Case Studies in Dam Breach Analysis

Jeff Blass, P.E. Charles P. Johnson & Associates, Inc

May 9, 2012

Teton Dam Failure

- Idaho 1976
- 251,000 ac-feet of water (80 Billion Gallons)
- Breach Length –
 Approximately 130 miles
 (Teton Dam to American Falls Dam)
- Breach Travel Time Approximately 2 Days
- Average Speed 4 f.p.s.

Rexburg, Idaho - 13 miles downstream

Liberty Reservoir

- Location Sykesville, Maryland
- Dam Height 175 feet
- Construction Type Gravity – multiple monoliths
- Drainage Area 163 Square Miles
- Impacted Areas –
 Ellicott City, Patapsco
 River valley, Baltimore
 City

Hydraulics and Hydrology Methodology

- Hydrology
 - GISHydro
 - Calibrated using USGS regression equations for area.
- Hydraulics
 - Volume via MGS Bathymetric Survey
 - Discharge via broad crested weir equation with adjustments for construction by abutments. Obtained via field survey
- USACE HEC-1 Modeling program used to develop hydrographs

Liberty Dam Drainage Area Map

Breach Parameter Development

- Multiple monoliths (1, 2, 3, 4)
 - Sensitivity to breach width
- Breach at abutments RULED OUT
 - Shallow earth fill
- Breach from water surface elevation to bottom of upstream side of dam
- Time to Failure
 - 3 minutes Very short due to method of failure

Breach Routing and Flood Mapping

- Cross Sections
 - 2' LiDAR from Carroll, Howard, Anne Arundel, and Baltimore Counties and Baltimore City
 - Determined Manning's n values from Chows' Open Channel Hydraulics
- Roads
 - No road crossings built into current model but plans are to update model to include crossings where applicable.
- Dams
 - Low head dams (Bloede, Daniels) not included because of height relative to breach wave and lack of available flood storage

Breach Routing and Floodplain Mapping

- ARCGIS 10
 - Developed DEMs from 2' LiDAR data sets
 - Delineated cross section lines
 - Created georeferenced floodplain maps

Breach Routing and Flood Mapping

- USACE HEC-GeoRAS 4.3
 - Unsteady Flow Model Breach Hydrograph Input
 - Accounting for Flow Attenuation = Reduced Peak Flows
 - More accurate water surface profiles
 - Geo-referenced Floodplain Mapping

Challenges and Solutions

- CHALLENGE: Large scope of work with limited funding
 - SOLUTION: Drew on freely available information and software to minimize survey (examples: MGS Bathymetric Survey, HEC-1 and HEC-RAS software packages, MDE Dam Safety technical resources)
- CHALLENGE: Multiple Data Sources
 - SOLUTION: Verified datum of each data source and used ARCGIS to "sew" together multiple LiDAR datasets.
- CHALLEGE: Inflow Hydrograph Accuracy
 - SOLUTION: Calibrated model using sensitivity analysis to drainage area, RCN, and time of concentration. Adjust time of concentration (most sensitive)

If we had to do it again . . .

- Include Road Crossings (will be done as a revision to this model)
- Calibrate hydrologic model to additional gauged regression equations
- Consider steady flow model at Road Crossings to promote model stability
- Include second inflow hydrograph to simulate rainfall over downstream drainage areas

Kentlands Dams

- Location Gaithersburg, Maryland
- Dam Heights 24, 19, 37, 24, and 15 feet
- Construction Type Earth embankment w/ structural spillways
- Drainage Area 323 Acres
- Impacted Areas Kentlands neighborhood, Gaithersburg, Maryland

Hydraulics and Hydrology Methodology

- Hydrology
 - Delineated drainage areas manually
 - Determined time of concentration manually using TR-55 guidance
 - Determine Runoff Curve Number using ARC GIS and GIS land use and soils data sets.
- Hydraulics
 - Normal pool and flood storage volumes determined using as-built plans and GIS data and geo-referenced into survey datum.
 - Stage Discharge determined using as-built plans and georeferenced field survey data from all five dams to establish a common datum.
- USACE HEC-1 Modeling program used to develop hydrographs

Breach Parameter Development

- Earth Embankment
 - NWS Simple DAMBRK Program
 - Assumed largest flow yielded the most conservative breach parameters (width, time to failure)
 - Minimum time to failure of 10 minutes (0.17 hours)
- Breach from water surface elevation to bottom of upstream side of dam

Breach Routing and Flood Mapping

- Cross Sections
 - 2' LiDAR from City of Gaithersburg and Field Surveyed topography
 - Modeled using HEC-1
- Roads
 - No road crossings encountered in breach area.
- Mapping
 - Plotted water surface elevations for each event on base information in AutoCAD to address impacts to adjacent downstream properties

Challenges and Solutions

- CHALLENGE: Complex dam system requiring multiple levels of input to develop breach maps
 - SOLUTION: Used conservative approach of assuming all dams breach "in-series" with the breach of an upstream dam flooding the next dam downstream and breaching it.
- CHALLENGE: Significant Tailwater Effects
 - Used HY-8 Culvert Analysis program to develop and balance tailwater rating curves on each principal spillway pipe.
- CHALLENGE: Multiple datums
 - SOLUTION: Used field survey of "hard points" such as riser weirs, pipe inverts, etc. to rectify all datums into one common datum. Adjusted table top information accordingly.

If we had to do it again . . .

- Model downstream flooding in stream valley using HEC-RAS or other open channel modeling program.
- Examine dam breach parameters using Froelich Equations.
- Extend breach modeling downstream to Muddy Branch Tributary, beyond Darnestown Road

Montgomery Auto Park SWM Pond

- Location Silver Spring, Maryland
- Dam Height 29 feet
- Construction Type Earth Embankment, structural outlets
- Drainage Area 220 Acres
- Impacted Areas local residential communities along Paint Branch Tributary, Inter-County Connector

The state of the s

Hydraulics and Hydrology Methodology

- Hydrology
 - Manually determined drainage areas, runoff curve numbers, and times of concentration
 - Verified ICC stormwater management computations
- Hydraulics
 - Volume via field survey
 - Discharge via field survey
- USACE HEC-1 Modeling program used to develop hydrographs – upstream stormwater facilities included in 100 year analysis

Breach Routing and Flood Mapping

- Downstream area small depression with 6o" R.C.P. outlet - MODEL AS A DAM
- Discharges to second downstream area small depression with 48" R.C.P. – MODEL AS A DAM
- ICC Noise Wall channels overtopping flows down roadway
- Use HEC-1 to model dams (part of larger dam breach model)
- Use HEC-RAS 4.1 to model overtopping flows on ICC and discharge flows from 48" and 60" R.C.P.

Challenges and Solutions

- CHALLENGE: Extremely complex downstream area
 - SOLUTION: Used split flows between those that overtop and flow down ICC and those that pass through 48" and 60" culverts to downstream tributary
- CHALLENGE: Timing of analysis with major adjacent construction project.
 - SOLUTION: Owner coordinated with ICC project teams very closely to obtain all pertinent information required for analysis.

If we had to do it again . . .

- Perform bathymetric survey of pond bottom (pond empty but inaccessible) to improve stage-storage rating table accuracy
- Assess downstream flow modeling approach.
 - Consider using 2-D flow routing model to more accurately model complex downstream area.

Take-Away's

- Each dam is unique. No two breach analyses are the same.
- Think about the reality of a breach scenario: How does the breach occur? Where and how does the water flow when it is released? Visit the site if possible
- Data sources must be rectified into common baselines, either by data type or physical datum
- Over-simplification can lead to inaccurate results

Questions and Comments?

jblass@cpja.com