

Energy+Environmental Economics

Maryland Pathways Policy Scenario 4

July 16th, 2019

Tory Clark, Director Doug Allen, Managing Consultant Charles Li, Senior Associate Sharad Bharadwaj, Consultant Amber Mahone, Partner Snuller Price, Senior Partner

+ Background and Approach

- + Scenario Design
- + GGRA Draft Plan Results

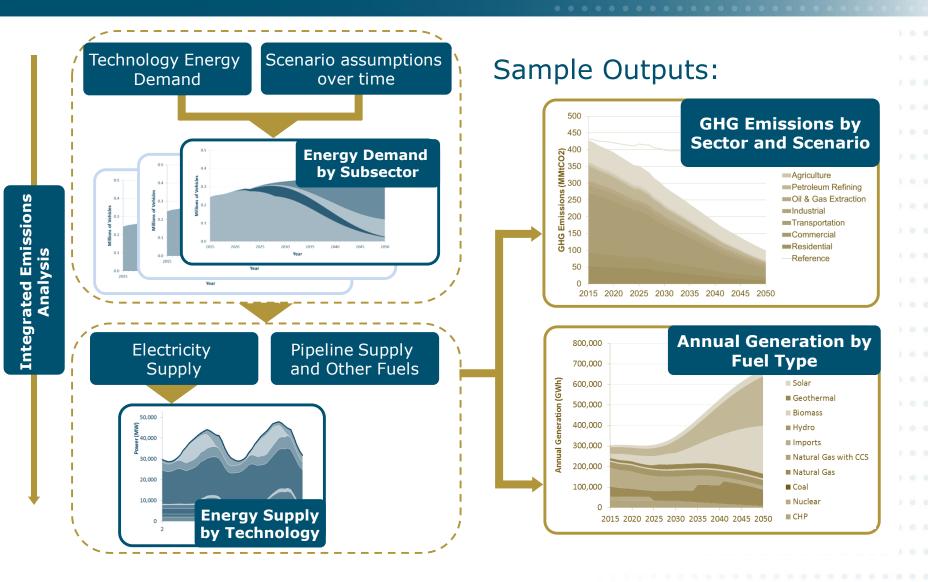
	0	•	0	•	•	•	•	•	•	•	0	0	0	•	•	•	•	•	•	•	9	•	0.			
																										1
																										3
																										1
																										1
																										3
																										1
																										3
																										1
																										1
																										1
																										1
																										1
																										1
																										1
																										1
																										1
																										1
																										1
																								2		1

BACKGROUND AND APPROACH

N	÷		¢.											

+ The goal of this project is to quantify energy and emissions impacts from Maryland's current and potential future policies in the E3 PATHWAYS model

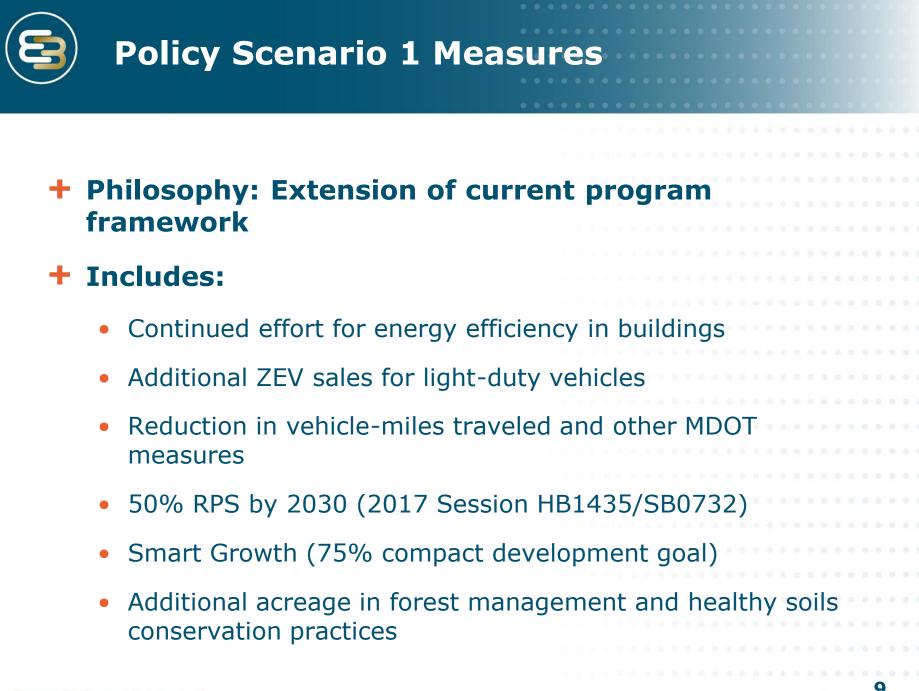
+ The PATHWAYS modeling framework allows for:


- Detailed tracking of existing and future household appliances and vehicles
- Hourly treatment of electricity sector
- Comprehensive emissions accounting in buildings, transportation, industry, electricity generation, non-energy, and forestry

 Reference Scenario (current policy case) was modeled in 2017, Mitigation Scenarios were modeled in 2018-2019

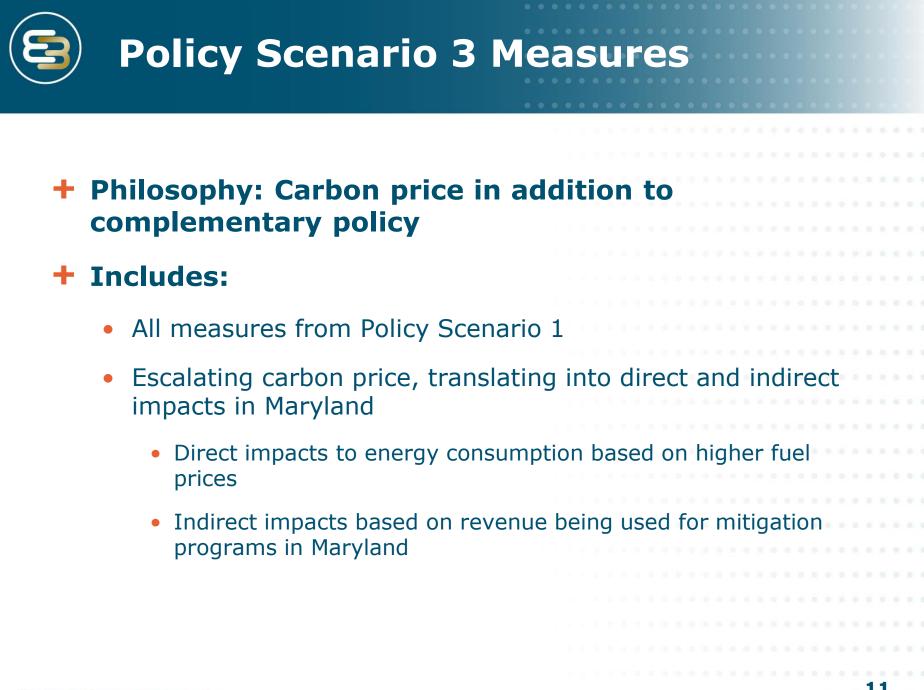
- Bottom-up, user-defined, non-optimized scenarios test "what if" questions
- Focus is on comparing user-defined policy and consumer adoption scenarios and tracking physical accounting of energy flows within all sectors of the economy
- Economy-wide model captures interactions within sectors (e.g. VMT reductions and electric vehicle sales) and between sectors (e.g. new vehicle electrification and cleaner electricity supply)
- + Includes accounting of GHG emissions associated with energy and non-energy/non-combustion activities
- Economy-wide focus does not capture impacts of individual policies

Basic Energy Modeling Framework



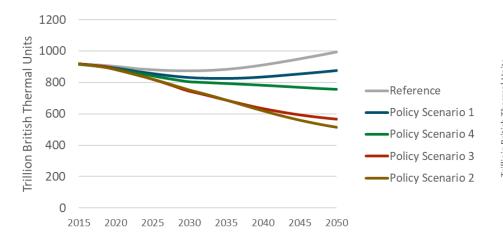
Energy+Environmental Economics

CCENADTO DECT									
SCENARIO DESI	G								


- + Reference Scenario: Major existing policies
- Policy Scenario 1: Extension of current program framework
- Policy Scenario 2: New programs and changing program frameworks (long-term measures to reach 2050 GHG goal)
- Policy Scenario 3: Carbon price and complementary policies (Climate Commission Scenario)
- + Policy Scenario 4: GGRA Draft Plan

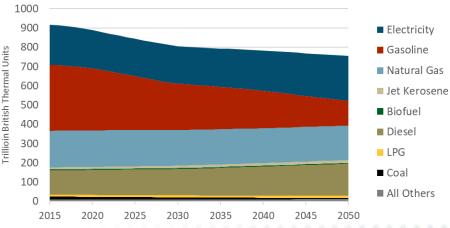
Policy Scenario 2 Measures

+	Philosophy: New programs and changing program frameworks (designed to reach 2050 GHG goal)
+	Includes:
	All measures from Policy Scenario 1
	 Incremental mitigation actions
	 Additional ZEVs in LDVs, HDVs, and buses
	 Additional reductions in vehicle-miles traveled (VMT)
	 Advanced sustainable biofuels
	 100% Clean and Renewable Energy Standard (CARES) in electricity supply
	 Additional acreage in forest management and healthy soils conservation practices


 Philosophy: Draft GGRA Plan, agency measures and Clean a Standard 	
+ Includes:	
All measures from Policy Scenario	o 1
 Incremental mitigation actions 	
 Additional ZEVs in LDVs, HDVs, a 	nd buses
 Additional reductions in vehicle-n 	niles traveled (VMT)
 100% Clean and Renewable Ener electricity supply 	gy Standard (CARES) in
 Additional acreage in forest mana conservation practices 	agement and healthy soils
Energy+Environmental Economics	12

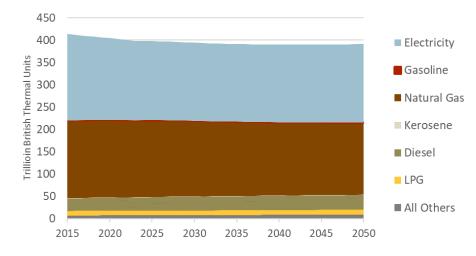
GGRA DRAFT PLA RESULTS

		Ľ												

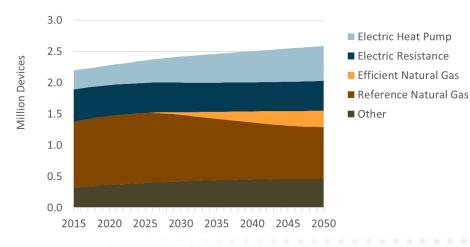

Policy Scenario 4 Measures Moderate Efficiency and Fuel Switching

Total Energy Consumption by Scenario

- PS4 shows reduction in energy consumption beyond PS1 due to more aggressive transportation measures
 - 3% reduction in 2030 and 13% in 2050 relative to PS1


Total Energy Consumption by Fuel Policy Scenario 4

 Significant reduction in gasoline, and slight reduction in natural gas is due to increasing adoption of light-duty ZEVs and heat pumps, and energy efficiency measures

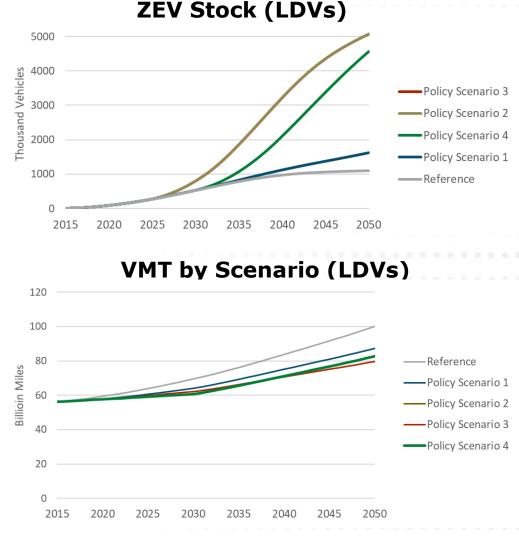

Policy Scenario 4 Measures Building Efficiency and Electrification

Total Building Energy Consumption by Fuel

 PS4 shows reduction in building energy consumption by 5% even with increasing number of building appliance due to both conventional efficiency and moderate increase in sales of electric space heaters

Total Space Heating Stocks by Type

 The transition in space heating includes moderate increase in sales of electric heat pump space heaters and efficient natural gas fired space heaters

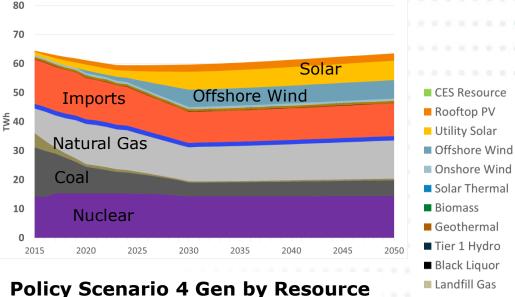

Policy Scenario 4 Measures Light Duty ZEV adoption and VMT Reduction

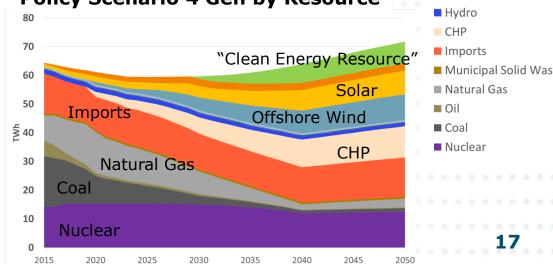
Increased Sales of ZEVs

- New sales of EVs and PHEVs gradually increase to 20% by 2030 (same as PS1) and 100% by 2050 (same as PS2 and PS3)
- 270,000 ZEVs by 2025,
 530,000 ZEVs by 2030,
 4,600,000 ZEVs by 2050

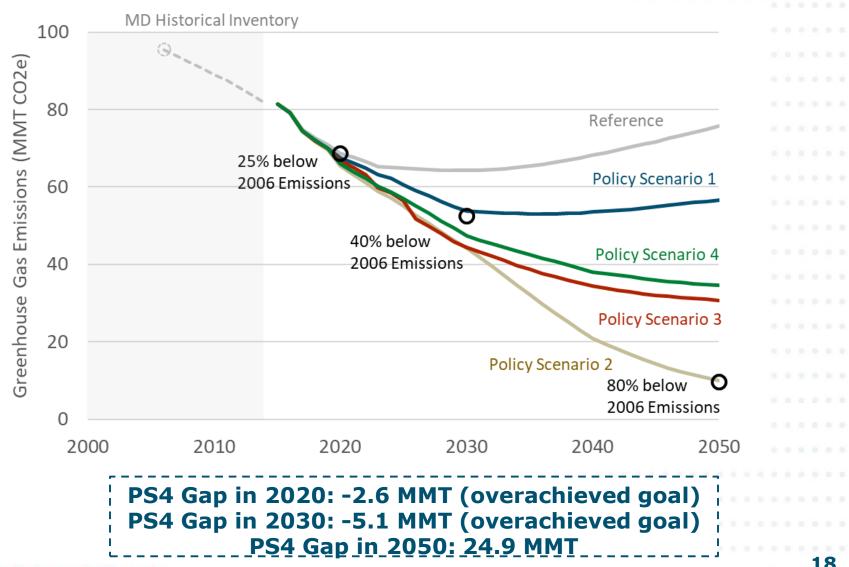
Reduction in VMT

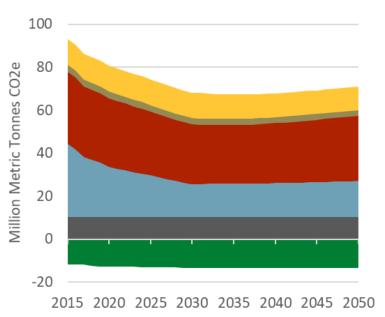
 Reduction of annual LDV vehicle-miles traveled by 13% relative to Reference in 2030 and through 2050 (similar to PS2)


Policy Scenario 4 Measures Electric Supply

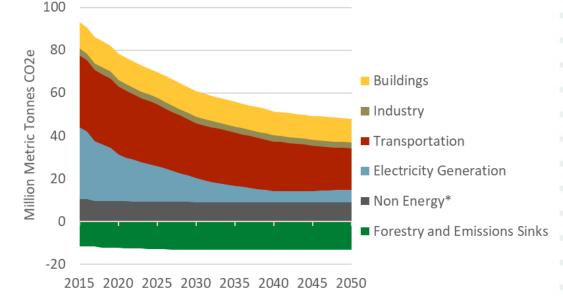

Illustrative 100% "Clean and Renewable Energy Standard" (CARES) by 2040

- 75% CARES in 2030 and 100% in 2040, with solar, offshore wind, and Tier 1 REC carveouts, plus new clean energy resources (new nuclear, carbon capture, and combined heat and power) and existing nuclear.
- Coal and Oil CT resources are phased out as RGGI cap tightens and renewable generation increases
- CARES requirement not met by Tier 1 resources is served by CHP resources, Tier 1 Solar until 2030 and a generic "Clean Energy Resource" beyond 2030
 - CHP resource availability is based on potential estimated in DoE study
 - Generic "Clean Energy Resource" will depend on available technologies at that time


Energy+Environmental Economics



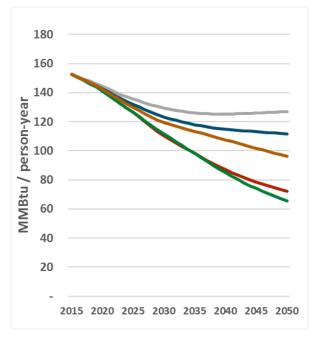
Energy+Environmental Economics


Total GHG Emissions by Sector

Policy Scenario 1

- The Buildings and Industry sectors have the same direct GHG emissions as in PS4 as in PS1
- The Transportation sector in PS4 has the largest reduction in direct GHG emissions of 11 MMT CO2 relative to PS1 by 2050

- Emissions associated with new electric demands (e.g. EVs) are captured in "Electricity Generation" but a transition to cleaner electricity generation results in further reductions relative to PS1
- Forestry and Emissions sinks are enhanced in Policy Scenario 4 relative to PS1


*Non Energy includes Agriculture, Waste Management, Industrial Processes and Fossil Fuel Industry emissions

Energy+Environmental Economics

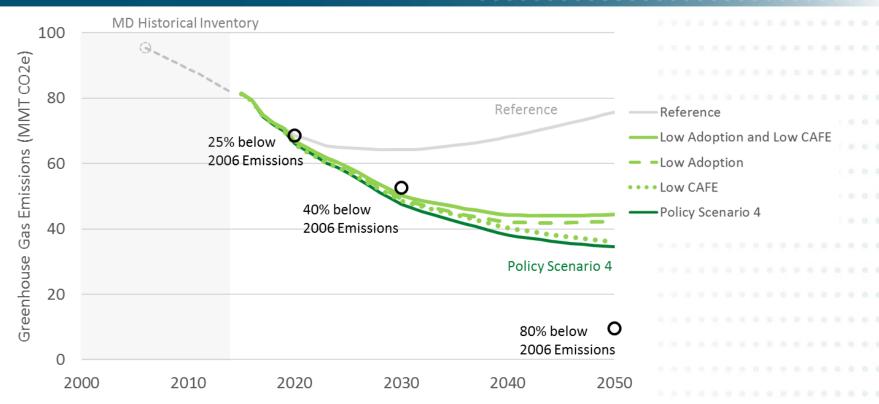
19

(1) Energy Efficiency [Energy Consumption per person]

(2) Clean Electricity

0.6 0.5 0.4 0.3 0.2 0.1 -2015 2020 2025 2030 2035 2040 2045 2050

Reference Scenario
 Policy Scenario 1
 Policy Scenario 2


(3) Clean Liquid and Gaseous Fuels [Million Metric tonnes / EJ]

Policy Scenario 3Policy Scenario 4

- We ran three sensitivities on Policy Scenario 4 to test the impact on emissions of consumer adoption and federal action:
 - Low Adoption: Evaluates the impact of achieving only half the projected sales of new electric vehicles and efficient household appliances.
 - 2. Low CAFE: Evaluates the impact of removing the improvements in federal Corporate Average Fuel Economy standards for light-duty vehicles from 2021-2026.
 - Low Adoption and Low CAFE: Evaluates the combined impact of lower consumer adoption and lower fuel economy standards.

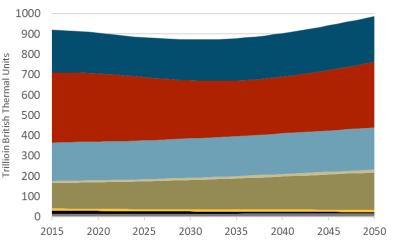
E Impacts of lower consumer adoption and fuel economy standards

- Even with more conservative assumptions on consumer adoption and federal action on fuel economy standards, the measures and actions in Policy Scenario 4 are sufficient to meet Maryland's 2030 GHG target.
- By 2050, however, the lower levels of consumer adoption create a significant emissions gap as the state tries to reach its 2050 GHG goal.

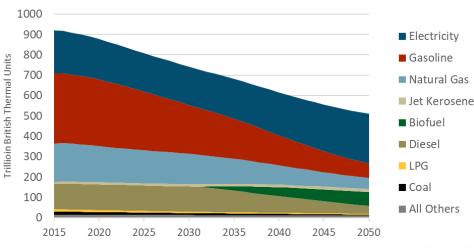
Energy+Environmental Economics

Thank You!

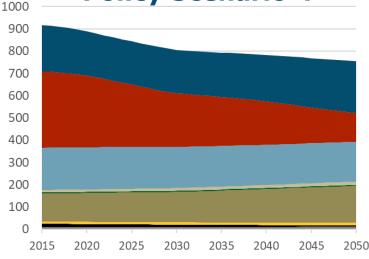
Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web http://www.ethree.com


Energy+Environmental Economics

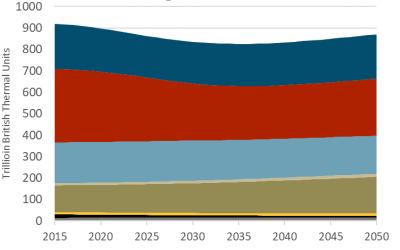
Appendix


Energy Consumption by Fuel and Scenario

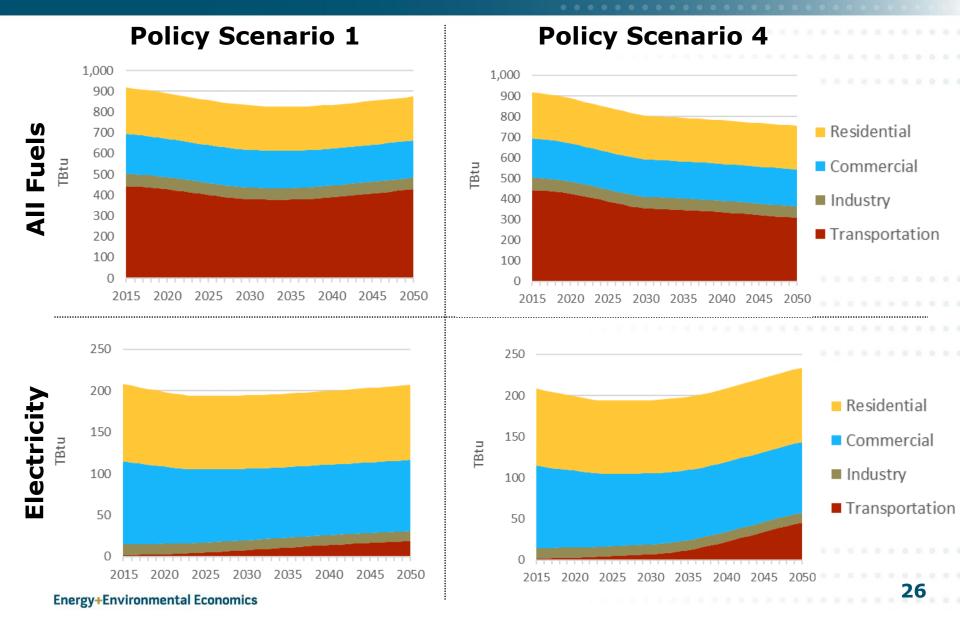
Trillioin British Thermal Units


Reference

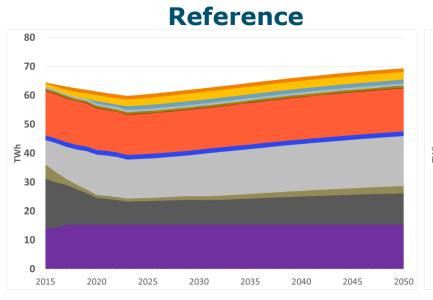
Policy Scenario 2



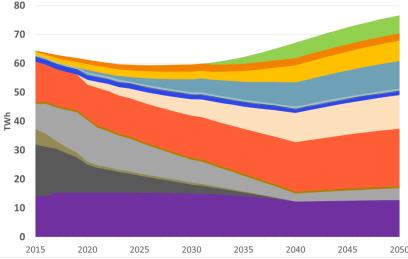
Policy Scenario 4

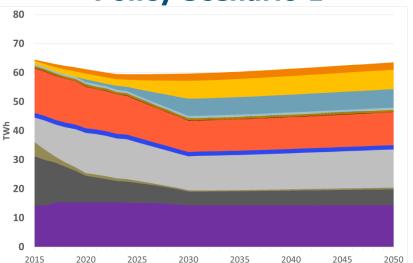

5

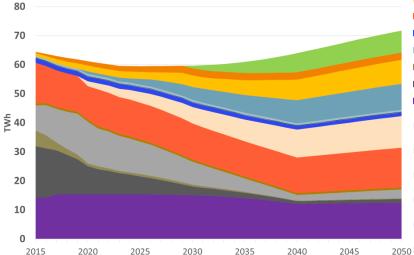
Policy Scenario 1



Energy+Environmental Economics


Energy Consumption by Sector Policy Scenario 1 vs. Policy Scenario 4

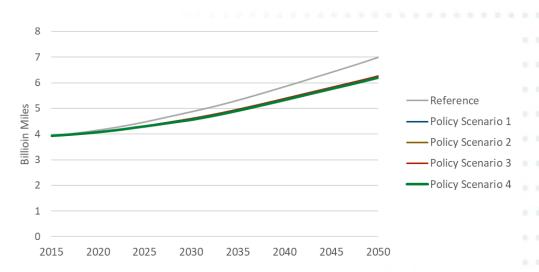

Electricity Generation by Source and Scenario


Policy Scenario 2

Policy Scenario 1

Policy Scenario 4

Rooftop PV Utility Solar Offshore Wind Onshore Wind Solar Thermal Biomass Geothermal

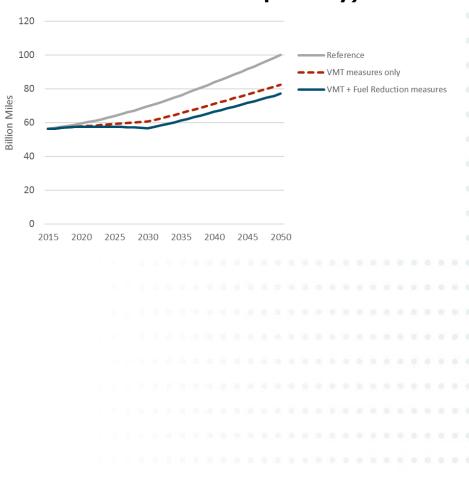

CES Resource

- Tier 1 Hydro
- ₂₀₅₀ Black Liquor ■ Landfill Gas
 - Municipal Solid Wast
 - CHP
 - ImportsHydro
 - Natural Gas
 - Oil
 - Coal
 - Nuclear

Reduction in VMT

 Reduction of annual HDV vehicle-miles traveled by 6% relative to Reference in 2030 and through 2050 (same as PS2)

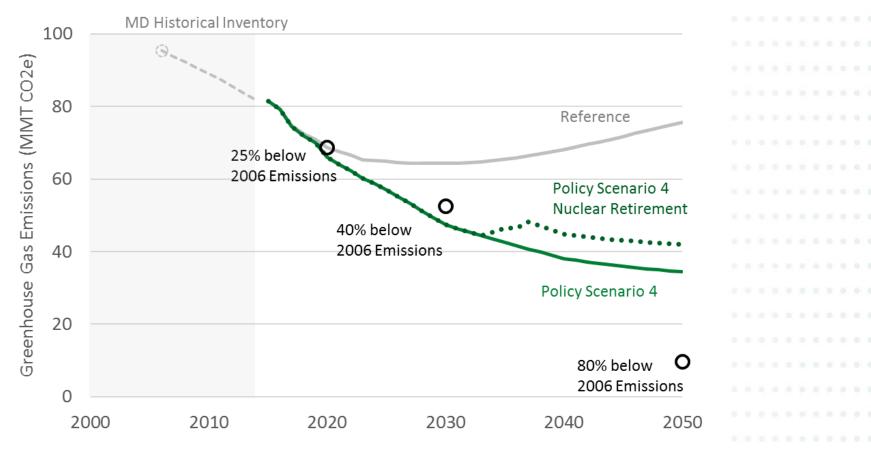
VMT by Scenario (HDVs)


28

B Modeling Maryland Department of Transportation (MDOT) Strategies

Two types of MDOT measures are represented:

- (1) **VMT measures** that directly reduce vehicle-miles traveled
- (2) Fuel Reduction measures that directly reduce fuel consumption of gasoline or diesel vehicles.
- E3's bottom-up model of transportation and vehicles, both types of measures were translated into effective VMT reductions within the PATWHAYS model.


Total VMTs, Reference and Policy Scenario 4 (two types MDOT measures shown separately)

RGGI Expans Scenarios 2 a	
In Policy Scenario 2 through 2050 in Ma	, RGGI caps continue to decline ryland
	wn of in-state coal and oil generation s (not covered by RGGI cap)
levels, but oil and co	, RGGI caps freeze at 2030 oal resources continue to ramp make room for additional
declines 40% from 2045 (527.6 lbs / M	missions intensity of imports 2025 (879.3 lbs / MWh) to Wh), reflecting increasingly throughout the rest of PJM
Energy+Environmental Economics	30

 The impact of Calvert Cliffs retiring is about 7.5 million metric tonnes CO2e in 2050, widening the gap to reach the state's GHG target.

Scenario Assumptions Reference Scenario

	Reference Scenario (Existing Policies)
Renewable Portfolio Standard	25% RPS by 2020
RGGI	30% cap reduction from 2020 to 2030
Nuclear power	Assume Calvert Cliffs is relicensed in 2034/2036 at end of license
Existing coal power plants	IPM planned retirements (670 MW of coal by 2023)
Rooftop PV	Moderate growth from current levels of 200 MW (2% a year; 400 MW in 2050)
Energy Efficiency (Res., Com. & Industrial)	Calibrated to EmPOWER filing targets 50% of electric appliance sales are high-efficiency 2015-2023, 5% residential behavioral conservation by 2030, 10% reduction below baseline for electricity in non-stock sectors by 2050
Electrification of buildings (e.g. NG furnace to heat pumps)	None
Transportation	Federal CAFÉ standards for LDVs by 2026, Meets ZEV mandate by 2025 (270,000 ZEVs)
Other transportation sectors (e.g. aviation)	AEO 2017 reference scenario growth rates by fuel
Industrial energy use	AEO 2017 reference scenario growth rates by fuel
Biofuels	Existing ethanol and biodiesel blends, but no assumed increase
Other (fossil fuel industry, industrial processes, agriculture, waste management, forestry)	Assume held constant at MDE 2014 GHG Inventory levels, with specific projections for forest management and healthy soils

	Policy Scenario 1 (updates from Reference in Bold)
Renewable Portfolio Standard	50% RPS by 2030
RGGI	30% cap reduction from 2020 to 2030
Nuclear power	Assume Calvert Cliffs is relicensed in 2034/2036 at end of license
Existing coal power plants	IPM planned retirements (670 MW of coal by 2023)
Rooftop PV	1500 MW in 2030
Energy Efficiency (Res., Com. & Industrial)	50% of electric appliance sales are high-efficiency 2015- 2050 (25% for natural gas), 10% residential behavioral conservation by 2050, 20% reduction below baseline for electricity in non-stock sectors by 2050 (10% for natural gas)
Electrification of buildings (e.g. NG furnace to heat pumps)	Moderate electrification – increase of 15% in electric heat pump sales by 2050 (replacing natural gas furnaces and boiler sales)
Transportation	Federal CAFÉ standards for LDVs by 2026, Meets ZEV mandate by 2025 (270,000 ZEVs), increases to 1.4 Million ZEVs by 2050
Other transportation sectors (e.g. aviation)	AEO 2017 reference scenario growth rates by fuel
Industrial energy use	AEO 2017 reference scenario growth rates by fuel
Biofuels	Existing ethanol and biodiesel blends, but no assumed increase
Other (fossil fuel industry, industrial processes, agriculture, waste management, forestry)	Forest management and Healthy soils sequestration

	Policy Scenario 2 (updates from Reference in Bold)									
Renewable Portfolio Standard	75% CARES by 2040									
RGGI	30% cap reduction from 2020 to 2030, additional 60% reduction from 2030 to 2050 results in all coal / oil going offline by 2040. Emissions intensity of imported electricity declines from 2025 to 2045, reflecting increased stringency of RGGI caps throughout PJM footprint									
Nuclear power	Assume Calvert Cliffs is relicensed in 2034/2036 at end of license									
Existing coal power plants	IPM planned retirements (670 MW of coal by 2023)									
Rooftop PV	1500 MW by 2030									
Energy Efficiency (Res., Com. & Industrial)	100% of electric and natural gas appliance sales are high-efficiency by 2030 and beyond, 10% residential behavioral conservation by 2050, 30% reduction below baseline for electricity in non-stock sectors by 2050									
Electrification of buildings (e.g. NG furnace to heat pumps)	Aggressive electrification – 95% of electric heat pump sales by 2050 (replacing natural gas furnaces and boiler sales)									
Transportation	Aggressive ZEV adoption – 100% sales of ZEVs in light-duty vehicles, and 95% sales of EVs and Diesel Hybrid in heavy-duty vehicles by 2050. VMT reduction programs – 11% reduction in LDV VMT below reference by 2030 and beyond									
Other transportation sectors (e.g. aviation)	50% ZEVs in transit buses by 2030 and 50% of electric construction vehicles by 2050									
Industrial energy use	30% efficiency gain (both electricity and natural gas) by 2050 due to Combined Heat & Power									
Biofuels	Transition to advanced biofuels blended in diesel and natural gas									
Other (fossil fuel industry, industrial processes, agriculture, waste management, forestry)	Aggressive forest management and healthy soils conservation practices, improvement in waste and manure management, and reduction in ODS Substitutes in compliance with SNAP by 2030 and Kigali by 2050									
Energy Environmental Economica	54									

- + Philosophy: Carbon Pricing Program in addition to complementary policy
- + Includes:
 - All measures from Policy Scenario 1 (see slide #32)
 - Escalating carbon price, translating into direct and indirect impacts in Maryland
 - Direct impacts to energy consumption based on higher fuel prices
 - Indirect impacts based on revenue being used for mitigation programs in Maryland

	Policy Scenario 4 (updates from Policy Scenario 1 in Bold)
Renewable Portfolio Standard	100% CARES by 2040
RGGI	30% cap reduction from 2020 to 2030, with continued declines after 2030 as energy from CARES-compliant resources displaces coal and oil resources. Emissions intensity of imported electricity declines from 2025 to 2045, reflecting increased stringency of RGGI caps throughout PJM footprint
Nuclear power	Assume Calvert Cliffs is relicensed in 2034/2036 at end of license
Existing coal power plants	IPM planned retirements (670 MW of coal by 2023)
Rooftop PV	1500 MW by 2030
Energy Efficiency (Res., Com. & Industrial)	50% of electric appliance sales are high-efficiency 2015-2050 (25% for natural gas), 10% residential behavioral conservation by 2050, 20% reduction below baseline for electricity in non-stock sectors by 2050 (10% for natural gas)
Electrification of buildings (e.g. NG furnace to heat pumps)	Moderate electrification – increase of 15% in electric heat pump sales by 2050 (replacing natural gas furnaces and boiler sales)
Transportation	Moderate ZEV adoption by 2030 – 20% sales of ZEVs in light-duty vehicles by 2030 Aggressive ZEV adoption after 2030 – 100% sales of ZEVs in light-duty vehicles by 2050. VMT reduction programs – 11% reduction in LDV VMT below reference by 2030 and beyond
Other transportation sectors (e.g. aviation)	50% ZEVs in transit buses by 2030
Industrial energy use	20% electric efficiency gain and 10% NG efficiency gain by 2050 due to Combined Heat & Power
Biofuels	Existing ethanol and biodiesel blends, but no assumed increase
Other (fossil fuel industry, industrial processes, agriculture, waste management, forestry)	Aggressive forest management and healthy soils conservation practices, and reduction in ODS Substitutes in compliance with SNAP

36