Stormwater Pollution Prevention Guidance

Vehicle Maintenance and Repair, Fueling, Washing or Storage

Loading and Unloading, Outdoor Storage
Introduction

Increased potential for stormwater contamination exists at commercial, industrial, institutional, municipal, or transport related operations that produce higher levels of stormwater pollutants (hotspots), and/or present a higher potential risk for spills, leaks or illicit discharges. The following are specific groupings of operations considered by the Department that are addressed in this guidance:

- Vehicle Maintenance and Repair, Fueling, Washing or Storage.
- Loading and Unloading, Outdoor Storage

For these types of operations, the practices in this guidance should be carefully considered in order to run a clean facility and avoid future liability by protecting waters of the State. The appropriate checklists and a stormwater pollution prevention plan (SWPPP) should be created to document the practices used and these checklists and the SWPPP should be kept onsite for use by your operation and for review by interested parties.

Suggested Documentation:

- Vehicle Maintenance and Repair Hotspot Checklist
- Vehicle Fueling Hotspot Checklist
- Vehicle Washing Hotspot Checklist
- Vehicle Storage Hotspot Checklist
- Loading and Unloading Hotspot Checklist
- Outdoor Storage Hotspot Checklist
- Stormwater Pollution Prevention Plan (SWPPP)

This document does not take the place of any required permits. If you are uncertain whether your facility requires an actual permit, please contact the Department.

Prepared in coordination with the Center for Watershed Protection.
October 2013
VEHICLE MAINTENANCE AND REPAIR

Vehicle maintenance and repair operations can impact water quality by exposing toxins in solvents, waste oil, antifreeze, and other fluids to stormwater. Often, vehicles that are wrecked or awaiting repair can be a stormwater hotspot if leaking fluids are exposed. The resulting oil and grease, trace metals, hydrocarbons, and other toxic organic compound pollution potential must be addressed through prevention.

Application
Pollution prevention practices should be applied to any facility that maintains or repairs vehicles. Examples include car dealerships, body shops, service stations, quick lubes, school bus depots, trucking companies, and fleet maintenance operations at larger industrial, institutional, municipal or transport-related operations.

Implementation Considerations
The discharge to surface water and stormwater management systems of wastewater from vehicle maintenance and service operations is prohibited without a discharge permit. Wastewater from these operations is also prohibited from being discharged onto the ground or into subsurface disposal systems such as septic systems, dry wells, seepage pits and drainage holes. Options for managing vehicle maintenance and service related wastewater include discharging to a sanitary sewer (if available and in compliance with the requirements of the sewer authority) and collection and storage in a holding tank for later offsite transport to a permitted facility.

The summary of required pollution prevention techniques for vehicle maintenance and repair operations that can prevent stormwater contamination are in Figure 1. You are encouraged to consult the Resources section of this sheet to get a more comprehensive review of pollution prevention practices for vehicle maintenance and repair operations.

- Avoid hosing down work or fueling areas
- Clean all spills immediately using dry cleaning techniques
- Collect and store used antifreeze, oil, grease, oil filters, cleaning solutions, solvents, batteries, hydraulic and transmission fluids for recycling or proper offsite treatment and disposal
- Conduct all vehicle and equipment repairs indoors or under a cover (if done outdoors)
- Connect outdoor vehicle storage areas to a separate stormwater collection system with an oil/grit separator that discharges to a holding tank, the sanitary sewer or a stormwater treatment practice
- Inspect the condition of all vehicles and equipment stored outdoors frequently
- Designate a specific location for outdoor maintenance activities that is designed to prevent stormwater and groundwater pollution (paved, away from storm drains, and with stormwater containment measures)
- Use a tarp, ground cloth, or drip pans beneath vehicles or equipment being repaired outdoors to capture all spills and drips
- Seal service bay concrete floors with an impervious material so cleanup can be done without
Maryland Department of the Environment
Stormwater Pollution Prevention Guidance

Figure 1 - Pollution Prevention Practices for Vehicle Maintenance and Repair Activities

Employee training is essential to successfully implement vehicle repair pollution prevention practices. The connection between the storm drain system and local streams should be emphasized so that employees understand why any fluids need to be properly disposed of. It is also important to understand the demographics of the work force; in some communities, it may require a multilingual education program.

The vehicle maintenance and repair operations checklist (Figure 2) provides the best management practices (BMPS) required for these operations.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description of pollution prevention mechanism or BMP to be implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduct regular training for staff on your pollution prevention practices</td>
<td></td>
</tr>
<tr>
<td>Provide locations for recycling collection of used antifreeze, oil, grease, oil filters, cleaning solutions, solvents, batteries, hydraulic and transmission fluids</td>
<td></td>
</tr>
<tr>
<td>Cover all vehicle and equipment repair areas with a permanent roof or canopy.</td>
<td></td>
</tr>
<tr>
<td>Connect outdoor vehicle storage areas to a separate stormwater collection system with an oil/grit separator or sand filter.</td>
<td></td>
</tr>
<tr>
<td>Designate a specific location for outdoor maintenance activities that is designed to prevent stormwater pollution (paved, away from storm drains, and with stormwater containment measures)</td>
<td></td>
</tr>
<tr>
<td>Stencil or mark storm drain inlets with "No Dumping, Drains to ___" message</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 - Vehicle Maintenance and Repair Operations Checklist
Cost - Employee training is generally inexpensive, since training can be done using posters, pamphlets, or videos. Structural practices can vary based on what equipment is required. For instance, solvent sinks to clean parts can cost from $1,500 to $15,000, while spray cabinets may cost more than $50,000. Proper recycling/disposal of used or spilled fluids usually requires outside contractors that increase costs.
VEHICLE FUELING

Spills at vehicle fueling operations have the potential to directly contribute oil, grease, and gasoline to stormwater, and can be a significant source of lead, copper and zinc, and petroleum hydrocarbons. Delivery of pollutants to the storm drain can be sharply reduced by well-designed fueling areas and improved operational procedures.

Application
These practices can be applied to any facility that dispenses fuel. Examples include retail gas stations, bus depots, marinas, and fleet maintenance operations. In addition, these practices also apply to temporary above ground fueling areas for construction and earthmoving equipment. Many fueling areas are usually present in urban areas, and they tend to be clustered along commercial and highway corridors. These hotspots are often a priority for source control.

Feasibility
Vehicle fueling pollution prevention practices apply to all geographic and climatic regions. The practices are relatively low-cost, except for structural measures that are installed during new construction or station remodeling.

Implementation Considerations
The risk of spills depends on whether the fueling area is covered and has secondary containment. The type, condition, and exposure of the fueling surface can also be important. The summary of required pollution prevention techniques practices for fueling operations are found in Figure 3.

- Maintain an updated spill prevention and response plan on premises of all fueling facilities and make sure each staff member knows either where to find it or who to call who does know the plan
- Cover fueling stations with a canopy or roof to prevent direct contact with rainfall
- Design fueling pads for large mobile equipment to prevent the run-on of stormwater and collect any runoff in a dead-end sump
- Retrofit underground storage tanks with spill containment and overfill prevention systems
- Keep suitable cleanup materials on the premises to promptly clean up spills
- Install slotted inlets along the perimeter of the “downhill” side of fueling stations to collect fluids and connect the drain to a waste tank or stormwater treatment practice. The collection system should have a shutoff valve to contain a large fuel spill event
- Locate storm drain inlets away from the immediate vicinity of the fueling area
- Clean fuel-dispensing areas with dry cleanup methods. Never wash down areas before dry clean up has been done. Ensure that wash water is collected and disposed of in the sanitary sewer system or approved stormwater treatment practice
- Pave fueling stations with concrete rather than asphalt
- Protect above ground fuel tanks using a containment berm with an impervious floor of concrete. The containment berm should have enough capacity to contain 110 percent of the total tank volume
Fueling Area Covers - Fueling areas can be covered by installing an overhanging roof or canopy. Covers prevent exposure to rainfall and are a desirable amenity for retail fueling station customers. The area of the fueling cover should exceed the area where fuel is dispensed. All downspouts draining the cover or roof should be routed to prevent discharge across the fueling area. If large equipment makes it difficult to install covers or roofs, fueling islands should be designed to prevent stormwater run-on through grading, and any runoff from the fueling area should be directed to a dead-end sump.

Surfaces - Fuel dispensing areas should be paved with concrete; the use of asphalt should be avoided, unless the surface is sealed with an impervious sealant. Concrete pads used in fuel dispensing areas should extend to the full length that the hose and nozzle assembly can be pulled, plus an additional foot.

Grading - Fuel dispensing areas should be graded with a slope that prevents ponding, and separated from the rest of the site by berms, dikes or other grade breaks that prevent run-on of urban runoff. The recommended grade for fuel dispensing areas is 2–4 percent (CSWQTF, 1997).

The vehicle maintenance and repair operations checklist (Figure 4) provides the best management practices (BMPS) required for these operations.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description of pollution prevention mechanism or BMP to be implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover fueling stations with a canopy or roof to prevent direct contact with rainfall</td>
<td></td>
</tr>
<tr>
<td>Design fueling pads to prevent the run-on of stormwater and address any runoff with an oil/ grit separator or a sand filter</td>
<td></td>
</tr>
<tr>
<td>Locate storm drain inlets away from the immediate vicinity of the fueling area</td>
<td></td>
</tr>
<tr>
<td>Stencil or mark storm drain inlets with "No Dumping, Drains to _____" message</td>
<td></td>
</tr>
<tr>
<td>Pave fueling stations with concrete rather than asphalt</td>
<td></td>
</tr>
</tbody>
</table>

Cost - Costs to implement pollution prevention practices at fueling stations will vary, with many of the costs coming upfront during the design of a new fueling facility. Once a facility has implemented the, ongoing maintenance costs should be low.
VEHICLE WASHING

Vehicle wash water may contain chlorine, salts, sediments, phosphorus, metals, surfactants, chlorinated hydrocarbons, oil and grease, and other pollutants that can degrade water quality. When vehicles are washed on impervious surfaces such as parking lots or industrial areas, dirty wash water can contaminate stormwater that ends up in streams. Washwater that seeps into the ground or is discharged into a subsurface disposal system such as a septic system, dry well, seepage pit or drainage hole can contaminate groundwater.

Application

Vehicle washing pollution prevention practices apply to many commercial, industrial, institutional, municipal and transport-related operations. Improved washing practices can be used at any facility that routinely washes vehicles. Examples include commercial car washes, bus depots, car dealerships, rental car companies, trucking companies, and fleet operations. In addition, washing dump trucks and other construction equipment can be a problem.

Feasibility

Improved vehicle washing practices are relatively simple to implement and are very effective at preventing stormwater contamination. Training is essential to get owners and employees to adopt these practices, and should be designed to overcome cultural and social barriers to improved washing practices.

Implementation Considerations

Options for managing vehicle washwater include discharging to a sanitary sewer (if available and in compliance with the requirements of the sewer authority), collection and storage in a holding tank for later offsite transport and proper disposal, offsite washing at a permitted facility, or discharged onsite as authorized by an individual NPDES surface water or state groundwater discharge permit. The discharge of wastewater from vehicle washing is not eligible for coverage under the Department’s NPDES General Industrial Stormwater Permit.

The best way to avoid stormwater contamination during washing operations is to drain the wash water to the sanitary sewer system, if available and in compliance with the requirements of the sewer authority. The ideal practice is to wash all vehicles at commercial car washes or indoor facilities that are specially designed for washing operations. Design new facilities with designated areas for indoor vehicle washing where no other activities are performed (e.g., fluid changes or repair services). Operations that produce high volumes of wash water should consider installing systems that connect to the sanitary sewer with a storm drain filter should be used to capture solid contaminants. Figure 5 offers some suggestions for indoor car wash sites.
• Facilities should have designated areas for indoor vehicle washing where no other activities are performed (e.g., fluid changes or repair services)
• Indoor vehicle wash areas should have floor drains that receive only vehicle washing wastewater (not floor washdown or spill removal wash waters) and be connected to a holding tank with a gravity discharge pipe to a sump that pumps to a holding tank for offsite treatment and proper disposal, or to an oil/grit separator that discharges to a municipal sanitary sewer
• The floor of indoor vehicle wash bays should be completely bermed to collect wash water
• Aromatic and chlorinated hydrocarbon solvents should be eliminated from vehicle-washing operations
• Vehicle-washing operations should use vehicle rinsewater to create new wash water through the use of recycling systems that filter and remove grit

Figure 5 - Tips for Indoor Car Wash Sites (Adapted from U.S. EPA, 2003)

When washing operations are conducted outside, a designated wash area should have the characteristics in Figure 6. Outdoor vehicle washing facilities should use pressurized hoses without detergents to remove most dirt and grime. If detergents are used, they should be phosphate-free to reduce nutrient loading. If acids, bases, metal brighteners, or degreasing agents are used, wash water should be discharged to a treatment facility, sanitary sewer, or a holding tank for offsite transport and proper treatment and disposal. In addition, waters from the pressure washing of engines and vehicle undercarriages must be disposed of using the same options.

- Paved with an impervious surface, such as Portland cement concrete
- Bermed to contain wash water
- Sloped so that wash water is collected and discharged to the sanitary sewer system, holding tank or dead-end sump
- Operated by trained workers to confine washing operations to the designated wash area

Figure 6 - Containment System Preventing Wash Water from Entering the Storm Drain

The summary of required pollution prevention techniques for vehicle washing operations that can prevent stormwater contamination are in Figure 7.
- Wash vehicles at indoor car washes that recycle, treat or convey wash water to the sanitary sewer system
- Use biodegradable, phosphate-free, water-based soaps
- Use flow-restricted hose nozzles that automatically turn off when left unattended
- Wash vehicles on a washpad that has a containment system
- Prohibit discharge of wash water into the storm drain system by using temporary berms, storm drain covers, drain plugs or other containment system
- Onsite discharge of vehicle washwater into subsurface disposal systems such as septic systems, dry wells, seepage pits, drainage holes or where it can seep into the ground may require a discharge permit. Contact Groundwater Permits Division (410-537-3778) for washwater management options.
- Label storm drains with “No Dumping” signs to deter disposal of wash water in the storm drain system
- Avoid steam cleaning and engine and undercarriage washing which produces high pollutant concentrations
- Obtain permission from sewage treatment facilities to discharge to the sanitary sewer

Figure 7 - Pollution Prevention Practices for Vehicle Washing

The vehicle washing checklist (Figure 8) provides the best management practices (BMPS) required for these operations.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description of pollution prevention mechanism or BMP to be implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training on proper techniques to prevent pollution.</td>
<td></td>
</tr>
<tr>
<td>Include flow-restricted hose nozzles that automatically turn off when left unattended.</td>
<td></td>
</tr>
<tr>
<td>Use a containment system for washing vehicles such that wash water does not flow into storm drain system.</td>
<td></td>
</tr>
<tr>
<td>Mark storm drain inlets with “No Dumping, Drains to __” signs to deter disposal of wash water in the storm drain system.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8 - Vehicle Washing Checklist

Cost - The cost of using vehicle-washing practices can vary greatly and depends on the size of the operation (Table 3). The cost of constructing a commercial grade system connected to the sanitary sewer can exceed $100,000. Disposal fees and frequency of washing can also influence the cost.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment mat</td>
<td>$480–$5,840**</td>
</tr>
<tr>
<td>Storm drain cover (24-in. drain)</td>
<td>$120 **</td>
</tr>
<tr>
<td>Water dike/ berm (20 ft)</td>
<td>$100.00 **</td>
</tr>
<tr>
<td>Pump</td>
<td>$75–$3,000**</td>
</tr>
<tr>
<td>Wastewater storage container</td>
<td>$50–$1,000+**</td>
</tr>
</tbody>
</table>

Figure 9 - Sample Equipment Costs for Vehicle Washing Practices (Source: ** Robinson, 2003)
VEHICLE STORAGE

Parking lots and vehicle storage areas can introduce sediment, metals, oil and grease, and trash into stormwater runoff. Simple pavement sweeping, litter control, and stormwater treatment practices can minimize pollutant export from these hotspots.

Application
Pollution prevention practices can be used at larger parking lots. Examples include regional malls, stadium lots, big box retail, airport parking, car dealerships, rental car companies, trucking companies, and fleet operations. The largest, most heavily used parking lots with vehicles in the poorest condition (e.g., older cars or wrecked vehicles) have the highest potential for pollution.

Feasibility
Sweeping can be employed for parking lots that empty out on a regular basis. Mechanical sweepers can be used to remove small quantities of solids. Vacuum sweepers should be used on larger parking lot storage areas, since they are superior in picking up deposited pollutants.

Constraints for sweeping large parking lots include high annual costs, difficulty in controlling parking, and the inability of current sweeper technology to remove oil and grease. Proper disposal of swept materials might also represent a limitation.

Implementation Considerations
The design of parking lots and vehicle storage areas can greatly influence the ability to treat stormwater runoff.

Parking lots are prime areas to implement stormwater controls from Maryland’s Design Manual. Many parking areas are landscaped with small vegetative areas between parking rows for aesthetic reasons or to create a visual pattern for traffic flow. These landscaped areas can be modified to provide stormwater treatment in the form of bioretention.

Figure 10 - Parking Lot Island Turned into Bioretention

Catch basin cleanouts are also an important practice in parking areas. Catch basins within the parking lot should be inspected at least twice a year and cleaned as necessary.
Cleanouts can be done manually or by vacuum truck. The cleanout method selected depends on the number and size of the inlets present.

Most communities have contractors that can be hired to clean out catch basins and vacuum sweep lots. Mechanical sweeping services are available, although the cost to purchase a new sweeper can exceed $200,000. Employee training regarding spill prevention for parking areas is generally low-cost and requires limited staff time.

The summary of required pollution prevention techniques intended to prevent or reduce the discharge of pollutants from parking and vehicle storage areas are found in Figure 11.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description of pollution prevention mechanism or BMP to be implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label storm drain inlets with “No Dumping, Drains to _” message</td>
<td></td>
</tr>
<tr>
<td>All stormwater runoff from vehicle storage must receive pretreatment via</td>
<td></td>
</tr>
<tr>
<td>an oil/grit separator or sand filter.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11 - Pollution Prevention Practices for Parking Lot and Vehicle Storage Areas

The vehicle storage checklist (Figure 12) provides the best management practices (BMPS) required for these operations.
LOADING AND UNLOADING

Materials spilled or leaked during loading and unloading can either be carried away in stormwater runoff or washed off when the area is cleaned. As a result, many different pollutants can be introduced into the storm drain system, including sediment, nutrients, trash, organic material, trace metals, and an assortment of other pollutants.

Application
Outdoor loading and unloading normally takes place on docks or terminals at many commercial, industrial, institutional, and municipal operations. While nearly every commercial, industrial, institutional, municipal and transport-related site has a location where materials or products are shipped or received, the risk of stormwater pollution is greatest for operations that transfer high volumes of material or liquids, or unload potentially hazardous materials. Some notable examples to look for in a subwatershed include distribution centers, grocery stores, building supply outlets, lawn and garden centers, petroleum wholesalers, warehouses, landfills, ports, solid waste facilities, and maintenance depots. Attention should also be paid to industrial operations that process bulk materials and any operations regulated under industrial stormwater NPDES permits.

Feasibility
Loading/unloading pollution prevention practices can be applied in all geographic and climatic regions, and work most effectively at preventing sediment, nutrients, toxic materials, and oil from coming into contact with stormwater runoff or runon. Few impediments exist to using this practice, except for the cost to retrofit existing loading and unloading areas with covers or secondary containment.

Implementation Considerations
Loading/unloading pollution prevention practices should be integrated into the overall stormwater pollution prevention plan for a facility. Employee training should focus on proper techniques to transfer materials, using informational signs at loading docks and material handling sites and during routine safety meetings.

The summary of required pollution prevention techniques intended to prevent or reduce the discharge of pollutants from at loading/unloading areas is found in Figure 13.
The loading and unloading checklist (Figure 14) provides the best management practices (BMPS) required for these operations.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description of pollution prevention mechanism or BMP to be implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design liquid storage areas with impervious surfaces and secondary containment</td>
<td></td>
</tr>
<tr>
<td>Minimize stormwater run-on by covering storage areas with a permanent canopy or roof</td>
<td></td>
</tr>
<tr>
<td>Slope containment areas to a drain with a positive control (lock, valve, or plug) that leads to the sanitary sewer (if permitted) or to a holding tank</td>
<td></td>
</tr>
<tr>
<td>Provide permanent cover for building materials stored outside</td>
<td></td>
</tr>
<tr>
<td>Direct runoff away from building material storage areas</td>
<td></td>
</tr>
<tr>
<td>Install a high-level alarm on storage tanks to prevent overfilling</td>
<td></td>
</tr>
</tbody>
</table>

Cost - Costs to implement loading/unloading pollution prevention practices consist of one-time construction costs to retrofit new or existing loading areas, but annual maintenance costs are relatively low thereafter. Exceptions include industries that elect to use expensive air pressure or vacuum systems.
for loading/unloading facilities, which can also be expensive to maintain (U.S. EPA, 1992). Ongoing costs include employee training and periodic monitoring of loading/unloading activities.
OUTDOOR STORAGE

Unprotected outdoor storage areas can generate a wide range of stormwater pollutants, such as sediment, nutrients, toxic materials, and oil and grease.

Application
Many businesses store materials or products outdoors. Protecting outdoor storage areas is a simple and effective pollution prevention practice for many commercial, industrial, institutional, municipal, and transport related operations. The underlying concept is to prevent runoff contamination by avoiding contact between outdoor materials and rainfall (or runoff). The risk of stormwater pollution is greatest for operations that store large quantities of liquids or bulk materials at sites that are connected to the storm drain system.

Several notable operations include nurseries and garden centers, boat building/repair, auto recyclers/body shops, building supply outlets, landfills, ports, recycling centers, solid waste and composting facilities, highway maintenance depots, and power plants. Attention should also be paid to industrial operations that process bulk materials, which are often regulated under the industrial stormwater permit.

Feasibility
Outdoor storage requires routine monitoring by employees. Most operations have used covering as the major practice to handle outdoor storage protection (U.S. EPA, 1999). The strategy is to design and maintain outdoor material storage areas so that they:

- Reduce exposure to stormwater and prevent runon
- Use secondary containment to capture spills
- Can be regularly inspected
- Have an adequate spill response plan and cleanup equipment

Implementation Considerations
Materials can be protected by installing covers, secondary containment, and other structures to prevent accidental release. Outdoor storage areas can be protected on a temporary basis (tarps or plastic sheeting) or permanently through structural containment measures (such as roofs, buildings, or concrete berms).
Covers - The use of impermeable covers is an effective pollution prevention practice for non-hazardous materials. Covers can be as simple as plastic sheeting or tarps, or more elaborate roofs and canopies. Site layout, available space, affordability, and compatibility with the covered material all dictate the type of cover needed for a site. In addition, the cover should be compatible with local fire and building codes and OSHA workplace safety standards. Care should be taken to ensure that the cover fully protects the storage site and is firmly anchored into place.

Secondary Containment – Secondary containment is designed to contain possible spills of liquids and prevent stormwater run-on from entering outdoor storage areas. Secondary containment structures vary in design, ranging from berms and drum holding areas to specially-designed solvent storage rooms.

Secondary containment can be constructed from a variety of materials, such as concrete curbs, earthen berms, plastic tubs, or fiberglass or metal containers. The type of material used depends on the substance contained and its resistance to weathering. In general, secondary containment areas should be sized to hold 110 percent of the volume of the storage tank or container unless other containment sizing regulations apply (e.g., fire codes).

If secondary containment areas are uncovered, any contaminated water that accumulates must be collected in a sanitary sewer, a stormwater treatment system, or a licensed disposal facility. If a spill or leak has occurred, then you should ship it out or treat it until there is no more evidence of pollution. Water quality monitoring may be needed to determine whether the water is contaminated and dictate the method of disposal. If the stormwater is clean, or an on-site stormwater treatment practice is used, a valve should be installed in the containment dike so that excess stormwater can be drained out of the storage area and directed either to the storm drain (if clean) or into the stormwater treatment system (if contaminated). If there is a visible sheen, the water may be treated by passing it through a sorbent material to remove the contaminant. The valve should always be kept closed except when stormwater is drained, so that any spills that occur can be effectively contained. Local sewer authorities may not allow discharges from a large containment area into the sewer system, and permission must be obtained prior to discharge. If discharges to the sanitary sewer system are prohibited, containment should be provided, such as a holding tank that is regularly pumped out.

Employee training on outdoor storage pollution prevention should focus on the activities and site areas with the potential to pollute stormwater and the proper techniques to manage material storage areas to prevent runoff contamination. Training can be conducted through safety meetings and the posting of on-site informational signs. Employees should also know the onsite person who is trained in spill response.

The summary of required pollution prevention techniques intended to prevent or reduce the discharge of pollutants from an outdoor storage areas is found in Figure 16.
The Outdoor or Bulk Material Storage checklist (Figure 17) provides the best management practices (BMPS) required for these operations.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description of pollution prevention mechanism or BMP to be implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training provided for spill response procedures.</td>
<td></td>
</tr>
<tr>
<td>Grade the designated loading/unloading to prevent run-on or pooling of stormwater</td>
<td></td>
</tr>
<tr>
<td>Cover the loading/unloading areas with a permanent canopy or roof</td>
<td></td>
</tr>
<tr>
<td>Install an automatic shutoff valve to interrupt flow in the event of a liquid spill</td>
<td></td>
</tr>
<tr>
<td>Install a high-level alarm on storage tanks to prevent overfilling</td>
<td></td>
</tr>
<tr>
<td>Pave the loading/unloading area with concrete rather than asphalt</td>
<td></td>
</tr>
<tr>
<td>Position roof downspouts to direct stormwater away from loading/unloading areas</td>
<td></td>
</tr>
</tbody>
</table>

Cost - Many storage protection practices are relatively inexpensive to install. Actual costs depend on the size of the storage area and the nature of the pollution prevention practices. Other factors are whether practices are temporary or permanent and the type of materials used for covers and containment. Employee training can be done in connection with other safety training to reduce program costs. Training costs can also be reduced by using existing educational materials from local governments, professional associations or National Compliance Assistance Centers http://www.assistancecenters.net.

<table>
<thead>
<tr>
<th>Storage Protection Device</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Slab (6”)</td>
<td>$3.50 to $5.00 per ft2</td>
</tr>
<tr>
<td>Containment Pallets</td>
<td>$50 to $350 based on size and # of barrels to be stored</td>
</tr>
<tr>
<td>Storage buildings</td>
<td>$6 to $11 per ft2</td>
</tr>
<tr>
<td>Tarps & Canopies</td>
<td>$25 to $500 depending on size of area to cover</td>
</tr>
</tbody>
</table>

Sources: Costs were derived from a review of Ferguson et al., 1997 and numerous websites that handle proprietary spill control or hazardous material control products.
Resources

Many thanks to the Center of Watershed Protection for providing many of the recommendations considered in this document. www.cwp.org

Coordinating Committee For Automotive Repair (CCAR) Source: US EPA CCARGreenLink®, the National Automotive Environmental Compliance Assistance Center CCAR-GreenLink® Virtual Shop http://www.ccar-greenlink.org/

TERC. http://www.tercenter.org/

US EPA. The Water Locator Tool helps facilities pinpoint each site’s latitude and longitude, approximating the nearest receiving water, and providing information on the impairment status of the water, applicable total maximum daily loads (TMDLs), and potential pollutants of concern. http://cfpub.epa.gov/npdes/stormwater/tmdltool.cfm

US EPA. A useful template to create your own SWPPP. The Template is for EPA’s Multisector Permit, and has several items that are not part of your requirements, however it provides step-by-step instructions for developing a SWPPP for your site. http://www.epa.gov/npdes/pubs/msgs2008_swppptemplate.doc

For more information

If you have additional questions regarding stormwater discharges that might need a permit, call Industrial and General Permits Division 410-537-3323.

If you have questions regarding vehicle wash or maintenance bay wastewater discharged onsite to subsurface disposal systems such as septic systems, drywells, seepage pits, or drainage holes call: Groundwater Permits Division 410-537-3778.