MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

DOCKET #16-21

COMPANY: Stancills, Inc.

LOCATION: 499 Mountain Hill Road, Perryville, Maryland 21903

APPLICATION: One (1) 400 ton per hour asphalt paving materials mixing plant, one (1) 300 ton per hour crushing and screening plant, and one (1) hot oil heater.

ITEM	DESCRIPTION
1	Notice of Application and Opportunity to Request an Informational Meeting
2	Permit to Construct Application Forms – Forms 5, Form 5T, Forms 5EP, Form 6, Form 11, Form 44, process flow diagrams and evidence of zoning approval

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND OPPORTUNITY TO REQUEST AN INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Stancills, Inc. on July 15, 2021 for one (1) 400 ton per hour asphalt paving materials mixing plant, one (1) 300 ton per hour crushing and screening plant, and one (1) hot oil heater. The proposed installation will be located at 499 Mountain Hill Road, Perryville, Maryland 21903.

The application and other supporting documents are available for public inspection on the Department's website. Look for Docket #16-21 at the following link:

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Department will hold an informational meeting to discuss the application and the permit review process if the Department receives a written request for a meeting within 10 working days from the date of the second publication of this notice. All requests for an informational meeting should be emailed to Ms. Shannon Heafey at shannon.heafey@maryland.gov.

Further information may be obtained by calling Ms. Shannon Heafey at (410)-537-4433.

George S. Aburn, Jr., Director Air and Radiation Administration

PERMIT TO CONSTRUCT APPLICATION FOR AN AIR POLLUTION SOURCE

499 Mountain Hill Road Perryville, Maryland

TABLE OF CONTENTS

1	INTROD	UCTION	1
2	AIR EM	ISSION SOURCES	2
	2.1	Asphalt Paving Materials Mixing Plant	2
	2.2	Crushing and Screening Plant	2
3	AIR POI	LUTANT EMISSIONS ESTIMATES	3
	3.1	Criteria Air Pollutants – Asphalt Paving Materials Mixing Plant	3
	3.2	Criteria Air Pollutants – Crushing & Screening Plant	4
	3.3	Criteria Air Pollutants – Major / Minor Source Status	5
	3.4	Hazardous Air Pollutants – Major / Minor Source Status	5
	3.5	Toxic Air Pollutants Applicability	6
	3.6	Compliance Demonstration Nat'l Ambient Air Quality Stds (NAAQS)	
	3.7	Compliance Demonstration: Toxic Air Pollutants	6
	3.8	Dispersion Modeling Assumptions	7
4	PREMIS	ES-WIDE EMISSIONS SUMMARY	8

APPENDICES

A.	Process Flow Diagram and OEM's Literature & Guarantees	.11				
В.	ARA Form 5 for APM Mixing Plant and Crushing & Screening Plant	. 57				
	ARA Form 5 EP for APMMP, CSP and Hot Oil Heater					
D.	ARA Form 5T for APMMP	. 81				
E.	ARA Form6 for APMMP Baghouse	. 87				
F .	ARA Form 11 for Fuel Burning Equipment (Hot Oil Heater)	.93				
G.	ARA Form 44 for CSP and associated engines	.97				
H.	Emission Estimates for Criteria Air Pollutants	. 101				
I.	NAAQS Compliance Demonstration1					
J.	Toxics Air Pollutant Compliance Demonstration	. 129				
Κ.	SCREEN3 Modeling Results Output	.133				
L.	Fugitive Dust Control Plan	. 163				
M.	Satellite Images of Site with plant layout	. 167				
N.	Background Data for NAAQS	.171				
О.	Proof of Workman's Compensation Insurance	.179				
P.	Zoning Confirmation	. 183				
Q.	Safety Data Sheets	. 187				
R.	Equipment List for Topsoil Processing Plant	.239				

PERMIT APPLICATION NARRATIVE

Submitted by: STANCILLS INC.

Proposed Air Pollution Sources: ASPHALT PAVING MATERIALS MIXING PLANT and

CRUSHING AND SCREENING PLANT

Prepared by: Kathryn O'C. Gunkel, P.E. WILDWOOD Environmental Engineering Consultants, Inc.

July 2021

1 INTRODUCTION

Stancills Inc. (STCL), a subsidiary company of Flanigan & Sons is proposing to install a new Asphalt Paving Materials mixing plant (APMMP) on the site of 499 Mountain Hill Road, Perryville, Cecil County, Maryland. This site is currently home to STCL's topsoil processing plant, which operates several screeners to prepare topsoil for sale.

STCL has included in this application package a Form 5 for a Crushing and Screening Plant (CSP). At this point in time, they have not decided if they will set up their own CSP or use contractors to bring in their portable CSPs as needed to maintain a consistent supply of reclaimed asphalt pavement (RAP) materials for the APM mixing plant operations and to process RAP for other road construction uses. The CSP may also process concrete from time to time. Regardless of whether they will set up their own CSP or bring in portable CSPs as needed, the site will need a permit allowing them to operate this type of air pollution source. Therefore, a generic system is being proposed with a crusher, screener, and stacking conveyor all powered by their own diesel-fired engines with a minimum of a Tier 4i rating. Since the CSPs brought to the site to process RAP/concrete are not likely to be the same equipment every time, STCL is requesting that the permit issued is a "Flexible" permit for the CSP.

1

2 AIR EMISSION SOURCES

2.1 Asphalt Paving Materials Mixing Plant.

The 400-ton-per-hour APM mixing plant will be fabricated by CWMF and equipped with a Vulcan dual-fuel burner rated at 120 MMBTUs per hour heat input. It will be a counter-flow drum mix plant with a knockout box at the inlet of the baghouse. The plant will be equipped to use Reclaimed Asphalt Pavement (RAP) materials in the mixes produced.

The Hot Oil Heater (HOH) system, with which every APM mixing plant is equipped, will have a heat input rating of 2-3 million BTUs per hour (MMBTUs/hr), according to CWMF. The emissions calculations are based on a maximum rating of 3 MMBTUs/hr.

The primary fuel which will be burned in both the APM mixing plant and the HOH system is natural gas. The back-up fuel will be No. 2 fuel oil and will only be burned in the event the local gas supplier exercises their right to curtail natural gas to its industrial customers. As per MDE"s requirements, the emissions calculations for this Permit-to-Construct application are based on No. 2 fuel oil, even though natural gas will always be used unless the supplier cuts off supply.

STCL is planning to install three storage silos for finished product. Silos are a vital part of the operation as they hold the APM as they are continuously produced. Multiple silos are set up provide storage for different types of mixes in order to meet the demands of different customers on the same operating day.

2.2 Crushing and Screening Plant.

As stated in the Introduction, STCL plans to use RAP materials in their mixes, as much as 40% by weight. From time to time, there may be an accumulation of waste concrete on the site from construction jobs. STCL wishes to be able to use the CSP when it is on-site to process the accumulated concrete, therefore, STCL is requesting that the permit allow them to process concrete materials through the CSP as well as RAP materials.

The "generic" CSP that STCL is proposing for the permit application is a crusher rated at 300 tons per hour powered by a Tier 4i, diesel-fired engine with a maximum rating of 525 brake-horsepower,. The double-deck screener rated up to 500 tons/hour will be powered by a Tier 4i, diesel-fired engine with a maximum rating of 200 brake-horsepower. The stacking conveyor will be powered by a Tier 4i, diesel-fired engine with a maximum rating of 99 brake-horsepower. There will be at least two built-in belt conveyors associated with the crusher and four built-in belt conveyor satisfies a sociated with the screener, plus the stacking conveyor which is a

separate piece of equipment. There may be a "connecting" conveyor between the crusher and the screener.

Oversized materials is either discharged to a surge pile or to a return conveyor, where oversized materials are "automatically" transferred back to the initial feed hopper to pass through the crusher again. Emissions were based on an auto return for the oversize as the worst-case scenario. It was assumed that 25% of the feed materials are oversized and processed through the process line a second time. So, the emissions estimate is based on steady-state operations where 100% of the feed materials are discharged from the process while 25% are caught up in the recycle loop, meaning 125% of the feed materials are processed through the stacking conveyor connected to one of the built-in conveyors as a worst-case scenario because it includes an additional conveyor-to-conveyor transfer.

3 AIR POLLUTANT EMISSIONS ESTIMATES

3.1 Criteria Air Pollutants – Asphalt Paving Materials Mixing Plant.

AP-42 emission factors were used to estimate emissions for the gaseous Criteria Air Pollutants emitted by the APM mixing plant and the HOH,. Section 1.4 Natural Gas Combustion was used to estimate the emissions from the HOH. The emission rates for the APM mixing plant are based on Section 11.1 HMA Plants 6th Edition.

WEBFIRE (September 2016) was used to estimate emissions for stockpile activity with respect to the APM mixing plant. Stockpile activity occurs when aggregate materials are received, when they are transferred to the feed bins, when they are discharged from the feed bins onto conveyors, when they are transferred to the collecting conveyor, when they are transferred to the screener prior to charging the dryer drum with the aggregate materials. Where a PM_{2.5} emission factor was not provided, the PM₁₀ emission factor was used with the particle size multipliers found in AP-42 Section 13.2.4 Aggregate Handling and Storage Piles to estimate a PM_{2.5} emission factor for the emission point. The particle size multipliers are found on page 13.2.4-4 and the dimensionless values for <10 μ m (0.35) and <2.5 μ m (0.053) were used. WEBFIRE was used instead of Equation 1 in Section 13.2.4 to eliminate the issue of selecting values for the average windspeed and moisture content required for the equation.

The aggregate materials and RAP materials will pass through a screener prior to entering the asphalt mixing process, so the WEBFIRE emission factor for Screening was used. The aggregate materials and RAP materials are transferred to conveyors several times between the feed bins and entry into the mixing process, so the WEBFIRE conveyor-to-conveyor

Stancills Inc.	Permit to Construct Application
499 Mountain Hill Rd	July 2021
Perryville, Maryland	Page 4 of 242

emission factor was used where materials are transferred to a conveyors. Where material transfers don't land on a conveyor, WEBFIRE's "Misc. Operations: Screen/Conveyor//Handling emission factor was used. Examples of this type of transfer would be haul vehicles dropping materials onto stockpiles, the front-end loader dropping materials into feed bins, etc.

The PM₁₀ and PM_{2.5} stack emission rates for the APM mixing plant were derived from the maximum allowable grain loading (0.04 grain/SCFD, the NSPS limit) and AP42 Table 11.1-4 Summary of Particle Size Distribution for Drum Mix Dryers. The exhaust gas flow was estimated based on the exhaust fan capacity, the exit gas temperature, and an expected exhaust gas moisture content of 25% by volume. Based on experience with stack test results, the moisture content of the exhaust gas in a drum mix APM mixing plant burning natural gas falls between 25% and 30% by volume when moisture content of the aggregate feed materials averages 4.5% to 5.5% by weight. The lowest number in the range was used as a worst-case scenario. AP42 Table 11.1-4 says [less than or equal to] 21% of the cumulative mass released by a fabric filter is PM_{2.5} and [less than or equal to] 30% of the cumulative mass released by a fabric filter is PM₁₀.

3.2 Criteria Air Pollutants – Crushing & Screening Plant.

As with the APM mixing plant, WEBFIRE was used to estimate fugitive dust emissions from stockpile activity for the CSP. And, as with the APM mixing plant, where necessary, the emission factor for $PM_{2.5}$ was obtained using the dimensionless particle size multiplier from Section 13.2.4. The emission factor is described in WEBFIRE for "Misc. Operations: Screen/Conveyor/Handling". For the other emission points, Crusher, Screener, and Conveyor Transfer Points, the emission factors are identified specifically for these emission sources.

The emission points in the CSP were identified and categorized as "Material Transfers, Unloading", "Material Transfers, Conveyors", "Material Transfers, Other", "Material Transfers, Haul Vehicles", "Crusher", or "Screener" emissions. While some of the categories for the emission sources will use the same emission factor, the categorization system was used for compliance demonstration purposes.

The Crusher and Screener are generally set up in tandem with the materials passing through the Crusher first, then the Screener. Sometimes a "bridging" conveyor (transfers materials from the crusher's built-in conveyor to the screener) is used and sometimes there is no "bridging" conveyor. Since the set-up is not known at this time, a bridging conveyor was included in the emissions calculations for a worst-case scenario.

The emission factors for Tier 4i diesel-fired engines were used to estimate emissions for the engines. The values were obtained from www.DieselNet.com, Table 3. DieselNet's Table 3 does not include an emission factor for SO_X, although one is available in

AP42. However, the AP42 emission factor was published more than two decades ago, and today's diesel fuel used in off-road internal combustion engines has significantly lower sulfur. Currently, Ultra-Low Diesel Fuel has a maximum of 15 PPM Sulfur, by weight. The SO_X emissions for the engines in this application are based on the fuel-bound sulfur at 15 PPM with the assumption that 100% conversion to SO₂ occurs. The calculation is shown below:

DERIVATION OF SO _x EMISSION FACTOR FROM FUEL SULFUR CONTENT					
Ultra Low Diesel	15	ppm (lb S / 10 ⁶ lbs Diesel fuel			
Fuel Density	6.943	lb Diesel fuel/gal Diesel fuel			
Sulfur content	104.145	lb S / 10^6 gal Diesel fuel			
	0.1041	lb S / 10^3 gal Diesel fuel			
	2	lbs SO2 generated from 1 lb Sulfur			
SO _X Emission factor:	0.20829	lbs SO2 / 10 ³ gal Diesel fuel			

3.3 Criteria Air Pollutants – Major / Minor Source Status.

The U.S. EPA requires that air pollution sources be classified as minor (natural or synthetic) or major sources of Criteria Air Pollutants: Carbon Monoxide (CO), Oxides of Nitrogen (NOx), Oxides of Sulfur (SOx), Volatile Organic Compounds (VOC), Particulate Matter 10 μ m or less in diameter (PM₁₀), and Lead. In the State of Maryland most of the counties in central Maryland have been designated as severe non-attainment zones for ozone, and therefore, the major source thresholds for NOx and VOC are significantly lower at 25 tons per year than are the major source thresholds for the other criteria air pollutants which are 100 tons per year.

STCL has chosen to apply for a permit to construct as a "Synthetic Minor" source, which means they are willing to accept permit limitations on production and/or operating hours so that the total estimated annual emissions fall below the major source thresholds for all the air pollution sources on this site combined. The emissions estimates in this application are based on a production limit of 800,000 tons Asphalt Paving Materials per year and a limit on operating hours for the Crushing & Screening plant engines of 1,800 hours.

3.4 Hazardous Air Pollutants – Major / Minor Source Status.

The U.S. EPA requires that sources be classified as minor (synthetic or natural) or major sources of Hazardous Air Pollutants (HAPs). In the case of HAPs, it is a two-fold threshold. The first threshold is for each individual HAP: 10 tons per year. The second threshold is for all HAPs combined: 25 tons per year. The production permit limit which STCL is choosing to accept for criteria pollutant Synthetic Minor source status will ensure that the APM mixing plant will operate as a synthetic minor source with respect to HAPs.

3.5 Toxic Air Pollutants – Applicability.

Sources of Toxic Air Pollutants (TAPs) must demonstrate compliance with the Maryland TAPs regulations. Fuel burning equipment, the HOH and engines, are exempt from the Toxics Air Pollutants (TAPs) regulations. The TAPs emissions analysis is based on the baghouse stack emissions using the AP-42 emission factors from Section 11.1. SCREEN3 was used to predict the ambient air concentrations (AACs) for the TAPs.

3.6 <u>Compliance Demonstration: National Ambient Air Quality Standards</u> (NAAQS).

The compliance demonstration for the NAAQS is based on the predicted ambient air concentrations (AACs) for CO, SOx, NOx, and PM₁₀. SCREEN3 dispersion modeling was used for the NAAQS compliance demonstration. The fugitive PM₁₀ sources were modeled as volume sources.

Compliance was successfully demonstrated with the NAAQS. For the gaseous criteria air pollutants, the instantaneous emission rate was used for averaging periods less than or equal to 8 hours. For longer averaging periods the SCREEN3 1-hour result was adjusted using EPA's recommended scaling factors. The PM₁₀ NAAQS compliance demonstration is based on a time-weighted average (TWA) emission rate averaged over a 24-hour period. The TWA emission rate is calculated by estimating the daily emissions rate for 16 hours/day for the APM mixing plant and 8 hours/day for the CSP and dividing the result by 24. SCREEN3 was run using the array feature for distances and the minimum distance input for each emission source was its distance to the property line to demonstrate compliance with the NAAQS and the maximum distance was 2 miles. In almost all cases, the predicted AAC for each emission source occurred at the property line. The SCREEN3 result for the baghouse stack showed the maximum predicted ambient air concentrations (AAC) occurring well beyond the property line.

There is a small overlap of emission calculations in that the fugitive dust emissions due to RAP movements are essentially double counted for that RAP that goes into the APM mixing plant. The front-end loader will move a bucket of RAP either to a RAP feed bin or put it into a haul vehicle to be taken off-site. These fugitive emissions caused by the loader were counted for the APM mixing plant and then they were counted for the CSP.

3.7 Compliance Demonstration: Toxic Air Pollutants.

The compliance demonstrations for TAPs is a comparison of the predicted AACs for the toxic air pollutants associated with the APM mixing plant to the Maryland TAPs Screening Levels. Predicting the AAC for each air pollutant requires air dispersion modeling. Maryland offers a couple of simple "screening" techniques for compliance demonstrations: a maximum allowable emission rate (AER) or using a screening dispersion model. If compliance

cannot be demonstrated using either the AER or the screening model, refined dispersion modeling will be required. After reviewing the emission rates and the AERs, it was found that several TAPs could not show compliance using the AER method. As a result, SCREEN3 dispersion modeling was completed for all the TAPs.

Compliance was successfully demonstrated with Maryland's TAPs screening levels for all TAPs that have been identified in the exhaust of an APM mixing plant using an instantaneous emission rate except for Formaldehyde. It was necessary to calculate a timeweighted average (TWA) emission rate, which USEPA allows, to demonstrate compliance with Formaldehyde's annual screening level. The annual emission rate was estimated to be 3,100 pounds per year and the TWA emission rate was determined by dividing the annual emission rate by 8,760 hours/year. With the TWA emission rate, compliance was demonstrated for Formaldehyde. The SCREEN3 results used in the TAPs screening analysis are the property line AACs, unless the maximum AAC fell beyond the property line, as is the case with the asphalt plant's stack.

3.8 Dispersion Modeling Assumptions.

SCREEN3 was used for both the NAAQS and the TAPs screening analyses. Dispersion modeling, whether screening or refined, depends on various inputs such as the exhaust gas flow rate, the exhaust gas temperature, the emission outlet configuration, etc. Where the generic CSP is concerned, the permit application preparer has considerable experience preparing permit applications for CSPs and used a compilation of data from other applications to estimate the necessary inputs for the dispersion modeling. The exhaust gas volumes for the engines, HOH, and MHRS were determined with combustion calculations.

3.8.1 Crushing and Screening Plant – Volume Sources.

The CSP operation includes a number of activities and emission points and is required to be modeled as a volume source. There are the crusher and screener themselves, material transfers by conveyors, and stockpile loading at the CSP. It has been assumed the RAP materials needed for the production of asphalt pavements will be taken directly from the RAP stockpile where the processed RAP materials have been placed and taken directly to the RAP feed bin system for loading into the process.

Three volume sources were set up for the CSP operations. One volume source was the combined Crusher and Screener including discharge to the temporary stockpile from the stacking conveyor. Two identical volume sources were "created" for the two stockpiles: the incoming "raw" materials brought onsite and the materials after being processed through the CSP, i.e., the "finished" product. The dimensions of the crusher and screener were obtained from OEM literature the application preparer has accumulated over the years.

3.8.2 Asphalt Paving Materials Mixing Plant – Volume Sources.

With regard to the APM mixing plant, the activities that contribute to fugitive dust emissions are unloading of virgin aggregates at the stockpiles, the front-end loader transferring virgin and RAP materials to the feed bins, materials (virgin & RAP) being dropped from the feed bins for transfer to the drum, and the feed materials passing through a screener prior to the last conveyor belt. Emission rates have been estimated for these activities, volume source configurations determined, and the results used to predict ambient air concentration for PM_{10} emissions.

The virgin aggregate bins are arranged in a straight line with as many as six bins joined together. They are elevated above the ground, with the top being approximately 10 feet above ground-level. The aggregate feed bins and the scalping screen were modeled as a separate sources since they are separated by a conveyor from which there are no emissions (except at the ends). The emission rate for the bins includes the loader's drop of materials into the bin, the drop of materials from the bin to the under-bin conveyor, and another drop from the under-bin conveyor to belt conveyor. The belt conveyor transfers the materials to a second belt conveyor, and the materials pass through an aggregate screener (the scalping screener), dropping onto the second belt conveyor. The second belt conveyor transfers the aggregate materials to a third, belt conveyor which feeds the materials to the drum dryer. The transfer of RAP materials into the process follows the same transfer process. In this case, all components of the RAP feed system were combined into one volume source because the configuration was more compact than that of the virgin aggregate feed system. A diagram for the APM mixing plant is provided in Appendix J.

SCREEN3 is, in of itself, a very conservative dispersion model as it uses very conservative weather parameters in its calculations. The screening analyses in this permit application have an added layer of conservatism in that it was assumed the highest predicted AAC for each emission source would "land" at the same receptor (spot) on the property line. The dispersion in ambient air of an emission is a function of wind direction and various weather parameters and, given the physical location of the various emission sources on the site, it would be impossible for each source's highest AAC to "land" at the same location.

4 PREMISES-WIDE EMISSIONS SUMMARY

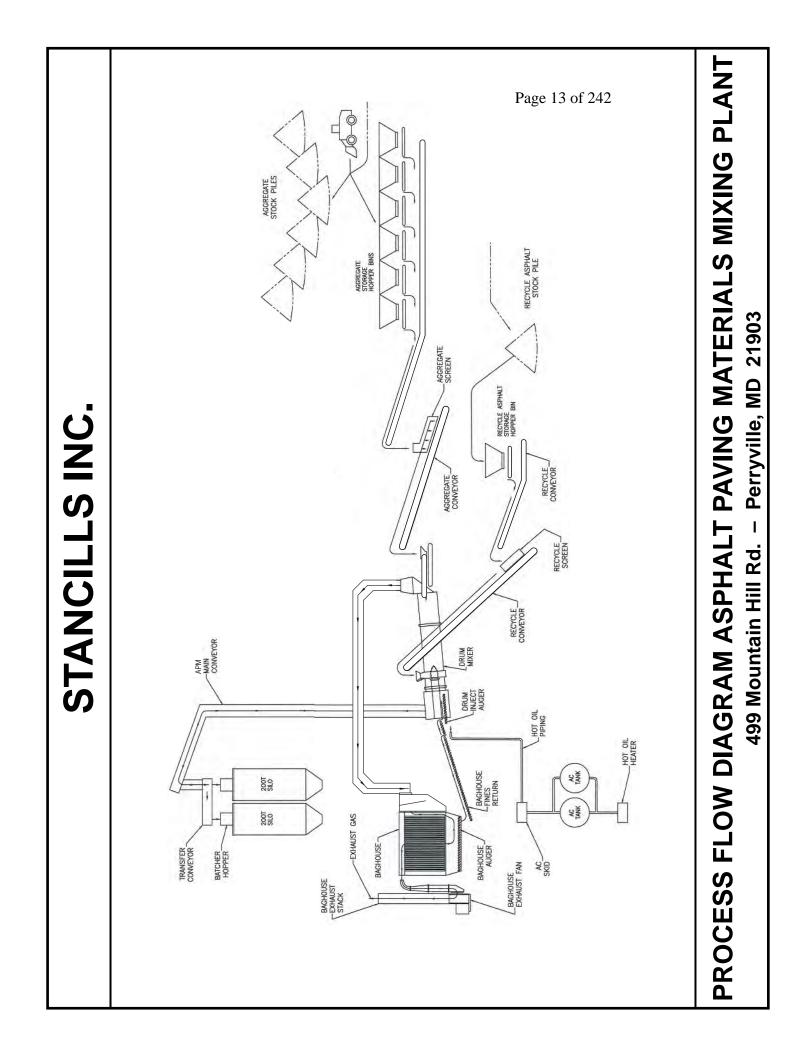
A compilation of the criteria air pollutant emissions in provided in the following table for each emission source. These annual emissions are based on the following parameters:

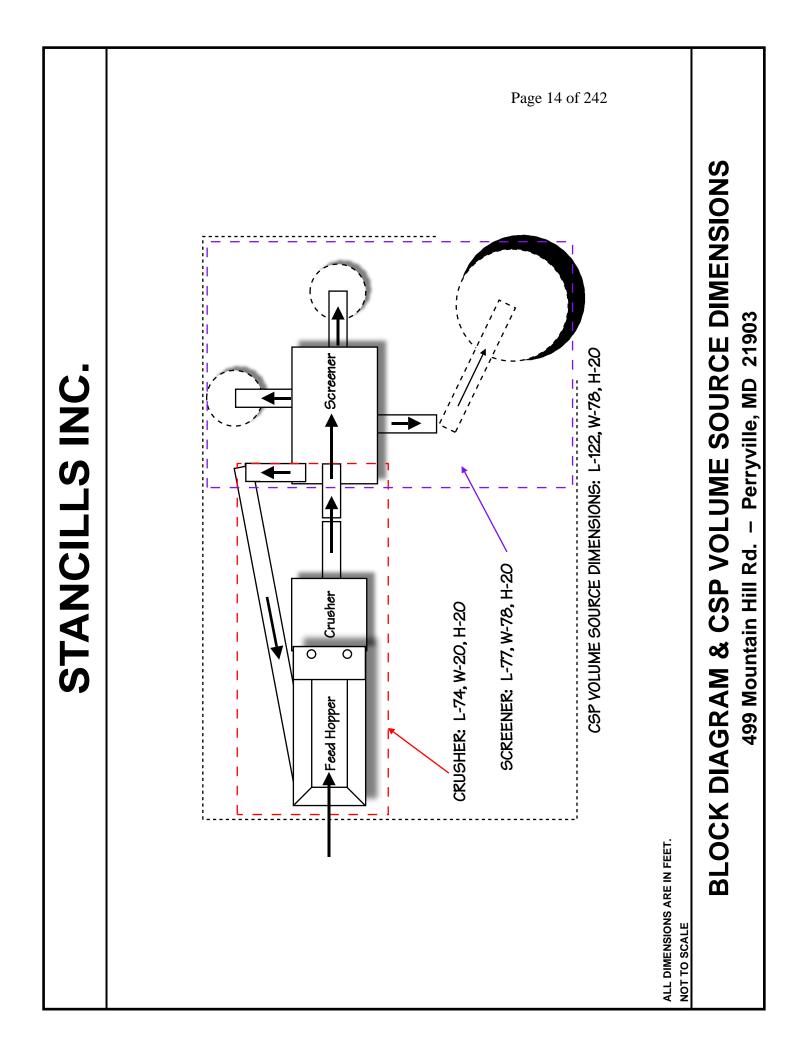
Asphalt Plant: 800,000 tons per rolling 12-month period. Crusher Plant: 1,800 hours per rolling 12-month period.

Stancills Inc.	Permit to Construct Application
499 Mountain Hill Rd	July 2021
Perryville, Maryland	Page 9 of 242

The emission factors for gaseous air pollutants from AP42 for the Asphalt Plant are all based on production, "per ton of APM". The emission factors used for the CSP, which are EPAs limits for Tier 4i engines, are based on engine size for one operating hour. To qualify as a synthetic minor source, as previously described, these will have to be the annual limits on production.

PRESMISES-WIDE SUMMARY OF CRITERIA AIR POLLUTANTS								
РТ	APM	APM Fugitives	нон	CSP	Crusher Engine	Screener Engine	Stacker Engine	TOTAL
PM-10	4.4	5.0	0.102	0.104	0.016	0.006	0.003	9.61
PM-2.5	3.1	0.5	0.078	0.016	0.016	0.006	0.003	3.68
Condensable	7.8		0.123					7.88
SOx	4.4	-	0.204		0.039	0.0020	0.0010	4.65
NOx	22.0	/	1.891		0.313	0.119	0.059	24.4
СО	52.0		0.473		2.708	1.032	0.727	56.9
VOC	12.8		0.032		0.146	0.056	0.028	13.1
LEAD	6.0 E-3		1.2 E-4					6.1 E-3
CO2	1.3 E+4		2.1 E+3		4.3 E+3	1.7 E+3	8.2 E+2	2.2 E+4
N2O			2.5 E-2					2.5 E-2
CH4	4.8 E+0		2.0 E-2				-	4.8 E+0
HAPs	2.13		0.025			0.152		2.30
Highest HAP	1.24		0.023			0.462		1.31





A. Process Flow Diagram and Original Equipment Manufacturer's Literature and Guarantees

Page 15 of 242

Creation Date: 11/25/20 CWMF Proposal Number: 0003877 P. Flanigan & Sons, Inc.

SALES PROPOSAL PREPARED EXCLUSIVELY FOR

BRIAN RUSSELL P. FLANIGAN & SONS 2444 LOCH RAVEN ROAD BALTIMORE, MD 21218

PROPOSAL NUMBER: 0003877 CWMF 400 TPH COUNTER-FLOW DRUM-MIX PLANT EQUIPMENT

Presented By:

Travis Mick VP/Sales Manager

November 30th, 2020

701 Julep Road, Waite Park, MN 56387 320.251.1306 | cwmfcorp.com

1. <u>Revolution-D 9'-6" x 50' Counter-Flow Drum:</u>

The Revolution-D asphalt drum RDS-114-50 is rated at 400 TPH with the following parameters: Ambient material input temperature of 60° Fahrenheit, exit temperature of 300° Fahrenheit, assuming 5% virgin moisture, and 5% recycle moisture. The RDS-114-50 drum accommodates up to 45% RAP amounts with proper set-up and flighting configuration. A VFD is recommended when running high RAP percentages or multiple mix designs.

Drum performance is based on a standard surface mix, uniformly graded. Sizing calculations based on 1,000' altitude above sea level.

- 1/2" INX 50 drum shell
- 3/8" INX 50 support wraps under the tire
- 3/8" AR 225 flighting
- The Insulator[™] combustion flights
- Hardox recycle collar w/clean-outs
- Recycle housing with Hardox calibration/reject chute (top)
- Hardox recycle housing clean-out/inspection doors (bottom)
- Dust return inlet on Recycle housing (fines & heavies)
- Uphill side T-Bar recycle collar flashing surface
- 4" thick x 12" wide drum tires
- Wedgelok[™] tire suspension system
- Hardox chute fed inlet and calibration gate
- Inlet access and inspection doors
- Hardox Side Discharge housing
- Discharge housing w/access and clean-out doors
- Center pivot trunnion bases (single point adjustment)
- 20" diameter x 14" hardened trunnions
- 5 ½" x 10" Timken "AP" railcar bearings
- B-Loc shaft locking collars (trunnion shafts)
- Trunnion driven (4) 50 HP motors
- Falk Shaft mount speed reducers
- 4140 trunnion shaft material
- Support legs to grade

Slinger model (

Vulcan RV120 Long Nose Burner

- To be supplied by Reliable Asphalt Products
- To be installed at CWMF facility

Ductwork:

- Drum to Primary section
- Primary to Baghouse section
- Slip flange connections at splices
- 66" Diameter
- Based on 30' C-C between drum and baghouse

Primary Collector:

- Square knockout design
- AR lined side air inlet area
- Deflector/impact plate at inlet
- Inspection door opposite air inlet
- Bottom discharge Trickle valve
- Heavy fines gravity feed to recycle collar
- Straddle drum design
- Top exhaust
- Support legs to drum frame

Options:

- Drum Insulation package:
 - o Bare aluminum sheathing

o 2" ceramic fiber

• Drum Liner package:

- o 3/8" bolt-in/weld-in liner
- o Inlet to recycle lined

• Drum shell upgrade:

o 5/8" INX 50 drum shell

Drum wear package:

- o Recycle collar wear bars
- o CCO laminated recycle buckets
- o Discharge paddle wear bars
- 3-sided walkway
 - Maintenance access

- Inlet chute liner:
 - \circ 1" weld-in ceramic tiles

• Discharge chute liner:

o 1" weld-in ceramic tiles

Skid mount:

o Relocatable design

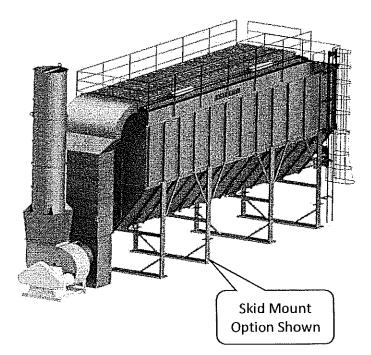
Slinger conveyor option:

- o High speed belt fed material
- Reversible belt calibration

Drum VFD Drive & Panel:

• Preprogrammed Variable Frequency Drive (VFD) for variable drum speed.

.


- o Control input/output to terminals for ease of field installation
- Properly sized to accommodate (4) 50HP @ 6-8 RPM
- o Thermostatically cooled and pressurized
- o U.L. Listed

Page 19 of 242

2. Dust-Eater 80,000 CFM Pulse-Jet Baghouse:

- 14 Oz. Nomex filtration bags
- (672) bags 6" Dia. X 169" lg.
- 8 ½" Bag spacing
- 14,771 sq. ft. of cloth
- 5.38 : 1 air to cloth ratio
- 542 Hi-Temp fan pkg.
- Fan rated @ 15" Static pressure
- (2) 125 HP TEFC fan motors
- Goyen manifold pulse valve
- Viton diaphragm seals
- Legs to grade
- Caged access ladder
- Top perimeter handrail
- Laser cut tube sheets
 - o optimal bag fitment
- 66" diameter air inlet
- 7' x 10' x 12' inlet knockout box
 Heavies dropout
- Inlet air diverter/equalizer
- Sidewall louvers
- Smooth internal wall surface
- 40' Stack height from grade

 Test port equipped
 - Hinged internal walkway
 - Ease of maintenance
- 14" fines discharge auger
 - 15HP motor
- Fine dropout @ each hanger
 - o Multiple auger hook-up points
 - o Access door at each hanger
- Assemble from exterior design
 - Top plenum, Bag chamber & Hopper sections
- Machine wiring (Compatible with most plant control systems)

Standard Baghouse Control features:

- Main Pulse Control Panel
 - o NEMA 4 rated enclosure
 - o 120VAC main disconnect w/safety lockout provisions
 - o PLC pulse control panel, adjustable pulse duration and pulse time
 - 4-20ma output available for pressure drop across bags
 - o Additional door mounted mini-Magnahelic for convenience
 - (2) type J thermocouples for inlet and outlet temperature signals
 - o Zero speed sensor for dust return. No motion detected; alarm will sound

• Pulse Solenoid Junction Boxes:

- o NEMA 4 rated for harsh environment
- o Solenoid coils prewired to terminal strips
- Pulse solenoid panels prewired for on-site connection to pulse panel

• Support Documents:

- Complete electrical schematics
- Recommended spare parts list upon request
- Major component manufacturer manuals & spec sheets

Options:

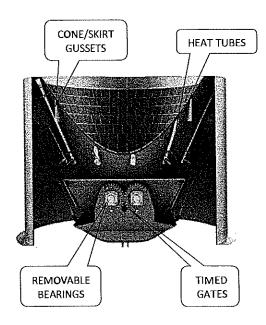
- Motor Control Panel:
 - o Mounted at baghouse
 - NEMA 4 rated for harsh environment
 - Safety / service disconnect, allows lock out
 - o Motor circuits include breakers, starters, and overload motor protection
 - o Electronic pulse plc, adjustable for pulse duration and time between pulses
 - Air Compressor breaker and low-pressure indication at control panel
 - Output for fire door solenoid
 - o Differential pressure hose inlets
 - All wiring brought to terminal strips
 - Thermostatically cooled and pressurized to prevent contaminates
 - o Exhaust Fan VFD Drive
 - High output VFD to vary speed of exhaust fan
 - Oversized amperage output
 - Engineered for dual motor applications

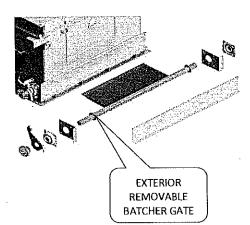
Insulation package:

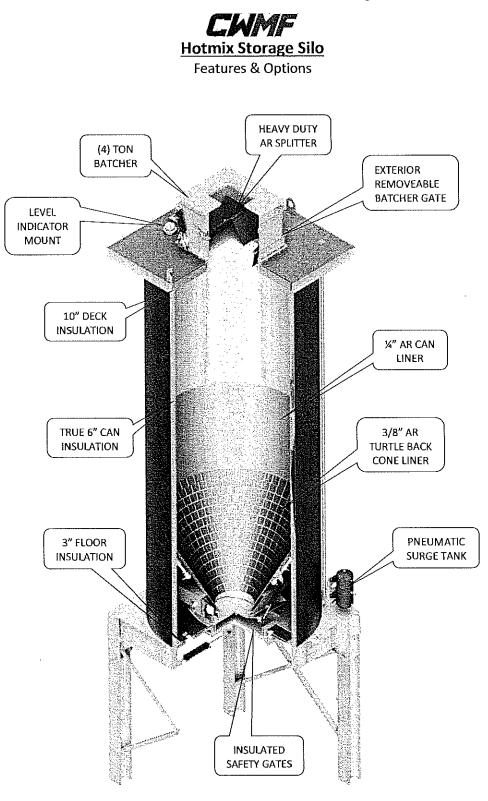
- o 2" insulation
- o Hopper & Center section

• Interior paint package:) o Blasted, primed, and Hi-temp paint Test Port Catwalk: • o Emissions test platform Skid mount: ٠ o Future relocation o Leg extensions to skids 14" x 30' Auger fines system: • o 15HP drive o Includes Stand 14" HDX Vane Feeder Compressor Package: o 75HP, Sullivan-Pallatek o 340 CFM @ 125 PSI o 460V o Direct drive o Heavy duty filter o Auto/dual control o Inlet modulation control o Deluxe gauge panel o TEFC motor o 1-1/2" water trap

<u>Compressor Skid/Tank package:</u>


• Skid mount for compressor & storage tank


Page 22 of 242

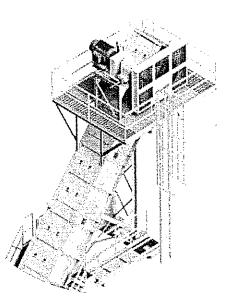

3. 2 - 200 Ton Hotmix Storage Silo

- Capacity rated @ 120lbs/cubic ft.
- 12' Diameter Can
- 1/4" A36 can material
- 3/8" A36 cone material
- 3/8" A36 cone skirt material
- Gusseted Cone to Skirt reinforcement
- True 6" Can insulation
 - o Installed in (2) 3" layers
- Galvannealed exterior cladding

 Baked-on color finish
- Timed main discharge clam gates
 - o Consistent loadouts
 - o Minimize segregation
- 3" Insulated base area
- 3" Insulated Safety & Main gates
- Pneumatic FRL (Filter, Regulator, Lubricator)
- Pneumatic solenoid valve assemblies
- Square top platform with 10" of insulation
- Top platform handrailing
- Hi-level indicator located on top platform
- 4" 150# pipe flange in top platform
 - Acceptance of Radar level gauge
 - (supplied by customer)
- Boit-on 4-ton rectangular batcher
 - o Maintenance doors
 - o Heavy duty splitter
 - o High level indicator
 - Open/Close proof gate switches
 - o Patent Pending exterior gate removal
 - Ease of maintenance.
- Electric cone heat system
 - Wired in place and terminated at silo base junction box
- Batcher and Transfer wiring terminated in a junction box on top platform
 - When applicable & sold in conjunction with silo storage pkg.
- Electrical wiring for motors, bindicators, cone heat, etc.
 - o Conduit run and terminated at silo base junction boxes
 - o When applicable & sold in conjunction with silo storage pkg.
- Main & Safety gate wiring and pneumatics terminated at base junction box

Page 24 of 242

Options:


- Silo Cone Liner: o 3/8" AR400 Turtle-Back design
- Silo Can Liner:
 0 1/4" AR400, 8' Vertically lined
- Batcher Liner Pkg.:
 - o AR400 liners

Hot-Oil cone heat deduction:

• Tap off customer heat source

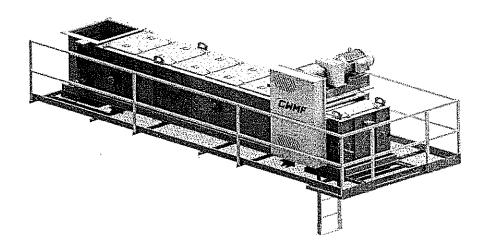
4. 400 TPH Drag Slat Conveyor:

- 88'-0"C-C
- 92'-8" O.A.L.
- 48" deep x 36" wide body
- Body is fabricated from 3/8" Grd. 50 steel
- U-trough body design with built-in camber
- 12 Ga. Steel top covers
- Rexnord 9856 chain w/M2 attachment (single strand)
- A36 slats 3/4" x 8" x 33 ½"
- Electric heat, up to reject gate
- "L" shaped floor liners, Ni-Hard, Hi-Chrome
- Insulated floor
- Safety Stairway
- Rexnord Neptune planetary drive reducer
 - o 100 HP drive motor
 - o RX238 drive chain
 - o Solid bore drive and driven sprockets
 - o 6-7/16" bore, split-hub, segmented tooth head shaft sprocket
 - o 4-15/16" Head shaft bearings
 - o 4-15/16" bore, split hub tail shaft sprocket
 - o 3-15/16" Tail shaft bearings
 - o 2-11/16" idler shafts with barrel style idlers
- Hydraulic assist, hand pump, chain tensioner on head shaft
- Service catwalk around drive
- Zero speed switch
- Tension indicator idler
- Floor heat electrical wiring conduit run to junction box at base of slat
- Motor electrical wiring conduit run and terminated at slat base junction box
- Zero speed switch, Control wiring conduit run to junction box at slat base

Page 26 of 242

Options:

- <u>Safety Stairway:</u>
 - Second side stairway


5. 400 TPH Transfer Conveyor 14' -2 Way Diverter

- 3/8" Grd. 50 fabricated steel body
- 31" deep x 33" wide body
- 12 Ga. Steel top covers
- 3/8" on "3/8" CCO 2-way directional flop-gate
- Dual strand 3433 CHAIN K44 attachment
- 3/4" x 5" x 29 ¾" A36 slat
- 9 tooth segmented head shaft sprocket
- 9 tooth split hub tail shaft sprocket
- "L" shaped floor liners, Hi-Chrome Ni-Hard,
- 3" Insulation floor panels
- Electric floor heat
- Rexnord Earth planetary drive reducer
- 40HP drive motors
- #160 roller drive chain
- Manual tensioner on head shaft
- Zero speed switches
- 6" x 8" air cylinders
- FRL (Filter, Regulator, Lubricator) pneumatic system
- Electrically actuated pneumatic valving
- Electrical Floor, Motor, and zero speed switch wiring terminated at junction box

.

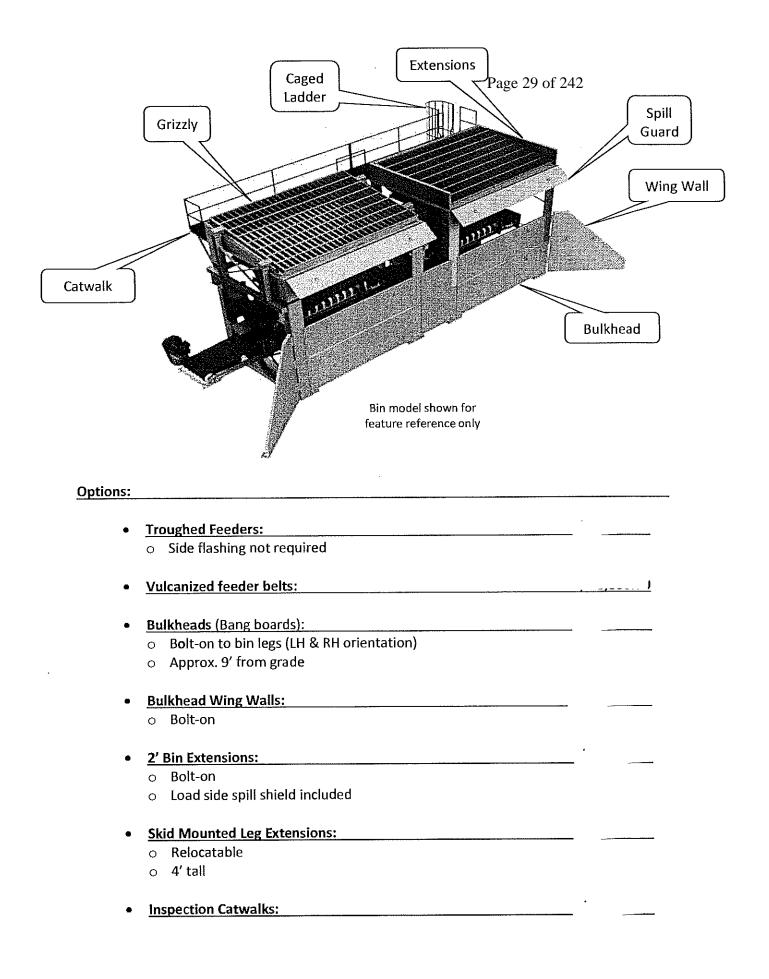
- Supports/mounts supplied
- Blue smoke duct/vent (removable)

Page 27 of 242

Options:

- Rexnord 9856 chain upgrade:
 - o (1) M2 attachment / ft.
 - o 3/4" x 8" x 29 ¾" A36 Slat
 - o Single strand
 - o 40" deep x 33" wide conveyor body
 - o 10 tooth segmented head shaft sprocket
 - o 10 tooth split hub tail shaft sprocket

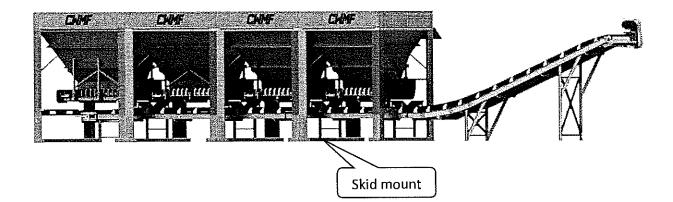
Catwalk Platform:


- o Safety ladder & Handrail
- o Wrap-around platform

6. 6-BIN Cold Feed System:

- 22-ton capacity based on 100 lbs/ft3
- 10' x 14' top opening
 - o 4" sq. tube reinforced perimeter
- 60° bin walls
 - o 1/4" A-36 bin walls
 - o Structural channel reinforced
- 3/8" formed support legs x 10' tall
- 4" relief of bin throat
- Adjustable flow gate
- 12" Herringbone lagged head pulleys
- 10" Chevron wing tail pulleys
- Telescoping tube take-ups
- Rubber disc return rollers
- 2-7/16 drive shafts
- 2-3/16 tail shafts
- CEMA B idlers
- 5HP TEFC motors
- Shaft mount reducers
- 2 PLY x 30" belting

7. Collector Belt - 15' discharge height:


- 12" Herringbone lagged head pulley
- 12" Chevron wing tail pulley
- Telescoping tube take-up
- Rubber disc return rollers
- 2-15/16 drive shaft
- 2-7/16 tail shaft
- CEMA B idlers
- 15HP TEFC motor
- Shaft mount reducers 2 PLY x 36" belting
 - o Field spliced by customer
- Pre-Cleaner & Primary belt cleaner

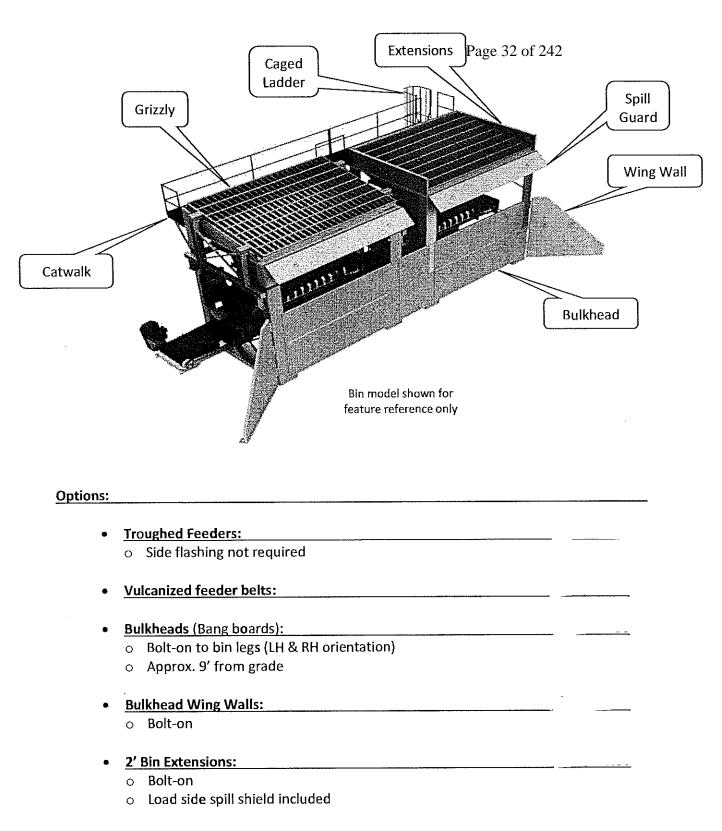
Page 30 of 242

Caged Ladder (per ladder): Bin Liners: o 1/2" UHMW material o Cut to fit the entire wall o Top bolted to hang in position No-Flow Switch Assemblies o Mounted at bin throat o Includes limit switch Tail Shaft Tachometers • Grizzly (per bin price): o 6" x 12" rectangular openings o 6" channel perimeter frame • Mounted within 2' bin extensions o Can be set to load from either side Electrical Bin Vibrator (per bin price): o 1-1/2HP Vibco electric bin vibrators o Rear wall flange mounted Pneumatic Air Cannon (per bin price):

o Rear bin wall location

Page 31 of 242

8. 1-BIN RAP System:


- 22-ton capacity based on 100 lbs/ft3
- 10' x 14' top opening
- 4" sq. tube reinforced perimeter
- 60° bin walls
- 1/4" A-36 bin walls
- Structural channel reinforced
- 3/8" formed support legs x 10' tall
- 4" relief of bin throat
- Adjustable flow gate
- 14" Herringbone lagged head pulleys
- 12" Chevron wing tail pulleys
- Telescoping tube take-ups
- Rubber disc return rollers
- 2-15/16 drive shafts
- 2-7/16 tail shafts
- CEMA B idlers
- 7.5HP TEFC motors
- Shaft mount reducer
- 3 PLY x 36" belting

9. Collectot Belt - 15' discharge height:

- 12" Herringbone lagged head pulley
- 12" Chevron wing tail pulley
- Telescoping tube take-up
- Rubber disc return rollers
- 2-15/16 drive shaft
- 2-7/16 tail shaft
- CEMA B idlers

i

- 15HP TEFC motor
- Shaft mount reducers 2 PLY x 36" belting
 - o Field spliced by customer
- Pre-Cleaner & Primary belt cleaner

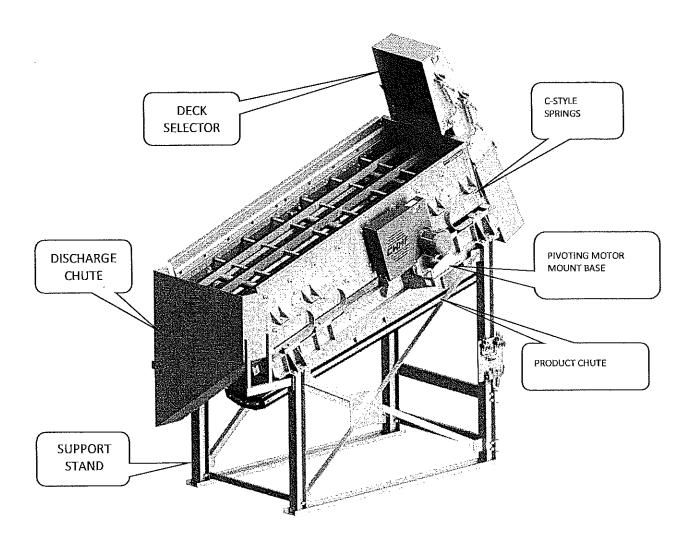
- Skid Mounted Leg Extensions:
 - o Relocatable
 - o 4' tall

Page 33 of 242

•	Inspection Catwalks:	
٠	Caged Ladder (per ladder):	
•	Bin Liners:	
	o ½" UHMW material	
	o Cut to fit the entire wall	
	 Top bolted to hang in position 	
	No-Flow Switch Assemblies	
-	o Mounted at bin throat	
	 Includes limit switch 	
	Tail Shaft Tachometers	
-		
•	Grizzly (per bin price):	
	 6" x 12" rectangular openings 	
	 6" channel perimeter frame 	
	 Mounted within 2' bin extensions 	
	 Can be set to load from either side 	
	Electrical Bin Vibrator (per bin price):	
-	 1-1/2HP Vibco electric bin vibrators 	
	 Rear wall flange mounted 	
	o near wan nange mounted	
•	Pneumatic Air Cannon (per bin price):	
	 Rear bin wall location 	

.

Page 34 of 242

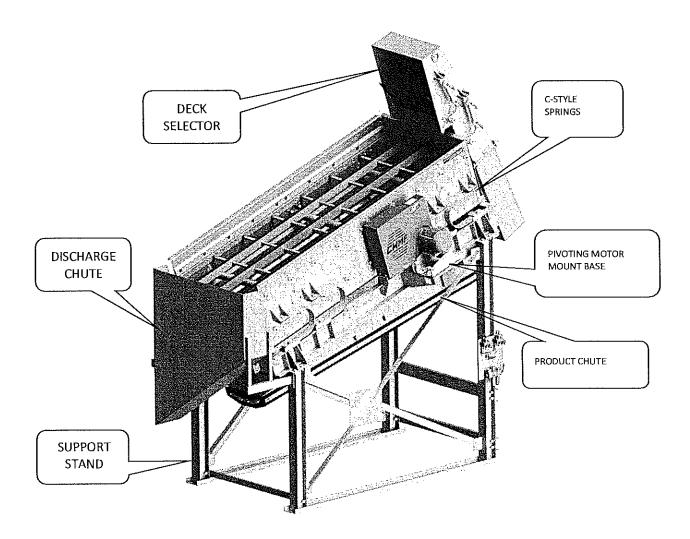

10. 30" x 70' Virgin Scale Conveyor

- 3 x 3 x ¼ top chord angle
- 3 x 5 x ¼ bottom chord angle
- 2 x 2 x ¼ truss angles
- 15HP TEFC drive motor
- Falk shaft mount reducer
- Gravity take-up
- Wide slot take-up 18" travel
- Superior Xterra belt scraper
- 2-ply belting (mechanical splice)
- Wind guards around weigh scale
- Belt scale with scale integrator
- Support legs for conveyor

11. Tremor[™] 5' X 12' Double Deck Screen Package:

- 1/4" A36 materials
- Huck riveted construction
- 1" deck crown
- Approximately 3/8" operating stroke
- Converging sidewalls to direct material towards conveyor belt
- 1/4" reinforcing bearing plates on interior and exterior
- Drive shaft protector/spreader bar
- 4-bolt flange 2-15/16"
- 10HP motor
- Pivot base motor mount
- Eccentric flywheel design
- Hoop style springs
- ½" formed base
- Optimal operating angle is 15° to 18°
- Screen cloth included
 - Opening to be specified A.T.O.
- Deck selector
 - o Selection to either screen or bypass to belt
- Discharge chute
 - o Designed to be Side or End discharge
- Support Stand
 - o Skid mounted
 - o Fabricated w/heavy duty beam & X-bracing
 - o Includes product chute to belt

Page 35 of 242


12. 30" x 70' Recycle Scale Conveyor

- 3 x 3 x ¼ top chord angle
- 3 x 5 x ¼ bottom chord angle
- 2 x 2 x ¼ truss angles
- 15HP TEFC drive motor
- Falk shaft mount reducer
- Gravity take-up
- Wide slot take-up 18" travel
- Superior Xterra belt scraper
- 2-ply belting (mechanical splice)
- Wind guards around weigh scale
- Belt scale with scale integrator
- Support legs for conveyor

13. 4' X 10' Double Deck Screen Package:

- 1/4" A36 materials
- Huck riveted construction
- 1" deck crown
- Approximately 3/8" operating stroke
- Converging sidewalls to direct material towards conveyor belt
- 1/4" reinforcing bearing plates on interior and exterior
- Drive shaft protector/spreader bar
- 4-bolt flange 2-15/16"
- 10HP motor
- Pivot base motor mount
- Eccentric flywheel design
- Hoop style springs
- ½" formed base
- Optimal operating angle is 15° to 18°
- Screen cloth included
 - o Opening to be specified A.T.O.
- Deck selector
 - o Selection to either screen or bypass to belt
- Discharge chute
 - Designed to be Side or End discharge
- Support Stand
 - o Skid mounted
 - o Fabricated w/heavy duty beam & X-bracing
 - o Includes product chute to belt

Page 37 of 242

499 Mountain Hill Rd
Perryville, Maryland

PAGES 39-56 HAVE BEEN REMOVED TO REDUCE THE FILE SIZE FOR SENDING VIA EMAIL. THESE PAGES ARE THE VENDOR LITERATURE WHICH WAS INCLUDED IN THE HARD COPY SENT TO THE MDE ARA OFFICE. *****************

THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY.

APPENDIX B

B. ARA Form 5

for the Asphalt Paving Materials Mixing Plant

and

the Crushing & Screening Plant

	Washington Boulevard = Baltimore, Ma 537-3230 = 1-800-633-6101 =www.mde	5			
	nagement Administration Air Q				
APPLICATION FOR Permit to Construct	PROCESSING/MANUFACT Registration Update				
1A. Owner of Equipment/Company Name		DO NOT WRITE IN THIS BLOCK			
STANCILLS IN	С.	2. REGISTRATION NUMBER			
Mailing Address		County No. Premises No.			
	2444 LOCH RAVEN ROAD				
Street Address BALTIMORE	MD 21218				
City State	Zip	Registration Class Equipment No.			
Telephone Number					
(4	10) 554-1077	↓ ↓ ↓ ↓ ↓			
	. /	Data Year			
Signature MIAN MI	sell				
	her	12-13 Application Date			
BRIAN RUSSELL	V.P. PLANT OPERATIONS	7-15-2021			
Print Name and Title		Date			
1B. Equipment Location and Telephone Nu	mber (if different from above)				
499 MOUNTAIN HILL ROAD					
Street Number and Street Name					
PERRYVILLE	MD	21903 (443) 871-6783			
City/Town	State Zip	Telephone Number			
Premises Name (if different from above)					
3. Status (A= New, B= Modification to Exis	ting Equipment, C= Existing Equ	inment)			
S. Status (A- New, B- Modification to Exist New Constructi		Existing Initial			
Status Begun (MM/Y)	() Completed (MM/YY)	Operation (MM/YY)			
A 0 2 2	2 0 3 2 3				
15 16-19	20-23	20-23			
4. Describe this Equipment: Make, Mode	si Fosturos Manufacturor /includo M	aximum Hourly Input Pate atc.)			
NEW CWMF Natural Gas-fired, counter-flow					
		Model # , using up to 40% reclaimed asphalt			
pavement (RAP) materials.	•				
	4007101	11/1/0001			
5. Workmen's Compensation Coverage	Binder/Policy Number	11/1/2021 Expiration Date			
Company	HARTFORD MUTUAL INSURA	-			
NOTE: Before a Permit to Construct may be issued by the Department, the applicant must provide the Department with proof of worker's					
compensation coverage a	as required under Section 1-202 of the V	Vorker's Compensation Act.			
6A. Number of Pieces of Identical Equip	ment Units to be Registered/Pe	ermitted at this Time1			
CD Number of Stack/Emission Daints A	poppiatod with this Farrisser	2			
6B. Number of Stack/Emission Points A	ssociated with this Equipment	2			
Form Number: 5		Page 1 of 4			
Rev. 9/27/2002	$D_{} = CO_{} CO_{-0} AO_{}$				

MARYLAND DEPARTMENT OF THE ENVIRONMENT

-

1800 Washington Boulevard
Baltimore, Maryland 21230

(410) 537-3230 • 1-800-633-6101 • www.mde.state.md.us

Air and Radiation Management Administration Air Quality Permits Program

APPLICATION FOR PROCESSING/MANUFACTURING EQUIPMENT

Permit to Construct 🔽 Registration Update 🗌 Initial Registration 🗌

				6 1		0	
1A.	Owner of Equipment/Comp	any Name			D	O NOT WRIT	E IN THIS BLOCK
	ST	ANCILLS INC.				2. REGISTR	ATION NUMBER
	Mailing Address				- County	v No.	Premises No.
	2444	LOCH RAVEN	ROAD				
	Street Address		_				
	BALTIMORE	M	D	21218	- 1-2	-	3-6
	City	State		Zip	Registi	ation Class	Equipment No.
	Telephone Number	(410)	554-1077	,		7	8-11
					Data Y	'ear	• • •
	Signature						
					12-1	3	Application Date
					12-1	5	Application Bate
	BRIAN RUSSELL	N	/.P. PLAN	T OPERATIONS			
	Print Name and Title				Date		
1B	. Equipment Location and Te	ephone Numbe	er (if differ	ent from above)			
	499 MOUNTAIN HIL	L ROAD					
	Street Number and Street Name	1					
	PERRYVILLE		M		21903		(443) 871-6783
	City/Town		State	Zip		Tele	ephone Number
	Premises Name (if different from	above)					
	· ·	,		nt C- Eviating E			
3	. Status (A= New, B= Modific Ne	ew Construction	J ⊏quipine	New Construction		Existing	Initial
		egun (MM/YY)	(Completed (MM/YY		Operation	
	A 0	2 2 2		0 3 2 3			
	15	16-19	L	20-23		20-2	23
				20 20		201	
4	. Describe this Equipment	: Make, Model, Fe	eatures, Ma	nufacturer (include	Maximum Hour	ly Input Rate	, etc.)
	V CWMF Natural Gas-fired, c						
	ipped with a KNOCK-OUT B						
pav	vement (RAP) materials.			-			
5	. Workmen's Compensatio	n Coverage		4097121			11/1/2021
	-		Binder/Polic	y Number		E	Expiration Date
Cor	mpany	H	ARTFOR	MUTUAL INSUR	ANCE CO.		
	NOTE: Before a Permit to Construct may be issued by the Department, the appicant must provide the Department with proof of worker's compensation coverage as required under Section 1-202 of the Worker's Compensation Act.						
	compensat	ion coverage as re	quired unde	r Section 1-202 of the	e Worker's Comp	ensation Act.	
6A	. Number of Pieces of Iden	itical Equipmer	nt Units to	be Registered/	Permitted at t	his Time	1
6B	. Number of Stack/Emissic	on Points Asso	ciated wit	th this Equipmen	nt <u>2</u>		
	L						
	lumber: 5 27/2002						Page 1 of 4
	sers 1-800-735-2258		р	50 6040			Recycled Paper 🛛 🥌

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		alling this Equipm	•					
Main Address/Street WAIT PARK. State N Telephone (32 251-1306 B. Major Activity, Product or Service of Company at this Location MANUFACTURE OF ASPHALT PAVING MATERIALS. The purpose of this PTC application is to obtain a permit- to-construct to allow for the installation of an Asphalt Paving Materials Mixing Plant. 9. Control Devices Associated with this Equipment None 24-0 24-0 Simple/Multiple Spray/Athon 24-1 24-2 24-2 24-3 24-4 24-5 24-7 24-8 Other Sociated 24-8 24-7 24-9 24-3 Describe KNOCK-OUT BOX: "DUST EATER" 0. Annual Fuel Consumption for this Equipment								
Op/Town WAITE PARK, State N Telephone [32] 251-1306 3. Major Activity, Product or Service of Company at this Location MANUFACTURE OF ASPHAIT PAVING MATERIALS. The purpose of this PTC application is to obtain a permitter construct to allow for the installation of an Asphalt Paving Materials Mixing Plant. 3. Control Devices Associated with this Equipment NONE 24-0 Simple/Mailple Spray/Actsorb Ventual Cathon Electrostatic Baghouse ThermatCatalylic Dry 24-1 24-2 24-3 24-4 24-6 X 24-7 24-8 Other 24-1 24-2 24-3 24-4 24-6 X 24-7 24-8 Other 24-1 24-2 24-3 24-4 24-6 X 24-7 24-8 Other 24-3 34 31 2 0								
	-						251-1306	
MANUFACTURE OF ASPHALT PAVING MATERIALS. The purpose of this PTC application is to obtain a permit- to-construct to allow for the installation of an Asphalt paving Materials Mixing Plant. a. Control Devices Associated with this Equipment NONE 24.0 24.0 Simple-Multiple Spray/Adsorb Yentari Carbon 24.1 24.2 24.2 24.3 24.4 24.5 24.7 24.6 Other 24.7 24.9 24.6 Describe KNOCK-OUT BOX: "DUST EATER" 24.9 Describe OIL - 1000 GALLONS SULFUR % 32.43 34 32.41 42.45 26.31 32.53 34 35.41 46.52 53.55 53.55 56.58 59.68 59.68 59.68 59.68 OTHER FUELS ANNUAL AMOUNT CONSUMED 0THER FUELS ANNUAL AMOUNT CONSUMED 0THER FUELS ANNUAL AMOUNT CONSUMED 1 Cole 2 = COB 3 = BF 4 = Other 1 67.1 67.1 6	-					·····		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MANUFACI	URE OF ASPHALT P	AVING MATERIA	LS. to-	construct to a	llow for the	e ínstallatíon of	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9. Control De	vices Associated w						
Cyclone Tower Scrubber Adsorber Precipitator Anerburner Scrubber 24-1 24-2 24-3 24-4 24-5 24-6 24-7 24-8 Other X 24-7 24-8 24-7 24-8 Other X 24-7 24-8 24-7 24-8 Other X 24-7 24-8 Other X 24-9 24-3 24-4 24-5 24-6 24-7 24-8 Other X 24-9 24-3 24-4 24-5 24-6 24-7 24-8 Other X 24-9 24-3 24-4 24-5 24-6 24-7 24-8 Other X 24-9 24-3 24-4 24-5 24-6 24-7 24-8 Other 1000 GALLONS SULFUR % GRADE NATURAL GAS - 1000 FT ³ LP GAS - 100 GALLONS GRADE Other 46-52 53-55 56-58 S9-63 MOISTURE % 64-65 OTHER FUELS ANNUAL AMOUNT CONSUMED OTHER FUELS ANNUAL AMOUNT C								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Baghouse		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cyclone	lower	Scrubber	Adsorber	Precipitator		Afterburner	Scrubber
Other Norther Norther Norther 24-9 Describe KNOCK-OUT BOX: "DUST EATER" Annual Fuel Consumption for this Equipment \bigcirc						X		
X $Z4-9$ Describe KNOCK-OUT BOX: "DUST EATER" • Annual Fuel Consumption for this Equipment • Annual Fuel Consumption for this Equipment • OIL - 1000 GALLONS SULFUR % GRADE NATURAL GAS - 1000 FT ³ LP GAS - 100 GALLONS GR • 26-31 • 32-33 • 34 • 31 2 0 0 • 42-45 • COAL - TONS SULFUR % ASH % WOOD - TONS MOISTURE % • 46-52 • 53-55 • 56-58 • 9-63 • 64-65 OTHER FUELS ANNUAL AMOUNT CONSUMED OTHER FUELS ANNUAL AMOUNT CONSUMED Greetity Type) • 66-2 • GPERATING SCHEDULE (for this equipment) I = Coke 2 = COG 3 = BFG 4 = Other • Oays Per Week Days Per Week Days per yee • X • $G7-2$ • $G8-69$ • $G7-71$ • $G72$ • $Days per yee$ • X • $G7-2$ • $G8-69$ • $G7-71$ • $G72$ • $Days per yee$ • $G7-1$ • $G7-2$ • $G8-69$ • $G7-71$ • $G72$ • $Days per yee$ • $G7-1$ • $G7-2$ • $G8-69$ • $G7-71$ • $G72$ • $G72$ $G72$ • $G72$ <t< td=""><td>24-1</td><td>24-2</td><td>24-3</td><td>24-4</td><td>24-5</td><td>24-6</td><td>24-7</td><td>24-8</td></t<>	24-1	24-2	24-3	24-4	24-5	24-6	24-7	24-8
OIL - 1000 GALLONS SULFUR % GRADE NATURAL GAS - 1000 FT ³ LP GAS - 100 GALLONS GR 26-31 32-33 34 31 2 0 0 0 1 42-45 COAL - TONS SULFUR % ASH % WOOD - TONS MOISTURE % 46-52 53-55 56-58 59-63 64-65 OTHER FUELS ANNUAL AMOUNT CONSUMED OTHER FUELS ANNUAL AMOUNT CONSUMED Greeity Type) 66-2 (Specify Units) 1 = Coke 2 = COG 3 = BFG 4 = Other 1 66-2 (Specify Units) Days Per Week	X Descri							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $). Annual Fue	l Consumption for	this Equipment					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					3 1 2	0 0	0	
Image: constraint of the percent Spring Percent Spring Percent Summer Percent Fall Percent Contraint of the percent Contrain								
(Specify Type) 66-1 (Specify Units) (Specify Type) 66-2 (Specify Units) 1 = Coke 2 = COG 3 = BFG 4 = Other I. OPERATING SCHEDULE (for this equipment) Continuous Operation Batch Process Hours per Batch Batch per Week Hours per Day Days Per Week Days per yea X 67-1 67-2 68-69 0 70-71 5 2 1 0 Seasonal Variation in Operation: No Variation Winter Percent Spring Percent Summer Percent Fall Percent (Total Seasons= 100%)	CC							
(Specify Type) 66-1 (Specify Units) (Specify Type) 66-2 (Specify Units) 1 = Coke 2 = COG 3 = BFG 4 = Other I. OPERATING SCHEDULE (for this equipment) Continuous Operation Batch Process Hours per Batch Batch per Week Hours per Day Days Per Week Days per yea X 67-1 67-2 68-69 0 70-71 5 2 1 0 Seasonal Variation in Operation: No Variation Winter Percent Spring Percent Summer Percent Fall Percent (Total Seasons= 100%)		s 🗖 A		NSUMED	OTHER FLIELS	–		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
OPERATING SCHEDULE (for this equipment) Continuous Operation Batch Process Hours per Batch Batch per Week Hours per Day Days Per Week Days per yea X 67-1 67-2 68-69 Batch per Week Hours per Day Days Per Week Days per yea Seasonal Variation in Operation: 67-2 68-69 Summer Percent Fall Percent (Total Seasons= 100%) No Variation Winter Percent Spring Percent Summer Percent Fall Percent (Total Seasons= 100%)	(Specity Type)	66-1 (\$,				o-2 (Specity Units)	
Continuous Operation Batch Process Hours per Batch Batch per Week Hours per Day Days Per Week Days per yea X 67-1 67-2 68-69 1 6 70-71 72 2 1 6 Seasonal Variation in Operation: No Variation Winter Percent Spring Percent Summer Percent Fall Percent (Total Seasons= 100%) 1 9 2 7 2 7 2 7				oke 2 = COG	3 = BFG 4 = Othe	r		
X Image: Constraint of the second		•	•••	Batch Det	ch por Wook		Dava Par Mask	
No VariationWinter PercentSpring PercentSummer PercentFall Percent(Total Seasons= 100%)19272727	X					1 6	5	2 1 0
76 77-78 79-80 81-82 83-84	No Variation	Winter Pere	2	7	2 7	2	7	Seasons= 100%)

Rev. 9/27/2002	
TTY Users 1-800-735-2258	

12. Equivalent Stack Information- is Exhaust through Doors, Window, etc. Only? (Y/N) N						
85						
If not, then Height Above Ground	(FT) Inside Diameter at Top	Exit Temp	erature (^O F)	Exit Velocity (FT/SI	EC)	
4 0	5 7	2	6 0	76		
86-88	89-91	92	-95	96-98		
	NOTE					
Attach a block diagram of p	NOTE:		uinmont as r	enorted on this	form	
•	equipment, including co	• •	-	•		
13. Input Materials (for this equip						
Is any of this data to be consi		(Y or N)	INPUT	RATE		
NAME	CAS NO. (IF APPLICABLE)	PER HOUR	UNITS	PER YEAR	UNITS	
¹ AGGREGATES		218	TONS	436,000	TONS	
2. RECLAIMED ASPHALT PAVE	MENT (RAP)*	160	TONS	320,000	TONS	
3. ASPHALT CEMENT (AC)		22	TONS	44,000	TONS	
4.						
6.						
7.						
8.						
9.						
TOTAL * listed at maximum RAP	content, 40%	400	TONS	800,000	TONS	
14. Output Materials (for this equ	ipment)					
Process/Product Stream						
				T RATE		
	CAS NO. (IF APPLICABLE)	PER HOUR	UNITS	PER YEAR	UNITS	
1. ASPHALT PAVING MATERIA	LS (APM)	400	TONS	800,000	TONS	
3.						
4.						
5.						
6.						
7.						
8.						
9.						
TOTAL						
15. Waste Streams - Solid and Li	quid					
	CARNO (EADDURADUE)			T RATE		
NAME	CAS NO. (IF APPLICABLE)	PER HOUR	UNITS	PER YEAR	UNITS	
2.					<u>+</u>	
3.						
<u>4.</u> 5.					- <u> </u>	
5. 6.					+	
7.						
8.						
<u>9.</u> TOTAL						
IUTAL						

16. Total Stack Emissions (for this equipment only) in Pounds Per Operating Day					
Particulate Matter	Oxides of Sulfur	Oxides of Nitrogen			
	7 0	3 5 2			
99-104	105-110	111-116			
Carbon Monoxide	Volatile Organic Compunds	PM-10			
117-122 17. Total Fugitive Emissions (for this e	123-128 autioment only) in Pounds Per On	129-134			
Particulate Matter	Oxides of Sulfur	Oxides of Nitrogen			
135-139	140-144	145-149			
Carbon Monoxide	Volatile Organic Compunds	PM-10			
		6			
150-154	155-159	160-164			
Method Used to Determine Emissions	(1= Estimate 2= Emission Fa	ctor 3= Stack Test 4= Other)			
TSP SOX		PM10			
2	2 2 2	2			
165 166	167 168 169	170			
AIR AND RADIA	ATION MANAGEMENT ADMINIS	TRATION USE ONLY			
18. Date Rec'd. Local Date Rec	'd. State Return to Local J	urisdiction			
	Date	Ву			
Reviewed by Local Jurisdiction	Reviewed by State				
Date By	Date E	y			
10 Investory Data Marth/Vaar	Fauliament Code				
19. Inventory Date Month/Year	Equipment Code	SCC Code			
171-174	175-177 178-185				
		mulit de Orientes - Tremes etien Dete			
20. Annual Operating Rate	Maximum Design Pe Hourly Rate	rmit to Operate Transaction Date Month (MM/DD/YR)			
188-192	193-199	200-201 202-207			
Staff Code VOC Code	SIP Code Regula	tion Code Confidentiality			
208-210 211 212	213 214 21	5-218 219			
Poi	nt Description	Action			
		A: Add C: Change			
	220-238	239			
Form Number: 5					

TTY Users 1-800-735-2258

1800 Washington Boulevard = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 =www.mde.state.md.us

Air and Radiation Management Administration
Air Quality Permits Program

APPLICATION F Permit to Construct		SING/MANUFA egistration Update	CTURING EQUIP	
1A. Owner of Equipment/Company Na	me	······································	DO NOT	WRITE IN THIS BLOCK
STANCIL				SISTRATION NUMBER
Mailing Address 2444 LOCH	RAVEN ROAD		County No.	Premises No.
Street Address				
BALTIMORE	MD	21218	1-2	3-6
City S	State	Zip	Registration C	Class Equipment No.
Telephone Number	(410) 554-107	7		8-11
Signature Juan In	nell	2	Data Year	Application Date
BRIAN RUSSELL	V.P. PLAN	NT OPERATIONS	7-15-2	021
Print Name and Title			Date	
1B. Equipment Location and Telephon 499 MOUNTAIN HILL ROAI		rent from above)		
Street Number and Street Name		141		
PERRYVILLE	N	٨D	21903	(410) 554-1077
City/Town	State	Zi	0	Telephone Number
Premises Name (if different from above) 3. Status (A= New, B= Modification to New Cons Status A 15 15 16-	o Existing Equipm struction //M/YY) 222	New Constructio	n E	xisting Initial ration (MM/YY) 20-23
4. Describe this Equipment: Make, 300 ton/hour Crusher equipped with water spray control, operating in ta brakehorsepower, Tier 4i, diesel-fire equipped with a 99 brakehorspeow	h a 525 brakeho ndem with a 500 ed engine, 4 con	rse-power, Tier 4) ton/hour 2-dec veyors, with wat	1i, diesel-fired engin :k Screener equippo	ie, 2 conveyors, with ed with a 200
5. Workmen's Compensation Cov	erage	409712	21	11/1/2021
•		licy Number		Expiration Date
Company	HARTFOR	RD MUTUAL INSU	RANCE CO.	
NOTE: Before a Permit to Construct ma			ant must provide the Depa the Worker's Compensation	
6A. Number of Pieces of Identical E	Equipment Units	to be Registered	I/Permitted at this T	ime <u>1</u>
6B. Number of Stack/Emission Poir	nts Associated w	vith this Equipm	ent <u>3</u>	
Form Number: 5 Rev. 9/27/2002	Da	ure 63 of 242		Page 1 of 4

MARYLAND DEPARTMENT O	DF THE ENVIRONMENT
-----------------------	---------------------------

 1800 Washington Boulevard = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

 Air and Radiation Management Administration = Air Quality Permits Program

APPLICATI Permit to Con	ON FOR PROCES	SING/MANUFACT		
1A. Owner of Equipment/Compar	ny Name		DO NOT WR	ITE IN THIS BLOCK
STA	NCILLS INC.			RATION NUMBER
Mailing Address			County No.	Premises No.
	OCH RAVEN ROAD			
Street Address				
BALTIMORE	MD	21218	1-2	3-6
City	State	Zip	Registration Class	s Equipment No.
Telephone Number	(410) 554-107	77		8-11
Signature			Data Year	
			12-13	Application Date
BRIAN RUSSELL Print Name and Title	V.P. PLAI	NT OPERATIONS	Date	
1B. Equipment Location and Tele 499 MOUNTAIN HILL		erent from above)		
	KOAD			
Street Number and Street Name		40	01002	(410) 554 1077
PERRYVILLE			21903	(410) 554-1077
City/Town	State	Zip	Т	elephone Number
	1			
Premises Name (if different from a	bove)			
3. Status (A= New, B= Modificat				
	Construction	New Construction		ng Initial
Status Beg	jun (MM/YY)	Completed (MM/YY)	Operatio	n (MM/YY)
A 0	2 2 2	0 3 2 3		
15	16-19	20-23	20)-23
4. Describe this Equipment:	Maka Model Features M			
300 ton/hour Crusher equipped		-	-	-
water spray control, operating				
brakehorsepower, Tier 4i, diese	-		spray control, and o	ne stacker conveyor
equipped with a 99 brakehorsp	beower, Tier 4i, diese	l-fired engine.		
5. Workmen's Compensation	Coverage	4097121		11/1/2021
	•	licy Number		Expiration Date
Company	HARTFOR	RD MUTUAL INSURAN	ICE CO.	
NOTE: Before a Permit to Constru	ct may be issued by the De	epartment, the appicant m	nust provide the Departme	ent with proof of worker's
	n coverage as required und			
6A. Number of Pieces of Identi	cal Equipment Units	to be Registered/Pe	ermitted at this Time	
6B. Number of Stack/Emission	Points Associated w	vith this Equipment	3	
Form Number: 5				-
Rev. 9/27/2002	Da	$a_{22} 63 \text{ of } 242$		Page 1 of 4

-	his Equipment (if different fro	-	-	
-				
City/Town	Sta	e 1	Telephone	
	duct or Service of Company a	The purpose of t FLEXIBLE pern 5. the installation	i and operation of a and waste building	d -operate to allow for Crushing & Screening
D. Control Devices A Simple/Multiple Cyclone	Spray/Adsorb Venturi Tower Scrubber			rmal/Catalytic Dry Afterburner Scrubber
24-9	SUPPRESSION SYSTEM WI umption for this Equipment ONS SULFUR % GRA 0 8 15 PPM D 32-33 34	DE NATURAL G	AS - 1000 FT ³	LP GAS - 100 GALLONS GRA
COAL - T COAL - T 46-52		ASH %	WOOD - TONS 59-63	
(Specify Type)	66-1 (Specify Units)	(Specify Type)	66-2 (S	pecify Units)
		ke 2 = COG 3 = BFG 4 = 0	ther	
. OPERATING SCH	EDULE (for this equipment)			
Continuous Operation X 67-1 Seasonal Variation in Ope No Variation 76	Batch Process Hours per B 67-2 68-69 ration: Winter Percent Spring Perc 1 0 77-78 79-80	ent Summer Percen	8 70-71 lax. operations> 1	vs Per Week 5 72 72 73-75 800 hours/year (Total Seasons= 100%)
n Number: 5 . 9/27/2002 ′ Users 1-800-735-2258				Page 2 of 4 Recycled Paper

12. Equivalent Stack Information-	s Exhaust through Doors,	Window, etc.	Only?	(Y/N) Y	
STACKER ENGINE	3	1 0	0 2	92]
If not, then Height Above Ground		Exit Tempe		Exit Velocity (FT/SE	 ;C)
					7
CRUSHER ENGINE 8		1 0	0 2	4 5 2	
86-88	89-91	92-	95	96-98	7
SCREENER ENGINE 8	3 =	10	0 2	1 8 0	
					-
Attach a block diagram of pr					form
	equipment, including cor	ntrol devices	and emissio	n points.	
13. Input Materials (for this equip					
Is any of this data to be consi	dered confidential?	(Y or N)	INPUT	DATE	
NAME	CAS NO. (IF APPLICABLE)	PER HOUR		PER YEAR	UNITS
	CAS NO. (IF AFFLICADLE)	300	TONS	PERTEAR	
² ASPHALT PAVEMENT		300	TONS	100,000	TONS
³ OTHER CONSTRUCTION DEBRI	<u>ر</u>	300	TONS	100,000	10113
4.			10113		+
5. The quantity of each material p	processed will varu from				
6. year to year, but the total mater					
7. exceed the total listed herein.	' <u> </u>				
8.					
9.					
TOTAL		300	TONS	100,000	TONS
-					
14. Output Materials (for this equ	ipment)				
Process/Product Stream			OUTPU		
NAME 1. RECLAIMED WASTE CONCRET	CAS NO. (IF APPLICABLE)	PER HOUR 300	UNITS TONS	PER YEAR	UNITS
^{2.} RECLAIMED ASPHALT PAVEME		300	TONS	100,000	TONS
³ RECLAIMED CONSTRUCTION		300	TONS	100,000	
4.		500	10113		
5.					
6.					
7.					
8.	+				
9.					
TOTAL	.1	300	TONS	100,000	TONS
				-	
15. Waste Streams - Solid and Li	quid				
15. Waste Streams - Solid and Li	quid		<u>OUTPU</u>	T RATE	
15. Waste Streams - Solid and Li NAME	quid CAS NO. (IF APPLICABLE)	PER HOUR	<u>OUTPU</u> UNITS	<u>T RATE</u> PER YEAR	UNITS
NAME		PER HOUR			UNITS
NAME 1. 2.		PER HOUR			
NAME		PER HOUR			
NAME 1. 2. 3.		PER HOUR			
NAME 1. 2. 3. 4.		PER HOUR			
NAME 1. 2. 3. 4. 5. 6. 7.		PER HOUR			
NAME 1. 2. 3. 4. 5. 6. 7. 8.		PER HOUR			
NAME 1. 2. 3. 4. 5. 6. 7.		PER HOUR			

16. Total Stack Emissions (for this equ	uipment only) in Pounds Per Opera	ting Day
Particulate Matter	Oxides of Sulfur	Oxides of Nitrogen
		5
99-104	105-110	111-116
Carbon Monoxide	Volatile Organic Compunds	PM-10
117-122		
117-122 17. Total Fugitive Emissions (for this of	123-128 equinment only) in Pounds Per One	129-134
Particulate Matter	Oxides of Sulfur	Oxides of Nitrogen
135-139	140-144	145-149
Carbon Monoxide	Volatile Organic Compunds	PM-10
		5
150-154	155-159	160-164
Method Used to Determine Emissions	(1= Estimate 2= Emission Fac	ctor 3= Stack Test 4= Other)
TSP SOX	NOX CO VOC	PM10
4	4 4 4	2,4
165 166	167 168 169	170
AIR AND RADI	ATION MANAGEMENT ADMINIS	TRATION USE ONLY
18. Date Rec'd. Local Date Rec	c'd. State Return to Local Ju	urisdiction
	Date	Ву
Reviewed by Local Jurisdiction	Reviewed by State	
Date By	-	у
19. Inventory Date Month/Year	Equipment Code	SCC Code
171-174	175-177 178-185	
20. Annual Operating Rate	Maximum Design Pe Hourly Rate	rmit to Operate Transaction Date Month (MM/DD/YR)
188-192	193-199	200-201 202-207
		tion Code Confidentiality
Staff Code VOC Code	SIP Code Regula	tion Code Confidentiality
208-210 211 212	213 214 215	5-218 219
		210 210
Po	int Description	Action
$\mathbf{I} + \mathbf{I} + $		A: Add C: Change
		O: Onlange
Form Number: 5	220-238	239

TTY Users 1-800-735-2258

APPENDIX C

C.ARA Form 5EP

for

the Asphalt Paving Materials Mixing Plant, the Hot Oil Heater, and

the Crushing & Screening Plant

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration

Air Quality Permits Program
1800 Washington Boulevard
Baltimore, Maryland 21230
(410)537-3225

1-800-633-6101

www.mde.maryland.gov

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point(stack or fugitive emissions) related to the proposed installation.Applicant Name:STANCILLS INC.

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: **APMMP -- 001**

2. Emission Point Description

Describe the emission point including all associated equipment and control devices: ASPHALT PAVING MATERIALS MIXING PLANT with MAXAMizer HEAT RECOVERY SYSTEM

3. Emissions Schedu	le for the En	mission Point				
		Seasonal Variation				
Continuous or Intermittent (C/I)?	С	Check box if none:		Otherwise e	estimate seaso	onal variation:
Minutes per hour:	60	Winter Percent	19			
Hours per day:	16	Spring Percent	27			
Days per week:	5	Summer Percent	27			
Weeks per year:	42	Fall Percent	27			
4. Emission Point Info	ormation					
Height above ground (ft):	40	Length and width dimensions			Length:	Width:
Height above structures (ft):	N/A	at top of rectangular stack (ft):				
Exit temperature (°F):	300	Inside diameter at top of round st	ack (ft):			4.75
Exit velocity (ft/min):	4,515	Distance from emission point to nearest property line (ft):				275
Exhaust gas volumetric flow rate (acfm):	80,000	Building dimensions if emission point is located on building (ft)		Height	Length	Width
5. Control Devices As	sociated wi	ith the Emission Point				
also required for each control None ✓ Baghouse Cyclone Elec. Precipitator (ESP) Dust Suppression System Venuri Scrubber Spray Tower/Packed Bed Carbon Adsorber Cartridge/Canist	r <u>ol device .</u> If r No. No. No. No. No. No. No.	Therma Catalyt	al oxidizer Regene Regene ic Oxidizer en Oxides Red Selectiv Catalyti	erative duction ve ic	No. No. NoSe Non-Ca No.	lective
Regenerative						

FORM 5E	P: Emission Point I	Data		
6. Estimated Emissions from the Emissio	on Point			
	At Design Capacity	At I	Projected Operat	tions
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Particulate Matter (filterable as PM10)	4.4	4.4	70.0	4.4
Particulate Matter (filterable as PM2.5)	3.1	3.1	49.0	3.1
Particulate Matter (condensables)	7.8	7.8	124.0	7.8
Volatile Organic Compounds (VOC)	12.8	12.8	205.0	12.8
Oxides of Sulfur (SOx)	4.4	4.4	70.0	4.4
Oxides of Nitrogen (NOx)	22.0	22.0	352.0	22.0
Carbon Monoxide (CO)	52.0	52.0	832.0	52.0
Lead (Pb)	6.00 E-3	6.00 E-3	9.60 E-2	6.00 E-3
	At Design Capacity		Projected Operat	
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Carbon Dioxide (CO2)	1.32 E+4	1.32 E+4	2.11 E+5	1.32 E+4
Methane (CH4)	4.8	4.8	77.0	4.8
Nitrous Oxide (N2O)	N/A	N/A		
Hydrofluorocarbons (HFCs)				
Perfluorocarbons (PFCs)				
Sulfur Hexafluoride (SF6)				
Total GHG (as CO2e)	1.32 E+4	1.32 E+4	2.11 E+5	1.32 E+4
List individual federal Hazardous Air		At Projected Operations		
Pollutants (HAP) below:	At Design Capacity (lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
FORMALDEHYDE (CAS 50000)	1.24 E+0	1.24 E+0	1.98 E+1	1.24 E+0
BENZO(A)PYRENE (CAS 50328)	3.92 E-6	3.92 E-6	6.27 E-5	3.92 E-6
DIBENZ(A,H)ANTHRACENE (CAS 53703)	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
3-METHYLCHOLANTHRENE* (CAS 56495, POM)	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
BENZO(A)ANTHRACENE (CAS 56553, POM)	8.40 E-5	8.40 E-5	1.34 E-3	8.40 E-5
7,12-DIMETHYLBENZ(A)ANTHRACENE* (CAS 57976, F	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
BENZENE (CAS 71432)	1.56 E-1	1.56 E-1	2.50 E+0	1.56 E-1
METHYLCHLOROFORM (CAS 71556)	1.92 E-2	1.92 E-2	3.07 E-1	1.92 E-2
ACENAPHTHENE (CAS 83329, POM)	5.60 E-4	5.60 E-4	8.96 E-3	5.60 E-4
PHENANTHRENE (CAS 85018, POM)	3.04 E-3	3.04 E-3	4.86 E-2	3.04 E-3
FLUORENE (CAS 86737, POM)	1.52 E-3	1.52 E-3	2.43 E-2	1.52 E-3
NAPHTHALENE (CAS 91203)	3.60 E-2	3.60 E-2	5.76 E-1	3.60 E-2
2-METHYLNAPHTHALENE (CAS 91576, POM)	2.96 E-2	2.96 E-2	4.74 E-1	2.96 E-2
ETHYLBENZENE (CAS 100414)	9.60 E-2	9.60 E-2	1.54 E+0	9.60 E-2
ACROLEIN (CAS 107028)	2.68 E-1	2.68 E-1	4.29 E+0	2.68 E-1
HEXANE (CAS 110543)	8.80 E-1	8.80 E-1	1.41 E+1	8.80 E-1
BENZO(G,H,I)PERYLENE (CAS 191242, POM)	1.60 E-5	1.60 E-5	2.56 E-4	1.60 E-5
BENZO(E)PYRENE (CAS 192972, POM) SEE CONTINUATION SHEET for FORM 5EP for APMM	4.40 E-5	4.40 E-5	7.04 E-4	4.40 E-5

SEE CONTINUATION SHEET for FORM 5EP for APMMP -- 001. The emission rates include the Heat Recovery System emissions.

List individual federal Hazardous Air	At Design Capacity	At Projected Operations			
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
INDENO(1,2,3-CD)PYRENE (CAS 193395, POM)	2.80 E-6	2.80 E-6	4.48 E-5	2.80 E-6	
PERYLENE (CAS 198550, POM)	3.52 E-6	3.52 E-6	5.63 E-5	3.52 E-6	
BENZO(B)FLUORANTHENE (CAS 205992, POM)	4.00 E-5	4.00 E-5	6.40 E-4	4.00 E-5	
FLUORANTHENE (CAS 206440, POM)	2.44 E-4	2.44 E-4	3.90 E-3	2.44 E-4	
BENZO(K)FLUORANTHENE (CAS 207089, POM)	1.64 E-5	1.64 E-5	2.62 E-4	1.64 E-5	
ACENAPHTHYLENE (CAS 208968, POM)	3.44 E-3	3.44 E-3	5.50 E-2	3.44 E-3	
CHRYSENE (CAS 218019, POM)	7.20 E-5	7.20 E-5	1.15 E-3	7.20 E-5	
XYLENE (CAS 1330207)	8.00 E-2	8.00 E-2	1.28 E+0	8.00 E-2	
LEAD (CAS 7439921)	2.48 E-4	2.48 E-4	3.97 E-3	2.48 E-4	
MANGANESE (CAS 7439965)	3.08 E-3	3.08 E-3	4.93 E-2	3.08 E-3	
MERCURY (CAS 7439976)	9.60 E-5	9.60 E-5	1.54 E-3	9.60 E-5	
NICKEL (CAS 7440020)	2.52 E-2	2.52 E-2	4.03 E-1	2.52 E-2	
ANTIMONY (CAS 7440360)	7.20 E-5	7.20 E-5	1.15 E-3	7.20 E-5	
ARSENIC (CAS 7440382)	2.24 E-4	2.24 E-4	3.58 E-3	2.24 E-4	
BERYLLIUM (CAS 7440417)	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0	
CADMIUM (CAS 7440439)	1.64 E-4	1.64 E-4	2.62 E-3	1.64 E-4	
CHROMIUM (CAS 7440473)	2.20 E-3	2.20 E-3	3.52 E-2	2.20 E-3	
CHROMIUM, VI (CAS 7440473)	1.80 E-4	1.80 E-4	2.88 E-3	1.80 E-4	
COBALT (CAS 7440484)	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0	

CONTINUATION for FORM 5EP for APMMP -- 001. The emission rates include the Heat Recovery System emissions.

Total HAPs tons/year: 2.85

HAP with highest emission rate: 1.24

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration

Air Quality Permits Program 1800 Washington Boulevard
Baltimore, Maryland 21230 (410)537-3225

1-800-633-6101

www.mde.maryland.gov

FORM 5EP: Emission Point Data

Complete one (1) Form 5EP for EACH emission point (stack or fugitive emissions) related to the proposed installation. **Applicant Name: STANCILLS INC.**

1. Emission Point Identification Name/Number

List the applicant assigned name/number for this emission point and use this value on the attached required plot plan: HOH -- 002

2. Emission Point Description

Describe the emission point including all associated equipment and control devices: HOT OIL HEATER FOR ASPHALT PAVING MATERIALS MIXING PLANT

3. Emissions Schedu	le for the En	nission Point				
Continuous or Intermittent (C/I)?	С	Seasonal Variation Check box if none:		Otherwise e	estimate seaso	onal variation:
Minutes per hour:	60	Winter Percent	19			
Hours per day:	24	Spring Percent	27			
Days per week:	5	Summer Percent	27			
Weeks per year:	42	Fall Percent	27			
4. Emission Point Infe	ormation					
Height above ground (ft):	10.00	Length and width dimensions			Length:	Width:
Height above structures (ft):	N/A	at top of rectangular stack (ft):				
Exit temperature (°F):	400	Inside diameter at top of round st	ack (ft):			1
Exit velocity (ft/min):	1,502	Distance from emission point to nearest property line (ft):				578
Exhaust gas volumetric flow rate (acfm):	1,180	Building dimensions if emission point is located on building (ft)		Height	Length	Width
5. Control Devices As	sociated wi	ith the Emission Point		1	<u> </u>	
also required for each cont ✓ None Baghouse Cyclone Elec. Precipitator (ESP) Dust Suppression System	<u>rol device .</u> If r No. No. No. No.	Therma	al oxidizer Regene ic Oxidizer n Oxides Rec Selectiv Catalyt	erative duction ve	No. No.	lective
Venuri Scrubber Spray Tower/Packed Bed Carbon Adsorber Cartridge/Canis Regenerative	No. No. No.	Other Specify:			No.	

FORM 5E	P: Emission Point	Data		
6. Estimated Emissions from the Emission	on Point			
	At Design Capacity	At F	Projected Opera	tions
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Particulate Matter (filterable as PM10)	2.33 E-02	2.33 E-02	5.59 E-01	1.02 E-01
Particulate Matter (filterable as PM2.5)	1.79 E-02	1.79 E-02	4.30 E-01	7.85 E-02
Particulate Matter (condensables)	2.81 E-02	2.81 E-02	6.73 E-01	1.23 E-01
Volatile Organic Compounds (VOC)	7.34 E-03	7.34 E-03	1.76 E-01	3.21 E-02
Oxides of Sulfur (SOx)	4.66 E-02	4.66 E-02	1.12 E+00	2.04 E-01
Oxides of Nitrogen (NOx)	4.32 E-01	4.32 E-01	1.04 E+01	1.89 E+00
Carbon Monoxide (CO)	1.08 E-01	1.08 E-01	2.59 E+00	4.73 E-01
Lead (Pb)	6.00 E-03	6.00 E-03	9.60 E-02	6.00 E-03
	At Design Capacity	At F	Projected Opera	tions
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
Carbon Dioxide (CO2)	4.81 E+02	4.81 E+02	1.16 E+04	2.11 E+03
Methane (CH4)	4.66 E-03	4.66 E-03	1.12 E-01	2.04 E-02
Nitrous Oxide (N2O)	5.61 E-03	5.61 E-03	1.35 E-01	2.46 E-02
Hydrofluorocarbons (HFCs)				
Perfluorocarbons (PFCs)				
Sulfur Hexafluoride (SF6)				
Total GHG (as CO2e)	4.81 E+02	4.81 E+02	1.16 E+04	2.11 E+03
List individual federal Hazardous Air	At Design Capacity			
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)
FORMALDEHYDE (CAS 50000)	2.14 E-4	2.14 E-4	5.14 E-3	9.75 E-4
BENZO(A)PYRENE (CAS 50328)	3.43 E-9	3.43 E-9	8.23 E-8	1.56 E-8
DIBENZ(A,H)ANTHRACENE (CAS 53703)	3.43 E-9	3.43 E-9	8.23 E-8	1.56 E-8
3-METHYLCHOLANTHRENE* (CAS 56495, POM)	5.14 E-9	5.14 E-9	1.23 E-7	2.34 E-8
BENZO(A)ANTHRACENE (CAS 56553, POM)	5.14 E-9	5.14 E-9	1.23 E-7	2.34 E-8
7,12-DIMETHYLBENZ(A)ANTHRACENE* (CAS 57976, F	4.57 E-8	4.57 E-8	1.10 E-6	2.08 E-7
BENZENE (CAS 71432)	6.00 E-6	6.00 E-6	1.44 E-4	2.73 E-5
ACENAPHTHENE (CAS 83329, POM)	5.14 E-9	5.14 E-9	1.23 E-7	2.34 E-8
PHENANTHRENE (CAS 85018, POM)	4.86 E-8	4.86 E-8	1.17 E-6	2.21 E-7
FLUORENE (CAS 86737, POM)	8.00 E-9	8.00 E-9	1.92 E-7	3.64 E-8
NAPHTHALENE (CAS 91203)	1.74 E-6	1.74 E-6	4.18 E-5	7.93 E-6
2-METHYLNAPHTHALENE (CAS 91576, POM)	6.86 E-8	6.86 E-8	1.65 E-6	3.12 E-7
TOLUENE (CAS 108883)	9.71 E-6	9.71 E-6	2.33 E-4	4.42 E-5
HEXANE (CAS 110543)	5.14 E-3	5.14 E-3	1.23 E-1	2.34 E-2
ANTHRACENE (CAS 120127, POM)	6.86 E-9	6.86 E-9	1.65 E-7	3.12 E-8
PYRENE (CAS 129000, POM)	1.43 E-8	1.43 E-8	3.43 E-7	6.50 E-8
BENZO(G,H,I)PERYLENE (CAS 191242, POM)	3.43 E-9 N SHEET for FORM 5EP fo	3.43 E-9	8.23 E-8	1.56 E-8

SEE CONTINUATION SHEET for FORM 5EP for HOH -- 002

Revised:03/01/2016

List individual federal Hazardous Air	At Design Capacity	At Projected Operations			
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
INDENO(1,2,3-CD)PYRENE (CAS 193395, POM)	5.14 E-9	5.14 E-9	1.23 E-7	4.68 E-5	
BENZO(B)FLUORANTHENE (CAS 205992, POM)	5.14 E-9	5.14 E-9	1.23 E-7	4.68 E-5	
FLUORANTHENE (CAS 206440, POM)	8.57 E-9	8.57 E-9	2.06 E-7	7.80 E-5	
BENZO(K)FLUORANTHENE (CAS 207089, POM)	5.14 E-9	5.14 E-9	1.23 E-7	4.68 E-5	
ACENAPHTHYLENE (CAS 208968, POM)	5.14 E-9	5.14 E-9	1.23 E-7	4.68 E-5	
CHRYSENE (CAS 218019, POM)	5.14 E-9	5.14 E-9	1.23 E-7	4.68 E-5	
LEAD (CAS 7439921)	1.43 E-6	1.43 E-6	3.43 E-5	1.30 E-2	
MANGANESE (CAS 7439965)	1.09 E-6	1.09 E-6	2.61 E-5	9.88 E-3	
MERCURY (CAS 7439976)	7.43 E-7	7.43 E-7	1.78 E-5	6.76 E-3	
NICKEL (CAS 7440020)	6.00 E-6	6.00 E-6	1.44 E-4	5.46 E-2	
ARSENIC (CAS 7440382)	5.71 E-7	5.71 E-7	1.37 E-5	5.20 E-3	
BERYLLIUM (CAS 7440417)	3.43 E-8	3.43 E-8	8.23 E-7	3.12 E-4	
CADMIUM (CAS 7440439)	3.14 E-6	3.14 E-6	7.54 E-5	2.86 E-2	
CHROMIUM (CAS 7440473)	4.00 E-6	4.00 E-6	9.60 E-5	3.64 E-2	
COBALT (CAS 7440484)	2.40 E-7	2.40 E-7	5.76 E-6	2.18 E-3	

CONTINUATION for FORM 5EP for HOH -- 002

Total HAPs tons/year:

0.18

0.05

HAP with highest emission rate:

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration

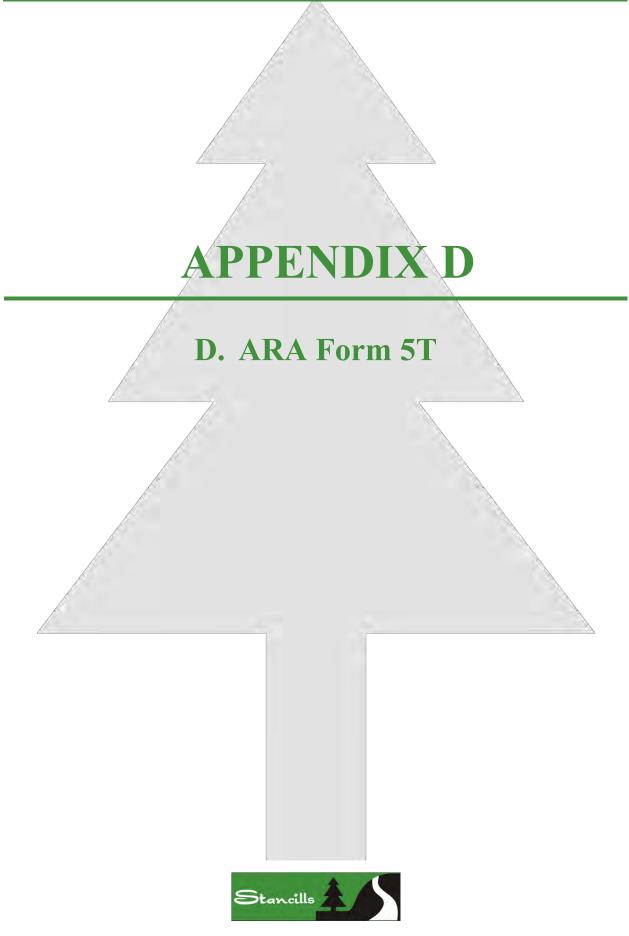
Air Quality Permits Program
1800 Washington Boulevard
Baltimore, Maryland 21230
(410)537-3225
1-800-633-6101
www.mde.maryland.gov

	50		- 1	D - 1 -
Complete ene (4) Form FED fr	-	ORM 5EP: Emis		
Applicant Name: STANCILI		on point (stack or f	ugitive emissi	ons) related to the proposed installation.
··				
1. Emission Point Ide			t and use thi	is value on the attached required plot plan:
CSP 003		•		
2. Emission Point Des	scription			
Describe the emission point in CRUSHING & SCREENING PL				
3. Emissions Schedu				
Continuous or Intermittent (C/I)?	С	Seasonal Variatior Check box		Otherwise estimate seasonal variatio
Minutes per hour:	60	Winter Percent	t	10
Hours per day:	8	Spring Percent	t	30
Days per week:	5	Summer Perce	ent	30
Weeks per year:	45	Fall Percent		30
4. Emission Point Info	ormation			
Height abov				vvidtn:
<u> </u>	<u>E ENGINES ARE /</u> above Exit	ASSOCIATED WITH 1 Exit	Exhaust	G & SCREENING PLANT Diameter Distance
Exit tempera gro Engine (fee	und Temp et) (°F)	o Velocity (ft/min)	Velocity (acfm)	Property Line (feet) (feet)
Exit velocity Crusher 8	1002	7.5	1330	0.25 185
Exhaust gas Stacker 4	1002 1002		530 270	0.25 185 0.25 185 Width
rate (acfm):				
5. Control Devices As	sociated wi	th the Emissio	n Point	
Identify each control device a also required for each cont		•	and indicate	the number of devices. <u>A Form 6 is</u>
None			Therma	al oxidizer No.
Baghouse	No.			Regenerative
Cyclone	No.		Catalyt	ic Oxidizer No.
Elec. Precipitator (ESP)	No.		Nitroge	en Oxides Reduction
Dust Suppression System	No.			Selective Non-Selective
Venuri Scrubber	No.			Catalytic Non-Catalytic
Spray Tower/Packed Bed	No.		✓ Other	No. <u>1</u>
Carbon Adsorber	No.		Specify:	WET SUPPRESSION SYSTEM WITH WATER
Cartridge/Canisi	ter			
Regenerative				

Form Number MDE/ARMA/PER.05EP Revised:03/01/2016 TTY Users 1-800-735-2258

FORM 5E	P: Emission Point	Data			
6. Estimated Emissions from the Emission	on Point				
	At Design Capacity	At Projected Operations			
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Particulate Matter (filterable as PM10)	2.72 E-02	2.72 E-02	2.18 E-01	2.45 E-02	
Particulate Matter (filterable as PM2.5)	2.72 E-02	2.72 E-02	2.18 E-01	2.45 E-02	
Particulate Matter (condensables)	N/A	N/A			
Volatile Organic Compounds (VOC)	2.54 E-01	2.54 E-01	2.03 E+00	2.29 E-01	
Oxides of Sulfur (SOx)	5.81 E-02	5.81 E-02	4.65 E-01	4.25 E-02	
Oxides of Nitrogen (NOx)	5.45 E-01	5.45 E-01	4.36 E+00	4.90 E-01	
Carbon Monoxide (CO)	4.96 E+00	4.96 E+00	3.97 E+01	4.47 E+00	
Lead (Pb)	6.00 E-03	6.00 E-03	9.60 E-02	6.00 E-03	
	At Design Capacity	At	Projected Opera	tions	
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Carbon Dioxide (CO2)	9.48 E+2	9.48 E+2	7.58 E+3	6.82 E+3	
Methane (CH4)	N/A	N/A			
Nitrous Oxide (N2O)	N/A N/A	N/A			
Hydrofluorocarbons (HFCs)	N/A	174			
Perfluorocarbons (PFCs)					
Sulfur Hexafluoride (SF6)					
· · ·	0.40 5+0	0.40 5.0	7.50.510	0.00 5.0	
Total GHG (as CO2e)	9.48 E+2	9.48 E+2	7.58 E+3	6.82 E+3	
List individual federal Hazardous Air Pollutants (HAP) below:	At Design Capacity (lb/hr)			(ton/yr)	
FORMALDEHYDE (CAS 50000)	6.41 E-3	6.41 E-3	5.13 E-2	4.62 E-2	
BENZO(A)PYRENE (CAS 50328)	1.02 E-6	1.02 E-6	8.17 E-6	7.36 E-6	
DIBENZ(A,H)ANTHRACENE (CAS 53703)	3.17 E-6	3.17 E-6	2.53 E-5	2.28 E-5	
3-METHYLCHOLANTHRENE* (CAS 56495, POM)	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0	
BENZO(A)ANTHRACENE (CAS 56553, POM)	9.12 E-6	9.12 E-6	7.30 E-5	6.57 E-5	
7,12-DIMETHYLBENZ(A)ANTHRACENE* (CAS 57976, F	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0	
BENZENE (CAS 71432)	5.07 E-3	5.07 E-3	4.05 E-2	3.65 E-2	
METHYLCHLOROFORM (CAS 71556)	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0	
ACETALDEHYDE (CAS 75070)	4.17 E-3	4.17 E-3	3.33 E-2	3.00 E-2	
ACENAPHTHENE (CAS 83329, POM)	7.71 E-6	7.71 E-6	6.17 E-5	5.56 E-5	
PHENANTHRENE (CAS 85018, POM)	1.60 E-4	1.60 E-4	1.28 E-3	1.15 E-3	
FLUORENE (CAS 86737, POM)	1.59 E-4	1.59 E-4	1.27 E-3	1.14 E-3	
NAPHTHALENE (CAS 91203)	4.61 E-4	4.61 E-4	3.68 E-3	3.32 E-3	
2-METHYLNAPHTHALENE (CAS 91576, POM)	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0	
ETHYLBENZENE (CAS 100414)	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0	
1,3-BUTADIENE (CAS 106990)	2.12 E-4	2.12 E-4	1.70 E-3	1.53 E-3	
ACROLEIN (CAS 107028)	5.02 E-4	5.02 E-4	4.02 E-3	3.62 E-3	
TOLUENE (CAS 108883)	2.22 E-3	2.22 E-3	1.78 E-2	1.60 E-2	

Revised:03/01/2016


List individual federal Hazardous Air Pollutants (HAP) below:	At Design Capacity (lb/hr)	At Projected Operations		
		(lb/hr)	(lb/day)	(ton/yr)
ANTHRACENE (CAS 120127, POM)	1.02 E-5	1.02 E-5	8.12 E-5	7.32 E-5
PYRENE (CAS 129000, POM)	2.60 E-5	2.60 E-5	2.08 E-4	1.87 E-4
BENZO(G,H,I)PERYLENE (CAS 191242, POM)	2.66 E-6	2.66 E-6	2.12 E-5	1.91 E-5
INDENO(1,2,3-CD)PYRENE (CAS 193395, POM)	2.04 E-6	2.04 E-6	1.63 E-5	1.47 E-5
BENZO(B)FLUORANTHENE (CAS 205992, POM)	5.38 E-7	5.38 E-7	4.31 E-6	3.88 E-6
FLUORANTHENE (CAS 206440, POM)	4.13 E-5	4.13 E-5	3.31 E-4	2.98 E-4
BENZO(K)FLUORANTHENE (CAS 207089, POM)	8.42 E-7	8.42 E-7	6.73 E-6	6.06 E-6
ACENAPHTHYLENE (CAS 208968, POM)	2.75 E-5	2.75 E-5	2.20 E-4	1.98 E-4
CHRYSENE (CAS 218019, POM)	1.92 E-6	1.92 E-6	1.53 E-5	1.38 E-5
XYLENE (CAS 1330207)	1.55 E-3	1.55 E-3	1.24 E-2	1.12 E-2

CONTINUATION for FORM 5EP for CSP -- 003

Total HAPs tons/year: 0.15

HAP with highest emission rate: 0.05

should t	T-BACT Option	Selected? (yes/no)	BE.		th. The no further ations	umentation	Compliance Method Used?	AER or Screen	•,	SCREEN	SCREEN		SCREEN		be met using the allowable emissions rate method or the screening analysis method, Please consult with the Department's Air Quality Permit Program prior to conducting	Page 1 of 2 Recycled Paper
ne options	T-BA	Selecte	ION MITT		ublic heal aluation, i \P) Regul	orting doci	ons per (µg/m³)	Annual	2.52 E-02	3.48 E-07	0.00 E+00	7.46 E-06	0.00 E+00	0.00 E+00	ng analys prior to c	
FORM 5T: Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration le Control Technology for Toxics Requirement (T-BACT, COMAR 26.11.15.05) Page 83 of 242 list all TAP emission reduction options considered when determining T-BACT for the proposed installation. The ng with the most effective control strategy to the least effective strategy. Attach supporting documentation as I		Annual Operating	TAPS FROM COMBUSTION WILL BE		ct Requirement (COMAR 26.11.15.06) to determine that the emissions of the TAP will not adversely impact public health. The (and increasingly rigorous) tests. Once a TAP passes a test in the evaluation, no furth with the Ambient Impact Requirement under the Toxic Air Pollutant (TAP) Regulations	ttach suppc	Off-site Concentrations per Screening Analysis (µg/m ³)	8-hour	9.64 E-01	0.00 E+00	0.00 E+00	0.00 E+00	0.00 E+00	1.21 E-01 1.49 E-02	be met using the allowable emissions rate method or the screening analysis method Please consult with the Department's Air Quality Permit Program prior to conducting	
ce Demo Page 8 pposed ins ng docum	Costs	Annual (APs FROM		iot adverse passes a te Toxic Air F	ıg table. ⊿	Off-site Screen	1-hour	0.00 E+00	0.00 E+00	0.00 E+00	0.00 E+00	0.00 E+00	2.13 E-01	ethod or t ality Permi	
Omplian (5.05) for the protict supporti	ĉ	oital			3) • TAP will r ice a TAP _f under the	the followir	Emissions ER) per .11.16.02A	(Ib/yr)							ons rate m ťs Air Qua	
Iry and C AR 26.11.1 Dg T-BACT tegy. Attac		Capital	F NATURA		26.11.15.06 ions of the tests. On quirement	results in t	Allowable Emissions Rate (AER) per COMAR 26.11.16.02A	(lb/hr)							le emissic epartment	
s Summa cT, COM/ determinir ective strat	ission	ction	USTION O		(COMAR 2 t the emiss y rigorous) Impact Re	ıarize your	Premises Wide Total TAP Emissions	(Ib/yr)	2.48 E+03	7.84 E-03	0.00 E+00	1.68 E-01	0.00 E+00	3.12 E+02 3.84 E+01	ie allowab with the D	
missions ient (T-BA ered when ne least eff	% Emission	Reduction	OF COMB D.		uirement ermine thai increasingl e Ambient	on. Sumr	Premises Wi Total TAP Emissions	(Ib/hr)	1.24 E+00	3.92 E-06	0.00 E+00	8.40 E-05	0.00 E+00	1.92 E-01 1.92 E-02	et using th e consult v	
t (TAP) E Requirement ans consider rategy to th	Ontion	Conce	A RESULT MAINTAINE		npact Req ated to dete ative (and i nce with th	ne evaluati	(hg/m³)	Annual	8.00 E-2	0.00 E+0	5.75 E-2	0.00 E+0	0.00 E+0	0.00 E+0	- - -	
Pollutani or Toxics uction optic	Emission Control Ont		CUR AS /		mbient In ally evalua n-conserva	nducting th	Screening Levels (µg/m³)	8-hour	2.03 E+1	0.00 E+0	2.00 E+1	0.00 E+0	4.76 E+0	_	ement can be require compliar	01/2016
oxic Air hnology f ission redu	Emisei		L ATION OC RNERS PRO		/ with the A be individu asingly noi nonstrating	ince on col	Screen	1-hour	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0	7.39 ET1 2.46 E+4	act require ques may monstrate	Revised:03/01/2016
RM 5T: T ontrol Tec all TAP em vith the mos			IIS APPLIC THE BUR		mpliance mpliance es of incre TAP. "Der	rides guida	CAS		50-00-0	50-32-8	56-49-5	56-55-3	57-97-6	71-55-6	bient impa ng technic iods to de	<u>د</u>
FORM 5T: Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration Step 3: Best Available Control Technology for Toxics Requirement (T-BACT, COMAR 26.11.15.05) Page 83 of 242 In the following table, list all TAP emission reduction options considered when determining T-BACT for the proposed installation. The options should be listed in order beginning with the most effective control strategy to the least effective strategy. Attach supporting documentation as necessary.	Tarriet Dollintants		THE TAPS LISTED IN THIS APPLICATION OCCUR AS A RESULT OF COMBUSTION OF NATURAL GAS. MINIMIZED BY KEEPING THE BURNERS PROPERLY MAINTAINED.		Step 4: Demonstrating Compliance with the Ambient Impact Requirement (COMAR 26.11.15.06) Step 4: Demonstrating Compliance with the Ambient Impact Requirement (COMAR 26.11.15.06) Each TAP not exempt in Step 2 must be individually evaluated to determine that the emissions of the TAP will not adversely impact public health. The evaluation consists of a series of increasingly non-conservative (and increasingly rigorous) tests. Once a TAP passes a test in the evaluation, no further analysis is required for that TAP. "Demonstrating Compliance with the Ambient Impact Requirement under the Toxic Air Pollutant (TAP) Regulations	(COMAR 26.11.15.06)" provides guidance on conducting the evaluation. Summarize your results in the following table. Attach supporting documentation as necessary.	Toxic Air Pollutant (TAP)		FORMALDEHYDE	BENZO(A)PYRENE	3-METHYLCHOLANTHRENE *	BENZO(A)ANTHRACENE	7,12-DIMETHYLBENZ(A)ANTH	METHYLCHLOROFORM	If compliance with the ambient impact requirement cannot refined dispersion modeling techniques may be required. dispersion modeling methods to demonstrate compliance.	Form Number MDE/ARMA/PER.05EP TTY Users 1-800-735-2258

St CONTINUATION OF FORM 51, PAGE	M 5T, PAGE	1								CO	ntinuation	Continuation Page 1 of 2
Toxic Air Pollutant (TAP)	CAS		Screening Levels (µg	(µg/m³)	Premise Total Emise	Premises Wide Total TAP Emissions	Allowable Rate (A COMAR 26	Allowable Emissions Rate (AER) per COMAR 26.11.16.02A	Off-site Screeni	Off-site Concentrations per Screening Analysis (µg/m ³)	ions per (µg/m³)	Compliance Method Used?
Ínc.	Number	1-hour	8-hour	Annual	(Ib/hr)	(Ib/yr)	(Ib/hr)	(Ib/yr)	1-hour	8-hour	Annual	AER or Screen
METHANE	74-82-8	6.56 E+3	0.00 E+0	0.00 E+0	4.80 E+00	9.60 E+03			5.33 E+00	0.00 E+00	0.00 E+00	SCREEN
ETHANE	74-84-0	0.00 E+0	1.23 E+4	0.00 E+0	0.00 E+00	0.00 E+00			0.00 E+00	0.00 E+00	0.00 E+00	SCREEN
ETHYLENE	74-85-1	0.00 E+0	2.29 E+3	0-00 E+0	2.80 E+00	5.60 E+03			0.00 E+00	2.18 E+00	0.00 E+00	SCREEN
PROPANE	74-98-6	0.00 E+0	1.80 E+4	0.00 E+0	0.00 E+00	0.00 E+00			0.00 E+00	0.00 E+00	0.00 E+00	SCREEN
ACENAPHTHENE	83-32-9	0.00 E+0	2.00 E+1	0.00 E+0	5.60 E-04	1.12 E+00			0.00 E+00	4.35 E-04	0.00 E+00	SCREEN
PHENANTHRENE	85-01-8	0.00 E+0	9.80 E+0	0-00 E+0	3.04 E-03	6.08 E+00			0.00 E+00	2.36 E-03	0.00 E+00	SCREEN
FLUORENE	86-73-7	0.00 E+0	2.00 E+1	0-00 E+0	1.52 E-03	3.04 E+00			0.00 E+00	1.18 E-03	0.00 E+00	SCREEN
NAPHTHALENE	91-20-3	7.86 E+2	5.24 E+2	0.00 E+0	3.60 E-02	7.20 E+01			4.00 E-02	2.80 E-02	0.00 E+00	SCREEN
2-METHYLNAPHTHALENE	91-57-6	0.00 E+0	2.91 E+1	0.00 E+0	2.96 E-02	5.92 E+01			0.00 E+00	2.30 E-02	0.00 E+00	SCREEN
ETHYLBENZENE	100-41-4	0.00 E+0	8.68 E+2	0.00 E+0	9.60 E-02	1.92 E+02			0.00 E+00	7.46 E-02	0.00 E+00	SCREEN
BUTANE	106-97-8	0.00 E+0	2.38 E+4	5.75 E-1	2.68 E-01	5.36 E+02			0.00 E+00	2.08 E-01	0.00 E+00	SCREEN
TOLUENE	108-88-3	0.00 E+0	7.54 E+2	0.00 E+0	6.00 E-02	1.20 E+02			0.00 E+00	4.66 E-02	0.00 E+00	SCREEN
N-PENTANE	109-66-0	0.00 E+0	1.77 E+4	0.00 E+0	8.40 E-02	1.68 E+02			0.00 E+00	6.53 E-02	0.00 E+00	SCREEN
HEXANE	110-54-3	0.00 E+0	1.76 E+3	0.00 E+0	3.68 E-01	7.36 E+02			0.00 E+00	2.86 E-01	0.00 E+00	SCREEN
ANTHRACENE	120-12-7	0.00 E+0	2.00 E+1	0.00 E+0	8.80 E-05	1.76 E-01			0.00 E+00	6.84 E-05	0.00 E+00	SCREEN
PYRENE	129-00-0	0.00 E+0	2.00 E+1	0.00 E+0	2.16 E-04	4.32 E-01			0.00 E+00	1.68 E-04	0.00 E+00	SCREEN
HEPTANE	142-82-5	2.05 E+4	1.64 E+4	0.00 E+0	3.76 E+00	7.52 E+03			4.18 E+00	2.92 E+00	0.00 E+00	SCREEN
BENZO(G,H,I)PERYLENE	191-24-2	0.00 E+0	2.00 E+1	0.00 E+0	1.60 E-05	3.20 E-02			0.00 E+00	1.24 E-05	0.00 E+00	SCREEN
BENZO(E)PYRENE	192-97-2	0.00 E+0	2.00 E+1	0.00 E+0	4.40 E-05	8.80 E-02			0.00 E+00	3.42 E-05	0.00 E+00	SCREEN
INDENO(1,2,3-CD)PYRENE	193-39-5	0.00 E+0	0.00 E+0	4.17 E-2	2.80 E-06	5.60 E-03			0.00 E+00	0.00 E+00	2.49 E-07	SCREEN
PERYLENE	198-55-0	0.00 E+0	2.00 E+1	0.00 E+0	3.52 E-06	7.04 E-03			0.00 E+00	2.74 E-06	0.00 E+00	SCREEN
BENZO(B)FLUORANTHENE	205-99-2	0.00 E+0	0.00 E+0	0.00 E+0	4.00 E-05	8.00 E-02			0.00 E+00	0.00 E+00	3.55 E-06	SCREEN
FLUORANTHENE	206-44-0	0.00 E+0	8.20 E+1	0.00 E+0	2.44 E-04	4.88 E-01			0.00 E+00	1.90 E-04	0.00 E+00	SCREEN
BENZO(K)FLUORANTHENE	207-08-9	0.00 E+0	0.00 E+0	2.33 E-3	1.64 E-05	_			0.00 E+00	0.00 E+00	1.46 E-06	SCREEN
ACENAPHTHYLENE	208-96-8	0.00 E+0	2.46 E+1	0.00 E+0	3.44 E-03	6.88 E+00			0.00 E+00	2.67 E-03	0.00 E+00	SCREEN
2-METHYL-1-PENTENE	763-29-1	0.00 E+0	1.15 E+4	0.00 E+0	1.60 E+00	3.20 E+03			0.00 E+00	1.24 E+00	0.00 E+00	SCREEN
XYLENE	1330-20-7	6.51 E+3	4.34 E+3	0.00 E+0	8.00 E-02	1.60 E+02			8.89 E-02	6.22 E-02	0.00 E+00	SCREEN
LEAD	7439-92-1	0.00 E+0	5.00 E-1	0.00 E+0	2.48 E-04	4.96 E-01			0.00 E+00	1.93 E-04	0.00 E+00	SCREEN
	7439-96-5	0.00 E+0	2.00 E+0	0.00 E+0	3.08 E-03	6.16 E+00			0.00 E+00	2.39 E-03	0.00 E+00	SCREEN
MERCURY	7439-97-6	3.00 E-1	1.00 E-1	0.00 E+0	9.60 E-05	1.92 E-01			1.07 E-04	7.46 E-05	0.00 E+00	SCREEN
	7439-98-7	0.00 E+0	5.00 E+0	0.00 E+0	0.00 E+00	0.00 E+00			0.00 E+00	0.00 E+00	0.00 E+00	SCREEN
	7440-02-0	0.00 E+0	1.00 E+0	0.00 E+0	2.52 E-02	5.04 E+01			0.00 E+00	1.96 E-02	2.24 E-03	SCREEN
SILVER	7440-22-4	0.00 E+0	1.00 E-1	#REF!	1.92 E-04	3.84 E-01			0.00 E+00	1.49 E-04	0.00 E+00	SCREEN
	7440-28-0	0.00 E+0	2.00 E-1	0.00 E+0	1.64 E-06	3.28 E-03			0.00 E+00	1.28 E-06	0.00 E+00	SCREEN
ANTIMONY	7440-36-0	0.00 E+0	5.00 E+0	8.00 E-2	7.20 E-05	1.44 E-01			0.00 E+00	5.60 E-05	0.00 E+00	SCREEN

Page 84 of 242

CONTINUATION OF FORM 5T, PAGE 1	M 5T, PAGE	= 1								Col	ntinuation	Continuation Page 2 of 2
					Premises Wide	s Wide	Allowable Emissions	Emissions	Off-site (Off-site Concentrations per	ons per	Compliance
Toxic Air Pollutant (TAP)	CAS	Screen	Screening Levels (µg/	µg/m³)	Total TAP Emissions	TAP sions	Rate (AER) per COMAR 26.11.16.02A	ER) per 11.16.02A	Screenir	Screening Analysis (µg/m³)	(hg/m³)	Method Used?
	Number	1-hour	8-hour	Annual	(Ib/hr)	(Ib/yr)	(lb/hr)	(Ib/yr)	1-hour	8-hour	Annual	AER or Screen
ARSENIC	7440-38-2	0.00 E+0	1.00 E-1	7.00 E+0	2.24 E-04 4.48 E-01	4.48 E-01			0.00 E+00	1.74 E-04	1.99 E-05	SCREEN
BARIUM	7440-39-3	0.00 E+0	5.00 E+0	0.00 E+0	2.32 E-03 4.64 E+00	4.64 E+00			0.00 E+00	1.80 E-03	0.00 E+00	SCREEN
BERYLLIUM	7440-41-7	0.00 E+0	0-00 E+0	0.00 E+0	0.00 E+00 0.00 E+00	0.00 E+00			0.00 E+00	0.00 E+00	0.00 E+00	SCREEN
CADMIUM	7440-43-9	0.00 E+0	2.00 E-2	0.00 E+0	1.64 E-04	3.28 E-01			0.00 E+00	1.28 E-04	1.46 E-05	SCREEN
CHROMIUM	7440-47-3	0.00 E+0	5.00 E+0	0.00 E+0	2.20 E-03	4.40 E+00			0.00 E+00	1.71 E-03	0.00 E+00	SCREEN
CHROMIUM, VI	7440-47-3	0.00 E+0	1.00 E-1	0.00 E+0	1.80 E-04	3.60 E-01			0.00 E+00	1.40 E-04	0.00 E+00	SCREEN
COBALT	7440-48-4	0.00 E+0	2.00 E-1	0.00 E+0	0.00 E+00	0.00 E+00			0.00 E+00	0.00 E+00	0.00 E+00	SCREEN
COPPER	7440-50-8	0.00 E+0	2.00 E+0	0.00 E+0	1.24 E-03 2.48 E+00	2.48 E+00			0.00 E+00	9.64 E-04	0.00 E+00	SCREEN
VANADIUM	7440-62-2	0.00 E+0	5.00 E-1	0.00 E+0	0.00 E+00 0.00 E+00	0.00 E+00			0.00 E+00	0.00 E+00 0.00 E+00 0.00 E+00	0.00 E+00	SCREEN
ZINC	7440-66-6	1.00 E+3	5.00 E+1	0.00 E+0	2.44 E-02 4.88 E+01	4.88 E+01			2.71 E-02	1.90 E-02	0.00 E+00	SCREEN
PHOSPHORUS	7723-14-0	0.00 E+0	1.01 E+0	0.00 E+0	1.12 E-02 2.24 E+01	2.24 E+01			0.00 E+00	8.71 E-03	0.00 E+00	SCREEN
SELENIUM	7782-49-2	0.00 E+0	2.00 E+0	0.00 E+0	1.40 E-04	2.80 E-01			0.00 E+00	1.09 E-04	0.00 E+00	SCREEN
N20 (CONTROLLED)	10024-97-2	0.00 E+0	9.00 E+2	0.00 E+0	0.00 E+00	0.00 E+00			0.00 E+00	0.00 E+00	0.00 E+00	SCREEN
CRYSTALLINE SILICA	1317-95-9	0.00 E+0	2.50 E-1	0.00 E+0	1.03 E-04	1.08 E+00	0.003		0.00 E+00	3.28 E-02	0.00 E+00	SCREEN

APPENDIX E

E. ARA Form 6

for the Baghouse

MARYLAND DEPARTMENT OF THE ENVIRONMENT

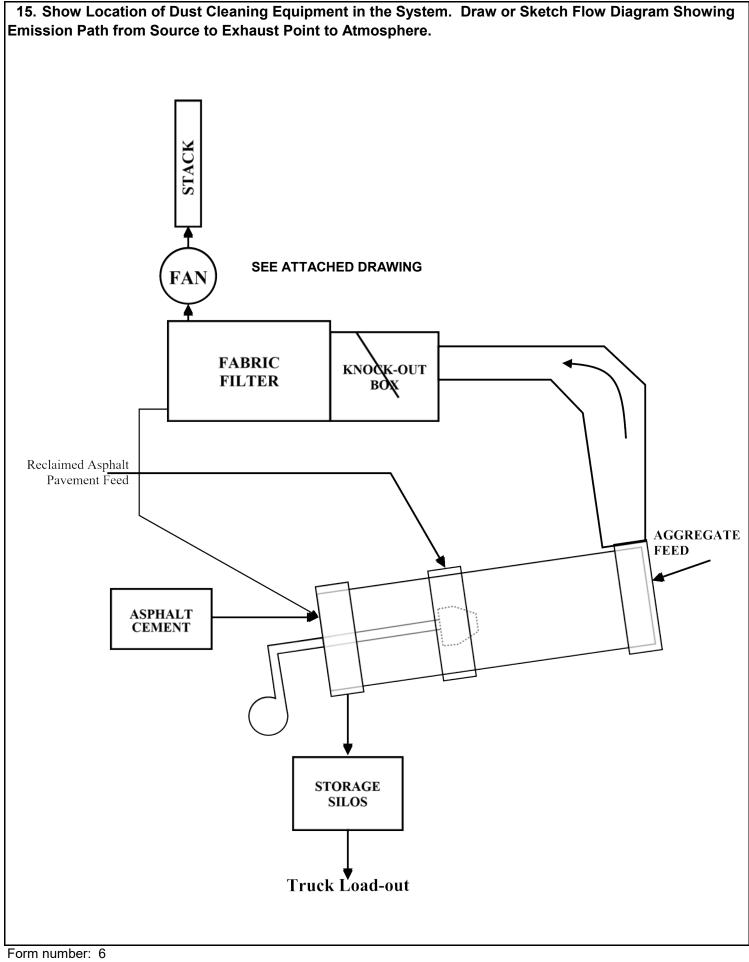
1800 Washington Boulevard ■ Baltimore, Maryland 21230 (410) 537-3230 ■ 1-800-633-6101 ■ www.mde.state.md.us

Air and Radiation Management Administration
Air Quality Permits Program

	ation for Permit to (ing or Emission Contr		
1. Owner of Installation	Telephone No.		Date of Application
STANCILLS INC.	(4	10) 554-1077	
2. Mailing Address	City	Zip Code	County
2444 LOCH RAVEN ROAD	BALTIMORE	21218	BALTIMORE
3. Equipment Location	City/Town or P	[.] .0.	County
499 MOUNTAIN HILL ROAD	PERRYVILL	E	CECIL
4. Signature of Owner or Operator	7 Title		Print or Type Name
Cuantusel	V.P. PLANT OPERATI	ONS B	RIAN RUSSELL
5. Application Type:	Alteration	New Construction	on X
6. Date Construction is to Start:		Completion Date	e (Estimate):
1-Feb-22		31-Ma	r-23
7. Type of Gas Cleaning or Emission Contro	ol Equipment:		
Simple Multiple Cyclone Cyclone	Afterurner	BaghouseX	Electrostatic Precipitator
Scrubber(type)	Other X	INTEGRATE	D KNOCKOUT BOX (type)
8. Gas Cleaning Equipment Manufacturer	Model No.	Collection Efficie	ency (Design Criteria)
CWMF		99.9	90%
9. Type of Equipment which Control Equipn	nent is to Service:		
ASPHALT PAVING MATERIALS MI			
10. Stack Test to be Conducted:			
Yes No	TO BE DETERMINE (Stack Test to be Conduct		(Date)
11. Cost of Equipment			
Estimated Erection Cost			· · · · · · · · · · · · · · · · · · ·
Form number: 6			

Form number: 6 Revision date: 0/2000 TTY Users 1-800-735-2258

1800 Washington Boulevard ■ Baltimore, Maryland 21230 (410) 537-3230 ■ 1-800-633-6101 ■ www.mde.state.md.us


Air and Radiation Management Administration
Air Quality Permits Program

Application for Permit to Construct Gas Cleaning or Emission Control Equipment

1. Owner of Installation	Telephone No	Date of Application	
STANCILLS INC.	(4	10) 554-1077	
2. Mailing Address	City	Zip Code	County
2444 LOCH RAVEN ROAD	BALTIMORE	21218	
3. Equipment Location	City/Town or I	P.O.	County
499 MOUNTAIN HILL ROAD	PERRYVILL	E	CECIL
4. Signature of Owner or Operator	Title		Print or Type Name
	V.P. PLANT OPERAT	IONS B	RIAN RUSSELL
5. Application Type:	Alteration	New Construction	on X
6. Date Construction is to Start:		Completion Date	e (Estimate):
1-Feb-22		1-Mai	r-23
7. Type of Gas Cleaning or Emission Contr	ol Equipment:		
Simple Multiple Cyclone Cyclone	Afterurner	Baghouse	Electrostatic Precipitator
Scrubber(type)	Other	STAND-AL	ONE KNOCKOUT BOX (type)
8. Gas Cleaning Equipment Manufacturer	Model No.	Collection Effici	ency (Design Criteria)
CWMF		99.	90%
9. Type of Equipment which Control Equip	ment is to Service:		
ASPHALT PAVING MATERIALS M	IXING PLANT		
10. Stack Test to be Conducted:			
Yes No	TO BE DETERMINI (Stack Test to be Condu		(Date)
11. Cost of Equipment			
Estimated Erection Cost			
Form number: 6			

Form number: 6 Revision date: 0/2000 TTY Users 1-800-735-2258

	<u>INLET</u>			<u>OUTLE</u>	T	
Gas Flow Rate	75,789	ACFM*		8	0,000	ACFM*
Gas Temperature	260	°F			300	°F
Gas Pressure	N/A	INCHES W.G.	_		N/A	INCHES W.G.
		PRESSURE DROP	2 TO 6 IN.	WG		
Dust Loading	30	GRAINS/ACFD**		().028	GRAINS/ACFD**
Moisture Content	25.0	%			25.0	%
Wet Bulb Temperature		°F				°F
OR Liquid Flow Rate		GALLONS/MINUT	E			
(Wet Scrubber) (WHEN SCRUBB	ER LIQUID OTHER	THAN WATER INDIC	ATE COMPOSITIO	N OF SCRU	BBING ME	DIUM IN WEIGHT %
,		C FEET PER MINUTE		CTUAL CUB		
CONCEN COMPOSITION OF GASES BE 13. Particle Size A	IRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis	VOLVES THE REDUC POLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAIL	VOLUME PE CE AND THE ABLE SPAC	ERCENT. I COMPOS E IN ITEM	NCLUDE THE SITION OF EXHAUST 15 ON PAGE 3.
CONCENT COMPOSITION OF GASES BE 13. Particle Size A Size of Dust Particle	TRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I	POLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAIL	VOLUME PE CE AND THE ABLE SPAC	ERCENT. I COMPOS E IN ITEM	NCLUDE THE BITION OF EXHAUST 15 ON PAGE 3.
CONCENT COMPOSITION OF GASES BE 13. Particle Size A Size of Dust Particle 0 TO	TRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I 10 MICRONS	POLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAIL <u>% of Total Dust</u> 29.5	VOLUME PE CE AND THE ABLE SPAC	ERCENT. I COMPOS E IN ITEM	NCLUDE THE BITION OF EXHAUST 15 ON PAGE 3. be Collected 99.05
CONCENT COMPOSITION OF GASES BE 13. Particle Size A Size of Dust Particl 0 TO 10 TO	TRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I	POLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAIL	VOLUME PE CE AND THE ABLE SPAC	ERCENT. I COMPOS E IN ITEM	NCLUDE THE BITION OF EXHAUST 15 ON PAGE 3.
CONCENT COMPOSITION OF GASES BE 13. Particle Size A Size of Dust Particl 0 TO 10 TO	TRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I 10 MICRONS	POLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAIL <u>% of Total Dust</u> 29.5 27	VOLUME PE CE AND THE ABLE SPAC	ERCENT. I COMPOS E IN ITEM	NCLUDE THE BITION OF EXHAUST 15 ON PAGE 3. be Collected 99.05 99.95
CONCENT COMPOSITION OF GASES BE 13. Particle Size A Size of Dust Particl 0 TO 10 TO	TRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I 10 MICRONS 44 MICRONS ER THAN 44 MICRON	POLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAIL <u>% of Total Dust</u> 29.5 27	VOLUME PE CE AND THE ABLE SPAC	ERCENT. I COMPOS E IN ITEM	NCLUDE THE BITION OF EXHAUST 15 ON PAGE 3. be Collected 99.05 99.95
CONCENT COMPOSITION OF GASES BE 13. Particle Size A Size of Dust Particl 0 TO 10 TO LARG	TRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I 10 MICRONS 44 MICRONS ER THAN 44 MICROM Shall Be Design	POLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAILA <u>% of Total Dust</u> 29.5 27 43.5 C	FM (DO I	ERCENT. I COMPOS E IN ITEM	NCLUDE THE BITION OF EXHAUST 15 ON PAGE 3. be Collected 99.05 99.95
CONCENT COMPOSITION OF GASES BE	TRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I 10 MICRONS 0 44 MICRONS ER THAN 44 MICRON Shall Be Design minated Air	POLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAIL <u>% of Total Dust</u> 29.5 27 43.5	FM (DO I	ERCENT. I COMPOS E IN ITEM	NCLUDE THE BITION OF EXHAUST 15 ON PAGE 3. be Collected 99.05 99.95 100
CONCENT COMPOSITION OF GASES BE	IRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I 10 MICRONS 0 44 MICRONS 0 44 MICRONS ER THAN 44 MICRON Shall Be Design minated Air rature	POLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAILA <u>% of Total Dust</u> 29.5 27 43.5 C C	FM (DO I	ERCENT. I COMPOS E IN ITEM	NCLUDE THE BITION OF EXHAUST 15 ON PAGE 3. be Collected 99.05 99.95 100
CONCENT COMPOSITION OF GASES BE	IRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I 10 MICRONS 0 44 MICRONS 0 44 MICRONS ER THAN 44 MICRON Shall Be Design minated Air rature	POLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAILA <u>% of Total Dust</u> 29.5 27 43.5 C C		ERCENT. I COMPOS E IN ITEM	DE COMBUSTION AIR)
CONCENT COMPOSITION OF GASES BE 13. Particle Size A Size of Dust Particl 0 TO 10 TO 10 TO LARG 12. The Following Volume of Conta Gas Inlet Temper Capacity of After	IRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I 10 MICRONS 0 44 MICRONS ER THAN 44 MICRON Shall Be Design I minated Air rature burner a) of Afterburner Thr mber	UPOLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAIL 29.5 27 43.5 C C 0F B			DE COMBUSTION AIR)
CONCENT COMPOSITION OF GASES BE	IRATION OF EACH THE GASES ENTE ING DISCHARGED nalysis es Entering Cleaning I 10 MICRONS 0 44 MIC	UPOLLUTANT IN THE RING ENTERING THE INTO THE ATMOSPH	GAS STREAM IN CLEANING DEVIC ERE. USE AVAILA <u>% of Total Dust</u> 29.5 27 43.5 C C Operation	FM (DO I		DE COMBUSTION AIR)

Date Received: Local	State
Acknowledgement Date: By	
Reviewed by: Local State	
Returned to Local: Date By	
Application Returned to Applicant: Date By	
REGISTRATION NUMBER OF ASSOCIATED EQUIPMENT:	
PREMISES NUMBER:	
Emission Calculations Revised by	Date
Form number: 6	Page 4 of 4

APPENDIX F

F. ARA Form 11

for the Hot Oil Heater

MARYLAND DEPARTMENT OF THE E 1800 Washington Blvd = Baltimore, Mary (110) 527 2020 = 1 800 602 6101 = Water	/land 21230
(410) 537-3230 = 1-800-633-6101 = www.m Air and Radiation Management Administration = Air APPLICATION FOR FUEL BURNIN	Quality Permits Program G EQUIPMENT
Permit to Construct 🗷 Registration Update 🗅	Initial Registration 🖵
1A. Owner of Equipment/Company Name	DO NOT WRITE IN THIS BOX 2. Registration Number
STANCILLS INC. Mailing Address/Street	County No. Premises No.
2444 LOCH RAVEN ROAD	
CityStateZip CodeBALTIMOREMD21218	Registration Class Equipment No.
Telephone Number 410.554.1077	76–11 <u>Data Ye</u> ar
Print Name/Title	12-13 Application Date
BRIAN RUSSELL, VICE PRESIDENT PLANT OPERATIONS	Date:7-15-202-1
1B. Equipment Location (if different from above give Street Number an	
499 MOUNTAIN HILL ROAD PERRYVILLE, MD 21903410.241.3079	
Premises Name (if different from above):	
A= New EquipmentStatus(MM/YY)(MIB= Modification to Existing EquipmentA0220	Ction Completed Existing Initial Operation (MM/YY) 3 2 3 2 0-23 20-23
4. Describe this Equipment (Make, Model, Features, Manufacturer, et	
THERMAL FLUID HEAT EXCHANGER (HOT OIL HEATER) RATED @ 3 MMB	•
5. Workmen's Compensation Coverage: Binder/Policy Number:	4097121
Company Name: <u>HARTFORD INSURANCE CO.</u>	Expiration Date 01 NOVEMBER 2021
NOTE: Before a Permit to Construct may be issued by the Department, the a of worker's compensation coverage as required under Section 1-	
6. Number of Pieces of Identical Equipment to be Registered/Permitt	ed at this Time: 1
7. Person Installing this Equipment (if different from above give Nam Telephone Number): CWMF 701 JULEP RD., WAITE PARK, MN 56387 320.251.1306	ne/Title, Company Name, Mailing Address and TRAVIS MICK, VP/SALES MANAGER
8. Major Activity, Product or Service of Company at this Location:	
TOPSOIL PROCESSING AND SALES PRODUCTION OF ASPHALT PAVING MIXES	
9. Control Devices Associated with this Equipment None Simple/Multiple Spray/Adsorb Venturi Carbor 24-0 24-1 24-2 24-3	
Thermal/Catalytic Dry X Descril Afterburner 24-7 24-8 Other 24-9	be KNOCK-OUT BOX
Form number: 11	

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • www.mde.state.md.us

	gement Administration • Air (
APPLICATION	FOR FUEL BURNIN	GEQUIPMENT	
Permit to Construct 🗷	Registration Update 🖵	Initial Registration	
1A. Owner of Equipment/Company Name		DO NOT WRITE	
STANCILLS INC.		2. Registration Numb County No.	Premises No.
Mailing Address/Street			Freinises No.
2444 LOCH RAVEN ROAD		1-2	3-6
City State	Zip Code	Registration Class	Equipment No.
BALTIMORE MD	21218		
Telephone Number 410.554.1077		7 Data Year	6-11
Print Name/Title			
		12-13	Application Date
BRIAN RUSSELL, VICE PRESIDENT		 Date:	
1B. Equipment Location (if different from a	above give Street Number and	d Name, City, State, Zip and	Telephone Number):
499 MOUNTAIN HILL ROAD	410.241.3079		
PERRYVILLE, MD 21903 Premises Name (if different from above):	410.241.5079		
Premises Name (ir different from above).			
3. Status New Construct			Initial Operation
A= New Equipment Status (MM/YY	(MM	I/YY) (M	IM/YY)
B= Modification to Existing Equipment A 0 2 2	0 3	2 3	
C= Existing Equipment 15 16-19		-23	20-23
4. Describe this Equipment (Make, Model, THERMAL FLUID HEAT EXCHANGER (HOT OIL			DNING NATURAL CAS
		· · · · · · · · · · · · · · · · · · ·	KINING NATUKAL GAS.
5. Workmen's Compensation Coverage:	Binder/Policy Number:	4097121	
Company Name: <u>HARTFORD INSURANCE C</u>	20	Expiration Date 01 N	OVEMBER 2021
NOTE: Before a Permit to Construct may be is of worker's compensation coverage			
6. Number of Pieces of Identical Equipmer	t to be Registered/Permitte	ed at this Time: 1	
7. Person Installing this Equipment (if diffe	erent from above give Name	e/Title, Company Name, N	ailing Address and
Telephone Number): CWMF		,,,,,,,	
701 JULEP RD., WAITE 320.251.1306	PARK, MN 56387	TRAVIS MICK, VP/SALES N	MANAGER
8. Major Activity, Product or Service of Co	mpany at this Location:		
TOPSOIL PROCESSING AND SALES	, ,		
PRODUCTION OF ASPHALT PAVING MIXES	5		
9. Control Devices Associated with this Ec	luipment		
None Simple/Multiple Spray/Adsorb		Electrostatic	Bag- X
Cyclones Tower 24-0 24-1 2	Scrubber Adsorbe	er Precipitator 24-5	house 24-6
			-
Thermal/Catalytic Dry Afterburner Scrubbe		e_KNOCK-OUT BOX	
24-7	24-8 24-9		

10. Annual Fuel Consumption for this Equipment Only
OIL-1000 GALLONS SULFUR % GRADE NATURAL GAS-1000 FT ³ LP GAS-100 GALLONS GRADE
26-31 32-33 34 35-41 42-45
COAL-TONS SULFUR % ASH% WOOD-TONS MOISTURE %
46-52 53-55 56-58 59-63 64-65
OTHER FUELS ANNUAL AMOUNT CONSUMED OTHER FUEL ANNUAL AMOUNT CONSUMED
(Specify Type) 66-1 (Specify Units of Measure) (Specify Type) 66-2 (Specify Units of Measure) 1= Coke 2= COG 3=BFG 4=Other
11. Operating Schedule (for this equipment) 1=Pressure Gun 1=Cyclone
Comfort/Space Process Percent Oil Burner 2=Air Atomizer Coal Burner 2=Stoker
Heating Only Heat Only A Process Heat Type 3=Steam Atomizer Type 3=Pulverized 67-1 67-2 68-69 70 4=Rotary Cup 71 4=Hand Fired
SEASONAL VARIATION IN OPERATION (PERCENT):
Days Per Days Per 3 6 5 None X Winter Spring Summer Fall
72 73-75 76 77-78 79-80 81-82 83-84 12. Exhaust Stack Information
Height Above Ground (ft) Inside Diameter at Top (inches) Exit Temperature (°F) Exit Velocity (ft/sec)
42. Total Stack Emissions (for this any inment only) in Doundo Day Operating Day
13. Total Stack Emissions (for this equipment only) in Pounds Per Operating Day Particulate Matter
99-104 105-110 111-116
Carbon Monoxide 3 Volatile Organic Compounds 0 PM-10 1 117-122 123-128 129-134
14. Method Used to Determine Emissions (1=Estimate, 2=AP42, 3=Stack Test, 4=Other Emission Factor)
TSP 2 SOx 2 NOx 2 CO 2 VOC 2 PM10 2 165 166 167 168 169 170
15. What is the Maximum Rated Heat Input of this Unit (Million Btu/hr)? 3
Air and Radiation Management Administration Use Only 16. Date Rec'd Local Date Rec'd State
Return to Local Jurisdiction Date By By
Rev'd by Local Jurisdiction: Date By Rev'd by State: Date By
Acknowledgement Sent by State: Date By
17. Inventory Date (MM/YY) SCC Code 18. Annual Operating Rate Maximum Design Hourly Rate
171-174 178-185 186-192 193-199
Permit to Operate Month Transaction Date Staff Code VOC SIP Code
200-201 202-207 208-210 211 212 213 214
Regulation Code Confidentiality 215-218
Point Description A: Add
220-238 Action C: Change
Form number: 11 Revision date: 09/27/2002 Page 2 of 2

TTY Users 1-800-735-2258

APPENDIX G

G.ARA Form 44

for the Crushing & Screening Plant ENGINES

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration / Air Quality Permits Program 1800 Washington Boulevard, STE 720 Baltimore, Maryland 21230-1720 (410) 537-3230 • 1-800-633-6101 • www.mde.state.md.us

Mail application to MDE/ARMA 1800 Washington Blvd, Suite 720 Baltimore, MD 21203-1720

Don't forget to: ✓ Sign the application ✓ Include vendor literature

Air Quality Permit to Construct & Registration Application for
INTERNAL COMBUSTION ENGINES
(Electrical Power Generators, Power Equipment, Fire Protection Pumps)

1) Applicability

Х

You <u>must</u> check off <u>one</u> of the following items to use this application form

Electrical power generation (off grid, base load, peak, load shaving, etc.)Use MDE Form 42 for emergency use only generators

Power equipment (hydraulic, mechanical, etc.)

Fire protection pump

For electrical power generators only, you <u>must</u> check off <u>one</u> of the following items to use this application form

I have a CPCN Exemption from the Public Service Commission for this generator (contact the Public Service Commission at 410.767.8131)

This generatore was installed before October 1, 2001 and I do not need a CPCN Exemption

2) Business/Ins	titution/Facility where	e the engine will	l be loca	ated		Che	ck if this is a federal facil	ity
Name:	SI	ANCILLS INC	-			Phone:	(410) 554-1077	
Street Address:			499 MC)		
City:	PERRYVILLE	State:	MD	Zip Code:	21903	County:	CECIL	
3) Owner/Oper	ator of the engine (if o	lifferent than abo	ove)					
Name:	S	ANCILLS INC				Phone:	(410) 241-3079	
Mailing Address			2444 I		N ROAD			
City:	BALTIMORE	State:	MD	Zip Code:	21218	-		
4) Installer	Check if installer	is applying for p	ermit.	If checked, co	mplete the	e following:		
Name:						Phone:		
Mailing Address	::							
City:		State:		Zip Code:		-		
Form Number: MD TTY Users 1-800-7		sed: 12/08/09					Page 1 of 2 Recycled Paper	\bigcirc

5) Engine Inform	ation			
TBD	ENGINE 1	525	Tier 4i	DIESEL
TBD	ENGINE 2	200	Tier 4i	DIESEL
TBD	ENGINE 3	99	Tier 4i	DIESEL
Installation Date	Engine Manufacturer & Model	Horsepower	Manufacture Date	Fuel Type

6) Operating Information

Intended use desription: (Examples, "a portable generator at a construction site" or "peak shaving with the emergency generator", etc.)

ENGINE 1 WILL POWER A 300-TON-PER-HOUR CRUSHER, ENGINE 2 WILL POWER A 500-TON-PER-HOUR

DOUBLE-DECK SCREENER AND ENGINE 3 WILL POWER A STACKING CONVEYOR.

8	1,800
Hours per day	Hours per year

7) Required Attachments

(Check that they are attached)

Owners Signature

Vendor literature EQUIPMENT HAS NOT YET BEEN SELECTED BUT WILL NOT EXCEED

CPCN Exemption from the Public Service Commission

SPECS IN THIS APPLICATION.

- Electrical generators only
- Not needed for generators installed before October 1, 2001

8) Workers Compensation (Environmental article §1-202)

Workers insurance policy or binder number: HARTFORD MUTUAL INSURANCE CO., BINDER #4097121, EXPIRING 11/01/2021

Check if self employed or otherwise exempt from this requirement

" I CERTIFY UNDER PENALTY OF LAW THAT THE INFORMATION SUBMITTED IN THIS REQUEST FOR COVERAGE IS, TO THE BEST OF MY KNOWLEDGE AND BELIEF, TRUE, ACCURATE, AND COMPLETE. I AM AWARE THAT THERE ARE SIGNIFICANT PENALTIES FOR SUBMITTING FALSE INFORMATION, INCLUDING THE POSSIBILITY OF FINE AND IMPRISONMENT FOR KNOWING VIOLATIONS."

BRIAN RUSSELL, V.P. PLANT OPERATIONS

Printed Name and Title

Date

		LEAV	E BLANK, MD	E use only		
Permit Registratio	on (Less that	n 1,000 brake ho	orsepower & inst	alled prior to 11/2	24/03)	
Permit/Regist	tration Number:					
AI:						
Emissons Stack						
Fugitive	SOx	NOx	СО	VOC	PM	PM-10

5) Engine Inform	ation				
TBD	ENGINE 1	525	Tier 4i	DIESEL	
TBD	ENGINE 2	200	Tier 4i	DIESEL	
TBD	ENGINE 3	99	Tier 4i	DIESEL	
Installation Date	Engine Manufacturer & Model	Horsepower	Manufacture Date	Fuel Type	
6) Operating Info	rmation				
Intended use desrip	tion: (Examples, "a portable generat	tor at a construction	site" or "peak shaving w	vith the emergency gener	rator", etc.)
ENGINE 1 WILL	POWER A 300-TON-PER-HOUR	CRUSHER, ENG	SINE 2 WILL POWER	A 500-TON-PER-HOL	JR
DOUBLE-DECK	SCREENER AND ENGINE 3 WIL	L POWER A ST	ACKING CONVEYOR.	•	
8 Hours per day	1,800 Hours per year				
7) Required Attac	chments				
(Check that they are	e attached)				
Vendor litera	ature EQUIPMENT HAS NO	T YET BEEN S	ELECTED BUT WIL	L NOT EXCEED	
CPCN Exem	ption from the Public Service Comm	ission SPE	CS IN THIS APPLIC	ATION.	
•	Electrical generators only Not needed for generators installed	d before October 1.	2001		
	U	···· -····,			
8) Workers Com	pensation (Environmental article §1-	202)			
Workers insurance	policy or binder number: HART	FORD MUTUAL IN	SURANCE CO., BINDER	R #4097121, EXPIRING	11/01/2021
Check if self em	ployed or otherwise exempt from thi	is requirement			
TO THE BEST OF	ER PENALTY OF LAW THAT THI MY KNOWLEDGE AND BELIEF,	TRUE, ACCURA	IE, AND COMPLETE.	I AM AWARE THAT I	HERE ARE
SIGNIFICANT PE	NALTIES FOR SUBMITTING FAL FOR KNOWING VIOLATIONS."	SE INFORMATIO	N, INCLUDING THE PO	DSSIBILITY OF FINE A	ND
CK.	\cap // \cap				
Owners Signat		AN RUSSELL, V.P. Printed Name ar	PLANT OPERATIONS	7-15-0 Date	1021
Owners Signat				Date	
	LEAVE	BLANK, MDE us	e only		
Permit					
Registr	ation (Less than 1,000 brake hors	sepower & installed	prior to 11/24/03)		
Permit/Re	gistration Number:	_ = =			
AI:					
Emissons					
Stack					
Fugitive	SOx NOx				
	SUX INUX	CO	VOC PM	PM-10	

Page 100 of 242 Stancills Inc. Page 2 of 2

APPENDIX H

H. Emission Estimates for Criteria Air Pollutants

ÉMISSION ESTIMATES FOR POINT SOURCES.

Stancills 🛕

STANCILLS INC. -- PERRYVILLE

APPLICATION FOR PERMIT TO CONSTRUCT

CRITERIA POLLUTANTS for ASPHALT PAVING MATERIALS MIXING PLANT

Operating Parameter	Quantity	Unit	POTENTIA	L TO EMIT PE	RMIT LIMIT
Design Production Capacity	400	tons APM/hour			
Permit Limit Tons/year	800,000	tons APM/year			
Aggregate Content	54.5	%	For 800,00	0 tons/yr prod	uction: VOC
RAP Content	40	%	emissions	of 12.8 tons/yr	, NOx
Asphalt Content	5.5	%	emissions	of 22.0 tons/yr	, and CO
Fuel Consumption, estimate	300	CF/ton APM	emissions	of 52.0 tons/yr	
Operating Schedule	16	hours/day			
	210	days/year			
			Design	DAILY*	
POLLUTANT	Emission Factor	Emission Factor	Capacity	Emission Rate	Restricted PTE
	Source	(Ib/ton APM)	(lb/hr)	(lbs/day)	(tons/yr)
PM10, stack	Emis. Conc. Limit	0.0109	4.36	70	4.4
PM2.5, stack	Emis. Conc. Limit	0.0076	3.05	49	3.1
Condensable PM	AP-42, Tbl 11.1-3	0.0194	7.76	124	7.8
Oxides of Sulfur	AP-42, Tbl 11.1-7	0.011	4.40	70	4.4
Oxides of Nitrogen	AP-42, Tbl 11.1-7	0.055	22.00	352	22.0
Carbon Monoxide	AP-42, Tbl 11.1-7	0.13	52.00	832	52.0
VOC (Total)	AP-42, Tbl 11.1-8	0.032	12.80	205	12.8
Lead	AP-42, Tbl 11.1-11	1.50 E-05	6.0 E-3	9.6 E-2	6.0 E-3
Carbon Dioxide (CO2)	AP-42, Tbl 11.1-7	3.30 E+01	1.3 E+4	2.1 E+5	1.3 E+4
Nitrous Oxide (N2O)	N/A	N/A			
Methane (CH4)	AP-42, Tbl 11.1-8	1.20 E-02	4.80	77	4.8

	Burner Rating	Annual Fuel Consumption
Fuel Consumption	120 MMBTUs/hr	286 MMCF / yr

FUGITIVE DUST EMISSION	Emission Factor Sources	Emission Factor (Ib/ton APM)	Design Capacity (lb/hr)	Daily Emission Rate (Ibs/day)	Restricted PTE (tons/year)
PM ₁₀	WEBFIRE	0.00098	0.3919	6.30	0.39
PM _{2.5}	WEDFINE	0.00012	0.0465	0.70	0.05

METHOD FOR Determining PM₁₀ & PM_{2.5} Stack Emission Factor & Emission Rate

Exhaust fan capacity Exhaust Gas Moisture Exhaust fan temperature Standard Temperature	80,000 25.0% 300 77		ire content bsolute Temp (°R): 760 bsolute Temp (°R): 537
Exhaust Gas Flow rate ¹ MDE limit, grain/SCFD lb PM per hour ²	42,395 0.04 14.54	DSCFM	
	<u>PM10</u>	<u>PM25</u>	
Fraction of Baghouse catch Emission Rate Emission Factor³	30% 4.362 0.0109	21% 3.053 0.0076	AP-42, Table 11.1-4, % in Fabric Filter emission lb / hour lb / ton APM

¹ multiplied ACFM by (1-ExGas Moist) then by Abs StdTemp, divide by Abs ExFanTemp. ² multiplied DSCFM by MDE emission concentration limit with appropriate units conversion. ³ divided hourly rate by design rate tons/hour.

ANNUAL FUEL CONSUMPTION ESTIMATE

Burner rating: Maximum Production Cap. Annual Average Production

Permit Limit for Production Operating Hours Natural Gas HHV Fuel Firing Rate, Hourly Annual Fuel Consumption 120 MMBTUs / hour 400 tons / hour 80% of maximum rated Production Capacity 320 tons / hour 800,000 tons / year 2,500 hours / year 1,050 MMBTUs / MMCF 0.1143 MMCF / hour 286 MMCF / year 2,158 MGAL / YR

STANCILLS INC. -- PERRYVILLE

APPLICATION FOR PERMIT TO CONSTRUCT

CRITERIA POLLUTANTS for HOT OIL HEATER

Operating Parameter	Quantity	Unit		Quantity	Unit
	NATUR	AL GAS		NO. 2 I	FUEL OIL
Burner Heat Input	3	MMBTUs/hr		3	MMBTUs/hr
Fuel Type	Natural Gas			#2 Fuel	
Fuel Heating Value	1050	MMBTUs/MMCF		139000	BTUs/gal
Fuel Consumption	0.00286	MMCF/hour		139	MMBTUs/MGAL
Daily Operations	24	hours/day		0.021583	MGAL/hr
Annual Operations	365	days/year			
	26	MMCF/yr		190	MGAL/YR
POLLUTANT	Emission	Emission Factor	Design Capacity	DAILY* Emission Rate	Restricted PTE
	Factor Source	(lb/MGAL)	(lb/hr)	(lbs/day)	(tons/yr)
PM10, stack	AP-42, Tbl 1.4-2	1.08	0.0233	0.56	0.10
PM2.5, stack	assume same as PM10	0.83	0.0179	0.43	0.08
Condensable PM	AP-42, Tbl	1.3	0.0281	0.67	0.12
Oxides of Sulfur	AP-42, Tbl 1.4-2	2.16	0.0466	1.12	0.20
Oxides of Nitrogen	AP-42, Tbl 1.4-1	20	0.4317	10.36	1.89
Carbon Monoxide	AP-42, Tbl 1.4-1	5	0.1079	2.59	0.47
VOC (Total)	AP-42, Tbl 1.4-2	0.34	0.0073	0.18	0.03
Lead	AP-42, Tbl 1.4-2	1.25 E-03	2.70 E-5	6.48 E-4	1.18 E-4
Carbon Dioxide (CO2)	AP-42, Tbl 1.4-2	2.23 E+04	4.81 E+02	1.16 E+4	2.11 E+3
Nitrous Oxide (N2O)	AP-42, Tbl 1.4-2	2.60 E-01	5.61 E-03	1.35 E-1	2.46 E-2
Methane (CH4)	AP-42, Tbl 1.4-2	2.16 E-01	4.66 E-03	1.12 E-1	2.04 E-2

Exhaust Gas Flow Rate Calculation

Combustion Calculations	14,950	DSCF / MCF (calculated)
	15,490	WSCF / MCF (calculated)
Exhaust Gas Flow	738	WSCFM
Exhaust Gas Temp.	400	oF
Standard Temperature	77	oF
Exhaust Gas flow at Stack	1,180	ACFM
Stack Diameter	12	inches
Discharge distance fr ground	10.00	feet
Exit Velocity	927	FPM
	15	FPS

Page 108 of 242

STANCILLS INC PERRYVILLE						
APPL	ICATION FOR F	PERMIT TO CON	ISTRUCT			
CRITERIA I	POLLUTAN [®]	TS for CRUS	SHER ENGI	NE		
Operating Parameter	ENGINE 1					
Original Eqpt Mftr (OEM)	TBD					
Engine Size, bHp	525					
Tier Rating	4i		608 M	Gal/yr		
Daily Hours	8		for all engine	es combined		
Annual Days	225					
Annual Hours	1800					
Emission Factor Source	Tier 4i Emis	sion Limits for PM	I, NOx, VOC, CC)		
Emission Factor Source	AP-42, Secti	on 3.3 for CO2				
	Crusher		DAILY			
POLLUTANT	Engine	Emission Rate	Emission Rate	Restricted PTE		
POLLUTANT	Engine (g/hp-hr)	Emission Rate (lb/hr)	Emission Rate (Ibs/day)	Restricted PTE (tons/yr)		
POLLUTANT PM10, stack	•					
	(g/hp-hr)	(lb/hr)	(lbs/day)	(tons/yr)		
PM10, stack	(g/hp-hr) 0.015	(lb/hr) 0.017	(Ibs/day) 0.139	(tons/yr) 0.016		
PM10, stack PM2.5, stack	(g/hp-hr) 0.015 0.015	(lb/hr) 0.017	(Ibs/day) 0.139	(tons/yr) 0.016		
PM10, stack PM2.5, stack Condensable	(g/hp-hr) 0.015 0.015	(lb/hr) 0.017	(Ibs/day) 0.139	(tons/yr) 0.016		
PM10, stack PM2.5, stack Condensable NOx/NMHC	(g/hp-hr) 0.015 0.015 N/A	(lb/hr) 0.017 0.017 	(Ibs/day) 0.139 0.139 	(tons/yr) 0.016 0.016 		
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen	(g/hp-hr) 0.015 0.015 N/A 0.3	(lb/hr) 0.017 0.017 0.347	(lbs/day) 0.139 0.139 2.778	(tons/yr) 0.016 0.016 0.313		
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen VOC (Total)	(g/hp-hr) 0.015 0.015 N/A 0.3 0.14	(lb/hr) 0.017 0.017 0.347 0.162	(lbs/day) 0.139 0.139 2.778 1.296	(tons/yr) 0.016 0.016 0.313 0.146		
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen VOC (Total)	(g/hp-hr) 0.015 0.015 N/A 0.3 0.14 2.6	(lb/hr) 0.017 0.017 0.347 0.162	(lbs/day) 0.139 0.139 2.778 1.296	(tons/yr) 0.016 0.016 0.313 0.146		
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen VOC (Total) Carbon Monoxide	(g/hp-hr) 0.015 0.015 N/A 0.3 0.14 2.6 Ib/MGAL	(lb/hr) 0.017 0.017 0.347 0.162 3.01	(lbs/day) 0.139 2.778 1.296 24.07	(tons/yr) 0.016 0.016 0.313 0.146 2.71		

FUEL CONSUMPTION

			-
	26.3 gal/hour	210 gal/day	379 MGal/yr
aust Gas Flo	w Data		
1,424	DSCF / gal (calc	ulated)	
1,471	WSCF / gal (cal	culated)	
644.6	WSCFM		
1,002	oF		
77	oF		
1,750	ACFM		
3	inches		
8.00	feet		
594.2	FPS		
181.1	MPS		
0.04909	SF		
9.9	FPM		
	1,424 1,471 644.6 1,002 77 1,750 3 8.00 594.2 181.1 0.04909	aust Gas Flow Data 1,424 DSCF / gal (calc 1,471 WSCF / gal (calc 644.6 WSCFM 1,002 oF 77 oF 1,750 ACFM 3 inches 8.00 feet 594.2 FPS 181.1 MPS 0.04909 SF	aust Gas Flow Data 1,424 DSCF / gal (calculated) 1,471 WSCF / gal (calculated) 644.6 WSCFM 1,002 oF 77 oF 1,750 ACFM 3 inches 8.00 feet 594.2 FPS 181.1 MPS 0.04909 SF

Page 109 of 242

STA		C PERRY	YILLE	
APPI	LICATION FOR F	PERMIT TO CON	ISTRUCT	
CRITERIA F	OLLUTANT	S for SCRE	ENER ENG	NE
Operating Parameter	ENGINE 2			
Original Eqpt Mftr (OEM)	TBD			
Engine Size, bHp	200			
Tier Rating	4i			
Daily Hours	8			
Annual Days	225			
Annual Hours	1800			
Emission Factor Source	Tier 4i Emiss	sion Limits for PM	I, NOx, VOC, CC)
Emission Factor Source	AP-42, Secti	on 3.3 for CO2		
			DAILY	
POLLUTANT	Screen Engine	Emission Rate		Restricted PTE
POLLUIANI	Screen Engine (g/hp-hr)	Emission Rate (lb/hr)		Restricted PTE (tons/yr)
POLLUTANT PM10, stack	-		Emission Rate	
	(g/hp-hr)	(lb/hr)	Emission Rate (Ibs/day)	(tons/yr)
PM10, stack	(g/hp-hr) 0.015	(lb/hr) 0.007	Emission Rate (Ibs/day) 0.053	(tons/yr) 0.006
PM10, stack PM2.5, stack	(g/hp-hr) 0.015 0.015	(lb/hr) 0.007	Emission Rate (Ibs/day) 0.053	(tons/yr) 0.006
PM10, stack PM2.5, stack Condensable	(g/hp-hr) 0.015 0.015	(lb/hr) 0.007	Emission Rate (Ibs/day) 0.053	(tons/yr) 0.006
PM10, stack PM2.5, stack Condensable NOx/NMHC	(g/hp-hr) 0.015 0.015 N/A	(lb/hr) 0.007 0.007 	Emission Rate (Ibs/day) 0.053 0.053 	(tons/yr) 0.006 0.006
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen	(g/hp-hr) 0.015 0.015 N/A 0.3	(lb/hr) 0.007 0.007 0.132	Emission Rate (Ibs/day) 0.053 0.053 1.058	(tons/yr) 0.006 0.006 0.119
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen VOC (Total)	(g/hp-hr) 0.015 0.015 N/A 0.3 0.14	(lb/hr) 0.007 0.132 0.062	Emission Rate (Ibs/day) 0.053 0.053 1.058 0.494	(tons/yr) 0.006 0.006 0.119 0.056
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen VOC (Total)	(g/hp-hr) 0.015 0.015 N/A 0.3 0.14 2.6	(lb/hr) 0.007 0.132 0.062	Emission Rate (Ibs/day) 0.053 0.053 1.058 0.494	(tons/yr) 0.006 0.006 0.119 0.056
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen VOC (Total) Carbon Monoxide	(g/hp-hr) 0.015 0.015 N/A 0.3 0.14 2.6 Ib/MGAL	(lb/hr) 0.007 0.132 0.062 1.15	Emission Rate (Ibs/day) 0.053 1.058 0.494 9.17	(tons/yr) 0.006 0.006 0.119 0.056 1.032

FUEL	CONSUMPTION	N

FUEL USAGE, GAL/HR		10.5 gal/hour	84 gal/day	151 MGal/yr
Exh	aust Gas Flo	w Data		
Combustion Flue Gas Exhaust Gas Flow	1,424 1,471 257.4	DSCF / gal (calco WSCF / gal (calco WSCFM	,	-
Exhaust Gas Temp.	1,002	oF		
Standard Temperature Exhaust Gas flow at Stack Stack Diameter	77 700 3	oF ACFM inches		
Discharge distance fr ground	8.00	feet		
Exit Velocity	237.7	FPS		
	72.4	MPS		
STACK AREA	0.04909	SF		
	4.0	FPM		

Т

Г

Page 110 of 242

STA		C PERRY	VILLE	r age 1
APPL	ICATION FOR F	PERMIT TO CON	ISTRUCT	
CRITERIA	POLLUTAN	TS for STAC	KER ENGI	NE
Operating Parameter	ENGINE 3			
Original Eqpt Mftr (OEM)	TBD			
Engine Size, bHp	99			
Tier Rating	4i			
Daily Hours	8			
Annual Days	225			
Annual Hours	1800			
Emission Factor Source	Tier 4i Emis	sion Limits for PM	I, NOx, VOC, CC)
Emission Factor Source	AP-42, Secti	on 3.3 for CO2		
	• ·			
	Stacker		DAILY	
POLLUTANT	Stacker Engine	Emission Rate	DAILY Emission Rate	Restricted PTE
POLLUTANT		Emission Rate (lb/hr)		Restricted PTE (tons/yr)
POLLUTANT PM10, stack	Engine		Emission Rate	
	Engine (g/hp-hr)	(lb/hr)	Emission Rate (Ibs/day)	(tons/yr)
PM10, stack	Engine (g/hp-hr) 0.015	(lb/hr) 0.003	Emission Rate (Ibs/day) 0.026	(tons/yr) 0.003
PM10, stack PM2.5, stack	Engine (g/hp-hr) 0.015 0.015	(lb/hr) 0.003	Emission Rate (Ibs/day) 0.026	(tons/yr) 0.003
PM10, stack PM2.5, stack Condensable	Engine (g/hp-hr) 0.015 0.015	(lb/hr) 0.003	Emission Rate (Ibs/day) 0.026	(tons/yr) 0.003
PM10, stack PM2.5, stack Condensable NOx/NMHC	Engine (g/hp-hr) 0.015 0.015 N/A	(lb/hr) 0.003 0.003 	Emission Rate (Ibs/day) 0.026 0.026 	(tons/yr) 0.003 0.003
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen	Engine (g/hp-hr) 0.015 0.015 N/A 0.3	(lb/hr) 0.003 0.003 0.065	Emission Rate (Ibs/day) 0.026 0.026 0.524	(tons/yr) 0.003 0.003 0.059
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen VOC (Total)	Engine (g/hp-hr) 0.015 0.015 N/A 0.3 0.14	(lb/hr) 0.003 0.003 0.065 0.031	Emission Rate (Ibs/day) 0.026 0.026 0.524 0.244	(tons/yr) 0.003 0.003 0.059 0.028
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen VOC (Total)	Engine (g/hp-hr) 0.015 0.015 N/A 0.3 0.14 3.7	(lb/hr) 0.003 0.003 0.065 0.031	Emission Rate (Ibs/day) 0.026 0.026 0.524 0.244	(tons/yr) 0.003 0.003 0.059 0.028
PM10, stack PM2.5, stack Condensable NOx/NMHC Oxides of Nitrogen VOC (Total) Carbon Monoxide	Engine (g/hp-hr) 0.015 0.015 N/A 0.3 0.14 3.7 Ib/MGAL	(lb/hr) 0.003 0.003 0.065 0.031 0.808	Emission Rate (Ibs/day) 0.026 0.524 0.244 6.460	(tons/yr) 0.003 0.003 0.059 0.028 0.727

FUEL CONSUMPTION

FUEL USAGE, GAL/HR		5.4 gal/hour	43 gal/day	78 MGal/yr
Exh	aust Gas Flo	w Data		
Combustion Flue Gas Exhaust Gas Flow	1,424 1,471 132.4	DSCF / gal (calc WSCF / gal (cal WSCFM	,	
Exhaust Gas Temp.	1,002	oF		
Standard Temperature Exhaust Gas flow at Stack Stack Diameter Discharge distance fr ground	77 360 3 4.00	oF ACFM inches feet		
Exit Velocity	122.2 37.3	FPS MPS		
STACK AREA	0.04909 0.6	SF FPM		

ÉMISSION ESTIMATES FOR FUGITIVE SOURCES.

Stancills 🛕

STANCILLS INC PERRYVILLE APPLICATION FOR PERMIT TO CONSTRUCT

DETERMINATION OF FUGITIVE PARTICULATE EMISSION FACTORS

Asphalt Cement added	800,000 tons APM produced per 12 months 4.0% by weight, wet basis
Annual Aggregate/KAP consumption, ary Maximum RAP content in APM	/ bs/,000 tons, @ 4% aspnatt cement added to APM mixes 40.0% by weight
RAP Consumption, dry	320,000 tons RAP (dry) used at 40% maximum RAP content
Annual Aggregate/RAP consumption, wet	808,421 tons, wet (5% moisture removed)
Annual RAP Consumption, wet	336,842 tons, wet, @ 5% moisture, dry basis.
Annual Virgin Aggregate consumption, wet	471,579 tons, wet, @ 5% moisture, dry basis.
Wet Aggregate/RAP to APM ratio	1.011 tons wet Aggregate/RAP per ton APM produced
Wet Aggregate/RAP Feed Rate	404 tons wet Aggregate/RAP per hour fed to plant
QUANTITY of Virgin Aggregate Stockpiles	7 stockpiles

FUGITIVE EMISSIONS DUE TO AGGREGATE / RAP HANDLING IN THE APM MIXING PROCESS -- PLANT FEED

TYPES OF MATERIAL HANDLING FUGITIVE EMISSIONS AND QUANTITY OF EACH TYPE:

Material Drops per ton of Aggregate / RAP used:	+	Aggregate	RAP
drop when materials transferred to stockpile	-		
drop when materials dropped into feed hoppers	-	0.583	0.417
Transfers to Conveyors			
TX from feed hopper to under-bin conveyor	-	0.583	0.417
TX from under-bin conveyor to Aggregate Conveyor 1	Ţ	0.583	
TX from under-bin conveyor to Recycle Conveyor 1	-		0.417
TX from Aggregate Screen to Aggregate Conveyor 2	Ŧ	0.583	
TX from Recycle Screen to Recycle Conveyor 2	-		0.417
TX from Aggregate Conveyor 2 to Plant Feed Conveyor (Agg only)	-	0.583	
		2.915	1.668
Screening Emissions			
Aggregate Screen	0.583		
Recycle Screen	0.417		

Recycle Screen The decimal numbers represent the fraction in the feed materials (not including the liquid asphalt added) for each type of feed material.

EMISSION FACTOR --> MATERIAL DROPS

From WEBFIRE, Sept. 2016	PM10	PM2.5	lb / ton wet aggregate/RAP per Drop/Load
Misc. Operations: Conveyor/Handling	0.000046	0.000013	
EMISSION FACTOR> SCREENING From WEBFIRE, Sept. 2016	PM10	PM2.5	

Page 113 of 242 Stancills Inc. PTC Appln

FUGITIVE PARTICULATE DUE TO MANUFACTURING OF ASPHALT PAVING MATERIALS

Screening (controlled)

Ib / ton wet aggregate/RAP per Screen 0.00005 0.00074

PM10 EMISSION FACTOR --> TRANSFER TO CONVEYOR

Misc. Operations: Conveyor/Handling From WEBFIRE, Sept. 2016

Ib / ton wet aggregate/RAP per Conveyor 0.000013

PM2.5

0.000046

	Quantity	PM10	PM2.5	PM10	PM2.5	PM10	PM2.5
Emission Point		Ib/ton per	Ib/ton per				
		movement	movement	lb/ton	lb/ton	lb/hour	lb/hour
Truck unloading to stockpiles (AGG)	1	4.60 E-5	1.30 E-5	4.60 E-5	1.30 E-5	1.86 E-2	5.25 E-3
Front-end loader to AGG Feed bins	0.583	4.60 E-5	1.30 E-5	2.68 E-5	7.58 E-6	1.08 E-2	3.06 E-3
AGG Feed bins drop to under-conveyor	0.583	4.60 E-5	1.30 E-5	2.68 E-5	7.58 E-6	1.08 E-2	3.06 E-3
AGG Feed bin under-conveyor to main conveyor	0.583	4.60 E-5	1.30 E-5	2.68 E-5	7.58 E-6	1.08 E-2	3.06 E-3
AGG Screener	0.583	7.40 E-4	5-00 E-5	4.31 E-4	2.92 E-5	1.74 E-1	1.18 E-2
AGG Screener Tx to process feed conveyor	0.583	4.60 E-5	1.30 E-5	2.68 E-5	7.58 E-6	1.08 E-2	3.06 E-3
Front-end loader to RAP feed bin	0.417	4.60 E-5	1.30 E-5	1.92 E-5	5.42 E-6	7.75 E-3	2.19 E-3
RAP Feed bins drop to under-conveyor	0.417	4.60 E-5	1.30 E-5	1.92 E-5	5.42 E-6	7.75 E-3	2.19 E-3
RAP Feed bin under-conveyor to main conveyor	0.417	4.60 E-5	1.30 E-5	1.92 E-5	5.42 E-6	7.75 E-3	2.19 E-3
RAP Screener	0.417	7.40 E-4	5.00 E-5	3.09 E-4	2.09 E-5	1.25 E-1	8.42 E-3
RAP Screener Tx to process feed conveyor	0.417	4.60 E-5	1.30 E-5	1.92 E-5	5.42 E-6	7.75 E-3	2.19 E-3
		Hourly Em	Hourly Emission Rate for APMMP Fugitive Dust	APMMP Fug	itive Dust	3.92 E-1	4.65 E-2

EMISSION RATES ORGANIZED FOR PM10 COMPLIANCE DEMONSTRATION

Ing Volumes Ib/hour Ib/day TWA Ib/hr Ib/year (AGG) 0.0186 0.297 0.0124 36.80 (AGG) 0.0186 0.297 0.0124 36.80 Ibins 0.0325 0.5201 0.0217 110.4 rers 0.0325 0.5201 0.0217 110.4 bin 0.1851 2.9621 0.1234 665.6 r 0.1851 2.9621 0.1234 665.6 bin 0.1557 2.4906 0.1038 739.2			E	PM ₁₀			$PM_{2.5}$	
3G) 0.0186 0.297 0.0124 36.80 1s 0.0325 0.5201 0.0217 110.4 0.1851 2.9621 0.1234 665.6 0.1557 2.4906 0.1038 739.2	For Dispersion Modeling Volumes	lb/hour	Ib/day	TWA Ib/hr	lb/year	lb/hour	lb/day	TWA Ib/hr
Is 0.0325 0.5201 0.0217 110.4 0.1851 2.9621 0.1234 665.6 0.1557 2.4906 0.1038 739.2	Truck unloading to stockpiles (AGG)	0.0186	0.297	0.0124	36.80	0.0053	0.084	0.0035
0.1851 2.9621 0.1234 665.6 0 0.1557 2.4906 0.1038 739.2	Front-end loader to AGG feed bins	0.0325	0.5201	0.0217	110.4	0.0092	0.1470	0.0061
0.1851 2.9621 0.1234 665.6 0 0.1557 2.4906 0.1038 739.2	AGG teed bin conveyor transfers							
0.1557 2.4906 0.1038 739.2	Aggregate Screener	0 1961	7 0621	0 1231	GEE E	87700	V 755 A	
0.1557 2.4906 0.1038 739.2	AGG Screener TX to conveyor		1702.7	0.1207	000.0	0.0140	0.401 4	0.0033
0.1557 2.4906 0.1038 739.2								
	RAP feed bin conveyor transfers	0 1667	2 1006	0 1030	720.2	0 0170	01200	0.0115
RAP Screener TX to conveyor	RAP Screener	1001.0	2.4300	0.1030	7.801	0.0172	0.2143	0.00
	RAP Screener TX to conveyor							

operating day. It is impossible to identify the number of trucks that will unload at each individual stockpile or the number of times the loader will load an individual feed bin during the course of the day. Therefore, for the purposes of the NAAQS PM-10 compliance demonstration, the timeweighted average emission rate shown above for the Truck Unloading to Stockpiles and for the Front-end loader to AGG feed bins was divided The production of APM uses several different sizes of virgin aggregates and different percentages of RAP throughout the course of one by the number of stockpiles and feed bins, respectively.

TWA Ib/hr per Aggregate Stockpile 0.00177 Individual Stockpiles, quantity: 7, assumed even usage

PARTICULATE EMISSIONS ESTIMATE FOR CRUSHING & SCREENING PLANT	I SNO	TS	IMA	TE	FOF	CF	ISU	INC	S S	SCRI	ENI	NG	LANT	
			·	- Ju			\mathbf{i}	\backslash						\backslash
	(au: 030,1			40 (313) (31	-		Sile Solo	\backslash				es la		
			tell ,	Drolli	13HIL	A Ine	243AUG		Drolu	13HI	A Ineli	ADAHO .		
		'esy	JSH OJE	Caroline Contraction of the second	storete Letere			'3ISH	stolet and a stolet	ALE REAL AND A ALE ALE ALE ALE ALE ALE ALE ALE ALE A	181 	States and		
		1.JOU				te R	10	k,I,I,I,I	RATING.		RATIN.		*****	
Description	RIJOR I H	SIE IN	Lister IV	A Harer	it) Hojej	33.135 JUS	Die Contraction	Stelly	Telly	JEIN ILS			Scheelle Street	
CRUSHING & SCI	REENIN	a) Si	eady Sta	Steady State operations	ations		•							
Feed Material unloading to Feed Stockpile	100%	1					1	0	0	0	0	0		
Feed Material transfer to Initial Feed Hopper	100%		1				0	1	0	0	0	0		
CRUSHER receives material & processes it	100%				1		0	0	0	0	1	0		
CRUSHER discharges to belt conveyor	100%			1			0	0	0	1	0	0		
Belt conveyor transfers to belt conveyor	100%						0	0	0	1	0	0		
SCREENER receives material & processes it	100%					1	0	0	0	0	0	1		
SCREENER discharges to Product Conveyors	100%			1			0	0	0	1	0	0		
Product Conveyor transfers to Stacker **	100%			-			0	0	0	1	0	0		
Stacker transfers to Temporary Stockpile	100%		1				0	1	0	0	0	0		
Temporary Stockpile Materials transferred to Stockpile 8	100%		1				0	1	0	0	0	0		
Stockpile 8 Materials loaded into haul vehicles	100%		1				0	0	1	0	0	0		
RECYCLE LOOP	Ø	teady (State op	Steady State operations										
SCREENER Top deck discharges to transfer chute	25%		1				0	0.25	0	0	0	0		
Transfer chute transfers to belt conveyor	25%			1			0	0	0	0.25	0	0		
Belt conveyor tranfsers to Feed Hopper	25%		1				0	0.25	0	0	0	0		
CRUSHER receives Oversize & processes it	25%				1		0	0	0	0	0.25	0		
CRUSHER discharges Oversize to belt conveyor	25%			1			0	0	0	0.25	0	0		
Belt Conveyor to belt conveyor	25%			1			0	0	0	0.25	0	0		
SCREENER receives Oversize & processes it	25%					1	0	0	0	0	0	0.25		
Total Emission Points per Emission Type							1.00	3.50	1.00	4.75	1.25	1.25		
* In the Emission Point column: "R" = Recycle loop for the CSP.														

Page 115 of 242

PM ₁₀ Emission Factors			4.6E-05	4.6E-05 4.6E-05 4.6E-05 4.6E-05 5.4E-04 7.4E-04	4.6E-05	4.6E-05	5.4E-04	7.4E-04	
PM ₁₀ Emission Rate lb/hour	Excavator Rate:	300 tons/hour	0.014	0.014 0.048 0.014 0.066 0.203 0.278	0.014	0.066	0.203	0.278	0.621 lb/hour
PM ₁₀ Emission Rate lb/day	Daily Hours:	8 hours/day	0.110	0.110 0.386 0.110 0.524 1.620	0.110	0.524	1.620	2.220	4.972 lb/day
PM ₁₀ Emission Rate ton/year	Annual tons:	100,000 tons/yr	0.002	0.008	0.002	0.011	0.034	0.046	0.002 0.008 0.002 0.011 0.034 0.046 0.104 ton/yr
PM _{2.5} Emission Factors			1.3E-05	.3E-05 1.3E-05 1.3E-05 1.3E-05 1.0E-04 5.0E-05	1.3E-05	1.3E-05	1.0E-04	5.0E-05	
PM _{2.5} Emission Rate lb/hour	Excavator Rate:	300 tons/hour	0.004	0.014	0.004	0.019	0.038	0.019	0.004 0.014 0.004 0.019 0.038 0.019 0.096 lb/hour
PM _{2.5} Emission Rate lb/day	Daily Hours:	8 hours/day	0.031	0.109	0.031	0.148	0.300	0.150	0.109 0.031 0.148 0.300 0.150 0.770 lb/day
PM _{2.5} Emission Rate ton/year	Annual tons:	100,000 tons/yr	0.001	0.002	0.001	0.003	0.006	0.003	0.001 0.002 0.001 0.003 0.006 0.003 0.016 ton/yr

0.0138 lb / hour, PM10 0.5939 lb / hour, PM10 0.0138 lb / hour, PM10

Unloading Emission Rate (SP9) CSP Emission Rate Stockpile Loading Emission Rate (SP8)

Page 115 of 242 Stancills Inc. PTC Appln

Fugitive Particulate Emissions associated with the Crushing Screening Plant Page 1 of 67

EMISSION ESTIMATÈS FOR HAZARDOUS AIR POLLUTANTS.

Stancills 🛓

HAZARDOUS AIR POLLUTANTS

POLLUTANT NAME	CASRN	APM MIXING		N FACTORS & RA	ATE FOR 800,000
		lb/ton	lb/hour	lb/day	lb/year
Formaldehyde	50-00-0	3.10 E-03	1.24 E+0	1.98 E+1	2.48 E+3
Benzo(a)Pyrene	50-32-8	9.80 E-09	3.92 E-6	6.27 E-5	7.84 E-3
Dibenz(a,h)Anthracene	53-70-3		0.00 E+0	0.00 E+0	0.00 E+0
3-Methylcholanthrene*	56-49-5		0.00 E+0	0.00 E+0	0.00 E+0
Benzo(a)Anthracene	56-55-3	2.10 E-07	8.40 E-5	1.34 E-3	1.68 E-1
7,12-Dimethylbenz(a)Anthracene*	57-97-6		0.00 E+0	0.00 E+0	0.00 E+0
Benzene	71-43-2	3.90 E-04	1.56 E-1	2.50 E+0	3.12 E+2
Methylchloroform	71-55-6	4.80 E-05	1.92 E-2	3.07 E-1	3.84 E+1
Acetaldehyde	75-07-0		0.00 E+0	0.00 E+0	0.00 E+0
Acenaphthene	83-32-9	1.40 E-06	5.60 E-4	8.96 E-3	1.12 E+0
Phenanthrene	85-01-8	7.60 E-06	3.04 E-3	4.86 E-2	6.08 E+0
Fluorene	86-73-7	3.80 E-06	1.52 E-3	2.43 E-2	3.04 E+0
Naphthalene	91-20-3	9.00 E-05	3.60 E-2	5.76 E-1	7.20 E+1
2-Methylnaphthalene	91-57-6	7.40 E-05	2.96 E-2	4.74 E-1	5.92 E+1
Ethylbenzene	100-41-4	2.40 E-04	9.60 E-2	1.54 E+0	1.92 E+2
1,3-Butadiene	106-99-0		0.00 E+0	0.00 E+0	0.00 E+0
Acrolein	107-02-8		0.00 E+0	0.00 E+0	0.00 E+0
Toluene	108-88-3	1.50 E-04	6.00 E-2	9.60 E-1	1.20 E+2
Hexane	110-54-3	9.20 E-04	3.68 E-1	5.89 E+0	7.36 E+2
Anthracene	120-12-7	2.20 E-07	8.80 E-5	1.41 E-3	1.76 E-1
Pyrene	129-00-0	5.40 E-07	2.16 E-4	3.46 E-3	4.32 E-1
Benzo(g,h,i)Perylene	191-24-2	4.00 E-08	1.60 E-5	2.56 E-4	3.20 E-2
Benzo(e)Pyrene	192-97-2	1.10 E-07	4.40 E-5	7.04 E-4	8.80 E-2
Indeno(1,2,3-cd)Pyrene	193-39-5	7.00 E-09	2.80 E-6	4.48 E-5	5.60 E-3
Perylene	198-55-0	8.80 E-09	3.52 E-6	5.63 E-5	7.04 E-3
Benzo(b)Fluoranthene	205-99-2	1.00 E-07	4.00 E-5	6.40 E-4	8.00 E-2
Fluoranthene	206-44-0	6.10 E-07	2.44 E-4	3.90 E-3	4.88 E-1
Benzo(k)Fluoranthene	207-08-9	4.10 E-08	1.64 E-5	2.62 E-4	3.28 E-2
Acenaphthylene	208-96-8	8.60 E-06	3.44 E-3	5.50 E-2	6.88 E+0
Chrysene	218-01-9	1.80 E-07	7.20 E-5	1.15 E-3	1.44 E-1
Xylene	1330-20-7	2.00 E-04	8.00 E-2	1.28 E+0	1.60 E+2
Lead	7439-92-1	6.20 E-07	2.48 E-4	3.97 E-3	4.96 E-1
Manganese	7439-96-5	7.70 E-06	3.08 E-3	4.93 E-2	6.16 E+0
Mercury	7439-97-6	2.40 E-07	9.60 E-5	1.54 E-3	1.92 E-1
Nickel	7440-02-0	6.30 E-05	2.52 E-2	4.03 E-1	5.04 E+1
Antimony	7440-36-0	1.80 E-07	7.20 E-5	1.15 E-3	1.44 E-1
Arsenic	7440-38-2	5.60 E-07	2.24 E-4	3.58 E-3	4.48 E-1
Beryllium	7440-41-7	0.00 - 07	0.00 E+0	0.00 E+0	0.00 E+0
Cadmium	7440-43-9	4.10 E-07	1.64 E-4	2.62 E-3	3.28 E-1
Chromium	7440-47-3	5.50 E-06	2.20 E-3	3.52 E-2	4.40 E+0
Chromium, VI	7440-47-3	4.50 E-07	1.80 E-4	2.88 E-3	3.60 E-1
Cobalt	7440-48-4	7.00 ⊑-07	0.00 E+0	0.00 E+0	0.00 E+0

HAZARDOUS AIR POLLUTANTS -- con'd

POLLUTANT NAME	CASRN		HOT OIL HEA	TER EMISSIONS	
		lb/MMCF	lb/hour	lb/day	lb/year
Formaldehyde	50-00-0	7.50 E-2	2.14 E-4	5.14 E-3	1.95 E+0
Benzo(a)Pyrene	50-32-8	1.20 E-6	3.43 E-9	8.23 E-8	3.12 E-5
Dibenz(a,h)Anthracene	53-70-3	1.20 E-6	3.43 E-9	8.23 E-8	3.12 E-5
3-Methylcholanthrene*	56-49-5	1.80 E-6	5.14 E-9	1.23 E-7	4.68 E-5
Benzo(a)Anthracene	56-55-3	1.80 E-6	5.14 E-9	1.23 E-7	4.68 E-5
7,12-Dimethylbenz(a)Anthracene*	57-97-6	1.60 E-5	4.57 E-8	1.10 E-6	4.16 E-4
Benzene	71-43-2	2.10 E-3	6.00 E-6	1.44 E-4	5.46 E-2
Methylchloroform	71-55-6	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
Acetaldehyde	75-07-0	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
Acenaphthene	83-32-9	1.80 E-6	5.14 E-9	1.23 E-7	4.68 E-5
Phenanthrene	85-01-8	1.70 E-5	4.86 E-8	1.17 E-6	4.42 E-4
Fluorene	86-73-7	2.80 E-6	8.00 E-9	1.92 E-7	7.28 E-5
Naphthalene	91-20-3	6.10 E-4	1.74 E-6	4.18 E-5	1.59 E-2
2-Methylnaphthalene	91-57-6	2.40 E-5	6.86 E-8	1.65 E-6	6.24 E-4
Ethylbenzene	100-41-4	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
1,3-Butadiene	106-99-0	0.00 E+0	0.00 E+0	0.00 E+0	
Acrolein	107-02-8	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
Toluene	108-88-3	3.40 E-3	9.71 E-6	2.33 E-4	8.84 E-2
Hexane	110-54-3	1.80 E+0	5.14 E-3	1.23 E-1	4.68 E+1
Anthracene	120-12-7	2.40 E-6	6.86 E-9	1.65 E-7	6.24 E-5
Pyrene	129-00-0	5.00 E-6	1.43 E-8	3.43 E-7	1.30 E-4
Benzo(g,h,i)Perylene	191-24-2	1.20 E-6	3.43 E-9	8.23 E-8	3.12 E-5
Benzo(e)Pyrene	192-97-2	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
Indeno(1,2,3-cd)Pyrene	193-39-5	1.80 E-6	5.14 E-9	1.23 E-7	4.68 E-5
Perylene	198-55-0	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
Benzo(b)Fluoranthene	205-99-2	1.80 E-6	5.14 E-9	1.23 E-7	4.68 E-5
Fluoranthene	206-44-0	3.00 E-6	8.57 E-9	2.06 E-7	7.80 E-5
Benzo(k)Fluoranthene	207-08-9	1.80 E-6	5.14 E-9	1.23 E-7	4.68 E-5
Acenaphthylene	208-96-8	1.80 E-6	5.14 E-9	1.23 E-7	4.68 E-5
Chrysene	218-01-9	1.80 E-6	5.14 E-9	1.23 E-7	4.68 E-5
Xylene	1330-20-7	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
Lead	7439-92-1	5.00 E-4	1.43 E-6	3.43 E-5	1.30 E-2
Manganese	7439-96-5	3.80 E-4	1.09 E-6	2.61 E-5	9.88 E-3
Mercury	7439-97-6	2.60 E-4	7.43 E-7	1.78 E-5	6.76 E-3
Nickel	7440-02-0	2.10 E-3	6.00 E-6	1.44 E-4	5.46 E-2
Antimony	7440-36-0	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
Arsenic	7440-38-2	2.00 E-4	5.71 E-7	1.37 E-5	5.20 E-3
Beryllium	7440-41-7	1.20 E-5	3.43 E-8	8.23 E-7	3.12 E-4
Cadmium	7440-43-9	1.10 E-3	3.14 E-6	7.54 E-5	2.86 E-2
Chromium	7440-47-3	1.40 E-3	4.00 E-6	9.60 E-5	3.64 E-2
Chromium, VI	7440-47-3	0.00 E+0	0.00 E+0	0.00 E+0	0.00 E+0
Cobalt	7440-48-4	8.40 E-5	2.40 E-7	5.76 E-6	2.18 E-3

HAZARDOUS AIR POLLUTANTS -- con'd

				CKER	
POLLUTANT NAME	CASRN	42.2 GPH (all	engines), 128,7	00 BTUs / gal H	HV Diesel fuel
		lb/MMBTU	lb/hour	lb/day	lb/year
Formaldehyde	50-00-0	1.18 E-3	6.41 E-3	5.13 E-2	9.23 E+1
Benzo(a)Pyrene	50-32-8	1.88 E-7	1.02 E-6	8.17 E-6	1.47 E-2
Dibenz(a,h)Anthracene	53-70-3	5.83 E-7	3.17 E-6	2.53 E-5	4.56 E-2
3-Methylcholanthrene*	56-49-5		0.00 E+0	0.00 E+0	
Benzo(a)Anthracene	56-55-3	1.68 E-6	9.12 E-6	7.30 E-5	1.31 E-1
7,12-Dimethylbenz(a)Anthracene*	57-97-6		0.00 E+0	0.00 E+0	
Benzene	71-43-2	9.33 E-4	5.07 E-3	4.05 E-2	7.30 E+1
Methylchloroform	71-55-6		0.00 E+0	0.00 E+0	
Acetaldehyde	75-07-0	7.67 E-4	4.17 E-3	3.33 E-2	6.00 E+1
Acenaphthene	83-32-9	1.42 E-6	7.71 E-6	6.17 E-5	1.11 E-1
Phenanthrene	85-01-8	2.94 E-5	1.60 E-4	1.28 E-3	2.30 E+0
Fluorene	86-73-7	2.92 E-5	1.59 E-4	1.27 E-3	2.28 E+0
Naphthalene	91-20-3	8.48 E-5	4.61 E-4	3.68 E-3	6.64 E+0
2-Methylnaphthalene	91-57-6		0.00 E+0	0.00 E+0	
Ethylbenzene	100-41-4		0.00 E+0	0.00 E+0	
1,3-Butadiene	106-99-0	3.91 E-5	2.12 E-4	1.70 E-3	3.06 E+0
Acrolein	107-02-8	9.25 E-5	5.02 E-4	4.02 E-3	7.24 E+0
Toluene	108-88-3	4.09 E-4	2.22 E-3	1.78 E-2	3.20 E+1
Hexane	110-54-3		0.00 E+0	0.00 E+0	
Anthracene	120-12-7	1.87 E-6	1.02 E-5	8.12 E-5	1.46 E-1
Pyrene	129-00-0	4.78 E-6	2.60 E-5	2.08 E-4	3.74 E-1
Benzo(g,h,i)Perylene	191-24-2	4.89 E-7	2.66 E-6	2.12 E-5	3.83 E-2
Benzo(e)Pyrene	192-97-2		0.00 E+0	0.00 E+0	
Indeno(1,2,3-cd)Pyrene	193-39-5	3.75 E-7	2.04 E-6	1.63 E-5	2.93 E-2
Perylene	198-55-0	••	0.00 E+0	0.00 E+0	
Benzo(b)Fluoranthene	205-99-2	9.91 E-8	5.38 E-7	4.31 E-6	7.75 E-3
Fluoranthene	206-44-0	7.61 E-6	4.13 E-5	3.31 E-4	5.95 E-1
Benzo(k)Fluoranthene	207-08-9	1.55 E-7	8.42 E-7	6.73 E-6	1.21 E-2
Acenaphthylene	208-96-8	5.06 E-6	2.75 E-5	2.20 E-4	3.96 E-1
Chrysene	218-01-9	3.53 E-7	1.92 E-6	1.53 E-5	2.76 E-2
Xylene	1330-20-7	2.85 E-4	1.55 E-3	1.24 E-2	2.23 E+1
Lead	7439-92-1	2.00 2 1	0.00 E+0	0.00 E+0	2.20 2 1
Manganese	7439-96-5		0.00 E+0	0.00 E+0	
Mercury	7439-97-6		0.00 E+0	0.00 E+0	
Nickel	7440-02-0		0.00 E+0	0.00 E+0	
Antimony	7440-36-0		0.00 E+0	0.00 E+0	
Arsenic	7440-38-2		0.00 E+0	0.00 E+0	
Beryllium	7440-41-7		0.00 E+0	0.00 E+0	
Cadmium	7440-43-9		0.00 E+0	0.00 E+0	
Chromium	7440-43-9		0.00 E+0	0.00 E+0	
Chromium, VI	7440-47-3		0.00 E+0	0.00 E+0	
Cobalt	7440-47-3 7440-48-4		0.00 E+0 0.00 E+0	0.00 E+0 0.00 E+0	
Cuball	/ 440-40-4		0.00 E+0	0.00 E+0	

HAZARDOUS AIR POLLUTANTS -- con'd

		Not a	major sour	ce for H	4 <i>Ps</i> .
POLLUTANT NAME	CASRN	HAZAR	DOUS AIR POL	LUTANTS (F	IAPs)
		lbs/year	ton/year	HAP?	POM?
Formaldehyde		2574	1.287	У	
Benzo(a)Pyrene	50-32-8	0.0	0.000	у	
Dibenz(a,h)Anthracene	53-70-3	0.0	0.000	y	
3-Methylcholanthrene*	56-49-5	0.0	0.000	ý	у
Benzo(a)Anthracene	56-55-3	0.3	0.000	ý	ý
7,12-Dimethylbenz(a)Anthracene*	57-97-6	0.0	0.000	ý	ý
Benzene	71-43-2	385.1	0.193	ý	,
Methylchloroform	71-55-6	38.4	0.019	ý	
Acetaldehyde	75-07-0	60.0	0.030	y	
Acenaphthene	83-32-9	1.2	0.001	ý	у
Phenanthrene	85-01-8	8.4	0.004	y y	y
Fluorene	86-73-7	5.3	0.003	y y	y y
Naphthalene	91-20-3	78.7	0.039	y y	y
2-Methylnaphthalene	91-57-6	59.2	0.030	y y	у
Ethylbenzene	100-41-4	192.0	0.096	y y	y
1,3-Butadiene	106-99-0	3.1	0.002	-	
Acrolein	107-02-8	7.2	0.002	У	
Toluene	108-88-3	152.1	0.076	У	
Hexane	110-54-3	782.8	0.391	У	
Anthracene	120-12-7	0.3	0.000	У	
		0.8	0.000	У	У
Pyrene	129-00-0			У	У
Benzo(g,h,i)Perylene	191-24-2	0.1	0.000	У	У
Benzo(e)Pyrene	192-97-2	0.1	0.000	У	У
Indeno(1,2,3-cd)Pyrene	193-39-5	0.0	0.000	У	У
Perylene	198-55-0	0.0	0.000	У	У
Benzo(b)Fluoranthene	205-99-2	0.1	0.000	У	У
Fluoranthene	206-44-0	1.1	0.001	У	У
Benzo(k)Fluoranthene	207-08-9	0.0	0.000	У	У
Acenaphthylene	208-96-8	7.3	0.004	У	У
Chrysene	218-01-9	0.2	0.000	У	У
Xylene	1330-20-7	182.3	0.091	У	
Lead	7439-92-1	0.5	0.000	У	
Manganese	7439-96-5	6.2	0.003	У	
Mercury	7439-97-6	0.2	0.000	У	
Nickel	7440-02-0	50.5	0.025	У	
Antimony	7440-36-0	0.1	0.000	У	
Arsenic	7440-38-2	0.5	0.000	У	
Beryllium	7440-41-7	0.0	0.000	У	
Cadmium	7440-43-9	0.4	0.000	У	
Chromium	7440-47-3	4.4	0.002	У	
Chromium, VI	7440-47-3	0.4	0.000	y	
Cobalt	7440-48-4	0.0	0.000	ý	
TOTAL HAP	s (tons/year):	2.3			
TOTAL POM HAF	Ps (tons/year):	0.042			
Highest annual emission r		HAP: 1.29 to	ns/year.		

I. NAAQS Compliance Demonstration

APPLICATION FOR PERMIT TO CONSTRUCT

	SO2, 1-H	OUR AVE	ERAGING PER	RIOD	
EMISSIONS SOURCE	Emissi Ib/hr	ion Rate g/sec	SCREEN3 Result ug/m ³ per g/sec	Predicted Ambient ug/m ³	t Air Concentration PPB
Baghouse Stack	4.4	0.55439	8.815	4.89	
Hot Oil Heater	0.0466	0.00587	0.0	0.00	
CSP ENGINES					
Crusher Engine	0.052	0.00656	337.5	2.21	
Screener Engine	0.0022	0.00028	865.7	0.24	
Stacker Engine	0.0011	0.00014	3,825	0.54	
		PREMISES-	WIDE TOTAL	7.88	2.96
		Background	d concentration		4.8
		Est'd AAC,	ug/m3		7.8
		NAAQS			75

SO2, 24-HOUR AVERAGING PERIOD

EMISSIONS SOURCE	Emissi	on Rate	SCREEN3 Result	Predicted Ambient	Air Concentration
EMISSIONS SOURCE	lb/hr	g/sec	ug/m ³ per g/sec	ug/m ³	PPB
Baghouse Stack	4.4	0.55439	3.526	1.955	
Hot Oil Heater	0.0466	0.00587	0.0	0.000	
CSP ENGINES					
Crusher Engine	0.052	0.00656	135.0	0.886	
Screener Engine	0.0022	0.00028	346.3	0.095	
Stacker Engine	0.0011	0.00014	1,530	0.217	
		PREMISES-	WIDE TOTAL	3.153	1.19
		Background	d concentration		4.80
		Est'd AAC,	ug/m3		5.99
		NAAQS			140

APPLICATION FOR PERMIT TO CONSTRUCT

	NOx, 1-H	IOUR AVI	ERAGING PER	RIOD	
EMISSIONS SOURCE	Emiss	ion Rate	SCREEN3 Result	Predicted Ambien	t Air Concentration
	lb/hr	g/sec	ug/m ³ per g/sec	ug/m ³	PPB
Baghouse Stack	22.0	2.77195	8.815	24.4	
Hot Oil Heater	0.43	0.05439	0.0	0.0	
CSP ENGINES					
Crusher Engine	0.3472	0.04375	337.5	14.8	
Screener Engine	0.1323	0.01667	865.7	14.4	
Stacker Engine	0.0655	0.00825	3,825	31.6	
	-	PREMISES		85.2	34.15
		Backgroun	d concentration		33.0
		Est'd AAC,	ug/m3		67.2
		NAAQS			100

NOx,	ANNUAL AVERAGING PERIOD	

EMISSIONS SOURCE	Emissi	on Rate	SCREEN3 Result	EN3 Result Ambient Air Concentratio		
EMISSIONS SOURCE	lb/hr	g/sec	ug/m ³ per g/sec	ug/m ³	PPM	
Baghouse Stack	22.0	2.7720	0.705	1.95		
Hot Oil Heater	0.43	0.0544	0.00	0.00		
CSP ENGINES						
Crusher Engine	0.347	0.0438	27.00	1.18		
Screener Engine	0.1323	0.0167	69.26	1.15		
Stacker Engine	0.0655	0.0083	306.0	2.5		
		PREMISES-	WIDE TOTAL	6.81	2.7	
		Background	d concentration		6.22	
		Est'd AAC,	ug/m3		9.0	
		NAAQS			53	

APPLICATION FOR PERMIT TO CONSTRUCT

	CO, 1-H	OUR AVE	RAGING PER	IOD	
EMISSIONS SOURCE	Emiss	ion Rate	SCREEN3 Result	Predicted Ambien	t Air Concentration
EMISSIONS SOURCE	lb/hr	g/sec	ug/m ³ per g/sec	ug/m ³	PPM
Baghouse Stack	52.0	6.5519	8.815	57.8	
Hot Oil Heater	0.11	0.0136	0.0	0.0	
CSP ENGINES					
Crusher Engine	2.866	0.3611	337.5	121.9	
Screener Engine	1.1464	0.1444	865.7	125.0	
Stacker Engine	0.8076	0.1018	3,825	389.2	
		PREMISES	-WIDE TOTAL	693.9	0.5959
		Backgroun	d concentration		1.2
		Est'd AAC, ug/m3 NAAQS			1.8
					35

	CO, 8-H	OUR AVE	RAGING PER	IOD	
	Emiss	ion Rate	SCREEN3 Result	Predicted Ambier	t Air Concentration
EMISSIONS SOURCE	lb/hr	g/sec	ug/m ³ per g/sec	ug/m ³	PPM
Baghouse Stack	52.0	6.5519	6.171	40.4	
Hot Oil Heater	0.11	0.0136	0.0	0.0	
CSP ENGINES					
Crusher Engine	2.866	0.3611	236.3	85.3	
Screener Engine	1.1464	0.1444	606.0	87.5	
Stacker Engine	0.8076	0.1018	2,678	272.4	
		PREMISES	WIDE TOTAL	485.7	0.4171
		Backgroun	d concentration		0.8
		Est'd AAC,	ug/m3		1.2171
		NAAQS			9

APPLICATION FOR PERMIT TO CONSTRUCT

PM ₁₀ , 24-HOUR* AVERAGING PERIOD				
EMISSIONS SOURCE	Emissi	on Rate	SCREEN3 Result	Predicted Ambient Air Concentration
	lb/hr	g/sec	ug/m ³ per g/sec	ug/m ³
Baghouse Stack	2.9	0.36749	3.526	1.30
Unload @ AGG pile 1	0.0018	0.00022	738.0	0.16
Unload @ AGG pile 2	0.0018	0.00022	760.8	0.17
Unload @ AGG pile 3	0.0018	0.00022	832.0	0.19
Unload @ AGG pile 4	0.0018	0.00022	958.8	0.21
Unload @ AGG pile 5	0.0018	0.00022	1028	0.23
Unload @ AGG pile 6	0.0018	0.00022	1088	0.24
Unload @ AGG pile 7	0.0018	0.00022	1164	0.26
AGG Screener & Drum Feed	0.1234	0.01555	1,110	17.27
RAP Feed Bin System	0.1038	0.01308	2,983	39.01
Hot Oil Heater	0.0233	0.00294	0.0	0.00
Crushing & Screening Plant	0.2072	0.02610	856	22.4
Unload to Stockpile 9 (CSP)	0.0046	0.00058	768	0.45
Transfer to Stockpile 8 (CSP)	0.0046	0.00058	746	0.43
CSP ENGINES				
Crusher Engine	0.0058	0.00073	135.0	0.10
Screener Engine	0.0022	0.00028	346.3	0.10
Stacker Engine	0.0011	0.00014	1,530	0.21
* Time weighted average emission rate was us	sed	PREMISES-	WIDE TOTAL	82.7
			concentration	21.0
		Est'd AAC, I	ug/m3	103.7
		NAAQS		150

APPLICATION FOR PERMIT TO CONSTRUCT

UNITS CONVERSION METHODOLGY

mg/m3 = PPM / 10⁶ x MW / MolarVolume x 10³ ml/l x 10³ l/m³ mg/m3 = PPB / 10⁹ x MW / MolarVolume x 10³ ml/l x 10³ l/m³

Molar Volume = $(0.08206)^{*}(273.15+20)$

24.055889 ml/mol 2.4056E-05 m^3/mol Constant 41.56986258

MOLECULAR WEIGHTS: Sulfur Dioxide Carbon Monoxide Nitrogen Dioxide

63.9988 mg/mol 28.01 mg/mol 59.9988 mg/mol

Sulfur Dioxide, 1-hour Carbon Monoxide, 1-hour Carbon Monoxide, 8-hour Nitrogen Dioxide, 1-hour Nitrogen Dioxide, Annual 75 ppb 35 ppm 9 ppm 100 ppb 53 ppb 199.5 ug/m³ 40753.0 ug/m³ 10479.3 ug/m³ 249.4 ug/m³ 132.2 ug/m³

ug/m3 = PPM / 10^6 x MW / MolarVolume x 10^3 ml/l x 10^3 l/m^3*10^3 ug/m3 = PPM / 10^9 x MW / MolarVolume x 10^3 ml/l x 10^3 l/m^3*10^3

To convert from PPM to AAC: PPM# * MW# * ConversionConstant

to convert from AAC to PPM: AAC#/MW#/ConversionConstant

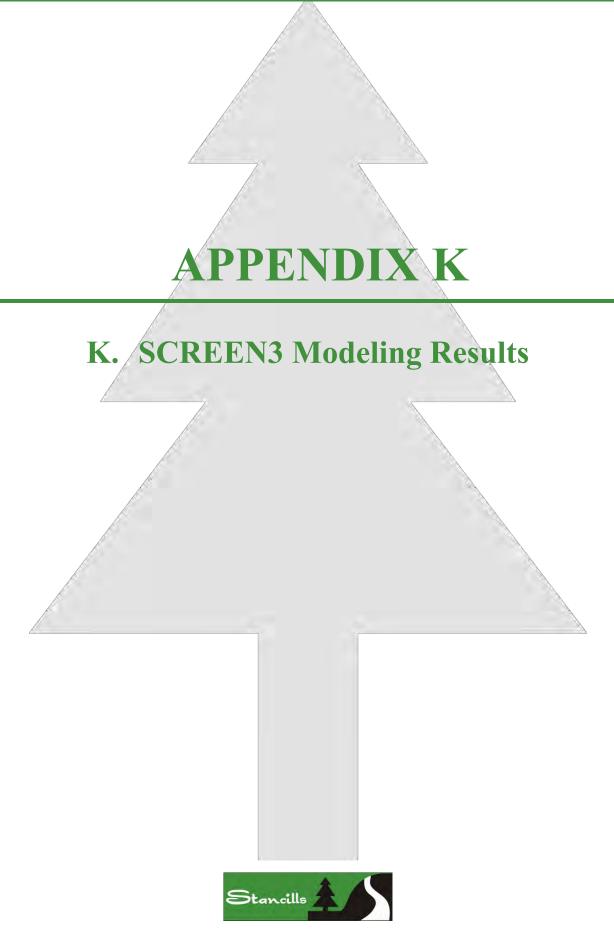
J. Toxics Air Pollutant Compliance

Demonstration

of 242
0
30
_
Page

TOXIC AIR POLLUTANTS SCREENING ANALYSIS FOR BAGHOUSE STACK

		APM MIXING PI ANT	IG PI ANT	RAGHOUS	OUSE STACK	SCREI	SCREEN3 result: 8	8.815	SCREE	SCREEN3 result: 6	6.1705	SCREE	SCREEN3 result: 0	0.7052
POLLUTANT NAME	CASRN	EMISSION FACTOR & RATE	CTOR & RATE	EMISSION RATE	N RATE	1-Hou	1-Hour Averaging Period	eriod	8-Hou	8-Hour Averaging Period	eriod	Annua	Annual Averaging Period	eriod
		lb/ton	lb/hour	lb/hr	g/sec	1-hour AAC (µg/m3)	Screening Lvl (SL) µg/m3	AAC vs SL	8-hour AAC (µg/m3)	Screening LvI (SL) µg/m3	AAC vs SL	1-year AAC (µg/m3)	Screening LvI (SL) µg/m3	AAC vs SL
Formaldehyde	50-00-0	3.10 E-03	1.24 E+00 2 e2 E 01	1.24 E+0	1.56 E-1	0.00 E+0			9.64 E-1	20.3	4.75%	. ⊑ .	000	701110
Benzo(a)Pyrene	50-32-8	9.80 E-09	3.92 E-06	2.03 E-6 3.92 E-6	3.37 C-2 4.94 E-7	0.00 E+0			0.00 E+0			2. J2 L-2 3.48 E-7	0.00478	0.01%
3-Methylcholanthrene*	56-49-5 56 55 3	0 10 E 02	8 40 E 05	0.00 E+0	0.00 E+0	0.00 E+0			0.00 E+0	20	0.00%	0.00 E+0 7 A6 E 6	0.0575	0.100
7.12-Dimethylbenz(a)Anthracene*	57-97-6	2.10 5-01		0.00 E+0	0.00 E+0	0.00 E+0			0.00 E+0	4.76	0.00%	0.00 E+0	0.00.0	0.10.0
Benzene	71-43-2	3.90 E-04	1.56 E-01	1.56 E-1	1.97 E-2	1.73 E-1	79.87	0.22%	1.21 E-1	15.97	0.76%	1.39 E-2	1.21	1.15%
Methylchloroform	71-55-6	4.80 E-05	1.92 E-02	1.92 E-2	2.42 E-3	2.13 E-2	24555.83	0.00%	1.49 E-2	19098.98	0.00%	0.00 E+0		
Methane	74-82-8 74-84-0	1.20 E-02	4.80 E+00	4.80 E+0	6.05 E-1	5.33 E+0	6560.33	0.08%	0.00 E+0	10303	20 U W	0.00 E+0		
Ethylene	74-85-1	7.00 E-03	2.80 E+00	2.80 E+0	3.53 E-1	0.00 E+0			2.18 E+0	2294.48	0.09%	0.00 E+0		
Propane	74-98-6			0.00 E+0	0.00 E+0	0.00 E+0			0.00 E+0	18033	0.00%	0.00 E+0		
Acenaphthene	83-32-9	1.40 E-06	5.60 E-04	5.60 E-4	7.06 E-5	0.00 E+0			4.35 E-4	20	0.00%	0.00 E+0		
Phenanthrene	85-01-8 86-73-7	7.60 E-06 3 80 E-06	3.04 E-03 1 52 E-03	3.04 E-3 1 52 E_3	3.83 E-4 1 02 E_4	0.00 E+0			2.36 E-3 1 18 E-3	9.8	0.02%	0.00 E+0		
Naphthalene	91-20-3-7	9.00 E-00	3.60 E-02	3.60 E-2	1.32 C-4 4 54 F-3	4 00 E-2	786 44	0.01%	2.80 E-2	524.29	0.01%	0.00 E+0		
2-Methylnaphthalene	91-57-6	7.40 E-05	2.96 E-02	2.96 E-2	3.73 E-3	0.00 E+0		2	2.30 E-2	29.08	0.08%	0.00 E+0		
Ethylbenzene	100-41-4	2.40 E-04	9.60 E-02	9.60 E-2	1.21 E-2	0.00 E+0			7.46 E-2	868.38	0.01%	0.00 E+0		
Butane	106-97-8	6.70 E-04	2.68 E-01	2.68 E-1	3.38 E-2 7 E6 E 2	0.00 E+0			2.08 E-1	23770.96 752.62	0.00%	0.00 E+0		
	100-00-3	1.50 E-04	0.00 E-02	0.00 E-Z	1.00 E-3				4.00 E-Z	1 33.02	%10.0			
IN-Pertane Hexane	109-00-0 110-54-3	2. IU E-U4 9.20 E-04	0.40 E-02 3.68 E-01	0.40 E-2 3.68 E-1	1.00 E-2 4.64 E-2	0.00 E+0			0.33 E-2 2.86 E-1	1762.37	0.02%	0.00 E+0		
Anthracene	120-12-7	2.20 E-07	8.80 E-05	8.80 E-5	1.11 E-5	0.00 E+0			6.84 E-5	20	%00.0	0.00 E+0		
Pyrene	129-00-0	5.40 E-07	2.16 E-04	2.16 E-4	2.72 E-5	0.00 E+0			1.68 E-4	20	%00.0	0.00 E+0		
Heptane	142-82-5	9.40 E-03	3.76 E+00	3.76 E+0	4.74 E-1	4.18 E+0	20490.8	0.02%	2.92 E+0	16392.64	0.02%	0.00 E+0		
Benzo(g,h,i)Perylene	191-24-2	4.00 E-08	1.60 E-05	1.60 E-5	2.02 E-6	0.00 E+0			1.24 E-5	88	0.00%	0.00 E+0		
Benzo(e)Pyrene	192-97-2	7.00 E.00	4.40 E-U5 2 00 E 06	4.40 E-5 2 00 C	0.04 E-0	0.00 E+0			3.42 E-5	70	0.00%	0.00 E+0	0.0676	70000
Indeno(1,2,3-cd)r yrene Pervlene	198-55-0	7.00 E-09 8.80 E-09	2.60 E-00 3.52 E-06	2.00 E-0 3.52 E-6	3.33 E-7 4.44 E-7	0.00 E+0			0.00 E+0 2.74 E-6	20	0.00%	0.00 E+0	c /cn.n	0/00.0
Benzo(b)Fluoranthene	205-99-2	1.00 E-07	4.00 E-05	4.00 E-5	5.04 E-6	0.00 E+0			0.00 E+0	ì		3.55 E-6	0.0575	0.01%
Fluoranthene	206-44-0	6.10 E-07	2.44 E-04	2.44 E-4	3.07 E-5	0.00 E+0			1.90 E-4	82	0.00%	0.00 E+0		
Benzo(k)Fluoranthene	207-08-9	4.10 E-08	1.64 E-05	1.64 E-5	2.07 E-6	0.00 E+0			0.00 E+0			1.46 E-6	0.575	0.00%
Acenaprinylene 2-Methvl-1-Pentene	ZU8-96-8 763-29-1	8.60 E-06 4 00 E-03	3.44 E-U3 1 60 E+00	3.44 E-3 1 60 E+0	4.33 E-4 2 02 E-1	0.00 E+0			2.6/ E-3 1 24 E+0	24.04 11500	0.01%	0.00 E+0		
Xylene	1330-20-7	2.00 E-04	8.00 E-02	8.00 E-2	1.01 E-2	8.89 E-2	6512.88	0.00%	6.22 E-2	4341.92	0.00%	0.00 E+0		
Lead	7439-92-1	6.20 E-07	2.48 E-04	2.48 E-4	3.12 E-5	0.00 E+0			1.93 E-4	0.5	0.04%	0.00 E+0		
Manganese	7439-96-5 7430.07.6	7.70 E-06 2.40 E-07	3.08 E-03 0 60 E 06	3.08 E-3	3.88 E-4	0.00 E+0	¢ (70707	2.39 E-3 7 46 E 6	~ ~	0.12%	0.00 E+0		
Molvbdenum	7439-98-7	2.40 E-07	9.00 E-03	0.00 E+0	0.00 F+0	0.00 E+0	0.0	0.04 %	0.00 E+0		0.00%	0.00 E+0		
Nickel	7440-02-0	6.30 E-05	2.52 E-02	2.52 E-2	3.18 E-3	0.00 E+0			1.96 E-2) –	1.96%	2.24 E-3	0.0417	5.37%
Silver	7440-22-4	4.80 E-07	1.92 E-04	1.92 E-4	2.42 E-5	0.00 E+0			1.49 E-4	0.1	0.15%	0.00 E+0		
Thallium	7440-28-0	4.10 E-09	1.64 E-06	1.64 E-6	2.07 E-7	0.00 E+0			1.28 E-6	0.2	0.00%	0.00 E+0		
Antimony	7440-36-0	1.80 E-07 5 60 F 07	7.20 E-05	7.20 E-5	9.07 E-6	0.00 E+0			5.60 E-5	ς Ω	0.00%	0.00 E+0		0.050/
At sertic Barium	7440-39-2	5.80 E-06	2.32 E-04 2.32 E-03	2.32 E-3	2.02 E-5 2.92 E-4	0.00 E+0			1.74 E-4 1.80 E-3	 	0.04%	0.00 E+0	0.00200	
Beryllium	7440-41-7			0.00 E+0	0.00 E+0	0.00 E+0			0.00 E+0			0.00 E+0	0.0005	
Cadmium	7440-43-9	4.10 E-07	1.64 E-04	1.64 E-4	2.07 E-5	0.00 E+0			1.28 E-4	0.02	0.64%	1.46 E-5	0.00556	0.26%
Chromium Chromium Vi	7440-47-3 7440-47-3	5.50 E-06 4 50 E-07	2.20 E-03 1 80 E-04	2.20 E-3 1 80 E-4	2.77 E-5	0.00 E+0 0.00 E+0			1.71 E-3 1 40 F-4	° C	0.03%	0.00 E+0 0.00 E+0		<u>0 o</u>
) 													


TAPs Screening Analysis Page 17 of 67 Page 131 of 242

		APM MIVING PLANT		ACHOLO E E E E E E E E E E E E E E E E E E		SCRE	SCREEN3 result: 8.815	.815	SCREE	SCREEN3 result: 6.1705	.1705	SCREE	SCREEN3 result: 0.7052	7052
POLITITANT NAME	CASRN	EMISSION FACTOR & RATE	CTOR & RATE	EMISSIO	SSION RATE	1-Hou	1-Hour Averaging Period	eriod	8-Hou	8-Hour Averaging Period	eriod	Annua	Annual Averaging Period	riod
		lb/ton	lb/hour	lb/hr	g/sec	1-hour AAC (µg/m3)	Screening Lvl (SL) µg/m3	AAC vs SL	8-hour AAC (µg/m3)	Screening Lvl (SL) µg/m3	AAC vs SL	1-year AAC (µg/m3)	Screening LvI (SL) µg/m3	AAC vs SL
Cobalt	7440-48-4			0.00 E+0	0.00 E+0	0.00 E+0			0.00 E+0	0.2	%00.0	0.00 E+0		
Copper	7440-50-8	3.10 E-06	1.24 E-03	1.24 E-3	1.56 E-4	0.00 E+0			9.64 E-4	2	0.05%	0.00 E+0		
Vanadium	7440-62-2			0.00 E+0	0.00 E+0	0.00 E+0			0.00 E+0	0.5	0.00%	0.00 E+0		
Zinc	7440-66-6	6.10 E-05	2.44 E-02	2.44 E-2	3.07 E-3	2.71 E-2	1000	0.00%	1.90 E-2	50	0.04%	0.00 E+0		
Phosphorus	7723-14-0	2.80 E-05	1.12 E-02	1.12 E-2	1.41 E-3	0.00 E+0			8.71 E-3	1.01	0.86%	0.00 E+0		
Selenium	7782-49-2	3.50 E-07	1.40 E-04	1.40 E-4	1.76 E-5	0.00 E+0			1.09 E-4	2	0.01%	0.00 E+0		
N2O (Controlled)	10024-97-2			0.00 E+0	0.00 E+0	0.00 E+0			0.00 E+0	006	%00.0	0.00 E+0		
* The time-weighted average Formaldehyde emission rate (EF x Annual_Production / 8,760	ldehyde emissi	ion rate (EF x Ar	nual_Productior	1 / 8,760 hrs/	rear) was use	d to demonst	hrs/year) was used to demonstrate compliance	g						
with the Annual Screening Level.								0.22%			4.75%			31.44%

Page 131 of 242

Crystalli	ne Silica, 8-F	HOUR* AVER	Iline Silica, 8-HOUR* AVERAGING PERIOD	D	
				Predicted Ambient	CS Emission
EMISSIONS SOURCE	CS Emission	CS Emission Rate (CSER)	SCREEN3 Result	Air Concentration	Rate
	lb/hr	cec	ng/m ³ per g/sec	m/bn_	lb/year
Baghouse Stack	4.4E-04	5-3 E-5	6.17	3.39 E-4	8.7 E-1
Truck Unloading at AGG Stockpile 1	2.7 E-7	3.3 E-8	1,292	4.32 E-5	5.3 E-4
Truck Unloading at AGG Stockpile 2	2.7 E-7	3.3 E-8	1,331	4.45 E-5	5.3 E-4
Truck Unloading at AGG Stockpile 3	2.7 E-7	3.3 E-8	1,456	4.87 E-5	5.3 E-4
Truck Unloading at AGG Stockpile 4	2.7 E-7	3.3 E-8	1,678	5.61 E-5	5.3 E-4
Truck Unloading at AGG Stockpile 5	2.7 E-7	3.3 E-8	1,799	6.02 E-5	5.3 E-4
Truck Unloading at AGG Stockpile 6	2.7 E-7	3.3 E-8	1,905	6.37 E-5	5.3 E-4
Truck Unloading at AGG Stockpile 7	2.7 E-7	3.3 E-8	2,037	6.81 E-5	5.3 E-4
AGG Feed Bin System	3.3 E-6	4.1 E-7	4,100	1.68 E-3	6.5 E-3
AGG Screener & Conveyors	1.9 E-5	2.3 E-6	1,943	4.53 E-3	3.7 E-2
RAP Feed System	1.6 E-5	2.0 E-6	5,221	1.02 E-2	3.1 E-2
Crushing & Screening Plant	5.9 E-5	2'2 E-6	1,689	1.26 E-2	1.2 E-1
Vehicle Unloading CSP Mtls to SP9	1.4 E-6	1.7 E-7	7.707	1.23 E-4	2.8 E-3
Transfering Processed CSP Mtls to SP8	1.4 E-6	1.7 E-7	16559	2.88 E-3	2.8 E-3
Total Crystalline Silica Emis. Rate	1.0 E-4	Predicted	Predicted AAC, ug/m3	0.0328	1.1 E+00
		Screening Level	g Level	0.2500	

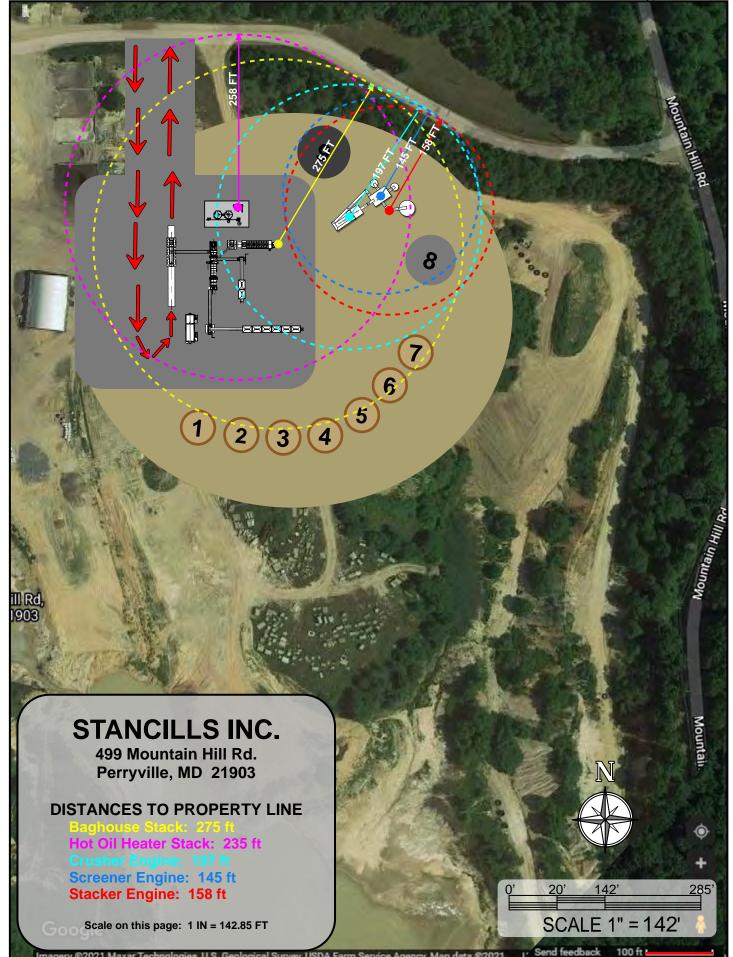
Crystalline Silica (lb/year) = CSER (lb/hour) + APM Design Rate (tons/hour) × APM Annual Production Rate (tons/year)

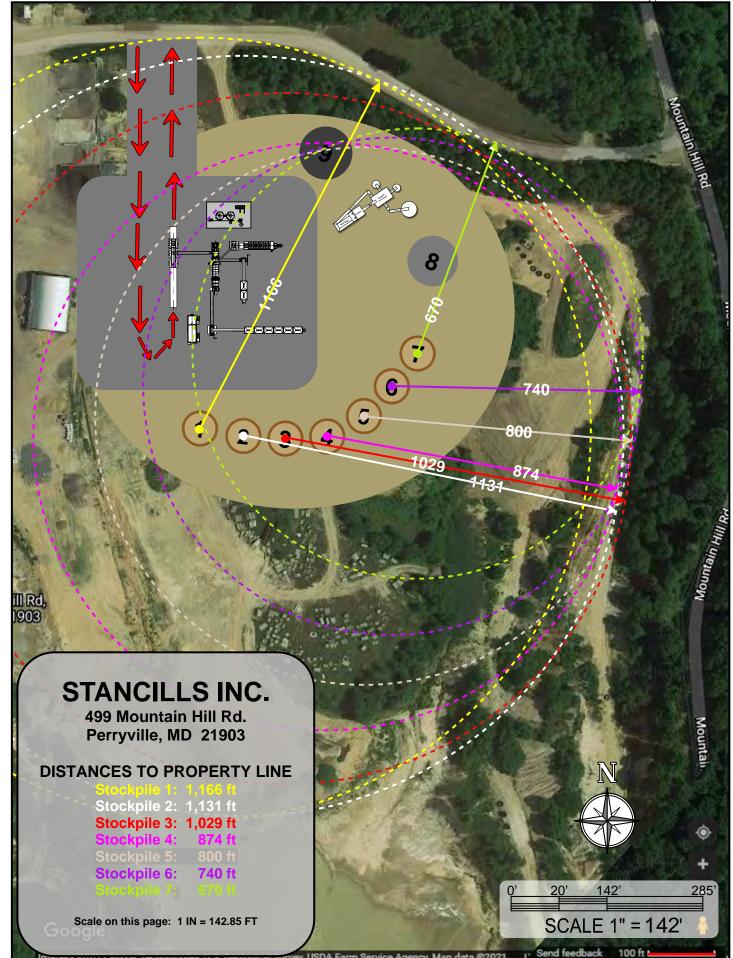
	Distance to	nce to						
	Property Line	ty Line	•	Diameter/Length	Ĥ	Height		
	feet	meters	feet	meters	÷ 4.3	feet	meters	÷ 2.15
Baghouse Stack	275	83.8	4.75	1.4478		40	12.19	
Hot Oil Heater	258	78.6	1.00	0.3048		10	3.05	
Crusher Engine	197	60.0	0.25	0.0762		8	2.44	
Screener Engine	145	44.2	0.25	0.0762		8	2.44	
Stacker Engine	158	48.2	0.25	0.0762		4	1.22	
Crushing & Screening	176	53.6	122	37.2	8.648	20	6.10	2.835
RAP Feed Bin System	363	110.6	71	21.6	5.033	10	3.05	1.418
AGG Feed Bin System	400	121.9	89	27.1	6.309	10	3.05	1.418
AGG Screener/Drum Feed	418	127.4	66	20.1	4.678	15	4.57	2.127
Agg Unload @ Stockpile 1	1166	355.4	50	15.2	3.544	20	6.10	2.835
Agg Unload @ Stockpile 2	1131	344.7	50	15.2	3.544	20	6.10	2.835
Agg Unload @ Stockpile 3	1029	313.6	50	15.2	3.544	20	6.10	2.835
Agg Unload @ Stockpile 4	874	266.4	50	15.2	3.544	20	6.10	2.835
Agg Unload @ Stockpile 5	800	243.8	50	15.2	3.544	20	6.10	2.835
Agg Unload @ Stockpile 6	740	225.6	50	15.2	3.544	20	6.10	2.835
Agg Unload @ Stockpile 7	670	204.2	50	15.2	3.544	20	6.10	2.835
Transfer to Stockpile 8 (CSP)	206	62.8	75	22.9	5.316	30	9.14	4.253
Unload to Stockpile 9 (CSP)	146	44.5	75	22.9	5.316	30	9.14	4.253

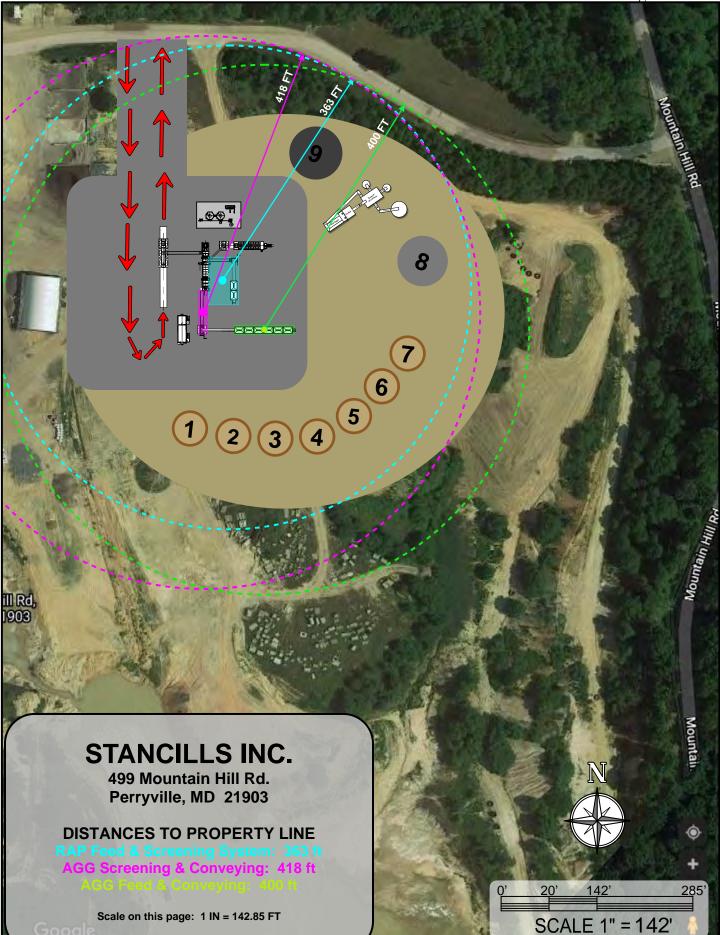
Dimensions of and Distance to Property Line for Emission Sources

Emission Source> Emission Source>Baghoues Stack+ feetHot Oil HeaterCrusher EngineStacker EngineStacker EngineStack DiameterfeetmetersfeetmetersfeetmetersfeetmetersStack Diameter4.751.19210.003.0488.002.43848.002.43844.001.219Stack Diameter4.751.447810.30480.250.07620.250.07620.250.07620.25Stack Diameter4.751.447810.30480.250.07620.250.07620.250.07620.25Stack Diameter4.754.72.43848.002.43848.002.43844.001.219Stack Diameter772.887.72.811.0028.127.028.127.028.12FamberArtURESFKFKFKFKFKStack Diametarue772.887.72.8121.0028.121.0028.12Stack Diametarue772.887.72.8127.72.817.72.817.7Rectangular Stack80.0004221.1801.7508121.0703.603.60Stack Diametarue8.8200.73.63.39.0703.603.60Stack Diametarue8.82001.7508.669.703.60Stack Diametarue8.820 <td< th=""><th></th><th>LUINI SOURCES. SCREEN</th><th></th><th></th><th>IS INFUT DATA, OUTFUT RESULTS, AND SCALED RESULTS</th><th></th><th>ILIO, AND</th><th></th><th></th><th></th><th></th></td<>		LUINI SOURCES. SCREEN			IS INFUT DATA, OUTFUT RESULTS, AND SCALED RESULTS		ILIO, AND				
	Emission Source>	Baghous	se Stack*	Hot Oi	l Heater	Crushei	· Engine	Screene	er Engine	Stacker	Engine
	STACK DIMENSIONS	feet	meters	feet	meters	feet	meters	feet	meters	feet	meters
	Stack Height	40	12.192	10.00	3.048	8.00	2.4384	8.00	2.4384	4.00	1.2192
F K K F K K K K K K K K K	Stack Diameter	4.75	1.4478	-	0.3048	0.25	0.0762	0.25	0.0762	0.25	0.0762
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TEMPERATURES	Ŀ	¥	Ŀ	×	Ŀ	×	Ŀ	×	Ŀ	×
77 298 77 298 77 298 77 298 77 298 77 298 77 298 77 298 77 298 77 298 77 298 77 298 77 298 77 298 77 298 77 2678 90 360 360 77 298 770 90 360 77 298 770 90 360 90 360 90	Stack Exit Temperature	300	422	400	478	1,002	812	1,002	812	1,002	812
	Ambient Temperature	77	298	77	298	77	298	77	298	77	298
80,000 1,180 1,750 700 700 360 <th< th=""><th>EXHAUST GAS VELOCITY</th><th>ACFM</th><th></th><th>ACFM</th><th></th><th>ACFM</th><th></th><th>ACFM</th><th></th><th>ACFM</th><th></th></th<>	EXHAUST GAS VELOCITY	ACFM		ACFM		ACFM		ACFM		ACFM	
g 8.82 0 0 337.5 866 332.5 32.5 </th <th>Rectangular Stack</th> <th>80,000</th> <th></th> <th>1,180</th> <th></th> <th>1,750</th> <th></th> <th>200</th> <th></th> <th>360</th> <th></th>	Rectangular Stack	80,000		1,180		1,750		200		360	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SCREEN3 Result, 1-hour avg	8.82		0		337.5		866		3825	
	Adjusted to 8-hour averaging		3	0	3	236.3	3		3		3
0.71 0.0 27.00 69.3 306.0 306	Adjusted to 24-hour averaging		uu/bn	0	ug/m	135.0	ug/m		ug/m		ug/m
feet meters feet ffeet ffeet <td>Adjusted to Annual averaging</td> <td>0.71</td> <td></td> <td>0.0</td> <td></td> <td>27.00</td> <td></td> <td>69.3</td> <td></td> <td>306.0</td> <td></td>	Adjusted to Annual averaging	0.71		0.0		27.00		69.3		306.0	
Line 275.0 83.8 258.0 78.6 197.0 60.0 145.0 44.2 158.0 13.0 145.0 14.2 158.0 13.0 14.0 14.2 158.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14		feet	meters	feet	meters	feet	meters	feet	meters	feet	meters
1,499 457 0 678 207 517 157 183.7	Distance to Property Line	275.0	83.8	258.0	78.6	197.0	60.0	145.0	44.2	158.0	48.2
	Distance to Max AAC	1,499	457	0	0	678	207	517	157	183.7	56.0

Page 134 of 242


0A	ILUME SOU	RCES: SCR	EEN3 INPU	VOLUME SOURCES: SCREEN3 INPUT DATA, OUTPUT RESULTS, AND SCALED RESULTS	TPUT RESU	JLTS, AND	SCALED R	ESULTS		
Emission Source>>	RAP Feed	RAP Feed Bin System	Unload @ AGG Stockpiles	G Stockpiles	AGG Feed Bin System	in System	AGG Screener/Drum Feed	r/Drum Feed	Unload @ CSP Stockpile9	Stockpile9
	Dimei	Dimensions	Dimer	Dimensions	Dimensions	sions	Dimensions	sions	Dimensions	sions
FUGITIVE PM10 Process	L3m x W1	L3m x W14m x H5m	L15m x W1	L15m x W15m x H6m	L27m x W4m x H3m	m x H3m	L20m x W4m x H5m	tm x H5m	L23m x W23m x H9m	3m x H9m
Emission Sources for Asphalt	Initial Late	Initial Lateral: 0.7 m	Initial Later	Initial Lateral: 3.49 m	Initial Lateral: 6.28 m	ll: 6.28 m	Initial Lateral: 4.65 m	al: 4.65 m	Initial Lateral: 5.35 m	al: 5.35 m
Paving Materials Plant	Initial Vertio	Initial Vertical: 2.33 m	Initial Vertic	Initial Vertical: 2.79 m	Initial Vertical: 1.4 m	al: 1.4 m	Initial Vertical: 2.33 m	al: 2.33 m	Initial Vertical: 4.19 m	al: 4.19 m
	Release	Release Ht: 5 m	Release	Release Ht: 6 m	Release Ht: 3 m	lt: 3m	Release Ht: 5 m	Ht: 5 m	Release Ht: 9 m	H: 9 m
SCREEN3 Result, 1-hour avg	7458		2910		5857		2776		1921	
Adjusted to 8-hour averaging	5221	3	2037		4100		1943	3	1345	
Adjusted to 24-hour averaging	0	ui/6n	1164	uj/6n	2343	ui/ɓn	1110	u1/6n	768	ug/m
Adjusted to Annual averaging	0		232.80		469		222		154	
	feet	meters	feet	meters	feet	meters	feet	meters	feet	meters
Distance to Property Line	363.0	110.6	670.0	204.22	400.0	121.9	418.0	127.4	146.0	44.50
Distance to Max AAC	364.2	111.0	121.4	37.0	400.3	122.0	416.7	127.0	147.6	45.00


STOCKPILES:	Ambient Air C	STOCKPILES: Ambient Air Concentrations & Distances to Property Line	& Distances to	Property Line
#	Stockpile	1-hr AAC	8-hr AAC	24-hr AAC
	VIRGIN AG	VIRGIN AGGREGATE STOCKPILES	OCKPILES	
1	355.4	1845.0	1291.5	738.0
2	344.7	1902.0	1331.4	760.8
ო	313.6	2080.0	1456.0	832.0
4	266.4	2397.0	1677.9	958.8
5	243.8	2570.0	1799.0	1028.0
9	225.6	2721.0	1904.7	1088.4
7	204.2	2910.0	2037.0	1164.0
CSP STO	CKPILES (AS	CSP STOCKPILES (AS DELIVERED #9 & PROCESSED #8)	#9 & PROCE	SSED #8)
8	62.8	1866.0	1306.2	746.4
ი	44.5	1921.0	1344.7	768.4


	Crushing & Screening	Screening	Processed N	Processed Mtls to Pile 8
	Dimer	Dimensions	Dimer	Dimensions
	L37m x W2	L37m x W24m x H6m	L23m x W2	L23m x W23m x H9m
	Initial Late	Initial Lateral: 8.6 m	Initial Late	Initial Lateral: 5.35 m
	Initial Vertic	Initial Vertical: 2.79 m	Initial Vertic	Initial Vertical: 4.19 m
	Release	Release Ht: 6 m	Release	Release Ht: 9 m
SCREEN3 Result, 1-hour avg	2141		1866	
Adjusted to 8-hour averaging	1499	1 m 3	1306	³
Adjusted to 24-hour averaging	856	III/ĥn	746	III/6n
Adjusted to Annual averaging	171.3		149	
	feet	meters	feet	meters
Distance to Property Line	176.0	53.64	206.0	62.79
Distance to Max AAC	177.2	54.00	206.7	63.00

SCREEN3 INPUT PARAMETERS	RAMETERS
Receptor Height:	0 meters from ground
Rural/Urban Option:	RURAL
Downwash considered (Y/N):	No
Complex Terrain above	
stack height (Y/N):	2
Simple Terrain above	
stack height (Y/N):	2
Meteorology Choice:	Full

Scaling Factors for averaging period 1-hour to 8-hour 0.7 1-hour to 24-hour 0.4 1-hour to Annual 0.08 1-hour to 3-hour 0.9

al Cu

82021 Mayar Technologias U.S. Geologi

Send feedback

100 ft

Page 139 of 242

7/2/2021

13:30:10

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

STANCILL S INC. --- CRUSHING & SCREENING PLANT

SIMPLE TERRAIN INPUTS: SOURCE TYPE = VOLUME EMISSION RATE (G/S) = 1.00000SOURCE HEIGHT (M) = 6.0960INIT. LATERAL DIMEN (M) = 8.6563INIT. VERTICAL DIMEN (M) = 2.8346RECEPTOR HEIGHT (M) = 0.0000URBAN/RURAL OPTION = RURAL

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

54.	2413.	4	1.0	1.0 320.0	6.10 1	2.62	5.06	NO
100.	2325.	6	1.0	1.0 10000.0	6.10	12.13	4.49	NO
200.	2040.	6	1.0	1.0 10000.0	6.10	15.52	5.99	NO
300.	1628.	6	1.0	1.0 10000.0	6.10	18.83	7.39	NO
400.	1294.	6	1.0	1.0 10000.0	6.10	22.09	8.73	NO
500.	1045.	6	1.0	1.0 10000.0	6.10	25.29	10.00	NO
600.	877.5	6	1.0	1.0 10000.0	6.10	28.46	10.90	NO
700.	740.2	6	1.0	1.0 10000.0	6.10	31.60	11.95	NO
800.	633.9	6	1.0	1.0 10000.0	6.10	34.70	12.96	NO
900.	549.8	6	1.0	1.0 10000.0	6.10	37.77	13.93	NO
1000.	488.2	6	1.0	1.0 10000.0	6.10	40.81	14.65	5 NO
1100.	433.7	6	1.0	1.0 10000.0	6.10	43.83	15.50) NO
1200.	388.5	6	1.0	1.0 10000.0	6.10	46.83	16.31	NO
1300.	350.6	6	1.0	1.0 10000.0	6.10	49.81	17.11	NO
1400.	318.3	6	1.0	1.0 10000.0	6.10	52.77	17.88	NO NO
1500.	290.6	6	1.0	1.0 10000.0	6.10	55.71	18.64	NO
1600.	266.7	6	1.0	1.0 10000.0	6.10	58.63	19.37	' NO
1700.	245.8	6	1.0	1.0 10000.0	6.10	61.54	20.09	NO NO
1800.	227.5	6	1.0	1.0 10000.0	6.10	64.43	20.80) NO
1900.	211.3	6	1.0	1.0 10000.0	6.10	67.31	21.49	NO NO
2000.	199.2	6	1.0	1.0 10000.0	6.10	70.17	21.91	NO
2100.	186.9	6	1.0	1.0 10000.0	6.10	73.03	22.49	NO NO

2200. 2300.	175.8 165.8	-		$1.0\ 10000.0\ 1.0\ 10000.0$				
2400.	156.7	6	1.0	1.0 10000.0	6.10	81.50	24.15	NO
2500.	148.4	6	1.0	1.0 10000.0	6.10	84.31	24.68	NO
2600.	140.8	6	1.0	1.0 10000.0	6.10	87.10	25.20	NO
2700.	133.9	6	1.0	1.0 10000.0	6.10	89.88	25.72	NO
2800.	127.5	6	1.0	1.0 10000.0	6.10	92.65	26.22	NO
2900.	121.6	6	1.0	1.0 10000.0	6.10	95.41	26.72	NO
3000.	116.8	6	1.0	1.0 10000.0	6.10	98.16	27.07	NO

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 54. M: 54. 2413. 4 1.0 1.0 320.0 6.10 12.62 5.06 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION	MAX CON	IC DIS	Г ТО	TERRAIN
PROCEDURE	(UG/M**3)	MAX (N	A) H	IT (M)
SIMPLE TERRAIN	2413.	54.	0.	

7/2/2021

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

STANCILL S INC. --- BAGHOUSE STACK

BAGHOUSE STACK

SIMPLE TERRAIN INPUTS: SOURCE TYPE = POINT EMISSION RATE (G/S) = 1.00000STACK HEIGHT (M) = 12.1920STK INSIDE DIAM (M) = 1.4478 STK EXIT VELOCITY (M/S)= 22.9338 STK GAS EXIT TEMP (K) = 422.0389AMBIENT AIR TEMP (K) = 298.1500RECEPTOR HEIGHT (M) =0.0000 URBAN/RURAL OPTION = RURAL BUILDING HEIGHT (M) = 0.0000MIN HORIZ BLDG DIM (M) =0.0000 MAX HORIZ BLDG DIM (M) =0.0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 34.595 M**4/S**3; MOM. FLUX = 194.711 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

(M)	(UG/M*	*3) S	STAB	(M/S)) (M/S)	(M)	HT (M)	Y (M)	Z (N
86.	0.1683	5	1.0	1.1 1	0000.0	107.38	27.60	27.26	NO
100.	0.1822	5	1.0	1.1	10000.0	107.38	27.88	27.42	NO
200.	1.579	3	10.0	10.2	3200.0	42.15	24.14	14.89	NO
300.	6.352	4	20.0	20.6	6400.0	25.91	22.84	12.52	NO
400.	8.550	4	20.0	20.6	6400.0	25.91	29.71	15.77	NO
500.	8.731	4	20.0	20.6	6400.0	25.91	36.39	18.78	NO
600.	8.122	4	20.0	20.6	6400.0	25.91	42.93	21.63	NO
700.	7.304	4	15.0	15.5	4800.0	31.92	49.51	24.69	NO
800.	6.824	4	15.0	15.5	4800.0	31.92	55.86	27.37	NO
900.	6.354	4	10.0	10.3	3200.0	41.86	62.46	30.66	NO
1000.	6.122	4	10.0	10.3	3200.0	41.86	68.65	33.19	NO
1100.	5.785	4	10.0	10.3	3200.0	41.86	74.79	35.16	NO
1200.	5.447	4	10.0	10.3	3200.0	41.86	80.88	37.07	NO
1300.	5.148	4	8.0	8.2	2560.0	49.28	87.17	39.45	NO
1400.	4.924	4	8.0	8.2	2560.0	49.28	93.16	41.24	NO

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

1500.	4.700	4	8.0	8.2 2560.0 49.28 99.11 43.00 NO
1600.	4.481	4	8.0	8.2 2560.0 49.28 105.03 44.71 NO
1700.	4.270	4	8.0	8.2 2560.0 49.28 110.91 46.39 NO
1800.	4.069	4	8.0	8.2 2560.0 49.28 116.77 48.04 NO
1900.	3.878	4	8.0	8.2 2560.0 49.28 122.59 49.67 NO
2000.	3.707	2	1.0	1.0 320.0 313.60 298.49 249.17 NO
2100.	3.664	2	1.0	1.0 320.0 313.60 310.62 261.28 NO
2200.	3.603	2	1.0	1.0 320.0 313.60 322.71 273.50 NO
2300.	3.662	5	2.0	2.1 10000.0 87.74 110.75 42.21 NO
2400.	3.763	5	1.5	1.6 10000.0 95.34 115.36 44.11 NO
2500.	3.856	5	1.5	1.6 10000.0 95.34 119.52 44.85 NO

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 86. M: 457. 8.815 4 20.0 20.6 6400.0 25.91 33.62 17.56 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** TERRAIN HEIGHT OF 0.0 M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

86. 0.1683 5 1.0 1.1 10000.0 107.38 27.60 27.26 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** INVERSION BREAK-UP FUMIGATION CALC. *** CONC (UG/M**3) = 9.413 DIST TO MAX (M) = 3684.69

7/2/2021 13:19:27

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

STANCILL S INC. --- HOT OIL HEATER

SIMPLE TERRAIN INPUTS: SOURCE TYPE = POINT EMISSION RATE (G/S) = 1.00000STACK HEIGHT (M) =3.0480 STK INSIDE DIAM (M) =0.3048 STK EXIT VELOCITY (M/S) = 7.7612STK GAS EXIT TEMP (K) = 477.5944AMBIENT AIR TEMP (K) = 298.1500RECEPTOR HEIGHT (M) = 0.0000 URBAN/RURAL OPTION = RURAL BUILDING HEIGHT (M) = 0.0000MIN HORIZ BLDG DIM (M) = 0.0000 MAX HORIZ BLDG DIM (M) =0.0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = $0.664 \text{ M}^{**4/S^{**3}}$; MOM. FLUX = $0.873 \text{ M}^{**4/S^{**2}}$.

*** FULL METEOROLOGY ***

DIST CONC

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DWASH

U10M USTK MIX HT PLUME SIGMA SIGMA

	DIDI	CONC	/	01	0111	ODIR 1	W112X 11			IOMIT	DI.
	(M)	(UG/M*	*3)	STAB	(M/S	S) (M/S)) (M)	HT (N	4) Y (M) Z (M)
-	72.	769.0	4	8.0	8.0	2560.0	4.70	6.04	3.52	NO	
	100.	697.4	4	4.5	4.5	1440.0	6.55	8.26	4.76	NO	
	200.	531.6	4	2.0	2.0	640.0	10.93	15.73	8.79	NO	
	300.	413.1	4	1.5	1.5	480.0	13.56	22.81	12.46	NO	
	400.	333.9	4	1.0	1.0	320.0	18.81	29.80	15.92	NO	
	500.	281.8	4	1.0	1.0	320.0	18.81	36.43	18.84	NO	
	600.	234.6	4	1.0	1.0	320.0	18.81	42.95	21.68	NO	
	700.	196.0	4	1.0	1.0	320.0	18.81	49.39	24.45	NO	
	800.	165.4	4	1.0	1.0	320.0	18.81	55.76	27.16	NO	
	900.	161.4	6	1.0	1.0	10000.0	24.69	31.39	14.38	NO NO	
	1000.	163.6	6	1.0	1.0	10000.0	24.69	34.44	15.2	6 NO	
	1100.	162.2	6	1.0	1.0	10000.0	24.69	37.48	3 16.0	6 NO	
	1200.	159.3	6	1.0	1.0	10000.0	24.69	40.49	9 16.8	3 NO	
	1300.	155.4	6	1.0	1.0	10000.0	24.69	43.48	3 17.5	9 NO	
	1400.	150.9	6	1.0	1.0	10000.0	24.69	46.46	5 18.3	4 NO	
	1500.	146.0	6	1.0	1.0	10000.0	24.69	49.42	2 19.0	6 NO	
	1600.	141.0	6	1.0	1.0	10000.0	24.69	52.36	5 19.7	7 NO	

SCREEN3 OUTPUT Page 5 of 22

1700. 135.9 6 1.0 1.0 10000.0 24.69 55.29 20.47 NO 1800. 130.8 6 1.0 1.0 10000.0 24.69 58.20 21.16 NO 1900. 125.9 6 1.0 1.0 10000.0 24.69 61.09 21.83 NO 2000. 121.1 6 1.0 1.0 10000.0 24.69 63.97 22.49 NO 2100. 116.4 6 1.0 1.0 10000.0 24.69 66.84 23.06 NO 2200. 111.9 6 1.0 1.0 10000.0 24.69 69.70 23.61 NO 2300. 107.7 6 1.0 1.0 10000.0 24.69 72.54 24.14 NO 6 1.0 1.0 10000.0 24.69 75.37 24.67 NO 2400. 103.7 2500. 99.95 6 1.0 1.0 10000.0 24.69 78.19 25.20 NO

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 72. M: 72. 769.0 4 8.0 8.0 2560.0 4.70 6.04 3.52 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** TERRAIN HEIGHT OF 0.0 M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

72. 769.0 4 8.0 8.0 2560.0 4.70 6.04 3.52 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 769.0 72. 0.

----- -----

7/2/2021 13:24:02

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

STANCILL S INC. --- CRUSHER ENGINE

SIMPLE TERRAIN INPUTS: SOURCE TYPE = POINT EMISSION RATE (G/S) = 1.00000STACK HEIGHT (M) =2.4384 STK INSIDE DIAM (M) = 0.0762 STK EXIT VELOCITY (M/S) = 181.1038STK GAS EXIT TEMP (K) = 812.0000AMBIENT AIR TEMP (K) = 298.1500RECEPTOR HEIGHT (M) = 0.0000 URBAN/RURAL OPTION = RURAL BUILDING HEIGHT (M) = 0.0000MIN HORIZ BLDG DIM (M) = 0.0000 MAX HORIZ BLDG DIM (M) =0.0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 1.631 M**4/S**3; MOM. FLUX = 17.482 M**4/S**2.

*** FULL METEOROLOGY ***

DIST CONC

***** *** SCREEN AUTOMATED DISTANCES *** *****

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

U10M USTK MIXHT PLUME SIGMA SIGMA

(M)	(UG/M*	*3)	STAB	(M/S	5) (M/S)) (M)	HT (M	1) Y (1	M) Z (1	M
48.	305.9	3	10.0	10.0	3200.0	6.58	6.31	3.86	NO	
100.	312.9	4	10.0	10.0	3200.0	6.58	8.29	4.80	NO	
200.	219.1	4	5.0	5.0	1600.0	10.72	15.74	8.82	NO	
300.	166.1	4	3.5	3.5	1120.0	14.27	22.86	12.56	NO	
400.	133.2	4	3.0	3.0	960.0	16.24	29.72	15.77	NO	
500.	111.5	4	2.5	2.5	800.0	19.00	36.45	18.90	NO	
600.	96.50	4	2.0	2.0	640.0	23.14	43.12	22.02	NO	
700.	83.84	4	2.0	2.0	640.0	23.14	49.54	24.75	NO	
800.	75.91	4	1.5	1.5	480.0	30.04	56.13	27.92	NO	
900.	79.04	6	1.0	1.0	10000.0	31.64	31.89	15.43	NO	
1000.	84.41	6	1.0	1.0	10000.0	31.64	34.90	16.26	5 NO	
1100.	87.49	6	1.0	1.0	10000.0	31.64	37.89	9 17.01	NO	
1200.	89.47	6	1.0	1.0	10000.0	31.64	40.88	3 17.74	NO	
1300.	90.54	6	1.0	1.0	10000.0	31.64	43.84	18.46	5 NO	
1400.	90.87	6	1.0	1.0	10000.0	31.64	46.80) 19.17	' NO	
1500.	90.62	6	1.0	1.0	10000.0	31.64	49.74	19.87	' NO	
1600.	89.90	6	1.0	1.0	10000.0	31.64	52.66	5 20.55	5 NO	

I) DWASH

1700. 88.82 6 1.0 1.0 10000.0 31.64 55.57 21.22 NO 1800. 87.47 1.0 1.0 10000.0 31.64 58.47 21.89 NO 6 1900. 85.92 6 1.0 1.0 10000.0 31.64 61.35 22.54 NO 2000. 84.22 6 1.0 1.0 10000.0 31.64 64.22 23.18 NO 2100. 82.19 6 1.0 1.0 10000.0 31.64 67.08 23.73 NO 2200. 80.15 6 1.0 1.0 10000.0 31.64 69.92 24.26 NO 2300. 78.14 6 1.0 1.0 10000.0 31.64 72.76 24.79 NO 6 1.0 1.0 10000.0 31.64 75.58 25.30 NO 2400. 76.15 2500. 74.20 6 1.0 1.0 10000.0 31.64 78.39 25.81 NO

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 48. M: 63. 337.5 4 20.0 20.0 6400.0 4.51 5.44 3.18 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** TERRAIN HEIGHT OF 0.0 M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

48. 305.9 3 10.0 10.0 3200.0 6.58 6.31 3.86 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 337.5 63. 0.

----- -----

7/2/2021 13:25:39

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

STANCILL S INC. --- SCREENER ENGINE

SIMPLE TERRAIN INPUTS: SOURCE TYPE = POINT EMISSION RATE (G/S) = 1.00000STACK HEIGHT (M) =2.4384 STK INSIDE DIAM (M) = 0.0762 STK EXIT VELOCITY (M/S)= 72.4503 STK GAS EXIT TEMP (K) = 812.0389AMBIENT AIR TEMP (K) = 298.1500RECEPTOR HEIGHT (M) = 0.0000 URBAN/RURAL OPTION = RURAL BUILDING HEIGHT (M) = 0.0000MIN HORIZ BLDG DIM (M) = 0.0000 MAX HORIZ BLDG DIM (M) =0.0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 0.653 M**4/S**3; MOM. FLUX = 2.798 M**4/S**2.

*** FULL METEOROLOGY ***

DIST CONC

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

U10M USTK MIX HT PLUME SIGMA SIGMA

		*2)									CII
(M)		<i>,</i>						I) Y (N	A) Z(M) DWA	21
48.	865.7	3	5.0	5.0 1	600.0	5.75	6.33	3.88 N	10		
100.	787.6	4	4.5	4.5 1	440.0	6.12	8.27	4.77	NO		
200.	547.8	4	2.0	2.0	640.0	10.72	15.74	8.82	NO		
300.	415.7	4	1.5	1.5	480.0	13.48	22.83	12.50	NO		
400.	329.4	4	1.0	1.0	320.0	19.00	29.83	15.99	NO		
500.	278.7	4	1.0	1.0	320.0	19.00	36.45	18.90	NO		
600.	232.5	4	1.0	1.0	320.0	19.00	42.98	21.73	NO		
700.	194.6	4	1.0	1.0	320.0	19.00	49.42	24.50	NO		
800.	171.4	6	1.0	1.0 1	0.0000	23.96	28.31	13.46	NO		
900.	175.7	6	1.0	1.0 1	0.0000	23.96	31.38	14.36	NO		
1000.	176.4	6	1.0	1.0 1	0000.0	23.96	34.44	15.25	NO		
1100.	173.7	6	1.0	1.0 1	0000.0	23.96	37.47	16.04	NO		
1200.	169.5	6	1.0	1.01	0000.0	23.96	40.48	16.82	NO		
1300.	164.5	6	1.0	1.0 1	0000.0	23.96	43.48	17.58	NO		
1400.	159.1	6	1.0	1.0 1	0000.0	23.96	46.46	18.32	NO		
1500.	153.3	6	1.0	1.0 1	0000.0	23.96	49.41	19.05	NO		
1600.	147.5	6	1.0	1.0 1	0000.0	23.96	52.36	19.76	NO		

SCREEN3 OUTPUT Page 9 of 22

1700. 141.8 6 1.0 1.0 10000.0 23.96 55.28 20.46 NO 1800. 136.2 1.0 1.0 10000.0 23.96 58.19 21.15 NO 6 1900. 130.7 6 1.0 1.0 10000.0 23.96 61.09 21.82 NO 2000. 125.4 6 1.0 1.0 10000.0 23.96 63.97 22.48 NO 2100. 120.4 6 1.0 1.0 10000.0 23.96 66.84 23.05 NO 2200. 115.6 6 1.0 1.0 10000.0 23.96 69.70 23.60 NO 2300. 111.1 6 1.0 1.0 10000.0 23.96 72.54 24.14 NO 6 1.0 1.0 10000.0 23.96 75.37 24.67 NO 2400. 106.8 2500. 102.8 6 1.0 1.0 10000.0 23.96 78.19 25.19 NO

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 48. M: 48. 865.7 3 5.0 5.0 1600.0 5.75 6.33 3.88 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** TERRAIN HEIGHT OF 0.0 M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

48. 865.7 3 5.0 5.0 1600.0 5.75 6.33 3.88 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 865.7 48. 0.

----- -----

7/2/2021 13:27:37

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

STANCILL S INC. --- STACKER ENGINE

SIMPLE TERRAIN INPUTS: SOURCE TYPE = POINT EMISSION RATE (G/S) = 1.000000 STACK HEIGHT (M) = 1.2192 STK INSIDE DIAM (M) = 0.0762 STK EXIT VELOCITY (M/S)= 27.9420 STK GAS EXIT TEMP (K) = 812.0000 AMBIENT AIR TEMP (K) = 298.0000 RECEPTOR HEIGHT (M) = 0.0000 URBAN/RURAL OPTION = URBAN BUILDING HEIGHT (M) = 0.0000 MIN HORIZ BLDG DIM (M) = 0.0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

STACK EXIT VELOCITY WAS CALCULATED FROM VOLUME FLOW RATE = 270.00000 (ACFM)

BUOY. FLUX = 0.252 M**4/S**3; MOM. FLUX = 0.416 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

(M)	(UG/M*	*3)	STAB	(M/S	5) (M/S)) (M)	HT (M)) Y (M) Z (N
30.	3825.	4	2.0	2.0	640.0	5.03	4.89 4.	32 NC)
100.	1178.	4	1.0	1.0	320.0	8.83	15.84 1	3.97 N	10
200.	517.9	6	1.0	1.0	10000.0	16.88	21.64	14.73	NO
300.	351.6	6	1.0	1.0	10000.0	16.88	31.50	20.43	NO
400.	242.9	6	1.0	1.0	10000.0	16.88	41.10	25.69	NO
500.	177.4	6	1.0	1.0	10000.0	16.88	50.41	30.57	NO
600.	135.9	6	1.0	1.0	10000.0	16.88	59.44	35.11	NO
700.	108.1	6	1.0	1.0	10000.0	16.88	68.21	39.37	NO
800.	88.66	6	1.0	1.0	10000.0	16.88	76.72	43.38	NO
900.	74.44	6	1.0	1.0	10000.0	16.88	85.01	47.18	NO
1000.	63.71	6	1.0	1.0	10000.0	16.88	93.07	50.79	NO
1100.	55.39	6	1.0	1.0	10000.0	16.88	100.93	54.24	NO
1200.	48.79	6	1.0	1.0	10000.0	16.88	108.60	57.55	NO
1300.	43.45	6	1.0	1.0	10000.0	16.88	116.07	60.72	NO
1400.	39.06	6	1.0	1.0	10000.0	16.88	123.38	63.77	NO

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

1500.	35.40	6	1.0	1.0 10000.0	16.88	130.52	66.71	NO	
1600.	32.31	6	1.0	1.0 10000.0	16.88	137.51	69.56	NO	
1700.	29.67	6	1.0	1.0 10000.0	16.88	144.34	72.32	NO	
1800.	27.40	6	1.0	1.0 10000.0	16.88	151.04	75.00	NO	
1900.	25.42	6	1.0	1.0 10000.0	16.88	157.60	77.60	NO	
2000.	23.69	6	1.0	1.0 10000.0	16.88	164.04	80.13	NO	
2100.	22.16	6	1.0	1.0 10000.0	16.88	170.35	82.59	NO	
2200.	20.80	6	1.0	1.0 10000.0	16.88	176.55	84.99	NO	
2300.	19.59	6	1.0	1.0 10000.0	16.88	182.64	87.34	NO	
2400.	18.50	6	1.0	1.0 10000.0	16.88	188.62	89.63	NO	
2500.	17.51	6	1.0	1.0 10000.0	16.88	194.51	91.88	NO	
2600.	16.62	6	1.0	1.0 10000.0	16.88	200.29	94.07	NO	
2700.	15.81	6	1.0	1.0 10000.0	16.88	205.98	96.22	NO	
2800.	15.08	6	1.0	1.0 10000.0	16.88	211.58	98.33	NO	
2900.	14.40	6	1.0	1.0 10000.0	16.88	217.10	100.40	NO	
3000.	13.78	6	1.0	1.0 10000.0	16.88	222.53	102.43	NO	

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 30. M: 30. 3825. 4 2.0 2.0 640.0 5.03 4.89 4.32 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** SCREEN DISCRETE DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

56. 2375. 4 1.0 1.0 320.0 8.83 9.12 8.07 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 3825. 30. 0.

----- -----

7/2/2021 15:38:19

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

STANCILL S INC .-- RAP FEED BIN SYSTEM

SIMPLE TERRAIN INPUTS: SOURCE TYPE = VOLUME EMISSION RATE (G/S) = 1.00000SOURCE HEIGHT (M) = 5.0000INIT. LATERAL DIMEN (M) = 0.7000INIT. VERTICAL DIMEN (M) = 2.3300RECEPTOR HEIGHT (M) = 0.0000URBAN/RURAL OPTION = RURAL

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

34.	0.1239E+	-05	6 1.	0 1.0 10000.	0 5.0	0 2.0	7 2.95	5 NO
100.	7942.	6	1.0	1.0 10000.0	5.00	4.62	4.05	NO
200.	4627.	6	1.0	1.0 10000.0	5.00	8.25	5.59	NO
300.	2999.	6	1.0	1.0 10000.0	5.00	11.74	7.01	NO
400.	2104.	6	1.0	1.0 10000.0	5.00	15.13	8.36	NO
500.	1563.	6	1.0	1.0 10000.0	5.00	18.45	9.65	NO
600.	1211.	6	1.0	1.0 10000.0	5.00	21.71	10.90	NO
700.	996.2	6	1.0	1.0 10000.0	5.00	24.92	11.70	NO
800.	824.6	6	1.0	1.0 10000.0	5.00	28.10	12.72	NO
900.	696.1	6	1.0	1.0 10000.0	5.00	31.23	13.70	NO
1000.	603.6	6	1.0	1.0 10000.0	5.00	34.34	14.47	NO
1100.	526.7	6	1.0	1.0 10000.0	5.00	37.41	15.32	NO
1200.	464.6	6	1.0	1.0 10000.0	5.00	40.46	16.14	NO
1300.	413.7	6	1.0	1.0 10000.0	5.00	43.48	16.94	NO
1400.	371.4	6	1.0	1.0 10000.0	5.00	46.49	17.72	NO
1500.	335.8	6	1.0	1.0 10000.0	5.00	49.47	18.48	NO
1600.	305.4	6	1.0	1.0 10000.0	5.00	52.43	19.22	NO
1700.	279.4	6	1.0	1.0 10000.0	5.00	55.37	19.94	NO
1800.	256.8	6	1.0	1.0 10000.0	5.00	58.30	20.65	NO
1900.	237.1	6	1.0	1.0 10000.0	5.00	61.20	21.35	NO
2000.	221.6	6	1.0	1.0 10000.0	5.00	64.10	21.82	NO
2100.	206.9	6	1.0	1.0 10000.0	5.00	66.98	22.40	NO

2200.	193.8	6	1.0	1.0 10000.0	5.00	69.84	22.97	NO
2300.	182.0	6	1.0	1.0 10000.0	5.00	72.70	23.52	NO
2400.	171.4	6	1.0	1.0 10000.0	5.00	75.53	24.07	NO
2500.	161.7	6	1.0	1.0 10000.0	5.00	78.36	24.60	NO

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 34. M: 34. 0.1239E+05 6 1.0 1.0 10000.0 5.00 2.07 2.95 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** TERRAIN HEIGHT OF 0.0 M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

111. 7458. 6 1.0 1.0 10000.0 5.00 5.01 4.22 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 0.1239E+05 34. 0.

----- ------ ------

7/2/2021

13:35:46

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

STANCILL S INC. -- AGGREGATE FEED BINS

SIMPLE TERRAIN INPUTS:SOURCE TYPE=VOLUMEEMISSION RATE (G/S)=1.00000SOURCE HEIGHT (M)=3.0000INIT. LATERAL DIMEN (M)=6.2800INIT. VERTICAL DIMEN (M)=1.4000RECEPTOR HEIGHT (M)=0.0000URBAN/RURAL OPTION=RURAL

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

37.	7556.	5	1.0	1.0 10000.0	3.00	8.36	2.63	NO
100.	6491.	6	1.0	1.0 10000.0	3.00	9.83	3.30	NO
200.	4064.	6	1.0	1.0 10000.0	3.00	13.27	4.89	NO
300.	2693.	6	1.0	1.0 10000.0	3.00	16.63	6.36	NO
400.	1915.	6	1.0	1.0 10000.0	3.00	19.92	7.74	NO
500.	1436.	6	1.0	1.0 10000.0	3.00	23.16	9.06	NO
600.	1121.	6	1.0	1.0 10000.0	3.00	26.35	10.32	NO
700.	921.6	6	1.0	1.0 10000.0	3.00	29.51	11.30	NO
800.	768.0	6	1.0	1.0 10000.0	3.00	32.63	12.33	NO
900.	652.1	6	1.0	1.0 10000.0	3.00	35.72	13.32	NO
1000.	565.8	6	1.0	1.0 10000.0	3.00	38.78	14.18	NO
1100.	496.0	6	1.0	1.0 10000.0	3.00	41.82	15.04	NO
1200.	439.3	6	1.0	1.0 10000.0	3.00	44.83	15.87	NO
1300.	392.6	6	1.0	1.0 10000.0	3.00	47.83	16.68	NO
1400.	353.5	6	1.0	1.0 10000.0	3.00	50.80	17.47	NO
1500.	320.5	6	1.0	1.0 10000.0	3.00	53.75	18.23	NO
1600.	292.2	6	1.0	1.0 10000.0	3.00	56.69	18.98	NO
1700.	267.9	6	1.0	1.0 10000.0	3.00	59.60	19.71	NO
1800.	246.7	6	1.0	1.0 10000.0	3.00	62.51	20.42	NO
1900.	228.2	6	1.0	1.0 10000.0	3.00	65.39	21.12	NO
2000.	212.8	6	1.0	1.0 10000.0	3.00	68.27	21.71	NO
2100.	199.0	6	1.0	1.0 10000.0	3.00	71.13	22.29	NO

2200.	186.7	6	1.0	1.0 10000.0	3.00	73.97	22.85	NO
2300.	175.6	6	1.0	1.0 10000.0	3.00	76.81	23.41	NO
2400.	165.5	6	1.0	1.0 10000.0	3.00	79.63	23.96	NO
2500.	156.5	6	1.0	1.0 10000.0	3.00	82.44	24.49	NO

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 37. M: 37. 7556. 5 1.0 1.0 10000.0 3.00 8.36 2.63 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** TERRAIN HEIGHT OF 0.0 M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

122. 5857. 6 1.0 1.0 10000.0 3.00 10.59 3.68 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 7556. 37. 0.

----- ------

7/2/2021

15:39:43

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

STANCILL S INC. -- AGGREGATE SCREENER / DRUM FEED

SIMPLE TERRAIN INPUTS:SOURCE TYPE=VOLUMEEMISSION RATE (G/S)=1.00000SOURCE HEIGHT (M)=5.0000INIT. LATERAL DIMEN (M)=7.9100INIT. VERTICAL DIMEN (M)=5.5800RECEPTOR HEIGHT (M)=0.0000URBAN/RURAL OPTION=RURAL

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M) HT (M) Y (M) Z (M) DWASH

39.	4008.	6	1.0	1.0 10000.0	5.00	9.28	6.14	NO
100.	3087.	6	1.0	1.0 10000.0	5.00	11.41	7.01	NO
200.	2151.	6	1.0	1.0 10000.0	5.00	14.81	8.36	NO
300.	1591.	6	1.0	1.0 10000.0	5.00	18.13	9.65	NO
400.	1229.	6	1.0	1.0 10000.0	5.00	21.40	10.89	NO
500.	1017.	6	1.0	1.0 10000.0	5.00	24.62	11.59	NO
600.	839.7	6	1.0	1.0 10000.0	5.00	27.80	12.61	NO
700.	707.6	6	1.0	1.0 10000.0	5.00	30.94	13.59	NO
800.	616.7	6	1.0	1.0 10000.0	5.00	34.04	14.26	NO
900.	537.2	6	1.0	1.0 10000.0	5.00	37.12	15.11	NO
1000.	473.2	6	1.0	1.0 10000.0	5.00	40.17	15.94	NO
1100.	420.8	6	1.0	1.0 10000.0	5.00	43.20	16.75	NO
1200.	377.4	6	1.0	1.0 10000.0	5.00	46.20	17.53	NO
1300.	340.8	6	1.0	1.0 10000.0	5.00	49.18	18.29	NO
1400.	309.8	6	1.0	1.0 10000.0	5.00	52.15	19.04	NO
1500.	283.1	6	1.0	1.0 10000.0	5.00	55.09	19.77	NO
1600.	260.0	6	1.0	1.0 10000.0	5.00	58.02	20.48	NO
1700.	239.9	6	1.0	1.0 10000.0	5.00	60.93	21.18	NO
1800.	226.8	6	1.0	1.0 10000.0	5.00	63.82	21.40	NO
1900.	211.2	6	1.0	1.0 10000.0	5.00	66.70	22.02	NO
2000.	197.6	6	1.0	1.0 10000.0	5.00	69.57	22.59	NO
2100.	185.4	6	1.0	1.0 10000.0	5.00	72.42	23.15	NO

2200.	174.5	6	1.0	1.0 10000.0	5.00	75.26	23.70	NO
2300.	164.6	6	1.0	1.0 10000.0	5.00	78.09	24.25	NO
2400.	155.6	6	1.0	1.0 10000.0	5.00	80.91	24.78	NO
2500.	147.4	6	1.0	1.0 10000.0	5.00	83.71	25.30	NO

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 39. M: 39. 4008. 6 1.0 1.0 10000.0 5.00 9.28 6.14 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** TERRAIN HEIGHT OF 0.0 M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

127. 2776. 6 1.0 1.0 10000.0 5.00 12.35 7.38 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 4008. 39. 0.

7/2/2021

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

STANCILL S INC. -- UNLOADING @ AGG STOCKPILES

SIMPLE TERRAIN INPUTS:SOURCE TYPE=VOLUMEEMISSION RATE (G/S)=1.00000SOURCE HEIGHT (M)=6.0960INIT. LATERAL DIMEN (M)=3.5448INIT. VERTICAL DIMEN (M)=2.8346RECEPTOR HEIGHT (M)=0.0000URBAN/RURAL OPTION=RURAL

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

13:44:12

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

204.	2910.	6	1.0	1.0 10000.0	6.10	10.88	6.05	NO
300.	2165.	6	1.0	1.0 10000.0	6.10	14.15	7.39	NO
400.	1634.	6	1.0	1.0 10000.0	6.10	17.49	8.73	NO
500.	1272.	6	1.0	1.0 10000.0	6.10	20.77	10.00	NO
600.	1041.	6	1.0	1.0 10000.0	6.10	24.00	10.90	NO
700.	860.4	6	1.0	1.0 10000.0	6.10	27.18	11.95	NO
800.	725.2	6	1.0	1.0 10000.0	6.10	30.33	12.96	NO
900.	621.0	6	1.0	1.0 10000.0	6.10	33.44	13.93	NO
1000.	545.5	6	1.0	1.0 10000.0	6.10	36.52	14.65	NO
1100.	480.4	6	1.0	1.0 10000.0	6.10	39.58	15.50	NO
1200.	427.1	6	1.0	1.0 10000.0	6.10	42.61	16.31	NO
1300.	382.8	6	1.0	1.0 10000.0	6.10	45.62	17.11	NO
1400.	345.6	6	1.0	1.0 10000.0	6.10	48.60	17.88	NO
1500.	314.0	6	1.0	1.0 10000.0	6.10	51.57	18.64	NO
1600.	286.8	6	1.0	1.0 10000.0	6.10	54.52	19.37	NO
1700.	263.3	6	1.0	1.0 10000.0	6.10	57.45	20.09	NO
1800.	242.9	6	1.0	1.0 10000.0	6.10	60.36	20.80	NO
1900.	224.9	6	1.0	1.0 10000.0	6.10	63.26	21.49	NO
2000.	211.3	6	1.0	1.0 10000.0	6.10	66.14	21.91	NO
2100.	197.7	6	1.0	1.0 10000.0	6.10	69.01	22.49	NO
2200.	185.5	6	1.0	1.0 10000.0	6.10	71.87	23.05	NO
2300.	174.6	6	1.0	1.0 10000.0	6.10	74.71	23.60	NO

2400.	164.7	6	1.0	1.0 10000.0	6.10	77.54	24.15	NO
2500.	155.7	6	1.0	1.0 10000.0	6.10	80.36	24.68	NO
2600.	147.5	6	1.0	1.0 10000.0	6.10	83.17	25.20	NO
2700.	140.0	6	1.0	1.0 10000.0	6.10	85.96	25.72	NO
2800.	133.1	6	1.0	1.0 10000.0	6.10	88.75	26.22	NO
2900.	126.8	6	1.0	1.0 10000.0	6.10	91.53	26.72	NO
3000.	121.6	6	1.0	1.0 10000.0	6.10	94.29	27.07	NO

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 204. M: 204. 2910. 6 1.0 1.010000.0 6.10 10.88 6.05 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** TERRAIN HEIGHT OF 0.0 M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST	CONC	2	U1	0M USTK M	IIX HT	PLUME S	IGMA SIGMA
(M)	(UG/M*	*3) S	STAB	(M/S) (M/S)	(M) H	T (M) Y (M) Z(M) DWASH
226.	2721.	6	1.0	1.0 10000.0	6.10 11	1.62 6.36	NO
244.	2570.	6	1.0	1.0 10000.0	6.10 12	2.25 6.62	NO
266.	2397.	6	1.0	1.0 10000.0	6.10 13	3.01 6.93	NO
314.	2080.	6	1.0	1.0 10000.0	6.10 14	4.61 7.58	NO
345.	1902.	6	1.0	1.0 10000.0	6.10 15	5.65 8.00	NO
355.	1845.	6	1.0	1.0 10000.0	6.10 16	5.01 8.14	NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 2910. 204. 0.

07/09/21 04:53:19 *** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

CSP Stockpiles 75 ft diameter (SP8 & SP9)

SIMPLE TERRAIN INPUTS:

SOURCE TYPE=VOLUMEEMISSION RATE (G/S)=1.00000SOURCE HEIGHT (M)=9.1400INIT. LATERAL DIMEN (M)=5.3160INIT. VERTICAL DIMEN (M)=4.2530RECEPTOR HEIGHT (M)=0.0000URBAN/RURAL OPTION=RURAL

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

```
*****
```

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

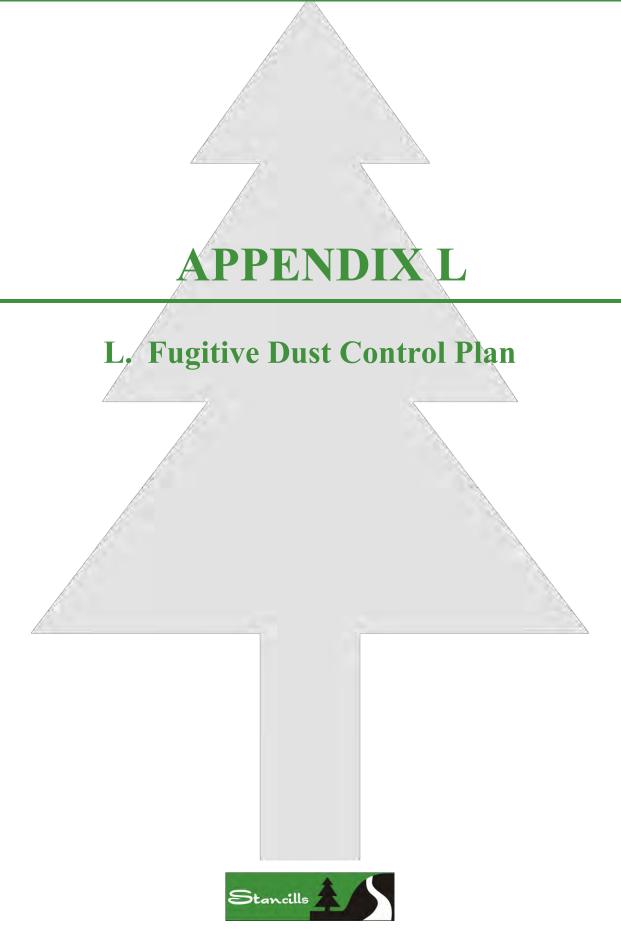
DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

1921.	4	1.0	1.0 320.0	9.14	8.71 6	5.03 N	Ю
1768.	6	1.0	1.0 10000.0	9.14	8.90	5.77	NO
1595.	6	1.0	1.0 10000.0	9.14	12.37	7.19	NO
1335.	6	1.0	1.0 10000.0	9.14	15.75	8.53	NO
1103.	6	1.0	1.0 10000.0	9.14	19.05	9.81	NO
927.3	6	1.0	1.0 10000.0	9.14	22.31	10.64	NO
785.1	6	1.0	1.0 10000.0	9.14	25.51	11.73	NO
673.3	6	1.0	1.0 10000.0	9.14	28.68	12.75	NO
584.1	6	1.0	1.0 10000.0	9.14	31.81	13.73	NO
517.4	6	1.0	1.0 10000.0	9.14	34.91	14.41	NO
459.0	6	1.0	1.0 10000.0	9.14	37.98	15.27	NO
410.4	6	1.0	1.0 10000.0	9.14	41.02	16.09	NO
369.6	6	1.0	1.0 10000.0	9.14	44.04	16.89	NO
335.0	6	1.0	1.0 10000.0	9.14	47.04	17.67	NO
305.4	6	1.0	1.0 10000.0	9.14	50.01	18.43	NO
279.8	6	1.0	1.0 10000.0	9.14	52.97	19.17	NO
257.5	6	1.0	1.0 10000.0	9.14	55.91	19.90	NO
238.0	6	1.0	1.0 10000.0	9.14	58.83	20.61	NO
220.7	6	1.0	1.0 10000.0	9.14	61.74	21.30	NO
208.2	6	1.0	1.0 10000.0	9.14	64.63	21.63	NO
195.0	6	1.0	1.0 10000.0	9.14	67.51	22.22	NO
183.2	6	1.0	1.0 10000.0	9.14	70.37	22.79	NO
	1768. 1595. 1335. 1103. 927.3 785.1 673.3 584.1 517.4 459.0 410.4 369.6 335.0 305.4 279.8 257.5 238.0 220.7 208.2 195.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

2200. 172.5 6 1.0 1.0 10000.0 9.14 73.22 23.35 NO 6 1.0 1.0 10000.0 9.14 76.06 23.89 NO 2300. 162.8 2400. 154.0 6 1.0 1.0 10000.0 9.14 78.88 24.43 NO 2500. 146.0 6 1.0 1.0 10000.0 9.14 81.69 24.96 NO 6 1.0 1.0 10000.0 9.14 84.50 25.48 NO 2600. 138.6 2700. 131.9 6 1.0 1.0 10000.0 9.14 87.29 25.99 NO 2800. 125.7 6 1.0 1.0 10000.0 9.14 90.07 26.49 NO 6 1.0 1.0 10000.0 9.14 92.84 26.76 NO 2900. 120.9 3000. 115.7 6 1.0 1.0 10000.0 9.14 95.60 27.21 NO

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 45. M: 45. 1921. 4 1.0 1.0 320.0 9.14 8.71 6.03 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB



*** TERRAIN HEIGHT OF 0.0 M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH

63. 1866. 4 1.0 1.0 320.0 9.14 10.08 6.73 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

FUGITIVE DUST CONTROL PLANT

Purpose: This plan provides a dust control program to ensure proper operation and maintenance of an Asphalt Paving Materials Mixing Plant (APMMP) and a Crushing & Screening Plant (CSP) equipment owned and operated by **Stancills Inc.**, at 499 Mountain Hill Rd., Perryville, Maryland. This plan also provides possible dust control measures for the site on which the equipment is located and is associated with the equipment operations.

ASPHALT PAVING MATERIALS MIXING PLANT

- Particulate control equipment will be kept in good working order.
- Accumulated dust in the baghouse will be cleaned from the baghouse on a continuous basis and returned to the process.
- The bag cleaning system, a pulse-jet air system, will be operated at regular intervals to remove the dust from the bags, but at sufficient intervals as to allow for an appropriate dust cake to build up on the bags for maximum removal of the dust from the exhaust gas.
- Baghouse Inspections: The bags will be checked with a fluorescent tracing powder which is visible under a black light at least once per year, typically shortly after the startup of the paving season. In addition, a black-light leak check will be made as needed during the operating season within 24 hours of when visible emissions are observed at the stack.
 - If bag replacement is required as a result of this inspection, the bags will be replaced prior to operating the equipment again.
 - Extra bags for the baghouse will be available on site at all times.
 - In the event, other parts are required to repair the baghouse, they will be ordered as soon as possible and installed within 24 hours of arriving at the plant.
- Spillage and residual materials from the process will be picked up daily and returned to the raw materials stockpiles for reuse.

CRUSHING AND SCREENING PLANT

- The wet suppression system will be operated when the C&S plant is running as needed to control fugitive dust emissions.
- Wet suppression system operations will be monitored as follows:
 - The water spray nozzles will be visually observed, at least daily, to determine that they are spraying in the correct pattern and direction during operations.
 - When spray nozzles are found to be misaligned or not functioning properly, they shall be cleaned, re-aligned, and/or replaced within 24 hours of observation.
 - On a monthly basis, the water flow system will be inspected to ensure that water is flowing to the spray nozzles properly. Corrective action will be effected within 24 hours of determining water flow is inadequate.

• The unpaved travel surfaces for the front-end loaders servicing the C&S plant will be watered as needed to control fugitive dust from the surfaces.

SITE MAINTENANCE

- Dust on the unpaved areas where vehicular traffic travel will be controlled by application of water as needed to control fugitive dust.
- The speed of vehicles on the site will be limited to 15 miles per hour (MPH). Signs will be posted to advise drivers of the speed limitation.
- Dust from stockpiles: stockpiles are built while aggregate is delivered to the site. During this phase, dust blowing from the piles will be controlled with water, as needed.

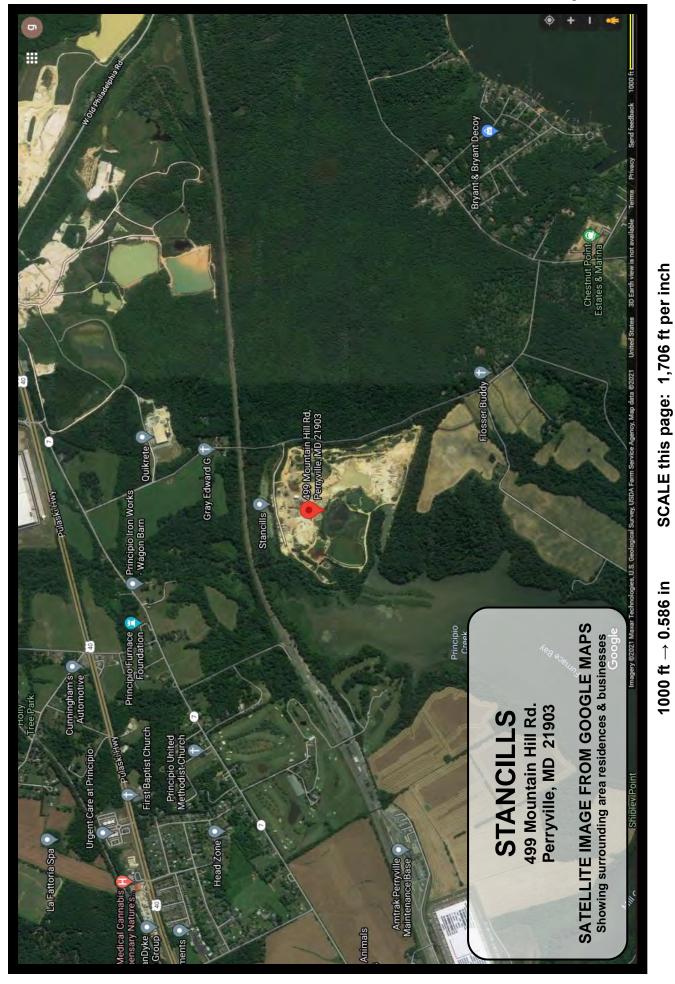
SITE ROADWAYS

- All roadways on which the vehicular traffic hauling APM will be paved.
- The paved roadways will be watered as needed during the operating season when there is dust accumulation.
- All trucks entering the site to deliver aggregates not supplied by the sand and gravel operation will be required to have the loads covered.
- Complaints by neighbors of spillage, excessive speed, etc. can be reported to *Stancills Inc.* and the problem will be corrected as appropriate.

OTHER ACTIVITIES

- The front-end loader operators will be directed to avoid overfilling the bucket of the loader and the feed hoppers to prevent spillage, and to minimize the drop height of the material when loading the feed hoppers.
- The stockpiles will not be worked any more than necessary to keep the materials contained within their defined area. The stockpile height will be kept to the minimum necessary, depending on the quantity required to be on site and available area for the base of the stockpile.

RECORDKEEPING


- Records of baghouse inspections and maintenance, repairs to equipment, bag replacements, dust control actions taken on the site (for roadways and stockpiles), will be maintained and available for review. The records will indicate the date and time, and what action was taken.
- Records of the C&S plant inspections and maintenance, repairs to equipment, nozzle replacements, and dust control actions taken around the C&S plant will be maintained and available for review. The records will indicate the date and time, and what action was taken.

APPENDIX M

M. Satellite Photo of Site and Site Plan Excerpt

Page 168 of 242

N. Background Data for NAAQS Compliance Demonstration

Permit to Construct Application July 2021 Page 172 of 242 Stancills Inc. 499 Mountain Hill Rd Perryville, Maryland THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY.

Geographic Area: Marvland	tant: CO	: 2019
Geograph	Pollutant: CO	Year: 2019

Monitor Values Report

Exceptional Events: Included (if any)

	Pa	ge	173	of
EPA State Region	03	03	03	03
State	MD 03	MD 03	MD 03	ДМ
County	Baltimore			Prince George's MD 03
City	Essex	Grantsville Garrett	North Laurel Howard	Beltsville
Address	1 240053001 600 Dorsey Avenue	240230002 Piney Run, Frostburg Reservoir, Finzel	0006 Interstate 95 South Welocme Center	0030 Howard University'S Beltsville Laboratory, 12003 Old Baltimore Pike Beltsville
Site ID	240053001	240230002	240270006	240330030
Monitor Number	-	-	۲	-
Days 1hr Max Exc Monitor >STD Events Number	None	None	0 None	1.1 0 None
	0	0		0
Days Bhr First Second Max Max Max Second >STD 1hr 1hr	2.7 0 None	0.2 0 0.4 0.3 0 None	1.3	
First Max 1hr	2.9	0.4	0 1.9	1.3
Days 8hr Max >STD	2 0 2.9	0		0 1.3
Second Max 8hr	2		0.7	0.9
First Max 8hr	8165 2.1	7375 0.2	8391 0.7	-
Obs	8165	7375	8391	6818

EPA Air Quality Standards: 35 PPM, 1-hour averaging period 9 PPM, 8-hour averaging period

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based. of the air quality for an entire county or urban area. organizations who own and submit the data.

some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated by state, local, and tribal

AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However,

Get detailed information about this report, including column descriptions, at https://www.epa.gov/outdoor-air-quality-data/about-air-data-reports#mon

Page 173 of 242

Source: U.S. EPA AirData <https://www.epa.gov/air-data>

July 13, 2021

Generated:

-
- 7-
-
•••
Ā
œ
œ
-
0
()
- W
-
_
n
100
>
>
2
2
1
1
<u> </u>
tor
itor
nitor /
itor
nitor /
nitor /
nitor /
onitor \
Jonitor
Monitor \

Geographic Area: Maryland Pollutant: NO2

Year: 2019

Exceptional Events: Included (if any)

Note: The * indicates the mean does not satisfy minimum data completeness criteria.

, u					—		<u> </u>	
EPA Region	03	03	03	03	03	03	03	03
State	Ш	MD	MD 03	MD 03	MD 03	Ш	MD	đ
County	Baltimore	Baltimore	Garrett	Garrett	Howard	Prince George's MD 03	Prince George's MD	Baltimore (City) MD 03
City	Lochearn	Essex	Grantsville Garrett	Grantsville Garrett	North Laurel Howard	eBeltsville	eBeltsville	Baltimore
Address	4 240050009 4380 Old Court Rd	600 Dorsey Avenue	240230002 Piney Run, Frostburg Reservoir, Finzel	240230002 Piney Run, Frostburg Reservoir, Finzel	240270006 Interstate 95 South Welocme Center	1 240330030 Howard University'S Beltsville Laboratory, 12003 Old Baltimore Pike Beltsville	4 240330030 Howard University'S Beltsville Laboratory, 12003 Old Baltimore Pike Beltsville	245100040 Oldtown Fire Station, 1100 Hillen Street
Site ID	240050009	240053001	240230002	240230002	240270006	240330030	240330030	245100040
Exc Monitor Events Number	4	4	-	4	~	-	4	-
	None	None	None	None	None	None	None	None
Annual Mean	41 14.07 None	41 9.02	7 1.94*	10 2.68*	38 16.41 None	37 5.44 None	32 10.50* None	49 11.91 None
98th Percentile	41	41	7	10	38	37	32	49
Hrst Second Max Max 1hr 1hr	45	52	6	11	43	40	31	52
nax 1hr	46	58	6	12	47	41	41	57
Obs	8675	8641	2475	4086	8477	6988	1338	7245

EPA Air Quality Standards: 100 PPB, 1-hour averaging period 53 PPM, Annual averaging period

Get detailed information about this report, including column descriptions, at https://www.epa.gov/outdoor-air-quality-data/about-air-data-reports#mon

some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated by state, local, and tribal AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, organizations who own and submit the data.

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

Source: U.S. EPA AirData <https://www.epa.gov/air-data> This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.

Page 1 of 1 https://www.epa.gov/outdoor-air-quality-data/monitor-values-report

July 13, 2021

Generated:

ryland		
Geographic Area: Maryland	ant: PM10	2019
Geogr	Pollutant:	Year:]

Monitor Values Report

Exceptional Events: Included (if any)

]	'ag	e I	75 o
EPA State Region	03	03	03	03
State	MD	MD	MD	MD
County	Anne Arundel	Anne Arundel	Prince George's MD 03	Baltimore (City) MD 03
City	Glen Burnie	Glen Burnie	Beltsville	Baltimore
Address	1 240031003 Anne Arundel Co. Public Works Bldg. 7409 Baltimore Annapolis Blvd. Glen Burnie Anne Arundel MD 03	2 240031003 Anne Arundel Co. Public Works Bldg. 7409 Baltimore Annapolis Blvd. Glen Burnie Anne Arundel MD 03	240330030 Howard University'S Beltsville Laboratory, 12003 Old Baltimore Pike Beltsville	40 Oldtown Fire Station, 1100 Hillen Street
Site ID	240031003	240031003	240330030	1 245100040
Required Valid First Second Days Days Exc Monitor Days Days Max ASTD SSTD Events Number	٢	2	-	1
Exc Events	None	0 0 None	None	None
Est Days >STD	0	0	0 None	0 0 None
Days >STD	27 0 0 None			
Second Max		26	20	34
First Max	34	34	34	60 53
Valid Days	61 58 34	61 60 34	121 119 34	60
Required	61	61	121	61

EPA Air Quality Standards: 150 ug/m3, 24-hour averaging period

Get detailed information about this report, including column descriptions, at https://www.epa.gov/outdoor-air-quality-data/about-air-data-reports#mon

some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated by state, local, and tribal AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, organizations who own and submit the data.

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.

Source: U.S. EPA AirData <https://www.epa.gov/air-data> This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.

Page 1 of 1

July 13, 2021

Generated:

https://www.epa.gov/outdoor-air-quality-data/monitor-values-report

Page 175 of 242

Monitor Values Report

Geographic Area: Maryland Pollutant: PM2.5

Year: 2019

Exceptional Events: Included (if any)

Note: The * indicates the mean does not satisfy minimum data completeness criteria.

EPA Region	Р	age		6 0								2		
	8	03	03	03	03	03	03	03	03	03	03	03	33	03
State	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
County	Baltimore	Baltimore	Baltimore	Cecil	Dorchester	Garrett	Harford	Howard	Kent	Montgomery	Prince George's	Prince George's	Prince George's	Not in a City Washington
City	Cockeysville	Cockeysville	Essex	Not in a City	Not in a City	Grantsville	Edgewood	North Laurel	Not in a City	Not in a City	Beltsville	Beltsville	Beltsville	Not in a City
Address	Padonia Elementary School, 9834 Greenside Drive	Padonia Elementary School, 9834 Greenside Drive	600 Dorsey Avenue	Fair Hill Natural Resource Mgmt Area, 4493 Telegraph Road	University Of Maryland For Environmental And Estuarine Studies	Piney Run, Frostburg Reservoir, Finzel	Edgewood Chemical Biological Center (Apg), Waehli Road	Interstate 95 South Welocme Center	Millington Wildlife Management Area, Massey - Maryland Line Road (Route 330)	Lathrop E. Smith Environmental Education Center, 5110 Meadowside Lane	Howard University'S Beltsville Laboratory, 12003 Old Baltimore Pike	Howard University'S Beltsville Laboratory, 12003 Old Baltimore Pike	Howard University'S Beltsville Laboratory, 12003 Old Baltimore Pike	Md Correctional Institution 18530 Roxbury Road
Site ID	240051007	240051007	240053001	240150003	240190004	240230002	240251001	240270006	240290002	240313001	240330030	240330030	240330030	240430009
Exc Monitor Events Number	-	ω	-	ω	e	e	ε	ω	ε	ſ	-	Ν	m	3
Exc Events	None	None	None	None	None	None	None	None	None	None	None	None	None	None
Weighted Annual Mean	8.3	7.4	8.2	6.4	5.9	5.6	7	7.4	5.9	6.1	6.8	6.9	7.2	6.9
98th Percentile	26	20	31	18	14	12	19	17	15	18	15	32	15	24
Fourth Max	13.4	22.9	19.6	20.2	14.7	11.7	26	21	16.2	22.8	14.7	12.3	19.6	26.5
Third Max	14.8	23	20.8	26.3	14.9	12	27.4	24	16.5	23.6	15	12.5	21.7	26.7
Second Max	24.2	24.1	31.4	26.5	15.4	12.6	29.8	24.7	20.3	24.5	21.6	21.4	22.3	28.9
First Max	26.3	26.5	44.3	26.8	15.9	14.3	32.8	25.2	25.7	28.9	31.6	31.7	29.3	31.7
Obs	29	351	59	355	354	356	353	356	351	356	121	31	357	355

EPA Air Quality Standards: 100 PPB, 1 hour averaging period

Get detailed information about this report, including column descriptions, at https://www.epa.gov/outdoor-air-quality-data/about-air-data-reports#mon

some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated by state, local, and tribal AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, organizations who own and submit the data.

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area. This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.

Source: U.S. EPA AirData <https://www.epa.gov/air-data>

Generated: July 13, 2021

Page 1 of 2 https://www.epa.gov/outdoor-air-quality-data/monitor-values-report

T
ō
ă
<u> </u>
Ð
Ľ
es S
-
_
a
>
_
0
÷
0
-
2

Geographic Area: Maryland Pollutant: PM2.5

Year: 2019

Exceptional Events: Included (if any)

Note: The * indicates the mean does not satisfy minimum data completeness criteria.

A no	Р	age
EPA State Regior	ß	ер С
State	MD	QW
County	Baltimore (City) MD 03	Baltimore (City) MD 03 00
City	Baltimore	Baltimore
Address	1 245100040 Oldtown Fire Station, 1100 Hillen Street	40 Oldtown Fire Station, 1100 Hillen Street
Site ID	24510004	3 245100040
Exc Monitor Events Number	-	m
Exc Events	None	None
Weighted Annual Mean	8.3	8.5
Third Fourth 98th Max Max Percentile	20 8.3	20 8.5
Fourth Max	29 20 19.8	30.9
Third Max	20	34.4 33.2
First Second Third Fourth Max Max Max Max	29	34.4
First Obs Max	120 39.3	342 36.8
Obs	120	342

EPA Air Quality Standards: 35 ug/m3, 24-hour averaging period 12.0 ug/m3, Annual averaging period

177 of 242

Get detailed information about this report, including column descriptions, at https://www.epa.gov/outdoor-air-quality-data/about-air-data-reports#mon

some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated by state, local, and tribal AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, organizations who own and submit the data.

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area. This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.

Source: U.S. EPA AirData <https://www.epa.gov/air-data> Generated: July 13, 2021

> Page 2 of 2 https://www.epa.gov/outdoor-air-quality-data/monitor-values-report

Geographic Area: Maryland Pollutant: SO2

Year: 2019

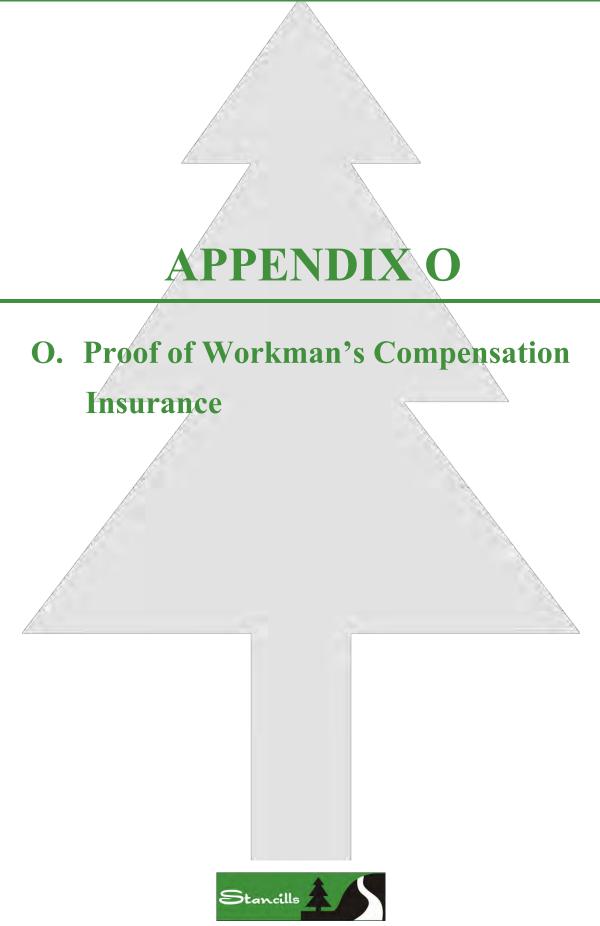
Exceptional Events: Included (if any)

Note: The * indicates the mean does not satisfy minimum data completeness criteria.

EPA Region	Р	age	178	of 2	242		
	03	age ප	03	03	03	03	03
State	QW	QW	QW	MD	MD	QW	QW
County	Allegany	Allegany	Anne Arundel	Baltimore	Dorchester	Garrett	Prince George's
City	Westernport Allegany	Westernport	Riviera Beach	Essex	Not in a City	Grantsville	Beltsville
Address	240018881 Rock St. Sw	240018882 Horse Rock Road	240032002 8515 Jenkins Rd Riviera Beach Md	1 240053001 600 Dorsey Avenue	1 240190004 University Of Maryland For Environmental And Estuarine Not in a City Dorchester Studies	240230002 Piney Run, Frostburg Reservoir, Finzel	240330030 Howard University'S Beltsville Laboratory, 12003 Old Baltimore Pike
Site ID	240018881	240018882	240032002	240053001	240190004	240230002	240330030
Monitor Number	-	-	4	-	1	-	-
Exc Events	None	None	None	None	None	None	None
Annual Mean	1.16	1.82	1.33*	0 0.66	0 0.21	0 0.30*	0.12
Days >STD	0	0	0	0	0	0	0
Second Max 24hr	20	21.7	6.8	Э	0.9	1.1	~
First Max 24hr	24.8	24.4	7.5	3.8	0.9	1.8	7
Obs 24hr	363	365	295	351	345	299	359
99th Obs Percentile 24hr	72	144	25	11	2	4	4
Second Max 1hr	113.8	158.6	31.3	12.2	2.4	4.7	6.2
First Max 1hr	145.5	189	32.6	22.5	2.9	8.5	12.5
Obs 1hr	8663	8693	7053	8283	8132	7165	8564

75 PPB, 1-hour averaging period 140 PPB, 24-hour averaging period **EPA Air Quality Standards:**

Get detailed information about this report, including column descriptions, at https://www.epa.gov/outdoor-air-quality-data/about-air-data-reports#mon


some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated by state, local, and tribal AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, organizations who own and submit the data.

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area. This report is based on monitor-level summary statistics. Air quality standards for some pollutants (PM2.5 and Pb) allow for combining data from multiple monitors into a site-level summary statistic that can be compared to the standard. In those cases, the site-level statistics may differ from the monitor-level statistics upon which this report is based.

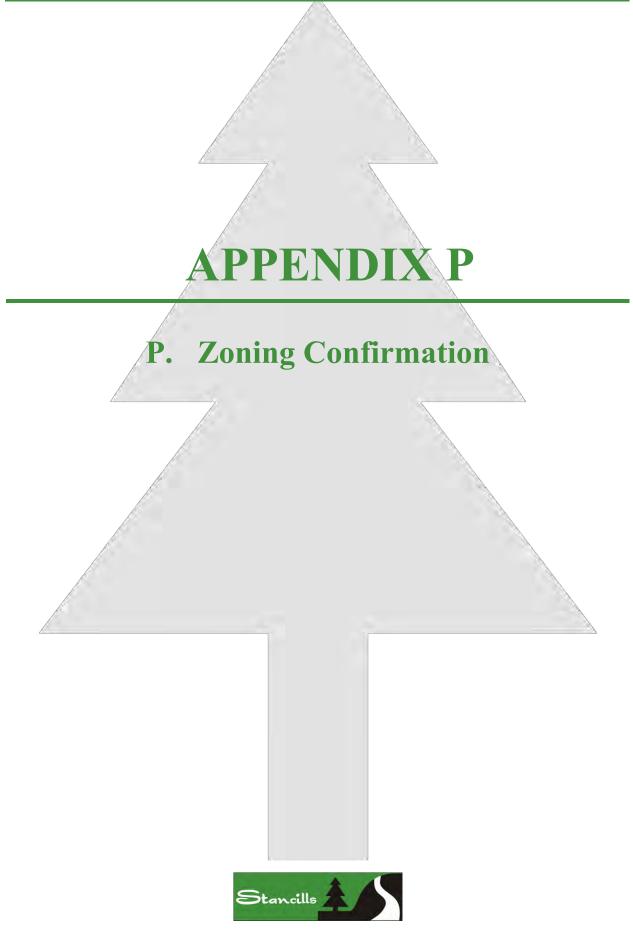
Page 1 of 1

Source: U.S. EPA AirData <https://www.epa.gov/air-data> July 13, 2021 Generated:

https://www.epa.gov/outdoor-air-quality-data/monitor-values-report

		-	-	
14	-	5		L®
A	C	\mathbf{c}	'K	\boldsymbol{D}
- L		-	/	

Page 181 of 242 CERTIFICATE OF LIABILITY INSURANCE


DATE (MM/DD/YYYY)

	-									5	/4/2021
CI BI	ERT ELO	CERTIFICATE IS ISSUED AS A IFICATE DOES NOT AFFIRMAT W. THIS CERTIFICATE OF INS DESENTATIVE OF DEDODUCED A	IVEL SURA	Y OR	NEGATIVELY AMEND, DOES NOT CONSTITUT	EXTE	ND OR ALT	ER THE CO	VERAGE AFFORDED B	Y THE	POLICIES
IN	IPO	ESENTATIVE OR PRODUCER, A RTANT: If the certificate holder BROGATION IS WAIVED, subject	is an	ADD	ITIONAL INSURED, the p						
		ertificate does not confer rights							equire an endorsement		
						CONTA NAME:	Chelsea D				
HIV 20	S Ir Wia	nsurance Associates, Inc. Jht Ave Suite 300					o, Ext): 443-63	2-3353	FAX (A/C, No):	443-63	2-3484
Hu	nt V	alley MD 21030				E-MAIL ADDRE	ss: cdurastar	nti@hmsia.co	m		
							INS	SURER(S) AFFOR	DING COVERAGE		NAIC #
					STANINC-01	INSURE	RA: Harford	Mutual Insura	nce Co		14141
INSU Sta		lls, Inc.			STANING-01	INSURE					
		ountain Hill Road				INSURE					
Pei	ryvi	ille MD 21903				INSURE					
						INSURE					
CO		AGES CEF	TIFI	CATE	NUMBER: 697821024	INSURE			REVISION NUMBER:		
		S TO CERTIFY THAT THE POLICIES				VE BEE	N ISSUED TO			HE POL	ICY PERIOD
C	ERTI	ATED. NOTWITHSTANDING ANY RI IFICATE MAY BE ISSUED OR MAY JSIONS AND CONDITIONS OF SUCH	PERT	AIN,	THE INSURANCE AFFORD	ED BY	THE POLICIE	S DESCRIBED			
INSR LTR		TYPE OF INSURANCE	ADDL INSD	SUBR WVD	POLICY NUMBER		POLICY EFF (MM/DD/YYYY)	POLICY EXP (MM/DD/YYYY)	LIMIT	s	
А	Х	COMMERCIAL GENERAL LIABILITY			9198309		11/1/2020	11/1/2021	EACH OCCURRENCE	\$1,000	,000
		CLAIMS-MADE X OCCUR							DAMAGE TO RENTED PREMISES (Ea occurrence)	\$ 100,0	000
		-							MED EXP (Any one person)	\$ 5,000	1
]							PERSONAL & ADV INJURY	\$ 1,000	,
	GEN								GENERAL AGGREGATE	\$2,000	,
		POLICY X PRO- JECT X LOC							PRODUCTS - COMP/OP AGG	\$ 2,000 \$	0,000
А		OTHER:			6077476		11/1/2020	11/1/2021	COMBINED SINGLE LIMIT	⇒ \$1,000	000
^	X				0077470		11/1/2020	11/1/2021	(Ea accident) BODILY INJURY (Per person)	\$ 1,000	,,000
	~	OWNED SCHEDULED							BODILY INJURY (Per accident)	\$	
	Х	AUTOS ONLY HIRED AUTOS ONLY X AUTOS ONLY							PROPERTY DAMAGE (Per accident)	\$	
		AUTOS UNLY AUTOS UNLY								\$	
А	Х	UMBRELLA LIAB X OCCUR			7990223		11/1/2020	11/1/2021	EACH OCCURRENCE	\$	
		EXCESS LIAB CLAIMS-MADE							AGGREGATE	\$ 3,000	,000
		DED X RETENTION \$ 10,000								\$	
А		RKERS COMPENSATION			4097121		11/1/2020	11/1/2021	X PER OTH- STATUTE ER	MD	
	ANY	PROPRIETOR/PARTNER/EXECUTIVE N	N/A						E.L. EACH ACCIDENT	\$1,000	,000
	(Mar	ndatory in NH) s, describe under							E.L. DISEASE - EA EMPLOYEE	\$ 1,000	,000
	DÉS	CRIPTION OF OPERATIONS below							E.L. DISEASE - POLICY LIMIT	\$1,000	,000
			<u> </u>								
DESC	RIPT	FION OF OPERATIONS / LOCATIONS / VEHIC	LES (A	ACORD	101, Additional Remarks Schedu	le, may b	e attached if more	e space is require	ed)		
CEF	RTIF	FICATE HOLDER				CAN					
						SHC THE	OULD ANY OF	N DATE THE	ESCRIBED POLICIES BE CA EREOF, NOTICE WILL E Y PROVISIONS.		
		Evidence				AUTHO	RIZED REPRESE	NTATIVE			
						<	0	-	See	-	

The ACORD name and logo are registered marks of ACORD

© 1988-2015 ACORD CORPORATION. All rights reserved.

Office of the County Executive

Danielle Hornberger County Executive

Dan Schneckenburger Director of Administration

Office: 410.996.5202 Fax: 800.863.0947

Department of Land Use & Development Services

Stephen O'Connor, AICP, Acting Director Office: 410.996.5220 Fax: 800.430.3829

> Stephen O'Connor, AICP, Chief Office: 410.996.5220 Fax: 800.430.3829

> > County Information 410.996.5200 410.658.4041

CECIL COUNTY, MARYLAND Division of Planning and Zoning 200 Chesapeake Boulevard, Suite 2300, Elkton, MD 21921

February 23, 2021

Brian Russell Vice President Plant Operations Stancill's 499 Mountain Hill Road Perryville, MD 21911

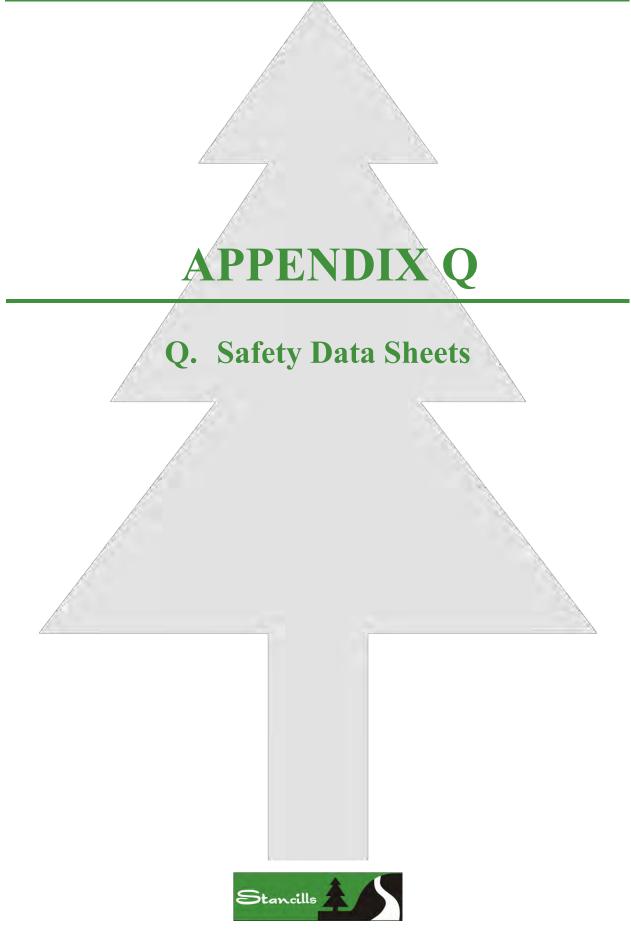
RE: Tax Map 35, Parcel 121 – 499 Mountain Hill Road

Dear Mr. Russell:

Thank you for your recent inquiry on the above referenced property. Specifically, you wish to ascertain if an asphalt paving material mixing plant and crushing and screening plant is a permitted use for this property. The above referenced property is in the Mineral Extraction A (MEA) zoning district, where the use can be permitted, so long as the following conditions listed in section 146 of the zoning ordinance are followed:

- 1. Operation structures shall not be erected, and storage of materials shall not take place within two hundred (200) feet of any property line.
- 2. A buffer yard meeting the E standard in Appendix B shall be provided between the operation structures and any right-of-way of any road.

A major site plan will also need to be submitted to the Planning and Zoning Division and approved, prior to approving any building permit application. You may review the zoning ordinance provisions online here: https://www.ccgov.org/home/showpublisheddocument?id=1288.


Should you have any further questions, please call, or email me at 410-996-5220 or blightner@ccgov.org.

Sincerely

Bryan Lightner, CFM Zoning Administrator

www.ccgov.org

Page 189 of 242 Stancills Inc. PTC Appln

ASPHALT PAVEMENT MIX

SAFETY DATA SHEET

OSHA HCS (29 CFR 1910.1200)

None.

SECTION 1: PRODUCT AND COMPANY IDENTIFICATION

Product identifier Chemical Name CAS No. Trade Name(s) Asphalt Pavement Mix

Road Paving Asphalt

P. Flanigan & Sons Inc 2444 Loch Raven Rd. Baltimore, MD 21218

410.467.5900

Mixture Mixture Petroleum Asphalt / Road Paving Asphalt / Hot Mix Asphalt / Blacktop / Bitumen / Warm Mix Asphalt

Relevant identified uses of the substance or mixture and uses advised against

Identified Use(s) Uses Advised Against

Details of the supplier of the safety data sheet

Company Identification

Telephone

I abal alamanta

Emergency telephone number

Emergency Phone No.

Not classified as dangerous for supply/use. Please contact the supplier above during normal business hours.

410.467.3127

SECTION 2: HAZARDS IDENTIFICATION

Classification of the substance or mixture

OSHA HCS (29 CFR 1910.1200) / GHS Classification Not classified as dangerous for supply/use.

Label elements	
Hazard Symbol	None
Signal Word(s)	None
Hazard Statement(s)	None
Precautionary Statement(s)	None
Other hazards	Contact with hot ASPHALT PAVING MATERIALS causes skin burns.
	May cause eye irritation.
	Fumes may cause upper respiratory irritation (nose & throat).
	Skin contact may increase susceptibility to sunburn.
	Poisonous hydrogen sulfide gas can accumulate in the head-space of containers of certain asphalt products.
	Mechanical disruption (e.g., milling, cutting, chipping) of cured asphalt pavement may release crystalline silica dust from the aggregate.
Additional Information	Avoid breathing dust/fume/gas/mist/vapors/spray.
	As necessary, Wear protective gloves/protective clothing/eye protection/face protection.
	Wash hands and exposed skin after use.

Page 190 of 242 Stancills Inc. PTC Appln

ASPHALT PAVEMENT MIX

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

Composition/information on ingredients	% wt.	CAS No.
Aggregate (crushed stone, sand, gravel, slag)	70 - 97	Various
Petroleum asphalt / bitumen^	3 - 7	8052-42-4
Reclaimed Asphalt Pavement (RAP)	0-25	Mixture
Reclaimed Asphalt Shingles (RAS)	0-10	Mixture
Polymers and Natural Rubbers	< 0.5	Various
Process oils (inherent in refined petroleum asphalt	< 0.1	Various
Anti-strip or other amine-based additives	< 0.1	Various
Warm-mix additives	< 0.1	Various

^Contains: <0.05% of 3 - 7 ring Polycyclic Aromatic Hydrocarbons (PAHs).

Other Substances in the product which may present a health or environmental hazard, or which have been assigned occupational exposure limits, are detailed below. Please see Section 8 of SDS for more details.

- Contains: <0.1% airborne crystalline silica (inherent in aggregate) and <0.1% hydrogen sulfide.

- Hydrogen sulfide gas can accumulate in the head space of containers of certain asphalt products.

- Heated product releases asphalt fume.

Additional Information

None

SECTION 4: FIRST AID MEASURES

Description of first aid measures

Description of mist and measures	
Inhalation	Not normally required. Move person to fresh air. Apply artificial respiration if necessary. If symptoms persist, obtain medical attention.
Skin Contact	Causes burns. Immediately cool skin where asphalt binder has contacted or adhered to skin. Allow asphalt binder which remains on the skin to fall off naturallyDO NOT REMOVE. If problems persist or coverage is extensive, get medical attention.
Eye Contact	Flush eyes with water for at least 15 minutes while holding eyelids open.
	Remove contact lenses, if present and easy to do. Continue rinsing. If irritation develops and persists, get medical attention.
Ingestion	Not normally required. Do not induce vomiting. Do not give anything by mouth to an unconscious person. Get medical advice/attention if you feel unwell.
Most important symptoms and effects, both acute and delayed	None known
Indication of any immediate medical attention and special treatment needed	None known

Page 191 of 242 Stancills Inc. PTC Appln

ASPHALT PAVEMENT MIX

SECTION 5: FIRE-FIGHTING MEASURES

Extinguishing Media

-Suitable Extinguishing MediaExtinguish with carbon dioxide, dry chemical, foam or water
spray.-Unsuitable Extinguishing MediaNone anticipated.Special hazards arising from the substance or
mixtureCombustion causes toxic fumes. Combustion products: Carbon
monoxide, Carbon dioxide, Nitrogen oxides, Sulfur oxides.Advice for fire-fightersA self contained breathing apparatus and suitable protective
clothing should be worn in fire conditions.

SECTION 6: ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures	Avoid contact with skin and eyes.		
Environmental precautions	Not normally required.		
Methods and material for containment and cleaning up	Allow product to cool/solidify and pick up as a solid.		
Reference to other sections	None.		
Additional Information	None.		

SECTION 7: HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with skin and eyes.

Store at temperatures not exceeding the product's flash point.

Conditions for safe storage, including any incompatibilities

-Storage temperature

-Incompatible materials

Strong oxidizing agents.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Occupational Exposure Limits

		(8hr TWA)		(ST		
SUBSTANCE	CAS No.	PEL (OSHA)*	TLV (ACGIH)	PEL (OSHA)*	TLV (ACGIH)	Note:
Asphalt fume			0.5 mg/m3 ^(I)			See below
Crystalline Silica (respirable particulate)		10 mg/m3 %SiO ₂ + 2	0.025 mg/m3^			See below
Hydrogen Sulfide	7783-06-4		1 ppm	20 ppm ceiling	5 ppm	50 ppm peak

⁽¹⁾ Inhalable benzene-soluble fraction; ^Suspected Human Carcinogen; *Refer to OSHA 29 CFR 1910.1000 & 29 CFR 1926.55; 8hr TWA = 8 hour time-weighted average; STEL = Short Term Exposure Limit.

Recommended monitoring method

NIOSH 5042 (Asphalt Fume), NIOSH 7500 (Crystalline Silica), Electrochemical sensor (hydrogen sulfide).

Exposure controls

Appropriate engineering controls Use only outdoors

Use only outdoors or in a well-ventilated area.

Page 192 of 242 Stancills Inc. PTC Appln

ASPHALT PAVEMENT MIX

Personal protection equipment

Skin protection (Hand protection/ Other)

The following to be used as necessary: Leather or thick textile gloves.

The following to be used as necessary: Safety Glasses

Respiratory protection

Thermal hazards

Environmental Exposure Controls

In case of inadequate ventilation wear respiratory protection. Use NIOSH approved respiratory protection. Air-purifying respirator with combination organic vapor cartridge / particulate filter may be sufficient. Check with protective equipment manufacturer's data.

Use gloves with insulation for thermal protection, when needed.

Do not discharge waste and/or cleaning water via public sewer system. Ensure waste is collected and contained.

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Solid
Color.	Dark brown / Black
Odor	Asphalt / Bitumen
Odor Threshold (ppm)	Not available.
pH (Value)	Not available.
Melting Point (°C) / Freezing Point (°C)	Not available.
Boiling point/boiling range (°C):	> 371 (>700 °F)
Flash Point (°C)	> 232 (> 450 °F)
Evaporation Rate	Not available.
Flammability (solid, gas)	Not applicable.
Explosive Limit Ranges	Not applicable.
Vapor pressure (Pascal)	Not determined.
Vapor Density (Air=1)	Not determined.
Density (g/ml)	2.2 - 2.7
Solubility (Water)	Negligible
Solubility (Other)	Not known
Partition Coefficient (n-Octanol/water)	Not available.
Auto Ignition Point (°C)	Not available.
Decomposition Temperature (°C)	Not available.
Kinematic Viscosity (cSt) @ 40°C	Not available
Explosive properties	Not explosive.
Oxidizing properties	Not oxidizing.
	Not oveilable

Other information

Not available.

SECTION 10: STABILITY AND REACTIVITY

Reactivity Chemical stability

Stable under normal conditions. Stable.

Page 193 of 242 Stancills Inc. PTC Appln

ASPHALT PAVEMENT MIX

Possibility of hazardous reactions
Conditions to avoid
Incompatible materials
Hazardous decomposition product(s)

May react violently with: Strong oxidizing agents Incompatible materials Oxidizers Combustion causes toxic fumes. Combustion products: Carbon monoxide,

Carbon dioxide, Nitrogen oxides, Sulfur oxides

SECTION 11: TOXICOLOGICAL INFORMATION

Exposure routes: Inhalation, Skin Contact, Eye Contact

Information on toxicological effects

Acute toxicity	LD50 (rat): >5000 mg/kg bw LD50 (dermal): >2000 mg/kg bw LC50 (inhalation, fume): >94.4 mg/m3
Irritation/Corrosivity	May cause irritation to skin, eyes and respiratory system.
Sensitization	Not to be expected
Repeated dose toxicity	NOAEL(rat): 28 mg/m3 LOAEL (rat): 149 mg/m3
Carcinogenicity	Not to be expected at typical road paying temperatures

Curemogementy Atot to be expected at typical road paving temperatures.					
NTP	IARC	ACGIH	OSHA		
No	Yes*	No	No		

Mutagenicity Not to be expected.

Reproductive toxicity Not to be expected.

Other information * IARC (2013, volume 103) identifies that "occupational exposures to straight-run bitumens and their emissions during road paving are possibly carcinogenic to humans (Group 2B)." However, classification as a carcinogen under OSHA 29 CFR 1910.1200 is not warranted given the absence of positive cancer findings in human epidemiological studies and in cancer studies with laboratory animals when exposed dermally or by inhalation to asphalt products or fume condensates that are typical of road paving applications. IARC (2013, volume 103) also identifies that "occupational exposures to oxidized bitumens and their emissions during roofing are probably carcinogenic to humans (Group 2A)." Roofing shingles, which are considered an article under OSHA 29 CFR 1910.1200, are sometimes recycled into road paving asphalt mix. Emissions from oxidized bitumen, e.g., from shingles, at road paving temperatures are not expected to be qualitatively different than emissions from straight-run bitumens, and therefore would not warrant a carcinogen classification under OSHA 29 CFR 1910.1200.

SECTION 12: ECOLOGICAL INFORMATION

Ecotoxicity	
Short term	LL50 (48 hour): >1000 mg/l (Fish) LL50 (48 hour): >1000 mg/L (Aquatic Invertebrates) EL50 (48 hour): >1000 mg/L (Aquatic Plants)
Long Term	No data
Persistence and degradability	The product is poorly biodegradable
Bioaccumulative potential	The product has low potential for bioaccumulation
Mobility in soil	The product has low mobility in soil
Results of PBT and vPvB assessment	Not classified as PBT or vPvB
Other adverse effects	None known

Page 194 of 242 Stancills Inc. PTC Appln

ASPHALT PAVEMENT MIX

SECTION 13: DISPOSAL CONSIDERATIONS

Waste treatment methods

Additional Information

national regulations. Consult an accredited waste disposal contractor or the local authority for advice. None known

SECTION 14: TRANSPORT INFORMATION

Ground or Water Domestic Voyage (DOT)

Not regulated when transported below 240°C (464 °F)

Disposal should be in accordance with local, state or

SECTION 15: REGULATORY INFORMATION

Safety, health and environmental regulations/legislation specific for the substance						or mixtu	ire
TSCA (Toxic Substance Control Act) - Inventory Status RCRA Hazardous Waste Number (40 CFR 261.33)		ntory Status	All components listed or polymer exempt None				
		261.33)					
US RCRA	Hazard Class	5		Not a	applicable		
Designated	d Hazardous S	Substances and Repo	rtable Quanti	ties (40) CFR 302.4)		
	Chemical	Name	CAS No		Typical %wt		RQ (Pounds)
None							
SARA 311	/312 - Hazard	Categories					
None	Fire	Sudden Release	Reacti	vity	Immediate (acute)	Chronic (delayed)
SARA 313	6 – Toxic Cher	nicals (40 CFR 372)					
	Che	mical Name		C	CAS No.		Typical %wt.
None							
SARA 302	2 - Extremely	Hazardous Substance	es(40 CFR 355	5)			
	Chemical	Name	CAS No		Typical %wt		TPQ (Pounds)
None							

SECTION 16: OTHER INFORMATION

Additional Information

The following sections contain revisions or new statements: 1-16

Information contained in this publication or as otherwise supplied to Users is believed to be accurate and is given in good faith, but it is for the Users to satisfy themselves of the suitability of the product for their own particular purpose. The manufacturer gives no warranty as to the fitness of the product for any particular purpose and any implied warranty or condition (statutory or otherwise) is excluded except to the extent that exclusion is prevented by law. The manufacturer accepts no liability for loss or damage (other than that arising from death or personal injury caused by defective product, if proved), resulting from reliance on this information. Freedom under Patents, Copyright and Designs cannot be assumed.

Page 195 of 242 Stancills Inc. PTC Appln

SAFETY DATA SHEET

Effective Date: 3/01/2017 Replaces: 6/01/2015

Recycled Asphalt Product (RAP)

1. Identification	
Product name:	
Recycled Asphalt Product	
Other means of identification/Synonyms/Common Names:	
Re-crushed Asphaltic Concrete, Recycled Base (Crushed Misc.	. Base), Rap Cap Agg.
Recommended use:	
Recycled Asphalt Product is used as a construction material.	
Recommended restrictions:	
None Known	
Manufacturer/Contact info:	General Phone Number:
Vulcan Materials Company and its subsidiaries and affiliates	1.866.401.5424
1200 Urban Center Drive	Emergency Phone Number:
Birmingham, AL 35242	1.866.401.5424 (3E Company, 24hours/day, 7 Days/week)
	Website:
	www.vulcanmaterials.com

Physical hazards:	cation Health hazards:
Not Classified	Carcinogenicity-Category 1A
Not classified	
	Specific target organ toxicity, repeated exposure- Category 2
	Signal word: Danger
	Hazard Statement: May Cause Cancer (Inhalation). Causes damage to organs (lungs, respiratory system) through prolonged or
	repeated exposure (inhalation)
Precautionary statement:	
Prevention	
Obtain special instructions	
	ty precautions have been read and understood.
	uipment as required. Wear protective gloves, protective clothing, eye protection, and face protection.
Wash hands thoroughly aft Do not out drink or smalle	
• Do not eat, drink or smoke Response	when using this product.
 If exposed or concerned ge 	t medical advice/attention
• Il exposed of concerned ge	
Disposal	
Disposal Dispose of contents/contain	er in accordance with all local regional national and international regulations
Dispose of contents/containe	er in accordance with all local, regional, national, and international regulations.
Dispose of contents/contain upplemental information:	
Dispose of contents/contain upplemental information: Recycled Asphalt Product co	ontains a naturally occurring mineral complex with varying quantities of quartz (crystalline
Dispose of contents/contain supplemental information: Recycled Asphalt Product co ilica). Respirable Crystallin	ontains a naturally occurring mineral complex with varying quantities of quartz (crystalline e Silica (RCS) may cause cancer. Recycled Asphalt Product may be subjected to various
Dispose of contents/contain supplemental information: Recycled Asphalt Product co silica). Respirable Crystallin natural or mechanical force	ontains a naturally occurring mineral complex with varying quantities of quartz (crystalline

Page 196 of 242 Stancills Inc. PTC Appln

3. Composition/information on ingredients			
Chemical name	CAS number	%	
Aggregate (crushed stone, sand, gravel, slag)	Mixture	60-90	
Quartz (crystalline silica)	14808-60-7	>1	
Asphalt Cement	8052-42-4	10-40	
Reclaimed product may contain			
contaminants such as heavy metals,			
hydrocarbons and various asphalt additives.			

4. First-aid measures

Inhalation:

Remove person to fresh air. If lung irritation persists or later develops, contact a physician. If not breathing, initiate rescue breathing, give oxygen by trained personnel and get immediate medical attention. Do not attempt to rescue victim from confined spaces without adequate protective equipment.

Eyes:

Immediately flush eye(s) with plenty of clean water for at least 15 minutes, while holding the eyelid(s) open. Occasionally lift the eyelid(s) to ensure thorough rinsing. Beyond flushing, do not attempt to remove material from eye(s). Contact a physician if irritation persists or later develops.

Skin:

Not expected to be a significant exposure route. Clean exposed skin with soap or mild detergent and large amounts of water until all material is removed from the skin. Do not use solvents or thinners to remove material from skin. Ingestion:

If swallowed, do not induce vomiting. Drink a large volume of water and get immediate medical attention. Never give anything by mouth to an unconscious person. If vomiting occurs, keep head lower than hips to prevent aspiration.

Most important symptoms/effects, acute and delayed:

Dust particles can scratch and irritate the skin with redness, an itching or burning sensation, swelling of the skin and/or rash. Dust may irritate the eyes, skin, and respiratory tract. Breathing respirable crystalline silica-containing dust for prolonged periods in the workplace can cause lung damage and a lung disease called silicosis. Symptoms of silicosis may include (but are not limited to) shortness of breath, difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; right heart enlargement and/or failure.. Unconsciousness and asphyxiation may occur in poorly ventilated or confined spaces. **Note:** Since this product is not sold heated, exposure to asphalt emissions (fumes, vapors, or mists) are expected to be minimal. Potential for exposure increases if product comes in contact with heated surfaces or is heated.

Indication of immediate medical attention and special treatment needed:

Not all individuals with silicosis will exhibit symptoms of the disease. However, silicosis can be progressive and symptoms can appear even years after exposures have ceased. Persons with silicosis have an increased risk of pulmonary tuberculosis infection.

For emergencies contact 3E Company at 1.866.401.5424 (24 hours/day, 7 days/week).

5. Fire-fighting measures

Suitable extinguishing media:

Agents approved for Class B hazards (e.g., dry chemical, carbon dioxide, halogenated agents, foam, and steam) and water fog.

Unsuitable extinguishing media:

Avoid use of straight-stream water. Adding water to hot asphalt presents an explosion hazard.

Specific hazards arising from the chemical:

Do not heat above flash point. Fumes/vapors can explode when concentrated in an enclosed environment and supplied with an ignition source. Never weld or use a cutting torch or open flame on a full, partially full or empty bin, hopper, or other container that holds or has held asphaltic material unless precautions are taken to prevent explosion. WARNING: Hydrogen sulfide (H₂S) and other hazardous gases/vapors may evolve and collect in the headspace of storage tanks or other enclosed vessels, and can create an explosive, toxic, or oxygen deficient atmosphere. H₂S gas is extremely flammable and can explode if an ignition source is provided. See Section 11 for health effects of H₂S gas.

Page 197 of 242 Stancills Inc. PTC Appln

Special protective equipment and precautions for firefighters:

Avoid breathing irritating and potentially toxic fumes, including hydrogen sulfide gas. Firefighters should wear

NIOSH/MSHA approved positive pressure breathing apparatus (SCBA) with full face mask and full protective equipment.

Fire-fighting equipment/instructions:

Adding water to hot asphalt presents an explosion hazard.

Specific methods:

Use water spray to keep fire-exposed containers cool.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Ventilate area and avoid inhalation by using appropriate precautions outlined in this SDS (see Section 8). Prevent materials from entering streams, drainages, or sewers. Spills entering surface waters or sewers entering/leading to surface waters must be reported to the National Response Center 1-800-424-8802. Based on volume and use, components of this product may be subject to reporting requirements of Title III of SARA, 1986, and 40 CFR 372.

For emergencies, contact 3E Company at 1-866-401-5424 (24 hours/day, 7 days/week).

Environmental precautions:

Contain spilled material with sand, aggregate fines, or other inert adsorbent. Collect adsorbed product and clean up materials in appropriate container for proper disposal. Notify proper authorities.

Methods and materials for containment and cleaning up:

Contact the asphalt plant to determine feasibility of recycling material. Dispose of waste materials in accordance with applicable federal, state and local laws and regulations.

7. Handling and storage

Precautions for safe handling:

Follow personal protection and protective controls set forth in Section 8 of this SDS when handling this product. If personnel must enter a tank or other confined space that contained this material, follow the OSHA Confined Space Entry Program as specified in 29 CFR 1910.146. Do not store near food, beverages or smoking materials. Respirable crystalline silica-containing dust may be generated when recycled asphalt product is subjected to mechanical forces, such as demolition work, surface treatment (sanding, grooving, chiseling, etc.), and/or recycling of pavement. Do not attempt to clean empty containers since residue is difficult to remove. Do not pressurize, cut, weld, braze, solder, drill, grind or expose such containers to heat, flame, sparks, static electricity, or other sources of ignition as they may explode and cause injury or death. Tripping accidents have occurred because of asphalt buildup on bottoms of shoes and boots; buildup should be removed regularly to prevent such accidents. Do not use solvents or thinners to clean footwear.

Conditions for safe storage, including any incompatibilities:

Store away from all ignition sources and open flames in accordance with applicable laws and regulations. When petroleum asphalt products are heated, potentially irritating emissions (fumes, mists, and vapors) may be released.

8. Exposure controls/personal protection

Legend:

NE = Not Established; PEL = Permissible Exposure Limit; TLV = Threshold Limit Value; REL = Recommended Exposure Limit; OSHA = Occupational Safety and Health Administration; NIOSH = National Institute for Occupational Safety and Health; ACGIH = American Conference of Governmental Industrial Hygienists

	OSHA/MSHA	ACGIH	NIOSH
Component	PEL	TLV	REL
Particulates not otherwise classified	15 mg/m ³ (total dust) 5 mg/m ³ (respirable fraction)	10 mg/m^3 (inhalable fraction) 3 mg/m ³ (respirable fraction)	NE
Respirable dust containing silica	10 mg/m ³ ÷ (% silica + 2)	Use Respirable Silica TLV	Use Respirable Silica TLV
Total dust containing silica	MSHA: 30 mg/m ³ \div (% silica + 3)	NE	NE

Page 198 of 242 Stancills Inc. PTC Appln

		istration; NIOSH = National Inst	d Exposure Limit; OSHA = Occupational itute for Occupational Safety and Health;
ACGIH = American Conference of G	overnmental Industrial Hygienists	,	
	OSHA/MSHA	ACGIH	NIOSH
Component	PEL	TLV	REL
Respirable Crystalline Silica	OSHA: 0.05 mg/m ³ (PEL)	0.025 mg/m ³	0.05 mg/m ³
(quartz)	OSHA: 0.025 mg/m ³ (Action Level) MSHA: Use Respirable Dust		
	containing Silica PEL (above)		
Respirable Tridymite and	OSHA: Use respirable crystalline	0.025 mg/m ³	0.05 mg/m ³
Cristobalite	silica PEL		
(other forms of crystalline silica)	MSHA: 1/2 of respirable dust		
Exposure Guidelines:	containing silica PEL		I
-	espirable silica-containing dust	and respirable crystalline	silica (quartz) levels should be
monitored regularly to deter	mine worker exposure levels. Ex	posure levels in excess of	f allowable exposure limits should
be reduced by all feasible en	gineering controls, including (bu	it not limited to) wet supp	pression, ventilation, process
enclosure, and enclosed emp	ployee workstations.		
Engineering Controls:			
			ventilation, local exhaust and/or
	maintain exposures below appr	opriate exposure limits.	
Eye Protection:			
		protection at ambient ter	nperatures. Contact lens should
not be worn when eye conta Skin Protection (Protective Gloves,	· · · ·		
	erial by wearing impervious glov	es and protective clothing	With product at ambient
	e nitrile, neoprene or butyl rubb		
Respiratory Protection:			
	y under normal use and working	g conditions. All respirato	rs must be NIOSH-approved for
Not expected to be necessar	,		
-	(See NIOSH Respirator Selectio	n Guide). The need for re	spiratory protection should be
the exposure levels present.	(See NIOSH Respirator Selectio ty and health professional. For		
the exposure levels present. evaluated by a qualified safe		air-contaminant concentr	ations which exceed or are likely
the exposure levels present. evaluated by a qualified safe to exceed applicable exposur	ty and health professional. For re limits, use a NIOSH-approved	air-contaminant concentr , contaminant-specific, air	ations which exceed or are likely purifying respirator. If such
the exposure levels present. evaluated by a qualified safe to exceed applicable exposur conditions are sufficiently hig	ty and health professional. For re limits, use a NIOSH-approved gh that the air-purifying respirat	air-contaminant concentr , contaminant-specific, air or is inadequate, or if oxy	ations which exceed or are likely purifying respirator. If such gen adequate to sustain life is not
the exposure levels present. evaluated by a qualified safe to exceed applicable exposur conditions are sufficiently hig present, use a positive-press	ty and health professional. For re limits, use a NIOSH-approved gh that the air-purifying respirat ure, self-contained breathing ap	air-contaminant concentr , contaminant-specific, air or is inadequate, or if oxy oparatus. Activities that g	ations which exceed or are likely
the exposure levels present. evaluated by a qualified safe to exceed applicable exposur conditions are sufficiently hig present, use a positive-press appropriate dust respirator v	ty and health professional. For re limits, use a NIOSH-approved gh that the air-purifying respirat ure, self-contained breathing ap where dust levels exceed or are	air-contaminant concentr , contaminant-specific, air or is inadequate, or if oxy paratus. Activities that g likely to exceed allowable	ations which exceed or are likely purifying respirator. If such gen adequate to sustain life is not enerate dust require the use of an
the exposure levels present. evaluated by a qualified safe to exceed applicable exposur conditions are sufficiently hig present, use a positive-press appropriate dust respirator v silica-containing dust levels t	ty and health professional. For re limits, use a NIOSH-approved gh that the air-purifying respirat ure, self-contained breathing ap where dust levels exceed or are that exceed or are likely to exceed	air-contaminant concentr , contaminant-specific, air or is inadequate, or if oxy oparatus. Activities that g likely to exceed allowable ed an 8-hour time-weighte	ations which exceed or are likely purifying respirator. If such gen adequate to sustain life is not enerate dust require the use of an exposure limits. For respirable
the exposure levels present. evaluated by a qualified safe to exceed applicable exposur conditions are sufficiently hig present, use a positive-press appropriate dust respirator v silica-containing dust levels t a high efficiency particulate f	ty and health professional. For re limits, use a NIOSH-approved gh that the air-purifying respirat ure, self-contained breathing ap where dust levels exceed or are that exceed or are likely to exceed filter respirator must be worn at	air-contaminant concentr , contaminant-specific, air or is inadequate, or if oxy paratus. Activities that g likely to exceed allowable ed an 8-hour time-weighte a minimum; however, if i	ations which exceed or are likely purifying respirator. If such gen adequate to sustain life is not enerate dust require the use of ar exposure limits. For respirable ed average (TWA) of 0.25 mg/m ³ ,
the exposure levels present. evaluated by a qualified safe to exceed applicable exposur conditions are sufficiently hig present, use a positive-press appropriate dust respirator v silica-containing dust levels t a high efficiency particulate f levels exceed or are likely to	ty and health professional. For re limits, use a NIOSH-approved gh that the air-purifying respirat ure, self-contained breathing ap where dust levels exceed or are that exceed or are likely to exceed filter respirator must be worn at exceed an 8-hour TWA of 1.25 p	air-contaminant concentr , contaminant-specific, air or is inadequate, or if oxy paratus. Activities that g likely to exceed allowable ed an 8-hour time-weighte a minimum; however, if ng/m ³ an air-purifying, fu	ations which exceed or are likely purifying respirator. If such gen adequate to sustain life is not enerate dust require the use of ar exposure limits. For respirable ed average (TWA) of 0.25 mg/m ³ , respirable silica-containing dust
the exposure levels present. evaluated by a qualified safe to exceed applicable exposur conditions are sufficiently hig present, use a positive-press appropriate dust respirator v silica-containing dust levels t a high efficiency particulate f levels exceed or are likely to required. Respirator use mu	ty and health professional. For re limits, use a NIOSH-approved gh that the air-purifying respirat ure, self-contained breathing ap where dust levels exceed or are that exceed or are likely to exceed filter respirator must be worn at exceed an 8-hour TWA of 1.25 m st comply with applicable MSHA	air-contaminant concentr , contaminant-specific, air or is inadequate, or if oxy paratus. Activities that g likely to exceed allowable ed an 8-hour time-weighte a minimum; however, if n ng/m ³ an air-purifying, fu (42 CFR 84) or OSHA (29	ations which exceed or are likely purifying respirator. If such gen adequate to sustain life is not enerate dust require the use of ar exposure limits. For respirable ed average (TWA) of 0.25 mg/m ³ , respirable silica-containing dust ull-face respirator or equivalent is

9. Physical and chemical properties

-		
Appearance:		
Angular particles, light salt and p	pepper colored ranging in size from 1 ½ inch o	down to 200 mesh.
Odor:	PH:	Decomposition temperature:
Petroleum odor.	Not applicable	Not applicable
Melting point/freezing point:	Initial boiling point and boiling range:	Flash point: Product NA
Not applicable	Not applicable	Asphalt :> 500°F (min). COC
Evaporation rate:	Flammability:	Upper/lower flammability or explosive limits:
Not applicable	Not applicable	Not applicable
Vapor pressure:	Vapor density:	Solubility:
Not applicable	>1	Negligible
2/01/2017		

Page 199 of 242 Stancills Inc. PTC Appln

Partition coefficient: n-octanol/water.	Autoignition temperature:	Specific Gravity (H ₂ O = 1):
Not applicable	Not applicable	1.0-1.1 @ 60° F

10. Stability and reactivity

Reactivity:

Not reactive under normal use.

Chemical stability:

Stable under normal temperatures and pressures.

Possibility of hazardous reactions:

None under normal use.

Conditions to avoid (e.g., static discharge, shock or vibration):

Keep away from direct flame/ignition sources. Contact with incompatible materials should be avoided (see below). See Sections 5, 6 and 7 for additional information.

Incompatible materials:

Strong oxidizers may react with hydrocarbons. Contact with fluorine may cause burning or explosion. Adding water to hot asphalt presents an explosion hazard.

Hazardous decomposition products:

Carbon monoxide and other compounds (such as amines, ammonia, nitrogen dioxide, sulfur dioxide, ozone, hydrogen sulfide, and various hydrocarbons) may be released by thermal decomposition. Hazardous vapors can collect in enclosed vessels or areas if not properly ventilated. If hydrogen sulfide is present, the flammable limits range from 4.3 to 45.5% by volume and its presence may promote the formation of pyrophoric (spontaneously igniting) iron compounds (See 29 CFR 1910.146). Respirable crystalline silica-containing dust may be generated. When heated, quartz is slowly transformed into tridymite (above 860°C/1580°F) and cristobalite (above 1470°C/2678°F). Both tridymite and cristobalite are other forms of crystalline silica.

11. Toxicological information

Primary Routes of Exposure:

Inhalation and contact with the eyes and skin.

Symptoms related to the physical, chemical, toxicological characteristics

Inhalation:

Breathing silica containing dust for prolonged periods in the workplace can cause lung damage and lung disease called silicosis. Several scientific organizations have classified crystalline silica as causing lung cancer in humans. Silicosis and lung cancer can result in permanent injury or death.

Eye Contact:

May scratch the eye causing tearing, redness and a stinging sensation.

Skin Contact: Repeated c

Repeated or prolonged exposure may result in absorption of component petroleum distillates.

Ingestion:

Asphalt has a low toxicity when ingested; however, chewing and swallowing asphalt may cause gastrointestinal effects. Gastric masses (Bezoars) and stomach (pyloric) obstructions have been reported in individuals who have chewed and swallowed asphalt.

Medical Conditions Aggravated by Exposure:

Pre-existing medical conditions that may be aggravated by exposure include disorders of the eye, skin and/or lung. Delayed and immediate effects and also chronic effects from short- and long-term exposure:

If the product is subjected to mechanical forces (such as demolition or asphalt recycling work), crystalline silicacontaining dust particles may be generated. Prolonged overexposure to respirable dusts in excess of allowable exposure limits can cause inflammation of the lungs leading to possible fibrotic changes, a medical condition known as pneumoconiosis.

Prolonged and repeated overexposure to high levels of respirable crystalline silica-containing dust may cause a chronic form of silicosis, an incurable lung disease that may result in permanent lung damage or death. Chronic silicosis generally occurs after 10 years or more of overexposure; a more accelerated type of silicosis may occur between 5 and 10 years of higher levels of prolonged and repeated overexposure. In early stages of silicosis, not all individuals will exhibit symptoms (signs) of the disease. However, silicosis can be progressive, and symptoms can appear at any time, even years after exposure has ceased.

Repeated overexposures to very high levels of respirable crystalline silica for periods as short as six months may cause acute silicosis. Acute silicosis is a rapidly progressive, incurable lung disease that is typically fatal. Symptoms include (but are not limited to): shortness of breath, cough, fever, weight loss, and chest pain.

Respirable dust containing newly broken crystalline silica particles has been shown to be more hazardous to animals in laboratory tests than respirable dust containing older crystalline silica particles of similar size. Respirable crystalline silica particles which had aged for sixty days or more showed less lung injury in animals than equal exposures to respirable dust containing newly broken particles of respirable crystalline silica.

There are reports in the literature suggesting that excessive respirable crystalline silica exposure may be associated with autoimmune disorders and other adverse health effects involving the kidney. In particular, the incidence of scleroderma (thickening of the skin caused by swelling and thickening of fibrous tissue) appears to be higher in silicotic individuals. To date, the evidence does not conclusively determine a causal relationship between silica exposure and these adverse health effects.

Carcinogenicity:

If the product is subjected to mechanical forces (such as demolition or asphalt recycling work), crystalline silicacontaining dust particles may be generated. Epidemiology studies on the association between respirable crystalline silica exposure and lung cancer have had both positive and negative results. There is some speculation that the source, type, and level of exposure of respirable crystalline silica may play a role. Studies of persons with silicosis indicate an increased risk of developing lung cancer, a risk that increases with the level and duration of exposure. It is not clear whether lung cancer develops in non-silicotic patients. Several studies of silicotics do not account for lung cancer confounders, especially smoking, which have been shown to increase the risk of developing lung disorders, including emphysema and lung cancer.

In October 1996, an IARC Working Group designated respirable crystalline silica as carcinogenic (Group 1). In 2012, an IARC Working Group re-affirmed that inhalation of crystalline silica was a known human carcinogen. The NTP's Report on Carcinogens, 9th edition, lists respirable crystalline silica as a "known human carcinogen." In the year 2000, the American Conference of Governmental Industrial Hygienists (ACGIH) listed respirable crystalline silica (quartz) as a suspected human carcinogen (A-2). These classifications are based on sufficient evidence of carcinogenicity in certain experimental animals and on selected epidemiological studies of workers exposed to respirable crystalline silica. Repeated breathing of asphalt emissions has not resulted in a carcinogenic response in laboratory animal testing. Although epidemiological studies on asphalt workers have suggested a possible link between asphalt fumes and certain types of cancer, confounding factors such as smoking and concomitant exposure to other agents in the workplace may have influenced the results of these studies. Asphalt is not listed as a carcinogen by the National Toxicology Program (NTP) or the Occupational Safety and Health Administration (OSHA). IARC states that there is sufficient evidence that extracts (asphalts dissolved in hydrocarbon solvents) are carcinogenic to laboratory animals and recently the agency determined that occupational exposures to oxidized asphalt and their emissions during roofing applications are "probably carcinogenic to humans "(Group 2A). They also determined that occupation exposures to hard asphalts and their emissions during mastic asphalt work and occupational exposures to straight-run asphalts and their emissions during paving operations are "possibly carcinogenic to humans" (Group 2B).

Additional information on toxicological-effects:

Acute toxicity: Not classified

No specific data on product. Based on components, not expected to be classified for acute toxicity.

Asphalt:

Acute Oral, rat: LD50 >5000 mg/kg Acute Dermal, rat: LD50 >2000 mg/kg

Skin corrosion/irritation: Not Classified

Serious eye damage/eye irritation: Not Classified

Respiratory sensitization: Not Classified

Germ cell Mutagenicity: Not Classified

Carcinogenicity: May cause cancer (Inhalation)

Reproductive toxicity: Not Classified

Page 201 of 242 Stancills Inc. PTC Appln

Specific target organ toxicity - single exposure: Not Classified

Specific target organ- toxicity – repeated exposure: Causes damage to organs (lungs, respiratory system) through prolonged or repeated exposure (inhalation)

Aspiration toxicity: Not Classified (not applicable- solid material)

12. Ecological information

Ecotoxicity (aquatic and terrestrial, where available):

No specific data on this product.

Persistence and degradability:

Expected to be resistant to biodegradation.

Bioaccumulative potential.

Significant migration into the environment and bioaccumulation are unlikely.

Mobility in soil.

Not determined

Other adverse effects.

Not determined

13. Disposal considerations

Safe handling and disposal of waste:

Place contaminated materials in appropriate containers and dispose of in a manner consistent with applicable federal, state, and local regulations. Prevent from entering drainage, sewer systems, and unintended bodies of water. It is the responsibility of the user to determine, at the time of disposal, whether product meets criteria for hazardous waste. Product uses, transformations, mixture and processes, may render the resulting material hazardous.

14. Transport information

UN Number:
Not regulated.
UN Proper shipping name:
Not regulated.
Transport Hazard class:
Not applicable.
Packing group, if applicable:
Not applicable.
Marine pollutant (Yes/No):
Not applicable.

15. Regulatory information

Toxic Substances Control Act (TSCA):

The components in this product are listed on the TSCA Inventory or are exempt.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA):

Releases of this material to water may be reportable to the National Response Center under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or to state and local emergency planning committees under the Superfund Amendments and Reauthorization Act. (See Section 6)

Superfund Amendments and Reauthorization Act of 1986 (SARA), Title III:

Section 302 extremely hazardous substances: None

Section 311/312 hazard categories: Delayed Health

Section 313 reportable ingredients at or above de minimus concentrations: None

California Proposition 65:

This product contains a chemical (crystalline silica, bitumen, various aromatic hydrocarbons) known to the State of California to cause cancer and birth defects or other reproductive harm.

State Regulatory Lists:

Each state may promulgate standards more stringent than the federal government. This section cannot encompass an

Page 202 of 242 Stancills Inc. PTC Appln

inclusive list or all state regulations. Therefore, the user should review the components listed in Section 2 and consult state or local authorities for specific regulations that apply.

16. Other information

Disclaimer

NO WARRANTY IS MADE, EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE.

Vulcan Materials Company and its subsidiaries and affiliates ("Vulcan") believe the information contained herein is accurate; however, Vulcan makes no guarantees with respect to such accuracy and assumes no liability whatsoever in connection with the use of any information contained herein by any party. The provision of the information contained herein is not intended to be, and should not be construed as, legal advice or as ensuring compliance with any federal, state, or local laws, rules or regulations. Any party using any information contained herein should review all applicable laws, rules and regulations prior to use.

Issue date:

3/01/2017 Revision date:

3/01/2017

Vulcan Materials Company and its subsidiaries and affiliates 1200 Urban Center Drive Birmingham, AL 35242

SAFETY DATA SHEET

Effective Date: 3/01/2017 Replaces: 6/01/2015

Traprock

1. Identification	
Product name:	
Traprock	
Other means of identification/Synonyms/Common Names:	
Concrete Aggregate, Coverstone, Flexible Base, Manufacture	d Sand, Mill Sand, Rockwool Aggregate, Trap Mix Aggregate
Recommended use:	
Traprock is used as a construction material.	
Recommended restrictions:	
None Known	
Manufacturer/Contact info:	General Phone Number:
Vulcan Materials Company and its subsidiaries and affiliates	1.866.401.5424
1200 Urban Center Drive	Emergency Phone Number:
Birmingham, AL 35242	1.866.401.5424 (3E Company, 24hours/day, 7 Days/week)
	Website:
	www.vulcanmaterials.com

2. Hazard(s) Identificatio	n
Physical hazards:	Health hazards:
Not Classified	Carcinogenicity-Category 1A
	Specific target organ toxicity, repeated exposure- Category 2
	Signal word:
	Danger
	Hazard statement:
	May Cause Cancer (Inhalation).
	Causes damage to organs (lungs, respiratory system) through prolonged or
	repeated exposure (inhalation)
Precautionary statement:	
Prevention Obtain special instructions before	
	cautions have been read and understood.
	ent as required. Wear protective gloves, protective clothing, eye protection, and face protection.
 Wash hands thoroughly after han 	
• Do not eat, drink or smoke when	-
Response	
 If exposed or concerned get med 	ical advice/attention.
Disposal	
•	accordance with all local, regional, national, and international regulations.
Supplemental information:	
Respirable Crystalline Silica (RCS) may cause cancer. Traprock may be subjected to various natural or mechanical forces
that produce small particles (due	st) which may contain respirable crystalline silica (particles less than 10 micrometers in

Page 204 of 242 Stancills Inc. PTC Appln

also be present or formed under certain industrial processes.

3. Composition/information on ingredients			
Chemical name	CAS number	%	
Traprock	None	100	
Quartz (crystalline silica)14808-60-7<1			

4. First-aid measures

Inhalation:

Remove to fresh air. Dust in throat and nasal passages should clear spontaneously. Contact a physician if irritation persists or if breathing is difficult.

Eyes:

Immediately flush eye(s) with plenty of clean water for at least 15 minutes, while holding the eyelid(s) open.

Occasionally lift the eyelid(s) to ensure thorough rinsing. Beyond flushing, do not attempt to remove material from eye(s). Contact a physician if irritation persists or later develops.

Skin:

Wash affected areas thoroughly with mild soap and fresh water. Contact a physician if irritation persists.

Ingestion:

If person is conscious do not induce vomiting. Give large quantity of water and get medical attention. Never attempt to make an unconscious person drink.

Most important symptoms/effects, acute and delayed:

Dust may irritate the eyes, skin, and respiratory tract. Breathing respirable crystalline silica-containing dust for prolonged periods in the workplace can cause lung damage and a lung disease called silicosis. Symptoms of silicosis may include (but are not limited to) shortness of breath, difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; right heart enlargement and/or failure.

Indication of immediate medical attention and special treatment needed:

Not all individuals with silicosis will exhibit symptoms of the disease. However, silicosis can be progressive and symptoms can appear even years after exposures have ceased. Persons with silicosis have an increased risk of pulmonary tuberculosis infection.

For emergencies contact 3E Company at 1.866.401.5424 (24 hours/day, 7 days/week).

5. Fire-fighting measures

Suitable extinguishing media:

This product is not flammable. Use fire-extinguishing media appropriate for surrounding materials.

Unsuitable extinguishing media:

None known.

Specific hazards arising from the chemical:

Contact with powerful oxidizing agents may cause fire and/or explosions (see section 10 of SDS).

Special protective equipment and precautions for firefighters:

Use protective equipment appropriate for surrounding materials.

Fire-fighting equipment/instructions:

No unusual fire or explosion hazards noted. Not a combustible dust.

Specific methods:

The presence of this material in a fire does not hinder the use of any standard extinguishing medium. Use extinguishing medium for surrounding fire.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Persons involved in cleanup processes should first observe precautions (as appropriate) identified in Section 8 of this SDS. For emergencies, contact 3E Company at 1-866-401-5424 (24 hours/day, 7 days/week).

Environmental precautions:

Prevent from entering into sewers or drainage systems where it can harden and clog flow.

Methods and materials for containment and cleaning up:

Spilled material, where dust is generated, may overexpose cleanup personnel to respirable crystalline silica-containing

Page 205 of 242 Stancills Inc. PTC Appln

dust. Do not dry sweep or use compressed air for clean-up. Wetting of spilled material and/or use of respiratory protective equipment may be necessary.

7. Handling and storage

Precautions for safe handling:

Respirable crystalline silica-containing dust may be generated during processing, handling, and storage. Use personal protection and controls identified in Section 8 of this SDS as appropriate.

Conditions for safe storage, including any incompatibilities:

Do not store near food, beverages, or smoking materials.

8. Exposure controls/personal protection

Legend:

NE = Not Established; PEL = Permissible Exposure Limit; TLV = Threshold Limit Value; REL = Recommended Exposure Limit; OSHA = Occupational Safety and Health Administration; NIOSH = National Institute for Occupational Safety and Health; ACGIH = American Conference of Governmental Industrial Hygienists

Component	OSHA/MSHA PEL	ACGIH TLV	NIOSH REL
Particulates not otherwise classified	15 mg/m ³ (total dust) 5 mg/m ³ (respirable fraction)	10 mg/m^3 (inhalable fraction) 3 mg/m^3 (respirable fraction)	NE
Respirable dust containing silica	10 mg/m^3 ÷ (% silica + 2)	Use Respirable Silica TLV	Use Respirable Silica REL
Total dust containing silica	MSHA: 30 mg/m ³ ÷ (% silica + 3)	NE	NE
Respirable Crystalline Silica (quartz)	OSHA: 0.05 mg/m ³ (PEL) OSHA: 0.025 mg/m ³ (Action Level) MSHA: Use Respirable Dust containing Silica PEL (above)	0.025 mg/m ³	0.05 mg/m ³
Respirable Tridymite and Cristobalite (other forms of crystalline silica)	OSHA: Use respirable crystalline silica PEL MSHA: 1/2 of respirable dust containing silica PEL	0.025 mg/m ³	0.05 mg/m ³

Exposure Guidelines:

Total dust containing silica, respirable silica-containing dust and respirable crystalline silica (quartz) levels should be monitored regularly to determine worker exposure levels. Exposure levels in excess of allowable exposure limits should be reduced by all feasible engineering controls, including (but not limited to) wet suppression, ventilation, process enclosure, and enclosed employee workstations.

Engineering Controls:

Activities that generate dust require the use of general ventilation, local exhaust and/or wet suppression methods to maintain exposures below allowable exposure limits.

Eye Protection:

Safety glasses with side shields should be worn as minimum protection. Dust goggles should be worn when excessively (visible) dusty conditions are present or are anticipated.

Skin Protection (Protective Gloves/Clothing):

Use gloves to provide hand protection from abrasion. In dusty conditions, use long sleeve shirts. Wash work clothes after each use.

Respiratory Protection:

All respirators must be NIOSH-approved for the exposure levels present. (See NIOSH Respirator Selection Guide). The need for respiratory protection should be evaluated by a qualified safety and health professional. Activities that generate dust require the use of an appropriate dust respirator where dust levels exceed or are likely to exceed allowable exposure limits. For respirable silica-containing dust levels that exceed or are likely to exceed an 8-hour time-weighted average (TWA) of 0.25 mg/m³, a high efficiency particulate filter respirator must be worn at a minimum; however, if respirable silica-containing dust levels exceed or are likely to exceed an 8-hour TWA of 1.25 mg/m³ an air-

Page 206 of 242 Stancills Inc. PTC Appln

purifying, full-face respirator or equivalent is required. Respirator use must comply with applicable MSHA (42 CFR 84) or OSHA (29 CFR 1910.134) standards, which include provisions for a user training program, respirator inspection, repair and cleaning, respirator fit testing, medical surveillance and other requirements.

9. Physical and chemical properties

Appearance:		
Angular particles ranging in size from	n sand to boulders.	
Odor:	PH:	Decomposition temperature:
No odor.	Not applicable	Not applicable
Melting point/freezing point:	Initial boiling point and boiling range:	Flash point:
Not applicable	Not applicable	Non-combustible
Evaporation rate:	Flammability:	Upper/lower flammability or explosive limits:
Not applicable	Not applicable	Not applicable
Vapor pressure:	Relative density:	Solubility:
Not applicable	Not applicable	0
Partition coefficient: n-octanol/water.	Autoignition temperature:	Specific Gravity (H2O = 1):
Not applicable	Not applicable	3.0 - 3.4

10. Stability and reactivity

Reactivity:

Not reactive under normal use.

Chemical stability:

Stable under normal temperatures and pressures.

Possibility of hazardous reactions:

None under normal use.

Conditions to avoid (e.g., static discharge, shock or vibration):

Contact with incompatible materials should be avoided (see below). See Sections 5 and 7 for additional information.

Incompatible materials:

Silica ignites on contact with fluorine and is incompatible with acids, aluminum, ammonium salts and magnesium. Silica reacts violently with powerful oxidizing agents such as fluorine, boron trifluoride, chlorine trifluoride, manganese trifluoride, and oxygen difluoride yielding possible fire and/or explosions. Silica dissolves readily in hydrofluoric acid producing a corrosive gas – silicon tetrafluoride.

Hazardous decomposition products:

Respirable crystalline silica-containing dust may be generated. When heated, quartz is slowly transformed into tridymite (above 860°C/1580°F) and cristobalite (above 1470°C/2678°F). Both tridymite and cristobalite are other forms of crystalline silica.

11. Toxicological information
Primary Routes of Exposure:
Inhalation and contact with the eyes and skin.
Symptoms related to the physical, chemical, toxicological characteristics

Inhalation:

Dusts may irritate the nose, throat and respiratory tract by mechanical abrasion. Coughing sneezing and shortness of breath may occur.

Symptoms of silicosis may include (but are not limited to) shortness of breath, difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; right heart enlargement and/or failure. Persons with silicosis have an increased risk of pulmonary tuberculosis infection.

Eye Contact:

Dust particles can scratch the eye causing tearing, redness, a stinging or burning feeling, or swelling of the eyes with blurred vision.

Skin Contact:

Dust particles can scratch and irritate the skin with redness, an itching or burning feeling, swelling of the skin, and/or rash.

Page 207 of 242 Stancills Inc. PTC Appln

Ingestion:

Expected to be practically non-toxic. Ingestion of large amounts may cause gastrointestinal irritation including nausea, vomiting, diarrhea, and blockage.

Medical Conditions Aggravated by Exposure:

Irritated or broken skin increases chance of contact dermatitis. Pre-existing medical conditions that may be aggravated by exposure include disorders of the eye, skin and lung (including asthma and other breathing disorders). Smoking tobacco will impair the ability of the lungs to clear themselves of dust.

Delayed and immediate effects and also chronic effects from short- and long-term exposure:

Prolonged overexposure to respirable dusts in excess of allowable exposure limits can cause inflammation of the lungs leading to possible fibrotic changes, a medical condition known as pneumoconiosis.

Prolonged and repeated overexposure to high levels of respirable crystalline silica-containing dust may cause a chronic form of silicosis, an incurable lung disease that may result in permanent lung damage or death. Chronic silicosis generally occurs after 10 years or more of overexposure; a more accelerated type of silicosis may occur between 5 and 10 years of higher levels of prolonged and repeated overexposure. In early stages of silicosis, not all individuals will exhibit symptoms (signs) of the disease. However, silicosis can be progressive, and symptoms can appear at any time, even years after exposure has ceased.

Repeated overexposures to very high levels of respirable crystalline silica for periods as short as six months may cause acute silicosis. Acute silicosis is a rapidly progressive, incurable lung disease that is typically fatal. Symptoms include (but are not limited to): shortness of breath, cough, fever, weight loss, and chest pain.

Respirable dust containing newly broken crystalline silica particles has been shown to be more hazardous to animals in laboratory tests than respirable dust containing older crystalline silica particles of similar size. Respirable crystalline silica particles which had aged for sixty days or more showed less lung injury in animals than equal exposures to respirable dust containing newly broken particles of respirable crystalline silica.

There are reports in the literature suggesting that excessive respirable crystalline silica exposure may be associated with autoimmune disorders and other adverse health effects involving the kidney. In particular, the incidence of scleroderma (thickening of the skin caused by swelling and thickening of fibrous tissue) appears to be higher in silicotic individuals. To date, the evidence does not conclusively determine a causal relationship between silica exposure and these adverse health effects.

Carcinogenicity:

Epidemiology studies on the association between respirable crystalline silica exposure and lung cancer have had both positive and negative results. There is some speculation that the source, type, and level of exposure of respirable crystalline silica may play a role. Studies of persons with silicosis indicate an increased risk of developing lung cancer, a risk that increases with the level and duration of exposure. It is not clear whether lung cancer develops in non-silicotic patients. Several studies of silicotics do not account for lung cancer confounders, especially smoking, which have been shown to increase the risk of developing lung disorders, including emphysema and lung cancer.

In October 1996, an IARC Working Group designated respirable crystalline silica as carcinogenic (Group 1). In 2012, an IARC Working Group re-affirmed that inhalation of crystalline silica was a known human carcinogen. The NTP's Report on Carcinogens, 9th edition, lists respirable crystalline silica as a "known human carcinogen." In the year 2000, the American Conference of Governmental Industrial Hygienists (ACGIH) listed respirable crystalline silica (quartz) as a suspected human carcinogen (A-2). These classifications are based on sufficient evidence of carcinogenicity in certain experimental animals and on selected epidemiological studies of workers exposed to respirable crystalline silica.

Additional information on toxicological-effects: Acute toxicity: Not classified

Skin corrosion/irritation: Not classified

Serious eye damage/eye irritation: Not classified

Respiratory sensitization: Not classified.

Skin sensitization: Not classified.

Germ cell Mutagenicity: Not classified

Page 208 of 242 Stancills Inc. PTC Appln

Carcinogenicity: May cause cancer (Inhalation).

Reproductive toxicity: Not classified

Specific target organ toxicity - single exposure: Not classified

Specific target organ- toxicity – repeated exposure: Causes damage to organs (lungs, respiratory system) through prolonged or repeated exposure (inhalation)

Aspiration toxicity: Not classified (not applicable- solid material)

12. Ecological information

Ecotoxicity (aquatic and terrestrial, where available): Not determined

Persistence and degradability:

Not determined

Bioaccumulative potential.

Not determined

Mobility in soil.

Not determined

Other adverse effects.

Not determined

13. Disposal considerations

Safe handling and disposal of waste:

Place contaminated materials in appropriate containers and dispose of in a manner consistent with applicable federal, state, and local regulations. Prevent from entering drainage, sewer systems, and unintended bodies of water. It is the responsibility of the user to determine, at the time of disposal, whether product meets criteria for hazardous waste. Product uses, transformations, mixture and processes, may render the resulting material hazardous.

14. Transport information

UN Number:
Not regulated.
UN Proper shipping name:
Not regulated.
Transport Hazard class:
Not applicable.
Packing group, if applicable:
Not applicable.
Marine pollutant (Yes/No):
Not applicable.

15. Regulatory information

Toxic Substances Control Act (TSCA):

The components in this product are listed on the TSCA Inventory or are exempt.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA):

Releases of this material to air, land, or water are not reportable to the National Response Center under the

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or to state and local emergency planning committees under the Superfund Amendments and Reauthorization Act.

Superfund Amendments and Reauthorization Act of 1986 (SARA), Title III:

Section 302 extremely hazardous substances: None

Section 311/312 hazard categories: Delayed Health

Section 313 reportable ingredients at or above de minimus concentrations: None

Page 209 of 242 Stancills Inc. PTC Appln

California Proposition 65:

This product contains a chemical (crystalline silica) known to the State of California to cause cancer.

State Regulatory Lists:

Each state may promulgate standards more stringent than the federal government. This section cannot encompass an inclusive list or all state regulations. Therefore, the user should review the components listed in Section 2 and consult state or local authorities for specific regulations that apply.

16. Other information

Disclaimer

NO WARRANTY IS MADE, EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE.

Vulcan Materials Company and its subsidiaries and affiliates ("Vulcan") believe the information contained herein is accurate; however, Vulcan makes no guarantees with respect to such accuracy and assumes no liability whatsoever in connection with the use of any information contained herein by any party. The provision of the information contained herein is not intended to be, and should not be construed as, legal advice or as ensuring compliance with any federal, state, or local laws, rules or regulations. Any party using any information contained herein should review all applicable laws, rules and regulations prior to use.

Issue date:

3/01/2017

Revision date:

3/01/2017

Vulcan Materials Company and its subsidiaries and affiliates 1200 Urban Center Drive Birmingham, AL 35242

SAFETY DATA SHEET

Effective Date: 3/01/2017 Replaces: 6/01/2015

Granite

1. Identification			
Product name:			
Granite	Granite		
Other means of identification/Synonyms/Common Names:			
Aggregate, Manufactured Sand, Fine Filler			
Recommended use:			
Granite is used as a construction material.			
Recommended restrictions:			
None Known			
Manufacturer/Contact info:	General Phone Number:		
Vulcan Materials Company and its subsidiaries and affiliates	1.866.401.5424		
1200 Urban Center Drive	Emergency Phone Number:		
Birmingham, AL 35242	1.866.401.5424 (3E Company, 24hours/day, 7 Days/week)		
	Website:		
	www.vulcanmaterials.com		

2. Hazard(s) Identific Physical hazards:	Health hazards:	
Not Classified	Carcinogenicity-Category 1A	
	Specific target organ toxicity, repeated exposure- Category 2	
	Signal word:	
	Danger	
	Hazard statement: May Cause Cancer (Inhalation).	
	Causes damage to organs (lungs, respiratory system) through prolonged or repeated exposure (inhalation)	
Precautionary statement:		
Prevention		
Obtain special instructions		
	ty precautions have been read and understood.	
	uipment as required. Wear protective gloves, protective clothing, eye protection, and face protection.	
Wash hands thoroughly after handling.		
Do not eat, drink or smoke when using this product.		
Dechence		
•	t modical advice lattentian	
If exposed or concerned ge	t medical advice/attention.	
Disposal	t medical advice/attention. ner in accordance with all local, regional, national, and international regulations.	

varying quantities of quartz (crystalline silica). Granite may be subjected to various natural or mechanical forces that produce small particles (dust) which may contain respirable crystalline silica (particles less than 10 micrometers in aerodynamic diameter). Repeated inhalation of respirable crystalline silica (quartz) may cause lung cancer according to

Page 212 of 242 Stancills Inc. PTC Appln

IARC, NTP; ACGIH states that it is a suspected cause of cancer. Other forms of RCS (e.g., tridymite and cristobalite) may also be present or formed under certain industrial processes.

3. Composition/information on ingredients			
Chemical name	CAS number	%	
Granite	None	100	
Quartz (crystalline silica)	14808-60-7	>1	

4. First-aid measures

Inhalation:

Remove to fresh air. Dust in throat and nasal passages should clear spontaneously. Contact a physician if irritation persists or if breathing is difficult.

Eyes:

Immediately flush eye(s) with plenty of clean water for at least 15 minutes, while holding the eyelid(s) open.

Occasionally lift the eyelid(s) to ensure thorough rinsing. Beyond flushing, do not attempt to remove material from eye(s). Contact a physician if irritation persists or later develops.

Skin:

Wash affected areas thoroughly with mild soap and fresh water. Contact a physician if irritation persists.

Ingestion:

If person is conscious do not induce vomiting. Give large quantity of water and get medical attention. Never attempt to make an unconscious person drink.

Most important symptoms/effects, acute and delayed:

Dust may irritate the eyes, skin, and respiratory tract. Breathing respirable crystalline silica-containing dust for prolonged periods in the workplace can cause lung damage and a lung disease called silicosis. Symptoms of silicosis may include (but are not limited to) shortness of breath, difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; right heart enlargement and/or failure.

Not all individuals with silicosis will exhibit symptoms of the disease. However, silicosis can be progressive and symptoms can appear even years after exposures have ceased. Persons with silicosis have an increased risk of pulmonary tuberculosis infection.

For emergencies contact 3E Company at 1.866.401.5424 (24 hours/day, 7 days/week).

5. Fire-fighting measures

Suitable extinguishing media:

This product is not flammable. Use fire-extinguishing media appropriate for surrounding materials.

Unsuitable extinguishing media:

None known.

Specific hazards arising from the chemical:

Contact with powerful oxidizing agents may cause fire and/or explosions (see section 10 of SDS).

Special protective equipment and precautions for firefighters:

Use protective equipment appropriate for surrounding materials.

Fire-fighting equipment/instructions:

No unusual fire or explosion hazards noted. Not a combustible dust.

Specific methods:

The presence of this material in a fire does not hinder the use of any standard extinguishing medium. Use extinguishing medium for surrounding fire.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Persons involved in cleanup processes should first observe precautions (as appropriate) identified in Section 8 of this SDS. For emergencies, contact 3E Company at 1-866-401-5424 (24 hours/day, 7 days/week).

Environmental precautions:

Prevent from entering into sewers or drainage systems where it can harden and clog flow.

Page 213 of 242 Stancills Inc. PTC Appln

Methods and materials for containment and cleaning up:

Spilled material, where dust is generated, may overexpose cleanup personnel to respirable crystalline silica-containing dust. Do not dry sweep or use compressed air for clean-up. Wetting of spilled material and/or use of respiratory protective equipment may be necessary.

7. Handling and storage

Precautions for safe handling:

Respirable crystalline silica-containing dust may be generated during processing, handling, and storage. Use personal protection and controls identified in Section 8 of this SDS as appropriate.

Conditions for safe storage, including any incompatibilities:

Do not store near food, beverages, or smoking materials.

8. Exposure controls/personal protection

Legend:

NE = Not Established; PEL = Permissible Exposure Limit; TLV = Threshold Limit Value; REL = Recommended Exposure Limit; OSHA = Occupational Safety and Health Administration; NIOSH = National Institute for Occupational Safety and Health; ACGIH = American Conference of Governmental Industrial Hygienists

Component	OSHA/MSHA PEL	ACGIH TLV	NIOSH REL
Particulates not otherwise classified	15 mg/m ³ (total dust) 5 mg/m ³ (respirable fraction)	10 mg/m^3 (inhalable fraction) 3 mg/m^3 (respirable fraction)	NE
Respirable dust containing silica	$10 \text{ mg/m}^3 \div (\% \text{ silica + 2})$	Use Respirable Silica TLV	Use Respirable Silica REL
Total dust containing silica	MSHA: 30 mg/m ³ ÷ (% silica + 3)	NE	NE
Respirable Crystalline Silica (quartz)	OSHA: 0.05 mg/m ³ (PEL) OSHA: 0.025 mg/m ³ (Action Level) MSHA: Use Respirable Dust containing Silica PEL (above)	0.025 mg/m ³	0.05 mg/m ³
Respirable Tridymite and Cristobalite (other forms of crystalline silica)	OSHA: Use respirable crystalline silica PEL MSHA: 1/2 of respirable dust containing silica PEL	0.025 mg/m ³	0.05 mg/m ³

Exposure Guidelines:

Total dust containing silica, respirable silica-containing dust and respirable crystalline silica (quartz) levels should be monitored regularly to determine worker exposure levels. Exposure levels in excess of allowable exposure limits should be reduced by all feasible engineering controls, including (but not limited to) wet suppression, ventilation, process enclosure, and enclosed employee workstations.

Engineering Controls:

Activities that generate dust require the use of general ventilation, local exhaust and/or wet suppression methods to maintain exposures below allowable exposure limits.

Eye Protection:

Safety glasses with side shields should be worn as minimum protection. Dust goggles should be worn when excessively (visible) dusty conditions are present or are anticipated.

Skin Protection (Protective Gloves/Clothing):

Use gloves to provide hand protection from abrasion. In dusty conditions, use long sleeve shirts. Wash work clothes after each use.

Respiratory Protection:

All respirators must be NIOSH-approved for the exposure levels present. (See NIOSH Respirator Selection Guide). The need for respiratory protection should be evaluated by a qualified safety and health professional. Activities that generate dust require the use of an appropriate dust respirator where dust levels exceed or are likely to exceed allowable exposure limits. For respirable silica-containing dust levels that exceed or are likely to exceed an 8-hour time-

Page 214 of 242 Stancills Inc. PTC Appln

weighted average (TWA) of 0.25 mg/m³, a high efficiency particulate filter respirator must be worn at a minimum; however, if respirable silica-containing dust levels exceed or are likely to exceed an 8-hour TWA of 1.25 mg/m³ an air-purifying, full-face respirator or equivalent is required. Respirator use must comply with applicable MSHA (42 CFR 84) or OSHA (29 CFR 1910.134) standards, which include provisions for a user training program, respirator inspection, repair and cleaning, respirator fit testing, medical surveillance and other requirements.

9. Physical and chemical properties

Appearance:

Angular particles, light salt-and-pepper colored, ranging in size from pebbled to boulders.

Odor:	PH:	Decomposition temperature:
No odor.	Not applicable	Not applicable
Melting point/freezing point:	Initial boiling point and boiling range:	Flash point:
Not applicable	Not applicable	Non-combustible
Evaporation rate:	Flammability:	Upper/lower flammability or explosive limits:
Not applicable	Not applicable	Not applicable
Vapor pressure:	Relative density:	Solubility:
Not applicable	Not applicable	0
Partition coefficient: n-octanol/water.	Autoignition temperature:	Specific Gravity (H2O = 1):
Not applicable	Not applicable	2.6 - 2.81

10. Stability and reactivity

Reactivity:

Not reactive under normal use.

Chemical stability:

Stable under normal temperatures and pressures.

Possibility of hazardous reactions:

None under normal use.

Conditions to avoid (e.g., static discharge, shock or vibration):

Contact with incompatible materials should be avoided (see below). See Sections 5 and 7 for additional information.

Incompatible materials:

Silica ignites on contact with fluorine and is incompatible with acids, aluminum, ammonium salts and magnesium. Silica reacts violently with powerful oxidizing agents such as fluorine, boron trifluoride, chlorine trifluoride, manganese trifluoride, and oxygen difluoride yielding possible fire and/or explosions. Silica dissolves readily in hydrofluoric acid producing a corrosive gas – silicon tetrafluoride.

Hazardous decomposition products:

Respirable crystalline silica-containing dust may be generated. When heated, quartz is slowly transformed into tridymite (above 860°C/1580°F) and cristobalite (above 1470°C/2678°F). Both tridymite and cristobalite are other forms of crystalline silica.

11. Toxicological information

Primary Routes of Exposure:

Inhalation and contact with the eyes and skin.

Symptoms related to the physical, chemical, toxicological characteristics

Inhalation:

Dusts may irritate the nose, throat and respiratory tract by mechanical abrasion. Coughing sneezing and shortness of breath may occur.

Symptoms of silicosis may include (but are not limited to) shortness of breath, difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; right heart enlargement and/or failure. Persons with silicosis have an increased risk of pulmonary tuberculosis infection.

Eye Contact:

Dust particles can scratch the eye causing tearing, redness, a stinging or burning feeling, or swelling of the eyes with blurred vision.

Skin Contact:

Dust particles can scratch and irritate the skin with redness, an itching or burning feeling, swelling of the skin, and/or

rash. Ingestion:

Expected to be practically non-toxic. Ingestion of large amounts may cause gastrointestinal irritation including nausea, vomiting, diarrhea, and blockage.

Medical Conditions Aggravated by Exposure:

Irritated or broken skin increases chance of contact dermatitis. Pre-existing medical conditions that may be aggravated by exposure include disorders of the eye, skin and lung (including asthma and other breathing disorders). Smoking tobacco will impair the ability of the lungs to clear themselves of dust.

Delayed and immediate effects and also chronic effects from short- and long-term exposure:

Prolonged overexposure to respirable dusts in excess of allowable exposure limits can cause inflammation of the lungs leading to possible fibrotic changes, a medical condition known as pneumoconiosis.

Prolonged and repeated overexposure to high levels of respirable crystalline silica-containing dust may cause a chronic form of silicosis, an incurable lung disease that may result in permanent lung damage or death. Chronic silicosis generally occurs after 10 years or more of overexposure; a more accelerated type of silicosis may occur between 5 and 10 years of higher levels of prolonged and repeated overexposure. In early stages of silicosis, not all individuals will exhibit symptoms (signs) of the disease. However, silicosis can be progressive, and symptoms can appear at any time, even years after exposure has ceased.

Repeated overexposures to very high levels of respirable crystalline silica for periods as short as six months may cause acute silicosis. Acute silicosis is a rapidly progressive, incurable lung disease that is typically fatal. Symptoms include (but are not limited to): shortness of breath, cough, fever, weight loss, and chest pain.

Respirable dust containing newly broken crystalline silica particles has been shown to be more hazardous to animals in laboratory tests than respirable dust containing older crystalline silica particles of similar size. Respirable crystalline silica particles which had aged for sixty days or more showed less lung injury in animals than equal exposures to respirable dust containing newly broken particles of respirable crystalline silica.

There are reports in the literature suggesting that excessive respirable crystalline silica exposure may be associated with autoimmune disorders and other adverse health effects involving the kidney. In particular, the incidence of scleroderma (thickening of the skin caused by swelling and thickening of fibrous tissue) appears to be higher in silicotic individuals. To date, the evidence does not conclusively determine a causal relationship between silica exposure and these adverse health effects.

Carcinogenicity:

Epidemiology studies on the association between respirable crystalline silica exposure and lung cancer have had both positive and negative results. There is some speculation that the source, type, and level of exposure of respirable crystalline silica may play a role. Studies of persons with silicosis indicate an increased risk of developing lung cancer, a risk that increases with the level and duration of exposure. It is not clear whether lung cancer develops in non-silicotic patients. Several studies of silicotics do not account for lung cancer confounders, especially smoking, which have been shown to increase the risk of developing lung disorders, including emphysema and lung cancer.

In October 1996, an IARC Working Group designated respirable crystalline silica as carcinogenic (Group 1). In 2012, an IARC Working Group re-affirmed that inhalation of crystalline silica was a known human carcinogen. The NTP's Report on Carcinogens, 9th edition, lists respirable crystalline silica as a "known human carcinogen." In the year 2000, the American Conference of Governmental Industrial Hygienists (ACGIH) listed respirable crystalline silica (quartz) as a suspected human carcinogen (A-2). These classifications are based on sufficient evidence of carcinogenicity in certain experimental animals and on selected epidemiological studies of workers exposed to respirable crystalline silica.

Additional information on toxicological-effects:

Acute toxicity: Not classified

Skin corrosion/irritation: Not classified

Serious eye damage/eye irritation: Not classified

Respiratory sensitization: Not classified.

Skin sensitization: Not classified.

Page 216 of 242 Stancills Inc. PTC Appln

Germ cell Mutagenicity: Not classified

Carcinogenicity: May cause cancer (Inhalation).

Reproductive toxicity: Not classified

Specific target organ toxicity - single exposure: Not classified

Specific target organ- toxicity – repeated exposure: Causes damage to organs (lungs, respiratory system) through prolonged or repeated exposure (inhalation)

Aspiration toxicity: Not classified (not applicable- solid material)

12. Ecological information		
Ecotoxicity (aquatic and terrestrial, where available):		
Not determined		
Persistence and degradability:		
Not determined		
Bioaccumulative potential.		
Not determined		
Mobility in soil.		
Not determined		
Other adverse effects.		
Not determined		

13. Disposal considerations

Safe handling and disposal of waste:

Place contaminated materials in appropriate containers and dispose of in a manner consistent with applicable federal, state, and local regulations. Prevent from entering drainage, sewer systems, and unintended bodies of water. It is the responsibility of the user to determine, at the time of disposal, whether product meets criteria for hazardous waste. Product uses, transformations, mixture and processes, may render the resulting material hazardous.

14. Transport information	
UN Number:	
Not regulated.	
UN Proper shipping name:	
Not regulated.	
Transport Hazard class:	
Not applicable.	
Packing group, if applicable:	
Not applicable.	
Marine pollutant (Yes/No):	
Not applicable.	

15. Regulatory information

Toxic Substances Control Act (TSCA):

The components in this product are listed on the TSCA Inventory or are exempt.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA):

Releases of this material to air, land, or water are not reportable to the National Response Center under the

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or to state and local emergency planning committees under the Superfund Amendments and Reauthorization Act.

Superfund Amendments and Reauthorization Act of 1986 (SARA), Title III:

Section 302 extremely hazardous substances: None

Section 311/312 hazard categories: Delayed Health

Page 217 of 242 Stancills Inc. PTC Appln

Section 313 reportable ingredients at or above de minimus concentrations: None

California Proposition 65:

This product contains a chemical (crystalline silica) known to the State of California to cause cancer.

State Regulatory Lists:

Each state may promulgate standards more stringent than the federal government. This section cannot encompass an inclusive list or all state regulations. Therefore, the user should review the components listed in Section 2 and consult state or local authorities for specific regulations that apply.

16. Other information

Disclaimer

NO WARRANTY IS MADE, EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE.

Vulcan Materials Company and its subsidiaries and affiliates ("Vulcan") believe the information contained herein is accurate; however, Vulcan makes no guarantees with respect to such accuracy and assumes no liability whatsoever in connection with the use of any information contained herein by any party. The provision of the information contained herein is not intended to be, and should not be construed as, legal advice or as ensuring compliance with any federal, state, or local laws, rules or regulations. Any party using any information contained herein should review all applicable laws, rules and regulations prior to use.

Issue date:

3/01/2017

Revision date: 3/01/2017

Vulcan Materials Company and its subsidiaries and affiliates 1200 Urban Center Drive Birmingham, AL 35242

SAFETY DATA SHEET

Effective Date: 3/01/2017 Replaces: 6/01/2015

Limestone

1. Identification			
Product name:			
Limestone			
Other means of identification/Synonyms/Common Names:			
Aggregate, Aglime, Barn Lime, Coverstone, Flexible Base, Fluxing Agent, Manufactured Sand, Mineral Filler, Screenings			
Recommended use:			
Limestone is used as a construction material.			
Recommended restrictions:			
None Known			
Manufacturer/Contact info:	General Phone Number:		
Vulcan Materials Company and its subsidiaries and affiliates	1.866.401.5424		
1200 Urban Center Drive	Emergency Phone Number:		
Birmingham, AL 35242	1.866.401.5424 (3E Company, 24hours/day, 7 Days/week)		
	Website:		
	www.vulcanmaterials.com		

2. Hazard(s) Identification		
Physical hazards:	Health hazards:	
Not Classified	Carcinogenicity-Category 1A	
	Specific target organ toxicity, repeated exposure- Category 2	
	Signal word:	
	Danger	
	Hazard statement: May Cause Cancer (Inhalation).	
	Causes damage to organs (lungs, respiratory system) through prolonged or repeated exposure (inhalation)	
Precautionary statement:		
Prevention		
Obtain special instruction		
	ety precautions have been read and understood. quipment as required. Wear protective gloves, protective clothing, eye protection, and face protection.	
 Wash hands thoroughly a 		
	e when using this product.	
Response		
-	et medical advice/attention.	
Disposal		
 Dispose of contents/container in accordance with all local, regional, national, and international regulations. 		
Supplemental information:		
••	a (RCS) may cause cancer. Limestone is a naturally occurring mineral complex that contains	
	tz (crystalline silica). Limestone may be subjected to various natural or mechanical forces that	
	ust) which may contain respirable crystalline silica (particles less than 10 micrometers in	

produce small particles (dust) which may contain respirable crystalline silica (particles less than 10 micrometers in aerodynamic diameter). Repeated inhalation of respirable crystalline silica (quartz) may cause lung cancer according to

Page 220 of 242 Stancills Inc. PTC Appln

IARC, NTP; ACGIH states that it is a suspected cause of cancer. Other forms of RCS (e.g., tridymite and cristobalite) may also be present or formed under certain industrial processes.

3. Composition/information on ingredients			
Chemical name	CAS number	%	
Limestone	1317-65-3	100	
Quartz (crystalline silica)	14808-60-7	>1	

4. First-aid measures

Inhalation:

Remove to fresh air. Dust in throat and nasal passages should clear spontaneously. Contact a physician if irritation persists or if breathing is difficult.

Eyes:

Immediately flush eye(s) with plenty of clean water for at least 15 minutes, while holding the eyelid(s) open.

Occasionally lift the eyelid(s) to ensure thorough rinsing. Beyond flushing, do not attempt to remove material from eye(s). Contact a physician if irritation persists or later develops.

Skin:

Wash affected areas thoroughly with mild soap and fresh water. Contact a physician if irritation persists.

Ingestion:

If person is conscious do not induce vomiting. Give large quantity of water and get medical attention. Never attempt to make an unconscious person drink.

Most important symptoms/effects, acute and delayed:

Dust may irritate the eyes, skin, and respiratory tract. Breathing respirable crystalline silica-containing dust for prolonged periods in the workplace can cause lung damage and a lung disease called silicosis. Symptoms of silicosis may include (but are not limited to) shortness of breath, difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; right heart enlargement and/or failure.

Indication of immediate medical attention and special treatment needed:

Not all individuals with silicosis will exhibit symptoms of the disease. However, silicosis can be progressive and symptoms can appear even years after exposures have ceased. Persons with silicosis have an increased risk of pulmonary tuberculosis infection.

For emergencies contact 3E Company at 1.866.401.5424 (24 hours/day, 7 days/week).

5. Fire-fighting measures

Suitable extinguishing media:

This product is not flammable. Use fire-extinguishing media appropriate for surrounding materials.

Unsuitable extinguishing media:

None known.

Specific hazards arising from the chemical:

Contact with powerful oxidizing agents may cause fire and/or explosions (see section 10 of SDS).

Special protective equipment and precautions for firefighters:

Use protective equipment appropriate for surrounding materials.

Fire-fighting equipment/instructions:

No unusual fire or explosion hazards noted. Not a combustible dust.

Specific methods:

The presence of this material in a fire does not hinder the use of any standard extinguishing medium. Use extinguishing medium for surrounding fire.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Persons involved in cleanup processes should first observe precautions (as appropriate) identified in Section 8 of this SDS. For emergencies, contact 3E Company at 1-866-401-5424 (24 hours/day, 7 days/week).

Environmental precautions:

Prevent from entering into sewers or drainage systems where it can harden and clog flow.

Page 221 of 242 Stancills Inc. PTC Appln

Methods and materials for containment and cleaning up:

Spilled material, where dust is generated, may overexpose cleanup personnel to respirable crystalline silica-containing dust. Do not dry sweep or use compressed air for clean-up. Wetting of spilled material and/or use of respiratory protective equipment may be necessary.

7. Handling and storage

Precautions for safe handling:

Respirable crystalline silica-containing dust may be generated during processing, handling, and storage. Use personal protection and controls identified in Section 8 of this SDS as appropriate.

Conditions for safe storage, including any incompatibilities:

Do not store near food, beverages, or smoking materials.

8. Exposure controls/personal protection

Legend:

NE = Not Established; PEL = Permissible Exposure Limit; TLV = Threshold Limit Value; REL = Recommended Exposure Limit; OSHA = Occupational Safety and Health Administration; MIOSH = National Institute for Occupational Safety and Health; ACGIH = American Conference of Governmental Industrial Hygienists

	OSHA/MSHA	ACGIH	NIOSH
Component	PEL	TLV	REL
Limestone (Calcium Carbonate)	15 mg/m ³ (total dust)	10 mg/m ³ (total dust as calcium	15 mg/m ³ (total dust)
	5 mg/m^3 (respirable fraction)	carbonate)	5 mg/m ³ (respirable fraction)
Respirable dust containing silica	10 mg/m^3 ÷ (% silica + 2)	Use Respirable Silica TLV	Use Respirable Silica REL
Total dust containing silica	MSHA: 30 mg/m ³ ÷ (% silica + 3)	NE	NE
Respirable Crystalline Silica (quartz)	OSHA: 0.05 mg/m ³ (PEL) OSHA: 0.025 mg/m ³ (Action Level) MSHA: Use Respirable Dust containing Silica PEL (above)	0.025 mg/m ³	0.05 mg/m ³
Respirable Tridymite and Cristobalite	OSHA: Use respirable crystalline	0.025 mg/m ³	0.05 mg/m ³
(other forms of crystalline silica)	silica PEL		
	MSHA: 1/2 of respirable dust		
	containing silica PEL		

Exposure Guidelines:

Total dust containing silica, respirable silica-containing dust and respirable crystalline silica (quartz) levels should be monitored regularly to determine worker exposure levels. Exposure levels in excess of allowable exposure limits should be reduced by all feasible engineering controls, including (but not limited to) wet suppression, ventilation, process enclosure, and enclosed employee workstations.

Engineering Controls:

Activities that generate dust require the use of general ventilation, local exhaust and/or wet suppression methods to maintain exposures below allowable exposure limits.

Eye Protection:

Safety glasses with side shields should be worn as minimum protection. Dust goggles should be worn when excessively (visible) dusty conditions are present or are anticipated.

Skin Protection (Protective Gloves/Clothing):

Use gloves to provide hand protection from abrasion. In dusty conditions, use long sleeve shirts. Wash work clothes after each use.

Respiratory Protection:

All respirators must be NIOSH-approved for the exposure levels present. (See NIOSH Respirator Selection Guide). The need for respiratory protection should be evaluated by a qualified safety and health professional. Activities that generate dust require the use of an appropriate dust respirator where dust levels exceed or are likely to exceed

Page 222 of 242 Stancills Inc. PTC Appln

allowable exposure limits For respirable silica-containing dust levels that exceed or are likely to exceed an 8-hour time - weighted average (TWA) of 0.25 mg/m³, a high efficiency particulate filter respirator must be worn at a minimum; however, if respirable silica-containing dust levels exceed or are likely to exceed an 8-hour TWA of 1.25 mg/m³ an air-purifying, full-face respirator or equivalent is required. Respirator use must comply with applicable MSHA (42 CFR 84) or OSHA (29 CFR 1910.134) standards, which include provisions for a user training program, respirator inspection, repair and cleaning, respirator fit testing, medical surveillance and other requirements.

9. Physical and chemical properties

Appearance:		
Angular gray, white and tan particles	ranging in size from powder to boulders	5.
Odor:	PH:	Decomposition temperature:
No odor.	Not applicable	Not applicable
Melting point/freezing point:	Initial boiling point and boiling range:	Flash point:
Not applicable	Not applicable	Non-combustible
Evaporation rate:	Flammability:	Upper/lower flammability or explosive limits:
Not applicable	Not applicable	Not applicable
Vapor pressure:	Relative density:	Solubility:
Not applicable	Not applicable	0
Partition coefficient: n-octanol/water.	Autoignition temperature:	Specific Gravity (H2O = 1):
Not applicable	Not applicable	2.4 - 2.85

10. Stability and reactivity

Reactivity:

Not reactive under normal use.

Chemical stability:

Stable under normal temperatures and pressures.

Possibility of hazardous reactions:

None under normal use.

Conditions to avoid (e.g., static discharge, shock or vibration):

Contact with incompatible materials should be avoided (see below). See Sections 5 and 7 for additional information. Incompatible materials:

Silica ignites on contact with fluorine and is incompatible with acids, aluminum, ammonium salts and magnesium. Silica reacts violently with powerful oxidizing agents such as fluorine, boron trifluoride, chlorine trifluoride, manganese trifluoride, and oxygen difluoride yielding possible fire and/or explosions. Silica dissolves readily in hydrofluoric acid producing a corrosive gas – silicon tetrafluoride.

Hazardous decomposition products:

Respirable crystalline silica-containing dust may be generated. When heated, quartz is slowly transformed into tridymite (above 860°C/1580°F) and cristobalite (above 1470°C/2678°F). Both tridymite and cristobalite are other forms of crystalline silica.

11. Toxicological information

Primary Routes of Exposure:

Inhalation and contact with the eyes and skin.

Symptoms related to the physical, chemical, toxicological characteristics

Inhalation:

Dusts may irritate the nose, throat and respiratory tract by mechanical abrasion. Coughing sneezing and shortness of breath may occur.

Symptoms of silicosis may include (but are not limited to) shortness of breath, difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; right heart enlargement and/or failure. Persons with silicosis have an increased risk of pulmonary tuberculosis infection. Eve Contact:

Dust particles can scratch the eye causing tearing, redness, a stinging or burning feeling, or swelling of the eyes with blurred vision.

Skin Contact:

Dust particles can scratch and irritate the skin with redness, an itching or burning feeling, swelling of the skin, and/or rash.

Ingestion:

Expected to be practically non-toxic. Ingestion of large amounts may cause gastrointestinal irritation including nausea, vomiting, diarrhea, and blockage.

Medical Conditions Aggravated by Exposure:

Irritated or broken skin increases chance of contact dermatitis. Pre-existing medical conditions that may be aggravated by exposure include disorders of the eye, skin and lung (including asthma and other breathing disorders). Smoking tobacco will impair the ability of the lungs to clear themselves of dust.

Delayed and immediate effects and also chronic effects from short- and long-term exposure:

Prolonged overexposure to respirable dusts in excess of allowable exposure limits can cause inflammation of the lungs leading to possible fibrotic changes, a medical condition known as pneumoconiosis.

Prolonged and repeated overexposure to high levels of respirable crystalline silica-containing dust may cause a chronic form of silicosis, an incurable lung disease that may result in permanent lung damage or death. Chronic silicosis generally occurs after 10 years or more of overexposure; a more accelerated type of silicosis may occur between 5 and 10 years of higher levels of prolonged and repeated overexposure. In early stages of silicosis, not all individuals will exhibit symptoms (signs) of the disease. However, silicosis can be progressive, and symptoms can appear at any time, even years after exposure has ceased.

Repeated overexposures to very high levels of respirable crystalline silica for periods as short as six months may cause acute silicosis. Acute silicosis is a rapidly progressive, incurable lung disease that is typically fatal. Symptoms include (but are not limited to): shortness of breath, cough, fever, weight loss, and chest pain.

Respirable dust containing newly broken crystalline silica particles has been shown to be more hazardous to animals in laboratory tests than respirable dust containing older crystalline silica particles of similar size. Respirable crystalline silica particles which had aged for sixty days or more showed less lung injury in animals than equal exposures to respirable dust containing newly broken particles of respirable crystalline silica.

There are reports in the literature suggesting that excessive respirable crystalline silica exposure may be associated with autoimmune disorders and other adverse health effects involving the kidney. In particular, the incidence of scleroderma (thickening of the skin caused by swelling and thickening of fibrous tissue) appears to be higher in silicotic individuals. To date, the evidence does not conclusively determine a causal relationship between silica exposure and these adverse health effects.

Carcinogenicity:

Epidemiology studies on the association between respirable crystalline silica exposure and lung cancer have had both positive and negative results. There is some speculation that the source, type, and level of exposure of respirable crystalline silica may play a role. Studies of persons with silicosis indicate an increased risk of developing lung cancer, a risk that increases with the level and duration of exposure. It is not clear whether lung cancer develops in non-silicotic patients. Several studies of silicotics do not account for lung cancer confounders, especially smoking, which have been shown to increase the risk of developing lung disorders, including emphysema and lung cancer.

In October 1996, an IARC Working Group designated respirable crystalline silica as carcinogenic (Group 1). In 2012, an IARC Working Group re-affirmed that inhalation of crystalline silica was a known human carcinogen. The NTP's Report on Carcinogens, 9th edition, lists respirable crystalline silica as a "known human carcinogen." In the year 2000, the American Conference of Governmental Industrial Hygienists (ACGIH) listed respirable crystalline silica (quartz) as a suspected human carcinogen (A-2). These classifications are based on sufficient evidence of carcinogenicity in certain experimental animals and on selected epidemiological studies of workers exposed to respirable crystalline silica.

Additional information on toxicological-effects:

Acute toxicity: Not classified

No specific data on product. Limestone (calcium carbonate CAS# 471-34-1) has oral LD50 (rats) = 6450 mg/kg.) **Skin corrosion/irritation:** Not classified

Serious eye damage/eye irritation: Not classified

Respiratory sensitization: Not classified.

Page 224 of 242 Stancills Inc. PTC Appln

Skin sensitization: Not classified.

Germ cell Mutagenicity: Not classified

Carcinogenicity: May cause cancer (Inhalation).

Reproductive toxicity: Not classified

Specific target organ toxicity - single exposure: Not classified

Specific target organ- toxicity – repeated exposure: Causes damage to organs (lungs, respiratory system) through prolonged or repeated exposure (inhalation)

Aspiration toxicity: Not classified (not applicable- solid material)

12. Ecological information	
cotoxicity (aquatic and terrestrial, where available):	
Not determined	
ersistence and degradability:	
Not determined	
ioaccumulative potential:	
Not determined	
Aobility in soil:	
Not determined	
Other adverse effects:	
Not determined	

13. Disposal considerations

Safe handling and disposal of waste:

Place contaminated materials in appropriate containers and dispose of in a manner consistent with applicable federal, state, and local regulations. Prevent from entering drainage, sewer systems, and unintended bodies of water. It is the responsibility of the user to determine, at the time of disposal, whether product meets criteria for hazardous waste. Product uses, transformations, mixture and processes, may render the resulting material hazardous.

14. Transport information
UN Number:
Not regulated.
UN Proper shipping name:
Not regulated.
Transport Hazard class:
Not applicable.
Packing group, if applicable:
Not applicable.
Marine pollutant (Yes/No):
Not applicable.

15. Regulatory information

Toxic Substances Control Act (TSCA):

The components in this product are listed on the TSCA Inventory or are exempt.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA):

Releases of this material to air, land, or water are not reportable to the National Response Center under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or to state and local emergency planning committees under the Superfund Amendments and Reauthorization Act.

Page 225 of 242 Stancills Inc. PTC Appln

Superfund Amendments and Reauthorization Act of 1986 (SARA), Title III:

Section 302 extremely hazardous substances: None

Section 311/312 hazard categories: Delayed Health

Section 313 reportable ingredients at or above de minimus concentrations: None

California Proposition 65:

This product contains a chemical (crystalline silica) known to the State of California to cause cancer.

State Regulatory Lists:

Each state may promulgate standards more stringent than the federal government. This section cannot encompass an inclusive list or all state regulations. Therefore, the user should review the components listed in Section 2 and consult state or local authorities for specific regulations that apply.

16. Other information

Disclaimer

NO WARRANTY IS MADE, EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE.

Vulcan Materials Company and its subsidiaries and affiliates ("Vulcan") believe the information contained herein is accurate; however, Vulcan makes no guarantees with respect to such accuracy and assumes no liability whatsoever in connection with the use of any information contained herein by any party. The provision of the information contained herein is not intended to be, and should not be construed as, legal advice or as ensuring compliance with any federal, state, or local laws, rules or regulations. Any party using any information contained herein should review all applicable laws, rules and regulations prior to use.

Issue date:

3/01/2017 Revision date:

3/01/2017

Vulcan Materials Company and its subsidiaries and affiliates 1200 Urban Center Drive Birmingham, AL 35242

Safety Data Sheet

PG 64-22

SECTION 1. IDENTIFICATION

Product Identifier	PG 64-22
Other Means of Identification	BAL6422
Other Identification	Asphalt / Bitumen
Recommended Use	This product is primarily used for paving applications. However, there are a number of other industrial applications.
Restrictions on Use	None known.
Manufacturer	Bitumar USA, Inc., 6000 Pennington Avenue, Baltimore, Maryland, 21226, (410) 354-9550, www.bitumar.com
Emergency Phone No.	Canutec (Canada), (613) 993-6666; Cel. *666 (canada), 24/7 ChemTrec (US), (800) 424-9300, 24/7
Date of Preparation	mai 13, 2015

SECTION 2. HAZARDS IDENTIFICATION

GHS Classification Carcinogenicity - Category 2 GHS Label Elements

Warning Suspected of causing cancer. Other Hazards Hazard Not Otherwise Classified (HNOC): Contact with hot material can cause thermal burns.

SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical Name	CAS No.	%	Other Identifiers
Asphalt (Bitumen) fumes	8052-42-4	100	
Hydrogen sulfide	7783-06-4		

Notes

Sulphur and its derivatives are intrinsic to base asphalt. During storage or transit of hot asphalt, hydrogen sulphide may be generated.

SECTION 4. FIRST-AID MEASURES

First-aid Measures

Inhalation

Move to fresh air. Get medical advice/attention if you feel unwell or are concerned.

Product Identifier:	PG 64-22	
SDS No.:	0052	Page 01 of 06
Date of Preparation:	mai 13, 2015	

Page 228 of 242 Stancills Inc PTC Appln

Skin Contact

For hot asphalt splash, cool affected body part with water immersion or shower. Do not attempt removal of asphalt but split longitudinally if asphalt covers limb circumferentially to avoid tourniquet effect. No attempt should be made to remove firmly adhering bitumen from the skin.

Once the bitumen has cooled, it will do no further harm. As healing takes place, the bitumen plaque will detach itself, usually after a few days.

Eye Contact

Immediately rinse the contaminated eye(s) with lukewarm, gently flowing water by allowing the water to flow over the bridge of the nose to the eyes for at least 20 minutes. Seek medical attention. Ingestion

DO NOT induce vomiting because of danger of aspirating liquid into lungs. Seek medical attention.

Most Important Symptoms and Effects, Acute and Delayed

Symptoms may not appear immediately. Fume may cause respiratory irritation; Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness and nose and throat pain. Fume May cause eye irritation. Signs/symptoms may include redness, swelling, pain, tearing, and blurred or hazy vision. Hot liquid product may cause serious thermal burns on direct contact.

Immediate Medical Attention and Special Treatment

Special Instructions

No attempt should be made to remove firmly adhering bitumen from the skin. If solvent treatment is used, it should be followed by washing with soap and water, then the application of a proprietary refatting agent or skin cleansing cream. Only medically approved solvents may be used to remove bitumen from burns, as other solvents could cause further skin damage.

SECTION 5. FIRE-FIGHTING MEASURES

Extinguishing Media

Suitable Extinguishing Media

Use water to keep non-leaking, fire-exposed containers cool. SMALL FIRE: use DRY chemicals, foam, water spray or CO2. LARGE FIRE: use water spray, fog or foam.

Unsuitable Extinguishing Media

None known.

Specific Hazards Arising from the Chemical

Carbon oxides (CO, CO2), nitrogen oxides (NOx), sulphur oxides (SOx), sulphur compounds (H2S), smoke and irritating fumes as products of incomplete combustion.

Special Protective Equipment and Precautions for Fire-fighters

For small outdoor fires, portable fire extinguishers may be used, and self contained breathing apparatus (SCBA) may not be required. For all indoor fires and any significant outdoor fires, SCBA is required. Respiratory and eye protection are required for fire fighting personnel.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment, and Emergency Procedures

Do not Touch or walk through spilled material. Use the personal protective equipment recommended in Section 8 of this safety data sheet.

Environmental Precautions

Do not allow into any sewer, on the ground or into any waterway.

Methods and Materials for Containment and Cleaning Up

Stop or reduce leak if safe to do so. Contain hot liquid by dyking and allow to cool and solidify. Break up and recover, see section 13 for disposal consideration.

Page 229 of 242 Stancills Inc PTC Appln

SECTION 7. HANDLING AND STORAGE

Precautions for Safe Handling

Asphalt may be transported hot. Avoid skin contact. Avoid eye contact. Avoid inhalation of product vapours or fumes. Ensure all equipment is grounded/bonded. During storage, transit and cooling of asphalt, hydrogen sulphide (H2S) may accumulate in enclosed spaces such as tank cars. Open tank car hatches with caution. Maintain same precautions when gauging and sampling. Empty containers may contain product residue. Do not reuse containers without commercial cleaning and/or reconditioning. Personnel who handle this material should practice good personal hygiene during and after handling to help prevent accidental ingestion of this product. Wear proper personal protective equipment.

Conditions for Safe Storage

To maintain pumping ability, asphalt is kept heated to a suitable temperature; normally well above room temperature but below the flash point. Store in dry, well-ventilated area. Clear roof vents periodically to prevent accumulation of asphalt deposits from vapour accumulation. Store away from incompatible and reactive materials (see section 10). Ensure the storage containers are grounded/bonded.

SECTION 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control Parameters

	ACGIH	TLV®	OSHA	A PEL	AIHA	WEEL
Chemical Name	TWA	STEL	TWA	Ceiling	8-hr TWA	TWA
Asphalt (Bitumen) fumes	0.5 mg/m3 (as benzene- soluble aerosol) A4					
Hydrogen sulfide	1 ppm	5 ppm				

Appropriate Engineering Controls

For normal application, special ventilation is not necessary. If user's operations generate vapours or fumes, use ventilation to keep exposure to airborne contaminants below the exposure limit. Make-up air should always be supplied to balance air removed by exhaust ventilation. Ensure that eyewash station and safety shower are close to work-station.

Individual Protection Measures

Eye/Face Protection

As a minimum, safety glasses with side shields should be worn when handling this material.

Skin Protection

Wear Protective clothing with full length sleeves and pants should be worn.

Respiratory Protection

A minimum of NIOSH-approved air-purifying respirator with an organic vapour cartridge or canister with a dust, fume of mist filter (R, or P series) may be allowable under certain circumstances where airborne concentrations are expected to exceed exposure limits. Protection provided by air-purifying respirators is limited. A NIOSH-approved positive-pressure, air-supplied respirator or self-contained breathing apparatus may be required under certain circumstances where airborne concentrations are expected to exceed exposure limits.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

Basic Physical and	Chemical	Properties
Appearance		Brown - black Viscous semi-solid.
Odour		Asphalt
Odour Threshold		Not available
рН		Not available
Melting Point/Freezing	Point	Not available (freezing)
Initial Boiling Point/Ra	nge	> 470 °C (878 °F)
Product Identifier:	PG 64-22	

Product Identifier:	PG 64-22
SDS No.:	0052
Date of Preparation:	mai 13, 2015

Page 03 of 06

	Page 230 of 242
	Stancills Inc PTC Appln
Flash Point	> 230 °C (446 °F) (open cup)
Evaporation Rate	Not available
Flammability (solid, gas)	Not applicable
Upper/Lower Flammability or Explosive Limit	Not available (upper); Not available (lower)
Vapour Pressure	Nil at 37.8°C (100°F)
Vapour Density (air = 1)	Not available
Relative Density (water = 1)	> 1
Solubility	Insoluble in water; Insoluble in alcohol, acids and alkalis. Soluble in oil turpentine, petroleum, carbon disulphide, chloroform, ether, and acetone
Partition Coefficient, n-Octanol/Water (Log Kow)	Not available
Auto-ignition Temperature	> 370 °C (698 °F)
Decomposition Temperature	Not available
Viscosity	150 - 2500 centipoises (dynamic)
Other Information	
Physical State	Solid

SECTION 10. STABILITY AND REACTIVITY

Reactivity Not reactive under normal conditions of use. Chemical Stability Stable under normal temperature conditions and recommended use. Possibility of Hazardous Reactions None known. Conditions to Avoid Open flames, sparks, static discharge, heat and other ignition sources. Incompatible materials. Incompatible Materials Oxidizing agents (e.g. peroxides), fluorine. Hazardous Decomposition Products Carbon Oxides (COx), sulfur Oxides (SOx), nitrogen oxides (NOx), hydrogen sulfide, hydrocarbons.

SECTION 11. TOXICOLOGICAL INFORMATION

Likely Routes of Exposure

Eye contact; skin contact; inhalation; ingestion.

Acute Toxicity

Chemical Name	LC50	LD50 (oral)	LD50 (dermal)
Asphalt (Bitumen) fumes	Not available	Not available	Not available
Hydrogen sulfide	444 ppm (rat) (4-hour exposure)		

Skin Corrosion/Irritation

Prolonged or repeated contact with skin may cause dermatitis or warty skin growths (keratosis). Contact with hot material can cause thermal burns.

Serious Eye Damage/Irritation

Page 231 of 242

Stancills Inc PTC Appln

Vapours or fumes from the hot asphalt can cause irritation of the surface of the eyes as well as limbal pigmentation of the cornea. Contact with hot material can cause thermal burns.

STOT (Specific Target Organ Toxicity) - Single Exposure

Inhalation

No information was located.

Skin Absorption

No information was located.

Ingestion

No information was located.

Aspiration Hazard

May cause lung damage if aspirated based on physical properties (e.g. kinematic viscosity) and chemical family (hydrocarbon).

STOT (Specific Target Organ Toxicity) - Repeated Exposure

No information was located.

Respiratory and/or Skin Sensitization

This product is not expected to be a skin or a respiratory tract sensitizer, based on the available data and the known hazards of the components.

Carcinogenicity

Chemical Name	IARC	ACGIH®	NTP	OSHA
Asphalt (Bitumen) fumes	Group 2B	A4	Not Listed	Carcinogen

Group 2B – Possibly carcinogenic to humans.

Other Information

Contains:

HYDROGEN SULFIDE : Chronic health effects due to repeated exposures to low levels of H2S have not been established. High level (700 ppm) acute exposure can result in sudden death. High concentrations will lead to cardiopulmonary arrest due to nervous system toxicity and pulmonary edema. Lower levels (150 ppm) may overwhelm sense of smell, eliminating warning of exposure. Symptoms of over exposure to H2S include headache, fatigue, insomnia, irritability, and gastrointestinal problems. Repeated exposures to approximately 25 ppm will irritate mucosa membranes and the respiratory system and have been implicated in some eye damage.

SECTION 12. ECOLOGICAL INFORMATION

Toxicity Not Available. Persistence and Degradability Not Available. Bioaccumulative Potential Not Available. Mobility in Soil Not Available. Other Adverse Effects Not Available.

SECTION 13. DISPOSAL CONSIDERATIONS

Disposal Methods

Dispose of waste at an appropriate treatment & disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal.

Product Identifier:	PG 64-22
SDS No.:	0052
Date of Preparation:	mai 13, 2015

Page 232 of 242 Stancills Inc PTC Appln

SECTION 14. TRANSPORT INFORMATION

Regulation	UN No.	Proper Shipping Name Transport Hazard Class(es)		Packing Group
US DOT UN3257 Elevated temperature liquid (Bitumer		Elevated temperature liquid (Bitumen (Asphalt))	9	

Special Precautions Not applicable

for User

Transport in Bulk According to Annex II of MARPOL 73/78 and the IBC Code Not applicable

Emergency Response 130 Guide No.

SECTION 15. REGULATORY INFORMATION

Safety, Health and Environmental Regulations

Canada

Domestic Substances List (DSL) / Non-Domestic Substances List (NDSL)

All ingredients are listed on the DSL or are not required to be listed.

USA

Toxic Substances Control Act (TSCA) Section 8(b)

All ingredients are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 720.

SECTION 16. OTHER INFORMATION

NFPA Rating SDS Prepared By	Health - 1 Flammability - 1 Instability - 0 R&D and Technical group
Phone No.	514-645-4561
Date of Preparation	mai 13, 2015
Disclaimer	 Bitumar Inc. customarily reviews and updates SDS within 90 days of new data availability in accordance with Canadian Hazardous Products Act. If you would like to verify if the MSDS you have is the most current, or you require any further information, please contact: www.bitumar.com Ontario/Central/Quebec & Eastern Canada, telephone: 514-645-4561; fax: 514-645-6978. For the USA: 410-354-9550. Fax: 410-354-9552. For other Product Safety Information: (514) 645-4561
	To the best of our knowledge, the information contained herein is accurate. However, neither BITLIMAR lnc, nor any of its subsidiaries assumes any liability whatsoever for the accuracy or

BITUMAR Inc. nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist

Product Identifier: PG 64-22 SDS No .: 0052 Date of Preparation:

mai 13, 2015

Page 06 of 06

Safety Data Sheet

PG 76-22

SECTION 1. IDENTIFICATION

Product Identifier	PG 76-22
Other Means of Identification	BAL7622
Other Identification	Asphalt / Bitumen
Recommended Use	This product is primarily used for paving applications. However, there are a number of other industrial applications.
Restrictions on Use	None known.
Manufacturer	Bitumar USA, Inc., 6000 Pennington Avenue, Baltimore, Maryland, 21226, (410) 354-9550, www.bitumar.com
Emergency Phone No.	Canutec (Canada), (613) 993-6666; Cel. *666 (canada), 24/7 ChemTrec (US), (800) 424-9300, 24/7
Date of Preparation	mai 26, 2015

SECTION 2. HAZARDS IDENTIFICATION

GHS Classification Carcinogenicity - Category 2 GHS Label Elements

Warning Suspected of causing cancer. Other Hazards Hazard Not Otherwise Classified (HNOC): Contact with hot material can cause thermal burns.

SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical Name	CAS No.	%	Other Identifiers
Asphalt (Bitumen) fumes	8052-42-4	90-100	
Styrene-butadiene copolymers	9003-55-8	1-9	
Hydrogen sulfide	7783-06-4		

Notes

Sulphur and its derivatives are intrinsic to base asphalt. During storage or transit of hot asphalt, hydrogen sulphide may be generated.

SECTION 4. FIRST-AID MEASURES

First-aid Measures

Inhalation

Product Identifier:	PG 76-22
SDS No.:	0141
Date of Preparation:	mai 26, 2015

Page 234 of 242

Stancills Inc PTC Appln

Move to fresh air. Get medical advice/attention if you feel unwell or are concerned.

Skin Contact

For hot asphalt splash, cool affected body part with water immersion or shower. Do not attempt removal of asphalt but split longitudinally if asphalt covers limb circumferentially to avoid tourniquet effect. No attempt should be made to remove firmly adhering bitumen from the skin.

Once the bitumen has cooled, it will do no further harm. As healing takes place, the bitumen plaque will detach itself, usually after a few days.

Eye Contact

Immediately rinse the contaminated eye(s) with lukewarm, gently flowing water by allowing the water to flow over the bridge of the nose to the eyes for at least 20 minutes. Seek medical attention. Ingestion

DO NOT induce vomiting because of danger of aspirating liquid into lungs. Seek medical attention.

Most Important Symptoms and Effects, Acute and Delayed

Symptoms may not appear immediately. Fume may cause respiratory irritation; Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness and nose and throat pain. Fume May cause eye irritation. Signs/symptoms may include redness, swelling, pain, tearing, and blurred or hazy vision. Hot liquid product may cause serious thermal burns on direct contact.

Immediate Medical Attention and Special Treatment

Special Instructions

No attempt should be made to remove firmly adhering bitumen from the skin. If solvent treatment is used, it should be followed by washing with soap and water, then the application of a proprietary refatting agent or skin cleansing cream. Only medically approved solvents may be used to remove bitumen from burns, as other solvents could cause further skin damage.

SECTION 5. FIRE-FIGHTING MEASURES

Extinguishing Media

Suitable Extinguishing Media

Use water to keep non-leaking, fire-exposed containers cool. SMALL FIRE: use DRY chemicals, foam, water spray or CO2. LARGE FIRE: use water spray, fog or foam. Unsuitable Extinguishing Media None known.

Specific Hazards Arising from the Chemical

Carbon oxides (CO, CO2), nitrogen oxides (NOx), sulphur oxides (SOx), sulphur compounds (H2S), smoke and irritating fumes as products of incomplete combustion.

Special Protective Equipment and Precautions for Fire-fighters

For small outdoor fires, portable fire extinguishers may be used, and self contained breathing apparatus (SCBA) may not be required. For all indoor fires and any significant outdoor fires, SCBA is required. Respiratory and eye protection are required for fire fighting personnel.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment, and Emergency Procedures

Do not Touch or walk through spilled material. Use the personal protective equipment recommended in Section 8 of this safety data sheet.

Environmental Precautions

Do not allow into any sewer, on the ground or into any waterway.

Methods and Materials for Containment and Cleaning Up

Stop or reduce leak if safe to do so. Contain hot liquid by dyking and allow to cool and solidify. Break up and recover, see section 13 for disposal consideration.

Product Identifier:	PG 76-22		
SDS No.:	0141	Page 02 of 06	6
Date of Preparation:	mai 26, 2015		

Page 235 of 242 Stancills Inc PTC Appln

SECTION 7. HANDLING AND STORAGE

Precautions for Safe Handling

Asphalt may be transported hot. Avoid skin contact. Avoid eye contact. Avoid inhalation of product vapours or fumes. Ensure all equipment is grounded/bonded. During storage, transit and cooling of asphalt, hydrogen sulphide (H2S) may accumulate in enclosed spaces such as tank cars. Open tank car hatches with caution. Maintain same precautions when gauging and sampling. Empty containers may contain product residue. Do not reuse containers without commercial cleaning and/or reconditioning. Personnel who handle this material should practice good personal hygiene during and after handling to help prevent accidental ingestion of this product. Wear proper personal protective equipment.

Conditions for Safe Storage

To maintain pumping ability, asphalt is kept heated to a suitable temperature; normally well above room temperature but below the flash point. Store in dry, well-ventilated area. Clear roof vents periodically to prevent accumulation of asphalt deposits from vapour accumulation. Store away from incompatible and reactive materials (see section 10). Ensure the storage containers are grounded/bonded.

SECTION 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control Parameters

	ACGIH	TLV®	OSH/	A PEL	AIHA	NEEL
Chemical Name	TWA	STEL	TWA	Ceiling	8-hr TWA	TWA
Asphalt (Bitumen) fumes	0.5 mg/m3 (as benzene- soluble aerosol) A4					
Hydrogen sulfide	1 ppm	5 ppm				
Styrene-butadiene copolymers	10 mg/m3					

Appropriate Engineering Controls

For normal application, special ventilation is not necessary. If user's operations generate vapours or fumes, use ventilation to keep exposure to airborne contaminants below the exposure limit. Make-up air should always be supplied to balance air removed by exhaust ventilation. Ensure that eyewash station and safety shower are close to work-station.

Individual Protection Measures

Eye/Face Protection

As a minimum, safety glasses with side shields should be worn when handling this material.

Skin Protection

Wear Protective clothing with full length sleeves and pants should be worn.

Respiratory Protection

A minimum of NIOSH-approved air-purifying respirator with an organic vapour cartridge or canister with a dust, fume of mist filter (R, or P series) may be allowable under certain circumstances where airborne concentrations are expected to exceed exposure limits. Protection provided by air-purifying respirators is limited. A NIOSH-approved positive-pressure, air-supplied respirator or self-contained breathing apparatus may be required under certain circumstances where airborne concentrations are expected to exceed exposure limits.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

Basic Physical and	Chemical I	Properties	
Appearance		Brown - black Viscous semi-solid.	
Odour		Asphalt	
Odour Threshold		Not available	
рН		Not available	
Melting Point/Freezing	Point	Not available (freezing)	
Product Identifier:	PG 76-22		
SDS No.:	0141		Page 03 of 06

	Page 236 of 242
	Stancills Inc PTC Appln
Initial Boiling Point/Range	> 470 °C (878 °F)
Flash Point	> 230 °C (446 °F) (open cup)
Evaporation Rate	Not available
Flammability (solid, gas)	Not applicable
Upper/Lower Flammability or Explosive Limit	Not available (upper); Not available (lower)
Vapour Pressure	Nil at 37.8°C (100°F)
Vapour Density (air = 1)	Not available
Relative Density (water = 1)	>1
Solubility	Insoluble in water; Insoluble in alcohol, acids and alkalis. Soluble in oil turpentine, petroleum, carbon disulphide, chloroform, ether, and acetone
Partition Coefficient, n-Octanol/Water (Log Kow)	Not available
Auto-ignition Temperature	> 370 °C (698 °F)
Decomposition Temperature	Not available
Viscosity	150 - 2500 centipoises (dynamic)
Other Information	
Physical State	Solid

SECTION 10. STABILITY AND REACTIVITY

Reactivity Not reactive under normal conditions of use. Chemical Stability Stable under normal temperature conditions and recommended use. Possibility of Hazardous Reactions None known. Conditions to Avoid Open flames, sparks, static discharge, heat and other ignition sources. Incompatible materials. Incompatible Materials Oxidizing agents (e.g. peroxides), fluorine. Hazardous Decomposition Products Carbon Oxides (COx), sulfur Oxides (SOx), nitrogen oxides (NOx), hydrogen sulfide, hydrocarbons.

SECTION 11. TOXICOLOGICAL INFORMATION

Likely Routes of Exposure

Eye contact; skin contact; inhalation; ingestion.

Acute Toxicity

Chemical Name	LC50	LD50 (oral)	LD50 (dermal)
Asphalt (Bitumen) fumes	Not available	Not available	Not available
Hydrogen sulfide	444 ppm (rat) (4-hour exposure)		

Skin Corrosion/Irritation

Prolonged or repeated contact with skin may cause dermatitis or warty skin growths (keratosis). Contact with hot material can cause thermal burns. Serious Eye Damage/Irritation

Product Identifier:	PG 76-22
SDS No.:	0141
Date of Preparation:	mai 26, 2015

Page 237 of 242

Stancills Inc PTC Appln

Vapours or fumes from the hot asphalt can cause irritation of the surface of the eyes as well as limbal pigmentation of the cornea. Contact with hot material can cause thermal burns.

STOT (Specific Target Organ Toxicity) - Single Exposure

Inhalation

No information was located.

Skin Absorption

No information was located.

Ingestion

No information was located.

Aspiration Hazard

May cause lung damage if aspirated based on physical properties (e.g. kinematic viscosity) and chemical family (hydrocarbon).

STOT (Specific Target Organ Toxicity) - Repeated Exposure

No information was located.

Respiratory and/or Skin Sensitization

This product is not expected to be a skin or a respiratory tract sensitizer, based on the available data and the known hazards of the components.

Carcinogenicity

Chemical Name	IARC	ACGIH®	NTP	OSHA
Asphalt (Bitumen) fumes	Group 2B	A4	Not Listed	Carcinogen

Group 2B – Possibly carcinogenic to humans.

Other Information

Contains:

HYDROGEN SULFIDE : Chronic health effects due to repeated exposures to low levels of H2S have not been established. High level (700 ppm) acute exposure can result in sudden death. High concentrations will lead to cardiopulmonary arrest due to nervous system toxicity and pulmonary edema. Lower levels (150 ppm) may overwhelm sense of smell, eliminating warning of exposure. Symptoms of over exposure to H2S include headache, fatigue, insomnia, irritability, and gastrointestinal problems. Repeated exposures to approximately 25 ppm will irritate mucosa membranes and the respiratory system and have been implicated in some eye damage.

SECTION 12. ECOLOGICAL INFORMATION

Toxicity Not Available. Persistence and Degradability Not Available. Bioaccumulative Potential Not Available. Mobility in Soil Not Available. Other Adverse Effects Not Available.

SECTION 13. DISPOSAL CONSIDERATIONS

Disposal Methods

Dispose of waste at an appropriate treatment & disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal.

Product Identifier:	PG 76-22
SDS No.:	0141
Date of Preparation:	mai 26, 2015

Page 238 of 242 Stancills Inc PTC Appln

SECTION 14. TRANSPORT INFORMATION

Regulation	UN No.	Proper Shipping Name	Transport Hazard Class(es)	Packing Group
US DOT	UN3257	Elevated temperature liquid (Bitumen (Asphalt))	9	

Special Precautions Not applicable

for User

Transport in Bulk According to Annex II of MARPOL 73/78 and the IBC Code Not applicable

Emergency Response 130 Guide No.

SECTION 15. REGULATORY INFORMATION

Safety, Health and Environmental Regulations

Canada

Domestic Substances List (DSL) / Non-Domestic Substances List (NDSL)

All ingredients are listed on the DSL or are not required to be listed.

USA

Toxic Substances Control Act (TSCA) Section 8(b)

All ingredients are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 720.

SECTION 16. OTHER INFORMATION

NFPA Rating SDS Prepared By	Health - 1 Flammability - 1 Instability - 0 R&D and Technical group
Phone No.	514-645-4561
Date of Preparation	mai 26, 2015
Disclaimer	 Bitumar Inc. customarily reviews and updates SDS within 90 days of new data availability in accordance with Canadian Hazardous Products Act. If you would like to verify if the MSDS you have is the most current, or you require any further information, please contact: www.bitumar.com Ontario/Central/Quebec & Eastern Canada, telephone: 514-645-4561; fax: 514-645-6978. For the USA: 410-354-9550. Fax: 410-354-9552. For other Product Safety Information: (514) 645-4561
	To the best of our knowledge, the information contained herein is accurate. However, neither BITLIMAR lnc, nor any of its subsidiaries assumes any liability whatsoever for the accuracy or

BITUMAR Inc. nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist

Created using

Page 06 of 06

APPENDIX R

R. Equipment List for Stancills' Topsoil Operations

TOPSOIL PLANT EQUIPMENT LIST

	SCREENERS	INERS	
	SCREENER 1	SCREENER 2	SCREENER 3
OEM	Sandvik Screen	Sandvik Screen	Terex Crusher
Owner ID	#225	#227	#581
SCREEN rated TPH	440	660	320
Qty of Decks	2	2	1
Model #	QA 335	QA 441	Trakpactor 320
Serial #	QA33500020	QA441-1002	PIPTP320VOMD97542
Quantity Conveyors	3	3	1
Deck Dimensions	13 x 5	20 x 5	
Fines Conveyor Width	47 in.	47 in.	39 in.
Engine OEM	Cat	Cat	Scania
Engine Model #	C4.4	C4.4	DC9
Engine Serial #		44623689	
Tier Rating	3	3	4
Engine Rated Bhp			
Engine Fuel Rate, gal/hr			
Engine Mftr Year	2017	2017	2013
Length Screener (ft)	50' 2"	62'	47' 1"
Width Screener (ft)	53' 7"	61' 5"	8' 5"
Height Screener (ft)	19' 4"	22' 1"	12' 8"
	STACKE	KERS	
STACKER_1 OEM	Edge		
Model #	TS65		
Serial #	17T56540414		
Engine OEM	Cat		
Engine Model #	C2.2		
Engine Serial #			
Tier Rating	4		
Engine Rated Bhp	50		
Engine Fuel Rate, gal/hr	5.2		
Engine Mftr Year	2017		
Length Stacker (ft)	60' 8"		

MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

SUPPLEMENT A to DOCKET #16-21

COMPANY: Stancills, Inc.

LOCATION: 499 Mountain Hill Road, Perryville, Maryland 21903

APPLICATION: To install one (1) 400-ton per hour asphalt paving materials mixing plant, one (1) 300-ton per hour crushing and screening plant, and one (1) hot oil heater.

ITEM	DESCRIPTION
1	Notice of Application and Informational Meeting

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Stancills, Inc. on July 15, 2021, for one (1) 400-ton per hour asphalt paving materials mixing plant, one (1) 300-ton per hour crushing and screening plant, and one (1) hot oil heater. The proposed installation will be located at 499 Mountain Hill Road, Perryville, Maryland 21903.

An Informational Meeting will be held on October 20, 2021, at 6:30 PM at the Cecil County Administration Building, Elk Room, 200 Chesapeake Blvd., Elkton, Maryland 21921.

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Informational Meeting has been scheduled so that citizens can discuss the application and the permit review process with the applicant and the Department.

The application and other supporting documents are available for public inspection on the Department's website. Look for Docket #16-21 at the following link:

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

The Department will provide an interpreter for deaf and hearing-impaired persons provided that a request is made for such service at least ten (10) days prior to the meeting.

Further information may be obtained by calling Ms. Shannon Heafey by email at shannon.heafey@maryland.gov or by phone at 410-537-4433.

George S. Aburn, Jr., Director Air and Radiation Administration