                               |                           |
| Turbidity #2<br>(1 NTU)                                          | 1.00                   |                     | 0.74                               |                           |
| Turbidity #3<br>(10 NTU)                                         | 10.00                  |                     | 10.19                              |                           |

<sup>¥</sup> DO was recorded as mg/L. Values displayed on field purge logs may be inaccurate.

# **APPENDIX E**

## QA/QC Tracking Log

| <u>Trip</u><br>Blank: | Date:      | Sample IDs:       |                               | <u>Trip</u><br>Blank: | Date:     |          | Sample IDs: |                                   |
|-----------------------|------------|-------------------|-------------------------------|-----------------------|-----------|----------|-------------|-----------------------------------|
|                       | Dutter     | 1) A15-017-SB-2   |                               |                       | Dutti     | 1)       | A15-004-SW  |                                   |
|                       |            | 2) A15-017-SB-3   | QA/QC for A15 soil            |                       |           | 2)       | A15-006-SW  | QA/QC for A15 SW                  |
|                       |            | 3) A15-016-SB-2   | samples                       | TB                    | 1/17/2023 | 3)       | A15-007-SW  | Samples                           |
| TB wt                 | 11/8/2022  | 4) A15-016-SB-3   |                               |                       |           | 4)       | A15-002-SW  |                                   |
|                       |            | 5) A15-005-SB-2   |                               |                       |           | 5)       | A15-001-SW  |                                   |
|                       |            | 6) A15-004-SB-2   |                               |                       |           | 6)       | A15-008-SW  |                                   |
|                       |            | 7) A15-004-SB-3   | Duplicate: A15-017-SB-3       | TB                    | 1/18/2023 | 。)<br>7) | A15-010-SW  | Duplicate: A15-004-SW             |
|                       |            | 8) A15-019-SB-2   | Date: 11/8/2022               |                       |           | 8)       | A15-012-SW  | Date: 1/17/2023                   |
|                       |            | 9) A15-019-SB-3   | MS/MSD: A15-020-SB-2          |                       |           | 9)       |             | MS/MSD: A15-012-SW                |
|                       |            | 10) A15-020-SB-2  | Date: 12/20/2022              |                       |           | 10)      |             | Date: 1/18/2023                   |
|                       |            | 11) A15-020-SB-4  | Field Blank:                  |                       |           | 11)      |             | Field Blank:                      |
|                       |            | 12) A15-009-SB-2  | Date: 11/8/2022               |                       |           | 12)      |             | Date: 1/18/2023                   |
|                       |            | 13) A15-008-SB-2  | Eq. Blank:                    |                       |           | 13)      |             | Eq. Blank:                        |
|                       | 12/20/2022 | 14) A15-008-SB-9  | Date: 11/8/2022               |                       |           | 14)      |             | Date: 1/28/2023                   |
|                       |            | 15) A15-008-SB-10 |                               |                       |           | 15)      |             |                                   |
|                       |            | 16) A15-007-SB-2  |                               |                       |           | 16)      |             |                                   |
|                       |            | 17) A15-007-SB-7  |                               |                       |           | 17)      |             |                                   |
|                       |            | 18) A15-007-SB-10 |                               |                       |           | 18)      |             |                                   |
|                       |            | 19) A15-006-SB-2  |                               |                       |           | 19)      |             |                                   |
|                       |            | 20) A15-006-SB-3  |                               |                       |           | 20)      |             |                                   |
| •                     | 1          |                   | ·                             |                       |           |          | •           |                                   |
|                       |            | 1) A15-018-SB-3   |                               |                       |           | 1)       | A15-004-SD  |                                   |
|                       |            | 2) A15-018-SB-10  | QA/QC for A15 soil<br>samples |                       |           | 2)       | A15-005-SD  | QA/QC for A15 Sediment<br>Samples |
|                       |            | 3) A15-018-SB-2   | samples                       |                       |           | 3)       | A15-003-SD  | Samples                           |
|                       |            | 4) A15-012-SB-2   |                               | TB                    | 1/17/2023 | 4)       | A15-006-SD  |                                   |
|                       |            | 5) A15-011-SB-2   |                               |                       |           | 5)       | A15-007-SD  |                                   |
|                       |            | 6) A15-010-SB-2   |                               |                       |           | 6)       | A15-002-SD  |                                   |
|                       |            | 7) A15-010-SB-3   | Duplicate: A15-014-SB-2       |                       |           | 7)       | A15-001-SD  | Duplicate: A15-004-SD             |
|                       |            | 8) A15-013-SB-2   | Date: 12/21/2022              |                       |           | 8)       | A15-011-SD  | Date: 1/17/2023                   |
|                       | 12/21/2022 | 9) A15-013-SB-3   | MS/MSD: A15-013-SB-2          |                       |           | 9)       | A15-009-SD  | MS/MSD: A15-012-SD                |
|                       |            | 10) A15-014-SB-2  | Date: 12/21/2022              | TB                    | 1/18/2023 | 10)      | A15-008-SD  | Date: 1/18/2023                   |
|                       |            | 11) A15-014-SB-3  | Field Blank:                  |                       |           | 11)      | A15-010-SD  | Field Blank:                      |
|                       |            | 12) A15-015-SB-2  | Date: 12/21/2022              |                       |           | 12)      | A15-012-SD  | Date: 1/18/2023                   |
|                       |            | 13) A15-015-SB-3  | Eq. Blank:                    |                       |           | 13)      |             | <u>Eq. Blank:</u>                 |
|                       |            | 14) A15-015-SB-10 | Date: 12/21/2022              |                       |           | 14)      |             | Date: 1/28/2023                   |
|                       |            | 15)               |                               |                       |           | 15)      |             |                                   |
|                       |            | 16)               | ] [                           |                       |           | 16)      |             |                                   |
|                       |            | 17)               | ] [                           |                       |           | 17)      |             |                                   |
|                       |            | 18)               | ] [                           |                       |           | 18)      |             |                                   |
|                       |            | 19)               | ] [                           |                       |           | 19)      |             |                                   |
| 1                     | 1          | • • •             |                               |                       |           |          |             |                                   |
|                       |            | 20)               |                               |                       |           | 20)      |             |                                   |

Soil samples with a sustained PID reading of 10 ppm or greater were collected for VOCs. VOC samples were placed in a cooler with a trip blank.

## QA/QC Tracking Log

| <u>Trip</u><br>Blank: | Date:      |     | Sample IDs: |             |                  |
|-----------------------|------------|-----|-------------|-------------|------------------|
| TB wt-1               | 12/29/2022 | 1)  | SG04-PDM004 |             |                  |
| TB wt-1               | 12/30/2022 |     | SG03-PDM007 | QA/QC for   | r A15 GW samples |
|                       |            | 3)  | A15-019-PZ  |             | _                |
| TB wt-1<br>TB wt-2    | 1/4/2022   | 4)  | A15-015-PZ  |             |                  |
| ID wt-2               |            | 5)  | A15-016-PZ  |             |                  |
| TB wt-1               | 1/19/2023  | 6)  | SW-098-MWS  |             |                  |
|                       |            | 7)  |             | Duplicate:  | A15-019-PZ       |
|                       |            | 8)  |             | Date:       | 1/4/2023         |
|                       |            | 9)  |             | MS/MSD:     | SG04-PZM004      |
|                       |            | 10) |             | Date:       | 12/29/2022       |
|                       |            | 11) |             | Field Blank | <u>&lt;:</u>     |
|                       |            | 12) |             | Date:       | 12/30/2022       |
|                       |            | 13) |             | Eq. Blank:  |                  |
|                       |            | 14) |             | Date:       | 1/19/2023        |
|                       |            | 15) |             |             |                  |
|                       |            | 16) |             |             |                  |
|                       |            | 17) |             |             |                  |
|                       |            | 18) |             | 1           |                  |
|                       |            | 19) |             | 1           |                  |
|                       |            | 20) |             |             |                  |

| 1)                                     |                              |
|----------------------------------------|------------------------------|
| 2)                                     |                              |
| 3)                                     |                              |
| 4)                                     |                              |
| 5)                                     |                              |
| 6)                                     |                              |
| 7)                                     | Duplicate:                   |
| 8)                                     | Date:                        |
| 9)                                     | MS/MSD:                      |
| 10)                                    | Date:                        |
|                                        |                              |
| 11)                                    | Field Blank:                 |
| 11)<br>12)                             | <u>Field Blank:</u><br>Date: |
|                                        |                              |
| 12)                                    | Date:                        |
| 12)<br>13)                             | Date:<br><u>Eq. Blank:</u>   |
| 12)<br>13)<br>14)                      | Date:<br><u>Eq. Blank:</u>   |
| 12)<br>13)<br>14)<br>15)               | Date:<br><u>Eq. Blank:</u>   |
| 12)<br>13)<br>14)<br>15)<br>16)        | Date:<br><u>Eq. Blank:</u>   |
| 12)<br>13)<br>14)<br>15)<br>16)<br>17) | Date:<br><u>Eq. Blank:</u>   |

<u>Trip</u> Blank:

Date:

Sample IDs:

| Sample I | Ds:          |
|----------|--------------|
| 1)       |              |
| 2)       |              |
| 3)       |              |
| 4)       |              |
| 5)       |              |
| 6)       |              |
| 7)       | Duplicate:   |
| 8)       | Date:        |
| 9)       | MS/MSD:      |
| 10)      | Date:        |
| 11)      | Field Blank: |
| 12)      | Date:        |
| 13)      | Eq. Blank:   |
| 14)      | Date:        |
| 15)      |              |
| 16)      |              |
| 17)      |              |
| 18)      |              |
| 19)      |              |
| 20)      |              |

| 1)  |              |
|-----|--------------|
| 2)  |              |
| 3)  |              |
| 4)  |              |
| 5)  |              |
| 6)  |              |
| 7)  | Duplicate:   |
| 8)  | Date:        |
| 9)  | MS/MSD:      |
| 10) | Date:        |
| 11) | Field Blank: |
| 12) | Date:        |
| 13) | Eq. Blank:   |
| 14) | Date:        |
| 15) |              |
| 16) |              |
| 17) |              |
| 18) |              |
| 19) |              |
| 20) |              |

# **APPENDIX F**

| 12.4.5.7 insublacebacase         SVOC         Soil         ngkg         13         0         0         13         1005           2.4.6.7 insubloquend         SVOC         Soil         ngkg         13         0         11         15         1005           2.4.6.7 insubloquend         SVOC         Soil         ngkg         13         0         0         13         1005           2.4.6.7 insublocutend         SVOC         Soil         ngkg         13         0         0         13         1005           2.4.6 insublocutend         SVOC         Soil         ngkg         13         0         0         13         1005           2.4.5 insublocutend         SVOC         Soil         ngkg         13         0         0         13         1005           2.4.5 insublocutend         SVOC         Soil         ngkg         13         0         0         13         1005           2.4.5 insublocutend         SVOC         Soil         ngkg         13         0         0         13         1005           2.4.5 insublocutend         SVOC         Soil         ngkg         13         0         0         13         1005           2.4.5 insublocu                                                                                                                      | Parameter                             | Parameter<br>Group | Matrix | Unit     | # of Validated<br>Results | Detections | # of Rejected<br>Results | # of Non-<br>rejected<br>Results | Completeness |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|--------|----------|---------------------------|------------|--------------------------|----------------------------------|--------------|
| Li-Bionne         VOCSVOC         Soil         ngkg         13         0         0         13         100%           2.4.5-Trackalophenol         SVOC         Soil         ngkg         13         0         0         13         100%           2.4.5-Trackalophenol         SVOC         Soil         ngkg         13         0         0         13         100%           2.4.0-Trackalophenol         SVOC         Soil         ngkg         13         0         0         13         100%           2.4.0-Trackalophenol         SVOC         Soil         ngkg         13         0         0         13         100%           2.4.0-Trackalophenol         SVOC         Soil         ngkg         13         0         0         13         100%           2.4.0-Trackalophenol         SVVC         Soil         ngkg         13         0         0         13         100%           2.4.0-Trackalophenol         SVVC         Soil         ngkg         13         0         0         13         100%           2.4.0-Trackalophenol         SVVC         Soil         ngkg         13         0         0         13         100%           2.4.0-Trackalophenol <th>1,1-Biphenyl</th> <th>SVOC</th> <th>Soil</th> <th>00</th> <th>13</th> <th></th> <th>0</th> <th>13</th> <th>100%</th> | 1,1-Biphenyl                          | SVOC               | Soil   | 00       | 13                        |            | 0                        | 13                               | 100%         |
| 23.45         Textschlorophenol         SVOC         Soil         regkg         13         0         0         13         100%           2.45         Trichtophenol         SVOC         Soil         regkg         13         0         0         13         100%           2.46         Trichtophenol         SVOC         Soil         regkg         13         0         0         13         100%           2.41         Districtophenol         SVOC         Soil         regkg         13         0         0         13         100%           2.41         Districtophenol         SVOC         Soil         regkg         13         0         0         13         100%           2.41         Districtophenol         SVOC         Soil         regkg         13         0         0         13         100%           2.41         Districtophenol         SVOC         Soil         regkg         13         0         0         13         100%           2.41         Districtophenol         SVOC         Soil         regkg         13         0         0         13         100%           2.41         Districtophenol         SVOC         Soil         <                                                                                                                            |                                       |                    |        | 00       |                           | -          |                          |                                  |              |
| 24.5 Tr.chorophenol         SVOC         Suit         regks         1.3         0         0         1.3         1007           2.4-Ditachophenol         SVOC         Suit         regks         1.3         0         0         1.3         1006           2.4-Ditachophenol         SVOC         Suit         regks         1.3         0         0         1.3         1006           2.4-Ditartochophenol         SVOC         Suit         regks         1.3         0         0         1.3         1006           2.4-Ditartochore         SVOC         Suit         regks         1.3         0         0         1.3         1006           2.4-Ditartochore         SVOC         Suit         regks         1.3         0         0         1.3         1006           2.Morphenol         SVOC         Suit         regks         1.3         0         0         1.3         1006           2.Nitrophenol         SVOC         Suit         regks         1.3         0         0         1.3         1006           2.4Nophenol         SVOC         Suit         regks         1.3         0         0         1.3         1006           2.4Nophenole <td< td=""><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                   | *                                     |                    |        |          |                           |            |                          |                                  |              |
| 24.0 Technorphanni         SVOC         Soil         ngkg         13         0         0         13         1000           2.4-Dischopphanni         SVOC         Soil         ngkg         13         0         0         13         1000           2.4-Districtyhernal         SVOC         Soil         ngkg         13         0         0         13         1000           2.4-Districtyhernal         SVOC         Soil         ngkg         13         0         0         13         1000           2.4-Districtyherna         SVOC         Soil         ngkg         13         0         0         13         1000           2.Miniphanialene         SVOC         Soil         ngkg         13         0         0         13         1000           2.Miniphanialene         SVOC         Soil         ngkg         13         0         0         13         1000           2.Miniphanialene         SVOC         Soil         ngkg         13         0         0         13         1000           3.4-Miniphanialene         SVOC         Soil         ngkg         13         0         0         13         1000           3.4-Miniphanialene         SVO                                                                                                                               | · · · · ·                             |                    |        |          |                           |            |                          |                                  |              |
| 24-Decktophend         SVOC         Soil         mg/x2         13         0         0         13         100%           24-Denktophend         SVOC         Soil         mg/x2         13         0         1         12         100%           24-Denktophend         SVOC         Soil         mg/x2         13         0         0         13         100%           24-Denktophend         SVOC         Soil         mg/x2         13         0         0         13         100%           24-Denktophend         SVOC         Soil         mg/x2         13         0         0         13         100%           2-Chinoraphend         SVOC         Soil         mg/x2         13         0         0         13         100%           2-Miniphend         SVOC         Soil         mg/x2         13         0         0         13         100%           2-Miniphend         SVOC         Soil         mg/x2         13         0         0         13         100%           2-Miniphend         SVOC         Soil         mg/x2         13         0         0         13         100%           4-Dinoronhime         SVOC         Soil                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |                    |        | 00       |                           |            |                          |                                  |              |
| 24-Dimenticylaterand         SVOC         Soil         mg/kg         13         0         0         15         100%           24-Dimitophanen         SVOC         Soil         mg/kg         13         0         1         12         92%           24-Dimitophanen         SVOC         Soil         mg/kg         13         0         0         13         100%           2-Chorosphene         SVOC         Soil         mg/kg         13         0         0         13         100%           2-Chorosphene         SVOC         Soil         mg/kg         13         0         0         13         100%           2-Minitylanon         SVOC         Soil         mg/kg         13         0         0         13         100%           2-Minitylanon         SVOC         Soil         mg/kg         13         0         0         13         100%           2-Minitylanon         SVOC         Soil         mg/kg         13         0         0         13         100%           2-Minitylanon         SVOC         Soil         mg/kg         13         0         0         13         100%           2-Minitylanon         SVOC         Soil <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td>    | · · · · · · · · · · · · · · · · · · · |                    |        | <u> </u> |                           |            |                          |                                  |              |
| 24-Dimicroblement         SVOC         Soil         ngkkg         13         0         1         12         92%           24-Dimicroblement         SVOC         Soil         ngkkg         13         0         0         13         100%           24-Dimicroblement         SVOC         Soil         ngkg         13         0         0         13         100%           2-Chlorongholtalone         SVOC         Soil         ngkg         13         0         0         13         100%           2-Methytightend         SVOC         Soil         ngkg         13         0         0         13         100%           2-Methytightend         SVOC         Soil         ngkg         13         0         0         13         100%           2-Mittendentaline         SVOC         Soil         ngkg         13         0         0         13         100%           2-Mittendentaline         SVOC         Soil         ngkg         13         0         0         13         100%           2-Mittendentaline         SVOC         Soil         ngkg         13         0         0         13         100%           2-Mittendentaline         SVOC                                                                                                                                    | · · · · · · · · · · · · · · · · · · · |                    |        |          |                           |            |                          |                                  |              |
| 24 Diminuolane         SVOC         Soil         rigks         13         0         0         13         100%           2-Chloruphotome         SVOC         Soil         rigks         13         0         0         13         100%           2-Chloruphotom         SVOC         Soil         rigks         13         0         0         13         100%           2-Metrylphenol         SVOC         Soil         rigks         13         0         0         13         100%           2-Metrylphenol         SVOC         Soil         rigks         13         0         0         13         100%           2-Nitropitenol         SVOC         Soil         rigks         13         0         0         13         100%           2-Nitropitenol         SVOC         Soil         rigks         13         0         0         13         100%           2-Metrophenole         SVOC         Soil         rigks         13         0         0         13         100%           2-Metrophenole         SVOC         Soil         rigks         13         0         0         13         100%           2-Monunophytiphenol         SVOC         S                                                                                                                                        | · · · · · · · · · · · · · · · · · · · |                    |        |          |                           |            |                          |                                  |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · · |                    |        | 00       |                           |            |                          |                                  |              |
| 2Chlorospheluhene         8VOC         Soil         ngAz         13         0         0         13         100%           2-Materythenphindene         SVOC         Soil         ngAz         13         0         0         13         100%           2-Materythenol         SVOC         Soil         ngAz         13         0         0         13         100%           2-Nirropitenol         SVOC         Soil         ngAz         13         0         0         13         100%           2-Nirropitenol         SVOC         Soil         ngAz         13         0         0         13         100%           34-Dictorochordine         SVOC         Soil         ngAz         13         0         0         13         100%           4,6-Diruroline         SVOC         Soil         ngAz         13         0         0         13         100%           4-Liboroniline         SVOC         Soil         ngAz         13         0         0         13         100%           4-Liboroniline         SVOC         Soil         ngAz         13         0         0         13         100%           4-Liboroniline         SVOC         Soi                                                                                                                                        | ,                                     |                    |        |          |                           |            |                          |                                  |              |
| 2Chorophenol         SVOC         Soil         mg/kg         13         0         0         13         100%           2-Metryinghenol         SVOC         Soil         mg/kg         13         0         0         13         100%           2-Metryinghenol         SVOC         Soil         mg/kg         13         0         0         13         100%           2-Nitromiline         SVOC         Soil         mg/kg         13         0         0         13         100%           3-Duthovbenchilse         SVOC         Soil         mg/kg         13         0         0         13         100%           3-Duthovbenchilse         SVOC         Soil         mg/kg         13         0         0         13         100%           4-Rioromghyphenol         SVOC         Soil         mg/kg         13         0         0         13         100%           4-Chorometoryphenol         SVOC         Soil         mg/kg         13         0         0         13         100%           4-Chorometoryphenol         SVOC         Soil         mg/kg         13         0         0         13         100%           Actoryphenol         SVOC                                                                                                                                        |                                       |                    |        |          |                           |            |                          |                                  |              |
| 2Methylphenol         SVOC         Soil         ng.kz         13         5         0         13         100%           2Nitroghenol         SVOC         Soil         ng.kz         13         0         0         13         100%           2Nitroghenol         SVOC         Soil         ng.kz         13         0         0         13         100%           3k-Methylphenol(msp Cresol)         SVOC         Soil         ng.kz         13         0         0         13         100%           5-Dintolo-Donordine         SVOC         Soil         ng.kz         13         0         0         13         100%           6-Dinto-2-methylphenol         SVOC         Soil         ng.kz         13         0         0         13         100%           6-Liboronitine         SVOC         Soil         ng.kz         13         0         0         13         100%           4-Nitrophenol         SVOC         Soil         ng.kz         13         0         13         100%           4-Nitrophenol         SVOC         Soil         ng.kz         13         0         13         100%           4-Nitrophenol         SVOC         Soil         ng.kz                                                                                                                               | · · · · · · · · · · · · · · · · · · · |                    |        | ~ ~      |                           |            |                          |                                  |              |
| 2Medityleinel         SVOC         Solit         ng/kg         13         0         0         13         100%           2Nitrogatines         SVOC         Solit         ng/kg         13         0         0         13         100%           2Nitrogatines         SVOC         Solit         ng/kg         13         0         0         13         100%           3.3' Dictiores         Solit         ng/kg         13         0         0         13         100%           5.4'Dictiores-module         SVOC         Solit         ng/kg         13         0         0         13         100%           6.4'Dirotz-module         SVOC         Solit         ng/kg         13         0         0         13         100%           6.Choropherylphenol         SVOC         Solit         ng/kg         13         0         0         13         100%           6.Choropherylphenol         SVOC         Solit         ng/kg         13         0         0         13         100%           6.Choropherylphenol         SVOC         Solit         ng/kg         13         0         0         13         100%           6.Choropherylphenol         SVOC                                                                                                                                  | *                                     |                    |        | 00       |                           |            |                          |                                  |              |
| 2Nirrophanin         SVOC         Solit         mg/kp         13         0         0         13         100%           3&4-Mehrophanolan(p, Crosol)         SVOC         Solit         mg/kp         13         0         0         13         100%           3&4-Mehrophanolan(p, Crosol)         SVOC         Solit         mg/kp         13         0         0         13         100%           4-Domorhanolan(p, Markov)         SVOC         Solit         mg/kp         13         0         0         13         100%           4-Choronaline         SVOC         Solit         mg/kp         13         0         0         13         100%           4-Choronaline         SVOC         Solit         mg/kp         13         0         0         13         100%           4-Nitronnifine         SVOC         Solit         mg/kp         13         0         0         13         100%           A-compthemen         SVOC         Solit         mg/kp         13         0         0         13         100%           A-compthylenen         SVOC         Solit         mg/kp         13         0         13         100%           A-compthylenen         SVOC </td <td></td> <td></td> <td></td> <td>~ ~</td> <td></td> <td></td> <td></td> <td></td> <td></td>                      |                                       |                    |        | ~ ~      |                           |            |                          |                                  |              |
| 2-Nitophenol         SVOC         Sod1         ung/kg         13         0         0         13         100%           33-49/h1/obcohesn/dife         SVOC         Sod1         rng/kg         13         0         0         13         100%           34-9/h1/obcohesn/dife         SVOC         Sod1         rng/kg         13         0         0         13         100%           4-Domospheryl phenyl effer         SVOC         Sod1         rng/kg         13         0         0         13         100%           4-Chloro-3meryl phenyl effer         SVOC         Sod1         rng/kg         13         0         0         13         100%           4-Chloro-smeryl phenyl effer         SVOC         Sod1         rng/kg         13         0         0         13         100%           4-Nitrophenol         SVOC         Sod1         rng/kg         13         0         13         100%           Acerophylphene         SVOC         Sod1         rng/kg         13         0         13         100%           Acerophylphene         SVOC         Sod1         rng/kg         13         0         13         100%           Acerophylphene         SVOC         Sod                                                                                                             |                                       |                    |        | ~ ~ ~    |                           |            |                          |                                  |              |
| Sket-Mathyphenol(msp. Crosol)         SVUC         Soil         mg/kg         13         0         0         13         100%           32-Distlorbornadne         SVOC         Soil         mg/kg         13         0         0         13         100%           4-Dimixe-2-methylphenol         SVOC         Soil         mg/kg         13         0         0         13         100%           4-Choro-antine         SVOC         Soil         mg/kg         13         0         0         13         100%           4-Choro-antine         SVOC         Soil         mg/kg         13         0         0         13         100%           4-Nironoline         SVOC         Soil         mg/kg         13         0         0         13         100%           4-Nironoline         SVOC         Soil         mg/kg         13         0         0         13         100%           Accmaphthene         SVOC         Soil         mg/kg         13         0         0         13         100%           Accmaphthene         SVOC         Soil         mg/kg         13         0         0         13         100%           Accmaphthene         SVOC                                                                                                                                      |                                       |                    |        | ~ ~      |                           |            |                          |                                  |              |
| 3.3-1bic/rober         Sy(C)         Soft         mg/kg         1.3         0         0         1.3         1000           4-Broms-bendphend         Sy(C)         Soft         mg/kg         1.3         0         0         1.3         1000           4-Broms-bendphend         Sy(C)         Soft         mg/kg         1.3         0         0         1.3         1000           4-Chore-stere/hybrend         Sy(C)         Soft         mg/kg         1.3         0         0         1.3         1000           4-Chore-stere/hybrend         Sy(C)         Soft         mg/kg         1.3         0         0         1.3         1000           4-Nironalline         Sy(C)         Soft         mg/kg         1.3         0         0         1.3         1000           Accompthybre         Sy(C)         Soft         mg/kg         1.3         0         0         1.3         1000           Accompthybre         Sy(C)         Soft         mg/kg         1.3         0         0         1.3         1000           Accompthybre         Sy(C)         Soft         mg/kg         7         0         0         7         1000         Antiaco         1.3         <                                                                                                                    | · · · · · · · · · · · · · · · · · · · |                    |        | 00       |                           |            |                          |                                  | 100%         |
| 4.6 Dimo-2-methylphenol         SVOC         Soil         mgkg         13         0         0         13         1000           4.Bonouphertylphenol         SVOC         Soil         mgkg         13         0         0         13         1000           4.Cluoro-amethylphenol         SVOC         Soil         mgkg         13         0         0         13         1000           4.Cluoro-amethylphenol         SVOC         Soil         mgkg         13         0         0         13         1000           4.Nicronhlme         SVOC         Soil         mgkg         13         0         0         13         1000           Accmaphilhene         SVOC         Soil         mgkg         13         3         0         13         1000           Accmaphilhene         SVOC         Soil         mgkg         13         13         0         13         1000           Antiman         Menal         Soil         mgkg         13         0         0         13         1000           Accmaphilhene         SVOC         Soil         mgkg         13         0         0         7         1000           Antiman         Menal         S                                                                                                                                         |                                       |                    |        | ~ ~      |                           | 0          | 0                        | 13                               | 100%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                    |        | ~ ~      |                           |            |                          |                                  | 100%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                    |        | ~ ~      |                           |            |                          |                                  | 100%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                    |        | 00       |                           |            |                          |                                  | 100%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | SVOC               |        | 0 0      |                           | 0          | 0                        |                                  | 100%         |
| 4-Nironamina         SVOC         Soil         mg/k         13         0         0         13         1000%           Astrophenel         SVOC         Soil         mg/k         13         2         0         13         100%           Accapathylene         SVOC         Soil         mg/k         13         3         0         13         100%           Accapathylene         SVOC         Soil         mg/k         13         0         0         13         100%           Auminum         Maal         Soil         mg/k         13         0         0         13         100%           Animence         SVOC         Soil         mg/k         13         0         0         13         100%           Animony         Metal         Soil         mg/k         7         0         0         7         100%           Arcelor 1231         PCB         Soil         mg/k         7         0         0         7         100%           Arcelor 1242         PCB         Soil         mg/k         7         2         0         7         100%           Arcelor 1260         PCB         Soil         mg/k         7                                                                                                                                                                     | 4-Chlorophenyl phenyl ether           | SVOC               | Soil   |          | 13                        | 0          | 0                        | 13                               | 100%         |
| Aceraphthene         SVOC         Soil $mg/kg$ 13         2         0         13         100%           Accomplutylene         SVOC         Soil $mg/kg$ 13         0         13         100%           Accomplutylene         SVOC         Soil $mg/kg$ 13         0         0         13         100%           Autmacene         SVOC         Soil $mg/kg$ 13         0         0         13         100%           Antmacene         SVOC         Soil $mg/kg$ 7         0         0         7         100%           Accolor 1016         PCB         Soil $mg/kg$ 7         0         0         7         100%           Arockor 1232         PCB         Soil $mg/kg$ 7         1         0         7         100%           Arockor 1242         PCB         Soil $mg/kg$ 7         1         0         7         100%           Arockor 1260         PCB         Soil $mg/kg$ 7         2         0         7         100%           Arockor 1262         PCB         Soil $mg/kg$ <                                                                                                                                                                                                                                                                                                              |                                       | SVOC               | Soil   | 00       | 13                        | 0          | 0                        | 13                               | 100%         |
| Aceughphyne         SVOC         Soil $mgkg$ 13         3         0         13         100%           Atuminum         Metal         Soil $mgkg$ 13         13         0         13         100%           Animany         Metal         Soil $mgkg$ 13         13         0         13         100%           Animany         Metal         Soil $mgkg$ 13         0         0         13         100%           Animony         Metal         Soil $mgkg$ 7         0         0         7         100%           Arcolor 1221         PCB         Soil $mgkg$ 7         0         0         7         100%           Arcolor 1242         PCB         Soil $mgkg$ 7         1         0         7         100%           Arcolor 1260         PCB         Soil $mgkg$ 7         2         0         7         100%           Arcolor 1268         PCB         Soil $mgkg$ 13         10         13         100%           Barainin         Metal         Soil $mgkg$ 13 <t< td=""><td>4-Nitrophenol</td><td></td><td>Soil</td><td>mg/kg</td><td>13</td><td>0</td><td>0</td><td></td><td>100%</td></t<>                                                                                                                                                                                                   | 4-Nitrophenol                         |                    | Soil   | mg/kg    | 13                        | 0          | 0                        |                                  | 100%         |
| Acetophenone         SVOC         Soil         mg/kg         13         0         0         13         100%           Aluminaum         Metal         Soil         mg/kg         13         13         0         13         100%           Antinacene         SVOC         Soil         mg/kg         13         0         13         100%           Antinovy         Metal         Soil         mg/kg         13         0         0         13         100%           Ancolor 1212         PCB         Soil         mg/kg         7         0         0         7         100%           Aroclor 1232         PCB         Soil         mg/kg         7         0         0         7         100%           Aroclor 1248         PCB         Soil         mg/kg         7         1         0         7         100%           Aroclor 1260         PCB         Soil         mg/kg         7         0         0         7         100%           Aroclor 1268         PCB         Soil         mg/kg         13         13         0         13         100%           Barafolamtracene         SVOC         Soil         mg/kg         13                                                                                                                                                              | Acenaphthene                          |                    |        | mg/kg    |                           |            |                          |                                  | 100%         |
| Auminum         Metal         Soil $mg/kg$ 13         13         0         13         100%           Anthracene         SVOC         Soil $mg/kg$ 13         5         0         13         100%           Antimony         Metal         Soil $mg/kg$ 7         0         0         7         100%           Arcclor 1212         PCB         Soil $mg/kg$ 7         0         0         7         100%           Arcclor 1221         PCB         Soil $mg/kg$ 7         0         0         7         100%           Arcclor 1224         PCB         Soil $mg/kg$ 7         0         0         7         100%           Arcolor 1260         PCB         Soil $mg/kg$ 7         2         0         7         100%           Arcolor 1262         PCB         Soil $mg/kg$ 7         2         0         7         100%           Arcolor 1268         PCB         Soil $mg/kg$ 13         10         0         13         100%           Barium         Metal         Soil $mg/kg$                                                                                                                                                                                                                                                                                                                   | Acenaphthylene                        | SVOC               | Soil   | mg/kg    |                           | 3          | 0                        |                                  | 100%         |
| Anthracene         SVOC         Soil $m_2^{A} k_2$ 13         5         0         13         100%           Antimony         Metal         Soil $m_2^{A} k_2$ 13         0         0         13         100%           Arccler 1016         PCB         Soil $m_2^{A} k_2$ 7         0         0         7         100%           Arcoler 1232         PCB         Soil $m_2^{A} k_2$ 7         0         0         7         100%           Arocler 1242         PCB         Soil $m_2^{A} k_2$ 7         1         0         7         100%           Arocler 1254         PCB         Soil $m_2^{A} k_2$ 7         2         0         7         100%           Arocler 1262         PCB         Soil $m_2^{A} k_2$ 7         2         0         7         100%           Arsenic         Metal         Soil $m_2^{A} k_2$ 13         13         0         13         100%           Barinum         Metal         Soil $m_2^{A} k_2$ 13         10         0         13         100%           Berazidehyde         SV                                                                                                                                                                                                                                                                                | Acetophenone                          | SVOC               |        | mg/kg    |                           |            |                          |                                  | 100%         |
| Antimony         Metal         Soil         mg/kg         13         0         0         13         100%           Arockor 1016         PCB         Soil         mg/kg         7         0         0         7         100%           Arockor 1221         PCB         Soil         mg/kg         7         0         0         7         100%           Arockor 1242         PCB         Soil         mg/kg         7         0         0         7         100%           Arockor 1242         PCB         Soil         mg/kg         7         0         0         7         100%           Arockor 1242         PCB         Soil         mg/kg         7         3         0         7         100%           Arockor 1260         PCB         Soil         mg/kg         7         2         0         7         100%           Arockor 1268         PCB         Soil         mg/kg         13         10         13         100%           Bernzlehydyde         SVOC         Soil         mg/kg         13         10         13         100%           Bernzlehydyde         SVOC         Soil         mg/kg         13         10         <                                                                                                                                                       | Aluminum                              |                    |        | mg/kg    | 13                        |            | -                        |                                  | 100%         |
| Aroclor 1016         PCB         Soil         mg/kg         7         0         0         7         100%           Aroclor 1221         PCB         Soil         mg/kg         7         0         0         7         100%           Aroclor 1232         PCB         Soil         mg/kg         7         0         0         7         100%           Aroclor 1242         PCB         Soil         mg/kg         7         0         0         7         100%           Aroclor 1248         PCB         Soil         mg/kg         7         2         0         7         100%           Aroclor 1260         PCB         Soil         mg/kg         7         2         0         7         100%           Aroclor 1262         PCB         Soil         mg/kg         7         2         0         7         100%           Arsenic         Metal         Soil         mg/kg         13         13         0         13         100%           Benzaladehyde         SVOC         Soil         mg/kg         13         10         0         13         100%           Benzaldehyde         SVOC         Soil         mg/kg         13<                                                                                                                                                           |                                       |                    |        |          |                           |            |                          |                                  | 100%         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        |          |                           |            |                          |                                  |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                    |        |          |                           |            |                          | -                                |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        |          |                           |            |                          | -                                |              |
| Aroclor 1248         PCB         Soil $mg/kg$ 7         1         0         7         100%           Aroclor 1250         PCB         Soil $mg/kg$ 7         2         0         7         100%           Aroclor 1260         PCB         Soil $mg/kg$ 7         0         0         7         100%           Aroclor 1262         PCB         Soil $mg/kg$ 7         0         0         7         100%           Arsenic         Metal         Soil $mg/kg$ 13         12         0         13         100%           Barium         Metal         Soil $mg/kg$ 13         10         0         13         100%           Benzaldehyde         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzolghfloranthene         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzolghfloranthene         SVOC         Soil $mg/kg$ 13         10         13         100%           Berzolghfloranthene         SVOC         Soil                                                                                                                                                                                                                                                                                                  |                                       |                    |        |          |                           |            |                          |                                  |              |
| Aroclor 1254         PCB         Soil $mg/kg$ 7         2         0         7         100%           Aroclor 1260         PCB         Soil $mg/kg$ 7         3         0         7         100%           Aroclor 1262         PCB         Soil $mg/kg$ 7         2         0         7         100%           Aroclor 1268         PCB         Soil $mg/kg$ 13         12         0         13         100%           Barium         Metal         Soil $mg/kg$ 13         10         0         13         100%           Benzaldaphyde         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzaldaphyde         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzaldaphyde         SVOC         Soil $mg/kg$ 13         9         0         13         100%           Benzaldaphyde         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzaldaphyde         SVOC         Soil                                                                                                                                                                                                                                                                                                  |                                       |                    |        |          |                           |            |                          | -                                |              |
| Aroclor 1260         PCB         Soil $mg/kg$ 7         3         0         7         100%           Aroclor 1262         PCB         Soil $mg/kg$ 7         0         0         7         100%           Aroclor 1268         PCB         Soil $mg/kg$ 13         12         0         13         100%           Barium         Metal         Soil $mg/kg$ 13         10         0         13         100%           Benzalalanthracene         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzalalpyrene         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzalpliprene         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzalplifuoranthene         SVOC         Soil $mg/kg$ 13         8         0         13         100%           Bis/2-Chloroethoxy)methane         SVOC         Soil $mg/kg$ 13         0         0         13         100%           Si2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                  |                                       |                    |        |          |                           |            |                          | -                                |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        |          |                           |            |                          | -                                |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        |          |                           |            |                          |                                  |              |
| Arsenic         Metal         Soil $mg/kg$ 13         12         0         13         100%           Barium         Metal         Soil $mg/kg$ 13         10         0         13         100%           Benzalahrhacene         SVOC         Soil $mg/kg$ 13         1         0         13         100%           Benzalghurane         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzolfjluoranthene         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzolgluoranthene         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Berzolighuoranthene         SVOC         Soil $mg/kg$ 13         13         0         13         100%           bis(2-chloroisopropylpether         SVOC         Soil $mg/kg$ 13         0         0         13         100%           bis(2-chloroisopropylpether         SVOC         Soil $mg/kg$ 13         0         0         13         100%           Calarona<                                                                                                                                                                                                                                                                       |                                       |                    |        | <u> </u> |                           |            |                          |                                  |              |
| Barium         Metal         Soil $mg/kg$ 13         13         0         13         100%           Benzalalpanthracene         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzalelpyde         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzolsphilburanthene         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzolsphilburanthene         SVOC         Soil $mg/kg$ 13         10         0         13         100%           Benzolsphilburanthene         SVOC         Soil $mg/kg$ 13         8         0         13         100%           Berzolkilburanthene         SVOC         Soil $mg/kg$ 13         0         0         13         100%           Berzolchlowenthene         SVOC         Soil $mg/kg$ 13         0         0         13         100%           Bis(2-Chloroisopropylether         SVOC         Soil $mg/kg$ 13         0         0         13         100%         Cadmium                                                                                                                                                                                                                                                                 |                                       |                    |        |          |                           |            |                          | -                                |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        |          |                           |            |                          |                                  |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        |          |                           |            |                          |                                  |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        | ~ ~      |                           |            |                          |                                  |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        |          |                           |            |                          |                                  |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        |          |                           |            |                          |                                  |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        | 0 0      |                           |            |                          |                                  |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0 -1 0                               |                    |        |          |                           |            |                          |                                  |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        |          |                           |            |                          |                                  |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                    |        |          |                           |            |                          |                                  | 100%         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |                    |        | ~ ~      |                           |            |                          |                                  | 100%         |
| BuylbenzylphthalateSVOCSoil $mg/kg$ 130013100%CadmiumMetalSoil $mg/kg$ 1311013100%CalciumMetalSoil $mg/kg$ 1313013100%CalciumMetalSoil $mg/kg$ 130013100%CarbazoleSVOCSoil $mg/kg$ 130013100%ChromiumMetalSoil $mg/kg$ 1311013100%Chromium VIMetalSoil $mg/kg$ 1311013100%Chromium VIMetalSoil $mg/kg$ 1310013100%Chromium VIMetalSoil $mg/kg$ 1310013100%CobaltMetalSoil $mg/kg$ 1313013100%CopperMetalSoil $mg/kg$ 1313013100%Cyanide, TotalCNSoil $mg/kg$ 131013100%Disezl Range OrganicsTPHSoil $mg/kg$ 130013100%DientylphthalateSVOCSoil $mg/kg$ 130013100%DientylphthalateSVOCSoil $mg/kg$ 130013100%DientylphthalateSVOCSoil $mg/kg$ 130013100% <td></td> <td></td> <td></td> <td>2 2</td> <td></td> <td></td> <td></td> <td></td> <td>100%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                    |        | 2 2      |                           |            |                          |                                  | 100%         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | SVOC               | Soil   |          |                           | 0          | 0                        | 13                               | 100%         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cadmium                               | Metal              | Soil   | mg/kg    | 13                        | 11         | 0                        | 13                               | 100%         |
| CarbazoleSVOCSoil $mg/kg$ 130013100%ChromiumMetalSoil $mg/kg$ 1313013100%Chromium VIMetalSoil $mg/kg$ 1311013100%Chromium VIMetalSoil $mg/kg$ 1311013100%ChroseneSVOCSoil $mg/kg$ 1310013100%CobaltMetalSoil $mg/kg$ 1313013100%CopperMetalSoil $mg/kg$ 1313013100%Cyanide, TotalCNSoil $mg/kg$ 132013100%Dibenz[a,h]anthraceneSVOCSoil $mg/kg$ 134013100%Diesel Range OrganicsTPHSoil $mg/kg$ 130013100%DiethylphthalateSVOCSoil $mg/kg$ 130013100%Di-n-oxylphthalateSVOCSoil $mg/kg$ 130013100%FluorantheneSVOCSoil $mg/kg$ 1313013100%FluoreneSVOCSoil $mg/kg$ 130013100%FluoreneSVOCSoil $mg/kg$ 130013100%FluoreneSVOCSoil $mg/kg$ 130013100% <tr< td=""><td>Calcium</td><td>Metal</td><td>Soil</td><td>mg/kg</td><td>13</td><td>13</td><td>0</td><td>13</td><td>100%</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calcium                               | Metal              | Soil   | mg/kg    | 13                        | 13         | 0                        | 13                               | 100%         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Caprolactam                           |                    | Soil   | mg/kg    | 13                        | 0          | 0                        |                                  | 100%         |
| Chromium VIMetalSoil $mg/kg$ 1311013100%ChryseneSVOCSoil $mg/kg$ 1310013100%CobaltMetalSoil $mg/kg$ 1313013100%CopperMetalSoil $mg/kg$ 1313013100%Cyanide, TotalCNSoil $mg/kg$ 132013100%Dibenz[a,h]anthraceneSVOCSoil $mg/kg$ 134013100%Diesel Range OrganicsTPHSoil $mg/kg$ 131013100%DiethylphthalateSVOCSoil $mg/kg$ 130013100%Di-n-butylphthalateSVOCSoil $mg/kg$ 130013100%Di-n-ocytlphthalateSVOCSoil $mg/kg$ 130013100%FluorantheneSVOCSoil $mg/kg$ 1313013100%FluorantheneSVOCSoil $mg/kg$ 1313013100%Gasoline Range OrganicsTPHSoil $mg/kg$ 130013100%HexachlorobenzeneSVOCSoil $mg/kg$ 130013100%Gasoline Range OrganicsTPHSoil $mg/kg$ 130013100%HexachlorobenzeneSVOCSoil $mg/kg$ 13 </td <td></td> <td></td> <td></td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td></td> <td>100%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                    |        | mg/kg    |                           |            |                          |                                  | 100%         |
| ChryseneSVOCSoil $mg/kg$ 1310013100%CobaltMetalSoil $mg/kg$ 1313013100%CopperMetalSoil $mg/kg$ 1313013100%Cyanide, TotalCNSoil $mg/kg$ 132013100%Dibenz[a,h]anthraceneSVOCSoil $mg/kg$ 134013100%Diesel Range OrganicsTPHSoil $mg/kg$ 131013100%DiethylphthalateSVOCSoil $mg/kg$ 130013100%Di-n-butylphthalateSVOCSoil $mg/kg$ 130013100%Di-n-cytlphthalateSVOCSoil $mg/kg$ 130013100%FluorantheneSVOCSoil $mg/kg$ 1313013100%FluoreneSVOCSoil $mg/kg$ 130013100%HaxachlorobenzeneSVOCSoil $mg/kg$ 130013100%HexachlorobenzeneSVOCSoil $mg/kg$ 130013100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                    |        | ~ ~      |                           |            | 0                        |                                  | 100%         |
| Cobalt         Metal         Soil         mg/kg         13         13         0         13         100%           Copper         Metal         Soil         mg/kg         13         13         0         13         100%           Cyanide, Total         CN         Soil         mg/kg         13         2         0         13         100%           Dibenz[a,h]anthracene         SVOC         Soil         mg/kg         13         4         0         13         100%           Diesel Range Organics         TPH         Soil         mg/kg         13         0         0         13         100%           Diethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Dimethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-butylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         13         0         13         100%           Fluoranthene         SVOC                                                                                                                                           |                                       |                    |        |          |                           |            |                          |                                  | 100%         |
| Copper         Metal         Soil         mg/kg         13         13         0         13         100%           Cyanide, Total         CN         Soil         mg/kg         13         2         0         13         100%           Dibenz[a,h]anthracene         SVOC         Soil         mg/kg         13         4         0         13         100%           Diesel Range Organics         TPH         Soil         mg/kg         13         1         0         13         100%           Diethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Dinethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Dinethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Din-ocytlphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Fluoranthene         SVOC         Soil         mg/kg         13         13         0         13         100%           Gasoline Range Organics         TPH<                                                                                                                               |                                       |                    |        |          |                           |            |                          |                                  | 100%         |
| Cyanide, TotalCNSoil $mg/kg$ 132013100%Dibenz[a,h]anthraceneSVOCSoil $mg/kg$ 134013100%Diesel Range OrganicsTPHSoil $mg/kg$ 131013100%DiethylphthalateSVOCSoil $mg/kg$ 130013100%DimethylphthalateSVOCSoil $mg/kg$ 130013100%DinethylphthalateSVOCSoil $mg/kg$ 130013100%Di-n-butylphthalateSVOCSoil $mg/kg$ 130013100%Di-n-ocytlphthalateSVOCSoil $mg/kg$ 130013100%FluorantheneSVOCSoil $mg/kg$ 1313013100%Gasoline Range OrganicsTPHSoil $mg/kg$ 130013100%HexachlorobenzeneSVOCSoil $mg/kg$ 130013100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                    |        | 00       |                           |            |                          |                                  | 100%         |
| Dibenz[a,h]anthracene         SVOC         Soil         mg/kg         13         4         0         13         100%           Diesel Range Organics         TPH         Soil         mg/kg         13         1         0         13         100%           Diethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Diethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Dimethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-butylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Fluoranthene         SVOC         Soil         mg/kg         13         13         0         13         100%           Gasoline Range Organics         TPH         Soil         mg/kg         13         0         0         13         100%           Hexachlorobenzene                                                                                                                             |                                       |                    |        | ~ ~      |                           |            |                          |                                  | 100%         |
| Diesel Range Organics         TPH         Soil         mg/kg         13         1         0         13         100%           Diethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Diethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Dimethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-butylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         0         13         100%           Fluoranthene         SVOC         Soil         mg/kg         13         13         0         13         100%           Fluorene         SVOC         Soil         mg/kg         13         5         0         13         100%           Gasoline Range Organics         TPH         <                                                                                                                           |                                       |                    |        |          |                           |            |                          |                                  |              |
| Diethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Dimethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Dinethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-butylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Fluoranthene         SVOC         Soil         mg/kg         13         13         0         13         100%           Fluorene         SVOC         Soil         mg/kg         13         5         0         13         100%           Gasoline Range Organics         TPH         Soil         mg/kg         13         0         0         13         100%           Hexachlorobenzene         SV                                                                                                                               |                                       |                    |        |          |                           |            |                          |                                  | 100%         |
| Dimethylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-butylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Fluoranthene         SVOC         Soil         mg/kg         13         13         0         13         100%           Fluorene         SVOC         Soil         mg/kg         13         5         0         13         100%           Gasoline Range Organics         TPH         Soil         mg/kg         13         0         0         13         100%           Hexachlorobenzene         SVOC         Soil         mg/kg         13         0         0         13         100%                                                                                                                                                                                                                                                                                                | 0 0                                   |                    |        |          |                           |            |                          |                                  |              |
| Di-n-butylphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         0         13         100%           Fluoranthene         SVOC         Soil         mg/kg         13         13         0         13         100%           Fluorene         SVOC         Soil         mg/kg         13         5         0         13         100%           Gasoline Range Organics         TPH         Soil         mg/kg         13         0         0         13         100%           Hexachlorobenzene         SVOC         Soil         mg/kg         13         0         0         13         100%                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                   |                    |        |          |                           |            |                          |                                  | 100%         |
| Di-n-ocytlphthalate         SVOC         Soil         mg/kg         13         0         0         13         100%           Fluoranthene         SVOC         Soil         mg/kg         13         13         0         13         100%           Fluoranthene         SVOC         Soil         mg/kg         13         5         0         13         100%           Fluorene         SVOC         Soil         mg/kg         13         5         0         13         100%           Gasoline Range Organics         TPH         Soil         mg/kg         13         0         0         13         100%           Hexachlorobenzene         SVOC         Soil         mg/kg         13         0         0         13         100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                    |        |          |                           |            |                          |                                  | 100%         |
| Fluoranthene         SVOC         Soil         mg/kg         13         13         0         13         100%           Fluorene         SVOC         Soil         mg/kg         13         5         0         13         100%           Gasoline Range Organics         TPH         Soil         mg/kg         13         0         0         13         100%           Hexachlorobenzene         SVOC         Soil         mg/kg         13         0         0         13         100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                    |        |          |                           |            |                          |                                  | 100%         |
| FluoreneSVOCSoilmg/kg135013100%Gasoline Range OrganicsTPHSoilmg/kg130013100%HexachlorobenzeneSVOCSoilmg/kg130013100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                    |        |          |                           |            |                          |                                  |              |
| Gasoline Range OrganicsTPHSoilmg/kg130013100%HexachlorobenzeneSVOCSoilmg/kg130013100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                    |        |          |                           |            |                          |                                  | 100%         |
| HexachlorobenzeneSVOCSoilmg/kg130013100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                    |        |          |                           |            |                          |                                  |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 8                                   |                    |        |          |                           |            |                          |                                  | 100%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                    |        | 00       |                           |            |                          |                                  | 100%         |
| HexachlorobutadieneSVOCSoilmg/kg130013100%HexachlorocyclopentadieneSVOCSoilmg/kg13011292%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                    |        | ~ ~      |                           |            |                          |                                  | 100%         |

| Parameter                                                                | Parameter<br>Group                      | Matrix               | Unit                         | # of Validated<br>Results | Detections       | # of Rejected<br>Results | # of Non-<br>rejected<br>Results | Completeness         |
|--------------------------------------------------------------------------|-----------------------------------------|----------------------|------------------------------|---------------------------|------------------|--------------------------|----------------------------------|----------------------|
| Hexachloroethane                                                         | SVOC                                    | Soil                 | mg/kg                        | 13                        | 0                | 0                        | 13                               | 100%                 |
| Indeno[1,2,3-c,d]pyrene                                                  | SVOC                                    | Soil                 | mg/kg                        | 13                        | 10               | 0                        | 13                               | 100%                 |
| Iron                                                                     | Metal                                   | Soil                 | mg/kg                        | 13                        | 13               | 0                        | 13                               | 100%                 |
| Isophorone                                                               | SVOC                                    | Soil                 | mg/kg                        | 13                        | 0                | 0                        | 13                               | 100%                 |
| Lead                                                                     | Metal                                   | Soil                 | mg/kg                        | 13                        | 13               | 0                        | 13                               | 100%                 |
| Magnesium                                                                | Metal                                   | Soil                 | mg/kg                        | 13                        | 13               | 0                        | 13                               | 100%                 |
| Manganese                                                                | Metal<br>Metal                          | Soil<br>Soil         | mg/kg                        | 13<br>13                  | 13<br>4          | 0                        | 13<br>13                         | 100%<br>100%         |
| Mercury<br>Naphthalene                                                   | SVOC                                    | Soil                 | mg/kg<br>mg/kg               | 13                        | 4                | 0                        | 13                               | 100%                 |
| Nickel                                                                   | Metal                                   | Soil                 | mg/kg                        | 13                        | 13               | 0                        | 13                               | 100%                 |
| Nitrobenzene                                                             | SVOC                                    | Soil                 | mg/kg                        | 13                        | 0                | 0                        | 13                               | 100%                 |
| N-Nitrosodiphenylamine                                                   | SVOC                                    | Soil                 | mg/kg                        | 13                        | 0                | 0                        | 13                               | 100%                 |
| Oil and Grease                                                           | TPH                                     | Soil                 | mg/kg                        | 13                        | 6                | 0                        | 13                               | 100%                 |
| PCBs (total)                                                             | PCB                                     | Soil                 | mg/kg                        | 7                         | 3                | 0                        | 7                                | 100%                 |
| Pentachlorophenol                                                        | SVOC                                    | Soil                 | mg/kg                        | 13                        | 0                | 0                        | 13                               | 100%                 |
| Phenanthrene                                                             | SVOC                                    | Soil                 | mg/kg                        | 13                        | 13               | 0                        | 13                               | 100%                 |
| Phenol                                                                   | SVOC                                    | Soil                 | mg/kg                        | 13                        | 0                | 0                        | 13                               | 100%                 |
| Potassium                                                                | Metal                                   | Soil                 | mg/kg                        | 13                        | 13               | 0                        | 13                               | 100%                 |
| Pyrene                                                                   | SVOC                                    | Soil                 | mg/kg                        | 13                        | 11               | 0                        | 13                               | 100%                 |
| Selenium                                                                 | Metal                                   | Soil                 | mg/kg                        | 13                        | 5                | 0                        | 13                               | 100%                 |
| Silver                                                                   | Metal                                   | Soil                 | mg/kg                        | 13                        | 2                | 0                        | 13                               | 100%                 |
| Sodium                                                                   | Metal                                   | Soil                 | mg/kg                        | 13                        | 4                | 0                        | 13                               | 100%                 |
| Thallium                                                                 | Metal                                   | Soil                 | mg/kg                        | 13                        | 0                | 0                        | 13                               | 100%                 |
| Vanadium                                                                 | Metal                                   | Soil                 | mg/kg                        | 13                        | 13               | 0                        | 13                               | 100%                 |
| Zinc                                                                     | Metal                                   | Soil                 | mg/kg                        | 13                        | 13               | 0                        | 13                               | 100%                 |
| 1,1,1-Trichloroethane                                                    | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,1,2,2-Tetrachloroethane                                                | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane                                    | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,1,2-Trichloroethane                                                    | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,1-Biphenyl                                                             | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,1-Dichloroethane                                                       | VOC                                     | GW                   | ug/l                         | 2                         | 1                | 0                        | 2                                | 100%                 |
| 1,1-Dichloroethene                                                       | VOC                                     | GW                   | ug/l                         | 2                         | 1                | 0                        | 2                                | 100%                 |
| 1,2,3-Trichlorobenzene                                                   | VOC<br>SVOC                             | GW<br>GW             | ug/l                         | 2                         | 0                | 0                        | 22                               | 100%                 |
| 1,2,4,5-Tetrachlorobenzene                                               | VOC                                     | GW<br>GW             | ug/l                         | 2 2                       | 0                | 0                        | 2                                | 100%<br>100%         |
| 1,2-Dibromo-3-chloropropane                                              | VOC                                     | GW                   | ug/l<br>ug/l                 | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,2-Dibromoethane                                                        | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,2-Dichlorobenzene                                                      | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,2-Dichloroethane                                                       | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,2-Dichloroethene (Total)                                               | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,2-Dichloropropane                                                      | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,3-Dichlorobenzene                                                      | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,3-Dichloropropene                                                      | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,4-Dichlorobenzene                                                      | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 1,4-Dioxane                                                              | VOC/SVOC                                | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2,3,4,6-Tetrachlorophenol                                                | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2,4,5-Trichlorophenol                                                    | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2,4,6-Trichlorophenol                                                    | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2,4-Dichlorophenol                                                       | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2,4-Dimethylphenol                                                       | SVOC                                    | GW                   | ug/l                         | 2                         | 1                | 0                        | 2                                | 100%                 |
| 2,4-Dinitrophenol                                                        | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2,4-Dinitrotoluene                                                       | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2,6-Dinitrotoluene                                                       | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2-Butanone (MEK)                                                         | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2-Chloronaphthalene                                                      | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2-Chlorophenol                                                           | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2-Hexanone                                                               | VOC                                     | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 2-Methylnaphthalene                                                      | SVOC                                    | GW                   | ug/l                         | 2                         | 2                | 0                        | 2                                | 100%                 |
| 2-Methylphenol                                                           | SVOC                                    | GW                   | ug/l                         | 2                         |                  | 0                        | 2                                | 100%                 |
| 2-Nitroaniline                                                           | SVOC                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| 3&4-Methylphenol(m&p Cresol)<br>3.3'-Dichlorobenzidine                   | SVOC<br>SVOC                            | GW<br>GW             | ug/l                         | 2 2                       | 0                | 0                        | 22                               | 100%<br>100%         |
| 4-Chloroaniline                                                          | SVOC                                    | GW<br>GW             | ug/l<br>ug/l                 | 2                         | 0                | 0                        | 2                                | 100%                 |
| 4-Chloroannine<br>4-Methyl-2-pentanone (MIBK)                            | VOC                                     | GW<br>GW             | ug/1<br>ug/1                 | 2                         | 0                | 0                        | 2                                | 100%                 |
| 4-Methyl-2-pentanone (MIBK)<br>4-Nitroaniline                            | SVOC                                    | GW<br>GW             | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| Acenaphthene                                                             | SVOC                                    | GW                   | ug/l                         | 2                         | 2                | 0                        | 2                                | 100%                 |
| 1 somuphanone                                                            | SVOC                                    | GW                   | ug/l                         | 2                         | 1                | 0                        | 2                                | 100%                 |
| Acenaphthylene                                                           | 5100                                    | GW                   | ug/l                         | 2                         | 0                | 0                        | 2                                | 100%                 |
| Acenaphthylene<br>Acetone                                                | VOC                                     |                      |                              |                           | 0                | 0                        | 2                                | 100%                 |
| Acetone                                                                  | VOC<br>SVOC                             |                      | 110/1                        | /                         |                  |                          |                                  |                      |
| Acetone<br>Acetophenone                                                  | SVOC                                    | GW                   | ug/l<br>ug/l                 | 2 2                       |                  |                          |                                  | 100%                 |
| Acetophenone<br>Aluminum                                                 | SVOC<br>Metal                           | GW<br>GW             | ug/l                         | 2                         | 2                | 0                        | 2                                | 100%<br>100%         |
| Acetone<br>Acetophenone<br>Aluminum<br>Anthracene                        | SVOC<br>Metal<br>SVOC                   | GW<br>GW<br>GW       | ug/l<br>ug/l                 | 2<br>2                    |                  |                          | 2<br>2                           | 100%                 |
| Acetone<br>Acetophenone<br>Aluminum<br>Anthracene<br>Antimony            | SVOC<br>Metal<br>SVOC<br>Metal          | GW<br>GW<br>GW       | ug/l<br>ug/l<br>ug/l         | 2<br>2<br>2               | 2<br>1<br>1      | 0<br>0<br>0              | 2<br>2<br>2                      | 100%<br>100%         |
| Acetone<br>Acetophenone<br>Aluminum<br>Anthracene                        | SVOC<br>Metal<br>SVOC                   | GW<br>GW<br>GW       | ug/l<br>ug/l<br>ug/l<br>ug/l | 2<br>2                    | 2<br>1           | 0 0                      | 2<br>2                           | 100%                 |
| Acetone<br>Acetophenone<br>Aluminum<br>Anthracene<br>Antimony<br>Arsenic | SVOC<br>Metal<br>SVOC<br>Metal<br>Metal | GW<br>GW<br>GW<br>GW | ug/l<br>ug/l<br>ug/l         | 2<br>2<br>2<br>2<br>2     | 2<br>1<br>1<br>2 | 0<br>0<br>0<br>0         | 2<br>2<br>2<br>2<br>2            | 100%<br>100%<br>100% |

| Parameter                                     | Parameter<br>Group | Matrix   | Unit         | # of Validated<br>Results | Detections | # of Rejected<br>Results | # of Non-<br>rejected<br>Results | Completeness |
|-----------------------------------------------|--------------------|----------|--------------|---------------------------|------------|--------------------------|----------------------------------|--------------|
| Benzene                                       | VOC                | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Benzo[a]pyrene                                | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Benzo[b]fluoranthene                          | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Benzo[g,h,i]perylene                          | SVOC<br>SVOC       | GW<br>GW | ug/l         | 2 2                       | 0          | 0                        | 22                               | 100%<br>100% |
| Benzo[k]fluoranthene<br>Beryllium             | Metal              | GW       | ug/l<br>ug/l | 2                         | 1          | 0                        | 2                                | 100%         |
| bis(2-chloroethoxy)methane                    | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| bis(2-Chloroethyl)ether                       | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| bis(2-Chloroisopropyl)ether                   | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| bis(2-Ethylhexyl)phthalate                    | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Bromodichloromethane                          | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Bromoform                                     | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Bromomethane                                  | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Cadmium                                       | Metal              | GW       | ug/l         | 2                         | 1          | 0                        | 2                                | 100%         |
| Calcium                                       | Metal              | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Caprolactam                                   | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Carbazole                                     | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Carbon disulfide<br>Carbon tetrachloride      | VOC<br>VOC         | GW<br>GW | ug/l         | 2 2                       | 0          | 0                        | 22                               | 100%<br>100% |
| Chlorobenzene                                 | VOC                | GW       | ug/l<br>ug/l | 2                         | 0          | 0                        | 2                                | 100%         |
| Chloroethane                                  | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Chloroform                                    | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Chloromethane                                 | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Chromium                                      | Metal              | GW       | ug/l         | 2                         | 1          | 0                        | 2                                | 100%         |
| Chromium VI                                   | Metal              | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Chrysene                                      | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| cis-1,2-Dichloroethene                        | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| cis-1,3-Dichloropropene                       | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Cobalt                                        | Metal              | GW       | ug/l         | 2                         | 1          | 0                        | 2                                | 100%         |
| Copper                                        | Metal              | GW       | ug/l         | 2                         | 1          | 0                        | 2                                | 100%         |
| Cyanide, Available                            | CN                 | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Cyanide, Total                                | CN                 | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Cyclohexane                                   | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Dibenz[a,h]anthracene<br>Dibromochloromethane | SVOC<br>VOC        | GW<br>GW | ug/l         | 2 2                       | 0          | 0                        | 22                               | 100%<br>100% |
| Dichlorodifluoromethane                       | VOC                | GW       | ug/l<br>ug/l | 2                         | 0          | 0                        | 2                                | 100%         |
| Diesel Range Organics                         | ТРН                | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Diethylphthalate                              | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Di-n-butylphthalate                           | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Di-n-ocytlphthalate                           | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Ethylbenzene                                  | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Fluoranthene                                  | SVOC               | GW       | ug/l         | 2                         | 1          | 0                        | 2                                | 100%         |
| Fluorene                                      | SVOC               | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Gasoline Range Organics                       | TPH                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Hexachlorobenzene                             | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Hexachlorobutadiene                           | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Hexachlorocyclopentadiene                     | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Hexachloroethane                              | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Indeno[1,2,3-c,d]pyrene                       | SVOC<br>Metal      | GW<br>GW | ug/l         | 2 2                       | 0 2        | 0                        | 22                               | 100%<br>100% |
| Iron<br>Isophorone                            | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Isopropylbenzene                              | VOC                | GW       | ug/l<br>ug/l | 2                         | 1          | 0                        | 2                                | 100%         |
| Lead                                          | Metal              | GW       | ug/l         | 2                         | 1          | 0                        | 2                                | 100%         |
| Magnesium                                     | Metal              | GW       | ug/l         | 2                         | 1          | 0                        | 2                                | 100%         |
| Manganese                                     | Metal              | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Mercury                                       | Metal              | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Methyl Acetate                                | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Methyl tert-butyl ether (MTBE)                | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Methylene Chloride                            | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Naphthalene                                   | SVOC               | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Nickel                                        | Metal              | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Nitrobenzene                                  | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| N-Nitroso-di-n-propylamine                    | SVOC               | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| N-Nitrosodiphenylamine                        | SVOC<br>TPH        | GW       | ug/l         | 2                         | 0          | 0                        | 22                               | 100%<br>100% |
| Oil and Grease<br>Pentachlorophenol           | SVOC               | GW<br>GW | ug/l<br>ug/l | 2 4                       | 0          | 0                        | 4                                | 100%         |
| Phenanthrene                                  | SVOC               | GW       | ug/1<br>ug/1 | 2                         | 2          | 0                        | 4<br>2                           | 100%         |
| Phenol                                        | SVOC               | GW       | ug/1<br>ug/1 | 2                         | 0          | 0                        | 2                                | 100%         |
| Potassium                                     | Metal              | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Pyrene                                        | SVOC               | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Selenium                                      | Metal              | GW       | ug/l         | 2                         | 1          | 1                        | 1                                | 50%          |
| Silver                                        | Metal              | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Sodium                                        | Metal              | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Styrene                                       | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Tetrachloroethene                             | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Thallium                                      | Metal              | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |

| Parameter                                        | Parameter<br>Group | Matrix   | Unit         | # of Validated<br>Results | Detections | # of Rejected<br>Results | # of Non-<br>rejected<br>Results | Completeness |
|--------------------------------------------------|--------------------|----------|--------------|---------------------------|------------|--------------------------|----------------------------------|--------------|
| Toluene                                          | VOC                | GW       | ug/l         | 2                         | 1          | 0                        | 2                                | 100%         |
| trans-1,2-Dichloroethene                         | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| trans-1,3-Dichloropropene                        | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Trichloroethene<br>Trichlorofluoromethane        | VOC<br>VOC         | GW<br>GW | ug/l<br>ug/l | 2 2                       | 1 0        | 0                        | 22                               | 100%<br>100% |
| Vanadium                                         | Metal              | GW       | ug/l         | 2                         | 2          | 0                        | 2                                | 100%         |
| Vinyl chloride                                   | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Xylenes                                          | VOC                | GW       | ug/l         | 2                         | 0          | 0                        | 2                                | 100%         |
| Zinc                                             | Metal              | GW       | ug/l         | 2                         | 1          | 0                        | 2                                | 100%         |
| 1,1,1-Trichloroethane                            | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,1,2,2-Tetrachloroethane                        | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane            | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,1,2-Trichloroethane<br>1,1-Biphenyl            | VOC<br>SVOC        | SW<br>SW | ug/l         | 5                         | 0          | 0                        | 5<br>5                           | 100%<br>100% |
| 1,1-Dichloroethane                               | VOC                | SW<br>SW | ug/l<br>ug/l | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,1-Dichloroethene                               | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,2,3-Trichlorobenzene                           | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,2,4,5-Tetrachlorobenzene                       | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,2,4-Trichlorobenzene                           | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,2-Dibromo-3-chloropropane                      | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,2-Dibromoethane                                | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,2-Dichlorobenzene                              | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,2-Dichloroethane<br>1,2-Dichloroethene (Total) | VOC<br>VOC         | SW<br>SW | ug/l<br>ug/l | 5                         | 0          | 0                        | 5<br>5                           | 100%<br>100% |
| 1,2-Dichloropropane                              | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,3-Dichlorobenzene                              | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,3-Dichloropropene                              | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,4-Dichlorobenzene                              | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 1,4-Dioxane                                      | VOC/SVOC           | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2,3,4,6-Tetrachlorophenol                        | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2,4,5-Trichlorophenol                            | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2,4,6-Trichlorophenol                            | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2,4-Dichlorophenol<br>2,4-Dimethylphenol         | SVOC<br>SVOC       | SW<br>SW | ug/l<br>ug/l | 5                         | 0          | 0                        | 5<br>5                           | 100%<br>100% |
| 2,4-Dinitrophenol                                | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2,4-Dinitrotoluene                               | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2,6-Dinitrotoluene                               | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2-Butanone (MEK)                                 | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2-Chloronaphthalene                              | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2-Chlorophenol                                   | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2-Hexanone                                       | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 2-Methylnaphthalene                              | SVOC<br>SVOC       | SW       | ug/l         | 5                         | <u> </u>   | 0                        | 5<br>5                           | 100%         |
| 2-Methylphenol<br>2-Nitroaniline                 | SVOC               | SW<br>SW | ug/l<br>ug/l | 5                         | 0          | 0                        | 5                                | 100%<br>100% |
| 3&4-Methylphenol(m&p Cresol)                     | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 3,3'-Dichlorobenzidine                           | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 4-Chloroaniline                                  | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 4-Methyl-2-pentanone (MIBK)                      | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| 4-Nitroaniline                                   | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Acenaphthene                                     | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Acenaphthylene                                   | SVOC               | SW       | ug/l         | 5                         | 1          | 0                        | 5                                | 100%         |
| Acetone                                          | VOC<br>SVOC        | SW       | ug/l         | 5                         | 5<br>0     | 0                        | 5<br>5                           | 100%         |
| Acetophenone<br>Aluminum                         | Metal              | SW<br>SW | ug/l<br>ug/l | 5                         | <u> </u>   | 0                        | 5                                | 100%<br>100% |
| Anthracene                                       | SVOC               | SW       | ug/l         | 5                         | 1          | 0                        | 5                                | 100%         |
| Antimony                                         | Metal              | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Arsenic                                          | Metal              | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Barium                                           | Metal              | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| Benz[a]anthracene                                | SVOC               | SW       | ug/l         | 5                         | 1          | 0                        | 5                                | 100%         |
| Benzaldehyde                                     | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Benzene                                          | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Benzo[a]pyrene                                   | SVOC<br>SVOC       | SW<br>SW | ug/l         | 5                         | 0          | 0                        | 5<br>5                           | 100%         |
| Benzo[b]fluoranthene<br>Benzo[g,h,i]perylene     | SVOC<br>SVOC       | SW<br>SW | ug/l<br>ug/l | 5                         | 0          | 0                        | 5                                | 100%<br>100% |
| Benzo[k]fluoranthene                             | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Beryllium                                        | Metal              | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| bis(2-chloroethoxy)methane                       | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| bis(2-Chloroethyl)ether                          | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| bis(2-Chloroisopropyl)ether                      | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| bis(2-Ethylhexyl)phthalate                       | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Bromodichloromethane                             | VOC                | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| Bromoform                                        | VOC                | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| Bromomethane                                     | VOC<br>Metal       | SW<br>SW | ug/l<br>ug/l | 5                         | 2 0        | 0 0                      | 5<br>5                           | 100%<br>100% |
| Cadmum                                           | DVDED AL           |          | 1 110/1      | ,                         | U          |                          | )                                | 100%         |
| Cadmium<br>Calcium                               | Metal              | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |

| Parameter                                    | Parameter<br>Group | Matrix   | Unit         | # of Validated<br>Results | Detections | # of Rejected<br>Results | # of Non-<br>rejected<br>Results | Completeness |
|----------------------------------------------|--------------------|----------|--------------|---------------------------|------------|--------------------------|----------------------------------|--------------|
| Carbazole                                    | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Carbon disulfide<br>Carbon tetrachloride     | VOC<br>VOC         | SW<br>SW | ug/l         | 5                         | <u> </u>   | 0                        | 5                                | 100%<br>100% |
| Chlorobenzene                                | VOC                | SW       | ug/l<br>ug/l | 5                         | 0          | 0                        | 5                                | 100%         |
| Chloroethane                                 | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Chloroform                                   | VOC                | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| Chloromethane                                | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Chromium                                     | Metal              | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| Chromium VI                                  | Metal              | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Chrysene                                     | SVOC               | SW       | ug/l         | 5                         | 1          | 0                        | 5                                | 100%         |
| cis-1,2-Dichloroethene                       | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| cis-1,3-Dichloropropene                      | VOC<br>Metal       | SW<br>SW | ug/l         | 5                         | 0 5        | 0                        | 5<br>5                           | 100%<br>100% |
| Cobalt<br>Copper                             | Metal              | SW<br>SW | ug/l<br>ug/l | 5                         | 1          | 0                        | 5                                | 100%         |
| Cyanide, Available                           | CN                 | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Cyanide, Total                               | CN                 | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Cyclohexane                                  | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Dibenz[a,h]anthracene                        | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Dibromochloromethane                         | VOC                | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| Dichlorodifluoromethane                      | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Diesel Range Organics                        | TPH                | SW       | ug/l         | 5                         | 1          | 0                        | 5                                | 100%         |
| Diethylphthalate                             | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Di-n-butylphthalate                          | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Di-n-ocytlphthalate                          | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Ethylbenzene<br>Fluoranthene                 | VOC<br>SVOC        | SW<br>SW | ug/l         | 5                         | 03         | 0                        | 5                                | 100%<br>100% |
| Fluorantinene                                | SVOC               | SW<br>SW | ug/l<br>ug/l | 5                         | 3          | 0                        | 5                                | 100%         |
| Gasoline Range Organics                      | TPH                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Hexachlorobenzene                            | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Hexachlorobutadiene                          | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Hexachlorocyclopentadiene                    | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Hexachloroethane                             | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Indeno[1,2,3-c,d]pyrene                      | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Iron                                         | Metal              | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Isophorone                                   | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Isopropylbenzene                             | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Lead                                         | Metal              | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Magnesium                                    | Metal              | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| Manganese<br>Mercury                         | Metal<br>Metal     | SW<br>SW | ug/l<br>ug/l | 5                         | 5<br>0     | 0                        | 5<br>5                           | 100%<br>100% |
| Methyl Acetate                               | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Methyl tert-butyl ether (MTBE)               | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Methylene Chloride                           | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Naphthalene                                  | SVOC               | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| Nickel                                       | Metal              | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| Nitrobenzene                                 | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| N-Nitroso-di-n-propylamine                   | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| N-Nitrosodiphenylamine                       | SVOC               | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Oil and Grease                               | TPH                | SW       | ug/l         | 5                         | 1          | 0                        | 5                                | 100%         |
| Pentachlorophenol                            | SVOC               | SW       | ug/l         | 10                        | 0          | 0                        | 10                               | 100%         |
| Phenanthrene<br>Phenol                       | SVOC<br>SVOC       | SW<br>SW | ug/l         | 5                         | 4 0        | 0                        | 5                                | 100%<br>100% |
| Potassium                                    | Metal              | SW       | ug/l<br>ug/l | 5                         | 5          | 0                        | 5                                | 100%         |
| Pyrene                                       | SVOC               | SW       | ug/l         | 5                         | 3          | 0                        | 5                                | 100%         |
| Selenium                                     | Metal              | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Silver                                       | Metal              | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Sodium                                       | Metal              | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| Styrene                                      | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Tetrachloroethene                            | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Thallium                                     | Metal              | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Toluene                                      | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| trans-1,2-Dichloroethene                     | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| trans-1,3-Dichloropropene<br>Trichloroethene | VOC<br>VOC         | SW<br>SW | ug/l         | 5                         | 0          | 0                        | 5<br>5                           | 100%<br>100% |
| Trichlorofluoromethane                       | VOC                | SW<br>SW | ug/l<br>ug/l | 5                         | 0          | 0                        | 5                                | 100%         |
| Vanadium                                     | Metal              | SW<br>SW | ug/l         | 5                         | 1          | 0                        | 5                                | 100%         |
| Vinyl chloride                               | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Xylenes                                      | VOC                | SW       | ug/l         | 5                         | 0          | 0                        | 5                                | 100%         |
| Zinc                                         | Metal              | SW       | ug/l         | 5                         | 5          | 0                        | 5                                | 100%         |
| 1,1,1-Trichloroethane                        | VOC                | Sediment | mg/kg        | 12                        | 0          | 0                        | 12                               | 100%         |
| 1,1,2,2-Tetrachloroethane                    | VOC                | Sediment | mg/kg        |                           | 0          | 0                        | 12                               | 100%         |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane        | VOC                | Sediment | mg/kg        |                           | 0          | 0                        | 12                               | 100%         |
| 1,1,2-Trichloroethane                        | VOC                | Sediment | mg/kg        |                           | 0          | 0                        | 12                               | 100%         |
| 1,1-Biphenyl                                 | SVOC               | Sediment | mg/kg        |                           | 1          | 0                        | 12                               | 100%         |
| 1,1-Dichloroethane                           | VOC                | Sediment | mg/kg        |                           | 0          | 0                        | 12                               | 100%         |
| 1,1-Dichloroethene                           | VOC                | Sediment | mg/kg        | 12                        | 0          | 0                        | 12                               | 100%         |

| Parameter                                          | Parameter<br>Group | Matrix               | Unit           | # of Validated<br>Results | Detections | # of Rejected<br>Results | # of Non-<br>rejected<br>Results | Completeness |
|----------------------------------------------------|--------------------|----------------------|----------------|---------------------------|------------|--------------------------|----------------------------------|--------------|
| 1,2,3-Trichlorobenzene                             | VOC                | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 1,2,4,5-Tetrachlorobenzene                         | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 1,2,4-Trichlorobenzene                             | VOC                | Sediment             | mg/kg          | 12                        | 1          | 0                        | 12                               | 100%         |
| 1,2-Dibromo-3-chloropropane                        | VOC                | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 1,2-Dibromoethane                                  | VOC                | Sediment             | mg/kg          | 12<br>12                  | 0          | 0                        | 12                               | 100%         |
| 1,2-Dichlorobenzene<br>1,2-Dichloroethane          | VOC<br>VOC         | Sediment<br>Sediment | mg/kg          | 12                        | 4 0        | 0                        | 12<br>12                         | 100%<br>100% |
| 1,2-Dichloroethene (Total)                         | VOC                | Sediment             | mg/kg<br>mg/kg | 12                        | 0          | 0                        | 12                               | 100%         |
| 1,2-Dichloropropane                                | VOC                | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 1,3-Dichlorobenzene                                | VOC                | Sediment             | mg/kg          | 12                        | 7          | 0                        | 12                               | 100%         |
| 1,3-Dichloropropene                                | VOC                | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 1,4-Dichlorobenzene                                | VOC                | Sediment             | mg/kg          | 12                        | 12         | 0                        | 12                               | 100%         |
| 1,4-Dioxane                                        | VOC/SVOC           | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2,3,4,6-Tetrachlorophenol                          | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2,4,5-Trichlorophenol                              | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2,4,6-Trichlorophenol                              | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2,4-Dichlorophenol                                 | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2,4-Dimethylphenol                                 | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2,4-Dinitrophenol                                  | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 1                        | 11                               | 92%          |
| 2,4-Dinitrotoluene                                 | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2,6-Dinitrotoluene                                 | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2-Butanone (MEK)                                   | VOC                | Sediment             | mg/kg          | 12                        | 12         | 0                        | 12                               | 100%         |
| 2-Chloronaphthalene                                | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2-Chlorophenol                                     | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2-Hexanone                                         | VOC                | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2-Methylnaphthalene                                | SVOC               | Sediment             | mg/kg          | 12                        | 12         | 0                        | 12                               | 100%         |
| 2-Methylphenol                                     | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 2-Nitroaniline                                     | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 3&4-Methylphenol(m&p Cresol)                       | SVOC               | Sediment             | mg/kg          |                           | 6          | 0                        | 12                               | 100%         |
| 3,3'-Dichlorobenzidine                             | SVOC               | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| 4-Chloroaniline                                    | SVOC               | Sediment             | mg/kg          |                           | 6          | 0                        | 12                               | 100%         |
| 4-Methyl-2-pentanone (MIBK)                        | VOC                | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| 4-Nitroaniline                                     | SVOC               | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Acenaphthene                                       | SVOC               | Sediment             | mg/kg          |                           | 12         | 0                        | 12                               | 100%         |
| Acenaphthylene                                     | SVOC               | Sediment             | mg/kg          |                           | 12         | 0                        | 12                               | 100%<br>100% |
| Acetone                                            | VOC<br>SVOC        | Sediment<br>Sediment | mg/kg          |                           | 12<br>0    | 0                        | 12<br>12                         | 100%         |
| Acetophenone<br>Aluminum                           | Metal              | Sediment             | mg/kg<br>mg/kg |                           | 12         | 0                        | 12                               | 100%         |
| Anthracene                                         | SVOC               | Sediment             | mg/kg          |                           | 12         | 0                        | 12                               | 100%         |
| Antimony                                           | Metal              | Sediment             | mg/kg          |                           | 9          | 0                        | 12                               | 100%         |
| Aroclor 1016                                       | PCB                | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Aroclor 1221                                       | PCB                | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Aroclor 1232                                       | PCB                | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Aroclor 1242                                       | PCB                | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Aroclor 1248                                       | PCB                | Sediment             | mg/kg          |                           | 2          | 0                        | 12                               | 100%         |
| Aroclor 1254                                       | PCB                | Sediment             | mg/kg          |                           | 11         | 0                        | 12                               | 100%         |
| Aroclor 1260                                       | PCB                | Sediment             | mg/kg          | 12                        | 12         | 0                        | 12                               | 100%         |
| Aroclor 1262                                       | PCB                | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Aroclor 1268                                       | PCB                | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Arsenic                                            | Metal              | Sediment             | mg/kg          | 12                        | 12         | 0                        | 12                               | 100%         |
| Barium                                             | Metal              | Sediment             | mg/kg          | 12                        | 12         | 0                        | 12                               | 100%         |
| Benz[a]anthracene                                  | SVOC               | Sediment             | mg/kg          | 12                        | 12         | 0                        | 12                               | 100%         |
| Benzaldehyde                                       | SVOC               | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Benzene                                            | VOC                | Sediment             | mg/kg          |                           | 8          | 0                        | 12                               | 100%         |
| Benzo[a]pyrene                                     | SVOC               | Sediment             | mg/kg          | 12                        | 12         | 0                        | 12                               | 100%         |
| Benzo[b]fluoranthene                               | SVOC               | Sediment             | mg/kg          |                           | 12         | 0                        | 12                               | 100%         |
| Benzo[g,h,i]perylene                               | SVOC               | Sediment             | mg/kg          |                           | 5          | 0                        | 12                               | 100%         |
| Benzo[k]fluoranthene                               | SVOC               | Sediment             | mg/kg          |                           | 12         | 0                        | 12                               | 100%         |
| Beryllium                                          | Metal              | Sediment             | mg/kg          |                           | 6          | 0                        | 12                               | 100%         |
| bis(2-chloroethoxy)methane                         | SVOC               | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| bis(2-Chloroethyl)ether                            | SVOC               | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| bis(2-Chloroisopropyl)ether                        | SVOC               | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| bis(2-Ethylhexyl)phthalate<br>Bromodichloromethane | SVOC<br>VOC        | Sediment<br>Sediment | mg/kg          |                           | 12         | 0                        | 12<br>12                         | 100%<br>100% |
| Bromodichloromethane<br>Bromoform                  | VOC                | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Bromotorm                                          | VOC                | Sediment             | mg/kg<br>mg/kg |                           | 0          | 0                        | 12                               | 100%         |
| Cadmium                                            | Metal              | Sediment             | mg/kg<br>mg/kg |                           | 12         | 0                        | 12                               | 100%         |
| Calcium                                            | Metal              | Sediment             | mg/kg          |                           | 12         | 0                        | 12                               | 100%         |
| Caprolactam                                        | SVOC               | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Carbazole                                          | SVOC               | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Carbon disulfide                                   | VOC                | Sediment             | mg/kg          |                           | 6          | 0                        | 12                               | 100%         |
| Carbon tetrachloride                               | VOC                | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Chlorobenzene                                      | VOC                | Sediment             | mg/kg          |                           | 12         | 0                        | 12                               | 100%         |
| Chloroethane                                       | VOC                | Sediment             | mg/kg          | 12                        | 0          | 0                        | 12                               | 100%         |
| Chloroform                                         | VOC                | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |
| Chloromethane                                      | VOC                | Sediment             | mg/kg          |                           | 0          | 0                        | 12                               | 100%         |

| Parameter                                     | Parameter<br>Group | Matrix               | Unit           | # of Validated<br>Results | Detections    | # of Rejected<br>Results | # of Non-<br>rejected<br>Results | Completeness |
|-----------------------------------------------|--------------------|----------------------|----------------|---------------------------|---------------|--------------------------|----------------------------------|--------------|
| Chromium                                      | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Chromium VI                                   | Metal              | Sediment             | mg/kg          | 12                        | 0             | 12                       | 0                                | 0%           |
| Chrysene                                      | SVOC               | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| cis-1,2-Dichloroethene                        | VOC                | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| cis-1,3-Dichloropropene                       | VOC                | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Cobalt                                        | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Copper                                        | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Cyanide, Total                                | CN                 | Sediment             | mg/kg          | 12                        | 11            | 0                        | 12                               | 100%         |
| Cyclohexane                                   | VOC<br>SVOC        | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Dibenz[a,h]anthracene<br>Dibromochloromethane | VOC                | Sediment<br>Sediment | mg/kg          | 12<br>12                  | 4 0           | 0                        | 12<br>12                         | 100%<br>100% |
| Dichlorodifluoromethane                       | VOC                | Sediment             | mg/kg<br>mg/kg | 12                        | 0             | 0                        | 12                               | 100%         |
| Diesel Range Organics                         | TPH                | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Diethylphthalate                              | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Di-n-butylphthalate                           | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Di-n-ocytlphthalate                           | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Ethylbenzene                                  | VOC                | Sediment             | mg/kg          | 12                        | 9             | 0                        | 12                               | 100%         |
| Fluoranthene                                  | SVOC               | Sediment             | mg/kg          | 12                        | 9             | 0                        | 12                               | 100%         |
| Fluorene                                      | SVOC               | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Gasoline Range Organics                       | TPH                | Sediment             | mg/kg          | 12                        | 6             | 0                        | 12                               | 100%         |
| Hexachlorobenzene                             | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Hexachlorobutadiene                           | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Hexachlorocyclopentadiene                     | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 1                        | 11                               | 92%          |
| Hexachloroethane                              | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Indeno[1,2,3-c,d]pyrene                       | SVOC               | Sediment             | mg/kg          | 12                        | 5             | 0                        | 12                               | 100%         |
| Iron                                          | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Isophorone                                    | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Isopropylbenzene                              | VOC                | Sediment             | mg/kg          | 12                        | 8             | 0                        | 12                               | 100%         |
| Lead                                          | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Magnesium                                     | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Manganese                                     | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Mercury                                       | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Methyl Acetate                                | VOC                | Sediment             | mg/kg          | 12                        | 1             | 0                        | 12                               | 100%         |
| Methyl tert-butyl ether (MTBE)                | VOC                | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Methylene Chloride                            | VOC                | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Naphthalene                                   | SVOC               | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Nickel                                        | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Nitrobenzene                                  | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| N-Nitroso-di-n-propylamine                    | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| N-Nitrosodiphenylamine                        | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Oil and Grease                                | TPH                | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| PCBs (total)                                  | PCB                | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Pentachlorophenol                             | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Phenanthrene                                  | SVOC               | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Phenol                                        | SVOC               | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Potassium<br>Purana                           | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Pyrene<br>Salanium                            | SVOC<br>Matal      | Sediment             | mg/kg          | 12                        | 12<br>12      | 0                        | 12                               | 100%<br>100% |
| Selenium<br>Silver                            | Metal<br>Metal     | Sediment<br>Sediment | mg/kg          | 12<br>12                  | 12            | 0                        | 12<br>12                         | 100%         |
| Soliver                                       | Metal              | Sediment             | mg/kg<br>mg/kg | 12                        | 8             | 0                        | 12                               | 100%         |
| Styrene                                       | VOC                | Sediment             | mg/kg          | 12                        | <u>8</u><br>0 | 0                        | 12                               | 100%         |
| Tetrachloroethene                             | VOC                | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Thallium                                      | Metal              | Sediment             | mg/kg          | 12                        | 7             | 0                        | 12                               | 100%         |
| Toluene                                       | VOC                | Sediment             | mg/kg          | 12                        | 2             | 0                        | 12                               | 100%         |
| trans-1,2-Dichloroethene                      | VOC                | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| trans-1,3-Dichloropropene                     | VOC                | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Trichloroethene                               | VOC                | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Trichlorofluoromethane                        | VOC                | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Vanadium                                      | Metal              | Sediment             | mg/kg          | 12                        | 12            | 0                        | 12                               | 100%         |
| Vinyl chloride                                | VOC                | Sediment             | mg/kg          | 12                        | 0             | 0                        | 12                               | 100%         |
| Xylenes                                       | VOC                | Sediment             | mg/kg          | 12                        | 9             | 0                        | 12                               | 100%         |
|                                               |                    |                      |                |                           | . /           |                          |                                  |              |

Data validation has been completed for a representative 30% of all samples