

ARM Group LLC

Engineers and Scientists

April 24, 2023

Ms. Barbara Brown Project Coordinator Maryland Department of the Environment 1800 Washington Boulevard Baltimore, MD 21230

> Re: RADWP Addendum: SLRA Area B: Sub-Parcel B4-2 – Revision 4 Tradepoint Atlantic Sparrows Point, MD 21219

Dear Ms. Brown:

ARM Group LLC (ARM), on behalf of Tradepoint Atlantic (TPA), is submitting this Response and Development Work Plan (RADWP) Addendum to assess future Composite Worker and Construction Worker risks within southern expansion of Sub-Parcel B4-2 (the Site), which is part of Area B of the TPA property located in Sparrows Point, Maryland. The original scope of development work was presented to the Maryland Department of the Environment (MDE) and United States Environmental Protection Agency (USEPA) (herein after referred to as the Agencies) in the Sub-Parcel B4-2 RADWP (Revision 0 dated September 15, 2020). The scope of development was subsequently reduced through submission of the revised RADWP (Revision 1 dated September 22, 2020) to include only the northern portion of the Sub-Parcel. RADWP Addendum (Revision 2) modified the previous RADWP Addendum (Revision 1 dated November 11, 2021) and proposes completion of the previously proposed southern expansion of Sub-Parcel B4-2 and presents the results of a Screening Level Risk Assessment (SLRA) that has been completed to assess Composite Worker and Construction Worker risks for this area. RADWP Addendum (Revision 3) was updated based on Agency comments received via email on March 27, 2023. This RADWP Addendum (Revision 4) has been updated based on Agency comments received via email on April 17, 2023.

As shown on **Figure 1**, the southern expansion of Sub-Parcel B4-2 consists of approximately 24.2 acres located primarily within Parcel B18 but extending slightly into Parcel B4 and Parcel B5 of the approximately 3,100-acre former steel plant property. The southern expansion of Sub-Parcel B4-2 is slated for development and use as an Automotive Roll-On, Roll-Off (RORO) Distribution Center. Outside of the main development area, an external construction area (not intended for permanent use or occupancy) with a total area of 3.96 acres within the Limit of Disturbance (LOD) will be utilized to accommodate construction of an access road. Development plans for the

PRECISE. RESPONSIVE. SOLUTIONS.

expansion are provided as **Attachment 1** and shown on **Figure 2**. The revised RADWP already specified a remedy consisting of in-place containment with surface engineering controls (i.e., capping) to be protective of Composite Workers in the northern portion of Sub-Parcel B4-2. The remedy details are specified in the Sub-Parcel B4-2 RADWP (Revision 1 dated September 22, 2020). **Figure 3** presents the locations of relevant soil borings completed during the original Parcel B4, Parcel B5, and Parcel B18 Phase II Investigations. Organic and inorganic soil project action limit (PAL) exceedances within the Sub-Parcel B4-2 southern expansion are shown on **Figure 4** and **Figure 5**, respectively. **Figure GW1** presents the locations of relevant groundwater piezometers and monitoring wells. Groundwater conditions were investigated as reported in the Area B Groundwater and Parcel B18 Phase II Investigation Reports. During the Phase II Investigation, the depth to groundwater ranged from 7 to 11 feet bgs. Groundwater PAL exceedances are also shown in **Figure GW1**.

Note that, as shown in **Figure 2**, the southern expansion of Sub-Parcel B4-2 contains existing railway lines. The existing railway lines will be removed and replaced. These replacement lines will be capped in accordance with previously approved specifications. The proposed cap sections for the two types of proposed replacement railways, 1) track section for paved area, and 2) standard track section, are provided as **Attachment 2**. The track sections in paved areas will include a minimum of 13 inches of ballast material and a minimum of 7 inches of overlying pavement surface. The standard track section will not include a paved barrier between the surface and the ballast material; therefore, the ballast and sub-ballast material (each with a minimum thickness of 6 inches) will consist of MDE-approved clean fill materials.

As part of the proposed work, stormwater lines will be installed throughout the Site, and connect in three locations to the existing 87-inch by 136-inch storm drain running along the northern portion of the Site (refer to C-402 in **Attachment 1**). According to Figure B-2 of the Stormwater Pollution Prevention Plan (SWPPP) Revision 8 dated April 30, 2020, stormwater from the majority of the sub-parcel is directed to the west and discharged through National Pollution Discharge Elimination System (NPDES) Outfalls 012.

SLRA ANALYSIS PROCESS

A human health SLRA has been completed for the Composite Worker and Construction Worker scenarios based on the analytical data obtained from the characterization of surface and subsurface soils in the Sub-Parcel B4-2 southern expansion.

The SLRA included the following evaluation process:

Identification of Exposure Units (EUs): The southern expansion Composite Worker SLRA was evaluated using a site-wide EU (designated as EU1) with an area of 24.2 acres. The Construction Worker SLRA was evaluated using a similar EU (designated as EU1-EXP to recognize the surrounding temporary construction zones) with an area of 28.2 acres.

Note that, during Phase II Investigation sampling, stockpiled materials had been temporarily placed on Parcel B18 in support of ongoing development elsewhere on the Tradepoint Atlantic property. There were two borings (B18-019-SB and B18-020-SB) that were completed in areas with clean soil stockpiles above the ground surface. At each of these locations, the Geoprobe® advanced through the soil stockpile and the field personnel identified the interval of the stockpiled material on the boring log. The 0 to 1 foot interval at each of these locations was collected at the true ground surface (below the stockpiled material). For example, sample B18-020-SB-11 is considered to be the shallow sample at this location because it was collected from beneath 10 feet of stockpile materials.

Identification of Constituents of Potential Concern (COPCs): For the project-specific SLRA, compounds that were present at concentrations at or above the USEPA Regional Screening Levels (RSLs) set at a target cancer risk of 1E-6 or target non-cancer Hazard Quotient (HQ) of 0.1 were identified as COPCs to be included in the SLRA. A COPC screening analysis is provided in **Table 1** to identify compounds above the relevant screening levels.

Exposure Point Concentrations (EPCs): The COPC soil datasets for the site-wide EU were divided into surface (0 to 1 foot), subsurface (>1 foot), and pooled depths for estimation of potential EPCs. Thus, there are three soil datasets associated with the site-wide EU. A statistical analysis was performed for each COPC dataset using the ProUCL software (version 5.1) developed by the USEPA to determine representative reasonable maximum exposure (RME) values for the EPC for each constituent. The RME value is typically the 95% Upper Confidence Limit (UCL) of the mean. For lead, the arithmetic mean for each depth was calculated for comparison to the Adult Lead Model (ALM)-based values, and any results above 10,000 mg/kg would be delineated for possible excavation and removal (not applicable at this Site). For PCBs, all results above 50 mg/kg would be delineated for excavation and removal (not applicable at this Site).

Risk Ratios: The surface soil EPCs, subsurface soil EPCs, and pooled soil EPCs were compared to the USEPA RSLs for the Composite Worker and to site-specific Soil Screening Levels (SSLs) for the Construction Worker based on equations derived in the USEPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (OSWER 9355.4-24, December 2002). Risk ratios were calculated with a cancer risk of 1E-6 and a non-cancer HQ of 1. The risk ratios for the carcinogens were summed to develop a screening level estimate of the baseline cumulative cancer risk. The risk ratios for the non-carcinogens were segregated and summed by target organ to develop a screening level estimate of the baseline cumulative non-cancer Hazard Index (HI).

For the Construction Worker, site-specific risk-based evaluations were completed for a range of potential exposure frequencies to determine the maximum exposure frequency for

3

EU1-EXP that would result in risk ratios equivalent to a cumulative cancer risk of 1E-5 or HI of 1 for the individual target organs. This analysis indicated that the allowable exposure frequency before additional worker protections or more detailed job safety evaluations might be needed is 10 days.

There is no potential for direct human exposure to groundwater for a Composite Worker since groundwater is not used on the TPA property (and is not proposed to be utilized). In the event that any future construction/excavation leads to a potential Construction Worker exposure to groundwater during development, health and safety plans and management procedures shall be followed to limit exposure risk. Groundwater elevation is approximately 6 feet above mean sea level (AMSL), and the deepest utilities are proposed to extend to -3 feet AMSL, so groundwater is expected to be encountered during the proposed development activities. If groundwater is encountered, dewatering will be implemented as described in the Water Management section below.

Assessment of Lead: For lead, the arithmetic mean concentrations for surface soils, subsurface soils, and pooled soils for EU1 and EU1-EXP were compared to the applicable RSL (800 mg/kg) as an initial screening. If the mean concentrations for the EU were below 800 mg/kg, the Site was identified as requiring no further action for lead. If a mean concentration exceeded the RSL, the mean values were compared to calculated ALM values (ALM Version dated 6/21/2009 updated with the 5/17/2017 OLEM Directive) with inputs of 1.8 for the geometric standard deviation and a blood baseline lead level of 0.6 ug/dL. The ALM calculation generates a soil lead concentration of 2,518 mg/kg, which represents the concentrations such that there would be no more than a 5% probability that fetuses exposed to lead would exceed a blood lead of 10 μ g/L. If the arithmetic mean concentrations were below 2,518 mg/kg, the Site was identified as requiring no further action for lead. The average and maximum lead concentrations are presented for surface, subsurface, and pooled soils in **Table 2**. None of the arithmetic mean lead concentrations exceeded the initial screening threshold of 800 mg/kg, indicating no further action is needed with respect to lead.

Assessment of TPH/Oil & Grease: EPCs were not calculated for TPH/Oil & Grease. Instead, the individual soil results were compared to the TPH/Oil & Grease PAL set to a HQ of 1 (6,200 mg/kg). As shown on **Figure 6**, two soil boring locations (B18-047-SB and B18-050-SB) within, or adjacent to, the proposed development boundary exceeded the TPH/Oil & Grease PAL. Five locations (B18-017-SB, B18-034-SB, B18-047-SB, B18-050-SB, and B18-059-SB) showed indications of NAPL in the soil cores. The soil borings with physical evidence of NAPL are plotted with respect to the proposed development plan in **Figure 6**. Detailed TPH/Oil & Grease and NAPL results can be found in the Parcel B4, Parcel B5, and Parcel B18 Phase II Investigation Reports. Contingency measures to address

the potential presence of NAPL that could be encountered during construction are addressed in the main RADWP.

Risk Characterization Approach: If the baseline risk ratio for each non-carcinogenic COPC or cumulative target organ does not exceed 1, and the sum of the risk ratios for the carcinogenic COPCs does not exceed a cumulative cancer risk of 1E-5, then a no further action determination will be recommended. If the baseline estimate of cumulative cancer risk exceeds 1E-5 but is less than or equal to 1E-4, then capping of the EU will be considered an acceptable remedy for the Composite Worker. The efficacy of capping for elevated non-cancer hazard will be evaluated in terms of the magnitude of exceedance and other factors such as bioavailability of the COPC. For the Construction Worker, cumulative cancer risks exceeding 1E-5 (but less than or equal to 1E-4) or HI values exceeding 1 will be mitigated via site-specific health and safety requirements.

The USEPA's acceptable risk range is between 1E-6 and 1E-4. If the sum of the risk ratios for carcinogens exceeds a cumulative cancer risk of 1E-4, further analysis of site conditions will be required including the consideration of toxicity reduction in any proposal for a remedy. The magnitude of any non-carcinogen HI exceedances and bioavailability of the COPC will also dictate further analysis of site conditions including consideration of toxicity reduction in any proposal for a remedy.

SLRA RESULTS AND RISK CHARACTERIZATION

Soil data were divided into three datasets (surface, subsurface, and pooled) for Sub-Parcel B4-2 to evaluate potential exposure scenarios. Each of these potential exposure scenarios is relevant for both the Composite Worker and Construction Worker.

EPCs were calculated for each soil dataset (i.e., surface, subsurface, and pooled depths) for both EU1 and EU1-EXP. ProUCL output tables (with computed UCLs) derived from the data for each COPC in soils are provided as electronic attachments, with EPCs calculated for COPCs within each of the datasets. The ProUCL input tables are also included as electronic attachments. The results were evaluated to identify any samples that may require additional assessment or special management based on the risk characterization approach. The calculated EPCs for the surface, subsurface, and pooled exposure scenarios are provided in **Table 3**. These EPCs were used for both the Composite Worker and Construction Worker assessments.

As indicated above, the EPCs for lead are the average (i.e., arithmetic mean) values for each dataset. A lead evaluation spreadsheet, providing the computations to determine lead averages for each dataset, is also included as an electronic attachment. The screening criterion for lead was set at an arithmetic mean of 800 mg/kg based on the RSL, with a secondary limit of 1,050 mg/kg based on the May 2017 updated ALM developed by the USEPA (corresponding to a 5% probability of a blood lead level of 5 ug/dL). The average and maximum lead concentrations are

presented for each dataset in **Table 2**, which indicates that neither surface, subsurface, nor pooled soils exceeded an average lead value of 800 mg/kg.

6

Composite Worker Assessment:

Risk ratios for the estimates of potential EPCs for the Composite Worker scenario for EU1 are shown in **Table 4** (surface), **Table 5** (subsurface), and **Table 6** (pooled soils). The results are summarized as follows:

Worker Scenario	Exposure Unit	Medium	Hazard Index (>1)	Total Cancer Risk
		Surface Soil	none	3E-6
Composite Worker	EU1	Subsurface Soil	none	1E-5
WORKER	(24.2 deres)	Pooled Soil	none	4E-6

Based on the risk ratios for Sub-Parcel B4-2 southern expansion, capping is not necessary to be protective of future Composite Workers for the surface, subsurface, and pooled exposure scenarios. None of the cancer risk values exceeded 1E-5 and none of the non-carcinogenic HI values exceeded 1. However, slag aggregate will be used as the primary fill material and pavement subbase at the Site. Therefore, environmental capping will be required to be protective of future Composite Workers. Details regarding the implementation and maintenance of the capping remedy are included in the main RADWP.

Construction Worker Assessment:

А

R

Μ

G

r

0

u

р

Ground intrusive activities which could result in potential Construction Worker exposures are expected to be limited primarily to utility installation tasks performed by specific work crews. Construction Worker risks were evaluated for several different exposure scenarios to determine the maximum exposure frequency for EU1-EXP that would result in risk ratios equivalent to a cumulative cancer risk of 1E-5 or HI of 1 for any individual target organ. Risk ratios for the Construction Worker scenario using the selected duration (10 days) are shown in **Table 7** (surface), **Table 8** (subsurface), and **Table 9** (pooled). The variables entered for calculation of the site-specific Construction Worker SSLs (EU area, input assumptions, and exposure frequency) are indicated as notes on the tables. The spreadsheet used for computation of the site-specific Construction Worker SSLs is included as **Attachment 3**. The results are summarized as follows:

L

L

С

Worker Scenario	Exposure Unit	Medium	Hazard Index (>1)	Total Cancer Risk
Construction Worker	EU1-EXP	Surface Soil	none	4E-8
	(28.2 acres)	Subsurface Soil	none	5E-7
	(10 exposure days)	Pooled Soil	none	2E-7

Using the selected exposure duration of 10 days, the carcinogenic risks were all less than 1E-5, and none of the non-carcinogens caused a cumulative HI to exceed 1 for any target organ system. These findings are below the acceptable limits for no further action established by the agencies. This evaluation indicates that additional site-specific health and safety requirements (beyond standard Level D protection) would be required only if the allowable exposure duration of 10 days were to be exceeded for an individual worker.

In the event that this exposure day limit would be exceeded, additional site-specific health and safety requirements would be warranted to be protective of Construction Workers during intrusive work. While the SLRA indicated no unacceptable risks to the Construction Worker for an exposure duration of up to 10 days, upgraded Personal Protective Equipment (PPE) beyond standard Level D protection will be used for the entire scope of intrusive work covered by this RADWP Addendum as a protective measure. The modified Level D PPE requirements which will be applied during this project, as described in the Sub-Parcel B4-2 RADWP (Revision 1 dated September 22, 2020). As specified in the RADWP, institutional controls will be required to be established for the protection of future Construction Workers in the event of any future long-term development which could include intrusive activities.

WATER MANAGEMENT

Dewatering may be necessary to facilitate the placement and compaction of structural fill as well as during ground intrusive work such as the installation of underground utilities or within excavations/trenches. If dewatering is required during construction, it shall be done in accordance with all local, state, and federal regulations. Water that collects in excavations/trenches due to intrusion of groundwater, stormwater, and/or dust control waters will be managed via one of the following options:

- Transported to be treated at the Humphrey Creek Wastewater Treatment Plant (HCWWTP), following any pretreatment necessary and discharged in accordance with NPDES Permit No. 90-DP-0064; Special Conditions; A.1, A.4, or A.6 (whichever is currently in effect); Effluent Limitations and Monitoring Requirements;
- Discharged to the Baltimore County sanitary sewer system;

7

- Discharged locally in accordance with the requirements of Special Condition AF, Section 2, Mobile Dewatering Collection and Treatment Unit of NPDES Permit No. 90-DP-0064; or
- Off-site disposal.

The Agencies will be notified which option is selected prior to the generation of groundwater. If water is sent to the HCWWTP via the Tin Mill Canal, trucking, or direct discharge to a drainage system that flows to the HCWWTP, an applicable outfall dewatering fluid sample will be evaluated pursuant to the HCWWTP Constituent Threshold Limits for Dewatering Activities related to Remediation, Development, and Capping Protocol. Water discharged to the TMC will be pumped through a filter bag, weir frac tank, or equivalent to remove suspended solids prior to discharge.

The EP will inspect water that collects in the excavations/trenches. If the water exhibits indications of significant contamination (e.g., sheen, odor, discoloration, presence of product), the water may be sampled to confirm conditions. If the results of the analyses are above the threshold levels listed below, groundwater at the Site will be further evaluated to confirm acceptable treatment by the HCWWTP or will be evaluated to design an appropriate pre-treatment option. Alternatively, the water could be disposed of at an appropriate off-site facility.

<u>Analysis</u>	<u>Threshold Levels</u>
Total metals by USEPA Method 6020A	1,000 ppm
PCBs by USEPA Method 8082	>Non-Detect
SVOCs by USEPA Method 8270C	<u>1 ppm</u>
VOCs by USEPA Method 8260B	1 ppm
Oil & Grease by USEPA Method 1664	200 ppm
TPH-DRO by USEPA Method 8015B	200 ppm
TPH-GRO by USEPA Method 8015B	200 ppm

Documentation of water testing and the selected disposal option will be reported to the Agencies in the Development Completion Report. Associated permits or permit modifications related to dewatering will also be included in the Development Completion Report. The most recent sample concentrations for each groundwater location shown in **Figure GW1** were compared to the above thresholds. None of the concentrations exceeded the thresholds.

IMPLEMENTATION SCHEDULE

Progress reports will be submitted to the MDE on a quarterly basis. Each quarterly progress report will include, at a minimum, a discussion of the following information regarding tasks completed during the specified quarter:

- Development Progress
- Dust Monitoring
- Water Management
- Soil Management (imported materials, screening, stockpiling)
- Soil Sampling and Disposal
- Notable Occurrences (if applicable)
- Additional Associated Work (if applicable)

The proposed implementation schedule is shown below:

Task	Proposed Completion Date
Anticipated RADWP Addendum Approval	April 2023
Development:	
Installation of Erosion and Sediment Controls	April 2023
Site Preparation	April 2023
Slag (or Alternative Fill) Delivery and Placement	April 2023
Site Grading	April 2023
Utility Installations	May 2023
Submittal of Development Completion Report/ Notice of Completion of Remedial Actions*	October 2023
Request for NFA from the MDE	January 2024

If you have questions regarding any information covered in this document, please feel free to contact Peter Haid at Tradepoint Atlantic: 443-649-5055.

Respectfully Submitted, ARM Group LLC

Janu Banu

Joshua M. Barna, G.I.T. Project Geologist

G

r

0

u

р

А

R

Μ

Kay Sull

Kaye Guille, P.E., PMP Senior Engineer

L

L

С

9

FIGURES

TABLES

Table 1 - Sub-Parcel B4-2 ExpansionCOPC Screening Analysis

Parameter	CAS#	Location of Max Result	Max Detection (mg/kg)	Final Flag	Min Detection (mg/kg)	Average Detection (mg/kg)	Total Samples	Frequency of Detection (%)	Cancer TR=1E-06 (mg/kg)	Non-Cancer HQ=0.1 (mg/kg)	COPC?
1,1-Biphenyl	92-52-4	B18-050-SB-5	0.82		0.015	1.35E-01	89	35.96	410	20	no
1,2,4,5-Tetrachlorobenzene	95-94-3	B18-019-SB-8	0.11		0.11	1.10E-01	89	1.12		35	no
2,4-Dichlorophenol	120-83-2	B18-032-SB-1.5	0.043	J	0.043	4.30E-02	60	1.67		250	no
2,4-Dimethylphenol	105-67-9	B18-047-SB-4	0.92		0.024	1.52E-01	62	14.52		1,600	no
2,4-Dinitrophenol	51-28-5	B18-061-SB-1	0.076	J	0.076	7.60E-02	60	1.67		160	no
2,4-Dinitrotoluene	121-14-2	B18-013-SB-1	0.081		0.081	8.10E-02	89	1.12	7.4	160	no
2,6-Dinitrotoluene	606-20-2	B18-061-SB-1	0.16		0.16	1.60E-01	89	1.12	1.5	25	no
2-Butanone (MEK)	78-93-3	B4-029-SB-1	0.025		0.0031	9.64E-03	36	22.22		19,000	no
2-Chloronaphthalene	91-58-7	B18-019-SB-8	0.14		0.089	1.15E-01	89	2.25		6,000	no
2-Chlorophenol	95-57-8	B18-047-SB-4	0.93		0.93	9.30E-01	60	1.67		580	no
2-Hexanone	591-78-6	B4-029-SB-1	0.0022	J	0.0022	2.20E-03	36	2.78		130	no
2-Methylnaphthalene	91-57-6	B18-047-SB-4	22.9		0.0025	5.33E-01	89	88.76		300	no
2-Methylphenol	95-48-7	B18-047-SB-4	1		0.021	1.81E-01	61	13.11		4,100	no
2-Nitroaniline	88-74-4	B18-047-SB-4	0.13	J	0.13	1.30E-01	89	1.12		800	no
3,3'-Dichlorobenzidine	91-94-1	B18-072-SB-4	0.15		0.037	9.35E-02	89	2.25	5.1		no
4-Chloroaniline	106-47-8	B18-019-SB-8	0.024	J	0.024	2.40E-02	89	1.12	11	330	no
Acenaphthene	83-32-9	B18-047-SB-4	31.5		0.00048	5.53E-01	89	77.53		4500	no
Acenaphthylene	208-96-8	B18-047-SB-4	171		0.0006	2.64E+00	89	84.27			no
Acetone	67-64-1	B5-062-SB-1	0.14		0.0064	3.92E-02	36	36.11		67,000	no
Acetophenone	98-86-2	B5-177-SB-3.5	0.07	J	0.018	3.50E-02	89	17.98		12,000	no
Aluminum	7429-90-5	B18-067-SB-1	86,900		3,280	1.98E+04	89	100.00		110,000	no
Anthracene	120-12-7	B18-047-SB-4	280		0.00077	3.89E+00	89	94.38		23,000	no
Antimony	7440-36-0	B18-070-SB-5	2	J	1.1	1.55E+00	89	2.25		47	no
Aroclor 1248	12672-29-6	B18-010-SB-1	0.0934		0.0934	9.34E-02	49	2.04	0.95		no
Aroclor 1254	11097-69-1	B18-017-SB-1	0.715		0.0298	2.93E-01	49	10.20	0.97	1.5	no
Aroclor 1260	11096-82-5	B18-017-SB-1	0.29		0.0532	1.72E-01	49	4.08	0.99		no
Arsenic	7440-38-2	B18-047-SB-4	45.7	J	2	1.08E+01	90	57.78	3	48	YES (C)

Table 1 - Sub-Parcel B4-2 ExpansionCOPC Screening Analysis

Parameter	CAS#	Location of Max Result	Max Detection (mg/kg)	Final Flag	Min Detection (mg/kg)	Average Detection (mg/kg)	Total Samples	Frequency of Detection (%)	Cancer TR=1E-06 (mg/kg)	Non-Cancer HQ=0.1 (mg/kg)	COPC?
Barium	7440-39-3	B18-031-SB-6	1,310		21.9	2.29E+02	89	100.00		22,000	no
Benz[a]anthracene	56-55-3	B18-047-SB-4	589		0.00098	8.18E+00	89	95.51	21		YES (C)
Benzaldehyde	100-52-7	B18-032-SB-1.5	2.6		0.021	2.04E-01	78	25.64	820	12,000	no
Benzene	71-43-2	B18-047-SB-4	0.035		0.0014	1.02E-02	36	19.44	5.1	42	no
Benzo[a]pyrene	50-32-8	B18-047-SB-4	386		0.0012	5.78E+00	90	95.56	2.1	22	YES (C/NC)
Benzo[b]fluoranthene	205-99-2	B18-047-SB-4	782		0.0014	1.13E+01	89	96.63	21		YES (C)
Benzo[g,h,i]perylene	191-24-2	B18-047-SB-4	129		0.0011	2.44E+00	89	94.38			no
Benzo[k]fluoranthene	207-08-9	B18-047-SB-4	707		0.0016	9.65E+00	89	96.63	210		YES (C)
Beryllium	7440-41-7	B18-059-SB-7.5	8.5		0.16	2.10E+00	89	60.67	6,900	230	no
bis(2-chloroethoxy)methane	111-91-1	B18-032-SB-1.5	0.18		0.18	1.80E-01	89	1.12		250	no
bis(2-Chloroethyl)ether	111-44-4	B18-020-SB-14	0.085		0.085	8.50E-02	89	1.12	1		no
bis(2-Ethylhexyl)phthalate	117-81-7	B18-050-SB-5	1.3	J	0.016	3.00E-01	89	12.36	160	1,600	no
Bromodichloromethane	75-27-4	B18-026-SB-1	0.0031	J	0.0031	3.10E-03	36	2.78	1.3	2,300	no
Cadmium	7440-43-9	B18-072-SB-4	22		0.28	2.78E+00	89	70.79	9,300	10	YES (NC)
Caprolactam	105-60-2	B18-017-SB-1	0.56		0.022	1.19E-01	89	15.73		40,000	no
Carbazole	86-74-8	B18-047-SB-4	7.1		0.018	6.67E-01	89	43.82			no
Chloroform	67-66-3	B18-026-SB-1	0.035		0.0058	1.62E-02	36	11.11	1.4	100	no
Chromium	7440-47-3	B4-029-SB-1	1400		2.6	6.17E+02	89	100.00		180,000	no
Chromium VI	18540-29-9	B4-016-SB-1	8	J-	0.18	3.14E+00	88	19.32	6.3	350	YES (C)
Chrysene	218-01-9	B18-047-SB-4	501		0.00094	7.06E+00	89	97.75	2,100		no
Cobalt	7440-48-4	B18-019-SB-8	30.9		0.32	7.88E+00	89	74.16	1,900	35	no
Copper	7440-50-8	B18-072-SB-4	554		2.3	8.95E+01	89	100.00		4,700	no
Cyanide	57-12-5	B4-029-SB-1	87.2	J+	0.063	4.69E+00	89	95.51		120	no
Cyclohexane	110-82-7	B18-019-SB-8	0.0054	J	0.0052	5.30E-03	36	5.56		2,700	no
Dibenz[a,h]anthracene	53-70-3	B18-047-SB-4	73.9		0.0016	1.27E+00	89	86.52	2.1		YES (C)
Di-n-butylphthalate	84-74-2	B18-034-SB-5	0.082		0.082	8.20E-02	89	1.12		8,200	no
Di-n-ocytlphthalate	117-84-0	B18-072-SB-4	0.09		0.025	5.03E-02	89	4.49		820	no

Table 1 - Sub-Parcel B4-2 Expansion **COPC Screening Analysis**

Parameter	CAS#	Location of Max Result	Max Detection (mg/kg)	Final Flag	Min Detection (mg/kg)	Average Detection (mg/kg)	Total Samples	Frequency of Detection (%)	Cancer TR=1E-06 (mg/kg)	Non-Cancer HQ=0.1 (mg/kg)	COPC?
Ethylbenzene	100-41-4	B18-031-SB-6	0.0098		0.0023	6.05E-03	36	5.56	25	2,000	no
Fluoranthene	206-44-0	B18-047-SB-4	1,600		0.00081	2.01E+01	89	100.00		3,000	no
Fluorene	86-73-7	B18-047-SB-4	116		0.00074	2.04E+00	89	74.16		3,000	no
Hexachloroethane	67-72-1	B18-019-SB-8	0.031	J	0.031	3.10E-02	89	1.12	8	46	no
Indeno[1,2,3-c,d]pyrene	193-39-5	B18-047-SB-4	145		0.0013	2.65E+00	89	92.13	21		YES (C)
Iron	7439-89-6	B18-013-SB-4	459,000		4370	1.36E+05	89	100.00		82,000	YES (NC)
Isophorone	78-59-1	B18-072-SB-4	0.056	J	0.03	4.30E-02	89	2.25	2,400	16,000	no
Lead^	7439-92-1	B18-066-SB-4	3,850	J	2.8	2.35E+02	90	96.67		800	YES (NC)
Manganese	7439-96-5	B18-024-SB-1	36,600		332	1.52E+04	89	100.00		2,600	YES (NC)
Mercury	7439-97-6	B18-040-SB-1	41.5		0.0027	1.48E+00	89	74.16		35	YES (NC)
Naphthalene	91-20-3	B18-047-SB-4	66.2		0.0021	1.89E+00	89	88.76	8.6	59	YES (C/NC)
Nickel	7440-02-0	B5-063-SB-4	184		1.2	3.60E+01	89	97.75	64,000	2,200	no
N-Nitrosodiphenylamine	86-30-6	B18-019-SB-8	0.031	J	0.017	2.60E-02	89	3.37	470		no
PCBs (total)*	1336-36-3	B18-017-SB-1	1.005		0.0298	2.48E-01	49	16.33	0.94		YES (C)
Pentachlorophenol	87-86-5	B5-063-SB-4	0.031	J	0.031	3.10E-02	60	1.67	4	280	no
Phenanthrene	85-01-8	B18-047-SB-4	584		0.00085	8.08E+00	89	97.75			no
Phenol	108-95-2	B18-047-SB-4	1.9		0.017	2.05E-01	62	20.97		25,000	no
Pyrene	129-00-0	B18-047-SB-4	920		0.00067	1.25E+01	89	98.88		2,300	no
Selenium	7782-49-2	B18-069-SB-8	7.6		1.4	3.46E+00	89	15.73		580	no
Silver	7440-22-4	B18-072-SB-4	9.3		0.54	2.14E+00	89	59.55		580	no
Styrene	100-42-5	B18-047-SB-4	0.035	J	0.0031	1.91E-02	36	5.56		3,500	no
Thallium	7440-28-0	B18-034-SB-1	17.7		4	9.71E+00	89	44.94		1.2	YES (NC)
Toluene	108-88-3	B18-047-SB-4	0.029		0.0018	8.92E-03	36	33.33		4,700	no
Vanadium	7440-62-2	B4-016-SB-1	938		7	3.95E+02	89	100.00		580	YES (NC)
Xylenes	1330-20-7	B18-047-SB-4	0.031		0.003	1.05E-02	36	19.44		250	no
Zinc	7440-66-6	B18-072-SB-4	27,800		5.7	1.47E+03	89	97.75		35,000	no

J: The positive result reported for this analyte is a quantitative estimate.

J+: The positive result reported for this analyte is a quantitative estimate but may be biased high.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

COPC = Constituent of Potential Concern
TR = Target Risk

C = Compound was identified as a cancer COPC NC = Compound was identified as a non-cancer COPC

HQ = Hazard Quotient

*PCBs (total) include the sum of all detected aroclor mixtures, including those without regional screening levels (e.g. Aroclor 1262, Aroclor 1268) which are not displayed. ^The COPC screening level for lead was not adjusted to the HQ=0.1 because lead is not assessed in the SLRA. The 800 mg/kg PAL is relevant to the Adult Lead Model pro

Exposure Unit	Surface/Sub-Surface	Maximum Concentration (mg/kg)	Arithmetic Mean (mg/kg)
EI I1	Surface	684	118
(242aa)	Sub-Surface	3,850	433
(24.2 ac.)	Pooled	3,850	256
EII1 EVD	Surface	820	136
EUI-EXP	Sub-Surface	3,850	336
(20.2 ac.)	Pooled	3,850	227

Table 2 - Sub-Parcel B4-2 ExpansionAssessment of Lead

			Site-Wide EU1	(24.2 ac.)		
	EPCs - Surfac	e Soils	EPCs - Sub-Surf	face Soils	EPCs - Pooled	Soils
Parameter	EPC Type	EPC (mg/kg)	EPC Type	EPC (mg/kg)	EPC Type	EPC (mg/kg)
Arsenic	KM H-UCL	4.27	95% GROS Adjusted Gamma UCL	15.0	95% GROS Approximate Gamma UCL	7.80
Cadmium	95% KM (Chebyshev) UCL	4.62	KM H-UCL	5.25	95% KM (Chebyshev) UCL	4.90
Chromium VI	95% KM (t) UCL	1.94	Maximum Value	2.80	95% KM (t) UCL	1.28
Iron	95% Student's-t UCL	192,344	95% Adjusted Gamma UCL	177,336	95% Student's-t UCL	174,302
Manganese	95% Chebyshev (Mean, Sd) UCL	28,699	95% Student's-t UCL	13,618	95% Chebyshev (Mean, Sd) UCL	22,870
Mercury	95% KM (Chebyshev) UCL	1.25	97.5% KM (Chebyshev) UCL	7.71	95% KM (Chebyshev) UCL	2.70
Thallium	95% KM (t) UCL	9.54	95% KM (t) UCL	7.84	95% KM (t) UCL	8.58
Vanadium	95% Chebyshev (Mean, Sd) UCL	730	95% Adjusted Gamma UCL	415	95% Chebyshev (Mean, Sd) UCL	598
Benz[a]anthracene	95% KM (Chebyshev) UCL	1.32	97.5% KM (Chebyshev) UCL	4.90	95% KM (Chebyshev) UCL	1.97
Benzo[a]pyrene	95% KM (Chebyshev) UCL	1.92	97.5% KM (Chebyshev) UCL	4.31	95% KM (Chebyshev) UCL	2.03
Benzo[b]fluoranthene	95% KM (Chebyshev) UCL	2.71	97.5% KM (Chebyshev) UCL	8.01	95% KM (Chebyshev) UCL	3.45
Benzo[k]fluoranthene	95% KM (Chebyshev) UCL	1.20	Gamma Adjusted KM- UCL	2.50	95% KM (Chebyshev) UCL	1.64
Dibenz[a,h]anthracene	95% KM (Chebyshev) UCL	0.36	97.5% KM (Chebyshev) UCL	0.84	95% KM (Chebyshev) UCL	0.39
Indeno[1,2,3-c,d]pyrene	95% KM (Chebyshev) UCL	1.07	97.5% KM (Chebyshev) UCL	2.46	95% KM (Chebyshev) UCL	1.14
Naphthalene	95% KM (Chebyshev) UCL	0.65	97.5% KM (Chebyshev) UCL	9.09	95% KM (Chebyshev) UCL	3.03
PCBs (total)	95% KM (BCA) UCL	0.04	NA	NA	95% KM (BCA) UCL	0.04

Bold indicates maximum value used as the EPC

NA indicates no detections

			Site-Wide EU1-EX	P (28.2 ac.)		
	EPCs - Surfac	e Soils	EPCs - Sub-Surf	face Soils	EPCs - Poolec	l Soils
Parameter	EPC Type	EPC (mg/kg)	EPC Type	EPC (mg/kg)	EPC Type	EPC (mg/kg)
Arsenic	95% GROS Adjusted Gamma UCL	6.78	95% GROS Adjusted Gamma UCL	14.7	KM H-UCL	8.15
Cadmium	95% KM (Chebyshev) UCL	3.86	KM H-UCL	4.0	95% KM (Chebyshev) UCL	3.86
Chromium VI	95% KM (t) UCL	1.65	Maximum Value	2.80	95% KM (t) UCL	1.06
Iron	95% Chebyshev (Mean, Sd) UCL	203,728	95% Adjusted Gamma UCL	137,677	95% Student's-t UCL	151,387
Manganese	95% Chebyshev (Mean, Sd) UCL	26,903	95% Adjusted Gamma UCL	11,418	95% Chebyshev (Mean, Sd) UCL	20,255
Mercury	97.5% KM (Chebyshev) UCL	6.53	97.5% KM (Chebyshev) UCL	5.41	KM H-UCL	0.94
Thallium	95% KM (t) UCL	9.57	95% KM (t) UCL	7.67	95% KM (t) UCL	8.52
Vanadium	95% Chebyshev (Mean, Sd) UCL	697	95% Adjusted Gamma UCL	315	95% Chebyshev (Mean, Sd) UCL	532
Benz[a]anthracene	97.5% KM (Chebyshev) UCL	2.56	97.5% KM (Chebyshev) UCL	108	95% KM (Chebyshev) UCL	36.6
Benzo[a]pyrene	97.5% KM (Chebyshev) UCL	2.95	97.5% KM (Chebyshev) UCL	69.6	95% KM (Chebyshev) UCL	24.2
Benzo[b]fluoranthene	97.5% KM (Chebyshev) UCL	4.94	97.5% KM (Chebyshev) UCL	144	95% KM (Chebyshev) UCL	49.2
Benzo[k]fluoranthene	97.5% KM (Chebyshev) UCL	3.15	97.5% KM (Chebyshev) UCL	130	95% KM (Chebyshev) UCL	43.9
Dibenz[a,h]anthracene	97.5% KM (Chebyshev) UCL	0.61	97.5% KM (Chebyshev) UCL	13.7	95% KM (Chebyshev) UCL	4.73
Indeno[1,2,3-c,d]pyrene	97.5% KM (Chebyshev) UCL	1.82	97.5% KM (Chebyshev) UCL	27.3	95% KM (Chebyshev) UCL	9.57
Naphthalene	95% KM (Chebyshev) UCL	1.06	97.5% KM (Chebyshev) UCL	14.7	KM H-UCL	3.17
PCBs (total)	95% KM (BCA) UCL	0.04	NA	NA	95% KM (BCA) UCL	0.04

Bold indicates maximum value used as the EPC

NA indicates no detections

Table 4 - Sub-Parcel B4-2 Expansion Surface Soils Composite Worker Risk Ratios

		Site-Wide EU1 (24.2 ac.)							
			Composite Worker						
			RSLs	(mg/kg)	Risk	Ratios			
Parameter	Target Organs	EPC (mg/kg)	Cancer	Non-Cancer	Risk	но			
Arsenic	Cardiovascular; Dermal	4.27	3.00	480	1.4E-06	0.009			
Cadmium	Urinary	4.62	9,300	100	5.0E-10	0.05			
Chromium VI	Respiratory	1.94	6.30	3,500	3.1E-07	0.0006			
Iron	Gastrointestinal	192,344		820,000		0.2			
Manganese	Nervous	28,699		26,000		1			
Mercury	Nervous	1.25		350		0.004			
Thallium	Dermal	9.54		12		0.8			
Vanadium	Dermal	730		5,800		0.1			
Benz[a]anthracene		1.32	21		6.3E-08				
Benzo[a]pyrene	Developmental	1.92	2.1	220	9.1E-07	0.009			
Benzo[b]fluoranthene		2.71	21		1.3E-07				
Benzo[k]fluoranthene		1.20	210		5.7E-09				
Dibenz[a,h]anthracene		0.36	2.1		1.7E-07				
Indeno[1,2,3-c,d]pyrene		1.07	21		5.1E-08				
Naphthalene	Nervous; Respiratory	0.65	8.6	590	7.6E-08	0.001			
PCBs (total)		0.04	0.94		4.3E-08				
					3E-06	\checkmark			

RSLs were obtained from the EPA Regional Screening Levels at

https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search

EPC: Exposure Point Concentration

HQ: Hazard Quotient

	Cardiovascular	0
	Dermal	1
	Respiratory	0
Total HI	Urinary	0
	Gastrointestinal	0
	Nervous	1
	Developmental	0

Table 5 - Sub-Parcel B4-2 Expansion Subsurface Soils Composite Worker Risk Ratios

		Site-Wide EU1 (24.2 ac.)						
				Composit	e Worker			
			RSLs	(mg/kg)	Risk	Ratios		
Parameter	Target Organs	EPC (mg/kg)	Cancer	Non-Cancer	Risk	HQ		
Arsenic	Cardiovascular; Dermal	15.0	3.00	480	5.0E-06	0.03		
Cadmium	Urinary	5.25	9,300	100	5.6E-10	0.05		
Chromium VI	Respiratory	2.80	6.30	3,500	4.4E-07	0.0008		
Iron	Gastrointestinal	177,336		820,000		0.2		
Manganese	Nervous	13,618		26,000		0.5		
Mercury	Nervous	7.71		350		0.02		
Thallium	Dermal	7.84		12		0.7		
Vanadium	Dermal	415		5,800		0.07		
Benz[a]anthracene		4.90	21		2.3E-07			
Benzo[a]pyrene	Developmental	4.31	2.1	220	2.1E-06	0.02		
Benzo[b]fluoranthene		8.01	21		3.8E-07			
Benzo[k]fluoranthene		2.50	210		1.2E-08			
Dibenz[a,h]anthracene		0.84	2.1		4.0E-07			
Indeno[1,2,3-c,d]pyrene		2.46	21		1.2E-07			
Naphthalene	Nervous; Respiratory	9.09	8.6	590	1.1E-06	0.02		
PCBs (total)		NA	0.94					
					1E-05	\checkmark		

RSLs were obtained from the EPA Regional Screening Levels at https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search **Bold indicates maximum value used as the EPC** NA indicates no detections

EPC: Exposure Point Concentration

HQ: Hazard Quotient

Total HI	Cardiovascular	0
	Dermal	1
	Respiratory	0
	Urinary	0
	Gastrointestinal	0
	Nervous	1
	Developmental	0

Table 6 - Sub-Parcel B4-2 Expansion Pooled Soils Composite Worker Risk Ratios

		Site-Wide EU1 (24.2 ac.)						
				Composit	e Worker			
			RSLs	(mg/kg)	Risk	Ratios		
Parameter	Target Organs	EPC (mg/kg)	Cancer	Non-Cancer	Risk	но		
Arsenic	Cardiovascular; Dermal	7.80	3.00	480	2.6E-06	0.02		
Cadmium	Urinary	4.90	9,300	100	5.3E-10	0.05		
Chromium VI	Respiratory	1.28	6.30	3,500	2.0E-07	0.0004		
Iron	Gastrointestinal	174,302		820,000		0.2		
Manganese	Nervous	22,870		26,000		0.9		
Mercury	Nervous	2.70		350		0.008		
Thallium	Dermal	8.58		12		0.7		
Vanadium	Dermal	598		5,800		0.1		
Benz[a]anthracene		1.97	21		9.4E-08			
Benzo[a]pyrene	Developmental	2.03	2.1	220	9.7E-07	0.009		
Benzo[b]fluoranthene		3.45	21		1.6E-07			
Benzo[k]fluoranthene		1.64	210		7.8E-09			
Dibenz[a,h]anthracene		0.39	2.1		1.9E-07			
Indeno[1,2,3-c,d]pyrene		1.14	21		5.4E-08			
Naphthalene	Nervous; Respiratory	3.03	8.6	590	3.5E-07	0.005		
PCBs (total)		0.04	0.94		4.3E-08			
					5E-06	\rightarrow		

RSLs were obtained from the EPA Regional Screening Levels at

 $https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search$

EPC: Exposure Point Concentration

HQ: Hazard Quotient

	Cardiovascular	0
	Dermal	1
	Respiratory	0
Total HI	Urinary	0
	Gastrointestinal	0
	Nervous	1
	Developmental	0

Table 7 - Sub-Parcel B4-2 Expansion Surface Soils Construction Worker Risk Ratios

10 Day		Site-Wide EU1-EXP (28.2 ac.)					
			Construction Worker				
			SSLs	(mg/kg)	Risk	Ratios	
Parameter	Target Organs	EPC (mg/kg)	Cancer	Non-Cancer	Risk	HQ	
Arsenic	Cardiovascular; Dermal	6.78	378	2,406	1.8E-08	0.003	
Cadmium	Urinary	3.86	521,411	7,461	7.4E-12	0.0005	
Chromium VI	Respiratory	1.65	536	20,010	3.1E-09	0.00008	
Iron	Gastrointestinal	203,728		6,013,533		0.03	
Manganese	Nervous	26,903		102,751		0.3	
Mercury	Nervous	6.53		61.9		0.1	
Thallium	Dermal	9.57		344		0.03	
Vanadium	Dermal	697		39,861		0.02	
Benz[a]anthracene		2.56	2,565		1.0E-09		
Benzo[a]pyrene	Developmental	2.95	391	53.6	7.5E-09	0.06	
Benzo[b]fluoranthene		4.94	3,862		1.3E-09		
Benzo[k]fluoranthene		3.15	38,773		8.1E-11		
Dibenz[a,h]anthracene		0.61	445		1.4E-09		
Indeno[1,2,3-c,d]pyrene		1.82	4,174		4.4E-10		
Naphthalene	Nervous; Respiratory	1.06	107	160	9.9E-09	0.007	
PCBs (total)		0.04	56.5		7.1E-10		
					4E-08	\downarrow	

SSLs calculated using equations in 2002 EPA Supplemental Guidance

Guidance Equation Input Assumptions:

5 cars/day (2 tons/car)

- 5 trucks/day (20 tons/truck)
- 3 meter source depth thickness
- EPC: Exposure Point Concentration
- HQ: Hazard Quotient

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Urinary	0
	Gastrointestinal	0
	Nervous	0
	Developmental	0

Table 8 - Sub-Parcel B4-2 Expansion **Subsurface Soils Construction Worker Risk Ratios**

10	Site-Wide EU1-EXP (28.2 ac.)					
			Construction Worker			
			SSLs	(mg/kg)	Risk	Ratios
Parameter	Target Organs	EPC (mg/kg)	Cancer	Non-Cancer	Risk	HQ
Arsenic	Cardiovascular; Dermal	14.7	378	2,406	3.9E-08	0.006
Cadmium	Urinary	4.0	521,411	7,461	7.6E-12	0.0005
Chromium VI	Respiratory	2.80	536	20,010	5.2E-09	0.0001
Iron	Gastrointestinal	137,677		6,013,533		0.02
Manganese	Nervous	11,418		102,751		0.1
Mercury	Nervous	5.41		61.9		0.09
Thallium	Dermal	7.67		344		0.02
Vanadium	Dermal	315		39,861		0.008
Benz[a]anthracene		108	2,565		4.2E-08	
Benzo[a]pyrene	Developmental	69.6	391	53.6	1.8E-07	1
Benzo[b]fluoranthene		144	3,862		3.7E-08	
Benzo[k]fluoranthene		130	38,773		3.4E-09	
Dibenz[a,h]anthracene		13.7	445		3.1E-08	
Indeno[1,2,3-c,d]pyrene		27.3	4,174		6.5E-09	
Naphthalene	Nervous; Respiratory	14.7	107	160	1.4E-07	0.09
PCBs (total)		NA	56.5			
					5E-07	\checkmark

SSLs calculated using equations in 2002 EPA Supplemental Guidance

Bold indicates maximum value used as the EPC

NA indicates no detections

Guidance Equation Input Assumptions:

- 5 cars/day (2 tons/car)
- 5 trucks/day (20 tons/truck)
- 3 meter source depth thickness

EPC: Exposure Point Concentration

HQ: Hazard Quotient HI: Hazard Index

Cardiovascular 0 Dermal 0 Respiratory 0 Total HI Urinary 0 Gastrointestinal 0 Nervous 0 Developmental

1

Table 9 - Sub-Parcel B4-2 Expansion Pooled Soils Construction Worker Risk Ratios

10		Site-Wid	le EU1-EX	CP (28.2 a	c.)		
			Construction Worker				
			SSLs	(mg/kg)	Risk	Ratios	
Parameter	Target Organs	EPC (mg/kg)	Cancer	Non-Cancer	Risk	HQ	
Arsenic	Cardiovascular; Dermal	8.15	378	2,406	2.2E-08	0.003	
Cadmium	Urinary	3.86	521,411	7,461	7.4E-12	0.0005	
Chromium VI	Respiratory	1.06	536	20,010	2.0E-09	0.00005	
Iron	Gastrointestinal	151,387		6,013,533		0.03	
Manganese	Nervous	20,255		102,751		0.2	
Mercury	Nervous	0.94		61.9		0.02	
Thallium	Dermal	8.52		344		0.02	
Vanadium	Dermal	532		39,861		0.01	
Benz[a]anthracene		36.6	2,565		1.4E-08		
Benzo[a]pyrene	Developmental	24.2	391	53.6	6.2E-08	0.5	
Benzo[b]fluoranthene		49.2	3,862		1.3E-08		
Benzo[k]fluoranthene		43.9	38,773		1.1E-09		
Dibenz[a,h]anthracene		4.73	445		1.1E-08		
Indeno[1,2,3-c,d]pyrene		9.57	4,174		2.3E-09		
Naphthalene	Nervous; Respiratory	3.17	107	160	3.0E-08	0.02	
PCBs (total)		0.04	56.5		7.1E-10		
					2E-07	\checkmark	

SSLs calculated using equations in 2002 EPA Supplemental Guidance

Guidance Equation Input Assumptions:

5 cars/day (2 tons/car)

- 5 trucks/day (20 tons/truck)
- 3 meter source depth thickness
- EPC: Exposure Point Concentration
- HQ: Hazard Quotient

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Urinary	0
	Gastrointestinal	0
	Nervous	0
	Developmental	0

ATTACHMENT 1

	STANDA	RD DRAWING FOR ENTIRE PLAN SET	LEGEND	A	STANDARD BBREVIATIONS	
No. No. <th></th> <th></th> <th></th> <th></th> <th>FOR ENTIRE PLAN SET</th> <th></th>					FOR ENTIRE PLAN SET	
OLDER ANT PERCENT MODELLEY				AC	ACRES AMERICANS WITH	
	EXISTING NOTE		PROPOSED NOTE	ADA	DISABILITY ACT ARCHITECTURAL	
				BC	BOTTOM OF CURB	_
		- PROPERTY LINE / INTERIOR PARCEL LINE		BF BK	BASEMENT FLOOR BLOCK	_
		_ EASEMENT LINE		BL	BASELINE	
Image: constraint of the second sec		_ SETBACK LINE		BLDG	BUILDING BUILDING BENCHMARK	_
				BRL	BUILDING RESTRICTION LINE	
			CURB AND GUTTER	CL		
Image: Second			SPILL TRANSITION	CMP CONN	CORRUGATED METAL PIPE CONNECTION	-
		GUTTER	DEPRESSED CURB AND GUTTER	CONC	CONCRETE	_
No. Distance P 1000 P 10000 P 100000 P 100000 P 100000 P 1000000 P 1000000 P 10000000 P 1000000000000000000000000000000000000				CPP CY	CORRUGATED PLASTIC PIPE CUBIC YARDS	_
No. No. <td></td> <td>UTILITY POLE WITH LIGHT</td> <td></td> <td>DEC</td> <td>DECORATIVE</td> <td>_</td>		UTILITY POLE WITH LIGHT		DEC	DECORATIVE	_
H Horry H EOI Destro 0 Inter 0 Inter 0 Inter 0 0 Inter 0 Inter 0 Inter 0 Inter 0 0 Inter 0 Inter<	<u> </u>	POLE LIGHT	~~~ 0	DEP		
S VALUE D TYPE of Boundary 3 11 10000 0 60 <td>⊡€</td> <td>TRAFFIC LIGHT</td> <td></td> <td>DOM ELEC</td> <td></td> <td></td>	⊡€	TRAFFIC LIGHT		DOM ELEC		
	0	UTILITY POLE	0	ELEV		
0 0 0 1/2	R R	TYPICAL	Ж	EP ES	EDGE OF PAVEMENT EDGE OF SHOULDER	-
I. MU EX EXT TO 0 Trigological Trigological Trigological Trigological A COLUME Trigological Trigological Trigological Trigological A COLUME Trigological Trigological Trigological Trigological Trigological A COLUME Trigological T		ACORN	₩	EW	END WALL	
No. Pic Pice Proce A Source A B Country Country B Country Country B Country Country Country Country Country		LIGHT	т 	EX FES	EXISTING FLARED END SECTION	-
Image: constraint of		SIGN	▲ 	FF		
American Operating Operating <th< td=""><td><u> </u></td><td>COUNTS</td><td><u> </u></td><td>FH FG</td><td>FIRE HYDRANT FINISHED GRADE</td><td>_</td></th<>	<u> </u>	COUNTS	<u> </u>	FH FG	FIRE HYDRANT FINISHED GRADE	_
				G		
R. MAY & SSLV LICKNET/DB TEXED TEXED <thtexed< th=""> TEXED TEXED</thtexed<>	— — — — 1 <i>70</i> — — — <i>169</i>	- CONTOUR - LINE	<u> </u>	GF	GRADE HIGHER SIDE OF WALL	
Subscription Subscription Subscription Subscription Subscription	TC 516.4 OR 516.4	SPOT ELEVATIONS	TC 516.00 TC 516.00 MATCH EX BC 515.55 (518.02 ±)	GL	GRADE LOWER SIDE OF WALL	_
No. BALLANDAL Dist Hore Houseball (Comparison of the interval of the				GV	GATE VALVE	
L L984 P HP HERT FORM C PROFILE PROF HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM C PROF FORM HERT FORM HERT FORM HERT FORM HERT FORM </td <td>SAN</td> <td>SANITARY</td> <td>SAN</td> <td>HDPE</td> <td>HIGH DENSITY POLYETHYLENE PIPE</td> <td></td>	SAN	SANITARY	SAN	HDPE	HIGH DENSITY POLYETHYLENE PIPE	
		LABEL	#X	HP HOR	HIGH POINT HORIZONTAL	
Image: Construction Image: Construction Image: Construction Image: Construction <td></td> <td></td> <td>#</td> <td>- HW</td> <td>HEADWALL</td> <td></td>			#	- HW	HEADWALL	
Construction Construction			SL		INTERSECTION	
Luce Luce <thluce< th=""> Luce Luce <thl< td=""><td>W</td><td>_ UNDERGROUND WATER LINE</td><td></td><td>LF</td><td>LINEAR FOOT</td><td></td></thl<></thluce<>	W	_ UNDERGROUND WATER LINE		LF	LINEAR FOOT	
0 UBECGROUPUL 108 1 as or sourt 0 0 0 108 1 as or sourt 0 0 0 108 1 as or sourt 1 108 1 as or sourt 108 1 as or sourt 1 108 1 as or sourt 108 1 as or sourt 1 108 1 as or sourt 108 1 as or sourt 1 108 1 as or sourt 108 1 as or sourt 1 108 1 as or sourt 108 1 as or sourt 1 108 1 as or sourt 108 1 as or sourt 1 108 1 as or sourt 100 1 as or sourt 1 108 100 100 1 as or sourt 1 108 100 100 1 as or sourt 1 108 100 100 100 1 as or sourt 1 108 100 100 100 1 as or sourt 1 100 100 100 10	E	UNDERGROUND ELECTRIC LINE	E		LIMITS OF CLEARING	
OT OPERAD N D LANGENERAL	G	UNDERGROUND GAS LINE	G	LOS		
Image: Second Control of Contro	OH	_ OVERHEAD WIRE	ОН	L/S		
Understand C Mil MARPORE STORM STORM C Mil MARPORE STORM STORM C OUT OF CARLYSS STORM STORM PA POINT OF CARLYSS STORM S POINT OF CARLYSS PA STORM S POINT OF CARLYSS PA STORM S POINT OF CARLYSS PA STORM S PA POINT OF CARLYSS STORM S PA POINT OF CARLYSS STORM S PA POINT OF CARLYSS STORM S POINT OF CARLYSS POINT OF CARLYSS STORM S POINT OF CARLSCHON POINT OF CARLSCHON STORM S S S	<i>T</i>	UNDERGROUND	T	MAX		
JULIC INC. NU MODEL MARCH LORIT STORM SANTARY S PC PONT OF ANLE MSS TO HORNANDE PC PONT OF ANLE MSS PC TO MARHADE PC PONT OF ANLE MSS PC TO MARHADE PT PONT OF ANGERON PONT OF ANGERON TO MARHADE PT PONT OF ANGERON PONT OF ANGERON TO MARHADE PT PONT OF ANGERON PONT OF ANGERON TO MARHADE PT PONT OF ANGERON PONT OF ANGERON TO MARHADE PT PONT OF VERTOCAL PONT OF VERTOCAL PONT OF VERTOCAL TO MARHADE PT PONT OF VERTOCAL PONT OF VERTOCAL PONT OF VERTOCAL PONT OF VERTOCAL TO MARHADE PT PONT OF VERTOCAL PONT OF VERTOCAL PONT OF VERTOCAL PONT OF VERTOCAL PONT OF VERTOCAL<	C		C	МН	MANHOLE	
Severe PA Point Construint Image: Severe Name P Point Construint Point Construint Image: Severe Name P Point Construint Point Construint Image: Severe Name Image: Severe Name P Point Construint P Image: Severe Name Image: Severe Name P Point Construint P Image: Severe Name Image: Severe Name P Point Construint Image: Severe Name Image: Severe Name Image: Severe Name P Point Construint Image: Severe Name Image: Severe Name Image: Severe Name P Point Construint Image: Severe Name Image: Severe Name Image: Severe Name P Point Construint Image: Severe Name Image: Severe Name Image: Severe Name P Point Construint Image: Severe Name Image: Severe Name Image: Severe Name P P P P Image: Severe Name Image: Severe Name P P P P Image: Severe Name Image: Severe Name P P P P Image: Severe Name Image: Severe Name P Severe Name Severe Name Image: Severe Name Image: Severe Name P Severe		STORM		MJ OC	MECHANICAL JOINT ON CENTER	
GENERALIN PC PURIN LUck 'U' HYDRANT 'U' PCOR PORT COMPUSE 'U' HYDRANT 'U' PCOR PORT PORT COMPUSE 'U' HYDRANT 'U' PCOR PORT PORT COMPUSE 'U' HYDRANT 'U' PCOR PORT PORT COMPUSE 'U' HYDRANT 'U' POR PORD PORTOS TANGENCY 'U' MANTARY 'U' POR PORD PORTOS TANGENCY 'U' WATER 'P'' PORT PORTOS TANGENCY 'U' 'U' WATER 'P''' PORT PORT COTANGENCY 'U' 'U' WATER 'P''' PORT PORT COTANGENCY 'U' 'U' WATER 'P''' PORT PORTOS TANGENCY 'U' 'U' G''' R'''' PORC PORTOS TANGENCY 'U'' 'U' G''' R''''' PORT PORTOS TANGENCY 'U'''' 'U' G''' R''''''''''''''''''''''''''''''''''''	<i>S</i>	- SEWER	S	- PA	POINT OF ANALYSIS	
Theorem Converting Converting <thconverting< th=""> Converting</thconverting<>		SEWER MAIN	3		POINT CURVATURE POINT OF COMPOUND	
S SMILLEY POO POINT OF GRADE I) STORM Image: Proper Proposed in Proper Property Pr			¢	PI	POINT OF INTERSECTION	
Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints Image: Store Manual Constraints </td <td>(S)</td> <td>SANITARY MANHOLE</td> <td></td> <td>POG</td> <td>POINT OF GRADE</td> <td></td>	(S)	SANITARY MANHOLE		POG	POINT OF GRADE	
Image: Second		STORM MANHOLE		PROP PT	PROPOSED POINT OF TANGENCY	
W WATER PVC POLYVINYL CHLORIDE PIPE GAS PVI POUNTO P VERTICAL WALVE PVI GAS PVI WALVE PVI QAS RAP WALVE PVI PVI POUNTO P VERTICAL TANGENCY WIETER RCP RETIVAL RETIVAL RETIVAL RETIVAL RETIVAL RETIVAL WIETER RETIVAL RETIVAL STA RETIVAL STA STA STA RETIVAL TT RELEPTIC TT RELEPTIC	⊗ ^{₩M}	WATER METER	Ο	PTCR	POINT OF TANGENCY, CURB RETURN	
GAS PVI PVI DV GV VERTICAL TANGENCY M GAS R PVI PVITI OF VERTICAL TANGENCY M GAS R RADIUS M METER RCP REINFORCED CONCRETE PIPE PI PEROWALL RIF RCP M PVITI OF VERTICAL TANGENCY RCP N METER RCP REINFORCED CONCRETE PIPE M PEROWALL PVITI OF VERTICAL TANGENCY RCP M PVITI OF VERTICAL TANGENCY RCP RCP M RCP REINFORCED CONCRETE PIPE M PRETWALL RETAINING WALL M PRETWALL PRETWALL M PRETWALL<	WV XV	WATER VALVE	•	PVC		
Construction PVI PVII PVIII OVERTIGAL LANGENCY Image: Construction of the termination of the termination of the termination of the termination of ter		GAS		PVI		
MELEK ROP REINFORCED CONCRETE PIPE Image: Concentration of the second s		GAS	\square	R	RADIUS	
SECTION For HTML International Data Mexa Revail (Ref OF WAY HEADWALL OR (B) Milet B) GRAFE (NLET) B) B) <td></td> <td>METER TYPICAL END</td> <td></td> <td>RCP</td> <td>REINFORCED CONCRETE PIPE</td> <td></td>		METER TYPICAL END		RCP	REINFORCED CONCRETE PIPE	
Image: Second		SECTION		R/W	RIGHT OF WAY	
Image: Second		ENDWALL		S SAN	SLOPE SANITARY SEWER	
O CURB INLET STA STATON O CLEAN OUT O STM STORM O OLEAN OUT O SW SIDEWALK C ELECTRIC MANHOLE EE TBRL TO BE RELOCATED T TELEPHONE TC TOP OF CURB T TELEPHONE TC TOP OF CURB T TELEPHONE TELE TELEPHONE EP ELECTRIC BOX EB TFF TREE PROTECTION FENCE IP ELECTRIC PEDESTAL EP TYP TOP OF WALL UP UTILITY POLE UP UNDERGROUND UP WILITY POLE WM WATER MILIE T TEST WM WATER MILIE MONITORING WELL SBANCHMARK S DEGREE BENCHMARK SBANK O DOWNETER BORING IP DEGREE WMMETER BORING IP DEGREE WMMETER		GRATE INLET		SF	SQUARE FEET	
O CLEAN OUT O S/W SIDEWALK C ELECTRIC MANHOLE E TBR TO BE REMOVED C TELEPHONE T TO DE RELOCATED C TELEPHONE T TC TOP OF CURB C TELEPHONE T TC TOP OF CURB C TELEPHONE T TELE TELEPHONE C ELECTRIC BOX E TYP TYPCAL TRADEPOINT ATLANTC, LL SPAREMUND C ELECTRIC PEDESTAL EP TYP TYPICAL TRADEPOINT ATLANTC, LL SPAREMUND V UG UNDERGROUND UP UTILITY POLE TRADEPOINT ATLANTC, LL SPAREMUND SPAREMUND SPAREMUND V WU UF WIL WATER LINE SPAREMUNT OT HE CONTRACTOR TO PENNENT ATLANTC, LL SPAREMUND ON COORSTICTOR SHALL OF HE CHANNEL ENERNIATION OF CONSTRUCTOR SHALL OF HE CHANNEL V MONITORING W WIDE UP UTILITY POLE UN STREEPROBUTY OF HE CONTRACTOR TO PENNENT ATLANTC, LL SPAREMUND OF THE CONTRACTOR TO PENNE	<u> </u>	CURB INLET	<u>©</u>	STA STM	STATION STORM	
Image: Constraint of the second of the se	0	CLEAN OUT	0	S/W	SIDEWALK	
TELEPHONE MANHOLE TC TOP OF CURB TELE TELE TELEPHONE EB TPF TREE PROTECTION FENCE BOX EB TV TOP OF WALL ED ELECTRIC BOX ED TYP TYPICAL OWNER/DEVELO US Understand Image: Contract transmission of the presental of the presentation of the presention of the presentation of the presental of the prese	Ē	ELECTRIC MANHOLE	E	TBR TBRL	TO BE REMOVED TO BE RELOCATED	
Image: Construction of the image: Constructi	Ţ	TELEPHONE MANHOI F	T	TC		
DOA TW TOP OF WALL ELECTRIC PEDESTAL ELECTRIC PEDESTAL FP TYP TYPICAL UG UNDERGROUND UG UNDERGROUND UP UTILITY POLE UP UTILITY POLE W WIDE WIDE WL WATER METER PIT W/M WATER METER PIT ± PLUS OR MINUS BENCHMARK © DEGREE BORING Image: Second	EB	ELECTRIC	EB	TPF	TREE PROTECTION FENCE	
PEDESTAL ITF ITFICAL UG UNDERGROUND TRADEPOINT ATLANTIC, IL 6995 BETHLEHEM BOULEVA SPARROWS POINT, MD 212 CONTACT: TOM AS2-6667 UP UTILITY POLE CONTACT: TOM CASE-6667 W WIDE V/L WATER LINE TEST W/M PIT ± PLUS OR MINUS BENCHMARK Second and the contractors to review all of the DRAWN WRITING PROR TO THE STATUCTOR. SALUGE BETHLEARE OF THE CONTRACTOR TO REVIEW ALL OF THE CONTRACTOR SECOND WRITING PROR TO THE STATUCTOR. SALUGE BETHLEARE OF THE CONTRACTOR SECOND WRITING PROR TO THE STATUCTOR. SALUGE BETHLEARE OF THE CONTRACTOR SECOND WRITING PROR TO THE STATUCTOR SALUGES IT IS THE CONTRACTOR SECOND WRITING PROR TO THE STATUCTOR CONSTRUCTION. FALURE BET THE CONTRACTOR SECOND WRITING PROR TO THE STATUCTOR CONSTRUCTION. FALURE BET THE CONTRACTOR SECOND WRITING PROR TO THE STATUCTOR CONSTRUCTION. FALURE BET THE CONTRACTOR SECOND WRITING PROR TO THE STATUCT OF CONSTRUCTION. FALURE BET THE CONTRACTOR SECOND WRITING PROR TO THE STATUCT OF CONSTRUCTION. FALURE BET THE CONTRACTOR SECOND WRITING PROR TO THE STATUCT OF CONSTRUCTION. FALURE BET THE CONTRACTOR SUBJECT FALUCE OF FULL RESPONSIBILITY OF THE CONTRACTOR SECOND WRITING PROR TO THE STATUCT OF CONSTRUCTION. FALURE BET THE CONTRACTOR SUBJECT FALURE OF FULL RESPONSIBILITY OF THE CONTRACTOR SECOND WRITING PROR TO THE STATUCT OF CONSTRUCTION. FALURE BET THE CONTRACTOR SUBJECT FALURE OF FULL RESPONSIBILITY OF THE CONTRACTOR SECOND WRITING PROR TO THE STATUCT OF CONSTRUCTION. FALURE EVEN THE CONTRACTOR SUBJECT FALURE OF FULL RESPONSIBILITY OF THE CONTRACTOR SECOND WRITING PROR TO THE STATUCT OF CONSTRUCTION. FALURE EVEN THE CONTRACTOR SUBJECT FALURE FALURE FALURE FALURE FALURE FALURE FALURE FALURE FAL		BOX		- TW	TOP OF WALL	OWNER/DEVELO
UP UTILITY POLE SPARKOWS POINT, MO SO CRIVITY CASO CONTACT: TOM CASO CHINACOSO PHONE: 410-382-6667 MONITORING WELL W Wide W/L WATER LINE TEST PIT W/M WATER METER BENCHMARK Image: Contract to the initiation of construction, shuld of the contractors responsibility of the start of construction, shuld of the contractors responsibility of the start of construction, shuld of the contractors responsibility of the start of construction, shuld of the contractors responsibility of the start of construction, shuld of the contractor responsibility of the contractors responsibility of the start of construction, shuld be recontractor to construction, shuld be recontractor to construction. BORING Image: maintended before the start of construction of c		PEDESTAL		UG		TRADEPOINT ATLANTIC, LL 6995 BETHLEHEM BOULEVA SPADDOWS DOWN TAD 244
MONITORING WELL MONITORING WELL Monitorian Will Monitorian Will Monitorian Will TEST PIT TEST PIT W/M WATER METER BENCHMARK Image: Comparison of the start of construction of construction. Should the contractor to review all of the drawing Work scope prior to the initiation of construction. Should the contractor to construction. Should the contractor Within prior for the start of construction. Should the contractor to complete the start of construction. Should the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be the contractor to complete the start of construction. Should be start of the start of the start of the start of the sta			~	UP W	UTILITY POLE WIDE	CONTACT: TOM CASO PHONE: 410-382-6667
TEST PIT W/M WATER METER VI PLUS OR MINUS Seneral note: VI PLUS OR MINUS Seneral note: VI BENCHMARK Seneral note: BENCHMARK Seneral note:		MONITORING WELL		W/L	WATER LINE	
BENCHMARK O DEGREE It is the responsibility of the contractor to review all of the domination of construction. SHOULD the contractors responsibility of the contractors responsibility of the contractors responsibility of the contractor to construction. SHOULD the contractors responsibility of the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction. Failure by the contractor to complete the start of construction.		TEST PIT	EP	W/M ±	WATER METER PLUS OR MINUS	CENEDAL NOTE:
BORING Ø DIAMETER WRITING PRIOR TO THE START OF CONSTRUCTION. FAILURE BY THE CONTRACTOR TO COMPLETE TO COMPLICO		BENCHMARK		•	DEGREE	IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO REVIEW ALL OF THE DRAWING WORK SCOPE PRIOR TO THE INITIATION OF CONSTRUCTION. SHOULD THE CONTRAC THE SPECIFICATIONS OR APPLICABLE CODES, IT IS THE CONTRACTOR'S RESPONS
		BORING	\bullet	Ø #	DIAMETER NUMBER	WRITING PRIOR TO THE START OF CONSTRUCTION. FAILURE BY THE CONTRACTOF ACCEPTANCE OF FULL RESPONSIBILITY BY THE CONTRACTOR TO COMPLETE THE S FULL CONFORMANCE WITH LOCAL REGULA

REFERENCES ◆ <u>CABLE:</u> COMCAST BUSINESS SERVICES ♦ EXISTING CONDITIONS CAD FILES PROVIDED BY TRADEPOINT ATLANTIC 5001 METRO DRIVE ENTITLED: "BASE - UTILITIES", "BASE - TOPO", "BASE -BALTIMORE, MD 21215 PLANOMETRICS" PHONE: (800) 391-3000 RECEIVED: 5/27/16 ♦ RORO PHASE II PLANS **GOVERNING AGENCIES** PREPARED BY: MORRIS AND RITCHIE ASSOCIATES, INC. ENTITLED: "RORO PHASE 2 - IMPORT FACILITY AND PROCESSING ♦ BALTIMORE COUNTY DEPARTMENT CENTER FOR; TPA - RORO PHASE 2; 1300 AND 1301 SHIPYARD OF PUBLIC WORKS 111 WEST CHESAPEAKE AVENUE DATED: 12/10/2020 TOWSON, MD 21204 CONTACT: D'ANDREA WALKER ♦ SHIPYARD ROAD PHASE II PLANS PHONE: (410) 887-3306 PREPARED BY: BOHLER ENGINEERING, VA LLC. ENTITLED: "SHIPYARD ROAD PHASE II ROAD PLAN FOR; ♦ MARYLAND DEPARTMENT OF THE TRADEPOINT ATLANTIC; CONSTRUCTION DOCUMENTS" ENVIRONMENT DATED: 05/03/2021 1800 WASHINGTON BOULEVARD BALTIMORE, MD 21230 CONTACT: DANIEL LAIRD, P.E. PHONE: (410) 537-4311 ♦ BALTIMORE COUNTY DEPARTMENT OF UTILITY CONTACTS ENVIRONMENTAL PROTECTION AND SUSTAINABILIT ♦ WATER AND SEWER 111 WEST CHESAPEAKE AVENUE, ROOM 319 BALTIMORE COUNTY DEPARTMENT TOWSON, MD 21204 OF PUBLIC WORKS CONTACT: KRITTY UDHIN, P.E. 111 WEST CHESAPEAKE AVENUE PHONE: (410) 887-4488 TOWSON, MD 21204 BALTIMORE COUNTY DEPARTMENT CONTACT: D'ANDREA WALKER OF DEVELOPMENT MANAGEMENT 111 WEST CHESAPEAKE AVENUE PHONE: (410) 887-3306 ♦ GAS AND ELECTRIC: TOWSON, MD 21204 REVISIONS CONTACT: LLOYD MOXLEY PHONE: (410) 887-3321 1068 N. FRONT ST. ROOM 401 BALTIMORE, MD 21202 REV DATE COMMENT PHONE: (410) 850-4620 STORM DRAIN: BALTIMORE COUNTY DEPARTMENT OF PUBLIC 111 WEST CHESAPEAKE AVENUE TOWSON, MD 21204 CONTACT: D'ANDREA WALKER PHONE: (410) 887-3306 ♦ TELEPHONE 99 SHAWAN ROAD COCKEYSVILLE, MD 21030 PHONE: (410) 393-5793 SHEET INDEX SHEET TITLE SHEET NUMBER Know what's **below**. **Call** before you dig

COVER SHEET C-101 C-201 GENERAL NOTES C-301 OVERALL SITE PLAN C-302 - C-303 SITE PLAN C-401 OVERALL FINAL GRADING PLAN C-402 - C-403 FINAL GRADING PLAN C-601 (ESC-31 OF 38) OVERALL PHASE I EROSION AND SEDIMENT CONTROL PLAN PHASE I EROSION AND SEDIMENT CONTROL PLAN C-602 - C-603 (ESC-32-33 OF 38) C-604 (ESC-34 OF 38) PHASE I EROSION AND SEDIMENT CONTROL DRAINAGE AREA MAP OVERALL PHASE II EROSION AND SEDIMENT CONTROL PLAN C-605 (ESC-35 OF 38) PHASE II EROSION AND SEDIMENT CONTROL PLAN C-606 - C-607 (ESC-36-37 OF 38) PHASE II EROSION AND SEDIMENT CONTROL DRAINAGE AREA MAP C-608 (ESC-38 OF 38) STORM DRAIN PROFILES C-801 - C-803 SITE DETAILS C-901 01-05 MRA FINAL GRADING PLANS 06-35 (ESC-1-30 OF 38) MRA EROSION AND SEDIMENT CONTROL PLANS

ALWAYS CALL 811

It's fast. It's free. It's the law.

THIS DRAWING IS INTENDED FOR MUNICIPAL AND/OR AGEN

MDA220208.0

MDA220208.00 - CNDS -

DM

M.10

REVIEW AND APPROVAL. IT IS NOT INTENDED AS A CONSTRUC DOCUMENT UNLESS INDICATED OTHERWISE.

PROJECT No.:

CHECKED BY:

DRAWN BY:

DATE

CAD I.D.:

SPARROWS POINT, MD 21219

BOHLER 901 DULANEY VALLEY ROAD, SUITE 80 TOWSON, MARYLAND 21204

Phone: (410) 821-7900 Fax: (410) 821-7987 JBASS@BOHLERENG.COM

LICENSE NO. 44097, EXPIRATION DATE: 6/9/23 SHEET TITLE:

MDE PROJECT # 21-SF-0032

Feb 10, 2023 H::2022\MDA220208.00\CAD\DRAWINGS\PLAN SETS\CONSTRUCTION DOCS\MDA220208.00 - SITE - 0----->LAYOUT: C-301 - OVERALL SITE PLAI

SITE NOTES

- 1. TOTAL SITE AREA: 132,225,998 S.F. OR 3,035.49 AC.
- 2. DEVELOPMENT SITE AREA: 1,204,269 S.F. OR 27.65 AC.
- 3. PROPOSED FLOOR AREA: 0 S.F.
- 4. DEED REFERENCE: LIBER 35478, FOLIO 379
- 5. ELECTION DISTRICT: 15TH
- 6. COUNCILMANIC DISTRICT: 7TH
- 7. TAX MAP 111, GRID 14, PARCEL 419
- TAX. ACCT. NOS.: 2500016890

8. OWNER: TRADEPOINT ATLANTIC, LLC. 6995 BETHLEHEM BLVD

BALTIMORE, MD 21219

9. DEVELOPER/APPLICANT: TRADEPOINT ATLANTIC, LLC. 6995 BETHLEHEM BLVD BALTIMORE, MD 21219

- 10. ZONE: MH-IM (MANUFACTURING HEAVY INDUSTRIAL MAJOR)
- 11. PREVIOUS ZONING CASES: NONE
- 12. WATERSHED: BALTIMORE HARBOR
- 13. CENSUS TRACT: 9800.00
- 13. CENSUS INACT. 3000.00
- 14. ALL SOILS ARE URBAN LAND, UDORTHENTS, 0 TO 8% SLOPES
- 15. EXISTING USE: VACANT
- PROPOSED USE: ROLL-ON/ROLL-OFF STORAGE YARD
- 16. THERE ARE NO KNOWN WELLS OR SEPTIC SYSTEMS LOCATED WITHIN THE PROPOSED DEVELOPMENT AREA.

SHIPYARD ROAD SPARROWS POINT, MD 21219

BOHLER// 901 DULANEY VALLEY ROAD, SUITE 801 TOWSON, MARYLAND 21204 Phone: (410) 821-7980 Fax: (410) 821-7987 MD@BohlerEng.com

UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO. 44097, EXPIRATION DATE: 6/9/23

SHEET NUMBER:

C-301

MDE PROJECT # 21-SF-0032

	STO	RM	SEV	VER P	IPE S	CHI
FROM	FROM INV	то	TO INV	PIPE LENGTH	SLOPE (%)	DIAI (
A-1	4.86'	A-2	7.11'	248.98'	0.90%	
A-2	7.21'	A-2.1	9.20'	220.25'	0.90%	
A-3	7.28'	A-4	9.60'	256.69'	0.90%	
A-3	2.86'	A-1	4.76'	210.14'	0.90%	
A-5	7.19'	A-6	9.60'	266.38'	0.90%	
A-5	0.72'	A-3	2.76'	226.23'	0.90%	
A-7	7.19'	A-8	9.60'	231.70'	1.04%	
A-7.1	-1.75'	A-9	0.25'	222.73'	0.90%	
A-15	-1.87'	A-7.1	-1.75'	24.04'	0.50%	
A-16	-2.82'	A-5	-2.55'	52.85'	0.51%	
B-2	5.43'	B-1	8.44'	300.05'	1.00%	
B-3	-3.16'	B-2	0.31'	34.77'	9.98%	
			0.001	100 -01	1 0 0 0 1	

TP EXISTING UTILITY OR 2' BELOW PROPOSED UTILITY AND SUBMIT ANY DISCREPANCIES TO BOHLER ENGINEERING VA, LLC. IN WRITING.

* EXISTING INVERTS ARE BASED UPON RECORD DRAWINGS. CONTRACTOR TO VERIFY EXISTING INVERTS AND PIPE SIZES PRIOR TO ORDERING STORMDRAIN STRUCTURES AND BEGINNING STORMDRAIN IMPROVEMENTS.

LIMIT OF DISTURBANCE: 3,127,608 S.F. OR 71.80 AC.

SANITARY SEWER FORCE MAIN LIMIT OF DISTURBANCE **RIDGE LINE** _____ CURB AND GUTTER CONCRETE CURB & GUTTER SPILL CURB IDA CRITICAL AREA BOUNDARY

S	TORM STRUCTU	RE SC	HEDULE
NAME	TYPE	RIM ELEV. (FT.)	INVERTS
A-1	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	14.00'	INV IN = 4.86' (24") INV OUT = 4.76' (24")
A-2	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	13.60'	INV IN = 7.21' (24") INV OUT = 7.11' (24")
A-2.1	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	13.20'	INV OUT = 9.20' (24")
A-3	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	12.57'	INV IN = 2.86' (24") INV IN = 7.28' (24") INV OUT = 2.76' (36")
A-4	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	13.60'	INV OUT = 9.60' (24")
A-5	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	12.50'	INV IN = 0.72' (36") INV IN = 7.19' (24") INV OUT = -2.55' (48")
A-6	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	13.60'	INV OUT = 9.60' (24")
A-7	EX. BOX STRUCTURE	13.31'	INV IN = 7.19' (24") *INV OUT = -2.95' (EX. 877X136
A-7.1	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	12.51'	INV IN = -1.75' (36") INV OUT = -1.75' (36")
A-8	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	13.60'	INV OUT = 9.60' (24")
A-15	FIELD CONNECTION	-	*INV IN = -2.95' (<i>Ex. 87%</i> 1367) *INV IN = -1.87' (36") INV OUT = -2.95' (<i>Ex. 87%</i> 136
A-16	FIELD CONNECTION	-	INV IN = -2.82' (48") [*] INV IN = -2.98' (<i>Ex. 87%1367</i>) [*] INV OUT = -2.98' (<i>Ex. 87%1367</i>)
B-1	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	12.01'	INV OUT = 8.44' (18")
B-2	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	11.84'	INV IN = 5.43' (18") INV OUT = 0.31' (18")
B-3	FIELD CONNECTION	-	INV IN = -3.16' (18") *INV IN = -3.74'(<i>Ex. 87X136</i> ") *INV OUT = -3.74' (<i>Ex. 87X136</i> ")
B-4	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	12.30'	INV OUT = 8.80' (18")
EX-1	EXISTING MANHOLE	13.00'	INV IN = 7.16' (18") *INV OUT = -0.38' <i>(EX. 72")</i>

GRADING 7 OF 8 MARYLAND COORDINATE SYSTEM (MCS)

MDE PROJECT # 21-SF-0032

C-402

O7 OF 08

SHEET NUMBER:

STORM STRUCTURE SCHEDULE

NAME	TYPE	RIM ELEV. (FT.)	INVERTS			
A-9	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	12.50'	INV IN = 0.35' (36") INV IN = 7.19' (24") INV OUT = 0.25' (36")			
A-10	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	13.60'	INV OUT = 9.60' (24")			
A-11	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	12.50'	INV IN = 2.60' (24") INV IN = 7.25' (24") INV OUT = 2.50' (36")			
A-12	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	13.60'	INV OUT = 9.60' (24")			
A-13	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	12.50'	INV IN = 5.36' (24") INV OUT = 5.26' (24")			
A-14	PRECAST DOUBLE TYPE S INLET (SHA STD. MD-374.70)	11.80'	INV OUT = 7.35' (24")			

LIMIT OF DISTURBANCE: 3,127,608 S.F. OR 71.80 AC.

ESC-31 THROUGH ESC-38 PHASE I SEQUENCE OF CONSTRUCTION:

- 1. NOTIFY BALTIMORE COUNTY DEPARTMENT OF PERMITS, APPROVALS, AND INSPECTIONS, SEDIMENT CONTROL (410-887-3226) AT LEAST 48 HOURS PRIOR TO BEGINNING WORK ON SITE. HIGH VISIBILITY ORANGE SAFETY FENCE SHALL BE MANUALLY INSTALLED ALONG THE LIMIT OF DISTURBANCE (LOD) WHEREVER THE LOD IS WITHIN 50 FEET OF ANY FOREST BUFFER OR FOREST CONSERVATION EASEMENT, CRITICAL AREA OR CRITICAL AREA BUFFER. THIS FENCE SHALL BE INSPECTED BY DEPS AT THE PRE-CONSTRUCTION MEETING. (WEEK 1)
- 2. STAKE OVERALL LIMIT OF DISTURBANCE PER THE APPROVED EROSION AND SEDIMENT CONTROL PLANS. INSTALL SAFETY FENCE AS NECESSARY.
- 3. CLEAR, GRUB AND REMOVE ANY NECESSARY EXISTING FEATURES INTERFERING WITH PERIMETER SEDIMENT AND EROSION CONTROL MEASURES AND DEVICES ONLY. INSTALL STABILIZED CONSTRUCTION ENTRANCE WITH MOUNTABLE BERM, SUPER SILT FENCE, SMARTFENCE42, AND SILT FENCE AS DIRECTED BY THE BALTIMORE COUNTY SEDIMENT CONTROL INSPECTOR AND AS SHOWN ON THE APPROVED PLANS. SUPER SILT FENCE, SMARTFENCE42 AND SILT FENCE SHALL BE INSPECTED AND MAINTAINED EACH DAY AND AFTER EACH STORM EVENT. MAINTENANCE SHALL INCLUDE BUT NOT LIMITED TO REMOVAL OF ALL ACCUMULATED SEDIMENT. GEOTEXTILE FABRIC SHALL BE REPLACED AS NEEDED TO ENSURE PROPER FUNCTION (WEEK 1).
- 4. WITH THE APPROVAL OF BALTIMORE COUNTY DEPARTMENTS OF PERMITS, APPROVALS, AND INSPECTIONS, SEDIMENT CONTROL AND THE SEDIMENT CONTROL INSPECTOR CLEAR AND GRUB REMAINDER OF THE SITE. REMOVE REMAINDER OF PAVING, CURB, NECESSARY UTILITIES, ETC. AS SHOWN ON THE PLANS. ALL AREAS OUTSIDE OF THE PERIMETER CONTROL MEASURES SHALL BE COMPLETED PER THE "WORK OUTSIDE PERIMETER CONTROL NOTES" AND "UTILITY NOTES". DISPOSAL MATERIAL WILL EITHER NEED TO BE TAKEN TO A RUBBLE LANDFILL WITH AN ACTIVE GRADING PERMIT AND APPROVED SEDIMENT CONTROL PLAN, OR AN EXISTING ASPHALT RECYCLING FACILITY SUBJECT TO THE SAME. (WEEKS 2-3)
- 5. NOTIFY BALTIMORE COUNTY DEPARTMENT OF PERMITS, APPROVALS AND INSPECTIONS, SEDIMENT CONTROL UPON COMPLETION OF INSPECTION AND NECESSARY SEDIMENT CONTROL REPAIRS. (WEEK 4)
- **PHASE II SEQUENCE OF CONSTRUCTION:** 1. BEGIN ROUGH GRADING THE SITE. BEGIN INSTALLATION OF UNDERGROUND UTILITIES. IMMEDIATELY UPON INSTALLATION,
- INSTALL INLET PROTECTION AROUND ALL PROPOSED INLETS. CONTRACTOR TO MAINTAIN POSITIVE FLOW TO ALL INLETS. (WEEKS 5-10)
- 3. COMPLETE FINE GRADING OF SITE. SITE SHALL BE BROUGHT TO GRADE AS SOON AS POSSIBLE AND STABILIZED WITH EITHER STONE SUBBASE OR PERMANENT SEED AND MULCH. AREAS WITH SLOPES 3:1 OR STEEPER SHALL BE STABILIZED WITH PERMANENT SEED AND SOIL STABILIZATION MATTING. (WEEKS 10-14)
- 4. INSTALL ANY REMAINING STONE SUBBASE AND BEGIN PAVING. (WEEKS 15-19)
- 5. FLUSH STORM DRAIN SYSTEM AND TAKE THE SPOIL TO A SITE WITH AN ACTIVE GRADING PERMIT AND AN APPROVED SEDIMENT CONTROL PLAN. (WEEK 20)
- 6. INSTALL LANDSCAPING PER THE APPROVED LANDSCAPE PLAN (WEEK 21-22)
- 7. UPON STABILIZATION OF THE SITE WITH ESTABLISHED VEGETATION AND WITH PERMISSION FROM THE SEDIMENT CONTROL INSPECTOR, REMOVE SEDIMENT CONTROL MEASURES AND STABILIZE THOSE AREAS DISTURBED BY THIS PROCESS. (WEEK 23)

SYMBOL	
UuB	LANE
ALL SOII	LS ON

SOIL STABILIZATION NOTE

FOLLOWING INITIAL SOIL DISTURBANCE OR REDISTURBANCE, PERMANENT OR TEMPORARY STABILIZATION SHALL BE COMPLETED WITHIN THREE (3) CALENDAR DAYS AS TO THE SURFACE OF ALL PERIMETER CONTROLS, DIKES, SWALES, DITCHES, PERIMETER SLOPES, AND ALL SLOPES STEEPER THAN 3 HORIZONTAL TO 1 VERTICAL (3:1); AND SEVEN (7) DAYS AS TO ALL OTHER DISTURBED OR GRADED AREAS ON THE PROJECT SITE NOT UNDER ACTIVE GRADING.

MAINTENANCE NOTE

CONTRACTOR SHALL INSPECT AND MAINTAIN ALL SEDIMENT CONTROL MEASURES AND DEVICES AFTER EVERY STORM EVENT. MAINTENANCE SHALL INCLUDE, BUT NOT BE LIMITED TO, THE REMOVAL OF ALL ACCUMULATED SEDIMENT. GEOTEXTILE FABRIC SHALL BE REPLACED AS NEEDED TO ENSURE PROPER FUNCTION. SUPER SILT FENCE STORAGE AREAS SHALL BE DEWATERED AND SEDIMENT CLEANED OUT AFTER EVERY STORM EVENT.

TEMPORARY STOCKPILE NOTES

TEMPORARY STOCKPILES SHALL BE:

- LOCATED WITHIN THE LIMIT OF DISTURBANCE (LOD).
 DRAIN TO A FUNCTIONING SEDIMENT CONTROL DEVICE.
- 3. POSITIONED TO NOT IMPEDE UPON, OR IMPAIR THE FUNCTION OF SAID DEVICE.
- 4. POSITIONED TO NOT ALTER DRAINAGE DIVIDES.
- THESE ITEMS SHOULD BE INCORPORATED INTO ANY NOTE REFERENCING TEMPORARY STOCKPILES, AND WHEN ACTUALLY DELINEATING THEM ON PLAN VIEWS.

INLET PROTECTION NOTE

THE CONTRACTOR IS REQUIRED TO INSTALL INLET PROTECTION ON ALL STORM DRAIN INLETS WITH THE EXCEPTION OF THE FOLLOWING:

-) ANY INLET OUTFALLING DIRECTLY INTO A SEDIMENT TRAPPING DEVICE. INLETS ON PRIVATE OR PUBLIC PAVED ROAD OPEN TO THE PUBLIC. IF AN AREA AROUND THE GABION INLET PROTECTION DOES NOT DRAIN WITHIN 24 HOURS OF A RAIN EVENT, CONTRACTOR TO PUMP AREA THROUGH A FILTER BAG TO AN EXISTING UNDERGROUND STORM DRAIN SYSTEM OR PUMP TO AN EXISTING INLET THAT DRAINS DIRECTLY TO THE TINMILL CANAL WASTEWATER TREATMENT PLANT.
- ALL INLET PROTECTION WILL BE INSTALLED AS DIRECTED BY THE INSPECTOR IN ACCORDANCE WITH THE 2011 MARYLAND STANDARDS AND SPECIFICATIONS FOR SOIL EROSION AND SEDIMENT CONTROL, PAGE E-23. THE REMOVAL OF ANY INLET PROTECTION DEVICES WILL REQUIRE APPROVAL FROM THE INSPECTOR. *STORM DRAIN TO BE FLUSHED PRIOR TO TRAPPING DEVICE REMOVAL.

QUANTITY TAKEOFF OF SEDIMENT CONTROL MEASURES

**ALL PHASES SUPER SILT FENCE OR SMARTFENCE42: SILT FENCE REMOVABLE PUMP STATION FILTER BAG AT-GRADE INLET PROTECTION GABION INLET PROTECTION STABILIZED CONSTRUCTION ENTRANCE: MOUNTABLE BERM

5,575 L.F. 370 L.F. 3 EA. 3 EA. 3 EA. 15 EA. 2 EA	
15 EA. 2 EA.	
2 EA.	

EARTH WORK (TOTAL DEVELOPMENT) CUT:

FILL:

NET:

2 EA. 6,070 C.Y. 45,760 C.Y.

39,690 C.Y. (FILL)

SPOIL MATERIAL SHALL BE DISCARDED AT A SITE WITH AN ACTIVE GRADING PERMIT AND APPROVED SEDIMENT CONTROL PLAN. BORROW MATERIAL SHALL BE OBTAINED FROM AN APPROVED SITE WITH AN ACTIVE GRADING PERMIT AND AN APPROVED SEDIMENT CONTROL PLAN.

EARTH QUANTITIES LISTED ABOVE ARE FOR SEDIMENT CONTROL USE ONLY. CONTRACTOR SHALL NOT RELY ON THESE FIGURES FOR ESTIMATING AND BONDING PURPOSES.

WORK OUTSIDE PERIMETER CONTROLS NOTES

CONTRACTOR SHALL ONLY DISTURB THAT AREA WHICH CAN BE COMPLETED AND STABILIZED BY THE END OF EACH WORKING DAY. STABILIZATION SHALL BE AS FOLLOWS: 1. FOR AREA TO BE PAVED, THE APPLICATION OF STONE BASE

 2. FOR AREAS TO BE VEGETATIVELY STABILIZED

 a. PERMANENT SEED AND SOIL STABILIZATION MATTING OR SOD FOR ALL STEEP SLOPES, CHANNELS OR SWALES
 b. PERMANENT SEED AND MULCH FOR ALL OTHER AREAS.

ANY AREAS WHICH CAN NOT BE STABILIZED BY THE END OF EACH WORKING DAY MUST HAVE SILT FENCE INSTALLED ON THE DOWN SLOPE SIDE.

WORK TO BE COMPLETED OUTSIDE THE SEDIMENT CONTROL MEASURES SHALL BE DONE PER THE "WORK OUTSIDE PERIMETER CONTROLS NOTES" AND "UTILITY NOTES" ON THIS SHEET.

SOILS INFORMATION

NAME SLOPE STRUCTURAL LIMITATIONS HYDROLOGIC GROUP K VALUE > 0.35 URBAN D-UDORTHENTS COMPLEX NOT RATED D NA ISITE AND IN THE IMMEDIATE VICINITY ARE OF THE TYPE NOTED ABOVE. NOTE TO CONTROL WILL BE STRICTLY ENFORCED. LIMIT OF DIST

ATTACHMENT 2

TRADEPOINT RAIL

TPR-0101

Sparrows Point, Maryland

ATTACHMENT 3

Construction Worker Soil Screening Levels Maximum Allowable Work Day Exposure Calculation Spreadsheet - Sub-Parcel B4-2 Expansion

Description	Variable	Value
Days worked per week	DW	5
Exposure duration (yr)	ED	1
Hours worked per day	ET	8
A/constant (unitless) - particulate emission factor	Aconst	12.9351
B/constant (unitless) - particulate emission factor	Bconst	5.7383
C/constant (unitless) - particulate emission factor	Cconst	71.7711
Dispersion correction factor (unitless)	FD	0.185
Days per year with at least .01" precipitation	Р	130
Target hazard quotient (unitless)	THQ	1
Body weight (kg)	BW	80
Averaging time - noncancer (yr)	ATnc	1
Soil ingestion rate (mg/d)	IR	330
Skin-soil adherence factor (mg/cm2)	AF	0.3
Skin surface exposed (cm2)	SA	3300
Event frequency (ev/day)	EV	1
Target cancer risk (unitless)	TR	01E-06
Averaging time - cancer (yr)	ATc	70
A/constant (unitless) - volatilization	Aconstv	2.4538
B/constant (unitless) - volatilization	Bconstv	17.566
C/constant (unitless) - volatilization	Cconstv	189.0426
Dry soil bulk density (kg/L)	Pb	1.5
Average source depth (m)	ds	3
Soil particle density (g/cm3)	Ps	2.65
Total soil porosity	Lpore/Lsoil	0.43
Air-filled soil porosity	Lair/Lsoil	0.28

Construction Worker Soil Screening Levels Maximum Allowable Work Day Exposure Calculation Spreadsheet - Sub-Parcel B4-2 Expansion

Area of site (ac)	Ac	28.2	→ Site-Wide EU1-EXP
Overall duration of construction (wk/yr)	EW	2	1
Exposure frequency (day/yr)	EF	10	1
Cars per day	Ca	5	1
Tons per car	CaT	2	
Trucks per day	Tru	5	Ca
Tons per truck	TrT	20	
Mean vehicle weight (tons)	w	11	1
Derivation of dispersion factor - particulate emission factor (g/m2-s per kg/m3)	Q/Csr	14.0	
Overall duration of construction (hr)	tc	336	1
Overall duration of traffic (s)	Tt	288,000	1
Surface area (m2)	AR	114,121	1
Length (m)	LR	338	1
Distance traveled (km)	ΣVKT	34	1
Particulate emission factor (m3/kg)	PEFsc	122,444,849	1
Derivation of dispersion factor - volatilization (g/m2-s per kg/m3)	Q/Csa	7.16	
Total time of construction (s)	Tcv	288,000]

Chemical	RfD & RfC Sources	[^] Ingestion SF (mg/kg-day) ⁻ ¹	^Inhalation Unit Risk (ug/m ³) ⁻¹	^Subchronic RfD (mg/kg-day)	[^] Subchronic RfC (mg/m ³)	^GIABS	Dermally Adjusted RfD (mg/kg-day)	^ABS	^RBA	*Dia	*Diw	*Henry's Law Constant (unitless)	*Kd	*Кос	DA	Volatilization Factor - Unlimited Reservoir (m ³ /kg)	Carcinogenic Ingestion/ Dermal SL (SLing/der)	Carcinogenic Inhalation SL (SLinh)	Carcinogenic SL (mg/kg)	Non- Carcinogenic Ingestion/ Dermal SL (SLing/der)	Non- Carcinogenic Inhalation SL (SLinh)	Non- Carcinogenic SL (mg/kg)
Arsenic, Inorganic	I/C	1.50E+00	4.30E-03	3.00E-04	1.50E-05	1	3.00E-04	0.03	0.6			-	2.90E+01				379	218,265	378	2,435	201,116	2,406
Cadmium	A/I	-	1.80E-03	1.00E-03	1.00E-05	0.025	2.50E-05	0.001	1			-	7.50E+01					521,411	521,411	7,900	134,077	7,461
Chromium(VI)	A/C/I	5.00E-01	8.40E-02	5.00E-03	3.00E-04	0.025	1.25E-04	0.01	1			-	1.90E+01				563	11,173	536	20,110	4,022,313	20,010
Iron	Р	-	-	7.00E-01	-	1	7.00E-01	0.01	1			-	2.50E+01							6,013,533		6,013,533
Manganese (Non-diet)	1	-	-	2.40E-02	5.00E-05	0.04	9.60E-04	0.01	1			-	6.50E+01							121,351	670,386	102,751
Mercuric Chloride (and other salts)	A/I	-	-	1.00E-05	3.00E-04	0.07	7.00E-07	0.01	1			-								61.9	4,022,313	61.9
Thallium (Soluble Salts)	Р	-	-	4.00E-05	-	1	4.00E-05	0.01	1			-	7.10E+01							344		344
Vanadium and Compounds	A	-	-	1.00E-02	1.00E-04	0.026	2.60E-04	0.01	1			-	1.00E+03							41,082	1,340,771	39,861
Benz[a]anthracene	1	1.00E-01	6.00E-05	-	-	1		0.13	1	2.60E-02	6.70E-06	4.91E-04	1.08E+03	1.80E+05	6.71E-10	4.73E+4	4,456	6,045	2,565			
Benzo[a]pyrene	1	1.00E+00	6.00E-04	3.00E-04	2.00E-06	1	3.00E-04	0.13	1	4.80E-02	5.60E-06	1.87E-05	3.54E+03	5.90E+05	2.37E-11	2.52E+5	446	3,214	391	1,910	55.1	53.6
Benzo[b]fluoranthene	1	1.00E-01	6.00E-05	-	-	1		0.13	1	4.80E-02	5.60E-06	2.69E-05	3.60E+03	6.00E+05	2.91E-11	2.27E+5	4,456	28,980	3,862			
Benzo[k]fluoranthene	1	1.00E-02	6.00E-06	-	-	1		0.13	1	4.80E-02	5.60E-06	2.39E-05	3.54E+03	5.90E+05	2.74E-11	2.34E+5	44,561	298,538	38,773			
Dibenz[a,h]anthracene	1	1.00E+00	6.00E-04	-	-	1		0.13	1	4.50E-02	5.20E-06	5.76E-06	1.14E+04	1.90E+06	4.13E-12	6.03E+5	446	1,564,233	445			
Indeno[1,2,3-c,d]pyrene	1	1.00E-01	6.00E-05	-	-	1		0.13	1	4.50E-02	5.20E-06	1.42E-05	1.20E+04	2.00E+06	5.62E-12	5.18E+5	4,456	65,835	4,174			
Naphthalene	C/I/A	1.20E-01	3.40E-05	2.00E-02	3.00E-03	1	2.00E-02	0.13	1	6.00E-02	8.40E-06	1.80E-02	9.00E+00	1.50E+03	6.35E-06	4.87E+2	3,713	110	107	127,316	160	160
PCB Total	1	2.00E+00	5.71E-04	-	-	1		0.14	1	2.40E-02	6.30E-06	1.70E-02	4.68E+02	7.80E+04	4.66E-08	5.68E+3	218.1	76.2	56.5			

*chemical specific parameters found in Chemical Specific Parameters Spreadsheet at https://www.epa.gov/risk/regional-screening-levels-rsls

^chemical specific parameters found in Unpaved Road Traffic calculator at https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search

I: chemical specific parameters found in the IRIS at https://www.epa.gov/iris

C: chemical specific parameters found in Cal EPA at https://www.dtsc.ca.gov/AssessingRisk

A: chemical specific parameters found in Agency for Toxic Substances and Disease Registry Minimal Risk Levels (MRLs) at https://www.atsdr.cdc.gov/mrls/pdfs/atsdr_mrls.pdf

P: chemical specific parameters found in the Database of EPA PPRTVs at https://hhpprtv.ornl.gov/quickview/pprtv.php