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Maryland Greenhouse Gas Emissions Inventory

This report supports Maryland's 2020 greenhouse gas (GHG) emissions inventory and the
revised historical inventories. The state’s 2020 inventory was released on September 24, 2022.1

Forest Carbon Flux

Annual forest carbon fluxes for Maryland were primarily estimated using a new method for
monitoring high-resolution forest above-ground carbon dynamics produced by the NASA
Carbon Monitoring System (CMS) and the University of Maryland (UMD). This IPCC Tier-32

approach utilizes high-resolution remote sensing data, U.S. Department of Agriculture (USDA)
Forest Service Forest Inventory and Analysis (FIA) plot data, and a process-based ecosystem
model to detect and quantify annual changes to the State’s tree and forest carbon stocks. This
work represents a leap forward relative to standard FIA-based estimation, which is currently
included within the EPA’s State Inventory Tool, by integrating high-resolution wall-to-wall
airborne lidar data and optical imagery, medium-resolution satellite imagery, and ecosystem
modeling to provide value-added spatially-explicit estimates of annual aboveground forest
carbon change over time. The method improves Maryland’s GHG inventory by providing
wall-to-wall spatial coverage, a mechanistic framework for carbon flux attribution and connection
to planning, and a consistent methodology to estimate carbon stock changes for all trees both in
and outside of forests, past-to-future.

Method and Data Inputs

Core method

This method began with initialization of the ecosystem model in 2011 using 1m tree canopy and
1m lidar height metrics to map aboveground biomass (AGB) at high spatial resolution. Next,
AGB dynamics (e.g. annual carbon stocks and fluxes) were reconstructed over the landscape
from 2006-2020 by using the ecosystem model together with meteorology, atmospheric CO2,
and land cover change data over the period. Importantly, all results were constrained by the
initialized state. Modeled AGB data at the time of initialization were validated and calibrated by
USDA Forest Service FIA data (Hurtt et al 2019, Ma et al 2021). More detail is available from
Hurtt et al. 2022.

2 A tier represents a level of methodological complexity, where Tier-3 approaches are the most sophisticated and
include process-based models (2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 4 Forest
Land, ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf)

1 The full emissions inventory, including all Land Use, Land-Use Change, and Forestry emissions and sequestration,
can be found on Maryland Department of the Environment's website:
mde.maryland.gov/programs/air/climatechange/pages/greenhousegasinventory.aspx
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Ecosystem model

The Ecosystem Demography (ED) Model was used to quantify vegetation dynamics in
Maryland. ED is an individual- and mechanism-based global vegetation model which integrates
submodules of growth, mortality, hydrology, carbon cycle, and soil biogeochemistry to track
plant dynamics including growth, mortality, and reproduction (Hurtt et al 1998, Moorcroft et al
2001; Ma et al. 2022). Over the last two decades, ED has been continuously developed and
combined with lidar and land-use change data to predict ecosystem dynamics and associated
water and carbon fluxes across spatial scales (e.g., site, regional, and global) and temporal
scales (short-term seasonal to long-term decadal and century) (Hurtt et al 2002, 2004, 2010,
2016, Fisk et al 2013, Flanagan et al 2019; Ma et al. 2022). ED distinguishes itself from most
other ecosystem models by explicitly tracking vegetation structure and scaling fine-scale
physiological processes to large-scale ecosystem dynamics (Hurtt et al 1998, Moorcroft et al
2001, Fisher et al 2018). Explicitly modeling vegetation height facilitates a potential connection
to lidar data.

High-resolution lidar

Tree canopy height and tree canopy cover, derived from airborne lidar point cloud data, was
used to initialize ED and establish baseline forest carbon stocks in Maryland. The 1m lidar
Canopy Height Model was produced from the lidar point cloud and the 1m tree canopy cover
map was derived using an object-based approach that combines lidar canopy height and
multi-spectral optical images from the National Agricultural Imagery Program (NAIP)
(O’Neil-Dunne et al 2014a, 2014b). Specifically, for each grid cell, the ED model was initialized
circa 20113 using established methods incorporating high-resolution lidar and optical remote
sensing into carbon modeling (Hurtt et al. 2019; Ma et al. 2021).

Land cover change

Two satellite-based remote sensing products were used to determine change in forest area
throughout the entire inventory period. First, the North American Forest Dynamics (NAFD)
dataset was used to indicate the location and time of forest disturbance and recovery from 2006
to 2016 (Goward et al 2016). This dataset provides annual estimates from 1986-2016 over the
conterminous United States derived from a time-series of Landsat imagery using the vegetation
change tracker (VCT) algorithm (Huang et al 2010). From 2017-2020, the Global Forest Watch
(GFW) dataset, also based on Landsat satellite imagery, was used for forest disturbance after
adjustment to harmonize with NAFD (Hansen et al. 2013).

Meteorology and atmospheric CO2

Meteorological variables within the model included air temperature, air humidity, downward
shortwave radiation and precipitation. These data were derived by fusing NASA Daymet and
NASA MERRA2 data between 1984 and 2020 (Ma et al 2021). Precipitation was derived directly

3 The date of initialization for each pixel is based on the respective date of lidar collection.
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from the Daymet dataset. Atmospheric CO2 was derived from the NOAA CarbonTracker; this
data varies annually but remains constant over space.

Reporting

The net forest carbon flux estimate for Maryland includes annual changes in aboveground
biomass (AGB), belowground biomass (BGB), deadwood, litter, mineral soils, and organic soils.4

Net aboveground carbon flux

The NASA-CMS/UMD product is used to report annual net AGB fluxes from 2006-2020. From
2006 to 2016, net AGB carbon flux is tracked and reported at 30m resolution using three
subcategories (Table 1), including:

1. gross carbon flux from trees within “forest remaining forest” or “non-forest remaining
non-forest”: area change and carbon per area related changes on the tree canopy
fraction of grid cells that are already considered “forest” or carbon per area-related
changes on the tree canopy fraction of any other “non-forest” grid cells;

2. gross carbon flux from forest to non-forest: area change and carbon per area related
changes on forest grid cells newly detected as “disturbed”; changes grid cell status from
“forest” to “non-forest”; and

3. gross carbon flux from non-forest to forest: area change and carbon per area related
changes on non-forest grid cells newly detected as “recovered”; changes grid cell status
from “non-forest” to “forest”

Net AGB Flux  = Flux from existing trees
+ Flux from Forest to Non-forest conversion
+ Flux from Non-forest to Forest conversion

Table 1: Annual estimates of above ground biomass (AGB) stocks (Tg C) and fluxes (Tg C/year) in Maryland.

Year AGB
stocks
(Tg C)

Net AGB
flux

(Tg C/yr)

AGB Flux from
existing trees

(Tg C/yr)1

AGB Flux from
Forest to Non-forest

conversion
(Tg C/yr)

AGB Flux from
Non-forest to

Forest
conversion
(Tg C/yr)

2006 99.016 1.562 1.950 -0.416 0.028

2007 99.903 0.887 1.273 -0.405 0.019

4 These results are also available in summary format via Maryland’s Open Data Portal (opendata.maryland.gov) and
as spatial layers via Maryland’s GIS Data Catalog (data.imap.maryland.gov).
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2008 101.996 2.093 2.285 -0.214 0.023

2009 104.769 2.773 2.990 -0.250 0.033

2010 105.933 1.164 1.351 -0.215 0.028

2011 107.676 1.743 1.893 -0.197 0.047

2012 109.625 1.95 2.315 -0.401 0.036

2013 112.289 2.664 2.767 -0.130 0.027

2014 114.872 2.583 2.753 -0.210 0.041

2015 117.636 2.764 3.014 -0.284 0.035

2016 117.982 0.346 0.996 -0.680 0.030

2017 119.252 1.27 -- -- --

2018 120.062 0.81 -- -- --

2019 120.838 0.776 -- -- --

2020 122.452 1.614 -- -- --
1 F = forest, NF = nonforest, as defined by NAFD

Prior to 2017, annual changes to the tree canopy fractions of each grid cell are also tracked and
reported for the same three subcategories (Table 2). Beginning in 2017, the total tree area
remained fixed, and the area of recovery was assumed to equal the area disturbed in each
year.5

Table 2: Annual estimates of tree area change in Maryland.

Year Total tree
area (km2)

Area changes for
existing trees (km2/yr)

Area changes Forest
to Non-forest
Conversion (km2/yr)

Area changes from
Non-forest to Forest
Conversion  (km2/yr)

2006 12263.73 29.331 -29.594 7.825
2007 12270.56 28.552 -28.52 7.048
2008 12293.88 26.983 -13.802 10.688
2009 12319.43 25.246 -17.192 18.199
2010 12344.42 23.189 -13.758 15.854
2011 12376.66 21.477 -12.993 24.19
2012 12385.07 20.538 -28.358 16.772
2013 12407.64 18.936 -9.681 13.942
2014 12433.63 15.866 -13.186 23.945
2015 12450.26 13.809 -15.764 19.205
2016 12434.00 10.667 -47.685 21.025
2017 12434.00 -- -- --
2018 12434.00 -- -- --

5 As forest recovery data was unavailable from either NAFD or GFW after 2017, a forest recovery rate equal to the
disturbance rate was conservatively assumed between 2017 and 2020.
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2019 12434.00 -- -- --
2020 12434.00 -- -- --

Below ground carbon flux

Due to the close relationship between aboveground and belowground biomass (e.g.,
root-to-shoot ratio (RSR)), below-ground biomass flux was annually reported as 19.6% of the
NASA CMS/UMD aboveground biomass flux based on established ratios within USFS forest
inventory reporting (Domke et al. 2021). Over the 1990-2019 time period of the USFS inventory,
the ratio between reported AGB and BGB estimates ranges between 0.193 and 0.204. For
application in the State inventory, the RSR was averaged over the USFS inventory time period
of 2006-2019 and annually applied to dynamic estimates of AGB at a single consistent ratio.

Other carbon pools

The carbon dynamics between aboveground biomass and other carbon pools cannot be as
easily determined using a simple ratio. For this reason, the state inventory reports USFS
state-level estimates for the forest carbon pools of deadwood, litter, and soil, as included in the
EPA’s State Inventory Tool (SIT). Due to the unavailability of 2020 estimates from the EPA, the
Maryland inventory reports 2019 estimates for these pools in the 2020 inventory. More
information on these methods is available from Domke et al. 2021 and EPA 2022.

USFS separately reports carbon flux from settlement trees6. As the lidar and satellite coverage
of the NASA-CMS/UMD method captures trees in non-forest areas at the time of model
initialization, the USFS category of settlement trees is conservatively excluded from the state
inventory to avoid potential double-counting of carbon fluxes in these non-forest areas.

Methodological Advances

The margins of error in assessing forest carbon stock change are traditionally very large. For
example, the World Resources Institute estimates that the US national inventory for forests had
a 95% confidence interval of +/- 75% of the estimate.7 Plot-based statistical extrapolation can
entail high levels of uncertainty, which increase over small areas like states as the sample size
gets smaller. The USFS uses annual field monitoring to update the forest carbon inventory, but
only ~20% of the field plots are revisited each year. The resulting statewide estimates of carbon
stock change are consequently “rolling averages” over the last 5 years of change. Furthermore,
the USFS inventory relies on more approximate methods to estimate the sink from “settlement
trees” or urban forest, and does not include non-urban trees outside of what USFS defines as
forest. To estimate land cover change, the USFS utilizes the National Land Cover Dataset,
which is updated every five years rather than annually.

7 WRI. 2020. Natural and Working Lands Inventory Improvements: A Guide for States.
wri.org/insights/greenhouse-gas-emissions-natural-working-lands

6 Carbon stocks and fluxes of settlement trees, trees occurring on developed land uses where human populations
and activities are concentrated, are analyzed separately by the US EPA based on per unit area of tree cover.
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The NASA CMS/UMD method collaborated with USFS to utilize calibrated and validated remote
sensing and modeling data to provide mapped coverage over the state (Hurtt et al. 2019). Using
remote sensing data removes a key driver of uncertainty because it provides comprehensive
(wall-to-wall) data on trees across the landscape, including annual land cover change data from
Landsat satellite imagery. There is still uncertainty in calibrating the remote sensing data to plot
measurements and then modeling forest changes over time; however, these uncertainties are
generally lower than an exclusively plot-based approach. This new method allows Maryland to
more frequently and accurately track progress towards the state’s forest carbon goals and
reflect the annual variability in forest carbon sequestration within the state GHG inventory.

Future Improvements

Reducing data latency

The forest carbon monitoring system is dependent on numerous datasets. Reducing the latency
and/or updating these datasets over time can increase the speed and improve the quality of
future assessments. For remote sensing, additional lidar data could be used to update the
height of trees. Additional optical remote sensing data, classifying annual forest disturbance and
recovery, could be used to update and extend over time the mapped estimates of forest carbon
fluxes.

Detecting small scale tree loss and recovery

The current landsat-based remote sensing approach means that carbon losses and gains on
non-forest areas may not be included. Furthermore, some remote sensing satellites, such as
Landsat, find it difficult to detect regrowth during the first 15 years of forest succession and
assumptions about forest structure at the time of detection can be challenging. To address these
potential limitations, a currently funded project under the Tree Solutions Now Act is utilizing data
gathered from MDE’s new 5 million trees tracking platform to couple field data on recent
afforestation activities with verification from optical imagery to confirm and more quickly initiate
forest carbon regrowth within the Ecosystem Demography model. In addition, MDE is exploring
the inclusion of refreshed 1m tree canopy data produced over the Chesapeake Bay Watershed
by the University of Vermont and Chesapeake Conservancy.8 While this data does not directly
provide updated forest height metrics for ED initialization, the tree canopy map is produced
using the same method as the NASA CMS/UMD tree canopy map (circa 2011) and could serve
as a data source for sub-30 m changes to tree area within ED.

Including forest management

The current landsat based remote sensing approach detects forest disturbances from all causes
and without classification. Ongoing research, including a U.S. Climate Alliance funded

8 High-resolution land use and land cover data can be accessed through the Chesapeake Conservancy website:
chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/
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collaborative project with Michigan State University and the Pennsylvania Department of Natural
Resources is refining assumptions about the carbon impacts of particular forest management
practices. Including forest management activity that may not be detected by medium-resolution
remote sensing data within the state inventory is an avenue for future work.

Accounting for harvested wood products

For this approach, forest carbon losses from disturbances are treated as committed carbon
fluxes to the atmosphere. Future research on the fate of forest carbon losses including
combustion factors, wood products and residence times could be added to better account for
potential delayed release to the atmosphere. Harvest wood products are currently included in
the state’s GHG Inventory using default estimates for Maryland provided by the EPA SIT.
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