GGRA Modeling Update

This presentation does not represent any state policy positions nor does it represent a proposed state climate plan. This is simply the first of several model runs that examine different scenarios to be used to guide the state in developing a climate plan. These materials are informational only and should not be used for any other purpose.
Economic Impact of Policy Scenario One

September 18, 2018

Michael Siers, Interim Director of Research
Catherine Menking, Economist
Nicholas Wetzler, Research Associate II
Analysis Framework

MDE
MEA
MDoT
IPM
EIA
RESI
Pathways Emission Modeling
Δ In GHG Emissions
Δ In Secondary Emissions
Δ In Prices
Δ In Health Outcomes
Δ In Jobs Δ In Equity
REMI PI+
PROM Model
Final Report

© Towson University, Division of Strategic Partnerships and Applied Research
Overall, Maryland’s Economy Grows Year Over Year in both the Reference Case and Policy Scenario One, and Differences Between the Two Cases are Minimal.
Jobs Supported by Policy Scenario One Follow a Distinct Polynomial Pattern

*Difference between policy scenario one and reference case
Job Growth Is Slightly Negative in 2030 and Positive in 2050, Relative to the Reference Case

2030: -126 Jobs
2050: 1,805 Jobs

*Difference between policy scenario one and reference case
Job Growth is Lowest Relative to the Reference Case in 2035

*Difference between policy scenario one and reference case
Inflation (Measured as Change in PCE Index) Remains Relatively Low

*Difference between policy scenario one and reference case
On Average, Jobs, GSP, and Wages are Higher than in the Reference Case

<table>
<thead>
<tr>
<th>Indicator</th>
<th>2030</th>
<th>Average Through 2030</th>
<th>2050</th>
<th>Average Through 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Employment</td>
<td>-126</td>
<td>477</td>
<td>1,805</td>
<td>462</td>
</tr>
<tr>
<td>Gross State Product</td>
<td>$148.6 M</td>
<td>$110.7 M</td>
<td>$13.2 M</td>
<td>$39.3 M</td>
</tr>
<tr>
<td>Personal Income</td>
<td>$46.1 M</td>
<td>$62.3 M</td>
<td>$336.7 M</td>
<td>$71.9 M</td>
</tr>
</tbody>
</table>
What Jobs are Being Created/Sustained?
Transportation and Construction Occupations Have the Most Job Gains on Average Through 2030

*Difference between policy scenario one and reference case on average through 2030
...But Not All Occupations Experience Job Gains on Average Through 2030

<table>
<thead>
<tr>
<th>Arts, Design, Entertainment, Sports, and Media</th>
<th>Farming, Fishing, and Forestry</th>
<th>Food Preparation and Serving Related</th>
<th>Sales and Related, Office and Administrative Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-22</td>
<td>-80</td>
</tr>
</tbody>
</table>

*Difference between policy scenario one and reference case on average through 2030

© Towson University, Division of Strategic Partnerships and Applied Research
On Average Through 2030, Most Job Gains are in Medium Wage Jobs

*Difference between policy scenario one and reference case on average through 2030

- Low Wage (Bottom 25%): 37
- Medium Wage (Middle 50%): 342
- High Wage (Highest 25%): 97

© Towson University, Division of Strategic Partnerships and Applied Research
New Jobs Typically Don’t Require Much Training/Education

Difference between policy scenario one and reference case on average through 2030
Implications

• Policy Scenario One gets us close on emissions and meets economic 2030 goals.
 • Job, GSP, and income growth are positive on average through 2030 and 2050
 • Inflation remains low

• Reductions in VMTs seem to drive economic growth most
 • Although no one policy can be separated through modeling
 • Additional work needed on cost of transportation measures

• Most job gains are in medium-wage jobs with low training requirements
 • Good opportunity to transition new workers, or those who lose their jobs
Questions?

msiers@towson.edu
Appendix
How is Economic Modeling Done?

• REMI PI+

• Four primary inputs:
 • Capital Costs by Sector from Pathways/LEAP
 • Fuel Costs by Sector from Pathways/LEAP
 • Health Costs/Benefits from EPA’s COBRA
 • Additional Programming Cost from State Agencies
Capital Costs and Fuel Costs Make Up Most of the Costs Entered into REMI PI+

<table>
<thead>
<tr>
<th>Capital Costs</th>
<th>Fuel Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increase demand for manufacturing/producers</td>
<td>• Alter demand for utilities/petroleum manufacturing</td>
</tr>
<tr>
<td>• Increase cost of production to all sectors</td>
<td>• Increase cost of electricity or other fuel types</td>
</tr>
<tr>
<td>• Increase future energy efficiency</td>
<td></td>
</tr>
</tbody>
</table>
Consumer Spending Patterns are Modeled Similarly

• Only change to model is shift in spending patterns

• Relative to the reference case, absolute income and taxes are held constant
 • Income does change within the model due to market shifts

• Example: Consumer purchases more expensive energy efficient appliance.
 • Model as increase in spending on household appliances and decrease in spending on all other goods.
 • Separately model decrease in household spending on electricity bills
Modeling Health Benefits of Cleaner Air

• Model Changes in Secondary Emissions using EPA’s COBRA model
 • Pathways/LEAP modeling provides estimates of fuel burn reductions

• Translate reductions in negative health outcomes to economic impacts
 • Decreased hospital revenue, but increased insurance revenue, household income, and federal and state revenue
 • Increased labor productivity
 • Increased survival rate
 • Increased quality of life
Modeling Health Benefits of Cleaner Air

<table>
<thead>
<tr>
<th>Health Effect</th>
<th>2017</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Reallocation ($)</td>
<td>$78,998.32</td>
<td>$155,343</td>
</tr>
<tr>
<td>Hospitals Revenue</td>
<td>$(78,998)</td>
<td>$(155,343)</td>
</tr>
<tr>
<td>Private Insurance Revenue</td>
<td>$20,429</td>
<td>$40,182</td>
</tr>
<tr>
<td>Federal Revenue</td>
<td>$45,997</td>
<td>$40,182</td>
</tr>
<tr>
<td>State & Local Revenue</td>
<td>$11,125</td>
<td>$23,510</td>
</tr>
<tr>
<td>Consumer Savings</td>
<td>$1,447</td>
<td>$2,460</td>
</tr>
<tr>
<td>Labor Productivity (Average % Increase)</td>
<td>0.003%</td>
<td>0.0006%</td>
</tr>
<tr>
<td>Survival Rate (Average % Increase)</td>
<td>0.00002%</td>
<td>0.00016%</td>
</tr>
<tr>
<td>Quality of Life Increase ($) Increase</td>
<td>$13,578</td>
<td>$24,362</td>
</tr>
</tbody>
</table>
Modeling Other Spending

• Not all programs and policies can be explicitly modeled within Pathways/LEAP

• Additional program costs beyond normal spending levels captured within REMI

• Example of spending added in pending further data:
 • Additional spending for forestry management
 • Additional spending for major transportation projects
Personal Income Growth Relative to the Reference Case Follows a Similar Pattern to Job Growth and is Positive in 2030

*Difference between policy scenario one and reference case
GSP Growth Remains Positive Through 2035, but is Projected to be Lower Than the Reference Case Between 2036 and 2048.
Why do We See This Pattern?
Electricity Consumption Declines in Policy Scenario One Relative to the Reference Case

- Energy consumption fails to spike in policy scenario one, mostly due to the extension of EmPOWER
Despite Lower Usage, the Total Amount Spent on Electricity is Higher in Policy Scenario One

Across Residential, Commercial, and Industrial sectors, electricity spending is $755 million greater in Policy Scenario 1 than in the reference case in 2030.

This is primarily driven by goal of 50% RPS by 2030, which causes rates to increase, then plateau.
Total Capital Costs in Policy Scenario One are Comparable to the Reference Case

- This helps to explain why inflation remains so low
- New capital spending is a small percentage of the overall level
Capital Costs in Policy Scenario One Begin Rising Relative to the Reference Case in 2024

- When EmPOWER extension goes in effect, households and businesses spend more on energy efficient appliances.
 - For households – distributional impacts (less to spend on other goods)
 - For businesses – cost of production increases
- Electricity savings take several years to balance out up front costs

*Difference between policy scenario one and reference case

© Towson University, Division of Strategic Partnerships and Applied Research
Studying Racial Equity

• RESI calculated expected employment by occupation by race for policy scenario one

• These results are an estimate of how employment by race will look for new jobs assuming current employment patterns hold in the future.
 • This analysis does not consider the impact of targeted retraining programs or a less-segregated workforce.
 • Estimates should be compared only to other policy scenarios to give a sense of distributional effects.
Job Gains Are Primarily in Job Types Currently Held by Non-Hispanic Whites

*Difference between policy scenario one and reference case on average through 2030
Next Steps

• Add in additional program costs from state agencies

• Sensitivity Analysis