Annual Drinking Water Quality Report Greensboro, Maryland PWSID 005-0003

June 7, 2019

We're pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

The source of our drinking water is three wells drilled into the Piney Point aquifer, the Academy Street well is 390 feet deep. The Hobbs street well is 350 feet deep and the Tower Road well is 370. An aquifer is an underground body of water, which is tapped by drilling wells and pumping the water to the surface for distribution. The 350 to 390 feet of earth between surface sources and this aquifer helps to purify the water before it actually reaches the aquifer, making it easier for us to treat before we pump it into your water distribution system.

We are pleased to report that our drinking water meets Federal and State requirements. The following report is provided in compliance with Federal regulations and will be provided annually. This report outlines the quality of our finished drinking water and what that quality means.

If you have any questions about this report or concerning your water utility, please contact the Town Manager, Ms. Delude at (410) 482-6222. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings held on the first and third Thursday of each month at Town Hall at 7:00 PM.

The Greensboro water department routinely monitors for contaminants in your drinking water according to Federal and State laws. The tables on the following pages show the results of our monitoring for the period of January 1st to December 31st, 2018. As water travels over the land or underground it can pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances.

The Town of Greensboro, Maryland provides top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

The Town of Greensboro, Maryland 104 E. Sunset Avenue P.O. Box 340 Greensboro, Maryland 21639 Phone (410) 482-6222 Fax (410) 482-7429

Annual Drinking Water Quality Report

MD0050003

TOWN OF GREENSBORO

Annual Water Quality Report for the period of January 1 to December 31, 2018

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

TOWN OF GREENSBORO is Ground Water

For more information regarding this report contact:

Name Jeanette Delude, Town Manager

Phone 410-482-6222

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Source Water Information

SWA = Source Water Assessment

Source Water Name		Type of Water	Report Status	Location
GREENSBORO 3 CO710026	CO710026	GW	Υ	NEAR 0 MI NW OF GREENSBORO APPROX. 33 FT W OF HOBBS AVE
GREENSBORO 4 CO811069	CO811069	GW	Υ	NEAR 0 MI GREENSBORO APPROX. 80 FT E OF ACADEMY ST
NEW WELL CO941726	CO941726	GW	Υ	T OF GREENSBORO APPROX. 300 FT E OF MD 313

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Lead and Copper	Likely Source of Contamination
Copper	07/06/2017	1.3	1.3	0.04	0	ppm		Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	07/06/2017	0	15	1	0	ppb		Corrosion of household plumbing systems; Erosion of natural deposits.

Water Quality Test Results

Definitions: The following tables contain scientific terms and measures, some of which may require explanation.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment

technology.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been

found in our water system.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation

has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of

microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of

disinfectants to control microbial contaminants.

na: not applicable.

mrem: millirems per year (a measure of radiation absorbed by the body)

Water Quality Test Results

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorine	2018	0.4	0.4 - 0.4	MRDLG = 4	MRDL = 4	ppm	N	Water additive used to control microbes.
Haloacetic Acids (HAA5)	2018	3	2.78 - 2.78	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2018	17	16.9 - 16.9	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chromium	2018	3	2 - 3	100	100	ppb	N	Discharge from steel and pulp mills; Erosion of natural deposits.
Fluoride	10/15/2015	1.4	0.9 - 1.4	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.