MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

DOCKET #06-21

- COMPANY: Bluegrass Materials Company, LLC dba Martin Marietta, Inc
- LOCATION: North East Quarry, 233 Stevenson Road, North East, MD 21901
- APPLICATION: Modification of the existing 900 ton per hour crushing and screening plant that will result in an increase in production rate to 1400 tons per hour.

ITEM	DESCRIPTION
1	Notice of Application and Opportunity to Request an Informational Meeting
2	Permit to Construct Application Forms – Form 5 Application Form, Form 5T Summary for meeting ambient and T-BACT requirements, Form 5EP Emissions Data, plant diagram, and crusher specifications.
3	Evidence of Zoning Approval.

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND OPPORTUNITY TO REQUEST AN INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Bluegrass Materials Company, LLC dba Martin Marietta, Inc on April 7, 2021 for the modification of their crushing and screening plant to increase throughput from 900 tons per hour to 1400 tons per hour. The proposed modification is located at 233 Stevenson Road, North East Maryland 21901.

The application and other supporting documents are available for public inspection on the Department's website. Look for Docket #06-21 at the following link:

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Department will hold an informational meeting to discuss the application and the permit review process if the Department receives a written request for a meeting within 10 working days from the date of the second publication of this notice. All requests for an informational meeting should be emailed to Ms. Shannon Heafey at shannon.heafey@maryland.gov.

Further information may be obtained by contacting Ms. Shannon Heafey by email at shannon.heafey@maryland.gov or by phone at (410) 537-4433.

George S. Aburn, Jr., Director Air and Radiation Administration

April 7, 2021

Maryland Department of the Environment Air and Radiation Management Administration, Air Quality Permits Program 1800 Washington Boulevard Baltimore, MD 21230 Attn: Dennis Borie Sent via email to Dennis.Borie@maryland.gov

Re: Permit to Construct Application: Plant Modification North East Quarry, Permit No: 015-0005 Bluegrass Materials Company, LLC (DBA Martin Marietta)

Dear Mr. Borie,

Please find enclosed a *Permit to Construct Application*, in addition to all necessary supporting forms and information, for the replacement of the primary crusher associated Plant 2E at the North East Quarry (ARMA Registration Number 015-0005-6-0299). This project proposes to replace the **One (1) Metso C140 primary crusher** with **One (1) Metso C160 primary crusher**. Further details regarding the existing and proposed equipment are attached to this application. All Plant 2E equipment will continue to be powered by the electric grid. Overall plant throughput will increase as a result of the modification, from 900 tons per hour to approximately 1400 tons per hour (see attached "Material Balance Data & Emissions Calculations" for details). Please note that estimated overall plant throughput is greater than the design capacity/projected throughput of the primary crusher. The goal of this project is to reduce the number of operating hours necessary for the plant to operate in order to meet market demand. Please also note that this application includes a *Crystalline Silica Air Quality Modeling Analysis* (AERMOD) prepared by RTP Environmental Associates, which demonstrates ambient impact requirements under the Toxic Air Pollutant (TAP) Regulations of COMAR 26.11.15.06.

The associated permit for this facility includes a flexible 600 tons per hour Portable Plant (ARMA Registration Number 015-0005-6-0364). This plant was very conservatively incorporated into premises emissions calculations and modelling, by assuming: (1) that all possible permitted portable equipment would operate; (2) that the portable plant would operate at 600 tons per hour simultaneously with Plant

Mr. Borie 04/2021 Page 2

2E, and; (3) that the portable plant would be located east of Plant 2E (closer to the nearest property boundary).

This application package contains the following information:

- Application Checklist
- Form 5
- Form 5T
- Form 5EP
- Vendor/Manufacturer Specifications
- Process Flow Diagram & Equipment List
- Site Plan map
- Material Balance Data & Emissions Calculations
- Crystalline Silica Air Quality Modeling Analysis (AERMOD)
 - Email includes AERMOD input files
- (Material) Safety Data Sheets (for crushed stone)
- Letter of Zoning (no changes from 2017 application)
- Certificate of Insurance (workers compensation)

If you have any questions or concerns regarding any part of this application, please do not hesitate to contact me. Thank you in advance for your assistance with this application.

Respectfully,

Gustaf Buttar Senior Environmental Engineer Martin Marietta 10000 Beaver Dam Road Cockeysville, MD 21030 m. (443) 802-2769 e.gus.buttar@martinmarietta.com www.martinmarietta.com

Cc: Kevin Cantalupo, Martin Marietta (<u>Kevin.Cantalupo@martinmarietta.com</u>) Andrew Bena, MDE (<u>Andrew.Bena1@maryland.gov</u>) MDE Air Permits (<u>MDE.Submit-AirPermits@maryland.gov</u>) File

FORM 5

AIR QUALITY PERMIT TO CONSTRUCT **APPLICATION CHECKLIST**

OWNER OF EQUIPMENT/PROCESS									
COMPANY NAME:	Bluegrass Materials Company, LLC (DBA Martin Marietta Materials, Inc)								
COMPANY ADDRESS: Local Mailing Address: 10000 Beaver Dam Road, Cockeysville, MD 21030									
	LOCATION OF EQUIPMENT/PROCESS								
PREMISES NAME:	North East Quarry (existing Permit to Operate No. 015-0005)								
PREMISES ADDRESS:	233 Stevenson Road, North East, MD 21901								
CONTACT	INFORMATION FOR THIS PERMIT APPLICATION								
CONTACT NAME:	Gustaf Buttar								
JOB TITLE:	Senior Environmental Engineer								
PHONE NUMBER:	(443) 802-2769								
EMAIL ADDRESS:	gus.buttar@martinmarietta.com								
DESCRIPTION OF EQUIPMENT OR PROCESS									
Equipment replacement: Primary Crusher (Metso C160 Jaw Crusher) for Registration No. 015-0005-6-0299									

Application is hereby made to the Department of the Environment for a Permit to Construct for the following equipment or process as required by the State of Maryland Air Quality Regulation, COMAR 26.11.02.09.

Check each item that you have submitted as part of your application package.

- \mathbf{X} Application package cover letter describing the proposed project
- \mathbf{X} Complete application forms (Note the number of forms included or NA if not applicable.)
 - No. <u>1</u> Form 5 No. NA Form 11 No. 1 Form 5T No. 1 Form 5EP No. NA Form 6
 - No. NA Form 10

No.	NA	Form 41
No.	NA	Form 42
No.	NA	Form 44

- X Vendor/manufacturer specifications/guarantees
- \mathbf{X} Evidence of Workman's Compensation Insurance
- \mathbf{X} Process flow diagrams with emission points
- X Site plan including the location of the proposed source and property boundary
- X Material balance data and all emissions calculations
- \mathbf{X} Material Safety Data Sheets (MSDS) or equivalent information for materials processed and manufactured.
- \square Certificate of Public Convenience and Necessity (CPCN) waiver documentation from the Public Service Commission⁽¹⁾
- X Documentation that the proposed installation complies with local zoning and land use requirements ⁽²⁾
 - (1) Required for emergency and non-emergency generators installed on or after October 1, 2001 and rated at 2001 kW or more.
 - (2) Required for applications subject to Expanded Public Participation Requirements.

MARYLAND DEPARTMENT OF THE ENVIRONMENT Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • <u>www.mde.state.md.us</u>

APPLICATION FOR FUEL BURNING EQUIPMENT

Information Regarding Public Outreach

For Air Quality Permit to Construct applications subject to public review, applicants should consider the following information in the initial stages of preparing a permit application.

If you are not sure at the time you are applying for a permit whether public review of your application is required or for information on steps you can take to engage the surrounding community where your planned project will be located, please contact the Air Quality Permits Program at 410-537-3225 and seek their advice.

Communicating and engaging the local community as early as possible in your planning and development process is an important aspect of your project and should be considered a priority. Environmental Justice or "EJ" is a movement to inform, involve, and engage communities impacted by potential and planned environmental projects by affording citizens opportunities to learn about projects and discuss any concerns regarding impacts.

Although some permit applications are subject to a formal public review process prescribed by statute, the Department strongly encourages you to engage neighboring communities separate from and well ahead of the formal permitting process. Sharing your plans by way of community meetings, informational outreach at local gatherings or through local faith-based organizations can initiate a rewarding and productive dialogue that will reduce anxiety and establish a permanent link with your neighbors in the community.

All parties benefit when there is good communication. The Department can assist applicants in developing an outreach plan that fits the needs of both the company and the public.

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 =1-800-633-6101 = www.mde.state.md.us

Air and Radiation Management Administration = Air Quality Permits Program

APPLICATION FOR PROCESSING/MANUFACTURING EQUIPMENT

Permit to Construct 🗅

Registration Update

Initial Registration 🖵

1A. Owner of Equipment/Company Name Bluegrass Materials Company, LLC (DBA Ma	rtin Marietta)		E IN THIS BLOCK TION NUMBER
Mailing Address			
10000 Beaver Dam Road		County No.	Premises No.
Street Address			
Cockeysville MD	21030	1-2	3-6
City State	Zip	Registration Class	Equipment No.
Telephone Number			
(443) 802-2769			8-11
()		- Data Year	
Signature			
x louald M. G		12-13	Application Date
Ronald M. Kopplin, East Division Preside	nt, Martin Marietta	4-5-2021	
Print Name and Title		Date	
North EastMDCity/TownStateNorth East QuarryPremises Name (if different from above)			802-2769 hone Number
B Status (A= New, B= Modification to Exist New Construction Begun (MM/YY) B 0 9 2 1 15 16-19	ting Equipment, Car New Construction Completed (MM/ 20-23	on Existin YY) Operation	g Initial (MM/YY) D-23
L. Describe this Equipment: Make, Model, F One (1) Metso C160 Primary Jaw Crusher (replacing M			
. workmen a compensation coverage	inder/Policy Number		Supiration Data
Company			Expiration Date
NOTE: Before a Permit to Construct may be issued a worker's compensation coverage as rea	by the Department, the a quired under Section 1-2	applicant must provide the De 202 of the Worker's Compensi	partment with proof of ation Act.
A. Number of Pieces of Identical Equipme	nt Units to be Reg	istered/Permitted at th	is Time_1
6B. Number of Stack/Emission Points Asso	ociated with this E	quipment_1 (fugitive)	
rm Number: 5 v. 9/27/2002		1. 11. 15. 15. 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971	
Y Users 1-800-735-2258		f	Page 1 of 4 Recycled Paper

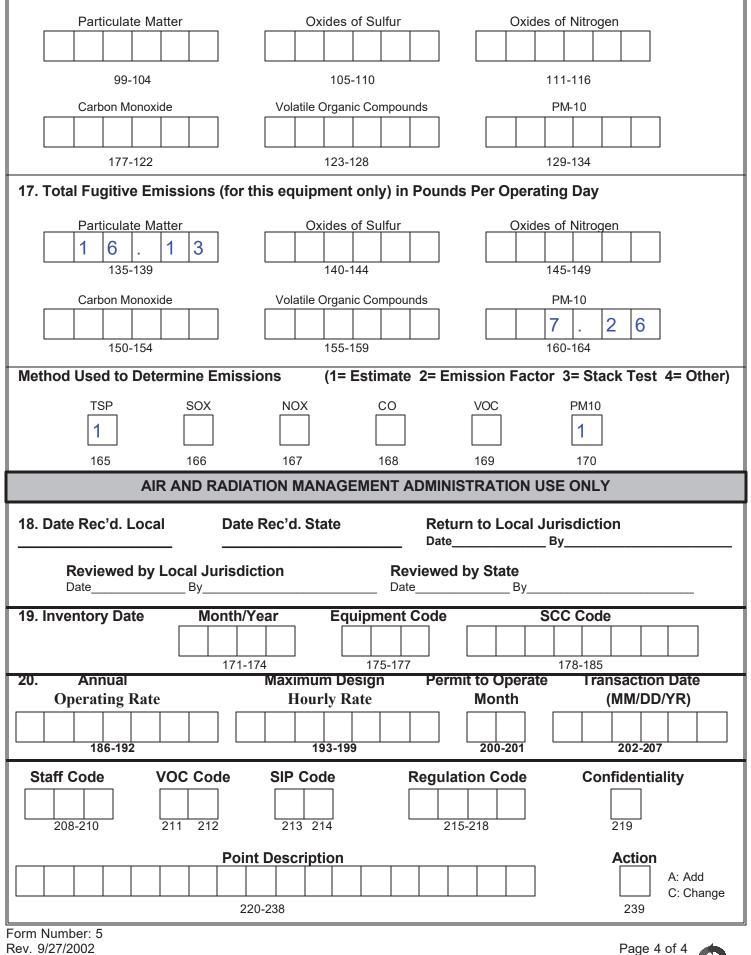

7. Person Installing this Equipment (if different from Number 1 on Page 1) Name_Same as Numer 1 on Page 1 Title
Company
Mailing Address/Street
City/Town State Telephone ()
8. Major Activity, Product or Service of Company at this Location
Quarrying and processing of stone (primarily trap rock and granite) aggregate for use in the construction industry. Material is produced by the use of crushers, screens, conveyors, and associated ancillary equipment to produce various specifications of aggregate product.
SIC Code 1429 (Crushed and Broken Stone, Note Elsewhere Classified)
9. Control Devices Associated with this Equipment
None
24-0
Simple/Multiple CycloneSpray/Adsorb TowerVenturi ScrubberCarbon AdsorberElectrostatic PrecipitatorBaghouse Thermal/Catalytic AfterburnerDry Scrubber24-124-224-324-424-524-624-724-8
Other
X Describe Wet suppression (wet dust suppression, carryover, and wet material processing)
10. Annual Fuel Consumption for this Equipment
OIL-1000 GALLONS SULFUR % GRADE NATURAL GAS-1000 FT ³ LP GAS-100 GALLONS GRADE
COAL- TONS SULFUR % ASH% WOOD-TONS MOISTURE % 46-52 53-55 56-58 59-63 64-65
OTHER FUELS ANNUAL AMOUNT CONSUMED OTHER FUEL ANNUAL AMOUNT CONSUMED
(Specify Type) 66-1 (Specify Units of Measure) (Specify Type) 66-2 (Specify Units of Measure) 1= Coke 2= COG 3=BFG 4=Other (Specify Type) 66-2 (Specify Units of Measure)
11. Operating Schedule (for this Equipment)
Continuous OperationBatch ProcessHours per BatchBatch per WeekHours per DayDays Per WeekDays per YearX
Seasonal Variation in Operation:No VariationWinter PercentSpring PercentSummer PercentFall Percent(Total Seasons= 100%)202628267677-7879-8081-8283-8483-84

Image: Sector	-	mation- is Exhaust through Do	oors, Windows	s, etc. Onl	y? (Y/N)	
Image: Second					85	
Attach a block diagram of process/process line, indicating new equipment as reported on this form and all existing equipment, including control devices and emission points. 13. Input Materials (for this equipment) is any of this data to be considered confidential? (Y or N) Is any of this data to be considered confidential? (Y or N) Input Materials (for this equipment) PER HOUR UNITS 1. Guarried store NA (mixture) 1.200 mix rated stph 2. NA (mixture) 1.200 mix rated stph 3. 1.120 projected stph (varies based) 3. 1.120 projected stph (varies based) 4. 1.120 projected stph 2.000.000 tore 3. 1.120 projected stph (varies based) tore 4. 1.120 projected stph (varies based) tore 5. 1.120 projected stph (varies based) tore 6. 1.120 projected stph (varies based) tore 7. 1.120 projected stph (varies based) tore 8. 1.120 projected stph (varies based) tore 9. 1.200 projected stph (varies based) tore 1.120 projected stph (varies ba	If not, then Height Avove C	Ground (FT) Inside Diameter at Top	D Exit Tempe	rature (°F)	Exit Velocity (I	T/SEC)
Attach a block diagram of process/process line, indicating new equipment as reported on this form and all existing equipment, including control devices and emission points. 13. Input Materials (for this equipment) is any of this data to be considered confidential? (Y or N) Is any of this data to be considered confidential? (Y or N) Input Materials (for this equipment) PER HOUR UNITS 1. Guarried store NA (mixture) 1.200 mix rated stph 2. NA (mixture) 1.200 mix rated stph 3. 1.120 projected stph (varies based) 3. 1.120 projected stph (varies based) 4. 1.120 projected stph 2.000.000 tore 3. 1.120 projected stph (varies based) tore 4. 1.120 projected stph (varies based) tore 5. 1.120 projected stph (varies based) tore 6. 1.120 projected stph (varies based) tore 7. 1.120 projected stph (varies based) tore 8. 1.120 projected stph (varies based) tore 9. 1.200 projected stph (varies based) tore 1.120 projected stph (varies ba	2	5 N A			N	Δ
NOTE: Attach a block diagram of process/process line, indicating new equipment as reported on this form and all existing equipment, including control devices and emission points. 13. Input Materials (for this equipment only) Is any of this data to be considered confidential? (Y or N) NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS Countrol devices and emission NX (maker) CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS Countrol devices Countrol devices Countrol devices Attach a block diagram of process/ Attach a be considered confidential? (Y or N) INPUT RATE NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS Countrol devices Countrol devices Countrol devices Countrol device Countrol devices Countrol devices Countrol device Countrol Countrol		5 N A		IN A	IN	A
Attach a block diagram of process/process line, indicating new equipment as reported on this form and all existing equipment, including control devices and emission points. 13. input Materials (for this equipment only) Is any of this data to be considered confidentia? (Y or N) INPUT RATE NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER Year UNITS 1 Clustried store NA (mature) 1.200 max rated stph 2,000.000 tores 2. NA (mature) 1.200 max rated stph (write based on 10.000) tores 3. Imput Materials (for this equipment) Process/Product Stream OUTPUT RATE UNITS PER YEAR UNITS 1.120 projected stph 2,000,000 tores 1. Quartiel store NA (mature) 1200 max rated stph 2,000,000 tores 1. Quartiel store NA (mature) 1200 max rated stph 2,000,000 tores 1.	86-88	89-91	92-	95	96-98	
and all existing equipment, including control devices and emission points. 13. Input Materials (for this equipment only) Is any of this data to be considered confidential? INPUT RATE NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Quartied store NA (meture) 1.20 max rated sigh (values based on and the store) tors 3. 1.20 projected sigh (values based on and the store) tors 4. 1.20 projected sigh (values based on and the store) tors 5. 1.120 projected sigh construction tors 6. 1.120 projected sigh construction tors 7. 1.120 projected sigh (values based on and the store) tors 7. 1.120 projected sigh (values based on and the store) tors 1. Counter store NA(meture) 1/200 max rated sigh (value based on and the store) tors 1. Counter store NAME CAS NO. (if APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Counter store <th></th> <th>NOTE:</th> <th></th> <th></th> <th></th> <th></th>		NOTE:				
Is any of this data to be considered confidential? Is any of this data to be considered confidential? (Y or N) INPUT RATE UNITS PER YEAR UNITS 1. Counted store NA (mixture) 1.260 max rated stph (2.00,000 torns 3. 1,120 projected stph (2.00,000 torns 4. 1,120 projected stph (2.00,000 torns 5. 1,120 projected stph (2.00,000 torns 6. 1,120 projected stph (2.00,000 torns 7. 1 1 1 1 1 9. 1 1 1 1 1 OUTPUT RATE OUTPUT RATE NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Quarried store NA (mixture) 1200 max rated stph (2.00,000 torns 2. A 1.120 projected stph (Varies based on 1 1						form
NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Quarried stone NA (mixture) 1,260 max rated stph 2,000,000 form 3. International stone International stone stph 2,000,000 form 3. International stone International stone stph 2,000,000 form 3. International stone			(Y or N)			
1 Quaried stone NA (mixture) 1.280 max rated stph 2.000.000 tons 2. 1.120 projected stph (varies based on and and stope) (varies based on and and stope) (varies based on and and stope) 3. 1 1.200 projected stph (varies based on and and stope) 4. 1 1 1.200 projected stph (varies based on and stope) 5. 1 1 1 1 1 1 1 6. 1 </th <th>NAME</th> <th></th> <th></th> <th></th> <th></th> <th></th>	NAME					
2. Control total (c) control total (c) control total 3. 1,120 projected stph (wrifes based on market demand)	4	· · · · · · · · · · · · · · · · · · ·				
3.	2.		,			10113
A. Image: Constraint of the second operation of the second ope	3.		., риојоской	- cipii		
6. Image: Second s	4.					
Name Cas NO. (IF APPLICABLE) PER HOUR UNITS 0. 0. 0. 0. 1. Quaried stone NA(mixture) 1260 max rated stph 2.000,000 tons 2. 1.120 projected stph 2.000,000 tons 3. 1.120 projected stph 2.000,000 tons 4. 1.120 projected stph 2.000,000 tons 5. 0. 1.120 projected stph (ariares based on 6. 0. 0. 0. 0. 9. 0. 0. 0. 0. 10. 0. 0. 0. 0. 7. 0. 0. 0. 0. 9. 0. 0. 0. 0. 1. Nake CAS NO. (IF APPLICABLE) PER HOUR UNITS 7. 0. 0. 0. 0. 9. 0. 0. 0. 0. 0. 1. Note: Crushed stone fines 0. 0. 0. 2. (sodiment/particulate) captured in the stophicable. 0. 0. 0. 3. 0. 0. 0. 0. 0. 1. <td>5.</td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td>	5.			1		1
8. Image: constraint of the second constr	6.			1		
9. CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Quaried stone NA (mixture) 1260 max rated stph (varies based on 1.120 projected stph (varies based on 3. 3. 1.120 projected stph (varies based on 3. 4. 5. 1.120 projected stph (varies based on 4. 5. 6. 1.120 projected stph (varies based on 4. 7. 8. 1.120 projected stph (varies based on 4. 7. 1.120 projected stone fines 4	7.					
TOTAL 14. Output Materials (for this equipment) Process/Product Stream OUTPUT RATE UNITS NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1 Quarried stone NA (mixture) 1260 max rated stph 2,000,000 tons 2. 1,120 projected stph (varies based on stph 5	8.					
14. Output Materials (for this equipment) Process/Product Stream OUTPUT RATE NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Quarried stone NA (mixture) 1260 max rated stph 2,000,000 tons 2. Image: Cas NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 3. Image: Cas NO. (IF APPLICABLE) PER YEAR UNITS Image: Cas NO.	9.					
NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Quarried stone NA (mixture) 1260 max rated stph 2.000,000 tons 2. Image: Instrument of the store store of the store of	TOTAL					
Name CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Note: Crushed stone fines	Process/Product Strea	m	PER HOUR			UNITS
3. (Nade projected of the p		NA (mixture)	1260 max rated	stph	2,000,000	tons
4. Image: Solid and Liquid Image: Solid and Liquid 7. Image: Solid and Liquid Image: Solid and Liquid 9. Image: Solid and Liquid Image: Solid and Liquid OUTPUT RATE OUTPUT RATE NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS NAME CAS NO. (IF APPLICABLE) VER HOUR UNITS PER YEAR UNITS A start from wet suppression & wash plant system All process water Image: Solid and NPDES Solid and NPDES permit. Output rate not applicable. Colspan="2">A start from wet suppression & wash plant system All process water Image: Solid and NPDES permit. Output rate not applicable. Solid and NPDES Image: Solid and NPDES Image: Solid and Liquid Image: Solid			1,120 projected	stph	(varies based on	
S. Image: Constraint of the second constr					And the second s	
6. Image: Solid and Liquid Image: Solid and Liquid 7. Image: Solid and Liquid Image: Solid and Liquid OUTPUT RATE 15. Waste Streams - Solid and Liquid OUTPUT RATE NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Note: Crushed stone fines Image: Solid and Liquid Image: Solid and Liquid Image: Solid and Liquid 1. Note: Crushed stone fines Image: Solid and Liquid and Liquid and Liquid and System All process water Image: Solid and Liquid and Liquid and System All process water Image: Solid and Liquid and Liquid and Liquid and Liquid and System All process water Image: Solid and Liquid and Liquid and Liquid and System All process water Image: Solid and Liquid and Liquid and Liquid and Liquid and System All process water Image: Solid and Liquid and Liquid and Liquid and Liquid and Liquid and System All process water Image: Solid and Liquid and Liqu					market demand)	
7. Image: Solid and Liquid Image: Solid and Liquid OUTPUT RATE NAME CAS NO. (IF APPLICABLE) 1. Note: Crushed stone fines Image: Solid and Liquid 1. Note: Crushed stone fines Image: Solid and Liquid 2. (sediment/particulates) captured in start from wet suppression & wash plant system. All process water Image: Solid and NPDES 4. managed on site in accordance with spermit. Output rate not applicable. Image: Solid and NPDES 6. Image: Solid and NPDES Image: Solid and NPDES 9. Image: Solid and NPDES Image: Solid and NPDES					market demand)	
8. 9. 9. Image: Construct of the second system of the second sys	6				market demand)	
9. TOTAL TOTAL T5. Waste Streams - Solid and Liquid OUTPUT RATE NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Note: Crushed stone fines 2. (sediment/particulates) captured in a system. All process water 3. 4.					market demand)	
TOTAL 15. Waste Streams - Solid and Liquid OUTPUT RATE NAME CAS NO. (IF APPLICABLE) PER HOUR UNITS PER YEAR UNITS 1. Note: Crushed stone fines 1 <	7.					
NAMECAS NO. (IF APPLICABLE)PER HOURUNITSPER YEARUNITS1.Note: Crushed stone fines<	7. 8.					
NAMECAS NO. (IF APPLICABLE)PER HOURUNITSPER YEARUNITS1.Note: Crushed stone fines<	7. 8. 9.					
Note: Crushed stone titles	6. 7. 8. 9. TOTAL 15. Waste Streams- Solid a	nd Liquid				
2. (sediment/particulates) captured in	7. 8. 9. TOTAL 15. Waste Streams- Solid a	-	PER HOUR		PUT RATE	
3. plant system. All process water	7. 8. 9. TOTAL 15. Waste Streams- Solid a NAME	-	PER HOUR		PUT RATE	
4. managed on site in accordance with	7. 8. 9. TOTAL 15. Waste Streams - Solid a NAME 1. <u>Note: Crushed stone fines</u> 2. (sediment/particulates) captured ir	CAS NO. (IF APPLICABLE)	PER HOUR		PUT RATE	UNITS
permit. Output rate not applicable. Image: Constraint of applicable. 6. Image: Constraint of applicable. 7. Image: Constraint of applicable. 8. Image: Constraint of applicable. 9. Image: Constraint of applicable.	7. 8. 9. TOTAL 15. Waste Streams - Solid a NAME 1. Note: Crushed stone fines 2. (sediment/particulates) captured ir 3. water from wet suppression & wase plant system. All process water	CAS NO. (IF APPLICABLE)	PER HOUR		PUT RATE	UNITS
6. 1 1 1 1 7. 1 1 1 1 8. 1 1 1 1 9. 1 1 1 1	7. 8. 9. TOTAL 15. Waste Streams - Solid a NAME 1. Note: Crushed stone fines 2. (sediment/particulates) captured ir 3. water from wet suppression & water 4. managed on site in accordance wite	CAS NO. (IF APPLICABLE)	PER HOUR		PUT RATE	UNITS
8.	7. 8. 9. TOTAL 15. Waste Streams - Solid a NAME 1. Note: Crushed stone fines 2. (sediment/particulates) captured ir 3. water from wet suppression & water 4. managed on site in accordance with 5. approved mining plan and NPDES part output rate not applicable	CAS NO. (IF APPLICABLE)	PER HOUR		PUT RATE	UNITS
9	 7. 8. 9. TOTAL 15. Waste Streams - Solid a NAME 1. Note: Crushed stone fines 2. (sediment/particulates) captured ir water from wet suppression & was plant system. All process water 4. managed on site in accordance wition approved mining plan and NPDES permit. Output rate not applicable. 	CAS NO. (IF APPLICABLE)	PER HOUR		PUT RATE	
	 7. 8. 9. TOTAL 15. Waste Streams - Solid a NAME 1. Note: Crushed stone fines 2. (sediment/particulates) captured ir 3. water from wet suppression & managed on site in accordance wites approved mining plan and NPDES permit. Output rate not applicable. 7. 	CAS NO. (IF APPLICABLE)	PER HOUR		PUT RATE	UNITS
	 7. 8. 9. TOTAL 15. Waste Streams - Solid a NAME 1. Note: Crushed stone fines 2. (sediment/particulates) captured ir 3. water from wet suppression & was plant system. All process water 4. managed on site in accordance with the system. All process water 4. managed on site in accordance with the system. All process water 4. managed on site in accordance with the system. All process water 4. managed on site in accordance with the system. All process water 4. managed on site in accordance with the system. All process water 5. approved mining plan and NPDES 6. 7. 8. 	CAS NO. (IF APPLICABLE)	PER HOUR		PUT RATE	

16. Total Stack Emissions (for this equipment only) in Pounds Per Operating Day

FORM 5T

MARYLAND DEPARTMENT OF THE ENVIRONMENT Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

FORM 5T: Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration

Applicant Name: Bluegrass Materials (Martin Marietta)

<u>Step 1:</u> Quantify premises-wide emissions of Toxic Air Pollutants (TAP) from new and existing installations in accordance with COMAR 26.11.15.04. Attach supporting documentation as necessary.

Toxic Air Pollutant (TAP)	CAS Number	Class I or Class II?	Screen	ing Levels (µg/m³)	Estimated P Actual Total Existing TAP Emissions	remises Wide Em Projected TAP Emissions from Proposed Installation	Premis Tota	of TAP es Wide I TAP ssions
			1-hour	8-hour	Annual	(lb/hr)	(lb/hr)	(lb/hr)	(lb/yr)
ex. ethanol	64175	11	18843	3769	N/A	0.60	0.15	0.75	1500
ex. benzene	71432	1	80	16	0.13	0.5	0.75	1.00	400
SILICA, CRYSTALLINE - QUARTZ	14808607	NOT LISTED		0.25		0.0071	0.0007	0.0103	30.96

(attach additional sheets as necessary.)

Note: Screening levels can be obtained from the Department's website (<u>http://www.mde.maryland.gov</u>) or by calling the Department.

<u>Step 2:</u> Determine which TAPs are exempt from further review. A TAP that meets either of the following Class I or Class II small quantity emitter exemptions is exempt from further TAP compliance demonstration requirements under Step 3 and Step 4.

Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(a))

A Class II TAP is exempt from Step 3 and Step 4 if the Class II TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m³.

Class I TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(b))

A Class I TAP is exempt from Step 3 and Step 4 if the Class I TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour and 350 pounds per year, any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 μ g/m³, and any applicable annual screening level for the TAP must be greater than 1 μ g/m³.

If a TAP meets either the Class I or Class II TAP Small Quantity Emitter Exemption Requirements, no further review under Step 3 and Step 4 are required for that specific TAP.

FORM 5T: Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration

Step 3: Best Available Control Technology for Toxics Requirement (T-BACT, COMAR 26.11.15.05)

In the following table, list all TAP emission reduction options considered when determining T-BACT for the proposed installation. The options should be listed in order beginning with the most effective control strategy to the least effective strategy. Attach supporting documentation as necessary.

		% Emission	Co	T-BACT Option	
Target Pollutants	Emission Control Option	Reduction	Capital	Annual Operating	Selected? (yes/no)
ex. ethanol and benzene	Thermal Oxidizer	99	\$50,000	\$100,000	no
ex. ethanol and benzene	Low VOC materials	80	0	\$100.000	yes
CS - QUARTZ	WET SUPPRESSION	77.7 - 95.9	Nominal (existing)	~\$5,000 - \$30,000	YES

(attach additional sheets as necessary)

Step 4: Demonstrating Compliance with the Ambient Impact Requirement (COMAR 26.11.15.06)

Each TAP not exempt in Step 2 must be individually evaluated to determine that the emissions of the TAP will not adversely impact public health. The evaluation consists of a series of increasingly non-conservative (and increasingly rigorous) tests. Once a TAP passes a test in the evaluation, no further analysis is required for <u>that TAP</u>. "Demonstrating Compliance with the Ambient Impact Requirement under the Toxic Air Pollutant (TAP) Regulations (COMAR 26.11.15.06)" provides guidance on conducting the evaluation. Summarize your results in the following table. Attach supporting documentation as necessary.

Toxic Air Pollutant (TAP)	CAS Number	Scre	eening Lo (µg/m³)	evels	Premise Total Emise	TAP	Rate (A	Emissions ER) per 5.11.16.02A		Concentrati ening Analy (µg/m³)		Compliance Method Used?
i onddant (i i i i j		1-hour	8-hour	Annual	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)	1-hour	8-hour	Annual	AER or Screen
ex. ethanol	64175	18843	3769	N/A	0.75	1500	0.89	N/A	N/A	N/A	N/A	AER
ex. benzene	71432	80	16	0.13	1.00	400	0.04	36.52	1.5	1.05	0.12	Screen
CS - QUARTZ	14808607		0.25		0.0103	30.96	0.001	NA		0.18		Screen
							(per MDE					(see attached
							guidance					AERMOD
							document)					report)

(attach additional sheets as necessary)

If compliance with the ambient impact requirement cannot be met using the allowable emissions rate method or the screening analysis method, refined dispersion modeling techniques may be required. Please consult with the Department's Air Quality Permit Program prior to conducting dispersion modeling methods to demonstrate compliance.

FORM 5EP

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Boulevard • Baltimore, Maryland 21230 (410)537-3225 • 1-800-633-6101• www.mde.maryland.gov

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation.

Applicant Name: Bluegrass Materials (Martin Marietta)

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: ID #2 (Metso C-160 Primary Jaw Crusher)

2. Emission Point Description

Describe the emission point including all associated equipment and control devices:

Metso C-160 Primary Jaw Crusher equipped with wet suppression system

3. Emissions Schedule	for the E	missior	n Point				
Continuous or Intermittent (C/I)?		С	Seasonal Variation				
, , , , , , , , , , , , , , , , , , ,				herwis	e estimate s		l variation:
Minutes per hour:		60	Winter Percent			20	
Hours per day: Days per week:		12	Spring Percent Summer Percent			26	
Weeks per year:		5-6 40-52	Fall Percent			28	
4. Emission Point Infor	mation	40-32	T all T ercent			26	
Height above ground (ft):		25'	Length and width dimensio	ons	Length	:	Width:
Height above structures (ft):	I	NA	at top of rectangular stack		NA		NA
Exit temperature (°F):	1	NA	Inside diameter at top of ro				NA
Exit velocity (ft/min):	1	NA	Distance from emission po property line (ft):	oint to	nearest		1822 ft
Exhaust gas volumetric flow rate (acfm):	•	NA	Building dimensions if emis point is located on buildin		Height NA	Length	n Width
5. Control Devices Ass	ociated v	vith the	Emission Point		•	•	
Identify each control device asso also required for each control				numb	er of device	es. <u>A F</u>	<u>orm 6 is</u>
None			Thermal Oxidizer		No		
Baghouse N	lo		Regenerative				
	lo		Catalytic Oxidizer		No		
Elec. Precipitator (ESP)	lo		Nitrogen Oxides Reduct	ion	No		
Dust Suppression System	lo		Selective	[Non-Sele		
Uenturi Scrubber	lo		Catalytic	L	Non-Cata		
Spray Tower/Packed Bed	lo		Specify: Wet suppression s	system	No		
Carbon Adsorber	lo						
Cartridge/Canister							
Regenerative							

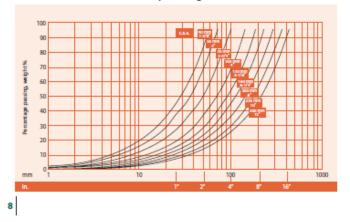
FOF	RM 5EP: Emission P	oint Data						
6. Estimated Emissions from th	e Emission Point							
Criteria Pollutants At Design Capacity At Projected Operatio								
Criteria Poliutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)				
Particulate Matter (filterable as PM10)	0.68	0.60	7.26	0.91				
Particulate Matter (filterable as PM2.5)	0.13	0.11	1.34	0.17				
Particulate Matter (condensables)	NA (electric grid)							
Volatile Organic Compounds (VOC)	NA (electric grid)							
Oxides of Sulfur (SOx)	NA (electric grid)							
Oxides of Nitrogen (NOx)	NA (electric grid)							
Carbon Monoxide (CO)	NA (electric grid)							
Lead (Pb)	NA (electric grid)							
	At Design Capacity	At	Projected Operat	ions				
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)				
Carbon Dioxide (CO ₂)	NA (electric grid)							
Methane (CH ₄)	NA (electric grid)							
Nitrous Oxide (N ₂ O)	NA (electric grid)							
Hydrofluorocarbons (HFCs)	NA (electric grid)							
Perfluorocarbons (PFCs)	NA (electric grid)							
Sulfur Hexafluoride (SF6)	NA (electric grid)							
Total GHG (as CO ₂ e)	NA (electric grid)							
List individual federal Hazardous Air	At Design Capacity	At	Projected Operat	ions				
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)				
NA								

(Attach additional sheets as necessary.)

Vendor/Manufacturer Specifications

HIGH PERFORMANCE

Feed opening depth mm (n) 510 (20) 760 (20) 800 (27) 760 (20) 870 (24) 950 (27) 1070 (42) 1200 (47) 1200 (47) 1500 (50) Pewee WW (HP) 75 (100) 110 (150) 90 (125) 110 (150) 132 (175) 160 (200) 160 (200) 200 (250) 200 (250) 220 220 220 200 <													\frown	
Seed spectrom Sin C20 760 (20) 580 (23) 700 (20) 760 (20) 800 (23) 760 (20) 800 (20) 760 (20) 800 (20) 760 (20) 800 (20) 760 (20) 720 (20)			C80	C100	C96	C106	C116	C3054	C120	C125	C140	C150	C160	C200
Power Wilf (HP) 75 (100) 110 (150) 90 (125) 110 (150) 122 (175) 160 (200) 160 (200) 160 (200) 200 (200) 220 (200) 220 200 460 460	Feed opending	g width mm (in)	800 (32)	1000 (40)	930 (37)	1060 (42)	1150 (45)	1375 (54)	1200 (47)	1250 (49)	1400 (55)	1400 (55)	1600 (63)	2000 (79)
ImageSign	Feed opening	depth mm (in)	510 (20)	760 (30)	580 (23)	700 (28)	800 (32)	760 (30)	870 (34)	950 (37)	1070 (42)	1200 (47)	1200 (47)	1500 (59)
ImageSign	Power	kW (HP)	75 (100)	110(150)	90 (125)	110 (150)	132 (175)	160 (200)	160 (200)	160 (200)	200 (250)	200 (300)	250 (350)	400 (500)
meting mig mign (sign)	Speed	d (rpm)		260					230		220	220	220	200
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Product size		Mirch (Stole)	Mtsh (Stsh)	Minh (Steh)	Mush (Stab)	Minh (Stoh)	Mtob (Stob)	Mitch (Stoh)	Mitch (Stoh)	Mirch (Stoh)	Mtob (Stob)	Mitch (Stoh)	Mich (Stoh)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		setting mm (in	(andbu (Sebu)	within (3thu)	within (3chu)	withi (Sthu)	withu (3dhu)	withu (3thu)	wrbu (srbu)	withu (Sthu)	withu (3thu)	within (Schu)	wrbu (srbu)	wrbu (schu)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0-30													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0-1 ¹ /*	3/4												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0-35	25												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0-60	40	55-75											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
0-90 60 80-110 105-135 105														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
0-120 80 110-150 145-200 140-180 165-215 180-225 240-300 195-270 mm mm <td></td>														
0.4 ¼ 3 ¼ 120-165 160-215 155-200 185-240 200-260 260-330 215-295 0 0 0 0 0 0-135 90 125-175 160-220 160-200 190-235 205-256 225-280 285-380 215-335 0 0 0 0 0 0 0 0 0 100 140-190 180-205 175-220 205-260 225-280 285-380 235-335 245-335 0 0 0 0 0 0 100 140-190 180-207 175-220 205-265 225-385 285-365 285-335 285-365 285-365 285-365 285-365 325-445 340-470 0 0 0 0 100 175-220 245-313 200-280 255-315 345-445 285-395 325-445 340-470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
0-135 90 125 - 175 160 - 200 190 - 225 205 - 250 260 - 330 210 - 305 m			110-150											
0-5 % 3 % 140-190 175-240 175-220 205-260 225-280 285-360 235-330 m <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
0-150 100 140-190 180-250 175-225 205-265 225-285 285-365 225-325 245-335 m m m m 0-6 4 150-210 200-275 195-250 230-295 245-315 315-400 260-360 270-370 m														
0-6 4 150-210 200-275 195-250 230-295 245-315 315-400 260-360 270-370 m <														
0-185 125 175 - 245 220 - 310 220 - 280 255 - 325 270 - 345 345 - 435 285 - 395 295 - 405 315 - 445 340 - 470 M 0-7 5 195 - 270 245 - 340 240 - 310 280 - 360 295 - 380 315 - 435 315 - 435 325 - 445 330 - 530 430 - 570 400 - 555 430 - 610 0-250 150 210 - 290 285 - 385 320 - 405 445 - 555 340 - 475 340 - 530 340 - 555 430 - 510 400 - 555 430 - 510 400 - 555 430 - 510 400 - 555 430 - 510 400 - 555 430 - 510 400 - 555 430 - 510 400 - 555 430 - 510 400 - 555 400 - 515 510 - 500 445 - 560 450 - 551 510 - 500 440 - 610 475 - 670 450 - 500 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 450 - 501 45	0-150	100												
0-7 5 195 - 270 245 - 340 240 - 310 280 - 360 295 - 380 315 - 435 315 - 435 325 - 445 355 - 490 375 - 515 400 0-25 150 210 - 290 265 - 365 265 - 335 305 - 385 320 - 405 340 - 475 340 - 475 340 - 475 340 - 515 400 - 555 430 - 610 400 - 555 430 - 610 400 - 555 430 - 610 400 - 555 430 - 610 400 - 505 430 - 610 400 - 505 430 - 610 400 - 505 430 - 610 400 - 505 430 - 610 400 - 505 430 - 610 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 400 - 605 500 - 700 405 - 700 700 - 700 700 - 70 700 - 700 400 - 400 390 - 535 445 - 560 400 - 605 500 - 700 505 - 700 505 - 700 505 - 700 700 - 700 700 - 700 700 - 700 700 - 700 700 - 700 700 - 700 </td <td></td>														
0-225 150 210 - 290 265 - 365 265 - 335 305 - 385 320 - 405 405 - 515 340 - 475 345 - 475 380 - 530 400 - 555 420 - 610 0-9 6 230 - 320 290 - 400 290 - 370 335 - 428 350 - 450 445 - 565 375 - 515 380 - 525 420 - 580 440 - 610 475 - 670 0-260 175 245 - 335 310 - 320 310 - 390 355 - 450 370 - 465 465 - 595 385 - 540 345 - 605 696 - 695 693 - 695 693 - 695 693 - 696 693 - 696 693 - 696 693 - 696 693 - 696 693 - 696 693 - 696 695 - 696 695 - 696 695 - 696 695 - 696 695 - 696 695 - 696 695 - 696 695 - 696 695 - 696 695 - 696 690 - 695 650 - 700 716 - 700 716 - 700 716 - 700 716 - 700 716 - 700 710 - 700 710 - 700 710 - 700 710 - 700 710 - 700 710 - 700 710 - 700 710 - 700 710 - 700 710 - 700 710 - 700 710 - 700		125												
0-9 6 230-320 290-400 290-370 335-428 350-450 445-565 375-515 380-525 420-580 440-610 475-670 0-260 175 245-335 310-430 310-390 355-450 370-465 465-595 385-540 395-545 435-605 460-610 475-670 0-10 7 270-370 340-320 390-495 405-515 515-650 430-505 435-605 460-635 495-695 630-899 0-300 200 355-490 395-500 410-520 530-670 445-615 495-685 520-720 560-790 710-100 0-300 205 390-535 445-560 460-580 580-770 445-615 495-685 550-770 560-790 780-110 0-340 225 445-560 460-580 580-770 550-760 580-800 625-880 865-121 0-347 250 - - - 545-755 610-840 640-880 685-965 860-121														
0-260 175 245 - 335 310 - 430 310 - 390 355 - 450 370 - 465 485 - 595 385 - 540 395 - 545 433 - 605 460 - 635 495 - 695 630 - 896 0-10 7 270 - 370 340 - 770 340 - 430 390 - 495 405 - 515 515 - 650 430 - 605 435 - 605 460 - 635 505 - 700 545 - 765 695 - 690 0-300 200 355 - 490 395 - 560 400 - 575 545 - 750 505 - 700 545 - 760 700 - 700 70 - 100 0-12 8 390 - 535 445 - 560 400 - 675 545 - 750 507 - 700 610 - 700 70 - 100 0-300 225														
0-10 7 270-370 340-270 340-430 390-495 405-515 515-650 430-595 435-600 480-665 505-700 545-765 695-960 0-300 200 355-490 395-500 410-520 530-670 445-615 495-685 520-720 560-780 710-100 0-12 8 390-535 445-560 460-580 580-740 495-685 550-760 580-800 625-800 785-110 0-340 225 445-66 495-685 550-760 580-800 625-800 785-110 0-13 9 445-66 465-580 560-780 580-800 625-880 785-110 0-13 9 545-755 605-835 640-880 685-965 860-121 0-13 9 606-830 670-925 755-106 950-134 0-15 10														
0-300 200 355 - 490 395 - 500 410 - 520 530 - 670 445 - 615 495 - 685 520 - 720 560 - 780 710 - 100 0-12 8 390 - 535 445 - 560 460 - 580 580 - 740 490 - 675 545 - 750 570 - 790 615 - 870 780 - 110 0-340 225 445 - 560 460 - 580 580 - 740 495 - 685 550 - 760 580 - 800 785 - 110 0-13 9 445 - 661 545 - 750 605 - 835 640 - 880 685 - 965 860 - 121 0-375 250 545 - 755 610 - 840 685 - 965 865 - 121 0-15 10 600 - 830 670 - 925 765 - 106 950 - 134 0-16 11 820 - 1140 820 - 1140 1030 - 134 0-450 300 820 - 1140 1030 - 134														
0-12 8 390-535 445-560 460-580 580-740 490-675 545-750 570-790 615-870 780-110 0-340 225 445-560 460-580 580-740 495-685 550-760 580-800 625-880 785-110 0-13 9 545-750 605-835 640-880 685-965 860-121 0-375 250 510 545-750 605-835 640-880 685-965 865-121 0-15 10 545-750 600-830 670-925 755-1060 950-134 0-16 11 600 600 600 800 670-925 755-1060 940-132 0-16 11 600 600 800 670-925 755-1060 940-133 0-450 300 600 600 80 670-925 755-1060 940-133			270-370		340-430				430-595					
0-340 225 9 680-800 625-880 785-110 0-13 9 545-750 605-835 640-880 685-965 860-121 0-375 250 545-750 601-840 640-880 685-965 860-121 0-15 10 600-830 670-925 705-970 755-1060 950-134 0-410 275 75 755-1060 9450-134 745-1055 940-132 0-16 11 820-1160 1030-144 945-1160 945-1160 945-1160														710-1000
0-13 9 545-750 605-835 640-880 685-965 860-121 0-375 250 545-755 610-840 640-880 685-965 860-121 0-15 10 600-830 670-925 705-970 755-1060 950-134 0-410 275 601-810 600-830 670-925 745-1055 940-132 0-16 11 600 80 601-810 820-1160 1030-142 0-450 300 600 600 600 810 112 615-442				390 - 535		445 - 560	460 - 580	580-740						780-1100
0-375 250 545-755 610-840 640-880 685-965 865-121 0-15 10 600-830 670-925 705-970 755-1060 950-134 0-410 275 610 745-1055 940-132 745-1055 940-132 0-16 11 600 600 600 810 812-1145 915-143														785 - 1105
0-15 10 600-830 670-925 705-970 755-1060 950-134 0-410 275 755 755-1060 950-134 745-1055 940-132 0-16 11 820-1160 1030-143 9450-134 0-450 300 820-1145 945-132 940-132														860-1215
0.410 275 745 - 1055 940 - 132 0-16 11 820 - 1160 1030 - 145 0-450 300 817 - 1145 915 - 145														865 - 1215
0-16 11 820-1160 1030-145 0-450 300 812-1145 N15-145										600-830	670 - 925	705 - 970		
0-450 300 817-1145 N15-143														
0-18 12 865-1260 11/20-15														
	0-18	12											895 - 1260	1120-1575


Capacities & Technical specifications

* Smaller closed side settings can be often used depending on application and production requirements. For a performance estimation for your specific application, please contact Metso.

The above figures represent through the crusher capacities, which are based on a feed material with an average specific gravity of 2.7 t/m³, a maximum feed size that will enter the crusher without bridging and material finer than the crushers closed side setting removed. The capacities may vary depending on the feeding method and on feed characteristics such as gradation, bulk density, moisture, clay content and crushability.

Measurement of the crusher's closed side setting varies depending on the jaw profile that is being used and has an impact on the crusher's capacity and product gradation. The following factors will enhance crusher capacity and performance:

- Hormance:
 1. Proper selection of the jaws.
 2. Proper feed gradation.
 3. Controlled feed rate.
 4. Sufficient feeder capacity and width.
 5. Adequate crusher discharge area.
 6. Discharge conveyor sized to convey maximum crusher capacity.

Indicative product gradation

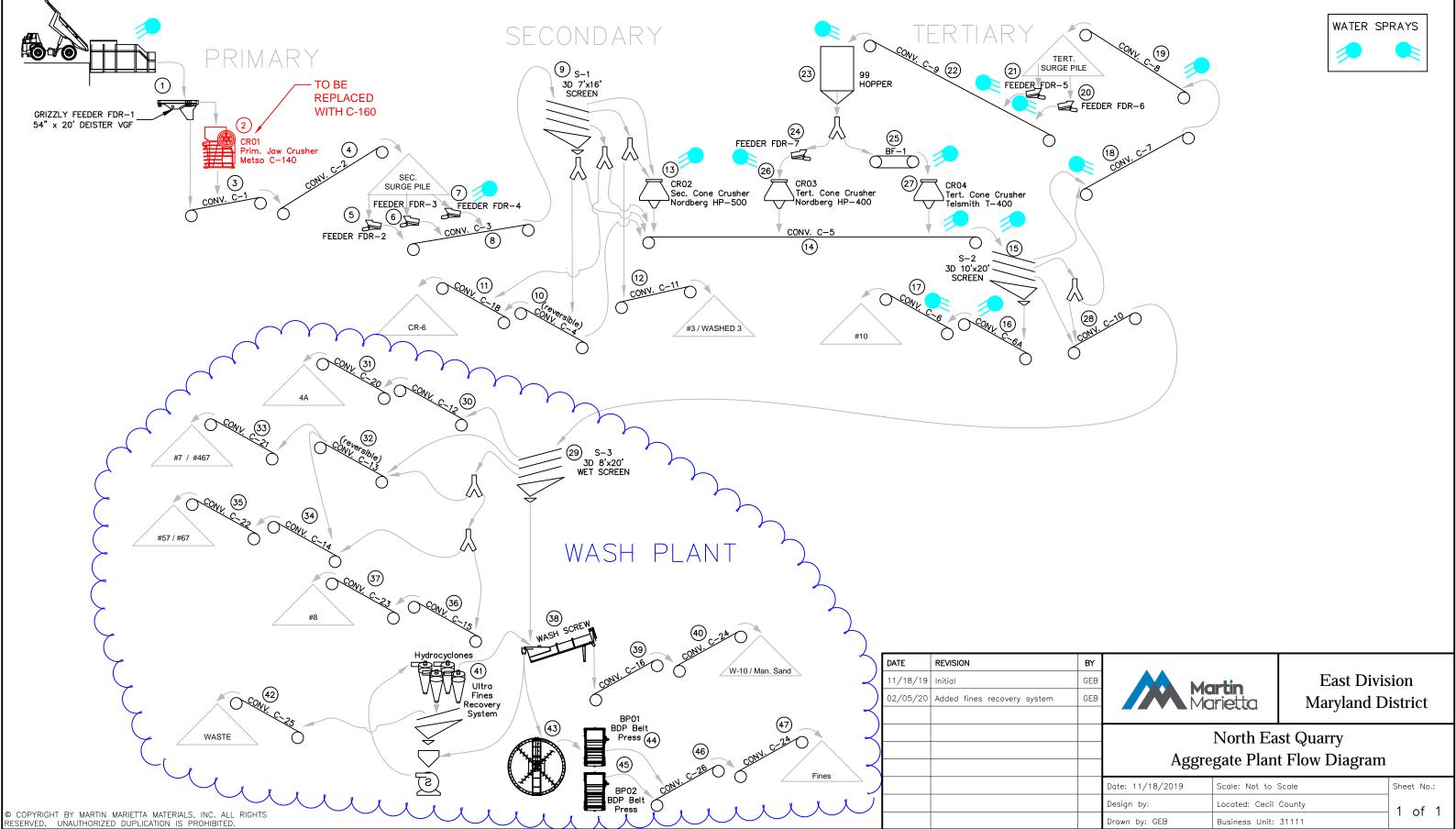
Nordberg C Series Jaw crushers fits perfectly for primary crushing stations.

Process Flow Diagram

North East Quarry - Equipment List

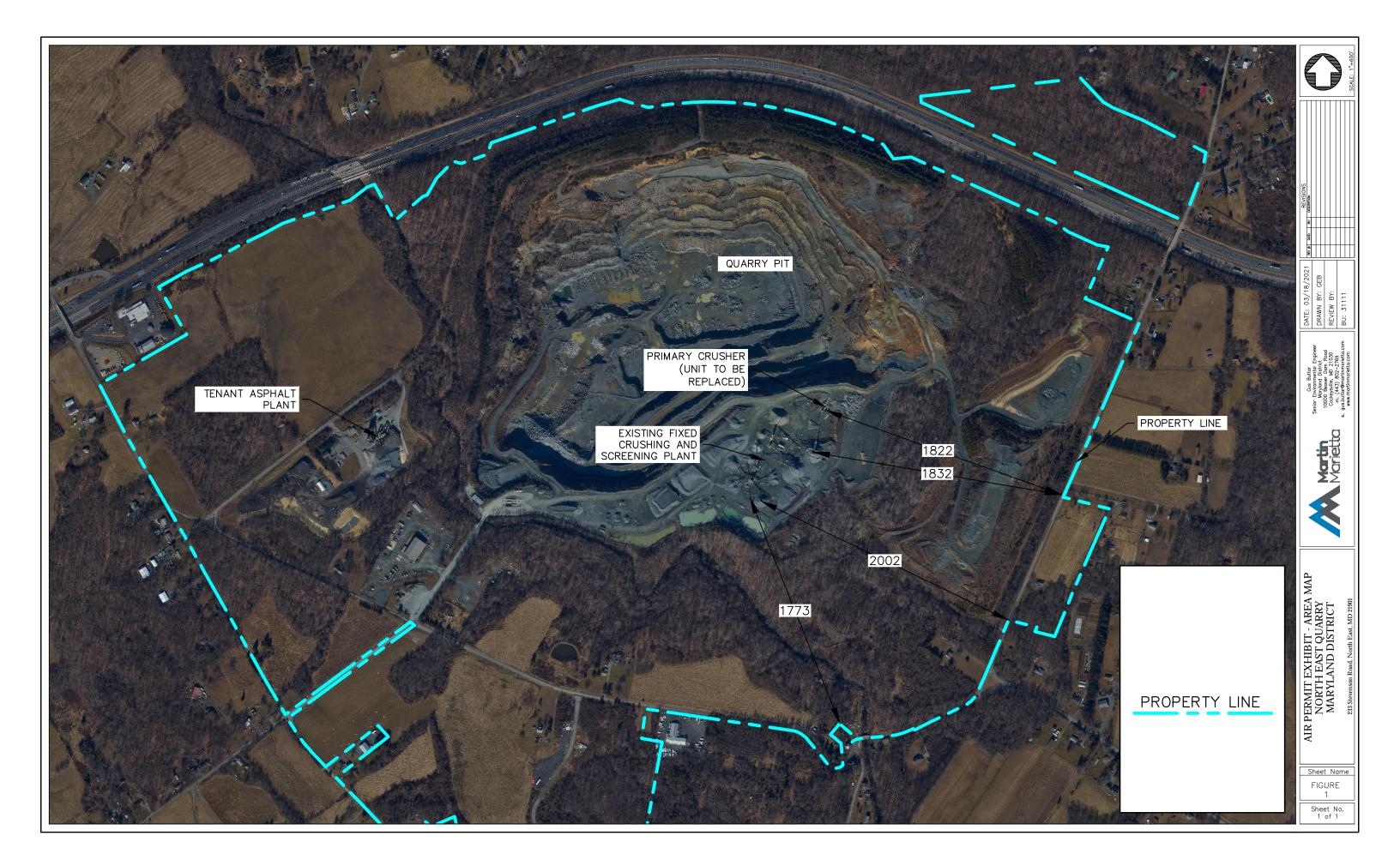
Business Unit: 31111

Air Permit to Operate No.: 015-0005


Plant 2E (ARMA 015-0005-6-0299)

		Rated	
ID No.	DESCRIPTION	Capacity	Comments
2	CR01 METSO C140 JAW CRUSHER	925	To be removed
2	CR01 METSO C160 JAW CRUSHER	1,260	New equip. replacing C140
13	CR02 Metso Nordberg HP 500 S/M	880	Note: Permit is for 750
26	CR03 Metso Nordberg HP 400 SH/M	700	
27	CR04 Telsmith T-400 Crusher	585	
9	S1 Metso 7x16 Triple Deck	1500	
15	S2 Diester BHM-31020-O3T	2281	
29	S3 Diester BHM-3820-OT	1750	
3	C-1 CONV 48X60		
4	C-2 CONV 48X323		
8	C-3 CONV 48X360		
10	C-4 CONV 36X27 (reversible)		
14	C-5 CONV 48X360		
17	C-6 CONV 30X164		Stacker, #10
16	C-6A CONV 30X40		
18	C-7 CONV 36X190		
19	C-8 CONV 36X283		
22	C-9 CONV 36X283		
28	C-10 CONV 36x145		
12	C-11 CONV, 36X85		Stacker, ASTM #3
30	C-12 CONV 36X50		
32	C-13 CONV 30X43 (reversible)		
34	C-14 CONV 30X65		
36	C-15 CONV 30X85		
39	C-16 CONV 30X55		
11	C-18 CONV 36X150		Stacker, CR-6
31	C-20 CONV 30X120		Stacker, 4A
33	C-21 CONV 30X123		Stacker, #7 / #467
35	C-22 CONV 30X123		Stacker, #57 / #67
37	C-23 CONV 30X123		Stacker, #8
40	C-24 CONV 30X123		Stacker, W-10 / Man. Sand
42	C-25 CONV 24X63		Stacker, Fines
1	FDR-1 METSO 58X24 VL-14 Vibrating Grizzly Feeder		
5	FDR 2 SYNTRON MF200-C 48X84		Inside Surge Tunnel
6	FDR 3 SYNTRON MF200-C 48X84		Inside Surge Tunnel
7	FDR 4 SYNTRON MF200-C 48X84		Inside Surge Tunnel

21	FDR 5 SYNTRON 36X72 MF200-C	Inside Surge Tunnel
20	FDR 6 SYNTRON MF200-C 36X72	Inside Surge Tunnel
24	FDR 7 SYNTRON MF400-2 48X118	
25	BF-1 99 SYNTRON F480A Belt Feeder	
38	WASHER 44X33 DFMSW	
23	99 HOPPER (FOR BF-1)	
41	WASH ULTRA FINES RECOVERY	
43	TC01 THICKENER / CLARIFIER	
44	BP01 BDP BELT PRESS	
45	BP02 BDP BELT PRESS	
46	C-26 CONV 30x80	
47	C-27 CONV 30x80	
A-1	R-2 30" Conveyor Belt	Rail Facility
A-2	R-3 30" Conveyor Belt	Rail Facility
A-3	R-4 48" Conveyor Belt	Rail Facility
A-4	R-5 48" Conveyor Belt	Rail Facility
A-5	Syntron Feeder	Rail Facility
TU	Truck Unloading	
TL	Truck Loading	
SP	Storage Piles	


Portable Plant (up to 600 tons per hour, ARMA 015-0005-6-0364)

PP-CR-1	One (1) Primary Crusher		
PP-CR-2	One (1) Secondary Crusher		
PP-CR-3	One (1) Tertiary Crusher		
PP-VS-1	One (1) Screen		
PP-VS-2	One (1) Screen		
PP-CONV	Associated Conveyors (approx. 21)		
PP-GRIZ	Primary Grizzly Feeder		
PP-GRIZ	Vibrating Grizzly Feeder		
PP-GRIZ	Vibrating Grizzly Feeder		
PP-FEED	Apron/Belt Feeder		
PP-EN540	Up to Four (4) Diesel Fired Engines, <= 540 HP, Tier III	or better	
PP-EN174	Up to Two (2) Diesel Fire Engines, <= 174 HP, Tier III or	better	
PP-EN51	One (1) Diesel Fired Engine, <=51 HP, Teir III or better		

Site Plan

Material Balance Data & Emissions Calculations

Bluegrass Materials Company, LLC (C/o Martin Marietta Materials, Inc.)

North East, Permit to Operate 015-0005

Permit to Construct Application Form 5 / 5EP Calculations

Date: 03/16/2021

						Particulate M	latter Emissi	i ons (*3)			
				Project	ed Operatio	ons (*2)			At Pro	jected Oper	ations
			Design Capacity	Rate	Daily Op. Hours	Annual Op. Hours	Emissions Factor	Design Capacity Hrly Emissions	-	Daily Emissions	Annual Emissions
Description	Make	Model	(stph) (*1)	(stph)	(hrs/day)	(hrs/yr)	(lb/Ton)	(lb/hr)	(lb/hr)	(lb/day)	(Tons/yr)
CR01 METSO C160 JAW CRUSHER	Metso	C-160	1260	1,120	12	3000	0.00120	1.51	1.34	16.13	2.02
TOTAL								1.51	1.34	16.13	2.02

		PM-10 Emissions (*3)			PM-2.5 Emissions (*3)						
				At Projected Operations					At Pro	jected Oper	ations
		1	Design Capacity	-	Daily			Design Capacity	-	Daily	Annual
		Emissions Factor	Hrly Emissions	Emissions	Emissions	Emissions	Factor	Hrly Emissions	Emissions	Emissions	Emissions
Description	Make	(lb/Ton)	(lb/hr)	(lb/hr)	(lb/day)	(Tons/yr)	(lb/Ton)	(lb/hr)	(lb/hr)	(lb/day)	(Tons/yr)
CR01 METSO C160 JAW CRUSHER	Metso	0.000540	0.68	0.60	7.26	0.91	0.00010	0.13	0.112	1.344	0.17
TOTAL			0.68	0.60	7.26	0.91		0.13	0.11	1.34	0.17

(*1) "Design Capacity" is based on vendor or manufacturer provided information, or educated estimates where information is not available.

(*2) "Projected Operations" represent conservative estimates based on computer flow modeling, equipment configuration, past operational records, and interviews with knowledgeable personnel.

(*3) PM, PM-10, & PM-2.5 emissions based on 100% equipment availability, and AP-42 emissions factors (AP-42 11.19.2, Table 11.19.1-2 (English Units) revised 08/04).

(*4) WMPO = Wet Material Processing Operations

(*5) Capacity / Rate = Input Rate = Output Rate for all of the above.

Bluegrass Materials Company, LLC (C/o Martin Marietta Materials, Inc.)

North East, Permit to Operate 015-0005

Permit to Construct Application	Total Stage Throughputs - Current (Exist	Proposed:		
Form 5T & Crystalline Silica Emissions Calculations	Primary	900 tph	Primary	1400 tph
Date: 03/16/2021	Secondary	750 tph	Secondary	1400 tph
	Tertiary	700 tph	Tertiary	1050 tph

			(Current (Exis	ting) Equipm	ent		Proposed	Equipment	
					PM-10			Toposeu	PM-10	
					Emissions				Emissions	
		PM-10		Projected	@ Proj.	Crystaline		Projected	@ Proj.	Crystaline
		Emission	Equip.	Operating	Operating	Silica	Equip.	Operating	Operating	Silica
ID		Factor	Capacity	Rate	Rate	Emissions	Capacity	Rate	Rate	Emissions
No.	DESCRIPTION	(lb/Ton)	(stph)	(stph)	(lbs/hr)	(lbs/hr)	(stph)	(stph)	(lbs/hr)	(lbs/hr)
2	CR01 METSO C140 JAW CRUSHER	0.00054	925	765	0.41	0.00046				
2	CR01 METSO C160 JAW CRUSHER	0.00054					1,260	1,120	0.60	0.00067
13	CR02 Metso Nordberg HP 500 S/M	0.00054	880	469	0.25	0.00028	880	875	0.47	0.00052
26	CR03 Metso Nordberg HP 400 SH/M	0.00054	700	385	0.21	0.00023	700	578	0.31	0.00035
27	CR04 Telsmith T-400 Crusher	0.00054	585	315	0.17	0.00019	585	473	0.26	0.00028
9	S1 Metso 7x16 Triple Deck	0.00074	1500	750	0.56	0.00061	1500	1,400	1.04	0.00115
15	S2 Diester BHM-31020-O3T	0.00074	2281	1,400	1.04	0.00115	2281	2,100	1.55	0.00172
29	S3 Diester BHM-3820-OT	WMPO	1750	609	0.00	0.00000	1750	914	0.00	0.00000
3	C-1 CONV 48X60 C-2 CONV 48X323	0.000046	-	900 900	0.04	0.00005	-	1,400 1,400	0.06	0.00007
8	C-3 CONV 48X323	0.000046	-	750	0.04	0.00003	-	1,400	0.06	0.00007
10	C-4 CONV 36X27 (reversible)	0.000046	-	188	0.03	0.00004	-	350	0.00	0.00007
10	C-5 CONV 30X27 (Teversible)	0.000040	-	1,400	0.01	0.00007	-	2,100	0.02	0.00002
17	C-6 CONV 30X164	0.000046	-	91	0.00	0.00000	-	137	0.10	0.000011
16	C-6A CONV 30X40	0.000046	-	91	0.00	0.00000	-	137	0.01	0.00001
18	C-7 CONV 36X190	0.000046	-	700	0.03	0.00004	-	1,050	0.01	0.00005
19	C-8 CONV 36X283	0.000046	-	700	0.03	0.00004	-	1,050	0.05	0.00005
22	C-9 CONV 36X283	0.000046	-	700	0.03	0.00004	-	1,050	0.05	0.00005
28	C-10 CONV 36x145	0.000046	-	609	0.03	0.00003	-	914	0.04	0.00005
12	C-11 CONV, 36X85	0.000046	-	53	0.00	0.00000	-	98	0.00	0.00000
30	C-12 CONV 36X50	WMPO	-	21	0.00	0.00000	-	32	0.00	0.00000
32	C-13 CONV 30X43 (reversible)	WMPO	-	28	0.00	0.00000	-	42	0.00	0.00000
34	C-14 CONV 30X65	WMPO	-	245	0.00	0.00000	-	368	0.00	0.00000
36	C-15 CONV 30X85	WMPO	-	189	0.00	0.00000	-	284	0.00	0.00000
39	C-16 CONV 30X55	WMPO	-	119	0.00	0.00000	-	179	0.00	0.00000
11	C-18 CONV 36X150	0.000046	-	135	0.01	0.00001	-	252	0.01	0.00001
31	C-20 CONV 30X120	WMPO	-	21	0.00	0.00000	-	32	0.00	0.00000
33	C-21 CONV 30X123	WMPO	-	28	0.00	0.00000	-	42	0.00	0.00000
35 37	C-22 CONV 30X123 C-23 CONV 30X123	WMPO WMPO	-	245 189	0.00	0.00000	-	368 284	0.00	0.00000 0.00000
40	C-24 CONV 30X123	WMPO	-	189	0.00	0.00000	-	179	0.00	0.00000
42	C-25 CONV 24X63	WMPO	-	7	0.00	0.00000	-	11	0.00	0.00000
1	FDR-1 METSO 58X24 VL-14 Vibrating Grizzly Feeder	0.000016	-	900	0.01	0.00002	-	1,400	0.02	0.00002
5	FDR 2 SYNTRON MF200-C 48X84	*(8)	-	250	0.00	0.00000	-	467	0.00	0.00000
6	FDR 3 SYNTRON MF200-C 48X84	*(8)	-	250	0.00	0.00000	-	467	0.00	0.00000
7	FDR 4 SYNTRON MF200-C 48X84	0.000046	-	250	0.01	0.00001	-	467	0.02	0.00002
21	FDR 5 SYNTRON 36X72 MF200-C	*(8)	-	700	0.00	0.00000	-	1,050	0.00	0.00000
20	FDR 6 SYNTRON MF200-C 36X72	*(8)	-	350	0.00	0.00000	-	525	0.00	0.00000
24	FDR 7 SYNTRON MF400-2 48X118	0.000046	-	350	0.02	0.00002	-	525	0.02	0.00003
25	BF-1 99 SYNTRON F480A Belt Feeder	0.000046	-	350	0.02	0.00002	-	525	0.02	0.00003
	WASHER 44X33 DFMSW	WMPO	-	126	0.00	0.00000	-	189	0.00	0.00000
23	99 HOPPER (FOR BF-1)	N/A	-	700	0.00	0.00000	-	1,050	0.00	0.00000
41 43	WASH ULTRA FINES RECOVERY TC01 THICKENER / CLARIFIER	WMPO WMPO	-	21 28	0.00	0.00000 0.00000	-	32 42	0.00	0.00000 0.00000
43	BP01 BDP BELT PRESS	WMPO	-	28	0.00	0.00000		42	0.00	0.00000
44	BP02 BDP BELT PRESS	WMPO	-	28	0.00	0.00000		42	0.00	0.00000
46	C-26 CONV 30x80	WMPO	-	28	0.00	0.00000		42	0.00	0.00000
47	C-27 CONV 30x80	WMPO	-	28	0.00	0.00000		42	0.00	0.00000
	R-2 30" Conveyor Belt	*(7)	-	0	0.00	0.00000	-	0	0.00	0.00000
	R-3 30" Conveyor Belt	*(7)	-	0	0.00	0.00000	-	0	0.00	0.00000
		*(7)	-	0	0.00	0.00000	-	0	0.00	0.00000
A-3	R-4 48" Conveyor Belt			0	0.00	0.00000	-	0	0.00	0.00000
	R-4 48" Conveyor Belt R-5 48" Conveyor Belt	*(7)	-							
A-4		*(7) *(7)	-	0	0.00	0.00000	-	0	0.00	0.00000
A-4 A-5 TU	R-5 48" Conveyor Belt Syntron Feeder Truck Unloading	*(7) 0.000016	- N/A	0 765	0.01	0.00001	N/A	1,400	0.02	0.00002
A-4 A-5 TU TL	R-5 48" Conveyor Belt Syntron Feeder Truck Unloading Truck Loading	*(7) 0.000016 0.0001	- N/A N/A	0 765 765	0.01 0.08	0.00001 0.00008	N/A N/A	1,400 1,400	0.02 0.14	0.00002 0.00015
A-4 A-5 TU TL	R-5 48" Conveyor Belt Syntron Feeder Truck Unloading	*(7) 0.000016	- N/A N/A N/A	0 765 765 765	0.01 0.08 1.22	0.00001	N/A	1,400	0.02 0.14 2.23	0.00002
A-4 A-5 TU TL	R-5 48" Conveyor Belt Syntron Feeder Truck Unloading Truck Loading	*(7) 0.000016 0.0001	- N/A N/A N/A PN	0 765 765 765 765	0.01 0.08 1.22 4.33	0.00001 0.00008 0.00135	N/A N/A	1,400 1,400	0.02 0.14	0.00002 0.00015 0.00246
A-4 A-5 TU TL	R-5 48" Conveyor Belt Syntron Feeder Truck Unloading Truck Loading	*(7) 0.000016 0.0001	- N/A N/A N/A PN	0 765 765 765 7-10 TOTAL: RYSTALINE S	0.01 0.08 1.22 4.33 LICA TOTAL:	0.00001 0.00008 0.00135 0.0048	N/A N/A N/A	1,400 1,400 1,400	0.02 0.14 2.23 7.24	0.00002 0.00015
A-4 A-5 TU TL	R-5 48" Conveyor Belt Syntron Feeder Truck Unloading Truck Loading	*(7) 0.000016 0.0001	- N/A N/A N/A PN	0 765 765 765 7-10 TOTAL: RYSTALINE SI PI	0.01 0.08 1.22 4.33 LICA TOTAL: M-10 TOTAL	0.00001 0.00008 0.00135	N/A N/A N/A	1,400 1,400 1,400	0.02 0.14 2.23	0.00002 0.00015 0.00246

Portable Plant (up to 600 tons per hour, ARMA 015-0005-6-0364)

 Portable Plant, Fugitive Emis. From Processing
 VARIOUS
 600
 2.09
 0.00231
 600
 2.09
 0.00231

 NOTE: Portable Plant PM-10 emissions from approved 2017 Air Permit to Construct Application (assuming all possible equipment covered by flexible permit operates)
 0.00231
 600
 600
 2.09
 0.00231

TOTAL EXISTING (FIXED EQUIPMENT + PORTABLE PLANT):

PM-10	6.42	lbs/hr
CRSYTALINE SILICA	0.0071	lbs/hr
(assumes 3000 operating hours)	21.32	lbs/yr

TOTAL PROPOSED (FIXED EQUIPMENT + PORTABLE PLANT):

PM-10	9.33	lbs/hr
CRSYTALINE SILICA	0.0103	lbs/hr
(assumes 3000 operating hours)	30.96	lbs/yr

Comments:

(1) Crushed Stone Processing equipment emissions factors from AP-42 11.19.2, Table 11.19.1-2 (English Units) revised 08/04.

(2) Storage Pile emissions factors from AP-42, Section 13.2.4 - Assuming a moisture content of 2.1%, a mean wind speed of 6.9 miles per hour, < 10 micrometer particale size multiplier, and the number of tons processed (max design capacity) is equal to the number of tons handled.

(3) WMPO = Wet Material Processing Operation.

(4) Equipment associated with PTC modification is highlighted yellow.

(5) "Equip. Capacity" is based on vendor or manufacturer provided information, or educated estimates where information is not available.

(6) "Projected Operations" represent high-range estimates based on computer flow modeling, equipment configuration, past operational records, and interviews with knowledgeable personnel. Actual throughput may vary based on plant configuration and other factors.

(7) Equipment associated with rail yard facility (A-1 thru A-5) operates only intermittently, and is located approximately 4000 feet from fixed facility. This equipment only conveys finished product into rail cars (no crushing or screening at facility). Therefore, emissions from this equipment was assumed to be negligible for the purposes of this evaluation.

(8) Vibrating feeders, located underneath of surge piles (in surge tunnels).

Crystalline Silica Emissions Calculations:

The above crystalline silica emissions calculutions are based on guidance provided from the Maryland Department of the Environment (MDE) Air and Radiation Management Administration (ARMA) Air Quality Permits Program, in the September 2013 guidance document entitled Procedures for Estimating PM-10 Emissions and Demonstrating Compliance with the Air Toxics Ambient Impact Requirement for Crystalline Silica Emissions from Crushing and Screening Operations.

Hourly Emissions = 0.01 * CS * PM-10

Where

0.01 = Percent of PM-10 emissions that is respirable, expressed as a decimal (from Appendix C of the 2009 ACGIH TLV Booklet)

CS = Percent by weight of total crystalline silica in material expressed as a decimal (ex. 1% = 0.01)

PM-10 = Total PM-10 emissions in pounds/hour (from table adjacent column)

CS =

0.111 % crystalline silica expressed as a decimal (quartz, average of three available site bulk sample XRD analyses in 2018, 2019, & 2020)

AERMOD Report

CRYSTALLINE SILICA AIR QUALITY MODELING ANALYSIS FOR THE PROPOSED MODIFICATIONS TO THE MARTIN MARIETTA NORTH EAST QUARRY

Prepared for:

Martin Marietta Materials, Inc. 10000 Beaver Dam Road Cockeysville, Maryland 21030

Prepared by:

RTP Environmental Associates 304A West Millbrook Road Raleigh, NC 27609

March 2021

Table of Contents

1.0	INTRODUCTION	1
1.1	Facility Location and Description	
2.0	MODEL SELECTION, SETUP, AND APPLICATION	4
2.1	Model Selection	4
2.2	Model Setup and Application	5
A	ERMAP	5
A	ERMET	7
A	ERMOD	7
2.3	Source Input Parameters and Modeled Emissions	9
2.4	Good Engineering Practice (GEP) Stack Height	10
3.0	RESULTS.	10

1.0 INTRODUCTION

Martin Marietta Materials, Inc. is proposing modifications to its North East Quarry in Cecil County. An air quality modeling analysis was conducted for emissions of crystalline silica (silica, CAS No. 14808607) from the proposed facility. The modeling analysis was conducted to assess the compliance status of the facility with respect to the Maryland Department of Environment (MDE) ambient impact requirement under the Toxic Air Pollutant (TAP) Regulations of COMAR 26.11.15.06. Potential emissions from each source at the facility were calculated and modeled pursuant to "Test 4, Refined Computer Models" under the MDE's TAP guidance document ¹. The resultant total concentrations were compared to the 8-hour average silica screening level of the TAP regulations. The results of the modeling analysis demonstrate that potential emissions from the proposed facility will result in an ambient concentration below the silica screening level.

This report describes the modeling methodology and results of the air quality analysis. The ambient impacts analyses conformed to the procedures MDE's <u>Guideline</u> and the EPA's <u>Guideline on Air Quality Models (Revised, 2017)</u>.²

1.1 Facility Location and Description

The Martin Marietta facility is located at 233 Stevenson Road in North East, MD in Cecil County, approximately 65 kilometers northeast of Baltimore and 32 kilometers southwest of Wilmington, DE. The approximate Universal Transverse Mercator (UTM) coordinates of the facility are 421,040 meters east and 4,388,077 meters north (UTM Zone 18, NAD 83) at an elevation of 75 meters (250 feet) above mean sea level. Figure 1 shows the general location of the facility. Figure 2 shows a more detailed location on a USGS topographical map.

¹<u>Maryland Department of the Environment, Guidance Document for Demonstrating Compliance with the Ambient</u> <u>Impact Requirement Under the Toxic Air Pollutant (TAP) Regulations (COMAR 26.11.15.06)</u>, undated. ² Guidelines on Air Quality Models, Appendix W of 40 CFR Part 51, U.S. Environmental Protection Agency. January 2017.

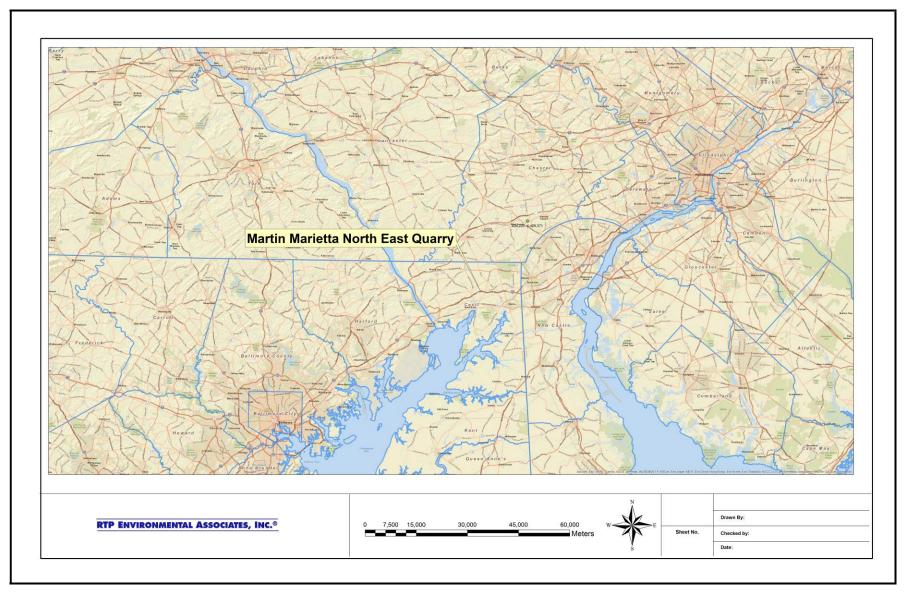


Figure 1. General Location of the Martin Marietta North East Quarry

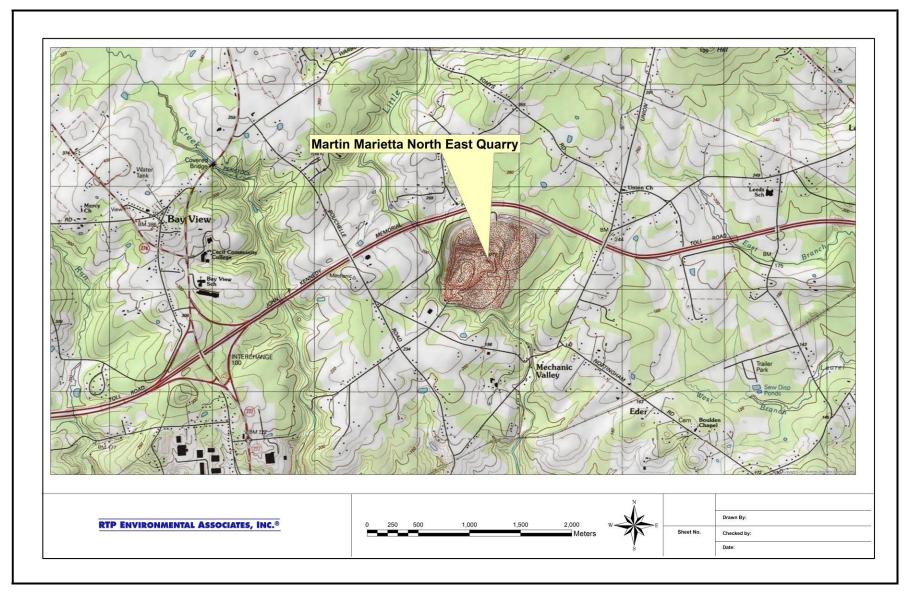


Figure 2. Specific Location of the Martin Marietta North East Quarry

2.0 MODEL SELECTION, SETUP, AND APPLICATION

2.1 Model Selection

The latest version of the AMS/EPA Regulatory Model (AERMOD, Version 19191) was selected for conducting the dispersion modeling analysis. AERMOD is the most appropriate model for calculating ambient concentrations near the Martin Marietta facility based on the model's ability to incorporate multiple sources and source types. The model can also account for convective updrafts and downdrafts and meteorological data throughout the plume depth. The model also provides parameters required for use with up to date planetary boundary layer parameterization. While not as important for this evaluation, the model also has the ability to incorporate building wake effects and to calculate concentrations within the cavity recirculation zone. It is also one of the models recommended for such studies by the MDE. All model options were selected as recommended in the EPA Guidelines on Air Quality Models.

AERMOD is a Gaussian plume dispersion model that is based on planetary boundary layer principals for characterizing atmospheric stability. The model evaluates the non-Gaussian vertical behavior of plumes during convective conditions with the probability density function and the superposition of several Gaussian plumes. AERMOD is a modeling system with three components: AERMAP is the terrain preprocessor program, AERMET is the meteorological data preprocessor, and AERMOD includes the dispersion modeling algorithms.

AERMOD was developed to calculate concentrations in both simple and complex terrain. As with CTDMPLUS, AERMOD uses the dividing streamline concept to address plume interactions with elevated terrain.

2.2 Model Setup and Application

AERMOD contains three modules: two pre-processors and the dispersion model. Model receptor elevations and height scales are developed with the AERMAP preprocessor, meteorological data are developed with the AERMET pre-processor, and the model algorithms are applied with AERMOD. Application of each of these three modules is discussed in the following sections.

AERMAP

The terrain pre-processor AERMAP was used to extract receptor elevations data from USGS National Elevation Data (NED) files for use as input to AERMOD. One degreeresolution NED dataset files were obtained. Receptor locations were based on North American Datum of 1983 (NAD 83). AERMAP (Version 18081) was used to generate the elevation and height scale for each receptor. The height scale is a measure of the height and distance of the local terrain feature that has the greatest influence on dispersion for that receptor.

The modeled receptor grid included a total of 5,058 receptors. The grid consisted of two cartesian grids and discrete receptors placed along the facility property boundary at 50m intervals. The first cartesian grid extended approximately 2,500m from the property in all directions, with a dense receptor spacing of 100m. The second cartesian grid extended from 2,500 to 5,000m from the property, with receptor spacing of 250m. Any public roadway, even if it is within the Martin Marietta property boundary, was treated as ambient air.

Generally, a fine-mesh receptor grid is placed around the location of maximum concentrations to pinpoint the absolute maximum concentrations calculated from a facility. Additional modeling using a fine-mesh receptor grid was not necessary however, because the maximum pollutant concentrations occurred within 500m of the property. The receptor spacing in this region is 100m; therefore, no fine mesh receptor grid was required. Figure 3 shows the near field receptors that were employed in the analysis.

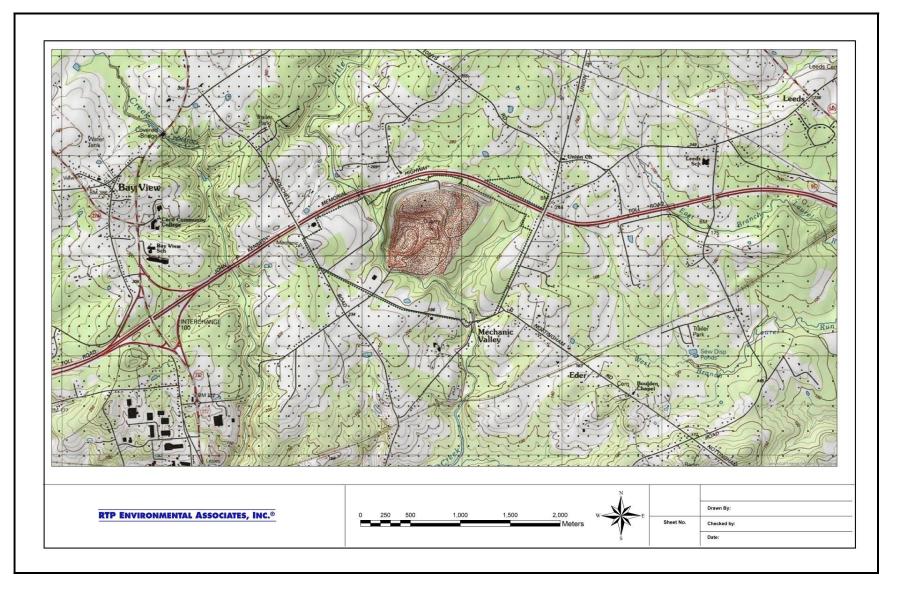


Figure 3. Near Field Receptor Grid Employed in the Martin Marietta Analysis

AERMET

The meteorological data pre-processor AERMET was used to develop meteorological data for the AERMOD modeling system. The AERMET software processes surface meteorological data and twice-daily upper air sounding data into the proper format using a three-stage process. The first stage extracts the data and administers several data quality checks. The second stage merges the data, and the third stage estimates the required boundary layer parameters and writes the data in a format readable by AERMOD.

Five years (2015-2019) of meteorological data were processed using AERMET (Version 19191) for use in the analysis. Sequential hourly surface data from the National Weather Service (NWS) station at the Dover Air Force Base in Dover, MD (WBAN No. 13707) and upper air data from the NWS station at the Washington Dulles International Airport (WBAN No. 93734) in Sterling, VA were used.

AERMOD

AERMOD was run in the regulatory default mode using the rural land use dispersion option. The land use typing scheme of Auer was used to determine the proper land use classification of the site.³ Specifically, the USGS land use coverages were obtained for the area. The land use classification codes were then categorized as either urban or rural, based on the USGS land use classification codes. It was determined that the land use within the 3km radius of the area is rural as as defined by Auer. Figure 4 shows the results of the landuse analysis. Only areas designated as red and dark red are considered "urban" under the Auer landuse classification.

³ Auer, Jr., A.H. "Correlation of Land Use and Cover with Meteorological Anomalies." <u>Journal of Applied Meteorology</u>, 17:636-643, 1978.

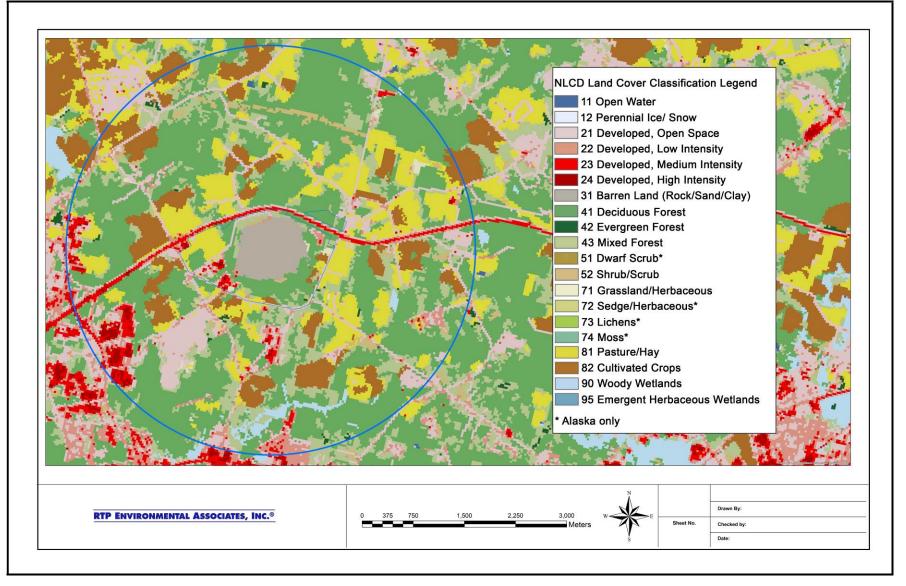


Figure 4. Land Use Analysis Results (3km Radius Circle Shown)

2.3 Source Input Parameters and Modeled Emissions

The modeled stack parameter and emission data are provided in Appendix A. All sources, with the exception of the quarry and the material stockpile areas, were modeled as volume sources. The quarry was modeled as an open pit source. Emissions from the quarry truck loading which is located in the pit were included in the modeled pit source. The stockpile areas were modeled as "area poly" sources. The release height for the piles was assumed to be 1/2 the pile height.

The remaining process equipment (i.e., conveyors, screens, crushers, and bins) were modeled as volume sources. The initial dispersion parameters (sigma y and sigma z) were calculated based upon the procedures of Table 3-1 in the EPA's AERMOD User's Guide using the area of release with an assumed horizontal and vertical dimension of 5 ft. More specifically, the sigma y values were calculated as the square root of the total area (25ft²) over which the emissions occur (or the average length of a side) divided by 4.3. The sigma z values were calculated as the initial vertical dimension of the release (assumed for all sources to be 5ft) divided by 4.3.

The emissions for each source were calculated by Martin Marietta pursuant to the MDE's Guidance⁴. The modeled PM10 (and therefore silica) emissions included the proposed primary crusher replacement (and corresponding anticipated overall plant throughput following the proposed modification). In addition, Martin Marietta is permitted to operate a Portable Plant (ARMA Registration Number 015-0005-6-0299). The portable plant was included in the model by conservatively assuming all emissions occur from a single volume source located east of the existing fixed plant with the additional conservative assumption that both plants operate simultaneously at maximum capacity. All calculations can be found in Appendix B.

⁴ <u>Maryland Department of the Environment, Procedures for Estimating PM-10 Emissions and Demonstrating</u> <u>Compliance with the Air Toxics Ambient Impact Requirement for Crystalline Silica Emissions from Crushing and</u> <u>Screening Operations</u>, undated.

2.4 Good Engineering Practice (GEP) Stack Height

A good engineering practice (GEP) stack height evaluation was not required for this analysis as no point sources were modeled.

3.0 RESULTS

The AERMOD results are presented in Table 1. The maximum 8-hour concentration as modeled over the five year meteorological dataset is presented. As shown, the ambient silica concentration is below the MDE screening level. The maximum impact occurs along the eastern facility property boundary as shown in Figure 5.

Appendix C provides the model summary output. Actual model input and output files are included electronically.

	Modeled Averaging	Modeled Impact	Screening Level
Pollutant	Period	(µg/m³)	(µg/m³)
Crystalline Silica	8-hour	0.18	0.25

Table 1.	AERMOD	Results
----------	--------	---------

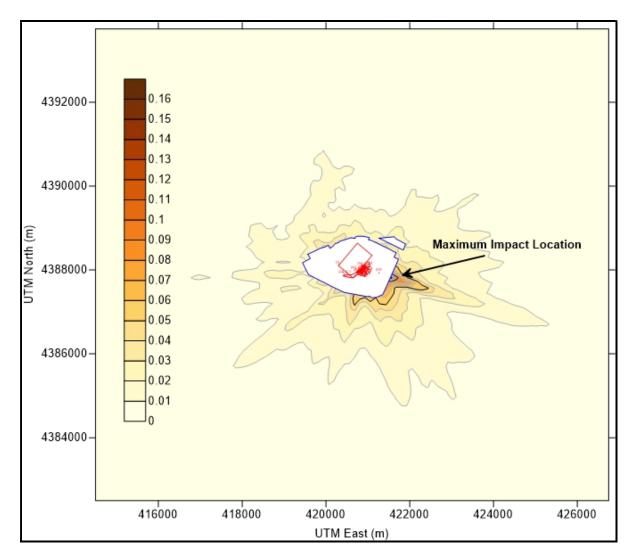


Figure 5. Location of Maximum 8-hour Crystalline Silica Impact (µg/m³)

APPENDIX A Model Input Data

Martin Marietta Cecil Co MD Model Input (NAD 83, Zone 18) Last update: 3/22/21

Volume Sources

Model					Base		Horizontal	Vertical				
Source			Easting (X)	Northing (Y)	Elevation	Release	Dimension	Dimension			Volume Sourc	e Dimensions (ft)
No.	Source ID	Source Description	(m)	(m)	(ft)	Height (ft)	(ft) ^a	(ft) ^b	PM ₁₀ (lb/hr)	Silica (lb/hr)	(Width	& Length)
1	2	CR01 METSO C160 JAW CRUSHER	421040.7	4388077.5	160.4	25.00	1.16	1.16	6.05E-01	6.69E-04	5	5
2	13	CR02 Metso Nordberg HP 500 S/M	420918.7	4388006.2	154.0	15.00	1.16	1.16	4.73E-01	5.23E-04	5	5
3	26	CR03 Metso Nordberg HP 400 SH/M	420914.0	4387997.4	154.0	15.00	1.16	1.16	3.12E-01	3.45E-04	5	5
4	27	CR04 Telsmith T-400 Crusher	420912.1	4387994.0	154.0	15.00	1.16	1.16	2.55E-01	2.82E-04	5	5
5	9	S1 Metso 7x16 Triple Deck	420921.2	4388012.4	154.0	40.00	1.16	1.16	1.04E+00	1.15E-03	5	5
6	15	S2 Diester BHM-31020-O3T	420889.1	4387947.5	153.6	30.00	1.16	1.16	1.55E+00	1.72E-03	5	5
8	3	C-1 CONV 48X60	421034.0	4388067.7	159.5	19.00	1.16	1.16	6.44E-02	7.13E-05	5	5
9	4	C-2 CONV 48X323	421012.6	4387976.4	223.8	0.00	1.16	1.16	6.44E-02	7.13E-05	5	5
10	8	C-3 CONV 48X360	420925.1	4388016.6	154.0	55.00	1.16	1.16	6.44E-02	7.13E-05	5	5
11	10	C-4 CONV 36X27 (reversible)	420927.0	4388021.1	154.0	24.00	1.16	1.16	1.61E-02	1.78E-05	5	5
12	14	C-5 CONV 48X360	420886.5	4387944.6	153.4	45.00	1.16	1.16	9.66E-02	1.07E-04	5	5
13	17	C-6 CONV 30X164	420887.9	4387992.6	180.0	30.00	1.16	1.16	6.28E-03	6.95E-06	5	5
14	16	C-6A CONV 30X40	420878.7	4387948.6	153.6	10.00	1.16	1.16	6.28E-03	6.95E-06	5	5
15	18	C-7 CONV 36X190	420898.8	4387975.8	154.0	12.00	1.16	1.16	4.83E-02	5.35E-05	5	5
16	19	C-8 CONV 36X283	420973.0	4387940.1	222.0	0.00	1.16	1.16	4.83E-02	5.35E-05	5	5
17	22	C-9 CONV 36X283	420917.7	4387994.8	154.0	46.00	1.16	1.16	4.83E-02	5.35E-05	5	5
18	28	C-10 CONV 36x145	420874.8	4387915.4	152.1	45.00	1.16	1.16	4.20E-02	4.65E-05	5	5
19	12	C-11 CONV, 36X85	420899.6	4388019.0	174.0	30.00	1.16	1.16	4.51E-03	4.99E-06	5	5
25	11	C-18 CONV 36X150	420943.6	4388055.2	196.9	55.00	1.16	1.16	1.16E-02	1.28E-05	5	5
32	1	FDR-1 METSO 58X24 VL-14 Vibrating	421044.7	4388083.9	161.7	22.00	1.16	1.16	2.24E-02	2.48E-05	5	5
35	7	FDR 4 SYNTRON MF200-C 48X84	420998.6	4387980.6	193.8	0.00	1.16	1.16	2.15E-02	2.38E-05	5	5
38	24	FDR 7 SYNTRON MF400-2 48X118	420914.8	4387997.1	154.0	20.00	1.16	1.16	2.42E-02	2.67E-05	5	5
39	25	BF-1 99 SYNTRON F480A Belt Feeder	420912.7	4387993.7	154.0	20.00	1.16	1.16	2.42E-02	2.67E-05	5	5
48	TU	Truck Unloading (at primary)	421050.0	4388090.0	160.4	15.00	2.33	1.16	2.24E-02	2.48E-05	10	10
49	PP	Portable Plant	421270.5	4387924.1	225.0	15.00	5.81	1.16	2.09E+00	2.31E-03	25	25

^aLength of side (assumed to be square root of area of release) divided by 4.3. Conveyor transfer points, crushers and screens were assumed to occur over a 5' x 5' area. ^bVertical dimension (assumed to be 5') divided by 4.3 for all sources.

Open Pit Sources

Source Easting (X) Northing (Y) Elevation Release Easterly Northerly No. Source ID Source Description (m) (ft) Height (ft) Length (ft) Length (ft) Pit Volume (ft ³) ^c Angle from North PM ₁₀ (lb/hr) Silica (lb/hr) 50 TL Operations in Pit (Truck Loading) 420299.4 4388103.8 250.00 0.00 1500 2300 1,207,500,000 40 1.40E-01 1.55E-04	Model					Base							
	Source			Easting (X)	Northing (Y)	Elevation	Release	Easterly	Northerly				
50 TL Operations in Pit (Truck Loading) 420299.4 4388103.8 250.00 0.00 1500 2300 1,207,500,000 40 1.40E-01 1.55E-04	No.	Source ID	Source Description	(m)	(m)	(ft)	Height (ft)	Length (ft)	Length (ft)	Pit Volume (ft³) ^c	Angle from North	PM ₁₀ (lb/hr)	Silica (lb/hr)
	50	TL	Operations in Pit (Truck Loading)	420299.4	4388103.8	250.00	0.00	1500	2300	1,207,500,000	40	1.40E-01	1.55E-04

^cAverage pit depth is 350'.

Area Polysources

									Verticies (m)			
Model						Vertical						
Source			Base	Release Height	Number of	Dimension						
No.	Source ID	Source Description	Elevation (ft)	(ft)	Vertices	(ft)	PM ₁₀ (lb/hr)	Silica (lb/hr)	Easting (X1)	Northing (Y1)	Easting (X2)	Northing (Y2)
51	PILE1	Plant Pile 1	155.9	15	15	14.0	3.71E-01	4.11E-04	420466.67	4387880.62	420599.28	4387882.8
52	PILE2	Plant Pile 2	151.3	15	11	14.0	3.71E-01	4.11E-04	420755.26	4387978.09	420810.7	4388017.22
53	PILE3	Plant Pile 3	161.4	15	7	14.0	3.71E-01	4.11E-04	420915.05	4388074.83	420933.52	4388078.09
54	PILE4	Plant Pile 4	150.5	15	14	14.0	3.71E-01	4.11E-04	420971.57	4387966.13	420984.61	4387990.05
55	PILE5	Plant Pile 5	147.1	15	10	14.0	3.71E-01	4.11E-04	420925.92	4387849.83	420928.09	4387872.65
56	PILE6	Plant Pile 6	149.2	15	14	14.0	3.71E-01	4.11E-04	420817.41	4387914.61	420822.24	4387947.87
10	SP					Pile Total	2.23E+00	2.46E-03				

APPENDIX B Emission Calculations

Bluegrass Materials Company, LLC (C/o Martin Marietta Materials, Inc.)

North East, Permit to Operate 015-0005

Permit to Construct Application	Total Stage Throughputs - Current:		Proposed:	
Form 5T & Crystalline Silica Emissions Calculations	Primary	900 tph	Primary	1400 tph
Date: 03/16/2021	Secondary	750 tph	Secondary	1400 tph
	Tertiary	700 tph	Tertiary	1050 tph

PM-10 Emission (b) 00 PM-10 Emission Factor 12 (R01 METSO C140 JAW CRUSHER PM-10 Emission (b) 70 PM-10 Emission (c) 70 PM-10 Emission (c) 70 PM-10 Emission (c) 70 PM-10 Emission (c) 70 PM-10 Emission (c) 70 PM-10 Emission (c) 70 PM-					Current	Equipment			Proposed I	Equipment	
Ph-10 Ph-10 Program (b) Solution (b) Pop-ration (b) Solution (b) Pop-ration (b) <th< th=""><th></th><th></th><th></th><th></th><th></th><th><u> </u></th><th></th><th></th><th></th><th></th><th></th></th<>						<u> </u>					
Ph-10 Ph-10 Program (b) Solution (b) Pop-ration (b) Solution (b) Pop-ration (b) <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>											
Emission Function (april) (bit) Partial (bit) Silue (bit) Equit) Silue (bit)			PM-10		Projected		Crystaline		Projected		Crystaline
Dim Factor Space Finations Capacity Rate Finations Capacity Capacity <thcapatity< th=""> <thcapatity< <="" th=""><th></th><th></th><th></th><th>Faula</th><th></th><th></th><th></th><th>Faula</th><th></th><th>- •</th><th></th></thcapatity<></thcapatity<>				Faula				Faula		- •	
No. DESCRIPTION (Bp/)					•						
2 000.000 0.000.00 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.000 0.000.00		DECODIDITION									
2 ODD 1.20 0.60 0.0005 2 0.002 Mettos Nordberg IP 500.5/M 0.00054 200 235 0.023 8.80 8.91 0.000051 578 0.01 0.000051 578 0.01 0.000051 578 0.01 0.000019 558 4.73 0.26 0.00021 578 0.021 0.000019 558 4.73 0.26 0.00021 578 0.021 0.00001 578 0.021 0.00001 578 0.021 0.00001 1.400 0.0011 578 0.221 1.400 0.0011 578 0.0011 579 9.14 0.000 0.0001 579 9.14 0.00 0.0000 0.0000 1.400 0.66 0.0000 1.400 0.66 0.0000 1.400 0.66 0.0000 1.400 0.66 0.0000 1.400 0.60 0.0000 1.400 0.66 0.0000 1.437 0.01 0.0000 1.437 0.01 0.0000 1.437 0.01 0.0000	-						1	(stpn)	(SLPII)	(105/117)	(IDS/III)
13 CO20 Res PA PA PA PA PA<				925	765	0.41	0.00046	1 260	1 1 2 0	0.60	0.00067
26 680 Metas Avordser gift 400 SH/M 0.00024 700 578 0.31 0.00024 27 CR04 Toleshift 7-000 Crubber 0.00074 3585 315 0.00013 5355 473 0.026 0.00024 9 S1 Metas 2v16 Triple Peck 0.00074 3500 1.200 1.55 0.0017 355 0.0013 2281 1.200 1.55 0.0017 2.200 1.55 0.0017 2.200 1.55 0.0004 0.00005 - 1.400 0.00 0.00004 2 1.4004 Metas 0.000046 - 500 0.04 0.00004 - 1.400 0.06 0.00001 10 4.5 CONV-M83221 0.000046 - 1.90 0.00000 - 1.37 0.01 0.00001 - 1.37 0.01 0.00001 - 1.37 0.01 0.00001 - 1.37 0.01 0.00001 - 1.37 0.01 0.00001 - 1.350 0.000 0.00001 - 1.				000	460	0.25	0.00038				
21 CR04 relamint 7+00 Crusher 0.0004 585 115 0.1001 585 473 0.26 0.0004 15 Dester BHM-3102/D3T 0.00074 2281 1.400 1.04 0.00115 150 0.0001 1.55 0.0001 15 Dester BHM-3102/D-3T 0.0004 - 900 0.000 0.0000 1.750 600 0.0000 1.760 0.000 0.0000 1.400 0.066 0.0000 2 C1CNV 48803 0.000046 - 900 0.0000 - 1.400 0.06 0.00001 - 1.400 0.06 0.00001 - 1.400 0.06 0.00000 - 1.37 0.01 0.00001 - 1.37 0.01 0.0000 - 1.37 0.01 0.0000 - 1.37 0.01 0.0000 - 1.37 0.01 0.0000 - 1.37 0.01 0.000 - 1.37 0.01 0.0000 - 1.37 0.01 0.00											
9 SI Mesia 7x15 Triple Deck 0.0074 1500 750 0.56 0.00015 22181 0.00115 22181 0.00115 22181 0.0001 22181 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000		· · ·	-								-
15 SD Desizer BMM-31020-QT 0.0074 2281 1.400 1.014 0.0015 2281 1.55 0.0072 35 Dissets BMM-3320-OT WMPO 0.00 0.0000 1750 600 0.00000 1750 600 0.00000 1750 600 0.00000 1.400 0.065 0.00000 4 2.4 CON 488360 0.000046 - 1750 60.03 0.00000 - 1.400 0.66 0.00000 0 C4 CON 488360 0.000046 - 1.188 0.01 0.00000 - 1.37 0.01 0.00000 16 CACINY 488260 0.000046 - 1.000 0.00000 - 1.37 0.01 0.00001 - 1.37 0.01 0.00000 - 1.37 0.01 0.0000 - 1.37 0.01 0.0000 - 1.36 0.0000 - 1.35 0.000 - 1.36 0.0000 - 1.35 0.00 0.0000 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
29 Solester BHM 3820-OT WMPD 1270 60.00 0.0000 1270 11.40 0.000 0.0000 10 C1-COW 48333 0.00006 - 900 0.04 0.00007 - 1.400 0.066 0.0000 10 C4-COW 48336 0.00006 - 1790 0.03 0.00000 - 1.400 0.066 0.0000 10 C4-COW 38327 (reversible) 0.000066 - 1710 0.000 - 2.100 1.00 0.00001 - 1.37 0.01 0.0000 10 C4-COW 30X46 0.000066 - 700 0.03 0.00004 - 1.350 0.050 0.0000 - 1.37 0.01 0.0000 - 1.37 0.01 0.0000 - 1.37 0.01 0.0000 - 1.37 0.01 0.0000 - 1.37 0.01 0.0000 - 1.37 0.01 0.0000 - 1.350 0.00 0.0000 -											
3 0.1 CONV 45820 0.000046 - 900 0.0.44 0.00005 - 1.400 0.0.66 0.0000 8 C - 2 CONV 48330 0.000046 - 750 0.03 0.00001 - 1.400 0.06 0.0000 10 C + CONV 48330 0.000046 - 1.88 0.01 0.00001 - 350 0.02 0.0000 10 C + CONV 48340 0.000046 - 1.400 0.06 0.00001 - 1.37 0.01 0.00001 12 C + CONV 30427 (neversible) 0.000046 - 910 0.00 0.00000 - 1.37 0.01 0.00001 15 C + CONV 30427 (neversible) 0.000046 - 700 0.03 0.00004 - 1.050 0.050 0.0000 2 2 0.000 0.0000 - 914 0.000 0.0000 1.050 0.000 1.050 0.000 1.050 0.0000 1.050 0.0000 1.050 0.0000 1.020 0.0000 1.050 0.0000 1.020 0.0000 1.0											
4 02.007.4 (0.04332) 0.00006 - 900 0.044 0.00001 - 1.400 0.066 0.00001 8 0.3.COV.483360 0.000046 - 1.88 0.011 0.00001 - 1.400 0.002 0.00001 12 C.S.COV.483400 0.000046 - 1.400 0.00000 - 3.37 0.011 0.00001 12 C.S.COV.483400 0.000046 - 911 0.000 0.00000 - 1.37 0.011 0.00001 15 C.S.COV.35030 0.000046 - 700 0.03 0.00004 - 1.050 0.050 0.00001 15 C.S.COV.35023 0.000046 - 700 0.03 0.00004 - 1.050 0.050 0.0000 12 C.S.COV.35023 0.000046 - 53 0.000 0.0000 - 32 0.000 0.0000 1.050 0.0000 0.0000 1.050 0.0000 0.0000 1.050 0.0000 0.0000 1.050 0.0000 0.0000 0.0000 0.0000	-										
8 C3 CONV 48X360 0.000046 - 1700 0.06 0.00001 10 C 4 CONV 38X37 (reversible) 0.000046 - 114 0.00001 - 157 0.01 0.00001 11 C 5 CONV 48X360 0.000046 - 11 0.00 0.00000 - 137 0.01 0.00001 12 C 5 CONV 38X40 0.000046 - 11 0.00 0.00004 - 137 0.01 0.00001 13 C 4 CONV 38X43 0.000046 - 700 0.03 0.00004 - 1,050 0.050 0.00000 12 C 2 CONV 38X283 0.000046 - 5700 0.03 0.00004 - 1,050 0.050 0.00000 12 C 10 CONV 38X45 0.000046 - 53 0.00 0.00000 -32 0.00 0.00000 - 24 0.00 0.00000 - 24 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 252 0.00 0.00000											
10 C4 CONV 36X/2 (reversible) 0.00006 - 188 0.01 0.00001 - 350 0.02 0.0001 17 C 6 CONV 30X164 0.000046 - 91 0.00 0.00000 - 137 0.01 0.00001 16 C 4 CONV 30X164 0.000046 - 91 0.00 0.00004 - 137 0.01 0.00001 16 C 4 CONV 30X163 0.000046 - 700 0.03 0.00004 - 1,050 0.050 0.00000 12 C CONV 36X233 0.000046 - 700 0.03 0.00004 - 1,050 0.050 0.0000 12 C11 CONV 36X23 0.000046 - 53 0.00 0.00000 - 32 0.00 0.0000 12 C11 CONV 36X5 WMPO - 21 0.00 0.0000 - 32 0.00 0.0000 32 0.00 0.0000 - 224 0.00 0.0000 - 324 0.00 0.0000 - 244 0.00 0.0000								-			
14 CS CONV 48X360 0.000046 - 1.400 0.065 0.00000 - 2.100 0.010 0.00000 17 CS CONV 30X164 0.000046 - 91 0.00 0.00000 - 137 0.01 0.00000 18 C7 CONV 30X190 0.000046 - 700 0.03 0.00004 - 1.050 0.050 0.00000 19 C CONV 30X43 0.000046 - 700 0.03 0.00004 - 1.050 0.050 0.00000 2 C 9 CONV 30X43 0.000046 - 700 0.03 0.00000 - 98 0.00 0.00000 2 C 10 CONV 30X43 (reversible) WMPO - 218 0.00 0.00000 - 388 0.00 0.00000 - 388 0.00 0.00000 - 388 0.00 0.00000 - 322 0.00 0.0000 - 322 0.00 0.0000 - 324 0.00 0.00000 - 322 0.00 0.0000 - 322 0.00 <			-					-	-		
12 6.5 CONV 30X164 0.000046 - 91 0.00 0.000000 - 137 0.01 0.00000 16 C.FA CONV 30X130 0.000046 - 700 0.03 0.00004 - 1,050 0.050 0.00000 19 C.FA CONV 36X133 0.000046 - 700 0.03 0.00004 - 1,050 0.055 0.00000 2 C.SCONV 36X233 0.000046 - 700 0.03 0.00000 - 914 0.04 0.00000 2 C.SCONV 36X23 0.000046 - 53 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 -<								-			
10 CA CONV 30x40 0.000046 - 91 0.00 0.00000 - 137 0.01 0.0000 18 C-7 CONV 36x130 0.000046 - 700 0.03 0.00004 - 1,050 0.055 0.0000 2 C-9 CONV 36x283 0.000046 - 6700 0.03 0.00004 - 1,050 0.05 0.0000 2 C-9 CONV 36x283 0.000046 - 6700 0.03 0.00000 - 98 0.00 0.00000 12 C11 CONV 36x45 0.000046 - 533 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 32 0.00 0.00000 - 326 0.00 0.00000 - 326 0.00 0.0000 - 326 0.00 0.0000 - 324 0.00 0.0000 - 324 0.00 0.0000 - 119 0.00 0.0000 - 119 0.00 0.0000 - 110 0.00 0.0000 -				-				-			0.00011
18 C7 CONV 36X190 0.000046 - 700 0.03 0.00004 - 1,050 0.055 0.00001 19 C 8 CONV 36X283 0.000046 - 700 0.03 0.00003 - 1,050 0.055 0.00001 21 C 10V 36X183 0.000046 - 533 0.000 0.00000 - 984 0.00 0.00000 21 C 10V 36X185 0.000046 - 533 0.00 0.00000 - 324 0.00 0.00000 30 C12 CONV 36X53 WMPO - 285 0.00 0.00000 - 368 0.00 0.00000 31 C14 CONV 30X55 WMPO - 119 0.00 0.00000 - 224 0.00 0.00000 31 C14 CONV 30X55 WMPO - 119 0.00 0.00000 - 128 0.00 0.00000 - 128 0.00 0.00000 - 128 0.00 0.00000 - 128 0.00 0.00000 - 128 0.00 0.000			-	-				-			0.00001
19 C-8 CONV 36X283 0.000046 - 700 0.03 0.00004 - 1,050 0.05 0.00005 22 C-9 CONV 36X283 0.000046 - 700 0.03 0.00004 - 1,050 0.05 0.00005 12 C-11 CONV, 36X45 0.000046 - 53 0.00 0.00000 - 98 0.00 0.00000 12 C-11 CONV, 36X45 0.000 0.00000 - 22 0.00 0.00000 - 32 0.00 0.00000 21 12 CAS CONV 30X43 (reversible) WMPO - 28 0.00 0.00000 - 368 0.00 0.00000 26 CAS CONV 30X55 WMPO - 119 0.00 0.00000 - 179 0.00 0.00000 - 179 0.00 0.00000 - 179 0.00 0.00000 - 122 0.00 0.00000 - 135 0.01 0.0000 - 179 0.00 0.0000 - 179 0.00 0.0000 - 122 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>0.00001</td></td<>				-				-			0.00001
22 C2 CONV 36X23 0.000046 - 700 0.033 0.00004 - 1.050 0.05 0.00007 28 C10 CONV 36x45 0.000046 - 609 0.03 0.00000 - 914 0.04 0.00000 30 C12 CONV 36x50 WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 31 C14 CONV 36x51 WMPO - 28 0.00 0.00000 - 368 0.00 0.00000 31 C14 CONV 30x55 WMPO - 189 0.00 0.00000 - 368 0.00 0.00000 31 C21 CONV 30x55 WMPO - 119 0.00 0.00000 - 322 0.00 0.00000 31 C21 CONV 30x123 WMPO - 28 0.00 0.00000 - 322 0.00 0.0000 31 C21 CONV 30x123 WMPO - 285 0.00	18	C-7 CONV 36X190	0.000046	-	700	0.03	0.00004	-	1,050	0.05	0.00005
28 C10 CONV 36x145 0.000046 - 53 0.00000 - 914 0.04 0.00001 12 C11 CONV, 36x85 0.00046 - 53 0.00 0.00000 - 98 0.00 0.00000 32 C13 CONV 36x50 WMPO - 224 0.00 0.00000 - 422 0.00 0.00000 32 C14 CONV 30x55 WMPO - 245 0.00 0.00000 - 424 0.00 0.00000 36 C15 CONV 30x55 WMPO - 1189 0.00 0.00000 - 179 0.00 0.00000 31 C16 CONV 30x55 WMPO - 214 0.00 0.00000 - 322 0.00 0.00000 31 C21 CONV 30x120 WMPO - 218 0.00 0.00000 - 284 0.00 0.00000 31 C12 CONV 30x123 WMPO - 119 0.00 0.00000	19	C-8 CONV 36X283	0.000046	-	700	0.03	0.00004	-	1,050	0.05	0.00005
11 C-11 CONV, 36X85 0.000046 - 53 0.00 0.00000 - 98 0.00 0.00000 32 C-12 CONV 36X50 WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 34 C-14 CONV 30X55 WMPO - 245 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 322 0.00 0.00000 - 322 0.00 0.00000 - 322 0.00 0.00000 - 322 0.00 0.00000 - 322 0.00 0.00000 - 322 0.00 0.00000 - 322 0.00 0.00000 - 324 0.00 0.00000 - 322 0.00 0.00000 - 322	22	C-9 CONV 36X283	0.000046	-	700	0.03	0.00004	-	1,050	0.05	0.00005
30 C12 CONV 36X50 WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 32 C13 CONV 30X43 (reversible) WMPO - 28 0.00 0.00000 - 42 0.00 0.00000 36 C14 CONV 30X55 WMPO - 189 0.00 0.00000 - 284 0.00 0.00000 36 C15 CONV 30X55 WMPO - 119 0.00 0.00000 - 252 0.01 0.00000 31 C20 CONV 30X52 WMPO - 21 0.00 0.00000 - 252 0.01 0.00000 31 C20 CONV 30X120 WMPO - 21 0.00 0.00000 - 42 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 284 0.00 0.00000 - 190 0.00 0.00000 - 190 0.00 0.00000 - </td <td>28</td> <td>C-10 CONV 36x145</td> <td>0.000046</td> <td>-</td> <td>609</td> <td>0.03</td> <td>0.00003</td> <td>-</td> <td>914</td> <td>0.04</td> <td>0.00005</td>	28	C-10 CONV 36x145	0.000046	-	609	0.03	0.00003	-	914	0.04	0.00005
32 C-13 CONV 30X43 (reversible) WMPO - 28 0.00 0.00000 - 42 0.00 0.00000 32 C-14 CONV 30X65 WMPO - 245 0.00 0.00000 - 368 0.00 0.00000 35 C-15 CONV 30X55 WMPO - 119 0.00 0.00000 - 179 0.00 0.00000 11 C-18 CONV 30X50 WMPO - 215 0.01 0.00000 - 322 0.00 0.00000 12 C-12 CONV 30X120 WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 35 C-21 CONV 30X123 WMPO - 28 0.00 0.00000 - 42 0.00 0.00000 35 C-22 CONV 30X123 WMPO - 1189 0.00 0.00000 - 179 0.00 0.00000 12 C-25 CONV 30X123 WMPO - 119 0.00 0.00000 - 179 0.00 0.0000 1179 0.00 0.0000	12	C-11 CONV, 36X85	0.000046	-	53	0.00	0.00000	-	98	0.00	0.00000
34 C.14 CONV 30X65 WMPO - 245 0.00 0.00000 - 368 0.00 0.00000 36 C-15 CONV 30X55 WMPO - 119 0.00 0.00000 - 284 0.00 0.00000 11 C-13 CONV 30X55 WMPO - 119 0.00 0.00000 - 284 0.00 0.00000 13 C-21 CONV 30X120 WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 31 C-22 CONV 30X123 WMPO - 245 0.00 0.00000 - 328 0.00 0.00000 35 C-22 CONV 30X123 WMPO - 189 0.00 0.00000 - 179 0.00 0.0000 37 C-23 CONV 30X123 WMPO - 189 0.00 0.0000 - 110 0.00 0.0000 - 111 0.00 0.0000 - 111 0.00 0.0000 - 111 0.00 0.0000 - 1140 0.02 0.0000	30	C-12 CONV 36X50	WMPO	-	21	0.00	0.00000	-	32	0.00	0.00000
36 C-15 CONV 30X85 WIMPO - 189 0.00 0.00000 - 284 0.00 0.00000 39 C-16 CONV 30X55 WIMPO - 119 0.00 0.00000 - 179 0.00 0.00000 31 C-18 CONV 30X120 WIMPO - 21 0.00 0.00000 - 32 0.00 0.00000 33 C-21 CONV 30X123 WIMPO - 245 0.00 0.00000 - 428 0.00 0.00000 36 C-22 CONV 30X123 WIMPO - 245 0.00 0.00000 - 284 0.00 0.00000 37 C-23 CONV 30X123 WIMPO - 189 0.00 0.00000 - 111 0.00 0.00000 42 C-25 CONV 24K63 WIMPO - 7 0.00 0.00000 - 111 0.00 0.00000 1 FDR 1 SYNTRON MF200- C48X84 *(8) - 250 0.00 0.00000 - 467 0.00 0.00000 1 FDR 3 SYNTR	32	C-13 CONV 30X43 (reversible)	WMPO	-	28	0.00	0.00000	-	42	0.00	0.00000
39 C.16 CONV 30X55 WMPO - 119 0.00 0.00000 - 179 0.00 0.00000 11 C-18 CONV 30X120 0.000046 - 135 0.01 0.00000 - 252 0.01 0.00000 33 C-20 CONV 30X123 WMPO - 228 0.00 0.00000 - 328 0.00 0.00000 - 328 0.00 0.00000 - 368 0.00 0.00000 30 C-22 CONV 30X123 WMPO - 245 0.00 0.00000 - 368 0.00 0.00000 40 C-24 CONV 30X123 WMPO - 119 0.00 0.00000 - 119 0.00 0.00000 - 110 0.00 0.0000 42 C-25 CONV 24K63 WMPO - 7 0.00 0.0000 - 110 0.00 0.0000 - 110 0.00 0.0000 - 1467 0.02 0.0000 - 1678 1575 582 0.01 0.0000 - 1676 0.02<	34	C-14 CONV 30X65	WMPO	-	245	0.00	0.00000	-	368	0.00	0.00000
11 C-18 CONV 36X150 0.000046 - 135 0.01 0.00001 - 252 0.01 0.00000 31 C-20 CONV 30X120 WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 33 C-21 CONV 30X123 WMPO - 248 0.00 0.00000 - 422 0.00 0.00000 35 C-22 CONV 30X123 WMPO - 245 0.00 0.00000 - 284 0.00 0.00000 40 C-24 CONV 30X123 WMPO - 119 0.00 0.00000 - 179 0.00 0.00000 40 C-24 CONV 30X123 WMPO - 7 0.00 0.00000 - 140 0.00 0.0000 4 C25 CONV 4X63 WMPO - 7 0.00 0.00000 - 1,400 0.02 0.0000 5 FDR 2 SYNTRON MF200- 48X84 %(8) - 250 0.00 0.00000 - 1,650 0.00 0.00000 - 1,650 0.00	36	C-15 CONV 30X85	WMPO	-	189	0.00	0.00000	-	284	0.00	0.00000
31 C-20 CONV 30X120 WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 33 C-21 CONV 30X123 WMPO - 28 0.00 0.00000 - 42 0.00 0.00000 37 C-23 CONV 30X123 WMPO - 245 0.00 0.00000 - 328 0.00 0.00000 37 C-23 CONV 30X123 WMPO - 119 0.00 0.00000 - 179 0.00 0.0000 40 C-24 CONV 24X63 WMPO - 7 0.00 0.00000 - 119 0.00 0.00000 - 119 0.00 0.0000 - 110 0.00 0.0000 - 1400 0.022 0.0000 1 0.0000 - 1467 0.00 0.0000 - 1578 57877807 MF200-C 48584 *(8) - 250 0.01 0.00000 - 1467 0.02 0.0000 7 FDR 5 SYNTRON MF200-C 48584 0.000046 - 350 0.00 0.00000 -	39	C-16 CONV 30X55	WMPO	-	119	0.00	0.00000	-	179	0.00	0.00000
33 C-21 CONV 30X123 WMPO - 28 0.00 0.00000 - 42 0.00 0.00000 35 C-22 CONV 30X123 WMPO - 245 0.00 0.00000 - 368 0.00 0.00000 7 C-32 CONV 30X123 WMPO - 189 0.00 0.00000 - 284 0.00 0.00000 7 C-32 CONV 30X123 WMPO - 119 0.00 0.00000 - 111 0.00 0.0000 42 C-25 CONV 24X63 WMPO - 7 0.00 0.00000 - 1400 0.022 0.0000 0.00000 - 14.00 0.020 0.0000 1 FDR 3 SYNTRON MF200-C 48X84 *(8) - 250 0.00 0.00000 - 467 0.02 0.0000 1 FDR 3 SYNTRON MF200-C 48X84 0.00046 - 250 0.01 0.00000 - 1.050 0.00 0.00000 - 525 0.02 0.0000 - 525 0.02 0.00000 - 525	11	C-18 CONV 36X150	0.000046	-	135	0.01	0.00001	-	252	0.01	0.00001
33 C-21 CONV 30X123 WMPO - 28 0.00 0.00000 - 42 0.00 0.00000 35 C-22 CONV 30X123 WMPO - 245 0.00 0.00000 - 368 0.00 0.00000 40 C-24 CONV 30X123 WMPO - 189 0.00 0.00000 - 179 0.00 0.00000 40 C-24 CONV 30X123 WMPO - 189 0.00 0.00000 - 111 0.00 0.0000 40 C-24 CONV 30X123 WMPO - 7 0.00 0.00000 - 111 0.00 0.0000 5 FDR 2 SYNTRON MF200-C 48X84 *(8) - 250 0.00 0.00000 - 467 0.00 0.0000 1 FDR 5 SYNTRON MF200-C 48X84 *(8) - 250 0.01 0.00000 - 1,650 0.00 0.00000 1 FDR 5 SYNTRON MF200-C 48X84 0.00046 - 350 0.02 0.0000 - 1,650 0.00 0.0000 - 1,650	31	C-20 CONV 30X120	WMPO	-	21	0.00	0.00000	-	32	0.00	0.00000
35 C-22 CONV 30X123 WMPO - 245 0.00 0.00000 - 368 0.00 0.00000 37 C-23 CONV 30X123 WMPO - 119 0.00 0.00000 - 284 0.00 0.00000 40 C-24 CONV 30X123 WMPO - 119 0.00 0.00000 - 179 0.00 0.00000 40 C-25 CONV 24X63 WMPO - 7 0.00 0.00000 - 110 0.00 0.00000 1 FDR-1 METSO 58X24 VL-14 Vibrating Grizzly Feeder 0.000016 - 900 0.01 0.00000 - 467 0.00 0.00000 5 FDR 3 SYNTRON MF200-C 48X84 *(8) - 250 0.00 0.00000 - 467 0.00 0.00000 16 FDR 3 SYNTRON MF200-C 48X84 0.000046 - 250 0.01 0.00000 - 525 0.02 0.00002 17 FDR 5 SYNTRON MF200-C 36X72 *(8) - 350 0.02 0.00002 - 525 0.02 0.00002	33	C-21 CONV 30X123	WMPO	-	28	0.00	0.00000	-	42	0.00	0.00000
37 C-23 CONV 30X123 WMPO - 189 0.00 0.00000 - 284 0.00 0.00000 40 C-24 CONV 30X123 WMPO - 119 0.00 0.00000 - 179 0.00 0.00000 42 C-25 CONV 24X63 WMPO - 7 0.00 0.00000 - 11 0.00 0.00000 5 FDR 1 METSO 58X24 VL-14 Vibrating Grizzly Feeder 0.000016 - 250 0.00 0.00000 - 467 0.00 0.00000 6 FDR 3 SYNTRON MF200-C 48X84 *(8) - 250 0.01 0.00000 - 467 0.00 0.00000 1 FDR 4 SYNTRON MF200-C 48X84 *(8) - 250 0.01 0.00000 - 1,050 0.00 0.00000 1 FDR 5 SYNTRON MF200-C 48X84 0.000046 - 350 0.02 0.00000 - 525 0.02 0.0000 24 FDR 5 SYNTRON MF200-C 48X9118 0.000046 - 350 0.02 0.00000 - 525 0.02 <	35		WMPO	-	245	0.00	0.00000	-	368	0.00	0.00000
40 C-24 CONV 30X123 WMPO - 119 0.00 0.00000 - 179 0.00 0.00000 42 C-25 CONV 24K63 WMPO - 7 0.00 0.00000 - 11 0.00 0.00000 1 FDR 1 METSO 58X24 VL-14 Vibrating Grizzly Feeder 0.00016 - 900 0.01 0.00000 - 14,400 0.02 0.00000 6 FDR 2 SYNTRON MF200-C 48X84 *(8) - 250 0.00 0.00000 - 467 0.00 0.00000 6 FDR 3 SYNTRON MF200-C 48X84 0.000046 - 250 0.01 0.00000 - 467 0.00 0.00000 1 FDR 5 SYNTRON MF200-C 36X72 *(8) - 350 0.02 0.00000 - 525 0.00 0.00000 2 FDR 7 SYNTRON MF200-C 36X72 *(8) - 350 0.02 0.00000 - 525 0.02 0.00002 2 FDR 7 SYNTRON MF400-248X118 0.000046 - 350 0.02 0.00000 - 126 0.000 <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>0.00000</td>			-	-				-			0.00000
42 C-25 CONV 24X63 WMPO - 7 0.00 0.00000 - 11 0.00 0.00000 1 FDR-1 METSO 58X24 VL-14 Vibrating Grizzly Feeder 0.000016 - 900 0.01 0.00000 - 1,400 0.02 0.00000 5 FDR 2 SYNTRON MF200-C 48X84 *(8) - 250 0.00 0.00000 - 467 0.00 0.00000 6 FDR 3 SYNTRON MF200-C 48X84 0.000046 - 250 0.01 0.00000 - 467 0.02 0.0000 21 FDR 5 SYNTRON MF200-C 48X84 0.000046 - 350 0.00 0.00000 - 1,050 0.00 0.00000 24 FDR 5 SYNTRON MF200-C 36X72 *(8) - 350 0.02 0.00002 - 525 0.02 0.00000 24 FDR 5 SYNTRON MF400-2 48X118 0.000046 - 350 0.02 0.00002 - 525 0.02 0.00002 25 B-19 SYNTRON MF400-2 48X118 0.000046 - 350 0.02 0.00000 - 125<	40		-	-				-			0.00000
1 FDR-1 METSO 58X24 VL-14 Vibrating Grizzly Feeder 0.00016 - 900 0.01 0.00002 - 1,400 0.02 0.00000 5 FDR 2 SYNTRON MF200-C 48X84 *(8) - 250 0.00 0.00000 - 467 0.00 0.00000 6 FDR 3 SYNTRON MF200-C 48X84 *(8) - 250 0.01 0.00001 - 467 0.02 0.00000 21 FDR 5 SYNTRON MF200-C 48X84 0.000046 - 350 0.00 0.00000 - 1,050 0.00 0.00000 20 FDR 5 SYNTRON MF200-C 36X72 *(8) - 350 0.02 0.00000 - 525 0.02 0.00000 24 FDR 7 SYNTRON MF400-248X118 0.000046 - 350 0.02 0.00002 - 525 0.02 0.00002 25 BF-19 SYNTRON MF300-C 188 0.00 0.00000 - 188 0.00 0.0000 23 9 HOPPER (FOR BF-1) N/A - 700 0.00 0.00000 - 32 0.00 0.00000				-				-			0.00000
5 FDR 2 SYNTRON MF200-C 48X84 *(8) - 250 0.00 0.00000 - 467 0.00 0.00000 6 FDR 3 SYNTRON MF200-C 48X84 *(8) - 250 0.00 0.00000 - 467 0.00 0.00000 21 FDR 4 SYNTRON MF200-C 48X84 0.000046 - 250 0.01 0.00000 - 467 0.02 0.00000 21 FDR 5 SYNTRON 36X72 MF200-C *(8) - 700 0.00 0.00000 - 1,050 0.00 0.00000 24 FDR 5 SYNTRON MF400-2 48X118 0.000046 - 350 0.02 0.00002 - 525 0.02 0.00002 25 BF-1 99 SYNTRON MF400-2 48X118 0.000046 - 350 0.02 0.00002 - 525 0.02 0.00002 23 BF-1 99 SYNTRON MF400-2 48X118 0.000046 - 350 0.02 0.00000 - 189 0.00 0.00000 23 9 HOPPER (FOR BF-1) N/A - 700 0.00 0.000000 - 1,050				-				-			
6 FDR 3 SYNTRON MF200-C 48X84 *(8) - 250 0.00 0.00000 - 467 0.00 0.00000 7 FDR 4 SYNTRON MF200-C 48X84 0.000046 - 250 0.01 0.00000 - 467 0.02 0.00000 20 FDR 5 SYNTRON MF200-C 36X72 *(8) - 350 0.00 0.00000 - 525 0.00 0.00000 24 FDR 7 SYNTRON MF400-248X118 0.000046 - 350 0.02 0.00002 - 525 0.02 0.00000 25 BF-1 99 SYNTRON F480A Belt Feeder 0.00046 - 350 0.02 0.00002 - 525 0.02 0.00000 23 BY-1 99 SYNTRON F480A Belt Feeder 0.00046 - 350 0.02 0.00000 - 189 0.00 0.00000 23 99 HOPPER (FOR BF-1) N/A - 700 0.00 0.00000 - 1,050 0.00 0.00000 44 BP01 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.				-				-	-		0.00000
7 FDR 4 SYNTRON MF200-C 48X84 0.00046 - 250 0.01 0.00001 - 467 0.02 0.00000 21 FDR 5 SYNTRON 36X72 MF200-C *(8) - 700 0.00 0.00000 - 1,050 0.00 0.00000 20 FDR 6 SYNTRON MF200-2 36X72 *(8) - 350 0.00 0.00000 - 525 0.00 0.00000 24 FDR 7 SYNTRON MF400-2 48X118 0.000046 - 350 0.02 0.00002 - 525 0.02 0.00003 25 BF-199 SYNTRON MF400-2 48X118 0.000046 - 350 0.02 0.00002 - 525 0.02 0.00003 25 BF-199 SYNTRON MF400-2 48X118 0.000046 - 350 0.02 0.00000 - 189 0.00 0.00003 26 BF-199 SYNTRON MF400-2 48X18 WMPO - 126 0.00 0.00000 - 1,050 0.00 0.00000 23 99 HOPPER (FOR BF-1) N/A - 700 0.00 0.00000 422 0.00											0.00000
21 FDR 5 SYNTRON 36X72 MF200-C *(8) - 700 0.00 0.00000 - 1,050 0.00 0.00000 20 FDR 6 SYNTRON MF200-C 36X72 *(8) - 350 0.00 0.00000 - 525 0.00 0.00000 24 FDR 7 SYNTRON MF400-2 48X118 0.00046 - 350 0.02 0.00002 - 525 0.02 0.00000 25 BF-1 99 SYNTRON F480A Belt Feeder 0.00046 - 350 0.02 0.00002 - 525 0.02 0.00000 28 WASHER 44X33 DFMSW WMPO - 126 0.00 0.00000 - 189 0.00 0.00000 23 99 HOPPER (FOR BF-1) N/A - 700 0.00 0.00000 - 1,050 0.00 0.00000 41 WASH ULTRA FINES RECOVERY WMPO - 21 0.00 0.00000 - 1,050 0.00 0.00000 43 TOGI THICKENER / CLARIFIER WMPO - 28 0.00 0.00000 42 0.00 0.00000			. ,	-				-			
20 FDR 6 SYNTRON MF200-C 36X72 *(8) - 350 0.00 0.00000 - 525 0.00 0.00000 24 FDR 7 SYNTRON MF400-2 48X118 0.00046 - 350 0.02 0.00002 - 525 0.02 0.00002 25 BF-1 99 SYNTRON F480A Belt Feeder 0.00046 - 350 0.02 0.00002 - 525 0.02 0.00003 28 BF-1 99 SYNTRON F480A Belt Feeder 0.00046 - 350 0.02 0.00000 - 189 0.00 0.00000 23 99 HOPPER (FOR BF-1) N/A - 700 0.00 0.00000 - 1,050 0.00 0.00000 23 99 HOPPER (FOR BF-1) N/A - 700 0.00 0.00000 - 1,050 0.00 0.00000 24 WASH ULTRA FINES RECOVERY WMPO - 28 0.00 0.00000 42 0.00 0.00000 44 BP01 BDP BELT PRESS WMPO <											
24 FDR 7 SYNTRON MF400-2 48X118 0.000046 - 350 0.02 0.00002 - 525 0.02 0.00003 25 BF-1 99 SYNTRON F480A Belt Feeder 0.00046 - 350 0.02 0.00002 - 525 0.02 0.00003 38 WASHER 44X33 DFMSW WMPO - 126 0.00 0.00000 - 189 0.00 0.00000 23 99 HOPPER (FOR BF-1) N/A - 700 0.00 0.00000 - 1,050 0.00 0.00000 41 WASH ULTRA FINES RECOVERY WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 43 TC01 THICKENER / CLARIFIER WMPO - 28 0.00 0.00000 42 0.00 0.00000 44 BP01 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 45 BP02 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30				-							0.00000
25 BF-1 99 SYNTRON F480A Belt Feeder 0.000046 - 350 0.02 0.00000 - 525 0.02 0.00000 38 WASHER 44X33 DFMSW WMPO - 126 0.00 0.00000 - 189 0.00 0.00000 23 99 HOPPER (FOR BF-1) N/A - 700 0.00 0.00000 - 1,050 0.00 0.00000 41 WASH ULTRA FINES RECOVERY WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 43 TC01 THICKENER / CLARIFIER WMPO - 28 0.00 0.00000 42 0.00 0.00000 44 BP01 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 45 BP02 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 46 C-27 CONV 30x80 WMPO - 28 0.00 0.00001			. ,	-							0.00003
38 WASHER 44X33 DFMSW WMPO - 126 0.00 0.00000 - 189 0.00 0.00000 23 99 HOPPER (FOR BF-1) N/A - 700 0.00 0.00000 - 1,050 0.00 0.00000 41 WASH ULTRA FINES RECOVERY WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 43 TC01 THICKENER / CLARIFIER WMPO - 28 0.00 0.00000 42 0.00 0.00000 44 BP01 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 45 BP02 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 46 C-26 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00001 N/A 1,400 0.02 0.00000 10 Truck Loading 0.0001 N/A											
23 99 HOPPER (FOR BF-1) N/A - 700 0.00 0.00000 - 1,050 0.00 0.00000 41 WASH ULTAA FINES RECOVERY WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 43 TC01 THICKENER / CLARIFIER WMPO - 28 0.00 0.00000 - 42 0.00 0.00000 44 BP01 BDP BELT PRESS WMPO - 28 0.00 0.00000 - 42 0.00 0.00000 45 BP02 BDP BELT PRESS WMPO - 28 0.00 0.00000 - 42 0.00 0.00000 46 C-26 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 170 Truck Unloading 0.00016 N/A 765 0.01 0.00001 N/A 1,400 0.02 0.00015 SP Storage Piles 0											
41 WASH ULTA FINES RECOVERY WMPO - 21 0.00 0.00000 - 32 0.00 0.00000 43 TC01 THICKENER / CLARIFIER WMPO - 28 0.00 0.00000 42 0.00 0.00000 44 BP01 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 45 BP02 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 46 C-26 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 40 Truck Unloading 0.000016 N/A 765 0.01 0.00001 N/A 1,400 0.02 0.0001 59 Storage Piles 0.00159 N/A 765 1.22 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
43 TC01 THICKENER / CLARIFIER WMPO - 28 0.00 0.00000 42 0.00 0.00000 44 BP01 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 45 BP02 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 46 C-26 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 40 Truck Unloading 0.00016 N/A 765 0.01 0.00001 N/A 1,400 0.02 0.00015 5P Storage Piles 0.00159 N/A 765 0.08 0.0003 N/A 1,400 0.14 0.0015 5P Storage Piles 0.00159 N/A 765 1.22											
44 BP01 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 45 BP02 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 46 C-26 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 Truck Unloading 0.00016 N/A 765 0.01 0.00001 N/A 1,400 0.02 0.0001 59 Storage Piles 0.00159 N/A 765 1.22 0.00135 N/A 1,400 2.23 0.0024 FMH-10 TOTAL: 4.33 FM-10 TOTAL: 0.0048 1.400 2.23 0.0024 FMH-10 TOTAL (MODIFICATION EQUIPMENT ONLY): 0.066								_			
45 BP02 BDP BELT PRESS WMPO - 28 0.00 0.00000 42 0.00 0.00000 46 C-26 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 Truck Unloading 0.00016 N/A 765 0.01 0.00001 N/A 1,400 0.02 0.0001 59 Storage Piles 0.00159 N/A 765 1.22 0.0135 N/A 1,400 0.024 0.0024 FWH-10 TOTAL: 4.33		· · · · · · · · · · · · · · · · · · ·	-	-							
46 C-26 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 TU Truck Unloading 0.00016 N/A 765 0.01 0.00001 N/A 1,400 0.02 0.0001 TL Truck Loading 0.0001 N/A 765 0.08 0.0008 N/A 1,400 0.014 0.0001 SP Storage Piles 0.00159 N/A 765 1.22 0.00135 N/A 1,400 2.23 0.0024 CRYSTALINE SILICA TOTAL: 4.33 T.24 0.008 PM-10 TOTAL (MODIFICATION EQUIPMENT ONLY): 0.066				-							
47 C-27 CONV 30x80 WMPO - 28 0.00 0.00000 42 0.00 0.00000 TU Truck Unloading 0.00016 N/A 765 0.01 0.00001 N/A 1,400 0.02 0.00001 TL Truck Loading 0.0001 N/A 765 0.08 0.00008 N/A 1,400 0.014 0.0001 SP Storage Piles 0.00159 N/A 765 1.22 0.00135 N/A 1,400 2.23 0.0024 CRYSTALINE SILICA TOTAL: 4.33 • 7.24 0.008 PM-10 TOTAL (MODIFICATION EQUIPMENT ONLY): 0.066											
TU Truck Unloading 0.00016 N/A 765 0.01 0.00011 N/A 1,400 0.02 0.0000 TL Truck Loading 0.0001 N/A 765 0.08 0.0008 N/A 1,400 0.01 0.0001 SP Storage Piles 0.00159 N/A 765 1.22 0.00135 N/A 1,400 2.23 0.0024 CRYSTALINE SILICA TOTAL: 4.33 • 7.24 0.0080 VM-10 TOTAL (MODIFICATION EQUIPMENT ONLY): 0.0080											
TL Truck Loading 0.0001 N/A 765 0.08 0.0008 N/A 1,400 0.14 0.0015 SP Storage Piles 0.00159 N/A 765 1.22 0.00135 N/A 1,400 2.23 0.0024 PM-10 TOTAL: 4.33 • 7.24 0.0080 VEXTENDES LICA TOTAL: 0.0048 • • • • • • • • • • • • • • • • • • •								N1 / A			
SP Storage Piles 0.00159 N/A 765 1.22 0.00135 N/A 1,400 2.23 0.00240 PM-10 TOTAL: 4.33 T.24 0.000240 CRYSTALINE SILICA TOTAL: 0.0048 CRYSTALINE SILICA TOTAL: 0.0048 0.0080 PM-10 TOTAL (MODIFICATION EQUIPMENT ONLY): 0.066		· · · · · · · · · · · · · · · · · · ·									
PM-10 TOTAL: 4.33 7.24 CRYSTALINE SILICA TOTAL: 0.0048 0.0080 PM-10 TOTAL (MODIFICATION EQUIPMENT ONLY): 0.06											
CRYSTALINE SILICA TOTAL: 0.0048 0.0080 PM-10 TOTAL (MODIFICATION EQUIPMENT ONLY): 0.06	SP	Storage Piles	0.00159				0.00135	N/A	1,400		0.00246
PM-10 TOTAL (MODIFICATION EQUIPMENT ONLY): 0.06										7.24	
				C							0.0080
CRYSTALINE SILICA (MODIFICATION EQUIPMENT ONLY) 0.0007							-	-			-
					CRYS	ALINE SILICA		ION EQUIP	VIENT ONLY)	0.0007]

Portable Plant (up to 600 tons per hour, ARMA 015-0005-6-0364)

PP Portable Plant, Fugitive Emis. From Processing	VARIOUS	600	600	2.09	0.00231	600	600	2.09	0.00231
NOTE: Portable Plant PM-10 emissions from 2017 Air Permit t	NOTE: Portable Plant PM-10 emissions from 2017 Air Permit to Construct Application								

TOTAL (PROPOSED FIXED EQUIPMENT + PORTABLE PLANT):

Piv	-10	9.33
CRSYTALINE SI	CA	0.0103

Comments:

(1) Crushed Stone Processing equipment emissions factors from AP-42 11.19.2, Table 11.19.1-2 (English Units) revised 08/04.

(2) Storage Pile emissions factors from AP-42, Section 13.2.4 - Assuming a moisture content of 2.1%, a mean wind speed of 6.9 miles per hour, < 10 micrometer particale size multiplier, and the number of tons processed (max design capacity) is equal to the number of tons handled.

(3) WMPO = Wet Material Processing Operation.

(4) Equipment associated with PTC modification is highlighted yellow.

(5) "Equip. Capacity" is based on vendor or manufacturer provided information, or educated estimates where information is not available.

(6) "Projected Operations" represent high-range estimates based on computer flow modeling, equipment configuration, past operational records, and interviews with knowledgeable personnel. Actual throughput may vary based on plant configuration and other factors.

(7) Equipment associated with rail yard facility (A-1 thru A-5) operates only intermittently, and is located approximately 4000 feet from fixed facility. This equipment only conveys finished product into rail cars (no crushing or screening at facility). Therefore, emissions from this equipment was assumed to be negligible for the purposes of this evaluation.

(8) Vibrating feeders, located underneath of surge piles (in surge tunnels).

APPENDIX C Model Results

3-22-21 Martin Marietta Cecil Co MD Crystalline Silca Modeling

Model	File	Pollutant	Average	Group	Rank	Conc/Dep	East (X)	North (Y) El	ev Hi	ll Flag	Time	Met File	Sources	Groups	Receptors
AERMOD 19191	MM Cecil Co_2018_Silica_1.SUM	SILICA	8-HR	ALL	1ST	0.17975	421546.3	4387837	68.27	90.01	0 1812252	4 DOVER_DULLES-18.SFC	32	:	. 5058
AERMOD 19191	MM Cecil Co_2016_Silica_1.SUM	SILICA	8-HR	ALL	1ST	0.16277	421546.3	4387837	68.27	90.01	0 1609242	4 DOVER_DULLES-16.SFC	32	:	. 5058
AERMOD 19191	MM Cecil Co_2015_Silica_1.SUM	SILICA	8-HR	ALL	1ST	0.14189	421605.3	4387970	68.61	90.01	0 1512060	8 DOVER_DULLES-15.SFC	32	:	. 5058
AERMOD 19191	MM Cecil Co_2019_Silica_1.SUM	SILICA	8-HR	ALL	1ST	0.1228	421536.5	4387815	66.4	90.01	0 1909240	8 DOVER_DULLES-19.SFC	32	:	. 5058
AERMOD 19191	MM Cecil Co_2017_Silica_1.SUM	SILICA	8-HR	ALL	1ST	0.119	421536.5	4387815	66.4	90.01	0 1701190	8 DOVER_DULLES-17.SFC	32	:	. 5058

3-22-21 Martin Marietta Cecil Co MD Crystalline Silca Modeling

			Sc	reening	%
			Conc	Level 3	Screening
Pollutant	Average	Group	Rank (ug/m3) (u	ug/m3)	Level
SILICA	8-HR	ALL	1ST 0.18	0.25	72%

Safety Data Sheet (SDS)

10000 Beaver Dam Road, Cockeysville, MD 21030 Email: Gus.Buttar@martinmarietta.com Mobile: (443) 802-2769

SAFETY DATA SHEET (SDS): GRANITE

SECTION I – IDENTIFICATION

PRODUCT IDENTIFIER Granite TRADE NAME Granite, Diorite, Noveculite, Rhyolite OTHER SYNONYMS Aggregate, Base, Crushed Stone, Manufactured Sand, Ballast Screenings

RECOMMENDED USE AND RESTRICTION ON USE Used for construction purposes This product is not intended or designed for and should not be used as

This product is not intended or designed for and should not be used as an abrasive blasting medium or for foundry applications.

MANUFACTURER/SUPPLIER INFORMATION Martin Marietta Materials 2710 Wycliff Road Raleigh, North Carolina 27607 Phone: 919-781-4550

For additional health, safety or regulatory information and other emergency situations, call 919-781-4550

SECTION II - HAZARD(S) IDENTIFICATION

HAZARD CLASSIFICATION:

Category 1A Carcinogen Category 1 Specific Target Organ Toxicity (STOT) following repeated exposures Category 1 Eye Damage Category 1 Skin Corrosive

SIGNAL WORD: DANGER

HAZARD STATEMENTS:

May cause cancer by inhalation. Causes damage to lungs, kidneys and autoimmune system through prolonged or repeated exposure by inhalation. Causes severe skin burns and serious eye damage.

PRECAUTIONARY STATEMENTS

Do not handle until the safety information presented in this SDS has been read and understood.

Do not breathe dusts or mists. Do not eat, drink or smoke while manually handling this product. Wash skin thoroughly after manually handling.

If swallowed: Rinse mouth and do not induce vomiting.

If on skin (or hair): Rinse skin after manually handling and wash contaminated clothing if there is potential for direct skin contact before reuse.

If inhaled excessively: Remove person to fresh air and keep comfortable for breathing.

If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do, and continue rinsing.

If exposed, concerned, unwell or irritation of the eyes, skin, mouth or throat/nasal passage persist: Get medical attention. Wear eye protection and respiratory protection following this SDS, NIOSH guidelines and other applicable regulations. Use protective gloves if manually handling the product.

Avoid creating dust when handling, using or storing. Use with adequate ventilation to keep exposure below recommended exposure limits.

Dispose of product in accordance with local, regional, national or international regulations.

Please refer to Section XI for details of specific health effects of the components.

SECTION III – COMPOSITION/INFORMATION ON INGREDIENTS

COMPONENT(S)	CAS REGISTRY NO	% by weight (approx)
CHEMICAL NAME		
Silicon Dioxide, SiO ₂ ⁽¹⁾	7631-86-9	70-72
Aluminum Oxide, Al ₂ O ₃	1344-28-1	13-15
Ferrous Oxide, FeO	1345-25-1	1-2
Ferric Oxide, Fe ₂ O ₃	1309-37-1	1-2
Magnesium Oxide, MgO	1309-48-4	<1
Calcium Oxide, CaO	1305-78-8	1-2
Sodium Oxide, Na ₂ O	1313-59-3	3-4
Potassium Oxide, K ₂ O	12136-45-7	4-5

(1): The composition of SiO_2 may be up to 100% crystalline silica

SECTION IV – FIRST-AID MEASURES

INHALATION: If excessive inhalation occurs, remove to fresh air. Dust in throat and nasal passages should clear spontaneously. Contact a physician if irritation persists or develops later.

EYES: Immediately flush eye(s) with plenty of clean water for at least 15 minutes, while holding the eyelid(s) open. Occasionally lift the eyelid(s) to ensure thorough rinsing. Remove contact lenses, if present and easy to do, and continue rinsing. Beyond flushing, do not attempt to remove material from the eye(s). Contact a physician if irritation persists or develops later.

SKIN: Rinse skin with soap and water after manually handling and wash contaminated clothing if there is potential for direct skin contact. Contact a physician if irritation persists or develops later.

INGESTION: If swallowed, rinse mouth and do not induce vomiting. If gastrointestinal discomfort occurs, persists or develops later, get medical attention.

SIGNS AND SYMPTOMS OF EXPOSURE: There are generally no signs or symptoms of exposure to respirable crystalline silica. Often, chronic silicosis has no symptoms. The symptoms of chronic silicosis, if present, are shortness of breath, wheezing, cough and sputum production. The symptoms of acute silicosis which can occur with exposures to very high concentrations of respirable crystalline silica over a very short time period, sometimes as short as 6 months, are the same as those associated with chronic silicosis; additionally, weight loss and fever may also occur. The symptoms of scleroderma, an autoimmune disease, include thickening and stiffness of the skin, particularly in the fingers, shortness of breath, difficulty swallowing and joint problems.

Direct skin and eye contact with dust may cause irritation by mechanical abrasion. Some components of the product are also known to cause corrosive effects to skin, eyes and mucous membranes. Ingestion of large amounts may cause gastrointestinal irritation and blockage. Inhalation of dust may irritate nose, throat, mucous membranes and respiratory tract by mechanical abrasion or corrosive action. Coughing, sneezing, chest pain, shortness of breath, inflammation of mucous membrane, and flu-like fever may occur following exposures in excess of appropriate exposure limits. Repeated excessive exposure may cause pneumoconiosis, such as silicosis and other respiratory effects.

SECTION V – FIRE-FIGHTING MEASURES

EXTINGUISHING AGENT

Not flammable; use extinguishing media compatible with surrounding fire.

UNUSUAL FIRE AND EXPLOSION HAZARD

Contact with powerful oxidizing agents may cause fire and/or explosions (see Section X of this SDS). While individual components are known to react vigorously with water to produce heat, this is not expected from the granite.

SPECIAL FIRE FIGHTING PROCEDURES	HAZARDOUS COMBUSTION PRODUCTS
None known	None known

SECTION VI – ACCIDENTAL RELEASE MEASURES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED

Persons involved in cleaning should first follow the precautions defined in Section VII of the SDS. Spilled materials, where dust can be generated, may overexpose cleanup personnel to respirable crystalline silica-containing dust and other components that may pose inhalation hazards. Do not dry sweep spilled material. Collect the material using a method that does not produce dust such as a High-Efficiency Particulate Air (HEPA) vacuum or thoroughly wetting down the dust before cleaning up. Wear appropriate personal protective equipment as specified in Section VIII including appropriate respirators during and following clean up or whenever airborne dust is present to ensure worker exposures remain below occupational exposure limits (OELs - Refer to Section VIII).

Place the dust in a covered container appropriate for disposal. Dispose of the dust according to federal, state and local regulations.

This product is not subject to the reporting requirements of SARA Title III Section 313, and 40 CFR 372.

SECTION VII – HANDLING AND STORAGE

This product is not intended or designed for and should not be used as an abrasive blasting medium or for foundry applications. Follow protective controls set forth in Section VIII of this SDS when handling this product. Dust containing respirable crystalline silica and other components that may be corrosive/irritant may be generated during processing, handling and storage. Use good housekeeping procedures to prevent the accumulation of dust in the workplace.

Do not breathe dust. Avoid contact with skin and eyes. Do not store near food or beverages or smoking materials. Do not stand on piles of materials; it may be unstable.

Use adequate ventilation and dust collection equipment and ensure that the dust collection system is adequate to reduce airborne dust levels to below the appropriate OELs. If the airborne dust levels are above the appropriate OELs, use respiratory protection during the establishment of engineering controls. Refer to Section VIII - Exposure Controls/Personal Protection for further information.

In accordance with OSHA's Hazard Communication Standard (29 CFR 1910.1200, 1915.99, 1917.28, 1918.90, 1926.59, 1928.21), state, and/or local right-to-know laws and regulations, familiarize your employees with this SDS and the information contained herein. Warn your employees, your customers and other third parties (in case of resale or distribution to others) of the potential health risks associated with the use of this product and train them in the appropriate use of personal protective equipment and engineering controls, which will reduce their risks of exposure.

See also ASTM International standard practice E 1132-06, "Standard Practice for Health Requirements Relating to Occupational Exposure to Respirable Crystalline Silica."

For safe handling and use of this product for Hydraulic Fracturing, please see the OSHA/NIOSH Hazard Alert Worker Exposure to Silica during Hydraulic Fracturing DHHS (NIOSH) Publication No. 2012-166 (2012). http://www.osha.gov/dts/hazardalerts/hydraulic_frac_hazard_alert.pdf

SECTION VIII – EXPOSURE CONTROLS/PERSONAL PROTECTION

Airborne OELs for Components of Granite	:		
COMPONENT(S) CHEMICAL NAME	MSHA/OSHA PEL	ACGIH TLV-TWA	NIOSH REL
Silicon Dioxide, SiO ₂ [§]	(R) 0.05 mg/m ³ (R) 0.025 mg/m ³ (AL)	(R) 0.025 mg/m ³ $^{\#}$	(R) 0.05 mg/m ^{3 #}
Aluminum Oxide, Al ₂ O ₃	(T) 15 mg/m^3 , (R) 5 mg/m^3	$^{(1)}(\mathbf{R}) \ 1 \ \mathrm{mg/m^3}$	-
Ferrous Oxide, FeO	-	-	-
Ferric Oxide, Fe ₂ O ₃	$^{(2)}$ 10 mg/m ³	(R) 5 mg/m ³	$^{(3)}$ 5 mg/m ³
Magnesium Oxide, MgO	⁽⁴⁾ 15 mg/m ³	(I) 10 mg/m^3	-
Calcium Oxide, CaO	5 mg/m^3	2 mg/m^3	2 mg/m^3
Sodium Oxide, Na ₂ O ⁽⁵⁾	2 mg/m^3	(C) 2 mg/m^3	(C) 2 mg/m^3
Potassium Oxide, K ₂ O	-	$^{(6)}$ (C) 2 mg/m ³	⁽⁶⁾ (C) 2 mg/m ³

[§] The OSHA OELs for respirable crystalline silica are listed in the table. As of June 28, 2018, the MSHA standard for respirable crystalline silica has not been changed but may be revised in the future. The MSHA PEL for dust containing crystalline silica (quartz) is based on the silica content of the respirable dust sample and is calculated as: 10 mg/m³/(% SiO₂+2). The MSHA PEL for crystalline silica as tridymite and cristobalite is one-half the PEL for crystalline silica (quartz). # The ACGIH and NIOSH limits are for crystalline silica (quartz), independent of the dust concentration. The ACGIH TLV for crystalline silica as cristobalite is equal to the TLV for crystalline silica as quartz. In 2005, ACGIH withdrew the TLV for crystalline silica as tridymite. The NIOSH REL for crystalline silica as cristobalite and tridymite is the same as for quartz. Refer to Section X for thermal stability information for crystalline silica (quartz).

(1): Limits based on Aluminum Metal and Insoluble Compounds.

(2): As Iron Oxide Fume.

(3): Dust and fume, as Iron

(4): As Magnesium Oxide Fume Total Particulate.

(5): Based on Sodium Hydroxide.

(6): Based on Potassium Hydroxide.

(R): Respirable Fraction.

(T): Total Dust.

(I): Inhalable Fraction.

(C): Ceiling Limit

Airborne OELs for Inert/Nuisance Dust:

Standard	Respirable Dust	Total Dust
MSHA/OSHA PEL		
(as Inert or Nuisance Dust)	5 mg/m^3	15 mg/m^3
ACGIH TLV		
(as Particles Not Otherwise Specified)	3 mg/m^3	*10 mg/m ³
NIOSH REL		
(Particulates Not Otherwise Regulated)	-	-

Note: The limits for Inert Dust are provided as guidelines. Nuisance dust is limited to particulates not known to cause systemic injury or illness. * The TLV provided is for inhalable particles not otherwise specified.

ENGINEERING CONTROLS

Ventilation: Use local exhaust, general ventilation or natural ventilation adequate to maintain exposures below appropriate exposure limits.

Other control measures: Respirable dust and crystalline silica levels should be monitored regularly. Dust and crystalline silica levels in excess of appropriate exposure limits should be reduced by implementing feasible engineering controls, including (but not limited to) dust suppression (wetting), ventilation, process enclosure and enclosed employee work stations.

EYE/FACE PROTECTION

Safety glasses with side shields should be worn as minimum protection. Dust goggles should be worn when excessively (visible) dusty conditions are present or are anticipated. If irritation persists, get medical attention immediately. There is potential for severe eye irritation if exposed to excessive concentrations of dust for those using contact lenses.

SKIN PROTECTION

Use appropriate protective gloves if manually handling the product.

SECTION VIII – EXPOSURE CONTROLS/PERSONAL PROTECTION, CONTD.

RESPIRATORY PROTECTION

Respirator Recommendations:

For respirable crystalline silica levels that exceed or are likely to exceed appropriate exposure limits, a NIOSH-approved particulate filter respirator must be worn. Respirator use must comply with applicable MSHA or OSHA standards, which include provisions for a user training program, respirator repair and cleaning, respirator fit testing, and other requirements. For additional information contact NIOSH at 1-800-356-4674 or visit website: http://www.cdc.gov/niosh/npg (search for crystalline silica). See also ANSI standard Z88.2 (latest revision) "American National Standard for Respiratory Protection," 29 CFR 1910.134 and 1926.103, and 42 CFR 84.

NIOSH recommendations for respiratory protection include:

Up to 0.5 mg/m³:

(APF = 10) Any particulate respirator equipped with an N95, R95, or P95 filter (including N95, R95, and P95 filtering facepieces) except quarter-mask respirators. The following filters may also be used: N99, R99, P99, N100, R100, P100.

Up to 1.25 mg/m³:

(APF = 25) Any powered, air-purifying respirator with a high-efficiency particulate (100-series) filter.

(APF = 25) Any supplied-air respirator operated in a continuous-flow mode

Up to 2.5 mg/m³:

(APF = 50) Any air-purifying, full-facepiece respirator with an N100, R100, or P100 filter.

(APF = 50) Any powered, air-purifying respirator with a tight-fitting facepiece and a high-efficiency particulate filter **Up to 25 mg/m³**:

(APF = 1000) Any supplied-air respirator operated in a pressure-demand or other positive-pressure mode

Emergency or planned entry into unknown concentrations or IDLH conditions (50 mg/m³ for crystalline silica-quartz): A selfcontained breathing apparatus (SCBA) that has a full-face piece and is operated in a pressure-demand or other positive-pressure mode or any supplied-air respirator that has a full-face piece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus.

Escape from unknown or IDLH conditions: An air-purifying, full-face piece respirator with a high-efficiency particulate (100-series) filter or any appropriate escape-type, self-contained breathing apparatus.

If the workplace airborne crystalline silica concentration is unknown for a given task, conduct air monitoring to determine the appropriate level of respiratory protection to be worn. Consult with a certified industrial hygienist, your insurance risk manager or the OSHA Consultative Services group for detailed information. Ensure appropriate respirators are worn, as needed, during and following the task, including clean up or whenever airborne dust is present, to ensure worker exposures remain below OELs.

GENERAL HYGIENE CONSIDERATIONS

There are no known hazards associated with this material when used as recommended. Following the guidelines in this SDS are recognized as good industrial hygiene practices. Avoid breathing dust. Avoid skin and eye contact. Wash dust-exposed skin with soap and water before eating, drinking, smoking and using toilet facilities. Wash work clothes after each use.

SECTION IX— PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE Granite is a mixture of angular particles, color can range from white to red to black and colors in between, ranging in size from pebbles to boulders.	ODOR AND ODOR THRESHOLD Odorless and not applicable
pH AND VISCOSITY	MELTING POINT/FREEZING POINT
Not applicable	Not applicable
BOILING POINT AND RANGE	FLASH POINT AND FLAMMABILITY
Not applicable	Not applicable
FLAMMABILITY/EXPLOSIVE LIMITS AND	EVAPORATION RATE AND DECOMPOSITION
AUTOIGNITION TEMPERATURE	TEMPERATURE
Not applicable	Not applicable
VAPOR PRESSURE AND VAPOR DENSITY IN AIR	SPECIFIC GRAVITY.
Not applicable	2.6-2.8
SOLUBILITY IN WATER	PARTITION COEFFICIENT: N-OCTANOL/WATER
Insoluble	Not applicable

SECTION X - STABILITY AND REACTIVITY

STABILITY	CONDITIONS TO AVOID
Stable	Contact with incompatible materials (see below).

THERMAL STABILITY

If crystalline silica (quartz) is heated to more than 870° C (1598°F), it can change to a form of crystalline silica known as tridymite, and if crystalline silica (quartz) is heated to more than 1470° C (2678°F), it can change to a form of crystalline silica known as cristobalite.

INCOMPATIBILITY (Materials to avoid)

Contact with powerful oxidizing agents such as fluorine, boron trifluoride, chlorine trifluoride, manganese trifluoride, and oxygen difluoride may cause fire and/or explosions. Some components of granite may react vigorously with water.

HAZARDOUS DECOMPOSITION PRODUCTS

Silica dissolves in hydrofluoric acid producing a corrosive gas - silicon tetrafluoride.

HAZARDOUS POLYMERIZATION

Not known to polymerize

SECTION XI – TOXICOLOGICAL INFORMATION

Health Effects: The information below represents an overview of health effects caused by overexposure to one or more components in granite.

Primary routes(s) of exposure:

■ Inhalation

Skin

■ Ingestion

EYE CONTACT: Direct contact with dust may cause irritation by mechanical abrasion or corrosive action. Conjunctivitis may occur.

SKIN CONTACT: Direct contact may cause irritation by mechanical abrasion. Some components of material are also known to cause corrosive effects to skin and mucous membranes.

SKIN ABSORPTION: Not expected to be a significant route of exposure.

INGESTION: Small amounts (a tablespoonful) swallowed during normal handling operations are not likely to cause injury. Ingestion of large amounts may cause gastrointestinal irritation and blockage.

INHALATION: Dust may irritate nose, throat, mucous membranes and respiratory tract by mechanical abrasion or corrosive action. Coughing, sneezing, chest pain, shortness of breath, inflammation of mucous membrane, and flu-like fever may occur following exposures in excess of appropriate exposure limits.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Inhaling respirable dust and/or crystalline silica may aggravate existing respiratory system disease(s) (e.g., bronchitis, emphysema, chronic obstructive pulmonary disease) and/or dysfunctions. Exposure to dust may aggravate existing skin and/or eye conditions. Smoking and obstructive/restrictive lung diseases may also exacerbate the effects of excessive exposure to this product.

This product is a mixture of components. The composition percentages are listed in Section III. Toxicological information for each component is listed below:

<u>Silicon Dioxide</u>: It is comprised of amorphous and crystalline forms of silica. In some batches, crystalline silica may represent up to 100% of silicon dioxide.

Exposure route: Eyes, respiratory system.

Target organs: Eyes, skin, respiratory system.

ACGIH, MSHA, and OSHA have determined that adverse effects are not likely to occur in the workplace provided exposure levels do not exceed the appropriate exposure limits. Lower exposure limits may be appropriate for some individuals including persons with pre-existing medical conditions as described under medical conditions aggravated by exposure.

A. SILICOSIS

The major concern is <u>silicosis</u> (lung disease), caused by the inhalation and retention of respirable crystalline silica dust. Silicosis leads to conditions such as lung fibrosis and reduced pulmonary function. The form and severity in which silicosis manifests itself, depends in part on the type and extent of exposure to silica dusts: chronic, accelerated and acute forms are recognized. In later stages the critical condition may become disabling and potentially fatal. Restrictive and/or obstructive changes in lung function may occur due to exposure. A risk associated with silicosis is development of pulmonary tuberculosis (silico-tuberculosis). Respiratory insufficiencies due to massive fibrosis and reduced pulmonary function, possibly with accompanying heart failure, are other potential causes of death due to silicosis.

Chronic or Ordinary Silicosis is the most common form of silicosis and can occur after many years of exposure to levels above the OELs for airborne respirable crystalline silica dust. Not all individuals with silicosis will exhibit symptoms (signs) of the disease. Symptoms of silicosis may include (but are not limited to): Shortness of breath; difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; heart enlargement and/or failure. It is further defined as either simple or complicated silicosis.

Simple Silicosis is characterized by lung lesions (shown as radiographic opacities) less than 1 centimeter in diameter, primarily in the upper lung zones. Often, simple silicosis is not associated with symptoms, detectable changes in lung function or disability. Simple silicosis may be progressive and may develop into complicated silicosis or progressive massive fibrosis (PMF).

Complicated Silicosis or PMF is characterized by lung lesions (shown as radiographic opacities) greater than 1 centimeter in diameter. Although there may be no symptoms associated with complicated silicosis or PMF, the symptoms, if present, are shortness of breath, wheezing, cough and sputum production. Complicated silicosis or PMF may be associated with decreased lung function and may be disabling. Advanced complicated silicosis or PMF may lead to death. Advanced complicated silicosis or PMF can result in heart disease (cor pumonale) secondary to the lung disease.

Accelerated Silicosis can occur with exposure to high concentrations of respirable crystalline silica over a relatively short period; the lung lesions can appear within five (5) years of the initial exposure. The progression can be rapid. Accelerated silicosis is similar to chronic or ordinary silicosis, except that the lung lesions appear earlier and the progression is more rapid.

Acute Silicosis can occur with exposures to very high concentrations of respirable crystalline silica over a very short time period, sometimes as short as a few months. The symptoms of acute silicosis include progressive shortness of breath, fever, cough and weight loss. Acute silicosis is a rapidly progressive, incurable lung disease and is typically fatal.

B. CANCER

IARC - The International Agency for Research on Cancer ("IARC") concluded that there is "sufficient evidence in humans for the carcinogenicity of crystalline silica in the form of quartz or cristobalite", there is "sufficient evidence in experimental animals for the carcinogenicity of quartz dust" and that there is "limited evidence in experimental animals for the carcinogenicity of tridymite dust and cristobalite dust." The overall IARC evaluation was that "crystalline silica inhaled in the form of quartz or cristobalite dust is carcinogenic to humans (Group 1)." The IARC evaluation noted that not all industrial circumstances studied evidenced carcinogenicity. The monograph also stated that "Carcinogenicity may be dependent on inherent characteristics of the crystalline silica or on external factors affecting its biological activity or distribution of its polymorphs." For further information on the IARC evaluation, see <u>IARC Monographs on the Evaluation of Carcinogenic Risks to Humans</u>, Volume 100C, "Silica Dust, Crystalline, in the Form of Quartz or Cristobalite" (2012).

NTP - In its Eleventh Annual Report on Carcinogens, concluded that respirable crystalline silica is known to be a human carcinogen, based on sufficient evidence of carcinogenicity from studies in humans indicating a causal relationship between exposure to respirable crystalline silica and increased lung cancer rates in workers exposed to crystalline silica dust.

OSHA - Crystalline silica is not on the OSHA carcinogen list.

CALIFORNIA PROPOSITION 65 - Crystalline silica in October 1996 was listed on the Safe Drinking Water and Toxic Enforcement ACT of 1986 as a chemical known to the state to cause cancer or reproductive toxicity.

There have been many articles published on the carcinogenicity of crystalline silica, which the reader should consult for additional information; the following are <u>examples</u> of recently published articles: (1) "Dose-Response Meta-Analysis of Silica and Lung Cancer", *Cancer Causes Control*, (20):925-33 (2009); (2) "Occupational Silica Exposure and Lung Cancer Risk: A Review of Epidemiological Studies 1996-2005', *Ann Oncol*, (17) 1039-50 (2006); (3) "Lung Cancer Among Industrial Sand Workers Exposed to Crystalline Silica", *Am J Epidemiol*, (153) 695-703 (2001); (4) "Crystalline Silica and The Risk of Lung Cancer in The Potteries", *Occup Environ Med*, (55) 779-785 (1998); (5) "Is Silicosis Required for Silica-Associated Lung Cancer?", *American Journal of Industrial Medicine*, (37) 252- 259 (2000); (6) " Silica, Silicosis, and Lung Cancer: A Response to a Recent Working Group Report", *Journal of Occupational and Environmental Medicine*, (42) 704-720 (2000).

C. AUTOIMMUNE DISEASES

There is evidence that exposure to respirable crystalline silica (without silicosis) or that the disease silicosis may be associated with the increased incidence of several autoimmune disorders, -- scleroderma, systemic lupus erythematosus, rheumatoid arthritis and diseases affecting the kidneys. For a review of the subject, the following may be consulted: (1) "Antinuclear Antibody and Rheumatoid Factor in Silica-Exposed Workers", *Arh Hig Rada Toksikol*, (60) 185-90 (2009); (2) "Occupational Exposure to Crystalline Silica and Autoimmune Disease", *Environmental Health Perspectives*, (107) Supplement 5, 793-802 (1999); (3) "Occupational Scleroderma", *Current Opinion in Rheumatology*, (11) 490-494 (1999); (4) "Connective Tissue Disease and Silicosis", *Am J Ind Med*, (35), 375-381 (1999).

D. TUBERCULOSIS

Individuals with silicosis are at increased risk to develop pulmonary tuberculosis, if exposed to persons with tuberculosis. The following may be consulted for further information: (1) "Tuberculosis and Silicosis: Epidemiology, Diagnosis and Chemoprophylaxis", *J Bras Pneumol*, (34) 959-66 (2008); (2) *Occupational Lung Disorders*, Third Edition, Chapter 12, entitled "Silicosis and Related Diseases", Parkes, W. Raymond (1994); (3) "Risk of Pulmonary Tuberculosis Relative to Silicosis and Exposure to Silica Dust in South African Gold Miners," *Occup Environ Med*, (55) 496-502 (1998); (4) "Occupational Risk Factors for Developing Tuberculosis", *Am J Ind Med*, (30) 148-154 (1996).

E. KIDNEY DISEASE

There is evidence that exposure to respirable crystalline silica (without silicosis) or that the disease silicosis is associated with the increased incidence of kidney diseases, including end stage renal disease. For additional information on the subject, the following may be consulted: (1) "Mortality from Lung and Kidney Disease in a Cohort of North American Industrial Sand Workers: An Update", *Ann Occup Hyg*, (49) 367-73 (2005); (2) "Kidney Disease and Silicosis", *Nephron*, (85) 14-19 (2000); (3) "End Stage Renal Disease Among Ceramic Workers Exposed to Silica", *Occup Environ Med*, (56) 559-561 (1999); (4) "Kidney Disease and Arthritis in a Cohort Study of Workers Exposed to Silica", *Epidemiology*, (12) 405-412 (2001).

F. NON-MALIGNANT RESPIRATORY DISEASES

NIOSH has cited the results of studies that report an association between dusts found in various mining operations and nonmalignant respiratory disease, particularly among smokers, including bronchitis, emphysema, and small airways disease. *NIOSH Hazard Review – Health Effects of Occupational Exposure to Respirable Crystalline Silica*, published in April 2002, available from NIOSH, 4676 Columbia Parkway, Cincinnati, OH 45226, or at <u>https://www.cdc.gov/niosh/docs/2002-129/default.html</u>.

Respirable dust containing newly broken particles has been shown to be more hazardous to animals in laboratory tests than respirable dust containing older silica particles of similar size. Respirable silica particles which had aged for sixty days or more showed less lung injury in animals than equal exposures of respirable dust containing newly broken pieces of silica.

Aluminum Oxide:

Exposure route: Inhalation, ingestion, eye/skin contact.

Target organs: Respiratory system, gastrointestinal system, eyes, skin.

Acute effect: Inhalation or ingestion of high concentrations of this substance may cause gastrointestinal and/or upper respiratory tract irritation. Eye and skin irritant.

Chronic effect/carcinogenicity: Aluminum oxide is not classifiable as a human carcinogen. On occasion workers chronically exposed to aluminum-containing dusts or fumes have developed severe pulmonary reactions including fibrosis, emphysema and pneumothorax. Long-term exposure may have effects on the central nervous system.

Sodium Oxide:

Exposure route: Inhalation, ingestion, eye/skin contact.

Target organs: Respiratory system, gastrointestinal system, eyes, skin.

Acute effect: Corrosive – Sodium oxide reacts violently with water to form sodium hydroxide. Causes burns of skin, eyes, respiratory and gastrointestinal tracts, extremely destructive to mucous membranes.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

<u>Iron Oxide:</u> (Ferrous and Ferric Oxides) Exposure route: Inhalation, ingestion, skin

Target organs: Respiratory system, skin, eyes, neurological system

Acute effect: Major findings: stupor, shock, acidosis, hematemesis, bloody diarrhea or coma. Minor findings: vomiting, diarrhea, mild lethargy. Benign pneumoconiosis with X-ray shadows indistinguishable from fibrotic pneumoconiosis. Experimental work in animals exposed by intratracheal injection or by inhalation to iron oxide mixed with less than 5% silica has shown no evidence of fibrosis produced in lung tissue.

Chronic effect/carcinogenicity: Irritability, nausea or vomiting, and normocytic anemia. When exposed to levels greater than 50 to 100 milligram per day, it can result in pathological deposition of iron in the body tissues causing fibrosis of the pancreas, diabetes mellitus, and liver cirrhosis. Workers exposed to iron oxide fume and silica may develop a "mixed dust pneumoconiosis." Not classifiable as human carcinogen.

Potassium Oxide:

Exposure route: Inhalation, ingestion, eye/skin contact.

Target organs: Respiratory system, gastrointestinal system, eyes, skin.

Acute effect: Corrosive – Potassium oxide reacts violently with water to produce potassium hydroxide. If inhaled, causes sore throat, cough, burning sensation and shortness of breath. Contact with skin produces pain and blisters. Severe deep burns, redness and pain occur with eye contact. Ingestion results in burning sensations, abdominal pain, shock or collapse.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

Calcium Oxide:

Exposure route: Inhalation, ingestion, skin/eye contact.

Target organs: Eyes, skin, respiratory system.

Acute effect: Direct contact with tissues, can result in burns and severe irritation because of its high reactivity and alkalinity. Major complaints of workers exposed to lime consist of irritation of the skin and eyes, although inflammation of the respiratory passages, ulceration and perforation of the nasal septum, and even pneumonia has been attributed to inhalation of the dust.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

<u>Magnesium Oxide</u>: Exposure route: Inhalation, eye/skin contact.

Target organs: Eyes, respiratory system.

Acute effect: Magnesium oxide dust caused slight irritation of the eyes and nose, conjunctivitis, inflammation of the mucous membrane, and coughing up discolored sputum after industrial exposures amongst workers exposed to an unspecified concentration of MgO.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

Acute Toxicity Estimates for Granite – Not Available

SECTION XII – ECOLOGICAL INFORMATION

No data available for this product.

SECTION XIII – DISPOSAL CONSIDERATIONS

WASTE DISPOSAL METHOD

Collect and reuse clean materials. Dispose of waste materials only in accordance with applicable federal, state, and local laws and regulations.

The above information applies to Martin Marietta Materials product only as sold. The product may be contaminated during use and it is the responsibility of the user to assess the appropriate disposal method in that situation.

SECTION XIV – TRANSPORT INFORMATION

DOT HAZARD CLASSIFICATION None

PLACARD REQUIRED None

LABEL REQUIRED

Label as required by the OSHA Hazard Communication standard {29 CFR 1910.1200(f)}, and applicable state and local regulations.

SECTION XV – REGULATORY INFORMATION

OSHA: Crystalline Silica is not listed as a carcinogen.

SARA Title III: Section 311 and 312: Immediate health hazard and delayed health hazard.

TSCA.: All components of the product appear on the EPA TSCA chemical substance inventory.

<u>RCRA</u>: Crystalline silica (quartz) is <u>not</u> classified as a hazardous waste under the Resource Conservation and Recovery Act, or its regulations, 40 CFR §261 <u>et seq</u>.

<u>CERCLA</u>: Crystalline silica (quartz) is <u>not</u> classified as a hazardous substance under regulations of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 40 CFR §302.4

<u>EPCRA (Emergency Planning and Community Right to Know Act)</u>: Crystalline silica (quartz) is <u>not</u> an extremely hazardous substance under regulations of the <u>Emergency Planning and Community Right to Know Act</u>, 40 CFR Part 355, Appendices A and <u>B</u> and is <u>not</u> a toxic chemical subject to the requirements of Section 313.

<u>Clean Air Act</u>: Crystalline silica (quartz) mined and processed by Martin Marietta Materials was not processed with or does not contain any Class I or Class II ozone depleting substances.

FDA: Silica is included in the list of substances that may be included in coatings used in food contact surfaces, 21 CFR

§175.300(b)(3).(The FDA standard primarily applies to products containing silica used in the coatings of food contact surfaces). <u>California Proposition 65</u>: Respirable crystalline silica (quartz) is classified as a substance known to the state of California to be a carcinogen.

<u>Massachusetts Toxic Use Reduction Act</u>: Respirable crystalline silica is considered toxic per the Massachusetts Toxic Use Reduction Act when used in abrasive blasting and molding.

<u>Pennsylvania Worker and Community Right to Know Act</u>: Quartz is considered hazardous for purposes of the Act, but it is not a special hazardous substance or an environmental hazardous substance.

SECTION XVI – OTHER INFORMATION

DEFINITIONS OF ACRONYMS/ABBREVIATIONS

ACGIH: American Conference of Governmental Industrial Hygienists AL: Action Level ANSI: American National Standards Institute **APF: Assigned Protection Factor** California REL: California Inhalation Reference Exposure Limit CAS: Chemical Abstracts Service CERCLA: Comprehensive Environmental Response, Compensation and Liability Act CFR: US Code of Federal Regulations DHHS: Department of Health and Human Services EPA: Environmental Protection Agency EPCRA: Emergency Planning and Community Right to Know Act FDA: Food and Drug Administration GHS: Globally Harmonized System HEPA: High-Efficiency Particulate Air IARC: International Agency for Research on Cancer IDLH: Immediately Dangerous to Life and Health MSHA: Mine Safety and Health Administration NIOSH: National Institute for Occupational Safety and Health, US Department of Health and Human Services NIOSH REL: NIOSH Recommended Exposure Limit NTP: National Toxicology Program **OEL:** Occupational Exposure Limit OSHA: Occupational Safety and Health Administration, US Department of Labor PEL: Permissible Exposure Limit PMF: Progressive Massive Fibrosis RCRA: Resource Conservation and Recovery Act SARA Title III: Title III of the Superfund Amendments and Reauthorization Act, 1986 SDS: Safety Data Sheet STOT: Specific Target Organ Toxicity TLV: Threshold Limit Value TSCA: Toxic Substance Control Act TWA: Time-Weighted Average

SECTION XVI – OTHER INFORMATION, CONTD.

User's Responsibility: The OSHA Hazard Communication Standard 29 CFR 1910.1200 requires that this SDS be made available to your employees who handle or may be exposed to this product. Educate and train your employees regarding applicable precautions. Instruct your employees to handle this product properly.

Disclaimer: The information contained in this document applies to this specific material as supplied and Martin Marietta Materials believes that the information contained in this SDS is accurate. The suggested precautions and recommendations are based on recognized good work practices and experience as of the date of publication. They are not necessarily all-inclusive or fully adequate in every circumstance as not all use circumstances can be anticipated. It may not be valid for this material if it is used in combination with other materials. It is the user's responsibility to satisfy oneself as to the suitability and completeness of this information for one's own particular use. Since the actual use of the product described herein is beyond our control, Martin Marietta Materials, assumes no liability arising out of the use of the product by others. Appropriate warnings and safe handling procedures should be provided to handlers and users. Also, the suggestions should not be confused with nor followed in violation of applicable laws, regulation, rules or insurance requirement. However, product must not be used in a manner which could result in harm.

An electronic version of this SDS is available at <u>www.martinmarietta.com</u>. More information on the effects of crystalline silica exposure may be obtained from OSHA (phone number: 1-800-321-OSHA; website: <u>http://www.osha.gov</u>) or from NIOSH (phone number: 1-800-35-NIOSH; website: <u>http://www.cdc.gov/niosh</u>).

DATE OF PREPARATION 6/2018

REPLACES 3/2015

NO WARRANTY, EXPRESSED OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE IS MADE

SAFETY DATA SHEET (SDS): BASALT

SECTION I – IDENTIFICATION

PRODUCT IDENTIFIER
Basalt

TRADE NAME Crushed Stone, Traprock OTHER SYNONYMS Aggregate, Ballast Screenings, Dolerite, Manufactured Sand, Gabbro, Volcanic Rock

RECOMMENDED USE AND RESTRICTION ON USE Used for construction purposes

This product is not intended or designed for and should not be used as an abrasive blasting medium or for foundry applications.

MANUFACTURER/SUPPLIER INFORMATION Martin Marietta Materials 2710 Wycliff Road Raleigh, North Carolina 27607 Phone: 919-781-4550

For additional health, safety or regulatory information and other emergency situations, call 919-781-4550

SECTION II - HAZARD(S) IDENTIFICATION

HAZARD CLASSIFICATION:

Category 1A Carcinogen Category 1 Specific Target Organ Toxicity (STOT) following repeated exposures Category 1 Eye Damage Category 1 Skin Corrosive

SIGNAL WORD: DANGER

HAZARD STATEMENTS:

May cause cancer by inhalation. Causes damage to lungs, kidneys and autoimmune system through prolonged or repeated exposure by inhalation. Causes severe skin burns and serious eye damage.

PRECAUTIONARY STATEMENTS

Do not handle until the safety information presented in this SDS has been read and understood.

Do not breathe dusts or mists. Do not eat, drink or smoke while manually handling this product. Wash skin thoroughly after manually handling.

If swallowed: Rinse mouth and do not induce vomiting.

If on skin (or hair): Rinse skin after manually handling and wash contaminated clothing if there is potential for direct skin contact before reuse.

If inhaled excessively: Remove person to fresh air and keep comfortable for breathing.

If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do, and continue rinsing.

If exposed, concerned, unwell or irritation of the eyes, skin, mouth or throat/nasal passage persist: Get medical attention. Wear eye protection and respiratory protection following this SDS, NIOSH guidelines and other applicable regulations. Use protective gloves if manually handling the product.

Avoid creating dust when handling, using or storing. Use with adequate ventilation to keep exposure below recommended exposure limits.

Dispose of product in accordance with local, regional, national or international regulations.

Please refer to Section XI for details of specific health effects of the components.

SECTION III – COMPOSITION/INFORMATION ON INGREDIENTS

COMPONENT(S)	CAS REGISTRY NO	% by weight (approx)
CHEMICAL NAME		
Silicon Dioxide, SiO ₂ ⁽¹⁾	7631-86-9	<1
Aluminum Oxide, Al ₂ O ₃	1344-28-1	10-20
Ferrous Oxide/Ferric Oxide,	1345-25-1/1309-37-1	2-20
FeO/Fe ₂ O ₃		
Magnesium Oxide, MgO	1309-48-4	1-15
Calcium Oxide, CaO	1305-78-8	5-15
Sodium Oxide, Na ₂ O	1313-59-3	2-15
Potassium Oxide, K ₂ O	12136-45-7	0-12
Titanium Oxide, TiO ₂	13463-67-7	0-3

(1): The composition of SiO_2 may be up to 100% crystalline silica

SECTION IV – FIRST-AID MEASURES

INHALATION: If excessive inhalation occurs, remove to fresh air. Dust in throat and nasal passages should clear spontaneously. Contact a physician if irritation persists or develops later.

EYES: Immediately flush eye(s) with plenty of clean water for at least 15 minutes, while holding the eyelid(s) open. Occasionally lift the eyelid(s) to ensure thorough rinsing. Remove contact lenses, if present and easy to do, and continue rinsing. Beyond flushing, do not attempt to remove material from the eye(s). Contact a physician if irritation persists or develops later.

SKIN: Rinse skin with soap and water after manually handling and wash contaminated clothing if there is potential for direct skin contact. Contact a physician if irritation persists or develops later.

INGESTION: If swallowed, rinse mouth and do not induce vomiting. If gastrointestinal discomfort occurs, persists or develops later, get medical attention.

SIGNS AND SYMPTOMS OF EXPOSURE: There are generally no signs or symptoms of exposure to respirable crystalline silica. Often, chronic silicosis has no symptoms. The symptoms of chronic silicosis, if present, are shortness of breath, wheezing, cough and sputum production. The symptoms of acute silicosis which can occur with exposures to very high concentrations of respirable crystalline silica over a very short time period, sometimes as short as 6 months, are the same as those associated with chronic silicosis; additionally, weight loss and fever may also occur. The symptoms of scleroderma, an autoimmune disease, include thickening and stiffness of the skin, particularly in the fingers, shortness of breath, difficulty swallowing and joint problems.

Direct skin and eye contact with dust may cause irritation by mechanical abrasion. Some components of the product are also known to cause corrosive effects to skin, eyes and mucous membranes. Ingestion of large amounts may cause gastrointestinal irritation and blockage. Inhalation of dust may irritate nose, throat, mucous membranes and respiratory tract by mechanical abrasion. Coughing, sneezing, chest pain, shortness of breath, inflammation of mucous membrane, and flu-like fever may occur following exposures in excess of appropriate exposure limits. Repeated excessive exposure may cause pneumoconiosis, such as silicosis and other respiratory effects.

SECTION V – FIRE-FIGHTING MEASURES

EXTINGUISHING AGENT

Not flammable; use extinguishing media compatible with surrounding fire.

UNUSUAL FIRE AND EXPLOSION HAZARD

Contact with powerful oxidizing agents may cause fire and/or explosions (see Section X of this SDS). While individual components are known to react vigorously with water to produce heat, this is not expected from the basalt.

SPECIAL FIRE FIGHTING PROCEDURES	HAZARDOUS COMBUSTION PRODUCTS
None known	None known

SECTION VI – ACCIDENTAL RELEASE MEASURES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED

Persons involved in cleaning should first follow the precautions defined in Section VII of the SDS. Spilled materials, where dust can be generated, may overexpose cleanup personnel to respirable crystalline silica-containing dust and other components that may pose inhalation hazards. Do not dry sweep spilled material. Collect the material using a method that does not produce dust such as a High-Efficiency Particulate Air (HEPA) vacuum or thoroughly wetting down the dust before cleaning up. Wear appropriate personal protective equipment as specified in Section VIII including appropriate respirators during and following clean up or whenever airborne dust is present to ensure worker exposures remain below occupational exposure limits (OELs - Refer to Section VIII).

Place the dust in a covered container appropriate for disposal. Dispose of the dust according to federal, state and local regulations.

This product is not subject to the reporting requirements of SARA Title III Section 313, and 40 CFR 372.

SECTION VII – HANDLING AND STORAGE

This product is not intended or designed for and should not be used as an abrasive blasting medium or for foundry applications. Follow protective controls set forth in Section VIII of this SDS when handling this product. Dust containing respirable crystalline silica and other components that may be corrosive/irritant may be generated during processing, handling and storage. Use good housekeeping procedures to prevent the accumulation of dust in the workplace.

Do not breathe dust. Avoid contact with skin and eyes. Do not store near food or beverages or smoking materials. Do not stand on piles of materials; it may be unstable.

Use adequate ventilation and dust collection equipment and ensure that the dust collection system is adequate to reduce airborne dust levels to below the appropriate OELs. If the airborne dust levels are above the appropriate OELs, use respiratory protection during the establishment of engineering controls. Refer to Section VIII - Exposure Controls/Personal Protection for further information.

In accordance with OSHA's Hazard Communication Standard (29 CFR 1910.1200, 1915.99, 1917.28, 1918.90, 1926.59, 1928.21), state, and/or local right-to-know laws and regulations, familiarize your employees with this SDS and the information contained herein. Warn your employees, your customers and other third parties (in case of resale or distribution to others) of the potential health risks associated with the use of this product and train them in the appropriate use of personal protective equipment and engineering controls, which will reduce their risks of exposure.

See also ASTM International standard practice E 1132-06, "Standard Practice for Health Requirements Relating to Occupational Exposure to Respirable Crystalline Silica."

For safe handling and use of this product for Hydraulic Fracturing, please see the OSHA/NIOSH Hazard Alert Worker Exposure to Silica during Hydraulic Fracturing DHHS (NIOSH) Publication No. 2012-166 (2012). http://www.osha.gov/dts/hazardalerts/hydraulic_frac_hazard_alert.pdf

SECTION VIII – EXPOSURE CONTROLS/PERSONAL PROTECTION

Airborne OELs for Components of Basalt:			
COMPONENT(S) CHEMICAL NAME	MSHA/OSHA PEL	ACGIH TLV-TWA	NIOSH REL
Silicon Dioxide, SiO ₂ [§]	(R) 0.05 mg/m ³ (R) 0.025 mg/m ³ (AL)	(R) 0.025 mg/m ³ #	(R) 0.05 mg/m ^{3 #}
Aluminum Oxide, Al ₂ O ₃	(T) 15 mg/m^3 , (R) 5 mg/m^3	$^{(1)}$ (R) 1 mg/m ³	-
Ferrous Oxide, FeO	-	-	-
Ferric Oxide, Fe ₂ O ₃	$^{(2)}$ 10 mg/m ³	(R) 5 mg/m ³	$^{(3)}$ 5 mg/m ³
Magnesium Oxide, MgO	⁽⁴⁾ 15 mg/m ³	(I) 10 mg/m^3	-
Calcium Oxide, CaO	5 mg/m^3	2 mg/m^3	2 mg/m^3
Sodium Oxide, Na ₂ O ⁽⁵⁾	2 mg/m^3	(C) 2 mg/m^3	(C) 2 mg/m^3
Potassium Oxide, K ₂ O	-	$^{(6)}$ (C) 2 mg/m ³	$^{(6)}$ (C) 2 mg/m ³
Titanium Oxide, TiO ₂	15 mg/m ³	10 mg/m ³	-

 8 The OSHA OELs for respirable crystalline silica are listed in the table. As of June 28, 2018, the MSHA standard for respirable crystalline silica has not been changed but may be revised in the future. The MSHA PEL for dust containing crystalline silica (quartz) is based on the silica content of the respirable dust sample and is calculated as: $10 \text{ mg/m}^3/(\% \text{ SiO}_2+2)$. The MSHA PEL for crystalline silica as tridymite and cristobalite is one-half the PEL for crystalline silica (quartz). # The ACGIH and NIOSH limits are for crystalline silica (quartz), independent of the dust concentration. The ACGIH TLV for crystalline silica as cristobalite is equal to the TLV for crystalline silica as quartz. In 2005, ACGIH withdrew the TLV for crystalline silica as tridymite. The NIOSH REL for crystalline silica as cristobalite and tridymite is the same as for quartz. Refer to Section X for thermal stability information for crystalline silica (quartz). AL: Action Level

(1): Limits based on Aluminum Metal and Insoluble Compounds.

(2): As Iron Oxide Fume.

(3): Dust and fume, as Iron

(4): As Magnesium Oxide Fume Total Particulate.

(5): Based on Sodium Hydroxide.

(6): Based on Potassium Hydroxide.

(R): Respirable Fraction.

(T): Total Dust.

(I): Inhalable Fraction.

(C): Ceiling Limit

Airborne OELs for Inert/Nuisance Dust:

Standard	Respirable Dust	Total Dust
MSHA/OSHA PEL		
(as Inert or Nuisance Dust)	5 mg/m^3	15 mg/m^3
ACGIH TLV		
(as Particles Not Otherwise Specified)	3 mg/m^3	*10 mg/m ³
NIOSH REL		
(Particulates Not Otherwise Regulated)	_	_

Note: The limits for Inert Dust are provided as guidelines. Nuisance dust is limited to particulates not known to cause systemic injury or illness. * The TLV provided is for inhalable particles not otherwise specified.

ENGINEERING CONTROLS

Ventilation: Use local exhaust, general ventilation or natural ventilation adequate to maintain exposures below appropriate exposure limits.

Other control measures: Respirable dust and crystalline silica levels should be monitored regularly. Dust and crystalline silica levels in excess of appropriate exposure limits should be reduced by implementing feasible engineering controls, including (but not limited to) dust suppression (wetting), ventilation, process enclosure and enclosed employee work stations.

EYE/FACE PROTECTION

Safety glasses with side shields should be worn as minimum protection. Dust goggles should be worn when excessively (visible) dusty conditions are present or are anticipated. If irritation persists, get medical attention immediately. There is potential for severe eye irritation if exposed to excessive concentrations of dust for those using contact lenses.

SKIN PROTECTION

Use appropriate protective gloves if manually handling the product.

SECTION VIII – EXPOSURE CONTROLS/PERSONAL PROTECTION, CONTD.

RESPIRATORY PROTECTION

Respirator Recommendations:

For respirable crystalline silica levels that exceed or are likely to exceed appropriate exposure limits, a NIOSH-approved particulate filter respirator must be worn. Respirator use must comply with applicable MSHA or OSHA standards, which include provisions for a user training program, respirator repair and cleaning, respirator fit testing, and other requirements. For additional information contact NIOSH at 1-800-356-4674 or visit website: http://www.cdc.gov/niosh/npg (search for crystalline silica). See also ANSI standard Z88.2 (latest revision) "American National Standard for Respiratory Protection," 29 CFR 1910.134 and 1926.103, and 42 CFR 84.

NIOSH recommendations for respiratory protection include:

Up to 0.5 mg/m³:

(APF = 10) Any particulate respirator equipped with an N95, R95, or P95 filter (including N95, R95, and P95 filtering facepieces) except quarter-mask respirators. The following filters may also be used: N99, R99, P99, N100, R100, P100.

Up to 1.25 mg/m³:

(APF = 25) Any powered, air-purifying respirator with a high-efficiency particulate (100-series) filter.

(APF = 25) Any supplied-air respirator operated in a continuous-flow mode

Up to 2.5 mg/m³:

 $(\hat{APF} = 50)$ Any air-purifying, full-facepiece respirator with an N100, R100, or P100 filter.

(APF = 50) Any powered, air-purifying respirator with a tight-fitting facepiece and a high-efficiency particulate filter **Up to 25 mg/m³**:

(APF = 1000) Any supplied-air respirator operated in a pressure-demand or other positive-pressure mode

Emergency or planned entry into unknown concentrations or IDLH conditions (50 mg/m³ for crystalline silica-quartz): A selfcontained breathing apparatus (SCBA) that has a full-face piece and is operated in a pressure-demand or other positive-pressure mode or any supplied-air respirator that has a full-face piece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus.

Escape from unknown or IDLH conditions: An air-purifying, full-face piece respirator with a high-efficiency particulate (100-series) filter or any appropriate escape-type, self-contained breathing apparatus.

If the workplace airborne crystalline silica concentration is unknown for a given task, conduct air monitoring to determine the appropriate level of respiratory protection to be worn. Consult with a certified industrial hygienist, your insurance risk manager or the OSHA Consultative Services group for detailed information. Ensure appropriate respirators are worn, as needed, during and following the task, including clean up or whenever airborne dust is present, to ensure worker exposures remain below OELs.

GENERAL HYGIENE CONSIDERATIONS

There are no known hazards associated with this material when used as recommended. Following the guidelines in this SDS are recognized as good industrial hygiene practices. Avoid breathing dust. Avoid skin and eye contact. Wash dust-exposed skin with soap and water before eating, drinking, smoking and using toilet facilities. Wash work clothes after each use.

SECTION IX— PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE Basalt is a mixture of smooth and rounded to angular particles. Its color can range from white to green to gray to black. The size may range from dust to pebbles to boulders.	ODOR AND ODOR THRESHOLD Odorless and not applicable
pH AND VISCOSITY	MELTING POINT/FREEZING POINT
Not applicable	Not applicable
BOILING POINT AND RANGE	FLASH POINT AND FLAMMABILITY
Not applicable	Not applicable
FLAMMABILITY/EXPLOSIVE LIMITS AND	EVAPORATION RATE AND DECOMPOSITION
AUTOIGNITION TEMPERATURE	TEMPERATURE
Not applicable	Not applicable
VAPOR PRESSURE AND VAPOR DENSITY IN AIR	SPECIFIC GRAVITY.
Not applicable	2.6-2.81
SOLUBILITY IN WATER	PARTITION COEFFICIENT: N-OCTANOL/WATER
Insoluble	Not applicable

SECTION X - STABILITY AND REACTIVITY

STABILITY	CONDITIONS TO AVOID
Stable	Contact with incompatible materials (see below).

THERMAL STABILITY

If crystalline silica (quartz) is heated to more than 870° C (1598°F), it can change to a form of crystalline silica known as tridymite, and if crystalline silica (quartz) is heated to more than 1470° C (2678°F), it can change to a form of crystalline silica known as cristobalite.

INCOMPATIBILITY (Materials to avoid)

Contact with powerful oxidizing agents such as fluorine, boron trifluoride, chlorine trifluoride, manganese trifluoride, and oxygen difluoride may cause fire and/or explosions. Some components of basalt may react vigorously with water.

HAZARDOUS DECOMPOSITION PRODUCTS

Silica dissolves in hydrofluoric acid producing a corrosive gas - silicon tetrafluoride.

HAZARDOUS POLYMERIZATION

Not known to polymerize

SECTION XI – TOXICOLOGICAL INFORMATION

Health Effects: The information below represents an overview of health effects caused by overexposure to one or more components in basalt.

Primary routes(s) of exposure:

Inhalation	
------------	--

Skin

■ Ingestion

EYE CONTACT: Direct contact with dust may cause irritation by mechanical abrasion or corrosive action. Conjunctivitis may occur.

SKIN CONTACT: Direct contact may cause irritation by mechanical abrasion. Some components of material are also known to cause corrosive effects to skin and mucous membranes.

SKIN ABSORPTION: Not expected to be a significant route of exposure.

INGESTION: Small amounts (a tablespoonful) swallowed during normal handling operations are not likely to cause injury. Ingestion of large amounts may cause gastrointestinal irritation and blockage.

INHALATION: Dust may irritate nose, throat, mucous membranes and respiratory tract by mechanical abrasion. Coughing, sneezing, chest pain, shortness of breath, inflammation of mucous membrane, and flu-like fever may occur following exposures in excess of appropriate exposure limits.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Inhaling respirable dust and/or crystalline silica may aggravate existing respiratory system disease(s) (e.g., bronchitis, emphysema, chronic obstructive pulmonary disease) and/or dysfunctions. Exposure to dust may aggravate existing skin and/or eye conditions. Smoking and obstructive/restrictive lung diseases may also exacerbate the effects of excessive exposure to this product.

This product is a mixture of components. The composition percentages are listed in Section III. Toxicological information for each component is listed below:

<u>Silicon Dioxide</u>: It is comprised of amorphous and crystalline forms of silica. In some batches, crystalline silica may represent up to 100% of silicon dioxide.

Exposure route: Eyes, respiratory system.

Target organs: Eyes, skin, respiratory system.

ACGIH, MSHA, and OSHA have determined that adverse effects are not likely to occur in the workplace provided exposure levels do not exceed the appropriate exposure limits. Lower exposure limits may be appropriate for some individuals including persons with pre-existing medical conditions as described under medical conditions aggravated by exposure.

A. SILICOSIS

The major concern is <u>silicosis</u> (lung disease), caused by the inhalation and retention of respirable crystalline silica dust. Silicosis leads to conditions such as lung fibrosis and reduced pulmonary function. The form and severity in which silicosis manifests itself, depends in part on the type and extent of exposure to silica dusts: chronic, accelerated and acute forms are recognized. In later stages the critical condition may become disabling and potentially fatal. Restrictive and/or obstructive changes in lung function may occur due to exposure. A risk associated with silicosis is development of pulmonary tuberculosis (silico-tuberculosis). Respiratory insufficiencies due to massive fibrosis and reduced pulmonary function, possibly with accompanying heart failure, are other potential causes of death due to silicosis.

Chronic or Ordinary Silicosis is the most common form of silicosis and can occur after many years of exposure to levels above the OELs for airborne respirable crystalline silica dust. Not all individuals with silicosis will exhibit symptoms (signs) of the disease. Symptoms of silicosis may include (but are not limited to): Shortness of breath; difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; heart enlargement and/or failure. It is further defined as either simple or complicated silicosis.

Simple Silicosis is characterized by lung lesions (shown as radiographic opacities) less than 1 centimeter in diameter, primarily in the upper lung zones. Often, simple silicosis is not associated with symptoms, detectable changes in lung function or disability. Simple silicosis may be progressive and may develop into complicated silicosis or progressive massive fibrosis (PMF).

Complicated Silicosis or PMF is characterized by lung lesions (shown as radiographic opacities) greater than 1 centimeter in diameter. Although there may be no symptoms associated with complicated silicosis or PMF, the symptoms, if present, are shortness of breath, wheezing, cough and sputum production. Complicated silicosis or PMF may be associated with decreased lung function and may be disabling. Advanced complicated silicosis or PMF may lead to death. Advanced complicated silicosis or PMF can result in heart disease (cor pumonale) secondary to the lung disease.

Accelerated Silicosis can occur with exposure to high concentrations of respirable crystalline silica over a relatively short period; the lung lesions can appear within five (5) years of the initial exposure. The progression can be rapid. Accelerated silicosis is similar to chronic or ordinary silicosis, except that the lung lesions appear earlier and the progression is more rapid.

Acute Silicosis can occur with exposures to very high concentrations of respirable crystalline silica over a very short time period, sometimes as short as a few months. The symptoms of acute silicosis include progressive shortness of breath, fever, cough and weight loss. Acute silicosis is a rapidly progressive, incurable lung disease and is typically fatal.

B. CANCER

IARC - The International Agency for Research on Cancer ("IARC") concluded that there is "sufficient evidence in humans for the carcinogenicity of crystalline silica in the form of quartz or cristobalite", there is "sufficient evidence in experimental animals for the carcinogenicity of quartz dust" and that there is "limited evidence in experimental animals for the carcinogenicity of tridymite dust and cristobalite dust." The overall IARC evaluation was that "crystalline silica inhaled in the form of quartz or cristobalite dust is carcinogenic to humans (Group 1)." The IARC evaluation noted that not all industrial circumstances studied evidenced carcinogenicity. The monograph also stated that "Carcinogenicity may be dependent on inherent characteristics of the crystalline silica or on external factors affecting its biological activity or distribution of its polymorphs." For further information on the IARC evaluation, see <u>IARC Monographs on the Evaluation of Carcinogenic Risks to Humans</u>, Volume 100C, "Silica Dust, Crystalline, in the Form of Quartz or Cristobalite" (2012).

NTP - In its Eleventh Annual Report on Carcinogens, concluded that respirable crystalline silica is known to be a human carcinogen, based on sufficient evidence of carcinogenicity from studies in humans indicating a causal relationship between exposure to respirable crystalline silica and increased lung cancer rates in workers exposed to crystalline silica dust.

OSHA - Crystalline silica is not on the OSHA carcinogen list.

CALIFORNIA PROPOSITION 65 - Crystalline silica in October 1996 was listed on the Safe Drinking Water and Toxic Enforcement ACT of 1986 as a chemical known to the state to cause cancer or reproductive toxicity.

There have been many articles published on the carcinogenicity of crystalline silica, which the reader should consult for additional information; the following are <u>examples</u> of recently published articles: (1) "Dose-Response Meta-Analysis of Silica and Lung Cancer", *Cancer Causes Control*, (20):925-33 (2009); (2) "Occupational Silica Exposure and Lung Cancer Risk: A Review of Epidemiological Studies 1996-2005', *Ann Oncol*, (17) 1039-50 (2006); (3) "Lung Cancer Among Industrial Sand Workers Exposed to Crystalline Silica", *Am J Epidemiol*, (153) 695-703 (2001); (4) "Crystalline Silica and The Risk of Lung Cancer in The Potteries", *Occup Environ Med*, (55) 779-785 (1998); (5) "Is Silicosis Required for Silica-Associated Lung Cancer?", *American Journal of Industrial Medicine*, (37) 252- 259 (2000); (6) " Silica, Silicosis, and Lung Cancer: A Response to a Recent Working Group Report", *Journal of Occupational and Environmental Medicine*, (42) 704-720 (2000).

C. AUTOIMMUNE DISEASES

There is evidence that exposure to respirable crystalline silica (without silicosis) or that the disease silicosis may be associated with the increased incidence of several autoimmune disorders, -- scleroderma, systemic lupus erythematosus, rheumatoid arthritis and diseases affecting the kidneys. For a review of the subject, the following may be consulted: (1) "Antinuclear Antibody and Rheumatoid Factor in Silica-Exposed Workers", *Arh Hig Rada Toksikol*, (60) 185-90 (2009); (2) "Occupational Exposure to Crystalline Silica and Autoimmune Disease", *Environmental Health Perspectives*, (107) Supplement 5, 793-802 (1999); (3) "Occupational Scleroderma", *Current Opinion in Rheumatology*, (11) 490-494 (1999); (4) "Connective Tissue Disease and Silicosis", *Am J Ind Med*, (35), 375-381 (1999).

D. TUBERCULOSIS

Individuals with silicosis are at increased risk to develop pulmonary tuberculosis, if exposed to persons with tuberculosis. The following may be consulted for further information: (1) "Tuberculosis and Silicosis: Epidemiology, Diagnosis and Chemoprophylaxis", *J Bras Pneumol*, (34) 959-66 (2008); (2) *Occupational Lung Disorders*, Third Edition, Chapter 12, entitled "Silicosis and Related Diseases", Parkes, W. Raymond (1994); (3) "Risk of Pulmonary Tuberculosis Relative to Silicosis and Exposure to Silica Dust in South African Gold Miners," *Occup Environ Med*, (55) 496-502 (1998); (4) "Occupational Risk Factors for Developing Tuberculosis", *Am J Ind Med*, (30) 148-154 (1996).

E. KIDNEY DISEASE

There is evidence that exposure to respirable crystalline silica (without silicosis) or that the disease silicosis is associated with the increased incidence of kidney diseases, including end stage renal disease. For additional information on the subject, the following may be consulted: (1) "Mortality from Lung and Kidney Disease in a Cohort of North American Industrial Sand Workers: An Update", *Ann Occup Hyg*, (49) 367-73 (2005); (2) "Kidney Disease and Silicosis", *Nephron*, (85) 14-19 (2000); (3) "End Stage Renal Disease Among Ceramic Workers Exposed to Silica", *Occup Environ Med*, (56) 559-561 (1999); (4) "Kidney Disease and Arthritis in a Cohort Study of Workers Exposed to Silica", *Epidemiology*, (12) 405-412 (2001).

F. NON-MALIGNANT RESPIRATORY DISEASES

NIOSH has cited the results of studies that report an association between dusts found in various mining operations and nonmalignant respiratory disease, particularly among smokers, including bronchitis, emphysema, and small airways disease. *NIOSH Hazard Review – Health Effects of Occupational Exposure to Respirable Crystalline Silica*, published in April 2002, available from NIOSH, 4676 Columbia Parkway, Cincinnati, OH 45226, or at <u>https://www.cdc.gov/niosh/docs/2002-129/default.html</u>.

Respirable dust containing newly broken particles has been shown to be more hazardous to animals in laboratory tests than respirable dust containing older silica particles of similar size. Respirable silica particles which had aged for sixty days or more showed less lung injury in animals than equal exposures of respirable dust containing newly broken pieces of silica.

Aluminum Oxide:

Exposure route: Inhalation, ingestion, eye/skin contact.

Target organs: Respiratory system, gastrointestinal system, eyes, skin.

Acute effect: Inhalation or ingestion of high concentrations of this substance may cause gastrointestinal and/or upper respiratory tract irritation. Eye and skin irritant.

Chronic effect/carcinogenicity: Aluminum oxide is not classifiable as a human carcinogen. On occasion workers chronically exposed to aluminum-containing dusts or fumes have developed severe pulmonary reactions including fibrosis, emphysema and pneumothorax. Long-term exposure may have effects on the central nervous system.

Sodium Oxide:

Exposure route: Inhalation, ingestion, eye/skin contact.

Target organs: Respiratory system, gastrointestinal system, eyes, skin.

Acute effect: Corrosive – Sodium oxide reacts violently with water to form sodium hydroxide. Causes burns of skin, eyes, respiratory and gastrointestinal tracts, extremely destructive to mucous membranes.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

<u>Iron Oxide:</u> (Ferrous and Ferric Oxides) Exposure route: Inhalation, ingestion, skin

Target organs: Respiratory system, skin, eyes, neurological system

Acute effect: Major findings: stupor, shock, acidosis, hematemesis, bloody diarrhea or coma. Minor findings: vomiting, diarrhea, mild lethargy. Benign pneumoconiosis with X-ray shadows indistinguishable from fibrotic pneumoconiosis. Experimental work in animals exposed by intratracheal injection or by inhalation to iron oxide mixed with less than 5% silica has shown no evidence of fibrosis produced in lung tissue.

Chronic effect/carcinogenicity: Irritability, nausea or vomiting, and normocytic anemia. When exposed to levels greater than 50 to 100 milligram per day, it can result in pathological deposition of iron in the body tissues causing fibrosis of the pancreas, diabetes mellitus, and liver cirrhosis. Workers exposed to iron oxide fume and silica may develop a "mixed dust pneumoconiosis." Not classifiable as human carcinogen.

Potassium Oxide:

Exposure route: Inhalation, ingestion, eye/skin contact.

Target organs: Respiratory system, gastrointestinal system, eyes, skin.

Acute effect: Corrosive – Potassium oxide reacts violently with water to produce potassium hydroxide. If inhaled, causes sore throat, cough, burning sensation and shortness of breath. Contact with skin produces pain and blisters. Severe deep burns, redness and pain occur with eye contact. Ingestion results in burning sensations, abdominal pain, shock or collapse.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

Calcium Oxide:

Exposure route: Inhalation, ingestion, skin/eye contact.

Target organs: Eyes, skin, respiratory system.

Acute effect: Direct contact with tissues, can result in burns and severe irritation because of its high reactivity and alkalinity. Major complaints of workers exposed to lime consist of irritation of the skin and eyes, although inflammation of the respiratory passages, ulceration and perforation of the nasal septum, and even pneumonia has been attributed to inhalation of the dust.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

<u>Magnesium Oxide</u>: Exposure route: Inhalation, eye/skin contact.

Target organs: Eyes, respiratory system.

Acute effect: Magnesium oxide dust caused slight irritation of the eyes and nose, conjunctivitis, inflammation of the mucous membrane, and coughing up discolored sputum after industrial exposures amongst workers exposed to an unspecified concentration of MgO.

Chronic effect/carcinogenicity: Not classifiable as human carcinogen.

<u>Titanium Oxide</u>: Exposure route: inhalation.

Target organs: respiratory system.

Acute effect: Toxicological studies have concluded that titanium oxide is inert, not absorbed by the body, and exerts no toxic effect.

Chronic effect/carcinogenicity: Classified as Group 2B-possibly carcinogenic to humans by IARC.

Acute Toxicity Estimates for Basalt- Not Available

SECTION XII – ECOLOGICAL INFORMATION

No data available for this product.

SECTION XIII – DISPOSAL CONSIDERATIONS

WASTE DISPOSAL METHOD

Collect and reuse clean materials. Dispose of waste materials only in accordance with applicable federal, state, and local laws and regulations.

The above information applies to Martin Marietta Materials product only as sold. The product may be contaminated during use and it is the responsibility of the user to assess the appropriate disposal method in that situation.

SECTION XIV – TRANSPORT INFORMATION

DOT HAZARD CLASSIFICATION None

PLACARD REQUIRED None

LABEL REQUIRED

Label as required by the OSHA Hazard Communication standard {29 CFR 1910.1200(f)}, and applicable state and local regulations.

SECTION XV – REGULATORY INFORMATION

OSHA: Crystalline Silica is not listed as a carcinogen.

SARA Title III: Section 311 and 312: Immediate health hazard and delayed health hazard.

TSCA.: All components of the product appear on the EPA TSCA chemical substance inventory.

<u>RCRA</u>: Crystalline silica (quartz) is <u>not</u> classified as a hazardous waste under the Resource Conservation and Recovery Act, or its regulations, 40 CFR §261 <u>et seq</u>.

<u>CERCLA</u>: Crystalline silica (quartz) is <u>not</u> classified as a hazardous substance under regulations of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 40 CFR §302.4

<u>EPCRA (Emergency Planning and Community Right to Know Act)</u>: Crystalline silica (quartz) is <u>not</u> an extremely hazardous substance under regulations of the <u>Emergency Planning and Community Right to Know Act</u>, 40 CFR Part 355, Appendices A and <u>B</u> and is <u>not</u> a toxic chemical subject to the requirements of Section 313.

<u>Clean Air Act</u>: Crystalline silica (quartz) mined and processed by Martin Marietta Materials was not processed with or does not contain any Class I or Class II ozone depleting substances.

FDA: Silica is included in the list of substances that may be included in coatings used in food contact surfaces, 21 CFR

§175.300(b)(3).(The FDA standard primarily applies to products containing silica used in the coatings of food contact surfaces). <u>California Proposition 65</u>: Respirable crystalline silica (quartz) is classified as a substance known to the state of California to be a carcinogen.

<u>Massachusetts Toxic Use Reduction Act</u>: Respirable crystalline silica is considered toxic per the Massachusetts Toxic Use Reduction Act when used in abrasive blasting and molding.

<u>Pennsylvania Worker and Community Right to Know Act</u>: Quartz is considered hazardous for purposes of the Act, but it is not a special hazardous substance or an environmental hazardous substance.

SECTION XVI – OTHER INFORMATION

DEFINITIONS OF ACRONYMS/ABBREVIATIONS

ACGIH: American Conference of Governmental Industrial Hygienists AL: Action Level ANSI: American National Standards Institute **APF: Assigned Protection Factor** California REL: California Inhalation Reference Exposure Limit CAS: Chemical Abstracts Service CERCLA: Comprehensive Environmental Response, Compensation and Liability Act CFR: US Code of Federal Regulations DHHS: Department of Health and Human Services EPA: Environmental Protection Agency EPCRA: Emergency Planning and Community Right to Know Act FDA: Food and Drug Administration GHS: Globally Harmonized System HEPA: High-Efficiency Particulate Air IARC: International Agency for Research on Cancer IDLH: Immediately Dangerous to Life and Health MSHA: Mine Safety and Health Administration NIOSH: National Institute for Occupational Safety and Health, US Department of Health and Human Services NIOSH REL: NIOSH Recommended Exposure Limit NTP: National Toxicology Program **OEL:** Occupational Exposure Limit OSHA: Occupational Safety and Health Administration, US Department of Labor PEL: Permissible Exposure Limit PMF: Progressive Massive Fibrosis RCRA: Resource Conservation and Recovery Act SARA Title III: Title III of the Superfund Amendments and Reauthorization Act, 1986 SDS: Safety Data Sheet STOT: Specific Target Organ Toxicity TLV: Threshold Limit Value TSCA: Toxic Substance Control Act TWA: Time-Weighted Average

SECTION XVI – OTHER INFORMATION, CONTD.

User's Responsibility: The OSHA Hazard Communication Standard 29 CFR 1910.1200 requires that this SDS be made available to your employees who handle or may be exposed to this product. Educate and train your employees regarding applicable precautions. Instruct your employees to handle this product properly.

Disclaimer: The information contained in this document applies to this specific material as supplied and Martin Marietta Materials believes that the information contained in this SDS is accurate. The suggested precautions and recommendations are based on recognized good work practices and experience as of the date of publication. They are not necessarily all-inclusive or fully adequate in every circumstance as not all use circumstances can be anticipated. It may not be valid for this material if it is used in combination with other materials. It is the user's responsibility to satisfy oneself as to the suitability and completeness of this information for one's own particular use. Since the actual use of the product described herein is beyond our control, Martin Marietta Materials, assumes no liability arising out of the use of the product by others. Appropriate warnings and safe handling procedures should be provided to handlers and users. Also, the suggestions should not be confused with nor followed in violation of applicable laws, regulation, rules or insurance requirement. However, product must not be used in a manner which could result in harm.

An electronic version of this SDS is available at <u>www.martinmarietta.com</u>. More information on the effects of crystalline silica exposure may be obtained from OSHA (phone number: 1-800-321-OSHA; website: <u>http://www.osha.gov</u>) or from NIOSH (phone number: 1-800-35-NIOSH; website: <u>http://www.cdc.gov/niosh</u>).

DATE OF PREPARATION 6/2018

REPLACES 3/2015

NO WARRANTY, EXPRESSED OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE IS MADE

Zoning Documentation

10000 Beaver Dam Road, Cockeysville, MD 21030 Email: Gus.Buttar@martinmarietta.com Mobile: (443) 802-2769

Office of the County Executive

Alan McCarthy County Executive

Alfred C. Wein, Jr. Director of Administration

Office: 410.996.5202 Fax: 800.863.0947

Department of Land Use & Development Services

Eric Sennstrom, AICP, Director Office: 410.996.5220 Fax: 800.430.3829

Tony Di Giacomo, AICP, Chief Office: 410.996.5220 Fax: 800.430.3829

> County Information 410.996.5200 410.658.4041

CECIL COUNTY, MARYLAND Division of Planning and Zoning 200 Chesapeake Boulevard, Suite 2300, Elkton, MD 21921

July 17, 2017

Gustaf Buttar Environmental, Health & Safety Manager - Maryland Division Bluegrass Materials 10000 Beaver Dam Road Cockeysville, MD 21030

RE: Letter of Zoning - North East Land & Materials Co. Inc. / Maryland Materials, Inc. (Multiple Parcels)

Dear Mr. Buttar:

This letter of zoning verification is for the multiple properties located in North East, MD 21901. Please refer to the table below regarding the zoning of each requested parcel. A written description of each zoning district follows the table.

Tax Account ID	Тах Мар	Parcel	Zoning District	Overlay District
0803020568	19	34	MEA	
0803067661	25	662	MEA	
0803077012	19	517	MEA	
0803019837	19	36	MEA	
0803015459	25	228	LDR	MEB
0803067653	25	663	MEA	
0805038537	25	23	M2	MEB
0805038545	25	22	M2	MEB
0805056144	25	21	LDR	
0805038634	25	364	M2	MEB
0805018196	25	150	LDR	MEB
0805038626	25	51	M2	MEB

The purpose of the **Mineral Extraction A (MEA)** zone is to protect economically important mineral resources of the County for current and future use; to prevent incompatible development that may directly or indirectly preclude access to the mineral resources until such time that the resource can be removed; and to protect existing land uses adjacent to the potential mineral lands from undue harm that may result from mineral extraction activity.

The purpose of the **Heavy Industrial (M2)** zone is to provide for industrial uses of a larger scale and more intensive usage, with areas of uncovered storage. It is also to provide for a wide range of business/professional, research and development, manufacturing and processing, and industrial uses, activities and establishments which are compatible with adjacent uses to the extent that any adverse effects on health, safety, welfare, or the environment are avoided.

www.ccgov.org

The purpose of the **Mineral Extraction 'B' (MEB)** overlay district is to identify areas of the County where mineral extraction may occur by special exception. This overlay designation shall only apply to areas designated as Mineral Extraction District on the Land Use Plan of the 2010 Cecil County Comprehensive Plan. It is intended that this overlay designation apply to those portion of the Mineral Extraction District where there is a potential for conflict between adjacent current and future land uses and mineral extraction activity. Permitted uses in the MEB District shall be those for the underlying zone, which in this case is M2.

The purpose of the **Low Density Residential (LDR)** zone is to provide an appropriate development area for low to medium density residential development and to act as a transitional zone between rural and more densely developed areas.

These properties do not have any open zoning violations. You may review the Cecil County Zoning Ordinance on the County's website at <u>http://www.ccgov.org/home/showdocument?id=1288</u> Please contact Mr. Patrick Conway, Chief of the Division of Permits & Inspections at 410-996-5235 for any requests regarding Certificate(s) of Use and/or Occupancy.

If you have any questions feel free to call or email me at soconnor@ccgov.org.

Sincerely,

Stephen J. O'Connor, AICP Zoning Administrator Cecil County MALPF Program Administrator

cc:

Certification of Insurance (COI)

10000 Beaver Dam Road, Cockeysville, MD 21030 Email: Gus.Buttar@martinmarietta.com Mobile: (443) 802-2769

CERTIFICATE OF LIABILITY INSURANCE

DATE (MM/DD/YYYY) 09/29/2020

CLAIMS-MADE X OCCUR DAMAGE TO RENTED S GENL AGGREGATE LIMIT APPLIES PER: M M M M M A AUTOMOBILE LIABILITY LOC S General Aggregate \$ 6,000,000 OTHER: A AUTOMOBILE LIABILITY LOC \$ S S X ANY AUTO SCHEDULED AUTOS ONLY X SCHEDULED S S X ANY AUTO SCHEDULED AUTOS ONLY X NON-OWNED AUTOS ONLY X SCHEDULED S X AUTOS ONLY X NON-OWNED AUTOS ONLY X SCHEDULED S DED RETENTION S CCAIMS-MADE XEUG28167581005 09/30/2020 09/30/2021 EACH OCCURRENCE \$ 1,000,000 BOILY INJURY (Per person) S S S S S S S X UMBRELLA LIAB X OCCUR XEUG28167581005 09/30/2020 09/30/2021 S S S S DED RETENTION S S S S	THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF INSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER, AND THE CERTIFICATE HOLDER.												
Produces Produces Wish LAN. Market No. 1920 Wish LAN. Market No. 1920 Deskers, N.C. 2020 Market No. 1920 Market N.C. 2020 Market No. 1920 Deskers, N.C. 2020 Market No. 1920 Market N.C. 2020 Market No.	If SUBROGATION IS WAIVED, subject to the terms and conditions of the policy, certain policies may require an endorsement. A statement on												
Mare 16.5 Arec. Mare 16.5 Arec. Mare 16.5 Arec. Mare 16.5 Arec. Million 100, State 301, 300, 301, 300, 302, 301, 301, 301, 300, 300, 301, 301, 300, 300				t comer rights t			incate noticer in ned of st	CONTA		<i>)</i> •			
Charles Marcial Conservation Network Second	Ň	arsh	USA Inc.								FAX		
Art: C. NOVAESDET MO.022289 Multimes Insurements March and an analysis ON 002683641 MMA-CAW2-21 Multimes And C. And				600				E-MAIL			(A/C, No):		
Centralisates Linking Company, LLC Business Lance Another Company, LLC Business Lance Another Company, LLC Business Lance Property And Casually ins Co 2009 Insuress as LACE Prevents And Casually ins Co 2009 2010													
HEURED HEURE INTERPOLICE ANY AUTO COVERAGES CERTIFICATE NUMBER: ALCONDUCTOR HEURER I: HEURER I: HEURER I: HEURER I: HEURER I: HEURER I: HEURER III HEURER I: HEURER IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII													
Billings & Merkin Company, LLC 21/01 View Edit Company, LLC 21/01 View Ed	-		3548-1.MMM-GAWX-20-	21									
PD 25:0013 Reight, NC 27522 NUMERO 1						INSURER B : Indemnity Ins Co Of North America							
Rangin, NC 27522 Insurement Insurement Insurement COVERAGES CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NUMBER: THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NUMBER: REVISION NUMBER: THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NUMBER: REVISION NUMBER: THORATED AND CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAMES. LIMITS Rev MODOLYTIES MODOLYTIES MODOLYTER MODOLYTER CLASS MADE CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAMES. LIMITS SJ00000 CLASS MADE CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAMES. LIMITS SJ00000 CAUSE MERGENTEL LIMIT APPLIES PER. MODOLYTIES MODOLYTIES. MODOLY BY PAID CLAMES. MODOLYTIES. CERLIL AGGREGATE LIMIT APPLIES PER. INDOCYTAGUAG MODOLYTIES. MODOLYTIES. MODOLYTIES. MODOLYTIES. CERLIL AGGREGATE LIMIT APPLIES PER. INDOCYTAGUAG MODOLYTIES. MODOLYTIES. MODOLYTIES. MODOLYTIES. MODOLYTIES. MODOLYTIES. MODOLYTIES.								INSURE	R C : ACE Prope	erty And Casualty	Ins Co		20699
Business : Business : Business : COVERAGES CERTIFICATE NUMBER: ALL-0449372-11 REVISION NUMBER: ALL-0449372-11 REVISION NUMBER: ALL-0449372-11 REVISION NUMBER: ALL-0449372-11 REVISION NUMBER: CERTIFICATE NUMBER: ALL-0449372-11 REVISION NUMBER: CERTIFICATE NUMBER: ALL-0449372-11 REVISION NUMBER: CERTIFICATE NUMBER: ALL-0449372-11 REVISION NUMBER: ALL-0449372-11 REVISION NUMBER: CERTIFICATE NUMBER: ALL-0449372-11 REVISION NUMBER: CERTIFICATE NUMBER: ALL-0449372-11 REVISION NUMBER: CERTIFICATE NUMBER: CERTIFICATE NUMBER: ALL-0449372-11 REVISION NUMBER: CERTIFICATE NUMBER: CERTIF								INSURE	RD:				
COVERAGES CERTIFICATE NUMBER: AIL-0493372-11 REVISION NUMBER: THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED TO THE INSURED TO COLVERENCE TO AUT-CHAIT TO AUT-THE POLICY PENDOL CENDUCY PENDOL CERTIFICATE NUMBER: AWY BESTSUED ON MAY PERTINE THE INSURANCE LISTED TO COLVERENCE TO AUT-CHAIT SUBJECT TO AUT-THE TERNS, PROVIDE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO AUT-THE TERNS, PROVIDE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO AUT-THE TERNS, PROVIDE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO AUT-THE TERNS, PROVIDE AFFORDED BY THE POLICIES OF TADA CLAMBS. A X COMMERCIAL GERERAL LABILITY Main POLICY NUMBER Main POLICY NUMBER Main POLICY NUMBER Main POLICY NUMBER Subject TO AUT-THE TERNS, PROVIDE AFFORDED BY PAID CLAMBS. A X COMMERCIAL GERERAL LABILITY Main POLICY NUMBER Main POLICY NUMBER Main POLICY NUMBER Main POLICY NUMBER Subject TO AUT-THE TERNS, PROVIDED AFFORDED BY PAID CLAMBS. A TOMORIEL LABILITY Main POLICY NUMBER Main POLICY NUMBER Main POLICY NUMBER Main POLICY NUMBER Subject TO AUT-THE TERNS, PROVIDED AFFORDED BY PAID CLAMBS. A TOMORIEL LABILITY ISANCE OF ONE AT BOODY NUMERY OF AUTO-THE AFFORDED BY PAID CLAMBS. Subject TO AUT-THE AFFORDED BY PAID CLAMBS. A TOMORIEL LABILITY ISANCE OF ONE AT ISANCE OF ONE AT Subject TO		5	,					INSURE	RE:				
THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURANCE APPORTS CONTHENT STANDING ANY REQUIREMENT, TERM OR CONTINCTO ON OTHER DOCUMENT WITH RESPECT TO ALL THE TERMS. EXCLUSIONS AND REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT ON OTHER DOCUMENT WITH RESPECT TO ALL THE TERMS. EXCLUSIONS ANY REQUIREMENT, TERM OR OR DEDUCED BY THE POLICIES DESCRIBED HERM IS SUBJECT TO ALL THE TERMS. EXCLUSIONS AND CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN DECUMED BY THE POLICIES DESCRIBED NOT. Immodiate the term of ter													
INDICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS EXCRUDED OF ANY PERSIMA THE INSURANCE AFFORDED BED BERRIED DEBRIED HERIN IS SUBJECT ON ALL THE TERMS. EXERCISIONS AND CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAD CLAWS. Image: Control of the Conditional Control of the Conditional Research Statement (Control of the Conditional Research Control of the Conditional Research													
LTR TYPE OF MORRARCE INSD WYD POUCY NUMBER IMMOD/YYYD LUITS A X COMMERCIA GENERAL INBUITY HD0G7/15030 IPS0/2020 IPS0/2021 IPS0	IN C E	INDICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS CERTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO ALL THE TERMS, EXCLUSIONS AND CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAIMS.											
A CLAMS-MADE X OCCUR Decomposition S 00000 GEVI ACCAMS-MADE X OCCUR Decomposition S 00000 GEVI AGREGATE LINE NO S 000000 GEVI AGREGATE S 000000 BORNA EADY NUMPY S 0 S 000000 OTHER: GEVIAGE of PROFESSIONE ADV S 000000 PRODUCTS-COMPORAGE S 0.00000 OTHER: AUTOMOBILE LIABILITY S 000000 S 000000 S 000000 AVTOMOBILE LIABILITY SALED SALE SALE SALE SALE SALE SALE SALE SALE	LTR						POLICY NUMBER		(MM/DD/YYYY)	(MM/DD/YYYY)	LIMIT	S	
CLAMS-MADE OCCUR 9 30000 CENIL AGGREGATE LIMIT APPLIES PER- CONTACT CONTACT CONTACT 3000000 CENIL AGGREGATE LIMIT APPLIES PER- CONTACT CONTACT CONPOP AGS \$ 3000000 A AUTOMOBILE LABLITY ISAH25398475 09/50/2020 09/30/2021 CONTACT CONPOP AGS \$ \$ A AUTOMOBILE LABLITY ISAH25398475 09/50/2020 09/30/2021 CONTACT CONPOP AGS \$	A	Х	COMMERCIAL GENER				HDOG71450430		09/30/2020	09/30/2021		\$	3,000,000
C X PERSONAL & ADV INJURY \$ 300,000 GENL AGGREGATE LIMIT APPLIES PER: X SCHEDILED \$ 6000,000 A AUTOMOBILE LIABULTY \$ 6000,000 X PAVENDELIABULTY \$ 800,000 X PAVENDELIABULTY \$ 800,000 X PAVENDELIABULTY \$ 800,000 X PAVENDELIABULTY \$ 800,000 X NAVENDEWLAND \$ 800,000 X NAVENDEWLAND \$ 800,000 X NAVENDEWLAND \$ 900,0021 X NAVENDEWLAND \$ 900,0021 X NAVENDEWLAND \$ 900,0000 X NAVENDEWLAND \$ 900,0000 AUTOS ONLY AUTOS ONLY X VILROGF464126 (AOS) 9930,0220 9930,0221 X X Y Y Mode Even Lower Set LABULTY N/A WILROGF464126 (AOS) 9930,0221 Y X Y Y Y ANYMORPHENERSECUTURE N/A WILROGF464126 (AOS) 9930,0221 Y X Y			CLAIMS-MADE	X OCCUR								\$	50,000
GENL AGGREGATE LIMIT APPLIES PER. Control Contro Control Control <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>MED EXP (Any one person)</td><td>\$</td><td></td></t<>											MED EXP (Any one person)	\$	
C X POILON PEO- DECOURT COUNTING Source											PERSONAL & ADV INJURY	\$	3,000,000
A AUTOMOBILE LABILITY ISAH25308475 09/30/2020 09/30/2021 COMBINED SINGLE LIMIT \$ 5.000,000 A AUTOMOBILE LABILITY ISAH25308475 09/30/2020 09/30/2021 BODLY INURY (Per accident) \$ 5.000,000 A AUTOS ONLY X AUTOS ONLY X SCHEDULED \$ 5.000,000 BODLY INURY (Per accident) \$ BODLY INURY (Per accident) \$ <td></td> <td>GE</td> <td></td> <td>APPLIES PER:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>GENERAL AGGREGATE</td> <td>\$</td> <td>6,000,000</td>		GE		APPLIES PER:							GENERAL AGGREGATE	\$	6,000,000
A AUTOMOBILE LIABILITY ISAH25308475 09/30/2021 COMBINED SINGLE LIMIT \$ 5,000,000 AVTOGOBILE LIABILITY SCHEDULED SCHEDULED SCHEDULED SCHEDULED SCHEDULED AVTOG ONLY XOTOS ONLY SCHEDULED SCHEDULED SCHEDULED SCHEDULED AVTOS ONLY XOTOS ONLY XOTOS ONLY SCHEDULED SCHEDULED SCHEDULED AVTOS ONLY XOTOS ONLY XOTOS ONLY XOTOS ONLY SCHEDULED SCHEDULED VEX. VEX. SCHEDULED AUTOS ONLY SCHEDULED SCHEDULED AVTOS ONLY XOTOS ONLY XOTOS ONLY XEUG28167581005 09/30/2020 09/30/2021 SCHEDULED SCHEDULED B MONERS COMPENSATIONS VEX. VEX. SCHEDULED		Х	POLICY PRO- JECT	LOC							PRODUCTS - COMP/OP AGG	\$	6,000,000
X ANY AUTO COUNCE			OTHER:									\$	
OWNED HIRED A HIRED A HIRED DED DED DED DED DED DED DED DED DED	A	AUT	OMOBILE LIABILITY				ISAH25308475	09/30/2020	09/30/2020	09/30/2021		\$	5,000,000
AUTOS ONLY X		Х	ANY AUTO								BODILY INJURY (Per person)	\$	
Image: Normal High of the policies. General Liability and Automobile Liability, and Workers Compensation in favor of the certificate holder, if required by written contract, and subject to policy terms and conditions. Security of the policies be concelled by and conditions. Certificate HoldDer Cannet Liability, and Workers Compensation in favor of the certificate holder, if required by written contract, and subject to policy terms and conditions. Secure Cancelled before the certificate holder, if required by written contract, and subject to policy terms and conditions. Certificate HoldDer Cancelled before the policies. General Liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. Maryland Department of the Environment 1800 Washington Bivd Baitmore, MD 21230 Should Dave the policies. General Liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. Certificate hold bive additional fination of the policies. General Liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. Certificate hold bive additional fination of the policies. General Liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. Maryland Department of the Environment 1800 Washington Bivd Should DANY of THE ABOVE DESCRIBED Policies Be CANCELLED IN ACCOMPANE ACCORDANE ACCORDANE ACCORDANE ACCORDANE ACCORDANE ACCORDA											BODILY INJURY (Per accident)	\$	
C X UMBRELLA LIAB X CCUR S C X UMBRELLA LIAB X CCUR S 1,000,000 EXCESS LIAB CLAIMS-MADE 09/30/2020 09/30/2020 09/30/2021 EACH OCCURRENCE \$ 1,000,000 A MODER/ESCENTENTON S N N WLRC67464126 (AOS) 09/30/2020 09/30/2021 X STATUTE ETH S A MODER/MERRER/CLUBEDPT N N A WLRC67464163 (CA) 09/30/2020 09/30/2021 X STATUTE EL EL ACACCIDENT \$ 2.000,000 EL DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may bear if required by written contract with the named insured, subject to the terms and conditions of the policies. A waiver of subrogation applies under General Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions of the policies. Policies. A waiver of subrogation applies under General Liability, Automobile Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions. Marylind Department of the policies. General Liability, Automobil		Х	HIRED Y	NON-OWNED							PROPERTY DAMAGE	\$	
A Andreschad A Coccur Andreschad 09/30/2020 09/30/2020 Andreschad A B Morketes comensation AND EMPORTER COMPARING OF COCURATIONS VIN N / A WLRC67464126 (AOS) 09/30/2020 09/30/2021 X PERATOR 2,000,000 EL AND EMPORTER COMPARING OF COCURATIONS / LOCATIONS / LOCATIONS / VEHICLES VIN N / A WLRC67464163 (CA) 09/30/2020 09/30/2021 X PERATOR 2,000,000 EL LOSASSE N / A WLRC67464163 (CA) 09/30/2020 09/30/2021 X PERATOR 2,000,000 EL LOSASSE N / A WLRC67464163 (CA) 09/30/2020 09/30/2021 X PERATOR 2,000,000 EL LOSASSE PERATOR X PERATOR 2,000,000 EL LOSASSE 2,000,000 DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more space is required) EL LosASSE 2,000,000 Certificate holder is additional insured under General Liability and automobile Liability and worker Compensation in favor of the certificate holder. Fequived by written contract with the named insured, subject to the terms and conditions. Certifica												\$	
EXCESS LAB CLAIMS-MADE B OED RETENTION \$ B WORKERS COMPENSATION AND EMPLOYERS' LABILITY \$ A MODE MPLOYERS' LABILITY N/A WIRC67464126 (AOS) 09/30/2020 09/30/2021 X PERCENTER COMPENSATION AND PEMPLOYERS' LABILITY N/A WIRC67464136 (CA) 09/30/2020 09/30/2021 X X EL EACH ACCIDENT \$ 2.000.000 EL ACK ACCIDENT S 2.000.000 EL DISEASE - PALLOYEE \$ 2.000.000 DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more space is required) EL DISEASE - POLICY LIMIT \$ 2.000.000 DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more space is required) EL DISEASE - POLICY LIMIT \$ 2.000.000 Delices. A water of subrogation apples under General Liability and Automobile Liability and worker Schedule, may appear, if equired by written contract with the named insured, subject to the terms and conditions of the policies. General Liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. CERTIFICATE HOLDER CANCELLATION SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPR	С	Х	UMBRELLA LIAB	X OCCUR			XEUG28167581005		09/30/2020	09/30/2021	EACH OCCURRENCE	\$	1,000,000
B WORKERS COMPENSATION WURC67464126 (AOS) 09/30/2020 09/30/2021 X STATUTE DTH A ANYPROPRIETORPARTNERVEXCUTIVE N N N WURC67464163 (CA) 09/30/2020 09/30/2020 09/30/2021 X STATUTE DTH EL. EACH ACCIDENT \$ 2,000,000 If yes, desine under DESCRIPTION OF OPERATIONS / LOCATIONS below N N A WURC67464163 (CA) 09/30/2020 09/30/2021 X STATUTE DTH EL. EACH ACCIDENT \$ 2,000,000 If yes, desine under DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACOND 101, Additional Remarks Schedule, may be attached if more space is required) Certificate holder is additional insured under General Liability and butomobile Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions of the policies. General Liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. CERTIFICATE HOLDER CANCELLATION Maryland Department of the Environment 1800 Washington Bivd SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE 110 ACORDANCE WITH THE POLICY PROVISIONS. Authorized RepRESENTATIVE of Marsh USA Inc. AutHORIZED REPRESENTATIVE of Marsh USA Inc. Anne			EXCESS LIAB	CLAIMS-MADE							AGGREGATE	\$	1,000,000
A AND EMPLOYERS' LABILITY Y/N N/A MANDEMPLOYERS' LABILITY Y/N N/A MANDEMPLOYERS' LABILITY N/A MANDEMPLOYERS' LABILITY N/A MANDEMPLOYERS' LABILITY N/A MANDEMPLOYERS' LABILITY N/A Manual Completion or present and the completion of the contract with the named insured, subject to the terms and conditions of the policies. General Liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. CERTIFICATE HOLDER CANCELLATION Maryland Department of the Environment 1000 Washington Bive distribution Bive distribution of the contract with the completion of the contract with the completion of the contract with the c			DED RETENTI	ON \$								\$	
A Anventering Executive VI VIII	В						WLRC67464126 (AOS)		09/30/2020	09/30/2021	X PER OTH-		
OFFICENMEMBERENEXCLUDED? N N N A Image: Manual of the provide	A	ANY	PROPRIETOR/PARTNER	R/EXECUTIVE			WLRC67464163 (CA)		09/30/2020	09/30/2021		\$	2,000,000
If yes, describe under E.L. DISEASE - POLICY LIMIT \$ 2,000,000 DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more space is required) Certificate holder is additional insured under General Liability and Automobile Liability as their interest may appear, if required by written contract with the named insured, subject to the terms and conditions of the policies. A waiver of subrogation applies under General Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions of the policies. General liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. CERTIFICATE HOLDER CANCELLATION Maryland Department of the Environment 1800 Washington Bivd Baltimore, MD 21230 SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani		OFF (Mar	ICER/MEMBEREXCLUDE Idatory in NH)	ED?	N/A							\$	2,000,000
DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more space is required) Certificate holder is additional insured under General Liability and Automobile Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions of the policies. A waiver of subrogation applies under General Liability, Automobile Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions of the policies. General liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. CERTIFICATE HOLDER CANCELLATION Maryland Department of the Environment 1800 Washington Blvd Baltimore, MD 21230 SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani		If yes	s, describe under	IONS below									2,000,000
Certificate holder is additional insured under General Liability and Automobile Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions of the policies. General liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. CERTIFICATE HOLDER CANCELLATION Maryland Department of the Environment 1800 Washington Blvd Baltimore, MD 21230 SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Aunette Stefani												Ŷ	
Certificate holder is additional insured under General Liability and Automobile Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions of the policies. General liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. CERTIFICATE HOLDER CANCELLATION Maryland Department of the Environment 1800 Washington Blvd Baltimore, MD 21230 SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Aunette Stefani													
Certificate holder is additional insured under General Liability and Automobile Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions of the policies. General liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. CERTIFICATE HOLDER CANCELLATION Maryland Department of the Environment 1800 Washington Blvd Baltimore, MD 21230 SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Aunette Stefani													
Certificate holder is additional insured under General Liability and Automobile Liability, and Workers Compensation in favor of the certificate holder, if required by written contract with the named insured, subject to the terms and conditions of the policies. General liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. CERTIFICATE HOLDER CANCELLATION Maryland Department of the Environment 1800 Washington Blvd Baltimore, MD 21230 SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Aunette Stefani	DES	CRIPT	ION OF OPERATIONS /	LOCATIONS / VEHIC	FS (ACORE) 101. Additional Remarks Schedu	le, may b	e attached if mor	e space is requir	ed)		
the terms and conditions of the policies. General liability and auto liability insurance apply on a primary and non-contributory basis, if required by written contract, and subject to policy terms and conditions. CERTIFICATE HOLDER CANCELLATION Maryland Department of the Environment 1800 Washington Blvd Baltimore, MD 21230 SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani Autocometry and non-contributory basis, if required by written contract, and subject to policy terms and conditions.					•		,			• •	,	rms and o	conditions of the
CERTIFICATE HOLDER CANCELLATION Maryland Department of the Environment 1800 Washington Blvd Baltimore, MD 21230 SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani Autocology 2000	L '		v 1				· · ·						
Maryland Department of the Environment SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE 1800 Washington Blvd THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN Accordance with the Policy PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani	the te	erms a	and conditions of the polic	cies. General liability a	nd aut	o liabili	ty insurance apply on a primary and	I non-cont	ributory basis, if re	equired by written	contract, and subject to policy term	ns and co	onditions.
Maryland Department of the Environment SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE 1800 Washington Blvd THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN Accordance with the Policy PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani													
Maryland Department of the Environment SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE 1800 Washington Blvd THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN Accordance with the Policy PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani													
Maryland Department of the Environment SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE 1800 Washington Blvd THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN Accordance with the Policy PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani													
Maryland Department of the Environment SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE 1800 Washington Blvd THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN Accordance with the Policy PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani													
1800 Washington Blvd Baltimore, MD 21230 Baltimore, MD 21230 THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani Arrette Stefani	CE	RTIF	ICATE HOLDER						CELLATION				
1800 Washington Blvd Baltimore, MD 21230 Baltimore, MD 21230 THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS. AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani Arrette Stefani	Iм												
AUTHORIZED REPRESENTATIVE of Marsh USA Inc. Annette Stefani Arcthe Stefari	1800 Washington Blvd					THE	EXPIRATION	N DATE TH	EREOF, NOTICE WILL E				
of Marsh USA Inc. Annette Stefani Ande Stefani													
Annette Stefani Anrette Stefani								NTATIVE					
									Anathe 2-1	lo n	J.		
								L		88-2016 AC		•	

The ACORD name and logo are registered marks of ACORD