Annual Drinking Water Quality Report for 2017 Town of Hancock May, 2018 PWSID #0210012

We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the water quality and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Our water source is two (2) wells in the Oriskany Formation. Depths of these wells are approximately 450 feet. Each well supplies water to the Water Treatment and Softener Facility. After the water is pumped out of the wells, we soften the water, add fluoride, and add chlorine as a disinfectant to protect against microbial contaminants.

We have a source water protection plan available from our office that provides more information such as potential sources of contamination. This plan is also available from Maryland Department of the Environment (MDE) or at the Washington County Public Library located in Hagerstown.

We are pleased to report that our drinking water is safe and meets Federal and State requirements. The following report is provided in compliance with Federal regulations and is provided annually. This report outlines the quality of our finished drinking water and what that quality means.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If you have any questions about this report or concerning your water utility, please contact Robert Munday at Town Hall, at (301) 678-5622. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Wednesday of each month at Town Hall at 7:00 PM.

The Town of Hancock routinely monitors for contaminants in your drinking water according to Federal and State laws. This table following shows the results of our monitoring for the period of January 1st to December 31st, 2017. As water travels over the land or underground, it can pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily pose a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal – The "Goal"(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

			TEST R	ESUL	ΓS	
Contaminant	Violation Y/N	Level Detected	Unit Measurement	MCLG	MCL	Likely Source of Contamination
Microbiological Cor	ntaminai	nts				
Turbidity (2017)	N	0.196	NTU	N/A	TT	Soil runoff
Radioactive Contamin	l nants					
Alpha emitters (2014)	N	4.6	pCi/1	0	15	Erosion of natural deposits
Combined radium (2014) (226 & 228)	N	0	pCi/1	0	5	Erosion of natural deposits
Inorganic Contamina	nts	•		•		
Copper (Distribution) (2017)	N	0.387	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead (Distribution) (2017)	N	6	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Fluoride (2016)	N	0.21	ppm	4	4	Erosion of natural deposits: water additive which promotes strong teeth: discharge from fertilizers and aluminum factories
Nitrate (as Nitrogen) (2017)	N	1	ppm	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Chlorine (2017)	N	0.8	ppm	4	4	Water Additive used to control microbes
Volatile Organic Con	taminant	S				
TTHM(distribution) (2016) [Total trihalomethanes]	N	24.2	ppb	0	80	By-product of drinking water chlorination
HAA5 [Haloacetic Acids] (distribution) (2016)	N	6.65	ppb	0	60	By-product of drinking water chlorination
Trichloroethylene (2016)	N	1	ppb	0	5	Discharge from metal degreasing sites and other factories
Dichloromethane	N	1.6	ppb	0	5	Discharge from pharmaceutical and chemical factories
Unregulated Contami	inants					
Sodium (2013)	N	266.2	ppm	N/A	N/A	Erosion of natural deposits
pH, range (2013)	N	6.9				
Chloroform (2014)	N	1.3	ppb	N/A	N/A	By-product of drinking water chlorination
Dibromochloromethane (2014)	N	0.9	ppb	N/A	N/A	By-product of drinking water chlorination
Bromodichloromethane (2014)	N	1.1	ppb	N/A	N/A	By-product of drinking water Chlorination
Bromoform) (2013)	N	0.6	ppb	N/A	N/A	By-product of drinking water Chlorination

Note: Test results are for 2017 unless otherwise noted; these are the most recent available results.

As you can see by the table, our system had no MCL violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminants have been detected. The EPA has determined that your water IS SAFE at these levels.

Violation

Stage 2 Disinfection Byproducts Rule

Our system received a monitoring violation when we failed to test for Total Trihalomethanes (TTHM) and Haloacetic Acids (HAA5) in August 2017. Once we complete the test and submit the results to MDE we will return to compliance.

Lead and Copper Rule

Our system received a reporting violation when we were late reporting our lead test results to MDE before October 1, 2017. Once MDE received the test results we were returned to Compliance.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Town of Hancock is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the EPA Safe Drinking Water Hotline at 1-800-426-4791 or at http://www.epa.gov/safewater/lead.

NOTE: As can be seen by results listed in the above tables, lead, which is tested for triennially (every 3 years) at Town of Hancock, has been detected in our most recently collected samples in 2017.

MCL's are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Please call Town Hall if you have questions. The Town of Hancock is dedicated to providing top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life, and our children's future.