

Mueser Rutledge Consulting Engineers

14 Penn Plaza · 225 West 34th Street · New York, NY 10122 Tel: (917) 339-9300 · Fax: (917) 339-9400 www.mrce.com

MEMORANDUM

Date:	January 2016
To:	Office
From:	Zenon Markewycz
Re:	EE Memo 3 – Loading on Promenade Sheet Piles
	Wills St. Promenade, Harbor Point, Baltimore, MD
File:	12582B - 130
Re:	EE Memo 3 – Loading on Promenade Sheet Piles Wills St. Promenade, Harbor Point, Baltimore, MD

MRCE has completed a review of the available information and evaluation of the existing permanent sheet pile wall at the foot of Wills Street. The purpose of this analysis is to assess ability of the existing sheet pile wall to support the proposed grade change.

<u>Exhibits</u>

- 1. DS-1a Existing AZ-13 Sheet pile Wall Section
- 2. DS-1b Proposed Modifications to AZ-13 Sheet pile Wall Section
- 3. DS-2a Existing BZ-26 Bulkhead Wall Section
- 4. DS-2b Proposed Modifications to BZ-26 Sheet pile Wall Section Anchored Option
- 5. DS-2c Proposed Modifications to BZ-26 Sheet pile Wall Section Rip Rap Option MRCE 12582, Wills Wharf Office / Hotel; Drawing DDP F1.40 Foundation Plan, December 2015
- 6. MRCE 10609, Harbor Point Area 2; Drawing B-1 Boring Location Plan, June 2006
- 7. MRCE 10609, Thames Street Wharf Office Building & Garage
 - a. Drawing F1.03 Promenade and Sheeting Plan, October 2007
 - b. Drawing F2.02 Sections and Details, October 2007
 - c. Drawing F2.03 Sections and Details, October 2007
- 8. MRCE 6909, Baltimore Works Remediation
 - a. Drawing 1300D Sheeting and Shoring General Plan, December 1992
- 9. Drawing 1305D Permanent Sheeting East of Wills Street, December 1992

References

1. MRCE 10609, Geotechnical Data Report Harbor Point Areas 2 and 3 Philpot and Block Sts., between Wills & Thames, Boring No. MR-718, June 2006

Existing Sheet Pile Wall

The existing sheet pile wall is located at the south end of the proposed Wills Street Extension and runs east along the shoreline to the Thames Street Wharf Promenade, serving to retain backfilled material. The sheet pile wall consists of two continuous segments represented by Design Section 1a (DS-1a) and Design Section 2a (DS-2a).

DS-1a represents the eastern segment starting just east of column line D.7 as shown on Drawing F1.03 and running approx. 114 ft., towards the west. Along this segment, the existing grade is assumed to be at

EL. +7.5, sloping upward to EL. +10.0 inboard at a 1:1 slope, with water level at EL. +2.0. South of the sheet pile wall, the top of rip rap is at EL +3.0 and water at EL. 0.0. The existing top of the AZ-13 sheet piles is at EL. +10.0 with a toe at EL. -40.0. This profile is shown on Section B on Drawing F2.02.

The western segment of the existing ERS is represented by DS-2a, and runs approximately 118 ft. from the west end of DS-1a, continuing to the west, ending at the proposed centerline of the Wills St. Extension as shown on drawing 1305D. Along this segment, existing grade surface is at EL. +7.5 with water at EL. +2.0 behind the ERS and at EL. 0.0 in front. The top of the BZ-26 steel sheet piles at EL. +7.5 and extend to El. -40.0. South of this segment, the top of rip-rap is at EL. -12.0. This profile is shown on drawing 1305D. Sheet pile has corrosion losses and holes which require repair. Structural analysis considered loses but hole damage has not been accounted for.

Proposed Development

The proposed new promenade is to be constructed south of the new Wills Wharf Office & Hotel structure, extending over the existing sheet pile wall. This will require the existing grade elevation north of the sheet pile wall to be raised to El. +13.0. The proposed profiles are represented in two segments, by Design Segment 1b (DS-1b), and 2b and 2c (DS-2b & DS-2c). A 600 psf vertical construction surcharge was used in the analysis.

Assessment

Design Section 1 – AZ 13 Sheet pile Installed Circa 2008

The proposed grade of EL. +13 results in a 10 ft., cantilever flexible wall. The maximum expected deflection, at the top of the wall is approximately 2.6in. The bending stress in the sheet pile is within code allowable stress. For this analysis, a total of 1/8 in. steel thickness loss due to corrosion was assumed in the calculation of AZ-13 sheet pile section properties. The embedment of the sheet pile was adequate to provide the required safety factor.

Design Section 2 – BZ-26 Sheetpile Installed Circa 1990:

The proposed raised grade north of the sheet pile wall of EL. +13.0 results in a retained height of 25ft. The resulting forces would overstress and de-stabilize the existing BZ-26 sheet pile.

Conclusions

Design Section 1

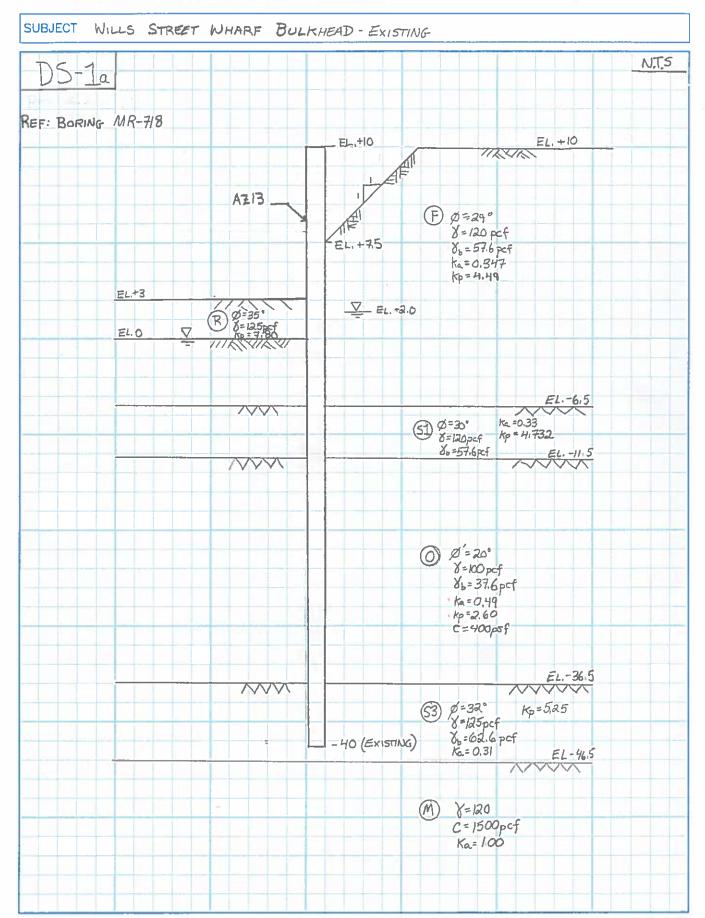
Analysis shows that raising the grade from El. +10.0 to El. +13.0 north of the sheet pile wall, will increase the sheet pile deflection to an estimated 2.5 inches. The stresses in the sheet pile would be within allowable and the sheet pile embedment provides an adequate factor of safety. To reduce deflection the sheetpile could be anchored using a shallow concrete deadmen or rip-rap placed south of the sheet pile wall.

Design Section 2

Analysis shows that raising the grade surface elevation from El. +7.5 to El. +13.0 would have a significant adverse impact on the sheet pile wall. To accommodate the proposed grade, the sheet pile wall can anchored at the top of the sheet pile wall using a deadmen system or rip-rap placed south of the wall. Steel sheet repair is needed to prevent soil through holes.

Exhibits

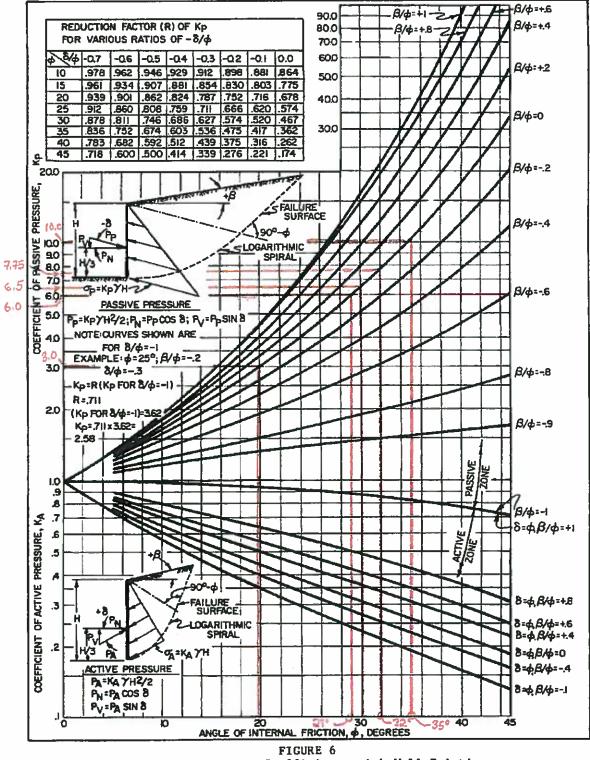
011221	2012 0.00
FILE_	12582B

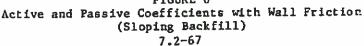

OF

SHEET

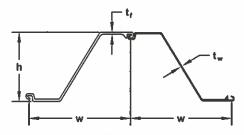
PROJECT WILLS Wharf OFFICE/HOTEL

MADE BY 2M DATE 1/6/2016


CHECKED BY _____ DATE_



+))))))))))))))))))))))))))))))))))))))	ດນານນານນານ	າດການການ
*	*	* Friction *
*	* Friction	* angle *
* Interface Materials	* factor,	ungeo
# 	<pre>* tan [delta]</pre>	
<pre>/))))))))))))))))))))))))))))))))))))</pre>	3))))))))))))))))	(3))))))))))
* Mass concrete on the following foundation materials:	*	* *
* Clean sound rock	* 0.70	
 Clean gravel, gravel-sand mixtures, coarse sand 	* 0.55 to 0.60	* 29 to 31 *
 Clean fine to medium sand, silty medium to coarse 	*	• •
* sand, silty or clayey gravel	* 0.45 to 0.55	* 24 to 29 *
* Clean fine sand, silty or clayey fine to medium	+	* *
* sand	* 0.35 to 0.45	* 19 to 24 *
* Fine sandy silt, nonplastic silt	* 0.30 to 0.35	
 * Very stiff and hard residual or preconsolidated 	*	* * *
	* 0.40 to 0.50	* 22 += 24 *
* clay		
* Medium stiff and stiff clay and silty clay	* 0.30 to 0.35	T 1 TO 19 T
 * (Masonry on foundation materials has same friction 	•	· · ·
<pre>* factors.)</pre>	*	NI 20.
* Steel sheet piles against the following soils:	*	* *
Clean gravel, gravel-sand mixtures, well-graded	*	* *
rock fill with spalls	* 0.40	* 22 🛃
 Clean sand, silty sand-gravel mixture, single size 	*	* *
* hard rock fill	* 0.30	* 17 *
Silty sand, gravel or sand mixed with silt or clay	* 0.25	* 14 *
Fine sandy silt, nonplastic silt	+ 0.20	* 11 +
Formed concrete or concrete sheet piling against the	Contraction and succession for the	PERSONAL PROPERTY AND INCOME.
* following soils:	*	* *
	*	**
* Clean gravel, gravel-sand mixture, well-graded	* 0 40 6- 0 50	* 00 += 00 *
<pre>* rock fill with spalls</pre>	* 0.40 to 0.50	T 22 TO 20 T
 Clean sand, silty sand-gravel mixture, single size 	• • • • • • • • • •	* *
* hard rock fill	* 0.30 to 0.40	
 * Silty sand, gravel or sand mixed with silt or clay 	* 0.30	* 17 *
* Fine sandy silt, nonplastic silt	* 0.25	* 14 *
	* 0.25 *	* 14 *
 Fine sandy silt, nonplastic silt * Various structural materials: 	* 0.25 * *	* 14 * * * * *
 * Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: 	*	* *
 * Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock 	* * * 0.70	* * * * * 35 *
 * Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock 	* * 0.70 * 0.65	* * * 35 * * 33 *
 Fine sandy silt, nonplastic silt Various structural materials: Masonry on masonry, igneous and metamorphic rocks: Dressed soft rock on dressed soft rock Dressed hard rock on dressed soft rock Dressed hard rock on dressed hard rock 	* * 0.70 * 0.65 * 0.55	* * * * 35 * * 33 * * 29 *
 Fine sandy silt, nonplastic silt Various structural materials: Masonry on masonry, igneous and metamorphic rocks: Dressed soft rock on dressed soft rock Dressed hard rock on dressed soft rock Dressed hard rock on dressed hard rock Masonry on wood (cross grain) 	* * 0.70 * 0.65 * 0.55 * 0.50	* * * * 35 * * 33 * * 29 * * 26 *
 Fine sandy silt, nonplastic silt Various structural materials: Masonry on masonry, igneous and metamorphic rocks: Dressed soft rock on dressed soft rock Dressed hard rock on dressed soft rock Dressed hard rock on dressed hard rock 	* * 0.70 * 0.65 * 0.55	* * * * 35 * * 33 * * 29 *
 Fine sandy silt, nonplastic silt Various structural materials: Masonry on masonry, igneous and metamorphic rocks: Dressed soft rock on dressed soft rock Dressed hard rock on dressed soft rock Dressed hard rock on dressed hard rock Masonry on wood (cross grain) Steel on steel at sheet pile interlocks 	* * 0.65 * 0.55 * 0.50 * 0.30	* * * * 35 * * 33 * * 29 * * 26 * * 17 *
 Fine sandy silt, nonplastic silt Various structural materials: Masonry on masonry, igneous and metamorphic rocks: Dressed soft rock on dressed soft rock Dressed hard rock on dressed soft rock Dressed hard rock on dressed hard rock Masonry on wood (cross grain) 	* * 0.65 * 0.55 * 0.50 * 0.30	* * * * 35 * * 33 * * 29 * * 26 * * 17 *
 Fine sandy silt, nonplastic silt Various structural materials: Masonry on masonry, igneous and metamorphic rocks: Dressed soft rock on dressed soft rock Dressed hard rock on dressed soft rock Dressed hard rock on dressed hard rock Masonry on wood (cross grain) Steel on steel at sheet pile interlocks 	* * 0.65 * 0.55 * 0.50 * 0.30	* * * * 35 * * 33 * * 29 * * 26 * * 17 *
 Fine sandy silt, nonplastic silt Various structural materials: Masonry on masonry, igneous and metamorphic rocks: Dressed soft rock on dressed soft rock Dressed hard rock on dressed soft rock Dressed hard rock on dressed hard rock Masonry on wood (cross grain) Steel on steel at sheet pile interlocks 	* * 0.65 * 0.55 * 0.50 * 0.30	* * * * 35 * * 33 * * 29 * * 26 * * 17 *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks //))))))))))))))))))))))))))))))</pre>	* * * 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3)))))))))))))	* * * * 35 * * 33 * * 29 * * 26 * * 17 *
 Fine sandy silt, nonplastic silt Various structural materials: Masonry on masonry, igneous and metamorphic rocks: Dressed soft rock on dressed soft rock Dressed hard rock on dressed soft rock Dressed hard rock on dressed hard rock Masonry on wood (cross grain) Steel on steel at sheet pile interlocks 	* * 0.65 * 0.55 * 0.50 * 0.30	* * * * 35 * * 33 * * 29 * * 26 * * 17 *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks //))))))))))))))))))))))))))))))</pre>	* * * 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3)))))))))))))	* * * * 35 * * 33 * * 29 * * 26 * * 17 *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks //))))))))))))))))))))))))))))))</pre>	* * * 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3)))))))))))))	* * * * 35 * * 33 * * 29 * * 26 * * 17 *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks //))))))))))))))))))))))))))))))</pre>	* * * 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3)))))))))))))	* * * * 35 * * 33 * * 29 * * 26 * * 17 *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks //))))))))))))))))))))))))))))))</pre>	<pre>* 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3))))))))))) * * Adhesion c+a *</pre>	* * * * 35 * * 33 * * 29 * * 26 * * 17 *)2))))))))))) * * a, (psf) *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks //))))))))))))))))))))))))))))))</pre>	<pre>* 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3))))))))))) * * Adhesion c+a *</pre>	* * * * 35 * * 33 * * 29 * * 26 * * 17 *)2))))))))))) * * a, (psf) *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks //)))))))))))))))))))))))))))))</pre>	<pre>* 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3)))))))))))) * * Adhesion c+4 * 3)))))))))))))))</pre>	* * * * 35 * * 33 * * 29 * * 26 * * 17 *)2))))))))))) * * a, (psf) *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks //)))))))))))))))))))))))))))))</pre>	<pre>* 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3)))))))))))) * * * Adhesion c+a * 3)))))))))))))) * 0.4</pre>	* * * * 35 * 33 * 29 * 26 * 17 *)2)))))))))) * * * * * * * * * * * *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks ///////////////////////////////</pre>	<pre>* 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3)))))))))))) * * * Adhesion c+a * 3)))))))))))))) * * 0.4 * * * 0.4 * * * * * * * * * * * * * * * * * * *</pre>	* * * * 35 * * 33 * * 29 * * 26 * * 17 *)2)))))))) * * * * (psf) * * *))))))))))) * *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed hard rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks //////////////////////////////</pre>	<pre>* 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3))))))))))))) * * * Adhesion c+2 * 3))))))))))))))) * * 0.4 * 3)))))))))))))))))))))))))))))))))))</pre>	* * * * 35 * 33 * 29 * 26 * 17 22))))))))) * a, (psf) * *))))))))))))) 1 - 250 * - 500 * - 750 *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks * Steel on steel at sheet pile interlocks * Interface Materials (Cohesion) * * Interface Materials (Cohesion) * * Very soft cohesive soil (0 - 250 psf) * Soft cohesive soil (250 - 500 psf) * Medium stiff cohesive soil (500 - 1000 psf) * Stiff cohesive soil (1000 - 2000 psf)</pre>	<pre>* 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3)))))))))))))) * * Adhesion c+4 * 3))))))))))))))) * * 0.4 * 3)))))))))))))))))))))))))))))))))))</pre>	* * * * 35 * 33 * 29 * 26 * 17 (psf) * * * * * * * * * * * * *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks * Steel on steel at sheet pile interlocks * Interface Materials (Cohesion) * * Interface Materials (Cohesion) * * Very soft cohesive soil (0 - 250 psf) * Soft cohesive soil (250 - 500 psf) * Medium stiff cohesive soil (500 - 1000 psf) * Stiff cohesive soil (1000 - 2000 psf) * Very stiff cohesive soil (2000 - 4000 psf)</pre>	<pre>* 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3)))))))))))))) * * Adhesion c+4 * 3))))))))))))))) * 0.4 * 0.4 * 3)))))))))))))))))))))))))))))))))))</pre>	* * * * 35 * 33 * 29 * 26 * 17 22))))))))) * * * * * * * * * * * * *
<pre>* Fine sandy silt, nonplastic silt * Various structural materials: * Masonry on masonry, igneous and metamorphic rocks: * Dressed soft rock on dressed soft rock * Dressed hard rock on dressed soft rock * Dressed hard rock on dressed hard rock * Masonry on wood (cross grain) * Steel on steel at sheet pile interlocks * Steel on steel at sheet pile interlocks * Interface Materials (Cohesion) * * Interface Materials (Cohesion) * * Very soft cohesive soil (0 - 250 psf) * Soft cohesive soil (250 - 500 psf) * Medium stiff cohesive soil (500 - 1000 psf) * Stiff cohesive soil (1000 - 2000 psf)</pre>	<pre>* 0.70 * 0.65 * 0.55 * 0.50 * 0.30 3)))))))))))))) * * Adhesion c+4 * 3))))))))))))))) * 0.4 * 0.4 * 3)))))))))))))))))))))))))))))))))))</pre>	* * * * 35 * 33 * 29 * 26 * 17 22))))))))) * * * * * * * * * * * * *


TABLE 1 Ultimate Friction Factors and Adhesion for Dissimilar Materials

7.2-63 Change 1, September 1986

MUESER RUTLEDGE CO)NSULTING E	NGINEERS	Made By:	ZM	Sheet No of File: <u>12582B</u> Date: 1/6/2016
FOR: Will Street Wh	arf Bulkhead		Checked By:	2411	Date:
SUBJECT: SSP - Flexura					
Section: AZ-13 Moment of Inertia of Section:		n ⁴ ft			
Section Modulus of Section:	$S_{pile} := 24.2 \frac{in}{fi}$	3 ì			
Young's Modulus:	E := 29000ksi				
Thickness of Flange:	t _f := 0.375in				
Thickness of Web:	t _w := 0.375in				
Total Corrosion Thickness Lo	ss: $t_{loss} := \frac{1}{8}i$	in			
Corroded Section Modulus:	$S_{red} := S_{pile} \cdot \left(\frac{r}{r} \right)$	$\frac{\min(t_{f}, t_{w}) - t_{loss}}{\min(t_{f}, t_{w})} \bigg)$	$= 16.13 \cdot \frac{\text{in}^3}{\text{ft}}$		
Corroded Moment of Inertia:	$I_{red} := I_{pile} \cdot \left(\frac{m}{m} \right)$	$\frac{\sin(t_{\rm f}, t_{\rm w}) - t_{\rm loss}}{\min(t_{\rm f}, t_{\rm w})} =$	= 96.2 $\cdot \frac{\text{in}^4}{\text{ft}}$		
Corroded Flexural Rigidity:	$R_e := E \cdot I_{red}$	R _e = 19373.61	<mark>l .kip·ft</mark> ft		
Initial Flexural Rigidity;	$R_{ei} := E \cdot I_{pile}$	R _{ei} = 29060.42	$\frac{1}{ft} \cdot kip \cdot ft^2$		

			THIC	KNESS		WE	GHT	SECTION	MODULUS		COATING	AREA
	Width (w)	Height (h)	Flange (t _f)	Web (t _w)	Cross Sectional Area	Pile	Wall	Elastic	Plastic	Moment of Inertia	Both Sides	Wall Surface
SECTION	in	in	in	in	in²/ft	lb/ft	lb/ft ² (kg/m ²)	in³/ft	in³/ft	in‡/ft	ft²/ft of single	ft²/ft²
AZ 12	26 38	11.89	0.335	0.335	5.94	44.42	20.22	22.3	26.2	132.8	5.45	1.23
AZ 13	26.38	11.93	0,375	0,375	6.47	48.38	22.02	24.2	28.4	144.3	5.45	1.23
AZ 14	26.38	11.97	0.413	0,413	7.03	52.62	23.94	26.0	30.7	156.0	5.45	1.23
AZ 12-770	30.31	13.52 343.5	0.335 8.50	0.335	5.67	48.78	19.31 94.30	23.2	27.5	156.9	6.10	1.20
AZ 13-770	30.31 770	13.54 344.0	0.354	0.354	5.94 125.8	51.14	20.24 92.80	24.2	28.8	163.7 22360	6.10	1.20 1.20
AZ 14-770	30.31 770	13.56 344.5	0.375	0.375	6.21 131.5	53.42	21.14	25.2 1355	30.0	170.6 23300	6.10	1.20
AZ 17	24.80 630	14.92 379.0	0.335 8 50	0.335	6.53	45.96	22.24	31.0	36.2	231.3	5.64	1.35
AZ 18	24.80	14.96 380.0	0.375	0.375	7.11 150.4	49.99	24.19	33.5	39.1	250.4	5.64	1.35
AZ 19	24.80 630	15.00 381.0	0.413	0.413	7.74 163.8	54.43	26.34	36.1	42.3	270.8	5.64	1.35 1.35
AZ 17-700	27.56	16.52 419.5	0.335 8 50	0.335	6.28	49.12	21.38	32.2	37.7	265.3	6.10	1.33
AZ 18-700	27.56	16.54 420.0	0.354	0.354	6.58 139.2	51,41 76,50	22.39	33.5	39.4	276.8	6.10	1.33
AZ 19-700	27.56	16.56 420 5	0.375	0.375	6.88 145.6	53.76	23.41	34.8	41.0	288.4	6.10	1.33
AZ 25	24.80	16.77 426 0	0.472	0.441	8.74	61.49	29.74	45.7	53.4	382.6	5.91 1.80	1.41
AZ 26	24.80 830	16.81 427.0	0.512	0.480	9.35	65.72	31.79	48.4	56.9	406.5	5.91 1.80	1.41
AZ 28	24,80	16.85	0.551	0.520	9.97	70.15	33.94	51.2	60.5 3252	431.6 58940	5.91	1.41
AZ 24-700	27.56	18.07	0.441	0.441	8.23	64.30	28.00	45.2	53.5 2967	408.8	6.33	1.38
AZ 26-700	27.56	18.11	0.480	0.480	8.84	69.12	30.10	48.4	57.1 307	437.3	6,33	1.38
AZ 28-700	27.56	18.15 -461.0	0.520	0.520	9,46	73.93	32.19	51.3	60.9	465.9	6.33	1.38
AZ 37-700	27.56	19.65	0.669	0.480	10.68	83.46	36.33	68.9	79.2	676.6	6.76	1.46
AZ 39-700	27.56	19.69	0.709	0.520	11.34	88.63	38.59	72.5	83.7	714.0	6.76	1.46
AZ 41-700	27.56 700	19.72	0.748	0.559	12.00	93.74	40.84	76.2	88.3	751.4	6.76	1.46
AZ 46	22.83	18.94	0.709	0.551	13.76	89.10	46.82	85.5	98.5	808.8	6.23	1.63
AZ 48	22.83	18.98	0.748	0.591	14.48	93.81	49.28	89.3	103.3	847.1	6.23	1.63
AZ 50	22.83	19.02	0.787	0.630	15.22	98.58	51.80	93.3	108.2	886.5	6.23	1.63

FOR : Wills Wharf Office / Hotel

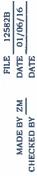
SUBJECT; STAGING ANALYSIS - SHEET PILE WALL South of Wills St. Wharf Building (DS-1a)

FILE 12582B DATE 01/06/16 DATE

> MADE BY ZM CHECKED BY

ö

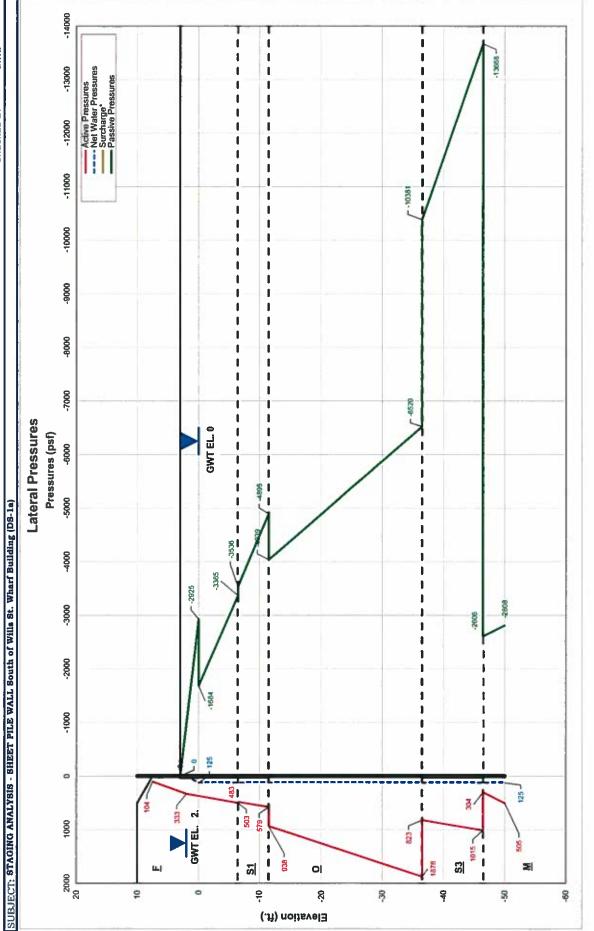
Sheet No.

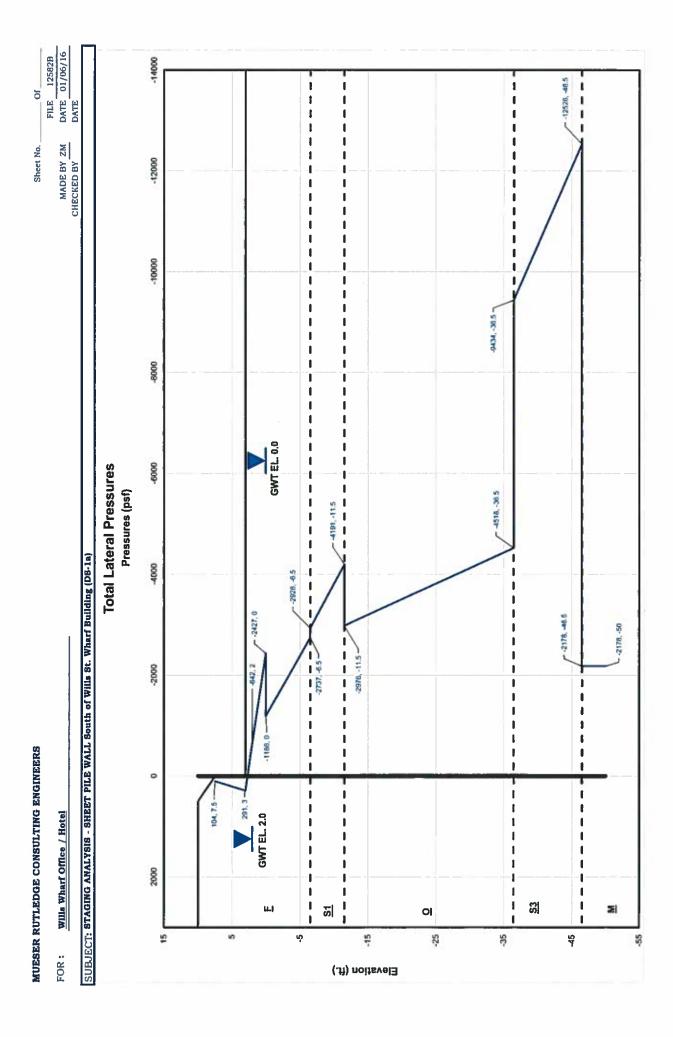

Lateral Earth Pressures:

Elev.	-		-		L	ŀ								12412	משטעם האווונוכוכם		1			1961		
H	≻ म	ď	¢	¥	υ	ď	Active Pressures	Surcharge*	Sidewalk Surcharge	Net Water Pressures	Layer	Elev.	Ŧ	~	ď	۳ م	4 4	+ 			Total Pressures	Bev.
Ļ	(ft.) (pcf)	ch (per)	•		(psd)		(pst)	(bsd)		(psd)		(U)	(U)	(bcf)	(bsd)		(p	(bsd)	0	(bsf) (p	100	(H)
-	⊢	⊢	•	1.000	⊢	0; F	•	•	0	•			\vdash	-	F	\vdash	-		-		¢	10
10	0	0	•	1.000	•	1:0	•	•	0	0				U Ces							0	10
7.5	2.5 12	120 300	29	0.347	•	1.0	104	¢	0	•										1	104	7.5
6	4.5 12	120 840	29	0.347	•	1.0	291	•	0	•										3	291	3
0	1	120 840	29	0.347	•	1.0	291	Ģ	0	o		с С	0	125	0	7.80 1.(1.000	0	35	0	291	e0
		1	-	0.347		1.0		÷	0	o		2	-	125	125 7	7.80 1.1	1.000	0	35 -9	-975 -6	-642	24
2	0 57	57.6 960	29	0.347	0	1.0	333	÷	0	•	2	2	0	125	125 7	7.80 1.6	1.000	3	35	-875 -6	-642	2
0	2 57	57.6 1075		0.347	0	1:0	373	0	0	125		0	_		-	7.80 1.4	1.000	0		-2925 -24		0
0	0	57.6 1075	58	0.347	•	1:0	373	÷	•	125		•	0	57.6	375 4	4.49 1.0	i	0 29			-1186	0
-2.5	2.5 57	57.6 1219	29	0.347	•	1.0	423	¢	0	125	1	-2.5	2.5	57.6	519 4	4.49 1.(1.000	0	29 -23	-2330 -11	-1782	-2.5
-2.5	0 57	57.6 1219	29	0.347	•	0.1	423	Ģ	0	125	lu	-2.5	0	57.6	519 4	4.49 1.(1.000	0	29 -23	-17	-1782	-2.5
iņ	-	1	1	0.347	•	- 10	473	¢	0	125	L	ŵ	2.5		1						379	ų
φ	0 57	_		0.347	•	0.1	473	¢	0	125		ų	0		-						379	ų
		1		t	1	1		•	•	125		-	•	1	-						737	-8.5
<u> </u>	<u> </u>	-		-	-	-	-	0	0	125		-	<u> </u>	<u> </u>	-			-			928	9.5
ę	1	.6 1651	1	1	0	1.0	550	0	•	125	ā	-10	3.5								813	-10
-10	0 57	.6 1651	30	0.333	•	1.0	550	0	0	125	5	-10	0								813	-10
			_	0.333	_	_	4	0	0	125		-									191	-11.5
-	-	-		1.000	-	-	-	0	0	125		-		_	-	_		-		-	976	-11.5
-12.5	1 37		0	1.000		1:0	975	0	o	125.	c	-12.5	-		-	_					038	-12.5
-12.5	0 37		0	1.000	-	1.0	975	0	0	125	>	-12.5	0		-	-					038	-12.5
-		-	15	-	_	_	-	0	0	125		-		_	-	_					518	-36.5
	-	-			-			0	•	125		-	-					2		12	434	-36.5
_					0	1.0	890	0	0	125	ខ	_				_					517	40
-		-	_	0.307	_		1015	0	•	125		-	-	_	-	_		-		100	2528	-46.5
_	-	-		1.000	_		304	0	0	125		-	-	_					-	2	178	-46.5
ŝ	-			1.000	_	0 1.0	505	0	0	125	X	- <u>5</u> 0	3.5		-				_		178	99
-50	0 57	-		1.000	-	0 1.0	505	0	0	125		-50	0	1.1	-					1	178	-50
0	ہ = ۲-I	k. = 2C. /	् [2	k = t	an ² 4	21 B					Reduct	tion Facto	rs appl	ied bel	w subc	vade:			Vall Tvoe:	Contine	ous	
At rest Pressures:		>	:		/								:		Ra = b	fis = [1.	000				1	
	$\mathbf{J}_{\mathbf{h}} = \mathbf{\gamma} \cdot \mathbf{F}$	l·k _n + 2C,	<u>لح</u>												Rp = 3*1	Ra =	8					
Passive Pressures:												Undrainec	I Clay	Strengti	I Ratio:	ő	5					
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$

0.2

c/p Ra





б

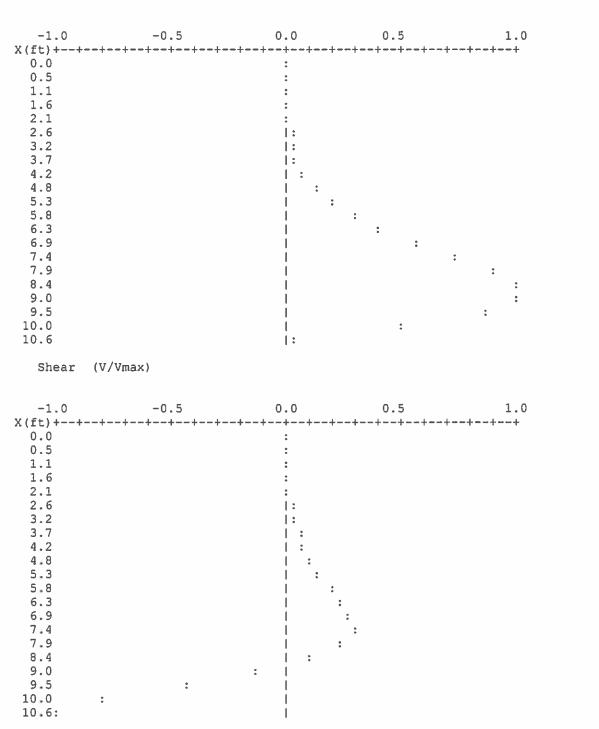
Sheet No.

Cantilever v3.0 BETA for Windows, 32-bit

Subject: DS-1a

INPUT

P	Q	Interval Lengths
0.000	0.000	2.500
0.104	0.291	4.500
0.291	-0.642	1.000
-0.642	-2.427	2.000


Passive pressure at subgrade : 1.186 Passive pressure slope : .239 Flexural rigidity : 19374

OUTPUT

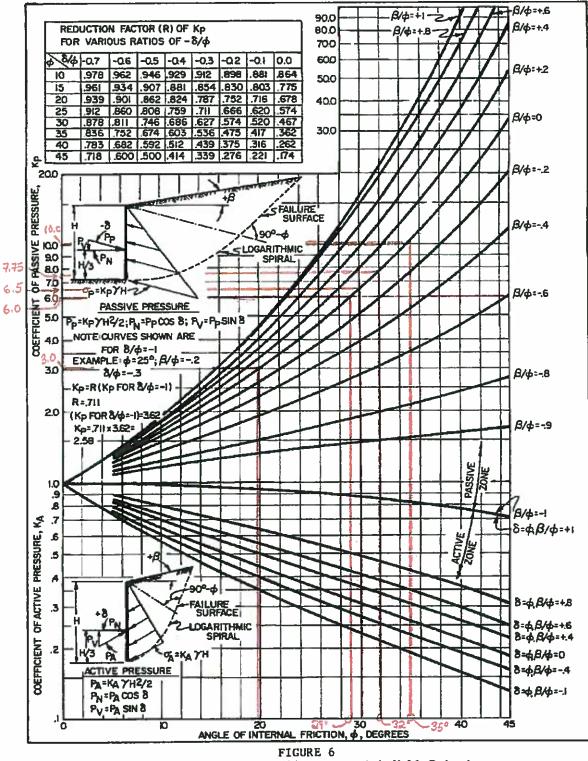
At end of int. 1, Shear= 0.00, Moment= 0.00 At end of int. 2, Shear= 0.89, Moment= 1.68 At end of int. 3, Shear= 0.71, Moment= 2.56 At end of int. 4, Shear= -2.36, Moment= 1.52 D= 0.56 embedment below subgrade with F.S.= 1 D(Fos=I,R) = I,HH(3ft+0.56ft) = 5,I3ft [EI.-2.13]Total Length of sheetpile is 10.56 Depth of max. moment= 8.74 Max. moment= 2.85 $Mall = O,6(60ksi)(16.13^{in3}/H)(1'/12'') = H0.33 k-ft$ Depth of max. shear= 10.56 $Makl = O.6(50ksi)(16.13^{in3}/H)(1'/12'') = H0.33 k-ft$

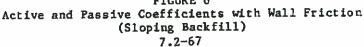
Х	v	М	Defl.
0.00	0.00	0.00	0.00
0.53	0.00	0.00	0.00
1.06	0.00	0.00	0.00
1.58	0.00	0.00	0.00
2.11	0.00	0.00	0.00
2.64	0.01	0.00	0.00
3.17	0.08	0.03	0.00
3.69	0.15	0.09	0.00
4.22	0.24	0.19	0.00
4.75	0.34	0.34	0.00
5.28	0.45	0.55	0.00
5.81	0.57	0.82	0.00
6.33	0.70	1.15	0.00
6.86	0.85	1.56	0.00
7.39	0.93	2.04	0.00
7.92	0.76	2.50	0.00
8.44	0.34	2.80	0.00
8.97	-0.33	2.82	0.00
9.50	-1.25	2.41	0.00
10.03	-2.39	1.45	0.00
10.56	-3.05	0.02	0.00

Moment (M/Mmax)

138

FLE 125828

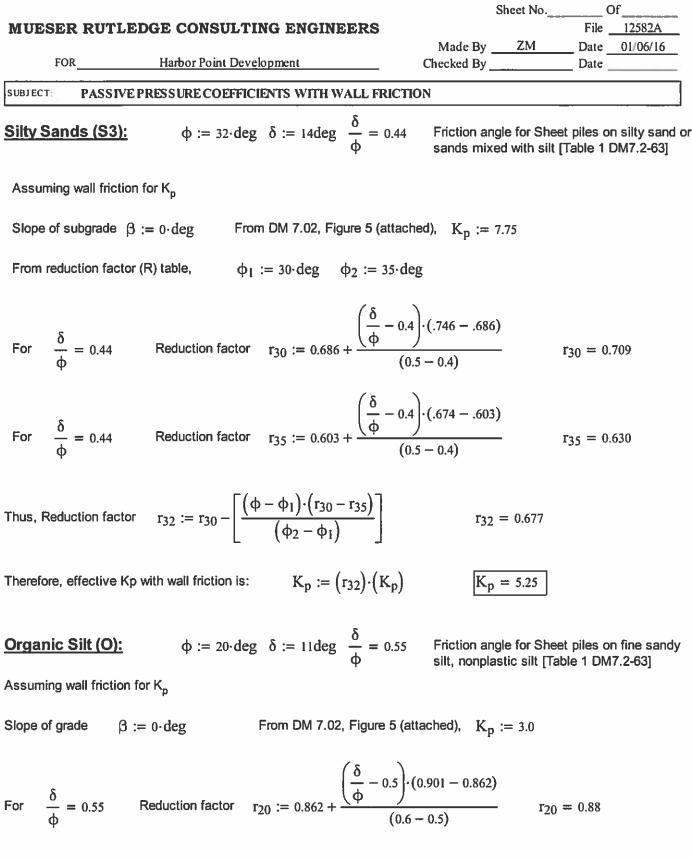

SHEET____OF____



Ultimate ffiction factors and Adnesio	II TOT DISSIII.	IIAI Mate	=1191
+)))))))))))))))))))))))))))))))))))))	, ,	* Frictio	
· · · · · · · · · · · · · · · · · · ·	Friction	* angle	* *
* Interface Materials *	factor,	* [delta]	*
* Interrace Materials	tan [delta]		
///////////////////////////////////////			
* Mass concrete on the following foundation materials: *	, , ,	*	*
* Clean sound rock*	0.70	* 35	
	0.55 to 0.60		1 *
 Clean fine to medium sand, silty medium to coarse 		*	*
	0.45 to 0.55	* 24 to 2	9 *
 Clean fine sand, silty or clayey fine to medium 		*	- *
* sand *	0.35 to 0.45	+ 19 to 2	4 *
* Fine sandy silt, nonplastic silt*	0.30 to 0.35	* 17 to 1	9 *
* Very stiff and hard residual or preconsolidated *		*	*
* clay*	0.40 to 0.50	* 22 to 2	6 *
* Medium stiff and stiff clay and silty clay *	0.30 to 0.35		
* (Masonry on foundation materials has same friction *	I	*	*
* factors.) *		+	*
* Steel sheet piles against the following soils:		+	*
Clean gravel, gravel-sand mixtures, well-graded			4
rock fill with spalls	0.40	* 22	-
rock fill with spalls * Clean sand, silty sand-gravel mixture, single size		*	-
* hard rock fill*	0.30	* 17	
Silty sand, gravel or sand mixed with silt or clay	0.25	* 14	*
Fine sandy silt, nonplastic silt	0.20	* 11	1
Formed concrete or concrete sheet piling against the *	and the second second second second second	An other states of the	-
* following soils:	1 1	+	*
* Clean gravel, gravel-sand mixture, well-graded	ĸ	9 4	*
* rock fill with spalls *	0.40 to 0.50	* 22 to 2	6 *
* Clean sand, silty sand-gravel mixture, single size *	•	+	*
* hard rock fill *	0.30 to 0.40	* 17 to 2	2 *
* Silty sand, gravel or sand mixed with silt or clay *	0.30	* 17	*
* Fine sandy silt, nonplastic silt *	0.25	* 14	*
* Various structural materials:	•		10
* Masonry on masonry, igneous and metamorphic rocks: *	•	*	385
* Dressed soft rock on dressed soft rock *	0.70	* 35	*
* Dressed hard rock on dressed soft rock *	0.00	* 33	+
* Dressed hard rock on dressed hard rock	0.00	* 29	+
* Masonry on wood (cross grain)*	0.00	* 26	*
* Steel on steel at sheet pile interlocks *	0.30	* 17	*
-/)))))))))))))))))))))))))))))))))))))	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2)))))))))))1
* 27 1	k		*
			.4
 Interface Materials (Cohesion) 	' Adhesion c+a	a. (psi)	
* *	*		-
/))))))))))))))))))))))))))))))))))))))	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,))1
		950	*
* Very soft cohesive soil (0 - 250 psf)		- 250	*
* Soft cohesive soil (250 - 500 psf)		- 500	*
* Medium stiff cohesive soil (500 - 1000 psf)	500 -		÷
* Stiff cohesive soil (1000 - 2000 psf)	750 -		*
* Very stiff cohesive soil (2000 - 4000 psf)		- 1,300	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JJ •

TABLE 1 Ultimate Friction Factors and Adhesion for Dissimilar Materials

7.2-63 Change 1, September 1986



 $K_p := (r_{30}) \cdot (K_p)$

Therefore effective Kp with wall friction is:

 $K_{p} = 4.719$

Therefore effective Kp with wall friction is: $K_p := (r_{20}) \cdot (K_p)$ $K_p = 2.6$

Sheet No.____ Of ____ File 12582A **MUESER RUTLEDGE CONSULTING ENGINEERS** Made By ZM Date 01/06/16 FOR Harbor Point Development Checked By _____ _ Date _ SUBJECT: PASSIVE PRESSURE COEFFICIENTS WITH WALL FRICTION $\phi := 35 \cdot \deg \ \delta := 22 \deg \ \frac{\delta}{\phi} = 0.63$ **RIP RAP (R):** Friction angle for Sheet piles on silty sand or sands mixed with silt [Table 1 DM7.2-63] Assuming wall friction for Kp $\beta := 0 \cdot \deg$ From DM 7.02, Figure 5 (attached), $K_p := 10.0$ Slope of grade $\left(\frac{\delta}{-}-0.6\right) \cdot (0.836-0.752)$

For
$$\frac{\delta}{\Phi} = 0.63$$
 Reduction factor $r_{35} := 0.752 + \frac{(\Phi)}{(0.7 - 0.6)}$ $r_{35} = 0.78$

Therefore effective Kp with wall friction is:

 $K_{p} := (r_{35}) \cdot (K_{p})$

$$K_p = 7.8$$

Wills Wharf Office / Hotel FOR:

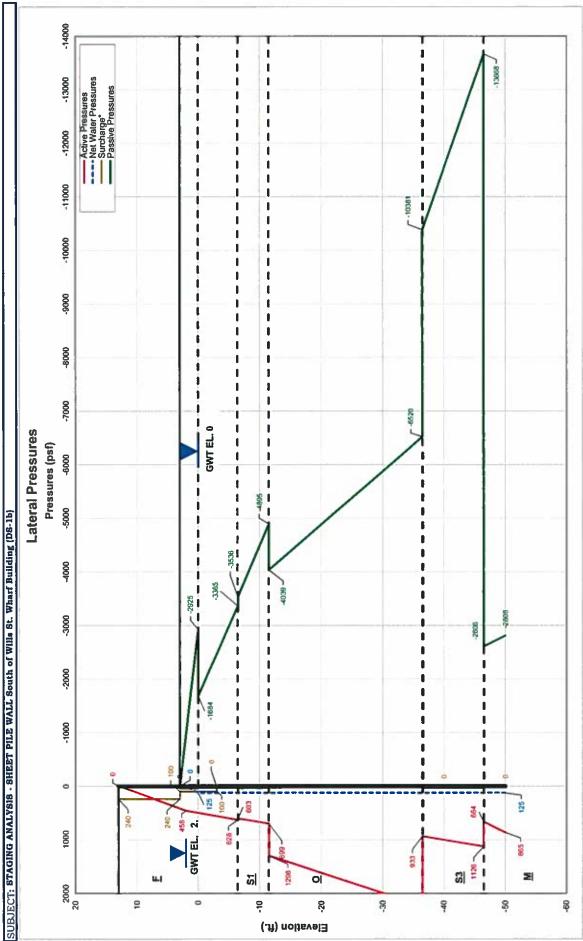
SUBJECT: STAGING ANALYSIS - SHEET PILE WALL South of Wills St. Wharf Building (DS-1b)

FILE 12582B DATE 01/06/16 DATE

MADE BY ZM CHECKED BY

ŏ

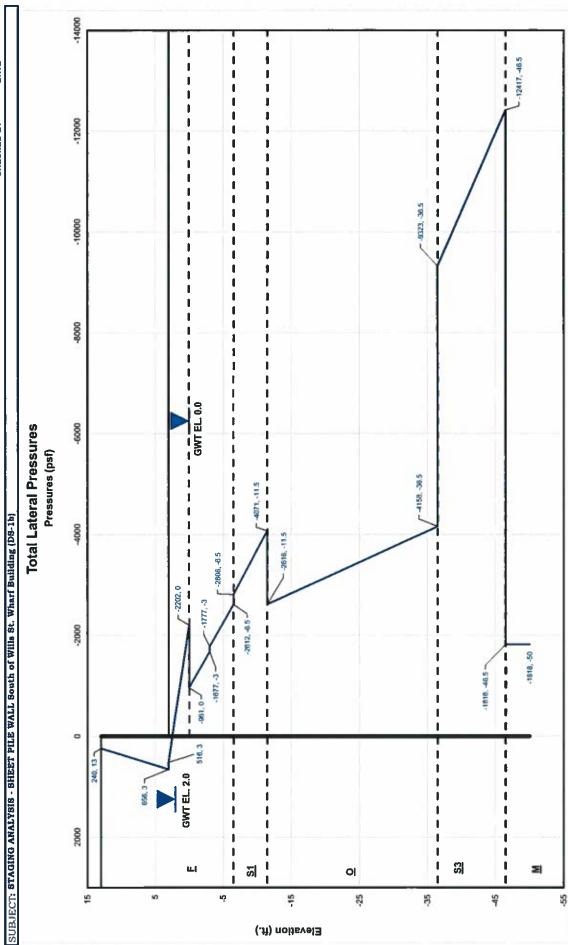
Sheet No.


Lateral Earth Pressures:

		41	13.	10	7.5	3	3	2	2	0	0	ę	ŋ	ŵ	ц	-6.5	-8.5	-10	-10	-11.5	-11.5	-12.5	-12.5	-36.5	-36.5	40	-46.5	46.5	-50	-50	
Contraction of the	Total Pressures	(1901)	240	365	469	656	518	-417	515	-2202	-961	-1677	1771-	-2254	-2254	-2812	-2808	-3693	-3693	-4071	-2616	-2678	-2678	4158	-9323	-10406	-12417	-1818	-1818	-1818	Continous
	Passive Pressures	(bsd)					•	-975	-975	-2925	-1684	-2460	-2460	-2977	-2977	-3365	-3536	-4488	-4488	-4895	-4039	4138	4138	-6520	+10381	-11532	-13668	-2606	-2808	-2808	ype:
	÷	•					35	35	35	35	29	29	29	29	29	29	30	30	30	30	0	0	•	•	32	32	32	•	•	0	Wall Type:
	υ	(bsd)					0	0	0	0	•	0	0	0	0	0	0	0	0	•	400	400	400	400	0	•	0	1.5	1.5	1.5	
ង	ď						1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1,000	1.000	1,000	1.000	1.000	1.000	0.2
IG FOR	×						7.80	7.80	7.80	7.80		4.49	4.49	4.49	4.49	4.49	4.72	4.72	4.72	4.72	2.64	2.64	2.64	2.64		5.25	5.25		1.00	1.00	w subgrade: Ra = bl/s = <u>1.000</u> Rp ≈ 3*Ra = <u>1.000</u> 1 <i>Ratio</i> : C/p Ra
RESISTING FORCES	ß	(155)					0	125	125	375	375	548	548	663	663	749	749	951	951	1037	1037	1075	1075	1977	1977	2197	2603	2603	2805	2805	How su Ra = Rp = 1 th Rath
R	~	(bd)					125	125	125	125	57.6	57.6	57.6	57.6	57.6	57.6	57.6	57.6	57.6	57.6	37.6	37.6	37.6	37.6	62.6	62.6	62.6	57.6	57.6	57.6	olied be Streng
	Ŧ	(¥)					0	-	0	3	0	9	0	61	0	1.5	-	3.5	0		-	-	-			3.5	6.5	0	3.5	0	ors app d Clay
	Elev.	(¥)					0	2	2	0	0	ę	ŋ	ιņ	ų	-8.5	6.5	-10	-10	-11.5	-11.5	-12.5	-12.5	-36.5	-36.5	đ	-46.5	46.5	<u>8</u>	-50	Reduction Factors applied below subgrade: Ra = bl/s = Rp = 3*Ra = 1 Undrained Clay Strength Ratio: cip Ra
	Layer								۲				L					ū	6			c	>			ន			X		Reduc
	Net Water Pressures	(580)	o	o	Ģ	o	•	0	a	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	
	Sidewalk Sunchange		•	•	0	0	•	•	•	•	0	Ģ	¢	o	¢	•	0	¢	æ	÷	0	o	0	0	0	÷	0	Ģ	Þ	Q	
	Surcharge*	(psd)	240	240	240	240	100	100	100	100	100	100	0	•	0	•	0	0	0	•	0	0	0	0	0	0	0	•	0	0	
	Active Pressures	(1921)	•	125	229	416	416	458	458	498	498	558	558	598	598	628	603	670	670	669	1298	1335	1335	2238	933	1001	1126	664	865	865	
	~		1:0	<u>5</u>	1.0	10	1.0	1.0	0.	0.1	1.0	1.0	1.0	1.0	1.0	1.0	0.	1.0	1.0	1.0	1.0	1.0	<u>0</u> ;	0	1.0	1.0	1.0	1.0	1.0	1.0	5 F
ICES	v	(Ded)	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	400	400	400	8	0	0	0	1500	1500	1500	[45 -
DRIVING FORCES	Å		1.000	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.333	0.333	0.333	0.333	1.000	1.000	1.000	1.000	0.307	0.307	_		1.000	1.000	$k_a = \tan^2 \left(45 - \frac{\Phi}{2}\right)$
DRIVI	÷	•	29		29	29	29		29		29		29	29	29		8	90		90		0		•		32	32		0	0	
	ð	(tset)	0	360	660	1200	1200	1320	1320	1435	1435	1608	1608	1723	1723	1810	1810	2011	2011	2098	2098	2135	2135	3038	3038	3257	3664	3664	3865	3865	$\sigma_a = \gamma \cdot H \cdot k_a - 2C \cdot \sqrt{k_a}$ $\sigma_p = \gamma \cdot H \cdot k_p + 2C \cdot \sqrt{k_p}$
	~	(bcl)	0	120	120	120	120	120	57.6	57.6	57.6	57.6	57.6	57.6	57.6	57.6	57.6	57.6	57.6	57.6	37.6	37.6	37.6	37.6	62.6	62.6	62.6	57.6	57.6	57.6	r H ka Y H kp
	Ξ	(1)	0	ę	2.5	4.5	•	F	0	2	0	3	0	2	0	1.5	0	3.5	0	1.5	0	-	0	24	0	3.5	6.5	0	3.5	0	σ ₀ ≡ 1
	Elev.	(1)	13	10	7.5	e0	e	2	2	•	0	ę	ę	φ	φ	6.5 -	-9.5	-10	-10	-11.5	-11.5	-12.5	-12.5	-38.5	-36.5	₹	-46.5	-46.5	-20	-50	ures: sures:
	Layer								u	L .						5		Ū	5			c	>			ន		2	X		At rest Pressures: Passive Pressures:

FOR : Wills Wharf Office / Hotel

DS-1b



FOR :

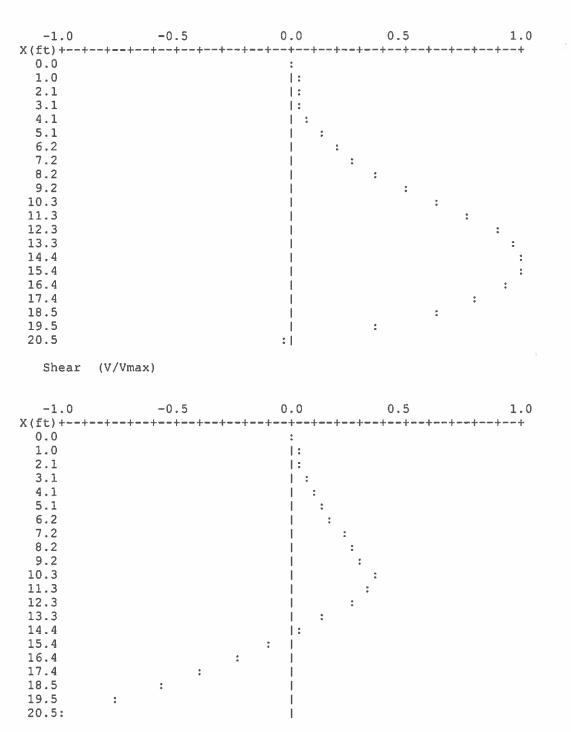
Cantilever v3.0 BETA for Windows, 32-bit

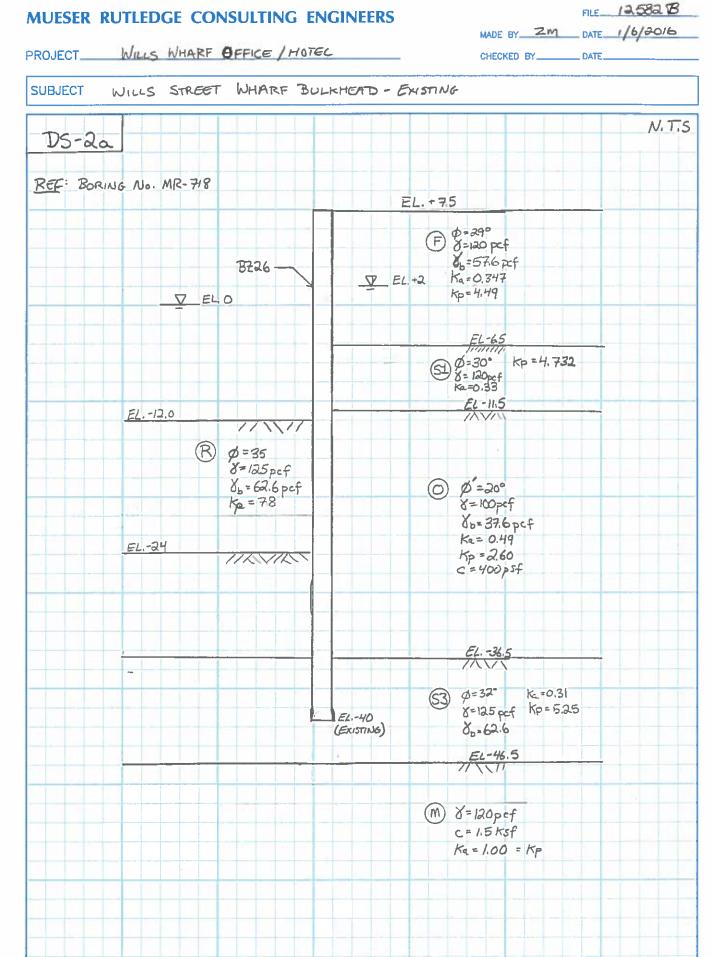
Subject: DS-1b

INPUT

P	Q	Interval Lengths
0.240	0.656	10.000
0.516	-0.417	1.000
-0.417	-2.202	2.000
-0.961	-1.677	3.000
-1.777	-2.612	3.500

Passive pressure at subgrade : 2.808 Passive pressure slope : .251 Flexural rigidity : 19374


OUTPUT

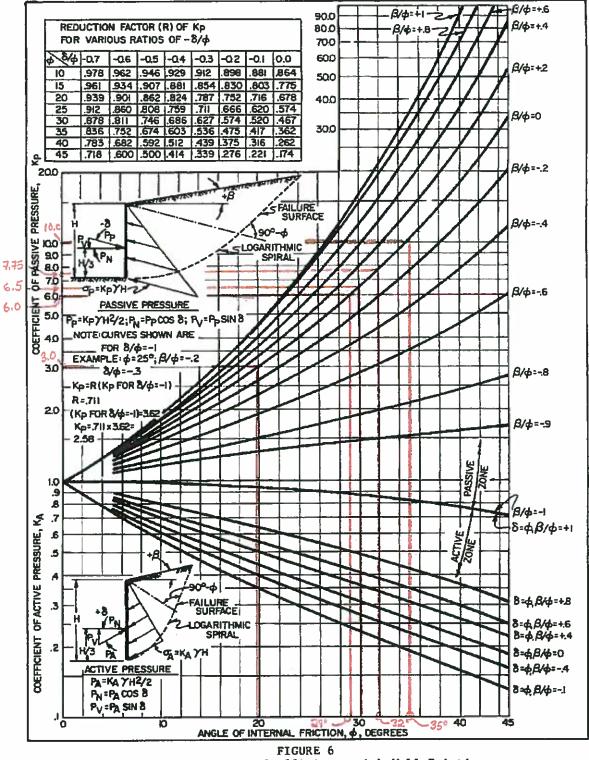

Max. shear= 12.66

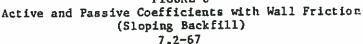
At end of int. 1, Shear= 4.48, Moment= 18.93 At end of int. 2, Shear= 4.53, Moment= 23.52 At end of int. 3, Shear= 1.91, Moment= 30.55 At end of int. 4, Shear= -2.05, Moment= 30.88 At end of int. 5, Shear= -9.73, Moment= 11.13 D= 1.00 embedment below subgrade with F.S.= 1 $\mathcal{D}(\text{FoS}=1.2) = 1.444 (3ft + 6.5ft + 1.0ft) = 15.12' [EL.-12.12]$ Total Length of sheetpile is 20.50 Depth of max. moment= 14.65 Max. moment= 32.22 $M_{all} = 0.60(50ksi)(16.13in^3/ft)(1'/12') = 40.32$ http://www.aster.edu/ft.

=======================================			
X	V	М	Defl.
0.00	0.00	0.00	0.22
1.03	0.27	0.13	0.20
2.05	0.58	0.56	0.19
3.08	0.93	1.34	0.17
4.10	1.33	2.50	0.15
5.13	1.78	4.09	0.14
6.15	2.26	6.15	0.12
7.18	2.79	8.74	0.10
8.20	3.37	11.89	0.09
9.23	3.98	15.66	0.07
10.25	4.58	20.07	0.06
11.28	4.38	24.74	0.05
12.30	3.23	28.73	0.04
13.33	1.59	31.12	0.03
14.35	0.40	32.16	0.02
15.38	-1.04	31.85	0.01
16.40	-2.78	29.92	0.01
17.43	-4.82	26.05	0.00
18.45	-7.12	19.95	0.00
19.48	-9.66	11.37	0.00
20.50	-12.66	-0.04	0.00

Moment (M/Mmax)

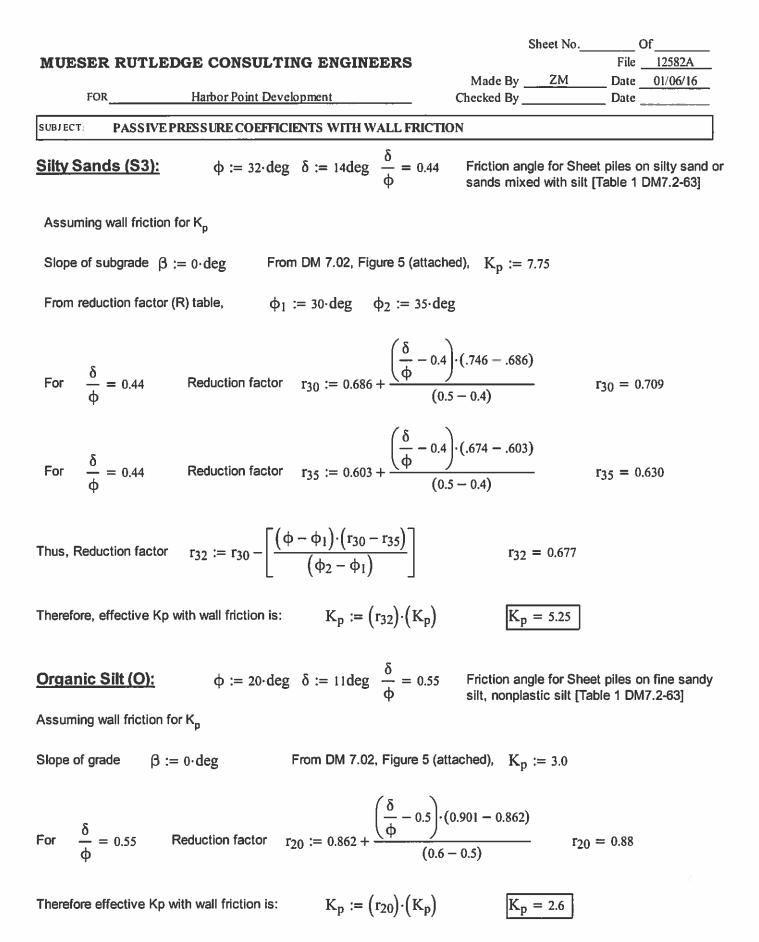
SHEET____ ___OF___


MUESER RUTLEDGE CO	DNSULTING E	NGINEERS	Made By:	ZM	Sheet No of File: <u>12582B</u> Date: 1/6/2016
FOR: Will Street Wh	arf Bulkhead		Checked By:		Date:
SUBJECT: SSP - Flexura	l Rigidity				
Section: BZ-26 Moment of Inertia of Section:	$I_{\text{pile}} \coloneqq 331.9 \frac{\text{in}}{\text{fr}}$	4 t			
Section Modulus of Section:	$S_{\text{pile}} := 48.2 \frac{\text{in}^2}{\text{ft}}$	3			
Young's Modulus:	E := 29000ksi				
Thickness of Flange:	$t_{\rm f} := 0.520 {\rm in}$				
Thickness of Web:	t _w := 0.394in				
Total Corrosion Thickness Lo	$ss: t_{loss} := \frac{1}{8} ir$	n			
Corroded Section Modulus:	$S_{red} := S_{pile} \cdot \left(\frac{n}{2} \right)$	$\frac{\min(t_{f}, t_{w}) - t_{loss}}{\min(t_{f}, t_{w})} \bigg)$	$= 32.91 \cdot \frac{\text{in}^3}{\text{ft}}$		
Corroded Moment of Inertia:	$I_{red} := I_{pile} \left(\frac{mi}{m} \right)$	$\frac{in(t_{f}, t_{w}) - t_{loss}}{min(t_{f}, t_{w})} =$	$226.6 \cdot \frac{\text{in}^4}{\text{ft}}$		
Corroded Flexural Rigidity:	$R_e := E \cdot I_{red}$	R _e = 45635.08	<mark>1</mark> ∙kip∙ft ² ft		
Initial Flexural Rigidity:	$R_{ei} := E \cdot l_{pile}$	R _{ei} = 66840.97	¹ / _{ft} ⋅kip⋅ft ²		


			TZ	ABLE 1			
Ultimate	Friction	Factors	and	Adhesion	for	Dissimilar	Materials

<pre>+))))))))))))))))))))))))))))))))))))</pre>	<pre>* * Friction * factor, * tan [delta]</pre>	<pre>* Friction * * angle * * [delta] * * degrees * 3)))))))) * * 35 * * 29 to 31 * * * 24 to 29 * * * 19 to 24 * * 17 to 19 * * * 22 to 26 * *</pre>
rock fill with spalls * Clean sand, silty sand-gravel mixture, single size	• 0.40	* 22
 Clean sand, silty sand-gravel mixture, single size hard rock fill 	* 0.30	+ 17 +
Silty sand, gravel or sand mixed with silt or clay	* 0.25	* 14 *
Fine sandy silt, nonplastic silt	* 0.20	* 11 *
 Formed concrete or concrete sheet piling against the following soils: Clean gravel, gravel-sand mixture, well-graded 	* * * 0.40 to 0.50	* * *
 rock fill with spalls Clean sand, silty sand-gravel mixture, single size 	*	* *
* hard rock fill	* 0.30 to 0.40	
* Silty sand, gravel or sand mixed with silt or clay	* 0.30	* 17 *
 Fine sandy silt, nonplastic silt * Various structural materials: 	* 0.25	* 14 *
 Masonry on masonry, igneous and metamorphic rocks: 	*	* *
 Dressed soft rock on dressed soft rock 	* 0.70	* 35 *
 Dressed hard rock on dressed soft rock 	* 0.65	* 33 *
 Dressed hard rock on dressed hard rock 	* 0.55	* 29 *
* Masonry on wood (cross grain)	* 0.50	* 26 *
* Steel on steel at sheet pile interlocks	* 0.30	* 17 *
·/››››››››››››››››››››››››››››››››››››	3)))))))))))))))) *)2)))))))))))
-		
 Interface Materials (Cohesion) 	* Adhesion c+a	a. (psf) *
*	*	*
/))))))))))))))))))))))))))))))))))))))	3))))))))))))))))))))))))))
 Very soft cohesive soil (0 - 250 psf) 		- 250 *
* Soft cohesive soil (250 - 500 psf)		- 500 *
* Medium stiff cohesive soil (500 - 1000 psf)		- 750 * - 950 *
* Stiff cohesive soil (1000 - 2000 psf) * Verv stiff cohesive soil (2000 - 4000 psf)		- 950
· · · · · · · · · · · · · · · · · · ·		

7.2-63


Change 1, September 1986

Therefore effective Kp with wall friction is:

 $K_p = 4.719$

				Sheet No.	C)f
MUESER RU	FLEDGE CONSULT	ING ENGINEER	S		File	12582A
			Made By	ZM	Date	01/06/16
FOR	Harbor Point Dev	elopment	_ Checked By	-	Date _	
SUBJECT: PASS	SIVE PRESSURE COEFFI	CIENTS WITH WALL	FRICTION			
<u>RIP RAP (R):</u>	φ := 35·de	g $\delta := 22 \deg \frac{\delta}{\varphi}$	= 0.63 Friction a sands mi	ngle for Shea xed with silt	et piles or (Table 1 (n silty sand or DM7.2-63]
Assuming wall fric	tion for K _p					
Slope of grade	$\beta := 0 \cdot \deg$	From DM 7.02, Fig	ure 5 (attached), K	p := 10.0		÷
For $\frac{\delta}{\Phi} = 0.63$	Reduction factor	$r_{35} := 0.752 + \frac{\left(\frac{\delta}{\phi}\right)}{1}$	(0.836 - 0.75)	2) — r ₃₅	= 0.78	

Therefore effective Kp with wall friction is:

 $K_{p} := (r_{35}) \cdot (K_{p}) \qquad \qquad K_{p} = 7.8$

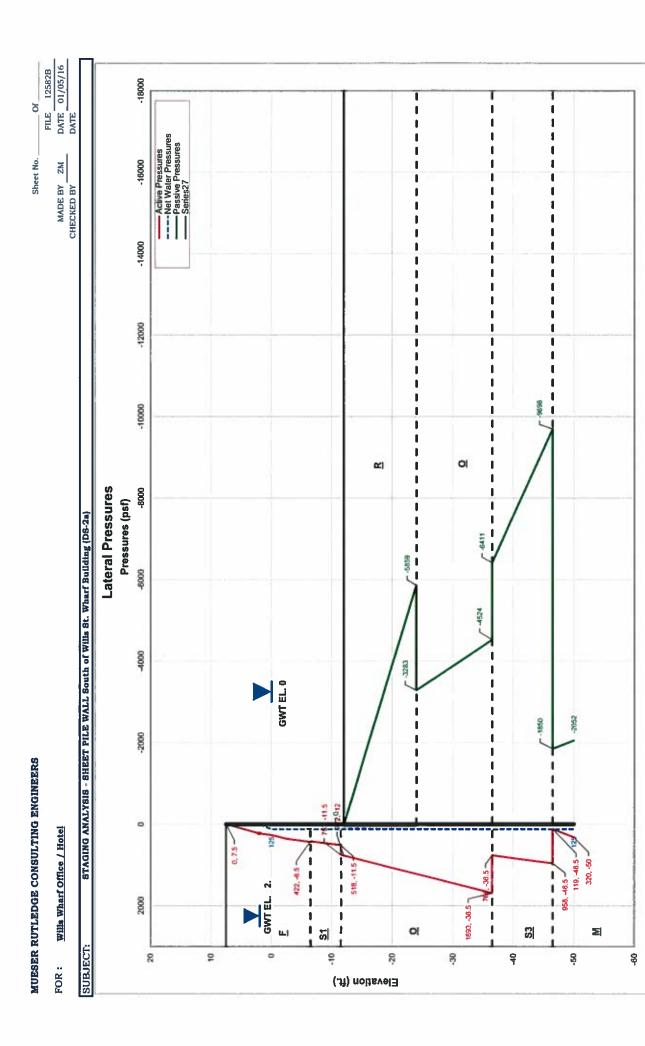
FOR : Wills Wharf Office / Hotel

STAGING ANALYBIS - SHEET PILE WALL South of Wills St. Wharf Building (DS-2a)

FILE 12582B DATE 01/05/16 DATE

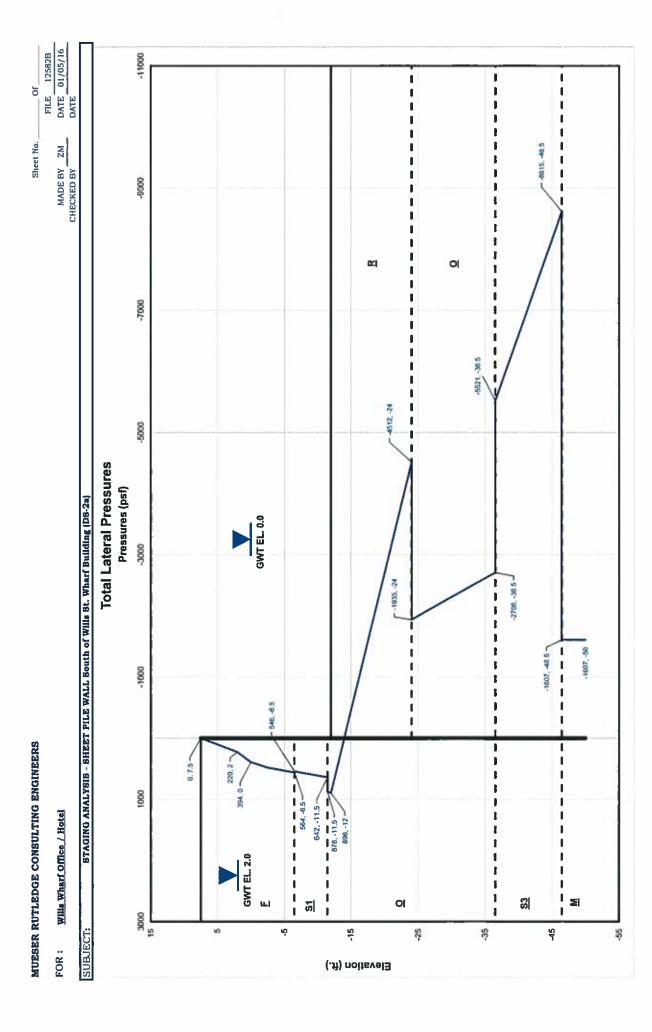
> MADE BY ZM CHECKED BY

5


Sheet No.

Lateral Earth Pressures:

SUBJECT:


Lateral Earth Pressures:	1 Pressul	<u>88:</u>																				Î	N.	*
100 100				10	DRIVIN	DRIVING FORCES	CES				0.10					R	NILLSIS	RESISTING FORCES	ES	3			S. C. Davies	
Layer	Elev,	Ŧ	*	۔ م	•	s.	0	Ľ.	Active Pressures Su	urcharge*	Sidewafk Surcharge	Net Water Pressures	Layer	Elev.	π	۲	ď	^b	R _p	o	¢	Passive Pressures	Total Pressures	Elev.
	(W)	(1)	(bd)	(bsd)			(bed)		(bsd)	(bed)		(jsd)		(t)	(J)	60	(sed)			(psd)		()se()	-	(U)
	7.5	⊢	Ŀ	┝	29 0	0.347	⊢	0.1	0	0	•	•			T	T			F				0	7.5
	4.5	n	120	360	1	0.347	0	1.0	125	•	¢	•											125	4.5
	4.5	0	120	360	İ	0.347	0	1.0	125	0	¢	0											125	4.5
	2	2.5				1.347	0	1.0	229	0	¢	0											229	2
	2	-	57.6	660	29 0	0.347		1.0	229	0	¢	0											229	2
L	0	2	57.6	775		0.347	0	1.0	269	0	¢	125					-						394	0
-	0	0	57.6	775	29 0	0.347	0	1.0	269	0	ò	125											FIGE	0
	-2.5	4.5	57.6 1	1034	29 0	0.347	0	1.0	359	0	ò	125							-				484	-2.5
	-2.5	0	57.6 1	1034	29 0	0.347	0	1.0	359	0	0	125											484	-2.5
	÷.	2.5	57.6 1	1178	29 0	0.347	0	1.0	409	0	ò	125											534	ų
	မှ	0	57.6 1	1178	29 0	0.347	0	1.0	409	0	0	125											534	ų
	-9.5	1	Ľ.,		1	0.347	0	1.0	439	0	0	125											564	-6.5
ŭ	-6.5	0	57.6		30 0	0.333	0	1.0	422	0	0	125									_		546	-6.5
0	-11.5	1		1	1	1	1	1.0	518	0	0	125											642	-11.5
	-11.5	•	37.6	1553	0	1.000	400	0.1	753	0	•	125											878	-11.5
	-12	0.5	37.6 1	1572	0	1.000	400	1.0	772	0	0	125											896	-12
c	-12	•	37.6 1	1572	0	1.000	400	1.0	772	0	0	125	•	-12	ð	62.6	0	7.80	1.000	0	35	0	896	-12
>	-24	12	37.6 2	2023	0	1.000	400	1.0	1223	0	0	125	-	-24	12	62.6	751	7.80	1.000	0	35	-5859	-4512	-24
	-24	•	37.6 2	2023	0	1.000	400	1.0	1223	0	0	125	c	-24	ò	37.6	751	_	1.000	400	0	-3283	-1935	-24
	-36.5	12.5	37.6 2	2493		1.000	400	1.0	1693	0	0	125	2	-36.5	12.5	37.6	1221	2.64	1.000	400	0	-4524	-2706	-36.5
	-36.5		_			_		1.0	766	0	0	125		-36.5	-		1221		1.000	0	32	-6411	-5521	-36.5
S	4	3.5	62.6 2	2712		0.307	0	1.0	833	0	0	125	ទ	ŧ	3.5	62.6	1440	5.25	1.000	0	32	-7562	-6604	9
	-46.5	6.5	-	3119		0.307		1.0	958	0	•	125		-46.5	6.5	_	1847	_	1.000	0	32	-9698	-8615	-46.5
	-46.5	_	57.6 3	_	0	_	1500	1.0	119	0	0	125		-46.5		57.8	1847	1.00	1.000	1.5	0	+1850	-1607	-46.5
Ξ	22	3.5	57.6 3	3320	0	1.000	1500	1.0	320	0	0	125	Ξ	-20	3.5	57.6	2049	1.00	1.000	1.5	0	-2052	-1607	-60
	ŝ	0	57.6 3	3320	-	1.000 1	1500	0.1	320	•	•	125		- <u>5</u> 0	•	57.6	2049	1.00	1.000	1.5	•	-2052	-1607	-50
		τς, μ	$G_0 = \gamma H H_0 - 2C_0/R_0$	لا ن	*	$k_a = \tan^2 \left(45 - \right)$		(a)					Reduc	Reduction Factors applied below subgrade:	JOB 210	vied be	low sut	orade:			Wall Tvoe:	lvoe:	Continous	
Af rest Pressures:	111035	3	s					2)									Ra =	$Ra = bf/s = \Gamma$	1.000					
		Y = UD	$\mathbf{d}_{n} = Y \cdot \cdot \mathbf{k}_{n} + 2\mathbf{C} \cdot \cdot \mathbf{k}_{n}$	2C. K.													Ro = 3	$R_D = 3^{\circ}R_a = 1.000$	000					
Passive Pressures:	ssures:	÷	ŕ.	4										Undrained Clay Strength Ratio:	ed Clay	Streng	th Ratic) 						
																		10	6					

c/p Ra 0.2

F:\125\12562\12582\12582B\Task 130 - Retaining Wall Design\SSP Bulkhead Analysis\Staging Analysis AREA 2 - Cantilevered

DS-2a

F:\125\12582\12582B\Task 130 - Retaining Wall Design\SSP Bulkhead Analysis\Staging Analysis AREA 2 - Cantilevered

Cantilever v3.0 BETA for Windows, 32-bit

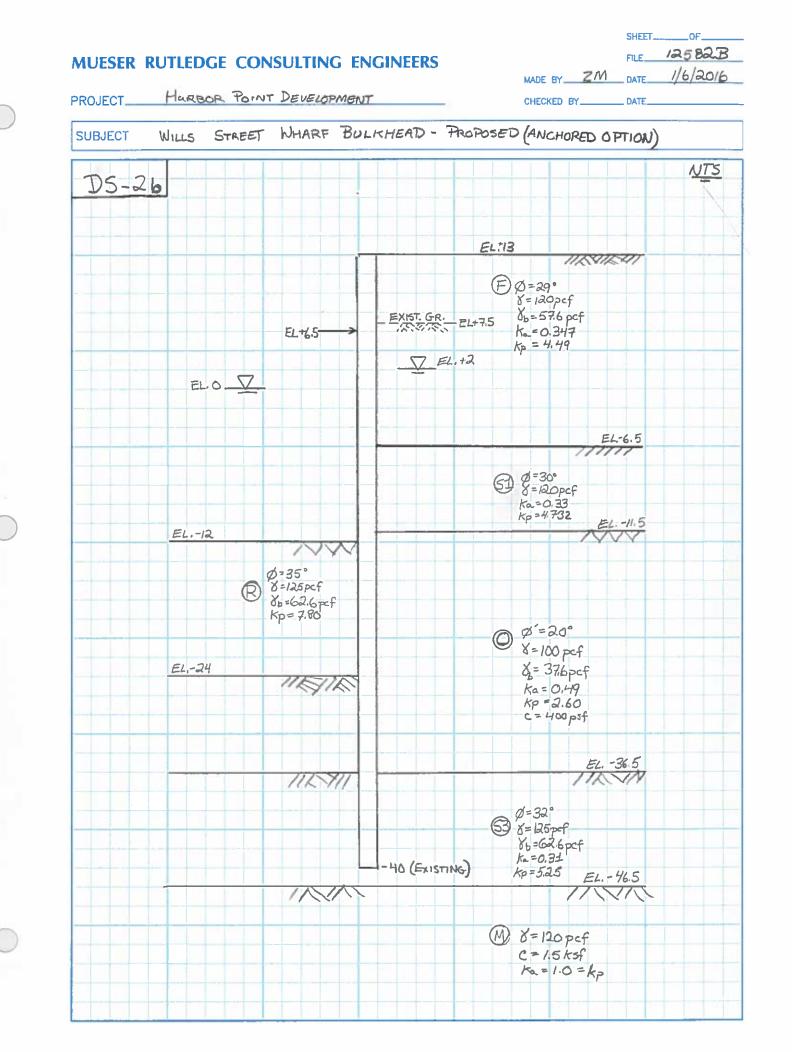
Subject: DS-2a

INPUT

P	Q	Interval Lengths
0.000	0.229	5.500
0.229	0.394	2.000
0.394	0.564	6.500
0.546	0.642	5.000
0.878	0.896	0.500

Passive pressure at subgrade : .896 Passive pressure slope : .45 Flexural rigidity : 45635

OUTPUT

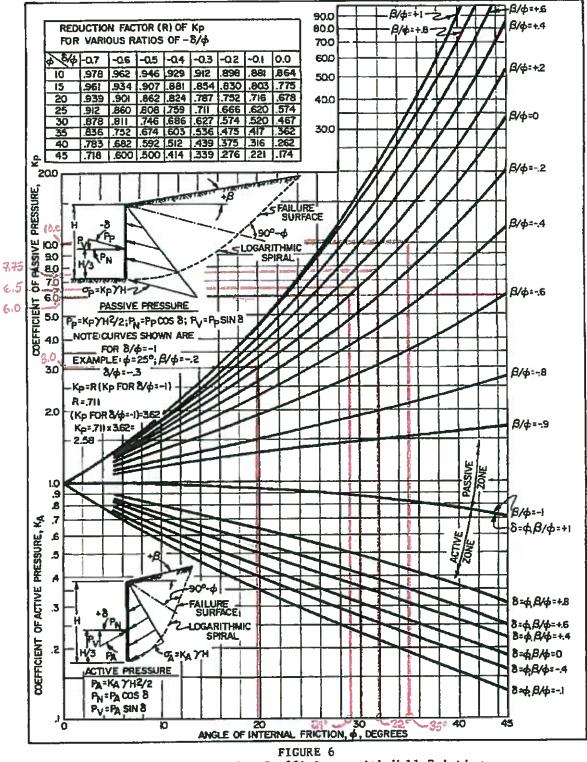


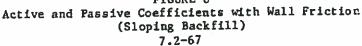
At end of int. 1, Shear= 0.63, Moment= 1.15 At end of int. 2, Shear= 1.25, Moment= 2.98 At end of int. 3, Shear= 4.37, Moment= 20.65 At end of int. 4, Shear= 7.34, Moment= 49.70 At end of int. 5, Shear= 7.78, Moment= 53.48 D= 10.46 embedment below subgrade with F.S.= 1 p(Fos=1,2) = 1.44(10.46 H) = 15.06 ff [EL-27.06]Total Length of sheetpile is 29.96 Depth of max. moment= 23.72 Max. moment= 72.70 Depth of max. shear= 29.96 Max. shear= 26.20 Max. shear= 26.20

х	V	М	Defl.
0.00	0.00	0.00	0.40
1.50	0.05	0.02	0.37
3.00	0.19	0.19	0.35
4.49	0.42	0.63	0.32
5.99	0.75	1.49	0.29
7.49	1.25	2.97	0.26
8.99	1.87	5.30	0.23
10.49	2.55	8.59	0.21
11.98	3.28	12.95	0.18
13.48	4.08	18.46	0.15
14.98	4.91	25.19	0.13
16.48	5.78	33.18	0.10
17.97	6.69	42.52	0.08
19.47	7.76	53.27	0.06
20.97	5.98	63.71	0.04
22.47	3.14	70.67	0.03
23.97	-0.71	72.61	0.01
25.46	-5.57	68.03	0.01
26.96	-11.44	55.42	0.00
28.46	-18.31	33.27	0.00
29.96	-26.20	0.05	0.00

-1.0	-0.5	0.0 0.5	1 0
X(ft)++	+++++++++	U.U U.S ++++++++++++++++++++++++++++++	1.0 ++
0.0		•	
1.5 3.0			
4.5		•	
6.0			
7.5 9.0			
10.5			
12.0			
13.5 15.0			
16.5		-	
18.0		:	
19.5 21.0			
22.5		•	:
24.0			:
25.5 27.0			
28.5			
30.0		1:	
Shear	(()		
Silear	(V/Vmax)		
-1.0	-0.5	0.0 0.5	1.0
-1.0	-0.5	0.0 0.5 +++++++++	
-1.0 X(ft)++ 0.0 1.5	-0.5	++++++++++	
-1.0 X(ft)++ 0.0 1.5 3.0	-0.5	++	
-1.0 X(ft)++ 0.0 1.5	-0.5	++++++++++	
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5	-0.5	+++++++++++	
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5 9.0	-0.5	+++++++++++	
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0	-0.5	+++++++++++	
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5	-0.5	++++++++++	
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0	-0.5	++++++++++	
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0	-0.5	++++++++++	
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5	-0.5		
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5 21.0	-0.5		
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5 21.0 22.5 24.0	-0.5		
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5	-0.5 		
-1.0 X(ft)++ 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5 21.0 22.5 24.0	-0.5		

Moment (M/Mmax)

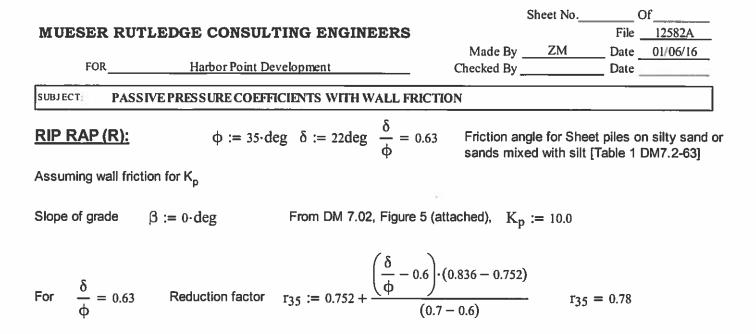



TA	BL	ιE	1

Ultimate Friction Factors and Adhesi	on for Dissimi	lar Materia.
+)))))))))))))))))))))))))))))))))))))	*	* Friction *
	* Friction	* angle *
* Interface Materials		* [delta] *
* INCELLACE MERCITARS	* tan [delta]	
/))))))))))))))))))))))))))))))))))))))		
* Mass concrete on the following foundation materials:	*	* *
* Clean sound rock	* 0.70	* 35 *
 Clean gravel, gravel-sand mixtures, coarse sand 	* 0.55 to 0.60	* 29 to 31 *
* Clean fine to medium sand, silty medium to coarse	*	* *
* sand, silty or clayey gravel	* 0.45 to 0.55	* 24 to 29 *
 Clean fine sand, silty or clayey fine to medium 	*	* *
* sand	* 0.35 to 0.45	
* Fine sandy silt, nonplastic silt	* 0.30 to 0.35	* 17 to 19 *
 Very stiff and hard residual or preconsolidated 		* *
* clay	* 0.40 to 0.50	
* Medium stiff and stiff clay and silty clay	* 0.30 to 0.35	* 1/ TO 19 *
* (Masonry on foundation materials has same friction	*	* *
 factors.) * Steel sheet piles against the following soils: 	*	+
Clean gravel, gravel-sand mixtures, well-graded		1
rock fill with spalls	* 0.40	* 22 *
* Clean sand, silty sand-gravel mixture, single size	P NOT 12 COURSE DOLLARS PRODUCTS	
 hard rock fill 	* 0.30	* 17 *
Silty sand, gravel or sand mixed with silt or clay	* 0.25	* 14 *
Fine sandy silt, nonplastic silt	* 0.20	* 11 *
Formed concrete or concrete sheet piling against the		**************************************
* following soils:	•	* *
 Clean gravel, gravel-sand mixture, well-graded 	*	* *
* rock fill with spalls	* 0.40 to 0.50	* 22 to 26 *
* Clean sand, silty sand-gravel mixture, single size	* 0 70 +- 0 40	* 17 5- 20 *
* hard rock fill	* 0.30 to 0.40 * 0.30	* 17 to 22 *
 Silty sand, gravel or sand mixed with silt or clay Fine sandy silt, nonplastic silt 	+ 0.25	* 14 *
 * Fine sandy silt, hompiastic silt * Various structural materials: 	*	43 F
 Masonry on masonry, igneous and metamorphic rocks: 	*	* *
 * Dressed soft rock on dressed soft rock 	* 0.70	* 35 *
* Dressed hard rock on dressed soft rock	* 0.65	* 33 *
 Dressed hard rock on dressed hard rock 	* 0.55	* 29 *
* Masonry on wood (cross grain)	* 0.50	* 26 *
* Steel on steel at sheet pile interlocks	* 0.30	* 17 *
/))))))))))))))))))))))))))))))))))))))	13)))))))))))))))))))))))))))))))))))))	2)))))))))
	*	*
*	4	,
* Interface Materials (Cohesion)	* Adhesion c+a	(nsf) +
Theeriace Materiais (conesion)	nuncaron era	· (bar)
*	*	+
///////////////////////////////////////	(3))))))))))))))))))))))))))))))))))))))))))))))))
* Very soft cohesive soil (0 - 250 psf)		250 *
* Soft cohesive soil (250 - 500 psf)	* 250 -	
* Medium stiff cohesive soil (500 - 1000 psf)	* 500 -	
* Stiff cohesive soil (1000 - 2000 psf)	* 750 -	
* Very stiff cohesive soil (2000 - 4000 psf)		1,300 *
.))))))))))))))))))))))))))))))))))))))		
	,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,, ₂

Ultimate Friction Factors and Adhesion for Dissimilar Materials

7.2-63 Change 1, September 1986


Sheet No.OfThe LissonFORIntro Point DevelopmentMulticityPASSIVE PRESSURE COEPFICIENTS WITH WALL FRICTIONSubject to PASSIVE PRESSURE COEPFICIENTS WITH WALL FRICTIONEIII (F):
$$\phi := 29 \cdot \deg \ \delta_{\phi} := 14 \deg \ \delta_{\phi} = 0.48$$
Friction angle for Sheet piles on silty sand or sands mixed with silt
[Table 1 DM7.2-63]Assuming well friction for K_pSlope of subgrade $\beta := 0 \cdot \deg$ From DM 7.02. Figure 5 (attached), K_p := 6.0From reduction factor (R) table, $\phi_1 := 25 \cdot \deg \ \phi_2 := 30 \cdot \deg$ For $\delta_{\phi} = 0.48$ Reduction factor $r_{25} := 0.759 + \frac{\left(\frac{\delta}{\phi} - 0.4\right) \cdot \left(0.308 - 0.759\right)}{(0.5 - 0.4)}$ $r_{25} = 0.8$ For $\delta_{\phi} = 0.48$ Reduction factor $r_{25} := 0.759 + \frac{\left(\frac{\delta}{\phi} - 0.4\right) \cdot \left(0.746 - 0.686\right)}{(0.5 - 0.4)}$ $r_{25} = 0.8$ For $\delta_{\phi} = 0.48$ Reduction factor $r_{30} := 0.686 + \frac{\left(\frac{\delta}{\phi} - 0.4\right) \cdot \left(0.746 - 0.686\right)}{(0.5 - 0.4)}$ $r_{29} = 0.736$ Thus, Reduction factor $r_{29} := r_{25} - \left[\frac{\left(\phi - \phi_1\right) \cdot \left(r_{25} - r_{30}\right)}{\left(\phi_2 - \phi_1\right)}\right]$ $r_{29} = 0.748$ Therefore, effective Kp with wall friction is:Kp := (r_{29}) \cdot (Kp)Kp = 4.49Medium Sands (S1): $\phi := 30 \cdot \deg \ \delta := 14 \deg \ \delta = 0.47$ Friction angle for Sheet piles on silty sand or sands mixed with silt [Table 1 DM7.2-63]Slope of grade

Therefore effective Kp with wall friction is:

 $K_p = 4.719$

MUESER RUTLEDGE CO	NSULTING ENGINEERS	Sheet No.	Of File
	Point Development		Date 01/06/16
	ECOEFFICIENTS WITH WALL FRICT		
<u>Silty Sands (S3):</u> φ	$:= 32 \cdot \deg \delta := 14 \deg \frac{\delta}{\varphi} = 0.44$	Friction angle for SI sands mixed with s	heet piles on silty sand or ilt [Table 1 DM7.2-63]
Assuming wall friction for K_p			
Slope of subgrade $\beta := 0 \cdot \deg$	From DM 7.02, Figure 5 (attac	ched), $K_p := 7.75$	
From reduction factor (R) table,	$\phi_1 := 30 \cdot \deg \phi_2 := 35 \cdot d$	leg	
For $\frac{\delta}{\Phi} = 0.44$ Reduct	ion factor $r_{30} := 0.686 + \frac{\left(\frac{\delta}{\Phi} - 0.686\right)}{(6)}$	(.746686) (0.5 - 0.4)	$r_{30} = 0.709$
	ion factor $r_{35} := 0.603 + \frac{\left(\frac{\delta}{\varphi} - 0\right)}{(1-\varepsilon)^2}$		$r_{35} = 0.630$
Thus, Reduction factor $r_{32} :=$	$r_{30} - \left[\frac{\left(\varphi - \varphi_{1}\right) \cdot \left(r_{30} - r_{35}\right)}{\left(\varphi_{2} - \varphi_{1}\right)}\right]$	$r_{32} = 0.677$	
Therefore, effective Kp with wall f	riction is: $K_p := (r_{32}) \cdot (K_p)$	$K_{p} = 5.25$]
Organic Silt (O): ϕ Assuming wall friction for K_p	$:= 20 \cdot \deg \delta := 11 \deg \frac{\delta}{\varphi} = 0.55$	Friction angle for Sh silt, nonplastic silt [heet piles on fine sandy Table 1 DM7.2-63]
Slope of grade $\beta := 0 \cdot \deg$	From DM 7.02, Figure 5 (attached), $K_p := 3.0$	
	factor $r_{20} := 0.862 + \frac{\left(\frac{\delta}{\Phi} - 0.5\right)}{(0.5)}$		20 = 0.88
I herefore effective Kp with wall fr	iction is: $K_n := (r_{20}) \cdot (K_n)$	$K_n = 2.6$	

Therefore effective Kp with wall friction is: $K_p := (r_{20}) \cdot (K_p)$ $[K_p = 2.6]$

Therefore effective Kp with wall friction is:

 $\mathbf{K}_{\mathbf{p}} := \left(\mathbf{r}_{35}\right) \cdot \left(\mathbf{K}_{\mathbf{p}}\right) \qquad \mathbf{K}_{\mathbf{p}} = 7.8$

Wills Wharf Office / Hotel FOR:

SUBJECT: STAGING ANALYSIS - SHEET FILE WALL South of Wills St. Wharf Building (DS-2b)

FILE 12582B DATE 01/06/16 DATE

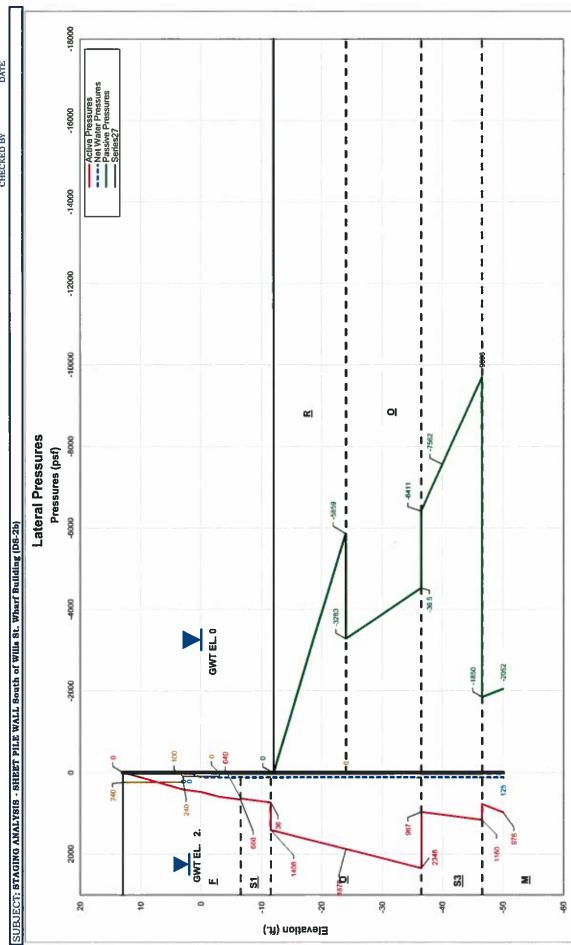
MADE BY ZM CHECKED BY

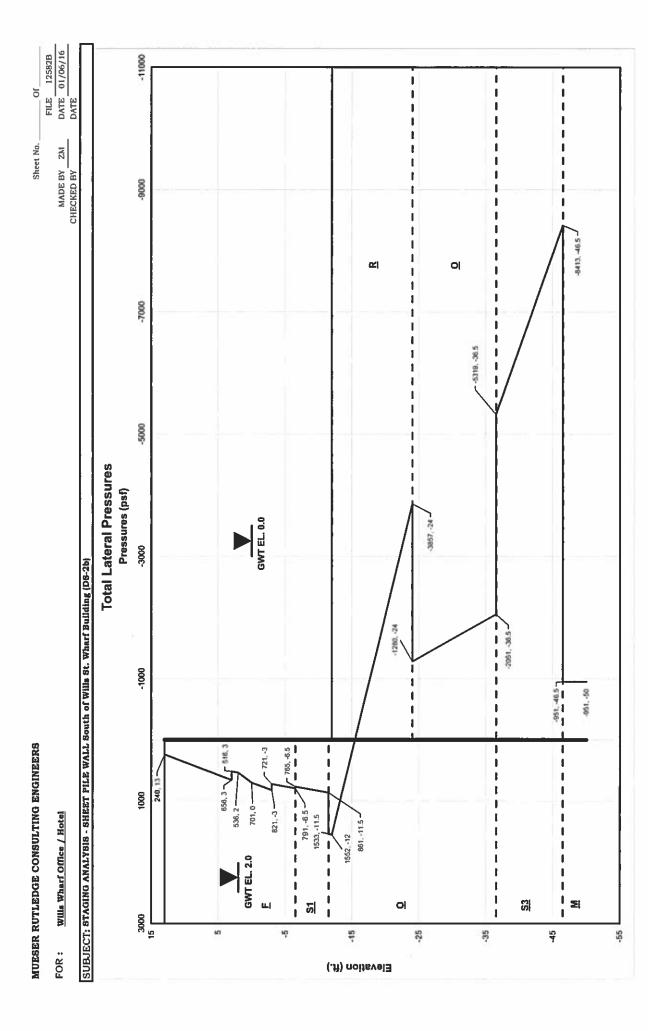
5

Sheet No.

<u>Lateral Earth Pressures:</u>

	Elev.	(U)	13	4.5	4:5	3	3	2	2	0	0	?	?	ų	Ŷ	-6.5	-6.5	-11.5	-11.5	-12	-12	-24	-24	-36.5	-36.5	9	-46.5	-46.5	-50	-50				
	Total Pressures	1	240	594	594	656	516	536	536	701	101	821	721	761	761	791	765	861	1533	1552	1552	-3857	-1280	-2051	-6319	-6402	-8413	-951	-951	-951	Continous			
Γ	Passive Pressures	(psd)																			ò	-5859	-3283	4524	-6411	-7562	-9698	-1850	-2052	-2052	Wall Type:			
	¢	•																			35	35	÷	0	32	33	33	0	0	0	Wall			
	υ	(psd)																			o	0	5.	400	0	0	ð		1.5	1.5				
ICES	Ľ																				1.000	1.000	1.000	1.000	1.000	1.000		1.000	1.000	1.000		1 000	1.000	
RESISTING FORCES	×.																				7.80	7.80	2.64	2.64	5.25	5.25	5.25	1.00	1.00	1.00	borade	0 - 1944 - 0	Rp = 3*Ra = 1.000	i
ESISTI	ð	(580)		3.3									-								0	751	751	1221	1221	1440	1847	1847	2049	2049	elow st	Ó		
ľ	~	(bc)			ļ																62.6	62.6	37.6	37.6	62.6	62.6	62.6	57.6	57.6	57.6	olled b		i	i
	Ξ	(U)			ļ																Q	12		12.5		3.5	6.5	1	3.5	ð	tors an		ļ	ĺ
	Elev.	(¥)																			-12	-24	-24	-36.5	-36.5	9	-46.5	-46.5	-50	-50	Reduction Factors and led below suborade:		Rp=31	
	Layer																				٥	2	C			S			æ		Radu			
	Net Water Pressures	(bsd)	÷	0	0	0	0	0	0	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125				
	Sidewafk Surcharge			o	0	Þ	¢	Ð	•	¢	Q	ò	ò	÷	÷	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0				
	Surcharge*	(Isd)	240	240	240	240	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	Active S Pressures	(psd)	0	354	354	416	416	436	436	476	476	596	596	636	636	666	640	736	1408	1427	1427	1878	1878	2348	967	1035	1160	774	976	976				
	R 4		0.1	1.0	1.0	10	1.0	1.0	10	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10		1.0	1.0	1.0	1.0	1.0	()	2		
CES	U	(Jsd)	0	0	0	0	0		•	0	0	0	0	0	0		0	1	400	400	400	400	400	400	-	0	0	L	1500	1500	2 45	_		
DRIVING FORCES	×.		0.347	0.347	0.347	0.347	0.347	1.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	333	0.333		1.000	1.000	1.000		1.000		0.307	0.307		1.000	1.000	$k_a = tan^2 (45 -$			
DRIVII	+		29 0	29 0	T	29 0	29 0			29 0			29 0	29 0	29 0	29 0		30			0	0		0		32 0	32 0		0	0	<u>۳</u>			
	٩	(psd)		1020	1020	1200	1200	1258	1258	1373	1373	1718	1718	1834	1834	1920		2208	2208	2227	2227	2678		3148		3367	3774	3774	3976	3976	5		$\sigma_{\rm p} = \gamma \cdot 11 \cdot k_{\rm p} + 2 C \sqrt{k_{\rm p}}$	
	~	(bc)	120	120	120	120	57.6		57.6	57.6 1		57.6 1	57.6		57.6	57.6		57.6 2	-		_	37.6		37.6		62.6	62.6	-	57.6	57.6	t ka - 1		II-k _p +	
	Ξ	(1)	⊢	8.5	0	1.5	0	+	-	2	0	9 9	ي د	2	0	-	0	s S	-	0.5 3	0	12 3	0	12.5 3	9	3.5 6	6.5 6		3.5 5	0	G. = Y.H.k. = 2C./K	-	σ _p = Υ.	
	Elev.	(1)	13	4.5	4.5	0	e		3	0	0	ę	ņ	မု	ŝ	-9 -2 -9	-0.5	-11.5	-11.5	-12	-12	-24	_	-36.5		đ	46.5	-	-50	-50				
	Layer	4	L	ę		1	4			-						_	ŭ				c	, ,				ន			æ			At much Dance under		




FOR : Wills Wharf Office / Hotel

FILE 125828 MADE BY ZM DATE 01/06/16 CHECKED BY DATE

ð

Sheet No.

F:/125/12562/12562B/Task 130 - Retaining Wall Design\SSP Bulkhead Analysis\Staging Analysis AREA 2 - Cantilevered

Cantilever v3.0 BETA for Windows, 32-bit

Subject: DS-2b

INPUT

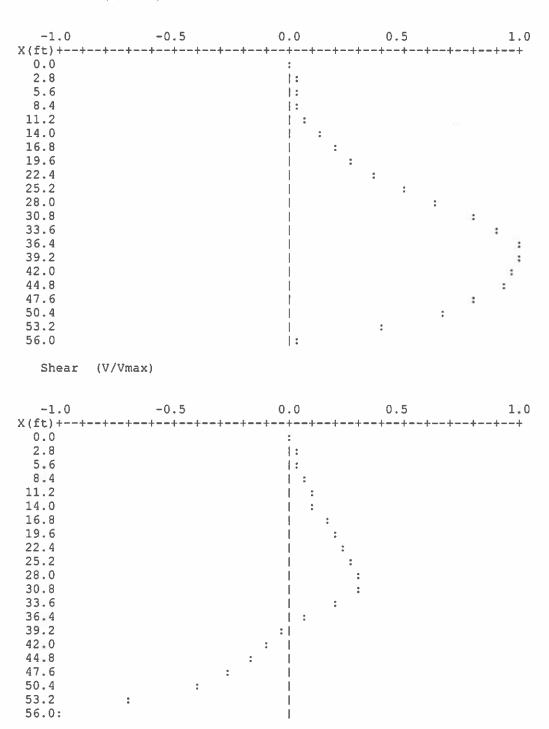
P	Q	Interval Lengths
0.240	0.656	10.000
0.516	0.536	1.000
0.536	0.701	2.000
0.701	0.821	3.000
0.721	0.791	3.500
0.765	0.861	5.000
1.533	1.552	0.500
1.552	-3.857	12.000
-1.280	-2.051	12.500

Passive pressure at subgrade : 5.319 Passive pressure slope : .309 Flexural rigidity : 45635.08

OUTPUT

```
At end of int. 1, Shear= 4.48, Moment= 18.93
At end of int. 2, Shear= 5.01, Moment= 23.67
At end of int. 3, Shear= 6.24, Moment= 34.87
At end of int. 4, Shear= 8.53, Moment= 56.93
At end of int. 5, Shear= 11.17, Moment= 91.33
At end of int. 6, Shear= 15.24, Moment= 157.15
At end of int. 7, Shear= 16.01, Moment= 164.97
At end of int. 8, Shear= 2.18, Moment= 338.99
At end of int. 9, Shear= -18.64, Moment= 246.14
```

D= 6.47 embedment below subgrade with F.S.= 1 D(FOS = 1.2) = 1.44(12.ft + 11.5.ft + 6.4.ft) = 43.17.ft [EL-55]Total Length of sheetpile is 55.97 Depth of max. moment= 38.64 Max. moment= 340.80 $M_{ALL} = 0.6(50 \, \text{ksi})(32.11 \, \text{m}^3/\text{ft})(1/12^4) = 82.28 \, \text{k-ft}$


Mmax >Mar : NG

Depth of max. shear= 55.97 Max. shear= 59.55

9

х	V	M	Defl.
0.00	0.00	0.00	7.50
2.80	0.83	1.09	6.93
5.60	2.00	4.98	6.36
8.40	3.48	12.56	5.79
11.19	5.11	24.66	5.22
13.99	6.96	41.42	4.66
16.79	9.10	63.91	4.11
19.59	11.24	92.35	3.56
22.39	13.46	126.88	3.04
25.19	16.29	168.00	2.53
27.99	18.63	217.70	2.06
30.79	17.44	269.01	1.61
33.58	12.72	312.04	1.22
36.38	4.47	336.93	0.87
39.18	-0.76	340.59	0.60
41.98	-4.96	332.70	0.37
44.78	-9.64	312.37	0.21
47.58	-14.81	278.26	0.09
50.38	-23.42	227.73	0.03
53.17	-40.27	139.17	0.00
55.97	-59.55	0.05	0.00

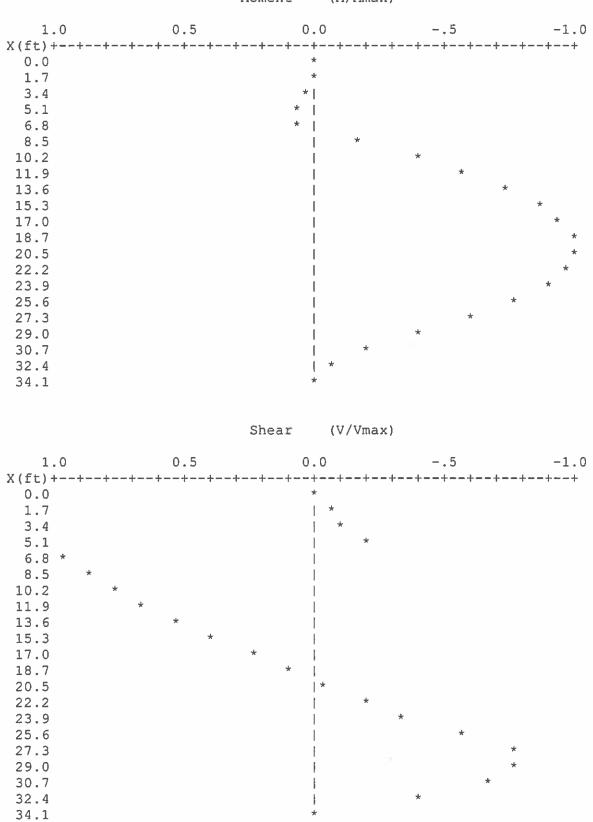
Smax = 7.50 ft - NG, Excessive

Moment (M/Mmax)

Anchored Wall Analysis V2.1 for Windows

Subject:

FREE EARTH METHOD For an anchored wall with the following input:


p (ksf) q (ksf) interval (ft)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.765 0.861 5.00 1.533 1.552 0.50
Pressure at slope (ksf): -1.552 Pressure slope (ksf/ft): 0.45
Flexural rigidity of wall [EI} (k-ft^2): 45635
Distance from top of wall to anchor (ft): 6.5
Results from analysis: d = 9.09 ft embedment below z = 25.00 D(FOS=1,2) = 1.2(9.09 ft) = 10.9' [EL, -23] with FS=1.0
Total wall length = 34.09 ft
Anchor Pull = 11.54 k/ft Moment at anchor = 6.97 k-ft/ft Shear at anchor = 9.10 k/ft
Maximum positive moment = 58.72 k-ft/ft
$\begin{array}{rcl} \text{Maximum moment} = & 58.72 \text{ k-ft/ft} & \text{M}_{\text{ALL}} = 0.6(50 \text{ toi})(32.91 \text{ m}_{\text{A}})(\frac{1}{2}) = 82.3 \text{ k-ft} Ok \\ \text{Location of maximum moment} = & 19.98 \text{ ft below top of wall} \end{array}$
Maximum shear = 9.10 k/ft
Maximum load = -2.54 ksf/ft Maximum defl. = -1.15 in at 20.45 ft below top of wall

Smax =1.15 : 01

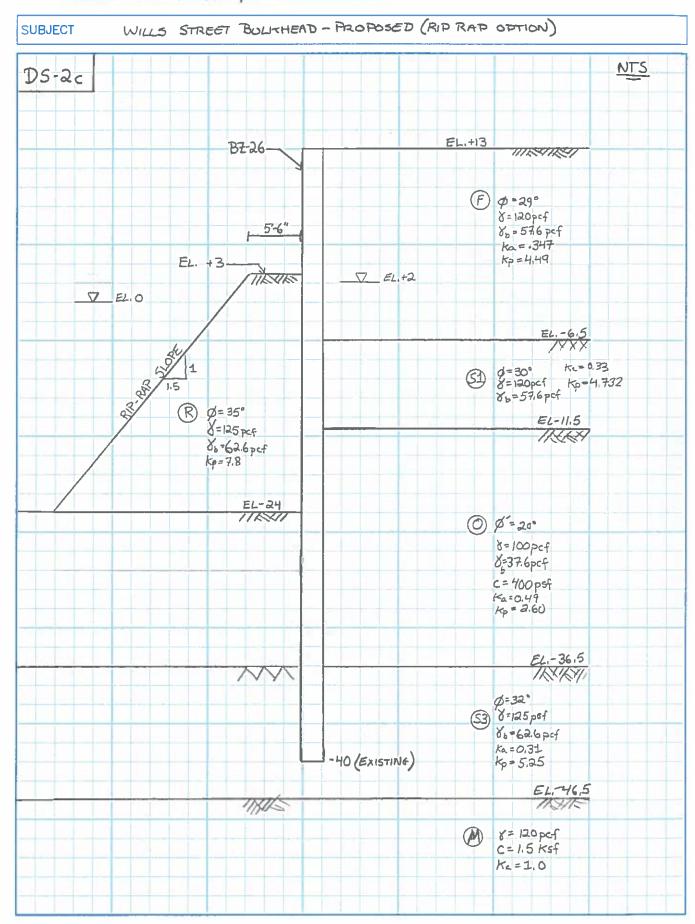
X (ft)	P (ksf/ft)	V (k/ft)	M (k-ft/ft)	DEF (in)
0.00	0.24	0.00	0.00	0.83
1.70	0.31	0.47	-0.38	0.61
3.41	0.38	1.06	-1.67	0.40
5.11	0.45	1.77	-4.06	0.18
6.82	0.52	-8.93	-4.12	-0.04
8.52	0.59	-7.98	10.31	-0.26
10.23	0.52	-6.94	23.02	-0.48
11.93	0.61	-6.00	34.07	-0.68
13.63	0.73	-4.84	43.33	-0.84
15.34	0.79	-3.54	50.49	-0.99
17.04	0.74	-2.25	55.40	-1.08
18.75	0.78	-0.95	58.14	-1.15
20.45	0.78	0.37	58.63	-1.15
22.16	0.82	1.74	56.85	-1.13
23.86	0.85	3.15	52.69	-1.05
25.56	1.30	5.28	45.70	-0.94
27.27	0.53	6.83	35.19	-0.78
28.97	-0.24	7.09	23.14	-0.61
30.68	-1.00	6.03	11.78	-0.41
32.38	-1.77	3.67	3.33	-0.21
34.09	-2.54	0.00	0.01	0.00

Pressure (P/Pmax)

1.0	0.5	0.0		.5	-1.0
X(ft)+++-	++	+++	+++	+++	++
0.0		*			
1.7		*			
3.4		*			
5.1		*			
6.8		*			
8.5		*			
10.2		*			
11.9		*			
13.6	*	I			
15.3	*				
17.0	*	I			
18.7	*	I			
20.5	*	I			
22.2	*	I			
23.9	*	I			
25.6	*	I			
27.3		*			
29.0		1	*		
30.7		I	*		
32.4		I		*	
34.1		I			*

Moment (M/Mmax)

0.0 -.5 -1.0 1.0 0.5 0.0 * 1.7 * l 3.4 * 5.1 * |* 6.8 8.5 * 10.2 * 11.9 13.6 15.3 17.0 18.7 20.5 22.2 23.9 25.6 1 27.3 ł * 29.0 30.7 * * 32.4 34.1 *


Deflection (DELTA/DELTAmax)

SHEET	0F
FILE_	12582B

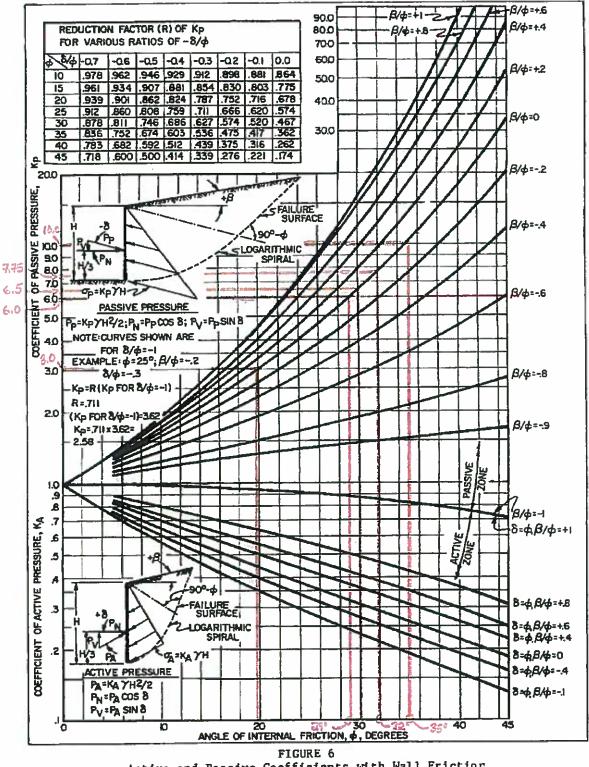
MADE BY ZM DATE 1/11/2016

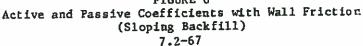
PROJECT WILLS Whant Office / Hotel

CHECKED BY _____ DATE __

			RAP BERM OPTION	
DS-2c	EL. +3,0 PCF 2-10 PCF 2-1. +3,0 PCF 2-1. +3,0 PCF 2-1. +3,0 PCF	-6.5 S1 05=30° 5=120pcf	Z22 (5 = 376 pcf	-36.5 -36.5 -36.5 (11) (32)
, 2 ¹ 2, 2	E1.43	110 6 = 35 6 4 = 63 16 16	HE-	C23
31.5'		A 200 CT 11-5	eg /	
	٩	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-H-
0. = 45-35=27.5 0. = 45-32 = 35° 21=55 tan(35)=3.85' 21=(315+55) tan(80")=13.5 21=385 (1250cf)=481,25 art	18			

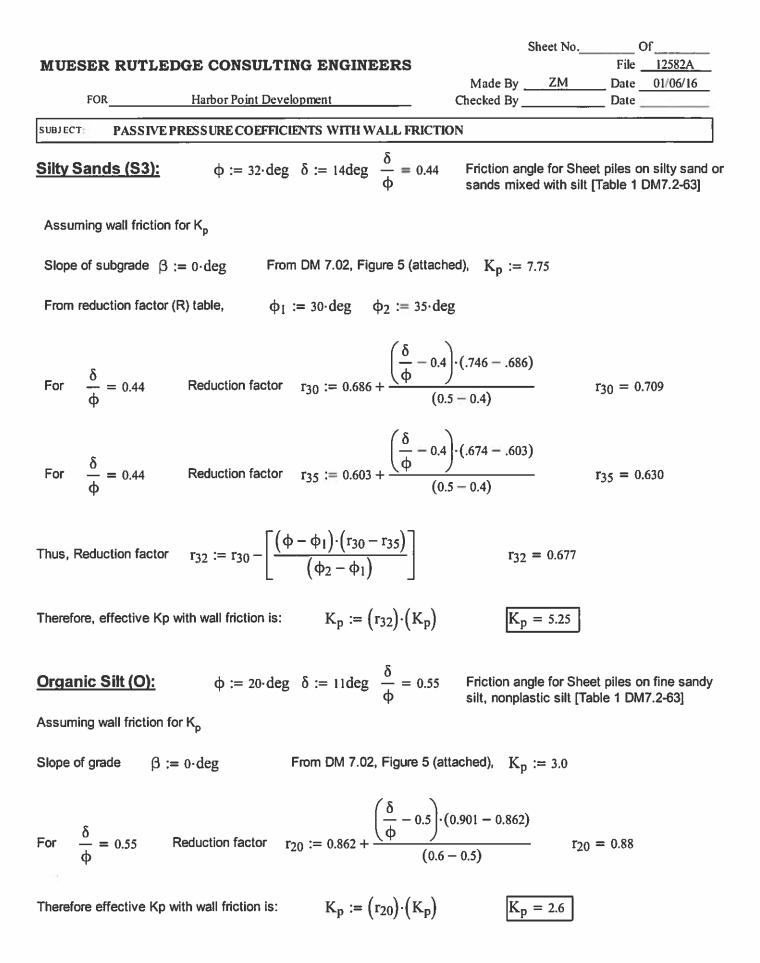
SHEET_ _OF_ 125822

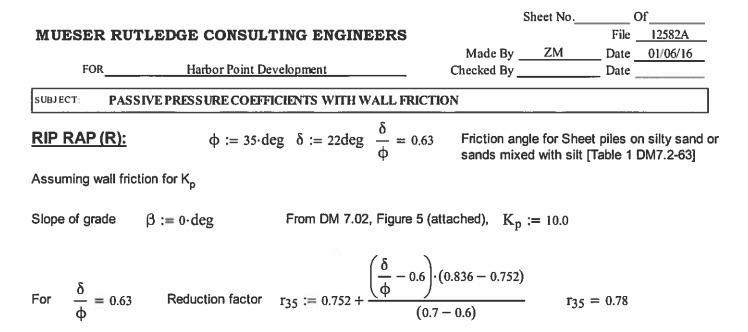

Ultimate fliction factors and Adhesio	n tot bibbini	THE HARGELES
+))))))))))))))))))))))))))))))))))))))		
*		Friction *
*	Friction *	angle *
* Interface Materials *		[delta] 🖙
* *	tan [delta] *	
/11111111111111111111111111111111111111)))))))))))))))))))))))))))))))))))))))	1)))))))))
* Mass concrete on the following foundation materials: *		r ≯
* Clean sound rock*	0.70 *	* 35 *
* Clean gravel, gravel-sand mixtures, coarse sand *	0.55 to 0.60 *	' 29 to 31 *
* Clean fine to medium sand, silty medium to coarse *	4	* *
<pre>* sand, silty or clayey gravel *</pre>	0.45 to 0.55 *	24 to 29 *
 Clean fine sand, silty or clayey fine to medium 	*	* *
* sand	0.35 to 0.45 *	10 to 24 +
<pre>* Fine sandy silt, nonplastic silt*</pre>	0.30 to 0.35 *	
Fine sandy silt, nonplastic silt	0.30 0.0133	1/ 10 19 -
 Very stiff and hard residual or preconsolidated 		
* clay	0.40 to 0.50	
* Medium stiff and stiff clay and silty clay *	0.30 to 0.35	1/ to 19 T
* (Masonry on foundation materials has same friction *		
* factors.) *		s 75
* Steel sheet piles against the following soils: *		-
Clean gravel, gravel-sand mixtures, well-graded		
rock fill with spalls*	0.40	22 🝨
* Clean sand, silty sand-gravel mixture, single size *	Notice and the set of	÷ +
* hard rock fill*	0.30	• 17 *
Silty sand, gravel or sand mixed with silt or clay	0.25	14
Fine sandy silt, nonplastic silt	0.20	11 1
Formed concrete or concrete sheet piling against the	in a state and the set	and the second se
* following soils:	. 1	к ж
* Clean gravel, gravel-sand mixture, well-graded *	. 1	н
 rock fill with spalls	0.40 to 0.50	22 to 26 *
 Clean sand, silty sand-gravel mixture, single size 	, , , , , , , , , , , , , , , , , , , ,	e *
 clean said, silly said-graver mixture, single size hard rock fill	0.30 to 0.40 '	+ 17 to 22 +
T Hard FOCK 1111	· 0.30 · ·	* 17 *
* Silty sand, gravel or sand mixed with silt or clay	0.25	• 14 *
* Fine sandy silt, nonplastic silt	U.2J	· 19 ·
* Various structural materials:		
 Masonry on masonry, igneous and metamorphic rocks: 		
* Dressed soft rock on dressed soft rock	0.70	* 35 *
* Dressed hard rock on dressed soit rock	0.63	* 33 *
* Dressed hard fock on dressed hard fock	0.55	* 29 *
- Masonry on wood (cross grain)	• 0.50 *	* 26 *
* Steel on steel at sheet pile interlocks	• 0.30 '	* 17 *
•		
-/)))))))))))))))))))))))))))))))))))))	3)))))))))))))))	2)))))))))))
*	•	- Alt
 Interface Materials (Cohesion) 	Adhesion c+a	(psf) *
THEELIGEC HEEGLIGIE (Controling		


TABLE 1							
Ultimate	Friction	Factors	and	Adhesion	for	Dissimilar	Materials

*

7.2-63


Change 1, September 1986



Therefore effective Kp with wall friction is: $K_p := (r_{30}) \cdot (K_p)$

 $K_{\rm p} = 4.719$

Therefore effective Kp with wall friction is:

 $\mathbf{K}_{\mathbf{p}} := \left(\mathbf{r}_{35}\right) \cdot \left(\mathbf{K}_{\mathbf{p}}\right) \qquad \qquad \mathbf{K}_{\mathbf{p}} = \mathbf{K}_{\mathbf{p}} = \mathbf{K}_{\mathbf{p}}$

$$K_{p} = 7.8$$

Wills Wharf Office / Hotel FOR:

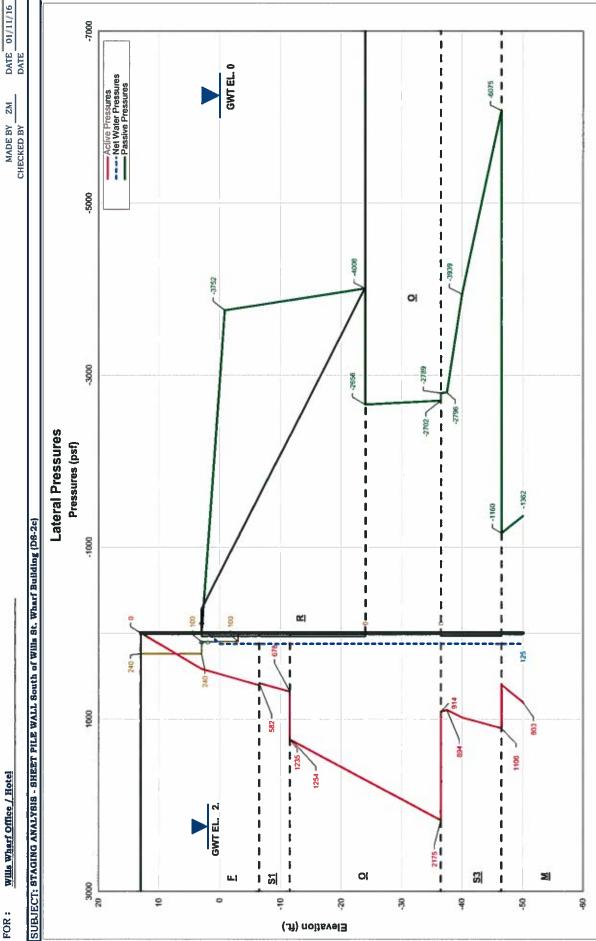
SUBJECT: STAGING ANALYSIS - SHEET PILE WALL South of Wills St. Wharf Building (D8-2c)

FILE 12582B DATE 01/11/16 DATE

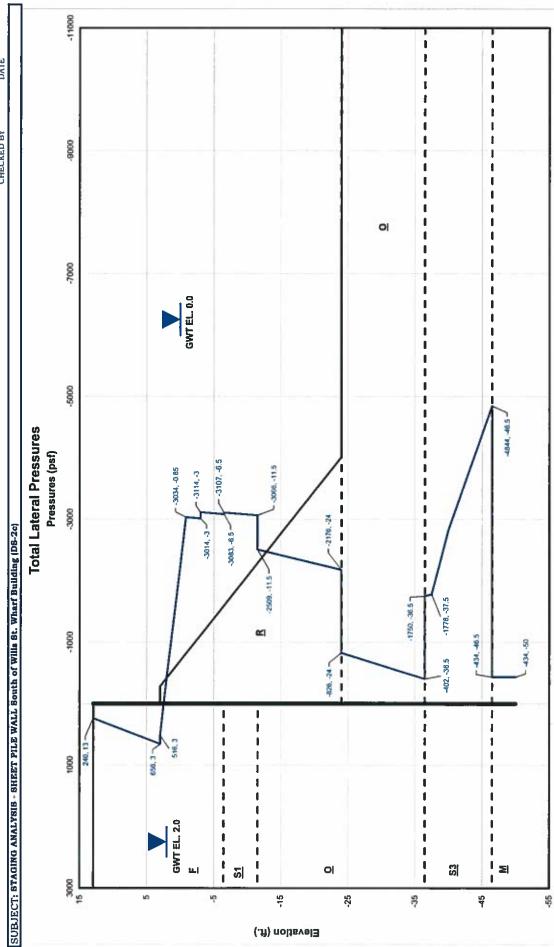
MADE BY ZM CHECKED BY

б


Sheet No.


Lateral Earth Pressures:

F:\125\12582\12582\12582B\Task 130 - Retaining Wall Design\SSP Bulkhead Analysis\Staging Analysis AREA 2 - Cantilevered



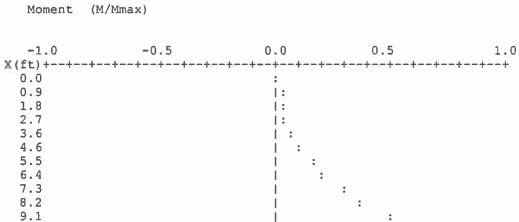
FOR : Wills Wharf Office / Hotel

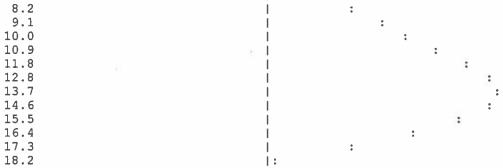
Cantilever v3.0 BETA for Windows, 32-bit

Subject: DS-2c

INPUT

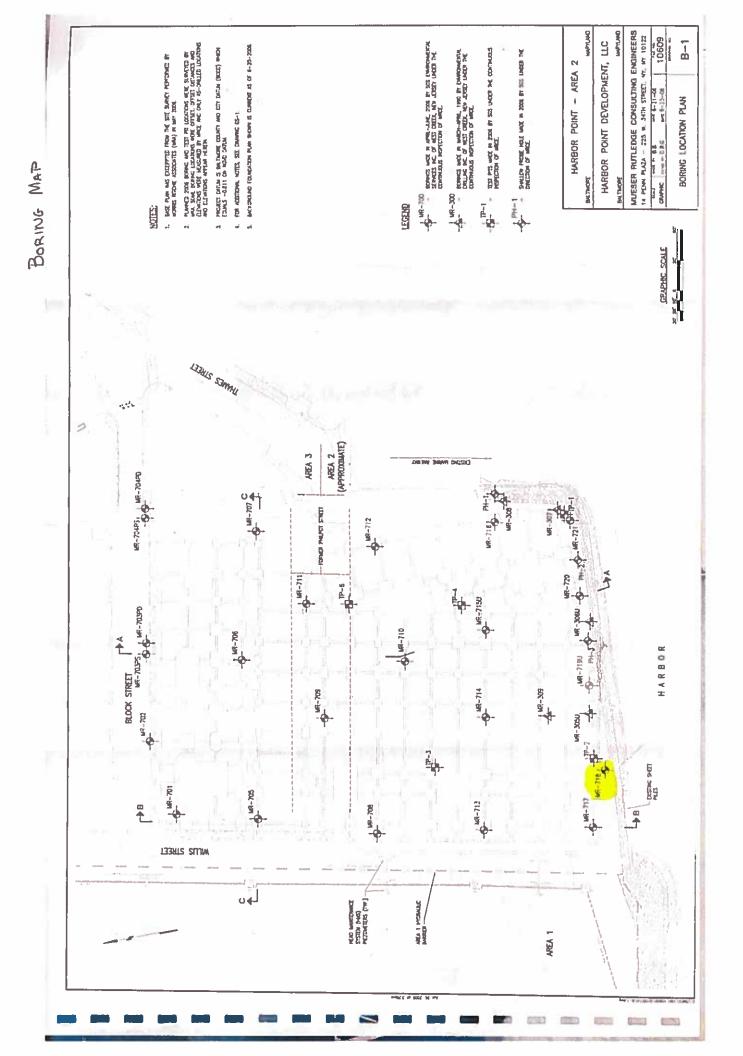
Р	Q	Interval Lengths
0.240	0.656	10.000
0.516	-0.439	1.000
-0.439	-3.034	2.850
-3.034	-3.014	2.150

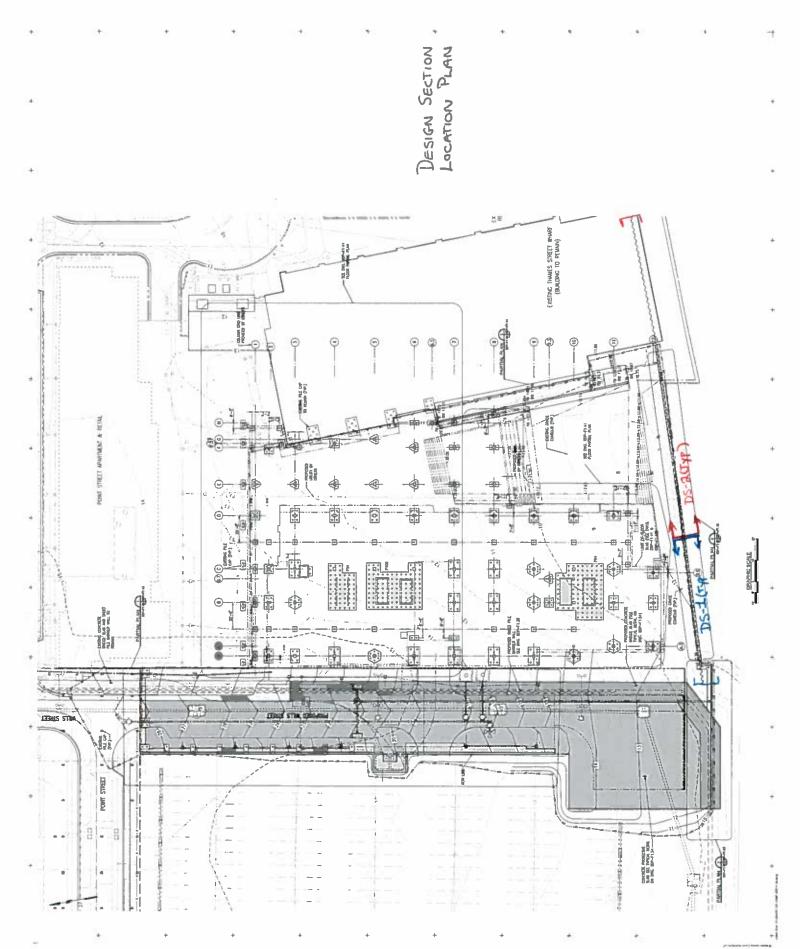

Passive pressure at subgrade : 3.114 Passive pressure slope :-.009 Flexural rigidity : 45635.08


OUTPUT

At end of int. 1, Shear= 4.48, Moment= 18.93 At end of int. 2, Shear= 4.52, Moment= 23.51 At end of int. 3, Shear= -0.43, Moment= 31.09 At end of int. 4, Shear= -6.93, Moment= 23.17 D= 2.22 embedment below subgrade with F.S.= 1 D(FOS=I,2) = I.444(3.85', 2.15', 2.22') = II.8344 [EL-8.8] Total Length of sheetpile is 18.22 Depth of max. moment= 13.70 Max. moment= 31.13 k-ft Depth of max. shear= 18.22 Max. shear= 13.83 Max. shear= 13.83

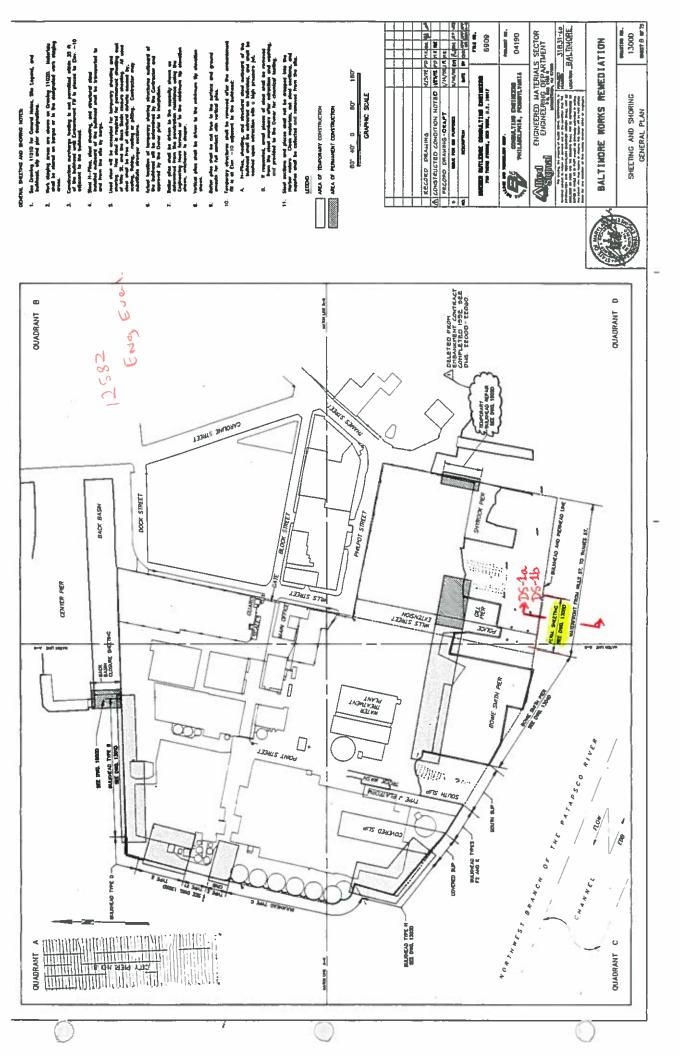
x	v	М	Defl.
0.00	0.00	0.00	0.07
0.91	0.24	0.10	0.06
1.82	0.51	0.44	0.06
2.73	0.81	1.04	0.05
3.64	1.15	1.93	0.05
4.56	1.52	3.15	0.04
5.47	1.93	4.72	0.04
6.38	2.38	6.68	0.03
7.29	2.85	9.06	0.03
8.20	3.37	11.89	0.02
9.11	3.91	15.21	0.02
10.02	4.49	19.03	0.02
10.93	4.55	23.21	0.01
11.84	3.82	27.08	0.01
12.76	2.34	29.95	0.01
13.67	0.11	31.12	0.00
14.58	-2.64	29.98	0.00
15.49	-5.39	26.32	0.00
16.40	-8.18	20.15	0.00
17.31	-11.01	11.41	0.00
18.22	-13.83	0.10	0.00

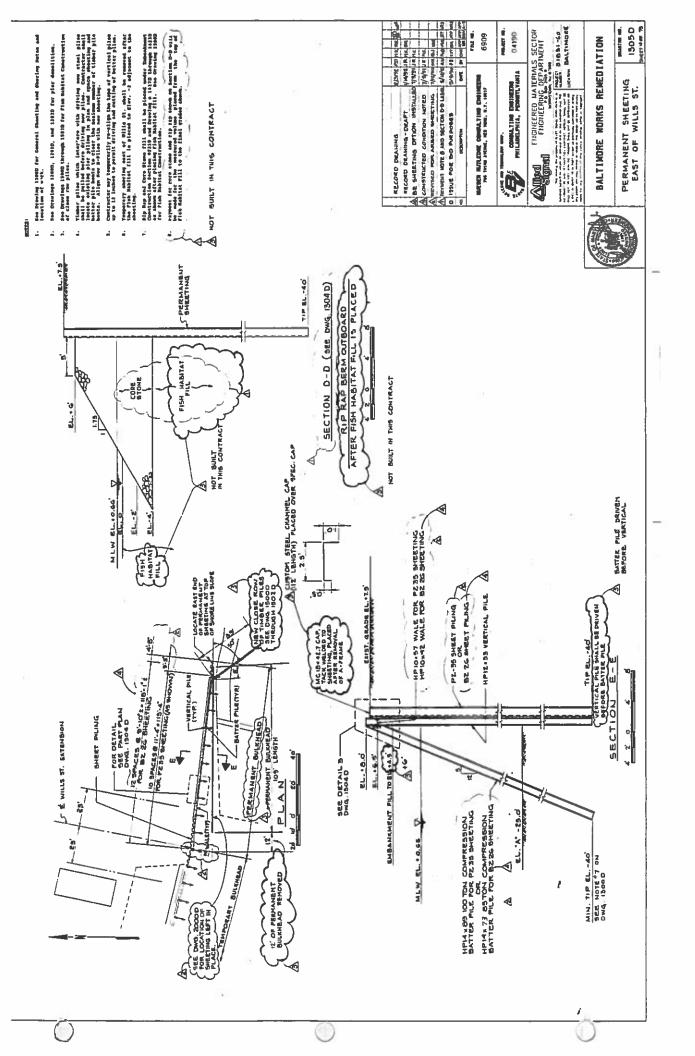


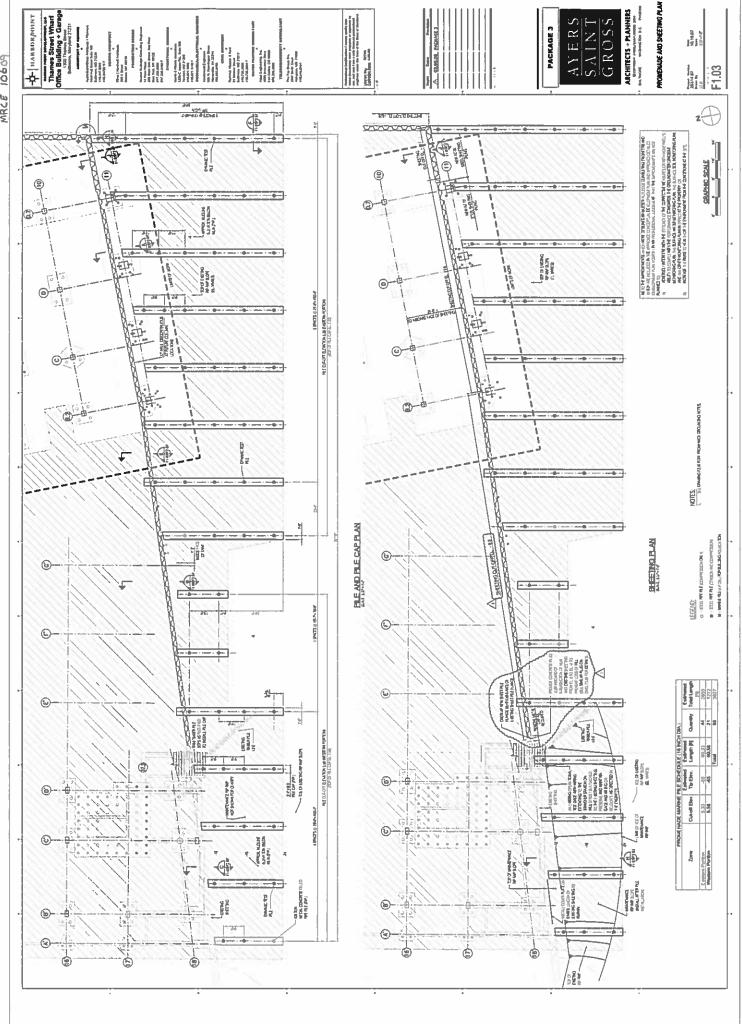


Shear (V/Vmax)

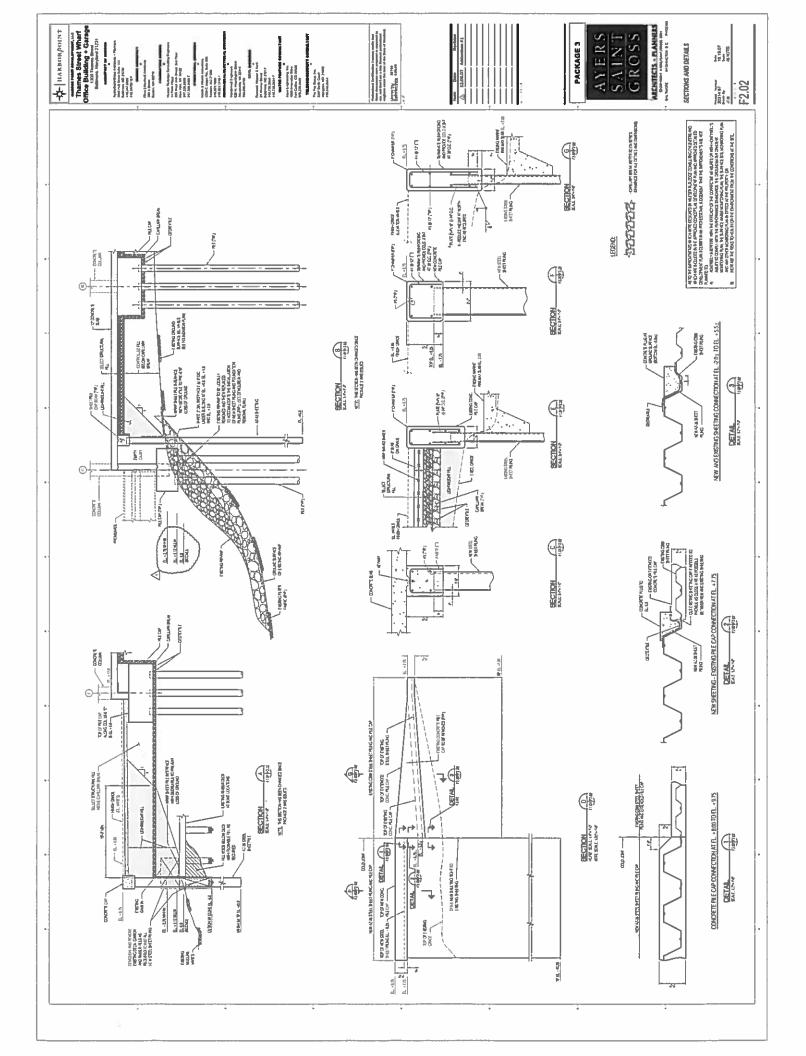
-1.0		-0.5	1	0	.0	0.5	1.0
X(ft)++	++-	-++-	-++-	-++	+++	++-	+++
0.0					:		
0.9					1:		
1.8					1:		
2.7					1 :		
3.6					1 :		
4.6					:		
5.5					:		
6.4					1 :		
7.3					:		
8.2					:		
9.1					1 :		
10.0						:	
10.9					1	1	
11.8					1		
12.8					:		
13.7					1:		
14.6				:			
15.5			:				
16.4					1		
17.3	:						
18.2:					1		

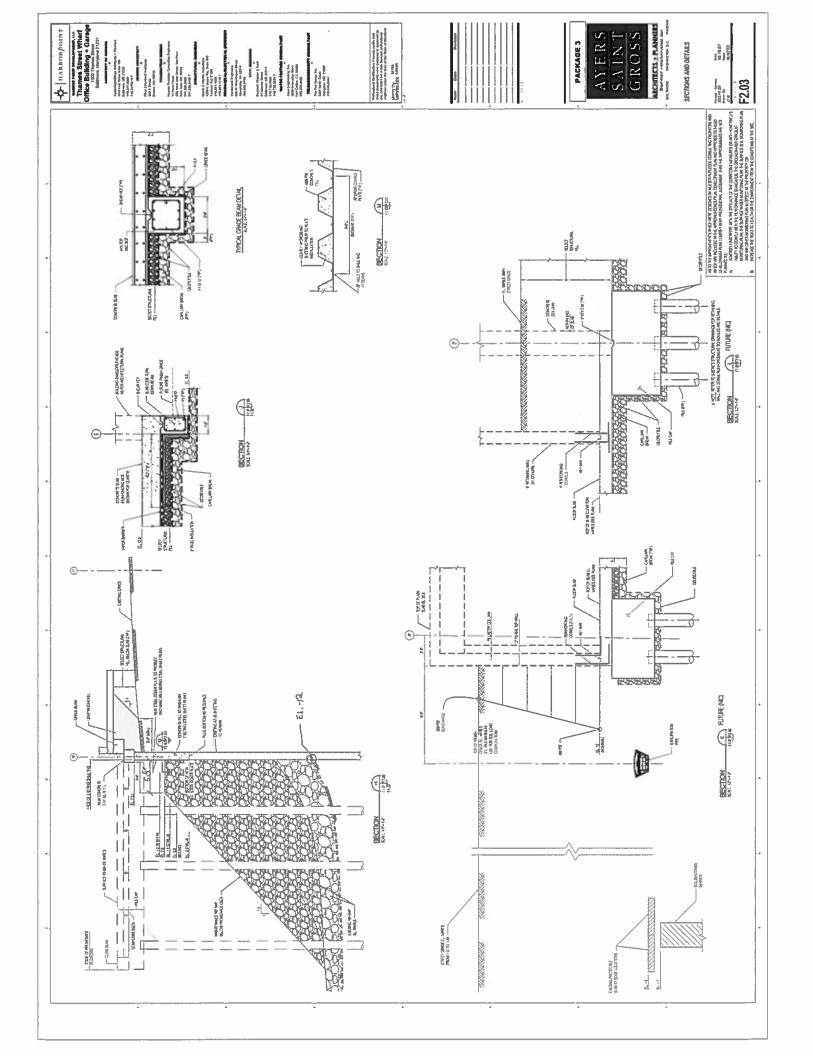

1





the CETTY I I SIDE IS THE TANKS OF PERSONNELSES AS ADDRESS


W HALL I WALL I WE WANT IN MANY



MRCE 10609

