

Mueser Rutledge Consulting Engineers

14 Penn Plaza · 225 West 34th Street · New York, NY 10122 Tel: (917) 339-9300 · Fax: (917) 339-9400 www.mrce.com

MEMORANDUM

Date:	January, 2016
To:	Office
From:	Adam M. Dyer
Re:	EE Memo 1 – Estimated Settlement and Stress on MMC from Development Fill
	Wills Street Wharf Building and Ramp, Baltimore, MD
File:	12582B

MRCE has reviewed available subsurface information in the vicinity of the Wills Street Ramp and has estimated settlement resulting from fill placed for development. The purpose of these estimates is to determine if the proposed grading scheme will cause settlement or impose loads which may influence the integrity of the existing multi-media cap (MMC) and Head Maintenance System (HMS) components, including the Soil Bentonite Barrier (S-B Barrier).

Exhibits

Exhibits prepared to illustrate these reports are:

Sketch 1	Assessment of Fill Areas
Drawing GS-A	Geologic Section A-A
Analysis 1	Wills Street Ramp
Analysis 2	Wills Street Turnaround
Analysis 3	Wills Street Turnaround in Area of Pre-Load
Analysis 4	Load impact on drainage net based on foundation type.
Appendix A	Laboratory Data
Appendix B	Assessment of Compressibility Characteristics

References

- 1. "Corrective Measures Implementation Construction Completion Report, Phase I: Soil-Bentonite Hydraulic Barrier Wall, Phase II: Final Remedial Construction" prepared by Black and Veatch, Volumes I and II, February 2000.
- 2. "An Engineering Manual for Settlement Studies" by J.M. Duncan and A.L. Buchignani, June 1976, revised October 1987.
- 3. "EE Memo 1 Estimated Settlement Under Development Fill Exelon Building & Plaza Garage, Baltimore, MD" by Mueser Rutledge Consulting Engineers, December 2013.
- 4. "Manual on Estimating Soil Properties for Foundation Design", by Cornell University for the Electric Power Research Institute, August 1990.

Site Description

The site straddles remedy Area 1 and 2 in the footprint of the Wills Street alignment and southern Wills Street extension. Generally, the existing ground surface for the proposed development slopes gently from Elev. +10 at the southern foot of Wills Street to Elev. +15 at the south end of the Plaza Garage. The proposed development raises grades for roadway, sloping from approximately Elev. +13 at the south end to Elev. +28 at the Plaza Garage. Retaining wall structures are required at the south, west and north sides to contain the fill. The east side contained by the Wills Street Wharf Building west foundation wall. Utilities will be buried in the fill below the street.

Subsurface Conditions

The southern portion of the site is underlain by the MMC remedy component, a layer of granular fill (Stratum F), and compressible organic clay (Stratum O) ranging in thickness from 6 to 20 ft. This compressible layer is generally described as a soft brown to black organic silty clay with trace vegetation and fine sand, and is typically given a USCS designation of OH or OL. Stratum O is underlain by a series of sand and silt layers (Strata S1, S2, S3, M, and S4). Bedrock is at approximately Elev. - 80. Groundwater is controlled by pumping; for design purposes the groundwater table is assumed at approximately Elev. 0. Abandoned foundations and waterfront structures are buried within Strata F and O.

Prior Remedial Earthwork

In preparation for construction of the MMC corrective measure during the 1990s Allied Signal placed a sheet pile retaining structure at the southern foot of Wills Street, constructed a rip-rap embankment, preloaded areas of potentially high settlement, and constructed the S-B Barrier, see Sketch 1.

Baltimore City Pier Pre-Load c. 1996:

The Baltimore City Pier was located at the foot of Wills Street in the vicinity of the proposed Wills Street Turnaround and consisted of a timber pile supported relieving platform and headwall. To make way for the MMC, the deck was removed and the timber piles were cut at Elev +1 and abandoned in place. The area was pre-loaded to Elev. +15. Pre-loading included installation of vertical wick drains between the piles.

This analysis assumes that the combination of pile support and soil support was effectively preloaded to Elev. +15. The pre-loading is significant when determining whether Stratum O will be in a recompression or virgin compression loading condition as a result of fill placement to achieve the proposed grades. If the proposed new grade is above that of the pre-load, a significant magnitude of settlement can be expected due to virgin compression of the underlying soil material. The timber pile hard points would reduce settlement magnitude but may cause areas of high strain due to localized differential settlement. If the proposed new grades are below the historic pre-load, only a negligible amount of settlement will occur, in re-compression.

S-B Barrier Construction c. 1999:

The S-B Barrier underlies the center of the proposed ramp and turnaround. A reinforced concrete bridge slab will be present (either existing or new after sheet pile is placed) in all areas where street traffic can travel.

MMC Construction c. 1999:

After completion of the S-B Barrier, the MMC was constructed, including cover soil to the present grade. The MMC contains a 60-mil LLDPE Geomembrane that is susceptible to strain from differential settlement. The performance of the MMC has two design conditions:

- 1. The Geomembrane covers the entirety of Area 1 and at its' extents is embedded in the S-B Barrier. As described in EE Memo 1 for the Exelon Project (Ref 3), settlement of greater than 2 inches may cause strain that damages the Geomembrane. The Geomembrane is protected by the underlying crushed stone capillary break layer and the drainage net and the separation geotextile above which will help arch overburden loads over areas of soft support below. The 2 inches of allowable settlement is provided as a design guide and as a magnitude which can be practically estimated and observed.
- 2. Immediately overlying the Geomembrane is the Drainage Net which allows surface water infiltration to drain to the perimeter of the site and off of Area 1. Drainage Net flow is restricted when a stress greater 2,000 pounds per square foot (psf) is applied to it. However, reduced flow may be acceptable where the drainage basin upslope is covered by a roof or other structure which will manage storm water. As a general design guide, at final construction, total stress acting on the drainage net is limited to 2,000 psf.

Analysis and Assumptions

An overlay of proposed grades, existing conditions, prior remedial earthwork conditions, and buried structures was examined to analyze areas of settlement and loading concern. Three areas were identified as potentially impacting the corrective measures; areal extents are illustrated on Sketch 1.

These areas include:

- 1. Analysis 1 Wills Street Ramp: This area is outside the limits of compressible materials.
- 2. Analysis 2 Wills Street Turnaround: This area is within the limits of compressible materials and does not overlie an area of pre-loading.
- 3. Analysis 3 Wills Street Turnaround in Area of Pre-Load: This area is within the limits of compressible materials and overlies and area of pre-loading.
- 4. Analysis 4 Load impact on drainage net based on foundation type.

<u>Settlement</u>

In general, settlement is computed as the sum of three contributors: elastic compression, primary consolidation, and secondary compression. It was assumed that strata below the hard silty clay of Stratum M were incompressible under the potential loadings.

Elastic Compression

Elastic moduli of granular strata were estimated based on the EPRI *Manual on Estimating Soil Properties for Foundation Design*, Reference 4.

Primary Consolidation

Consolidation settlement of compressible strata were estimated using one-dimensional consolidation theory after Terzaghi (1947). Idealized profiles were determined for analysis based on the geologic sections presented on Drawing GS-A. The compressible stratum was divided into sub-layers no greater

than four feet in thickness. The groundwater table was assumed to be at El. 0. In areas where a preload was present, the maximum past pressure was calculated based on this preload. In locations where a preload was not present, the maximum past pressure (P'_c) was computed assuming existing conditions. Primary settlement was computed for each sub-layer, and a total primary settlement estimate at each section was determined.

Previous laboratory testing (Appendix A) indicates a correlation between natural water content & compression ratio and swell index & initial void ratio (Appendix B) for Stratum O Clay. Water contents reported in boring MR-505U before cap construction were used in the analyses.

Secondary Compression

Secondary compression was computed for a duration of 100 years after fill placement. Secondary compression was estimated in areas of compressible materials where the pre-load was not present.

Analysis 1: Wills Street Ramp

The area analyzed lies outside of the limits of the compressible strata and therefore settlement is expected to be less than $\frac{1}{2}$ inch.

Analysis 2: Wills Street Turnaround

The area analyzed lies within the limits of compressible strata and outside the limits of pre-loading, therefore significant settlement will result from raising grades to accommodate the proposed turnaround. In this area, proposed fill height is about 3 feet and Stratum O is about 6 feet thick. The proposed fill height and stress history indicate that this area will be in virgin compression. It is estimated that total settlement, δ_T will be on the order of 1.5 to 2.0 inches and is therefore considered acceptable.

Analysis 3: Wills Street Turnaround in Area of Pre-Load

The area analyzed lies within the limits of the Baltimore City Pier pre-load and proposed fill will be below the pre-load of Elev. +15, therefore settlement is expected to be less than $\frac{1}{2}$ inch.

Additional Load on Drainage Net

Analysis 4: Load Impact on Drainage Net based on Foundation Type

The drainage net in Area 1 has a bearing capacity limit of 2,000 psf. An estimate of shallow foundations supporting the retaining structures was performed to determine how high the wall can be before the toe bearing stresses exceeded the 2,000 psf bearing pressure and what wall height deep foundations would then have to be used.

A cantilever retaining wall with 8 foot wide by 2 foot thick footing and wall with 1.25 foot thick base was analyzed using regular weight fill having a unit weight of 125 pounds per cubic foot. It was estimated that the maximum top of wall elevation is 11 feet above the drainage net elevation for toe bearing stresses to be below 2,000 psf.

Recommendations

Settlement estimates show that proposed fill will not result in settlement that is detrimental to the Geomembrane. To confirm this, two permanent settlement plates should be installed in the area of the turnaround (within the area of Analysis 2) as follows:

- 1. Centered on the turnaround; and
- 2. South end of the turnaround.

Estimated additional loads planned require retaining wall foundation types:

- 1. Retaining walls bearing on shallow foundations may be used for up to a top of wall 11 feet above the drainage net elevation;
- 2. Retaining walls bearing on deep foundations may be used for top of wall between 11 and 16 feet above the drainage net elevation; and
- 3. Concrete platform bearing on deep foundations must be used for top of wall greater than 16 feet above the drainage net elevation.

AMD: PWD\F:\125\12582\12582B\Task 110 - Settlement Analysis\Memo 1 Text - Site.docx

nled by: Eugina Cherkasskaya nied an: Tuesday, Oct 20, 2015 – 03:08:07 PM it saved by: echerkasskaya an Tuesday, Oct 20, 2015 – 2:45:38 Duesd Fact Pacentors K. 44-- NOTES:

R.S.

- I. PROPOSED GRADES SHOWN ARE RASED ON GRADING PLAN BY MRA PROVIDED IN OCTOBER, 2015.
- 2. ELEVATIONS ARE BASED ON BALTIMORE CITY AND COUNTY METROPOLITAN DATUM (BEEMD).
- 3. SURCHAILGES SHOWN ARE BASED ON PHASE IT & IT CONSTRUCTION COMPLETION REPORT BY BLACK & VEATCH DATED FEBRUARY, 2000.

ANALYSES TO CHECK:

- 1. RAMP FILL OUTSIDE OF ORGANICS FALLS UNDER DRAINAGE NET LIMITATIONS, THEREFORE ASSESS RETAINING WALL PRESSURES
- 2. TURNAROUND AT FOOT OF RAMP IS INFLUENCED BY ORGANICS, THEREFORE ASSESS EXPECTED SETTLEMENT USING SECTION A:A

WILLS	STREET WHARF
BALTIMORE	MARYLAND
MUESER RUTLED	GE CONSULTING ENGINEERS WEST 34TH STREET, NEW YORK, NY 10122
WADE BY: E.C. CI	HTKD BY: G.S. DATE: MM-DD-YYYY
THE NUMBER: 12582	DRAWING NUMBER: SK-1

ANALYSIS 1

Settlement Estimate of Area 1

SHEET	OF	3
FILE	258	32

MADE BY APS DATE 1 20116

PROJECT WILLIS STREFT WHARF

CHECKED BY_____ DATE

SHEET	2	_OF_	- 2
FILE	12	SB	2

MADE BY APS DATE 1120116

PROJECT WILLS STREFT WHARE

T WHARE CHECKED BY DATE

SUBJECT SETTLE MENT CALCULATION (ANALYSIS AREA I) CALCULATION OF SETTLEMENT: ST = 81 + Sc + 85 Where: SI= DO Z HII ; "ELASTIC" COMPRESSION FOR GRANULAR, FREE DRAINING SC & SS NOT APPLICABLE SINCE THERE IS NO COMPRESSIBLE LAYER STRATUM M : ASSUMED TO BE HEAVILY CONSOLIDATED AND HENCE Pin >> Pico, Com KCCO, Com LLCSO STRATUM F. SZ: EI = 740 KSF ASSUMPTION BASED ON EPRI MANUAL ON ESTIMATING SOIL PROPERTIES FOR FOUNDATION DESIGN, TABLE 5-5 (AUGUST 1990) DEFINITIONS ST = TOTAL SETTLEMENT SI = IMMEDIATE ELASTIC SETTLEMENT 8c = CONSOLIDATION SETTLEMENT 85 = SELONDARY COMPRESSION SETTLEMENT Co = INITIAL VOID RATIO I = INFLUENCE FACTOR PC=MAXIMUM PAST VERTICAL STRESS HDE - LENGTH OF DRAINAGE PATH

SHEET	3	OF.	3
FILE_	125	8	2

MADE BY APS DATE 120116

PROJECT WILLS STREET WHARF

CHECKED BY_____ DATE__

SUBJECT SETTLEMENT CALCULATION (ANALYSIS AREA I) CALCULATION OF IMMEDIATELSETTLEMENT, SI: SI= AJ-HF, SZ- I/E I= 1.0 FOR 10 LOADING HEN 25Ft :. SI = 1625 psf x 25 Ft × 1.0/740000 = 0.055 Ft = 0.66 in TOTAL SETTLEMENT, ST: 8T = 8I + 8c + 8s = 0.66 in + 0 + 0 = 0.66 in

ANALYSIS 2

Settlement Estimate of Area 2

FILE 12582

SHEET___OF__4

PROJECT WILLS STREET WHARE

MADE BY ARS DATE 10/27/15 CHECKED BY SFK DATE 12/17/15

			FILE_	125 82
MADE	BY_	APS	DATE	10/27/15

CHECKED BY STK DATE 12/17/15

PROJECT WILLS STREET WHARF

SUBJECT SETTLEMENT (ALCULATION (ANALYSIS AREA 2)

CALCULATION OF SETTLEMENT: ST = SI + SC + SS Where: SI = DS 2 HII ; "FLASTIC" COMPRESSION FOR GRANULAR, FREE DRAINING FOR JULY PC : RECOMPRESSION ONLY

 $\delta c = \underline{Hi} \left[C_{si} \cdot \log_{10} \left[\underbrace{Gvf}_{Vo} \right] \right];$

FOR JUF > P'C : RECOMPRESSION & VIRGINCOMPRESSION

 $\delta c = \frac{Hi}{1+c_0} \left[G_{si} - \log_{10} \left[\frac{\sigma v_f}{\sigma v_0} \right] + C_{ci} \cdot \log_{10} \left[\frac{\sigma v_f}{\sigma v_0} \right] \right],$

Ss = Hi Calog. [At]; SECONDARY COMPRESSION, NEGLIGIBLE FOR RECOMPRESSION

SETTLEMENT COMPUTED AFTER :

"AN ENGINEERING MANUAL FOR SETTLEMENT STUDIES" BY J.M. DUNCAN AND A.L. BU (HIGNANI (1981)

* ASSUME : NORMALLY CONSOLIDATED, I.E OVO~ PE

COMPRESSIBILITY PARAMETERS:

STRATUM 0: Cc 2 eo are posed on correlations (see APPENDIX A)

Cc = 0.014 Wn Co = 0.0289 Wn

Wn = 44% (BASED ON BORING MR-5054)

 $Ce_i = 0.0114(44) = 0.502$ $e_i = 0.0289(44) = 1.272$

STRATUM M: ASSUMED TO BE HEAVILY CONSOLIDATED AND HENCE Dim >> Pico, Con << Cou, Con << Coo STRATUM F, S1: EL = 740 KSF

DEFINITIONS

ST=TOTAL SETTLEMENT CV = COEFFICIENT OF CONSOLIDATION HOR- LENGTH OF DRAINAGE PATH SI = IMMEDIATE FLASTIC SETTLEMENT TV = TIME FACTOR Sc = CONSOLIDATION SETTLEMENT U = DEGREE OF CONSCLIDATION SS = SECONDARY SETTLEMENT tD=TIME FOR PRIMARY C. = VIRGIN COMPRESSION INDEX CONSOLIDATION TO OCCUR I = INFLUENCE FACTOR t = TIME AFTER PRIMARY WN = NATURAL WATER CONTENT CONSOLIDATION CE = SWPLL INDEX · CO = INITIAL VUID RATIO PC = MAXIMUM PAST VERTICAL STRESS GX = SECONDARY COMPRESSION INDEX ED = VOID RATIO AT END OF PRIMARY CONSOLIDATION

SHEET 2 OF 4

SHEET 3 OF 4 FILE 125 82 MADE BY APS DATE 10127/15 CHECKED BYSPY DATE 12/17/15

PROJECT WILLS STREET WHARE

SUBJECT SETTLEMENT CALCULATION (ANALYSIS AREA 2)

CA	LCULAT	DIN C	of consoli	DATIO	N SET	FLEM	ENT S			
1.1.1			c; - 10910 510		*COMP COMP TO P	PRES	SIBLE L ON SIN ZEATER	AVER IS	SIN VIRGIN O IS ASSUM THE PRE-LO. PRESSIBLE	ED
	LAYER		ELEV. OF MIDPT (F+)	G'voi (psf)	G'YJL (PSF)		Cci	Coi	Sci (lin)	
	0,	3		2015	2390	44	0.502	1.272	0.59	
	02	3	- 26.5	2096	2471	44	0.502	1.272	0.57	
	EXAN	JOF C	ALCS FOR L	AMER).			Sc=	1-16	
СА			+ 1.272	-					n	
	$S_{I} = \Delta \sigma \cdot H_{F} \cdot I/E$ I = 1.0 For 1.0 loading $H_{F} = 28 \text{ ft}$ $\circ S_{I} = 375 \text{ psf} \times 28 \text{ ft} \times 1/740000 = 0.014 \text{ ft} = 0.17 \text{ in}$									
			SECONDA	24 CON	IPRESS	10N,	85 3			
C	$S_{s} = H_{i} C_{s} \log_{10} \left[\frac{t}{tp} \right] $ $CALCULATED USING CONSALIDATION TEST AT BORING MR-801 (SEE APPENDIXA) $ $Ca = 0.032 $ $tp = \frac{Hor^{2}Tv}{Cv} = \frac{(3)^{2}(0.848)}{0.02} = 381.6 downs $ $cp = 1.708 $ $tp = \frac{Hor^{2}Tv}{Cv} = \frac{(3)^{2}(0.848)}{0.02} = 1.045 yrs;$									
н	$C_{\alpha} = C_{\alpha} = 0.012$ $1 + e_{p}$ H = 6 ft USE = 100 yrs (AFTER PRIMARY) Ss = (0 ft)(0 012) log [100 + 1.045] 1045									
T		8 C	t = 3 ft u = 90% ² lday	23	- 0.14	3 - ir				

SHEET 4 OF 4 FILE 12582 MADE BY APS DATE 10 27 15 CHECKED BY ST DATE 12 17 15

PROJECT WILLS STREET WHARF

SUBJECT SETTLEMENT CALCULATION (ANALYSIS AREA 2) TO TAL SETTLEMENT, Sr: $S_T = S_T + S_C + S_S = 0.17 + 1.16 + 0.14 = .1.47$ in . TOTAL ESTIMATED SETTLEMENT AT CENTER OF TURNAROUND IS ABOUT, ST = 1.5 to 2.0 in

ANALYSIS 3

Settlement Estimate of Area 3

FILE 12582

MADE BY APS DATE 1/20/16

PROJECT WILLS STREET WHARF

CHECKED BY _____ DATE.

SHEET____OF____3

	SHEET.	OF
	FILE	12582
MADE BY APS	DATE_	1/20116
CHECKED BY	DATE_	

PROJECT WILLS STREET WHARE

SUBJECT SETTLEMENT (ALCULATION (ANALYSIS AREA 3)

and the second	= 8I+SCTSS
Where & SI = DO Z HIT ; "FLAST FL FIZEE	IC" COMPRESSION FOR GRANVLAR DRAINING
FOR duf < P'c : RELOMPR	
8c = <u>Hi</u> [Csi - logio [GV	
	ESSION & VIRGIN COMPLESSION
$8c = Hi \left[C_{si} - 10g_{10} \right] \left[\frac{O'VF}{O'V_0} \right]$	$+ \operatorname{Ccl} \cdot \log_{0} \left[\operatorname{Gvf} \right] $
	ONDARY COMPRESSION, NEGLIGIBI
SETTLEMENT COMPUTED AFTER	DETTLEMENT STUDIES"
BY J.M. DUNCAN AND A.L. BUCH	
SINCE OUT < P'C, SOIL IS UNDER	260ING RECOMPRESSION
COMPRESSIBILITY PARAMETERS	
	orrelations (see APPENDIXA)
$C_{s} = 0.13$ $C_{o} = 0.0289$ $W_{n} = 0.028$ (Based on Bonny MR-505	
STRATUM M : ASSUMED TO BE HEAVIL	
STRATUM F: EL = 740 KSF (BASED ON PROPERTIES FOR FOUND	Cent 11CED
STRATUM F: EL = 740 KSF (BASED ON PROPERTIES FOR FOUND DEFINITIONS	, CSM ZCSO "EPRI MANUAL ON ESTIMATING SUIL DATION DESIGN", TABLE S-S)
STRATUM F: EL = 740 KSF (BASED ON PROPERTIES FOR FOUND DEFINITIONS SI = IMMEDIATE SETTLEMENT	, CSM ZZCSO FERI MANUAL ON ESTIMATING SUIL SATION DESIGN", TABLES-S) THE FACTOR
STRATUM F: EL = 740 KSF (BASED ON PROPERTIES FOR FOUND DEFINITIONS	, CSM ZCSO FERI MANUAL ON ESTIMATING SUI DATION DESIGN", TABLE S-S) TN = TIME FACTOR
STRATUM F: EL = 740 KSF (BASED ON PROPERTIES FOR FOUND DEFINITIONS SI = IMMEDIATE SETTLEMENT 8c = CONSOLI DATION SETTLEMENT	, CSM ZCSO FORI MANUAL ON ESTIMATING SUI DATION DESIGN", TABLES-S) TN = TIME PACTOR U = DEGREE OF CONSOLIDATION tp=TIME FOR PRIMARY
STRATUM F: EL = 740 KSF (BASED ON PROPERTIES FOR FOUND DEFINITIONS SI = IMMEDIATE SETTLEMENT SC = CONSOLI DATION SETTLEMENT SS = SECONDARY SETTLEMENT ST = TOTAL SETTLEMENT I = INFLUENCE FACTOR	, CSM ZZCSO EPRI MANUAL ON ESTIMATING SUI SATION DESIGN", TABLESS) TN = TIME PACTOR U = DEGREE OF CONSOLIDATION tp=TIME FOR PRIMARY CONSOLIDATION TO OCCUR t= TIME AFTER PRIMARY
STRATUM F: EL = 740 KSF (BASED ON PROPERTIES FOR FOUND DEFINITIONS SI = IMMEDIATE SETTLEMENT SC = CONSOLI DATION SETTLEMENT SG = SECONDARY SETTLEMENT ST = TOTAL SETTLEMENT I = INFLUENCE FACTOR WN = NATURAL WATER CONTENT	, CSM 22CSO EPRIMANUAL ON ESTIMATING SUI SATION DESIGN", TABLE S-S) TN = TIME FACTOR U = DEGREE OF CONSOLIDATION tp = TIME FOR PRIMARY CONSOLIDATION L= TIME AFTER PRIMARY CONSOLIDATION
STRATUM F: EL = 740 KSF (BASED ON PROPERTIES FOR FOUND DEFINITIONS SI = IMMEDIATE SETTLEMENT SC = CONSOLI DATION SETTLEMENT SS = SECONDARN SETTLEMENT ST = TOTAL SETTLEMENT I = INFLUENCE FACTOR Wn = NATURAL WATER CONTENT CS = SWELL INDEX	, CSM ZZCSO EPRI MANUAL ON ESTIMATING SUI SATION DESIGN", TABLE S-S) TV = TIME FACTOR U = DEGREE OF CONSOLIDATION tp=TIME FOR PRIMARY CONSOLIDATION to OCCUR t= TIME AFTER PRIMARY CONSOLIDATION to = INITIAL VOID RATIO
STRATUM F: Ei = 740 KSF (BASED ON PROPERTIES FOR FOUND DEFINITIONS SI = IMMEDIATE SETTLEMENT SC = CONSOLI DATION SETTLEMENT SS = SECONDARN SETTLEMENT ST = TOTAL SETTLEMENT I = INFLUENCE FACTOR WN = NATURAL WATER CONTENT CS = SWELL INDEX PC = MAXIMUM PASTVERTICAL STRESS	, CSM 22CSO EPRI MANUAL ON ESTIMATING SUI DATION DESIGN", TABLE S-S) TN = TIME FACTOR U = DEGREE OF CONSOLIDATION tp = TIME FOR PRIMARY CONSOLIDATION TO OCCUR t = TIME AFTER PRIMARY CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION
STRATUM F: EL = 740 KSF (BASED ON PROPERTIES FOR FOUND DEFINITIONS SI = IMMEDIATE SETTLEMENT SC = CONSOLI DATION SETTLEMENT SS = SECONDARY SETTLEMENT ST = TOTAL SETTLEMENT I = INFLUENCE FACTOR Wn = NATURAL WATER CONTENT CS = SWELL INDEX PC = MAXIMUM PAST VERTICAL STRESS CA = SECONDARY COMPRESSION INDEX EP = VOID RATIO AT END OF PRIMARY	, CSM ZZCSO EPRI MANUAL ON ESTIMATING SUL SATION DESIGN", TABLE S-S) TV = TIME FACTOR U = DEGREE OF CONSOLIDATION tp = TIME FOR PRIMARY CONSOLIDATION TO OCCUR t= TIME AFTER PRIMARY CONSOLIDATION E. = INITIAL VOID RATIO
STRATUM F: EL = 740 KSF (BASED ON PROPERTIES FOR FOUND DEFINITIONS SI = IMMEDIATE SETTLEMENT SC = CONSOLI DATION SETTLEMENT SC = SECONDARN SETTLEMENT ST = TOTAL SETTLEMENT JT = INFLUENCE FACTOR WN = NATURAL WATER CONTENT CS = SWELL INDEX PC = MAXIMUM PAST VERTICAL STRESS CA = SECONDARY COMPRESSION INDEX	, CSM 22CSO EPRI MANUAL ON ESTIMATING SUI DATION DESIGN", TABLE S-S) TN = TIME FACTOR U = DEGREE OF CONSOLIDATION tp = TIME FOR PRIMARY CONSOLIDATION TO OCCUR t = TIME AFTER PRIMARY CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION

SHEET 3 OF 3 FILE 12582 MADE BY APS DATE 1/20/16

PROJECT WILLS STREET WHATZE

CHECKED BY____ DATE

SUBJECT SETTLEMENT CALCULATION IANALYSIS AREA 3) CALCULATION OF CONSULIDATION SETTLEMENT, &c . G'IF < P'C : SC = 2 Hi CSi . 10910 (STRATUM O ONLY) HI ELEN. OF G'VOU ONF. (Ft) MIDPT (FT) (PSF) (PSF) Wi Csi Coi Sci (90) (in) LAYER -23.5 2015 2890 44 0-13 1.272 0.32 3 01 2096 2971 44 0.13 1.272 0.31 3 -26.5 02 Sc = 10-63 EXAMPLE CALC: FOR LAYER O. $8ci = 3Ft \cdot 12'' / Ft \cdot \left[0.13 \cdot \log_{10} \left[\frac{2890}{2015} \right] \right] = 0.32 in$ CALCULATION OF IMMEDIATE SETTLEMENT, SIS SI = AG. HF. I = I = 1.0 FOR ID LOADING HF= 28 ft :0 SI = 875 psf x 28Ft - 1 740000 = 0.033 Ft = 0.397 in CALCULATION OF SECONDARY COMPRESSION, 85 -G'VI < P'C : SS ~ O'IN ('SS IS NEGLIGIBLE IN RECOMPRESSION' TOTAL ESTIMATED SETTLEMENT, ST : $\delta T = \delta I + \delta c + \delta s = 0.40 + 0.63 + 0 = 1.03$ in

ANALYSIS 4

Stress on Drainage Net

SHEET _ OF _ 1_____ FILE _ / 25 82

PROJECT WILLS STREFT WHARF

MADE BY APS DATE 10/27/15

CHECKED BY_____ DATE.

MUESER RUTLEDGE CONSULTING ENGINEERS FOR: <u>WILLS STREET WHARF</u> SUBJECT: REFAINING WALL STABILITY	Made By: <u>APS</u>	eet No. <u>1</u> o <u>f 2</u> File: <u>12582</u> Date: <u>10/28/2015</u> Date: <u></u>
<u> Wall Design - Willis St. Wharf</u>		
Check Stability of Wall γ _c := 150pcf		
Top of Wall $EL_t := 24 ft$ Bottom of Wall EL_b :	= 15ft	
<u>Self Weight of Cap</u> Width of Cap b _{cap} := 8ft	Height of Cap d _{cap} := 1.5ft	
Weight of Cap $W_{cap} := b_{cap} \cdot d_{cap} \cdot \gamma_c$	$W_{cap} = 1.80 \frac{kip}{ft}$	
Self Weight of Wall Ave. Width bw = 1.25ft	Height $h_W := (EL_t - EL_b) - d_{cap}$	h _w = 7.5 ft
Self Weight of Retaining Wall $W_{wall} := b_w h_w \gamma$	$w_{wall} = 1.41 \frac{kip}{ft}$	
<u>Self Weight of Soil</u> $\gamma_s := 125 \text{pcf}$	Soil Width $b_s := b_{cap} - b_w$	b _s = 6.75 ft
Height of soil $h_s := h_W$ $h_s = 7.5 ft$	$ \text{Self Wt of Soil} W_s := b_s \cdot h_s \cdot \gamma_s \\$	$W_s = 6.33 \frac{kip}{ft}$
<u>Check Overturning</u> Overturning Moment from Soil Pressure M _a := 5, Resisting Moments:	$06 \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$	
Wt of wall: Eccen. $e_w := \frac{b_w}{2}$ $e_w = 0.6 \text{ ft}$	Moment $M_w := e_w W_{wall}$	$M_{\rm w} = 0.9 \frac{\rm kip \cdot ft}{ft}$
Wt of cap: Eccen. $e_c := \frac{b_{cap}}{2}$ $e_c = 4.0 \text{ ft}$	Moment $M_c := e_c \cdot W_{cap}$	$M_{c} = 7.2 \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$
Wt of soil: Eccen. $e_s := b_{cap} - \frac{b_s}{2}$ $e_s = 4.6$	5 ft Moment $M_s := e_s \cdot W_s$	$M_s = 29.3 \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$
Factor of Safety FS := $\frac{M_w + M_c + M_s}{M_a}$ FS =	= 7.38 > 2.0 <u>OK</u>	
<u>Check Sliding</u> Friction Coeff: $\mu_f := 0.4$ (for cor	ncrete on fine sand)	
Sliding Force P _{s1} := 1.69klf		
Resisting Force w/ Passive $F_{fr} := \mu_{f'} (W_{wall} + W_{ork})$	$F_{fr} = 3.81 \text{ klf}$	
Factor of Safety FS := $\frac{F_{fr}}{P_{sl}}$ FS = 2.26) > 1.5 <u>OK</u>	

10/28/201510:34 AM F:\125\12582\12582B\Retaining wall stability.mcd

MUESER RUTLEDGE CON FOR: <u>WILLS ST</u> SUBJECT: RETAINING WAL	REET WHARF	м	ade By:/ ked By:	File <u>APS</u> Date	No. <u>2</u> <u>of 2</u> :: <u>12582</u> :: <u>10/28/2015</u> ::
Check Bearing Pressure on		earing pressure:	p _a := 0.875t	sf	
Moments about Center of			Pa 0.0750		
Overturning Moment fro	•	$M_a = 5.06 \frac{\text{kip} \cdot \text{ft}}{\Omega}$			
Resisting Moments:		ft ft			
	$e_{w} := \frac{b_{cap} - b_{w}}{2}$	$e_{\rm W} = 3.4$ ft	Moment M	$w := e_{W} W_{wall}$	$M_{\rm W} = 4.7 \frac{\rm kip \cdot ft}{ft}$
Wt of cap: Eccen.	$e_c := 0 ft$	$e_c = 0.0 \mathrm{ft}$	Moment M _c	$e := e_c \cdot W_{cap}$	$M_c = 0 \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$
Wt of soil: Eccen.	$e_{s} := \frac{b_{cap} - b_{s}}{2}$	$e_s = 0.6 \mathrm{ft}$	Moment M _s	$e_{s} := e_{s} \cdot W_{s}$	$M_s = 4 \frac{\text{kip-ft}}{\text{ft}}$
Total Moment: M :=	$= M_a + M_w - M_c - M_s$	M = 5	.85 kip∙ft ft		
Total Force on Cap P	$P := W_{wall} + W_{cap} + W$, S	P = 9.53 klf		
Effective Eccentricity of Lo	bad $e_{eff} := \frac{M}{P}$	e _{eff} =	0.61 ft <	$\frac{b_{cap}}{6} = 1.33$	ft
		So the mome	nt results in r	no uplift on one e	nd of the footing
Effective Bearing Width	$b_{eff} := if \left[e_{eff} > \frac{b_{cap}}{6} \right],$	$3 \cdot \left(\frac{b_{cap}}{2} - e_{eff}\right),$	b _{cap}	$b_{eff} = 8.00 \text{ ft}$	
Effective Moment	$M_{eff} := if \left[e_{eff} > \frac{b_{cap}}{6} \right]$	$, P \cdot \left(\frac{b_{eff}}{6} \right), M \right]$		$M_{eff} = 5.85 \frac{ki_l}{t}$	b·ft t
Bearing Pressure on Fill	n := 1 ft (per ft widt	h) Cap See	ction Modulus	$S := \frac{1}{6} \cdot n \cdot b_{eff}^{2}$	$S = 10.7 \text{ ft}^3$
Bearing Pressures	$p_{\max} := \frac{P \cdot n}{b_{eff} \cdot n} + \frac{M_{eff}}{S}$	p _{max} =	0.87 tsf	\sim p _a = 0.88 tsf	<u>OK</u>
	$p_{\min} \coloneqq \frac{\mathbf{p} \cdot \mathbf{n}}{\mathbf{b}_{eff} \cdot \mathbf{n}} - \frac{\mathbf{M}_{eff}}{\mathbf{S}}$	n Pmin =	0.32 tsf		

APPENDIX A

Assessment of Compressibility Characteristics

VOID RATIO VS. NATURAL WATER CONTENT

ATTACHMENT VOID RATIO-TIME (URVE FOR MR-80]

APPENDIX B

Boring Logs

MR-505U

BORING NO.

-

				BOHING LOG			ING NO. 1 OF	<u>MH-5050</u> 3
PROJECT	T •		At	LIED BALTIMORE WORKS			ILE NO.	
LOCATIC				BALTIMORE, MARYLAND	SI		E ELEV.	
3							ENGR.	the second s
DAILY		SAMPLI	E				CASING	T
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	REMARKS
15:30	100,	00111	020110-0		Ginnin	00	-	12" of 1/2" grave
04-19-93								
Monday								
Partiy								
-						5		
Cloudy 70*F	1D	5.0	4-4	Brown silty fine to medium sand, trace				DPC (-)
7016		7.0	2-10	bricks, gravel, shells, coarse sand (Fill) (SM)				
		7.0	2-10	Chicks, graver, shene, coarse saile (r my (cm)				Wood obstruction
	·							8'-9'.
	2D	9.0	5-13	Gray silty coarse to fine sand, trace gravel,		10		0 -9 . DPC (+)
	20	11.0	6-4	brick shells (Fill) (SM)		10		
			0-4					3D: Wash sample.
								Fill running up
							\vdash	casing. 90 gal. of
17:00	20	15.0		Crev searce to fine and some shalls all	F,	15		mud lost down
07 00	3D	15.0	11-8	Gray coarse to fine sand, some shells, silt, trace brick, gravel (Fill) (SM)				hole.
04-20-93		17.0	1-1	trace brick, graver (Fill) (Sivi)		<u> </u>	-	DPC (-)
Tuesday		h				<u> </u>		3D:Wash sample.
Partly	40	10.0	45.40	Crew service to fine service service shalls with		0.0		Fill running up
Cloudy	4D	19.0	15-16	Gray coarse to fine sand, some shells, silt,		20		casing, loosing mu
65'F		21.0	23-14	trace gravel, brick (Fill) (SM)				down hole.
								4D: Wash sample.
	10		- 1000					DPC (-), pH=6.37
	NR	24.0	1-WH	No recovery			<u> </u>	Unsuccessful
		26.0	WH-1			25		attempt, 24'-26'
								made to recover
								sample. Dark
						28		gray organic silty
					11		-	clay in wash at 28
						30	1	
	5D	30.0	1-WH	Soft dark gray organic clayey silt, trace fine	0 p		REVERT	pp=0.6 tsf
		32.0	WH-WH	to coarse sand, mica, vegetation (OH)	VI			
	6U	33.0		Medium gray organic fine sandy silt, trace				DPC (-),
		35.0	REC=24"	clay, mica interlayered with gray fine to	/	34		WC=44%, pH=6.9
				coarse sand, trace clay pockets (OL&SP)		35		
	7D	35.0	4-8	Gray medium to fine sand, trace coarse				DPC (-)
1		37.0	7-10	sand, silt, gravel (SP-SM)	S-1			pp=Pocket
3								Penetrometer
					_	39		reading in tsf.
		10.0		Recurs wellow exceed and second to fine		40		
	8D	40.0	16-11	Brown yellow gravel and coarse to fine				DPC (+)
		42.0	7-7	sand, trace silt (SP)				
								Cobble 43.5' -
					S-2			44.3'.
	00	45.0	00.40			45		
	9D	45.0	30-16	Top: Do 8D (SP)				DPC (+)
		47.0	27-41	Bot: White medium to fine sand, trace silt,				9D: 1 Jar.
				coarse sand (SP-SM)				
-					. 1			
						50	¥.	
								2

6'->0

					BORING LOG		BOR	NG NO.	MR-505U
						:		2 OF	3
	PROJECT				LIED BALTIMORE WORKS	-		ILE NO.	
	LOCATIC	DN:		E	BALTIMORE, MARYLAND	. SI		E ELEV.	
6	DALY		SAMPL	c	· · · · · · · · · · · · · · · · · · ·	}	HES	ENGR.	M. KOLB
	PROGREESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	REMARKS
	Cont'd	10D		54-37	Top: White red brown fine sandy silt, some				DPC (+)
	Tuesday		51.8		clay, tr medium sand (ML)				10D Top: WC=13%
	Partly				Bot: Hard white and red clayey silt, trace				10D Bot: WC=13%,
	Cloudy				fine sand (MH)				pH=7.11
	65"F	44.8				.	55		
		טוו	55.0 56.8	22-31 34-100/4*	Hard white silt, some fine sand, trace clay			<u> </u>	DPC (-), WC=14%
			50.0	34-100/4		M			
							60		
		12D		15-22	Hard pink white clayey silt, trace fine sand				DPC (·),
	17:00		62.0	29-49	(MH)				WC=21%, pH=6.45
	07:00								
	04-21-93 Wednesday						65		
	Light	13D	65.0	31-67	Yellow brown coarse to fine sand, trace		65.4		DPC (+)
	Rain		66.4		gravel, silt (SP-SM)				
	60 F								
	,					S-4	70		
		14D		92-100/5*	Do 13D, some gravel (SP-SM)				DPC (+), pH=7.51
2			70.9						
6							73.8		
							75		
		15D	75.0	18-34	White tan silty fine to medium sand, some				DPC (-), WC=26%
			76.5	100	silt, trace mica seams (SM)	DR		4	
								7*	
	13:00	1C	77.0 79.0	RUN=24" REC=24"	Top 17": Hard yellow silt, some gravel, fine to medium sand, trace coarse sand, clay		79 80		DPC (-) *Coring time in
			79.0	REU=24	(ML)		80		minutes per foot.
				:	Bot 7": Yellow silty fine to medium sand,				Bot: 1,5" crystalline
					trace gravel, coarse sand, clay (SM)				rock.
									End of Boring at
							85		79'.
									WC=Water Content
				i i i i i i i i i i i i i i i i i i i					in percent of dry
									weight.
							90		3
									pH=Soil pH by
									Method 9045
									(EPA-SW846).
							95		
							30		
6									
-	E.						100		
								NG NO.	MR-505U
							- u U MII		

PROJEC	:T·						EET 1 OF	4
				HARBOR POINT AREA 2	FILE NO.			
-00411	JN.			BALTIMORE, MD	SURFACE ELEV			second in a second seco
DANK.	Т	SAM	DUE			RE	S. ENGR.	M. QUASARANO
DAILY PROGRESS	NO.	DEPTH	BLOWS/6"	CAMPLE DECORDETION		1	CASING	
11:30	140.	DEFIN	BLUVVSIO	SAMPLE DESCRIPTION	STRAT	A DEPTI	BLOWS	
05-10-06	1D	1.0	2-4	Brown clayey fine to medium sand, some			DRILLED	1
Vednosday		3.0	11-7	gravel, trace coarse sand (Fill) (SC)				DPC=-, 11:30
Clear	2D	3.0	7-16	Brown silty fine to coarse sand, some gravel,			4"	
75°F		5.0	46-52	trace brick, cinder, wood (Fill) (SM)	2	5	1	DPC=-, 11:45
	3D	5.0	17-100/5"					DPC=+, 12:00
		5.9		silt (Fill) (SP-SM)	F			01 0-1, 12,00
	4D	7.0	5-10	Black silty fine to coarse sand, trace gravel,	i -			DPC=-, 12:15
		9.0	9-10	brick (Fill) (SM)				
						10		
	5D	10.0	6-7	Brown silty fine to medium sand, some gravel,			1	DPC=-, 12:30
		12.0	9-10	trace brick (Fill) (SM)	1	1		37 33
2						13.5		
1	6D	15.0	12-21	Brown and the first sound		15		
	00	17.0	27-23	Brown coarse to fine sand, some gravel, trace silt (SP-SM)				DPC=-, 14:00
9			21-20					8 N 9
					S2	F		
					32	20		
	7D	20.0	15-17	Brown fine to medium sand, trace silt (SP)		20		DPC=-, 14:45
		22.0	21-27		i (DFC=-, 14,43
1					1			
						23.5		
						25		
	8D	25.0	17-32	Top: Stiff white clayey silt, trace fine sand	M			Top DPC=-, 15:30
-		27.0	57-77	seams, brown fine to medium sand layer (ML)	1 101			Bot DPC=+, 15:30
ł	- +			Bot: Stiff white fine sandy silt (ML)	1			
ł	- +			Brown fine to medium sand, trace silt (SP)	112 2	28.5	-	
Ĩ	9D	30.0	19-30			30		
t		32.0	53-67		1. 1			DPC=-, 16:15
t		-						
1						\vdash \dashv		
				l L		35		
1	10D	35.0	34-100/6"	Light brown and tan fine to medium sand,				DPC=-, 16:40
-	_	36.0		trace silt (SP-SM)				· 50
-	-				8			
17:00					S 3			
	11D	40.0	21-36	Tan fine to medium sand, trace silt (SP)		40		
5-11-06		42.0	47-89	ran me to medium sand, trace sitt (SP)	S .		'[DPC=+, 08:30
hursday								
Cloudy								
65°F						45		
	12D	45.0	19-21	Top: Do 11D (SP)	1			op DPC=+, 09:15
		46,3		Bot: Red silty fine to medium sand, some red				ot DPC=+, 09:15
				silty clay layers (SM)				
						48.5		
	100					50		
	13D	50.0	5-8	Stiff red brown and white mottled silty clay (CL)	м			PC=+, 10:00
		52.0	10-14					p=4.0

Ð \rightarrow \bigcirc

			B	ORING LOG		BOI	RING NO	MR-713
PROJECT: HARBOR POINT AREA 2						SH	EET 2 OF	·
LOCATI				HARBOR POINT AREA 2			FILE NO	
LOCATI	JN:			BALTIMORE, MD	ຼິ		CE ELEV	
						RE	S. ENGR	M. QUASARANC
DAILY		SAM			2	1	CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	REMARKS
Conl'd			4				DRILLED	
05-11-06	L						AHEAD	
Thursday			-				4"	
Cloudy			-1					5
65°F						55		
	14D	55.0	8-10	Stiff white clayey silt, trace red silty clay layers				DPC=+, 10:45
	<u> </u>	57.0	21-38	(ML)	1			pp=2.5
	L				11			1
			1		М	60		
	15D	60.0	5-8	Medium white fine sandy silt, trace fine sand				DPC=, 11:20
		62.0	11-17	seams (ML)				pp=2.0
			i -					Sample recovered on
								2nd attempt.
	405	0.7.5				65]
	16D	65.0	4-7	Medium white and fine sandy silt, trace red	28 -		1.20	DPC=+, 11:50
	 	67.0	9-17	brown clayey silt layer (ML)	1			(Very faint color, near
								red brown clay)
						68.5		pp=100
324	470	70.0				70		
1	17D	70.0	9-12	Light brown coarse to fine sand, some gravel,				DPC=+, 12:15
		72.0	41-51	trace silt (SP-SM)				S 8
	!							
					S4			
- K	18D	75.0	40.07	Mallana familia da B	ļ	75		
-	100	77.0	19-27	Yellow brown coarse to fine sand, some				DPC=+, 12.45
1			37-23	gravel, silt (SM)				
r	=							
ŀ		'		i		78.5		
ŀ	19D	80.0	9-36	Light gray clayey silt, some gravel, trace brown	ļ	80		
ŀ		82.0	35-55	fine to medium sand (ML)	ļ			DPC=+, 13:45
-		02.0	33-33	ine to mediom salid (ML)	DR			(Faint color)
						<u></u>		
						85		
t t	20D	85.0	100/3"	Brown and orange clayey fine to coarse sand,	ŀ	86		
15:30		85.3		sm tan silty clay lyrs (Decomposed Rock) (SC)		00	— <u> </u> '	DPC=+, 14:20
08:00	21D	87.0	36-54	Green gray clayey fine to medium sand, some	H		- 2	DPC=-, 08:30
05-12-06		89.0	72-73	clay pockets (Decomposed Rock) (SC)	-	-	<u> </u> i	0, 0, 00.30
Friday	1C	89.0	REC=53%	Green gray clayey fine to medium sand (SC)	F	90	<u> </u>	
Clear	1	92.0	RQD=0%					
75°F					TZ			
	2C	92.0		Do 1C (SC)	F			
!		95.0	RQD=0%		-			
L					-	95		
ļ	3C	95.0		Top 1': Do 1C (SC)		96		
_		100.0		Bot 3.8': Intermediate moderately weathered			1	
Ļ				green gray gneiss, jointed, weathered joints	R			
				-	R	-		
18:00						100		End of boring at 100'.
-								•
		I						

MR-713