PWSID# 0060015

CCR 2017

City of Westminster's Cranberry Water System

This brochure explains the quality of drinking water provided by the Cranberry Water System. Included is a listing of results from water quality tests as well as an explanation of where our water comes from and tips on how to interpret the data. We're proud to share our results with you. Please read them carefully.

Water Source

The Cranberry Water System is supplied by a blended source of groundwater and surface water. The surface water source is obtained from the Patapsco River. The groundwater supply is pumped from eleven (11) wells around the community, which contribute 20 to 30 percent of the total water supply. Source water assessments are completed for the Cranberry Water Plant and the wells in the Cranberry System. A copy of each of the reports is available at the Westminster Branch of the Carroll County Public Library.

Important Health Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

(E) Radioactive contaminants, which can be naturallyoccurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for

contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

What About Radon?

Cranberry Water System tested for radon in your water and found it to be present at levels of 195 to 4,450 picocuries per liter. There is no regulation for radon levels in drinking water at this time.

Radon is found throughout the U.S. It is a radioactive gas that you can't see, taste, or smell. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can also get into indoor air when released from tap water from showering, washing dishes, and other household activities. Compared to radon entering the home through soil, radon entering the home through tap water will in most cases be a small source of radon in indoor air.

If you are concerned about radon in your home and would like additional information on how to test your home, contact the EPA's Radon Hotline (800-SOS-RADON).

How to Read the Water Quality Table

The results of tests performed in **2017** or the most recent testing available are presented in the table. Terms used in the Water Quality Table and in other parts of this report are defined here.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Detected Level: The highest level detected of a contaminant for comparison against the acceptance levels for each parameter. These levels could be the highest single measurement, or an average of values depending on the contaminant.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Range: The lowest to the highest values for all samples tested for each contaminant. If only one sample is tested, or no range is required for this report, then no range is listed for that contaminant in the table.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Please call Bret Grossnickle at 410-848-7040 for information about participation in our community's decisions affecting drinking water.

Member of:

American Water Works Association (AWWA)

PWSID #0060015

City of Westminster's Cranberry Water System Water Quality Table

Inorganic Contaminants	Date Tested	Units	MCLG	MCL	Highest Level Detected	Range	Major Sources			
Barium	2017	ppm	2	2	0.014	0.014 - 0.014	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits			
		ppm								
Cadmium	2015	ppb	5	5	3.9	0-3.9	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; Runoff from waste batteries and paints			
Chromium	2016	ppb	100	100	2.1	0-2.1	Discharge from steel and pulp mills; Erosion of natural deposits			
Fluoride	2017	ppm	4	4	0.5	0.53 - 0.53	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories			
Selenium	2015	ppb	50	50	5.5	0-5.5	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines			
Nitrate	2017	ppm	10	10	7	3.19 - 6.67	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits			
							Erosion of natural deposits			
Copper	2015	ppm	1.3	AL=1.3	90% level = 0.46		Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives			
Lead	2015	ppb	0	AL=15	90% level = 4.1		Corrosion of household plumbing systems; Erosion of natural deposits			
					Surface Water	Surface W	ater			
Microbiological Contaminants	Date Tested	Units	Limit (Treatmen Technique	t 2)	Level Detected		Major Sources			
Turbidity	2017	NTU	5	TT	0.6		Soil runoff			
Lowest monthly % meeting limit	2017	NTU	0.3		99.7 %		Soil runoff			
Radioactive Contaminants	Date Tested	Units	MCLG	MCL	Highest Level Detected	Range	Major Sources			
Beta/photon emitters	2016	pCi/L	0	50	4.4	0-4.4	Decay of natural and man-made deposits			
Combined Radium 226/228	2017	pCi/L	0	5	1	0 - 1	Erosion of natural deposits			
Gross Alpha excluding radon and uranium	2017	pCi/L	0	15	2.1	0-2.1	Erosion of natural deposits			
Volatile Organic Contaminants	Date Tested	Units	MCLG	MCL	Highest Level Detected	Range	Major Sources			
Chlorine	2017	ppm	MRDLG = 4	MRDL = 4	1.2	1.2 – 1.2	Water additive used to control microbes			
TTHM	2017	ppb	na	80	86	10.3 - 136.6	By-product of drinking water chlorination			
НАА5	2017	ppb	na	60	55	10.3 - 116.3	By-product of drinking water chlorination			
Synthetic Organic Contaminants	Date Tested	Units	MCLG	MCL	Highest Detected Level	Range	Major Sources			

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Westminster is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your

water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead Nitrate in drinking

water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your healthcare provider.

"During the Third and Fourth Quarters of 2017, we were in violation of the Maximum Contaminant Level (MCL) established by the US EPA for Total Trihalomethanes (TTHM) at several of our Compliance Sampling sites." Consumption of water containing levels of TTHM above the MCL for many years may result in problems with the liver, kidneys or central nervous system. Distribution flushing in the areas affected by the higher than acceptable levels has been instituted. As a further precaution against higher than normal TTHM levels, we are installing TTHM Reduction Equipment in our High Zone Storage Tank, which provides water to the areas where these samples are taken, to help remove these compounds.

Violations Table

e who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys or central nervous system.														
				/	1									
	Violation	Violation	Violation Explanation											
	Begin	End		!			ı.							
07/01/2017	00/20/2017	Water samples showed that the amount of this contaminate in our drinking water was above its standard (called a maximum contaminate level and												
	0//01/2017	09/30/2017	abbreviated MCL) for the period indicated.				l.							
10/01/2017		Water samples showed that the amount of this contaminate in our drinking water was above its standard (called a maximum contaminate level and												
	12/31/2017	abbreviated MCL) for the period indicated.												