MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

DOCKET #03-21

- COMPANY: Final Journey Crematory, LLC
- LOCATION: 519 Mabe Drive Woodbine, Maryland 21797
- APPLICATION: One (1) animal crematory

ITEM	DESCRIPTION
1	Notice of Application and Opportunity to Request an Informational Meeting
2	Permit to Construct Application Forms – Forms 5, 5T, 5EP, 6 and 10, Site Location Map and Site Plan, manufacturer specifications and emissions calculations, zoning approval documentation and process flow diagram.

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF APPLICATION AND OPPORTUNITY TO REQUEST AN INFORMATIONAL MEETING

The Maryland Department of the Environment, Air and Radiation Administration (ARA) received a permit-to-construct application from Final Journey Crematory, LLC on January 26, 2021 for the installation of one (1) animal crematory. The proposed installation will be located at Final Journey's existing crematory facility, 519 Mabe Drive, Woodbine, MD 21797.

The application and other supporting documents are available for public inspection on the Department's website. Look for Docket No. 03-21 at the following link:

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

Pursuant to the Environment Article, Section 1-603, Annotated Code of Maryland, the Department will hold an informational meeting to discuss the application and the permit review process if the Department receives a written request for a meeting within 10 working days from the date of the second publication of this notice. All requests for an informational meeting should be directed to the attention of Ms. Shannon Heafey, Air Quality Permits Program, Air and Radiation Administration, 1800 Washington Boulevard, Baltimore, Maryland 21230.

Further information may be obtained by calling Ms. Shannon Heafey at 410-537-4433.

George S. Aburn, Jr., Director Air and Radiation Administration

Cremation Systems, Inc.

7205 - 114th Avenue North Lar 1-800-622-5411 727-541-4666 email: sales@blcremationsystems.com

Largo, Florida 33773 USA 66 Facsimile 727-547-0669 n www.blcremationsystems.com

October 19, 2020

Final Journey Crematory LLC 519 Mabe Drive Woodbine, MD 21797

Dear Mr. Simons,

Please find enclosed four (4) copies of your completed environmental application and supporting documentation.

Please sign all copies where indicated and forward three (3) of the applications to the address listed below along with a site map pinpointing the exact stack location, property boundaries and all buildings (including height, length and width). Show north orientation and general wind direction. You will also need to include a copy of your Workers Compensation Policy.

Please keep the fourth copy of the application for your own records.

We look forward to installing your equipment in the very near future. Thank you for choosing B & L Cremation Systems, Inc.

Maryland Department of the Environment 1800 Washington Blvd Baltimore, MD 21230 Phone: 410-537-3230

Sincerely,

Dr. Steve Looker, President

World's Largest Independent Cremation Equipment Manufacturer

On behalf of Forever Faithful Pet Cremation & Funeral Care by Value Choice LLC, the Screen3 computer model was used to estimate the maximum ground level concentration (GLC) for the two B&L Cremation Systems Model BLP 500 M4 animal crematorium units proposed for installation as part of the Maryland Department of the Environment air quality permit to construct application. The air impact analysis is required by the Air Quality Permits Program to show that the operation of the source will not result in a violation of the National Ambient Air Quality Standards (NAAQS) and will comply with the Toxic Air Pollutants limits.

The facility has two existing human cremation units in a North-South line along the eastern edge of the building. The two new units will be located in-line and between the existing units, as shown in the attached google earth site map.

The Screen3 model does not consider multiple source stacks, and the existing units are model Phoenix II-1, which have slightly higher exhaust velocities and temperatures than the Model BLP 500 M4 units. As a result, the Screen3 model predicted a slightly lower GLC than for the Model 500 M4.

To provide a conservative estimate of the "four sources" scenario, all units were assumed to be Model BLP 500 M4 and the operating data (obtained from the application) for that model was used in the Screen3 model, as shown in Table 1, Screen3 Input Parameters and Results, following.

Building dimensions, distances and identification of land use were obtained from the air permit application, from google earth mapping, and from information provided by the client. A value of 1 lb/hr (0.126 gm/sec) was used as the source emission rate. Rural coefficients for the model were assumed to be appropriate based on a review of the land use in a surrounding 3 km radius.

The closest property boundary was determined to be the two-lane roadway to the east of the building, at a distance of 100 meters from the center of the row of stacks. Roadways are not generally considered "points of closest approach" for ambient modeling. The Screen3 model predicts that at a distance of 105 meters, located on the opposite side of the road from the source, the 1 hour MAC has dropped to 54.38 ug/cubic meter. Maps showing the source building including the stack location, the property boundary distance, and the 3 km radius are attached.

Table 2 presents the results of the "Toxytool" program which compares the MDE Screening Level concentration of the listed toxic species to the value predicted by the Screen3 model. The maximum number of cremations (human plus animal) for the site, combined operations all units, is shown at the top.

Table 3 presents the calculated Criteria Pollutant emission rates by species at the identified maximum cremation rate.

The Screen3 model predicts a MAC of 58.65 at 100 meters, as shown in Table 1. The model assumes continuous (24 hours/day, 8760 hours/yr) emissions from the source, although the source will be limited to 12 hours/day, 3744 hours/yr of operation.

The Screen3 model 1 hr result can be adjusted to estimate the 3 hour, 8 hour, 24 hour, and Annual averaging periods for use in the Toxytool table using the factors as shown in Table 1. There are two sets of factors, one for continuous source operations and one for non-continuous operations, as is the case here. The source will be limited to 12 hours per day, 6 days per week, with 12 hours of zero emissions during each 24 hour averaging period and one full day of zero emissions during each week. The introduction of these values of zero will substantially reduce the calculated 24 hour and annual average by approximately 25%. Toxytools uses the "continuous" emissions factors, although the "non-continuous" factors would be more appropriate for this analysis and would allow a higher number of cremations.

Finally, for each unit, there are non-emitting periods of loading/heatup and unloading/cooldown. Even if all units operated "continuously" it is unlikely that all units would remain "in phase" and emitting, as is assumed by the Screen3 model.

We believe that the information provided provides reasonable assurance that the source will not exceed the toxic limits when operated as discussed.

The Screen3 model output file (screen.out) and a text version of the output file (screen.txt) are also attached.

70m John

Tom John, P.E.

Table 1

Screen3 Input Parameters and Results

30.48	100.00	Length
15.24	50.00	Width
6.10	20.00	Height
ж	ft	Parameters
		Building

7.3	24.00	stack exit height
Э	ft	

Proposed Unit: BLP 2	Woodbine, MD	Forever Faithful Pet Cremation &
BLP 500M4		orever Faithful Pet Cremation & Funeral Care by Value Choice LLC

22-Oct-20

Screen3 mo	creen3 model results, 1 hr	
	concentration	distance
rural coefficients	ug/m^3	З
at Prop boundary	58.65	100.58

Screen 3 convesion to other than 1 hr averaging periods

1	0				
	1 hr	3 hr	8 hr	24 hr	annual
continuous factor	P-	0.9	0.7	0.4	0.08
predicted	58.65	52.785	41.055	23.46	4.692
noncontinuous factor	1.	0.8	0.5	0.2	0.06
predicted	58.65	46.92	29.325	11.73	3.519

0.12	1.00	for Model
g/se	lbs/hr	mission Rate

ambient - stack, K

-518

5.21 1000

811

stack diam, in stack diam, ft stack diam, m flow, acfm flow, ft/sec

3219 17.09

2.00 0.61

24

flow, m/sec temp, F temp, K

10	330	road east of building
	F	mini distance to property mic-

10/22/20 09:20:06

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 ***

Final Journey

SIMPLE TERRAIN INPUTS:		
SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	0.126000
STACK HEIGHT (M)		7.3200
STK INSIDE DIAM (M)		0.6100
STK EXIT VELOCITY (M/S))=	5.2100
STK GAS EXIT TEMP (K)	=	811.0000
AMBIENT AIR TEMP (K)	=	293.0000
RECEPTOR HEIGHT (M)	=	0.0000
URBAN/RURAL OPTION	=	RURAL
BUILDING HEIGHT (M)	=	6.1000
MIN HORIZ BLDG DIM (M)	=	15.2400
MAX HORIZ BLDG DIM (M)		30.4800

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 3.036 M**4/S**3; MOM. FLUX = 0.912 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
							202222		
10.	0.000	0	0.0	0.0	0.0	0.00	0.00	0.00	NA
100.	58.65	5	5.0	5.0	10000.0	10.68	6.12	7.02	SS
200.	30.22	4	4.5	4.5	1440.0	11.48	15.56	11.10	SS
300.	21.41	4	3.5	3.5	1120.0	14.35	22.61	13.99	SS
400.	16.50	4	3.0	3.0	960.0	16.68	29.45	16.95	SS
500.	13.40	4	2.5	2.5	800.0	20.08	36.15	19.75	SS
MAXIMUM	1-HR CONCENT	RATION	AT OR E	BEYOND	10. M	:			
19.	287.0	6	4.0	4.0	10000.0	7.71	0.91	3.52	SS
	MEANS NO C				`				

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST	CONC		U10M	USTK	MIX HT	PLUME	SIGMA	SIGMA	
(M)	(UG/M**3)	STAB	(M/S)	(M/S)	(M)	HT (M)	Y (M)	Z (M)	DWASH
90.	68.75	5	5.0	5.0	10000.0	10.19	5.55	6.77	SS
95.	63.42	5	5.0	5.0	10000.0	10.43	5.84	6.89	SS
100.	58.65	5	5.0	5.0	10000.0	10.68	6.12	7.02	SS
105.	54.38	5	5.0	5.0	10000.0	10.93	6.41	7.14	SS

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** CAVITY CALCULAT	ION -	1 ***	*** CAVITY CALCULAT	ON	- 2 ***
CONC (UG/M**3)	=	86.98	CONC (UG/M**3)	=	113.3
CRIT WS @10M (M/S)	=	10.39	CRIT WS @10M (M/S)	-	15,96
CRIT WS @ HS (M/S)	=	10.39	CRIT WS @ HS (M/S)	=	15.96
DILUTION WS (M/S)	=	5.19	DILUTION WS (M/S)	=	7.98
CAVITY HT (M)	=	6.48	CAVITY HT (M)	=	6.11
CAVITY LENGTH (M)	=	23.72	CAVITY LENGTH (M)	=	16.42
ALONGWIND DIM (M)	=	15.24	ALONGWIND DIM (M)	=	30.48

CALCULATION PROCEDURE	MAX CONC (UG/M**3)	DIST TO MAX (M)	TERRAIN HT (M)	
SIMPLE TERRAIN	287.0		 Ø.	
BLDG. CAVITY-1	86.98	24.		(DIST = CAVITY LENGTH)
BLDG. CAVITY-2	113.3	16.	((DIST = CAVITY LENGTH)

1/46016 Total Dioxins & Furans - TEQ balanced				dium	< 8.5	7440224 Silver 7.1	7782492 Selenium < 4.360E-5		85018 Phenanthrene 2.2		denum < 1.1			193395 Indeno(1,2,3-od)pyrene < 1.540E-8		1 chloride			v(a,h) anthracene < 1.2			< 5.	(M)	1			207089 Benzo (k) fluoranthene < 1.420E-8		hene		(a) anthracene < 9.			< 3.(æ	83329 Acenaphthene	CAS POLLUTANT (Pounds)	(EPA FIRE)					CU-CLAZ INNIAN I
1.41	3.76E-06 3.76	1989 201	9412 - 194	. स्ट इ.		7.30E-06 7.30	E-5 4.36E-05	1.62E-07 1.62		N55 225		03	6.62E-05 6.62E-05	E-8 1.54E-08	6.55E-04 6.55	1074) 0	974 8 1	9		ន			57.W.	2.99E-05 2.99E-05	1.11E-05 1.11	8						8			ंद्री। ठाः	92 7 11	E-07	j	RE) (as number)					
1.41E-09	3.76E-06	8.50E-02	3.53E-04 1.00E+03		8.52E-05	7.30E-06	E-05	1.62E-07	2.29E-06	3.82E-05	1.67E-05	3.29E-03 3.00E-01	F-05	E-08	6.55E-04 1.64E+01	7.20E-02 2.98E+01	E-07	E-07	1.27E-08	2.74E-05	F-06	5.40E-08	1.35E-05	F-05	1.11E-05	1.37E-06	1.42E-08	E-08	1.59E-08	E-08	E-09	E-05	m-95	F-05	E-07	E-07	\$		Level ber) 1-HOUR					
8.20E-04			13 5.00E+02	5.00E-01	2.00E-01	1.00E-01	2.00E+00	2.00E+01	9.80E+00	1.00E+00	5.00E+00		5.00E-01				2.00E+01	8.20E+01		2.00E+00	2.00E-01		1.00E-01	5.00E+00	2.00E-02	5.00E-04		2.00E+01				5.00E+00	1.00E-01	5.00E+00	2.00E+01	2.46E+01	3		8-HOUR	Buildeance	MUE			
3.00E-08																7.00E-01							8.00E-05		6.00E-04	4.00E-04							2.00E-04				ŝ		Annual 1-	Bunu				
1.16E-07	3.41E-04	7.71E+00	3.20E-02	5.25E-03	7.73E-03	6.62E-04	3.96E-03	1.47E-05	2.08E-04	3.47E-03	1.51E-03	2.98E-01	6.01E-03	1.40E-06	5.94E-02	6.53E+00	3.78E-05	1.86E-05	1 15F-06	2.49E-03	1 59E-04	4.90E-06	1.22E-03	2.71E-03	1.01E-03	1.24E-04	1.29E-06	2.64E-06	1.44E-06	2.64E-06	8.85E-07	2.18E-03	2.72E-03	2.74E-03	2.94E-05	1.11E-05	TE-05		1-hour 8	Screens				
3.61E-08	1.14E-04	2.57E+00	1.07E-02	1.75E-03	2.58E-03	2.21E-04	1.32E-03	4.91E-06	6.93E-05	1.16E-03	5.06E-04	9.96E-02	2.00E-03	4.66E-07	1.98E-02	2.18E+00	1.26E-05	6.21E-06	3 85F-07	8.30E-04	5 30F-05	1.64E-06	4.09E-04	9.05E-04	3.36E-04	4.15E-05	4.30E-07	8.81E-07	4.81E-07	8.81E-07	2 96E-07	7.27E-04	9.08E-04	9.14E-04	9.81E-06	3.69E-06	3.36E-06		Concentration Concentration Screening 1-hour 8-hour Annual Level	Screens				
3.95E-09	1.17E-05	2.64E-01	1.09E-03	1.80E-04	2.64E-04	2.26E-05	1.35E-04	5.02E-07	7.10E-06	1.18E-04	5.18E-05	1.02E-02	2.05E-04	4.78E-08	2.03E-03	2.23E-01	1.29E-06	6.36E-07	3 94F-08	8.50E-05	5 43F-08	1.67E-07	4.19E-05	9.27E-05	3.44E-05	4.25E-06	4.40E-08	9.03E-08	4.93E-08	9.03E-08	3.035-08	7.446-05	9.31E-05	9.37E-05	1.00E-06	3.78E-07	3.44E-07	(ua/m3)	Annual	Screens				
1 I I I I I I I I I I I I I I I I I I I	<u>.</u>		0.00	ह	2		2					99.48	8			21.89						192														Ň		1-hour	Level	MUE	as % of	Concentratio	Screen3	
0				0	-	0	0	0	0	p	0		0				0	0		0 0				0		00									0			R-hour	Screening	MUE	as % of	Concentration Concentration Concentration	Screen3	
0.00 13.17			0.00	0.35	1.29	0.22	0.07	0.00	0.00	0.12	0.01	61	0.40			1.32 31.90	0.00	0.00		0.04	50.0		0.41 52 34			8.30 1.06		0.00					0 91 46 53	0.02	0.00		0.00 0.00	Annual	Screening	MDE	as % of	on Concentrati	Screen3	

Forever Faithful Pet Cremation & Funeral Care by Value Choice LLC Facility Name Tom John Your Name 22-Oct-20 Date

HUMAN (number) 1.4

Animal (lbs) 22 135 82368

Equivalent Cremations per Hour Equivalent Cremations per 8-hour Equivalent Cremations per year

According to the water t Human Equivalent ant Cremations per Hour 1.547 nt Cremations per 8-hour 5.9 ent Cremations per year 5791.1

Pounds Total

232 885 868668

Table 2 Toxytool

AIR QUALITY PERMIT TO CONSTRUCT APPLICATION CHECKLIST

	OWNER OF EQUIPMENT/PROCESS
COMPANY NAME:	Forever Faithful Pet Cremation & Funeral Care by Value Choice LLC
COMPANY ADDRESS:	519 Mabe Drive Woodbine, MD 21797
	LOCATION OF EQUIPMENT/PROCESS
PREMISES NAME:	Forever Faithful Pet Cremation & Funeral Care by Value Choice LLC
PREMISES ADDRESS:	519 Mabe Drive Woodbine, MD 21797
CONTACT	INFORMATION FOR THIS PERMIT APPLICATION
CONTACT NAME:	Daniel Simons
JOB TITLE:	General Manager
PHONE NUMBER:	443-202-5720
EMAIL ADDRESS:	dan@finaljourneycrematory.com
DES	SCRIPTION OF EQUIPMENT OR PROCESS
	Animal Crematory

Application is hereby made to the Department of the Environment for a Permit to Construct for the following equipment or process as required by the State of Maryland Air Quality Regulation, COMAR 26.11.02.09.

Check each item that you have submitted as part of your application package.

- Application package cover letter describing the proposed project
- Complete application forms (Note the number of forms included or NA if not applicable.)

No.	X	Form 5	No.	Form 11
No.	Х	Form 5T	No.	Form 41
No.	х	Form 5EP	No.	Form 42
No.	х	Form 6	No.	Form 44
No.	х	Form 10	anna dest	(c) Story (0.0, 200 - C.0.200)

- Vendor/manufacturer specifications/guarantees
- Evidence of Workman's Compensation Insurance
- Process flow diagrams with emission points
- Site plan including the location of the proposed source and property boundary
- Material balance data and all emissions calculations
- Material Safety Data Sheets (MSDS) or equivalent information for materials processed and manufactured.
- Certificate of Public Convenience and Necessity (CPCN) waiver documentation from the Public Service Commission ⁽¹⁾
- Documentation that the proposed installation complies with local zoning and land use requirements ⁽²⁾

(1) Required for emergency and non-emergency generators installed on or after October 1, 2001 and rated at 2001 kW or more.

(2) Required for applications subject to Expanded Public Participation Requirements.

MARYLAND DEPARTMENT OF THE ENVIRONMENT Air and Radiation Management Administration • Air Quality Permits Program 1800 Washington Blvd • Baltimore, Maryland 21230 (410) 537-3230 • 1-800-633-6101 • <u>www.mde.state.md.us</u>

APPLICATION FOR FUEL BURNING EQUIPMENT

Information Regarding Public Outreach

For Air Quality Permit to Construct applications subject to public review, applicants should consider the following information in the initial stages of preparing a permit application.

If you are not sure at the time you are applying for a permit whether public review of your application is required or for information on steps you can take to engage the surrounding community where your planned project will be located, please contact the Air Quality Permits Program at 410-537-3225 and seek their advice.

Communicating and engaging the local community as early as possible in your planning and development process is an important aspect of your project and should be considered a priority. Environmental Justice or "EJ" is a movement to inform, involve, and engage communities impacted by potential and planned environmental projects by affording citizens opportunities to learn about projects and discuss any concerns regarding impacts.

Although some permit applications are subject to a formal public review process prescribed by statute, the Department strongly encourages you to engage neighboring communities separate from and well ahead of the formal permitting process. Sharing your plans by way of community meetings, informational outreach at local gatherings or through local faith-based organizations can initiate a rewarding and productive dialogue that will reduce anxiety and establish a permanent link with your neighbors in the community.

All parties benefit when there is good communication. The Department can assist applicants in developing an outreach plan that fits the needs of both the company and the public.

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 =1-800-633-6101 = www.mde.state.md.us

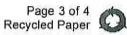
Air and Radiation Management Administration . Air Quality Permits Program

APPLICATION FOR PROCESSING/MANUFACTURING EQUIPMENT Initial Registration D

Permit to Construct

Registration Update

방송 아이는 방법이 없는 것을 많이 있는 것에서 가지 않아요. 것을 많은 것이	nent/Company Name mation & Funeral Care by \	/alue Choice LLC	DO NOT WRITE 2. REGISTRAT	IN THIS BLOCK
Mailing Address	anali e të përfettor de teksore		County No.	Premises No.
519 Mabe Drive				
Street Address				
Woodbine	MD	21797	1-2	3-6
City	State	Zip	Registration Class	Equipment No.
Telephone Numbe	er			
(443) 202-5			7	8-11
()			Data Year	
Signature	\frown		S. Car	
	\checkmark		12-13	Application Date
	2)			approximation para
Daniel Simons /	General Manager			
Print Name and Title			Date	
Thirt Harris and This			Duto	
Street Number and S			()	
City/Town	State		Zip Teleph	one Number
Premises Name (if di	fferent from above)			
Status (A= New, B	= Modification to Existi	ng Equipment, C=	Existing Equipment)	
	New Construction	New Construction	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Status	Begun (MM/YY)	Completed (MM/Y)	Y) Operation	(MM/YY)
A			0 1	2 1
15	16-19	20-23		-23
Describe this Equi	ipment: Make, Model, Fe nc BLP500M4 150 Lbs		r (include Maximum Hou	rly Input Rate, etc
	F	IG266770801	C	7/31/21
Workmen's Comp	ensation Coverage			
Workmen's Compo	ensation Coverage Bir	Ider/Policy Number	E	xpiration Date
Company_Emplyers P NOTE: Before a Permit	ensation Coverage Bir Preferred Insurance Comp to Construct may be issued by compensation coverage as requ	nder/Policy Number pany y the Department, the ap	plicant must provide the Dep	xpiration Date partment with proof of
Company_Emplyers P NOTE: Before a Permit worker's c	Bir Preferred Insurance Comp t to Construct may be issued b	nder/Policy Number pany y the Department, the ap uired under Section 1-20	pplicant must provide the Dep 2 of the Worker's Compensa	xpiration Date partment with proof of tion Act.
NOTE: Before a Permit worker's c A. Number of Piece	Preferred Insurance Comp to Construct may be issued by compensation coverage as requ	nder/Policy Number pany y the Department, the ap uired under Section 1-20 nt Units to be Regis	oplicant must provide the Dep 2 of the Worker's Compensa stered/Permitted at thi	xpiration Date partment with proof of tion Act.


7. Person Installing this Equipment (if Name	different from Numbe	er 1 on Page 1) Title
Mailing Address/Street		
City/Town	State	Telephone ()
8. Major Activity, Product or Service of	f Company at this Loo	cation
Crematory		
9. Control Devices Associated with thi	s Equipment None 	
Simple/MultipleSpray/AdsorbVenturiCycloneTowerScrubber24-124-224-3	Carbon Electrosta Adsorber Precipitato 24-4 24-5	
Other		
24-9		
10. Annual Fuel Consumption for this I	Equipment	
OIL-1000 GALLONS SULFUR % GRAU 26-31 32-33 34	DE NATURAL GAS-10	D00 FT ³ LP GAS-100 GALLONS GRADE
COAL- TONS SULFU 46-52 53-5		WOOD-TONS MOISTURE %
OTHER FUELS ANNUAL AMOUN	T CONSUMED OTH	HER FUEL ANNUAL AMOUNT CONSUMED
(Specify Type) 66-1 (Specify Units 1=	of Measure) (Sp = Coke 2= COG 3=BFG 4	Decify Type) 66-2 (Specify Units of Measure) =Other
11. Operating Schedule (for this Equip		
	er Batch Batch per Week	Hours per Days Days Per Week Days per Year 1 2 6 3 1 2 70-71 72 73-75
Seasonal Variation in Operation: No Variation Winter Percent Spring Perc 76 77-78 79-80	ent Summer Percent	Fall Percent (Total Seasons= 100%)

Form Number: 5 Rev. 9/27/2002 TTY Users 1-800-735-2258

12. Equivale	nt Stack Innformat	ion- is Exhaust through l	Doors, Window	s, etc. Onl	y? (Y/N) N]
If not, then	Height Avove Grour	id (FT) Inside Diameter at T 20 89-91	1 0	erature (°F) 000	Exit Velocity 2 96-94	0
Attach a bl		NOTE: ocess/process line, indic quipment, including con				s form
13. Input Mat Is any of	terials (for this equ this data to be cor		N (Y or N)	INPU	T RATE	
	NAME	CAS NO. (IF APPLICABLE)	PER HOUR	UNITS	PER YEAR	UNITS
1.						
2.						
3.						
4.						
5.						
6.						Ť
7.				· · · · · · · · · · · · · · · · · · ·		
8.						
9.				-		
TOTAL				1 ² 37		
14. Output M Process	aterials (for this ed /Product Stream	quipment)		OUTP	UT RATE	
	NAME	CAS NO. (IF APPLICABLE)	PER HOUR	UNITS	PER YEAR	UNITS
1.						
2.						
3.						-
4.						
5.						
6,						
7.						
8.						
9.						
TOTAL						
	eams- Solid and L	iquid		OUTP	UT RATE	
a de la companya de la compan	NAME	CAS NO. (IF APPLICABLE)	PER HOUR	UNITS	PER YEAR	UNITS
1.						
2.						
3,						
4.						
5.						
6.						
7.						
8.						
9.						
TOTAL						

Form Number: 5 Rev. 9/27/2002 TTY Users 1-800-735-2258

16. Total Stack Emissions (for t	his equipment only) in Pounds	Per Operating Day
Particulate Matter	Oxides of Sulfur	Oxides of Nitrogen
4 . 2	1 . 9 6	3.24
99-104	105-110	111-116
Carbon Monoxide	Volatile Organic Compounds	PM-10
2.65	. 2 4	4.2
177-122	123-128	129-134
17. Total Fugitive Emissions (fo	or this equipment only) in Pounc	Is Per Operating Day
Particulate Matter 135-139	Oxides of Sulfur 140-144	Oxides of Nitrogen 145-149
Carbon Monoxide	Volatile Organic Compounds	PM-10
150-154	155-159	160-164
Method Used to Determine Emi		nission Factor 3= Stack Test 4= Other)
TSP SOX	NOX CO	VOC PM10
2 2	2 2	2 2
165 166	167 168	169 170
and the second		
AIR AND RAD	IATION MANAGEMENT ADMINI	STRATION USE ONLY
	ate Rec'd. State Retu	STRATION USE ONLY Irn to Local Jurisdiction By
18. Date Rec'd. Local Da	ate Rec'd. State Retu Date diction Reviewed	rrn to Local Jurisdiction By
18. Date Rec'd. Local Da	ate Rec'd. State Retu Date diction Reviewed Date	Irn to Local Jurisdiction By by State By
18. Date Rec'd. Local Da Reviewed by Local Juris DateBy 19. Inventory Date Month	ate Rec'd. State Retu Date diction Reviewed Date n/Year Equipment Code	Irn to Local Jurisdiction ByBy
18. Date Rec'd. Local Date Reviewed by Local Juris Date By 19. Inventory Date Month 17	ate Rec'd. State Retu Date diction Reviewed Date n/Year Equipment Code	by State By SCC Code Int to Operate I ransaction Date
18. Date Rec'd. Local Date Reviewed by Local Juris Date By	ate Rec'd. State Retu Date_ diction Reviewed Date_ Date Date_ Date	Image: Second state
18. Date Rec'd. Local Date Reviewed by Local Juris Date By 19. Inventory Date Month 17	ate Rec'd. State Retu Date diction Reviewed Date n/Year Equipment Code	by State By SCC Code Int to Operate I ransaction Date
18. Date Rec'd. Local Date Reviewed by Local Juris Date By 19. Inventory Date Month 17 20. Annual Operating Rate	ate Rec'd. State Retu Date diction Reviewed Date n/Year Equipment Code 1-174 175-177 Maximum Design Pern Hourly Rate 193-199	Irm to Local Jurisdiction By by State By SCC Code Int to Operate Int to Operate Month (MM/DD/YR) Int to Operate
18. Date Rec'd. Local Date Reviewed by Local Juris Date By 19. Inventory Date Month 17 20. Annual Operating Rate 186-192	ate Rec'd. State Retu Date_ diction Reviewed Date_ n/Year Equipment Code 1-174 175-177 Maximum Design Pern Hourly Rate 193-199 SIP Code Regula	Irm to Local Jurisdiction By By SCC Code SCC Code 178-185 Transaction Date Month (MM/DD/YR) 200-201 202-207
18. Date Rec'd. Local Date Reviewed by Local Juris Date By 19. Inventory Date Month 17 20. Annual Operating Rate 17 186-192 Staff Code VOC Code 1 208-210 211	ate Rec'd. State Retu Date_ diction Reviewed Date_ n/Year Equipment Code 1-174 175-177 Maximum Design Pern Hourly Rate 193-199 SIP Code Regula 213 214 21	Irm to Local JurisdictionBy by StateBy SCC Code
18. Date Rec'd. Local Date Reviewed by Local Juris Date By 19. Inventory Date Month 17 17 20. Annual Operating Rate 186-192 Staff Code 208-210 211 211 212	ate Rec'd. State Retu Date_ diction Reviewed Date_ n/Year Equipment Code 1-174 175-177 Maximum Design Pern Hourly Rate 193-199 SIP Code Regula 213 214 21	In to Local Jurisdiction By By SCC Code SCC Code ITRANSACTION Date ITRANSACTION Date Month (MM/DD/YR) IDD/YR) IDD/2002-207 tion Code Confidentiality IDD/202-207 tion Code Confidentiality IDD/219 Action A: Add C: Change
18. Date Rec'd. Local Date Reviewed by Local Juris Date By 19. Inventory Date Month 17 20. Annual 0perating Rate 186-192 VOC Code 186-192 211 208-210 211 212	ate Rec'd. State Retu Date_ diction Reviewed Date_ n/Year Equipment Code 1-174 175-177 Maximum Design Pern Hourly Rate 193-199 SIP Code Regula 213 214 21	Int to Local Jurisdiction By By SCC Code SCC Code 178-185 Transaction Date Month (MM/DD/YR) 200-201 202-207 tion Code Confidentiality 5-218 Action A: Add

Rev. 9/27/2002 TTY Users 1-800-735-2258

Applicant Name: * * Step 1: Quantify premises wide emissions of Taxic Air Pollutants (TAP) from new and existing installations in accordance with COMAR 25(11:504, Affachs supporting documentation as necessary. * Still:Got, Affachs supporting documentation as necessary. *<		Toxic Air P	FORM 5T: Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration			ry and Co	III puante v	elliuisuauvu		
Toxic Air Pollutant (TAP) CAS Case Ior Class Ior Toxic Air Pollutant (TAP) Estimated Premises Wide Emissions of TAP Promises Wide Emissions of TAP Toxic Air Pollutant (TAP) Number Class Ior Victor Screening Levels (µg/m ³) Estimated Premises Wide Emissions of TAP Toxic Air Pollutant (TAP) Number Class Ior Victor Screening Levels (µg/m ³) Toxin Emissions From Foreinal Emissions From Foreina Emissions From Foreinal Emissions	Applicant Name:	de emissions ng documenta	of Toxic Air Pol	llutants (TAP ıry.) from new	and existi	ng installatio	* ns in accordanc	e with CC	OMAR
ex. ethenol 64175 I Hour Annual (Ib/hr) (Ib/hr	Toxic Air Pollutant (TAP)	CAS Number	Class or Class ?	NUT STATES	ing Levels ((_с ш/бп	Estimated P Actual Total Existing TAP Emissions	remises Wide En Projected TAP Emissions from Proposed Installation	Premis Premis Tota Emis	of TAP es Wide I TAP sions
ex. enhaned 6475 in 7863 7763 10 615 100 615 100 615 100 615 100 615 100 400 SEE ENCLOSED TOXY TOOL x. benzene 71432 i 300 76 0.13 0.5 0.75 1.00 400 SEE ENCLOSED TOXY TOOL 300 76 0.75 1.00 400 SEE ENCLOSED TOXY TOOL 300 76 0.75 1.00 400 Retach additional sheets <t< th=""><th></th><th></th><th></th><th>1-hour</th><th>8-hour</th><th>Annual</th><th>(lb/hr)</th><th>(Ib/hr)</th><th>(lb/hr)</th><th>(lb/yr)</th></t<>				1-hour	8-hour	Annual	(lb/hr)	(Ib/hr)	(lb/hr)	(lb/yr)
ex. benzene 7/432 i g0 f6 0.13 0.5 0.75 1.00 40 SEE ENCLOSED TOXY TOOL SEE ENCLOSED TOXY TOOL i 0.5 0.75 1.00 40 SEE ENCLOSED TOXY TOOL i 0.5 0.75 0.75 1.00 40 (attach additional sheets as necessary.) i i i i i i i i i i i i i i (attach additional sheets as necessary.) Note: Screening levels can be obtained from the Department's website (i	ex. ethanol	64175	H	18843	3769	N/A	0.60	0.15	0.75	1500
SEE ENCLOSED TOXY TOOL SEE ENCLOSED TOXY TOOL (attach additional sheets as necessary.) (attach additional sheets as necessary.) Note: Screening levels can be obtained from the Department's website (<u>http://www.mde.maryland.gov</u>) or by calling the Department. Step 2: Determine which TAPs are exempt from further review. A TAP that meets either of the following Class I or Class II small quanti emitter exemptions is exempt from further TAP compliance demonstration requirements under Step 3 and Step 4. Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.038(3)(a)) A Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.038(3)(a)) A Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.038(3)(a)) A Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.038(3)(b)) A Class II TAP is exempt from step 3 and Step 4 if the Class II TAP meets the following requirements: Premises wide emissions of the TAP shall one exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ . A Class I TAP is exempt from Step 3 and Step 4 if the Class I TAP meets the following requirements: Premises wide emissions of the TAP shall one screed 0.5 pounds per hour and 350 pounds per intor or 8-hour or 8-ho	ex. benzene	71432	E	80	16	0.13	0.5	0.75	1.00	400
(attach additional sheets as necessary.) (attach additional sheets as necessary.) Note: Screening levels can be obtained from the Department's website (http://www.mde.maryland.gov) or by calling the Department. Steep 2: Determine which TAPs are exempt from further review. A TAP that meets either of the following Class I or Class II small quantitier exemptions is exempt from further TAP compliance demonstration requirements under Step 3 and Step 4. Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(a)) A Class II TAP is exempt from Step 3 and Step 4 if the Class II TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ . A Class I TAP is exempt from Step 3 and Step 4 if the Class II TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ . A Class I TAP is exempt from Step 3 and Step 4 if the Class I TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour and 350 pounds per year, any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ . A Class I TAP is exempt from Step 3 and Step 4 if the Class I TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour and 350 pounds per year, any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ . A Class I TAP is exempt from Step 4 if the C	SEE ENCLOSED TOXY TOOL									
(attach additional sheets as necessary.) Note: Screening levels can be obtained from the Department's website (<u>http://www.mde.maryland.gov</u>) or by calling the Department. Step 2: Determine which TAPs are exempt from further review. A TAP that meets either of the following Class I or Class II small quanti emitter exemptions is exempt from further TAP compliance demonstration requirements under Step 3 and Step 4. Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(a)) A Class II TAP is exempt from Step 4 if the Class II TAP meets the following requirements: Premises wide emissions of the TAP shall of exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ . Class I TAP is exempt from Step 3 and Step 4 if the Class I TAP meets the following requirements: Premises wide emissions of the TAP shall of exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ . A Class I TAP is exempt from Step 3 and Step 4 if the Class I TAP meets the following requirements: Premises wide emissions of the TAP shall of exceed 0.5 pounds per hour and 350 pounds per year, any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ , and any applicable annual screening level for the TAP must be greater than 1 µg/m ³ . TAP meets either the Class I TAP Small Quantity Emitter Exemption Requirements, no further review under Step 3 and Step 4 are required for that specific TAP. For Number MDEARMDER Rots Revised: 030/12016 Trivelses Fabre Revised Review Revised: 030/12016 Trivelses Fabre Revised Review Revised: 030/12016 For Number MDEARMDER Revised: 030/12016	2									
emitter exemptions is exempt from further TAP compliance demonstration requirements under Step 3 and Step 4. Class II TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(a)) A Class II TAP is exempt from Step 3 and Step 4 if the Class II TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ . Class I TAP is exempt from Step 3 and Step 4 if the Class II TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour, and any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ , and any applicable annual screening level for the TAP must be greater than 1 µg/m ³ . If a TAP meets either the Class II TAP small Quantity Emitter Exemption Requirements, no further review under Step 3 and Step 4 are required for that specific TAP. Form Number MDEARMAPER.051 Regret P	(attach additional sheets as nei Note: Screening levels can b <u>Step 2</u> : Determine which TAP	cessary.) e obtained froi s are exempt i	m the Departme from further rev	ant's website riew. A TAP	(http://ww that meets	w.mde.mai either of ti	yland.gov) ol	r by calling the I Class I or Class	Departme	int. uantity
Class I TAP Small Quantity Emitter Exemption Requirements (COMAR 26.11.15.03B(3)(b)). A Class I TAP is exempt from Step 3 and Step 4 if the Class I TAP meets the following requirements: Premises wide emissions of the TAP shall not exceed 0.5 pounds per hour and 350 pounds per year, any applicable 1-hour or 8-hour screening level for the TAP must be greater than 200 µg/m ³ , and any applicable annual screening level for the TAP must be greater than 200 Kg and any applicable annual screening level for the TAP must be greater than 200 µg/m ³ . TAP meets either the Class I TAP must be greater than 1 µg/m ³ . Fremises wide emissions of the TAP must be greater than 200 µg/m ³ and any applicable annual screening level for the TAP must be greater than 1 µg/m ³ . TAP meets either the Class I or Class II TAP Small Quantity Emitter Exemption Requirements, no further review under Step 3 and Step 4 are required for that specific TAP. Revised: 03/01/2016 For Number MDE/ARMAPER.05T Revised: 03/01/2016 For TV Users 1-800-735-2258	emitter exemptions is exemp Class II TAP Small Quantity En A Class II TAP is exempt from t	nt from further nitter Exemption Step 3 and Ster	TAP complianc <u>n Requirements</u> p 4 if the Class II icable 1-bour or	ie demonstra (COMAR 26. I TAP meets t	ation requir 11.15.03B(3 the following	ements un 3)(a)) 1 requireme	der Step 3 an nts: Premises	d Step 4. wide emissions c	of the TAF	shall
II TAP Small Quantity Emitter Exemption Requirements, no further review under Step 01/2016	Class I TAP Small Quantity E A Class I TAP is exempt from 5 not exceed 0.5 pounds per hou µg/m ³ , and any applicable ann	mitter Exempti Step 3 and Step rr and 350 poun	on Requiremen of the Class I dds per year, any vel for the TAP r	ts (COMAR 2 TAP meets th applicable 1- must be great	26.11.15.03 le following -hour or 8-h ter than 1 µc	<u>(1)</u> (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	tts: Premises v	wide emissions o	if the TAP reater than	shall n 200
	If a TAP meets either the Clar Step 4 are required for that s Form Number MDE/ARMA/PER.051 TTY Users 1-800-735-2258	ss I or Class II pecific TAP. T Revised: 03/01		antity Emitter	r Exemptio	n Requiren	nents, no furt	her review unde	rr Step 3 a	e 1 of 2 ycled Par

Air and Radiation Management Administration

Air Quality Permits Program

MARYLAND DEPARTMENT OF THE ENVIRONMENT

In the following table, list all LAP emission reduction options considered when determining 1-BAC1 for the proposed installation. The options should be listed in order beginning with the most effective control strategy to the least effective strategy. Attach supporting documentation as necessary.	n order beg	IAP emis inning wit	th the mo	uction opu ist effectiv	ons consid	dered whe strategy to	an determini the least ef	fective strate	or the propc gy. Attach:	sed installs supporting	documenta	options ttion as
				: 0	% Emission	sion		Costs			T-BA	T-BACT Option
l arget Pollutants	tants	Emissic	on Contro	Emission Control Option	Reduction	tion	Ü	Capital	Annual Operating	perating	Selecte	Selected? (yes/no)
ex. ethanol and benzene	enzene	Th	Thermal Oxidizer	izer	66		\$50,000	20	\$100,000	000		00
ex. ethanol and benzene	enzene	707	Low VOC materials	erials	80		0		\$100.000	000		yes
(attach additional sheets as necessary)	sheets as I	lecessan	5									
following table. Attach supporting documentation as necessary. Toxic Air CAS (µg/m ³) Evels	Attach su cas	pporting Scre	ting documentati Screening Levels (µg/m ³)	entation a	Premise Premise	Premises Wide Total TAP	Allowable Rate (A	Allowable Emissions Rate (AER) per	Off-site (Screi	Off-site Concentrations per Screening Analysis	ons per ysis	Compliance Method
Pollutant (TAP)	Number					SIUIS	COMAR	0.11.10.024		(m/brl)		VED OF
		1-hour	8-hour	Annual	(lb/hr)	(Ib/yr)	(lb/hr)	(Ib/yr)	1-hour	8-hour	Annual	Screen
ex. ethanol	64175	18843	3769	N/A	0.75	1500	0.89	N/A	N/A	N/A	N/A	AER
ex. benzene	71432	80	16	0.13	1.00	400	0.04	36.52	1.5	1.05	0.12	Screen
(attach additional chaote as necessary)	chaote ac 1	1000000										,
If compliance with the ambient impact requirement cannot be met using the allowable emissions rate method or the screening analysis method, refined dispersion modeling techniques may be required. Please consult with the Department's Air Quality Permit Program	th the amb dispersion	ient imp i modelir	act required	irement c iques maj	annot be / be requ	met usin ired. Plea	g the allow ase consult	able emissic t with the De	ons rate me partment's	ethod or th Air Qualit	e screenin y Permit F	ig analysi rogram

TTY Users 1-800-735-2258

Recycled Paper

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Air and Radiation Management Administration

Air Quality Permits Program 1800 Washington Boulevard

Baltimore, Maryland 21230 (410)537-3225

1-800-633-6101

www.mde.maryland.gov

	F	ORM 5E	P: Emission Point Data				
Complete one (1) Form 5EP fe	or EACH	l emission	point (stack or fugitive emissions	s) rela	ted to the p	proposed in	stallation.
Applicant Name: Forever Faithfu	ul Pet Cre	mation & Fu	neral Cam				
1. Emission Point Ide	ntificat	ion Name	/Number	1	ा साथ वर्षे ।	A., A., A.S.	
			mission point and use this value o	on the	attached re	equired plo	ot plan:
2. Emission Point Des	scriptio	n		491 - 14	1		
Describe the emission point inc Pet Crematory Stack	luding al	l associate	d equipment and control devices:				
3. Emissions Schedul	e for th	ne Emissi	ion Point	1.4			
Continuous or Intermittent (C/)?	1	Seasonal Variation Check box if none: Other	erwise	e estimate s	seasonal v	ariation:
Minutes per hour:		60	Winter Percent				
Hours per day:		12	Spring Percent				
Days per week:		<u>6</u> 52	Summer Percent Fall Percent				
Weeks per year: 4. Emission Point Info	ormatio	and the second se	Fail Fercent				The state
Height above ground (ft):	Jimacie	24	I south and width discouting		Length	:	Width:
Height above structures (ft):		4	Length and width dimension at top of rectangular stack (I				
Exit temperature (°F):		1000	Inside diameter at top of rou	ind st	ack (ft):		2.0
Exit velocity (ft/min):		1200	Distance from emission poir property line (ft):	nt to n	earest		
Exhaust gas volumetric flow ra (acfm):	ate	3219	Building dimensions if emiss point is located on building		Height 20	Length 96	Width SO
5. Control Devices As	sociate	ed with th	e Emission Point				
	sociated	d with the e	emission point and indicate the n	numbe	er of device	es. <u>A For</u>	<u>m 6 is</u>
🔀 None			Thermal Oxidizer		No		
Baghouse	No		Regenerative				
Cyclone	No		Catalytic Oxidizer		No		
Elec. Precipitator (ESP)	No		Nitrogen Oxides Reduction	n	No		
Dust Suppression System	No		Selective Catalytic	F] Non-Sele] Non-Cata		
🗌 Venturi Scrubber	No		Other		No	8	
Spray Tower/Packed Bed	No		Specify:		2020224 -		
Carbon Adsorber	No						
Cartridge/Canister							
Regenerative							
Form Number MDE/ARMA/PER.05EP	Revised:	03/01/2016				Page '	1 of 2

TTY Users 1-800-735-2258

Page 1 of 2 Recycled Paper

6. Estimated Emissions from th	e Emission Point		and the second	Sin Autom	
	At Design Capacity	At Projected Operations			
Criteria Pollutants	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Particulate Matter (filterable as PM10)	0.35			.65	
Particulate Matter (filterable as PM2.5)	0.35			.65	
Particulate Matter (condensables)	0.35			.65	
Volatile Organic Compounds (VOC)	0.02			.042	
Oxides of Sulfur (SOx)	0.163			0.30	
Oxides of Nitrogen (NOx)	0.27			.50	
Carbon Monoxide (CO)	0.22			.41	
Lead (Pb)	0.0003			.0006	
	At Design Capacity	At	Projected Operat	ions	
Greenhouse Gases (GHG)	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
Carbon Dioxide (CO ₂)					
Methane (CH₄)					
Nitrous Oxide (N ₂ O)					
Hydrofluorocarbons (HFCs)					
Perfluorocarbons (PFCs)					
Sulfur Hexafluoride (SF6)					
Total GHG (as CO ₂ e)					
List individual federal Hazardous Air	At Design Capacity	At Projected Operations			
Pollutants (HAP) below:	(lb/hr)	(lb/hr)	(lb/day)	(ton/yr)	
	-				
		and the second second			

(Attach additional sheets as necessary.)

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

Air and Radiation Management Administration # Air Quality Permits Program

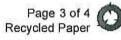
APPLICATION FOR PERMIT TO CONSTRUCT GAS CLEANING OR EMISSION CONTROL EQUIPMENT

1. Owner of Installation	Telephone		Date of Application
Forever Faithful Pet Cremation & Funeral Care	9 443-202-57	20	
2. Mailing Address	City	Zip Code	County
519 Mabe Drive Woodbine, MD 21797			Carroll
3. Equipment Location	City/Town	or P.O.	County
519 Mabe Drive Woodbine, MD 21797			Carroll
4. Signature of Owner or Operator	Title		Print or Type Name
	General Ma	nager	Daniel Simons
5. Application Type: Alteration		New Construe	ction 📈
6. Date Construction is to Start:		Completion D	ate (Estimate):
 7. Type of Gas Cleaning or Emission Control E Simple Cyclone Multiple Cyclone Scrubber (type) 8. Gas Cleaning Equipment Manufacturer 	Equipment: Afterbu Other Model No.		ostatic Precipitator
9. Type of Equipment which Control Equipmen	t is to Servic	e:	
10. Stack Test to be Conducted:			
Yes No 🗸 Identical Stack Test I	er aller er er er er er er		
(Stack 1	Test to be Condu	ucted By)	(Date)
11. Cost of Equipment <u>\$105,785.00</u>			
Estimated Erection Cost \$7,000.00			

Form number: 6 Revision date: 0/2000 TTY Users 1-800-735-2258

Page 1 of 4 Recycled Paper

12. The Following Shal	I Be	Design	Criteria:
------------------------	------	--------	-----------


INLET		OUTL	<u>ET</u>
Gas Flow Rate	ACFM*	2000	ACFM*
Gas Temperature	°F	1600	°F
Gas Pressure	INCHES W.G.		INCHES W.G.
	PRESSURE DROP		
Dust Loading	GRAINS/ACFD**		GRAINS/ACFD**
Moisture Content	%	10	%
OR Wet Bulb Temperature	°F	4	°F
	GALLONS/MINUTE	E	
(Wet Scrubber) (WHEN SCRUBBER LIQUID OTHE	R THAN WATER INDICATE	COMPOSITION OF SCRUE	BBING MEDIUM IN WEIGHT %)
*= ACTUAL CUE	BIC FEET PER MINUTE	**= ACTUAL CUBI	C FEET DRY
WHEN APPLICATION INV			
COMPOSITION OF THE GASES E	NTO THE ATMOSPHERE.	USE AVAILABLE SPA	CE IN ITEM 15 ON PAGE 3
13. Particle Size Analysis Size of Dust Particles Entering Clean 0 to 10 Microns			e Collected
13. Particle Size Analysis Size of Dust Particles Entering Clean			
13. Particle Size Analysis Size of Dust Particles Entering Clean 0 to 10 Microns			
13. Particle Size Analysis Size of Dust Particles Entering Clean 0 to 10 Microns 10 to 44 Microns	ing Unit <u>% of To</u>		
13. Particle Size Analysis Size of Dust Particles Entering Clean 0 to 10 Microns 10 to 44 Microns Larger than 44 Microns	ing Unit <u>% of To</u> n Only:	otal Dust <u>% to b</u>	e Collected
13. Particle Size Analysis Size of Dust Particles Entering Clean 0 to 10 Microns 10 to 44 Microns Larger than 44 Microns 14. For Afterburner Constructio Volume of Contaminated	ing Unit <u>% of To</u>	otal Dust <u>% to b</u>	
13. Particle Size Analysis Size of Dust Particles Entering Clean 0 to 10 Microns 10 to 44 Microns Larger than 44 Microns 14. For Afterburner Construction Volume of Contaminated Gas Inlet Temperature 1	ing Unit % of To 	<u>otal Dust % to br</u>	e Collected
13. Particle Size Analysis Size of Dust Particles Entering Clean 0 to 10 Microns 10 to 44 Microns Larger than 44 Microns 14. For Afterburner Construction Volume of Contaminated Gas Inlet Temperature 1 Capacity of Afterburner 2	ing Unit <u>% of To</u>	<u>otal Dust % to br</u> CFM (DO NO °F BTU/HR	e Collected
13. Particle Size Analysis Size of Dust Particles Entering Clean 0 to 10 Microns 10 to 44 Microns Larger than 44 Microns 14. For Afterburner Construction Volume of Contaminated Gas Inlet Temperature 1 Capacity of Afterburner 2	ing Unit <u>% of To</u> n Only: Air 000 1.0MM erburner Throat <u>1.875² Ft</u> 300"	<u>otal Dust</u> <u>% to br</u>	e Collected
13. Particle Size Analysis Size of Dust Particles Entering Clean 0 to 10 Microns 10 to 44 Microns Larger than 44 Microns 14. For Afterburner Construction Volume of Contaminated Gas Inlet Temperature 1 Capacity of Afterburner 2 Diameter (or area) of After Combustion Chamber	ing Unit <u>% of To</u> 	<u>otal Dust</u> <u>% to br</u>	E Collected
13. Particle Size Analysis Size of Dust Particles Entering Clean 0 to 10 Microns 10 to 44 Microns Larger than 44 Microns 14. For Afterburner Construction Volume of Contaminated Gas Inlet Temperature 1 Capacity of Afterburner 2 Diameter (or area) of After	ing Unit <u>% of To</u> 	<u>otal Dust</u> <u>% to br</u>	E Collected

Form number: 6 Revision date: 0/2000 TTY Users 1-800-735-2258

Page 2 of 4 Recycled Paper l

15. Show Location of Dust Cleaning Equipment in the System. Draw or Sketch Flow Diagram Showing Emission Path from Source to Exhaust Point to Atmosphere. See enclosed

Form number: 6 Revision date: 0/2000 TTY Users 1-800-735-2258

Date Received: Local	State
Acknowledgement Date:	
Ву	
Reviewed By:	
Local	
State	
Returned to Local:	
Date	
Ву	والتكوي ومارية رقبت المحاولة ومراجع الحروب والمراجع المح
Application Returned to Applicant: Date	
Ву	
REGISTRATION NUMBER OF ASSOCIATED EQUIPMENT:	
Emission Calculations Revised By	Date

Form number: 6 Revision date: 0/2000 TTY Users 1-800-735-2258

Page 4 of 4 Recycled Paper

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Blvd = Baltimore, Maryland 21230 (410) 537-3230 = 1-800-633-6101 = www.mde.state.md.us

Air and Radiation Management Administration Air Quality Permits Program

APPLICATION FOR INCINERATORS

Permit to Construct	Registration		DO NOT WRITE IN THIS SPACE
1. Owner of Installation of Forever Faithful Pet Cre	r Company Name emation & Funeral Care	Date of Application	Date Rec. Local Date Red. State
Mailing Address 519 Mabe Drive		Telephone	Acknowledgement Sent Date By
City Woodbine 2A. Premises Name ir Dr	State MD Iferent from Above	Zip Code 21797	Reviewed Name Date
2B. Incinerator Location I County and Zip Code):	f Different From Above (give a	Street Address, City,	Local State Returned to Local Jurisdiction
3. Owner, Agent or Author			Date By
	Daniel Simons / General M (Print/Type Name)	anager	Application Returned to Applicant Date By
	(Signature)	ananganga pangangan pangangan pangangangan pangangangan pangangan pangangan pangangan pangangan pangangan pang	Premises Number
(Mailing	Address, City/Town, State, Zi	p Code)	
4A. New Construction Or Begin Date Construction		ing Installation Operation Date	1 2 3 4 5 6 Registration Number
Completed		(14-15)	7 8 9 10 11 12 13
5. Installation or Contract	or (New or Replacement Only)	
(Name or Company Title)			
(Mailing Address, City/To	wn, State, Zip Code, Telepho	ne Number)	
6. Equipment Manufactur B&L Cremation System		Serial or Catalog No. -20	7. Total Number of Incinerators of Identical Design and Capacity at this Location:
	ocation-Auto Dealer, Hospital,	Apartment House, etc.	9. Rated Capacity of Incinerator in Ib/hr: 150
Crematory			lb/hr: <u>150</u> 16-19
10. Incinerator Type (Mar Single Chamber M 20-1		iary Burner 🗌 Other 🗌 21 2:	2 Specify
11. Frequency of Burning Hours/Day 1 2 Days/ 23 24		t of Waste Burned Per Ope tons lbs 32-1 32-2	gal.
13. Method of Charging V			tomatic □

Form number: 10 Revision date: 09/27/2002 TTY Users 1-800-735-2258

14. Type of Waste/Refuse Incinerated. Mark major type with $x $ all others with Check \checkmark .
Trash Refuse Refuse Garbage Animal or Animal or Municipal Infectious/ Pathological Patho
Does this waste contain Carcinogenic or Toxic Material? Y/N Industrial Process Waste 40 Other 41
15. Total Annual Auxiliary Fuels Used Oil (gallons) Natural Gas (ft ³) 42-47 (Grade) 48 49-55 LP Gas (gallons) Other Specify fuel & units required 56-59 90-92
16. Stack Information: Height Above Ground (ft) 24 Inside Diameter at Top (in) 97-99 Exit Temperature (°F) Gas Exit Velocity (ft/min) 104-107
17. Emission Control Devices Gas Cleaning Form AMA-6 Must be Completed for Each Device Used and Attached to this Application.
None Settling Chamber Simple Multiple Venturi Electrostatic Bag- After- 108 109 110 111 112 113 114 115 116
Other117-118 Specify Type117-118 Specify Type
18. Actual Stack Emissions in Pounds per Operating Day
Particulate Matter Oxides of Sulfur Oxides of Sulfur Oxides of Sulfur Oxides of Sulfur 119 124 125 130 Oxides of Nitrogen 131 136 Carbon Monoxide 137 142 Volatile Organic Compounds 143 148
Other Pollutants SpecifyType/Amount
19. Inventory Date 180 183
20. Method Used to Determine Emissions Estimate Emission Factor Stack Test Other Estimate Emission Factor Stack Test Other Particulate matter 184-1 -2 -3 -4 Oxides of Sulfur 185-1 -2 -3 -4 Oxides of Nitrogen 186-1 -2 -3 -4 Carbon Monoxide 187-1 -2 -3 -4 Volatile Organics 188-1 -2 -3 -4 187-1 -2 -3 -4
21. Premises Information Premises Name
Census Tract Image: Signature Signature MD Grid East Image: Signature MD Grid North Image: Signature Signature <t< td=""></t<>
Owner Private Local State Federal Date Completed Dot Local Local Local Local Date Completed Date Completed Date
orm number: 10

Revision date: 09/27/2002 TTY Users 1-800-735-2258

Calculation of Emissions

Potential to Emit

B&L Cremation Systems, Inc....

10

Total Incinerator Burn Capacity150lbs/hr our of remains (type 4) and associated containers (type 0)Flue Gas Flow Rate =485 dscfm12 Hours/DayX6Days/VX52 Weeks/Year

(100% Excess Air) = 3744 Hours/Year

Total Emission Rate = Incinerator Burn Rate X Emission Factor

Sulfer Dioxide (SO2)

150	lb/hr	x	2.17	lb/ton		х	1 t	ton			-	2 ⁶	0.163	
100	10/11						2000 1			*:	=	+:	0.30	TPY
										3 6	ž.	2 	2 	
0.16	lb/hr	x	454000	mg/lb		х	1 1	ppmv		3 1		3	34.38	. ppmv
485	dscfm	·X	60	min/hr	х	0.028	m³/r³	х	2.61 mg/m ³	Ϋ́.	10 ⁰ 10		- Q	1* N
										- 1		, i		÷.,
litrog	en Oxide	(NOx -	as Nitrogen	Dioxide)		<u>t</u> :					5 (E			
							a. 0.		9				10.27	11
150	lb/hr	Х	3.56	lb/ton		X		ton	13		·		0.27	
							2000 1	lbs		1	=		0.500	TPY
			li	1999-1400- 14 8 1 1						× в.	-		70.12	ppinv
		v	454000	mg/lb		Х	1.1	ppmv			-		79.15	ppmv
0.27	lb/hr	X												
0.27 485	lb/hr dscfm	<u>x</u>	60	min/hr		0.028	m³/r3	х	1.88 mg/m ³					
485	dscfm	x	60	min/hr		0.028	m³/r³	x	1.88 mg/m ³			,		9
485	dscfm	x		min/hr		0.028	m ³ /r ³	x	1.88 mg/m ³	i.				9
485 Iydro	dsofm carbons	X (TOC/V	60 OC - metha	min/hr ne)				NICO G	8	÷.	=	,	0.02	lbs/hr
485	dscfm	x	60	min/hr		0.028 X	114	ton	8	à.	=	•		1 C C C C C C C C C C C C C C C C C C C
485 Iydro	dsofm carbons	X (TOC/V	60 OC - metha	min/hr ne)				ton	8			•		1 C C C C C C C C C C C C C C C C C C C
485 Hydro 150	dsofm carbons (lb/hr	X (TOC/V X	60 <u>OC - metha</u>) 0.299	min/hr ne) Ib/ton			2000	ton	8			•		ТРҮ
485 Hydro 150 0.02	dscfm carbons (lb/hr lb/hr	x (TOC/V x x	60 OC - methar 0.299 454000	min/hr ne) lb/ton mg/lb		x x	1 2000 1	ton lbs ppmv	, , ,		-	•	0.042	ТРҮ
485 Hydro 150	dsofm carbons (lb/hr	X (TOC/V X	60 <u>OC - metha</u>) 0.299	min/hr ne) Ib/ton		X	1 2000 1	ton lbs	8		-	•	0.042	ТРҮ
485 Hydro 150 0.02 485	dsofm carbons lb/hr lb/hr dsofm	x (TOC/V x x	60 OC - metha 0.299 454000 60	min/hr ne) lb/ton mg/lb min/hr	veight)	x x	1 2000 1	ton lbs ppmv	, , ,		-	•	0.042	ТРҮ
485 Hydro 150 0.02	dsofm carbons lb/hr lb/hr dsofm	x (TOC/V x x	60 OC - metha 0.299 454000 60	min/hr ne) lb/ton mg/lb	veight)	x x	1 2000 1	ton lbs ppmv	, , ,	Å ;			0.042 19.02	TPY ppmv
485 Hydro 150 0.02 485	dsofm carbons lb/hr lb/hr dsofm	x (TOC/V x x	60 OC - metha 0.299 454000 60	min/hr ne) lb/ton mg/lb min/hr	veight)	x x	1 2000 1	ton lbs ppmv	, , ,		-		0.042	TPY ppmv ,

	150	lb/hr	x	4.67	lb/ton	x	1 ton		÷ •	0.35	lbs/hr
÷							2000 lbs	X	5	0.656	TPY
	0.35	lb/br	x	7000	mg/lb			ă,		0.08	gr/dscf

485 dscfm X 60

Carbon Monoxide (CO)

150	lb/hr	x	2.95	lb/ton	x	l ton	=	0.22125	lbs/hr	
						2000 lbs	=	0.41	TPY	
0.22	lb/hr	x	454000	mg/lb	x	1 ppmv		. 108.14	ppmv	٢
485	dscfm	x	60	 min/hr	0.028	m ³ /r ³ X ' 1.14 mg/m ³				

Notes:

1. Incinerator Emissions based on EPA emissions from Table 2.1 of AP-42 (5th Edition)

min/hr

2. All conversion factors from AP-42 Appendix A.

C:\Users\drloo\Desktop\Environmental\Emissions PTE AP 42 BPL 500

CALCULATIONS FOR PRODUCTS OF COMBUSTION AND RESIDENCE TIME FOR 150 LB/hr TYPE IV WASTE. B&L ANIMAL CREMATORY

PROPANE

A. BASIS: 1 LB WASTE

1. <u>1 lb waste X 1000 Btu/lb waste X 15 lbs air</u> 10,000 Btu	= 1.5 lbs air
2. <u>1 lb waste X 0.10 lb combustible</u> 1 lb waste	= 0.10 lbs of combustibles
3. <u>1 lb waste X 0.85 lb H20 X 1.6*</u> 1 lb waste	= 1.36 lbs of water
4. <u>6,500 Btu aux fuel** X 23.8 cu ft air/cu ft fuel</u> 2500 Btu/cu ft fuel X 13.35 cu ft air/lb air @ 70f	= 4.64 lbs of air for aux fuel
5. <u>6,500 Btu aux fuel X 0.044 lb fuel/cu ft fuel</u> 2500 Btu/cu ft fuel	= 0.11 lb of aux fuel
6. Sum = PRODUCTS OF COMBUSTION (POC)	= 7.71 lbs POC per lb

B. RESIDENCE TIME @ 1600 F

1. 7.71 lbs POC/lbs waste X 51.89 cu ft / lb POC @ 1600f X 150 lbs waste / hr 3600 sec/hr

= 16.66 cu ft / sec @ 1600 f = 17.00 cu ft for 1 second residence time

RESIDENCE TIME @ 1800 F

2. 7.71 lbs POC/lbs waste X 56.93 cu ft /lb POC @ 1800f X 150 lbs waste / hr 3600 sec/hr

= 18.28 cu ft / sec @ 1800f = 19.00 cu ft for 1 second residence time

* Correction multiplier for dry air and water vapor ** Fuel is propane

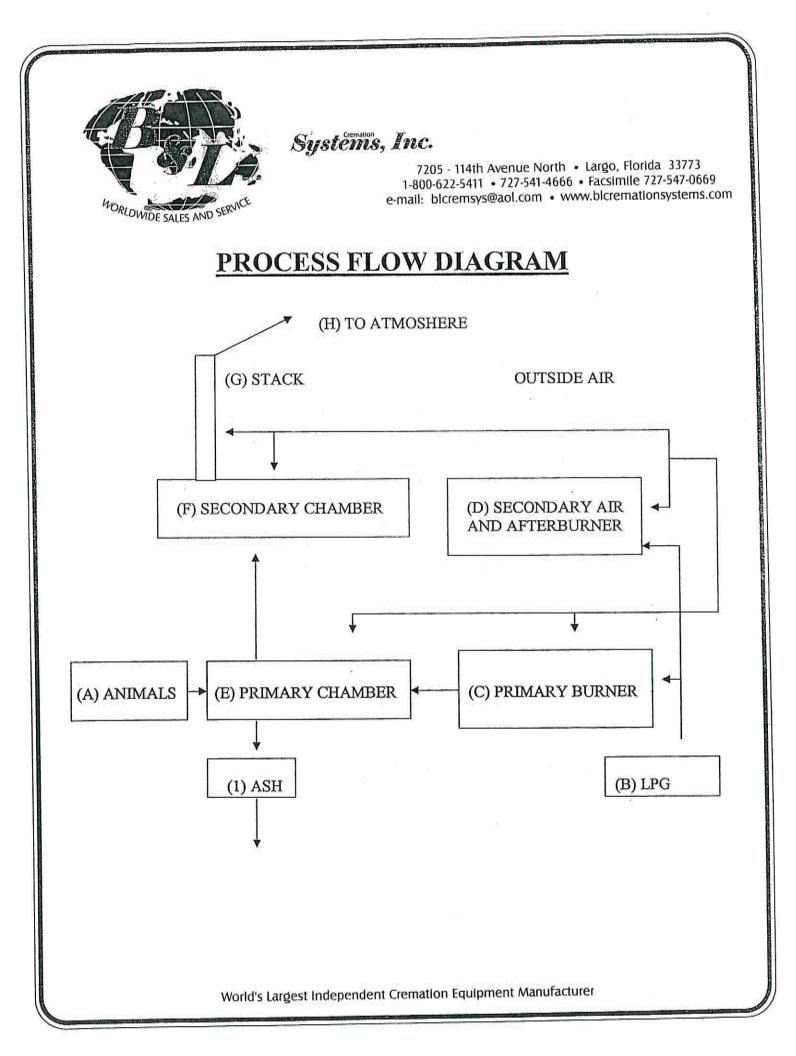
Referances: Incinerator institute of America. North American Combustion Handbook Eclipse Combustion Engineering guide

C. THERMOCOUPLE PLACEMENT.

Secondary chamber operating temperature at > or = to 1600f = 17.00 cu ft from flame tip. 1800f = 19.00 cu ft from flame tip.

waste @ 70f

Systems, Inc.

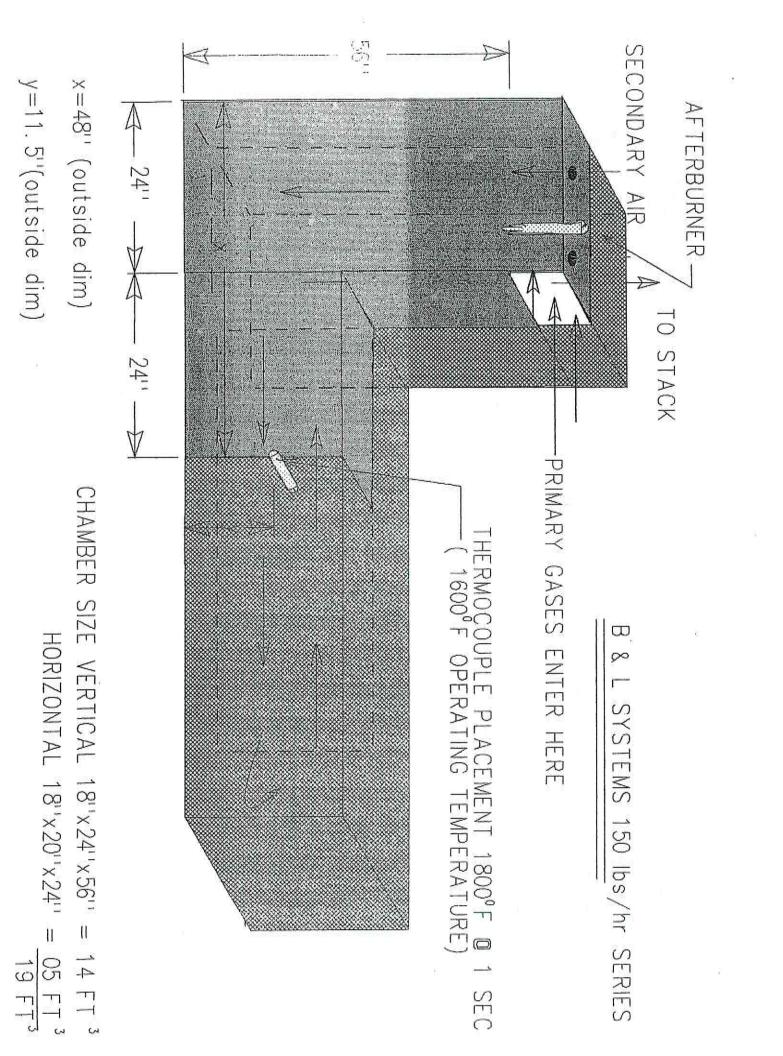

7205 - 114th Avenue North • Largo, Florida 33773 1-800-622-5411 • 727-541-4666 • Facsimile 727-547-0669 e-mail: blcremsys@aol.com • www.blcremationsystems.com

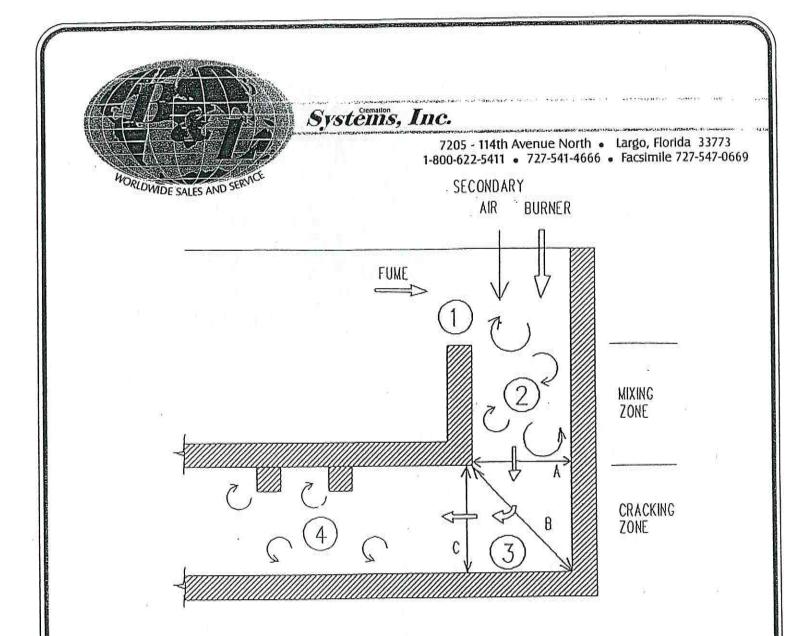
PROCESS DESCRIPTION

This project consists of the construction of one new cremation retort. This crematorium will consist of one B & L Systems Model BLP 500/150 Animal Cremator. The cremation unit will be fired on propane.

Deceased animal remains are manually placed into the primary chamber of the cremator. The door of the cremator is then closed. After a preheat of the afterburning chambers by the auxiliary burner, initial and supplementary combustion is provided by propane fired burner located in the primary chamber of the cremator. Once material combustion is initiated, the rate of the combustion is controlled by limiting both the combustion air and fuel supplied to the primary chamber through the primary burner. This process generates a highly combustible gas mixture that flows into a secondary chamber where more air is admitted to insure further oxidation of the gases. The auxiliary burner is installed in the secondary chamber of the cremator to facilitate complete combustion of all gaseous materials entering this chamber.

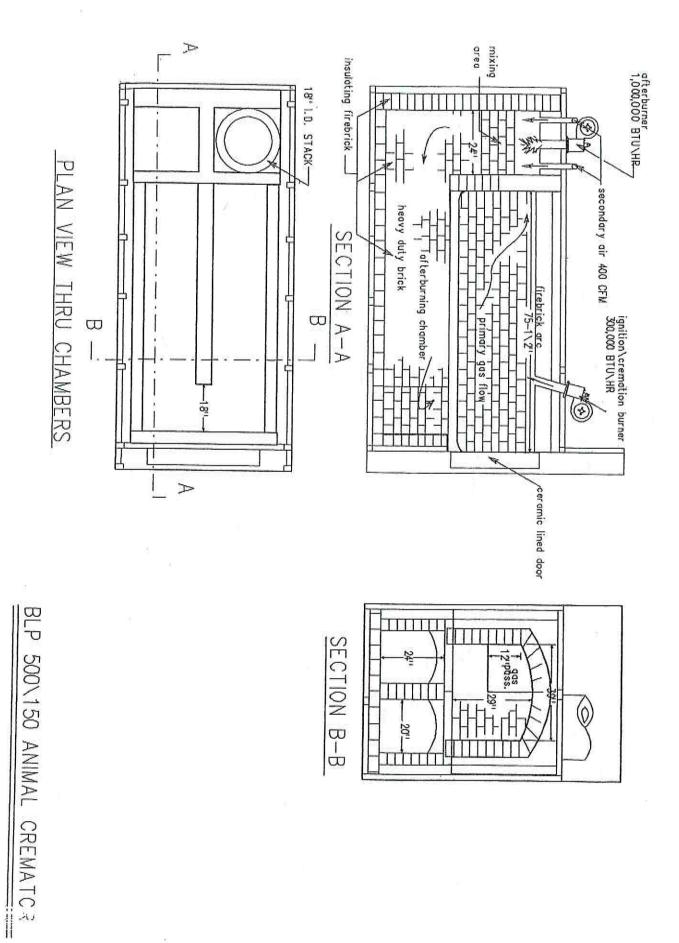
Once the cremation process is complete, the remains are removed from the primary chamber of the cremator. These remains are placed in urns and returned to the family for interment of disposal.

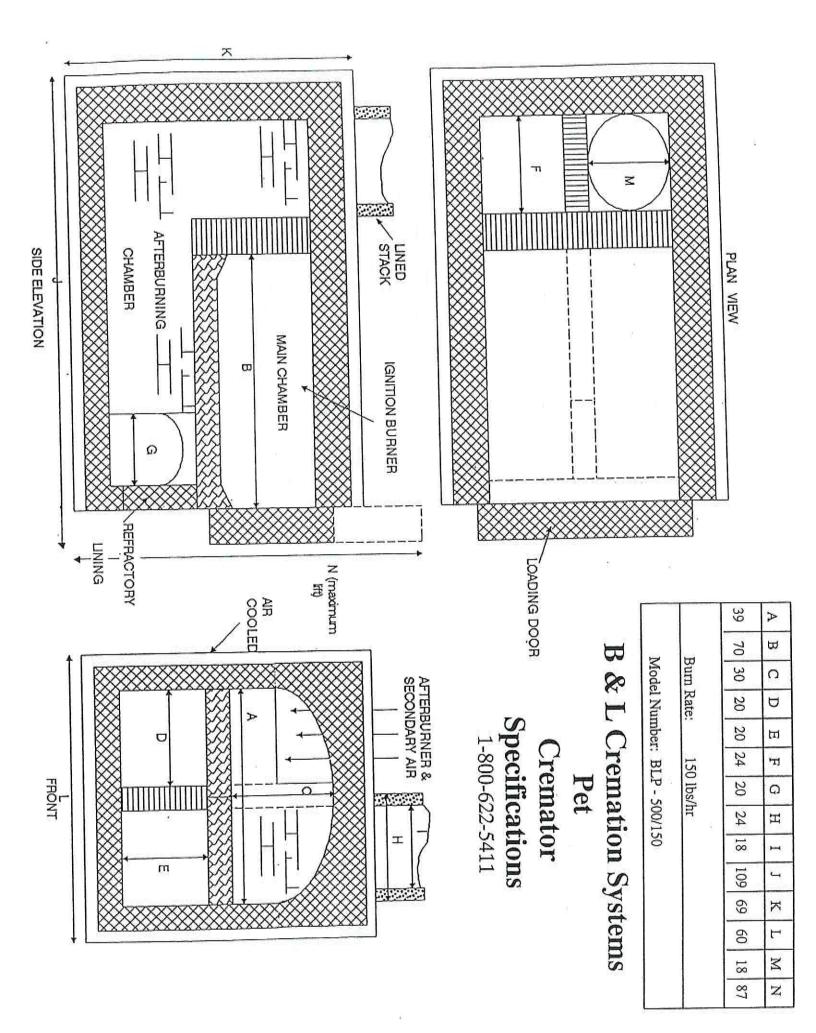



Systems, Inc. 7205 - 114th Avenue North • Largo, Florida 33773 1-800-622-5411 • 727-541-4666 • Facsimile 727-547-0669 e-mail: blcremsys@aol.com • www.blcremationsystems.com

TEMPERATURE CONTROL SEQUENCE

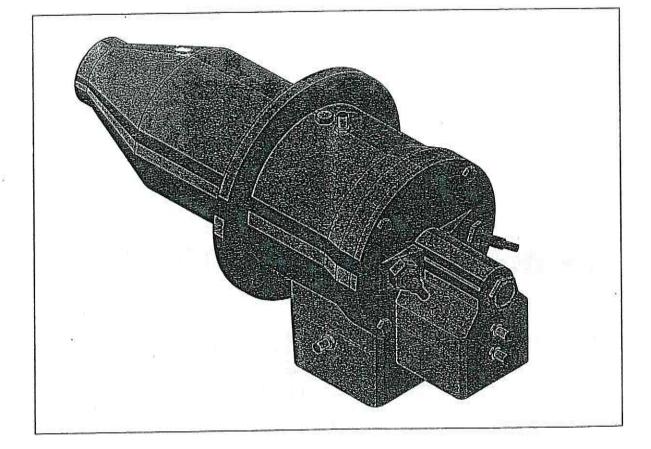
A type "K" thermocouple is placed 19 ft. down stream of the flame tip to measure temperature, the signal is sent to the main control panel where it is received by a FUJI PYZ series temperature controller with digital readout and a DR4200 temperature recorder. The FUJI PYZ series temperature controller controls the temperature via a motorized butterfly valve located on the afterburner inlet gas assembly. Gas demand is controlled by temperature to maintain a steady temperature. The ignition/cremation burner is interlocked to the afterburning temperature by the FUJI PYZ series temperature controller set point. Combustion cannot start until temperature set point is reached. Alarm contacts in the FUJI PYZ series temperature controller are utilized for over (high) temperature conditions. 100° F over set point the afterburner will be in maximum low fire and the ignition/cremation burner will shut off. The butterfly valve located on the secondary air inlet is controlled by a separate temperature out put to add air to cool the system. At set point the unit will return to normal operation. An optimonitor smoke detector is placed on the stack and set at 10% opacity if emissions occur the alarm will sound; a visual red warning lamp located on the control panel will illuminate and the primary burners will shut off. The excess air butterfly valve will open to add air to the secondary chamber to oxidize the emissions. After a five (5) minute period the unit will revert to normal operation.


World's Largest Independent Cremation Equipment Manufacturer



- 1. At the back of primary chamber, waste fume, air and burner flame all meet with different viscosities, volumes, velocities and flow directions which causes turbulence in the mixing zone of the secondary chamber.
- 2. Turbulence continues in the mixing zone as flows are traversing the flame tip.
- 3. Changing velocity at flame front zone and cornering cause additional turbulence at the base of the unit. $V_A > V_B < V_C$.
- 4. Uneven cross sectional area due to arches in the ceiling to support the primary chamber floor and additional changes in directional flow causes further turbulence downstream in the secondary chamber.

World's Largest Independent Cremation Equipment Manufacturer


g.

No. 205, 11/95

Eclipse Velocity Burners

ThermJet Series (version 1.0)

lise

INTRODUCTION

This section gives a detailed overview of the burner specifications. It also lists several options that are available for the ThermJet.

Figure 3.1 The Thermjet burner

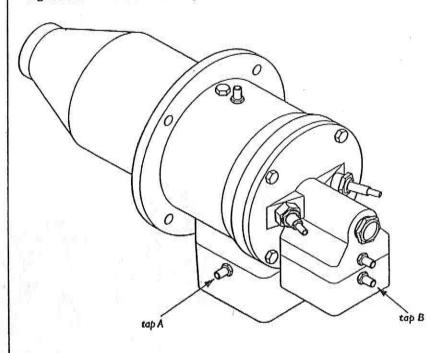


Table 3.1 Options

Fuel	 natural gas propane butane. 	For any other mixed gas, contact Eclipse for orifice sizing.	
Flame detection	U.V. scanner flame rod, for use with	alloy or silicon carbide firing tubes only.	
Ignition	 direct spark ignition (6 kV AC). 		
Combustor	 alloy firing tube silicon carbide firing tub refractory block. 	be	

SPECIFICATIONS

Main specifications

Table 3.2

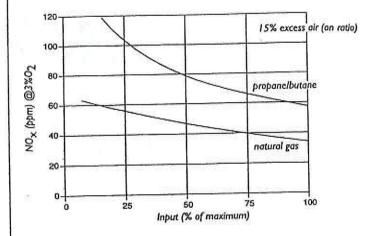
ThermJet performance data

. . ..

PARAMETER	BURNER			BURNI	R SIZE	
	(VELOCI	(d)	- 50 *	75	100	150
High fire input (Btu/hr)	Medium & High ve	locity	500,000	750,000	1,000,00 0	1,500,00 0
Low firing rate, on-ratio (Btu/hr)	Medium & High ve	locity	50,000	75,000	100,000	150,000
Low firing rate, fixed air (Btu/hr)	Medium & High ve	locity	10,000	15,000	20,000	30,000
Static air pressure ("w.c.)	High velocity		12.0	16.0	14.5	18.5
 15% excess air, at maximum input with standard orifice plate installed. measured at tap A (See Figure 3.1) 	Medium velocity		7.5	8.0	7.5	9.5
Static gas pressure ("w.c.)	High velocity		11.0	15.5	16.0	16.5
 at maximum input with standard orifice plate installed. measured at tap B (See Figure 3.1) 	Medium velocity		6.0	6.5	7.5	8.0
Flame length (In)	High velocity	Nat. gas	25	30.4	33	38
(from end of firing tube)		Propane	33	34	34	42
f 200 min		Butane	30	30	35	43
	Medium velocity	Nat. gas	28	28	38	43
		Propane	36	38	37	42
	Butane		39	30	42	40
Maximum flame velocity (ft/s)	High velocity		500	500	500	500
15% excess air, at maximum input	Medium velocity		250	250	250	250

all information is given for general sizing purposes only refer to data sheet for burner specific information •

•

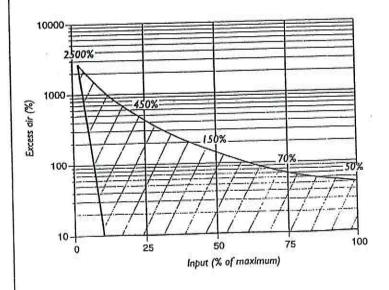

all inputs based on gross calorific values •

ŧ

Performance graphs

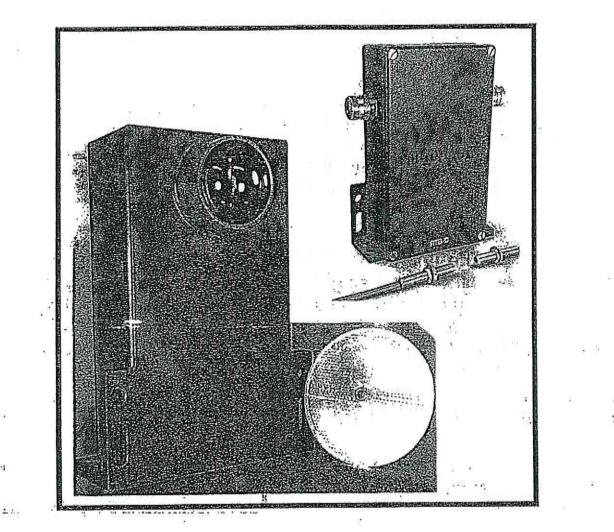
The graphs that follow give you an approximate picture of the performance. Should you want more exact information, contact Eclipse Combustion.

Figure 3.2 NO_x emissions



The emissions from the burner are influenced by:

- the fuel type
 - the combustion air temperature
 - the firing rate
- the chamber conditions
- · the percent of excess air.


For estimates of other emissions, contact Eclipse Combustion.

VISIBLE EMISSIONS ALARM (VEA)

APPLICATION: Alarm and control for Opacity used on small and large sources for warning operators and shutting down systems based on opacity, haze or clarity.

- Proven Rugged Design
- Unaffected by Ambient Light
- Spans up to 6 Feet
- Wisible LED Light Source

- Dual Beam or Single Beam
- Adjustable Delay up to 3 min.
- Easy to Install & Support
- External Adjustment

GENERAL PURPOSE OPACITY ALARMS

B OPTOMONITOR

APPLICATION:

These units are specifically designed to

provide an operator with a reliable alarm system when Opacity OF Smoke has exceeded a predefined limit. The alarm limit is easily set by using an opacity filter. The pulsed visible LED is unaffected by ambient light which makes for easy to install and calibrate.

FEATURES:

beam

The unit comes in either a single beam and dual design and almost an permanent LED light source. The electronics are housed in a rugged die-cast housing and powered by either 120 VAC or 230 VAC.

These designs meet all common installation requirements.

SPECIFICATIONS:

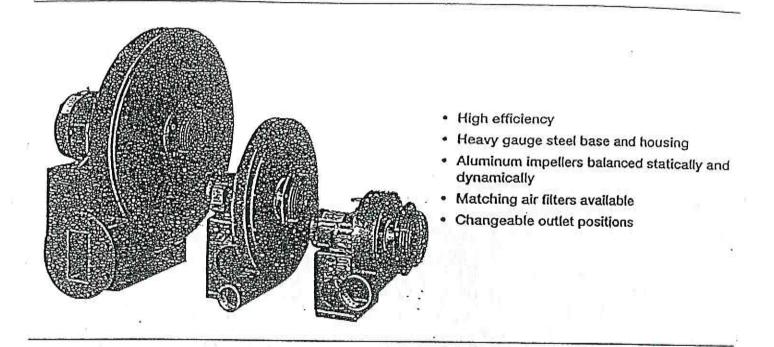
LIGHT SOURCE: Pulsed Visible LED. SPECTRAL RESPONSE: Between 400nm & 500nm. ANGLE OF VIEW: Less the 4 degrees from axis. AMBIENT LIGHT: No measurable effect.

RANGE: 0 TO 100% Opacity. ACCURACY: +/- 3% of full scale. ALARMS: DPDT 5,0 A @ 120 VAC; 100% adj. LED Indicator for alarm setting. OTHER OUTPUTS: ON-OFF operation (no time delay). OFF time delay (reverse of normal). Adjustable One-shot.

POWER: 100-130 Volts AC, 50/60 Hz, 10 VA. TEMPERATURE: Ambient -20 to +150 degrees F. Storage: +20 to +90 degrees F. ENCLOSURES: Meet NEMA 3,4,5,12.

PHYSICAL: ELECTRONICS 8.0" x 5.75" x 3.31" (HWD). VEA-S SINGLE BEAM - 3/8"-24 inch. Straight Thread, VEA-D DUAL BEAM SENSOR - 3" Diameter.

RESPONSE TIME: Selectable & Adjustable up to 3 minutes.

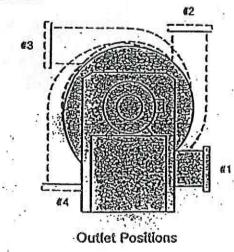

OPTOMONITOR, Inc. 270 Polaris Avenue Mountain View, CA 94043 Phone: 415/967-8992 Fax: 415/967-0286

> PLACE STAMP

> > HERE

Bulletin 610 3/93 Iomedy K-55

ECLIPSE TURBO BLOWERS SERIES "SMJ"


Eclipse "SMJ" Blowers are centrifugal blowers that provide low pressure air for industrial combustion systems. They are also used for cooling, conveying, drying, liquid agitation, smoke abatement, vacuum cleaning, fume and dust exhausting, and other plications where air temperatures are under 220°F.

All "SMJ" Blowers are constructed of continuous welded, heavy gauge steel. The impellers are made of lightweight, high strength, riveted aluminum. Outlets on 3" and 4" models are threaded, while all others are flanged for a standard 125# ANSI companion flange. Discharge ports are sized to keep pressure losses within reasonable limits.

Blower inlet flanges are equipped with a grill that complies with OSHA regulations. If desired, the grill may be removed and the inlet bolted to a standard ANSI companion flange. Eclipse-supplied motors are standard shaft and starting torque, ball bearing, 3600 rpm units. On any blower requiring 3/4 HP or more, Eclipse recommends that polyphase motors be used.

There are four possible outlet positions. Any existing position is easily changed by removing the housing from the blower base and remounting it in the desired position. Positions 1 through 3 can be specified for any blower. Position 4, however, requires factory approval before ordering. Position 1 is the standard assembly (bottom, horizontal) unless otherwise specified.

"SMJ". Blowers can be supplied with counterclockwise (CCW) or clockwise (CW) rotation as viewed from the motor side. CCW rotation is furnished standard unless otherwise specified.

ELEGIRIC

DXSERIE

PID Autotune Controllers Featuring Fuzzy Logic

Operation Manual

1 2 3 4 5 6 P X -	
Front panel size Code 48 x 48 (1/16DIN) 4 48 X 96 (1/8 DIN) 5 72 x 72 (72mm) 7	
48 x 48 (1/16DIN) 4 48 X 96 (1/8 DIN) 5 72 x 72 (72mm) 7	
48 x 48 (1/16DIN) 4 48 X 96 (1/8 DIN) 5 72 x 72 (72mm) 7	
48 × 48 (1/16DIN) 4 48 × 96 (1/8 DIN) 5 72 × 72 (72mm) 7	
48 x 48 (1/16DIN) 4 48 X 96 (1/8 DIN) 5 72 x 72 (72mm) 7	
48 x 48 (1/16DIN) 4 48 X 96 (1/8 DIN) 5 72 x 72 (72mm) 7	
48 x 48 (1/16DIN) 4 48 X 96 (1/8 DIN) 5 72 x 72 (72mm) 7	
48 x 48 (1/16DIN) 4 48 X 96 (1/8 DIN) 5 72 x 72 (72mm) 7	
48 x 48 (1/16DIN) 4 48 X 96 (1/8 DIN) 5 72 x 72 (72mm) 7	
48 x 48 (1/16DIN) 4 48 X 96 (1/8 DIN) 5 72 x 72 (72mm) 7	
48 X 96 (1/8 DIN) 5 72 x 72 (72mm) 7	
72 x 72 (72mm) 7	
96 7 96 (1/4 1)(1)	
Kinds of input Code	لن
Thermocouple (°C)	
Thermocouple (°F)	
RTD/Pt100 (°C)	
	7
RTD/Pt100 (°F) S 4-20mA DC, 1-5V DC B	
0-20mA DC, 0-5V DC A	
0-20104 00, 0-54 00	
Control output 1 . Code	
Relay contact (reverse action) A	
Relay contact (direct action) B	2 · · · ·
SSR driver (reverse action) C	
SSR driver (direct action) D	5
4 to 20mA DC (reverse action) E	
4 to 20mA DC (direct action) F	
Control output 2* Cod	e
None Y	4
Relay contact (reverse action) A	0
Belay contact (direct action) B	37 B
SSR driver (reverse action) C	
SSR driver (direct action) D	18. i - 9
4 to 20mA DC (reverse action) E	
4 to 20mA DC (direct action) F	
*not available on 48 x 48mm type	
Additional function Coo	1e
Heater break alarm" 2	
Process alarm &	3 B
Heater break alarm* . 3	
None · 4	
Process alarm 5	
not available on 48 x 48mm type	
<u> </u>	4.
Power Supply Option Co 24V AC/DC Supply C	
24V AC/DC Strooly) 8 6

FEATURES

- 1/4 DIN, 1/8 DIN, 72mm, 1/16 DIN and 1/32 DIN sizes available
- Choose between 3-button or 8-button operation
- · Fuzzy logic control with PID Autotune
- · Universal input-T/C, RTD, current, and voltage

- · 24V DC/AC supply option available
- 8 segment ramp/soak programming
- Advanced security options to prevent unauthorized changes in parameters

į.

• NEMA 4X faceplate


.

÷.,

GENERAL SPECIFICATIONS

Rated voltage	85-264V AC or 24 AC/DC
Power consumption	10VA or less (100V AC, without option) 15VA or less (220V AC, without option)
Insulation resistance	50M 立 or more (500V DC)
Withstand voltage	Power source-Earth: 1500V AC, 1 min Power source-Other: 1500V AC, 1 min Earth-relay output: 1500V AC, 1 min Earth-Alarm output: 1500V AC, 1 min Other: 500V AC, 1 min
Input impedance	Thermocouple: 1Μ Ω'or more Voltage: 450K Ωtor more Current: 250 Ω (external resistor)
Allowable signal source resistance	Thermocouple: 100 Q or more Voltage: 1K Q or more
Allowable wiring resistance	ATO: 10 Q or less per wire
Reference junction compensation accuracy	± 1.°C (at 23°C)
Process variable offset	(PV.shift) ±10% FS
Set variable offset	± 50% FS
Input filter	0-120.0 sec, setting in 0-1 sec steps (primary lagging filter)
Noise reduction ratio	Normal mode noise (50/60Hz) SOdB or more

Common mode noise (50/60Hz): 140dB or more

PXZ and PXW 7

POWER FAILURE PROCESSING

12

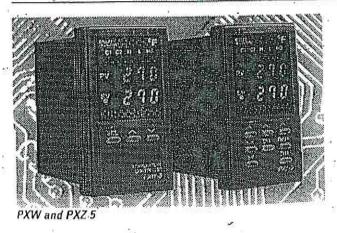
N	lemory	protection:		Non-volatile memory hold After the recovery of power, control is started at the value before power failure.
3 0	8	···	12	at the value before power failure

SELF-CHECK

Method:

Watchdog timer monitors program error.

OPERATION AND STORAGE CONDITIONS


Operating temperature	-10 to 50°C	22	0	ŝ
Operating humidity	90% RH or les	s (non-co	ndensing) '	
Storage temperature	-20 to 60°C	22323	5 8 8 6 19	1200
		• •	1	

PID control with auto-tuning Fuzzy control with auto-tuning
0-999.9%, setting in 0.1% steps
0-3200 sec, setting in 1 sec steps
0-999.9 sec, setting in 1 sec steps
on when P,I,D=0 n I,D=0
1-150 sec. setting in 1 sec steps, relay contact output, SSR/SSC drive output only
0-50%, setting in 1% steps, 2-position action only
0-100% FS, setting in 1% steps; auto-setting with auto-tuning
0.5 sec
0.5 sec

CONTROL FUNCTION (DUAL OUTPUT TYPE) (HEATING/COOLING TYPE)

CONTROL CUNCTION

Heating Proportional band	P x 1/2 (P= 0 999.9%)
Cooling Proportional band	Heating proportional band x cooling proportional band coefficient Cooling proportional band coefficient= 0.99.9 0:2-position action
lutegral time	0-3200 sec for heating and cooling
Differential time	0-999.9 sec for heating and cooling
PI,D= 0:2- position action (I,D= 0:Proportional action	without dead band) for heating and cooling
Proportional cycle	1+150 sec; relay contact output, SSR/SSC drive output only
Hysteresis width	2-position action for heating and cooling 0.5% PS 2-position action for cooling: 0.5% PS
Anti-reset wind-up	0-100% FS: setting in 1% steps: auto setting wit auto-tuning
Overlap/dead band :	+50% of heating proportional band
Input sampling cycle .	0.5 sec
Control cycle	0.5 sec

Source Test Report for Particulate, Visible and Carbon Monoxide Emissions

<u>.</u>

EPA Method 1-5, 9 & 10 Report 16037-ST

Conducted:

July 7th, 2016

Prepared for:

A Rainbow Crossing Pet Memorial Services, LLC EU-002 Facility ID 0112719

By

Beatty Environmental Services, LLC 315 SE 20th Pl Cape Coral, FL 33990 (239) 246-3646

		Table of Contents	
<u>Secti</u>	on		Page
1.0	Intro	duction	1
2.0	Certi	fication of Test Results	2
3.0	Allow	wable Emission Determination	3
4.0	Cycle	onic Flow Determination	
5.0	Sum	mary of Results	4
6.0	Visib	le Emission Results	5
7.0	Partic	culate Emission Results	6
8.0	Carbo	on Monoxide Emission Results	7
9.0	Overv	view of Field and Analytical Procedures	8
	9.1	EPA Method 1	
	9.2	EPA Method 2	8
	9.3	EPA Method 3	8
	9.4	EPA Method 4	8
	9.5	EPA Method 5	9
	9.6	EPA Method 9	9
	9.7	EPA Method 10	10
10.0	Samplir	ng Point Determination Procedure	
	10.1 \$	Sampling Point Determination	
11.0	Summa	ry of Field and Laboratory Data	
	Atta	chment A - Field Data	
	Atta	chment B - Laboratory Data	

i.

Attachment AField DataAttachment B-Laboratory DataAttachment C-Process DataAttachment D-Calculations for Run 1Attachment E-Calibration DataAttachment F-Project Participants

3

1.0 Introduction

A Rainbow Crossing Pet Memorial Services, LLC, Facility ID 0112719, operates a animal crematory located at 4830 NE 12th Avenue is Oakland Park, Florida. On July 7th, 2016, tests for particulate (PM), Carbon Monoxide (CO), and visible emissions (VE) were performed on the cremation exhaust stack of **EU-002**.

The tests were performed in order to comply with the air general permit conditions and Broward County Department of Planning and Environmental Protection, Air Quality Division, Chapter 27 Article IV, Air Quality, Section 27-179(c)(2).

During the testing period, Mr. Robert Johnson crematory operator and owner for A Rainbow Crossing Pet Memorial Services, LLC, maintained a log containing the emission control device and process data. This information is presented, along with the temperature charts, in Attachment C.

1

The results of this test verify compliance with the Florida Department of Environmental Protection Rule 62-296.401(6) F.A.C.

2.0 Certification of Test Results

Facility Tested: A Rainbow Crossing and Pet Memorial Services, LLC 4830 NE 12th Avenue Oakland Park, FL

Type Process: Animal Crematory

Abatement Device: Afterburner

Report: 16037-ST

Date: July 7th, 2016

Actual Particulate Emissions – **0.036** gr/dscf. @ 7% Oxygen Allowable Particulate Emissions – 0.08 gr/dscf. @ 7% Oxygen

Actual Carbon Monoxide Emissions – **10.63 ppm** @ 7% Oxygen Allowable Carbon Monoxide Emissions – 100ppm @ 7% Oxygen

Actual Visible Emission – 0.00% Allowable Visible Emissions - 5%

All testing and analysis was performed in accordance with the 40 CFR Part 60.

I hereby certify that to my knowledge, all information and data submitted in this report is true and correct.

Daif R. So

Daniel Beatty Project Director

3.0 Allowable Emission Determination

The allowable emissions were determined in accordance with the Notice of Air Pollution Permit, 0112719-AG-003, conditions set forth by the Florida Department of Environmental Protection.

Substantiating data and calculations are presented in the Appendix D.

4.0 Cyclonic Flow Determination

Due to the configuration of the system, cyclonic flow was considered to be non-existent at the sampling site.

. 8

5.0 Summary of Results A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

	Run 1	Run 2	Run 3	Average
Date	7/7/2016	7/7/2016	7/7/2016	
Start Time	12:50	14:16	15:35	
Stop Time	13:54	15:19	16:41	
Process Rate (lbs/hr.)	154	150	151	152
Particulate Emission Rate (gr./dscf @ 7% O2)	0.0371	0.0343	0.0371	0.036
Allowable Particulate Emission Rate (gr./dscf @7% O2)	0.080	0.080	0.080	0.080
Visible Emission Rate (%) (highest six minute average) Allowable Visible Emission Rate (%) (with up to 20% for 3 min. per hour)	0.00 5	l.		0.00 5
Allowable visible Emission Rate (%) (with up to 20% for 3 mill. per nour)	50 100-100			
Carbon Monoxide Emission Rate (ppm @7% O2)	10.83	6.78	14.30	10.63
Allowable Carbon Monoxide Emission Rate (ppm @7% O2)	100	100	100	100

6.0 Visible Emission Results A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

Emission Point	Allowable Emission Rate (highest six minute average)	Emission Rate (highest six minute average)	Average Opacity
Exhaust Stack	5	0.00	0.00

7.0 Particulate Emission Results A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

t,

	Run 1	Run 2	Run 3
Area (square feet)	1.77	1.77	1.77
Stack Pressure (inches Hg)	30.01	30.01	30.01
Meter Pressure (inches Hg)	30.16	30.13	30.13
Sample Volume (Std. Cu. Ft.)	48.978	43.202	43.551
Water Vapor (Cubic Feet)	5.26	4.41	5.25
Sample Moisture (percent)	9.70	9.26	10.76
Saturation Moisture (percent)	100.00	100.00	100.00
Molecular Weight (lbs/lb Mole wet)	28.24	28.29	28.12
Velocity (fpm)	1494	1381	1359
Volumetric Flow Rate (acfm)	2641	2441	2402
Volumetric Flow Rate (scfm)	1066	947	937
Concentration (gr/dscf)	0.0144	0.0133	0.0144
Mass Emission Rate (Ibs./hr.)	0.13	0.11	0.12
Percent Isokinetic	99.22	98.59	100.38

8.0 Carbon Monoxide Emission Results A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

	Run1	Run 2	Run 3	Average
Date	7/7/2016	7/7/2016	7/7/2016	
Start Time	12:50	14:16	15:35	
Stop Time	13:54	15:19	16:41	
Percent Oxygen	15.43	16.34	16.05	
Carbon Monoxide (PPM)	4.26	2.71	4.99	
Carbon Monoxide Emissions (PPM @ 7% O2)	10.83	6.78	14.30	10.63
Carbon Monoxide Allowable (PPM@ 7% O2)	100	100	100	100

9.0. Overview of Field and Analytical Procedures

9.1. EPA Method 1 - Sample and Velocity Traverses for Stationary Sources

<u>Principle</u> – To aid in the representative measurement of pollutant emissions and/or total volumetric flow rate from a stationary source, a measurement site w h e r e t h e e f f l u e n t stream is flowing in a known direction is selected and the cross-section of the stack is divided into a number of equal areas. A traverse point is then located within each of these equal areas. See Sampling Point Determination.

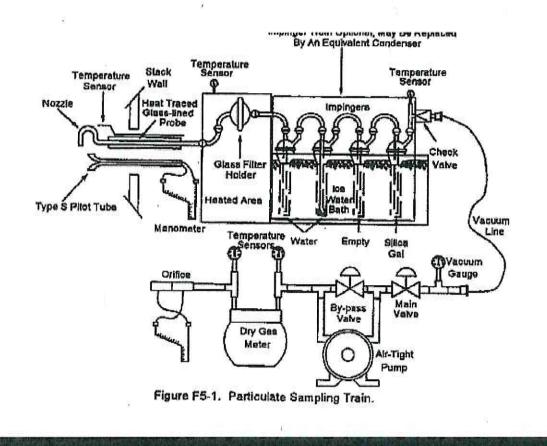
<u>Applicability</u> – This method is applicable to flowing gas streams in ducts, stacks and flues. This method cannot be used when: 1) flow is cyclonic or swirling 2) a stack is smaller than about 12 inches in diameter, or 0.071 cross-sectional area or 3) the measurement site is less than two stack or duct diameters downstream or less than a half diameters upstream from a flow disturbance. The procedures in this method were utilized in its entirety according to the procedures outlined in 40 CFR Part 60, Appendix A.

9.2. EPA Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate

Principle - Type S Pitot Tube – The average gas velocity in a stack is determined from the gas density and from measurement of the average velocity head with a Type S pitot tube. **Applicability** – This method is applicable for measurement of the average velocity of a gas stream and for quantifying gas flow. This procedure is not applicable at measurement sites which fail to meet the criteria of Method 1. This method cannot be used for direct measurement in cyclonic or swirling gas streams. The procedures in this method were utilized in its entirety according to the procedures outlined in 40 CFR Part 60, Appendix A.

9.3. EPA Method 3 – Gas Analysis for the EPA Determination of Dry Molecular Weight <u>Principle</u> – A gas sample is extracted from a stack by one of the following methods (1) A multi-point grab sampling method using an Orsat analyzer to analyze the individual grab sample obtained at each point; (2) a method for measuring either CO2 or O2 and using stoichiometric calculations to determine dry molecular weight; and (3) assigning a value of 30.0 for dry molecular weight, in lieu of actual measurements, for processes burning natural gas, coal, or oil.

<u>Applicability</u> – This method is applicable for determining carbon dioxide and oxygen concentrations and dry molecular weight of a sample from a gas stream of a fossil fuel combustion process. The method may also be applicable to other processes where it has been determined that compounds other than CO2, O2, CO, and nitrogen are not present in concentrations sufficient to affect the results. The procedures in this method were utilized in its entirety according to the procedures outlined in 40 CFR Part 60, Appendix A.


9.4. EPA Method 4 - Determination of Moisture Content in Stack Gases

Principle – A gas sample is extracted at a constant rate from the source; moisture is removed from the sample stream and determined either volumetrically or gravimetrically. **Applicability** – This method is applicable for determining the moisture content of stack gas. There are two procedures given to determine the moisture. The procedure for the reference method to determine the moisture content was used to calculate the emission data. The reference method was conducted simultaneously with the pollutant emission measurement run, pollutant emission rate, etc. for the run is based upon the results of the reference method or its equivalent. The procedures in this method were utilized in its entirety according to the procedures outlined in 40 CFR Part 60, Appendix A.

9.5 EPA Method 5 – Determination of Particulate Emissions from Stationary Sources <u>Principle</u> – Particulate matter is withdrawn isokinetically from the source collected on a glass fiber filter maintained at a temperature in the range of 223-273 degrees F or such other temperature as specified by an applicable subpart of the standards or approved by the Administrator, US Environmental Protection Agency for a particular application. The particulate mass which includes any⁷material that condenses at or above the filtration temperature is determined gravimetrically after removal of uncombined water.

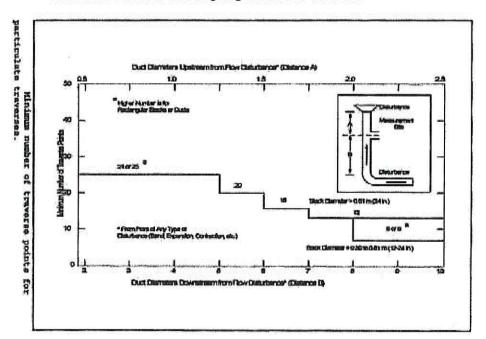
<u>Applicability</u> – This method is applicable for the determination of particulate emissions from stationary sources. The procedures in this method were utilized in its entirety according to the procedures outlined in 40 CFR Part 60, Appendix A.

Diagram of EPA Method 5 Sampling Train

9.6 EPA Method 9 – Visual Determination of the Opacity of Emissions from Stationary Sources

<u>Principle</u> - The opacity of emissions from stationary sources is determine visually by a Qualified observer.

Applicability - This method is applicable for the determination of the opacity of emissions from stationary sources pursuant to 60.11(b) and for qualifying observers or visually determining the opacity of emissions.


2

9.7 EPA Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources

<u>Principle</u> - An integrated or continuous gas sample is extracted from a sampling point and analyzed for carbon monoxide (CO) content. Performance specifications and test procedures are provided to ensure reliable data.

Applicability - This method is applicable for the determination of carbon monoxide emissions from stationary sources. The process will dictate whether a continuous or an integrated sample is required. If the process produces CO spikes that would exceed the span (as determined from the allowable), then an integrated procedure is required.

10.0 Sampling Point Determination Procedure

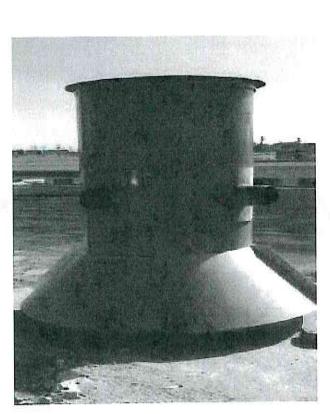
Minimum Number of Sampling Points Per Traverse

Circular Stacks

The number of sampling points is selected according to the above diagram, with the number of points equaling the next higher multiple of four.

Rectangular Stacks

The number of sampling points is determined using the matrix below.


.....

Number of Traverse Points	Subarea Layout Matr			
9	3x3			
12	4x3			
16	4x4			
20	5x4			
25	5x5			
30	6x5			
36	6x6			
42	7x6			
49	7x7			

10.1 Sampling Point Determination A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

Stack Configuration	Circular
Diameter (inches)	18
Distance A - Ports to Downstream Disturbance (inches)	24
Distance A - Ports to Downstream Disturbance (diameters)	1.3
Distance B - Ports to Upstream Disturbance (inches)	110
Distance B - Ports to Upstream Disturbance (diameters)	6.1
Number of Test Ports	2
Wall or Port length	· 9
Number of Sampling Points per Traverse	10
Number of Points Sampled	20

Photograph of Stack

Traverse	Point Location
Traverse	Inches to
Point No.	Sample Point
	offset
1	9.5
2	10.5
3	11.6
4	13.1
5	15.2
6	20.8
7	22.9
8	24.4
9	25.5
10	26.5

11.0 Summary of Field and Laboratory Data A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

	Run 1	Run 2	Run 3
Date	7/7/2016	7/7/2016	7/7/2016
Start Time	12:50	14:16	15:35
Stop Time	13:54	15:19	16:41
CP	0.84	0.84	0.84
Y	1.0073	1.0073	1.0073
^Ha (inches H2O)	1.6588	1.6588	1.6588
Diameter of Nozzle (inches)	0.5000	0.5000	0.5000
Stack Diameter or Equivalent (inches)	18.00	18.00	18.00
Static Pressure (inches H2O)	-0.05	-0.05	-0.05
Barometric Pressure (inches Hg)	30.01	30.01	30.01
Test Time (minutes)	60	60	60
Meter Volume (cubic feet)	49.822	44.312	44.759
Square Root ^P (inches H2O)	0.293	0.265	0.263
Orifice Pressure ^H (inches H2O)	2.013	1.584	1.584
Average Meter Temperature (Deg. F)	85.1	89.1	90.2
Average Stack Temperature (Deg. F)	723.7	778.3	750.6
Particulate Sample Weight (grms)	0.0458	0.0373	0.0407
Water Collected (grms)	111.5	93.6	111.3
Molecular Weight (lbs/lb Mole)	29.34	29.34	29.34
Nozzle Area (square feet)	0.00136	0.00136	0.00136

Attachment A - Field Data

Beatty Environmental Services, LLC Particulate Field Data

Plant	A Rainbow (Crossing 1	Pet Memori	al Services	Y_{qa}	1.002	74	
Report		16037	'-ST-1		^Ha	1.658	88	
Date		07/0	7/16		Dn	0.500	00	
Operator		Z	В		Diameter (in.)		18.0	
Time	Start -	12:50	End -	13:54	Traverses X Points	2	х	10
K Factor		22	2.0	or - e e cons Secondations	Static Pressure		-0.05	
Assumed	ed Moisture % 9)	Barometric Pressure (in	(in. Hg) 30.01		30.01	
Dry Gas N	Meter No.		1		Test Time (min.)	in.) 60		
Nozzle ID	No.		#20		Metered Volume		49.822	
Wet Bulb	Temperature	•	N/	'A	Avg. Sq Rt ^P	YP 0.293		
Post Leak	Check	.00	0cfm @ 15" l	Hg.	Avg. ^H	2.013		
Cp Factor			0.84		Avg. Meter Temp.		85.1	
Y			1.0073		Avg. Stack Temp.		723.7	

Traverse	Sampling	DG METER	Velocity	Pressure	Meter	Pump	Impinger	Filter	Stack
Point	Time	(cu.ft.)	Head	Orifice Meter	Temperature	Vacuum	Temperature	Temperature	Temperatur
Number	(min.)	822.140	ΔP(in. H2O)	∆H(in. H2O)	(°F)	(in. Hg)	(°F)	(°F)	(°F)
1	3	824.44	0.07	1.54	82	4.0	63	250	793
2	3	826.52	0.08	1.76	82	4.0	60	248	859
3	3	829.05	0.12	2.64	82	5.0	60	256	864
4	3	832.11	0.13	2.86	82	6.0	61	250	855
5	3	835.07	0.14	3.08	83	6.5	61	266	845
6	3	838.11	0.14	3.08	83	6.5	61	250	847
7	3	840.67	0.10	2.20	84	5.0	62	259	750
8	3	842.77	0.06	1.32	84	4.0	62	260	600
9	3	844.81	0.05	1.10	84	4.0	61	265	524
10	3	846.79	0.06	1.21	85	4.0	61	256	345
1	3	849.44	0.11	2.42	85	6.0	60	244	740
2	3	852.31	0.13	2.86	86	7.0	60	255	887
3	3	855.33	0.14	3.08	86	8.0	60	262	884
4	3	858.62	0.18	3.96	87	10.0	61	253	864
5	3	861.54	0.11	2.42	87	6.0	62	268	640
6	3	863.91	0.07	1.54	88	5.0	62	268	652
7	3	865.91	0.04	0.88	88	4.0	62	251	644
8	3	867.75	0.04	0.88	88	4.0	62	253	640
9	3	869.83	0.04	0.77	88	4.0	62	261	628
10	3	871.962	0.03	0.66	88	3.0	62	252	613
			- Maran P						
	11 Sid								

脸

Beatty Environmental Services, LLC Particulate Field Data

Plant	A Rainbow G	Crossing Pet	Memoria	l Services	Y_{qa}	1.008	89	
Report		16037-ST	-2		^Ha	1.65	88	
Date		07/07/	16		Dn	0.50	00	
Operator		ZB			Diameter (in.)		18.0	
Time	Start -	14:16	End -	15:19	Traverses X Points	2	х	10
K Factor		22.0			Static Pressure		-0.05	
Assumed	Moisture %		10		Barometric Pressure (in.	c Pressure (in. Hg) 30.01		
Dry Gas N	/leter No.		1	4-22-24	Test Time (min.)		60	
Nozzle ID	No.		#20	247) 247)	Metered Volume		44.312	
Wet Bulb	Temperature	2	N/.	A -	Avg. Sq Rt ^P	1	0.265	
Post Leak	Check	.000cfi	m @ 18" H	Ig.	Avg. ^H	1.58	34	
Cp Factor			0.84		Avg. Meter Temp.		89.1	
Y			1.0073		Avg. Stack Temp.		778.3	

Traverse Point	Sampling Time	DG METER (cu.ft.)	Velocity Head		Meter Temperature	Pump Vacuum		Filter Temperature	
Number	(min.)	873.500	ΔP(in. H2O)	∆H(in. H2O)	(°F)	(in. Hg)	(°F)	(°F)	(°F)
1	3	875.98	0.08	1.76	87	3.0	64	242	862
2	3	877.91	0.07	1.54	88	3.0	62	261	819
3	3	880.28	0.09	1.98	87	4.0	62	261	808
4	3	882.83	0.10	2.20	88	4.0	62	256	821
5	3	885.47	0.10	2.20	88	4.0	62	263	797
6	3	887.81	0.08	1.76	88	3.5	62	261	788
7	3	890.04	0.07	1.54	88	3.0	62	260	795
8	3	892.19	0.06	1.32	88	3.0	62	261	668
9	3	894.01	0.04	0.88	89	3.0	62	256	649
10	3	895.82	0.04	0.88	89	3.0	62	260	635
1	3	898.73	0.12	2.64	89	5.0	64	260	850
2	3	901.14	0.10	2.20	89	5.0	63	261	844
3	3	903.48	0.07	1.54	90	4.0	63	262	841
4	3	905.72	0.07	1.54	90	4.0	63	262	853
5	3	907.83	0.06	1.32	90	4.0	63	262	808
6	3	909.84	0.06	1.32	90	4.0	63	257	786
7	3	911.91	0.07	1.54	90	4.0	63	260	792
8	3	913.84	0.06	1.32	91	4.0	64	259	742
9	3	915.88	0.06	1.32	91	4.0	64	261	720
10	3	917.812	0.04	0.88	91	4.0	64	261	688
			17-1-1-1 17-1-1-1						

Beatty Environmental Services, LLC Particulate Field Data

Plant	A Rainbow (Crossing Pet	Memoria	l Services	Y_{qa}	0.999	98		
Report		16037-S	Г-3		^Ha	1.6588			
Date		07/07/	16		Dn	0.5000			
Operator		ZB			Diameter (in.)		18.0		
Time	Start -	15:35	End -	16:41	Traverses X Points	2	х	10	
K Factor		22.0			Static Pressure		-0.05		
Assumed	umed Moisture % 9				Barometric Pressure (in.	r Pressure (in. Hg) 30.0			
Dry Gas N	Meter No.		1		Test Time (min.)	60			
Nozzle IE) No		#20		Metered Volume		44.759		
Wet Bulb	Temperature	9	N/.	A	Avg. Sq Rt ^P		0.263		
Post Leak	Check	.000cf	m @ 16" H	lg.	Avg. ^H	1.584			
Cp Factor			0.84		Avg. Meter Temp.		90.2		
Y	_		1.0073		Avg. Stack Temp.	k Temp. 750.6			

Traverse	Sampling	DG METER	Velocity	Pressure	Meter	Pump	Impinger	Filter	Stack
Point	Time	(cu.ft.)	Head	Orifice Meter	Temperature	Vacuum	Temperature	Temperature	Temperatu
Number	(min.)	919.474	ΔP(in. H2O)	∆H(in. H2O)	(°F)	(in. Hg)	(°F)	(°F)	(°F)
1	3	922.02	0.10	2.20	89	4.0	64	254	872
2	3	924.64	0.11	2.42	89	5.0	62	255	884
3	3	927.26	0.10	2.20	89	4.0	61	249	835
4	3	929.55	0.08	1.76	89	4.0	61	264	802
5	3	931.73	0.08	1.76	89	4.0	61	255	778
6	3	933.96	0.07	1.54	90	4.0	60	259	785
7	3	936.22	0.07	1.54	90	4.0	60	244	748
8	3	938.22	0.05	1.10	90	3.0	59	251	702
9	3	940.02	0.04	0.88	90	3.0	59	258	600
10	3	941.70	0.04	0.88	90	3.0	60	251	502
1	3	943.95	0.08	1.76	90	5.0	60	242	821
2	3	946.27	0.08	1.76	90	5.0	58	257	806
3	3	948.74	0.10	2.20	91	5.0	58	258	796
4	3	951.72	0.13	2.86	91	7.0	59	256	766
5	3	954.23	0.08	1.76	91	5.0	59	264	767
6	3	956.56	0.06	1.32	91	5.0	60	256	747
7	3	958.91	0.06	1.32	91	5.0	59	260	753
8	3	960.82	0.05	1.10	91	4.5	59	256	720
9	3	962.61	0.03	0.66	91	• 3.0	59	249	706
10	3	964.233	0.03	0.66	91	3.0	59	265	621

A RAINBOW CROSSING PET CREMATIONS

7/7/2016	AVG. ADJUSTED CO ppmvd @ 7% O2	10.83
(All All All All All All All All All All	CORRECTED 02 %	15.43
	CORRECTED CO2 %	4.31
	CORRECTED CO ppmvd	4.26
	7/7/2016 1	1 CORRECTED 02 % CORRECTED C02 %

ANALYZER RESPONSE, SYSTEM BIAS AND SYSTEM DRIFT DATA

RANGE	CAL GASES	CERTIFIED GAS VALUE	ANALYZER VALUE	DIFFERENCE PPM	% SPAN	ANALYZER PRETEST VALUE	% SPAN	ANALYZER POSTTEST VALUE	% SPAN	% DRIFT	ANALYZER SERIAL #
		0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.44	0.44	eners vedelskan
25	% 02	12.14	12.10	-0.04	-0.18	12.10	0.00	12.20	0.44	0.44	01420B153
		22.55	22.60	0.05	0.22						
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
20	% CO2	8.55	8.60	0.05	0.30	8.50	-0.60	8.60	0.00	0.60	01410/B139
	10000	16.74	16.70	-0.04	-0.24		- 115-1510				
	Constant States		0.10	0.10	0.5	0.00	-0.6	0.00	-0.5	0.0	
110	PPM CO	0.00 9.23	9.2	-0.03	-0.2	9.00	-1.0	8.90	-1.5	-0.5	48C-68845-361
110		19.30	19.40	0.10	0.5						
		48.10	48.10	0.00	0.0						

		UNCORRECTED RAW DATA	00	000	co	
DATE &			02	CO2	PPM	
TIME	and the second	and the second se	%	%	FPM	
7/7/2016 12:50			15.14	4.41	33.20	
7/7/2016 12:51			14.53	4.95	5.97	
7/7/2016 12:52			15.24	4.72	1.45	
7/7/2016 12:53			14.54	5.19	7.82	
7/7/2016 12:54			15.23	4.74	6.40	
7/7/2018 12:55			15.09	4.81	3.25	
7/7/2016 12:56			15,18	4.74	43.93	
7/7/2016 12:57			15.73	4.34	6.13	
7/7/2016 12:58			15.10	4.76	6.88	
7/7/2016 12:59			15.40	4.54	3.63	
7/7/2016 13:00			15.39	4.53	2.68	
7/7/2016 13:01			15.75	4.30	9.03	
7/7/2016 13:02			15.46	4.47	3.73	
7/7/2016 13:03			15.29	4.57	3.03	
7/7/2016 13:04			15.31	4.57	4.40	
7/7/2018 13:05			15.38	4.53	5.53	
7/7/2016 13:06			15.45	4.46	6,30	
7/7/2016 13:07			15.44	4.44	6.50	
7/7/2016 13:08			15.46	4.42	5.72	
7/7/2016 13:09			15.44	4.41	4.45	
7/7/2016 13:10			15.46	4.39	3.53	
7/7/2016 13:11			15.54	4.34	2.70	
7/7/2016 13:12			15.52	4.35	2.15	
7/7/2016 13:13			15.31	4.50	1.58	
7/7/2016 13:14			15.20	4.54	1.45	
7/7/2016 13:15			15.55	4.31	1.35	
7/7/2016 13:16			15.64	4.26	1.43	
7/7/2016 13:17			15.21	4.50	1.58	
7/7/2016 13:18			15.23	4.44	1.78	
7/7/2016 13:19			15.46	4.29	1.88	
7/7/2016 13:20			15.51	4.29	2.08	
7/7/2016 13:21			15.33	4.39	2.13	
7/7/2016 13:22			15.20	4,44	2.00	
7/7/2016 13:23			15.20	4.42	2.40	
7/7/2016 13:24			15.24	4.38	2.65	
7/7/2016 13:25			15.39	4.26	2.93	
7/7/2016 13:26			15.46		3.30	
7/7/2016 13:27			15.41 16.34	4.24 4.27	3.58	
7/7/2016 13:28			15.31	4.28	4.35	
7/7/2016 13:29				4.24	4.18	
7/7/2016 13:30			15.33 15.22	4.24	3.58	5
7/7/2016 13:31			15.22	4.27	3.95	
7/7/2016 13:32				4.32	2.23	
7/7/2016 13:33			15.20	4.25	0.35	
7/7/2016 13:34			15.33 15.34	4.23	0.28	
7/7/2016 13:35			15.43	4.23	0.35	
7/7/2016 13:36			15.34	4.22	0.40	
7/7/2016 13:37			15.40	4.15	0.80	
7/7/2016 13:38			15.31	4.18	3.60	
7/7/2016 13:39			15.33	4.17	2.70	
7/7/2016 13:40			15.36	4.14	1.28	
7/7/2016 13:41			16.56	3.36	1.88	
7/7/2016 13:42			15.63	3.96	1.00	
7/7/2016 13:43			16.29	3.51	0.80	
7/7/2016 13:44			15.99	3.69	0.58	
7/7/2016 13:45			16.06	3.61	0.43	
7/7/2016 13:46			16.30	3.48	0.50	
7/7/2016 13:47			15.64	3.83	0.33	
7/7/2016 13:48			16.64	3.24	0.53	
7/7/2016 13:49						

MEAN ANALYZER VALUES

Ľ

٦

Avg. % O2	15.43
Avg. % CO2	4.31
Avg, CO ppmvd	4.13

A RAINBOW CROSSING PET CREMATIONS

DATE:	7/7/2016	AVG. ADJUSTED CO ppmvd @ 7% O2	6.76
RUN:	2	CORRECTED 02 %	15.34
		CORRECTED CO2 %	4.34
		CORRECTED CO ppmvd	2.71

ANALYZER RESPONSE, SYSTEM BIAS AND SYSTEM DRIFT DATA

RANGE	CAL GASES	CERTIFIED GAS VALUE	ANALYZER VALUE	DIFFERENCE PPM	% SPAN	ANALYZER PRETEST VALUE	% SPAN	ANALYZER POSTTEST VALUE	% SPAN	% DRIFT	ANALYZER SERIAL #
		0.00	0.00	0.00	0.00	0.10	0.44	0.10	0.44	0.00	a. (aaa.) ra
25	% O2	12.14 22.55	12.10 22.60	-0.04 0.05	-0.18	12.20	0.44	12.10	0.00	-0.44	01420B153
20	% CO2	0.00 8.55 16.74	0.00 8.60 16.70	0.00 0.05 -0.04	0.00 0.30 -0.24	0.00 8.60	0.00 0.00	0.00 8.50	0.00 -0.60	0.00 -0.60	01410/B139
110	PPM CO	0.00 9.23 19.30 48.10	0.10 9.20 19.40 48.10	0.10 -0.03 0.10 0.00	0.5 -0.2 0.5 0.0	0.00 8.90	-0.5 -1.5	0.00 9.10	-0.5 -0.5	0.0 1.0	48C-68845-361

	CORRECTED RAW DATA	000	
DATE &	O2	CO2	CO
TIME	%	%	PPM
7/7/2016 14:15	14.35	4.92	0.80
777/2016 14:16	13.92	5.57	1.35
7/7/2016 14:17	13.45	5.93	0.73
7/7/2016 14:18	13.81	5.67	0.50
7/7/2016 14:19	14.02	6.53	0.60
7/7/2016 14:20			1.05
	14.32	5.32	
7/7/2016 14:21 7/7/2016 14:22	14.56	5.14	1.20
7/7/2016 14:22	14.66 14.83	5.07	0.98 0.53
7/7/2016 14:24			
7/7/2016 14:25	15.08 15.29	4.76	0.73
			0.73
7/7/2016 14:26	15.49	4.45	0.50
7/7/2016 14:27	15.57	4.38	0.58
7/7/2016 14:28	15.66	4.33	0.73
7/7/2016 14:29	15.08	4.69	5.83
7/7/2016 14:30	15.81	4.14	37.85
7/7/2016 14:31	14.94	4.74	16.13
7/7/2016 14:32	15.74	4.22	15,88
7/7/2016 14:33	15.32	4.44	8.47
7/7/2016 14:34	15.01	4.67	5.45
7/7/2016 14:35	15.34	4.46	4.75
7/7/2016 14:36	15.85	4.09	2.68
7/7/2016 14:37	15.22	4.47	2.05
7/7/2016 14:38	15.23	4.47	1.88
7/7/2016 14:39	15.28	4.44	1.40
7/7/2016 14:40	15.26	4.45	1.35
7/7/2016 14:41	15.39	4.36	1.10
7/7/2016 14:42	15.37	4.36	0.98
7/7/2016 14:43	15.44	4.31	0.82
7/7/2016 14:44	15.52	4.25	0.80
7/7/2016 14:45	15.27	4.42	0.78
7/7/2016 14:46	15.17	4.44	0.95
7/7/2016 14:47	15.51	4,21	0.98
7/7/2016 14:48	15.47	4.24	1.15
7/7/2016 14:49	15.18	4.39	1.38
7/7/2016 14:50	15.31	4.27	1.48
7/7/2016 14:51	15.62	4.07	1.53
7/7/2016 14:52	15.52	4.14	1.93
7/7/2016 14:53	15.38	4.19	2.03
7/7/2016 14:54	15.31	4.22	2.68
7/7/2016 14:55	15.34	4.17	2.78
7/7/2016 14:56	15.42	4.11	2.33
7/7/2016 14:57	15.51	4.06	1.83
7/7/2016 14:58	15.51	4.07	2.10
7/7/2016 14:59	15.39	4.13	2.00
7/7/2016 15:00	15.33	4.14	1.65
7/7/2016 15:01	15.15	4.25	1.20
7/7/2016 15:02	15.36	4.08	0.60
7/7/2016 15:03	16.26	3.51	1.70
7/7/2016 15:04	15.41	4.03	0.93
7/7/2016 15:05	16.40	3.38	1.05
7/7/2016 15:06	15.49	3.95	0.70
7/7/2016 15:07	16.21	3.48	0.78
7/7/2016 15:08	15.71	3.81	0.62
7/7/2016 15:09	15.99	3.61	0.75
7/7/2016 15:10	16.14	3.53	1.18
7/7/2016 15:11	15.68	3.77	0.85
7/7/2016 15:12	16.50	3.29	0.78
7/7/2016 15:13	15.51	3.86	0.58
7/7/2016 15:14	16.53	3.24	0.80

MEAN ANALYZER VALUES

Avg. % O2
Avg. % CO2
Avg. CO ppmvd
Avg. CO ppinto
1

A RAINBOW CROSSING PET CREMATIONS

7/7/2016	AVG. ADJUSTED CO ppmvd @ 7% O2	14.29
3	CORRECTED O2 %	16.05
30 - C	CORRECTED CO2 %	3.76
	CORRECTED CO ppmvd	4.99

l

DATE: RUN:

ANALYZER RESPONSE, SYSTEM BIAS AND SYSTEM DRIFT DATA

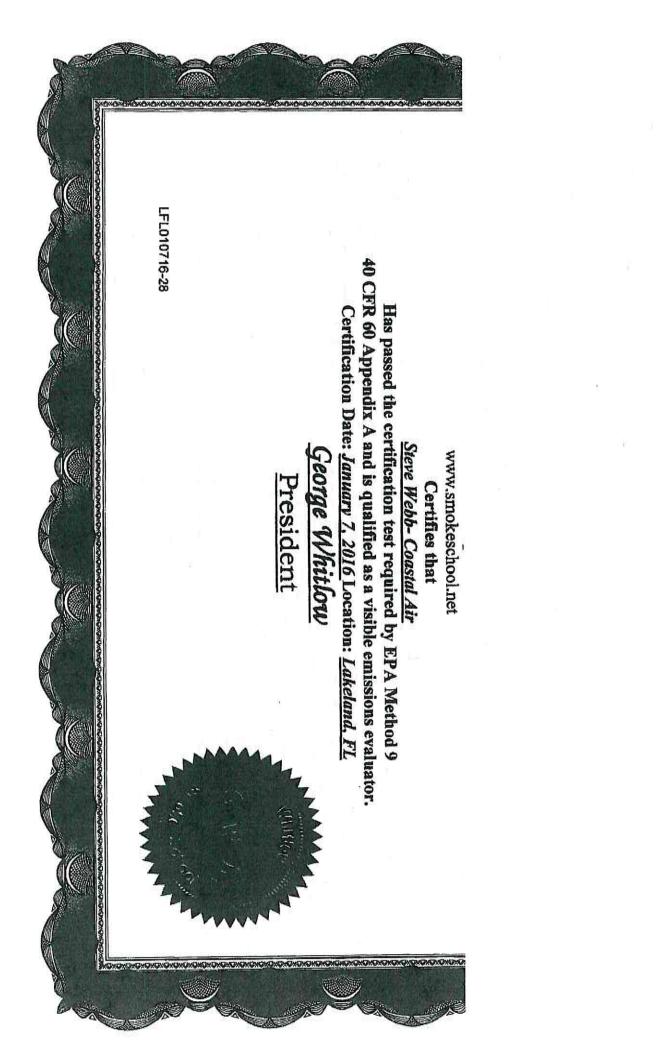
RANGE	CAL GASES	CERTIFIED GAS VALUE	ANALYZER VALUE	DIFFERENCE PPM	% SPAN	ANALYZER PRETEST VALUE	% SPAN	ANALYZER POSTTEST VALUE	% SPAN	% DRIFT	ANALYZER SERIAL #
-	Sector State	0.00	0.00	0.00	0.00	0.10	0.44	0.10	0.44	0.00	014202463
25	% 02	12.14 22.55	12.10 22.60	-0.04 0.05	-0.18 0.22	12.10	0.00	12.10	0.00	0.00	01420B153
20	% CO2	0.00 8.55 16.74	0.00 8.60 16.70	0.00 0.05 -0.04	0.00 0.30 -0.24	0.00 8.50	0.00	0.00 8.50	0.00 -0.60	0.00 0.00	01410/B139
110	РРМ СО	0.00 9.23 19.30 48.10	0.10 9.20 19.40 48.10	0.10 -0.03 0.10 0.00	0.5 -0.2 0.5 0.0	0.00 9.10	-0.5 -0.5	0.10 9.10	0.0 -0.5	0.5 0.0	48C-68845-361

	UNCORRECTED RAW DATA	02	CO2	co	
DATE &		%	%	PPM	
TIME	and the second se				-
7/7/2016 15:35		16.63	2.96	0.62	
7/7/2016 15:36		16.01	3.44	0.55	
7/7/2016 15:37		12.47	6.39	40.55	
7/7/2016 15:38		14.63	5.07	45.77	
7/7/2016 15:39		14.73	5.01	13.23	
7/7/2016 15:40		14.79	4.96	11.55	
7/7/2016 15:41		15.29	4,57	10.75	
7/7/2016 15:42		15.69	4.26	9.25	
7/7/2016 15:43		15.70	4.25	10.65	
7/7/2016 15:44		15.43	4.36	27.15	
7/7/2016 15:45		15.16	4.57	18.45	
7/7/2016 15:46		15.55	4.31	19.33	
7/7/2016 15:47		15.99	4.01	31.25	
7/7/2016 15:48		15.53	4.27	14.20	
7/7/2016 15:49		15.35	4.40	4.15	
7/7/2016 15:50		15.47	4.31	2.43	
7/7/2016 15:51	1	15.46	4.31	2.58	
7/7/2016 15:52		15.56	4.24	1.95	
7/7/2016 15:53		15.72	4.11	1.38	
7/7/2016 15:54		15.75	4.07	1.10	
7/7/2016 15:55		15.46	4.22	1.18	
7/7/2016 15:56		15.45	4.17	1.18	
7/7/2016 15:57		16.48	3.49	1.08	
7/7/2016 15:58		16.56	3.41	0.68	
		16,48	3.43	0.58	
7/7/2016 15:59		15.52	4.10	0.48	
7/7/2016 16:00		15.14	4.31	0.30	
7/7/2016 16:01		15.29	4.17	0.30	
7/7/2016 16:02		16.52	3.38	2.00	
7/7/2016 16:03		16.57	3.28	2.93	
7/7/2016 16:04		16.56	3.27	0.87	
7/7/2016 16:05		16.48	3.34	0.58	
7/7/2016 16:06		16.28	3.46	1.13	
7/7/2016 16:07		16.44	3.29	2.53	
7/7/2016 16:08		16.48	3.33	0.50	
7/7/2016 16:09		16.17	3.48	0.98	
7/7/2016 16:10		16.51	3.24	2.10	
7/7/2016 16:11		16.45	3.31	0.50	
7/7/2016 16:12		16.21	3.43	0.58	
7/7/2016 16:13		16.58	3.17	0.95	
7/7/2016 16:14		16.10	3.51	0.35	
7/7/2016 16:15		16.55	3.19	0.95	
7/7/2016 16:16		16.64	3.13	0.70	
7/7/2016 16:17		15.78	3,66	0.33	
7/7/2016 16:18		16.83	2.99	0.68	
7/7/2016 16:19		16.83	3.37	0.35	
7/7/2016 16:20			3.24	0.30	
7/7/2016 16:21		16.38	3.11	0.35	
7/7/2016 16:22				0.28	
7/7/2016 16:23		15.86	3.55	0.43	
7/7/2016 16:24		16.78	3.54	0.30	
7/7/2016 16:25		15.93		0.43	
7/7/2016 16:26		16.75	3.00	0.38	
7/7/2016 16:27		16.41	3.25	0.30	
7/7/2016 16:28		16.23	3.29		
7/7/2016 16:29		16.71	3.04	0.55	
7/7/2016 16:30		15.89	3.48	0.30	
7/7/2016 16:31		16.93	2.88	0.30	
7/7/2016 16:32		15.83	3.53		
7/7/2016 16:33		16.91	2.86 3.39	0.28 0.25	
		16.07	3 30		

MEAN ANALYZER VALUES

Avg. % O2	15.97
Avg. % CO2	3.74
Avg. CO ppmvd	4.94

 \mathbf{c}



Beatty Environmental Services, LLC 315 SE 20th Pl Cape Coral, Florida 33990 (239) 246-3646 beattyenvironmental12@gmail.com

VISIBLE EMISSION OBSERVATION FORM

Method (Cirole One) Method 9 203A 2038 Report	Observation Date 2-7-16			16	Start Time 1250			Stop Time	135	0
	Min	0	15	30	45	Min	0	15	30	45
AIRS AIRS	1	0	0	0	0	31	Ø	0	0	0
Allest Address	2	0	0	0	0	22	0	0	0	0
4868-A) 5-+2.*/- AV €- 4830 NE 12th Ave.	3	0	0	0	0	33	0	0	0	0
Phone No.	4	D	0	0	0	34	0	0	0	0
	5	D	0	0	0	35	0	0	0	0
Process Cremation North Opening Motor 154 155	8	0	0	0	0	30	0	0	0	0
Control Equipment DUNNERS Openating Mode	7	0	0	0	0	37	0	0	0	0
Device Filtre Bala	0	0	0	0	D	38	0	0	0	0
Koune Stack Morthern MOSTOFC	8	0	0	0	0	39	0	0	0	0
~20	10	0	0	D	0	40	0	0	0	0
Distance to Emis. Pt. N 100 1 Direction to Emis. Pt (Degress) ~ 283 0	11	0	0	0	0	41	0	0	0	0
Vertical Angle to Obs. <180 Direction to Obs. Pt. (Degrees) ~ 2830	12	D	6	0	0	42	0	0	0	0
Distance and Direction to Obs. Pt from Ensistion Pt mr / 1 0-600 2	13	D	0	0	0	43	0	0	0	0
Describe Envisiona	14	D	6	0	0	44	0	0	0	0
NONC Mater Dartel Pirma	15	0	0	0	0	45	0	0	0	0
N/A Attached Detached_ None	16	0	0	0	0	46	0	0	0	0
Describe Plane Beckground	17	Ø	0	0	O	47	0	0	0	0
Badground Color Blue & White Sty Conditions Scaptered	18	O	0	0	0	48	0	0	0	0
Wind Speed 10-12 MP14 Wind Direction SE	10	0	0	0	0	49	0	0	0	0
Amblenz Temp. NG 5 °C Wet Bulb Temp % RH	20	0	0	0	0	50	O	0	0	0
Source Layout Sketch Draw North Arrow	21	0	0	0	0	51	Ō	0	0	0
	22	0	0	0	0	52	0	0	0	0
	23	0	0	0	O	53	0	0	0	0
× I	24	0	0	0	0	54	0	0	0	0
Conservation Point	25	0	0	0	0	1 s	0	0	0	0
A HWORTHY	26	0	0	0	0	58	0	0	0	0
- 1 1 Jun 20 Foot	27	0	10	O	0	57	0	0	0	0
Observer's Position	28	0	0	0	0	58	0	O	0	0
Side View	29	0	0	0	D	50	0	O	0	0
Sun Lore	30		0		Ø	60	D	0	Ō	0
Sun Location Line Sun 🔶	1. 1997 P. 18	20	were	O		Hones	e Opeci 6 Min I	ty for Period	0	
Latituda 26" 11' 13" Loncitude 80'7' 52" Declination	Range Min	of opaci	Mabr	85		Γ	2			
Latituda 26" 11' 13" Londitude 8067' 52" Declination	Othervers Name (Print) Steplien Webb									
Concurrent with Run 1 of Stack Test 16037-ST	Observe	Otservors Sprater Depter Co Well Dois 7-7-16								
	Courtation Beatty Environmental Services, lic									
START 1250 STOP 1350	Certified By ishitlows Data 1-7-16									
			and southing					1.21.22.2.2		

ndiagtannadmoneata

Attachment B - Laboratory Data

2

Particulate Laboratory Data A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

Run 1

Filter Number	2255	
	Final Weight	0.3955 grams
	Tare Weight	0.3573 grams
	Difference	0.0382 grams
Beaker Number	1B	
	Final Weight	107.8366 grams
	Tare Weight	107.8288 grams
	Difference	.0.0078 grams
Filter Blank Number	2258	
	Final Weight	0.3516 grams
	Tare Weight	0.3516 grams
	Difference	0.0000 grams
Acetone Wash Down		
	Volume of Rinse	120 mL
	Residue in Rinse (calculated)	2.53197E-06 mg/mg
	Total Residue in Rinse	0.00024 grams
Total Particulate Weigh	t	0.0458 grams
Water Collected		
	Final Impinger Water	299 mL
	Initial Impinger Water	200 mL
	Final Silica Weight	212.7 grams
	Silica Tare Weight	200.0 grams

Total Water Collected

Analyst

200.0 grams

111.5 grams

Particulate Laboratory Data A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

Run 2

ŝ.

	1		
Filter Number	2256		
	Final Weight	0.3886	grams
	Tare Weight	0.3548	grams
	Difference	0.0338	grams
Beaker Number	2B		
	Final Weight	114.2904	
	Tare Weight	114.2866	grams
	Difference	0.0038	grams
Filter Blank Number	2258		
	Final Weight	0.3516	grams
	Tare Weight	0.3516	grams
	Difference	0.0000	grams
Acetone Wash Down			
	Volume of Rinse	135	
	Residue in Rinse (calculated)	2.53197E-06	mg/mg
	Total Residue in Rinse	0.00027	grams
Total Particulate Weight	.». Д	0.0373	grams
Water Collected			
	Final Impinger Water	282	mL
	Initial Impinger Water	200	mL
	Final Silica Weight	211.7	grams
	Silica Tare Weight	200.0	grams
Total Water Collected		93.6	grams

Analyst

8

Particulate Laboratory Data A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

Run 3

Filter Number	2257		
	Final Weight	0.3878	grams
	Tare Weight	0.3510	grams
	Difference	0.0368	grams
Beaker Number	3B		
	Final Weight	115.9606	
	Tare Weight	115.9565	
	Difference	0.0041	grams
Filter Blank Number	2258		
	Final Weight	0.3516	
	Tare Weight	0.3516	And the second se
	Difference	0.0000	grams
Acetone Wash Down			
	Volume of Rinse	100	1000000
	Residue in Rinse (calculated)	2.53197E-06	
	Total Residue in Rinse	0.0002	grams
Total Particulate Weight		0.0407	grams
Water Collected			
	Final Impinger Water	301	
	Initial Impinger Water	200	mL
	Final Silica Weight	210.5	grams
	Silica Tare Weight	200.0	grams

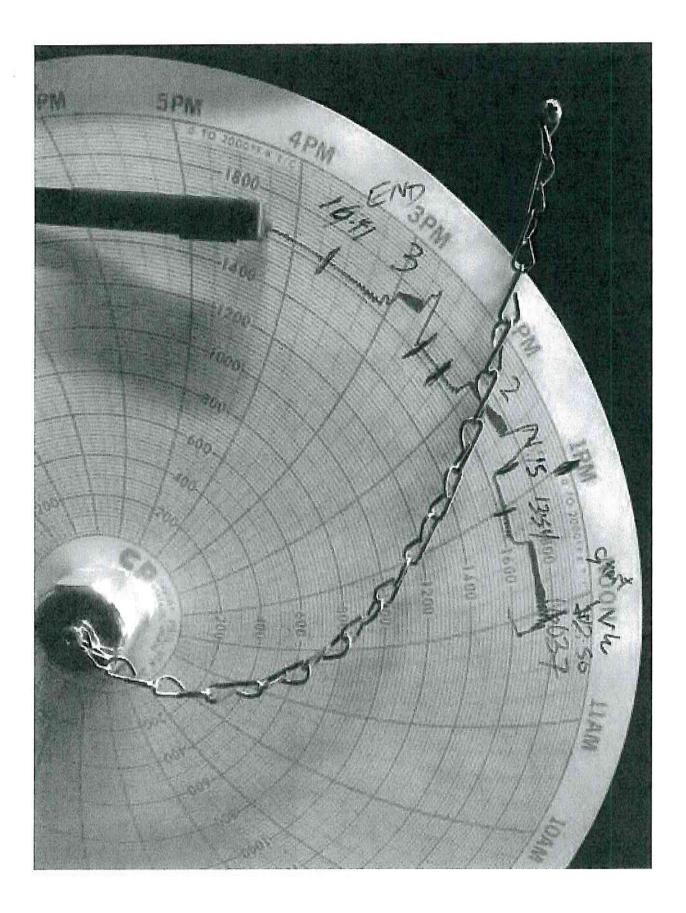
2

Total Water Collected

111.3 grams

Analyst

Attachment C - Process Data



Beatty Environmental Services, LLC

Emission Control Device and Process Data Form

Company:A_R	ainbow Crassing		
Installation:BLA	500/150 See	ial # 1664-1447-1	6
Type of Installation: _	B+L Cremation	Systems	
Type of Material Proc	essed: <u>Animal R</u>	emains	
Type of Fuel Used:	Natural Gas		·····
Type of Pollution Con	trol System:A	terburner	
General Condition of	Control Equipment:	Normal	
Ruń No.	1	2	3
Start Time	12.48	02:15	03:35
Stop Time	01:54	3:19	04:41
Fuel gph	GAS	GAS	GAS ,
Date	7/7/2014	7/7/2016	7/7/20%
Pressure Drop(in.H20)	Nla	Nla	Na
Process Rate	15411/m	15025/Hr	15 Albellar
Percent Recycle	N/#	N/A	MA
	Almon best Johnson		
Printed Name: // a	where comments	Report No. 160	

*By signing above facility designee agrees that all information on this form is true and correct to the best of his/her knowledge.

Attachment D - Calculations for Run 1

CALCULATIONS FOR RUN 1 A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

Page 1 of 2

		STACK A	AREA	
3.:	1416 ×	(Diamete	r / 24)^2	
3.1416	х	18.00	/24)^2	
		1.77	SQ.FT.	

		1.000000000	ST	ACK PRES	SURE	
E	BAROMETRI	C PRI	ESSL	JRE + (STA	TIC PRESSURE/ 13.6)	
	30.01	+	(-0.05	/13.6)	
				30.01	IN.HG	

	50.8121 (0207		ETER PRE	NY ARTIN'NY ARAVANA ARAVANA ARAVANA ARAVANA ARAVANA ARAVANA	
BAROMET	RIC PF	RESSU	JRE + (OR	IFICE PRESURE/13.6)	
30.01	+	(2.01	/ 13.6)	
			30.16	IN.Hg	

			<u>S</u>	AMPLE V	OLUME			
	17.64 X (Y) X	METER	VOLUME X	METER P	RESSURE / (MET	ER TEMP. +	- 460)	
17.64 X	1.0073	х	49.822	x	30.16	1 (85.1	+ 460)
				48.978	STD.CU.FT.			

WATE	R VAPO	R VOLUME
0.04715 X V	VATER C	OLLECTED
0.04715	х	111.5
	5.26	STD.CU.FT.

			SA	MPLE MO	DIST	JRE			
100 X WATER VAI	POR VOL	LUM	E/ (1	WATER VA	APOR	VOLUM	E + SAMPLE	VOLUME)	
100 X	5.26	1	(5.26		+	48.978)	
				9.70	%		- K. K. MARK (1979)	1975	

SATURATION MOISTURE 100 X (VAPOR PRESSURE @ STACK TEMP. / STACK PRESSURE) 100 X (8155.4280 / 30.01) 100.00 %

CALCULATIONS FOR RUN 1 A Rainbow Crossing Pet Memorial Services FID # 0112719 16037-ST

Page 2 of 2

STACK MOISTURE FRACTION

(THE LESSER OF SAMPLE MOISTURE OR SATURATION MOISTURE) / 100

0.097

29.00 (DRY)	ERS) OR 30).00 (BOII	LER	S) X (1	- MOISTURE) -	+ (18 X MOISI	'URE)
29.34	X(1 -	0.097)	`+``	(18 X	0.097)
14040403	Alterial et	and have	23	28.24	20 Constanting		

				<u> </u>			
85.49 X CP X 60 X SQ	2.(^P) X SC	.(STACK T	EMP + 460),	/SQ.(STACK F	RESSURE X M	IOLECUL	AR WT.)
85.49 X 0.840 X 60 X	0.293	X SQ.(723.7	+ 460)	/ SQR(30.01	X 28.241)
			1494	FPM			, set

VOLUME	FRIC FLOW	RATE (ACFM)
STACK ARE	A X STACK	VELOCITY
1.77	х	1494
	2641	ACFM

		v	OLUMETE	UC FLOW I	RATE (SCFM) D	RY		
1	17.64 X (ACF	M) X STA	CK PRESS	URE X (1-M	OISTURE) / (STA	ACK TEMP	. + 460)	
17.64 X	2641	х	30.01	X (1-	0.097)/(723.7	+ 460)
				1066	SCFM (DRY)	104.00 0.30		

M	ASS EMI	SSION RA	TE (LBS/HR.)	
CONCE	NTRATIC	ON X (SCFN	1- DRY) X 60 / 7000	
0.0144	х	1066	X 60 / 7000	
		0.13	LBS/HR	

			PE	RCENT ISC	DKINETIC			
	C	.0945 X (ST	ACK TEM	P. + 460) X S	SAMPLE VOLU	ME X 60		
	. STACK PI	RES. X VELO	OCITY X I	VOZZLE AF	REA X TEST TIM	EX (1-MOIS	sture)	
0.0945	X (723.70	+ 460)	х	48.98	x	6O	
30.01	Ŷx`	1494	x	0.00136	x	60.00	X (1 -	0.097
				99.22	%		UN	

Attachment E - Calibration Data

LIQUID TECHNOLOGY C(

"INDUSTRY LEADER IN SPECIAL

Certificate of Analysis

Customer Date Delivery Receipt Product: Lot Number: Coastal Air Consulting (Deland, FL) April 08, 2016 DR-61102 Nitrogen, CEMS Grade LTC286-PG

Mixture Specifications

Cylinder Number

EB-0052847

Components	Requested	Actual
Moisture	2.0 ppm	< 2.0 ppm
Hydrocarbons	0.1 ppm	< 0.1 ppm
Oxygen	1.0 ppm	< 1.0 ppm
Carbon Monoxide	1.0 ppm	< 1.0 ppm
Carbon Dioxide	1.0 ppm	< 1.0 ppm
Nitrogen	99.9995%	99.9995%

-

Cylinder Data Cylinder Valve: Cylinder Volume: Cylinder Pressure: Expiration Date:

CGA 580 140 Cubic Feet 2000 psig, 70F April 08, 2019 Cole Dyleythi

Certified by:

Cole Dylewski

"UNMATCHED EXCELLENCE"

2048 APEX COURT, APOPKA, FLORIDA 32703 ~ PHONE (407)-292-WWW.LIQUIDTECHCORP.COM Δρορκά FL [®] Pagadena TX

Certificate of Analysis - EPA PROTOCOL G

Customer
Date
Delivery Receipt
Gas Standard
Final Analysis Date
Expiration Date

Coastal Air Consulting (Deland, FL) October 30, 2015 DR-58750 9.00 ppm Nitric Oxide, 9.00 ppm Carbon October 28, 2015 I October 29, 2018

Analytical Data:

EPA Protocol, Section No. 2.2, Procedure G-1.

Reported Concentrati Nitric Oxide: 8.65 ppm +/- 0.1 Carbon Monoxide: 9.23 ppm +/-Nitrogen: Balance Total NOx: 9.01 ppm ** Total NOx for Reference Use

Reference Standards

GMIS	GMIS
ND-57318	CC-11599
9.372 ppm NO (+/- 0.08 ppm)	10.312 pp
04/26/23	03/07/20
	ND-57318 9.372 ppm NO (+/- 0.08 ppm)

Certification Instrumentation

Component:	Nitric Oxide	Carbon M
Make/Model:	Nicolet 6700	Nicolet 67
Serial Number:	APW1100563	APW1100
Principal of Measurement:	FTIR	FTIR
Last Calibration:	October 01, 2015	October 1

Cylinder Data Cylinder Number: CC-504216 Cylinder Outlet: CGA 660 October 29, 2018 **Expiration Date:** Analytical Uncertainty and NIST Traceability are in compliance wit

Certified by:

Cole Dylenti

	Cole Dylewski	
GMIS Traceability	Nitric Oxide	Carbon M
SRM Number:	SRM-2628a	SRM-167
Cylinder Number:	CAL-016517	FF-2304
Cylinder Concentration:	10.07 ppm NO (+/- 0.10 ppm)	9.893 ppn
Expiration Date:	07/23/16	05/27/18
NIST Sample Number:	49-H-73	5-K-58

"UNMATCHED EXCELLEN

(

(

2048 APEX COURT, APOPKA, FLORIDA 32703 ~ PHONE (40' WWW.LIQUIDTECHCORP.CC APOPKA, FL . PASADENA,

LIQUID TECHNOLOG "INDUSTRY LEADER IN \$

Certificate of Analysis - EPA PROTOCOL G.

Customer Date **Delivery Receipt** Gas Standard Final Analysis Date **Expiration Date**

Coastal Air Consulting (Deland, FL) March 10, 2015 DR-55632 19.0 ppm Nitric Oxide, 19.0 ppm Sulfur Di February 24, 2015 D February 25, 2018

Analytical Data:

EPA Protocol, Section No. 2.2, Procedure G-1.

Reported Concentratio Nitric Oxide: 18.8 ppm +/- 0.1 Sulfur Dioxide: 17.8 ppm +/- 0. Carbon Monoxide: 19.3 ppm +/-Nitrogen: Balance Total NOx: 18.9 ppm ** Total NOx for Reference Use

Reference Standards

SRM/GMIS:	GMIS
Cylinder Number:	CC-231360
Concentration:	24.24 ppm NO (+/- 0.08 ppm)
Expiration Date:	09/22/202

GMIS EB-0026731 25.556 ppm SO2 (+, 08/23/20

Certification Instrumentation

Component:	Nitric Oxide	Sulfur Dioxide
Make/Model:	Nicolet 6700	Nicolet 6700
Serial Number:	APW1100563	APW1100563
Principal of Measurement:	FTIR	FTIR
Last Calibration:	February 22, 2015	February 27, 2015

Cylinder Data

CA-05882 Cylinder 1 Cylinder Number: C Cylinder Outlet: CGA 660 February 25, 2018 Expiration Date: Analytical Uncertainty and NIST Traceability are in compliance with

Certified by:

Expiration Date:

NIST Sample Number:

Cole Dylandi

GMIS Traceability SRM Number: SRM-1683b CAL-018172 Cylinder Number: Cylinder Concentration:

03/25/19

45-V-08

Cole Dylewski Nitric Oxide

48.79 ppm NO (+/- 0.34 ppm)

Sulfur Dioxide SRM-1693a CAL-015255 49.66 ppm SO2 (+/-06/01/16 96-K-026

"UNMATCHED EXCELLENC

2048 APEX COURT, APOPKA, FLORIDA 32703 ~ PHONE (407 www.LIQUIDTECHCORP.COI

APOPKA, FL . PASADENA, T

Certificate of Analy - EPA PROTOCOI

Customer Date Delivery Receipt Gas Standard Final Analysis Date Expiration Date Coastal Air Consulting (Deland, FL) March 04, 2015 DR-55575 47.0 ppm Nitric Oxide, 47.0 ppm Sulf February 27, 2015 February 28, 2018

Analytical Data:

EPA Protocol, Section No. 2.2, Procedure G-1.

<u>Reported Concentr</u> <u>Nitric Oxide: 48.8 ppm +</u> <u>Sulfur Dioxide: 46.3 ppm</u> <u>Carbon Monoxide: 48.1 ppn</u> <u>Nitrogen: Balane</u> <u>Total NOx: 49.8 p</u> ** Total NOx for Reference

Reference Standards

SRM/GMIS:	GMIS	GMIS
Cylinder Number:	ND-45700	EB-0014694
Concentration:	49.256 ppm NO (+/- 0.43 ppm)	50.82 ppm SO
Expiration Date:	08/23/20	08/20/16

Certification Instrumentation

Component:	Nitric Oxide	Sulfur Dioxide
Make/Model:	Nicolet 6700	Nicolet 6700
Serial Number:	APW1200289	APW1200289
Principal of Measurement:	FTIR	FTIR
Last Calibration:	January 31, 2015	February 14, 2

Cylinder Data

Cylinder Number:	EB-0056549	Cylir
Cylinder Outlet:	CGA 660	
Expiration Date:	February 28, 2018	
Analytical Uncertainty	and NIST Traceability are in	n compliance

Certified by:

Cole Dylashi

	Cole Dylewski	
GMIS Traceability	Nitric Oxide	Sulfur Dioxide
SRM Number:	SRM-1683b	SRM-1693a
Cylinder Number:	CAL-018172	CAL-015255
Cylinder Concentration:	48.79 ppm NO (+/- 0.34 ppm)	49.66 ppm SO
Expiration Date:	03/25/19	06/01/16
NIST Sample Number:	45-V-08	96-K-026
		nen and - en range ar

"UNMATCHED EXCELI

2048 APEX COURT, APOPKA, FLORIDA 32703 ~ PHONE WWW.LIQUIDTECHCORI

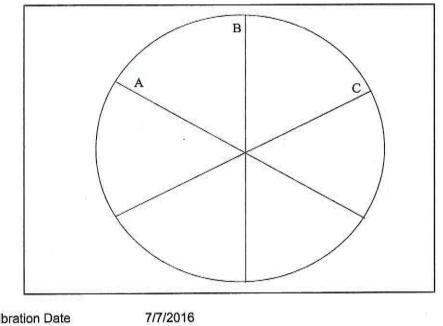
Diff and matrix many from the properties of the proproperity of the properies of the properties of the properties o																			
		DATE 9	5102/6/				MAX % VAR	ATION	1.8276%	PASS									
Notice Name <	AAROMETRIC PR		30.05				MAX 75 VAR	ATION	2.9348%	SPL SPL									
Matrix Turn <	ITICAL ORIFICE	DATA				AMBIENT	AMISIENT	METER	METER	METER	METER								
Math Math <th< td=""><td></td><td></td><td>VCTUAL</td><td>Hv</td><td>TIME</td><td>TEMP</td><td>TEMP.</td><td>TBAP.</td><td>TEMP.</td><td>READING</td><td>READING</td><td>W</td><td>VM</td><td>Va STD</td><td>Ver NOMINAL</td><td>,</td><td>VARIATION</td><td>AH H200</td><td>VARIATION</td></th<>			VCTUAL	Hv	TIME	TEMP	TEMP.	TBAP.	TEMP.	READING	READING	W	VM	Va STD	Ver NOMINAL	,	VARIATION	AH H200	VARIATION
320 520 10 71 77 79 70 3100 3130 3135 3136			73.5	form val	function of	1	1	g	£	202 600	205.778	3.1780	3.1305	3.1576	3.1988	1.0086	-0.008	111911	010000
20 0.25 10 77 73 7		1,2435	23.5	620	9	E.	22	8	6	206.778	208.947	3.1690	3.1188	3.1576	3.1988	1.0124	000070	16096	-0.0006
200 000 100 77 77 79 713 713 6400		0.2435	23.0	6270	9	11	1	Ŕ	£	208.947	212.104	3.1570	3.1070	3.1576	3.1588	1.0163	0.0038	10191	-0.005
100 100 <td></td> <td></td> <td></td> <td></td> <td>5</td> <td>F</td> <td>F</td> <td>R</td> <td>Ŗ</td> <td>UUE CLC</td> <td>216.803</td> <td>0105</td> <td>d 5730</td> <td>3.6126</td> <td>4 6777</td> <td>10196</td> <td>0.0013</td> <td>1,6127</td> <td>00000</td>					5	F	F	R	Ŗ	UUE CLC	216.803	0105	d 5730	3.6126	4 6777	10196	0.0013	1,6127	00000
22 0.0 7.0 7.7 7.9 7.9 7.0 7.00 4.020 4.030		13557	220	062	3 8	4 :	33	R	3	216.893	221.495	4.6020	4.5327	4.6126	4.6727	1.0176	-00000-	1.6127	00000
0.00 1.00 0.0 77 77 8.0 8.0 32331 35430 5580 5680		0.3557	22.0	0.62	P	2	4	R	R	221.495	226.097	4.6020	4.5327	4.6126	4.6727	1.0176	-00000-	1,6127 1,6127	00000
333 110 10 7 7 7 8 1 2.1.2.3 6.000 5.000		0.4616	20.5	01.10	6	13	14	88	8	226.200	232.254	6.0540	5,9568	5.9858 5.0000	6:00:9	1,0045	0.0010	1.6958	0.0000
100 126 10 79 12 10 75 10 756 7560 1000 16 2 <td></td> <td>0.4616 0.4616</td> <td>205</td> <td></td> <td>10</td> <td>× ۲</td> <td>8 8</td> <td>88</td> <td>81</td> <td>238,321</td> <td>244.388</td> <td>6,0670</td> <td>5.9606</td> <td>55802</td> <td>6.0696</td> <td>1.0036</td> <td>90000</td> <td>16959</td> <td>0.0000</td>		0.4616 0.4616	205		10	× ۲	8 8	88	81	238,321	244.388	6,0670	5.9606	55802	6.0696	1.0036	90000	16959	0.0000
100 130 0 79 79 10 7550 7650 7650 7650 7650 7650 7650 7650 7650 7650 7650 7650 7650 7650 7650 7650 7050 1000 160 79 79 10 79 10 733 2500 10050 7660 10500 1000 160 79 79 10 733 23340 100500 10500 1000 <td></td> <td>0.5916</td> <td>0,01</td> <td>1.80</td> <td>10</td> <td>ጽ</td> <td>ድ</td> <td>8</td> <td>53</td> <td>244.700</td> <td>252.595</td> <td>7.8950</td> <td>1,7564</td> <td>7,6573</td> <td>7,7862</td> <td>10,9874</td> <td>-0.0126</td> <td>1.6895</td> <td>0.0016</td>		0.5916	0,01	1.80	10	ጽ	ድ	8	53	244.700	252.595	7.8950	1,7564	7,6573	7,7862	10,9874	-0.0126	1.6895	0.0016
150 130 10 73 73 54 54 54 54 54 54 54 54 55 54 55 55 10 730 100 730 100 730 10		9165.0	19.0	1.80	9	8	R I	8	8	252.595	260.292	7,6970	7,5539	7,6573	7.7862	10137	0.0137	1.6879	00000
160 320 10 73 73 54 64 553-00 105500		0.5916	19.0	181	8	ぞ	\$	2	8	7677007	NTT-007	00101	00001	20021	70010	00001	00000	1.6579	00175
150 320 10 73 73 64 65 233490 203491 103501 10301 103511 <td></td> <td>0.5234</td> <td>16.0</td> <td>3.50</td> <td>10</td> <td>61</td> <td>62</td> <td>8</td> <td>8</td> <td>268.300</td> <td>279,090</td> <td>10.7500</td> <td>10.6040</td> <td>10.6576</td> <td>10,8369</td> <td>19001</td> <td>0.0029</td> <td>1.6896</td> <td>12000</td>		0.5234	16.0	3.50	10	61	62	8	8	268.300	279,090	10.7500	10.6040	10.6576	10,8369	19001	0.0029	1.6896	12000
0.00 0.01 0.00 0.00 <th< td=""><td></td><td>6234</td><td>16.0</td><td>3.50</td><td>e ;</td><td>P 9</td><td>6 9</td><td>8</td><td>88</td><td>279-090</td><td>200 200</td><td>10.8550</td><td>10.6620</td><td>0/20/01</td><td>10.8369</td><td>10017</td><td>10000-</td><td>1 6849</td><td>-0.0026</td></th<>		6234	16.0	3.50	e ;	P 9	6 9	8	88	279-090	200 200	10.8550	10.6620	0/20/01	10.8369	10017	10000-	1 6849	-0.0026
DATT SJ6/5016 IAROMETRIC FREESURE 30.4 CUUAL AIR TEAR METER MET		6720	10.01	000	2	n 7		3	20	CL2:007		-		-		1.0021	1200/0	1.6875	6/10/0
CULUIAL -FIL METER MET MET<	II ANNUAL CA	NOLLARION		DATE	3/6/2010		BAR	OMETRIC	RESSURE	30.14									
Main TEAR TEAR <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>AMBIENT</td><td>METER</td><td></td><td>METER</td><td>METER</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td></th<>							AMBIENT	METER		METER	METER							3	
FACTOR VACUUM UNIAL FIAL		RIFICE		Ηv	HIME	TIMAT	TEMP.	TEMP.		READING		WA	MA	DA COL	VCT		NOLLABAU	Hv HvU	VARIATIO
0.0616 2.10 1.1 10 62 55 5.00 5.575 5.000 5.575 5.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000 5.705 1.000		FACTOR		(OZH NI)	(WIIV)	INITAL	HINAL	INITIAL	TUNIT	TALLAR		(mana)	COMMERTICA	2002	4 1005		10006	1 2001	90000
uses LI I <td></td> <td>0.4616</td> <td>270</td> <td>3:</td> <td>2 9</td> <td>77 HZ</td> <td>8 8</td> <td>8 5</td> <td>7 2</td> <td>NIT OLD</td> <td>107717</td> <td>0.001 A</td> <td>2380.5</td> <td>50505</td> <td>6,1089</td> <td>15650</td> <td>-0.0084</td> <td>17065</td> <td>00000</td>		0.4616	270	3:	2 9	77 HZ	8 8	8 5	7 2	NIT OLD	107717	0.001 A	2380.5	50505	6,1089	15650	-0.0084	17065	00000
Mathematical Mathematical Construction Construction<		010570		1 5	4 F	3 8	3 5	1 2	5 2	218 381	160 MCZ	6.1300	5.9820	59595	6901.9	0.9962	5/00/0-	1.7018	-0.0037
Y ₄₊ Y ₄₊ (O / Vm) I Run 2 Run 3 Average 5 1.0090 1.0000 1.0055 6 1.0000 1.0000 1.0055 ASTM Aktive Aktive 1.0055 ASTM Aktive 1.0000 1.0055 AST Aktive 1.0000 1.0055 Attive AverActive 1.00547 1.00547		01050		1	2	3	1									0.9958	5110	1.7064	0.63%
I Run 2 Run 3 Average 5 1.0090 1.0000 1.0055 ASTM ASTM ASTM ASTM ANOMETER DEC.F) 22 212 407 407 405 4055 0.6347	TER COMPARIE	ON CHECK	(Mai)		Υ.		(sor(.319 x T	v)/62Xm	Hax (Pb+0	favg / 13.6)	v Md)) X sqr A	H avg							
075 1,0090 1,0000 ASTM ASTM REIMOMETER DELE-FI 22 212 407 407 407 407 407 407 407 407 407 407			(here		9.					5		,							
ASTM TERMOMITER (DEC.F) 22 212 407 407 407 407		Ya=	Run 1 1.0075	Run 2 1.0090	Run 3 1.000	Average 1.0055	a												
ASTM TC-1 THERMOMETER TC-1 THERMOMETER TC-1 THERMOMETER DEG 20 22 01 407 407 01 407 407 01 407 407 01 407 407 01 0.625 0.624 0.625	ERMOCOUPLE.	CALIBRAT	NO																
TC-1 THERMOMETER DEG.Fi DEG.Fi DEG.Fi DEG.Fi CE 30 22 NG H20 212 212 011 407 407 A07 A07 A07 A07 A07 A07 A07 A			5	;															
CE 20 22 NG H2O 212 212 NG H2O 212 212 DIL 407 407 A07 A07 A07 A07 A07 A07 A07 A07 A07 A		True -	THFRMC	METER															
CE 30 32 NG H2O 212 212 011 407 407 LE CALIBITATION LE CALIBITATION NGS IN (JN) NGS 1N (JN) 224 0.625		DECE	ĐĐ	E															
DL	DILING H20	8 2 9	កភ្ន																
LE CALLBRATION 7/7/2016 NGS IN (IN.) 820 0.625 0.624 0.625	OIL	104	F																
0.625 0.624 0.625	NTE ADINGS IN (IN	7/7/2016 3)			AVERAGE														
	#20	0.625	0.624	0.625	0.6247														

1

a sur pre-

Calibration Date: 7/7/2016 Calibration Device: ASTM Thermometer Calibrated By:Nicholas Decker, Beatty Environmental Services, LLC

Device	Ambient Air
ASTM Thermometer	80
Dry Gas Meter Thermocouple	80
Filter Thermocouple	80
Filter Heater Thermocouple	81
Impinger Outlet Thermocouple	80
Stack Temp Thermocouple (5ft. Air Cooled)	81

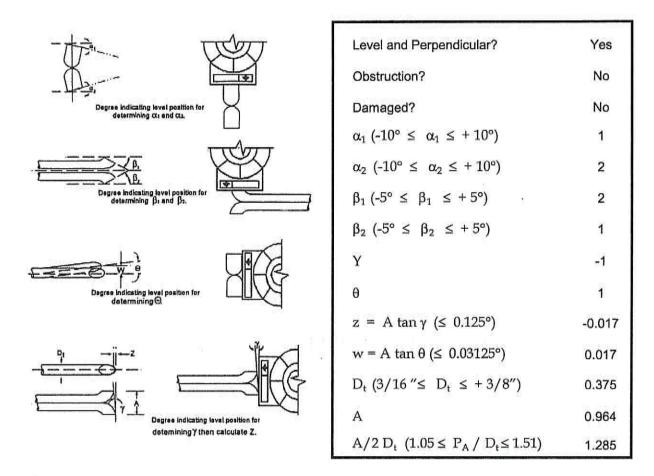

Analyst: 70

10.5 Temperature Sensors. Use the procedure in Section 10.3 of Method 2 to calibrate in-stack temperature sensors. Dial thermometers, such as are used for the DGM and condenser outlet, shall be calibrated against mercury-in-glass thermometers. An alternative mercury-free NISTtraceable thermometer may be used if the thermometer is, at a minimum, equivalent in terms of performance or suitably effective for the specific temperature measurement application. As an alternative, the following single-point calibration procedure may be used. After each test run series, check the accuracy (and, hence, the calibration) of each thermocouple system at ambient temperature, or any other temperature, within the range specified by the manufacturer, using a reference thermometer (either ASTM reference thermometer). The temperatures of the thermocouple and reference thermometers shall agree to within ±2 °F.

Nozzle Calibration

2

Nozzle ID	#20
A =	0.625
в =	0.624
C =	0.625
Average	0.6247



Calibration Date

Calibrated by

PITOT CALIBRATION

(Type S Pitot Tube Inspection)

Certification

I hereby certify that type S pitot tube ID# P-5AC meets or exceeds all specifications, criteria and applicable design features, and is hereby assigned a pitot tube calibration factor of 0.84.

Certified by:

Date 09/09/2015

Attachment F - Project Participants

ŝ

Project Participants

Beatty Environmental Services, LLC

Daniel R. Beatty Project Director

Nick Decker Field Technician

Zachary Beatty Field/Lab Manager

Coastal Air Consulting Steve Webb

A Rainbow Crossing Pet Memorial Services - FID # 0112719

Robert Johnson Owner/Operator

Regulatory Agency

Arthur Pennetta Broward County **EMPLOYERS**°

Workers' Compensation and Employers Liability Insurance Policy

THE REAL PROPERTY OF THE PROPE					
EMPLOYERS PREFE	ERRED INS. CO.		Policy Number	From Policy F	Period To
A Stock Company			EIG 2667708 02	2 07/31/2020 12:01A.M. Standard Time a Insured as stated herein	07/31/2021 at the address of the
	nedi serten wiel	Trans	action		
RENEWAL DECLA	RATIONS				
NCCI Carrier #	31283 WCIRB CA	ARRIER#	PRIOR POLICY NUMB	ER EIG2667708	301
1. Named Ir	sured and Address			Agent	
ESFD LLC DBA SA SAGEL BLOOMFIE 1091 ROCKVILLE ROCKVILLE MD 2	PIKE		THE JACOBS COMPAI 7075 SAMUEL MORSE COLUMBIA, MD 2104 Telephone: 4109	E DR STE 120	6455900
Customer #	Carrier # 31283	FEIN # 464943851	Risk ID # 190717747	Entity of Insured LIM LIABILITY C	0

Additional Locations:

- 2. The Policy Period is from 07/31/2020 to 07/31/2021 12:01 a.m. Standard Time at the Insured's mailing address.
- 3. A. Workers Compensation Insurance: Part ONE of the policy applies to the Workers Compensation Law of the states listed here: MD
 - B. Employers Liability Insurance: Part TWO of the policy applies to work in each state listed in Item 3A. The limits of our liability under Part TWO are:

Bodily Injury by Accident	\$ 500,000	each accident
Bodily Injury by Disease	\$ 500,000	policy limit
Bodily Injury by Disease	\$ 500,000	each employee

C. Other States Insurance: Part THREE of the policy applies to the states, if any, listed here: All states except ND, OH, WA, WY and states listed in item 3.A.

- D. This policy includes these endorsements and schedules: See attached schedule.
- 4. The premium for this policy will be determined by our Manuals of Rules, Classifications, Rates, and Rating Plans. All information required below is subject to verification and change by audit.

SEE EXTENSION OF INFORMATION PAGE

Minimum Premium	\$	750	Expense Constant Premium Discount	\$ \$	160	
Assessments and Taxes	\$		Total Estimated AnnualPremium	\$	3,702	
This is a Three Year F	ixed Ra	te Policy				
Premium Adjustment Pe	riod:	🖾 Annual; 🗆 s	Semiannual; 🛛 Quarterly; 🗖 Monthly			
Countersigned this Da	ay of		Q.			
Issued Date: 06/22/2020	1999 - 1999 1997 - 1997 1997 - 1997		Authorized Represe	ntative		
	NTYNE	RRED INS. CO. CORPORATE PL/ 8277-2685	ACE, SUITE 100			
ssued Date 06/22/2020 WC990630 (5/98 Ed.)			SURED COPY			

EMPLOYERS PREFERRED INS. CO. A Stock Company 14120 BALLANTYNE CORPORATE PLACE, SUITE 100 CHARLOTTE, NC 28277-2685

WORKERS' COMPENSATION AND EMPLOYERS LIABILITY INSURANCE POLICY

Policy Number:	EIG 2667708 02	
Named Insured:	ESFD LLC DBA SAGEL BLC	DOMFIELD
Agent: THE JAC	OBS COMPANY INC	6455900

EXTENSION OF INFORMATION PAGE

CLASSIFICATION OF OPERATIONS

Code No.	Classification Description	Premium Basis Total Est. Annual Remuneration	Rate Per \$100 of Remuneration	Estimated Annual Premium
Marylan	d			
Rating	Period: 07/31/2020 through 07/31/2021			
Site	00001			
8810	CLERICAL OFFICE EMPLOYEES NOC	190,000	0.070000	133.00
9620	FUNERAL DIRECTOR & DRIVERS	544,000	0.740000	4,026.00
Site	00001 Total		\$	4,159.00
Total	of Sites for Rating Period		\$	4,159.00
Rating	Period Total		\$	4,159.00
Rating	Period: 07/31/2020 through 07/31/2021			
9807 9848	INCREASED COVERAGE II BALANCE TO MIN PREM-COVERAGE II	4,159	0.008000	33.00 42.00
9887	SCHEDULE CREDIT	4,234	0.250000	-1,059.00
0900 9740	EXPENSE CONSTANT TERRORISM PREMIUM			160.00
9740 9741	CATASTROPHE PREMIUM	734,000	0.040000	294.00
	Period Total	734,000	0.010000 \$	73.00 4 57.00 -
State To	otal		\$	3,702.00
Policy T	otal		\$	3,702.00

EMPLOYERS PREFERRED INS. CO. A Stock Company 14120 BALLANTYNE CORPORATE PLACE, SUITE 100 CHARLOTTE, NC 28277-2685 WORKERS' COMPENSATION AND EMPLOYERS LIABILITY INSURANCE POLICY

Policy Number: EIG 2667708 02

 Named Insured:
 ESFD LLC DBA SAGEL BLOOMFIELD

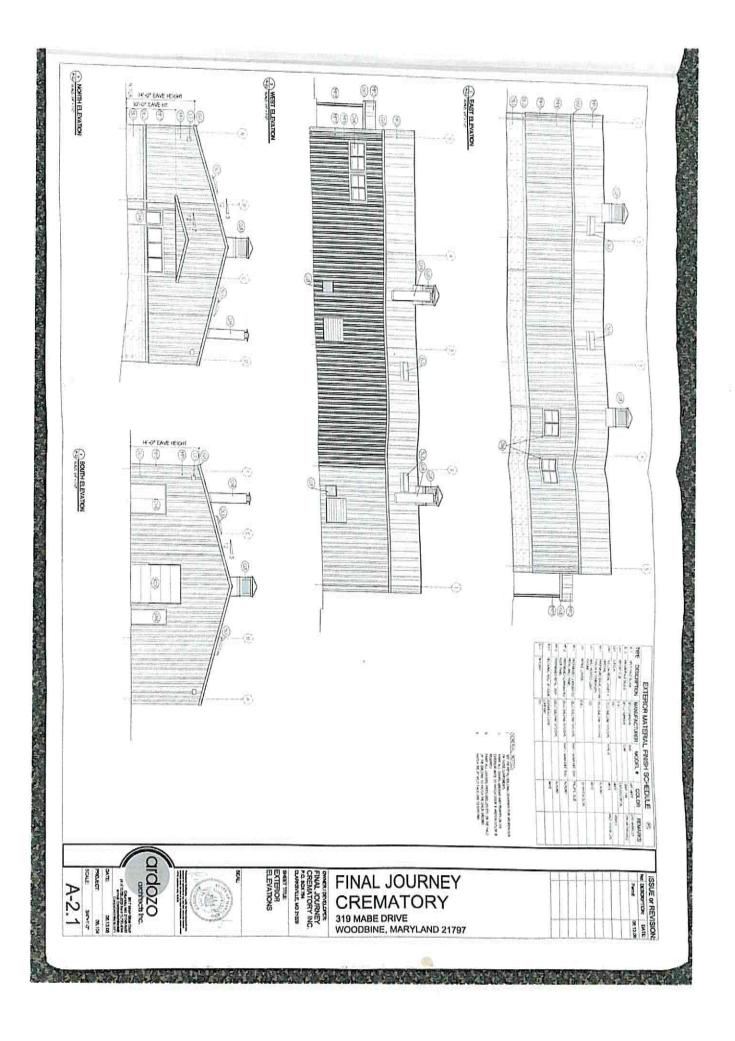
 Agent:
 THE JACOBS COMPANY INC
 6455900

SITE LOCATION SCHEDULE

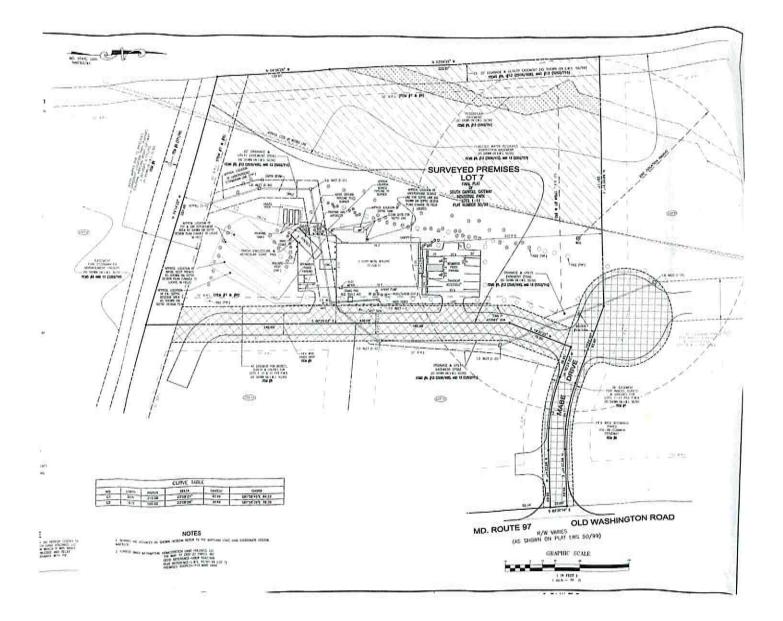
State MD 1 ESFD LLC DBA SAGEL BLOOMFIELD 1091 ROCKVILLE PIKE ROCKVILLE MD 20852-1403

EMPLOYERS PREFERRED INS. CO. A Stock Company 14120 BALLANTYNE CORPORATE PLACE, SUITE 100 CHARLOTTE, NC 28277-2685

WORKERS' COMPENSATION AND EMPLOYERS LIABILITY INSURANCE POLICY


 Policy Number:
 EIG 2667708 02


 Named Insured:
 ESFD LLC DBA SAGEL BLOOMFIELD


 Agent:
 THE JACOBS COMPANY INC
 6455900

ENDORSEMENT SCHEDULE

State	Form Nbr.	Ed. Date	Description
MD	WC000000C	(1/15)	WC/EL INS. POLICY FORM BOOKLET
MD	WC000115	(1/20)	ENDT OF PEND LAW CHG TO TRIPRA
MD	WC000403	(4/84)	EXPERIENCE RATING MOD FCTR
MD	WC000404	(4/84)	PENDING RATE CHANGE ENDT
MD	WC000406	(8/84)	PREMIUM DISCOUNT ENDORSEMENT
MD	WC000414A	(1/19)	NOTIFICATION OF CHG OWNERSHIP
MD	WC000419	(1/01)	PREMIUM DUE DATE ENDORSEMENT
MD	WC000421D	(1/15)	CATASTROPHE PREMIUM ENDORSE
MD	WC000422B	(1/15)	TERRORISM RISK INSURANCE PROG
MD	WC000424	(1/17)	AUDIT NONCOMPLIANCE CHARGE END
MD	WC190601G	(10/17)	MD CANCELLATION & NONRENEWAL
MD	WC190602	(1/14)	MD NOTIFICATION 45-DAY UW PERD
MD	WC990405A	(3/07)	INSTALLMENT PAYMENT ENDORSE

Jay C. Voight, Zoning Administrator Office of Zoning Administration 410-386-2980, fax 410-386-2451 Toll-free 1-888-302-8978 MD Relay service 7-1-1/1-800-735-2258

Thomas S. Devilbiss, Director Department of Land and Resource Management Carroll County Government 225 North Center Street Westminster, Maryland 21157

January 26, 2021

Daniel Simons ESFD Land Holdings, LLC 519 Mabe Drive Woodbine, MD 21797

Re: Forever Faithful Pet Cremation and Funeral Care, LLC 519 Mabe Drive

To Whom It May Concern,

The property located at 519 Mabe Drive, also known as Map 77, Grid 22, Parcel 467, is zoned "I-2" Heavy Industrial. According to section 158.082 of the code, a crematory is a principal permitted use and is allowed by right in the I-2 zoning district.

If you have any questions, please feel free to call my office at 410.386.2980.

Sincerely,

Yay C. Voight

Zoning Administrator

JCV/ab

Carroll County

a great place to live, a great place to work, a great place to play

MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION APPLICATION FOR A PERMIT TO CONSTRUCT

SUPPLEMENT TO DOCKET #03-21

COMPANY: Final Journey Crematory, LLC 519 Mabe Drive LOCATION: Woodbine, MD 21797 APPLICATION: Installation of one (1) animal crematory rated at 150 lbs/hr ITEM DESCRIPTION 1 Notice of Tentative Determination, Opportunity to Request a Public Hearing, and Opportunity to Submit Written Comments 2 Fact Sheet and Tentative Determination 3 Draft Permit to Construct and Conditions 4 **Email Appending Application** 5 Supplemental Information Privilege Log – Not Applicable 6

MARYLAND DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

NOTICE OF TENTATIVE DETERMINATION, OPPORTUNITY TO REQUEST A PUBLIC HEARING, AND OPPORTUNITY TO SUBMIT WRITTEN COMMENTS

FIRST NOTICE

The Department of the Environment, Air and Radiation Administration (ARA) has completed its review of an application for a Permit to Construct submitted by Final Journey Crematory, LLC on January 26, 2021 for the installation of one (1) animal crematory rated at 150 lbs/hr. The proposed installation will be located at 519 Mabe Drive, Woodbine, MD 21797.

Pursuant to Section 1-604, of the Environment Article, Annotated Code of Maryland, the Department has made a tentative determination that the Permit to Construct can be issued and is now ready to receive public comment on the application.

Copies of the Department's tentative determination, the application, the draft permit to construct with conditions, and other supporting documents are available for public inspection on the Department's website. Look for Docket #03-21 at the following link:

https://mde.maryland.gov/programs/Permits/AirManagementPermits/Pages/index.aspx

Interested persons may request a public hearing and/or submit written comments on the tentative determination. Requests for a public hearing must be submitted in writing and must be received by the Department no later than 20 days from the date of this notice. Written comments must be received by the Department no later than 30 days from the date of this notice.

Interested persons may request an extension to the public comment period. The extension request must be submitted in writing and must be received by the Department no later than 30 days from the date of this notice or within 5 days after the hearing (if a hearing is requested), whichever is later. The public comment period may only be extended one time for a 60-day period.

All requests for a public hearing, requests for an extension to the public comment period, and all written comments should be emailed to Ms. Shannon Heafey at shannon.heafey@maryland.gov.

Further information may be obtained by contacting Ms. Shannon Heafey by email at shannon.heafey@maryland.gov or by phone at (410) 537-4433.

George S. Aburn, Jr., Director Air and Radiation Administration

MARYLAND DEPARTMENT OF ENVIRONMENT AIR AND RADIATION ADMINISTRATION

FACT SHEET AND TENTATIVE DETERMINATION FINAL JOURNEY CREMATORY, LLC

PROPOSED INSTALLATION OF ONE (1) ANIMAL CREMATORY RATED AT 150 LBS/HR

I. INTRODUCTION

The Maryland Department of the Environment (the "Department") received an application from Final Journey Crematory, LLC on January 26, 2021, with an amendment on September 30, 2021, for a Permit to Construct for the installation of one (1) animal crematory rated at 150 lbs/hr. The proposed installation will be located at 519 Mabe Drive, Woodbine, MD 21797.

A notice was placed in The Carroll County Times on May 11, 2021 and May 18, 2021 announcing an opportunity to request an informational meeting to discuss the application for a Permit to Construct. An informational meeting was not requested.

As required by law, all public notices were also provided to elected officials in all State, county, and municipality legislative districts located within a one mile radius of the facility's property boundary.

The Department has reviewed the application and has made a tentative determination that the proposed installation is expected to comply with all applicable air quality regulations. A notice will be published to provide the public with opportunities to request a public hearing and to comment on the application, the Department's tentative determination, the draft permit conditions, and other supporting documents. The Department will not schedule a public hearing unless a legitimate request is received.

If the Department does not receive any comments that are adverse to the tentative determination, the tentative determination will automatically become a final determination. If adverse comments are received, the Department will review the comments, and will then make a final determination with regard to issuance or denial of the permit. A notice of final determination will be published in a newspaper of general circulation in the affected area. The final determination may be subject to judicial review pursuant to Section 1-601 of the Environment Article, Annotated Code of Maryland.

II. CURRENT STATUS AND PROPOSED INSTALLATION

A. Current Status

Final Journey Crematory, LLC currently operates two (2) human crematories and one (1) animal crematory at their facility. The second human crematory was installed in 2020. They have a current State Permit to Operate that expires November 30, 2024.

B. Proposed Installation

On January 26, 2021, Final Journey applied for the installation of one (1) animal crematory at their existing facility. The crematory contains four (4) chambers, one (1) 200 lb, one (1) 75 lb, and two (2) 50 lb.

On September 30, 2021, Final Journey amended their application to include raising the stack height of their existing animal crematory to a minimum of 27 feet.

The permit will supersede all previous permits to construct issued to the facility and includes a temporary permit to operate.

The crematory will be required to have a stack height of at least 27 feet on each of the two (2) animal crematories.

The facility will be subject to the following operating limitations:

- (1) Shall not cremate more than 9 human remains during any rolling 8-hour period;
- (2) Shall not cremate more than 9,855 human remains during any rolling 12-month period;
- (3) Shall not cremate more than 1,400 pounds of animal remains in each animal crematory during any rolling 8-hour period;
- (4) Shall not cremate more than 400,000 pounds (200 tons) of animal remains during any rolling 12-month period;
- (5) Shall not combust any halogenated plastics, including polyvinyl chloride (PVC) body bags or PVC pipes; and,
- (6) Shall not combust any hazardous waste, or hospital, medical, and infectious waste as defined in COMAR 26.11.08.01B(18).

III. APPLICABLE REGULATIONS

The proposed installation is subject to all applicable Federal and State air quality control regulations, including, but not limited to the following:

- (a) COMAR 26.11.01.07C, which requires that the Permittee report to the Department occurrences of excess emissions.
- (b) COMAR 26.11.02.09A which requires the Permittee to obtain a Permit to Construct if an installation is modified in such a manner that there is a change in the quantity, nature, or characteristics of emissions from the source from those provided in this permit.
- (c) COMAR 26.11.02.13A(1) which requires the Permittee to obtain a Permit to Operate from the Department before operating the crematory.
- (d) COMAR 26.11.02.19C & D, which require that the Permittee submit to the Department annual certifications of emissions, and that the Permittee maintain sufficient records to support the emissions information presented in the submittals.
- (e) COMAR 26.11.06.08 and 26.11.06.09, which generally prohibit the discharge of emissions beyond the property line in such a manner that a nuisance or air pollution is created.
- (f) COMAR 26.11.08.04B which prohibits the discharge of emissions, other than water in an uncombined form, which is visible to human observers.
- (g) COMAR 26.11.08.04C which provides exceptions to the visible emissions regulations during start-up, adjustments or occasional cleaning of control equipment, but which limits the emissions to no more than 40 percent opacity for not more than 6 consecutive minutes in any 60 minute period.
- (h) COMAR 26.11.08.05 which limits particulate matter emissions to 0.10 grains per standard cubic foot of dry gas, corrected to 12 percent carbon dioxide.
- COMAR 26.11.15.05, which requires that the Permittee implement "Best Available Control Technology for Toxics" (T – BACT) to control emissions of toxic air pollutants.
- (j) COMAR 26.11.15.06, which prohibits the discharge of toxic air pollutants to the extent that such emissions will unreasonably endanger human health.

IV. GENERAL AIR QUALITY

The U.S. Environmental Protection Agency (EPA) has established primary and secondary National Ambient Air Quality Standards (NAAQS) for six (6) criteria pollutants, i.e., sulfur dioxide, particulate matter, carbon monoxide, nitrogen dioxide, ozone, and lead. The primary standards were established to protect public health, and the secondary standards were developed to protect against non-health effects such as damage to property and vegetation.

The Department utilizes a statewide air monitoring network, operated in accordance with EPA guidelines, to measure the concentrations of criteria pollutants in Maryland's ambient air. The measurements are used to project statewide ambient air quality, and currently indicate that Carroll complies with the NAAQS for sulfur dioxide, particulate matter, carbon monoxide, nitrogen dioxide, and lead.

Ground level ozone continues to present a problem for the entire Baltimore metropolitan area, which is classified as a non-attainment area for ozone. The primary contributors to the formation of ozone are emissions of oxides of nitrogen, primarily from combustion equipment, and emissions of Volatile Organic Compounds (VOC) such as paint solvents and gasoline vapors. Carroll County is included in the non-attainment area for ozone.

With regard to toxic air pollutants (TAPs), screening levels (i.e., acceptable ambient concentrations for toxic air pollutants) are generally established at 1/100 of allowed worker exposure levels (TLVs)¹. The Department has also developed additional screening levels for carcinogenic compounds. The additional screening levels are established such that continuous exposure to the subject TAP at the screening level for a period of 70 years is expected to cause an increase in lifetime cancer risk of no more than 1 in 100,000.

V. COMPLIANCE DEMONSTRATION AND ANALYSIS

The proposed installation must comply with all State imposed emissions limitations and screening levels, as well as the NAAQS. The Department has conducted an engineering and air quality review of the application. The emissions were projected based on crematory capacity, permit limits, and U.S. EPA approved emission factors (AP-42). The conservative U.S. EPA's SCREEN3 model was also used to project the maximum ground level concentrations from the proposed facility, which were then compared to the screening levels and the NAAQS.

A. Estimated Emissions - The maximum emissions of air pollutants of concern from the proposed installation are listed in Table I.

¹ TLVs are threshold limit values (exposure limits) established for toxic materials by the American Conference of Governmental Industrial Hygienists (ACGIH). Some TLVs are established for short-term exposure (TLV – STEL), and some are established for longer-term exposure (TLV – TWA), where TWA is an acronym for time-weight average.

- B. Compliance with National Ambient Air Quality Standards The maximum ground level concentrations for sulfur dioxide, particulate matter, carbon monoxide, and nitrogen dioxide based on the emissions from the proposed installation are listed in column 2 of Table II. The combined impact of the projected contribution from the proposed installation and the ambient background concentration for each pollutant shown in column 3 of Table II is less than the NAAQS for each pollutant shown in column 4.
- C. Compliance with Air Toxics Regulations The toxic air pollutants requiring screening analysis for the compliance demonstration that would be emitted from this installation are listed in column 1 of Table III. The predicted maximum off-site ambient concentrations of these toxic air pollutants are shown in column 4 of Table III, and in each case the maximum concentration is less than the corresponding screening level for the toxic air pollutant shown in column 2.

VI. TENTATIVE DETERMINATION

Based on the above information, the Department has concluded that the proposed installation will comply with all applicable Federal and State air quality control requirements. In accordance with the Administrative Procedure Act, Department has made a tentative determination to issue the Permit to Construct.

Enclosed with the tentative determination is a copy of the draft Permit to Construct.

TABLE I PROJECTED MAXIMUM EMISSIONS FROM THE PROPOSED INSTALLATION

	PROJECTED MAXIMUM EMISSIONS FROM PROPOSED INSTALLATION	
POLLUTANT	(lbs/day)	(tons/year)
Nitrogen Dioxide (NO ₂)	4.9	0.76
Sulfur Dioxide (SO ₂)	2.1	0.32
Carbon Monoxide (CO)	4.1	0.64
Volatile Organic Compounds (VOC)	2.9	0.45
Particulate Matter (PM ₁₀)	1.2	0.19

TABLE II PROJECTED IMPACT OF EMISSIONS OF CRITERIA POLLUTANTS FROM THE PROPOSED INSTALLATION ON AMBIENT AIR QUALITY

POLLUTANTS	MAXIMUM OFF-SITE GROUND LEVEL CONCENTRATIONS CAUSED BY EMISSIONS FROM PROPOSED PROCESS (µg/m ³)	BACKGROUND AMBIENT AIR CONCENTRATIONS (µg/m³)*	NATIONAL AMBIENT AIR QUALITY STANDARDS (NAAQS) (µg/m ³)
Nitrogen Dioxide (NO ₂)	annual avg.→ 1.0	annual avg.→ 27.0	annual avg. \rightarrow 100
Carbon Monoxide (CO)	8-hour max→ 10.7 1-hour max → 15.3	8-hr max.→ 802 1-hr max.→ 916	8-hr max.→ 10,000 1-hr max.→ 40,000
Sulfur Dioxide (SO ₂)	24-hour max. → 3.1 annual avg. → 0.4	24-hour max.→ 5.8 annual avg.→ 1.1	24-hour max.→ 366 annual avg.→ 78.5
Particulate Matter (PM ₁₀)	24-hr max \rightarrow 1.8	24-hr max.→ 36	24-hr max.→ 150

*Background concentrations were obtained from Maryland air monitoring stations as follows:

NO₂, CO and SO₂ \rightarrow HU-Beltsville Monitoring Station in Prince George's County PM₁₀ \rightarrow Glen Burnie Monitoring Station in Anne Arundel County

TABLE III PREDICTED MAXIMUM OFF-SITE AMBIENT CONCENTRATIONS FOR TOXIC AIR POLLUTANTS EMITTED FROM THE PROPOSED INSTALLATION

TOXIC AIR POLLUTANTS	SCREENING LEVELS (μg/m³)	PROJECTED WORST-CASE FACILITY-WIDE EMISSIONS (lbs/hr)	PREDICTED MAXIMUM OFF-SITE GROUND LEVEL CONCENTRATIONS (µg/m ³)
Beryllium	1-hour→ None 8-hour→ 0.0005 Annual→ 0.0004	0.000006	1-hour→ None 8-hour→ 0.00037 Annual→ 0.000009
Hydrogen Chloride	1-hour→ 29.8 8-hour→ 165 Annual→ None	0.31	1-hour→ 22.8 8-hour→ 0.033 Annual→ None
Mercury	1-hour→ 0.3 8-hour→ 0.1 Annual→ None	0.014	1-hour→ 0.23 8-hour→ 0.09 Annual→ None

The values represent maximum facility-wide emissions of toxic air pollutants during any 1-hour period of facility operation.

The values are based on worst-case emissions from the proposed facility and were predicted by EPA's SCREEN3 model, which provides conservative estimations concerning the impact of pollutants on ambient air quality.

DRAFT PERMIT

Larry Hogan

Ben Grumbles

Air and Radiation Administration

1800 Washington Boulevard, Suite 720

Baltimore, MD 21230

Construction Permit	Operating Permit
PERMIT NO.:	DATE ISSUED:
As listed on Page 2	<u>TBD</u>
PERMIT FEE:	EXPIRATION DATE:
<u>\$1,500 (paid)</u>	In accordance with COMAR 26.11.02.04B
LEGAL OWNER & ADDRESS Final Journey Crematory, LLC 519 Mabe Drive Woodbine, MD 21797 Attention: Mr. Daniel Simons, General Manager	SITE Final Journey Crematory, LLC 519 Mabe Drive Woodbine, MD 21797 AI # 32492

SOURCE DESCRIPTION

Two (2) human and two (2) animal crematories

This permit authorizes the installation of one (1) animal crematory.

This permit supersedes permits to construct 013-0363-1-0009, 0010, and 0015 issued on August 18, 2020

This source is subject to the conditions described on the attached pages.

Page 1 of 11

Program Manager

Director, Air and Radiation Administration

Crematory	Permit Number
B&L Phoenix II-1 human crematory	013-0363-1-0015
B&L BLP-750 animal crematory	013-0363-1-0010
B&L Phoenix II-1 human crematory	013-0363-1-0009
B&L BLP-500M4 animal crematory	013-0363-1-0017

Index

- Part A Construction Conditions
- Part B Temporary Operating Conditions
- Part C Operating Conditions
- Part D Monitoring and Recording
- Part E Record Keeping and Reporting
- Part F General Provisions
- Part G Applicable Regulations

Part A - Construction Conditions

- (1) Except as otherwise provided in this part, each crematory shall be constructed and installed in accordance with the application and specifications provided by the vendor and manufacturer.
- (2) Each crematory shall be designed to limit particulate matter emissions to no more than 0.10 grains per standard cubic foot dry, adjusted to 12 percent carbon dioxide.
- (3) Each crematory shall be equipped with a secondary combustion chamber having a retention time of at least 1.0 seconds, and an operating temperature of at least 1600 degrees Fahrenheit (F).
- (4) Each crematory shall be equipped with temperature sensors and recorders to continuously monitor and record the temperature of the secondary combustion chamber during operation.
- (5) In order to minimize odors and ground level air pollution, each crematory stack shall vent exhaust gasses straight up without restriction or obstruction. If a rain cap is installed, it shall be designed to automatically open when the unit is operating, so as to not obstruct the upward flow of the exhaust gasses in any manner.
- (6) Each crematory stack shall be installed according to the following requirements:

Crematory	Minimum stack height above roof peak (feet)	Minimum stack height above ground (feet)
B&L Phoenix II-1 human crematories	11	31
B&L BLP-750 and BLP 500M4 animal crematories	7	27

Part B - Temporary Operating Conditions

- (1) These temporary operating conditions apply only to the new B&L BLP-500M4 animal crematory.
- (2) This permit to construct shall also serve as a temporary permit to operate that grants the Permittee the right to operate the crematory for a period of up to 180 days after initial operation of the crematory.
- (3) During the period of the temporary permit to operate the Permittee shall operate the crematory in accordance with this permit to construct and in accordance with the operating instructions as provided by the equipment manufacturer and vendor.
- (4) At least 10 days prior to the initial operation of the crematory, the Permittee shall notify the Department in writing of the anticipated date of initial operation.
- (5) No later than 15 days after the initial operation of the crematory, the Permittee shall notify the Department in writing of the actual date of start-up.
- (6) The Permittee shall submit an application for a state permit to operate no later than 60 days prior to the expiration of this temporary permit to operate.

Part C - Operating Conditions

- (1) The Permittee shall abide by the following premises wide operational limitations:
 - (a) Shall not cremate more than 9 human remains during any rolling 8-hour period;
 - (b) Shall not cremate more than 9,855 human remains during any rolling 12-month period;
 - (c) Shall not cremate more than 1,400 pounds of animal remains in each animal crematory during any rolling 8-hour period;
 - (d) Shall not cremate more than 400,000 pounds (200 tons) of animal remains during any rolling 12-month period;
 - (e) Shall not combust any halogenated plastics, including polyvinyl chloride (PVC) body bags or PVC pipes; and,
 - (f) Shall not combust any hazardous waste, or hospital, medical, and infectious waste as defined in COMAR 26.11.08.01B(18).
- (2) The Permittee shall maintain and operate the crematory and all associated air pollution control equipment so as to assure full and continuous compliance with all applicable air pollution control regulations and permit conditions.
- (3) The Permittee shall maintain, calibrate, and operate all control panel instrumentation and equipment used to monitor the performance of the crematory and the secondary chamber.
- (4) Prior to the initiation of cremation in the primary chamber, the secondary chamber shall be preheated until the gases leaving the secondary chamber attain a temperature of at least 1600 degrees F.
- (5) While remains are being cremated, the secondary chamber temperature set point shall be at least 1600 degrees F or higher.

Part D - Monitoring and Recording

- (1) Prior to use, the chart recorder, or other temperature recording device, for each crematory shall be turned on and recording at the initiation of preheating the secondary chamber in order to document that the secondary chamber achieves a temperature of 1600 degrees F. prior to beginning each cremation.
- (2) While remains are being cremated, the temperature of the flue gases from the secondary chamber of the crematory shall be continuously recorded on its chart recorder, or other temperature recording device. Each chart shall be dated and annotated in such a manner that the date and time of any recorded temperature event may be easily determined.
- (3) The chart recorder paper, or other continuous record keeping method, for each crematory shall be replaced as necessary in order to ensure that there is no overlapping of any portion of the recording of cremation cycles.

Part E - Record Keeping and Reporting

- (1) The Permittee shall maintain for at least five (5) years, and shall make available to the Department upon request, records of the following information:
 - (a) Chart recordings, or other continuous recording keeping method, for each crematory that clearly show the following information;
 - (i) The identity of the crematory being recorded;
 - (ii) The flue gas temperature at the outlet of the secondary chamber; and,
 - (iii) The date and start time of each and every cremation shown on the chart.
 - (b) A daily log that clearly shows the following information:
 - (i) The date and start time of each and every cremation;
 - (ii) The identity of the crematory used for each and every cremation,
 - (iii) The approximate weight of the charge for each and every cremation; and,
 - (iv) The duration of each and every cremation.
- (2) The Permittee shall maintain at the facility for at least five (5) years records necessary to support annual certifications of emissions and demonstrations of compliance for toxic air pollutants. Such records shall include, if applicable, the following:
 - (a) Mass emissions rates for each regulated pollutant, and the total mass emissions rate for all regulated pollutants for each registered source of emissions;
 - (b) Accounts of the methods and assumptions used to quantify emissions;
 - (c) All operating data, including operating schedules and production data, that were used in determinations of emissions;
 - (d) Amounts, types, and analyses of all fuels used;
 - (e) Any records, the maintenance of which is required by this permit or by State or federal regulations, that pertain to the operation and maintenance of continuous emissions monitors, including:
 - (i) All emissions data generated by such monitors;
 - (ii) All monitor calibration data;
 - (iii) Information regarding the percentage of time each monitor was available for proper service; and
 - (iv) Information concerning any equipment malfunctions.

Page 6 of 11

- (f) Information concerning operation, maintenance, and performance of air pollution control equipment and compliance monitoring equipment, including:
 - (i) Identifications and descriptions of all such equipment;
 - (ii) Operating schedules for each item of such equipment;
 - (iii) Accounts of any significant maintenance performed;
 - (iv) Accounts of all malfunctions and outages; and
 - (v) Accounts of any episodes of reduced efficiency.
- (g) Limitations on source operation or any work practice standards that significantly affect emissions; and
- (h) Other relevant information as required by the Department.
- (3) The Permittee shall submit to the Department by April 1 of each year during the term of this permit a certification of emissions for the previous calendar year. The certifications shall be prepared in accordance with requirements adopted under COMAR 26.11.02.19D.
 - (a) Certifications of emissions shall be submitted on forms obtained from the Department.
 - (b) A certification of emissions shall include mass emissions rates for each regulated pollutant, and the total mass emissions rate for all regulated pollutants for each of the Permittee's registered sources of emissions.
 - (c) The person responsible for a certification of emissions shall certify the submittal to the Department in the following manner:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

- (4) The Permittee shall submit to the Department, by April 1 of each year during the term of this permit, a written certification of the results of an analysis of emissions of toxic air pollutants from the Permittee's facility during the previous calendar year. Such analysis shall include either:
 - (a) A statement that previously submitted compliance demonstrations for emissions of toxic air pollutants remain valid; or

- (b) A revised compliance demonstration, developed in accordance with requirements included under COMAR 26.11.15 & 16, that accounts for changes in operations, analytical methods, emissions determinations, or other factors that have invalidated previous demonstrations.
- (5) The Permittee shall report, in accordance with requirements under COMAR 26.11.01.07C, occurrences of excess emissions to the Compliance Program of the Air and Radiation Administration.

Part F - General Provisions

- (1) The following applications are incorporated by reference into this permit:
 - (a) Initial Application for Incinerators (AMA-10) received January 26, 2021;
 - (b) Application for Processing/Manufacturing Equipment (AMA-5) received January 26, 2021;
 - (c) Emission Point Date (AMA-5EP) received January 26, 2021;
 - (d) Toxic Air Pollutant (TAP) Emissions Summary and Compliance Demonstration (AMA-5T) received January 26, 2021;
 - (e) Application for Permit to Construct Gas Cleaning or Emission Control Equipment (AMA-6) received January 26, 2021;
 - (f) A Toxic Air Pollutant Analysis received January 26, 2021 and,
 - (g) Other documents as received including an email on September 30, 2021 requesting to raise the stack height on the B&L BLP-750 animal crematory (ARA Registration No. 013-0363-1-0010).

If there are any discrepancies between the permit and the application, the conditions on this permit will take precedence. In the application, estimates of dimensions, volumes, emission rates, operating rates, feed rates and hours of operation are not deemed to constitute enforceable numeric limits except to the extent that they are necessary to make a determination of compliance with applicable regulations.

- (2) Inspectors from the Department and the Carroll County Health Department shall be afforded access to the Permittee's property at any reasonable time for:
 - (a) inspecting construction authorized under this permit;
 - (b) sampling any materials stored or processed on site, or any waste or discharge into the environment to determine compliance with the permit;
 - (c) inspecting any monitoring equipment required by the permit;
 - (d) having access to or copying any records relevant to the Department's determination of compliance with an air pollution control requirement including all documents required to be kept by this permit; and
 - (e) obtaining any photographic documentation and evidence to determine compliance with the permit.
- (3) This permit expires if substantial construction has not commenced within 18 months after the issue date of this permit, or if construction is substantially discontinued for a period of 18 months after the construction has commenced, or if construction is not completed within a reasonable period of time.
- (4) Prior to any increase in the quantities and/or change in the types of materials stated in the application or limited by the permit, notification shall be provided to the Department. If the Department determines that the change constitutes a modification, the Permittee shall obtain a Permit to Construct prior to the modification.
- (5) Nothing in this permit authorizes the violation of any rule or regulation nor the creation of a nuisance or air pollution.

- (6) If any provision of this permit shall be held invalid for any reason, the remaining provisions shall remain in full force and effect, and such invalid provisions shall be considered severed and deleted from the permit.
- (7) This permit supersedes permits to construct 013-0363-1-0009, 0010, & 0015 issued on August 18, 2020.
- (8) Subsequent to issuance of this permit, the Department may impose additional and modified requirements that are incorporated into a state permit to operate issued pursuant to COMAR 26.11.02.13

Part G - Applicable Regulations

- (1) This source is subject to all applicable Federal and local requirements.
- (2) This source is subject to all applicable federally enforceable air pollution control requirements including, but not limited to, the following regulations:
 - (a) COMAR 26.11.01.07C, which requires that the Permittee report to the Department occurrences of excess emissions.
 - (b) COMAR 26.11.02.09A, which requires that the Permittee obtain a permit-to-construct if an installation is to be modified in manner that causes a change in the quantity, nature, or characteristics of emissions referenced in the permit-to-construct issued for that installation.
 - (c) COMAR 26.11.02.19C, which requires that the Permittee maintain records necessary to support the emission certification.
 - (d) COMAR 26.11.08.04B which prohibits emissions visible to human observers, other than water in an uncombined form.
 - (e) COMAR 26.11.08.04C which provides exceptions to the visible regulations during start-up, or adjustments or occasional cleaning of control equipment if the visible emissions are not greater than 40 percent opacity, and the visible emissions do not occur for more than 6 consecutive minutes in any 60 minute period.
 - (f) COMAR 26.11.08.05A&B which limits particulate matter emissions to 0.10 grains per standard cubic foot of dry gas, corrected to 12 percent carbon dioxide.
- (3) This source is subject to all applicable state-only air pollution control requirements including, but not limited to, the following regulations:
 - (a) COMAR 26.11.02.13A(1), which requires that the Permittee maintain and renew as required a valid State permit-to-operate issued by the Department.
 - (b) COMAR 26.11.02.19C & D, which require that the Permittee submit to the Department annual certifications of emissions, and that the Permittee maintain sufficient records to support the emissions information presented in the submittals.
 - (c) COMAR 26.11.06.08 and 26.11.06.09, which generally prohibit the discharge of emissions beyond the property line in such a manner that a nuisance or air pollution is created.
 - (d) COMAR 26.11.15.05, which requires that the Permittee implement "Best Available Control Technology for Toxics" (T BACT) to control emissions of toxic air pollutants.
 - (e) COMAR 26.11.15.06 which prohibits the discharge of toxic air pollutants to the extent that the emissions endanger human health.

Matthew Hafner -MDE- <matthew.hafner@maryland.gov>

Additional Stack Height for B&L BLP-750 to 27 ft.

dan@goinghomecares.com <dan@goinghomecares.com> To: Matthew Hafner -MDE- <matthew.hafner@maryland.gov> Cc: Albert Bloomfield <al@sagelbloomfield.com>, Ed Sagel <ed@sagelbloomfield.com> Thu, Sep 30, 2021 at 12:16 PM

Matt -

We are requesting to raise the stack height of the existing B&L BLP-750 animal crematory (ARA Registration No. 013-0363-1-0010) to 27 feet. Please add to the docket with the permit application for the B&L BLP-500M4 animal crematory.

If any additional information is needed please contact me anytime.

Regards,

Dan Simons

Daniel Simons General Manager Final Journey Crematory 519 Mabe Drive Woodbine, MD 21797 Ph. (410)795-0702 Cell (443)202-5720

MARYLAND DEPARTMENT OF THE ENVIRONMENT

AIR AND RADIATION ADMINISTRATION

SUPPLEMENTAL INFORMATION REFERENCES

The Code of Maryland Regulations (COMAR) is searchable by COMAR citation at the following Division of State Documents website: http://www.dsd.state.md.us/COMAR/ComarHome.html

The Code of Federal Regulations (CFR), including New Source Performance Standards (NSPS) at 40 CFR, Part 60 and National Emission Standards for Hazardous Air Pollutants (NESHAP) at 40 CFR, Parts 61 and 63, is searchable by CFR citation at the following U.S. Government Publishing Office website: http://www.ecfr.gov

Information on National Ambient Air Quality Standards (NAAQS) is located at the following U.S. Environmental Protection Agency (EPA) website: https://www.epa.gov/criteria-air-pollutants/naaqs-table

Information on Maryland's Ambient Air Monitoring Program is located at the following Maryland Department of the Environment website: http://mde.maryland.gov/programs/Air/AirQualityMonitoring/Pages/index.aspx

Information on the U.S. EPA's Screen3 computer model and other EPA-approved air dispersion models is located at the following U.S. EPA website: <u>http://www.epa.gov/scram001/dispersion_screening.htm</u>

Information on the U.S. EPA TANKS Emission Estimation Software is located at the following U.S. EPA website:

http://www.epa.gov/ttn/chief/software/tanks/index.html

Information on the U.S. EPA Emission Factors and AP-42 is located at the following U.S. EPA website:

https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-airemission-factors