DRAFT
RESPONSE ACTION PLAN

107 N. Cross Street
Chestertown, MD 21620

October 2021

Prepared For:
Maryland Department of the Environment
Environmental Restoration and Redevelopment Program
Waste Management Division
1800 Washington Boulevard
Suite 625
Baltimore, MD 21230

Prepared By:
BrightFields, Inc.
801 Industrial Street
Wilmington, DE 19801
(302) 656 9600

Submitted by:
107 N. Cross Street, LLC
100 Talbot Boulevard
Chestertown, MD 21620
INTERNAL QUALITY CONTROL SHEET

This Response Action Plan has been prepared by BrightFields, Inc. (BrightFields) following practices and policies as required by the Maryland Department of the Environment for the preparation of a Response Action Plan under the Voluntary Cleanup Program. The information presented within this report represents BrightFields’ knowledge of conditions on the subject site at the time of preparation. This report was prepared and reviewed by the following BrightFields' personnel:

Prepared By:

Kelly P. Wilkinson
Environmental Analyst

Reviewed by:

Victoria Bisbing, PMP
Project Manager

Reviewed and Approved by:

Ken Hannon
Engineering Program Manager
Table of Contents

1.0 INTRODUCTION.. 1

2.0 SITE OVERVIEW.. 2

 2.1 INVESTIGATION & COMPLIANCE HISTORY .. 2
 2.1.1 June 1991 Release and Associated Documents .. 3
 2.1.2 September 1992 Release .. 3
 2.1.3 October 1993 Phase II Investigation (Environmental Consulting Services, Inc.) .. 3
 2.1.4 October 1999 Inspection .. 3
 2.1.5 August 2006 Phase II Investigation (BlueRidge Environmental, Inc.) 4
 2.1.6 September 2007 Membrane Interface Probe (MIP) Investigation (BlueRidge Environmental, Inc.) 4
 2.1.7 March 2008 Report of Indoor Air Quality Sampling (BlueRidge Environmental, Inc.) 4
 2.1.8 May 2014 Hazardous Waste Inspection (MDE) ... 4
 2.1.9 November 2017 Limited On-Site Subsurface Investigation (Chesapeake GeoSciences, Inc.) ... 5
 2.1.10 September 2018 Supplemental Phase II ESA (Green Street Environmental) ... 5
 2.1.11 May 2021 Facility Summary for Facility ID #11148 (MDE) ... 5

 2.2 FUTURE LAND USE .. 5
 2.3 PROPOSED RESPONSE ACTIONS ... 6

3.0 ADDITIONAL INVESTIGATORY INFORMATION ... 7

4.0 EXPOSURE ASSESSMENT & PROPOSED REMEDY ... 8

 4.1 MEDIA OF CONCERN .. 8
 4.1.1 Soil .. 8
 4.1.2 Groundwater .. 8
 4.1.3 Soil Gas .. 8
 4.1.3 Sediment/Surface Water ... 9

 4.2 POTENTIALLY EXPOSED POPULATIONS ... 9
 4.3 POTENTIAL EXPOSURE PATHWAYS .. 9
 4.4 COMPLETE EXPOSURE PATHWAYS .. 9

5.0 CLEANUP CRITERIA .. 12

6.0 SELECTED TECHNOLOGIES & LAND USE CONTROLS ... 13

 6.1 SSDS SYSTEM .. 13
 6.1.1 SSDS System Design ... 13
 6.1.2 Soil Management and Disposal .. 14
 6.1.3 Excavation Backfill .. 15
 6.1.4 SSDS System Monitoring .. 15

 6.2 MAINTENANCE OF THE EXISTING CAP .. 15
 6.3 INSTITUTIONAL CONTROLS (FUTURE LAND USE CONTROLS) .. 16
 6.4 POST-REMEDIATION REQUIREMENTS ... 16

7.0 EVALUATION CRITERIA FOR THE SELECTED TECHNOLOGIES .. 17

 7.1 CRITERIA FOR CERTIFICATE OF COMPLETION (COC) ... 17
7.2 CRITERIA FOR REMEDIATION COMPLETION ... 17
7.3 CRITERIA FOR CONTINGENCY MEASURES .. 18

8.0 PROPOSED RESPONSE ACTION IMPLEMENTATION ... 19
 8.1 GENERAL HEALTH AND SAFETY PROTOCOLS ... 19
 8.2 REPORTING REQUIREMENTS .. 19
 8.3 INSPECTION AND MAINTENANCE REQUIREMENTS ... 20
 8.4 GROUNDWATER MANAGEMENT 20
 8.5 ASBESTOS, LEAD, AND OIL .. 20

9.0 PERMITS, NOTIFICATIONS, & CONTINGENCIES ... 21
 9.1 IMPLEMENTATION SCHEDULE ... 21
 9.2 ADMINISTRATIVE REQUIREMENTS ... 23

10.0 REFERENCES ... 24
FIGURES

FIGURE 1 Site Location/Topographic Map
FIGURE 2 Extent of Environmental Impacts – Groundwater
FIGURE 3 Extent of Environmental Impacts – Soil Vapor
FIGURE 4 SSDS System Layout
FIGURE 5 SSDS System Design Details
FIGURE 6 SSDS System Cross Section
FIGURE 7 Cap Repair Cross Section

APPENDICES

APPENDIX A Documentation from Previous Investigations
APPENDIX B August 2019 Supplemental Sampling Data
APPENDIX C SSDS Inspection Sheet
APPENDIX D Cap Inspection Sheet
APPENDIX E Compliance Certifications
RESPONSE ACTION PLAN
107 N. Cross Street
Chestertown, MD

1.0 INTRODUCTION

BrightFields, Inc. (BrightFields) was retained by 107 N. Cross Street, LLC, the developer, to prepare a Response Action Plan (RAP) for environmentally impacted soil, groundwater, and soil vapor associated with the 107 North Cross Street Site (Site) located in Chestertown, Maryland (Figure 1). The Site previously operated as a dry cleaning business. Several environmental investigations have been performed that indicate residual contamination associated with dry cleaning chemicals used at the facility are present in the subsurface.

BrightFields has prepared this RAP consistent with Section 7-508 of the Environment Article, Annotated Code of Maryland. The purpose of this RAP is to provide an overview of the Site and previous investigations, address supplemental investigations performed/required, assess current and future exposure pathways, develop cleanup criteria, select cleanup technologies/land use controls, set criteria for selected technologies, proposed response actions, and satisfy permitting, scheduling, and administrative requirements. The Site developer, 107 N. Cross Street, LLC, intends to redevelop the property/structure as a commercial market.
2.0 SITE OVERVIEW

The Site is located approximately 100 feet south of the southern corner of the intersection between North Cross Street and Maple Avenue in Chestertown, Maryland (Figure 1). The Site was historically operated as a dry cleaning business from 1963 through 2011 and utilized tetrachloroethene (PCE) as the primary dry cleaning solvent from 1963 through 1998. The Site is currently vacant and consists of a two-story building, a tin shed, a paved driveway with drive-thru, and a parking lot. The proposed future use of the Site is a commercial market.

Investigations performed at the Site indicated chlorinated solvent contamination is present in soil, groundwater, and sub-slab soil gas at concentrations exceeding Maryland Department of the Environment (MDE) standards. Based on the proposed use of the Site, the criteria for soil cleanup are not exceeded and only groundwater and soil vapor have unacceptable impacts under MDE Groundwater / Tier 2 Commercial Target Soil Vapor Values. The approximate extent of the subsurface environmental impacts in groundwater and soil vapor are identified in Figures 2 and 3, respectively. The Site was accepted into the Maryland Voluntary Cleanup Program (VCP) on November 29, 2018.

2.1 INVESTIGATION & COMPLIANCE HISTORY

The Site has been the subject of several environmental investigations since the early 1990’s. Green Street Environmental provided the 2008 Report of Indoor Air Quality Sampling and the 2018 Supplemental Phase II Environmental Site Assessment (ESA) to BrightFields in 2018. Note that these reports summarized several other investigations; however, BrightFields was not able to obtain full copies of the individual reports for review. On April 29, 2021, BrightFields submitted a Public Information Act (PIA) request to MDE to obtain additional Site information. Copies of the missing reports were not included in the PIA response. All investigations and findings known to BrightFields at the time of this report are summarized below. Relevant tables, figures, and oversight documentation available to BrightFields at the time of this report are included as Appendix A.
2.1.1 June 1991 Release and Associated Documents

These documents were obtained from the PIA request. An Underground Leak Summary and Tank Closure form documented a groundwater release at Park Rug & Dry Cleaners observed during removal of a 1,000-gallon #2 fuel oil tank that was abandoned in place. One monitoring well was installed in September 1991 between the building and the adjacent gas station. MDE requested sampling for benzene, toluene, ethylbenzene, and xylenes (BTEX), naphthalene, and PCE. In October 1991, PCE was detected at 5,200 µg/L and benzene was detected at 1 µg/L. Naphthalene and all other BTEX compounds were not detected above the method detection limit. Based on documents provided by MDE from the PIA request, measured PCE concentrations in the onsite monitoring well were 112 µg/L in October 1993 and 3 µg/L in April 1994. A June 1994 Notice of Compliance letter from MDE stated that the low level of dissolved petroleum in groundwater did not warrant any corrective action and the case was closed.

2.1.2 September 1992 Release

These documents were obtained from the PIA request. An Underground Leak Summary and Tank Closure form documented a surface spill from Park Rug & Dry Cleaners that affected the sidewalk, driveway, and road. The substance was described as an unknown dark, oily substance. The dry cleaner manager stated that the substance was residual soap (Soft Kleen) removed from the dry cleaning system. The National Pollutant Discharge Elimination System (NPDES) inspector instructed the manager to clean up the spill.

2.1.3 October 1993 Phase II Investigation (Environmental Consulting Services, Inc.)

This investigation was summarized in the 2008 Report of Indoor Air Quality Sampling and BrightFields was not able to review the full report. One well was installed onsite and sampled during the Phase II Investigation. Results showed evidence of low levels of PCE contamination.

2.1.4 October 1999 Inspection

The inspection report was obtained from the PIA request. An assessment of the Park Rug & Dry Cleaners, Corp. facility was performed on October 21, 1999. The record indicates that PCE was used onsite and the facility generated old PCE and filters as wastes. The floor drains and trench
system drained water and wash water to the Publicly Owned Treatment Works (POTW) and waste generated onsite was removed by a waste contractor.

2.1.5 August 2006 Phase II Investigation (BlueRidge Environmental, Inc.)

This investigation was summarized in the 2008 Report of Indoor Air Quality Sampling and BrightFields was not able to review the full report. PCE and its breakdown products, including trichloroethene (TCE) and cis-1,2-dichloroethene (DCE), were detected in soil and groundwater onsite.

2.1.6 September 2007 Membrane Interface Probe (MIP) Investigation (BlueRidge Environmental, Inc.)

This investigation was summarized in the 2008 Report of Indoor Air Quality Sampling and BrightFields was not able to review the full report. In June 2007, a MIP investigation was performed on the Site and the adjoining gasoline station property. The plume containing PCE and associated breakdown products was identified in the shallow groundwater underneath both properties.

2.1.7 March 2008 Report of Indoor Air Quality Sampling (BlueRidge Environmental, Inc.)

This report was provided to BrightFields by Green Street Environmental in 2018. Indoor air samples were collected from three locations within the Site building and one location in the gas station office. Samples were analyzed for PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and vinyl chloride (VC). PCE was detected in all three samples collected from the Site and TCE and cis-1,2-DCE was detected in two of the samples collected from the Site. No unacceptable indoor air impacts to commercial workers were identified based on the sampling. Site closure was requested at the time but was not granted.

2.1.8 May 2014 Hazardous Waste Inspection (MDE)

The inspection report was obtained from the PIA request. MDE performed an inspection of the Admiral Inc. #63 site based on the active site status. At the time of the inspection, the inspector was informed that dry cleaning operations were no longer performed onsite as of early 2013. The
inspector recommended removal of the site from the Resource Conservation and Recovery Act (RCRA) database.

2.1.9 November 2017 Limited On-Site Subsurface Investigation (Chesapeake GeoSciences, Inc.)

Sample location figures and boring logs from this investigation were provided to BrightFields by Green Street Environmental in 2018. Note that BrightFields was not able to review the full report. During the Limited On-Site Subsurface Investigation, soil samples and grab groundwater samples were collected from six locations. Groundwater was encountered between 15.5 and 18 feet below ground surface (bgs). PCE was present in soil and groundwater on the property above the respective screening levels. Additional volatile organic compounds (VOCs) detected include cis-1,2-DCE, TCE, and VC.

2.1.10 September 2018 Supplemental Phase II ESA (Green Street Environmental)

This report was provided to BrightFields by Green Street Environmental in 2018. During the Supplemental Phase II ESA, six sub-slab vapor samples were collected from within the building footprint. PCE and TCE exceeded the MDE Commercial Target Soil Vapor Standards in three sample locations (SV-1, SV-2, and SV-3). The consultant concluded that reductive dechlorination was occurring based on the presence of other chlorinated VOCs associated with the degradation of PCE and TCE.

2.1.11 May 2021 Facility Summary for Facility ID #11148 (MDE)

Information was obtained from the PIA request. The Facility Summary printout lists that one 1,000-gallon heating oil tank was installed in January 1964 and closed in place in June 1991.

2.2 FUTURE LAND USE

The proposed future use of the Site is a commercial market, which is considered Tier 2B – Restricted Commercial Use. It will be an open market utilizing the existing building structure. Redevelopment plans do not include disturbing the existing buildings, asphalt, or concrete on the property or regrading. However, the concrete floor will be cut, removed, and replaced during implementation of the proposed response action.
2.3 PROPOSED RESPONSE ACTIONS

To reduce human health risk to levels acceptable for commercial use, BrightFields recommends implementing the following to provide ongoing protection to building occupants:

- Installing a sub-slab depressurization system (SSDS) system within the existing building footprint to reduce migration of soil vapor into the building and to reduce the residual contaminant mass over time.
- Utilizing the existing cap (building footprint, asphalt, and concrete) to prevent contact with impacted soil and groundwater.
- Implementing deed restrictions to restrict groundwater use, restrict future site usage to commercial type uses, require continued operation of the SSDS system until cleanup criteria is met, and require inspection and maintenance of the cap.
3.0 ADDITIONAL INVESTIGATORY INFORMATION

Based on the results of the previous investigations, MDE requested delineation of chlorinated solvents in soil gas around the exterior of the building and additional assessment of the sub-slab soil gas beneath the building. A total of nine exterior soil gas points and nine interior sub-slab points were installed in August 2019. Exterior soil gas points were sampled by BrightFields, while MDE collected samples from all interior and exterior sub-slab points/soil gas points. Laboratory analytical results from this most recent sampling event indicated that unacceptable concentrations of PCE and TCE were detected in the subsurface soil vapor. The elevated concentrations of PCE and TCE exceeded their respective MDE Commercial Soil Vapor Values and concentrated in the center and east-central portions of the Site, below the building and extending outward. A draft report summarizing the soil gas point installation, sampling methods, and results was transmitted to MDE in March 2021. Appendix B includes results from the most recent soil gas sampling events.
4.0 EXPOSURE ASSESSMENT & PROPOSED REMEDY

4.1 MEDIA OF CONCERN

4.1.1 Soil

Previous investigations have indicated that soil at the Site is impacted. The Site is currently covered by asphalt parking and driving areas, concrete building slabs and curbs, and a brick parking area.

Construction workers will come in contact with impacted soil during implementation of the SSDS system. A site-specific Health and Safety Plan (HASP) will be used to protect construction workers and minimize risks associated with impacted soil. The current cap will prevent exposure to future site workers and visitors/patrons. Implementation of a deed restriction to inspect and maintain the cap will ensure that the remedy remains protective.

4.1.2 Groundwater

Previous investigations have indicated that groundwater at the Site is impacted. Water to the Site is publicly supplied and there are no onsite wells.

It is not anticipated that construction workers will come in contact with impacted groundwater during implantation of the SSDS system. A site-specific HASP will be used to protect construction workers and minimize risks associated with impacted groundwater. Implementation of a deed restriction to restrict use of groundwater beneath the Site will prevent future site workers and visitors/patrons from contacting groundwater.

4.1.3 Soil Gas

Previous investigations have indicated that soil gas at the Site is impacted. The primary exposure route for Site users to contaminants is in the form of soil vapor migrating into enclosed structures.

Construction workers will come in contact with impacted soil gas during implementation of the SSDS system. A site-specific HASP will be used to protect construction workers and minimize risks associated with impacted soil gas. A vapor mitigation system (SSDS) will be installed to minimize vapor intrusion into the building to protect future site workers and visitors/patrons.
Additionally, deed restrictions will require continued operation of the SSDS system until cleanup criteria is met and restrict future land use to commercial type uses.

4.1.3 Sediment/Surface Water

Sediment and surface water are not present on the Site. Therefore, they are not evaluated in this RAP.

4.2 POTENTIALLY EXPOSED POPULATIONS

Current exposed populations are limited to Site trespassers who may cross the property. Construction workers will be exposed for a limited time during future construction. Based on the proposed future use (Tier 2B – Restricted Commercial Use), future Site users include Site workers and visitors/patrons. These future users may include sensitive populations (children and the elderly). There are no known current or future on-site ecological receptors.

4.3 POTENTIAL EXPOSURE PATHWAYS

Potential exposure pathways include incidental ingestion, inhalation of dust particulates from soil, dermal contact with soil and groundwater, and inhalation of soil gas.

Redevelopment plans do not include any intrusive activities. Therefore, construction workers are not likely to come in contact with soil or groundwater during redevelopment. However, during implementation of the SSDS system as a remedy, construction workers will be exposed to impacted soil and soil gas. It is not anticipated that construction workers will come in contact with impacted groundwater due to the shallow installation depth of the SSDS system. In the absence of a remedy, future Site workers and visitors/patrons may be exposed to impacted soil, groundwater, and soil gas.

4.4 COMPLETE EXPOSURE PATHWAYS

The exposure pathways are identified below with the proposed response actions. As shown in the table, BrightFields recommends preparing and implementing a site-specific HASP, installing a vapor mitigation system (SSDS system), utilizing the existing cap, and implementing deed restrictions. Because most of the Site will remain paved, the primary exposure route will be indoor
air. While the SSDS will be designed to minimize vapor intrusion into the building, it will also function as a soil vapor extraction (SVE) system enhancing remediation of site soils, soil gas, and groundwater.

<table>
<thead>
<tr>
<th>Exposure Pathway</th>
<th>Receptor</th>
<th>Proposed Response Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestion of Soil</td>
<td>Future Construction Workers</td>
<td>Administrative Control – A written site-specific HASP to outline risks associated with exposure and how to minimize them using work practices and personal protective equipment.</td>
</tr>
<tr>
<td></td>
<td>Current Trespassers,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Future Site Workers,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Future Visitors/ Patrons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Control – The existing cap surrounding the existing Site structure will prevent further exposure via soil.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Institutional Control – A deed restriction requiring inspection and maintenance of the cap to prevent future exposure.</td>
<td></td>
</tr>
<tr>
<td>Inhalation of Fugitive Dust</td>
<td>Future Construction Workers</td>
<td>Administrative Control – A written site-specific HASP to outline risks associated with exposure and how to minimize them using work practices and personal protective equipment. The HASP will include a dust monitoring program.</td>
</tr>
<tr>
<td></td>
<td>Current Trespassers,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Future Site Workers,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Future Visitors/ Patrons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Control – The existing cap surrounding the existing Site structure will prevent further exposure via soil.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Institutional Control – A deed restriction requiring inspection and maintenance of the cap to prevent future exposure.</td>
<td></td>
</tr>
<tr>
<td>Dermal Contact with Soil</td>
<td>Future Construction Workers</td>
<td>Administrative Control – A written site-specific HASP to outline risks associated with exposure and how to minimize them using work practices and personal protective equipment.</td>
</tr>
<tr>
<td></td>
<td>Current Trespassers,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Future Site Workers,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Future Visitors/ Patrons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Control – The existing cap surrounding the existing Site structure will prevent further exposure via soil.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Institutional Control – A deed restriction requiring inspection and maintenance of the cap to prevent future exposure.</td>
<td></td>
</tr>
<tr>
<td>Dermal Contact with Groundwater</td>
<td>Future Construction Workers</td>
<td>Administrative Control – A written site-specific HASP to outline risks associated with exposure and how to minimize them using work practices and personal protective equipment.</td>
</tr>
<tr>
<td></td>
<td>Future Site Workers and Future Visitors/ Patrons</td>
<td>Institutional Control – A deed restriction restricting use of groundwater beneath the Site.</td>
</tr>
<tr>
<td>Inhalation of Subsurface Gases during Construction</td>
<td>Future Construction Workers</td>
<td>Administrative Control – A written site-specific HASP to outline risks associated with exposure and how to minimize them using work practices and personal protective equipment.</td>
</tr>
</tbody>
</table>
Summary of Exposure Pathways and Proposed Remedies

<table>
<thead>
<tr>
<th>Exposure Pathway</th>
<th>Receptor</th>
<th>Proposed Response Actions</th>
</tr>
</thead>
</table>
| Inhalation of Subsurface Gases in Indoor Air | Current Trespassers, Future Site Workers, and Future Visitors/Patrons | *Engineering Control* – A vapor mitigation (SSDS system) in the existing structure to prevent vapor intrusion into the existing Site structure and reduce subsurface contaminant mass.
Institutional Control – A deed restriction requiring that future land use conform to commercial type uses. |
5.0 CLEANUP CRITERIA

Commercial cleanup standards for sub-slab soil gas and indoor air, established by MDE in the Technical Guidelines for Vapor Intrusion (MDE, 2019), will be used as the cleanup criteria for the Site. At these concentrations, the hazard index does not exceed 1 and the carcinogenic risk does not exceed 1×10^{-5} for either compound. The operational goal is to maintain indoor air contaminants below the threshold for unacceptable risk. 107 N. Cross Street, LLC will elect to adopt sub-slab soil gas target levels at or below 100 times the indoor air criteria to reduce long term monitoring requirements. Target cleanup concentrations for PCE and associated degradation products are shown in the table below.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Indoor Air Commercial Concentration ($\mu g/m^3$)</th>
<th>Sub-Slab Soil Gas Concentration ($\mu g/m^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-DCE</td>
<td>880</td>
<td>88,000</td>
</tr>
<tr>
<td>cis-1,2-DCE</td>
<td>154</td>
<td>15,400</td>
</tr>
<tr>
<td>trans-1,2-DCE</td>
<td>310</td>
<td>31,000</td>
</tr>
<tr>
<td>PCE</td>
<td>180</td>
<td>18,000</td>
</tr>
<tr>
<td>TCE</td>
<td>8.8</td>
<td>880</td>
</tr>
<tr>
<td>VC</td>
<td>28</td>
<td>2,800</td>
</tr>
</tbody>
</table>

During construction of the SSDS system, all work will be conducted in accordance with the site-specific HASP to ensure that construction workers are not exposed to an unacceptable risk. During operation of the SSDS system, 107 N. Cross Street, LLC proposes conducting quarterly effluent monitoring and comparing the analytical results to the sub-slab soil gas cleanup goals. Criteria for shutting down the system and post-treatment sampling is discussed in Section 7.2.
6.0 SELECTED TECHNOLOGIES & LAND USE CONTROLS

The proposed future use of the Site is considered Tier 2B – Restricted Commercial Use. Redevelopment plans do not include disturbing the existing buildings, asphalt, concrete, or brick hardscaping on the property, regrading, or filling.

6.1 SSDS SYSTEM

BrightFields proposes installation of a SSDS system to depressurize the sub-slab environment (thereby preventing vapor intrusion and protecting building occupants) and reduce existing contaminant mass through enhanced volatilization and treatment of chlorinated solvent vapors. An SSDS system represents an appropriate remedy due to the relative risk associated with soil vapors within the building and the restrictive nature of the slab and sub-slab environment. Chlorinated solvents are volatile by nature, and the creation of a low-pressure region in the vadose zone will aid in the volatilization of contaminants sorbed to soil particles and dissolved in shallow groundwater. The effectiveness of SVE systems for addressing solvent contamination in the subsurface is thoroughly documented; the technology and its suitability/applicability is summarized in a United States Environmental Protection Agency (USEPA) document titled “Engineering Issue – Soil Vapor Extraction (SVE) Technology” (USEPA, 2018).

6.1.1 SSDS System Design

Seven extraction points or “sumps” are proposed below the building slab; each sump is connected to a lateral collector pipe that terminates in a manifold at the blower. The proposed SSDS system layout is depicted on Figure 4. The system piping design is shown in greater detail on Figure 5 and a cross section is shown on Figure 6; each sump is connected to an individual pipe and vapors collected from the sumps are directed through a manifold that can be adjusted to change the relative draw from each location. From the manifold, vapors are drawn through a water knock-out which protects the downstream equipment from excessive moisture. The blower, a regenerative blower with a nominal power rating of three horsepower and 212 standard cubic feet per minute (scfm), provides the suction power for the system. At the blower discharge, drums of activated charcoal act as scrubbers to reduce the chlorinated solvents emissions. The manifold,
knock-out tank, blower, and activated carbon vessels will be secured in a locked shed/fence to prevent unauthorized tampering with the system.

Installation of the SSDS system will require saw cutting the concrete building slab and excavating along the lengths of the lateral collector pipes. Excavations will consist of 18-inch wide and 18-inch deep trenches for the lateral collector pipes and 3-foot cubic pits around each sump location. Lateral collector piping will be installed at approximately 18-inches below the top of the slab and backfilled with clean sand. Each sump will be installed at approximately 3 feet below the top of the slab with a metal screen to prevent drawing sediment into the system. Sump pits will be backfilled with clean #57 stone. All piping for the lateral collector piping and the sumps will be 2-inch diameter Schedule 80 polyvinyl chloride (PVC) piping. A 6-inch layer of concrete will be poured over the trenches and sump pits and then a sealer will be applied along the concrete seams to prevent breakthrough.

6.1.2 Soil Management and Disposal

Based on the proposed SSDS system design, approximately 25 tons of potentially chlorinated solvent-impacted soil will be excavated for SSDS system installation. Excavated soil will be staged securely onsite in a manner which will prevent offsite migration by wind or water erosion. One composite sample will be collected and analyzed based on the requirements for the selected disposal facility. It is anticipated that analysis requirements will consist of the following parameters: toxicity characteristic leaching procedure (TCLP) metals, polychlorinated biphenyls (PCBs), total VOCs, ignitability, corrosivity, and reactivity. Soil excavated from the Site will be disposed in accordance with applicable local, State, and federal laws and regulations. All waste manifests and the total volume of soil disposed will be included with the Response Action Completion Report and submitted to MDE.

Following excavation of chlorinated solvent-impacted soil, the excavator will be decontaminated by scraping off soil. Soiled personal protective equipment (PPE), such as disposable gloves, will be disposed along with other construction debris.
6.1.3 Excavation Backfill

All sand and #57 stone used to backfill the trenches and sump pits will be from MDE-approved clean fill sources. Fill material will not be transported to the Site unless it has been approved in writing by MDE.

6.1.4 SSDS System Monitoring

Continued protectiveness of the SSDS system will be ensured through a process of routine monitoring on a quarterly basis. Prior to beginning SSDS system monitoring, an Operations & Maintenance (O&M) Plan outlining procedures will be submitted to MDE for approval. At startup, pressure differentials between the indoor air and sub-slab environment will be evaluated to ensure that the system is effective. Ongoing routine monitoring will include measuring system parameters, preventative maintenance of the blower system, and evaluation/replacement of the carbon treatment units. 107 N. Cross Street, LLC will be responsible for performing routine SSDS system monitoring. If the person responsible for performing monitoring changes, the VCP project manager must be notified at 410-537-3493. All inspections will be documented on the form included as Appendix C and maintained for a minimum of five years.

Quarterly sampling of the recovered vapor will also be performed to determine overall changes in recovered contaminant mass over time and to evaluate the continued need/efficacy of the SSDS system. Samples will be analyzed at a laboratory for PCE and associated degradation products, including 1,1-DCE, cis-1,2-DCE trans-1,2-DCE, TCE, and VC. Once concentrations meet the sub-slab soil gas cleanup criteria for two consecutive quarters, 107 N. Cross Street, LLC may request from MDE approval to shut down SSDS system. Following system shutdown, post-treatment indoor air monitoring will be conducted at 30, 60, 180, 365, and 720 days after system shutdown to ensure treatment effectiveness.

6.2 MAINTENANCE OF THE EXISTING CAP

The Site is currently covered by impervious material, including buildings, asphalt, and concrete. There are currently no landscaped areas on the Site and redevelopment plans do not include landscaped areas in the future. This existing cap will be used to prevent exposure to impacted soil. The extent of the cap, as shown on Figure 4, must be inspected and maintained to ensure
long term protection of human health and the environment. A cross section is shown on Figure 7.

107 N. Cross Street, LLC will be responsible for performing annual cap inspections. If the person responsible for performing cap inspections changes, the VCP project manager must be notified at 410-537-3493. Prior to beginning annual cap inspections, an O&M Plan outlining procedures will be submitted to MDE for approval. All inspections will be documented on the form included as Appendix D and maintained for a minimum of five years. Any damaged areas will be repaired within five business days and MDE will be notified within ten business days following repair completion. MDE will be notified in writing at least 15 days prior to planned excavation activities that will penetrate the cap.

6.3 INSTITUTIONAL CONTROLS (FUTURE LAND USE CONTROLS)

The SSDS system should be implemented in tandem with a deed restriction requiring that future land use conform to commercial type uses only, which will aid in preventing long-term exposure to impacted indoor air that might occur under a residential use scenario. Water is publicly supplied to the Site and groundwater is not used. To ensure that future Site users do not come in contact with impacted groundwater, a deed restriction will restrict groundwater use. In addition, deed restrictions will require continued operation of the SSDS system until cleanup criteria is met and require inspection and maintenance of the cap.

6.4 POST-REMEDIATION REQUIREMENTS

Post-remediation requirements will include compliance with conditions placed on the COC and compliance with the deed restrictions recorded for the Site. Deed restrictions will be recorded within 30 days of the issuance of the COC.

Ongoing SSDS system monitoring and annual cap inspections will be conducted, as discussed in Sections 6.1.4 and 6.2 and in accordance with the O&M Plan.
7.0 EVALUATION CRITERIA FOR THE SELECTED TECHNOLOGIES

7.1 CRITERIA FOR CERTIFICATE OF COMPLETION (COC)

The following criteria must be met and documented prior to issuance of the COC:

- **Implementation Schedule:** Submission of the RAP implementation schedule to MDE prior to starting RAP activities.
- **Health and Safety Briefing:** Prior to beginning work onsite, all contractors that will encounter impacted media will receive a health and safety briefing and sign the site-specific HASP. Documentation will be maintained with the HASP onsite during intrusive RAP activities.
- **SSDS System Installation:** Installation of the SSDS system as described in this Report. Environmental health and safety oversight will be conducted during all intrusive RAP activities.
- **SSDS System Testing:** The SSDS system will be tested for 30 days prior to occupancy to ensure that the system is effective. Testing will consist of evaluating pressure differentials between the indoor air and sub-slab environment.
- **Sampling:** The SSDS system effluent will be sampled at least once prior to requesting a COC.
- **O&M Plan:** Submission of an O&M Plan to MDE to outline long-term monitoring requirements, including SSDS system monitoring until remediation completion and inspection and maintenance of the cap.
- **Cap Inspection and Repair:** Inspection of the cap to ensure that it is in good condition. Repair damaged areas if necessary.
- **Completion Report:** Submission of a Response Action Completion Report to MDE for review and approval.
- **Deed Restrictions:** Documentation of the recorded deed restrictions will be submitted to MDE within 30 days of issuance of the COC.

7.2 CRITERIA FOR REMEDIATION COMPLETION

During operation of the SSDS system, 107 N. Cross Street, LLC proposes conducting quarterly effluent sampling and comparing the analytical results to the sub-slab soil gas cleanup goals. Once concentrations meet the sub-slab soil gas cleanup criteria for two consecutive quarters, 107 N. Cross Street, LLC may request from MDE approval to shut down SSDS system. Following system shutdown, post-treatment indoor air monitoring will be conducted at 30, 60, 180, 365, and 720 days after system shutdown to ensure treatment effectiveness. Remediation will be considered complete if all monitoring results meet the indoor air cleanup criteria in Section 5.0.
7.3 CRITERIA FOR CONTINGENCY MEASURES

If the SSDS system remains operational, changes in subsurface concentrations (including increasing concentrations of contaminants) will not result in an increased risk to Site users. However, if the SSDS system is unable to maintain sufficient negative pressure across the building footprint relative to the indoor air pressure, contingency measures will be enacted. First, the Department will be notified. Additional measures may include increasing the output of the blower system, more frequent monitoring/adjustment of the suction points to target withdraw areas, and additional indoor air sampling to ensure building occupant health and safety. If deemed necessary, a RAP addendum will be prepared to outline additional measures.

The Department must be notified immediately of any previously undiscovered contamination, changes to the RAP schedule, previously undiscovered storage tanks and other oil-related issues, and citations from regulatory entities related to health and safety practices. 107 N. Cross Street, LLC will notify MDE within one business day and discuss appropriate measures. All documentation and analytical reports generated as a result of any previously unidentified contamination will be submitted to the Department. Note that previously undiscovered contamination and/or previously undiscovered storage tanks or other oil-related issues may require an amendment to this RAP. If a RAP amendment is required, all work onsite will be stopped and 107 N. Cross Street, LLC will work with MDE to determine a schedule to complete the amendment and proposed additional RAP activities.
8.0 PROPOSED RESPONSE ACTION IMPLEMENTATION

8.1 GENERAL HEALTH AND SAFETY PROTOCOLS
All applicable Occupational Safety and Health Administration (OSHA) regulations will be followed during the implementation of this RAP. A site-specific HASP for all personnel will be developed, implemented, and maintained onsite. All onsite personnel must be made aware of and sign the HASP. The development of the HASP is the responsibility of the participant. Onsite records of HASP signatures must be available to the Department upon request.

Information in the HASP will include, but not be limited to, the following:

- Appropriate PPE and monitoring devices that must be utilized by workers to ensure that all worker protection requirements are met, and the rationale for the PPE selected.
- Site control measures that will be maintained during RAP implementation to restrict access (e.g., security guards, warning fences).
- Dust abatement or suppression methods.
- Compliance by all on-site workers with OSHA guidelines for managing contaminated material regardless of its characterization as hazardous or nonhazardous waste. The remedial contractor must possess the necessary certification for the transportation of any controlled hazardous substance.

8.2 REPORTING REQUIREMENTS
Reporting required for the Site include RAP addendums (if necessary), the initial notification and construction schedule, HASP, O&M Plan, monthly status reports, quarterly SSDS operation reports, and the Response Action Completion Report. Monthly status reports will be submitted during RAP implementation activities and will summarize activities completed during the previous month and activities anticipated for the next month. Once the SSDS system is operating, quarterly operation reports will replace monthly status reports. Quarterly reports will detail ongoing operations of the SSDS system, including results of routine inspections, pressure monitoring, discharge vapor sampling, and used carbon disposal/knock-out water disposal. Quarterly reports will include laboratory data from sampling and disposal documentation. If contact information for the participant or environmental consultant changes, it will be documented in the monthly or quarterly report.
MDE will be provided with 30-day notice prior to the shut-down of the SSDS system for major service or closure sampling. MDE will be notified within 72 hours of any system malfunction or upset resulting in an extended (greater than 48 hour) shutdown of the SSDS system.

8.3 INSPECTION AND MAINTENANCE REQUIREMENTS

Inspection and maintenance requirements will be outlined in the O&M Plan and submitted to MDE for approval.

Concurrent with routine pressure inspections and discharge vapor sampling, the SSDS system will be visually inspected and the blower will be serviced at regular intervals according to the manufacturer’s specifications. The water knock-out drum will be drained and the carbon treatment units will be refreshed as required.

The existing cap will be inspected annually and maintained as outlined in Section 6.2.

8.4 GROUNDWATER MANAGEMENT

Groundwater dewatering is not anticipated as part of the SSDS installation or redevelopment plans. Intrusive activities are limited to trench and sump pit excavation, to a maximum depth of 3 feet bgs.

8.5 ASBESTOS, LEAD, AND OIL

Demolition is not planned as part of redevelopment, therefore contact with asbestos and lead-based paint is not anticipated.

Previously undiscovered contamination, storage tanks, and other oil-related issues must be reported to the VCP project manager at 410-537-3493. Contact the MDE Oil Control Program at 410-537-3442 for guidance on the proper abandonment and removal of storage tanks.
9.0 PERMITS, NOTIFICATIONS, & CONTINGENCIES

The participant will comply with all federal, State, and local laws and regulations by obtaining all necessary approvals and permits to conduct all activities and implement this RAP. The VCP will be verbally notified within 48 hours (72 hours in writing) of any changes (planned or emergency) to the RAP implementation schedule, any previously undiscovered contamination, any previously undiscovered storage tanks and other oil-related issues, and citations from regulatory entities related to health and safety practices. All notifications shall be made to the VCP project manager at 410-537-3493. If the VCP project manager is unavailable, the notifications must be made to another VCP staff member.

The VCP must be provided with all documentation and analytical reports generated from previously unidentified contamination. The participant understands that previously undiscovered contamination and/or previously undiscovered storage tanks or other oil-related issues may require an amendment to this RAP.

Due to the anticipated volume of the blower and existing concentrations of subsurface contaminants, an air emissions permit may be required. MDE will be provided with supporting documentation and calculations once the blower specifications are finalized to assist with deciding on the need for an emissions permit.

Although unlikely, in the event conditions not previously identified by past environmental investigations are encountered, the Site will be temporarily secured and MDE will be notified of the nature of the unexpected condition. The RAP will then be revised to incorporate the new information and work will resume as soon as possible.

9.1 IMPLEMENTATION SCHEDULE

The proposed implementation schedule is shown in the table below. Upon RAP approval, the schedule will be finalized with actual anticipated dates for each phase of work. If these timelines must be adjusted, MDE will be given advance notice in writing along with a new proposed timeline.
RAP Milestones

<table>
<thead>
<tr>
<th>RAP Milestone</th>
<th>Start Date</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit Performance Bond</td>
<td>Within 10 days of RAP Approval</td>
<td>Within 10 days of RAP Approval</td>
</tr>
<tr>
<td>Develop site-specific HASP</td>
<td>Within 30 days of RAP approval</td>
<td>Within 60 days of RAP approval</td>
</tr>
<tr>
<td>Notify VCP Project Manager</td>
<td>At Least 5 days Prior to Start of Activities</td>
<td>At Least 5 days Prior to Start of Activities</td>
</tr>
<tr>
<td>Perform Health and Safety Meeting</td>
<td>Prior to SSDS Installation</td>
<td>Prior to SSDS Installation</td>
</tr>
<tr>
<td>Install SSDS System</td>
<td>Within 90 days of RAP Approval</td>
<td>120 days from RAP Approval</td>
</tr>
<tr>
<td>Test SSDS System for 30 Days Prior to Occupancy</td>
<td>120 days from RAP Approval</td>
<td>150 days from RAP Approval</td>
</tr>
<tr>
<td>Develop O&M Plan</td>
<td>120 days from RAP Approval</td>
<td>150 days from RAP Approval</td>
</tr>
<tr>
<td>Conduct Quarterly SSDS Monitoring</td>
<td>Within First Quarter from Completion of SSDS System Testing</td>
<td>Ongoing Until System Shutdown (Two Consecutive Quarters of Meeting Cleanup Criteria)</td>
</tr>
<tr>
<td>Prepare and Submit Completion Report</td>
<td>Upon Completing First Quarter of SSDS Monitoring</td>
<td>Within 60 days of Completing First Quarter of SSDS Monitoring</td>
</tr>
<tr>
<td>Issue COC (MDE)</td>
<td>Following Approval of Completion Report</td>
<td>Following Approval of Completion Report</td>
</tr>
<tr>
<td>Sign and Return Certification to MDE</td>
<td>Within 10 days of Receiving COC</td>
<td>Within 10 days of Receiving COC</td>
</tr>
<tr>
<td>Record the COC in the Land Records and File Deed Restrictions</td>
<td>Within 30 days of Issuing COC</td>
<td>Within 30 days of Issuing COC</td>
</tr>
<tr>
<td>Conduct Post-Treatment Indoor Air Monitoring</td>
<td>30 days after SSDS Shutdown</td>
<td>30 days after SSDS Shutdown</td>
</tr>
<tr>
<td>Conduct Post-Treatment Indoor Air Monitoring</td>
<td>60 days after SSDS Shutdown</td>
<td>60 days after SSDS Shutdown</td>
</tr>
<tr>
<td>Conduct Post-Treatment Indoor Air Monitoring</td>
<td>180 days after SSDS Shutdown</td>
<td>180 days after SSDS Shutdown</td>
</tr>
<tr>
<td>RAP Milestone</td>
<td>Start Date</td>
<td>Completion Date</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Conduct Post-Treatment Indoor Air Monitoring</td>
<td>365 days after SSDS Shutdown</td>
<td>365 days after SSDS Shutdown</td>
</tr>
<tr>
<td>Conduct Post-Treatment Indoor Air Monitoring</td>
<td>720 days after SSDS Shutdown</td>
<td>720 days after SSDS Shutdown</td>
</tr>
</tbody>
</table>

9.2 **ADMINISTRATIVE REQUIREMENTS**

Pursuant to the Section 7-508 of the Environment Article, *Annotated Code of Maryland*, 107 N. Cross Street, LLC agrees to comply with the provisions of the RAP approved by MDE and certifies that the proposed use of the Site meets all applicable zoning requirements. Signed certifications are included as **Appendix E**.

Consistent with Maryland Code, 107 N. Cross Street, LLC will issue a performance bond in the amount of $10,000. If the remedial action(s) specified in this RAP cannot be executed, the performance bond will cover costs required to stabilize and secure the Site. Activities to be covered under the performance bond include the following:

- Posting appropriate warnings and notices about conditions on the property.
- Restricting access to the SSDS system.
- Importing and placing crushed stone within open trenches.
10.0 REFERENCES

BrightFields, Inc. (BrightFields), 2019, Soil Gas Sampling Report, October 2019.

Chesapeake GeoSciences, Inc., 2017, Figures 2 through 7 and Table 1: Photoionization Detector (PID) Readings in Macrocore Soil Sample Cores from Limited On-Site Subsurface Investigation, December 2017.

Green Street Environmental, 2018, Supplemental Phase II Environmental Site Assessment, September 2018.

Maryland Department of the Environment (MDE), 2021, Facility Summary for Facility ID #11148, May 2021.

Notes:
Maryland Department of the Environment
Cleanup Standard for Groundwater
Type I & II Aquifers
U - Compound not detected.
Bold - Exceeds Tier II criteria.
Tetrachloroethylene - (PCE) > 5.0 µg/L
Trichloroethylene - (TCE) > 5.0 µg/L
cis-1,2 Dichloroethene - (cis-1,2-DCE) > 70 µg/L
Vinyl Chloride - (VC) > 2.0 µg/L
Previous sample locations are based on georeferenced sample locations provided in the Supplemental Phase II Environmental Site Assessment (Green Street Environmental, 2018)
Source:
Maryland Department of Planning,
Planning Data Services - Tax Parcels.
SSDS System
- 212 cubic feet per minute regenerative blower
- Manifold, knock out tank, blower, and activated carbon vessels will be contained within a locked shed
- Manifold allows for adjustment of individual draw from each extraction point

Extraction Points (7)
- Installed at 3 feet below top of slab
- Points have metal screens to prevent drawing in sediment
- Connected to collector piping
- Backfilled with clean #57 stone

Collector Piping
- 2 inch diameter Schedule 80 PVC
- Installed in center of 18-inch wide by 18-inch deep trenches
- Backfilled with clean sand
- Finished with 6 inches of concrete and a sealer

Note:
Locations of the extraction points (sumps) are approximate and will be located in the field based on observations during construction. Capped areas in the vicinity of the sub-slab depressurization system (SSDS) extraction points and collector pipes will be disturbed for system installation. Disturbed areas will be properly sealed following the SSDS system installation. All other existing buildings, asphalt, and concrete on the property will not be disturbed as part of redevelopment.

Source:
Base map provided by Schnader Surveys, LLC.
6-inch Layer of Concrete

Collector Piping (2-inch Schedule 80 PVC)

Extraction Point with Metal Screen

#57 Stone

6-inch Layer of Concrete

Sand

Collector Piping (2-inch Schedule 80 PVC)

Extraction Point with Metal Screen

#57 Stone

6-inch Layer of Concrete

Sand

SSDS System Cross Section
107 N Cross Street
Chestertown, Maryland

By

Checked

File Name:

Scale:

Project #

Fig. No.

8/30/2021

3880.01.51

1:12

Figure 6

801 Industrial Street
Wilmington, Delaware 19801
302-656-9600
302-656-9700 fax

8/30/2021

Fig6Xsect.mxd

Path: N:\Aerials and maps\Working GIS Files (Do Not Edit)\General Consulting\3880.01.51 - 107 N Cross St\MXD\RAP\EngXsect.mxd
6-inch Minimum Concrete or Asphalt with Subgrade

Underlying Soil

Note: Detail not for Construction
APPENDICES
Appendix A

Documentation from Previous Investigations
REGISTRATION #

UNDERGROUND LEAK SUMMARY & TANK CLOSURE

CASE # 91-2420 KE DATE OPENED 4/13/91 DATE CLOSED 5/4/91

FILE NAME Park Rug & Dry Cleaners INSPECTOR'S INITIALS SCT

TYPE OF CASE:

A) PULL E) COMPLIANCE CHECK
B) INSTALLATION F) TANK TEST FAILURE
C) SURFACE G) ABANDONMENT IN PLACE
D) LEAK INVESTIGATION H) OTHER

SPILL AFFECTED:

A) GROUNDWATERS K) SANITARY LINE
B) DOMESTIC WELLS F) UTILITY WORK OR LINES
C) SURFACE WATERS G) REACHED ADJOIN. PROPERTY
D) A BUILDING H) NONE/OTHER (SPECIFY)
E) STORM DRAIN J) SOILS

OWNER OF SYSTEM:

A) MAJOR OIL COMPANY F) PRIVATE RESIDENT
B) LOCAL OIL COMPANY G) APARTMENT
C) PRIVATELY OWNED SERVICE STATION H) SCHOOL
D) GOVERNMENT FACILITY I) COMMERCIAL BUSINESS
E) MARINA J) OTHER (SPECIFY)

IF UNDER TYPE OF CASE ITEM B, C, OR E IS CHECKED, DO NOT FILL IN CHART BELOW. OBSERVATION WELLS INSTALLED? YES NO # OF WELLS 1

<table>
<thead>
<tr>
<th>CAPACITY OF TANK</th>
<th>TANK TYPE</th>
<th>LINE TYPE</th>
<th>AGE</th>
<th>PRODUCT</th>
<th>STATUS OF TANK</th>
<th>LEAK FOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REVIEWED BY KPC CODES ON REVERSE SIDE
CODES FOR USE ON REVERSE SIDE

TYPE:

A) Steel
B) Fiberglass
C) Cathodically-Protected Steel
D) Other
E) Clad Steel
F) Copper

AGE:

A) 1-5 years
B) 6-10 years
C) 11-15 years
D) 16-20 years
E) Over 20 years

PRODUCT:

A) Gasoline
B) #2 Oil
C) Kerosene
D) #4 Oil
E) #5 Oil
F) #6 Oil
G) Jet Fuel
H) Waste Oil
I) Asphalt
J) Other
K) Diesel

LEAK FOUND IN:

A) Tank
B) Supply Line
C) Return Line
D) Vent Line
E) Fittings
F) Fill Pipe
G) Air Pocket
H) None
I) Other
J) Flex Connector

STATUS:

A) In Service
B) Removed
C) Abandoned-In-Place
NOTICE OF COMPLIANCE

Mr. Mark Carroll
Park Rug & Dry Cleaners Corporation
107 North Cross Street
Chestertown MD 21620

RE: Park Rug & Dry Cleaners
Cross Street
Chestertown, Maryland
Case #91-2420 KE

Dear Mr. Carroll:

On May 4, 1994, a representative of the Waste Management Administration’s Oil Control Program reviewed the Administration’s case and the report submitted by ECS, Inc. dated April 26, 1994 on the above-referenced property.

Based on this review and information, it has been determined that one (1) underground storage tank has been removed and one (1) monitoring well has been installed and sampled. The Administration does not require any corrective action at this site based on the low level of dissolved petroleum in groundwater and site characteristics. Thus, the above-referenced property is now in compliance with Code of Maryland Regulations 26.10.10.01-03.

The Administration hereby closes its case in reference to this site. This Notice should not be construed as a waiver of the Administration’s right to take any other enforcement action it deems appropriate with respect to this site. This notice is not intended to address tetrachloroethylene contamination which may have originate from this site.

If you have any questions concerning this matter, please telephone this office at (410) 631-3442.

Sincerely,

Ross Kelly,
Regional Supervisor
Compliance/Remediation Division
Oil Control Program

cc: Mr. Richard Collins
Mr. Harold Dye
Mr. John Grace
Mr. Herbert Meade
Mr. Horacio Tablada
MEMORANDUM

To: File
From: S. Tiffany
Date: 10/25/93

Subject: Well Analysis / Phone Conversation

On this date this inspector spoke w/ Mr. David Carroll, of Park Rug & Dry Cleaners, in reference to the re-sampling of their MW for PCBs. Previous results in Oct. 91 were 5200 ppb. Oct 5, 1993 results are 112 ppb.

This inspector requested the MW be resampled 6 mos. from last date (March, '94) w/ a copy of the results forwarded to this office.

Mr. Carroll stated he would pass the reins along to his father (President - Alan Carroll).
Type of Inspection/Observation: Meeting Proposed Well Installation Date: 8/13/91
Facility Name: Park Rug & Dry Cleaners Corp. 107 North Cross St. Chestertown
Remarks: Inspector, Mr. Thomas Walter (Regional Supervisor) and Mr. Danny Helms (Earth Data) visited above site to meet with Mr. Alan Carroll (President, Park Rug and Dry Cleaners Corp.) to mark proposed monitoring well location due to abandonment in place of 5000 gallon #2 heating oil tank. Upon arrival proposed location for well has been marked. Inspector advised Mr. Carroll and Mr. Helms that well is to be sampled and analyzed for BTEX, Naphthalene, and PCE. Mr. Carroll stated no exact date has been scheduled at present time but expects to tentatively have AIT installed next week. Mr. Carroll stated that Inspector’s office will be notified when abandonment of UST has been scheduled. 48 hour notification prior to abandonment is preferred. Upon receiving sample results and observing tank abandonment, case status will be updated.

[Signatures and notes]

Left Copy of report with Mr. Carroll & Mr. Helms

TIME IN: 1100 TIME OUT: 1130
Observer: Brown Rae B. Rae Person Interviewed: Mr. Alan Carroll (President, Park Rug Cleaners Corp.)

Mr. Thomas Walter Mr. Johnny Helms (Earth Data Corp)
State of Maryland
Department of the Environment
Hazardous and Solid Waste Management Administration
2500 Broening Highway, Baltimore, Maryland 21224

CASE # 91-2420 KE

Report of Observations

Type of Inspection/Observation: Follow-up Routine Inspection Date: 3/12/91
Facility Name: Park Rug and Dry Cleaners Corp. 107 N. Cross St. Chestertown
Remarks: Inspector visited above site to follow-up on visit mode on 3/1/91. Upon arrival inspector spoke with Mr. Alan Carroll (president, Park Rug and Dry Cleaners Corp.) who stated that an above ground storage tank has been obtained and Coastal Pumps & Tank Inc. (Harrington DE) has been contracted to abandon existing heating oil tank in place. Tentative schedule for tank abandonment is approximately (2) weeks. Inspector also advised Mr. Carroll that an environmental assessment must be performed, via installation of (1) 14" PVC groundwater monitoring wells in order to determine if any release of product has occurred and impacted the groundwater. Well is to be installed in a location acceptable to the Administration. Well is to be sampled and analyzed for B.T.E.X. and Naphthalene. Inspector hand delivered to Mr. Carroll a list of oil spill contractors and advised Mr. Carroll to contact Inspector's office 48 hours prior to abandoning tank. Inspector will also refer findings to Mr. Herbert Muscle (enforcement chief) and Mr. Thomas Walter (regional supervisor).

[Signature]

LEST COPY (EXPEDITED WITH MR. CARROLL)

TIME IN: 14:00 TIME OUT: 15:00

Observer: Brian Roe Person Interviewed: Mr. Alan Carroll, President

MDE 111
REV. 1/11/88

[Signature]

[Signature]
Type of Inspection/Observation: Planned Inspection

Date: 6/13/91

Facility Name: Park Rug and Dry Cleaners Corp. 151 N. Cross St. Chestertown

Remarks: Inspector visited above site in reference to on-going investigation concerning contamination of Chestertown Municipal water supply. Upon arrival, inspector spoke with Mr. Alan Carroll (President, Park Rug and Dry Cleaners Corp.) who stated that there is a UST on site used for heating purposes. Mr. Carroll also stated that the UST was installed in 1963 and is 1000 gallon capacity. Tank is registered but has not been precision tested. There was also no color code chart or identification present. There is also 80 gallon AST which is located inside the dry cleaning facility which is used for storage of perchloroethylene. Mr. Carroll stated that bulk deliveries are made directly into the storage tank from delivery trucks. Cannisters/filters are changed monthly and are disposed of through Safety-Kleen Corp. Hazardous Waste Manifest are on site. Inspector had delivered to Mr. Carroll a copy of Md. State Regulations and list of precision testers. Inspector advises Mr. Carroll of the following requirements:

1) On or by 6/30 hrs. 7/13/91 precision test heating oil storage tank. Contact inspector concerning results of precision test upon completion.

2) Perform color coding of storage tank 5/11 add pet chart which is to include type of product stored and capacity of tank. This is also to be performed on or by 6/30 hrs. 7/13/91.

Return visit will be made to verify above requirements are completed. Inspector will also forward findings to Mr. Herbert Mead (Enforcement Chief) and Mr. Thomas Walter (Regional Supervisor).

LEFT COPY OF REPORT WITH MR. CARROLL

TIME IN: 11:30 TIME OUT: 13:30

Observer: B. R. Person Interviewed: Mr. Alan Carroll (President, Park Rug and Dry Cleaners Corp.)
CALLER

1. Name of US EPA personnel taking report: [Name]
2. Date of report: [Date]
3. Time of report:
4. Name of caller:
5. Telephone #:
6. What agency or company is caller with:

DETAILS OF SPILL

7. Date of incident: [Date]
8. Time of incident:
9. Has product been released? YES [] NO []
10. Amount released:
11. Tank test failure? YES [] NO []
12. Tank failure rate:
13. Precise location of the release or incident: [Location]
14. Nearest crossroad or other identifying mark:
15. Type of product involved:
16. Quantity on board:
17. Age of tank system:
18. Details of release: [Details of release]
19. Has product entered water? YES [] NO []
20. Name of waterway:

RESPONSIBLE PARTY

21. Responsible party's name:
22. Responsible party's address:
23. Responsible party's telephone number:
24. Has responsible party taken any action to control the problem? YES [] NO []
25. If yes, what:

ACTION TAKEN

UST INSPECTOR ASSIGNED CASE: [UIN]
TRANSFERRED CALL TO: [UIN]
TIME:
DISPATCHED: [UIN]
DATE:
NO RESPONSE; Explain why:
OTHER:
INITIALS:
The sample collected was shipped to an independent laboratory for analysis for the presence and concentration of tetrachloroethene (PCE). The sample was accompanied by a properly maintained chain of custody form throughout the sample collection, transportation and analytic process. Copies of the laboratory report and chain of custody form are included in the appendix for your review and records. The results of the laboratory testing are presented in Table 2, Ground Water Analytical Test Results.

<table>
<thead>
<tr>
<th>Table 2: Ground Water Analytical Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring Well MW-1</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>10/05/93</td>
</tr>
<tr>
<td>PCE</td>
</tr>
<tr>
<td>112 ug/L</td>
</tr>
<tr>
<td>ug/L - micrograms per liter or parts per billion (ppb).</td>
</tr>
</tbody>
</table>

Limitations

The scope of work completed is limited to the activities and results contained in this report. Industry standard hydrogeologic investigative procedures and protocol were employed in the completion of the scope of work. No other warranty expressed or implied is made. The chemical analysis services contained in this report were performed by Phase Separation Science, Inc. of Baltimore, Maryland.

The information presented in this report should be provided to:

Maryland Department of the Environment
Hazardous & Solid Waste Management Administration
Oil Control Program
2500 Broening Highway
Baltimore, Maryland 21224

Attn: Ms. Susan Tiffany

ECS thanks you for the opportunity to be of service. If you have any questions, please contact our offices at (410) 543-0068.

Sincerely,

Jonathan Kniskern
Staff Geologist

Bob Orgain
President
REPORT OF GROUND WATER SAMPLING
AND LABORATORY TESTING
PARK RUG AND DRY CLEANERS CORPORATION

Chestertown, Maryland
April 26, 1994

prepared for

Park Rug and Dry Cleaners Corp.
107 North Cross Street
Chestertown, Maryland 21620

ENVIRONMENTAL CONSULTING SERVICES, INC.
P.O. BOX 1615, SALISBURY, MARYLAND 21802-1615
(410) 543-0068 FAX (410) 742-5089
Park Rug and Dry Cleaners Corp.
107 North Cross Street
Chestertown, Maryland 21620

Attn: Mr. A. Carroll

Subject: Report of Ground Water Monitoring Well
 Sampling and Testing
 Park Cleaners
 Chestertown, Maryland
 ECS Project No. 160400193
 MDE Case #91-2420 KE

Dear Mr. Carroll:

Environmental Consulting Services, Inc. (ECS) has completed the scope of work to collect and chemically analyze one (1) ground water sample from the monitoring well located at Park Cleaners in Chestertown, Maryland (see Project Location Map, drawing no. 160400193A, in the appendix). The scope of work conducted was completed in accordance with the specifications presented in our proposal dated April 7, 1994.

On Monday, April 18, 1994 one (1) monitoring well at the project site was gauged, purged, and sampled in accordance with Maryland Department of Environment (MDE) guidelines. The monitoring well location is indicated on drawing number 160400193B, Project Site Site Diagram, in the appendix. The data collected from the well gauging activity is presented in Table 1, Monitoring Well Gauging Data.

<table>
<thead>
<tr>
<th>Table 1: Monitoring Well Gauging Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well ID Tag No.</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>MW-1 KE-88-0273</td>
</tr>
</tbody>
</table>
The ground water sample collected was shipped to an independent laboratory for analysis for the presence and concentration of tetrachloroethene (PCE). The sample was accompanied by a properly maintained chain of custody form throughout the sample collection, transportation and analytic process. Copies of the laboratory report and chain of custody form are included in the appendix for your review and records. The results of the laboratory testing are presented in Table 2: Ground Water Analytical Test Results along with the previous sampling data.

<table>
<thead>
<tr>
<th>Table 2: Ground Water Analytical Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring Well MW-1</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>PCE</td>
</tr>
</tbody>
</table>

ug/L - micrograms per liter or parts per billion (ppb).

The PCE concentration reported from the laboratory analysis of the ground water sample collected on April 18, 1994 was three (3) micrograms per liter (ug/L) or parts per billion. The limit of quantitation for United States Environmental Protection Agency (USEPA) analytic method 8260 is five (5) parts per billion (ug/l). Concentrations which are detected at concentrations below the USEPA method limit of quantitation are reported as estimates.

Limitations

The scope of work completed is limited to the activities and results contained in this report. Industry standard hydrogeologic investigative procedures and protocol were employed in the completion of the scope of work. No other warranty expressed or implied is made. The chemical analysis services contained in this report were performed by Phase Separation Science, Inc. of Baltimore, Maryland.
The information presented in this report should be provided to:

Maryland Department of the Environment
Waste Management Administration
Oil Control Program
2500 Broening Highway
Baltimore, Maryland 21224

Attn: Ms. Susan Tiffany

ECS thanks you for the opportunity to be of service. If you have any questions, please contact our offices at (410) 543-0068.

Sincerely,

Darren Ryan
Staff Engineer

Bob Orgain
President
Appendix

drawing no.

Project Location Map..........................160400193A

Project Site Diagram............................160400193B

Laboratory Reports and Chain of Custody Forms
CERTIFICATE OF ANALYSIS
No. 940419-01 001
Environmental Consulting Services, Inc.
April 26, 1994

Analysis of: Water Sample MW-1
 Project: Park Cleaners
 Site Location: Chestertown, Maryland
 Project Number: 160400193
 Analysis of Tetrachloroethene

Date Sampled: 4-18-94 Date Received: 4-19-94 Date Analyzed: 4-21-94

Tetrachloroethene e 3 ug/L

The above analysis was performed according to procedures described in
the following EPA methods:
EPA 8260: Volatile Organic Compounds by GC/MS

Reviewed by: [Signature]
Quality Assurance Chemist
PHASE SEPARATION SCIENCE, INC.
Analytical Chemistry-Environmental Science
Sample Chain of Custody Form
6630 Baltimore National Pike
Baltimore, Maryland 21228
Phone: 410-747-8770/800-932-9047 Fax: 410-788-8723

<table>
<thead>
<tr>
<th>Client Name</th>
<th>Environmental Consulting Services, Inc.</th>
<th>Project Manager</th>
<th>Mr. Bob Orgain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
<td>PARK CLEANERS</td>
<td>Project Number</td>
<td>160400193</td>
</tr>
<tr>
<td>Site Location</td>
<td>CHESTERTOWN, MARYLAND</td>
<td>Laboratory Number</td>
<td>940419-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Matrix</th>
<th>Sample Date</th>
<th>Preservative</th>
<th>Analytical Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIV-1</td>
<td>H2O</td>
<td>4-18-94</td>
<td>N/A</td>
<td>PCE (TRICHLOROETHYLENE) (2x 40mL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished By Sample</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4/18/94</td>
<td>6:30 AM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Received by</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Received by Laboratory</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4/19/94</td>
<td>10:35</td>
</tr>
</tbody>
</table>

Turnaround Time
- Emission analysis expedited if turnaround cannot be feasible due to lengthy extraction procedures. Please contact the lab for applicability.

<table>
<thead>
<tr>
<th>Positive</th>
<th>48 hr</th>
<th>24 hr</th>
<th>Number of Business</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MEMORANDUM

To: File
From: S. Tiffany
Date: 10/25/93

Subject: Well Analysis/Phone Conversation

On this date this inspector spoke with Mr. David Carroll of Park Rug & Dry Cleaners, in reference to the re-sampling of their MW for PCB's.

Previous results in Oct. 91 were 5200 ppb. Oct 5, 1993 results are 112 ppb.

This inspector requested the MW be resampled in 6 mos. from last date (March, 93) w/ a copy of the results forwarded to this office.

Mr. Carroll stated he would pass the info along to his father (President - Alan Carroll).
Report of Observations

Type of Inspection/Observation: Follow-up

Facility Name: Park Rug & Dry Cleaners, 107 W. Cross St. Chestertown

Date: 9/14/93

Remarks:

On this date this inspector met with Mr. Alan Carroll (President) to discuss resampling the groundwater monitoring well and have it analyzed for Tetrachloroethylene (PCE).

Previous sampling in Oct. 1991 showed 5,200 ppm of PCE (5X the action level). Mr. Carroll agreed to contact someone to resample the well for PCE within the next 30 days.

Additional Environ. Co.

J.D. Hynes + Assoc. - 410-546-5467 (John Hynes)
E.C.S. - 410-546-0068 (Bob Orgain)
T.R.H. Inc. - 410-724-9300 (Sonny Brand)

TIME IN: 1330 TIME OUT: 1415

Observer: Susan J. Hay Person Interviewed: Alan Carroll, Pres. Park Rug Dry

MDE 111 REV. 4/92
Type of Inspection/Observation: Meeting Proposed Well Installation
Date: 8/13/91

Facility Name: Park Rug and Dry Cleaners Corp.
107 North Cross St. Chestertown

Remarks: Inspector, Mr. Thomas Walter (Regional Supervisor) and Mr. Lanny Helms (Earth Data) visited above site to meet with Mr. Alan Carroll (President Park Rug and Dry Cleaners Corp.) to mark proposed monitoring well location due to abandonment in place of 10,000 gallon #2 heating oil tank. Upon arrival proposed location for well has been marked. Inspector advised Mr. Carroll and Mr. Helms that well is to be sampled and analyzed for BTEX, Naphthalene, and PCE. Mr. Carroll stated no exact date has been scheduled at present time, but expects to tentatively have AIT installed next week. Mr. Carroll stated that inspector's office will be notified when abandonment of UST has been scheduled. 48 hour notification prior to abandonment is preferred. Upon receiving sample results and observing tank abandonment, case status will be updated.

Left copy of report with Mr. Carroll & Mr. Helms

TIME IN: 11:00
TIME OUT: 11:30

Observer: Brown & Brown
Person Interviewed: Mr. Alan Carroll (President Park Rug and Dry Cleaners Corp.)

MDE 111
REV 7/11/86
Type of Inspection/Observation: ________________________________ Date ___/___/____

Facility Name: __

Remarks: __

TIME IN: __________________________ TIME OUT: _______________

Observer: __

Person Interviewed: _______________________________________
State of Maryland
Department of the Environment
Hazardous and Solid Waste Management Administration
2500 Broening Highway, Baltimore, Maryland 21224

Report of Observations

Type of Inspection/Observation: __________________________ Date __/__/____
Facility Name: __________________________
Remarks: ___

TIME IN: __________________________ TIME OUT: __________________________
Observer: __________________________ Person Interviewed: __________________________

MDE 111
REV. 1/11/88
REPORT OF GROUND WATER MONITORING WELL

SAMPLING AND TESTING

PARK CLEANERS

CHESTERTOWN, MARYLAND

OCTOBER 14, 1993

prepared for

Park Cleaners
107 North Cross Street
Chestertown, Maryland 21260

prepared by

Environmental Consulting Services, Inc.
P.O. Box 1615
Salisbury, Maryland 21802-1615
October 14, 1993

Park Cleaners
107 North Cross Street
Chestertown, Maryland 21620

Attn: Mr. A. Carroll

Subject: Report of Ground Water Monitoring Well
Sampling and Testing
Park Cleaners
Chestertown, Maryland
ECS Project No. 160400193
MDE Case #91-2420 KE

Dear Mr. Carroll:

Environmental Consulting Services, Inc. (ECS) has completed the
scope of work to collect and chemically analyze one ground water
sample from the monitoring well located at Park Cleaners in
Chestertown, Maryland (see Project Location Map, drawing no.
160400193A, in the appendix). The scope of work conducted was
completed in accordance with the specifications presented in our
proposal dated September 17, 1993.

On Tuesday, October 5, 1993 one (1) monitoring well at the project
site was gauged, purged, and sampled in accordance with Maryland
Department of the Environment (MDE) guidelines. The monitoring
well location is indicated on drawing number 160400193B, Project
Site Diagram, in the appendix. The data collected from the well
gauging activity is presented in Table 1, Monitoring Well Gauging
Data.

<table>
<thead>
<tr>
<th>Well ID (Kent Co. Well Tag No.)</th>
<th>Depth to Ground Water</th>
<th>Total Depth</th>
<th>Water Layer Thickness</th>
<th>Well Vol. (Gal.)</th>
<th>Purge Vol. (Gal.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1 (KE-88-0273)</td>
<td>19.10'</td>
<td>23.70'</td>
<td>4.60'</td>
<td>3.04</td>
<td>9.12</td>
</tr>
</tbody>
</table>
The sample collected was shipped to an independent laboratory for analysis for the presence and concentration of tetrachloroethene (PCE). The sample was accompanied by a properly maintained chain of custody form throughout the sample collection, transportation and analytic process. Copies of the laboratory report and chain of custody form are included in the appendix for your review and records. The results of the laboratory testing are presented in Table 2, Ground Water Analytical Test Results.

<table>
<thead>
<tr>
<th>Table 2: Ground Water Analytical Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring Well MW-1</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>PCE</td>
</tr>
<tr>
<td>ug/L - micrograms per liter or parts per billion (ppb).</td>
</tr>
</tbody>
</table>

Limitations

The scope of work completed is limited to the activities and results contained in this report. Industry standard hydrogeologic investigative procedures and protocol were employed in the completion of the scope of work. No other warranty expressed or implied is made. The chemical analysis services contained in this report were performed by Phase Separation Science, Inc. of Baltimore, Maryland.

The information presented in this report should be provided to:

Maryland Department of the Environment
Hazardous & Solid Waste Management Administration
Oil Control Program
2500 Broening Highway
Baltimore, Maryland 21224

Attn: Ms. Susan Tiffany

ECS thanks you for the opportunity to be of service. If you have any questions, please contact our offices at (410) 543-0068.

Sincerely,

Jonathan Kniskern
Staff Geologist

Bob Orgain
President
Appendix

drawing no.

Project Location Map..........................160400193A
Project Site Diagram...........................160400193B
Laboratory Reports and Chain of Custody Form
PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS
No. 931006-02
Environmental Consulting Services, Inc.
October 13, 1993

Analysis of: Water Sample MW-1
Project: Park Cleaners
Site Location: Chestertown, Maryland
Project Number: 160400193
Analysis of Tetrachloroethene by GC/MS

Date Sampled: 10-5-93 Date Received: 10-6-93 Date Analyzed: 10-12-93

Tetrachloroethene 112 ug/L

The above analysis was performed according to procedures described in the following EPA method(s):
EPA 8260: Volatile Organic Compounds by GC/MS

Reviewed by: Quality Assurance Chemist
PHASE SEPARATION SCIENCE, INC.
Analytical Chemistry-Environmental Science
Sample Chain of Custody Form

6630 Baltimore National Pike
Baltimore, Maryland 21228
Phone: 410-747-8770/800-932-9047 Fax: 410-788-8723

<table>
<thead>
<tr>
<th>Client Name</th>
<th>Environmental Consulting Services, Inc.</th>
<th>Project Manager</th>
<th>Mr. Bob Orgain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
<td>Park Cleaners</td>
<td>Project Number</td>
<td>160400193</td>
</tr>
<tr>
<td>Site Location</td>
<td>Chestertown, Maryland</td>
<td>Laboratory Number</td>
<td>931006-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Matrix</th>
<th>Sample Date</th>
<th>Preservative</th>
<th>Analytical Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>H₂O</td>
<td>10/5/93</td>
<td>N/A</td>
<td>PCE (Tetrachloroethylene) (2 x 40 mL)</td>
</tr>
</tbody>
</table>

Relinquished by Sample

Received by

Received by Laboratory

Received

Furnas Round Time

Number of Business Days

<table>
<thead>
<tr>
<th>furnas round time</th>
<th>Reason</th>
<th>48 hr</th>
<th>72 hr</th>
<th>34 hr</th>
<th>Number of Business Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Earth Data, Inc.-St. Michaels
605 S. Talbot Street
St. Michaels, MD 21663

MW-1 Water Sample
Parks Rug & Dry Cleaners

LLI Sample No. WW 1722906
Date Reported 10/10/91
Date Submitted 10/ 3/91
Discard Date 10/18/91
Collected 10/ 2/91 by CW
Time Collected 0700
P.O. 970
Rel.

RESULT
Tetrachloroethene
5,200. ug/l
BTEX Scan & Naphthalene

LIMIT OF
AS RECEIVED
5,200. ug/l
QUANTITATION 30.
LAB CODE
attached
426410000

1 COPY TO Earth Data, Inc.
ATTN: Tucker Mooreshead

Method # 502.2 (Drinking Water)

Questions? Contact Environmental
Client Services at (717) 656-2301
330 03193 0.00 010500

Respectfully Submitted
Lancaster Laboratories, Inc.
Reviewed and Approved by:

Judy A. Colello, A.S.
Group Leader, Volatiles by GC
October 21, 1991

Mr. Alan Carroll
Park Rug and Dry Cleaners Corp.
107 N. Cross Street
Chestertown, MD 21620

Subject: Park Rug and Dry Cleaners Corp., 107 N. Cross Street, Chestertown, MD

Dear Mr. Carroll:

As requested, one monitoring well was constructed at the location shown on the attached sketch at the above mentioned facility. Driller’s log, well completion report, water level data and a site sketch are attached.

Water samples were collected from the monitoring well on October 2, 1991 according to our standard protocol. Analysis for BTEX, Naphthalene and tetrachloroethene (PCE) were performed on the samples as requested. The laboratory analysis reports are attached.

If you have any questions concerning the results of this investigation or we can be of further assistance, please do not hesitate to contact us.

Sincerely,

I. L. Helms
Senior Engineering Geologist

ILH:bjs – 970

cc: MDE UST Division
 Attn: Mr. Tom Walters
 Earth Data - Exton Office

Enclosures
<table>
<thead>
<tr>
<th>DEPTH</th>
<th>LOG PROFILE</th>
<th>ANNULAR SPACE Filled With</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>CEMENT</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>GRAVEL</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION OF MEASURING PIS: 6.5

M.P. ELEVATION:

Method of Drilling: AUGER

DATE(S) DRILLED: 9/19/91

DEPTH DRILLED: - 24.0

DEPTH OF WELL: - 24.0

DRILLER: TED. TRUMBULL

STICKUP: -0.5

CASING

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETER</td>
<td>4"</td>
</tr>
<tr>
<td>TOP</td>
<td>-0.5</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>-14.0</td>
</tr>
</tbody>
</table>

WELL SCREEN

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETER</td>
<td>4"</td>
</tr>
<tr>
<td>SLOT SIZE</td>
<td>.020</td>
</tr>
<tr>
<td>TOP</td>
<td>-14.0</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>-24.0</td>
</tr>
</tbody>
</table>

SAND OR GRAVEL SIZE: 4-2

GROUTING DETAILS: 24-11 GRAVEL
11-7 HOLEPLUG 7-0 CEMENT

PROTECTIVE CASING: Flush cover

LOCKING CAP? YES NO

INITIAL YIELD: 3 gpm

DEVELOPMENT DETAILS: Pumped for 1/2 hr.

PUMPING TEST DETAILS: Still cloudy after 1/2 hr. pumping

STATIC WATER LEVEL: 18.5 DATE: 7/19
Field
PETROLEUM LEVELS

W.O. 970

Project PARK CLEANERS

Location CHECKTOWN MD

Date 10/3/91

Weather Now Clear Cool

Prior Weather Clear

<table>
<thead>
<tr>
<th>Well No.</th>
<th>Descr. of MP</th>
<th>Product Level (ft)</th>
<th>Water Level (ft)</th>
<th>Field Temp. (F)</th>
<th>Est or Act</th>
<th>Amount Rec'd (gals)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.W. 1</td>
<td>CASING</td>
<td></td>
<td>17.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Sampled well GTEX NAPHTHA/ENT ACE

Data collected by: C.N. PC

Form 47 EARTH DATA INCORPORATED
LLI Sample No. WW 1722906
Date Submitted 10/3/91
Date Collected 10/18/91
Sample Collected 2/91 by CW
Time Collected 0700
P.O. 970

RESULT AS RECEIVED LIMIT OF QUANTITATION LAB CODE
Tetrachloroethylene 5,200. ug/l 30. 042000500

ATTN: Tucker Mooreshead

Method No. 502.2 (Drinking Water)

Questions? Contact Environmental
Client Services at (717) 656-2301
330 03193 0.00 010500

Respectfully Submitted
Lancaster Laboratories, Inc.
Reviewed and Approved by:

Judy A. Colello, A.S.
Group Leader, Volatiles by GC

See Reverse Side For Explanation
Of Symbols And Abbreviations And
Our Standard Terms And Conditions
Earth Data, Inc.-St. Michaels
605 S. Talbot Street
St. Michaels, MD 21663

MW-1 Water Sample
Parks Rug & Dry Cleaners

<table>
<thead>
<tr>
<th></th>
<th>RESULT AS RECEIVED</th>
<th>LIMIT OF QUANTITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTEX Scan & Naphthalene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1. ug/l</td>
<td>1.</td>
</tr>
<tr>
<td>Toluene</td>
<td>< 10. ug/l</td>
<td>10.</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>< 1. ug/l</td>
<td>1.</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>< 1. ug/l</td>
<td>1.</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>< 1. ug/l</td>
<td>1.</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>< 1. ug/l</td>
<td>1.</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>< 5. ug/l</td>
<td>5.</td>
</tr>
</tbody>
</table>

Due to the presence of an interferent near its retention time, normal reporting limit was not attained for Toluene.

1 COPY TO Earth Data, Inc.
ATTN: Tucker Mooreshead

Questions? Contact Environmental Client Services at (717) 656-2301

Respectfully Submitted
Lancaster Laboratories, Inc.
Reviewed and Approved by:

Judy A. Colello, A.S.
Group Leader, Volatiles by GC
REGISTRATION

UNDERGROUND LEAK SUMMARY AND TANK CLOSURE

HSWMA CASE # 93-0478 KE DATE OPENED 9/4/92 DATE CLOSED 9/4/92

FILE NAME: Pahrump Wash Cleaners INSPECTOR'S INITIALS: BP

TYPE OF CASE:

A) PULL B) INSTALLATION C) SURFACE D) LEAK INVESTIGATION E) COMPLIANCE CHECK F) TANK TEST FAILURE G) ABANDONMENT IN PLACE H) OTHER

SPILL AFFECTED:

A) GROUNDWATERS B) DOMESTIC WELLS C) SURFACE WATERS D) A BUILDING E) STORM DRAIN F) SANITARY LINE

G) UTILITY WORK OR LINES H) REACHED ADJOINING PROPERTY I) NONES/OTHER (SPECIFY)

OWNER OF SYSTEM:

A) MAJOR OIL COMPANY B) LOCAL OIL COMPANY C) PRIVATELY OWNED SERVICE STATION D) GOVERNMENT FACILITY E) MARINA

F) PRIVATE RESIDENT G) APARTMENT H) SCHOOL J) COMMERCIAL BUSINESS

IF UNDER TYPE OF CASE ITEM B, C OR H IS CHECKED, DO NOT FILL CHART BELOW. WERE OBSERVATION WELLS INSTALLED?

<table>
<thead>
<tr>
<th>NUMBER OF WELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
</tr>
</tbody>
</table>

CAPACITY OF TANK | **TANK TYPE** | **LINE TYPE** | **AGE** | **PRODUCT** | **STATUS OF TANK** | **LEAK FOUND** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REVIEWED BY: RK CODES ON REVERSE SIDE
CODES FOR USE ON REVERSE SIDE

TYPE:

A) Steel
B) Fiberglass
C) Cathodically-Protected Steel
D) Other
E) Clad Steel
F) Copper

AGE:

A) 1-5 years
B) 6-10 years
C) 11-15 years
D) 16-20 years
E) Over 20 years

PRODUCT:

A) Gasoline
B) #2 Oil
C) Kerosene
D) #4 Oil
E) #5 Oil
F) #6 Oil
G) Jet Fuel
H) Waste Oil
I) Asphalt
J) Other
K) Diesel

LEAK FOUND IN:

A) Tank
B) Supply Line
C) Return Line
D) Vent Line
E) Fittings
F) Fill Pipe
G) Air Pocket
H) None
I) Other
J) Flex Connector

STATUS:

A) In Service
B) Removed
C) Abandoned-In-Place
Type of Inspection/Observation: Surface Spill

Facility Name: Park Rug & Dry Cleaners 107 N. Cross St. Chestertown

Remarks: Inspector responded to above site upon receiving phone call from office regarding cyanos spill reported by Mr. William Ingersoll. Upon arrival Inspector found thick, thick, black substance located in drive between back entrance of dry cleaning building and curb on grass median of city street. Inspector used soil-blasted to determine if substance would be absorbed. Upon observing "froth and ooze" Inspector contacted Mr. Larry Schultz (MDCE) by telephone. Inspector was met by Mr. David Carroll (Manager, Park Rug & Dry Cleaners) who advised that substance was residual soap removed from "still" associated with dry cleaning system. Mr. Carroll stated that at approximately 10:30 hrs., he observed that 25 gallon drum that contained approximately 15 gallons of soap had been knocked over and soap had leaked from drum opening, which were capped. Drum had been put out side for pick up by Safety-Kleen. Due to heavy rains, Mr. Carroll advised that he was not aware that soap had affected that was observed by inspector. Mr. Carroll provided inspector with copy of material safety data sheet for soap product known as "Soft Kleen." Mr. Schultz advised Mr. Carroll that soap must be cleaned up immediately. Mr. Carroll agreed to do so, Mr. Schultz advised that he would perform follow-up visit to verify spill has been properly cleaned up.

Copy of report provided to Mr. Schultz.

TIME IN: 12:00
TIME OUT: 15:00

Observer: Brownlee B. Lee
Person Interviewed: Mr. David Carroll (Manager, Park Rug & Dry Cleaners)
WASTE MANAGEMENT ADMINISTRATION
OIL CONTROL DIVISION
INITIAL REPORT OF OIL SPILL

CASE NO. 93-0478 KE

1. Name of WMA personnel taking report:

2. Date of Report: 9/11/92
3. Time of Report:
4. Name of Callor: Bill Eggers
5. Telephone #: 778-6506
6. What Agency or Company is Caller with: Turner's Chesterton

7. Date of Spill: 9/14/92
8. Time of Spill:

9. Precise Location of the Spill or Incident:
 Park Royal Dry Cleaners
 Chesterton, County:

10. Tank Test Failure? Yes No

11. Nearest Crossroad or other Identifying Mark:

12. Type of Product Involved:

13. Quantity on Board:
14. Amount Spilled:

15. Details of the Spill:
 Unknown oily substance on sidewalk andappoarking lot.

16. Has Product Entered Water? Yes No
17. Name of Waterway:

18. Spillers Name:

19. Spillers Address:

20. Spillers Telephone Number:

21. Has Spiller taken any action to control the problem: Yes No

22. If yes, What:

ACTION TAKEN
TRANSFERRRED CALL TO:

DISPATCHED:

NO RESPONSE: Explain Why:

OTHER:

INITIALS:
Caller

- Name of HSWMA personnel taking report: [Name]
- Date of report: **9-4-92**
- Time of report: **12:05**
- Name of caller: [Name]
- Telephone #: **301-778-0500**
- What agency or company is caller with: [Agency/Company]

Details of Spill

- Date of incident: **9-4-92**
- Time of incident: **12:00**
- Has product been released? YES [] NO []
- Amount released: **2 gal.**
- Tank test failure? YES [] NO []
- Tank failure rate:
- Precise location of the release or incident: **Corner of Chase St. & Maple Ave., between Little County & Park Crossing**
- Nearest crossroad or other identifying mark:
- Type of product involved: [Type of product]
- Quantity on board:
- Age of tank system:
- Details of release:
- Has product entered water? YES [] NO []

Responsible Party

- Responsible party's name:
- Responsible party's address:
- Responsible party's telephone number:
- Has responsible party taken any action to control the problem? YES [] NO []
- If yes, what:

Action Taken

- UST INSPECTOR ASSIGNED CASE:
- TRANSFERRED CALL TO:
- DISPATCHED:
- NO RESPONSE; Explain why:
- OTHER:
- TIME:
- DATE:
- INITIALS:
General Facility Information

- **Facility Name**: Park Rug & Dry Cleaners, Corp.
- **Type of Business**: Dry Cleaners
- **Contact Person**: Alan Carroll
- **Street Address**: 107 N. Cross St.
- **City**: Chestertown
- **County**: Kent
- **Zip Code**: 21620
- **Phone #**: 410-778-3181
- **Latitude**: 39° 12.591' N
- **Longitude**: 76° 04.048' W
- **SIC Code**: 7212
- **Title**: Owner
- **Current Permits**: none
- **EPSC Number**: n/a

Facility Operations and Domestic Discharge Information

- **Types of Chemicals Used**: PCE
- **Types of Wastes Generated**: old PCE, filters
- **Check Manifests/Records**: ✔
- **Parts Washer**: ❌
- **Housekeeping Score**: Average
- **Water Supply**: Public/Community Supply
- **Septic or Sewered?**: Public Sanitary Sewer

Industrial Discharge Information

- **Surface Discharge**: ❌
- **Floor Drains**: ✔
- **UIC Well Type**: n/a
- **Methods of Waste Removal, Treatment, and On-site Disposal**: hauled away by waste contractor
- **Industrial Wastes Going Into Drains**: water, wash water

Inspection Information

- **Recommendations**: None.
- **Inspection Narrative**: their floor drains and trench system are connected to the POTW.
- **Inspector's Name**: John Handy
- **Photos/Documents?**: ❌
- **Follow-Up Needed?**: ❌
Table 1
Indoor Air Sample Results
Park Rug and Dry Cleaning
Chestertown, Maryland
February 2008

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Date</th>
<th>Location</th>
<th>Analytical Results (ug/M³)¹</th>
</tr>
</thead>
</table>
| IAQ-1 | 2/13/08 | Rear press room – dry cleaners space | PERC – 3.45
TCE – ND²
cis-1,2-Dichloroethene – ND
Trans 1,2-Dichloroethene – ND
1,1-Dichloroethene – ND
Vinyl chloride – ND |
| IAQ-2 | 2/13/08 | Adjacent to dry cleaning plant – dry cleaners space | PERC – 36.5
TCE – 2.08
cis-1,2-Dichloroethene – 2.78
Trans 1,2-Dichloroethene – ND
1,1-Dichloroethene – ND
Vinyl chloride – ND |
| IAQ-3 | 2/13/08 | Front counter – dry cleaners space | PERC – 17.9
TCE – 1.15
cis-1,2-Dichloroethene – 1.73
Trans 1,2-Dichloroethene – ND
1,1-Dichloroethene – ND
Vinyl chloride – ND |
| IAQ-4 | 2/13/08 | Bennett’s II Office | PERC – 0.827J³
TCE – ND
cis-1,2-Dichloroethene – ND
Trans 1,2-Dichloroethene – ND
1,1-Dichloroethene – ND
Vinyl chloride – ND |
| IAQ-5 | 2/13/08 | Blind duplicate of IAQ-4 | PERC – ND
TCE – ND
cis-1,2-Dichloroethene – ND
Trans 1,2-Dichloroethene – ND
1,1-Dichloroethene – ND
Vinyl chloride – ND |

Notes:
¹ – ug/M³ = micrograms per cubic meter
² – ND = not detected above the method quantitation limit
³ – J = estimated concentration with analyte detected below the method quantitation limit
Table 2

Analytical Data vs. Applicable Standards
Park Rug and Dry Cleaning
Chestertown, Maryland
February 2008

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Maximum Concentration (ug/M3)(^1)</th>
<th>Concentration (ppm)(^2)</th>
<th>ACGIH TLV (^3) (ppm)</th>
<th>OSHA PEL (^3) (ppm)</th>
<th>NIOSH REL (^4) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrachloroethene</td>
<td>36.5</td>
<td>0.0005294</td>
<td>25</td>
<td>100</td>
<td>NS</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>2.08</td>
<td>0.0003808</td>
<td>10</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Cis-1,2-Dichloroethene</td>
<td>2.78</td>
<td>0.0006898</td>
<td>200</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

Notes:
\(^1\) ug/M3 = micrograms per cubic meter
\(^2\) ppm = parts per million
\(^3\) ACGIH TLV = American Council of Government Industrial Hygienists Threshold Limit Value
\(^4\) OSHA PEL = Occupational Safety and Health Administration Permissible Exposure Limit
\(^5\) NIOSH REL = National Institute for Occupational Safety and Health Recommended Exposure Limit
Field Inspection Report by: Richard Vandegrift

Media Type(s): Hazardous Waste

Inspection Date: 5-21-2014

Site Name: Admiral Inc. #63

Facility Address: 107 N Cross St Chestertown MD, 21620

County: Kent

Hazardous Waste Program

EPA / Identification Number / Waste Designation: MDD022564074 / CESQG

Site Status: Active under new process non-hazardous

Site Condition: Remove from RCRA list no longer generate haz waste

Contact (s): Dave Clokey – Vice President / Mrs. Kim Smith store clerk

Recommended Action: Remove from EPA waste list non generator now

Inspection Reason: Random

Evidence Collected: Pictures / Documentation / Interview

Site History

Admiral Cleaners has been in business as a retail dry cleaners dating back to the late 80’s. RCRA records show that a Mr. Scott Kerridge applied for the original EPA ID number back in December of 2001 at this location. Mr. Kerridge was the company
operations manager for all 18 locations back then, as I found out via interviewing the clerk on duty. Mrs. Smith the clerk on duty was kind enough to help this inspector create a timeline for when Admiral stopped using perchloetloelen in their dry cleaning operation. Mrs. Smith told this inspector that Mr. Dave Clokey was the Vice President and that she would call him to help with my questions. As for my research before inspection there is no evidence that Admiral Cleaners had ever received a hazardous waste inspection since its inception. On this date when I pulled into the location the sign on the business clearly stated Admiral Cleaners.

Physical Inspection

Upon entrance at the address it was plain to see that the location is a dry cleaner. On entrance I was greeted by Mrs. Smith as mentioned above. After introduction and giving Mrs. Smith my explanation for the visit she agreed to my questioning. Mrs. Smith quickly stated that they no longer operate the actual dry cleaning facility at this location. Mrs. Smith went on to say that they take all clothes from this location and process them in their Easton MD facility. Mrs. Smith stated that they have been practicing this since early in 2013. At this point as earlier mentioned Mrs. Smith told this inspector that she would be more comfortable if I spoke with the Vice President of the company a Mr. Dave Clokey. I told Mrs. Smith that would be fine and she then started to locate Mr. Clokey on the phone. She left Mr. Clokey a voice mail stating I was at the location and needed to speak with him right away. After a period of about forty five minutes Mr. Clokey returned the phone call to Mrs. Smith and then began to speak with me.

After introductions on the phone I began to ask Mr. Clokey about the timeline of the processing plant closure at the location of today’s inspection. Mr. Clokey went on to explain via the phone that all of Admiral Cleaners location went hazardous waste free over a year ago and that he had personally written a letter to the Maryland Department of the Environment stating such. Mr. Clokey told this inspector that he thought he had sent the letter back in March of 2013 if his memory was correct. He then stated he was surprised by Mrs. Mullins voice mail stating I was at the location to conduct a hazardous waste inspection after sending the letter some 15 months prior. I stated at this time to Mr. Clokey that I referenced the RCRA database recently to acquire inspection locations and that this Admiral location was still clearly active. I then told Mr. Clokey that I would make every effort to see that his letter would be addressed as for the generator status of his 18 locations. Memo to MDE staff please research and locate Mr. Clokey's letter stating that all of his Admiral Cleaner locations are now hazardous waste free and should be removed from the RCCRA database completely. At this point I told Mr. Clokey via the phone that I would enter the back portion of the building to ascertain if his claim of a non processing plant at this location was correct. I thanked Mr. Clokey for his time and told him that I would call him back if I had any other questions during my walk around.

During my walk around there was no indication what so ever that a dry cleaning processing operation currently on the premises. Picture evidence provided with this report will show a shuttered dry cleaning system empty of any cleaning solutions and shut
down. At this point after documenting the location via pictures I thanked Mrs. Smith for her time and exited the building. Picture evidence provided with this report will show what used to be an active dry cleaning processing plant is now just a drop off point for the actual cleaning done at another location.

Records Inspection

Due to the change of processing in the business type of the original inspection target of Admiral Cleaners no record inspection was conducted on this date. The processing plant was for all purpose closed back in 2013.

Inspection Findings

This inspector on this date and time deems this location to have no violations as it pertains to COMAR under the ownership of Admiral Inc.

Site Recommendation

Admiral Inc #63, after this inspection and interview with the company employees deems that the facility is currently a non generator of hazardous waste. **It is the recommendation of this inspector on this date that Admiral Inc. the actual inspection target originally today be removed from the RCRA database under RCRA ID number MD022564074 all together.**

Richard Vandegrift
ECS III Hazardous Waste
Office Number 410-819-4065
Cell Number 443-569-1162
STATE OF MARYLAND
DEPARTMENT OF THE ENVIRONMENT
LAND MANAGEMENT ADMINISTRATION
HAZARDOUS WASTE PROGRAM
1800 Washington Boulevard
BALTIMORE, MARYLAND 21230
(410)537-3400

Fl Inspector: RAV Date: 5-21-2014

GENERATOR CHECKLIST

Facility Name: Admiral Inc #63

Address: 107 W. Cross St., Charlotte-Mecklenburg, NC 28202

Facility Representative:

Telephone No.:

Description of Work Activity: Dry Cleaners

EPA Identification Number: M00022564074 08586

Section A - Hazardous Waste Determination

Does facility generate hazardous waste(s) as defined in COMAR 26.13.02.10 - .19? Yes No

If yes, under which category is the waste?

_____Ignitble ____Corrosive ____Reactive ____TC Toxic ____RCRA Listed

Describe the amount of waste generated (day, week or month).

Section B - Manifest (26.13.03.04)

Does generator ship waste off-site? Yes No

(If no, do not complete section B and C)

Does generator use manifest? Yes No

If no, explain:

Does generator retain copies of manifest? Yes No N/A

If yes, does the manifest include the following information?

(26.13.03.04C)

- Manifest document number? Yes No N/A

- Generator's name, mailing address & telephone number? Yes No N/A
Generator's EPA I.D. number?...Yes_No_N/A
Transporter name(s) & EPA I.D. number(s)?...Yes_No_N/A
Designated TSDF name, address, & EPA I.D. number?............................Yes_No_N/A
Alternate TSDF name, address, & EPA I.D. number?.................................Yes_No_N/A
Instructions to return waste to generator if undeliverable?......................Yes_No_N/A
Description of the waste required by DOT regulations?..........................Yes_No_N/A
Quantity of each hazardous waste by units of weight or volume?.................Yes_No_N/A
Total number & types of containers given to transporter?.........................Yes_No_N/A
Is the proper certification noted on each manifest?.................................Yes_No_N/A

Did the generator sign & dated manifests (26.13.03.04E)?........................Yes_No_N/A

Did the generator obtain initial transporter's signature and date of acceptance?Yes_No_N/A
Do returned copies of manifest include facility owner/operation signature and date of acceptance?Yes_No_N/A
Have manifests been retained for three years?Yes_No_N/A

Section C - Pre-Transport Requirements (26.13.03.05) N/A

Does generator package wastes in accordance with DOT requirements?Yes_No
Are containers in good condition?Yes_No
If no, explain:
Is the date that accumulation time began clearly marked and visible for inspection on each container?Yes_No
Is period of accumulation less than 90 days?Yes_No
- If no, is amount accumulated less than 500 kg or less than 1 kg of acute hazardous waste?Yes_No_N/A
- If no, explain:

Is "SATELLITE ACCUMULATION" no more than 55 gallons of hazardous waste or 1 quart of acutely hazardous waste?Yes_No_N/A

Are containers in good condition, closed, and clearly marked "HAZARDOUS WASTE"?Yes_No_N/A

Section D - Recordkeeping and Reporting (26.13.03.06)

Does the generator keep the following reports for three years?
- Manifests & signed copies from designated facilities?Yes_No
- Annual Reports?Yes_No
- Exception Reports?Yes_No_N/A
- Waste Analyses?Yes_No_N/A

Section E - Special Conditions (26.13.03.07)

Does the generator received from or transported to a foreign country any hazardous waste(s)?Yes_No
- If yes, has a notice been filed with MDE and EPA?Yes_No
- Is this waste manifested & signed by a foreign consignee?Yes_No
- If generator transported wastes out of the county, has confirmation of delivery been received?Yes_No
Section F - General Requirements (26.13.03.05E)

Personnel Training (26.13.05.02G)
1. Does the owner/operator maintain personnel training records?...Yes_No
 If yes, do they include:
 - Job title & written job description of each position?...Yes_No
 - Description of type and amount of training?..Yes_No
 - Records of training given to facility personnel?..Yes_No

Preparedness and Prevention (26.13.05.03)
1. Is there evidence of fire, explosion, or contamination of the environment?.................................Yes_No
2. Is the facility equipped with:
 a) Internal communication or alarm system?..Yes_No
 b) Telephone or two-way radio to call emergency response personnel?...Yes_No
 c) Portable fire extinguishers, fire control equipment, spill control equipment & decontamination equipment?...Yes_No
 d) Water of adequate volume for hoses, sprinklers, or water spray system?....................................Yes_No
3. Is there sufficient aisle space to allow unobstructed movement of personnel and equipment in an emergency?...Yes_No
4. Has the owner/operator made arrangements with the local authorities to familiarize them with characteristics of the facility?..Yes_No
5. In the case that more than one police or fire department might respond, is there a designated primary authority?...Yes_No
6. If State or local authorities decline to enter into these arrangements, has this been documented in the operating log?..Yes_No N/A

Contingency Plan and Emergency Procedures (26.13.05.04)
1. Is a contingency plan maintained at the facility?...Yes_No
 If yes, does contingency plan include:
 - Arrangements with local emergency response organizations?...Yes_No
 - Emergency coordinators' names, phone numbers, and addresses?...Yes_No
 - List of all emergency equipment at the facility and description of equipment?............................Yes_No
 - Evacuation plan for facility personnel..Yes_No

Is there an emergency coordinator on site or on call at all times?..Yes_No

Has a copy of the contingency plan been submitted to local or State agencies that may be asked to provide emergency services?...Yes_No

Has the plan ever been implemented?...Yes_No
 - If so, was the plan appropriate?..Yes_No I/A
 - If the plan was not appropriate, has it been amended?..Yes_No I/A
 - If the plan was implemented, was the incident recorded in the operating log and was a written report submitted to MDE?...Yes_No I/A
Section G - Other Checklists Completed: _N/A

- Tanks
- Transporter
- Land Disposal Restrictions
- TSD Facility
- Surface Impoundment
- Waste Pile
- Land Treatment
- Landfill
- Incinerator
- Thermal Treatment
- Groundwater Monitoring

Section H - Additional Comments
<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste generation description: [Info]</td>
<td>Information</td>
<td></td>
</tr>
<tr>
<td>Weather Description: [Info]</td>
<td>Information</td>
<td>Sunny, warm, 73 degrees</td>
</tr>
<tr>
<td>1. Facility made hazardous waste determination: [COMAR 26.13.03.02A ref 3.02]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2. Does the generator use manifest(s)? [COMAR 26.13.03.04A (1) ref 3.04]</td>
<td>Yes</td>
<td>Copy of last bill of lading / manifest attached</td>
</tr>
<tr>
<td>3. Instructions to return waste to generator if undeliverable is available [COMAR 26.13.03.04A (5) ref 3.04]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>4. Manifest has document number [COMAR 26.13.03.04C (1)(a) 3.04]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5. Generators name, mailing address and telephone number is on the manifest? [COMAR 26.13.03.04C(1)(B) 3.04]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>6. Generators EPA ID number is on manifest? [COMAR 26.08.04.09N, COMAR 26.13.03.04C(1)(B) 3.04]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>7. Transporter name(s) and EPA ID number is in manifest? [COMAR 26.13.03.04C (1)(C) 3.04]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>8. Designated TSDF name, address and EPA ID number is on manifest [COMAR 26.13.03.04C(1)(D) 3.04]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>9. Alternate TSDF name, address and EPA ID number is on manifest? [COMAR 26.13.03.04C(1)(E) 3.04]</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>10. Descriptions of the waste required by DOT regulations are on the manifest? [COMAR 26.13.03.04D(1)(F) 3.04]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>11. Quantity of each hazardous waste by units of weight or volume is on the manifest? [COMAR 26.13.03.04D(1)(F) 3.04]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>12. Total number and types of containers given to transporter is on-manifest? [COMAR 26.13.03.04D(2)(I) 3.04]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>13. Proper certification is noted on each manifest. Generator has the returned copies of manifest to include facility owner/operator? [COMAR 26.13.03.04D(2)(E) 3.04]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>14. Signature and date of acceptance? [COMAR 26.13.03.04E(1)(A) 3.04]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>15. Generator signed and dated each manifest? [COMAR 26.13.03.04E(1)(A) 3.04]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>Inspection Item</td>
<td>Status</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>16. Generator obtained initial transporter's signature and date of acceptance?</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>COMAR 26.13.03.04E(1)(B) 3.04</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>17. Generator packaged the waste in accordance with DOT requirements under</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>49CFR 173.178 and 1799? COMAR 26.13.03.05A 3.05</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>18. The containers used to accumulate waste are in good condition? COMAR</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>26.13.03.05E(1)(D) 3.05</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>19. Date that accumulation began is clearly marked and visible for each</td>
<td>Out of compliance</td>
<td>This was corrected as it was found. Almost immediately at time of</td>
</tr>
<tr>
<td>container? COMAR 26.13.03.05E(1)(D) 3.05</td>
<td></td>
<td>inspection.</td>
</tr>
<tr>
<td>20. Generator is complying with permit exemption for storage of waste? COMAR</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>26.13.03.05E(2) 3.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Satellite accumulation is within maximum quantity limits (55 gallons of</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>hazardous, 1 quart of acute waste? COMAR 26.13.03.05E(3) 3.05</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>22. Containers used for satellite accumulation are closed? COMAR 26.13.03.05E</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>(3)(A) 3.05</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>23. Containers used for satellite accumulation are clearly marked "HAZARDOUS</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>WASTE"? COMAR 26.13.03.05E(3)(B) 3.05</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>24. Manifest has been retained for three years? COMAR 26.13.03.06A(1) 3.06</td>
<td>No violations</td>
<td>In excess of three years</td>
</tr>
<tr>
<td>25. Copy of biennial reports is kept on file for at least three years? COMAR</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>26.13.03.06A(2) 3.06</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>26. Copy of exceptions is kept on file for at least three years? COMAR 26.13.03</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>03.06A(2) 3.06</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>27. Waste analysis reports are on file for at least three years? COMAR 26.13.03</td>
<td>No violations</td>
<td>As to waste derived from paint process.</td>
</tr>
<tr>
<td>03.06A(3) 3.06</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>28. Name, address, EPA ID number are on biennial reports? COMAR 26.13.03.06B</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>(1)(D)(i) 3.06</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>29. Date and year are on biennial reports? COMAR 26.13.03.06B(1)(D)(ii) 3.06</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>30. Description/quantity of hazardous waste is in biennial reports? COMAR 26.13</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>03.06B(1)(D)(iii)(v) 3.06</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>31. Description of waste minimization efforts included in biennial reports?</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>COMAR 26.13.03.06B(1)(D)(vi) 3.06</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>32. Biennial reports include the certification? COMAR 26.13.03.06B(1)(d) viii</td>
<td>No violations</td>
<td></td>
</tr>
<tr>
<td>3.06</td>
<td>observed</td>
<td></td>
</tr>
<tr>
<td>Inspection Item</td>
<td>Status</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>33. Job title and description are present in personnel training records? [COMAR 26.13.05.02G(4)(a-b) 5.02]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>34. Training amount and type are present in personnel training records? [COMAR 26.13.05.02G(4)(c) 5.02]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>35. Copy of training records given to personnel? [COMAR 26.13.05.02G(4)(D) 5.02]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>36. Personnel training records kept by generator for at least three years for former employees and on file for current employees? [COMAR 26.08.03.01C] 5.02</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>37. Facility is designed, constructed and operated to minimize the possibility of a fire, explosion, or any unplanned, sudden or non sudden release of hazardous waste or hazardous constituents to air, soil or water which could threaten human health or the environment? [COMAR 26.13.05.03B] 5.03</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>38. Generator has an internal communication or alarm system? [COMAR 26.13.05.03C(1) 5.03]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>39. Generator has a telephone or two way radio for emergency response? [COMAR 26.13.05.03C(2) 5.03]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>40. Generator has fire and spill control equipment? [COMAR 26.13.05.03C(3) 5.03]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>41. Generator has adequate water supply for emergency response? [COMAR 26.13.05.03C(4) 5.03]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>42. Generator complies with required aisle space restrictions? [COMAR 26.13.05.03F 5.03]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>43. The owner or operator shall take precautions to prevent accidental ignition or reaction of ignitable or reactive waste, specify a designated area for smoking and open flame during material handling, and shall post "NO SMOKING" signs conspicuously wherever there is a hazard from ignitable or reactive waste? [COMAR 26.13.05.03G 5.03]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>44. Arrangements with local authorities for emergency procedures have been made? [COMAR 26.13.05.03H(1)(a-c) 5.03]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>45. Primary local authority has been determined? [COMAR 26.13.05.03H(1)(b) 5.03]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>46. Local authority entrance refusals documented? [COMAR 26.13.05.03H(2) 5.03]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>47. Generator maintains a contingency plan? [COMAR 26.13.05.04A 5.04]</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>Inspection Item</td>
<td>Status</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>48. Contingency plan contains arrangements with local authorities for emergency procedures? (COMAR 26.13.05.04C(3) 5.04)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>49. Contingency plan contains emergency coordinator names, phone numbers and addresses? (COMAR 26.13.05.04C(4) 5.04)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>50. Contingency plan contains listing and description of emergency equipment? (COMAR 26.13.05.04C(5) 5.04)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>51. Contingency plan contains evacuation plan? (COMAR 26.13.05.04C(6) 5.04)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>52. Copy of contingency plan sent to local or state agencies? (COMAR 26.13.05.04D(2) 5.04)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>53. Implementation of the contingency plan had failed in emergency and subsequently amended? (COMAR 26.13.05.04E(2) 5.04)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>54. Emergency coordinator is onsite or on call? (COMAR 26.13.05.04F 5.04)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>55. Contingency plan implemented was noted in facility log and the department notified that the plan was implemented? (COMAR 26.13.05.04G(4, 10) 5.04)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>56. The containers are in good condition? (COMAR 26.13.05.09B 5.09)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>57. Container and waste are compatible? (COMAR 26.13.05.09C 5.09)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>58. Containers are closed? (COMAR 26.13.05.09D 5.09)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>59. Containers managed properly to prevent rupture and releases? (COMAR 26.13.05.09D 5.09)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>60. Containers are inspected regularly? (COMAR 26.13.05.09E 5.09)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>61. Containers holding ignitable and reactive waste are located at least 15m (50ft) from property line? (COMAR 26.13.05.09F 5.09)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>62. Incompatible waste and materials are not placed in the same containers? (COMAR 26.13.05.09G(1) 5.09)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>63. Waste is placed in clean and washed containers? (COMAR 26.13.05.09G(2) 5.09)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>64. Containers containing incompatible waste are separated? (COMAR 26.13.05.09G(3) 5.09)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>65. There is an adequate containment system in place? (COMAR 26.13.05.09H 5.09)</td>
<td>No violations observed</td>
<td></td>
</tr>
<tr>
<td>66. Is the facility in compliance with conditions of the Code of Maryland Hazardous Waste Regulations? (COMAR 26.13.05.09G 5.09)</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
67. Are corrective actions required with follow up inspections? [COMAR 26.08.03.01 5.09] Yes

Inspector: ___________________________ Received by: ___________________________

Richard A. Vandegrift E.C.S. III
Hazardous Waste Program
Maryland Department of the Environment
Soil Boring Location Map

Former Park Rug and Dry Cleaners
107 North Cross Street
Chestertown, MD 21620

Date: 12/04/2017
Drawn By: M. Walsh
Project Manager: N. Love

Legend:
- Subject Property Line
- Other Property Line
- Building Outline
- Floor Drain
- P/D Paved Parking/Driveway
- Soil Boring/Grab-Groundwater Sample Location

Reference Sources:
All other property lines - MERLIN.
FIGURE 4
SOIL SAMPLES
SUMMARY OF DRY-CLEANING RELATED CHLORINATED HYDROCARBON ANALYTICAL RESULTS
Former Park Rug and Dry Cleaners
107 North Cross Street
Chestertown, MD 21620

Job #: CG-15-1060.04 Date: 12/05/2017
Drawn By: M. Walsh Scale: 1" = 40'
Project Manager: N. Love

SOIL SAMPLES
SUMMARY OF DRY-CLEANING RELATED CHLORINATED HYDROCARBON ANALYTICAL RESULTS

LEGEND
- Subject Property Line
- Other Property Line
- Building Outline
- Floor Drain
- Soil Boring/Grab-Groundwater Sample Location

LEGEND FOR DATA TABLES
- TCE - Trichloroethene
- 1,1-DCE - 1,1-Dichloroethene
- VC - Vinyl chloride
- Concentration (mg/kg)
- D - Detected Analyte Concentration
- * - Duplicate Sample Collected - Higher Concentration Reported
- Estimated concentration, below Limit of Quantitation (LOQ)
- Sample analyzed at a higher dilution factor to allow calibration of the analyzer.

Sample Collection Locations:
- Soil Bore/Grab-Groundwater Sample Location
- Floor Drain
- Building Outline
- Subject Property Line
- Other Property Line

Data Tables:

<table>
<thead>
<tr>
<th>NCS-03</th>
<th>7.75</th>
<th>9.75</th>
<th>15.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCE</td>
<td>0.05 D</td>
<td>0.03 D</td>
<td>0.03 D</td>
</tr>
<tr>
<td>TCE</td>
<td>0.15 D</td>
<td>0.03 D</td>
<td>0.03 D</td>
</tr>
<tr>
<td>1,1-DCE</td>
<td>0.22 D</td>
<td>0.15 D</td>
<td>0.03 D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NCS-04</th>
<th>11.20</th>
<th>15.00</th>
<th>17.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCE</td>
<td>0.20 D</td>
<td>0.20 D</td>
<td>0.20 D</td>
</tr>
<tr>
<td>TCE</td>
<td>0.01 D</td>
<td>0.01 D</td>
<td>0.01 D</td>
</tr>
<tr>
<td>1,1-DCE</td>
<td>0.03 D</td>
<td>0.03 D</td>
<td>0.03 D</td>
</tr>
</tbody>
</table>

SOIL SAMPLES
SUMMARY OF DRY-CLEANING RELATED CHLORINATED HYDROCARBON ANALYTICAL RESULTS
Soil PCE Isoconcentration Map

Former Park Rug and Dry Cleaners
107 North Cross Street
Chestertown, MD 21620

Job #: CG-15-1060.04 Date: 12/05/2017
Drawn By: M. Walsh Project Manager: N. Love

1" = 40'

LEGEND

- Subject Property Line
- Other Property Line
- Building Outline
- Floor Drain
- Soil Boring/Grab-Groundwater Sample Location
- Tetrachloroethene
- PCE Concentration (mg/kg)
- Sample Collection Depth (feet below grade)
- Detected analyte concentration exceeds the respective SL
 (Red, bold, and underline)
- PCE Isoconcentration Contour (Dashed Where Inferred)

Detected analyte concentration exceeds the respective SL.

Soil PCE Isoconcentration Map

Detected analyte concentration exceeds the respective SL.
GROUNDWATER SAMPLES
SUMMARY OF DRY-CLEANING
RELATED CHLORINATED
HYDROCARBON ANALYTICAL
RESULTS

Former Park Rug and Dry Cleaners
107 North Cross Street
Chestertown, MD 21620

Job #: CG-15-1060.04 Date: 12/05/2017
Drawn By: M. Walsh Scale: 1" = 40'
Project Manager: N. Love

LEGEND

- Subject Property Line
- Other Property Line
- Building Outline
- Floor Drain
- Soil Boring/Grab-Groundwater Sample Location

LEGEND FOR DATA TABLES
PCE - Tetrachloroethene
TCE - Trichloroethene
p,2,3-DDCE - p,2,3-Dichloroethene
VC - Vinyl chloride
Concentration (ug/L)
^ - Duplicate Sample Collected - Higher Concentration Reported
U - Analyte not detected above specified Limit Of Detection (LOD) (shown as a gray tone).
Bold - Detected analyte concentration
Italics - Detected analyte concentration exceeds the respective XE.
Groundwater PCE Isoconcentration Map
Former Park Rug and Dry Cleaners
107 North Cross Street
Chestertown, MD 21620

Job #: CG-15-1060.04 Date: 12/05/2017
Drawn By: M. Walsh Project Manager: N. Love
Scale: 1" = 40'

LEGEND
- Subject Property Line
- Other Property Line
- Building Outline
- Floor Drain
- Soil Boring/Grab-Groundwater Sample Location
- Tetrachloroethene
- PCE Concentration (µg/L)
- PCE Concentration not contoured
- Detected analyte concentration exceeds the respective SL. (Red, bold, and underline)
- PCE Isoconcentration Contour (Dashed Where Inferred)
Table 1
Former Park Rug & Dry Cleaners, 107 N. Cross Street, Chestertown, Maryland
Limited On-Site Subsurface Investigation

Photoionization Detector (PID) Readings in Macrocore Soil Sample Cores
November 1, 2017

<table>
<thead>
<tr>
<th>Depth (Feet BG)</th>
<th>Soil Boring / Temporary Well ID</th>
<th>NCS-01</th>
<th>NCS-02</th>
<th>NCS-03</th>
<th>NCS-04</th>
<th>NCS-05</th>
<th>NCS-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.25</td>
<td>Asphalt</td>
<td>0.5</td>
<td>0.0</td>
<td>40.6</td>
<td>53.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.75</td>
<td>Asphalt</td>
<td>2.0</td>
<td>0.0</td>
<td>31.0</td>
<td>156.2</td>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td>1.00</td>
<td>Residual Asphalt</td>
<td>10.1</td>
<td>0.7</td>
<td>6.7</td>
<td>28.9</td>
<td>0.0</td>
<td>26.2</td>
</tr>
<tr>
<td>1.75</td>
<td>Gravel</td>
<td>7.3</td>
<td>3.6</td>
<td>12.0</td>
<td>4.7</td>
<td>0.0</td>
<td>2.6</td>
</tr>
<tr>
<td>2.00</td>
<td>Fill</td>
<td>0.8</td>
<td>10.1</td>
<td>2.0</td>
<td>2.4</td>
<td>0.0</td>
<td>7.5</td>
</tr>
<tr>
<td>2.25</td>
<td>Wood & Clayey Silt</td>
<td>0.5</td>
<td>47.1</td>
<td>15.9</td>
<td>1.4</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>2.75</td>
<td>Sand/Silt</td>
<td>1.2</td>
<td>66.4</td>
<td>43.8</td>
<td>3.2</td>
<td>0.0</td>
<td>9.9</td>
</tr>
<tr>
<td>3.00</td>
<td>Clayey Silt</td>
<td>2.4</td>
<td>42.9</td>
<td>31.9</td>
<td>3.9</td>
<td>0.2</td>
<td>15.9</td>
</tr>
<tr>
<td>3.25</td>
<td>Clayey Silt</td>
<td>4.2</td>
<td>19.3</td>
<td>43.5</td>
<td>3.5</td>
<td>0.4</td>
<td>45.7</td>
</tr>
<tr>
<td>3.75</td>
<td>Clayey Silt</td>
<td>2.7</td>
<td>54.7</td>
<td>12.9</td>
<td>4.0</td>
<td>0.9</td>
<td>51.4</td>
</tr>
<tr>
<td>4.00</td>
<td>Silty Clay</td>
<td>2.1</td>
<td>41.2</td>
<td>56.2</td>
<td>5.0</td>
<td>0.3</td>
<td>12.5</td>
</tr>
<tr>
<td>4.25</td>
<td>Clayey Silt</td>
<td>0.7</td>
<td>81.3</td>
<td>14.8</td>
<td>3.1</td>
<td>0.7</td>
<td>13.2</td>
</tr>
<tr>
<td>4.75</td>
<td>Clayey Silt</td>
<td>0.7</td>
<td>81.3</td>
<td>14.8</td>
<td>3.1</td>
<td>0.7</td>
<td>13.2</td>
</tr>
<tr>
<td>5.00</td>
<td>Silty Clay</td>
<td>2.4</td>
<td>42.9</td>
<td>31.9</td>
<td>3.9</td>
<td>0.2</td>
<td>15.9</td>
</tr>
<tr>
<td>5.25</td>
<td>Clayey Silt</td>
<td>2.8</td>
<td>19.3</td>
<td>43.5</td>
<td>3.5</td>
<td>0.4</td>
<td>45.7</td>
</tr>
<tr>
<td>5.75</td>
<td>Clayey Silt</td>
<td>2.7</td>
<td>54.7</td>
<td>12.9</td>
<td>4.0</td>
<td>0.9</td>
<td>51.4</td>
</tr>
<tr>
<td>6.00</td>
<td>Silty Clay</td>
<td>2.1</td>
<td>41.2</td>
<td>56.2</td>
<td>5.0</td>
<td>0.3</td>
<td>12.5</td>
</tr>
<tr>
<td>6.25</td>
<td>Clayey Silt</td>
<td>1.3</td>
<td>119.3</td>
<td>31.8</td>
<td>9.2</td>
<td>2.2</td>
<td>122.4</td>
</tr>
<tr>
<td>6.75</td>
<td>Clayey Silt</td>
<td>4.0</td>
<td>81.6</td>
<td>157.6</td>
<td>5.2</td>
<td>3.2</td>
<td>87.3</td>
</tr>
<tr>
<td>7.00</td>
<td>Clayey Silt</td>
<td>13.2</td>
<td>229.5</td>
<td>37.1</td>
<td>8.5</td>
<td>5.8</td>
<td>16.1</td>
</tr>
<tr>
<td>7.25</td>
<td>Clayey Silt</td>
<td>2.1</td>
<td>41.2</td>
<td>56.2</td>
<td>5.0</td>
<td>0.3</td>
<td>12.5</td>
</tr>
<tr>
<td>7.75</td>
<td>Clayey Silt</td>
<td>13.2</td>
<td>229.5</td>
<td>37.1</td>
<td>8.5</td>
<td>5.8</td>
<td>16.1</td>
</tr>
<tr>
<td>8.00</td>
<td>Clayey Silt</td>
<td>2.3</td>
<td>65.2</td>
<td>5.0</td>
<td>0.3</td>
<td>0.1</td>
<td>4.7</td>
</tr>
<tr>
<td>8.25</td>
<td>Clayey Silt</td>
<td>1.2</td>
<td>95.1</td>
<td>15.2</td>
<td>2.1</td>
<td>0.2</td>
<td>18.6</td>
</tr>
<tr>
<td>8.75</td>
<td>Clayey Silt</td>
<td>0.4</td>
<td>93.6</td>
<td>46.3</td>
<td>2.2</td>
<td>0.1</td>
<td>13.1</td>
</tr>
<tr>
<td>9.00</td>
<td>Clayey Silt & Wood</td>
<td>0.5</td>
<td>60.5</td>
<td>65.2</td>
<td>0.8</td>
<td>2.3</td>
<td>104.6</td>
</tr>
<tr>
<td>9.25</td>
<td>Perched GW 8-10 ft</td>
<td>0.5</td>
<td>60.5</td>
<td>65.2</td>
<td>0.8</td>
<td>2.3</td>
<td>104.6</td>
</tr>
<tr>
<td>9.75</td>
<td>Perched GW 8-10 ft</td>
<td>0.5</td>
<td>60.5</td>
<td>65.2</td>
<td>0.8</td>
<td>2.3</td>
<td>104.6</td>
</tr>
</tbody>
</table>
Table 1
Former Park Rug & Dry Cleaners, 107 N. Cross Street, Chestertown, Maryland
Limited On-Site Subsurface Investigation

Photoionization Detector (PID) Readings in Macrocore Soil Sample Cores
November 1, 2017

<table>
<thead>
<tr>
<th>Depth (Feet BG)</th>
<th>Soil Boring / Temporary Well ID</th>
<th>NCS-01 PID Readings (ppm) (white) and Brief Lithological Notes (grey)</th>
<th>NCS-02 PID Readings (ppm) (white) and Brief Lithological Notes (grey)</th>
<th>NCS-03 PID Readings (ppm) (white) and Brief Lithological Notes (grey)</th>
<th>NCS-04 PID Readings (ppm) (white) and Brief Lithological Notes (grey)</th>
<th>NCS-05 PID Readings (ppm) (white) and Brief Lithological Notes (grey)</th>
<th>NCS-06 PID Readings (ppm) (white) and Brief Lithological Notes (grey)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>Clayey Silt</td>
<td>11.6</td>
<td>115.7</td>
<td>28.8</td>
<td>1.0</td>
<td>6.6</td>
<td>9.7</td>
</tr>
<tr>
<td>10.25</td>
<td>Clayey Silt</td>
<td>10.3</td>
<td>2,761</td>
<td>52.6</td>
<td>0.8</td>
<td>4.3</td>
<td>57.2</td>
</tr>
<tr>
<td>10.75</td>
<td>Sand</td>
<td>10.25</td>
<td>11.6</td>
<td>115.7</td>
<td>28.8</td>
<td>1.0</td>
<td>6.6</td>
</tr>
<tr>
<td>11.00</td>
<td>Sand</td>
<td>10.75</td>
<td>10.3</td>
<td>52.6</td>
<td>0.8</td>
<td>4.3</td>
<td>57.2</td>
</tr>
<tr>
<td>11.25</td>
<td>Clayey Silt</td>
<td>11.25</td>
<td>92.7</td>
<td>100.1</td>
<td>54.1</td>
<td>10.2</td>
<td>24.0</td>
</tr>
<tr>
<td>11.75</td>
<td>Sand</td>
<td>11.75</td>
<td>84.5</td>
<td>45.7</td>
<td>24.2</td>
<td>3.8</td>
<td>8.8</td>
</tr>
<tr>
<td>12.00</td>
<td>Sand</td>
<td>12.00</td>
<td>4.4</td>
<td>43.1</td>
<td>24.9</td>
<td>7.6</td>
<td>0.7</td>
</tr>
<tr>
<td>12.25</td>
<td>Clayey Silt</td>
<td>12.25</td>
<td>1.5</td>
<td>27.3</td>
<td>37.6</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>12.75</td>
<td>Clayey Silt</td>
<td>12.75</td>
<td>5.6</td>
<td>8.7</td>
<td>9.5</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>13.00</td>
<td>Clayey Silt</td>
<td>13.00</td>
<td>5.2</td>
<td>24.5</td>
<td>38.0</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>13.25</td>
<td>Clayey Silt</td>
<td>13.25</td>
<td>5.6</td>
<td>8.7</td>
<td>9.5</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>13.75</td>
<td>Clayey Silt</td>
<td>13.75</td>
<td>2.4</td>
<td>6.6</td>
<td>25.7</td>
<td>2.7</td>
<td>0.1</td>
</tr>
<tr>
<td>14.00</td>
<td>Clayey Silt</td>
<td>14.00</td>
<td>8.2</td>
<td>155.2</td>
<td>4.2</td>
<td>12.0</td>
<td>0.8</td>
</tr>
<tr>
<td>14.25</td>
<td>Clayey Silt</td>
<td>14.25</td>
<td>5.6</td>
<td>8.7</td>
<td>9.5</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>14.75</td>
<td>Clayey Silt</td>
<td>14.75</td>
<td>2.4</td>
<td>6.6</td>
<td>25.7</td>
<td>2.7</td>
<td>0.1</td>
</tr>
<tr>
<td>15.00</td>
<td>Sand</td>
<td>15.00</td>
<td>8.2</td>
<td>155.2</td>
<td>4.2</td>
<td>12.0</td>
<td>0.8</td>
</tr>
<tr>
<td>15.25</td>
<td>Clayey Silt</td>
<td>15.25</td>
<td>9.6</td>
<td>63.9</td>
<td>12.9</td>
<td>37.9</td>
<td>3.8</td>
</tr>
<tr>
<td>15.75</td>
<td>Clayey Silt</td>
<td>15.75</td>
<td>159.2</td>
<td>28.7</td>
<td>12.5</td>
<td>137.8</td>
<td>0.5</td>
</tr>
<tr>
<td>16.00</td>
<td>Sand</td>
<td>16.00</td>
<td>6.1</td>
<td>94.5</td>
<td>7.0</td>
<td>16.2</td>
<td>1.5</td>
</tr>
<tr>
<td>16.25</td>
<td>Sand</td>
<td>16.25</td>
<td>48.9</td>
<td>46.2</td>
<td>23.5</td>
<td>4.9</td>
<td>1.5</td>
</tr>
<tr>
<td>16.75</td>
<td>Sand</td>
<td>16.75</td>
<td>6.1</td>
<td>94.5</td>
<td>7.0</td>
<td>16.2</td>
<td>1.5</td>
</tr>
<tr>
<td>17.00</td>
<td>Clayey Silt</td>
<td>17.00</td>
<td>48.9</td>
<td>46.2</td>
<td>23.5</td>
<td>4.9</td>
<td>1.5</td>
</tr>
<tr>
<td>17.25</td>
<td>Clayey Silt</td>
<td>17.25</td>
<td>24.3</td>
<td>22.5</td>
<td>28.8</td>
<td>11.4</td>
<td>3.8</td>
</tr>
<tr>
<td>17.75</td>
<td>Clayey Silt</td>
<td>17.75</td>
<td>24.8</td>
<td>74.7</td>
<td>27.1</td>
<td>7.6</td>
<td>3.5</td>
</tr>
<tr>
<td>18.00</td>
<td>Sand</td>
<td>18.00</td>
<td>24.8</td>
<td>74.7</td>
<td>27.1</td>
<td>7.6</td>
<td>3.5</td>
</tr>
<tr>
<td>18.25</td>
<td>Sand</td>
<td>18.25</td>
<td>3.0</td>
<td>34.9</td>
<td>27.5</td>
<td>12.8</td>
<td>1.0</td>
</tr>
<tr>
<td>18.75</td>
<td>Sand</td>
<td>18.75</td>
<td>2.7</td>
<td>26.4</td>
<td>11.6</td>
<td>16.7</td>
<td>0.3</td>
</tr>
<tr>
<td>19.00</td>
<td>Sand</td>
<td>19.00</td>
<td>2.7</td>
<td>26.4</td>
<td>11.6</td>
<td>16.7</td>
<td>0.3</td>
</tr>
<tr>
<td>19.25</td>
<td>Sand</td>
<td>19.25</td>
<td>1.8</td>
<td>5.8</td>
<td>4.7</td>
<td>34.0</td>
<td>5.1</td>
</tr>
<tr>
<td>19.75</td>
<td>Sand</td>
<td>19.75</td>
<td>0.5</td>
<td>1.8</td>
<td>0.3</td>
<td>11.1</td>
<td>9.3</td>
</tr>
<tr>
<td>20.00</td>
<td>Sand</td>
<td>20.00</td>
<td>0.5</td>
<td>1.8</td>
<td>0.3</td>
<td>11.1</td>
<td>9.3</td>
</tr>
</tbody>
</table>
Table 1
Former Park Rug & Dry Cleaners, 107 N. Cross Street, Chestertown, Maryland
Limited On-Site Subsurface Investigation

Photoionization Detector (PID) Readings in Macrocore Soil Sample Cores
November 1, 2017

<table>
<thead>
<tr>
<th>Depth (Feet BG)</th>
<th>Shallow</th>
<th>Middle</th>
<th>Deep</th>
<th>Grab-GW Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCS-01</td>
<td>9.75': Above Higher PID Readings</td>
<td>14': Interval Above GW</td>
<td>15.75': Highest PID Reading</td>
<td>1" PVC Well</td>
</tr>
<tr>
<td>NCS-02</td>
<td>4.25': 2nd Highest PID Reading</td>
<td>10.75': Highest PID Reading</td>
<td>15': Interval Above GW</td>
<td>Stainless Steel Screened Sampler</td>
</tr>
<tr>
<td>NCS-03</td>
<td>7.25': Highest PID Reading</td>
<td>9.75': 2nd Highest PID Reading</td>
<td>15': Interval Above GW</td>
<td>Stainless Steel Screened Sampler</td>
</tr>
<tr>
<td>NCS-04</td>
<td>11.25': 2nd Highest PID Reading</td>
<td>15': Interval Above GW</td>
<td>15.75': Highest PID Reading</td>
<td>Stainless Steel Screened Sampler</td>
</tr>
<tr>
<td>NCS-05</td>
<td>7.75': PID Response at Mid Depth</td>
<td>15': Interval Above GW</td>
<td>17': Interval Above GW</td>
<td>Stainless Steel Screened Sampler</td>
</tr>
<tr>
<td>NCS-06</td>
<td>6.25': Highest PID Reading</td>
<td>9.75': PID Response at Mid Depth</td>
<td>15': Interval Above GW</td>
<td>Stainless Steel Screened Sampler</td>
</tr>
</tbody>
</table>

Rationale for Selected Sample Depths

<table>
<thead>
<tr>
<th>Depth (Feet BG)</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow</td>
<td>9.75': Above Higher PID Readings</td>
</tr>
<tr>
<td>Middle</td>
<td>14': Interval Above GW</td>
</tr>
<tr>
<td>Deep</td>
<td>15.75': Highest PID Reading</td>
</tr>
</tbody>
</table>

Soil Boring / GW Sample Summary Information

Soil Boring Depth	21.0	20.0	20.0	20.0	22.0	20.0
Screened Interval Depth	11-21	16-20	16-20	16-20	18-22	16-20
Depth GW Encountered	15.5	16	16	16	18	16

Table Notes:
- Lithologic Observation
- Soil Sample Collected Based on PID Reading
- Soil Sample Collected Based on Depth that Groundwater was Encountered
- BG - Below Grade
- NCS - North Cross Street
- PID - Photoionization Detector
- ppm - Parts per Million

Page 3 of 3
Sub-Slab Vapor Sampling Locations and PCE/TCE Results
Supplemental Phase II ESA
107 N. Cross Street, Chestertown, MD

Legend
- Sub-Slab Vapor Sample Location

Notes:
- All locations are approximate.
- µg/m³ - micrograms per cubic meter
- PCE - tetrachloroethene
- TCE - trichloroethene

Figure 2
Table 1 - Analytes Detected in Sub-Slab Vapor Samples
Supplemental Phase II ESA
107 North Cross Street
Chestertown, Maryland

<table>
<thead>
<tr>
<th>Analyte</th>
<th>May 2018 EPA RSL</th>
<th>SV-1</th>
<th>SV-2</th>
<th>SV-3</th>
<th>SV-4</th>
<th>SV-5</th>
<th>SV-6</th>
<th>Maximum Site Concentration (µg/m³)</th>
<th>MDE Commercial Target Soil Vapor Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-Dichloroethene</td>
<td>880</td>
<td><2,000</td>
<td><2,000</td>
<td><20</td>
<td><2.0</td>
<td><2.0</td>
<td>8,200</td>
<td>88,000</td>
<td>440,000</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>22,000</td>
<td><3,700</td>
<td><3,700</td>
<td><3,700</td>
<td><37</td>
<td>40</td>
<td>7.3</td>
<td>40</td>
<td>2,200,000</td>
</tr>
<tr>
<td>Acetone</td>
<td>140,000</td>
<td><24,000</td>
<td><24,000</td>
<td><24,000</td>
<td><240</td>
<td>270</td>
<td><24</td>
<td>270</td>
<td>14,000,000</td>
</tr>
<tr>
<td>Benzene</td>
<td>130</td>
<td><800</td>
<td><800</td>
<td><800</td>
<td><8.0</td>
<td>5.7</td>
<td>3.3</td>
<td>5.7</td>
<td>13,000</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>3,100</td>
<td><31,000</td>
<td><31,000</td>
<td><31,000</td>
<td><310</td>
<td>43</td>
<td><31</td>
<td>43</td>
<td>310,000</td>
</tr>
<tr>
<td>Chloroform</td>
<td>430</td>
<td><2,400</td>
<td><2,400</td>
<td><2,400</td>
<td><24</td>
<td>5.5</td>
<td>220</td>
<td>5.5</td>
<td>43,000</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>26,000</td>
<td><1,700</td>
<td><1,700</td>
<td><1,700</td>
<td><17</td>
<td>8.2</td>
<td><1.7</td>
<td>8.2</td>
<td>2,600,000</td>
</tr>
<tr>
<td>Propylene</td>
<td>13,000</td>
<td><4,300</td>
<td><4,300</td>
<td><4,300</td>
<td>56</td>
<td>140</td>
<td>23</td>
<td>140</td>
<td>1,300,000</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>180</td>
<td>390,000</td>
<td>270,000</td>
<td>290,000</td>
<td>2,600</td>
<td>4,200</td>
<td>13,000</td>
<td>390,000</td>
<td>18,000</td>
</tr>
<tr>
<td>Toluene</td>
<td>22,000</td>
<td><940</td>
<td>1,400</td>
<td><940</td>
<td>36</td>
<td>4.7</td>
<td>4.3</td>
<td>1,400</td>
<td>2,200,000</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>8.8</td>
<td>350,000</td>
<td>60,000</td>
<td>120,000</td>
<td>1,800</td>
<td>190</td>
<td>580</td>
<td>350,000</td>
<td>880</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>--</td>
<td><2,800</td>
<td><2,800</td>
<td><2,800</td>
<td><28</td>
<td>7.4</td>
<td><2.8</td>
<td>7.4</td>
<td>--</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>440</td>
<td>26,000</td>
<td><1,300</td>
<td><1,300</td>
<td>31</td>
<td>330</td>
<td><1.3</td>
<td>26,000</td>
<td>44,000</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>--</td>
<td>1,500,000</td>
<td>210,000</td>
<td>510,000</td>
<td>330</td>
<td>1,500</td>
<td>110</td>
<td>1,500,000</td>
<td>--</td>
</tr>
<tr>
<td>m&p-Xylene</td>
<td>440</td>
<td><2,200</td>
<td><2,200</td>
<td><2,200</td>
<td><22</td>
<td><2.2</td>
<td>2.7</td>
<td>2.7</td>
<td>44,000</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>440</td>
<td><1,100</td>
<td><1,100</td>
<td><1,100</td>
<td><11</td>
<td><1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>44,000</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>--</td>
<td>64,000</td>
<td>6,800</td>
<td>13,000</td>
<td><20</td>
<td>58</td>
<td>2.7</td>
<td>64,000</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:
1. Only detected analytes are presented in the table.
2. Samples were collected on August 28 and 29, 2018.
3. Bolded results indicate the analyte was detected in the sample.
4. All values have units of micrograms per cubic meter.
5. -- indicates no screening level is available for the analyte.
6. EPA Regional Screening Levels (RSLs) are from the May 2018 RSL table for commercial air.
7. 2018 Tier 1 and Tier 2 commercial target soil vapor values were calculated using 100x and 500x the EPA RSL (per MDE guidance), respectively.
Facility Summary for Facility ID #11148

Owner Name and Address:
Alan Carroll
107 N. Cross Street chestertown, MD 21620
David Carroll (410) 778-3181

Owner Type: Commercial

<table>
<thead>
<tr>
<th>Facility ID</th>
<th>County</th>
<th>Location Name</th>
<th>Location Street Address</th>
<th>Location City</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>11148</td>
<td>Kent</td>
<td>Park Rug & Dry Cleaners Corp.</td>
<td>107 N. Cross Street</td>
<td>Chestertown</td>
<td>21620</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tank ID</th>
<th>Date Installed</th>
<th>Product</th>
<th>Tank Mat'l of Contruction</th>
<th>Piping Material</th>
<th>Primary - Tank Release Detection</th>
<th>Status</th>
<th>Age (yr)</th>
<th>Total Capacity</th>
<th>Secondary Option</th>
<th>Primary - Piping Release Detection</th>
<th>CP</th>
<th>RD</th>
<th>FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/1/1964</td>
<td>Heating Oil</td>
<td>Asphalt Coated or Bare Steel</td>
<td>Bare or Galvanized Steel</td>
<td>R</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanently Out of Use</td>
<td>57</td>
<td>1,000</td>
<td>None</td>
<td>None</td>
<td>R</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tank closed in place</td>
<td>6/13/1991</td>
<td>Not Listed</td>
<td>Not Listed</td>
<td>No/No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Tanks: 1

Tank/Piping Release Detection Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Manual Tank Gauging</td>
</tr>
<tr>
<td>B</td>
<td>Tank Tightness Testing</td>
</tr>
<tr>
<td>C</td>
<td>Inventory Control</td>
</tr>
<tr>
<td>D</td>
<td>ATG/Auto Line LD</td>
</tr>
<tr>
<td>E</td>
<td>ATG 0.2 GPH Test</td>
</tr>
<tr>
<td>F</td>
<td>Safe Suction</td>
</tr>
<tr>
<td>G</td>
<td>Gravity Feed</td>
</tr>
<tr>
<td>H</td>
<td>Elect ALLD Testing 0.2 GPH</td>
</tr>
<tr>
<td>I</td>
<td>Line Tightness Annual</td>
</tr>
<tr>
<td>J</td>
<td>Line Tightness Every 2 Yrs.</td>
</tr>
<tr>
<td>K</td>
<td>Vapor monitoring</td>
</tr>
<tr>
<td>L</td>
<td>Groundwater monitoring</td>
</tr>
<tr>
<td>M</td>
<td>Inventory SIR</td>
</tr>
<tr>
<td>N</td>
<td>Interstit. Dbl-wall Monitor</td>
</tr>
<tr>
<td>O</td>
<td>Interstit. Sec. Con. Monitor</td>
</tr>
<tr>
<td>P</td>
<td>Other method</td>
</tr>
<tr>
<td>Q</td>
<td>Deferred</td>
</tr>
<tr>
<td>R</td>
<td>Not listed</td>
</tr>
<tr>
<td>N/A</td>
<td>Heating Oil/Emergency Generator</td>
</tr>
</tbody>
</table>

Tank/Piping Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Corrosion Protection Met</td>
</tr>
<tr>
<td>RD</td>
<td>Release Detection Met</td>
</tr>
<tr>
<td>Over</td>
<td>Overfill Protected</td>
</tr>
<tr>
<td>Mnfd</td>
<td>Manifold</td>
</tr>
<tr>
<td>EG</td>
<td>Emergency Power Generation</td>
</tr>
<tr>
<td>FR</td>
<td>Financial Responsibility Met</td>
</tr>
<tr>
<td>B/HO</td>
<td>Bulk Heating Oil</td>
</tr>
<tr>
<td>0.2 GPH</td>
<td>Test</td>
</tr>
</tbody>
</table>

Report Generation Date: 5/12/2021
Appendix B

August 2019 Supplemental Sampling Data
TABLE 1
MDE Screening Results for Sub-Slab and Soil Gas Sampling
107 N. Cross Street Site
Chestertown, Maryland

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Date</th>
<th>Sample Depth/Height</th>
<th>Matrix</th>
<th>Analyte</th>
<th>SS-1</th>
<th>SS-2</th>
<th>SS-3</th>
<th>SS-4</th>
<th>SS-5</th>
<th>SS-6</th>
<th>SS-7</th>
<th>SS-8</th>
<th>SS-9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Benzene</td>
<td>1,600</td>
<td>6,000</td>
<td>216</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,1-Dichloroethene</td>
<td>44,000</td>
<td>220,000</td>
<td>2,171</td>
<td>4,040</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cis-1,2-Dichloroethene</td>
<td>nca</td>
<td>nca</td>
<td>545,226</td>
<td>598,187</td>
<td>479</td>
<td>4,113</td>
<td>837</td>
<td>554</td>
<td>81,836</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-1,2-Dichloroethene</td>
<td>27,000</td>
<td>135,000</td>
<td>29,421</td>
<td>28,433</td>
<td>-</td>
<td>-</td>
<td>135</td>
<td>61</td>
<td>537</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,2-Isopropyltoluene</td>
<td>nca</td>
<td>nca</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetrachloroethylene</td>
<td>18,000</td>
<td>90,000</td>
<td>556,598</td>
<td>1,010,864</td>
<td>4,987</td>
<td>-</td>
<td>4,409</td>
<td>6,423</td>
<td>51,039</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Toluene</td>
<td>2,200,000</td>
<td>11,000,000</td>
<td>447</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichloroethylene</td>
<td>880</td>
<td>4,400</td>
<td>343,204</td>
<td>330,707</td>
<td>787</td>
<td>4,531</td>
<td>928</td>
<td>1,024</td>
<td>34,845</td>
</tr>
</tbody>
</table>

Notes:
- bgs - below ground surface.
- Bold - Concentration exceeds the Maryland Department of Environment Commercial Target Soil Vapor Values Tier 2.
- Shaded - Concentration exceeds the Maryland Department of Environment Commercial Target Soil Vapor Values Tier 1.
- nca - No criteria available.
- MDE - Maryland Department of the Environment.
- -- - Data not reported by MDE.
- PID - Photoionization Detector.

This table was generated using EPA Method TO-17 screening data provided by MDE.
TABLE 1
MDE Screening Results for Sub-Slab and Soil Gas Sampling
107 N. Cross Street Site
Chestertown, Maryland

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Maryland Department of Environment Commercial Target Soil Vapor Values</th>
<th>Maryland Department of Environment Commercial Target Soil Vapor Values</th>
<th>CS-SG01-G001</th>
<th>CS-SG02-G001</th>
<th>CS-SG03-G001</th>
<th>CS-SG04-G001</th>
<th>CS-SG05-G001</th>
<th>CS-SG06-G001</th>
<th>CS-SG07-G001</th>
<th>CS-SG08-G001</th>
<th>CS-SG09-G001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Depth/Height</td>
<td>3 ft bgs</td>
<td>6 ft bgs</td>
</tr>
<tr>
<td>Units</td>
<td>µg/m³</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Maryland Department of Environment Commercial Target Soil Vapor Values</td>
<td>Maryland Department of Environment Commercial Target Soil Vapor Values</td>
<td>CS-SG01-G001</td>
<td>CS-SG02-G001</td>
<td>CS-SG03-G001</td>
<td>CS-SG04-G001</td>
<td>CS-SG05-G001</td>
<td>CS-SG06-G001</td>
<td>CS-SG07-G001</td>
<td>CS-SG08-G001</td>
<td>CS-SG09-G001</td>
</tr>
<tr>
<td>Sample Depth/Height</td>
<td>3 ft bgs</td>
<td>6 ft bgs</td>
</tr>
<tr>
<td>Units</td>
<td>µg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>1,600</td>
<td>8,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>44,000</td>
<td>220,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>nca</td>
<td>nca</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>27,000</td>
<td>135,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,1,2-Trichloroethylene</td>
<td>nca</td>
<td>nca</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>18,000</td>
<td>90,000</td>
<td>300</td>
<td>902</td>
<td>1,741</td>
<td>2,114</td>
<td>23,521</td>
<td>109,906</td>
<td>127,112</td>
<td>28,158</td>
<td>176</td>
</tr>
<tr>
<td>Toluene</td>
<td>2,200,000</td>
<td>11,000,000</td>
<td>-</td>
<td>257</td>
<td>269</td>
<td>193</td>
<td>1,241</td>
<td>1,461</td>
<td>20,813</td>
<td>297</td>
<td>-</td>
</tr>
<tr>
<td>No other compounds reported by MDE.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- bgs - below ground surface.
- Bold - Concentration exceeds the Maryland Department of Environment Commercial Target Soil Vapor
- Shaded - Concentration exceeds the Maryland Department of Environment Commercial Target Soil Vapor
- nca - No criteria available.
- MDE - Maryland Department of the Environment.
- PID - Photoionization Detector.
- This table was generated using EPA Method TO-17 screening data provided by MDE.
TABLE 2
Eurofins Analytical Results for Soil Gas
107 N. Cross Street Site
Chestertown, Maryland

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Maryland Department of Environment Commercial Target Soil Vapor Values Tier 1 µg/m³</th>
<th>Maryland Department of Environment Commercial Target Soil Vapor Values Tier 2 µg/m³</th>
<th>CS-SG05-G001</th>
<th>CS-SG06-G001</th>
<th>CS-SG07-G001</th>
<th>CS-SG08-G001</th>
<th>CS-SG08-G101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Date</td>
<td>6 ft bgs</td>
</tr>
<tr>
<td>Sample ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Depth</td>
<td>6 ft bgs</td>
</tr>
<tr>
<td>Dilution Factor</td>
<td>200</td>
<td>500</td>
<td>500</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Units</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
<td>µg/m³</td>
</tr>
<tr>
<td>Matrix Analyte</td>
<td>Cumene</td>
<td>cis-1,2-Dichloroethene</td>
<td>trans-1,2-Dichloroethene</td>
<td>Hexachloroethane</td>
<td>Isooctane</td>
<td>Octane</td>
<td>Tetrachloroethene</td>
</tr>
<tr>
<td></td>
<td>180,000</td>
<td>90,000</td>
<td>27,000</td>
<td>135,000</td>
<td>nca</td>
<td>nca</td>
<td>18,000</td>
</tr>
<tr>
<td></td>
<td>770 J</td>
<td>1,200 J</td>
<td>330 J</td>
<td>330 J</td>
<td>nca</td>
<td>nca</td>
<td>94,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,200 J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,000</td>
</tr>
</tbody>
</table>

Notes:
- Shaded - Concentration exceeds the Maryland Department of Environment Commercial Target Soil Vapor Values Tier 1.
- Bold - Concentration exceeds the Maryland Department of Environment Commercial Target Soil Vapor Values Tier 2.
- bgs - below ground surface.
- nca - No criteria available.
- J - Result is less than the RL but greater than or equal to the MDL and concentration is an approximate value.
- N.D. - Analyte was not detected above method detection limit.

No other TO-15 analytes were detected above the laboratory method detection limit.
Appendix C

SSDS Inspection Sheet
Name:
Company:
Date/Time:

<table>
<thead>
<tr>
<th>SSDS SYSTEM</th>
<th>Status</th>
<th>Arrival</th>
<th>Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSDS System (circle one)</td>
<td>ON / OFF</td>
<td>ON / OFF</td>
<td></td>
</tr>
<tr>
<td>Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tag ID</th>
<th>% Open</th>
<th>Flow</th>
<th>Vacuum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSDS-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSDS-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSDS-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSDS-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSDS-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSDS-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSDS-7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tag ID</th>
<th>Additional Data</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV</td>
<td>Run Time (hours)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manual Valve Percentage Open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knock Out Tank Water Level Check</td>
<td></td>
</tr>
</tbody>
</table>

Sample Data

Samples are collected in order below from least contaminated to most contaminated.

<table>
<thead>
<tr>
<th>EFF2</th>
<th>2nd Carbon Effluent PID:</th>
<th>ppm</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFF2</td>
<td>2nd Carbon Effluent Lab Sample (if collected)</td>
<td>Time:</td>
<td></td>
</tr>
<tr>
<td>EFF1</td>
<td>1st Carbon Effluent PID:</td>
<td>ppm</td>
<td>Time:</td>
</tr>
<tr>
<td>EFF1</td>
<td>1st Carbon Effluent Lab Sample (if collected)</td>
<td>Time:</td>
<td></td>
</tr>
<tr>
<td>INF</td>
<td>1st Carbon Influent PID:</td>
<td>ppm</td>
<td>Time:</td>
</tr>
<tr>
<td>INF</td>
<td>1st Carbon Influent Lab Sample (if collected)</td>
<td>Time:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments/Work Performed:

__
__
__
__
__
Appendix D

Cap Inspection Sheet
Cap Inspection Sheet
107 N. Cross Street
Chestertown, MD

DATE ___/___/_____ Time: _______ Weather:___

A. Paved Areas
1. Asphalt Condition ... Good____ Fair____ Poor____
2. Cracks in asphalt greater than 0.25 inch wide? Yes____ No____
3. Potholes? .. Yes____ No____
4. Deterioration, cracking, lifting, settlement,
 or any abnormal conditions? .. Yes____ No____
5. Describe maintenance needed _________________________________
 Comments__

B. Hardscaping (Brick/Walkways)
1. Hardscape Condition ... Good____ Fair____ Poor____
2. Cracks in brick or concrete? .. Yes____ No____
3. Loose or missing bricks? ... Yes____ No____
4. Deterioration, cracking, lifting, settlement,
 or any abnormal conditions? .. Yes____ No____
5. Describe maintenance needed _________________________________
 Comments__

C. Describe Any Other Significant Findings/Observations:
__
__
__

Inspection Performed By:
Print: ___________________________ Signature: ___________________________

D. Describe Maintenance Completed:
Date: ____________________________
__
__
__

Maintenance Completed By:
Print: ___________________________ Signature: ___________________________

BrightFields 3880.01.51
Appendix E

Compliance Certifications
STATEMENT OF RESPONSE ACTION PLAN COMPLIANCE

If the Response Action Plan is approved by the Maryland Department of the Environment, 107 N. Cross Street, LLC agrees, subject to the withdrawal provisions of Section 7-512 of the Environment Article, to comply with the provisions of the Response Action Plan. 107 N. Cross Street, LLC understands that if it fails to implement and complete the requirements of the approved plan and schedule, the Maryland Department of the Environment may reach an agreement with 107 N. Cross Street, LLC to revise the schedule of completion in the approved Response Action Plan or, if an agreement cannot be reached, the Department may withdraw approval of the plan.

Signed:____________________________________ Date:__________________
Agent for 107 N. Cross Street, LLC

STATEMENT OF ZONING COMPLIANCE

107 N. Cross Street, LLC hereby certifies that the property meets all applicable county and municipal zoning requirements. 107 N. Cross Street, LLC acknowledges that there are significant penalties for falsifying any information required by MDE under Title 7, Subtitle 5 of the Environment Article, Annotated Code of Maryland, and that this certification is required to be included in a response action plan for the Voluntary Cleanup Program pursuant to Title 7, Subtitle 5 of the Environment Article, Annotated Code of Maryland.

Signed:____________________________________ Date:__________________
Agent for 107 N. Cross Street, LLC