MARYLAND DEPARTMENT OF THE ENVIRONMENT

Land and Materials Administration • Resource Management Program 1800 Washington Boulevard • Suite 610 • Baltimore Maryland 21230-1719 410-537-3314 • 800-633-6101 x3314 • www.mde.maryland.gov

NOTICE OF INTENT

General Discharge Permit for Animal Feeding Operations (AFOs) (19AF, MDG01) Land and Materials Administration – Resource Management Program Issued Pursuant to Title 9, Environment Article, *Annotated Code of Maryland*, and Code of Maryland Regulations (COMAR) 26.08.04

Submission of this Notice of Intent (NOI) constitutes notice that the person identified in this form intends to operate under and comply with all terms and conditions of the State/NPDES General Discharge Permit for AFOs (AFO Permit). The discharge of animal waste, including manure, poultry litter, and process wastewater to waters of the State is prohibited unless an AFO has been registered under the AFO Permit by the Maryland Department of the Environment ("MDE"). A person shall hold a CAFO discharge permit issued by MDE before beginning construction on any part of a new CAFO.

	Please submit this completed NOI Form to the following ad	dress:	Received
	Maryland Department of the Environment Land and Materials Administration/AFO Division 1800 Washington Boulevard, Suite 610 Baltimore, Maryland 21230-1719		AUG Ì 8 2020 <i>AFO Division</i>
तृह जा स्टब्स्	General Information	1	THE CONTRACT

AI Number: 131204

1. LEGAL Name of Applican	nt (must match name on required plan):
Kich Leu	
2. AFO Type (circle one): C	CAFO (MAFO)
3. Applying for (check one):	□ New Coverage see column 'A' in Question 4
3. Applying for (check one):	 New Coverage see column 'A' in Question 4 Continuation of Coverage (renewal) see column 'B' in Question 4

4. Reason for NOI (please fill out corresponding column):

A. New Coverage	B. Continuation of Coverage (renewal)	C. Modification of 19AF Coverage
 New owner/operator Proposed operation (NO construction may begin until permit coverage is obtained) Date of anticipated start of AFO operation: 	 No changes in operation There has been a change in one or more of the following <i>(please indicate):</i> Size or number of houses Animal number, resulting in change of size category CAFO to MAFO, MAFO to CAFO No-Land to Land, Land to No-Land Conventional operation to organic 	 Expanding Change in animal number, resulting in change of size category Change from CAFO to MAFO Change from MAFO to CAFO Change from no-land to land Change from land to no-land Change from conventional to organic operation

	Applicant (Owner/Opera	tor information)	and the stand
5. Mailing Address of City: Calera	Applicant: 33940 SQ State: MD	<u>559Pras Calo</u> Zip Code: 3	dwell Rd -1635
6. Telephone Number	(s) of Applicant: (Home) (Cell)		
7. Email of Applicant:			
	Farm Inform	ation	
Please attach a topograph	ic map including the production area	as well as the land app	lication area (if applicable)
of 7 with the second	 Same as Legal Name Other (please specify): 		
9. Farm Address:	34200 505,07105	Caldwell &	
City: Calera	County: Kent		25016
11. Latitude/Longitude	ogic Unit Code (HUC) (12-digit): of Production Area (Deg/Min/Sec	07130610 :): <u>39</u> -22.20 N/	
	n: B. Maximum Number of Animals <i>at any given time</i>		<u>75-46-13 N</u>
11. Latitude/Longitude12. Animal InformatioA. Animal Type(s)	of Production Area (Deg/Min/Sec n: B. Maximum Number of	e): <u>39</u> - 22, 20 N /	$\frac{75}{15} - \frac{16}{16} - \frac{13}{13} $ D. Animal Confinemer
11. Latitude/Longitude	n: B. Maximum Number of Animals at any given time (For poultry, please indicate bird	c): <u>39</u> - 22 20 N / C. Operation Size (consult AFO size	<u>75 - 46 - 13 W</u> D. Animal Confinemen Type (e.g. house, feedlot, barn,
11. Latitude/Longitude12. Animal InformatioA. Animal Type(s)	n: B. Maximum Number of Animals at any given time (For poultry, please indicate bird type and number per flock)	c): <u>39</u> - 22 - <u>20</u> / C. Operation Size (consult AFO size chart)	D. Animal Confinemen Type (e.g. house, feedlot, barn, milking parlor, pen)
11. Latitude/Longitude12. Animal InformatioA. Animal Type(s)	of Production Area (Deg/Min/Secont B. Maximum Number of Animals at any given time (For poultry, please indicate bird type and number per flock)	c): <u>39</u> - 22 - <u>20</u> / C. Operation Size (consult AFO size chart)	D. Animal Confinemer Type (e.g. house, feedlot, barn, milking parlor, pen)
 11. Latitude/Longitude 12. Animal Informatio A. Animal Type(s) (from AFO size chart) Chi Cken Chy 	n: B. Maximum Number of Animals at any given time (For poultry, please indicate bird type and number per flock) Q	c): <u>39</u> - 22 - <u>20</u> / C. Operation Size (consult AFO size chart)	D. Animal Confinemer Type (e.g. house, feedlot, barn, milking parlor, pen)
11. Latitude/Longitude 12. Animal Informatio A. Animal Type(s) (from AFO size chart) Chi Cken Chy *For poultry only (13-10) 13. *Number of poultr	n: B. Maximum Number of Animals at any given time (For poultry, please indicate bird type and number per flock) QUANCE	c): <u>39</u> - 22 - <u>20</u> / C. Operation Size (consult AFO size chart)	D. Animal Confinemer Type (e.g. house, feedlot, barn, milking parlor, pen)
11. Latitude/Longitude 12. Animal Informatio A. Animal Type(s) (from AFO size chart) Chi Cken Chy *For poultry only (13-10) 13. *Number of poultr	of Production Area (Deg/Min/Secon: B. Maximum Number of Animals at any given time (For poultry, please indicate bird type and number per flock) Q Q (0): y houses:	c): 39 - 22 - 20 N / C. Operation Size (consult AFO size chart) L-Curge	D. Animal Confinemer Type (e.g. house, feedlot, barn, milking parlor, pen)
11. Latitude/Longitude 12. Animal Informatio A. Animal Type(s) (from AFO size chart) Chi Cken Chy *For poultry only (13-10) 13. *Number of poultr 14. *Combined square 15. *Date(s) poultry ho	of Production Area (Deg/Min/Secon: B. Maximum Number of Animals at any given time (For poultry, please indicate bird type and number per flock) Q Q (Q (Q (Q (Q (Q (Q (Q (Q	c): <u>39</u> - 22 <u>20</u> <u>N</u> / C. Operation Size (consult AFO size chart) Lourge 41, 3 84 Contact Information	<u>15-46-13</u> N D. Animal Confinemen Type (e.g. house, feedlot, barn, milking parlor, pen) HASS HASS
11. Latitude/Longitude 12. Animal Informatio A. Animal Type(s) (from AFO size chart) Chi Cken Chy *For poultry only (13-10) 13. *Number of poultr 14. *Combined square 15. *Date(s) poultry ho 16. *Integrator (check Chi Check	of Production Area (Deg/Min/Secon: B. Maximum Number of Animals at any given time (For poultry, please indicate bird type and number per flock) Q. Q. Q. T. (9): y houses: footage of all poultry houses: ouses constructed: one): D. Mountaire	c): <u>39</u> - 22 <u>20</u> <u>N</u> / C. Operation Size (consult AFO size chart) Lourge 41, 3 84 Contact Information	<u>15-46-13</u> N D. Animal Confinemen Type (e.g. house, feedlot, barn, milking parlor, pen) HASS HASS
11. Latitude/Longitude 12. Animal Informatio A. Animal Type(s) (from AFO size chart) Chi Cken Chy *For poultry only (13-10) 13. *Number of poultr 14. *Combined square 15. *Date(s) poultry ho	of Production Area (Deg/Min/Secon: B. Maximum Number of Animals at any given time (For poultry, please indicate bird type and number per flock) Q Q (Q (Q (Q (Q (Q (Q (Q (Q	c): <u>39</u> - 22 <u>20</u> <u>N</u> / C. Operation Size (consult AFO size chart) LOIGE 41, <u>384</u> Contact Informe Phone No.: <u>4</u> Address: 29	<u>15 - 46 - 13 №</u> D. Animal Confinemen Type (e.g. house, feedlot, barn, milking parlor, pen) HASS

Manure/Mortality Manage	ement
12-	10
17. Total Manure/Litter/Wastewater generated annually:	circle one (tons) lbs / gallons)
18. Total Manure/Litter/Wastewater transported offsite annually	
 18. Total Manure/Litter/Wastewater transported offsite annually. 19. **Total number of acres controlled by applicant available for manure/litter/process wastewater: Owned: O	

**40 CFR Parts 122.23(b)(3) and 412.2(e) define "land application area" as all land under the control of the AFO owner/operator, whether by ownership, lease, or agreement, to which manure, litter or process wastewater is or may be applied.

20. Manure Storage (please list individually):

A. Type (e.g. shed, lagoon, pit)		B. Capacity (ft^3, gal)		C. Solid/Liquid	
Shed (2)	(1)	40×140	28,000 43	Joud	
1111	(2)	40×30	16,000 43	solid	
				0000	

	Compost	Incinerate
	l Freeze	Other (please specify):
E	Render	1 000

CAFOs Only - Fees

Once a completed NOI is received by MDE and processed, MDE will invoice the applicant for any permit fees owed pursuant to COMAR 26.08.04.09-1.

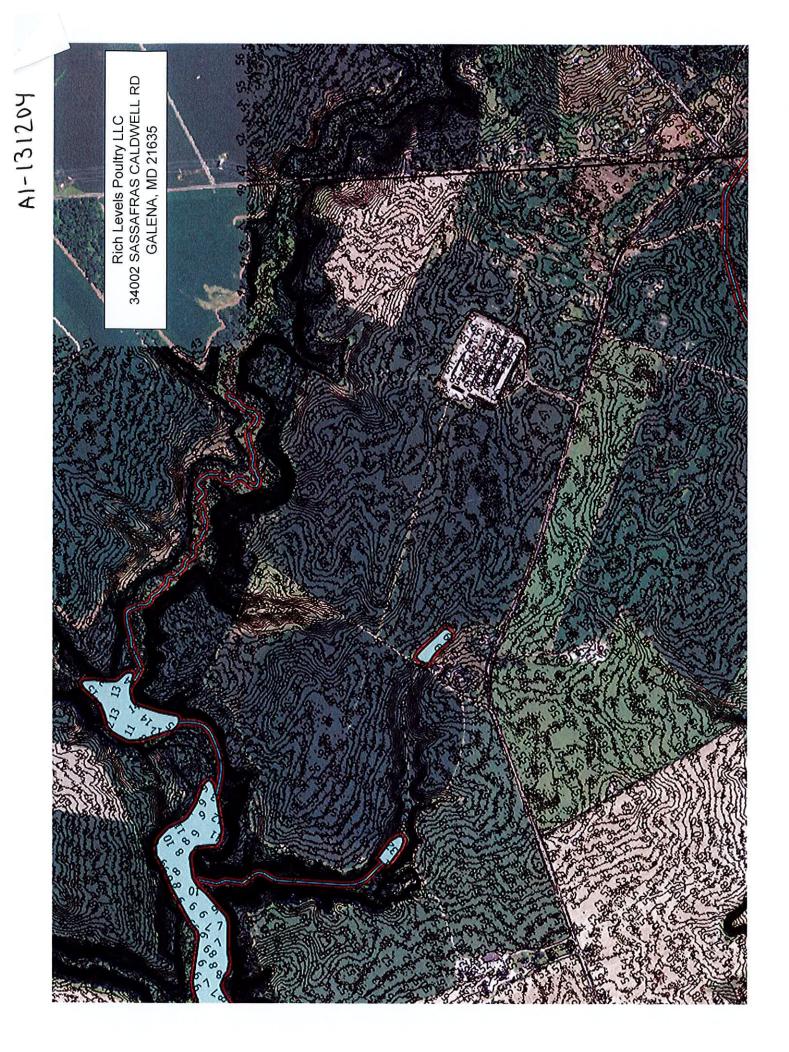
Required Plan

CAFO permit application requirements at 40 CFR §122.21(i)(1)(x) specify that applications for coverage (including NOIs) must include nutrient management plans (NMPs) that at a minimum satisfy the requirements specified in 40 §122.42(e). Comprehensive Nutrient Management Plans (CNMPs), as defined in the General Discharge Permit for Animal Feeding Operations (AFOs) (19AF, MDG01), satisfy these requirements. An application will not be processed until a completed NOI form and a current CNMP are received. A CNMP must be developed by a certified and licensed plan writer, and in addition to the federal requirements, must satisfy the nutrient management requirements in COMAR 15.20.07 and 15.20.08.

Certification

By signing this form, I the applicant or duly authorized representative, do solemnly affirm under the penalties of perjury that the contents of this application are true to the best of my knowledge, information, and belief. I hereby authorize the representatives of MDE to have access to the AFO and associated lots/facilities (farms) for inspection and to records relating to this application at any reasonable time. I acknowledge that depending on the type of permit applied for, other permits or approvals may be required. The personal information requested on this form is intended to be used in processing your NOI. This Notice is provided pursuant to Title 4 of the General Provisions Article, Annotated Code of Maryland. Your NOI may not be processed if you fail to provide all requested information. You have the right to inspect, amend, or correct this form. MDE is a public agency and subject to the Maryland Public Information Act (Md. Code Ann., Gen. Prov. §§ 4-101, et seq.). This form may be made available on the Internet via MDE's website and is subject to inspection or copying, in whole or in part, by the public and other governmental agencies, if not otherwise protected by federal or State law.

Signature of Applicant / duly authorized representative


Printed Name of Applicant / duly authorized representative

8/15/2020 Date 8/18/2020

Circumstances under which Animal Feeding Operations Require Permit Coverage				
CAFO or MAFO Registration Required	CAFO/MAFO Registration Required under Certain Circumstances	Registration Needed Only if Designated		
Large	Medium	Small		
1000 or more animals	300—999 animals	less than 300 animals		
700 or more animals	200—699 animals	less than 200 animals		
500 or more animals	150—499 animals	less than 150 animals		
1000 or more animals	300—999 animals	less than 300 animals		
2500 or more animals	750—2499 animals	less than 750 animals		
10,000 or more animals	3,000—9,999 animals	less than 3,000 animals		
10,000 or more animals	3,000—9,999 animals	less than 3,000 animals		
5,000 or more animals	1,500-4,999 animals	less than 1,500 animals		
30,000 or more animals	9,000-29,999 animals	less than 9,000 animals		
30,000 or more animals	10,000-29,999 animals	less than 10,000 animals		
82,000 or more animals	25,000—81,999 animals	less than 25,000 animals		
125,000 or more animals or greater than or equal to total house size of $100,000 \text{ ft}^2$	37,500-124,999 animals and less than total house size of 100,000 ft ²	less than 37,500 animals		
55,000 or more animals	16,500-54,999 animals	less than 16,500 animals		
	Circumstances under w CAFO or MAFO Registration Required Large 1000 or more animals 700 or more animals 500 or more animals 1000 or more animals 2500 or more animals 10,000 or more animals 10,000 or more animals 30,000 or more animals 30,000 or more animals 30,000 or more animals 82,000 or more animals 125,000 or more animals 125,000 or more animals	CoverageCAFO or MAFO Registration RequiredCAFO/MAFO Registration Required under Certain CircumstancesLargeMedium1000 or more animals $300-999$ animals700 or more animals $200-699$ animals500 or more animals $150-499$ animals1000 or more animals $300-999$ animals500 or more animals $150-499$ animals1000 or more animals $300-999$ animals1000 or more animals $300-999$ animals1000 or more animals $300-999$ animals10,000 or more animals $3,000-9,999$ animals10,000 or more animals $3,000-9,999$ animals10,000 or more animals $1,500-4,999$ animals30,000 or more animals $1,500-4,999$ animals30,000 or more animals $10,000-29,999$ animals30,000 or more animals $25,000-81,999$ animals30,000 or more animals or greater than or equal to total house size of 100,000 ft ² $37,500-124,999$ animals		

AFO Size Chart

+A separate discharge permit is required for large category duck CAFOs

Comprehensive Nutrient Management Plan

Rich Levels Poultry, Inc. 34200 Sassafras-Caldwell Road Galena, MD 21635

Farm Office Location: 33960 Sassafras-Caldwell Road

Plan developed by:

Name: David Kann

Address: PO Box 1011

East Berlin, PA 17316

Phone: 717-792-1274 or Cell: 717-309-6247

E-mail: agplanner@comcast.net

Kent Soil Conservation District 122 Speer Road, Ste. 4 Chestertown, Maryland 21620 410-778-5150 x3

Plan Written/Revised: 4/15/2025 [original(s) 9/2014]

Type of Plan: 🖌 Land 📃 No-Land

**Concentrated Animal Feeding Operation (CAFO) or Maryland Animal Feeding Operation (MAFO) provide the numbers below (if applicable)

Al Number: 131204

CNMP Purpose and Agreement

The Comprehensive Nutrient Management Pian (CNMP) is an important part of the conservation management system (CMS) for your Animal Feeding Operation (AFO). This CNMP documents the planning decisions and operation and maintenance for the AFO.

This CNMP is valid as long as there are no major changes to the operation. A CNMP plan revision will be needed when the number of animals deviates by 10% from the planned amount or when the operation changes from one type of livestock to another. Nutrient management plan revisions will be needed based on Maryland Department of Agriculture Nutrient Management regulations.

This CNMP was developed paying special attention to the USEPA's required nine minimum practices for water quality protection. This plan when implemented by the farmer will ensure clean runoff is diverted from manure storage and production areas and livestock are prevented from making direct contact with waters.

Owner/Operator

As the owner/operator of this CNMP, I, as the decision maker, have been involved in the planning process and agree that the items/practices listed in each element of the CNMP are needed. I understand that I am responsible for keeping all necessary records associated with implementation of this CNMP. It is my intention to implement/accomplish this CNMP in a timely manner as described in the plan.

Aller. Hare Signature:

Date: 5/6/25

R. Alley Navie Name (print):

Certified Comprehensive Nutrient Management Plan (CNMP) Planner

As a Certified Comprehensive Nutrient Management Plan (CNMP) Planner, I certify that I have reviewed the *Comprehensive Nutrient Management Plan* and that the elements of the documents are technically compatible, reasonable and can be implemented.

but I Ka Signature

Date: 4/15/2025

Title: Engineering Technician / Environmental Planner Company: AET Consulting, Inc.

Name: David D. Kann

Planner Certification: <u>PA-134 CCP:</u>259 and TSP-04-4509

County Soil Conservation District (if applicable)

As the County District Manager, I certify that I have reviewed this CNMP and concur that the plan meets the District's conservation goals.

Signature:	Date:

Name: ______

!!! This plan has been written and presented in this format by the CNMP writer. It is the sole ownership of its intended farmer/grower. In no way is this plan or its layout to be shared outside of the MDE's CAFO Program without the consent of plan writer and/or the grower. This plan format is considered as "proprietary property." **!!!**

Plan Contents

CNMP Purpose and Special Conditions

General Operation Narrative and Introduction

Emergency Contact Phone Numbers for Persons/Agencies

Maps of the Agricultural Operation

Farmstead and Production Area Information

Livestock/Animal Numbers, Locations & Manure Generation

Manure and Wastewater Handling and Storage

Water Conveyance Maps

Conservation Plan Documents

Soil Descriptions and Soil Loss Calcs

Soil Maps

Implementation Schedule & Responsibility Guide

Nutrient Management Plan (NMP)

University of Maryland Crop Nutrient Recs based on Soil Fertility

Summary of Nutrient Recommendations

Manure Test Results

Emergency Action Plans

Biosecurity

Chemical Handling

Animal Mortality Management

Techniques in collecting a Manure Analysis & Application Equipment Calibration Procedures

Maryland Department of Agriculture, MDE, & Nutrient Management Requirements

Required Record Keeping (template forms)

Appendix: Additional Supporting Information

• Resource Concerns Identification Worksheets

Purpose of the Comprehensive Nutrient Management Plan (CNMP)

A Comprehensive Nutrient Management Plan (CNMP) is a conservation system that is unique to your animal feeding operation (AFO). This plan is a grouping of conservation practices and management activities which, when implemented as part of a conservation system, will help to ensure that both production and natural resource protection goals are achieved for your operation. A CNMP incorporates practices to utilize animal manure and organic by-products as a beneficial resource. Your CNMP addresses natural resource concerns dealing with soil erosion, manure, and organic by-products and their potential impacts on water quality, which may derive from an AFO. A CNMP is developed to assist an AFO owner/operator in meeting all applicable local, tribal, State, and Federal water quality goals or regulations. For nutrient impaired stream segments or water bodies, additional management activities or conservation practices may be required to meet local, tribal, State, or Federal water quality goals or regulations.

The conservation practices and management activities planned and implemented as part of a CNMP must meet NRCS technical standards. For those elements included by an owner and/or operator in a CNMP for which NRCS currently does not maintain technical standards (i.e., feed management, vector control, air quality), producers should meet criteria established by Land Grant Universities, industry, or other technically qualified entities. Within each state, the NRCS State Conservationist has the authority to approve non-NRCS criteria established for use in the planning and implementation of CNMP elements.

Nutrient management and waste utilization manage the source, rate, form, timing, placement, and utilization of manure, rather than disposing of it as a waste residual. The goal is to effectively and efficiently use nutrient resources derived from animal waste to adequately supply soils and plants to produce food, forage, fiber, and cover while minimizing environmental impacts.

Minimum Standards of a CNMP

The Nine Minimum Standards to Protect Water Quality:

1. *Ensure adequate storage capacity.* Design, construct, operate, and maintain the production area and all animal waste storage structures to contain all animal waste, including any runoff or direct precipitation from a 25-year, 24-hour storm. Need to store dry manure in a way that prevents polluted runoff. Properly operate and maintain all storage facilities.

2. Ensure proper management of mortalities to prevent the discharge of pollutants into waters of the

State. Do not dispose of mortalities in an animal waste or other storage or treatment system that is not specifically designed to treat animal mortalities without written permission from the Department, which may be granted if the Department determines catastrophic circumstances.

3. Divert clean water, as appropriate, from the production area to keep it separate from process

wastewater. For CAFOs, conduct daily inspections of all outdoor water lines, and those located inside buildings with grated floors, on all days the CAFO is in operation. Correct any deficiencies found as a result of the inspections as soon as possible, and maintain a log of deficiencies found and corrected. The

log must contain records of any deficiencies not corrected within 30 days and an explanation of the factors preventing immediate correction.

4. Prevent direct contact of confined animals with waters of the State.

5. *Chemical Handling.* Ensure that chemicals and other contaminants handled on-site are not disposed in any manure, litter, process wastewater, or storm water storage or treatment system unless specifically designed to treat such chemicals and other contaminants. No pesticides, cleaning agents, or fuels shall be stored in any animal operation area, unless directly necessary for animal care and public health. These products shall not be allowed to enter waters of the State. The permittee shall notify the Department of any spills or other discharges as detailed under Part V.F. "Noncompliance Notification."

6. Conservation practices to control nutrient loss, including site-specific conservation practices.

a. An **AFO** shall maintain a setback of 100 feet or a 35 foot **vegetated filter strip** between stored **poultry litter** and **manure** and **waters of the State**, as well as field ditches. For existing permanent storage structures, an alternative to this requirement is provided in paragraph IV.A.1.b.6 of this permit.

b. For a poultry CAFO, permit condition IV.B.1. applies to the storage of poultry litter manure. In addition, poultry manure stored for more than 14 calendar days in the field, where manure may be applied as nutrients for crop growth under a nutrient management plan, shall be separated from ground water and storm water to prevent leaching or runoff of pollutants through the use of both a plastic liner and cover, at least 6 mils thick, or an equivalent method approved by the NRCS (if a standard is adopted by NRCS that meets federal requirements for CAFOs and is approved by the Department).

c. For a poultry MAFO, MDA and NRCS requirements apply to the field storage of poultry litter manure. The following additional requirements for poultry litter manure field storage areas do not include authorization to discharge pollutants to surface waters of the State:

i) **MAFO** poultry litter manure stored for more than 30 calendar days in the field shall be separated from ground water and storm water to prevent leaching or runoff of pollutants

through the use of both a plastic liner and cover, at least 6 mils thick, or an equivalent method approved by the NRCS.

ii) If reputable research is performed, based on a plan approved by the Department and MDA, resulting in data that indicates that 30 calendar days is more restrictive than necessary to protect water quality, and/or other more effective approaches to controlling discharges from poultry manure stockpiles are recommended and available as a result of the study, the 30 calendar day requirement shall be automatically stayed and the permit reopened to implement appropriate permit revisions through a public process.

7. *Protocols for manure and soil testing*. Identify specific animal waste sample collection and analysis protocols to include at least annual analysis for phosphorus and nitrogen content. Include analysis of soil samples for pH and phosphorus content at least once every three years for all fields where animal waste may be applied. Protocols shall be consistent with Maryland's technical standards at COMAR 15.20.07 and 15.20.08.

8. Protocols for the Land Application of Manure and Wastewater. Follow protocols for development of a nutrient management plan and for the land application of animal waste in COMAR 15.20.07 and 15.20.08, which specify who is eligible to develop a NMP, determination of limiting nutrient, nutrient recommendations, acreage, and expected yield for each field. Animal waste shall not be applied at a rate higher than agronomic requirements in accordance with the Maryland Nutrient Management Manual. Animal waste shall be prevented from entering field ditches, adjacent properties, and other waters of the State, or conduits to waters of the State, except floodplains. In addition, the following requirements for setbacks shall be maintained:

a. A **setback** of at least 100 feet from waters of the State, as well as field ditches, other conduits, intermittent streams, and drinking water wells, shall be maintained; or an **approved alternative** may be substituted for the 100 foot setback.

b. A setback of at least 100 feet from property lines shall be maintained, unless an approved alternative setback for property lines is established with the consent of the adjacent property owner.

c. Alternative Setback Requirements Applicable to Poultry MAFOs. For slopes of 2% or less, a MAFO may satisfy the land application setback and buffer requirements of this permit by maintaining 1) a vegetated filter strip at least ten feet wide along field ditches and in the final 35 feet of the field ditches (applicable to ditch embankments and, to the maximum extent practicable, the channel) adjoining the receiving waters or the operation boundary, whichever occurs first, and 2) a 35 foot vegetated filter strip or a 50 foot setback from all other surface waters of the State, as defined in Part II.JJ.1. In Critical Areas, other alternative setbacks may be required by the Department.

9. *Record Keeping*. Maintain all records necessary to document the development and implementation of the NMP and Conservation Plan and all other requirements of Parts IV and V of this permit. These records shall be maintained for five years.

The nutrient management plan, contained in this CNMP, will be updated before the expiration date. The NM plan will need revised on or before the expiration date. Any substantial changes, before this expiration date will need to be documented and revisions made by a certified consultant. A copy of this revision must be kept with your nutrient management records.

A Nutrient Management Annual Implementation Report must be submitted, each year, to the Maryland Department of Agriculture on or before March 1st.

Operator information: Rich Levels Poultry Allen Davis 33960 Sassafras-Caldwell Road Galena, MD 21635	CNMP - <u>Consultant information:</u> David D. Kann PO Box 1011 East Berlin, PA 17316 (717) 792-1274 CCP #: 259 License Number: 2175
Production Area: 39°22'18.6"N 75°46'23.5"W	NMP – <u>Consultant information:</u> Don Moore 2677 Telegraph Road North East, MD 21901 Cert.#: 1048

Nutrient Management Plan Narrative:

Rich Levels Poultry and Rich Levels Grain is owned by the Davis Family. The broiler manure generated at the poultry operation is applied to the cropland operated by Rich Levels Grain. In addition, other organic sources are imported into the operation, to offset the cost and usage of commercial fertilizer. Layer manure is imported from Cal Maine Foods and Puglisi Egg Farm in Middletown, Delaware. Broiler litter is imported from C&S Farm, EB Workman, and Weaver Farm. The land is in a corn/small grain/ dc soybean crop rotation. Irrigation is utilized on the Home Farm and Mill Creek Farms.

In the NM recommendation section of the nutrient management plan, the abbreviations for the generated and imported organic sources are as such:

- Rich Levels Broiler (RL)
- C&S Farm (c)
- Puglisi (P)
- Cal Maine (I)
- Cal Maine (gallons-washwater)
- Weaver (w)

County Location: Kent

Property ID	Acct ID Acres	Farm Name	Plan Acres	County	Watershed
	78.22	Rich Levels Poultry	(Headquarters only)	Kent	0059

Property ID	Acct ID Acres	Farm Name	Plan Acres	County	Watershed
	78.22 294.93 217.75 100.1	Home	517.4	Kent	0059
	61.15	Antone	30.0	Kent	0059
	330.92 14.05 17.54 19.43	Asplundh	200.9	Kent	0059
	276.5	Austin	78.5	Kent	0059
	119.98	Addie Walters	85.2	Kent	0059
	97.5	Bregger, Cecil Co.	94.5	Cecil	0096
	198.2	Bregger, Kent Co.	116.5	Kent	0059
	533.2	Britland	338.2	QA	0045
	164.14	Byerly	113.0	Cecil	0096
	275	Church	254.7	Cecil	1098
	178 175.5	Crawford	253.7	Cecil	0096
	27.1	Davis	94.1	Kent	0059
	552.5	Essex Lodge	398.3	Cecil	1098
	256.47	Fusco	94.0	Kent	0059
	181.32	Redgrave	137.4	Kent	0058
	25.02 161.18	Foxhole	96.0	Kent	0059
	124.9	Jeffries	87.0	Cecil	0096
	142	Maloney	135.2	Kent	0058
	175.39 322.74 11.0 192.42	Middlesex	539.9	Cecil	0096
	228.6	Mill Creek	193.1	Kent	0059
	75.6	Neff	62	Kent	0058

	27.1	Phillips	27	Cecil	0096
	60.16	Redding	57.9	Kent	0059
	331.2	Sigman	223.9	Cecil	0097
	159.94	Ware	99.0	Cecil	0096
TOTAL ACRES UNDER PLAN			4,322.5		

NUTRIENT APPLICATION SETBACKS FROM SURFACE WATER:

A minimum of a 10' vegetative setback must be in place next to surface water. The chart below indicates if surface water is present that requires a setback on any farm/operation and identifies the fields that are required to have a nutrient application setback. An application of crop nutrients using a broadcast method either with or without incorporation requires a 35' setback. A directed spray application or the injection of crop nutrients only requires a 10'setback.

If nutrients are custom-applied, it is the operator's responsibility to inform the applicator of the setback distance based on the method of application.

Farm Contacts

Farm Name	Rich Levels Poultry, Inc.			
Mailing Address	33960 Sassafras-Caldwell Road, Galena, MD 21635			
Farm Address	34200 Sassafras-Caldwell Road, Galena, MD 21635			
Farm Phone				
Directions to Farm	FROM GALENA, GO EAST ON RT 290 (SASSAFRAS ROAD). CONNECT W/ RT 299 AND HEAD INTO SASSAFRAS, AND MAKE A RIGHT ONTO SASSAFRAS-CALDWELL ROAD. HEAD TOWARDS CALDWELL CORNER. FARM IS ON THE LEFT, BEFORE ENTERING INTO DELAWARE.			

	Name	Daytime Phone	Cell Phone	email
Farm Owner	Davis			
Farm Operator	Davis			
Fire or Ambulance	911	911	911	911

Agency Contacts

Contact Agency	Person / Office	Day Phone	Emergency Number
Health Department	County Office	410-778-1350	
Before you DIG, call Maryland's Miss Utility		1-800-441-8355	
Maryland Department of the Environment	Office: MDE Animal Feeding Operation Division 1800 Washington Blvd. Suite 605 Baltimore, MD 21230	410-537-3000	1-800-633-6101
USDA Veterinary Services State Veterinarian	Dr. Jennifar Trout	1-866-536-7593 410-841-5810	410-841-5971 after hours

Sheriff's Office	Sheriff Dennis Hickman Kent County 104 Vickers Dr # B, Chestertown, MD 21620	410-778-2279	
NRCS	County Office 122 Speer Road, Suite 4 Chestertown, MD 21620	410-778-5150 x3	
U of MD Extension	County Office	410-778-1661	
MDA Nutrient Management	Headquarters	410-841-5959	1-800-492-5590
MDA Nutrient Management	Regional office 50 Harry S Truman Pkwy Annapolis, MD 21401	410-991-3114	
AET Consulting, Inc.	David Kann	717-792-1274	

FARMSTEAD (Production Area)

This element addresses the components and activities, existing and planned, associated with the production facility, feedlot, manure and wastewater storage and treatment structures and areas, and any area used to facilitate transfer of manure and wastewater.

Site	MDE AI#	Site Name	Address
Poultry Houses	131204	Rich Levels Poultry	34200 Sassafras Caldwell Road Galena, MD 21635

Rich Levels Poultry

	Animal 1
Location (Structure(s)):	34200 Sassafras-Caldwell Road, Galena, MD
Animal Type	Broilers
Number of Animals (In Structure):	120,000 Broilers
	6 flocks per year.
Number of Structures (Per Animal Type)	6 houses total (approximate sizes listed below)
	House 1 – 564' x 40' House 2 – 564' x 40'
	House 3 – 564' x 40'
	House 4 – 564' x 40' House 5 – 564' x 40'
	House $5 - 564^{\circ} \times 40^{\circ}$
	1100Se 0 - 304 X 40
Time In Location:	Year Round Each
Number of Herds/Flocks (Per Year):	5 flocks/year 120,000 birds per flock
Storage Structure Receiving Manure:	2 storages - 40' x 80' Roofed Dry-stack Manure Storages and a 40' x 120' Designed for cake-outs and/or emergency partial cleanout
Total Solid Manure Collected and Removed from Poultry Production Areas	852 tons generated annually
	Removed: 598 tons of cakeout/crust + 50% of in- house litter

*See manure quantity estimation sheets in the "Nutrient Management" section of this plan.

Description of nearby Water Bodies

The farmstead and production area sits within the Middle Chester River Watershed. **The associated waterbody is UNT of Chester River.** All production areas, manure storage, manure cleanup - heavy use areas, and mortality management is at a minimum of 1000' from any Public Drainage Ditches (PDAs) and/or Streams, Creeks, or Rivers. **The farm operation is NOT in a Tier II Watershed**.

Farm Name	Name of nearest Waterbody	Distance to Waterbody	Watershed Name	12-digit Watershed number	Water Quality Status TMDL impairments (N, P, Bacteria, Sediment)
Rich Levels Poultry	UNT of Sassafras River	1000 ft	Sassafras River		Nitrogen Phosphorus Sediment

Sensitive Environmental Areas

Briefly describe any sensitive environmental areas on the farm including streams, wetlands, HEL land, hydric soils, 100 year floodplain, and distance to regulatory waters.

No sensitive areas were being impacted or diminished by farming activities at the time of the site visits. All required setbacks are outlined in this plan. The nearest body of water is >1000 feet from the production facility. The production areas are outside of the 100 year floodplain.

The <u>Resource Concern Identification Worksheet</u> is in the Appendix of this document.

Manure Management and Storage Facilities

Storage ID	Size/Volume of Storage Unit	Type of Liner	Condition and Thickness of Liner	Transfer ID	Meets 313 ¹ (Y / N / ?)	Length (days)
1	40' x 80'	Earthen Floor	Good		Y	365
2	40' x 120'	Earthen Floor	Good		Y	365

¹ Was the manure storage system designed and constructed in accordance with NRCS standards in place at time of construction? \square Yes \square No \square Unknown)

Photo of Channel Composter

Air Quality

Are any of the following a concern at the facility itself, or to nearby neighbors? If so, describe the issues in terms of timing, extent, etc.

- Dust: normal levels for a layer house ventilation system
- Gaseous Emissions: No
- Odor: Normal.
- Other Potential Resource Concerns: No other problems are apparent.

Practice and Facility Management Plan for the Rich levels Poultry Farm

Planned Practices	Amount	Year the practice was Installed
 Waste Storage Facility Maintain a poultry manure stack facility to store solid waste on a temporary basis. The facility will provide ample storage during the summer and winter months when crop fields are not open. See the approved engineering plan for construction specifications and maintenance. 	1 no. (40'x80')	1996
 [1] Manure will be collected from the buildings. [2] Refer to the Nutrient Management Plan for guidance on times of removal and recommended rates. 	1no. (40'x120')	2006
Animal Mortality Facility Maintain a dead bird composting facility for the economical and environmentally safe disposal of dead poultry. The structure shall be built according to NRCS standards and specifications and maintained as described in the Operation and Maintenance plan.	1 no. (bins)	1996
	1 no. (channel)	2006

Heavy Use Areas The stabilization of areas frequently and intensively used by people, animals or vehicles by constructing a concrete apron on all poultry houses (front & back), and/or by installing needed structures.	.1 ac (house1) .1 ac (house1) .1 ac (house2) .1 ac (house2) .1 ac (house3) .1 ac (house3)	2010 2010 2010 2010 2010 2010 2010
	.1 ac (house3) .1 ac (house4) .1 ac (house4) .1 ac (house5) .1 ac (house5) .1 ac (house6) .1 ac (house6)	2010 2010 2010 2010 2010 2010 2010
Heavy Use Areas The stabilization of areas in front of manure shed which is frequently and intensively used by people, animals or vehicles by establishing by surfacing with suitable materials, and/or by installing needed structures.	0.1 ac 0.1 ac	2010 2010
Filter Strip A strip or area of herbaceous vegetation situated between cropland, grazing land, or disturbed land (including forestland), and environmentally sensitive areas.	0.9 ac	2006

Production Area Management Guidelines – Poultry Operations

To provide environmental benefits, conservation practices must be operated and maintained as designed. The following list describes some common problems to look for in the production area of poultry operations. It is VERY IMPORTANT that the production area (manure storage, composters, HUA pads, etc...) be kept clean and free from ANY manure that could come in contact with surface water.

Natural Resources Conservation Service (NRCS) and Soil Conservation District staff are available to provide follow-up assistance if needed.

Manure Storage Area

Manure removed from poultry houses should be stored in a covered shed until it can be applied to crops or otherwise used. The following are potential problems you may see that MUST be addressed to keep clean water on your farm, clean:

- Manure piled outside shed.
- Manure stacked too high against walls.
- Shed contains equipment or supplies that are not easily moveable (e.g., not on wheels).
- Obvious surface water conveyance near the open ends of the shed to a drainage ditch or swale.
- Structural damage to shed.
- Evidence of water or "puddling" in the storage shed.

Composters

Properly operated composters provide an environmentally sound method for disposing of normal mortality from poultry houses.

The following are potential problems you may see:

- Leakage.
- Excessive odor or flies.
- Dead birds visible.
- Evidence of animals feeding on dead birds.
- Thermometer not readily available (DE only).
- Recipe sign not posted (DE only).
- Missing or broken boards.
- Misuse and nonuse. Composter should be used for what it was intended for.

Concrete Pads

Concrete pads at the ends of poultry houses and manure sheds can reduce erosion and protect surface and ground water from contamination.

Concrete pads should be properly installed, maintained, and kept clean of manure.

The following are potential problems you may see:

- Manure present on pads.
- Obvious surface water conveyance to a drainage ditch or swale near the open ends of poultry houses and manure sheds.
- Concrete cracking or breaking off.

Proper and maintained Vegetation Around Production Area and Between Houses

It is very important to have good grass cover around the farm buildings and between the poultry houses. Well established grasses also prevent soil erosion which in severe cases could result in damage to the house pad or the footing and foundation of the poultry house. Grass also helps reduce reflected heat which in turn helps keep house temperatures under control in hot weather. Grass should always be kept mowed and weeds should also be kept under control. Not only are un-mowed weeds and grass unsightly, but they can encourage rodents and can also reduce the effectiveness of natural ventilation. Tall weeds and grass provide rats and mice a place to hide that is close to the building. Most rodent control programs will stress the need to keep areas around buildings mowed frequently.

Standing puddles of water encourage mosquitoes and kill vegetation, so low spots should be filled to prevent such problems. Also, drainage ditches, drainage ways, and swales should be properly mowed and maintained to give storm water an easy exit. Any trash and debris should be removed from ditches and grass and weeds kept short to encourage water flow.

Windbreak/Shelterbelt

Windbreaks, or vegetative environmental buffers, are planted around poultry houses to provide shelter from winter winds; reduce particulates, ammonia, and other odors from tunnel fans; create visual screens; and provide shade to reduce extreme summer heat.

The following are potential problems you may see:

- Trees dead, dying, or damaged (e.g., broken off, mowed over, bagworms, etc.).
- Lack of weed control around trees or insect control.
- Irrigation system not functioning (e.g., major leaks, broken lines, etc.).
- No irrigation system (newly established trees should be irrigated for the first 2-3 years).

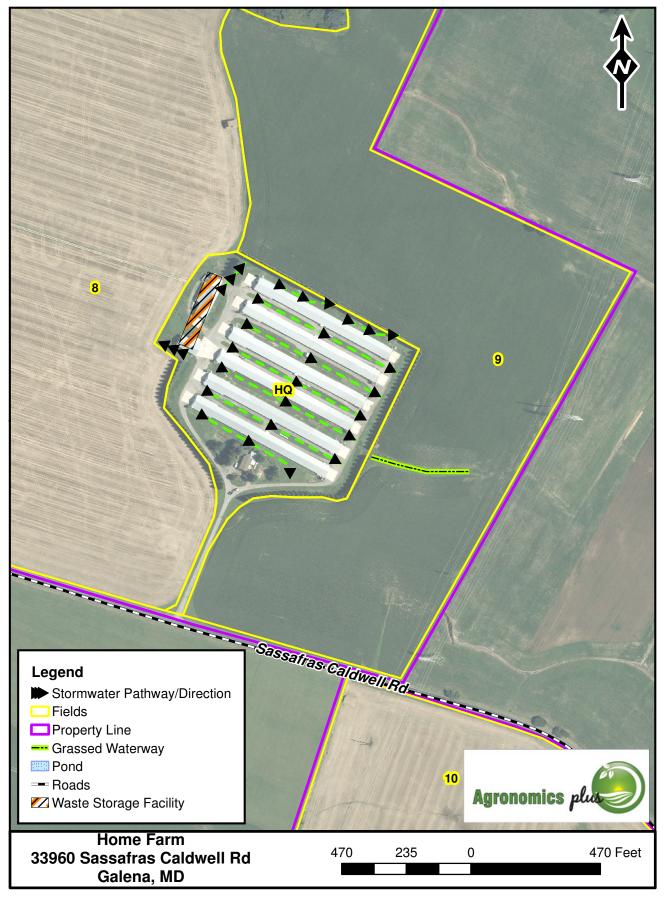
Other Concerns

Other issues that may result in environmental concerns include, but are not limited to:

- Manure scattered around the production area on roads, along the edge of concrete pads or building foundations.
- Manure runoff visible.
- Roof runoff that is creating erosion or drainage problems.
- Lack of good vegetative cover for filtering storm runoff between waste storage structures, composters, or ends of the poultry houses, and drainage outlets.
- Overall farm appearance (a farm that "looks good" is less likely to generate complaints from neighbors).
- Potholes in travelways or standing water in swales, near exhaust fans.
- Maintenance of stormwater management structures or ponds.

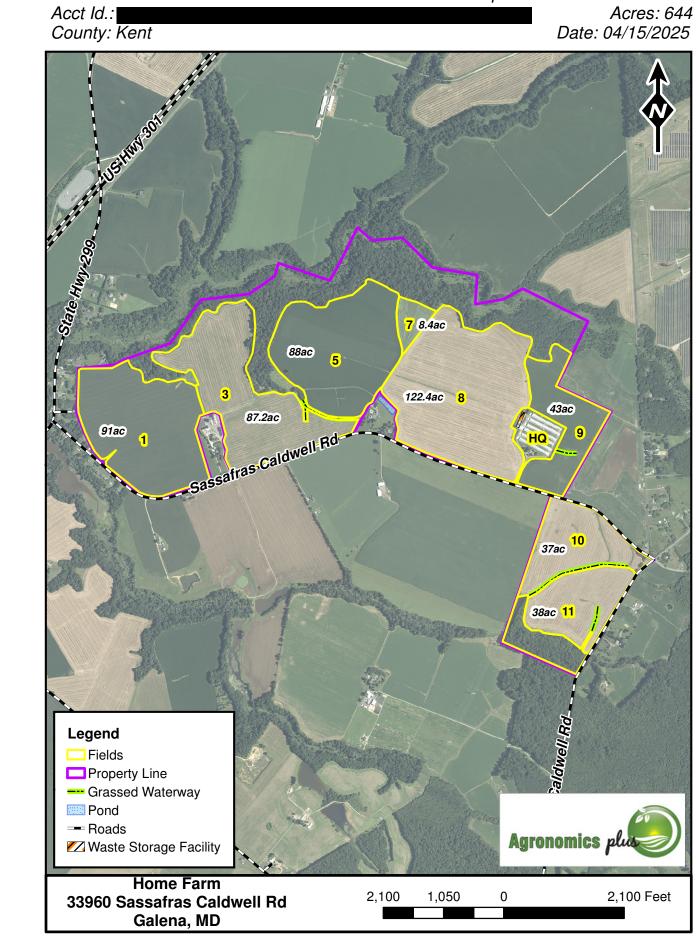
CONSERVATION ELEMENT FARMSTEAD (PRODUCTION AREA) & CROPLAND RECEIVING MANURE:

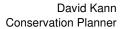
- 1. WATER CONVEYANCE MAP
- 2. PLAN MAPS
- 3. CONSERVATION PLANS (tract receiving their own generated organic source) includes soils descriptions AND SOIL LOSS CALCS
- 4. OPERATION & MAINTENANCE FOR ENGINEERING PRACTICES


Maps of the Agricultural Operation

LOCATION MAP

Stormwater Surface Flow Map


Owner: Allen Davis/Olin Davis Farms LLC Acct Id.: County: Kent Operator: Rich Levels Grain Acres: 78.22 Date: 04/15/2025


CONSERVATION PLAN MAP

Owner: Allen Davis/Olin Davis Farms LLC Acct Id.:

Operator: Rich Levels Grain Acres: 644 Date: 04/15/2025

USDA-NRCS - KENT COUNTY SERVICE CENTER 122 SPEER RD CHESTERTOWN, MD 21620-1037 (410) 778-5353

Conservation Plan

Rich Level Grain 33960 Sassafras-Caldwell Road Galena, MD 21635

NARRATIVE / OBJECTIVES

Maryland regulations for agriculture require that Best Management Practices (BMPs) be implemented to prevent accelerated erosion and sedimentation to waters of this State. Agricultural plowing or tilling activities or Animal Heavy Use Areas (AHUAs), require additional planning and required BMPs.

The following practices and management will improve or enhance soil conditions and eliminate or reduce soil erosion while at the same time improving water quality on the farm.

All lands receiving fertilizer and/or manure will need to have a Nutrient Management Plan.

The landowner has the responsibility for obtaining the proper permits before any excavation begins.

Cropland

Home Farm

Conservation Crop Rotation (328)

Plant crops as listed: Rotation of CORN and WHEAT dc/SOYBEANS. Generally high residue no-tilled crops such as corn, grain, or hay crops may be added to the rotation without increasing soil loss. Crops with low residues and with tillage generally cannot be added to the rotation without the additional use of conservation practices or by adding additional years of high residue no-till crops or hay to the rotation. Lime and fertilizer will be applied based on soil tests and the University of Maryland recommendations. When soil tests are high in P and/or K, recommendations may indicate that no nutrient applications are needed.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
1	91 ac	6	2023	91 ac	6/1/2023
3	87.2 ac	6	2023	87.2 ac	6/1/2023
5	88 ac	6	2023	88 ac	6/1/2023
8	122.4 ac	6	2023	122.4 ac	6/1/2023
9	43 ac	6	2023	43 ac	6/1/2023
10	37 ac	6	2023	37 ac	6/1/2023
11	38 ac	6	2023	38 ac	6/1/2023
Total:	506.6 ac			506.6 ac	

Grassed Waterway (412)

Maintain a grassed waterway where shown on the plan map to prevent erosion caused by concentrated water flows. Construct and seed according to NRCS design. Avoid spraying herbicides and do not plow or disk through the waterway. Regularly remove debris and accumulated sediment. Mow as needed to maintain grass height at 4 to 6 inches to promote a thick sod. Inspect after each major storm and repair any damaged areas immediately. Tillage and row direction should be perpendicular to the waterway to allow runoff to drain into the waterway and prevent gullies along the edges. Provide stabilized machinery crossings, where needed, to prevent rutting of the waterway.

		Planned			Applied	
Field	l	Amount	Month	Year	Amount	Date
	2	0.1 ac	6	2023	0.1 ac	6/1/2023
	5	0.3 ac	6	2023	0.3 ac	6/1/2023
	9	0.2 ac	6	2023	0.2 ac	6/1/2023
	10	0.7 ac	6	2023	0.7 ac	6/1/2023
	11	0.1 ac	6	2023	0.1 ac	6/1/2023
Т	otal:	1.4 ac			1.4 ac	

Irrigation Water Management (449)

Control the rate, amount, and timing of irrigation water to minimize soil erosion and control water loss from excessive runoff and deep percolation.

All nutrients will be applied based on a nutrient management plan developed for the fields indicated on the conservation plan map and will specifically address the management of the sensitive areas indicated on the conservation plan map.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
5	88 ac	6	2023	88 ac	6/1/2023
8	122.4 ac	6	2023	122.4 ac	6/1/2023
Total:	210.4 ac			210.4 ac	

Nutrient Management (590)

Manage the amount, form, placement and timing of plant nutrient application to protect surface & groundwater from runoff and/or leaching of nutrients. The land application of animal manures and agricultural process wastewater must follow the standards outlined by the Maryland Department of Agriculture.

- Minimize agricultural nonpoint source pollution of surface and groundwater resources
- Properly utilize manure or organic by-products as a plant nutrient source
- Protect air quality by reducing odors, nitrogen emissions (including ammonia), and the formation of atmospheric particulates
- Maintain or improve the physical, chemical, and biological condition of the soil

All nutrients will be applied based on a nutrient management plan developed for the fields indicated on the conservation plan map and will specifically address the management of the sensitive areas indicated on the conservation plan map. Nutrients from all sources will be included. The plan will address field by field application rates and application timing requirements. Soil tests must be completed at least once every three years and records of soil test results and nutrient application timing and rates must be maintained.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
1	91 ac	2	2025	91 ac	2/15/2025
3	87.2 ac	2	2025	87.2 ac	2/15/2025
5	88 ac	2	2025	88 ac	2/15/2025
8	122.4 ac	2	2025	122.4 ac	2/15/2025
9	43 ac	2	2025	43 ac	2/15/2025
10	37 ac	2	2025	37 ac	2/15/2025
11	38 ac	2	2025	38 ac	2/15/2025
Total:	506.6 ac			506.6 ac	

Residue and Tillage Management, Mulch Till (345)

Establish the following crops: A rotation of Corn and Small Grain. 40% RESIDUE AMOUNTS AFTER CORN PLANTING. Small grain crops following corn, 50% RESIDUE. Occasionally, due to equipment tracking and manure application; light discing may occur to remove these issues in the field; otherwise all small grain and soybeans are no-tilled. All corn crops and management follow a turbo-till establishment.

Mulch tillage and No-till helps to reduce soil erosion and energy use, improve soil quality, and increase plant-available moisture. Manage the amount, orientation, and distribution of the crop and plant residue by limiting the amount of tillage occurring in the field. Soil loss predictions and Soil Conditioning Index results, as calculated by RUSLE2, are attached. Contact the NRCS or Soil Conservation District office if changes in crops, tillage, or residue levels are desired. For Operation and Maintenance, evaluate crop residue remaining after planting to ensure that appropriate residue levels are maintained.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
1	91 ac	6	2023	91 ac	6/1/2023
3	87.2 ac	6	2023	87.2 ac	6/1/2023
5	88 ac	6	2023	88 ac	6/1/2023
8	122.4 ac	6	2023	122.4 ac	6/1/2023
9	43 ac	6	2023	43 ac	6/1/2023
10	37 ac	6	2023	37 ac	6/1/2023
11	38 ac	6	2023	38 ac	6/1/2023
Total:	506.6 ac			506.6 ac	

CERTIFICATION OF PARTICIPANTS

The estimated soil loss rate for cropland in this conservation plan meets the tolerable (T) rate of soil loss over the planned crop rotation. Potential and existing gullies have been or will be treated through this plan. The customer agrees to maintain the cropping system as described in the Conservation Crop Rotation narrative and/or job sheet included in this plan.

The attached RUSLE 2 Plan View report shows the estimated soil loss based on the planned cropping system. Flexibility within the system is permitted provided erosion is not increased. The narrative and job sheet describe changes to the system that would likely increase or decrease soil erosion. If the customer makes changes to the system that might increase soil erosion, they are responsible for acquiring a new soil loss calculation and ensuring that the soil loss rate of the new cropping system does not exceed T.

The customer is responsible for obtaining all necessary permits, rights, or notifications, and for complying with all state, federal, and local laws and regulations pertaining to the application of the planned conservation practices identified in this plan.

Name (print): Repres **Rich Levels Grain**

CERTIFICATION OF:

DESIGNATED CONSERVATIONIST (if Applicable)

NRCS Representative

DATE

CONSERVATION PLANNER

David D. Kann

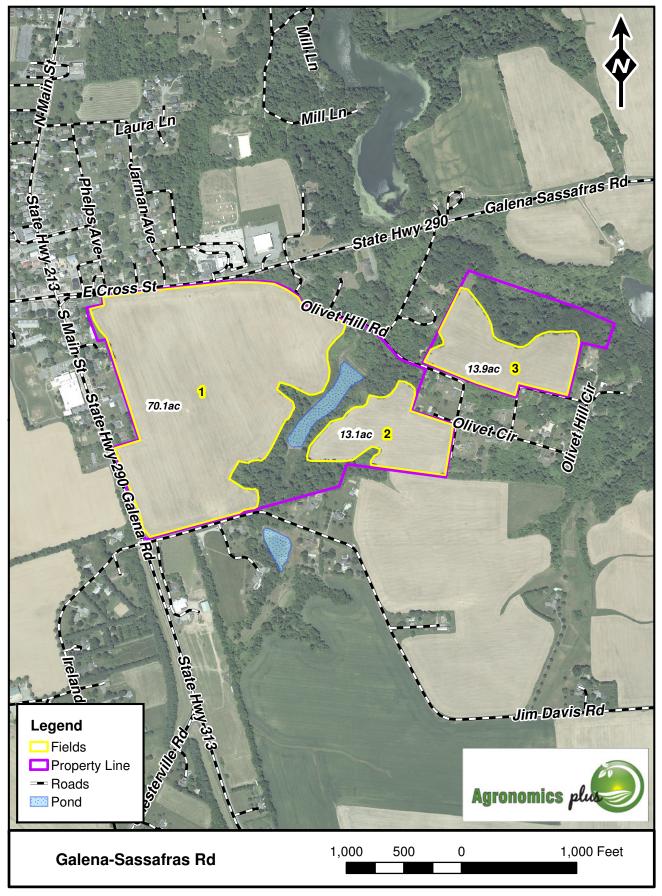
DATE

CERTIFICATION OF PARTICIPANTS

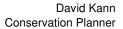
CERTIFICATION OF:

The estimated soil loss rate for cropland in this conservation plan meets the tolerable (T) rate of soil loss over the planned crop rotation. Potential and existing gullies have been or will be treated through this plan. The customer agrees to maintain the cropping system as described in the Conservation Crop Rotation narrative and/or job sheet included in this plan.

The attached RUSLE 2 Plan View report shows the estimated soil loss based on the planned cropping system. Flexibility within the system is permitted provided erosion is not increased. The narrative and job sheet describe changes to the system that would likely increase or decrease soil erosion. If the customer makes changes to the system that might increase soil erosion, they are responsible for acquiring a new soil loss calculation and ensuring that the soil loss rate of the new cropping system does not exceed T.


The customer is responsible for obtaining all necessary permits, rights, or notifications, and for complying with all state, federal, and local laws and regulations pertaining to the application of the planned conservation practices identified in this plan.

Name (print):	
Representative of Rich Levels Grain	DATE


(DESIGNATED CONSERVATIONIS	ST (if Applicable)	CONSERVATION PLANNER	
		adekal ulularar	
NRCS Representative	DATE	David D. Kann DATE	

CONSERVATION PLAN MAP

Owner: SIVAD LLC Acct Id.: County: Kent Operator: Rich Levels Grain Acres: 131.6 Date: 04/15/2025

USDA-NRCS - KENT COUNTY SERVICE CENTER 122 SPEER RD CHESTERTOWN, MD 21620-1037 (410) 778-5353

Conservation Plan

Rich Level Grain 33960 Sassafras-Caldwell Road Galena, MD 21635

NARRATIVE / OBJECTIVES

Maryland regulations for agriculture require that Best Management Practices (BMPs) be implemented to prevent accelerated erosion and sedimentation to waters of this State. Agricultural plowing or tilling activities or Animal Heavy Use Areas (AHUAs), require additional planning and required BMPs.

The following practices and management will improve or enhance soil conditions and eliminate or reduce soil erosion while at the same time improving water quality on the farm.

All lands receiving fertilizer and/or manure will need to have a Nutrient Management Plan.

The landowner has the responsibility for obtaining the proper permits before any excavation begins.

Cropland

Davis Farm

Conservation Crop Rotation (328)

Plant crops as listed: Rotation of CORN and WHEAT dc/SOYBEANS. Generally high residue no-tilled crops such as corn, grain, or hay crops may be added to the rotation without increasing soil loss. Crops with low residues and with tillage generally cannot be added to the rotation without the additional use of conservation practices or by adding additional years of high residue no-till crops or hay to the rotation. Lime and fertilizer will be applied based on soil tests and the University of Maryland recommendations. When soil tests are high in P and/or K, recommendations may indicate that no nutrient applications are needed.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
1	70.1 ac	6	2023	70.1 ac	6/1/2023
2	13.1 ac	6	2023	13.1 ac	6/1/2023
3	13.9 ac	6	2023	13.9 ac	6/1/2023
Total:	97.1 ac			97.1 ac	

Nutrient Management (590)

Manage the amount, form, placement and timing of plant nutrient application to protect surface & groundwater from runoff and/or leaching of nutrients. The land application of animal manures and agricultural process wastewater must follow the standards outlined by the Maryland Department of Agriculture.

- Minimize agricultural nonpoint source pollution of surface and groundwater resources
- Properly utilize manure or organic by-products as a plant nutrient source
- Protect air quality by reducing odors, nitrogen emissions (including ammonia), and the formation of atmospheric particulates
- Maintain or improve the physical, chemical, and biological condition of the soil

All nutrients will be applied based on a nutrient management plan developed for the fields indicated on the conservation plan map and will specifically address the management of the sensitive areas indicated on the conservation plan map. Nutrients from all sources will be included. The plan will address field by field application rates and application timing requirements. Soil tests must be completed at least once every three years and records of soil test results and nutrient application timing and rates must be maintained.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
1	70.1 ac	2	2025	70.1 ac	2/15/2025
2	13.1 ac	2	2025	13.1 ac	2/15/2025
3	13.9 ac	2	2025	13.9 ac	2/15/2025
Total:	97.1 ac			97.1 ac	

Residue and Tillage Management, Mulch Till (345)

Establish the following crops: A rotation of Corn and Small Grain. 40% RESIDUE AMOUNTS AFTER CORN PLANTING. Small grain crops following corn, 50% residue. Occasionally, due to equipment tracking and manure application; light discing may occur to remove these issues in the field; otherwise all small grain and soybeans are no-tilled. All corn crops and management follow a turbo-till establishment.

Mulch tillage and No-till helps to reduce soil erosion and energy use, improve soil quality, and increase plant-available moisture. Manage the amount, orientation, and distribution of the crop and plant residue by limiting the amount of tillage occurring in the field. Soil loss predictions and Soil Conditioning Index results, as calculated by RUSLE2, are attached. Contact the NRCS or Soil Conservation District office if changes in crops, tillage, or residue levels are desired. For Operation and Maintenance, evaluate crop residue remaining after planting to ensure that appropriate residue levels are maintained.

Γ		Planned			Applied	
	Field	Amount	Month	Year	Amount	Date
	1	70.1 ac	6	2023	70.1 ac	6/1/2023
	2	13.1 ac	6	2023	13.1 ac	6/1/2023
	3	13.9 ac	6	2023	13.9 ac	6/1/2023
	Total:	97.1 ac			97.1 ac	

CERTIFICATION OF PARTICIPANTS

The estimated soil loss rate for cropland in this conservation plan meets the tolerable (T) rate of soil loss over the planned crop rotation. Potential and existing gullies have been or will be treated through this plan. The customer agrees to maintain the cropping system as described in the Conservation Crop Rotation narrative and/or job sheet included in this plan.

The attached RUSLE 2 Plan View report shows the estimated soil loss based on the planned cropping system. Flexibility within the system is permitted provided erosion is not increased. The narrative and job sheet describe changes to the system that would likely increase or decrease soil erosion. If the customer makes changes to the system that might increase soil erosion, they are responsible for acquiring a new soil loss calculation and ensuring that the soil loss rate of the new cropping system does not exceed T.

The customer is responsible for obtaining all necessary permits, rights, or notifications, and for complying with all state, federal, and local laws and regulations pertaining to the application of the planned conservation practices identified in this plan.

Name (print): Repres **Rich Levels Grain**

CERTIFICATION OF:

DESIGNATED CONSERVATIONIST (if Applicable)

NRCS Representative

DATE

CONSERVATION PLANNER

David D. Kann

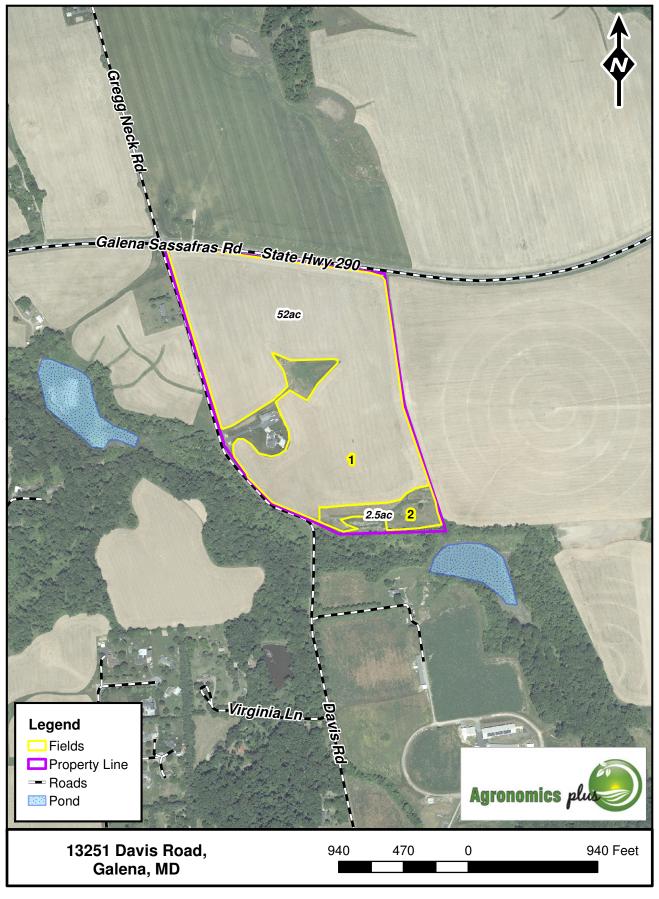
DATE

CERTIFICATION OF PARTICIPANTS

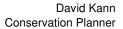
CERTIFICATION OF:

The estimated soil loss rate for cropland in this conservation plan meets the tolerable (T) rate of soil loss over the planned crop rotation. Potential and existing gullies have been or will be treated through this plan. The customer agrees to maintain the cropping system as described in the Conservation Crop Rotation narrative and/or job sheet included in this plan.

The attached RUSLE 2 Plan View report shows the estimated soil loss based on the planned cropping system. Flexibility within the system is permitted provided erosion is not increased. The narrative and job sheet describe changes to the system that would likely increase or decrease soil erosion. If the customer makes changes to the system that might increase soil erosion, they are responsible for acquiring a new soil loss calculation and ensuring that the soil loss rate of the new cropping system does not exceed T.


The customer is responsible for obtaining all necessary permits, rights, or notifications, and for complying with all state, federal, and local laws and regulations pertaining to the application of the planned conservation practices identified in this plan.

Name (print):	
Representative of Rich Levels Grain	DATE


DESIGNATED CONSERVATIONIST (if Ap	plicable) (CONSERVATION PLANNER
	Carlekal Mulapor
NRCS Representative DATE	David D. Kann DATE

CONSERVATION PLAN MAP

Owner: Stephen & Sharon Redding Acct Id.: County: Kent Operator: Rich Levels Grain Acres: 60.16 Date: 04/15/2025

USDA-NRCS - KENT COUNTY SERVICE CENTER 122 SPEER RD CHESTERTOWN, MD 21620-1037 (410) 778-5353

Conservation Plan

Rich Level Grain 33960 Sassafras-Caldwell Road Galena, MD 21635

NARRATIVE / OBJECTIVES

Maryland regulations for agriculture require that Best Management Practices (BMPs) be implemented to prevent accelerated erosion and sedimentation to waters of this State. Agricultural plowing or tilling activities or Animal Heavy Use Areas (AHUAs), require additional planning and required BMPs.

The following practices and management will improve or enhance soil conditions and eliminate or reduce soil erosion while at the same time improving water quality on the farm.

All lands receiving fertilizer and/or manure will need to have a Nutrient Management Plan.

The landowner has the responsibility for obtaining the proper permits before any excavation begins.

Cropland

Redding Farm

Conservation Crop Rotation (328)

Plant crops as listed: Rotation of CORN and WHEAT dc/SOYBEANS. Generally high residue no-tilled crops such as corn, grain, or hay crops may be added to the rotation without increasing soil loss. Crops with low residues and with tillage generally cannot be added to the rotation without the additional use of conservation practices or by adding additional years of high residue no-till crops or hay to the rotation. Lime and fertilizer will be applied based on soil tests and the University of Maryland recommendations. When soil tests are high in P and/or K, recommendations may indicate that no nutrient applications are needed.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
1	52 ac	6	2023	52 ac	6/1/2023
Total:	52 ac			52 ac	

Nutrient Management (590)

Manage the amount, form, placement and timing of plant nutrient application to protect surface & groundwater from runoff and/or leaching of nutrients. The land application of animal manures and agricultural process wastewater must follow the standards outlined by the Maryland Department of Agriculture.

- Minimize agricultural nonpoint source pollution of surface and groundwater resources
- Properly utilize manure or organic by-products as a plant nutrient source
- Protect air quality by reducing odors, nitrogen emissions (including ammonia), and the formation of atmospheric particulates
- Maintain or improve the physical, chemical, and biological condition of the soil

All nutrients will be applied based on a nutrient management plan developed for the fields indicated on the conservation plan map and will specifically address the management of the sensitive areas indicated on the conservation plan map. Nutrients from all sources will be included. The plan will address field by field application rates and application timing requirements. Soil tests must be completed at least once every three years and records of soil test results and nutrient application timing and rates must be maintained.

ſ		Planned			Applied	
	Field	Amount	Month	Year	Amount	Date
	1	52 ac	4	2025	52 ac	4/15/2025
	Total:	52 ac			52 ac	

Residue and Tillage Management, Mulch Till (345)

Establish the following crops: A rotation of Corn and Small Grain. 40% RESIDUE AMOUNTS AFTER CORN PLANTING. Small grain crops following corn, 50% residue. Occasionally, due to equipment tracking and manure application; light discing may occur to remove these issues in the field; otherwise all small grain and soybeans are no-tilled. All corn crops and management follow a turbo-till establishment.

Mulch tillage and No-till helps to reduce soil erosion and energy use, improve soil quality, and increase plant-available moisture. Manage the amount, orientation, and distribution of the crop and plant residue by limiting the amount of tillage occurring in the field. Soil loss predictions and Soil Conditioning Index results, as calculated by RUSLE2, are attached. Contact the NRCS or Soil Conservation District office if changes in crops, tillage, or residue levels are desired. For Operation and Maintenance, evaluate crop residue remaining after planting to ensure that appropriate residue levels are maintained.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
1	52 ac	6	2023	52 ac	6/1/2023
Total:	52 ac			52 ac	

CERTIFICATION OF PARTICIPANTS

The estimated soil loss rate for cropland in this conservation plan meets the tolerable (T) rate of soil loss over the planned crop rotation. Potential and existing gullies have been or will be treated through this plan. The customer agrees to maintain the cropping system as described in the Conservation Crop Rotation narrative and/or job sheet included in this plan.

The attached RUSLE 2 Plan View report shows the estimated soil loss based on the planned cropping system. Flexibility within the system is permitted provided erosion is not increased. The narrative and job sheet describe changes to the system that would likely increase or decrease soil erosion. If the customer makes changes to the system that might increase soil erosion, they are responsible for acquiring a new soil loss calculation and ensuring that the soil loss rate of the new cropping system does not exceed T.

The customer is responsible for obtaining all necessary permits, rights, or notifications, and for complying with all state, federal, and local laws and regulations pertaining to the application of the planned conservation practices identified in this plan.

Name (print): Repres **Rich Levels Grain**

CERTIFICATION OF:

DESIGNATED CONSERVATIONIST (if Applicable)

NRCS Representative

DATE

CONSERVATION PLANNER

David D. Kann

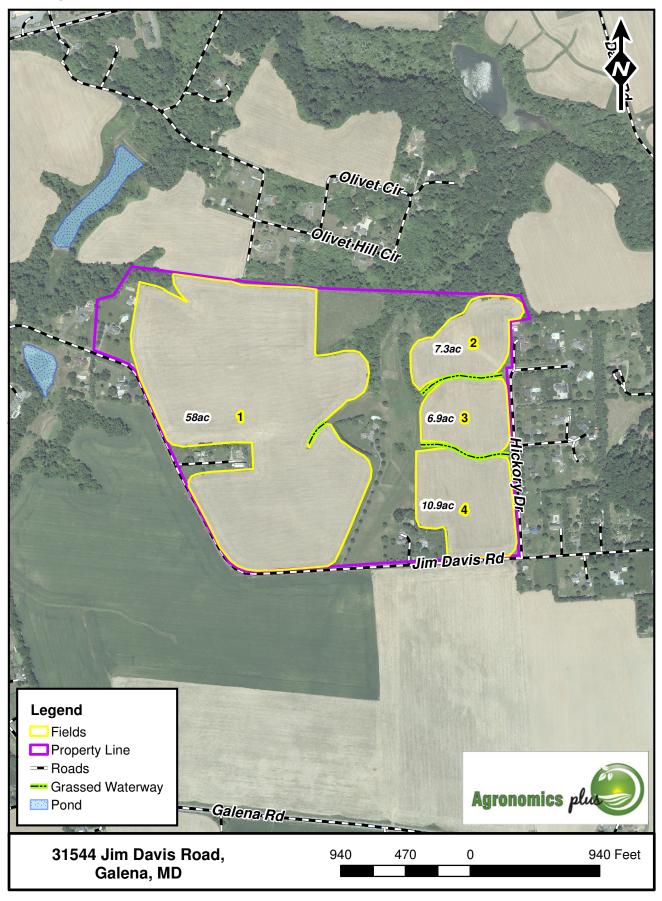
DATE

CERTIFICATION OF PARTICIPANTS

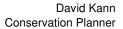
CERTIFICATION OF:

The estimated soil loss rate for cropland in this conservation plan meets the tolerable (T) rate of soil loss over the planned crop rotation. Potential and existing gullies have been or will be treated through this plan. The customer agrees to maintain the cropping system as described in the Conservation Crop Rotation narrative and/or job sheet included in this plan.

The attached RUSLE 2 Plan View report shows the estimated soil loss based on the planned cropping system. Flexibility within the system is permitted provided erosion is not increased. The narrative and job sheet describe changes to the system that would likely increase or decrease soil erosion. If the customer makes changes to the system that might increase soil erosion, they are responsible for acquiring a new soil loss calculation and ensuring that the soil loss rate of the new cropping system does not exceed T.


The customer is responsible for obtaining all necessary permits, rights, or notifications, and for complying with all state, federal, and local laws and regulations pertaining to the application of the planned conservation practices identified in this plan.

Name (print):	
Representative of Rich Levels Grain	DATE


DESIGNATED CONSERVATIONIST (if Ap	plicable) (CONSERVATION PLANNER
	Carlekal Mulapor
NRCS Representative DATE	David D. Kann DATE

CONSERVATION PLAN MAP

Owner: Walters/Wallace Acct Id.: County: Kent Operator: Rich Levels Grain Acres: 114.5 Date: 04/15/2025

USDA-NRCS - KENT COUNTY SERVICE CENTER 122 SPEER RD CHESTERTOWN, MD 21620-1037 (410) 778-5353

Conservation Plan

Rich Level Grain 33960 Sassafras-Caldwell Road Galena, MD 21635

NARRATIVE / OBJECTIVES

Maryland regulations for agriculture require that Best Management Practices (BMPs) be implemented to prevent accelerated erosion and sedimentation to waters of this State. Agricultural plowing or tilling activities or Animal Heavy Use Areas (AHUAs), require additional planning and required BMPs.

The following practices and management will improve or enhance soil conditions and eliminate or reduce soil erosion while at the same time improving water quality on the farm.

All lands receiving fertilizer and/or manure will need to have a Nutrient Management Plan.

The landowner has the responsibility for obtaining the proper permits before any excavation begins.

Cropland

Walters Farm

Conservation Crop Rotation (328)

Plant crops as listed: Rotation of CORN and WHEAT dc/SOYBEANS. Generally high residue no-tilled crops such as corn, grain, or hay crops may be added to the rotation without increasing soil loss. Crops with low residues and with tillage generally cannot be added to the rotation without the additional use of conservation practices or by adding additional years of high residue no-till crops or hay to the rotation. Lime and fertilizer will be applied based on soil tests and the University of Maryland recommendations. When soil tests are high in P and/or K, recommendations may indicate that no nutrient applications are needed.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
1	58 ac	6	2023	58 ac	6/1/2023
2	7.3 ac	6	2023	7.3 ac	6/1/2023
3	6.9 ac	6	2023	6.9 ac	6/1/2023
4	10.9 ac	6	2023	10.9 ac	6/1/2023
Total:	83.1 ac			83.1 ac	

Grassed Waterway (412)

Maintain a grassed waterway where shown on the plan map to prevent erosion caused by concentrated water flows. Construct and seed according to NRCS design. Avoid spraying herbicides and do not plow or disk through the waterway. Regularly remove debris and accumulated sediment. Mow as needed to maintain grass height at 4 to 6 inches to promote a thick sod. Inspect after each major storm and repair any damaged areas immediately. Tillage and row direction should be perpendicular to the waterway to allow runoff to drain into the waterway and prevent gullies along the edges. Provide stabilized machinery crossings, where needed, to prevent rutting of the waterway.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
1	0.1 ac	6	2023	0.1 ac	6/1/2023
2	0.4 ac	6	2023	0.4 ac	6/1/2023
3	0.4 ac	6	2023	0.4 ac	6/1/2023
Total:	0.9 ac			0.9 ac	

Nutrient Management (590)

Manage the amount, form, placement and timing of plant nutrient application to protect surface & groundwater from runoff and/or leaching of nutrients. The land application of animal manures and agricultural process wastewater must follow the standards outlined by the Maryland Department of Agriculture.

- Minimize agricultural nonpoint source pollution of surface and groundwater resources
- Properly utilize manure or organic by-products as a plant nutrient source
- Protect air quality by reducing odors, nitrogen emissions (including ammonia), and the formation of atmospheric particulates
- Maintain or improve the physical, chemical, and biological condition of the soil

All nutrients will be applied based on a nutrient management plan developed for the fields indicated on the conservation plan map and will specifically address the management of the sensitive areas indicated on the conservation plan map. Nutrients from all sources will be included. The plan will address field by field application rates and application timing requirements. Soil tests must be completed at least once every three years and records of soil test results and nutrient application timing and rates must be maintained.

		Planned			Applied	
Fi	eld	Amount	Month	Year	Amount	Date
	1	58 ac	2	2025	58 ac	2/15/2025
	2	7.3 ac	2	2025	7.3 ac	2/15/2025
	3	6.9 ac	2	2025	6.9 ac	2/15/2025
	4	10.9 ac	2	2025	10.9 ac	2/15/2025
	Total:	83.1 ac			83.1 ac	

Residue and Tillage Management, Mulch Till (345)

Establish the following crops: A rotation of Corn and Small Grain. 40% RESIDUE AMOUNTS AFTER CORN PLANTING. Small grain crops following corn, 50% RESIDUE. Occasionally, due to equipment tracking and manure application; light discing may occur to remove these issues in the field; otherwise all small grain and soybeans are no-tilled. All corn crops and management follow a turbo-till establishment.

Mulch tillage and No-till helps to reduce soil erosion and energy use, improve soil quality, and increase plant-available moisture. Manage the amount, orientation, and distribution of the crop and plant residue by limiting the amount of tillage occurring in the field. Soil loss predictions and Soil Conditioning Index results, as calculated by RUSLE2, are attached. Contact the NRCS or Soil Conservation District office if changes in crops, tillage, or residue levels are desired. For Operation and Maintenance, evaluate crop residue remaining after planting to ensure that appropriate residue levels are maintained.

	Planned			Applied	
Field	Amount	Month	Year	Amount	Date
1	58 ac	6	2023	58 ac	6/1/2023
2	7.3 ac	6	2023	7.3 ac	6/1/2023
3	6.9 ac	6	2023	6.9 ac	6/1/2023
4	10.9 ac	6	2023	10.9 ac	6/1/2023
Total:	83.1 ac			83.1 ac	

CERTIFICATION OF PARTICIPANTS

The estimated soil loss rate for cropland in this conservation plan meets the tolerable (T) rate of soil loss over the planned crop rotation. Potential and existing gullies have been or will be treated through this plan. The customer agrees to maintain the cropping system as described in the Conservation Crop Rotation narrative and/or job sheet included in this plan.

The attached RUSLE 2 Plan View report shows the estimated soil loss based on the planned cropping system. Flexibility within the system is permitted provided erosion is not increased. The narrative and job sheet describe changes to the system that would likely increase or decrease soil erosion. If the customer makes changes to the system that might increase soil erosion, they are responsible for acquiring a new soil loss calculation and ensuring that the soil loss rate of the new cropping system does not exceed T.

The customer is responsible for obtaining all necessary permits, rights, or notifications, and for complying with all state, federal, and local laws and regulations pertaining to the application of the planned conservation practices identified in this plan.

Name (print): Repres **Rich Levels Grain**

CERTIFICATION OF:

DESIGNATED CONSERVATIONIST (if Applicable)

NRCS Representative

DATE

CONSERVATION PLANNER

David D. Kann

DATE

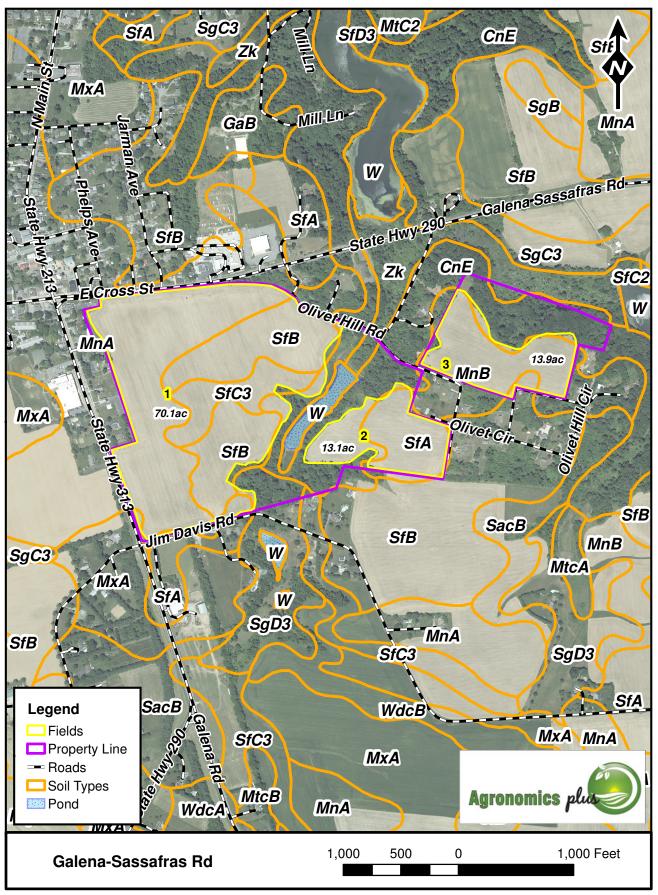
CERTIFICATION OF PARTICIPANTS

CERTIFICATION OF:

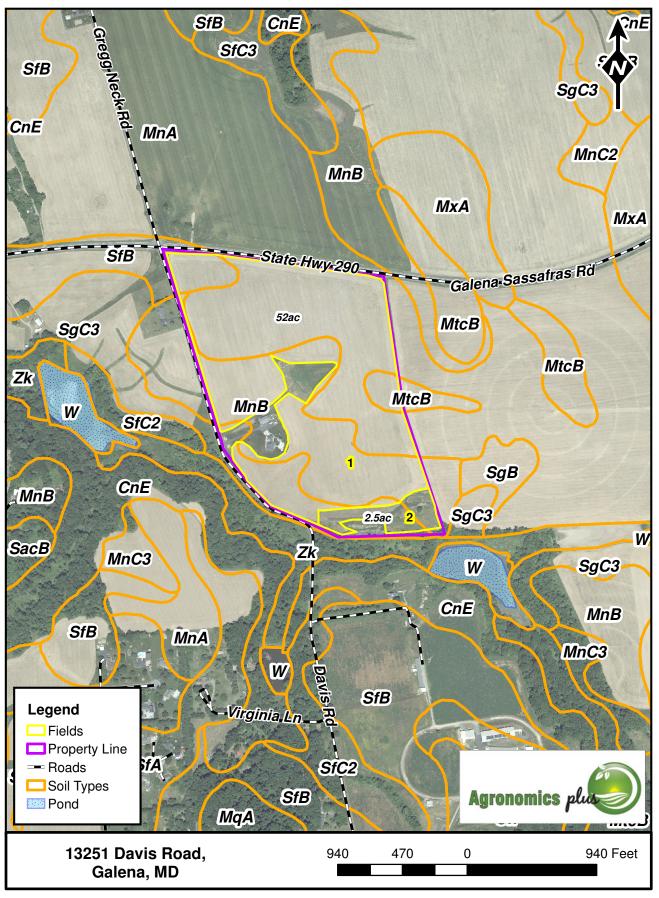
The estimated soil loss rate for cropland in this conservation plan meets the tolerable (T) rate of soil loss over the planned crop rotation. Potential and existing gullies have been or will be treated through this plan. The customer agrees to maintain the cropping system as described in the Conservation Crop Rotation narrative and/or job sheet included in this plan.

The attached RUSLE 2 Plan View report shows the estimated soil loss based on the planned cropping system. Flexibility within the system is permitted provided erosion is not increased. The narrative and job sheet describe changes to the system that would likely increase or decrease soil erosion. If the customer makes changes to the system that might increase soil erosion, they are responsible for acquiring a new soil loss calculation and ensuring that the soil loss rate of the new cropping system does not exceed T.

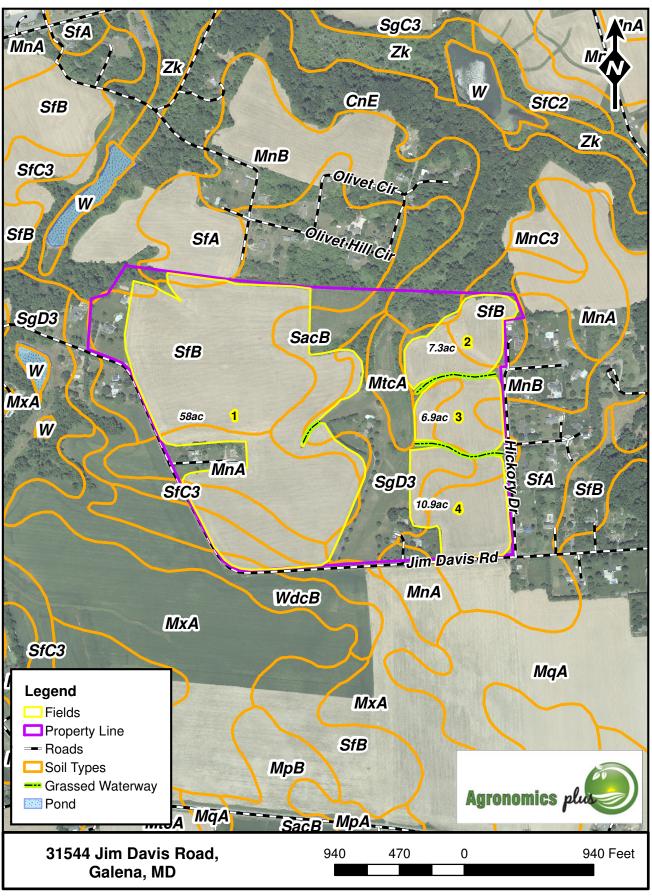
The customer is responsible for obtaining all necessary permits, rights, or notifications, and for complying with all state, federal, and local laws and regulations pertaining to the application of the planned conservation practices identified in this plan.


Name (print):	
Representative of Rich Levels Grain	DATE

DESIGNATED CONSER	VATIONIST (if Applicable)	CONSERVATION PLANNER	
		adekal ululan	
NRCS Representative	DATE	David D. Kann DATE	


Owner: Allen Davis/Olin Davis Farms LLC Acct Id.: County: Kent Operator: Rich Levels Grain Acres: 644 Date: 04/15/2025

BuA MtcA MkA MkA Sacc Sac Sac MkA MkB DoC MkC HbB HbB SacB SacB SacC SacB SacC MtcA Za HbB SacB SacC SacD HbA DocB	15
MIKB NSA Sace SacB	
MILCA MKA MKC MKA MKB HDA	
MicB MkB SaD SaD MkB NsA SacB MkC SaD SacC MkB HbB MkC SaD SacC CmB	
SacB NM MkD DocB LO SacC CmB ReA	1.2
SacB SacC NM Zk SgC27 SacA GaD LO	
CnE GaE SacB MnA 5 SacB SfC2 ReB	
CnE SacA 3 W SgC2 8 SfB MpB MtcA WdcB FgcA	a total
SgB SfB 1 SfB MnB SiB Ho FgcA SacB	
SacA MnB SacC MtcA FacA FacA	1
SacB Sac 3	the pro-
CnE Zk W SacC StB MtcB SacB 11 Oh KaB2	Children of the second se
SfA SacA SacB Zk ReB	X
SfB SfB WdcB Oh SacC	
□ Fields □ Property Line	
Grassed Waterway	
Pond Roads Waste Storage Facility WILD SICS WILD SICS MILD SI	
Home Farm 33960 Sassafras Caldwell Rd Galena, MD	


Owner: SIVAD LLC Acct Id.: County: Kent Operator: Rich Levels Grain Acres: 131.6 Date: 04/15/2025

Owner: Stephen & Sharon Redding Acct Id.: County: Kent Operator: Rich Levels Grain Acres: 60.16 Date: 04/15/2025

Owner: Walters/Wallace Acct Id.: County: Kent Operator: Rich Levels Grain Acres: 114.5 Date: 04/15/2025

Soils Information

Soils Data & Descriptions

See Soils Info Section (on the following pages)

RUSLE2 Calculations

Kent County, Maryland

Map Unit: FacA—Fallsington sandy loams, 0 to 2 percent slopes, Mid-Atlantic Coastal Plain

Component: Fallsington, undrained (48%)

The Fallsington, undrained component makes up 48 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats on coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is occasionally ponded. A seasonal zone of water saturation is at 5 inches (depth from the mineral surface is 3 inches) during January, February, March, April. Organic matter content in the surface horizon is about 68 percent. This component is in the F149AY090NJ Coastal Plain Hardwood Swamp ecological site. Nonirrigated land capability classification is 5w. This soil meets hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Fallsington, drained (25%)

The Fallsington, drained component makes up 25 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats on coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is rarely ponded. A seasonal zone of water saturation is at 14 inches during January, February, March, April. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY090NJ Coastal Plain Hardwood Swamp ecological site. Nonirrigated land capability classification is 3w. This soil meets hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Marshyhope (8%)

Generated brief soil descriptions are created for major soil components. The Marshyhope soil is a minor component.

Component: Woodstown (7%)

Generated brief soil descriptions are created for major soil components. The Woodstown soil is a minor component.

Component: Hammonton (5%)

Generated brief soil descriptions are created for major soil components. The Hammonton soil is a minor component.

Component: Othello (5%)

Generated brief soil descriptions are created for major soil components. The Othello soil is a minor component.

Map Unit: FgcA—Fallsington loams, 0 to 2 percent slopes, Mid-Altlantic Coastal Plain

Component: Fallsington, undrained (38%)

The Fallsington, undrained component makes up 38 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats on coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is occasionally ponded. A seasonal zone of water saturation is at 5 inches (depth from the mineral surface is 3 inches) during January, February, March, April. Organic matter content in the surface horizon is about 68 percent. This component is in the F149AY090NJ Coastal Plain Hardwood Swamp ecological site. Nonirrigated land capability classification is 5w. This soil meets hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Fallsington, drained (37%)

The Fallsington, drained component makes up 37 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats on coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is rarely ponded. A seasonal zone of water saturation is at 14 inches during January, February, March, April. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY090NJ Coastal Plain Hardwood Swamp ecological site. Nonirrigated land capability classification is 3w. This soil meets hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Hammonton (7%)

Generated brief soil descriptions are created for major soil components. The Hammonton soil is a minor component.

Component: Woodstown (7%)

Generated brief soil descriptions are created for major soil components. The Woodstown soil is a minor component.

Component: Othello (6%)

Generated brief soil descriptions are created for major soil components. The Othello soil is a minor component.

Component: Marshyhope (5%)

Generated brief soil descriptions are created for major soil components. The Marshyhope soil is a minor component.

Map Unit: GaD—Galestown loamy sand, 5 to 15 percent slopes

Component: Galestown (80%)

The Galestown component makes up 80 percent of the map unit. Slopes are 5 to 15 percent. This component is on fluviomarine terraces, flats, uplands. The parent material consists of sandy eolian deposits and/or sandy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat excessively drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. This component is in the F153DY170NJ Sandy, Excessively Drained Upland ecological site. Nonirrigated land capability classification is 4e. Irrigated land capability classification is 4e. This soil does not meet hydric criteria.

Component: Ingleside (5%)

Generated brief soil descriptions are created for major soil components. The Ingleside soil is a minor component.

```
Component: Cedartown (5%)
```

Generated brief soil descriptions are created for major soil components. The Cedartown soil is a minor component.

Component: Runclint (5%)

Generated brief soil descriptions are created for major soil components. The Runclint soil is a minor component.

Component: Fort Mott (5%)

Generated brief soil descriptions are created for major soil components. The Fort Mott soil is a minor component.

Map Unit: GaE—Galestown loamy sand, 15 to 40 percent slopes

Component: Galestown (95%)

The Galestown component makes up 95 percent of the map unit. Slopes are 15 to 25 percent. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat excessively drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. This component is in the F153DY170NJ Sandy, Excessively Drained Upland ecological site. Nonirrigated land capability classification is 7s. This soil does not meet hydric criteria.

Component: Unnamed soils (5%)

Generated brief soil descriptions are created for major soil components. The Unnamed soils soil is a minor component.

Map Unit: LhA—Lenni silt loam, 0 to 2 percent slopes

Component: Lenni, drained (50%)

The Lenni, drained component makes up 50 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats. The parent material consists of clayey fluviomarine sediments. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is rarely ponded. A seasonal zone of water saturation is at 14 inches during January, February, March, April. Organic matter content in the surface horizon is about 6 percent. This component is in the F149AY090NJ Coastal Plain Hardwood Swamp ecological site. Nonirrigated land capability classification is 3w. This soil meets hydric criteria.

Component: Lenni, undrained (30%)

The Lenni, undrained component makes up 30 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats. The parent material consists of clayey fluviomarine sediments. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is occasionally ponded. A seasonal zone of water saturation is at 5 inches (depth from the mineral surface is 3 inches) during January, February, March, April. Organic matter content in the surface horizon is about 94 percent. Below this thin organic horizon the organic matter content is about 6 percent. This component is in the F149AY090NJ Coastal Plain Hardwood Swamp ecological site. Nonirrigated land capability classification is 4w. This soil meets hydric criteria.

Component: Keyport (5%)

Generated brief soil descriptions are created for major soil components. The Keyport soil is a minor component.

Component: Mattapex (5%)

Generated brief soil descriptions are created for major soil components. The Mattapex soil is a minor component.

Component: Crosiadore (5%)

Generated brief soil descriptions are created for major soil components. The Crosiadore soil is a minor component.

Component: Corsica (5%)

Generated brief soil descriptions are created for major soil components. The Corsica soil is a minor component.

Map Unit: LO—Longmarsh and Indiantown soils, frequently flooded

Component: Longmarsh (43%)

The Longmarsh component makes up 43 percent of the map unit. Slopes are 0 to 1 percent. This component is on flood plains, coastal plains. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is very poorly drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is frequently flooded. It is frequently ponded. A seasonal zone of water saturation is at 5 inches (depth from the mineral surface is 3 inches) during January, February, March, April, May, June, July, August, September, October, November, December. Organic matter content in the surface horizon is about 68 percent. Below this thin organic horizon the organic matter content is about 13 percent. This component is in the R149AY060DE Wet Alluvial Floodplain ecological site. Nonirrigated land capability classification is 5w. This soil meets hydric criteria.

Component: Indiantown (37%)

The Indiantown component makes up 37 percent of the map unit. Slopes are 0 to 1 percent. This component is on flood plains, coastal plains. The parent material consists of loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is very poorly drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is frequently flooded. It is frequently ponded. A seasonal zone of water saturation is at 5 inches (depth from the mineral surface is 3 inches) during January, February, March, April, May, June, July, August, September, October, November, December. Organic matter content in the surface horizon is about 68 percent. Below this thin organic horizon the organic matter content is about 12 percent. This component is in the R149AY060DE Wet Alluvial Floodplain ecological site. Nonirrigated land capability classification is 5w. This soil meets hydric criteria.

Component: Zekiah (10%)

Generated brief soil descriptions are created for major soil components. The Zekiah soil is a minor component.

Component: Klej (5%)

Generated brief soil descriptions are created for major soil components. The Klej soil is a minor component.

Component: Manahawkin (5%)

Generated brief soil descriptions are created for major soil components. The Manahawkin soil is a minor component.

Map Unit: MnA—Matapeake silt loam, 0 to 2 percent slopes

Component: Matapeake (80%)

The Matapeake component makes up 80 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats, uplands. The parent material consists of silty eolian deposits over fluviomarine sediments. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. This component is in the F153CY030MD Well Drained Loess Upland ecological site. Nonirrigated land capability classification is 1. This soil does not meet hydric criteria.

Component: Nassawango (10%)

Generated brief soil descriptions are created for major soil components. The Nassawango soil is a minor component.

Component: Butlertown (5%)

Generated brief soil descriptions are created for major soil components. The Butlertown soil is a minor component.

Component: Mattapex (5%)

Generated brief soil descriptions are created for major soil components. The Mattapex soil is a minor component.

Map Unit: MnB—Matapeake silt loam, 2 to 5 percent slopes

Component: Matapeake (80%)

The Matapeake component makes up 80 percent of the map unit. Slopes are 2 to 5 percent. This component is on flats, uplands. The parent material consists of silty eolian deposits over fluviomarine sediments. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. This component is in the F153CY030MD Well Drained Loess Upland ecological site. Nonirrigated land capability classification is 2e. Irrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: Nassawango (10%)

Generated brief soil descriptions are created for major soil components. The Nassawango soil is a minor component.

Component: Butlertown (5%)

Generated brief soil descriptions are created for major soil components. The Butlertown soil is a minor component.

Component: Mattapex (5%)

Generated brief soil descriptions are created for major soil components. The Mattapex soil is a minor component.

Map Unit: MpB—Mattapex fine sandy loam, 2 to 5 percent slopes

Component: Mattapex (100%)

The Mattapex component makes up 100 percent of the map unit. Slopes are 2 to 5 percent. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 27 inches during January, February, March, April. Organic matter content in the surface horizon is about 2 percent. This component is in the F153CY020MD Moist Loess Upland ecological site. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: MtcA—Mattapex silt loam, 0 to 2 percent slopes, Mid-Atlantic Coastal Plain

Component: Mattapex (80%)

The Mattapex component makes up 80 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats, coastal plains. The parent material consists of silty eolian deposits over fluviomarine sediments. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during February. Organic matter content in the surface horizon is about 2 percent. This component is in the F153CY020MD Moist Loess Upland ecological site. Nonirrigated land capability classification is 2w. Irrigated land capability classification is 2w. This soil does not meet hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Nassawango (10%)

Generated brief soil descriptions are created for major soil components. The Nassawango soil is a minor component.

Component: Crosiadore (5%)

Generated brief soil descriptions are created for major soil components. The Crosiadore soil is a minor component.

Component: Othello, drained (5%)

Generated brief soil descriptions are created for major soil components. The Othello, drained soil is a minor component.

Map Unit: MtcB—Mattapex silt loam, 2 to 5 percent slopes, Mid-Atlantic Coastal Plain

Component: Mattapex (80%)

The Mattapex component makes up 80 percent of the map unit. Slopes are 2 to 5 percent. This component is on flats, uplands. The parent material consists of silty eolian deposits over fluviomarine sediments. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during February. Organic matter content in the surface horizon is about 2 percent. This component is in the F153CY020MD Moist Loess Upland ecological site. Nonirrigated land capability classification is 2e. Irrigated land capability classification is 2e. This soil does not meet hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Nassawango (10%)

Generated brief soil descriptions are created for major soil components. The Nassawango soil is a minor component.

Component: Othello, drained (5%)

Generated brief soil descriptions are created for major soil components. The Othello, drained soil is a minor component.

Component: Crosiadore (5%)

Generated brief soil descriptions are created for major soil components. The Crosiadore soil is a minor component.

Map Unit: MxB—Mattapex-Matapeake-Butlertown silt loams, 2 to 5 percent slopes

Component: Mattapex (40%)

The Mattapex component makes up 40 percent of the map unit. Slopes are 2 to 5 percent. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 27 inches during January, February, March, April. Organic matter content in the surface horizon is about 2 percent. This component is in the F153CY020MD Moist Loess Upland ecological site. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: Matapeake (35%)

The Matapeake component makes up 35 percent of the map unit. Slopes are 2 to 5 percent. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F153CY030MD Well Drained Loess Upland ecological site. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: Butlertown (20%)

The Butlertown component makes up 20 percent of the map unit. Slopes are 2 to 5 percent. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is low. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 36 inches during February, March. Organic matter content in the surface horizon is about 3 percent. This component is in the F153CY020MD Moist Loess Upland ecological site. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: OTHELLO (5%)

Generated brief soil descriptions are created for major soil components. The OTHELLO soil is a minor component.

Map Unit: NM—Nanticoke and Mannington soils, very frequently flooded

Component: Nanticoke, very frequently flooded (50%)

The Nanticoke, very frequently flooded component makes up 50 percent of the map unit. Slopes are 0 to 1 percent. This component is on fresh water tidal marshes on coastal plains. The parent material consists of silty estuarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is very poorly drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is very frequently flooded. It is not ponded. A seasonal zone of water saturation is at 0 inches during January, February, March, April, May, June, July, August, September, October, November, December. Organic matter content in the surface horizon is about 12 percent. This component is in the R149AY050NJ Tidal Freshwater Marsh ecological site. Nonirrigated land capability classification is 8. This soil meets hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Mannington, very frequently flooded (40%)

The Mannington, very frequently flooded component makes up 40 percent of the map unit. Slopes are 0 to 1 percent. This component is on fresh water tidal marshes on coastal plains. The parent material consists of silty estuarine deposits over herbaceous organic material and/or finesilty estuarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is very poorly drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is very high. Shrink-swell potential is low. This soil is very frequently flooded. It is not ponded. A seasonal zone of water saturation is at 0 inches during January, February, March, April, May, June, July, August, September, October, November, December. Organic matter content in the surface horizon is about 11 percent. This component is in the R149AY050NJ Tidal Freshwater Marsh ecological site. Nonirrigated land capability classification is 8. This soil meets hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Mispillion, very frequently flooded (5%)

Generated brief soil descriptions are created for major soil components. The Mispillion, very frequently flooded soil is a minor component.

Component: Manahawkin, frequently flooded (5%)

Generated brief soil descriptions are created for major soil components. The Manahawkin, frequently flooded soil is a minor component.

Map Unit: ReB—Reybold silt loam, 2 to 5 percent slopes

Component: Reybold (75%)

The Reybold component makes up 75 percent of the map unit. Slopes are 2 to 5 percent. This component is on interfluves. The parent material consists of high silt loamy eolian deposits over fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: Sassafras (10%)

Generated brief soil descriptions are created for major soil components. The Sassafras soil is a minor component.

Component: Queponco (5%)

Generated brief soil descriptions are created for major soil components. The Queponco soil is a minor component.

Component: Unicorn (5%)

Generated brief soil descriptions are created for major soil components. The Unicorn soil is a minor component.

Component: Matapeake (5%)

Generated brief soil descriptions are created for major soil components. The Matapeake soil is a minor component.

Map Unit: SacA—Sassafras sandy loam, 0 to 2 percent slopes, Mid-Atlantic Coastal Plain

Component: Sassafras (80%)

The Sassafras component makes up 80 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats on coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 1 This soil does not meet hydric criteria.

Component: Ingleside (10%)

Generated brief soil descriptions are created for major soil components. The Ingleside soil is a minor component.

Component: Woodstown (5%)

Generated brief soil descriptions are created for major soil components. The Woodstown soil is a minor component.

Component: Downer (5%)

Generated brief soil descriptions are created for major soil components. The Downer soil is a minor component.

Map Unit: SacB—Sassafras sandy loam, 2 to 5 percent slopes, Mid-Atlantic Coastal Plain

Component: Sassafras (80%)

The Sassafras component makes up 80 percent of the map unit. Slopes are 2 to 5 percent. This component is on flats on coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 2e. Irrigated land capability classification is 2e. This soil does not meet hydric criteria.

Component: Ingleside (10%)

Generated brief soil descriptions are created for major soil components. The Ingleside soil is a minor component.

Component: Downer (5%)

Generated brief soil descriptions are created for major soil components. The Downer soil is a minor component.

Component: Woodstown (5%)

Generated brief soil descriptions are created for major soil components. The Woodstown soil is a minor component.

Map Unit: SacC—Sassafras sandy loam, 5 to 10 percent slopes, Mid-Atlantic Coastal Plain

Component: Sassafras (80%)

The Sassafras component makes up 80 percent of the map unit. Slopes are 5 to 10 percent. This component is on flats on coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 3e. Trigated land capability classification is 3e. This soil does not meet hydric criteria.

Component: Ingleside (10%)

Generated brief soil descriptions are created for major soil components. The Ingleside soil is a minor component.

Component: Downer (5%)

Generated brief soil descriptions are created for major soil components. The Downer soil is a minor component.

Component: Woodstown (5%)

Generated brief soil descriptions are created for major soil components. The Woodstown soil is a minor component.

Map Unit: SfA—Sassafras loam, 0 to 2 percent slopes

Component: Sassafras (80%)

The Sassafras component makes up 80 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats on coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is

well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 1. Irrigated land capability classification is 1 This soil does not meet hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Ingleside (10%)

Generated brief soil descriptions are created for major soil components. The Ingleside soil is a minor component.

Component: Downer (5%)

Generated brief soil descriptions are created for major soil components. The Downer soil is a minor component.

Component: Woodstown (5%)

Generated brief soil descriptions are created for major soil components. The Woodstown soil is a minor component.

Map Unit: SfB—Sassafras loam, 2 to 5 percent slopes

Component: Sassafras (80%)

The Sassafras component makes up 80 percent of the map unit. Slopes are 2 to 5 percent. This component is on flats on coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Woodstown (10%)

Generated brief soil descriptions are created for major soil components. The Woodstown soil is a minor component.

Component: Unicorn (10%)

Generated brief soil descriptions are created for major soil components. The Unicorn soil is a minor component.

Map Unit: SfC2—Sassafras loam, 5 to 10 percent slopes, moderately eroded

Component: Sassafras (100%)

The Sassafras component makes up 100 percent of the map unit. Slopes are 5 to 10 percent. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: SgB—Sassafras gravelly loam, 0 to 5 percent slopes

Component: Sassafras (100%)

The Sassafras component makes up 100 percent of the map unit. Slopes are 0 to 5 percent. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria.

Map Unit: SgC2—Sassafras gravelly loam, 5 to 10 percent slopes, moderately eroded

Component: Sassafras (100%)

The Sassafras component makes up 100 percent of the map unit. Slopes are 5 to 10 percent. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 3e. This soil does not meet hydric criteria.

Map Unit: SgC3—Sassafras gravelly loam, 5 to 10 percent slopes, severely eroded

Component: Sassafras (100%)

The Sassafras component makes up 100 percent of the map unit. Slopes are 5 to 10 percent. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Map Unit: SgD3—Sassafras gravelly loam, 10 to 15 percent slopes, severely eroded

Component: Sassafras (80%)

The Sassafras component makes up 80 percent of the map unit. Slopes are 10 to 15 percent. This component is on hillslopes, uplands. The parent material consists of loamy fluviomarine sediments. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY170MD Well Drained Fine-Loamy Upland ecological site. Nonirrigated land capability classification is 4e. This soil does not meet hydric criteria.

Component: Hambrook (15%)

Generated brief soil descriptions are created for major soil components. The Hambrook soil is a minor component.

Component: Woodstown (5%)

Generated brief soil descriptions are created for major soil components. The Woodstown soil is a minor component.

Map Unit: WdcA—Woodstown sandy loam, 0 to 2 percent slopes, Mid-Atlantic Coastal Plain

Component: Woodstown (80%)

The Woodstown component makes up 80 percent of the map unit. Slopes are 0 to 2 percent. This component is on flats, coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during February. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY130NJ Moist Loamy Upland ecological site. Nonirrigated land capability classification is 2w. This soil does not meet hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Fallsington (6%)

Generated brief soil descriptions are created for major soil components. The Fallsington soil is a minor component.

Component: Hammonton (6%)

Generated brief soil descriptions are created for major soil components. The Hammonton soil is a minor component.

Component: Mattapex (4%)

Generated brief soil descriptions are created for major soil components. The Mattapex soil is a minor component.

Component: Hambrook (4%)

Generated brief soil descriptions are created for major soil components. The Hambrook soil is a minor component.

Map Unit: WdcB—Woodstown sandy loam, 2 to 5 percent slopes, Mid-Atlantic Coastal Plain

Component: Woodstown (80%)

The Woodstown component makes up 80 percent of the map unit. Slopes are 2 to 5 percent. This component is on flats, coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during February. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY130NJ Moist Loamy Upland ecological site. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Hammonton (6%)

Generated brief soil descriptions are created for major soil components. The Hammonton soil is a minor component.

Component: Fallsington, occasionally ponded (6%)

Generated brief soil descriptions are created for major soil components. The Fallsington, occasionally ponded soil is a minor component.

Component: Mattapex (4%)

Generated brief soil descriptions are created for major soil components. The Mattapex soil is a minor component.

Component: Hambrook (4%)

Generated brief soil descriptions are created for major soil components. The Hambrook soil is a minor component.

Map Unit: WscB—Woodstown loam, 2 to 5 percent slopes, Mid-Atlantic Coastal Plain

Component: Woodstown (80%)

The Woodstown component makes up 80 percent of the map unit. Slopes are 2 to 5 percent. This component is on flats, coastal plains. The parent material consists of loamy fluviomarine deposits. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is not flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during February. Organic matter content in the surface horizon is about 2 percent. This component is in the F149AY130NJ Moist Loamy Upland ecological site. Nonirrigated land capability classification is 2e. This soil does not meet hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Fallsington (6%)

Generated brief soil descriptions are created for major soil components. The Fallsington soil is a minor component.

Component: Hammonton (6%)

Generated brief soil descriptions are created for major soil components. The Hammonton soil is a minor component.

Component: Hambrook (4%)

Generated brief soil descriptions are created for major soil components. The Hambrook soil is a minor component.

Component: Mattapex (4%)

Generated brief soil descriptions are created for major soil components. The Mattapex soil is a minor component.

Map Unit: Zk—Zekiah silt loam, 0 to 2 percent slopes, frequently flooded

Component: Zekiah, frequently flooded (80%)

The Zekiah, frequently flooded component makes up 80 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on coastal plains. The parent material consists of loamy alluvium over fluvial coarse-loamy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is frequently flooded. It is not ponded. A seasonal zone of water saturation is at 3 inches during January, February, March, April, May, June, July, August, September, October, November, December. Organic matter content in the surface horizon is about 4 percent. This component is in the R149AY060DE Wet Alluvial Floodplain ecological site. Nonirrigated land capability classification is 5w. This soil meets hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Component: Longmarsh, frequently flooded (10%)

Generated brief soil descriptions are created for major soil components. The Longmarsh, frequently flooded soil is a minor component.

Component: Hurlock, undrained (5%)

Generated brief soil descriptions are created for major soil components. The Hurlock, undrained soil is a minor component.

Component: Hammonton (5%)

Generated brief soil descriptions are created for major soil components. The Hammonton soil is a minor component.

RUSLE2 Erosion Calculation Record

<u>File:</u> plans\Rich Levels Grain set1 <u>Access Group:</u> R2_NRCS_Fld_Office

Inputs:

Owner name	Location	Info
Rich Levels Grain	USA\Maryland\Kent County	

ŀ	R Factor	Annual precip	10-yr 24-hr rainfall	In Req area?
	180	43	5.2	No

Field name	Soil	Slope T Value	Slope length, ft	Slope steepness, %
Redding 1	soils\SSURGO\Kent County, Maryland\MnB Matapeake silt loam, 2 to 5 percent slopes\Matapeake Silt loam 80%	3.0	150	4.0
Davis Home Farm 1	soils\SSURGO\Kent County, Maryland\SfB Sassafras loam, 2 to 5 percent slopes\Sassafras Loam 80%	3.0	150	3.0
Davis Home Farm 3	soils\SSURGO\Kent County, Maryland\SfB Sassafras loam, 2 to 5 percent slopes\Sassafras Loam 80%	3.0	150	3.0
Davis Home Farm 5	soils\SSURGO\Kent County, Maryland\SgC2 Sassafras gravelly loam, 5 to 10 percent slopes, moderately eroded\Sassafras Gravelly loam 100%	5.0	150	5.0
Davis Home Farm 8	soils\SSURGO\Kent County, Maryland\SacB Sassafras sandy loam, 2 to 5 percent slopes, Mid-Atlantic Coastal Plain\Sassafras Sandy loam 80%	3.0	150	3.0
Davis Home Farm 9	soils\SSURGO\Kent County, Maryland\SfB Sassafras loam, 2 to 5 percent slopes\Sassafras Loam 80%	3.0	150	2.0
Davis Home Farm 10	soils\SSURGO\Kent County, Maryland\MtcB Mattapex silt loam, 2 to 5 percent slopes, Mid-Atlantic Coastal Plain\Mattapex Silt loam 80%	4.0	140	2.0
Davis Home Farm 11	soils\SSURGO\Kent County, Maryland\SacB Sassafras sandy loam, 2 to 5 percent slopes, Mid-Atlantic Coastal Plain\Sassafras Sandy loam 80%	3.0	160	2.0

Results:

Field name	Description	Contouring system	Support practices	Terrace/diversion system	Cons. plan. soil loss, t/ac/yr	Sed. delivery, t/ac/yr	Soil conditioning index (SCI)	STIR value	Fuel cost	
---------------	-------------	----------------------	----------------------	-----------------------------	---	------------------------------	-------------------------------------	---------------	--------------	--

Redding 1	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	1.0	1.0	0.98	17	33.81
Davis Home Farm 1	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	0.58	0.58	1.0	17	33.81
Davis Home Farm 3	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	0.58	0.58	1.0	17	33.81
Davis Home Farm 5	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	1.1	1.1	0.97	17	33.81
Davis Home Farm 8	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	0.36	0.36	1.0	17	33.21
Davis Home Farm 9	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	0.42	0.42	1.0	17	33.81
Davis Home Farm 10	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	0.60	0.60	1.0	17	33.81
Davis Home Farm 11	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	0.26	0.26	1.0	17	33.21

The **SCI** is the **Soil Conditioning Index** rating. If the calculated index is a negative value, soil organic matter levels are predicted to decline under that production system. If the index is a positive value, soil organic matter levels are predicted to increase under that system.

The **STIR** value is the **Soil Tillage Intensity Rating**. It utilizes the speed, depth, surface disturbance percent and tillage type parameters to calculate a tillage intensity rating for the system used in growing a crop or a rotation. STIR ratings tend to show the differences in the degree of soil disturbance

between systems. The kind, severity and number of ground disturbing passes are evaluated for the entire cropping rotation as shown in the management description.

RUSLE2 Erosion Calculation Record

<u>File:</u> plans\Rich Levels Grain set2 <u>Access Group:</u> R2_NRCS_Fld_Office

Inputs:

Owner name	Location	Info
Rich Levels Grain	USA\Maryland\Kent County	

ŀ	R Factor	Annual precip	10-yr 24-hr rainfall	In Req area?
	180	43	5.2	No

Field name	Soil	Slope T Value	Slope length, ft	Slope steepness, %
Davis Farm 1	soils\SSURGO\Kent County, Maryland\SfB Sassafras loam, 2 to 5 percent slopes\Sassafras Loam 80%	3.0	200	3.0
Davis Farm 2	soils\SSURGO\Kent County, Maryland\SfA Sassafras loam, 0 to 2 percent slopes\Sassafras Loam 80%	3.0	200	3.0
Davis Farm 3	soils\SSURGO\Kent County, Maryland\MnB Matapeake silt loam, 2 to 5 percent slopes\Matapeake Silt loam 80%	3.0	250	4.0
Walters1	soils\SSURGO\Kent County, Maryland\SfB Sassafras loam, 2 to 5 percent slopes\Sassafras Loam 80%	3.0	200	3.0
Walters2 & 3	soils\SSURGO\Kent County, Maryland\MnB Matapeake silt loam, 2 to 5 percent slopes\Matapeake Silt loam 80%	3.0	180	3.0
Walters4	soils\SSURGO\Kent County, Maryland\SfA Sassafras loam, 0 to 2 percent slopes\Sassafras Loam 80%	3.0	200	2.0

Results:

Field name	Description	Contouring system	Support practices	Terrace/diversion system	Cons. plan. soil loss, t/ac/yr	Sed. delivery, t/ac/yr	Soil conditioning index (SCI)	STIR value	Fuel cost
Davis Farm 1	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems∖a. rows up- and-down hill	none	none	0.59	0.59	1.0	17	33.81

Davis Farm 2	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	0.59	0.59	1.0	17	33.81
Davis Farm 3	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	1.1	1.1	0.98	17	33.81
Walters1	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	0.59	0.59	1.0	17	33.81
Walters2 & 3	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems\a. rows up- and-down hill	none	none	0.83	0.83	1.00	17	33.81
Walters4	Rich Levels Grain_corngrain,mt; wheat,nt, dcsoybeans,nr,nt z59	contour- systems∖a. rows up- and-down hill	none	none	0.43	0.43	1.0	17	33.81

The **SCI** is the **Soil Conditioning Index** rating. If the calculated index is a negative value, soil organic matter levels are predicted to decline under that production system. If the index is a positive value, soil organic matter levels are predicted to increase under that system.

The **STIR** value is the **Soil Tillage Intensity Rating**. It utilizes the speed, depth, surface disturbance percent and tillage type parameters to calculate a tillage intensity rating for the system used in growing a crop or a rotation. STIR ratings tend to show the differences in the degree of soil disturbance between systems. The kind, severity and number of ground disturbing passes are evaluated for the entire cropping rotation as shown in the management description.

Implementation Schedule for the Farm Operation

This element addresses the need for and implementation of appropriate conservation practices to meet the quality criteria for soil erosion, air and water quality.

IMPORTANT! The table below is your Conservation Practice and Facility Implementation Schedule. <u>The practices listed in this schedule must be</u> implemented no later than the indicated dates.

Practice and Facility Implementation Schedule

Complete the table below with those practices that are required to address identified resource concerns. If there are no identified resource concerns which need to be addressed, check the box indicating that there are no practices are recommended.

ltem Number	Best Management Practice	Reason for Need	BMP Location	Approximate Amount	Implementation Month/Year
None					

The list of BMPs contained in this *Schedule of Implementation* will address ALL of the resource concerns at the Production Area and Crop/Pasture land which receive manure.

X All resource concerns have been addressed. ALL BMPs associated with the production area and associated facilities, to address these concerns, have been completed and no additional best management practices are recommended or required at this time. (this item will be checked only after the entire Schedule of Implementation has been implemented and no other resource concerns have been identified).

Schedule of Implementation Agreement

The schedule of conservation practices presented here has been reviewed by the person responsible for compliance with the requirements of the agricultural farm operation.

As the owner/operator, I certify that as the decision-maker, I have been involved in the planning process and agree that the items/practices listed in the table above are needed on my farm operation. I understand that I am responsible for implementing these practices according to the schedule above. Should I not be able to implement any of the above items according to the schedule, I will contact NRCS or my Technical Service Provider and have the schedule revised.

Signature: Callen Lacin Name (print): & Allen Davis

Date: 5/7/25

Operation and Maintenance

Access Road - 560

- Inspect culverts, roadside ditches, water bars and outlets after each major runoff event and restore flow capacity as needed;
- ~ Maintain grass areas in adequate cover. Reseed and mow as needed;
- ~ Fill low areas in travel treads and regrade, as needed, to maintain road cross section;
- ~ Inspect roads with water bars periodically to insure proper cross section is available and outlets are stable.

Amendments for Treatment of Ag Waste

Observe all the necessary safety precautions when handling the specific chemicals or biological amendments to be used.

Animal Mortality Facility

- Where the operator/owner/manager has a lack of understanding of the composting process; it is a requirement for the operator to obtain mortality compost training.
- ~ The facility itself needs to be solely used for composting mortality.
- ~ Dead birds pulled from the grow-out facilities, need to be placed directly into composter.
- ~ The mix proportions, moisture requirements, and carbon sources need to be used to properly compost.
- ~ All maintenance and management of the compost facility and compost management must be done to prevent scavenging animals and leachate problems.
- ~ Manage the compost piles for temperature, odors, moisture, and oxygen, as appropriate. Make adjustments throughout the composting period to insure proper composting processes.
- Closely monitor temperatures above 165oF. Take action immediately to cool piles that have reached temperatures above 185oF.

Critical Area Planting (CAP) and Filter Strips

- ~ Vegetation must be maintained in vigorous condition.
- In order to keep the optimum sediment retention and other water quality benefits, mow 3-4 times annually to a height 3 to 5 inches.
- Control undesirable plants by pulling, mowing, or spraying with selective herbicide. Control noxious weeds as required by state law.
- Maintain sheet flow entering the filter strip. Repair all rills and small channels within this vegetative area.
- Sediment that accumulates along the upper part and within the filter strip area shall be removed before it accumulates to a height that diverts runoff water away from the vegetative filter area. The area disturbed by this removal shall be re-graded and reseeded.

Heavy Use Area (HUA or Poultry Pads)

- ~ Maintain a stable, non-eroding surface for areas frequently used by vehicles or animals.
- Maintain and repair adjacent companion conservation practices that handle sediment, nutrients, particulate matter, and organic matter.
- After each and every manure handling or bird removal event that leaves behind, manure, litter, and or debris on the HUA surface; it must be cleaned-up. In all cases, material left behind on the HUA must be swept-up or vacuumed.
- ~ Repair any deteriorating areas.
- ~ Maintain flow into filter areas by removing accumulated solids, reconstructing waterbars, etc.

Underground Outlet

- ~ Keep inlets, trash guards, and collection boxes and structures clean and free of materials that can reduce the flow;
- ~ Repairing leaks and broken or crushed lines to insure proper functioning of the conduit;
- ~ Checking outlet conduit and animal guards to ensure proper functioning of the conduit;
- ~ Keeping adequate backfill over the conduit;
- ~ Repairing any eroded areas at the pipe outlet.

Waste Storage Facility - 313

- Check walls and floors often minimum of 2 times a year when facility is empty for cracks and/or separations. Where concrete is used make inspections and repair as needed.
- ~ All building materials shall be kept in good working condition free from defect.
- Check backfill areas around structure (concrete, steel, timber, etc) often for excessive settlement. Determine if the settlement is caused by backfill consolidation, piping, or failure of the structure walls or floor. Necessary repairs must be made.
- Outlets of foundations and sub-drains should be checked frequently and kept open. The outflow from these drains should be checked when the facility is being used to determine if there is leakage from the storage structure into these drains.
- ~ Trusses/roof supports shall be examined during snowfall events.
- ~ Roof materials shall be replaced as wear/leakage occurs. Metal roofing may require periodic painting.

Nutrient Management

This element addresses the Nutrient Management component of the CNMP. The nutrient management plan is developed by a Maryland Department of Agriculture certified nutrient management consultant.

Soil Sampling and Testing

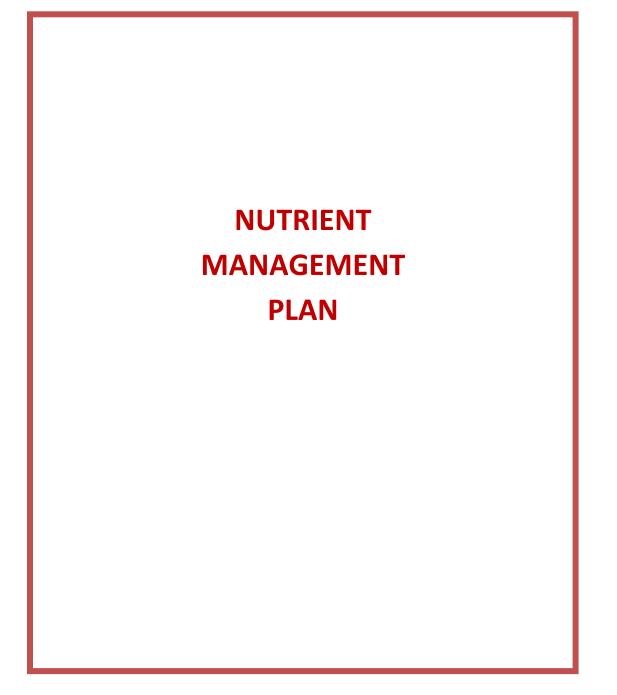
Maryland Department of Agriculture regulations require up-to-date soil analyses be included in the Nutrient Management Plan. To fulfill this requirement you must follow these guidelines:

- 1. Soil test(s) are required to be taken every 3 years or sooner for each management unit
- 2. It is recommended that soil sampling be conducted consistently at the same time of the year
- 3. Soil sampling depth for P and K shall be 8 inches; pH testing sampling depth for no-till is only 4 inches

Soil testing shall include analysis for any nutrients for which specific information is needed to develop the plan. The minimum analysis for Maryland is to include: <u>pH, organic matter, phosphorus, potassium, calcium, magnesium, and CEC.</u>

Manure and Wastewater Testing/Analysis

Maryland Department of the Environment and the Environmental Protection Agency require an analysis of manure generated on your operation be obtained to meet conditions in a General Discharge Permit for Animal Feeding Operations under CAFO regulations. If you land-apply manure, it is a required component of your NMP according to MDA regulations. To fulfill this requirement you may do one of the following:


- 1. collect a sample of manure and obtain an analysis, OR
- 2. if exported, obtain a copy of the manure analysis from one of the farmers who will be receiving the manure from your operation.

Manure should be analyzed on an annual basis from each storage structure for: % Solids or % Moisture, Total N, Organic N, NH₄ or NH₃, P₂O₅, K₂O, and pH. These analyses are part of the recordkeeping requirement.

The Nutrient Management Plan, looks at all generated nutrients on the farm. A Summary of Recommendations reflects the nutrient applications to cropland and pasture.

Type of Manure	Utilized in the NM Plan	Amount of Manure Produced and Captured (annually)	Excess/Deficit (-)
Broiler	852 tons	852 tons	0

Manure Allocation Balance

Nutrient Management Nutrients (Manure, Wastewater, and Commercial Fertilizers)

This element addresses the Nutrient Management component of the CNMP. The nutrient management plan is developed by a certified nutrient management consultant, certified by the Maryland Department of Agriculture (MDA). The nutrient management plan is a planning tool to increase the efficiency of all nutrients including manure, wastewater and commercial fertilizer used for crop production, while reducing environmental risk and ultimately increasing profit.

Purpose and Intent of Nutrient Management

The goal of the Nutrient Management Plan (NMP) is to develop a nutrient budget for nitrogen, phosphorus, and potassium that includes all nutrient sources. From this nutrient budget, projections will be made concerning the sustainability of the plan for the entire crop sequence. In most cases, the nutrient budget is accurate for the first year only. If nutrients from sources not included in this plan and are used in the first year, the nutrient budget will be revised to account for those inputs. In subsequent years considered in this plan, a nutrient budget will be developed using current soil analysis data; current manure analysis data; the actual crops to be used and their projected yields and nutrient needs and will account for nutrients from all sources. Guidance in developing a nutrient budget may be obtained from your NRCS Field Office or your University of Maryland Cooperative Extension Service Agent. Land application procedures must be planned and implemented in a way that minimizes potential adverse impacts to the environment and public health.

Nitrogen and Phosphorus Transport and Water Quality Impairment

The potential for plant nutrients to migrate to surface and groundwater is largely depending upon soil and site conditions. Any combination of soil/site conditions that leads to rapid runoff of rapid movement of rainfall through the soil will lead to water quality risks from almost any land use practice. Excessive Nitrogen and Phosphorus concentrations in surface waters generally affect water quality by supplying nutrients to phytoplankton, which are small aquatic plants that grow suspended in water and include various types of algae. The same forms of these nutrients, which are available to crops, are also available to phytoplankton. Taste and odor problems often occur in drinking water because of excessive algae blooms in surface water.

Most annual cropping systems show a direct and marked yield response to fertilizer N applied to nonlegume crops. While leaching losses are the major environmental threat from N, runoff losses are also possible. The potential for each system to contribute N to surface waters will be directly dependant upon its erosion potential coupled with fertilizer application practices. Nitrogen is lost to surface waters primarily from recently applied inorganic fertilizers. The major water quality concerns associated with land application of organic wastes is the direct runoff of the organic material into surface waters and then migration to groundwater.

Phosphorus is the second major element utilized by actively growing plants but differs from Nitrogen. P is very immobile in soil and seldom migrates downward because it is strongly absorbed by the soil particle. The risk of groundwater contamination by P from crop production systems is limited, however the solid forms pf P that accumulates in surface soil are subject to loss via erosion. Runoff losses to surface waters are the major water quality risk from P. Where erosion risk increases, such as for annual crops with conventional tillage, the total P loss increases greatly as the P is moved in solid form with the eroding soil.

Nutrient Management Plan

The Nutrient Management Plan describes a nutrient budget for nitrogen, phosphorous and potassium that considers all potential sources of nutrients including (but not limited to) animal manure, organic by-products, wastewater, commercial fertilizer, crop residues, legume credit and irrigation water. The NMP is developed by an MDA certified nutrient management consultant who has the education and experience to formulate field-specific nutrient recommendations based on field histories, soil and manure test data, realistic yield expectations, crop nutrient requirements, preferred nutrient sources and timing and method of nutrient application.

Plan Maintenance, Updates or Revisions

According to MDA, NMP's must be updated before they expire or at least once every 3 years. The NMP should be updated each year to account for any factors such as: changes in crop rotation, legume and/or manure Nitrogen credits and changes in the amount of manure generated. Changes in your agricultural operation may require you to modify or update your plan sooner. Your Nutrient Management Plan should be updated if any of the following situations occur:

- 1. A change to the planned crop or cropping rotation or introduction of new crop not currently addressed in this nutrient management plan, unless the new crop will have fertility management similar to that originally planned.
- 2. A change of nutrient source or soil test results that indicate a change in nutrient recommendations.
- 3. A change in acreage managed of 10 percent or greater, or 30 acres, whichever is less.
- 4. A change in animal units of 10 percent or greater if resultant manure production will require significant management adjustments.

Nutrient Management Plan Annual Implementation Report

The Maryland Department of Agriculture requires that all farm operators submit an Annual Nutrient Application Annual report on all farm(s) under the Nutrient Management Plan. For information regarding the Annual Report submittal requirements and time-frame contact your Regional Nutrient Management office or Maryland's Nutrient Management Program at 410-841-5959.

Minimum Setback Distances from Sensitive Areas

	Setbacks based on Methods	of Applications	
Type of Sensitive - Setback Area	Surface Application	Surface Incorporation w/in 24 Hours	Notes
Residence/Business/Property	100 ft (or alternative w/	100 ft (or alternative w/	
Lines	the consent of adjacent	the consent of adjacent	
	property owner)	property owner)	
Sinkholes	100 ft	100 ft	
Perennial/Intermittent	100 ft, or	100 ft, or	
Streams & Ditches; Pond or Lake	use a minimum 35 ft	use a minimum 35 ft	
Lanc	vegetated buffer strip	vegetated buffer strip	
	adjacent to stream	adjacent to stream	
Grassed Waterway	35 ft	35 ft	
Private Well and Springs	100 ft	100 ft	
Public Well	200 ft	200 ft	
Public Surface Drinking	200 ft	200 ft	
Water Intake			
Field application of animal was	ste shall not take place on from	zen ground or snow covered g	round
without written permission fro	om the Department; which ma	ay be granted if an imminent s	torage
failure or other dire emergenc	y exists.		
An Animal Feeding Operation	(AFO) will maintain a setback	of 100' or a 35' vegetated filte	er strip
hetween stored manure (whic	h includes crust-outs and nou	Itry litter) and waters of the st	tate

including field ditches.

Maryland Nutrient Management Plan

Prepared for:

Rich Levels Grain

33960 Sassafras-Caldwell Road Galena, Maryland 21635

> Date February 12, 2025

> > Prepared by:

Don Moore, CCA MD Certification Number MD-1048 MD License Number MD-2175

Plan Type: Updated NMP - Grain

Plan Period: 2025 Growing Season

Agricultural Consulting

MARYLAND NUTRIENT MANAGEMENT PLAN

TABLE OF CONTENTS

(Use "N/A" where component is not applicable to the operation.)

Plan Identification	Page No.
1. Nutrient Management Plan Reporting Form (MDA generated form)	N/A
2. Operator's name, address, and telephone number	4
3. Consultant's name, certification number, and license number	4
4. Date Nutrient Management Plan was prepared or updated	4
5. Period of time plan covers	4
6. County(s), Account ID numbers(s), and watershed code(s) for all land under plan	4
Plan Maintenance	
1. Operator record keeping and reporting requirements	5-6
2. Plan maintenance and updating requirements	5-6
3. Information and management strategies for achieving a soil fertility optimal range	5-6
Plan Elements 1. The average number of animals of each animal type (if applicable)	7
2. Manure summary (if applicable):a) total manure/waste generated on the operation annually	
b) total manure used on the operation annually	7
c) alternative/excess manure use	7
d) name and location of alternative use for unused animal manure	7
e) nutrient analysis of manure	7
3. Manure Management (if applicable):	
a) current manure handling procedure	7
b) evaluate existing manure handling conditions and procedures	7
c) recommended BMPs to address problem areas	7
4. Nutrient content of biosolids used on farm (if applicable)	
a) date of lab analysis on representative sample	<u> </u>
b) biosolid type	

Field or Management Unit Specific Information

1.	Source and type of information used to determine crop yield	
2.	. Method of tillage (moldboard, chisel, no-till, etc.)	
3.	Recommendations for calibrating application equipment	5, 7
4.	Soil analysis for fields or management units	8
5.	Phosphorus risk assessment:	
	a) type of assessment and results	7
6.	 b) recommendation for BMPs to lower risk Residual nitrogen (legumes, past applications of past manure/biosolids/etc.) and PSNT information 	
7.	ID, field or management unit identifier and acreage/growing area	
8.	Crop rotation(s), expected crop yield, and primary nutrient requirements	
Add	ditional Plan Content for Container or Out-of-Ground Production	N/A
1.	List of plants to be grown, est. greatest number of plants, and total growing area	
2.	Summary of production and respective container sizes	
3.	Month or time frame of peak production	
4.	Description of substrate, irrigation, and nutrient application method	
5.	Environmental Risk Assessment	
6.	Program and recommendations for monitoring runoff	
7.	Methods for sampling and testing runoff	
8.	Required best management practices and/or specific recommendations	
	2 Map(s) of the Agricultural Operation	
1.	Location & boundaries of ag operation with field or management unit boundaries	
2.	Parcel identifier, field identifier, and acreage of fields or management units	
	2 Summary of Nutrient Recommendations	
1.	Miscellaneous notes in regards to nutrient application	
	Nutrient Recommendations (A snapshot which includes parcel ID, field or management unit identifier, crop/plant yield/production goal, acreage/growing area, recommended nutrient rates necessary to meet expected crop yields (amount and type of all nutrient sources per acre or management unit), method and time frame for nutrient application and incorporation, and liming recommendations)	

+ = Items which MUST be submitted to the MDA Nutrient Management Regional Office if receiving MACS cost share.

Certification and Review

Planner Declaration

I certify that this plan has been written according to the Maryland Nutrient Management Certification Regulations and that I am a certified planner in the State of Maryland.

Name of planner:	Don Moore, CCA
	AET Consulting, Inc.
Certification Number:	MD-1048
License Number:	MD-2175
Planner Signature:	Jul Th
Date:	5-8-25

Operation Record Keeping Requirements and Acknowledgement of Responsibility

- 1. All nutrient management plans and updates for the last 3 years.
- 2. A record of crops and actual yields for the last 5 years.
- 3. Analysis of nutrients (all forms) applied to plants and/or crop acreage.
- 4. Soil analysis results for the entire agricultural operation.
- 5. Record of timing, location, and amounts of all nutrient applications.
- 6. Receipts related to the purchase of nutrients.
- 7. Documentation to justify any changes from the Nutrient Management Plan as written.
- 8. If operator is an applicator of nutrients to 10 acres or more; operator must hold a current Maryland Nutrient Applicator's Voucher.
- 9. Operator is required to have a copy of a current state chemist label of any imported or exported organic fertilizer material that contains primary nutrients such as food processing waste, spent mushroom substrate, composted waste products, or other waste streams containing nutrients.

The operator has the primary responsibility for plan implementation, installation of the agreed upon Best Management Practices outlined in the plan and required by the Water Quality Improvement Act (WQIA). The operator also has the responsibility of maintaining all practices associated with the nutrient management plan and all record keeping associated with the WQIA Regulations.

Farm Owner/Operator:

5/12/2025

Date:

Plan Identification

Operator information:

Rich Levels Grain 33960 Sassafras-Caldwell Rd Galena, MD 21635

Consultant information:

Don Moore, CCA 2677 Telegraph Rd. North East, MD 21901 410-620-0275 Certification # MD-1048 License # MD-2175

Nutrient Management Plan Narrative:

This plan was written for the 2025 growing season. Manure is imported based on cost and availability. Layer manure is imported from ISE America in Warwick, Maryland and Puglisi Egg Farm in Middletown, Delaware. Broiler manure is imported from Rich Levels Poultry in Galena, MD, C and S farm, EB Workman, and from Weaver Farm. Commercial fertilizer supplements the manure in order to meet the nutrient needs of the crops. The crops grown are used for grain. The land is in a corn/small grain/soybean rotation. There is irrigation used on the Home Farm and Mill Creek Farm.

Date Nutrient Management Plan Developed:

February 12, 2025 This NMP is required to be updated prior to Fall 2025 nutrient applications.

Crops:	2025	Acres
С	Corn	2224.50
B/SB	Barley/Soybean	487.70
W/SB	Wheat/Soybean	1610.30
Total		4,322.50 Acres

	Acct ID		Plan		
Property ID	Acres	Farm	Acres	County	Watershed
1501018337	61.15	Antone	30.0	Kent	0059
		Asplundh	200.9		
1501019872	276.5	Austin	78.5	Kent	0059
1501019198	119.98	Addie Walters	85.2	Kent	0059
0801005561	97.5	Bregger, Cecil	94.5	Cecil	0096
1501025104	198.2	Bregger, Kent	116.5	Kent	0059
1802014122	533.2	Britland	338.2	Queen Anne's	0045
0801005677	164.14	Byerly	113.0	Cecil	0096
0801021729	275	Church	254.7	Cecil	1098
0801006932	178	Crowford	050.7	0	
0801006983	175.5	Crawford	253.7	Cecil	0096
0801062352	27.1	Davis	94.1	Cecil	0096

0801009079	552.5	Essex Lodge	398.3	Cecil	1098
1501005545	256.47	Fusco	94.0	Kent	0059
1501005987	181.32	Redgrave	137.4	Kent	0058
1501025244	25.02	Foxhole	00.0	14 and	0050
1501003747	161.18	FOXIOle	96.0	Kent	0059
0801007475	124.9	Jeffries	87.0	Cecil	0096
1501011286	142	Maloney	135.2	Kent	0058
0801019775	175.39				
0801019759	322.74	Middlesser	500.0	0 "	
0801019740	11.0	Middlesex	539.9	Cecil	0096
0801019767	192.42				
0501006371	228.6	Mill Creek	193.1	Kent	0059
1501002732	75.6	Neff	62.0	Kent	0058
0801062352	27.1	Phillips	27.0	Cecil	0096
1501024213	60.16	Redding	53.0	Kent	0059
1501004379	294.93				
1501004387	217.75	Home	517.4	Kent	0059
1501004395	100.1				
0801007386	331.2	Sigman	223.9	Cecil	0097
0801025783	159.94	Ware	99.0	Cecil	0096

Plan Maintenance

This nutrient management plan was written for the 2025-growing season and will need updated for the 2026-growing season. In addition, if any of the following events occur, the plan will need to be updated before the 2025-growing season.

- 1. A change in the planned crop or a change in acreage of 10 percent or greater, or 30 acres, whichever is less
- Modification of the sidedress application of nitrogen based on PSNT results.
- 3. Adjustments to the nutrients applied or manure application additions.
- 4. A change in animal units of 10 percent or greater or changes in housing of animals.
- 5. New manure or soil analysis (minimum of once every 2 years).
- 6. New soil analysis taken.

Soil samples should be collected at least every other year to maximize utilization of soil nutrients

Crop rotation is important to prevent soil borne diseases and to use soil nutrients efficiently.

Split applications of nitrogen on environmentally sensitive sites reduce potential for runoff and leaching. Utilization of a Pre-Sidedress Nitrogen Test (PSNT) or tissue test can help determine additional N requirements during the growing season. Fall Soil Nitrate Test (FSNT) is now required prior to fall application (September 10 through December 15) of nitrogen on wheat or barley to be harvested for grain to determine crop need.

Each year all application equipment including the planter should be calibrated to ensure the correct rate of nutrients are applied. Application of nutrients should be timed as close as possible to crop growth or uptake and placed near the root zone for efficient crop use. Application to ground that is frozen 2 inches or greater and/or snow covered 1 inch or greater is prohibited. Application to saturated ground must be avoided. Winter applications are defined as occuring from December 16- March 1 and setbacks of 100 feet from surface waters must be maintained. Emergency winter applications may be made if the operation has inadequate storage, a non-stackable manure(greater than 75% moisture), and no other reasonable option to manage it. All applications shall be made in accordance with MDA's restrictions. The operator must obtain permission from MDA's regional office before winter application occurs. All applications of organic/manure materials should be incorporated within 48 hours unless applied to a hav crop or HEL designated ground or the ground is under long-term no-till practices.

Storage of manure and other organic waste products should be in an appropriate roofed structure or covered with an impermeable cover. If no structure is available, manure and other organic waste products must be in a 6-foot conical pile, and staged temporarily in a way that will prevent nutrient runoff. Any material that is temporarily stockpiled must be land applied the following spring, by June 30th.

When choosing a site to temporarily store manure and other organic waste products, wetlands and low lying areas should be avoided, as should any site that would allow runoff from storage to enter into any ditch, stream, or other surface water body. Locations for temporary field stockpiling should not be moved place to place. Locations should stay the same.

When choosing an area to temporarily field stockpile, these requirements must be met:

- At least 100 feet from wells, springs, and wetlands (unless well is down gradient from stockpile, then at least 300 feet from the well)
- · 100 feet from surface waters OR 35 feet when there is 35 feet of vegetative buffer
- At least 200 feet from any residence (outside of operators property)
- · Away from any areas that are subject to flooding or ponding
- No farther than 150 feet from the top of the slope when area is on more than a 3% grade slope, with no diversion

When the temporary field stockpiled material is applied, the ground shall be thoroughly scraped or cleaned to remove any residual material. Furthermore, the temporary stockpile area must be returned to its original condition. In order to facilitate nutrient uptake, the area may require reseeding with a grass or a crop.

Manure and other organic waste products should not be spread within the following buffer areas:

- 100 feet from wells or springs
- · 100 feet from surface waters (unless injected or incorporated) OR 35 feet when there is 35 feet of vegetative buffer
- · 35 feet on all sacrifice lots with less than 75% grass or grass legume mix from all streams, water bodies, and areas of water flow
- 50 feet from sinkholes
- 50 feet from limestone rock outcroppings
- 25 feet from other rock outcroppings
- · 10 feet from agricultural drainage ditches (5 feet if injected or incorporated within 24 hours)
- 100 feet from occupied dwellings (unless waived in writing by the occupant)
- 10 feet on all pasture and hay fields for both mechanical and self-applied nutrients from all streams, water bodies, and areas of water flow

NUTRIENT APPLICATION SETBACKS FROM SURFACE WATER:

Setbacks for Nutrient Application are required in the development of nutrient management plans. Application and livestock setback regulations are contained under the Nutrient Application Requirements, Maryland Department of Agriculture 2012, COMAR 15.20.07.02, Maryland Nutrient Management Manual, 1-D1.

A minimum of a 10' vegetative setback must be in place next to surface water. The chart below indicates if surface water is present that requires a setback on any farm/operation and identifies the fields that are required to have a nutrient application setback. An application of crop nutrients using a broadcast method either with or without incorporation requires a 35'setback. A directed spray application or the injection of crop nutrients only requires a 10'setback. Excepting perennial forage crops grown for hay and pasture, vegetation in the 10' setback are a may not include plants that would be considered part of the crop grown in the field (i.e. row crops). Pastures and hayfields are subject to a 10' and/or a 35' nutrient application setback depending on application methods. Nutrients may not be applied within the 10' setback.

Livestock on pasture are required to meet the minimum 10' setback by means of fencing unless a Best Management Practice (BMP) is approved by MDA or a Soil Conservation and Water Quality Plan is developed and implemented that prescribes an alternative to fencing animals 10' from surface water. Alternative BMP's may include stream crossings, watering facilities, pasture management, or other practices that are equally protective of water quality. Sacrifice lots for livestock require a 35' setback from surface water.

If nutrients are custom-applied, it is the operator's responsibility to inform the applicator of the setback distance based on the method of application.

			Nutrient Ap Indicate with	plication Setback Re "Yes" in appropriat	equirements te column(s))
Farm Name(s)	Is Surface Water Present on the farm that requires a setback (Yes or No)	Field(s) requiring a Nutrient Application Setback*	Livestock on Pasture ≥ 10 ft.	Directed Application ** ≥ 10 ft.	Broadcast Application or Sacrifice Lots *** ≥ 35 ft.
Antone	No				
Asplundh	No				
Austin	No				
Addie Walters	No				
Bregger, Cecil	No				
Bregger, Kent	No				
Britland	No				
Byerly	No				
Church	Yes	1, 2, 3			Yes
Crawford	No				
Davis	No				
Essex Lodge	No				
Fusco	No				
Redgrave	No				
Foxhole	No				
Jeffries	No				
Maloney	No				
Middlesex	Yes	2			Yes
Mill Creek	No				
Neff	No				
Phillips	No				
Redding	No				
Home	Yes	6			Yes
Sigman	No				
Ware	No				

* If a field contains multiple sources of surface water (i.e. a pond and a stream), list each separately or identify on the map.

** Directed Application = Directed Spray Application (Vertical Fan or Drop Nozzle), Air Flow Application, Knifed/Injected application of Nutrients, Planter Applied nutrients

*** Broadcast Application or Sacrifice Lots = Spinner Spreaders (Manure or Fertilizer), High Volume Horizontal Nozzles, Manure Spreaders (Box type with beaters, Splasher plates for liquid, Side Discharge V-Type)

Manure Management

Animal Type	Number of Animals	Total Generated/ Imported	Total Collected	Total Used		Total Exported
				Rate/Ac Field		
Broiler(C)	NA	1,005T	NA	зт	Redgrave-all, MX5A, MX5B,MX5C,MX5D, MX5E,MX5F,MX5G, MX5H	NA
Broiler(RL)	NA	460T	NA	ЗТ	RI8A,RL8B,RL8C,RL8 D,RL9A,RL9B	NA
Broiler(w)	NA	1,160T	NA	ЗТ	Mill Creek-all, RL1, RL2,CH5,CH6,CH7,C H8	NA
Broiler(wo)	NA	90T	NA	3T	Antone- all	NA
Layer(P)	NA	920T	NA	ЗТ	Austin-all, CH3,CH4,EL11, EL12,EL13,EL14, Jeffries-all	NA
Layer(ISE)	NA	2,005T	NA	ЗТ	Addie Walters-all, CH1,CH2,CRAW3, CRAW6, Davis-all, MX1A,MX1B,MX1C, MX1D,MX1E, Neff- all, Phillips, Redding- all, RL8A,RL8B	NA
Waste Water	NA	7,020,000gal	NA	54,000gal	CRAW4, CRAW7	NA

Broiler and layer manure is imported based on cost and availability. Layer manure is imported from ISE America(I) in Warwick, Maryland, and from Puglisi Egg Farm in Middletown, Delaware. Broiler manure is imported from Rich Levels Poultry(RL) in Galena, MD, C and S farms, EB Workman, and from Weaver Farm. Manure is hauled and field stacked as close to application time as possible.

Layer manure from ISE provides 72-89-94 at 3T/ acre, and from Puglisi's provides 101-119-133 at 3T/ acre. Broiler manure applied at 3T/ acre will provide 98-176-193 from Rich Levels, 90-186-200 from EB workman, 94-170-201 from C and S farms, and 103-192-196 from Weavers. Egg wash waste water will also be imported from ISE and applied. At 54,000gal/ acre, egg wash water will provide a nutrient content of 27-0-0.

Residual nitrogen from applications made in 2023 is 7lbs from layer, 13lbs from broiler manure, and 1lb from egg wash water. Residual nitrogen from applications made in 2024 is 14lbs from layer, 25lbs from broiler, and 1lb from wash water.

Anyone importing spent mushroom substrate, food waste products, or other organic material shall make sure imported product has a current registration with the state chemist. The generator or broker is responsible for providing a current registration. If the sender does not provide a current registration, the product shall not be imported.

Best Management Practices

Best management practices could be added to the farming operation. **Manure application** equipment should always be calibrated at the onset of application to better gage the application rate per acre. Manure should be sampled at the time manure is being removed at least every 2 years until a base line of nutrient content is established.

Immediate incorporation would make the most efficient use of nitrogen. Immediate incorporation would also reduce odor and fly problems.

Application of nutrients should be timed as close as possible to crop growth or uptake and placed near the root zone for efficient crop use. Application to saturated, frozen or snow-covered ground should be avoided unless a crop covers the ground.

Split applications of nitrogen on environmentally sensitive sites reduce potential for runoff and leaching. Utilization of a Pre-Side Dress Nitrogen Test (PSNT) or tissue test can help determine additional N requirements during the growing season. Fall Soil Nitrate Test (FSNT) is now required prior to fall application of nitrogen on wheat or barley to determine crop need.

Operators are responsible for sediment and erosion control of stream crossings. Livestock must travel across a stream crossing designed to prevent erosion and sediment loss. Operators must gate a crossing area wider than 12 feet.

Soil tests were taken by AET Consulting. Copies of the tests are enclosed. Soil testing revealed 27 field(s) with Phosphorus levels above a FIV 150.

FIELD	S w/ Phospho	rus FIV Levels	s <u>></u> 150
FARM	FIELD	FIV LEVEL	N or P Based *
Addie Walters	AW2	183	N
Bregger, Kent	BK2	152	Ρ
Byerly	BY1	231	Р
Byerly	BY2	695	Р
Byerly	BY3	509	Р
Byerly	BY5	624	Р
Crawford	CRAW1	226	P
Crawford	CRAW2	180	Р
Crawford	CRAW3	168	N
Crawford	CRAW4	248	Р
Crawford	CRAW5	205	Р
Davis	DAVIS1A	181	N
Mill Creek	MC2C	196	N
Mill Creek	MC4B	160	N
Redding	RDG S	152	N
Home	RL4A	200	Р
Home	RL6B	182	Р
Home	RL6C	192	Р
Home	RL6D	233	Р
Home	RL6E	237	Р
Home	RL8B	162	N

These fields will not receive any additional P nutrients prior to running the PMT.

Home	RL8C	162	N
Sigman	SIG5A	161	Р
Sigman	SIG5B	155	P
Ware	WA2	273	Р
Ware	WA3	374	Р
Ware	WA4	297	Р

.4

Soil Summary from Spectrum Labs

				Crop					٩	٩	¥	%	% Saturation	on
Field	Acres	Last Test	2023	2024	2025	MO	CEC	Hd	mqq	FIV	mqq	К	ВМ	Са
AT1	30.0	12/26/24	c	B/SB	ပ	1.6	4.1	6.3	81	95	87	4.6	16.0	79.4
AT2	-	12/26/24	ပ	B/SB	c	1.1	3.7	6.1	67	80	120	7.1	19.7	73.3
ASP1	8.9	12/23/24	W/SB	ပ	B/SB	1.1	4.2	6.4	7	16	69	3.5	27.2	69.3
ASP2	26.9	12/23/24	W/SB	c	B/SB	0.9	2.6	6.0	40	51	85	7.2	23.8	69.0
ASP3	16.0	12/23/24	W/SB	ပ	B/SB	1.0	3.5	6.2	33	44	88	5.4	27.3	67.3
ASP4A	32.3	12/23/24	W/SB	c	B/SB	1.1	5.7	6.5	13	23	61	2.3	25.7	50.1
ASP4B	22.2	12/23/24	W/SB	С	B/SB	1.2	5.8	6.5	26	37	62	2.3	24.9	50.9
ASP5A	31.3	12/23/24	W/SB	c	B/SB	1.4	3.1	6.4	73	86	78	5.5	23.1	71.5
ASP5B	41.8	12/23/24	W/SB	c	B/SB	1.0	3.1	6.3	76	06	91	6.4	24.2	69.4
ASP6A	5.9	12/23/24	W/SB	С	B/SB	1.3	3.1	6.4	46	58	73	5.0	17.1	77.8
ASP6B	15.6	12/23/24	W/SB	С	B/SB	1.2	3.5	6.3	46	58	76	4.7	18.9	76.4
AUS1,1A	24.4	12/26/24	SB	С	c	1.8	3.7	5.6	93	108	93	12.8	20.8	66.4
AUS2A-2C	18.5	12/26/24	SB	c	ပ	1.3	2.9	5.9	74	87	74	8.2	20.7	71.1
AUS3,3A	15.5	12/26/24	SB	c	U	1.7	3.1	5.6	111	127	111	7.1	16.5	76.4
AUS4	4.2	12/26/24	SB	С	c	1.1	2.9	5.9	70	83	20	7.0	23.7	69.3
AUS5	15.9	12/26/24	SB	c	c	1.8	3.0	5.7	68	81	68	6.7	22.3	71.0
AW1	20.4	12/4/24	ပ	B/SB	ပ	1.8	4.8	6.4	92	107	158	7.1	18.8	74.1
AW2	22.9	12/4/24	ပ	B/SB	ပ	1.3	6.0	6.4	164	183	154	5.5	15.9	78.5
AW3	23.9	12/4/24	ပ	B/SB	ပ	1.9	4.2	6.0	56	68	115	5.8	22.0	72.2
AW4	18.0	12/4/24	ပ	B/SB	o	1.8	4.5	6.0	67	80	154	7.4	20.3	72.3
BC1	28.8	12/4/24	W/SB	ပ	W/SB	1.7	5.1	6.1	98	113	135	5.7	18.4	75.9
BC2	21.5	12/4/24	W/SB	v	W/SB	1.8	4.9	6.1	69	82	87	3.8	20.4	75.8
BC3	25.5	12/4/24	W/SB	o	W/SB	2.3	4.0	5.9	59	72	56	3.0	23.8	73.2
BC4	18.7	12/4/24	W/SB	S	W/SB	1.8	7.6	6.5	92	107	62	1.8	17.1	59.2
BK1	37.4	12/4/24	W/SB	ပ	W/SB	1.5	4.4	6.1	98	113	219	10.8	21.0	68.2
BK2	32.2	12/4/24	ပ	ပ	WISB	2.0	5.7	6.4	135	152	183	6.9	17.1	76.0
BK3	46.9	12/4/24	W/SB	c	W/SB	1.8	4.2	6.4	55	67	149	7.7	18.5	73.8
BR1	28.6	12/26/24		o	W/SB	0.9	2.4	6.0	48	60	69	6.1	27.3	66.5
BR2	5.2	12/26/24		c	W/SB	1.0	2.8	5.6	59	72	94	7.3	32.3	60.3
BR3	6.1	12/26/24		U	W/SB	1.1	3.3	6.0	39	50	111	7.1	32.0	60.9
BR4N	24.1	12/26/24		J	W/SB	1.0	3.3	6.1	31	42	112	7.3	30.8	61.9
BR4S	79.1	12/26/24		o	W/SB	1.2	3.1	6.0	28	39	111	7.7	27.0	65.2
BR5N	35.6	12/26/24		J	W/SB	1.3	3.2	5.7	32	43	129	8.8	29.7	61.4
BR5S	85.1	12/26/24		ပ	W/SB	0.8	3.6	6.0	29	40	120	7.2	33.3	59.5
BR6	20	12/26/24		с	W/SB	1.0	5.4	6.0	15	25	96	3.8	19.0	32.8

Soil Summary from Spectrum Labs

	Crop	\vdash			٩	٩	¥	% Sat	Saturation
Last Test 2023	2024 2025	5 OM	CEC	Ηd	mdd	FIV	mqq	×	Mg
12/26/24	C W/SB	B 1.2	3.3	5.9	22	32	96	6.2 3	33.5 60.3
12/4/24 W/SB	C W/SB	B 2.0	5.7	6.2	209	231	153	5.8 1	16.0 78.2
12/4/24 W/SB	C W/SB	B 2.0	8.3	6.1	647	695	196	5.1	6.4 88.2
12/4/24 W/SB	C W/SB	B 2.0	7.4	6.3	472	509	170	4.9	8.8 86.3
12/4/24 W/SB	C W/SB	B 1.8	4.3	6.2	66	79	84	4.2 1	16.5 79.3
12/4/24 W/SB	C W/SB	B 1.9	11.8	6.8	580	624	169	3.1	6.5 73.8
12/4/24 C	W/SB C	1.9	5.7	6.5	54	99	104	3.9 2	20.5 53.7
12/4/24 C	W/SB C	1.8	3.8	6.2	52	64	147	8.3 2	23.3 68.4
	W/SB C	2.0	4.5	6.3	37	48	127	6.0 2	24.1 69.9
_	W/SB C	2.1	4.5	6.2	45	57	105	5.1 2	24.5 70.4
		2.2		6.5	41	52	160	5.9 1	19.3 53.0
12/4/24 C	W/SB C	2.3	3.8	6.3	42	54	144	8.2 2	24.3 67.5
12/4/24 C	W/SB C	2.0	4.4	6.2	40	51	104	5.0 2	27.9 67.1
12/4/24 C	W/SB C	2.0	4.3	6.4	22	32	107	5.3 2	27.8 66.8
12/4/24 C	с с	1.7	4.6	6.3	205	226	133	6.3 1	14.1 79.6
12/4/24 C	c c	2.0	4.8	6.0	161	180	148	6.6 1	13.2 80.2
12/4/24 C	υ υ	1.9	5.0	6.3	150	168	140	6.0 1	13.5 80.5
12/4/24 C	0 0	1.8	7.0	6.6	225	248	148	4.5 1	10.4 65.1
12/4/24 C	0 0	2.0	_	6.2	185	205	138	7.3 1	15.0 77.7
	ပ ပ	1.6	-	6.0	80	94	66	4.5 1	14.5 81.0
_	0 0	2.4	5.1	6.4	123	139	105	4.5 1	16.2 79.3
		4.1		6.3	162	181	192	8.7 2	20.4 70.9
_	B/SB C	1.8	-	6.3	112	128	195	9.7 1	17.4 72.9
	B/SB	1.8	-	6.0	53	65	117	7.6 1	18.9 73.5
	B/SB	-	2.9	5.9	51	63	109	8.0 2	20.5 71.6
+	v	-	-	6.3	53	65	111	5.5 2	25.4 69.1
-	v	_	3.8	6.1	31	42	87	4.9 2	24.3 70.8
+	v	_	4.3	6.2	32	43	112	5.6 3	31.8 62.5
_	3 C W/SB	B 2.5	6.3	6.6	37	48	100	3.4 2	24.9 51.7
_	B C W/SB	B 2.4	6.7	6.6	33	44	112	3.6 2	23.2 53.2
12/4/24 W/SB	v	B 2.1	5.1	6.4	42	54	106	4.5 2	26.5 69.1
12/4/24 W/SB	SB C W/SB	B 2.1	5.0	6.3	33	44	66	4.2 2	24.5 71.2
	v	B 1.9	5.0	6.2	30	41	78	3.4 2	23.3 73.4
	υ				41	52	119	6.0 2	24.9 69.1
12/4/24 W/SB	B C W/SB	B 1.7	4.2	6.2	56	68	151	7.8 2	4.7 67.6

Labs
Spectrum
from 5
Summary
Soil

					Crop					٩	٩	¥	%	% Saturation	uo
Farm	Field	Acres	Last Test	2023	2024	2025	MO	CEC	Hq	bpm	FIV	mqq	ч	Mg	Ca
Essex Lodge	EL11	9.6	12/4/24	c	W/SB	c	2.0	4.6	6.3	15	25	65	3.1	33.9	63.1
Essex Lodge	EL12	39.1	12/4/24	c	W/SB	c	1.8	4.1	6.0	21	31	112	5.9	31.6	62.5
Essex Lodge	EL13	16.9	12/4/24	S	W/SB	ပ	2.0	4.4	6.1	17	27	74	3.6	34.8	61.6
Essex Lodge	EL14	24.4	12/4/24	ပ	W/SB	v	2.1	4.6	6.1	39	50	101	4.8	30.7	64.6
Fusco	E1	94.0	12/4/24	B/SB	ပ	B/SB	1.9	4.2	6.1	69	82	163	8.4	19.0	72.5
Fusco	E1A	-	12/4/24	B/SB	c	B/SB	1.8	4.9	6.1	86	100	184	8.1	15.5	76.4
Redgrave	E	64.0	12/23/24	ပ	W/SB	c	1.8	5.2	6.7	56	68	129	5.3	18.4	58.2
Redgrave	F2	18.0	12/23/24	ပ	W/SB	c	0.8	3.0	6.4	37	48	113	8.1	18.5	73.4
Redgrave	F3	40.0	12/23/24	ပ	W/SB	ပ	1.1	4.4	6.5	51	63	92	4.5	17.5	56.1
Redgrave	F4	15.4	12/23/24	ပ	W/SB	ပ	1.1	3.8	6.5	58	70	73	4.2	20.6	53.4
Foxhole	FH1	15.0	12/4/24	B/SB	U	B/SB	1.8	4.2	5.9	37	48	206	10.6	22.9	66.6
Foxhole	FH2	21.0	12/4/24	B/SB	J	B/SB	1.7	4.1	6.1	36	47	145	7.7	19.2	73.1
Foxhole	FH3	11.2	12/4/24	B/SB	U	B/SB	2.0	4.9	6.2	94	109	212	9.4	21.3	69.3
Foxhole	FH4	10.0	12/4/24	B/SB	o	B/SB	2.3	3.9	5.8	44	56	177	9.8	24.0	66.2
Foxhole	FH5	15.6	12/4/24	B/SB	ပ	B/SB	1.8	4.0	6.1	56	68	177	9.5	23.7	66.9
Foxhole	FH7	8.7	12/4/24	B/SB	o	B/SB	1.9	5.4	6.4	66	79	188	7.5	19.5	73.0
Foxhole	FH8	5.5	12/4/24	B/SB	ပ	B/SB	1.9	6.7	6.5	77	91	184	5.9	18.7	53.5
Foxhole	FH9	9.0	12/4/24	B/SB	U	B/SB	2.7	5.3	6.0	100	115	223	9.1	19.9	71.0
Jeffries	JEF1	43.0	12/4/24	ပ	B/SB	ပ	1.5	3.9	5.8	31	42	101	5.5	23.5	71.0
Jeffries	JEF2	44.0	12/4/24	ပ	B/SB	U	1.9	5.2	6.2	115	131	134	5.5	14.6	79.9
Maloney	M1	70.2	12/23/24	W/SB	U	W/SB	1.3	3.1	6.2	42	54	123	8.6	32.0	59.4
Maloney	M2	65.0	12/23/24	W/SB	ပ	W/SB	1.0	3.3	6.2	43	55	118	7.7	33.9	58.4
Middlesex	MX 1A	21.1	12/4/24	SB	W/SB	ပ	2.2	4.5	6.2	49	61	179	8.5	25.9	65.6
Middlesex	MX 1B	53.0	12/4/24	SB	W/SB	ပ	2.0	4.5	6.2	39	50	197	9.3	25.7	65.0
Middlesex	MX 1C	56.2	12/4/24	SB	W/SB	v	2.1	3.8	5.9	54	66	180	10.3	25.8	63.9
Middlesex	MX 1D	26.4	12/4/24	SB	W/SB	o	1.9	4.0	6.2	94	109	195	10.4	27.4	62.3
Middlesex	MX 1E	17.0	12/4/24	SB	W/SB	v	1.6	3.9	6.1	35	46	162	8.9	26.7	64.4
Middlesex	MX 2	38.1	12/4/24	W/SB	U	W/SB	1.9	3.6	6.0	29	40	172	10.2	23.1	66.7
Middlesex	MX 3	44.7	12/4/24	W/SB	ပ	W/SB	1.2	3.1	5.9	50	62	147	10.1	21.5	68.4
Middlesex	MX 4	50.1	12/4/24	W/SB	ပ	W/SB	2.3	3.2	5.9	69	82	164	11.1	21.0	68.0
Middlesex	MX5A	9.4	12/4/24	ပ	W/SB	ပ	2.1	3.0	6.1	50	62	119	8.6	24.2	67.2
Middlesex	MX5B	12.6	12/4/24	ပ	W/SB	ပ	1.8	3.5	6.3	46	58	176	10.7	21.9	67.3
Middlesex	MX5C	22.1	12/4/24	U	W/SB	ပ	1.5	3.6	6.3	63	76	135	8.2	23.3	68.5
Middlesex	MX5D	34.8	12/4/24	J	W/SB	ပ	1.8	3.1	6.2	54	66	124	8.6	23.1	68.3
Middlesex	MX5E	29.5	12/4/24	U	W/SB	υ	1.4	3.3	6.1	65	78	144	9.3	21.5	69.2

Labs
pectrum
from S
Summary
Soil :

	100
74 87 55 67 92 107 95 110 95 110 94 109 94 109 111 123	10
4.6 6.1 6.2 6.5 7.1 6.8 5.0 6.4 4.9 6.2 6.0 6.4	0.0
C C 2.1 C 0.7 18 0.7	C 1.0
	M/SB C C
ບ ບ ບ	M/SB
31.7 12/4/24	6 12/4/24 1 12/4/24 7 12/4/24 0 12/4/24
	MX5G 38.6 MX5H 36.1 MX6 36.7 MC1A 28.0
Mill Creek MC2C	Middlesex MX5G Middlesex MX5H Middlesex MX6H Mill Creek MC1A Mill Creek MC1A

Labs
Spectrum
from
Summary
Soil

				Crop					٩	٩	х	%	% Saturation	on
Field	Acres	Last Test	2023	2024	2025	WO	CEC	Н	mqq	FIV	mqq	ч	Mg	Ca
RL8B	28.9	12/23/24	WISB	υ	υ	0.7	4.0	6.5	144	162	92	4.9	11.4	61.8
RL8C	28.7	12/23/24	W/SB	ပ	υ	0.7	4.7	6.7	144	162	109	5.0	13.3	63.7
RL8D	25.0	12/23/24	W/SB	c	v	1.1	4.9	6.7	102	117	98	4.3	14.7	63.0
RL9A	18.5	12/23/24	ပ	B/SB	c	1.0	3.1	6.4	90	104	100	6.8	21.2	72.0
RL9B	26.3	12/23/24	v	B/SB	c	1.3	3.4	6.4	66	114	85	5.4	23.8	70.8
RL10A	31.6	12/23/24	W/SB	c	W/SB	1.0	5.5	6.7	119	135	112	4.4	17.8	59.8
RL10B	6.8	12/23/24	W/SB	c	W/SB	1.4	5.7	6.7	114	130	90	3.4	17.3	61.3
RL11A	21.3	12/23/24	W/SB	c	W/SB	1.1	5.4	6.8	74	87	102	4.0	19.2	60.1
RL11B	16.4	12/23/24	W/SB	c	W/SB	1.0	4.7	6.7	113	129	98	4.5	15.0	62.5
SIGPAST	7.3	12/4/24	c	c	W/SB	2.5	6.5	6.4	114	130	180	5.9	21.8	72.2
SIG1	18.3	12/4/24	c	c	W/SB	1.5	5.5	6.2	98	113	263	10.2	18.9	70.8
SIG2	35.3	12/4/24	c	c	W/SB	1.8	4.3	5.8	94	109	187	9.4	18.6	72.0
SIG3	10.5	12/4/24	ပ	c	W/SB	1.6	7.2	6.5	47	59	173	5.2	18.3	54.6
SIG4	35.1	12/4/24	ပ	c	W/SB	2.3	5.2	6.4	66	114	164	6.9	19.8	73.4
SIG5A	30.1	12/4/24	ပ	ပ	W/SB	2.2	4.9	6.3	143	161	221	9.8	17.1	73.1
SIG5B	58.4	12/4/24	v	J	W/SB	1.5	5.1	6.2	138	155	243	10.2	20.1	69.7
SIG5C	28.9	12/4/24	ပ	С	W/SB	1.8	5.0	6.3	100	115	229	9.9	20.3	69.8
WA1	99.0	12/4/24	ပ	W/SB	c	1.3	3.5	5.8	110	126	177	10.8	23.9	65.3
WA2	-	12/4/24	ပ	W/SB	v	1.7	7.2	6.6	249	273	186	5.6	16.5	58.0
WA3	-	12/4/24	ပ	W/SB	υ	1.8	9.2	6.7	344	374	157	3.7	11.0	67.3
WA4	-	12/4/24	ပ	W/SB	ပ	1.8	4.8	5.9	272	297	152	6.8	17.4	75.9
WA6	-	12/4/24	ပ	W/SB	ပ	1.9	4.6	6.4	114	130	148	7.0	22.6	70.4
WA7	-	12/4/24	ပ	W/SB	v	2.0	3.6	5.8	86	100	134	8.1	24.2	67.7
WA8	-	12/4/24	ပ	W/SB	U	2.0	3.5	5.9	79	93	134	8.3	22.5	692

Field Specific Informatio	2
p	ō
p	÷
p	3
p	E
p	0
p	÷.
p	-
p	C
p	-
p	5
p	ŏ
p	ă
Field	ົ
Fiel	σ
i.	θ
	ii.

_				To	I otal Nutrients	ints	Recidin	al Nitronar	(ne)dl) r	
Crop					Allowed		nnisau	resiuuai Nitrogen (ID/ac)	(ID/AC)	
			Yield		(lb/ac) ²		Mar	Manure	Legume	
_		2025	Goal ¹	z	P ₂ O ₅	K ₂ 0	2023	2024	2024	Tillage
		ပ	210	210	48	158	13		15	MIM
	- 1	ပ	210	210	48	84	13		15	MIN
W/SB C		B/SB	100/50	100	265	155		25		NT
-		B/SB	100/50	100	85	155		25		TN
_		B/SB	100/50	100	140	155		25		TN
-+		B/SB	100/50	100	265	155		25		NT
-	ပါ	B/SB	100/50	100	140	155		25		IN
+	0	B/SB	100/50	100	85	155		25		NT
W/SB	υ	B/SB	100/50	100	85	155		25		NT
+	o	B/SB	100/50	100	85	155		25		NT
+	o	B/SB	100/50	100	85	155		25		NT
SB	o	ပ	210	210	0	84		14		MIN
-	o	ပ	210	210	48	158		14		MIN
+	0	ပ	210	210	0	84		14		MIN
+	ပ	ပ	210	210	48	158		14		MIN
+	υ	ပ	210	210	48	158		14		MIN
+	SB	ပ	210	210	0	84	13		15	MIN
မ ပ	/SB	0	210	210	0	84	13		15	MIN
┥	SB	o	210	210	48	84	13		15	MIN
+	SB	0	210	210	48	84	13		15	MIN
+	0	W/SB	100/45	130	0	85		14		TN
+	0	W/SB	100/45	130	85	155		14		NT
+	U	W/SB	100/45	130	85	155		14		NT
+	υ	W/SB	100/45	130	0	155		14		NT
8	υ	W/SB	100/45	130	0	0		25		NT
+	ပ	W/SB	100/45	130	0	0	13	25		NT
W/SB	U	W/SB	100/45	130	85	85		25		NT
	U	W/SB	100/45	130	85	155				NT
	υ	W/SB	100/45	130	85	85				TN
	o	W/SB	100/45	130	140	85				NT
				00,		-				-

Field Specific Information

							ToT	Total Nutrients	nte				
				Crop			5	Allowed		Residu	Residual Nitrogen (Ib/ac)	n (Ib/ac)	
						Yield		(lb/ac) ²		Mai	Manure	Legume	
Farm	Field	Acres	2023	2024	2025	Goal ¹	z	P ₂ O ₅	K ₂ O	2023	2024	2024	Tillage
Britland	BR4S	79.1		c	W/SB	100/45	130	140	85				NT
Britland	BR5N	35.6		С	W/SB	100/45	130	140	85				NT
Britland	BR5S	85.1		ပ	W/SB	100/45	130	140	85				NT
Britland	BRG	20		ပ	W/SB	100/45	130	265	85				NT
Britland	BR7	54.4		υ	W/SB	100/45	130	140	85				NT
Byerly	BY1	31.1	W/SB	С	W/SB	100/45	130	0	85				NT
Byerly	BY2	4	W/SB	С	W/SB	100/45	130	0	0				NT
Byerly	ВҮЗ	19.2	W/SB	c	W/SB	100/45	130	0	85				NT
Byerly	BY4	10.3	W/SB	υ	W/SB	100/45	130	85	155				NT
Byerly	BY5	48.4	W/SB	ပ	W/SB	100/45	130	0	85				NT
Church	CH1	59.5	ပ	W/SB	ပ	210	210	48	84	13		15	MIN
Church	CH2	45	υ	W/SB	ပ	210	210	48	84	13		15	MIN
Church	CH3	27.5	ပ	W/SB	ပ	210	210	101	84	13		15	MIN
Church	CH4	22.7	ပ	W/SB	ပ	210	210	48	84	13		15	MIN
Church	CH5	18.5	ပ	W/SB	ပ	210	210	48	84	13		15	MIN
Church	CH6	17.2	ပ	W/SB	ပ	210	210	48	84	13		15	MIN
Church	CH7	18	U	W/SB	ပ	210	210	48	84	13		15	MIN
Church	CH8	46.3	ပ	W/SB	ပ	210	210	101	84	13		15	MIN
Crawford	CRAW1	16.4	ပ	ပ	ပ	210	210	0	84		14		NT
Crawford	CRAW2	8.7	υ	ပ	ပ	210	210	0	84	7	14		NT
Crawford	CRAW3	25.6	ပ	ပ	υ	210	210	0	84	7	14		MIN
Crawford	CRAW4	65	ပ	ပ	ပ	250	250	0	104		15		MIN
Crawford	CRAW5	30	ပ	ပ	ပ	200	210	0	84	7	14		NT
Crawford	CRAW6	43	ပ	ပ	υ	200	210	48	84	7	14		MIN
Crawford	CRAW7	65	U	ပ	ပ	250	250	0	104	?	15		MIN
Davis	DAVIS1A	23.6	υ	B/SB	υ	210	210	0	0	13		15	MIN
Davis	DAVIS1B	43.5	U	B/SB	ပ	210	210	0	0	13		15	MIN
Davis	DAVIS2	13.1	υ	B/SB	υ	210	210	48	84	13		15	MIN
Davis	DAVIS3	13.9	U	B/SB	υ	210	210	48	84	13		15	MIN
Essex Lodge	EL1	63.8	W/SB	υ	W/SB	100/45	130	85	85		14		NT
Essex Lodge	EL2	36.2	W/SB	U	W/SB	100/45	130	140	155		14		NT

Field Specific Information

Manur Manur Kesidual P Manur Kesidual P 13 Kesidual P </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Tot</th> <th>Total Nutrients</th> <th>ints</th> <th></th> <th></th> <th></th> <th></th>								Tot	Total Nutrients	ints				
Field Arres 2023 2024 2025 Coal Nibac/					Crop				Allowed	1	Residu	al Nitroger	n (Ib/ac)	
Field Acres 2023 2024 2025 Goal ¹ N P ₂ O ₆ K ₂ O 2023 EL3 6.8 W/SB C W/SB C W/SB 100445 130 140 85 85 EL5 34.8 W/SB C W/SB C W/SB 140 85 85 7 EL5 39.9 W/SB C W/SB C W/SB 140 85 85 7 EL7 9.9 W/SB C W/SB C W/SB 10045 130 85 85 7 7 EL10 27.5 W/SB C W/SB C 2002 110 111 86 85 7 7 EL11 264 C W/SB C 2002 110 171 156 133 85 85 7 7 EL11 284 C W/SB C 200 210							Yield		(lb/ac) ²		Mar	nre	Legume	
EL3 6.8 W/SB C W/SB 100/45 130 140 85 140 EL4 18.1 W/SB C W/SB 100/45 130 140 85 140 EL5 34.8 W/SB C W/SB 100/45 130 140 85 85 EL6 34.5 W/SB C W/SB 100/45 130 140 85 85 EL1 9.9 W/SB C W/SB 100/45 130 140 85 85 EL11 9.6 W/SB C W/SB C 200 210 101 84 13 EL11 9.6 W/SB C 200 210 101 84 13 EL13 16.9 C W/SB C 200 210 184 13 F11 16.9 C W/SB C 200 210 101 149 84 1	Farm	Field	Acres	2023	2024	2025	Goal ¹	z	P_2O_5		2023	2024	2024	Tillage
EL4 18.1 W/SB C W/SB C W/SB 100/45 130 140 85 EL5 34.8 W/SB C W/SB C W/SB 100/45 130 140 85 EL6 34.5 W/SB C W/SB C W/SB 100/45 130 140 85 EL9 701 W/SB C W/SB C W/SB 100/45 130 140 155 EL10 27.5 W/SB C W/SB C 200 210 101 85 85 EL11 27.5 W/SB C 200 210 101 149 156 EL13 16.9 C W/SB C 200 210 101 148 133 EL13 16.9 C W/SB C 200 210 101 148 13 F14 15 94 C 2005 1	Essex Lodge	EL3	6.8	W/SB	υ	W/SB	100/45	130	140	85		14		NT
EL5 34.8 W/SB C W/SB C W/SB 100/45 130 140 85 85 EL17 9.9 W/SB C W/SB C W/SB 130 140 85 85 EL17 9.9 W/SB C W/SB C W/SB 130 140 85 85 EL10 27.5 W/SB C W/SB C W/SB 100/45 130 85 85 85 EL11 9.6 C W/SB C W/SB C 200 210 171 158 85	Essex Lodge	EL4	18.1	W/SB	ပ	W/SB	100/45	130	140	85		14		NT
EL6 34.5 W/SB C W/SB C W/SB TOU45 130 140 85 85 EL7 9.9 W/SB C V/SB C V/SB C V/SB C C V/SB C V/SB C ZOO Z10 101 84 C V/SB C ZOO Z10 101 84 13 C V/SB C ZOO Z10 101 84 13 C Z ZOO Z10 101 84 13 C Z ZOO Z10 101 84 13 C Z ZOO Z10 Z10 ZO ZOO Z10 ZOO	Essex Lodge	EL5	34.8	W/SB	υ	W/SB	100/45	130	140	85		14		NT
EL7 9.9 W/SB C W/SB C W/SB Total 140 85 85 EL8 6.6 W/SB C W/SB C W/SB 100/45 130 85 85 85 EL10 27.5 W/SB C W/SB C W/SB 100/45 130 85	Essex Lodge	EL6	34.5	W/SB	c	W/SB	100/45	130	85	85		14		NT
EL8 6.6 W/SB C W/SB C W/SB 100/45 130 855 855 EL10 27.5 W/SB C W/SB C W/SB 100/45 130 855 855 855 EL11 39.6 C W/SB C 2000 210 171 158 855 EL113 16.9 C W/SB C 2000 210 101 84 101 EL13 16.9 C W/SB C 2000 210 101 84 13 EL14 24.4 C W/SB C 200 210 101 84 13 F1 64 C W/SB C 210 210 84 13 F1 64 C W/SB C 210 210 85 85 13 F1 84 15 64 C 210 210 210	Essex Lodge	EL7	9.9	W/SB	ပ	W/SB	100/45	130	140	85		14		NT
EL9 70.1 W/SB C Z <thz< th=""> Z Z <thz< th=""></thz<></thz<>	Essex Lodge	EL8	6.6	W/SB	υ	W/SB	100/45	130	140	155		14		NT
EL10 27.5 W/SB C W/SB C W/SB C W/SB C W/SB C 20045 130 85 85 85 EL11 9.6 C W/SB C 200 210 171 158 EL112 39.1 C W/SB C 200 210 101 84 EL13 16.9 C W/SB C 200 210 101 84 F1 24.4 C W/SB C 2005 100 85 85 0 F1 64 C W/SB C 210 210 40 84 13 F3 40 C W/SB C 210 210 48 13 F4 15.4 C W/SB C 210 210 48 13 F41 15 B/SB C	Essex Lodge	EL9	70.1	W/SB	ပ	W/SB	100/45	130	85	85		14		NT
EL11 9.6 C W/SB C 200 210 171 158 N EL12 39.1 C W/SB C 200 210 101 84 N EL13 16.9 C W/SB C 200 210 101 84 N EL14 24.4 C W/SB C 200 210 101 84 N F1 94 B/SB C B/SB 100/50 100 85 85 85 7 F1 64 C W/SB C 210 210 101 84 13 F3 40 C W/SB C 210 210 13 13 F4 15.4 C W/SB C 210 48 13 13 F4 15.8 C W/SB C 210 101 14 13 13 F44 15	Essex Lodge	EL10	27.5	W/SB	υ	W/SB	100/45	130	85	85		14		NT
EL12 39.1 C W/SB C 200 210 101 64 N EL13 16.9 C W/SB C 200 210 101 158 N EL14 24.4 C W/SB C 200 210 101 84 N E114 24.4 C W/SB C 200 210 101 84 N F1 94 B/SB C B/SB 100/50 100 85 0 N N F2 18 C W/SB C 210 210 13 N	Essex Lodge	EL11	9.6	ပ	W/SB	υ	200	210	171	158			15	MIN
EL13 16.9 C WSB C 200 210 101 158 7 EL14 24.4 C W/SB C 200 210 101 84 7 EL14 24.4 C W/SB C B/SB 100/50 100 85 85 7 7 F1 64 C W/SB C 210 210 48 84 13 7 F2 18 C W/SB C 210 210 48 84 13 7 F2 18 C W/SB C 210 210 48 13 7 F4 15.4 C W/SB C 210 210 48 13 7 F44 15.4 C B/SB 100/50 100 85 85 13 7 FH3 11.2 B/SB C B/SB 100/50 100 87 </td <td>Essex Lodge</td> <td>EL12</td> <td>39.1</td> <td>U</td> <td>W/SB</td> <td>ပ</td> <td>200</td> <td>210</td> <td>101</td> <td>84</td> <td></td> <td></td> <td>15</td> <td>MIN</td>	Essex Lodge	EL12	39.1	U	W/SB	ပ	200	210	101	84			15	MIN
EL14 24.4 C W/SB C 200 210 101 84 1 E1 94 B/SB C B/SB C B/SB 100/50 100 85 85 1 1 F1 64 C B/SB C B/SB C 100 85 85 1 1 F1 64 C W/SB C 210 210 48 84 13 1 F2 18 C W/SB C 210 210 48 13 1 F2 18 C W/SB C 210 210 48 13 1 F3 40 C W/SB C 210 210 48 13 1 F44 15 B/SB C B/SB 100/50 100 85 85 1 1 1 1 1 1 1 1 1	Essex Lodge	EL13	16.9	ပ	W/SB	υ	200	210	101	158			15	MIN
E1 94 B/SB C B/SB 100/50 100 85 85 85 85 F1A \lambda B/SB C B/SB 100/50 100 85 0 7 F1 64 C W/SB C 210 210 48 84 13 F2 18 C W/SB C 210 210 48 13 7 F3 40 C W/SB C 210 210 48 13 7 F44 15 B/SB C 210 210 48 158 13 7 FH1 15 B/SB C B/SB 100/50 100 85 85 13 7 FH3 11.2 B/SB C B/SB 100/50 100 85 85 13 7 FH3 11.2 B/SB C B/SB 100/50 100 85	Essex Lodge	EL14	24.4	ပ	W/SB	ပ	200	210	101	84			15	MIN
E1A \land B/SB C B/SB C B/SB C B/SB C B/SB C S/SB S/SB S/SB S/SB S/SB S/SB S/SD S/SB S/SD S/SD <ths< td=""><td>Fusco</td><td>E1</td><td>94</td><td>B/SB</td><td>ပ</td><td>B/SB</td><td>100/50</td><td>100</td><td>85</td><td>85</td><td></td><td>25</td><td></td><td>NT</td></ths<>	Fusco	E1	94	B/SB	ပ	B/SB	100/50	100	85	85		25		NT
F1 64 C W/SB C 210 210 48 84 13 F2 18 C W/SB C 210 210 101 84 13 F3 40 C W/SB C 210 210 48 158 13 FH1 15 B/SB C B/SB C 210 210 48 13 13 FH1 15 B/SB C B/SB C 210 210 48 13 13 FH3 11.2 B/SB C B/SB 100/50 100 140 0 0 0 13 13 FH3 11.2 B/SB C B/SB 100/50 100 8/5 8/5 13 13 13 FH4 10 B/SB C B/SB 100/50 100 0 0 0 140 13 14 13 14 15<	Fusco	E1A	-	B/SB	ပ	B/SB	100/50	100	85	0		25		NT
F2 18 C W/SB C 210 210 101 84 13 F3 40 C W/SB C 210 210 48 158 13 FH1 15 B/SB C W/SB C 210 248 158 13 FH1 15 B/SB C B/SB C B/SB 100/50 100 48 158 13 FH2 211 B/SB C B/SB 100/50 100 140 0 0 0 13 13 FH3 11.2 B/SB C B/SB 100/50 100 85 85 13 13 FH4 10 B/SB C B/SB 100/50 100 85 85 13 13 FH4 15.6 B/SB C B/SB 100/50 100 85 85 13 FH3 5.5 B/SB C <td>Redgrave</td> <td>F</td> <td>64</td> <td>ပ</td> <td>W/SB</td> <td>υ</td> <td>210</td> <td>210</td> <td>48</td> <td>84</td> <td>13</td> <td></td> <td>15</td> <td>MIN</td>	Redgrave	F	64	ပ	W/SB	υ	210	210	48	84	13		15	MIN
F3 40 C W/SB C 210 210 48 158 13 FH1 15.4 C W/SB C 210 210 48 158 13 FH1 15 B/SB C B/SB 100/50 100 140 0 7 FH3 11.2 B/SB C B/SB 100/50 100 140 85 13 FH3 11.2 B/SB C B/SB 100/50 100 0 0 7 FH3 11.2 B/SB C B/SB 100/50 100 85 85 7 FH4 10 B/SB C B/SB 100/50 100 85 85 7 FH3 5.5 B/SB C B/SB 100/50 100 85 85 7 FH3 9 100/50 100 85 85 0 7 FH3 9 </td <td>Redgrave</td> <td>F2</td> <td>18</td> <td>ပ</td> <td>W/SB</td> <td>υ</td> <td>210</td> <td>210</td> <td>101</td> <td>84</td> <td>13</td> <td></td> <td>15</td> <td>MIN</td>	Redgrave	F2	18	ပ	W/SB	υ	210	210	101	84	13		15	MIN
F4 15.4 C W/SB C 210 210 48 158 13 FH1 15 B/SB C B/SB 100/50 100 140 0 13 13 FH2 21 B/SB C B/SB 100/50 100 140 0 0 13 13 FH3 11.2 B/SB C B/SB 100/50 100 140 0 0 0 13 13 FH3 11.2 B/SB C B/SB 100/50 100 85 85 13 13 13 13 14 13 14 <td>Redgrave</td> <td>EJ</td> <td>40</td> <td>ပ</td> <td>W/SB</td> <td>υ</td> <td>210</td> <td>210</td> <td>48</td> <td>158</td> <td>13</td> <td></td> <td>15</td> <td>MIN</td>	Redgrave	EJ	40	ပ	W/SB	υ	210	210	48	158	13		15	MIN
FH1 15 B/SB C B/SB 100/50 100 140 0 0 FH2 21 B/SB C B/SB 100/50 100 140 85 85 FH3 11.2 B/SB C B/SB 100/50 100 0 0 0 1 1 1 1 1 1 1 1 1 B/SB C B/SB 100/50 100 85 85 1	Redgrave	F4	15.4	ပ	W/SB	υ	210	210	48	158	13		15	MIN
FH2 21 B/SB C B/SB 100/50 100 140 85 1 FH3 11.2 B/SB C B/SB 100/50 100 0 0 0 1 FH3 11.2 B/SB C B/SB 100/50 100 85 85 85 1 FH3 15.6 B/SB C B/SB 100/50 100 85 85 85 1 1 FH3 5.5 B/SB C B/SB 100/50 100 85 85 0 1	Foxhole	EH	15	B/SB	υ	B/SB	100/50	100	140	0		25		NT
FH3 11.2 B/SB C B/SB 100/50 100 0 0 0 FH4 10 B/SB C B/SB C B/SB 100/50 100 85 85 85 FH5 15.6 B/SB C B/SB 100/50 100 85 85 85 85 FH3 8.7 B/SB C B/SB 100/50 100 85 85 85 85 FH9 9 B/SB C B/SB 100/50 100 85 85 0 7 FH9 9 B/SB C B/SB 100/50 100 85 85 0 7 JEF1 43 C B/SB C 210 210 101 84 13 JEF2 44 C B/SB C 210 210 10 84 13 M1 70.2 W/SB C 210	Foxhole	FH2	21	B/SB	ပ	B/SB	100/50	100	140	85		25		NT
FH4 10 B/SB C B/SB 100/50 100 85 85 85 FH5 15.6 B/SB C B/SB 100/50 100 85 85 85 FH3 8.7 B/SB C B/SB 100/50 100 85 0 85 85 FH3 5.5 B/SB C B/SB 100/50 100 85 0 7 FH9 9 B/SB C B/SB 100/50 100 85 0 7 JEF1 43 C B/SB C 210 210 101 84 13 JEF2 44 C B/SB C 210 210 0 85 85 7 M1 70.2 W/SB C B/SB 100/50 100 85 85 7 M1 70.2 W/SB C B/SB 100/50 100 0 85<	Foxhole	FH3	11.2	B/SB	U	B/SB	100/50	100	0	0		25		NT
FH5 15.6 B/SB C B/SB 100/50 100 85 85 85 FH7 8.7 B/SB C B/SB C B/SB 100/50 100 85 0 1 FH3 5.5 B/SB C B/SB 100/50 100 85 0 1	Foxhole	FH4	6	B/SB	v	B/SB	100/50	100	85	85		25		NT
FH7 8.7 B/SB C B/SB 100/50 100 85 0 FH8 5.5 B/SB C B/SB C B/SB 100/50 100 85 0 FH9 9 B/SB C B/SB 100/50 100 85 0 JEF1 43 C B/SB C 210 210 101 84 13 JEF2 44 C B/SB C 210 210 0 84 13 M1 70.2 W/SB C N/SB 100/45 130 85 85 13 M2 65 W/SB C W/SB 100/45 130 85 85 13 MX 1A 21.1 SB W/SB C 210 210 24 13 13	Foxhole	FH5	15.6	B/SB	ပ	B/SB	100/50	100	85	85		25		NT
FH8 5.5 B/SB C B/SB 100/50 100 85 0 FH9 9 B/SB C B/SB 100/50 100 85 0 JEF1 43 C B/SB C 210 210 101 84 13 JEF2 44 C B/SB C 210 210 0 84 13 M1 70.2 W/SB C N/SB 100/45 130 85 85 7 M2 65 W/SB C 210 210 210 85 85 7 MX 1A 21.1 SB W/SB C 210 210 48 84 73	Foxhole	FH7	8.7	B/SB	ပ	B/SB	100/50	100	85	0		25		NT
FH9 9 B/SB C B/SB 100/50 100 0 0 0 JEF1 43 C B/SB C 210 210 101 84 13 JEF2 44 C B/SB C 210 210 0 84 13 M1 70.2 W/SB C N/SB 100/45 130 85 85 13 MX 1A 21.1 SB W/SB C 210 210 48 84 13	Foxhole	FH8	5.5	B/SB	υ	B/SB	100/50	100	85	0		25		NT
JEF1 43 C B/SB C 210 101 84 13 JEF2 44 C B/SB C 210 210 0 84 13 M1 70.2 W/SB C W/SB 100/45 130 85 85 13 MX 1A 21.1 SB W/SB C 210 210 48 13	Foxhole	FH9	6	B/SB	ပ	B/SB	100/50	100	0	0		25		NT
JEF2 44 C B/SB C 210 210 0 84 13 M1 70.2 W/SB C W/SB 100/45 130 85 85 13 M2 65 W/SB C W/SB 100/45 130 85 85 13 MX 1A 21.1 SB W/SB C 210 210 48 84 13	Jeffries	JEF1	43	ပ	B/SB	υ	210	210	101	84	13		15	MIN
M1 70.2 W/SB C W/SB 100/45 130 85 85 M2 65 W/SB C W/SB 100/45 130 85 85 MX 1A 21.1 SB W/SB C 210 210 48 84	Jeffries	JEF2	44	ပ	B/SB	υ	210	210	0	84	13		15	MIN
M2 65 W/SB C W/SB 100/45 130 85 85 MX 1A 21.1 SB W/SB C 210 210 48 84	Maloney	M1	70.2	W/SB	ပ	W/SB	100/45	130	85	85		25		NT
MX 1A 21.1 SB W/SB C 210 210 48	Maloney	M2	65	W/SB	ပ	W/SB	100/45	130	85	85		25		NT
	Middlesex	MX 1A	21.1	SB	W/SB	υ	210	210	48	84			15	MIN

18

*

10.000	
-	
-	- 0
0	
<u> </u>	
	- 14
	- 34
-	- 11
60	
_	
	- 11
-	
_	
^	
U	
_	
• • •	
-	
<u></u>	
_	
-	
A	
W	
-	- 4
0	
and the second second	
10	
C	
~	
-	
-	
_	- 1
	- 1
4	
u	
	- 1

			Tillage	NIW	MIM	MIM	MIN	NT	NT	NT	MIN	NT	MIN	MIN	NIW	MIN	MINI																	
	(Ib/ac)	Legume	2024	15	15	15	15				15	15	15	15	15	15	15	15													15	15	15	16
	Residual Nitrogen (Ib/ac)	Manure	2024																	25	25	25	25	25	25	25	25	25	25	25				
	Residu	Mar	2023								13	13	13	13	13	13	13	13		13	13	13	13	13	13	13	13	13	13	13	13	13	13	12
ents	staria d		K ₂ 0	0	84	0	84	85	85	85	84	84	84	84	84	84	84	84	0	0	0	0	0	0	0	0	0	0	0	0	158	158	84	8A
Total Nutrients	Allowed	(lb/ac) ²	P_2O_5	101	48	0	101	140	85	85	48	48	48	48	48	48	48	48	85	0	0	0	0	0	0	0	0	0	0	0	48	48	48	c
Tot			z	210	210	210	210	130	130	130	210	210	210	210	210	210	210	210	130	250	250	210	250	250	250	210	250	250	250	210	210	210	210	210
		Yield	Goal ¹	210	210	210	210	100/45	100/45	100/45	210	210	210	210	210	210	210	210	100/45	250	250	210	250	250	250	210	250	250	250	210	210	210	210	210
			2025	ပ	ပ	ပ	c	W/SB	W/SB	W/SB	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	W/SB	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	с	c	c	ပ	С	c	0
	Crop		2024	W/SB	W/SB	W/SB	W/SB	c	υ	υ	W/SB	υ	ပ	υ	υ	v	v	υ	ပ	υ	с	υ	c	W/SB	W/SB	W/SB	B/SB							
			2023	SB	SB	SB	SB	W/SB	W/SB	W/SB	υ	υ	υ	υ	υ	ပ	υ	ပ	W/SB	υ	ပ	υ	ပ	υ	υ	υ	υ	с	υ	υ	ပ	υ	ပ	υ
			Acres	53	56.2	26.4	17	38.1	44.7	50.1	9.4	12.6	22.1	34.8	29.5	13.5	38.6	36.1	36.7	28	30.3	23.3	27.6	31.7	1.3	9.6	9.1	13.5	13.2	5.5	62	1	-	27
			Field	MX 1B	MX 1C	MX 1D	MX 1E	MX 2	MX 3	MX 4	MX5A	MX5B	MX5C	MX5D	MX5E	MX5F	MX5G	MX5H	MX 6	MC1A	MC1B	MC1 DRY	MC2A	MC2B	MC2C	MC2 DRY	MC3	MC4A	MC4B	MC4 DRY	NEFF1	NEFF2	NEFF3	Phillips
			Farm	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Mill Creek	Neff	Neff	Neff	Phillins										

-
0
0
+
-
•••
_
_
0
-
-
<u> </u>
_
11
-
0
Ð
ā
<u> </u>
40
0)
-
σ
_
-
U
11

							Tot	Total Nutrients	onte				
				Crop				Allowed		Residu	Residual Nitrogen (Ib/ac)	n (Ib/ac)	
						Yield		(Ib/ac) ²		Mai	Manure	Legume	
Farm	Field	Acres	2023	2024	2025	Goal ¹	z	P_2O_5	K ₂ O	2023	2024	2024	Tillage
Redding	RDG N	53	ပ	B/SB	ပ	210	210	0	84			15	MIN
Redding	RDG S	-	ပ	B/SB	ပ	210	210	0	0			15	MIN
Home	RL1	36.7	ပ	B/SB	ပ	210	210	48	84	13		15	MIN
Home	RL2	56.6	ပ	B/SB	ပ	210	210	48	84	13		15	MIN
Home	RL3A	46	B/SB	ပ	B/SB	100/50	100	0	85		14		NT
Home	RL3B	-	B/SB	ပ	B/SB	100/50	100	0	85		14		NT
Home	RL4A	50.8	B/SB	ပ	B/SB	100/50	100	0	0		14		NT
Home	RL4B	-	B/SB	ပ	B/SB	100/50	100	0	0		14		NT
Home	RL5A	35	ပ	ပ	W/SB	100/50	130	0	0		14		NT
Home	RL5B	35	ပ	ပ	ပ	250	250	0	0		14		NT
Home	RL6A	7.2	ပ	ပ	ပ	210	210	0	84		14		TN
Home	RL6B	6.3	υ	ပ	ပ	210	210	0	0		14		NT
Home	RL6C	e	W/SB	ပ	ပ	210	210	0	84		14		NT
Home	RL6D	3.3	W/SB	ပ	ပ	210	210	0	84		14		TN
Home	RLGE	7.7	W/SB	ပ	ပ	210	210	0	84		14		NT
Home	RL8A	26.3	W/SB	ပ	ပ	250	250	0	104		14		MIM
Home	RL8B	28.9	W/SB	ပ	ပ	250	250	0	198		14		MIM
Home	RL8C	28.7	W/SB	ပ	ပ	250	250	0	104		14		MIM
Home	RL8D	25	W/SB	ပ	ပ	250	250	0	104		14		MIM
Home	RL9A	18.5	υ	B/SB	ပ	210	210	0	84			15	MIM
Home	RL9B	26.3	υ	B/SB	ပ	210	210	0	158			15	MIN
Home	RL10A	31.6	W/SB	ပ	W/SB	100/40	130	0	85		14		NT
Home	RL10B	6.8	W/SB	υ	W/SB	100/40	130	0	155		14		NT
Home	RL11A	21.3	W/SB	υ	W/SB	100/40	130	85	85		14		NT
Home	RL11B	16.4	W/SB	ပ	W/SB	100/40	130	0	85		14		NT
Sigman	SIGPAST	7.3	υ	ပ	W/SB	100/40	130	0	85	7	25		NT
Sigman	SIG1	18.3	ပ	ပ	W/SB	100/40	130	0	0		25		NT
Sigman	SIG2	35.3	ပ	υ	W/SB	100/40	130	0	0		25		NT
Sigman	SIG3	10.5	υ	υ	W/SB	100/40	130	85	85		25		NT
Sigman	SIG4	35.1	υ	ပ	W/SB	100/40	130	0	85		25		NT
Sigman	SIG5A	30.1	ပ	ပ	W/SB	100/40	130	0	0		25		NT

	0
1	
	ā
	Ē
	E
	ō
•	Ě
1	2
1	
	<u>ں</u>
ŝ	E
1	ΰ
	ð
	ã
(n
2	_
2	0
8	Φ
:	÷
	_

				Crop			Tot	Total Nutrients Allowed	nts	Residua	Residual Nitrogen (Ib/ac)	ו (Ib/ac)	
						Yield		(lb/ac) ²		Man	Manure	Legume	
Farm	Field	Acres	2023	2024	2025	Goal ¹	z	P_2O_5	K ₂ O	2023	2024	2024	Tillage
Sigman	SIG5B	58.4	c	ပ	W/SB	100/40	130	0	0		25		NT
Sigman	SIG5C	28.9	C	ပ	W/SB	100/40	130	0	0		25		NT
Ware	WA1	66	С	W/SB	c	210	210	0	84			15	NT
Ware	WA2	1	С	W/SB	c	210	210	0	0			15	NT
Ware	WA3	1	c	W/SB	ပ	210	210	0	84			15	NT
Ware	WA4	1	c	W/SB	c	210	210	0	84			15	NT
Ware	WA6	1	ပ	W/SB	ပ	210	210	0	84			15	NT
Ware	WA7	1	ပ	W/SB	ပ	210	210	48	84			15	NT
Ware	WA8	1	ပ	W/SB	ပ	210	210	48	84			15	NT
1. Yield goal based onpast history provided by the operator	ed onpast histo	Irv provide	ed by the	operator.									

The goal based onpast miscory provided by the operator.
 Recs are the max nutrient tolerances (withstanding certain exceptions) handed down by the Univ of MD based on your soil test results for the prescribed crop.

-
ŝ
ō
÷
a
p
5
ž
E
Ē
<u>S</u>
ă
Ř
-
2
<u>e</u> .
÷
z
-
0
2
a
Ξ
Ē
'n
S

				Yield		Actu	Actual Nutrient Recommendations	Recommend	dations		
	rieia	Acres	crop	Goal ¹	Lime	Manure ²	Nitrogen ³	Starter ⁴	Additic	Additional Commercial Fertilizers	mercial
			2025	(Bu/A)	(ton/ac)	(ton/ac)	Credit	(Ib/ac)	z	P,0,	K,0
Antone	AT1	30	ပ	210		3T Broiler(wo)	118	31-14-0	99	0	. 0
Antone	AT2	_	ပ	210		3T Broiler(wo)	118	31-14-0	99	0	0
Asplundh	ASP1	8.9	B/SB	100/50			25		100	0	0
Asplundh	ASP2	26.9	B/SB	100/50			25		100	0	0
Asplundh	ASP3	16	B/SB	100/50			25		100	0	0
Asplundh	ASP4A	32.3	B/SB	100/50			25		100	0	0
Asplundh	ASP4B	22.2	B/SB	100/50			25		100	0	0
Asplundh	ASP5A	31.3	B/SB	100/50			25		100	0	0
Asplundh	ASP5B	41.8	B/SB	100/50			25		100	0	0
Asplundh	ASP6A	5.9	B/SB	100/50			25		100	0	0
Asplundh	ASP6B	15.6	B/SB	100/50			25		100	0	0
Austin	AUS1,1A	24.4	v	210	1T Cal	3T Layer(P)	115	31-14-0	64	0	0
Austin	AUS2A-2C	18.5	v	210	1T Cal	3T Layer(P)	115	31-14-0	64	0	0
Austin	AUS3,3A	15.5	ပ	210	1T Cal	3T Layer(P)	115	31-14-0	64	0	0
Austin	AUS4	4.2	U	210	1T Cal	3T Layer(P)	115	31-14-0	64	0	0
Austin	AUS5	15.9	U	210	1T Cal	3T Layer(P)	115	31-14-0	64	0	0
Addie Walters	AW1	20.4	o	210		3T Layer(I)	100	31-14-0	64	0	0
Addie Walters	AW2	22.9	υ	210		3T Layer(I)	100	31-14-0	64	0	0
Addie Walters	AW3	23.9	υ	210		3T Layer(I)	100	31-14-0	64	0	0
Addie Walters	AW4	18	U	210		3T Layer(I)	100	31-14-0	64	0	0
Bregger, Cecil	BC1	28.8	W/SB	100/45			14		100	0	100
Bregger, Cecil	BC2	21.5	W/SB	100/45			14		100	0	100
Bregger, Cecil	BC3	25.5	W/SB	100/45	1T Cal		14		100	0	100
Bregger, Cecil	BC4	18.7	W/SB	100/45			14		100	0	100
Bregger, Kent	BK1	37.4	W/SB	100/45			25		100	0	0
Bregger, Kent	BK2	32.2	W/SB	100/45			38		100	0	0
Bregger, Kent	BK3	46.9	W/SB	100/45			25		100	0	0
Britland	BR1	28.6	W/SB	100/45					100	50	120
Britland	BK2	5.2	W/SB	100/45					100	50	120
Britland	BK3	6.1	W/SB	100/45					100	50	120
Britiand	BK4N	24.1	W/SB	100/45					100	50	120
Britiand	BK4S	79.1	W/SB	100/45					100	50	120

10
č
ō
.Ĕ
T
-
Ĕ
5
č
5
Ξ
ō
ŏ
ě
Ř
-
2
Ð
1
1
2
Z
-
0
>
5
ā
Ξ
Ē
5
5
S

120	120	120	120	60	60	60	60	60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	60	60	60	60	60	60	60	60	en
50	50	50	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
100	100	100	100	100	100	100	100	100	50	79	50	50	48	48	48	48	166	159	101	192	173	101	191	75	75	75	75	100	100	100	100	100	100	100	100	100
									31-14-0	31-14-0	31-14-0	31-14-0	31-14-0	31-14-0	31-14-0	31-14-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	31-14-0	31-14-0	31-14-0									
									100	100	129	129	131	131	131	131	14	21	93	42	22	94	43	100	100	100	100	14	14	14	14	14	14	14	14	
									3T Layer(I)	3T Layer(I)	3T Layer(P)	3T Layer(P)	3T Broiler(w)	3T Broiler(w)	3T Broiler(w)	3T Broiler(w)			3T Layer(I)	54,000gal		3T Layer(I)	54,000gal	3T Layer(I)	3T Layer(I)	3T Layer(I)	3T Layer(I)									
1T Cal			1T Cal																								1T Cal									- 0 +
100/45	100/45	100/45	100/45	100/45	100/45	100/45	100/45	100/45	210	210	210	210	210	210	210	210	210	210	210	250	200	200	250	210	210	210	210	100/45	100/45	100/45	100/45	100/45	100/45	100/45	100/45	11001
W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	c	υ	ပ	c	c	ပ	С	c	c	ပ	ပ	v	c	ပ	ပ	ပ	υ	ပ	ပ	W/SB	CONTRA							
35.6	85.1	20	54.4	31.1	4	19.2	10.3	48.4	59.5	45	27.5	22.7	18.5	17.2	18	46.3	16.4	8.7	25.6	65	30	43	65	23.6	43.5	13.1	13.9	63.8	36.2	6.8	18.1	34.8	34.5	9.9	6.6	101
BR5N	BR5S	BR6	BR7	BY1	BY2	BY3	BY4	BY5	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CRAW1	CRAW2	CRAW3	CRAW4	CRAW5	CRAW6	CRAW7	DAVIS1A	DAVIS1B	DAVIS2	DAVIS3	EL1	EL2	EL3	EL4	EL5	EL6	EL7	EL8	ī
Britland	Britland	Britland	Britland	Byerly	Byerly	Byerly	Byerly	Byerly	Church	Church	Church	Church	Church	Church	Church	Church	Crawford	Crawford	Crawford	Crawford	Crawford	Crawford	Crawford	Davis	Davis	Davis	Davis	Essex Lodge	-							

6
Ë
ō
÷
ā
D
č
Ð
Ĕ
5
2
0
S.
e
Ľ
-
S
<u>e</u>
5
Ξ
Ē
-
5
y of
2
nary
Ë
E
D
S

60	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0	0		0	0	0	0		0		0									
																												0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
100	63	63	63	63	100	100	57	57	57	57	100	100	100	100	100	100	100	100	45	45	100	100	92	92	92	92	92	100	100	100	57	57	57	57	57	57
	31-14-0	31-14-0	31-14-0	31-14-0			31-14-0	31-14-0	31-14-0	31-14-0									31-14-0	31-14-0			31-14-0	31-14-0	31-14-0	31-14-0	31-14-0				31-14-0	31-14-0	31-14-0	31-14-0	31-14-0	31-14-0
14	116	116	116	116	25	25	122	122	122	122	25	25	25	25	25	25	25	25	129	129	25	25	87	87	87	87	87				122	122	122	122	122	122
	3T Layer(P)	3T Layer(P)	3T Layer(P)	3T Layer(P)			3T Broiler(c)	3T Broiler(c)	3T Broiler(c)	3T Broiler(c)									3T Layer(P)	3T Layer(P)			3T Layer(I)				3T Broiler(c)									
											1T Cal			1T Cal					1T Cal						1T Cal				1T Cal	1T Cal						
100/45	200	200	200	200	100/50	100/50	210	210	210	210	100/50	100/50	100/50	100/50	100/50	100/50	100/50	100/50	210	210	100/45	100/45	210	210	210	210	210	100/45	100/45	100/45	210	210	210	210	210	210
W/SB	ပ	ပ	ပ	ပ	B/SB	B/SB	ပ	ပ	ပ	ပ	B/SB	υ	ပ	W/SB	W/SB	ပ	ပ	υ	ပ	ပ	W/SB	W/SB	W/SB	c	U	υ	U	o	c							
27.5	9.6	39.1	16.9	24.4	94	-	64	18	40	15.4	15	21	11.2	10	15.6	8.7	5.5	6	43	44	70.2	65	21.1	53	56.2	26.4	17	38.1	44.7	50.1	9.4	12.6	22.1	34.8	29.5	13.5
EL10	EL11	EL12	EL13	EL14	Ē	E1A	F1	F2	F3	F4	FH1	FH2	FH3	FH4	FH5	FH7	FH8	FH9	JEF1	JEF2	M1	M2	MX 1A	MX 1B	MX 1C	MX 1D	MX 1E	MX 2	MX 3	MX 4	MX5A	MX5B	MX5C	MX5D	MX5E	MX5F
Essex Lodge	Fusco	Fusco	Redgrave	Redgrave	Redgrave	Redgrave	Foxhole	Jeffries	Jeffries	Maloney	Maloney	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex	Middlesex											

5
5
0
÷
a
0
2
Ð
Ē
Ξ
Ξ
ō
ŏ
ð
ñ
-
H
5
<u>e</u>
5
Ξ
2
-
0
>
5
g
2
1
E
3
S

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
57	57	100	79	79	39	59	59	79	39	79	79	79	39	92	92	92	87	87	87	44	44	100	100	100	100	100	206	166	166	166	166	166
31-14-0	31-14-0		30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	31-14-0	31-14-0	31-14-0	31-14-0	31-14-0	31-14-0	31-14-0	31-14-0						30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0
122	122		141	141	141	141	141	141	141	141	141	141	141	100	100	100	100	84	84	131	131	14	14	14	14	14	14	14	14	14	14	14
3T Broiler(c)	3T Broiler(c)		3T Broiler(w)	3T Layer(I)	3T Broiler(w)	3T Broiler(w)																										
								1T Cal																								
210	210	100/45	250	250	210	250	250	250	210	250	250	250	210	210	210	210	210	210	210	210	210	100/50	100/50	100/50	100/50	100/50	250	210	210	210	210	210
υ	U	W/SB	U	ပ	o	o	ပ	c	ပ	υ	ပ	ပ	υ	υ	U	ပ	o	ပ	v	с	υ	B/SB	B/SB	B/SB	B/SB	W/SB	o	ပ	U	ပ	v	υ
38.6	36.1	36.7	28	30.3	23.3	27.6	31.7	1.3	9.6	9.1	13.5	13.2	5.5	62	-	_	27	53	-	36.7	56.6	46	-	50.8	-	35	35	7.2	6.3	3	3.3	7.7
MX5G	MX5H	MX 6	MC1A	MC1B	MC1 DRY	MC2A	MC2B	MC2C	MC2 DRY	MC3	MC4A	MC4B	MC4 DRY	NEFF1	NEFF2	NEFF3	Phillips	RDG N	RDG S	RL1	RL2	RL3A	RL3B	RL4A	RL4B	RL5A	RL5B	RL6A	RL6B	RL6C	RL6D	RLGE
Middlesex	Middlesex	Middlesex	Mill Creek	Neff	Neff	Neff	Phillips	Redding	Redding	Home	Home	Home	Home	Home	Home	Home	Home	Home	Home	Home	Home	Home										

S
5
Ĕ
G
p
5
ĕ
Ξ
E
<u>S</u>
ä
Ř
Ŧ
2
ie.
÷
3
Z
f
0
2
a
3
Ē
Ś

0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	60	60	60	60	60	60	60		anire)	Τ	Τ		Τ	Τ	Τ	pa
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		e Broiler m	rom C and								The fertilizer blend used
134	134	103	103	62	62	100	100	100	100	100	100	100	100	100	100	100	100	165	165	165	165	165	165	165		at 3T/ acre	170-201 fr	-0-0							The fertiliz
30-0-0	30-0-0	30-0-0	30-0-0	31-14-0	31-14-0													30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0	30-0-0		01-119-133	orkman. 94-	at 54,000gal/acre will provide 27-0-0	aume crop.					ited.	these crops.
112	112	112	112	113	113	14	14	14	14	32	32	32	25	25	25	25	25	15	15	15	15	15	15	15		provides 1	from EB w	Igal/acre wi	previous le	lav.			planting.	here indica	t needed for
3T Broiler(RL)																					acre, and from Puglisi's provides 101-119-133 at 3T/ acre Broiler manure	98-176-193 from Rich Levels, 90-186-200 from EB workman. 94-170-201 from C and S	m ISE at 54,000	and past manure applications as well as previous legume crop	planter in April-Mav	-	at sidedress.	0	apply recommended amount of nitrogen where indicated	Alfalfa and other legumes – It is recognized by both the planner and the grower that nitrogen is not needed for these crops. had the lowest possible nitrogen value while still providing other nutrients needed by the crop.					
												1T Cal						1T Cal			1T Cal		1T Cal	1T Cal		at 3T/ acre, a	om Rich Le	te water fro	nure applica	applied with the		icides and	where indi	iended amo	d the grower trients need
250	250	250	250	210	210	100/40	100/40	100/40	100/40	100/40	100/40	100/40	100/40	100/40	100/40	100/40	100/40	210	210	210	210	210	210	210		s 72-89-94 at	-176-193 fr	avers. Was	nd past mar	vill be appli		n with herb	ed fertilizer	oly recomm	planner and
0	υ	υ	U	ပ	ပ	W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	W/SB	U	υ	0	υ	υ	υ	υ	st history.			5 from Wea		or 30-0-0 v		ted nitroge	ecommend		by both the still providi
26.3	28.9	28.7	25	18.5	26.3	31.6	6.8	21.3	16.4	7.3	18.3	35.3	10.5	35.1	30.1	58.4	28.9	66	_	_	_	_	-	-	sed on pa	e from ISE	acre will	3-192-19	it includes	- 31-14-0,	rtilizer-	ply indica	oadcast re	y- In early	recognized value while
RL8A	RL8B	RL8C	RL8D	RL9A	RL9B	RL10A	RL10B	RL11A	RL11B	SIGPAST	SIG1	SIG2	SIG3	SIG4	SIG5A	SIG5B	SIG5C	WA1	WA2	WA3	WA4	WAG	WA7	WA8	Yield goal based on past history	Layer manure from ISE provide	applied at 3T/ acre will provide	farms, and 103-192-196 from Weavers. Waste water from ISE	3. Nitrogen credit includes current	4. Starter- either 31-14-0, or 30-0-0 will be	5. Additional Fertilizer-	Corn- Split apply indicated nitrogen with herbicides and at sidedress	Soybeans- Br	Wheat/ Barley- In early spring,	egumes – It is ssible nitrogen
Home	Home	Home	Home	Home	Home	Home	Home	Home	Home	Sigman	Sigman	Sigman	Sigman	Sigman	Sigman	Sigman	Sigman	Ware	Ware	Ware	Ware	Ware	Ware		+		5	-	3.	4	5.1	1		_	fa and other le

MARYLAND EXTENSION

POULTRY LITTER QUANTITY ESTIMATE

Name:	Rich Levels Tract / Farm:	Date: 2/17/2025
	Houses included: 6 B	ird type: Broiler
	Average Bird Market We	ight (lbs): 7
Α.	Years between total cleanouts: Yr. next total cleanout:	2025
	- Yr. last total cleanout:	2024
	= Years in cleanout cycle	e: 1
В.	Total # of birds per flock (for all houses on this cleanout cy	rcle): 120,000
C.	Flocks per year	5
D.	Number of flocks per cleanout cycle (A x C):	5
E.	Estimated tons of cake/crust per 1000 birds per flock: *	0.2
F.	Estimated tons of litter + cake/crust per 1000 birds per floc	ck: * 1.4192
G.	Tons cake/crust produced per flock (B x E/1000):	24
H.	Tons cake/crust produced per cycle (G x D)	120
I.	Tons litter + cake/crust produced per cycle (B x D x F/1000	0): 852
J.	Tons of litter produced per cycle (less cakeout/crustout) (I	
K.	Tons of litter produced per year (less cakeout/crustout) (J//	A): 732
L	Tons of litter + cake/crust produced per year (I/A)	852

Quantity of Poultry Litter, Cake/Crust Available per Year

	1	· · · ·			0	-	0	т
	М	N	0	Р	Q	R	S	Т
	Tons of litter		% of partial or			***		
	remaining	Total	total litter to be	Tons of	Flocks	Tons	Tons	Tons litter -
	in the house	tons of litter	removed this year	litter	this	Cake/Crust	Cake/Crust	cake/crust
	from last year	present in the	in excess of	removed	Year	Produced	removed	removed
Year	(N-P) + (R-S)	house this year	cakeout/crustout	this year		this Year	this Year	this year
	(previous year)	(K) + (M, this year)	(enter % of N removed)	(N x O)/100		(Q x G)		(P + S)
2025	0	732	75	549	5	120	75	624
2020								
			States and the second second					
							75	
	Contraction States							
-								
			A PLANCE BRAN					
			STAR BASILISA					
			A STREET STREET STREET					
			CONTRACTOR OF THE		1			
			CONTRACTOR OF				新新学校 中的	
			CAVAGE CONTRACTOR					
			STAN ANY LONG					
		1		549	5	120	150	699

*** Cake/Crust not removed due to windrowing, is added with the litter remaining in the house the following year. Windrowing may likely result in actual quantities of litter being less than the estimates shown here. The actual amount of Cake/Crust removed may also be less than the estimated amounts produced due to improved drinker systems, ventilation, etc.

Agricultural Nutrient Management Program - (301) 405-1319 - ENST - 1145 Cole Student Activities Bldg - College Park, MD 20742 Local Governments, US Department of Agriculture Equal Opportunity Programs

revised 1/21/10

	Identi T INTO	UM FROSphorus Management 1001 (FM 1) Keport	001 (FM11) Keport		
Farmer Name		Rich Levels		Year	1000
	6 (prim)	7 (prim)	8 (prim)		
Account ID					
County	Kent	Kent	Kent		
Tract or Farm ID	0	0	0		
Field ID	RL8A	RL8B	RL8D		
MUSVM	SaA	SaA	SaA		
Area Crop	0.0 Acres	0.0 Acres	0.0 Acres		
Organics					
R Factor	185	185	185		
Adj. K Factor LS Factor	0.30 0.16	0.30 0.16	0.30 0.16		
C P Factors	0.06 1.00	0.06 1.00	0.06 1.00		
RUSLE A	0.53	0.53	0.53		
		Transport Risk Factors	S		
SED Value	2	2	2		
Soil Permeability Class	Moderate	Moderate	Moderate		
Field slope Concave? SR Factor	5.00 No 5.6	5.00 No 5.6	5.00 No 5.6		
Soil Drainage Class	well	well	well		
HSG Artificial Drainage? SD Factor	B No 0.0	B No 0.0	B No 0.0		
		Management Factors	8		
Distance to Water (DF)	200-349 ft 0.6	200-349 ft 0.6	100-199 ft 0.8		
Buffer Width & Type (BF)	> 50' veg. 0.8	> 50' veg. 0.8	> 50' veg. 0.8		
Soil Test P Fertility Index Value	161	175	183		
Degree of P Saturation (DPS M3)	44.4 (est.)	46.8 (est.)	48.2 (est.)		
Fert. P appl. rates, lb/A FP * PSC	20 - - 12	20 - - 12	20 - - 12		
Org. P appl. rates, Ib/A OP * PSC	170 - - 102	170 - - 102	170 - - 102		
Runoff Fert. P appl. methods AMr(f)	M1 - - 0.20	M1 - - 0.20	M1 - - 0.20		
Runoff Org. P appl. methods AMr(o)	M3 - - 0.60	M3 - - 0.60	M3 - - 0.60		
Subsurface Fert. P appl. methods AMsub(f)	M1 - - 0.32	M1 - - 0.32	M1 - - 0.32		
Subsurface Org. P appl. methods AMsub(o)	M3 - - 0.64	M3 - - 0.64	M3 - - 0.64		
P particulate P runoff P subsurface	15 41 0	17 42 0	23 57 0		
P Loss Bating Score	56 (M)	59 (M)	81 (M)		

(the second sec
1
Kent
0
MC2B
MXA
0.0 Acres
185
0.40 0.16
0.06 1.00
0.71
Transport Risk Factors
N
Moderately Slow
0.00 No 1.6
moderately well
C No 0.0
Management Factors
100-199 ft 0.8
> 50' veg. 0.8
150
42.4 (est.)
20 - 1
- 170 -
- IM
M3 -
- IM
M3 -
19 15 0

AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207

Prepared For **RICH LEVELS POULTRY**

Sample Information Lab Number FF68501 Sampled 01-30-2025 Sample BROILER Tested 02-06-2025 Manure Type Poultry, Solid with litter

Certificate of Analysis Manure

Analysis	Result	Unit	Nutrients Ibs/Ton	Available 1st Yr ³ Ibs/Ton		
Moisture	32.86	%				
Nitrogen, Total	3.15	%	63.0	40 4		
Nitrogen, Ammonium	.27	%	5.4	5.4 4		
Nitrogen, Organic	2.88	%	57.6	34.64		
Phosphorus [P2O5], Total	2.93	%	58.6	58.64		
Potassium [K2O]	3.22	%	64.4	64.44		
					e.	

(1) Estimates of 1st year nutrient availability are unavailable if manure type is not specified.
 (2) Estimates of 1st year nutrient availability of "Total Nitrogen" are unavailable if no "Ammonium Nitrogen" test is run.
 (3) Estimates of 1st year nutrient availability on take into consideration losses in handling and storage prior to incorporation. Nutrient Management Plan guidelines use 100% availability the 1st year for phosphorus and potassium. Actual 1st year availability varies from 40-90% depending on manure type, soil temperature, moisture and other factors. When using manure credits in fertility programs other than NMP, consult state publications, MWP-18, "Livestock Waste Facilities Handbook"
 (4) Source: MWP-18, "Livestock Waste Facilities Handbook"
 (5) Source: A3411, "Manure Nutrient Credit Worksheet", University of Wisconsin

Analyzed by Spectrum Analytic Inc. www.spectrumanalytic.com

HID:0323-0207-7622-0006

AET 20 -

AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207

Prepared For **RICK WEAVER**

Lab Number	FF68502	Sampled	01-30-2025	
Lab Number Sample Manure Type	BROILER	Tested	02-06-2025	
Manure Type	Poultry, Solid with litter			

Certificate of Analysis Manure

Analysis	Result Unit	Nutrients lbs/Ton	Available 1st Yr ³ Ibs/Ton	
Moisture	32.66 %			
Nitrogen, Total	3.33 %	66.6	42.24	
Nitrogen, Ammonium	.28 %	5.6	5.64	
Nitrogen, Organic	3.05 %	61.0	36.64	
Phosphorus [P2O5], Total	3.2 %	64.0	64.04	
Potassium [K2O]	3.26 %	65.2	65.24	
		58		

(1) Estimates of 1st year nutrient availability are unavailable if manure type is not specified.
 (2) Estimates of 1st year nutrient availability of "Total Nitrogen" are unavailable if no "Ammonium Nitrogen" test is run.
 (3) Estimates of 1st year nutrient availability do not take into consideration losses in handling and storage prior to incorporation. Nutrient Management Plan guidelines use 100% availability the 1st year for phosphorus and potassium. Actual 1st year availability varies from 40-90% depending on manure type, soil temperature, moisture and other factors. When using manure credits in fertility programs other than NMP, consult state publications, MWP-18, "Livestock Waste Facilities Handbook"
 (4) Source: MWP-18, "Livestock Waste Facilities Handbook"
 (5) Source: A3411, "Manure Nutrient Credit Worksheet", University of Wisconsin

Analyzed by Spectrum Analytic Inc. www.spectrumanalytic.com

HID:0323-0307-7622-0012

AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207

Prepared For PUGLISI

Sample Information Lab Number FF68500 Sampled 01-30-2025 Sample LAYER Tested 02-06-2025 Manure Type Poultry, Solid without litter

Certificate of Analysis Manure

Analysis	Result	Unit	Nutrients Ibs/Ton	Available 1st Yr ³ lbs/Ton		
Moisture	42.59	%				
Nitrogen, Total	2.74	%	54.8	35.44		
Nitrogen, Ammonium	.32	%	6.4	6.4 ⁴		
Nitrogen, Organic	2.42	%	48.4	29.04		
Phosphorus [P2O5], Total	1.99	%	39.8	39.84		
Potassium [K2O]	2.22	%	44.4	44.44		
					¥.	

(1) Estimates of 1st year nutrient availability are unavailable if manure type is not specified.
 (2) Estimates of 1st year nutrient availability of "Total Nitrogen" are unavailable if no "Ammonium Nitrogen" test is run.
 (3) Estimates of 1st year nutrient availability do not take into consideration losses in handling and storage prior to incorporation. Nutrient Management Plan guidelines use 100% availability the 1st year for phosphorus and potassium. Actual 1st year availability varies from 40-90% depending on manure type, soil temperature, moisture and other factors. When using manure credits in fertility programs other than NMP, consult state publications, MWP-18, "Livestock Waste Facilities Handbook"
 (4) Source: MWP-18, "Livestock Waste Facilities Handbook"
 (5) Source: A3411, "Manure Nutrient Credit Worksheet", University of Wisconsin

Analyzed by Spectrum Analytic Inc. www.spectrumanalytic.com

HID:0323-0407-7622-0001

0 AET

AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207

Prepared For

EB WORKMAN

Sample Information Lab Number FF68497 Sample BROILER Manure Type Poultry, Solid with litter

Sampled Tested

01-30-2025 02-06-2025

Certificate of Analysis Manure

Analysis	Result Unit	Nutrients Ibs/Ton	Available 1st Yr ³ lbs/Ton	
Moisture	35.64 %			
Nitrogen, Total	2.9 %	58.0	36.64	
Nitrogen, Ammonium	.23 %	4.6	4.64	
Nitrogen, Organic	2.67 %	53.4	32.04	
Phosphorus [P2O5], Total	3.1 %	62.0	62.04	
Potassium [K2O]	3.34 %	66.8	66.84	
				8

 (1) Estimates of 1st year nutrient availability are unavailable if manure type is not specified.

 (2) Estimates of 1st year nutrient availability of "Total Nitrogen" are unavailable if no "Ammonium Nitrogen" test is run.

 (3) Estimates of 1st year nutrient availability do not take into consideration losses in handling and storage prior to incorporation. Nutrient Management Plan guidelines use 100% availability the 1st year for phosphorus and potassium. Actual 1st year availability varies from 40-90% depending on manure type, soil temperature, moisture and other factors. When using manure credits in fertility programs other than NMP, consult state publications, MWP-18, "Livestock Waste Facilities Handbook"

 (4) Source: MWP-18, "Livestock Waste Facilities Handbook"

 (5) Source: A3411, "Manure Nutrient Credit Worksheet", University of Wisconsin

Analyzed by Spectrum Analytic Inc. www.spectrumanalytic.com

HID:0323-0107-7622-0017

AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207

Prepared For

ISE

Sample Informatio	n	E. BARLEN	
Lab Number	FF68320	Sampled	01-03-2025
Sample	LAYER	Tested	01-09-2025
Manure Type	Poultry, Solid without litter		

Certificate of Analysis Manure

Analysis	Result Unit	Nutrients lbs/Ton	Available 1st Yr ³ lbs/Ton	
Moisture Nitrogen, Total Nitrogen, Ammonium Nitrogen, Organic Phosphorus [P2O5], Total Potassium [K2O]	21.6 % 1.97 % .15 % 1.82 % 1.49 % 1.56 %	39.4 3.0 36.4 29.8 31.2	24.8 ⁴ 3.0 ⁴ 21.8 ⁴ 29.8 ⁴ 31.2 ⁴	

Estimates of 1st year nutrient availability are unavailable if manure type is not specified.
 Estimates of 1st year nutrient availability of "Total Nitrogen" are unavailable if no "Ammonium Nitrogen" test is run.
 Estimates of 1st year nutrient availability of "Total Nitrogen" are unavailable if no "Ammonium Nitrogen" test is run.
 Estimates of 1st year nutrient availability of "Total Nitrogen" are unavailable if no "Ammonium Nitrogen" test is run.
 Estimates of 1st year nutrient availability of not take into consideration losses in handling and storage prior to incorporation. Nutrient Management Plan guidelines use 100% availability the 1st year for phosphorus and potassium. Actual 1st year availability varies from 40-90% depending on manure type, soil temperature, moisture and other factors. When using manure credits in fertility programs other than NMP, consult state publications, MWP-18, "Livestock Waste Facilities Handbook" or Spectrum Analytic for more specific 1st year availability percentages.
 Source: MWP-18, "Livestock Waste Facilities Handbook"
 Source: A3411, "Manure Nutrient Credit Worksheet", University of Wisconsin

Analyzed by Spectrum Analytic Inc. www.spectrumanalytic.com

HID:0323-0782-2622-0007

AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207

Prepared For C AND S FARMS Sample Information

Lab Number FF68498 Sample BROILER Manure Type

Poultry, Solid with litter

Sampled Tested

01-30-2025 02-06-2025

Certificate of Analysis Manure

Analysis	Result Unit	Nutrients Ibs/Ton	Available 1st Yr ³ Ibs/Ton	13	
Moisture Nitrogen, Total Nitrogen, Ammonium	35.46 % 3.03 % .26 %	60.6 5.2	38.4 ⁴ 5.2 ⁴		
Nitrogen, Organic Phosphorus [P2O5], Total Potassium [K2O]	2.77 % 2.84 %	55.4 56.8	33.2 ⁴ 56.8 ⁴		
Potassium [K2O]	3.35 %	67.0	67.04		
					*
					<i>3</i> 4

Estimates of 1st year nutrient availability are unavailable if manure type is not specified.
 Estimates of 1st year nutrient availability of "Total Nitrogen" are unavailable if no "Ammonium Nitrogen" test is run.
 Estimates of 1st year nutrient availability of "Total Nitrogen" are unavailable if no "Ammonium Nitrogen" test is run.
 Estimates of 1st year nutrient availability do not take into consideration losses in handling and storage prior to incorporation. Nutrient Management Plan guidelines use 100% availability the 1st year for phosphorus and potassium. Actual 1st year availability varies from 40-90% depending on manure type, soil temperature, moisture and other factors. When using manure credits in fertility programs other than NMP, consult state publications, MWP-18, "Livestock Waste Facilities Handbook" or Spectrum Analytic for more specific 1st year availability percentages.
 Source: MWP-18, "Livestock Waste Facilities Handbook"
 Source: A3411, "Manure Nutrient Credit Worksheet", University of Wisconsin

Analyzed by Spectrum Analytic Inc. www.spectrumanalytic.com

HID:0323-0507-7622-0007

AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207

Prepared For

ISE

Sample Informatio	n		
Lab Number Sample Manure Type	FF63763 CRAW IRRIG WTR	Sampled Tested	08-06-2023 08-10-2023

Certificate of Analysis Manure

Analysis	Result Unit	Nutrients ibs/Ton	Available 1st Yr ³ Ibs/Ton	
Moisture	99.87 %			
Nitrogen, Total	.01 %	0.2	- 1	
Nitrogen, Ammonium	< 0.01 %	0	0 1	
Nitrogen, Organic	.01 %	0.2	- 1	
Phosphorus [P2O5], Total	< 0.01 %	0	0 1	
Potassium [K2O]	< 0.01 %	0	0 1	

(1) Estimates of 1st year nutrient availability are unavailable if manure type is not specified.
 (2) Estimates of 1st year nutrient availability of "Total Nitrogen" are unavailable if no "Ammonium Nitrogen" test is run.
 (3) Estimates of 1st year nutrient availability do not take into consideration losses in handling and storage prior to incorporation. Nutrient Management Plan guidelines use 100% availability the 1st year for phosphorus and potassium. Actual 1st year availability varies from 40-90% depending on manure type, soil temperature, moisture and other factors. When using manure credits in fertility programs other than NMP, consult state publications, MWP-18, "Livestock Waste Facilities Handbook" or Spectrum Analytic for more specific 1st year availability percentages.
 (4) Source: MWP-18, "Livestock Waste Facilities Handbook"
 (5) Source: A3411, "Manure Nutrient Credit Worksheet", University of Wisconsin

Analyzed by Spectrum Analytic Inc. www.spectrumanalytic.com

HID:0323-0192-8802-0013

)							Soil Ani	Soil Analysis Report	eport									/	
2		Rep	Report To					Prepai	Prepared For							And a lot		a second	
AET Consulting Inc	ng Inc	AE 267 NO	r con 7 tell RTH E	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 219	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	-1207		RICH	RICH LEVELS GRAIN	LS GF	RAIN				Sampled Tested	led J		12-19-2024 12-26-2024	2024 2024
Sample Number	Lab Number	DH Soil Bu	-SW	nic Phosphorus		Analysis Result* and Rating Potassium Magnesium	120	Calcium	CEC	Base S K	Base Saturation	1		Boron	Mehlich-	Mehlich-3 PPM and Rating Zinc Iron Conner	ating Conner	Manuk	Alim
AT4	-			а (W		Ca		%	2%	0,0	S	B	Zuc	Fe	Copper	Mang. Mn	Alum. Al
AT2	F4/86/	6.1 7.	1.1	0.1	67 G 120	Σ ('	M N N N N N N N N N N N N N N N N N N N	8/2 G	1.4	4.6	16.0 7	79.4							
AUS 1-1A	_							548 6		_		0.0	-					Į	
AUS 2A-C				1.3 74				552 G		4., 935		71.1				115.67			
AUS 3-3A	_			_	111 H 101				3.1	7.1 1		76.4		-					
AUS 4				-	0 33 0 33	Σ:	92 M	527 G	2.9	200		69.3			10118-2				
BR1	F47874	2. 1 1.C				ΣΣ		5/3 G	3.0	2852 - P		71.0							
BR2				101			2 2	429 M	4.α		27.3 0	C.00	-	_					1
BR3	-	6.0 7.2		_	39 M 111	22	20	543 G	3.3	C 1 2		0.0	-	7					
BR4N		6.1 7.	1.000	1.0 31		Σ	0 0	542 G				610							
)		2.0	8		<u>.</u>	1						
					-														
			-																
											-								
													ľ,						
				_	_	_	_		-	-	-								
Results: P, K, Mg and Ca are extracted by Mehlch-3 (ICP) and are reported in ppm Ratings: L=Low M=Medium G=Good H=High V=Very High	d Ca are extra Medium G=Go	cted by I ood H=H	Wehlich ligh V=	-3 (ICP) a Very High	nd are rep	orted in pp	m												
Sample Number	Lab Number	P-FIV												Sec. 1					
AT1	F47867	95																	
AT2	F47868	80																	
AUS 1-1A	F47869	107																	
AUS 24-C	F47871	136																	
AUS 4	F47872	83																	
AUS 5	F47873	81																	
BR1	F47874	60																	
BR2	F47875	71																	
BR4N	F47877	50 42																	
Arialyzed by Spectrum Analytic Inc. www.spectrumanalytic.com	c Inc.															-	HID:0323-0195-9522-0004	195-952	2-0004

)							Soil A	Soil Analysis Report	Repo	4)
		Rep	Report To					Pre	Prepared For	or -									
AET Consulting Inc	ing Inc	AE NC	TT CON	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	G INC H RD D 2190	1-1207		N. N	RICH LEVELS GRAIN	/ELS G	RAIN				Sampled Tested	bled		12-1	12-19-2024 12-26-2024
Sample Number BR4S BR5S BR6 BR6 BR7 RL1 RL1 RL2 RL3A RL3A RL3B	Lab Number F47878 F47879 F47883 F47883 F47883 F47883 F47883 F47885 F47885 F47885 F47885 F47885 F47885 F47885 F47885 F47885 F47887 F47887 F47887 F47887 F47887 F47887 F47887 F47887 F47883 F47883 F47878 F47879 F47878 F47879 F47885 F4785 F478555 F478555 F478555 F478555 F4785555 F4785555 F478555555 F478555555555555555555555555555555555555	PH PH pH Buffer pH pH pH <	0 North Contraction Contractio	, it is the second seco		$\frac{1}{12}$	^{- and Rating} ^{- and Rating ^{- and Rating} ^{- and Rating ^{- and Rating} ^{- and Rating ^{- and Rating}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>	Caletum Caletum 538 G 573 G 573 G 573 G 803 G 803 G 883 G 883 G 883 G 883 G 883 G 795 G	CEC 33.2 3.3 4.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	8.0 8.0 8.0 8.0 8.0 8.0	Base Saturation Base Saturation 33 33 56 57 66 67 7 </th <th>2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,</th> <th>Sultur</th> <th>Boron</th> <th>Mehlic Zinc Zinc</th> <th>Zinc Fearing Copy Zinc Foon Copy Fearing Copy</th> <th>Copper</th> <th>Mmn. Ming</th> <th>Alum.</th>	2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	Sultur	Boron	Mehlic Zinc Zinc	Zinc Fearing Copy Zinc Foon Copy Fearing Copy	Copper	Mmn. Ming	Alum.
* Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High	nd Ca are extra Medium G=Go	cted by od H=I	Mehlich High V=	-3 (ICP) a. Very High	nd are re	re reported in ppm	mdd				1	1	1		1				
Sample Number	Lab Number	P-FIV																	
BR4S BR5N BR5S	F47878 F47879 F47880	39 43 40																	
BR6 BR7	F47882 F47883	25																	
RL1	F47884	82																	
RL3A RL3A	F47885 F47886	98 128																	
KLJB	F4/88/	114																	
Analvzed hv Snectnum Analvtic Inc	c Inc																		

HID:0323-0195-9522-0004

		Rep	Report To				Soil	Soil Analysis Report	sis Report	+									
AFT Consulting Inc	a lac	AE 267 NO	AET CONSULTING 2677 TELEGRAPH NORTH EAST, MD	ISULTI EGRA	1 /5	INC RD 21901-1207	2	R	RICH LEVELS GRAIN	ELS (BRAIN				Sampled Tested	d		12-1	12-19-2024 12-26-2024
	יוא ווור				8 10 1														
Sample Number	Lab Number		1	Organic Phot	Al Al	nalysis Resu	Analysis Result* and Rating		010	Bas	Base Saturation	u	100		Mehlich	-3 PPM and	Rating		
DI 4A	ADD19	1000		1011 I III	Priorus ro	K	wagnesium Mg	1004		×%	BW %	°.	Sulfur S	Boron B	Zinc Zn	Zinc Iron Copper Zn Fe Cu	Copper Cu	Mang. Mn	Alum.
RL4B	F47889	2.1.2			128 H	194 197	22 22 2	88 88 0 0	.0.4 .0.	2. 7.	- 0 4. 4.	71.6							
			_		-														
Results: r, r, ing and ca are extracted by Mehlich-3 (ICP) and are reported in ppm Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number P-FIV DPS	r Ca are extra 1edium G=Go Lab Number	cted by I pod H=H	Mehlich- ligh V=/	-3 (ICP) Very Hig	and are	reported	in ppm												
RI AA	E47000																a factor and		
RL4B	F47889	144	5																
Analysis of the Second Second Second	1																		

HID:0323-0195-9522-0004

Tenant National State	Report To AFT CONSULTING INC Prosenanc for AFT CONSULTIN								Inday sisting incont	malaci										
AFT CONSULTING INC FT Consulting Inc RICH LEVELS GRAIN FT CONSULTION INC THEAST, MD 21801-1207 RICH LEVELS GRAIN FT CONSULTION INC THEAST, MD 21801-1207 RICH LEVELS GRAIN FT CONSULTION INC THEAST, MD 21801-1207 Sampled FT Consulting Inc ET Consulting Inc Annow partine antonine Annon p	AFT CREATING INC BATT RELEGY AND 2:901-1207 RICH LEVELS GRAIN Sampled Top Sampled North EAST, MD 2:901-1207 Answer Arrise Action (DCRTH EAST, MD 2:901-1207 RICH LEVELS GRAIN Sampled Top Sampled (Sampled Samp			Rep	ort To				Pret	pared Fo			101.2				N. ALBERT			
Current Name Land Marce Super list of the lis	Answer Series and and series Series and	AET Consul	ting Inc	AE 267 NO	T CON	SULTIN EGRAPI AST, MI	G INC H RD D 21901-	1207	RIC	CH LEV	ELS G	RAIN				Sam	bled		11-26	-2024 -2024
F2455h 6.4 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.1 1.8 7.2 1.8 7.1 1.8 7.2 1.8 7.7 1.8 7.7 1.8 7.7<	74556 64 7.1 18 7.1 18 7.1 18 7.1 8 7.1 8 7.1 18 7.1 18 7.1 8 7 9 6 7 1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.1 18 7.2 2 25 18 7.2 2 13 16 17 18 7.2 13 56 17 18 7.2 18 7.2 18 7.2 18 7.2 18 7.2 18 7.2 18 7.2 18 7.3 23 23 7.3 23 7.3 7.3 7.3 7.4 7.7 18 7.7 18 7.7 18 7.7 18 7.7 18 7.7 18 7.7 18 7.7 18 7.7 18	Sample Number		à		nic Phosph		Result* and Ratir m Magnesium	0	CEC	Base	Saturatio		Sulfur	Boron	Mehlic	1-3 PPM and Iron	Rating Copper	Mang.	Alum.
F24555 6.7 7.1 1.3 924 4.5 7.1 132 F24555 6.0 7.2 1.9 6.0 7.2 1.9 8166 4.2 5.8 7.1 122 184 71 132 8166 4.2 5.8 7.2 184 7.2 184 7.1 127 8863 4.5 7.4 203 8166 4.2 5.8 220 2238 22456 64 722 132 1171 2238 2238 22456 22328 2238 22456 22328 2238 22456 22328 22	24565 6.4 7.2 1.3 1.94 7.1 1.03 24555 6.0 7.2 1.3 164 154 1254 6.0 5.5 7.4 10.8 24555 6.0 7.2 1.3 164 154 1254 4.5 7.4 20.3 24558 6.1 7.0 1.8 6.7 6.1 7.0 1.8 6.0 5.7 4.9 3.0 20.4 24558 6.1 7.0 1.8 6.6 5.7 10.8 20.4 24565 6.1 7.0 1.8 6.9 87 1256 4.0 3.0 23.8 24565 6.4 7.2 1.3 924 125 110.8 7.1 125 120.4 7.1 125 10.8 7.1 12.8 20.4 20.3 20.4 20.3 20.4 20.3 20.4 20.3 20.4 20.3 20.4 20.4 20.3 20.4 20.3	11/1	-					Mg COL	es Cro			%	2	s	8	Zn	Fe	Ċù	Mn	AI
F24556 6.0 7.2 1.9 56.M 1.57 1.8 7.4 20.3 F24556 6.0 7.0 1.8 67 136 127 10.34 5.1 5.7 18.4 20.3 F24556 6.1 7.1 1.7 98 136 127 10.34 5.1 5.1 20.3 F24556 6.5 7.1 1.8 92 146 126 4.0 33 20.4 32 20.4 32 20.3 20.3 20.4 21.1 20.3 20.4 21.6 17.1 18.4 20.3 20.4 20.3 20.4 21.6 17.1 18.7 20.4 20.3 20.4 21.6 21.7 18.4 20.0 21.6 21.7 18.3 20.4 21.0 21.7 18.3 20.4 21.7 18.3 20.4 21.0 21.7 18.3 21.0 21.7 18.3 21.0 21.7 18.3 21.7 18.3 21.0 21.7 18.3 21.0 21.7 18.3 21.0 21.7 18.3 21.7	24555 60 7.2 1.9 56M 115 M 127 M 816 G 4.2 5.1 5.7 18.4 24556 6.1 7.0 1.8 67 G 154 G 127 M 816 G 4.9 3.8 20.4 24558 6.1 7.0 1.8 66 G 154 G 127 M 816 G 4.9 3.8 20.4 24560 5.9 7.1 2.3 59 M 55 L 179 M 775 G 4.0 3.0 23.8 24560 5.9 7.1 2.3 59 M 55 L 179 H 127 M 1024 G 5.7 6.9 17.1 24563 6.1 7.0 1.5 98 H 219 H 125 M 79 G 4.4 10.8 17.1 24565 6.4 7.2 1.3 55 M 149 G 106 M 825 G 4.2 77.7 18.5 24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 24565 6.4 7.2 1.8	CM			_	<u> </u>	154				_		70 5							
F24557 60 7.0 1.8 67.0 1.24 803.0 4.5 7.4 22.25 F24556 6.1 7.1 1.7 98.H 135.G 129.M 775.G 4.9 33.8 20.4 F24555 6.1 7.0 1.8 69.G 87.M 136.G 98.9 7.4 20.3 F24555 6.1 7.0 1.8 69.G 87.M 136.G 4.9 30.2 23.8 F24555 6.1 7.0 1.5 98.H 219.H 129.M 776.G 4.4 10.8 20.1 F24565 6.4 7.2 1.8 55.M 149.G 105.M 82.7 6.1 7.7 18.5 F24565 6.4 7.2 1.8 55.M 149.G 106.M 82.5 6.1 7.7 18.5 F24565 6.4 7.2 1.8 55.M 149.G 106.M 82.7 7.7 18.5 F24565 6.4 7.2 1.8 55.M 149.G 106.M 82.7 7.7 18.5 <td>24557 60 7.0 1.8 67 15.4 20.4</td> <td>W3</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	24557 60 7.0 1.8 67 15.4 20.4	W3				5							0.0							
F24558 6.1 7.0 1.8 69.6 87.M 135.6 57.1 5.1 57.1 8.1 F24558 6.5 7.0 1.8 69.6 87.M 135.6 98.9 6 4.0 33.2 23.3 F24558 6.5 7.0 1.8 98.H 26.6 7.0 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.1 1.8 27.7 1.8 27.7 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 1.7.1 1.8 <td>24555 6.1 7.1 1.7 98.H 135.G 127.M 1024G 5.1 5.7 18.4 24555 6.1 7.1 1.7 98.H 135.G 127.M 1024G 5.1 5.7 18.4 17.1 24565 6.5 7.1 1.8 92 H 62 1.70 7.76 4.0 3.0 23.8 24565 6.4 7.1 1.8 92 H 62 1.20 7.7 1.8 17.1 24565 6.4 7.2 2.0 135 H 135 G 122 M 7.7 1.8 57 1.1 1.7 1.1</td> <td>W4</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>010</td> <td></td> <td></td> <td></td> <td>1.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	24555 6.1 7.1 1.7 98.H 135.G 127.M 1024G 5.1 5.7 18.4 24555 6.1 7.1 1.7 98.H 135.G 127.M 1024G 5.1 5.7 18.4 17.1 24565 6.5 7.1 1.8 92 H 62 1.70 7.76 4.0 3.0 23.8 24565 6.4 7.1 1.8 92 H 62 1.20 7.7 1.8 17.1 24565 6.4 7.2 2.0 135 H 135 G 122 M 7.7 1.8 57 1.1 1.7 1.1	W4	-						010				1.1							
F24550 6.1 7.1 1.8 69 87.0 75 4.9 3.0 F24560 5.9 7.1 2.3 59 56 1.2 3.0 23.8 F24560 5.9 7.1 2.3 59 56 4.0 3.0 23.8 F24563 6.1 7.0 1.8 92 92.1 171 93 20.1 F24563 6.1 7.2 2.0 133 53 143 6 4.0 3.0 23.8 21.0 F24565 6.4 7.2 2.0 135 143 135 143 157 6.9 17.1 18.5 F24565 6.4 7.2 1.8 55 143 106 825 6.4 17.1 18.5 F24565 6.4 7.2 1.8 55 143 106 107 18.5 17.1 18.5 F24565 6.4 7.2 1.8 55 143 106 106 106 107 18.7 17.1 18.5 Sampoutum	24565 6.1 7.0 1.8 69.6 87.0 75.6 4.0 3.8 20.4 24565 6.1 7.1 1.8 69.6 87.0 75.6 4.0 3.8 20.4 24563 6.1 7.0 1.5 98.H 219.H 125.M 775.G 4.0 3.8 20.4 24565 6.4 7.2 1.3 59.M 56.H 120.M 775.G 4.0 3.0 23.8 20.4 24565 6.4 7.2 2.0 135.H 135.G 435.M 116.H 21.0 21.0 21.0 21.0 22.4 21.0 21.0 21.0 21.1 135.H 21.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>124</td> <td></td> <td>1004</td> <td></td> <td>2</td> <td></td> <td>2.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						124		1004		2		2.2							
F245503 5:1 7:0 1:0 5:0 6:1 7:0 1:0 5:0 4:1 3:0 <	4560 5.9 7.1 1.0 0.9 0.0 1.0 1.0 2.0 3.0	50							1024				2.0.0							
F24560 5.7 1.1 2.3 534M 77.0 4.0 3.0 3.3.8 F24563 6.5 7.1 1.8 92.H 62.L 178.G 1.0 3.0 3.3.8 F24563 6.4 7.2 1.8 95.H 183.G 4.4 103 2.3.8 F24565 6.4 7.2 1.8 55.M 149.G 106.M 825.G 4.2 7.7 18.5 F24565 6.4 7.2 1.8 55.M 149.G 106.M 825.G 4.2 7.7 18.5 F24565 6.4 7.2 1.8 55.M 149.G 106.M 825.G 4.2 7.7 18.5 Reults: P.K. Mg and Ca are extracted by Wehich-3 (CP) and are reported in ppm 8 8 106.M 825.G 4.2 7.7 18.5 Reults: P.K. Mg and Ca are extracted by Wehich-3 (CP) and are reported in ppm 8 132.M 149.G 106.M 8 106.M 8 106.M 106.M 106.M 106.M 106.M 106.M 106.M 106.M 106.M	233 7.1 2.3 334 56L 124 7.1 2.3 394 17.1 24563 6.5 7.1 1.8 934 1214 125 M 794 6 1.1 17.1 24564 6.4 7.2 1.35 H 836 125 M 149 6 125 M 10.8 21.0 24565 6.4 7.2 1.35 H 836 125 M 149 6 106 M 825 6 4.2 7.7 18.5 24565 6.4 7.2 1.36 55 M 149 6 106 M 825 6 4.2 7.7 18.5 24565 6.4 7.2 1.36 7.7 18.5 10.6 M 825 6 4.2 7.7 18.5 24554 106 M 825 106 M 87 7.7 18.5 10.6 24554 106 M 825 106 M 86 4.6 7.7 <				_	-			989				8.6							
F24565 6.1 7.0 1.5 98 H 219 H 122.6 7.4 10.8 21.0 F24565 6.4 7.2 1.8 55.M 149 G 106 M 825 G 4.2 7.7 18.5 F24565 6.4 7.2 1.8 55.M 149 G 106 M 825 G 4.2 7.7 18.5 F24565 6.4 7.2 1.8 55.M 149 G 106 M 825 G 4.2 7.7 18.5 F24565 6.4 7.2 1.8 55.M 149 G 106 M 825 G 4.2 7.7 18.5 Results: P.K. Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 825 G 4.2 7.7 18.5 Sampe Number Ariv prs prs 149 G 106 M 825 G 4.2 7.7 18.5 Sampe Number Ariv prs prs 149 G 106 M 825 G 4.2 7.7 18.5 Sampe Number Ariv prs prs 149 G 106 M 825 G 4.2 7.7 18.5 <td>24562 6.5 7.1 7.8 92 H 62 17.1 1.8 92 H 210 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 1.1</td> <td>33</td> <td></td> <td></td> <td>2</td> <td></td> <td>90</td> <td></td> <td>G11</td> <td></td> <td>-</td> <td></td> <td>3.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	24562 6.5 7.1 7.8 92 H 62 17.1 1.8 92 H 210 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 17.1 1.8 1.1	33			2		90		G11		-		3.2							
F24563 6.1 7.0 1.5 98 H 219 H 125 M 746 4.4 10.8 21.0 F24565 6.4 7.2 2.0 135 H 183 G 132 M 1150 H 5.7 6.9 17.1 F24565 6.4 7.2 2.0 135 H 183 G 106 M 825 G 4.2 7.7 18.5 F24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 F24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 Results: P,K.Mg and Ca are extacted by Mehlich-3 (PP) and are reported in ppm 245 F 106 106 M 825 G 4.2 7.7 18.5 Sample Number Lab Number PriV DPS 149 G 106 M 825 G 4.2 7.7 18.5 Sample Number Lab Number PriV DPS 148 G 106 M 106 M </td <td>24563 6.1 7.0 1.5 98 H 219 H 125 M 732 M 1150 H 5.7 6.9 17.1 24564 6.4 7.2 2.0 135 H 183 G 132 M 1150 H 5.7 6.9 17.1 24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 24564 7 7 18 C 106 M 825 G 4.2 7.7 18.5 4 106 M 825 G 4.2 7.7 18.5 4 106 M 825 G 4.2 7.7 18.5 are extracted by Mehlich-3 (ICP) and are reported in ppm 10 113 113 113 are extracted by Mehlich-3 (ICP) and are reported in ppm 13 13 13 13 45555 182 46 46 16 13 14 14 A4555 106 82 45</td> <td>54</td> <td></td> <td>-</td> <td></td> <td></td> <td>62</td> <td>178</td> <td>1202</td> <td>_</td> <td>_</td> <td></td> <td>59.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>	24563 6.1 7.0 1.5 98 H 219 H 125 M 732 M 1150 H 5.7 6.9 17.1 24564 6.4 7.2 2.0 135 H 183 G 132 M 1150 H 5.7 6.9 17.1 24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 24564 7 7 18 C 106 M 825 G 4.2 7.7 18.5 4 106 M 825 G 4.2 7.7 18.5 4 106 M 825 G 4.2 7.7 18.5 are extracted by Mehlich-3 (ICP) and are reported in ppm 10 113 113 113 are extracted by Mehlich-3 (ICP) and are reported in ppm 13 13 13 13 45555 182 46 46 16 13 14 14 A4555 106 82 45	54		-			62	178	1202	_	_		59.2							2
F24564 6.4 7.2 1.3 1 133 1 135 1 157 6.9 7.7 18.5 F24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 F24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 Results: P.K. Mg and Ca are extracted by Mellich-3 (ICP) and are reported in ppm Eacod H=High v=Very High Prive	24565 6.4 7.2 135 H 183 G 132 M 1150 H 57 6.9 17.1 24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 36 7 7 18.5 7 7 18.5 7 7 18.5 36 7 7 18.3 G 7 7 18.5 7 7 18.5 7 7 18.5 7 7 18.5 7 7 18.5 7 7 18.5 7 7 7 7 18.5 7 <td><1</td> <td></td> <td></td> <td></td> <td></td> <td>219</td> <td>125</td> <td>794</td> <td></td> <td></td> <td></td> <td>0 0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<1					219	125	794				0 0							
Results: P.K. Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 135 M 149 G 105 M 325 G 4.2 7.7 18.5 Results: P.K. Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 825 G 4.2 7.7 18.5 Sample Number P.F.Very High Provery High Provery High Proverse High	24565 6.4 7.2 1.8 55.M 149.G 105.M 132.M 133.H 18.5 24565 6.4 7.2 1.8 55.M 149.G 106.M 825.G 4.2 7.7 18.5 24565 6.4 7.2 1.8 55.M 149.G 106.M 825.G 4.2 7.7 18.5 24555 182 46 46 46 46 46 46 24556 182 46 46 46 46 46 24556 113 46 46 46 46 24556 113 46 46 46 24556 113 46 46 46 24556 113 46 46 24556 113 46 46 24556 113 46 46 24556 113 46 46 24556 113 46 46 24556 113 46 46 24565 113 46 47 24565 16 13 46	: 5											7.00							
F24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Ecod H=ligh V=Very High 106 M 825 G 4.2 7.7 18.5 Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Ecod H=ligh V=Very High	24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 24565 6.4 7.2 1.8 55 M 149 G 106 M 825 G 4.2 7.7 18.5 are extracted by Mehlich-3 (ICP) and are reported in ppm um G=Good H=High V=Very High um G=Good H=High V=Very High ohumber Priv Des 0.0000 H=113 24555 182 46 24555 182 46 24556 182 46 24556 113 24558 813 24563 113 24563 113 24563 113 24563 113 24563 113 24563 113 24563 113 24563 113 24563 113 24563 113 24564 152 39 24564 152 39 24564 152 39 24564 152 39 24565 67 24565 113 24564 152 39 24565 113 24565 113 2456 113	K				-	183	132	1150	_			6.0							ſ
Results: P.K. Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Results: P.K. Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Ratings: L=Low M=Medlum G=Good H=High V=Very High Sample Number Lab Number Lab Value Parlo Sample Number Lab Number F24556 68 F24556 68 F24556 105 F24556 113 F24563 113 F24563 113 F24564 152 F24565 113 F24565 113 F24565 113 F24565 113 F24565 113 F24565 113 F24565 152	are extracted by Mehlich-3 (ICP) and are reported in ppm are extracted by Mehlich-3 (ICP) and are reported in ppm um G=Good H=High V=Very High Very High Values 24555 11 24555 12 24555 13 24555 13 24555 13 24555 13 24555 13 24555 13 24555 13 24555 13 24555 13 24555 13 24555 13 24556 13 24555 13 24555 13 24555 13 24555 13 24565 13 24565 13 24565 13 24565 13 24565 14	3					149	106	825				73.8							
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number PFIV DPS F24555 182 46 46 F24556 68 113 46 F24556 68 113 46 F24559 80 71 524560 F24560 71 166 71 F24563 113 524563 113 F24563 67 39 524563 57 F24565 67 39 52 57	are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High ohumber Priv 24555 182 24555 182 24556 68 24557 80 24558 113 24558 113 24558 113 24558 113 24558 113 24556 68 24557 80 24558 113 24558 113 24563 113 24556 68 24553 39 24564 152 24565 67										-									
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number PFIV DPS F24555 182 46 46 F24556 68 113 46 F24556 68 113 46 F24559 80 71 524560 F24560 71 13 524563 F24563 113 524563 113 F24563 67 39 524563	All All <td></td>																			
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number PFIV DPS F24555 182 46 46 F24556 68 113 46 F24556 68 113 46 F24559 80 71 524560 F24560 71 13 524563 F24553 80 71 524563 F24553 80 71 524563 F24553 82 71 524563 113 F24560 71 524563 113 524563 F24563 113 524563 113 524563 F24563 113 524563 113 524563 F24563 67 39 524563 67 39	are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High ohumber P-FIV 0 Number P-FIV			-			_						1							
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number PFIV DPS F24555 182 46 46 F24556 68 113 46 F24556 68 113 46 F24559 80 71 524560 F24560 71 713 524563 F24563 113 524563 113 F24563 67 39 524563 51	are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High ohumber P-FIV ohumber											- March								
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number PFIV DPS F24555 182 46 46 F24556 68 113 46 F24556 68 113 46 F24556 113 71 71 F24553 113 71 71 F24563 67 39 71 F24565 67 39 71	are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High avmber Priv avmber Priv avmber Priv avmber Priv 24555 182 24556 68 24558 113 24558 113 24553 80 24554 106 24553 80 24554 113 24553 80 24564 152 24565 67 24565 67					-														
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number P=FV DPS 100 124555 182 46 133 124555 182 46 133 124555 113 133 124556 68 113 133 124556 113 113 124556 113 113 124556 113 113 124556 113 113 124556 113 113 124556 113 113 124556 116 113 <td>are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High 0 Number P.FIV DPS 0 Number P.FIV DPS 0 4555 182 46 24555 182 46 24556 68 24556 24558 113 24558 24559 80 24560 24550 71 24553 24553 113 24563 24563 113 24563 24563 113 24564 24563 113 24563 24564 152 39 24565 67 39</td> <td></td>	are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High 0 Number P.FIV DPS 0 Number P.FIV DPS 0 4555 182 46 24555 182 46 24556 68 24556 24558 113 24558 24559 80 24560 24550 71 24553 24553 113 24563 24563 113 24563 24563 113 24564 24563 113 24563 24564 152 39 24565 67 39																			
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number P_FIV DPS (ICP) and a P_FIV PPS Sample Number Lab Number P_FIV DPS 46 132 46 133 133 133 124556 68 113 113 113 124556 113 113 124556 113 113 124556 113 113 124556 113 113 124556 113	are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High Number P.FIV DPS Number P.FIV DPS Ad555 182 46 24555 182 46 24556 68 82 24556 113 24556 24563 113 24563 24563 113 24564 24563 113 24563 24563 67 39 24565 67 39											-								
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number PFIV DPS Sample Number Lab Number PFIV DPS F24556 68 F24556 46 F24558 113 F24558 113 F24559 80 F24556 30 F24553 113 F24553 113 F24553 113 F24553 31 F24553 113 F24553 31 F24553 113 F24553 31 F24553 113 F24563 113 F24563 113 F24563 113 F24563 113 F24563 113 F24563 113 F24563 113 F24563 67 39 F24565 67	are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High bNumber P-FIV DPS bA555 182 46 24556 68 2455 24553 113 2455 24553 113 2455 24563 113 2455 24563 113 2456 24564 152 39 24565 67 39																			
Results: P. K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number PFIV DPS (ICP) and a result of the second sec	are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High b Number P-FIV pPS 24555 182 46 24556 68 24556 68 24556 88 24558 113 24558 113 24558 113 24563 113 24563 113 24565 67 24564 152 39 24565 67																			
Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number PFIV DPS PS Sample Number Lab Number PFIV DPS PS F24556 68 F24556 68 F24556 A6 F24558 113 F24558 113 F24559 80 F24559 113 F24559 80 F24559 82 F24563 113 F24563 67 39 F24563 F24	are extracted by memicin-s (LCP) and a um G=Good H=High V=Very High b Number P-FIV pPs b A555 182 46 24556 68 82 24553 80 71 24554 113 24563 24563 113 39 24564 152 39 24565 67 39					1000 0		:												
	Sample Number Lab Number PFIV DPS M1 F24554 106 P M2 F24555 182 46 M2 F24556 68 113 M4 F24556 68 113 C1 F24556 80 113 C2 F24550 81 113 C3 F24550 113 113 C4 F24563 113 116 C4 F24563 113 106 C1 F24563 113 22 C4 F24563 113 24 C3 F24563 113 39 C4 F24565 67 39 C4 F24565 67 39		M=Medium G=G	ood H=I	High V=V	-3 (ICP) a Very High	nd are repo	rted in ppm												
F24555 106 F24555 182 F24555 182 F24556 68 F24557 80 F24558 113 F24559 82 F24569 82 F24560 71 F24563 113 F24563 113 F24563 113 F24565 67 F24565 67	24554 106 24555 182 24555 182 24556 68 24556 68 24559 82 24560 71 24563 113 24564 152 24565 67	Samola Number	I ab Minmhan	DEN	300		ALC: NO CONTRACTOR	No. Contraction	STATISTICS.			100				C. V. W.	2.5. 5.5	61 . A		
F24554 106 F24555 182 F24556 68 F24556 68 F24558 113 F24559 82 F24560 71 F24563 113 F24563 113 F24564 152 F24565 67	24554 106 24555 182 24556 68 24557 80 24558 113 24559 82 24563 113 24563 113 24563 113 24565 67 24565 67				5		and a const		Service Service					and the second				The second		
F24555 182 F24556 68 F24556 68 F24558 113 F24559 80 F24569 71 F24560 71 F24563 113 F24563 113 F24564 152 F24565 67	24555 182 24556 68 24557 80 24558 113 24559 82 24563 113 24563 113 24564 152 24565 67 24565 67	N1	F24554	106																
F24556 68 F24556 68 F24558 113 F24559 82 F24560 71 F24563 113 F24563 113 F24564 152 F24565 67	24556 68 24557 80 24558 113 24559 82 24560 71 24563 113 24564 152 24565 67	W2	F24555	182	46															
F24557 80 F24558 113 F24559 82 F24569 71 F24562 106 F24563 113 F24564 152 F24565 67	24557 80 24558 113 24559 82 24560 71 24562 106 24563 113 24564 152 24565 67	N3	F24556	68		_														
F24558 113 F24559 82 F24560 71 F24562 106 F24563 113 F24564 152 F24565 67	24558 113 24558 113 24560 71 24562 106 24563 113 24564 152 24565 67	MA	E24667	SO CR																
F24559 113 F24569 82 F24560 71 F24563 113 F24564 152 F24565 67	24559 113 24569 71 24562 106 24563 113 24564 152 24565 67		LOVED	140																
F24559 82 F24560 71 F24562 106 F24563 113 F24564 152 F24565 67	24569 82 24560 71 24562 106 24563 113 24564 152 24565 67		124030	21																
F24560 71 F24562 106 F24563 113 F24564 152 F24565 67	24560 71 24562 106 24563 113 24564 152 24565 67 24565 67	77	F 24559	28																
F24562 106 F24563 113 F24564 152 F24565 67	24562 106 24563 113 24564 152 24565 67	<u></u>	F24560	11																
F24563 113 F24564 152 F24565 67	24563 113 24564 152 24565 67	40	F24562	106																
F24565 67	24565 67	K1	F24563	113																
F24565 67	24565 67	: :	LOAFEA		00															
F24565	24565	2	F 24504	ZCL	39															
		(3	F24565	67																

)						Soil +	Soil Analysis Report	Report)
		Report To	nt To				Prep	Prepared For					が行うです		1000	
AET Consulting Inc	ting Inc	AE1 267 NOF	7 TELE	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	NC D 1901-12	07	RIC	RICH LEVELS GRAIN	ELS GF	RAIN			Sampled Tested		11-26	11-26-2024 12-04-2024
sample Number BY1 BY2 BY3 BY4 BY5 CH1 CH2 CH2 CH3 CH2 CH3	Lab Number F24566 F24566 F24569 F24570 F24571 F24573 F24573 F24573 F24573	вине р. 201 201 201 201 201 201 201 201	Anternational An	^{Phossphorus} Phossphorus 647 V 666 G 580 V 554 M 455 M 45 M 45 M 45 M	Analysis Rev 153 G 153 G 153 G 153 G 170 G 84 M 147 G 105 M 105 M	Analysis Result and Rating Potassium Magnesium Rassium Magnesium 153 G 124 M 196 G 72 M 104 M 159 G 147 G 121 M 124 G 147 G 124 G 147 G 105 M 149 G	catcium Catcium 1187 H 1962 V 1713 H 905 G 695 G 695 G 833 G 833 G 833 G 833 G	CEC 55.7 5.7 5.7 4.5 5.4 3.3 8.3 3.7 4.5 5.7	55.0 55.0	Base Saturation 6 8 8 8 8 9 9 8 9	on ca Sultur 78.2 88.6 86.3 73.8 66.4 66.9 70.4 70.4	8 8 8	Zinc Fee Co Zinc Fee Co Zinc Fee Co	Copper Copper	Nang.	Alum.
* Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High	and Ca are extra M=Medium G=G	acted by I	Wehlich-3 igh V=Ve	(ICP) and a rry High	ire reported in ppm	d in ppm										
Sample Number	Lab Number	P-FIV	SdQ	ALL ALLAND												
BY1	F24566	230	49													
BY2 BV3	F24567	692	151													
BY4	F24569	10C	Ξ													
BY5	F24570	621	148													
CH1	F24571	99														
CH2	F24572	64														
CH4 CH4	F24574	48 57														
Analitzed by Construm Analitic las	ما ما ما															

Transmotion Tenant is aftraction Tenant is aftracti																				
Construction AFT CONSTITUES INC AFT CONSTITUES INC STATE RICH LEVELS GRAIN Sampled Tested ET Consulting Inc Morth Lessry, MD 21801-1207 RICH LEVELS GRAIN Sampled ET Consulting Inc Morth Lessry, MD 21801-1207 RICH LEVELS GRAIN Sampled ET Consulting Inc Morth Lessry, MD 21801-1207 RICH LEVELS GRAIN Sampled ET Consulting Inc Morth Lessry, MD 21801-1207 RICH LEVELS GRAIN Sampled ET Consulting Inc Morth Lessry, MD 21801-1207 RICH LEVELS GRAIN Sampled ET Consulting Inc Morth Lessry, MD 21801-1207 RICH LEVELS GRAIN Sampled ET Consulting Inc Morth Lessry, MD 21801-1207 RICH LEVELS GRAIN Sampled Morth Lessry, MD 21801-1207 RICH LEVELS GRAIN RICH LEVELS RICH LEVELS RICH LEVELS Morth Lessry, MD 21801-1207 RICH LEVELS RICH LEVELS RICH LEVELS RICH LEVELS RICH LEVELS MORT RESERVENT RICH LEVELS RICH LEVELS RICH LEVELS RICH LEVELS RICH LEVELS MORT RESERVENT RICH LEVELS RICH LEVELS RICH LEVELS RICH LEVELS	V		Re	port To				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pre	spared F.	or	State State		Contraction of the second					a difference	ile All
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AET Consuli	ting Inc	Z8 AE	ET COL 77 TEL DRTH I	ISULT EGRA EAST, I	PH RD MD 21	C 901-12(21	₽	CH LE	VELS (GRAIN				Sar Tes	npled ted		11-2	6-2024
F2457 55 7.3 2.2 41.M 1006 155 832 5.3 16.3 5.3 16.3 5.3 16.3 5.3 16.3 5.3 16.3 5.3 16.3 5.3 16.3 5.3 16.3 17.3 25.3 17.4 16.4 16.3 17.3 25.4 17.3 25.4 17.3 25.4 17.3 25.4 17.3 25.4 17.3 25.4 17.3 25.4 17.3 25.4 17.3 25.4 17.3 25.4 17.3 25.4 17.3 16.3	Sample Number	Lab Number	Soil BH				Inalysis Res otassium	ult* and Ratin Magnesium Mc.		CEC	Bas K	e Saturati	ion Ca	Sultur	Boron	Mehi	ich-3 PPM an Iron	d Rating Copper		Alum.
M1 F2457 6.5 7.3 2.2 4.1 105 135 6.3 7.3 2.2 4.1 105 135 6.3 7.3 2.2 4.3 6.3 7.3 2.2 4.3 6.3 7.3 2.2 4.3 6.3 7.3 2.2 4.3 6.3 7.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.41 1.3 1.41 1.3 1.41 1.3 1.41 1.3 1.41 1.3 1.41 1.3 1.41 1.3 1.41 1.3 1.41 1.33 1.41 1.43 1.41 1.43 1.41 <th1.41< th=""> <th1.41< th=""> <th1.41< th=""></th1.41<></th1.41<></th1.41<>		111.01	Ha				×	Mg	Ca			%	%	S	8	5	Fe	Cup		AI
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH5	F245/5	6.5		_	41 M	160 G	155 G				19.3	53.0							
W1 F24577 6.2 7.1 2.0 4.0 104 169 7 5.3 2.7 <th2.7< th=""> <th2.7< th=""> <th2.7< th=""></th2.7<></th2.7<></th2.7<>	CH6	F24576		-		62 G	144 G	126 M				24.3	67.5			_				
W1 F24578 6.4 7.2 2.0 22.L 107 M 164 G 706 G 4.3 5.3 2.7.8 W3 F24578 6.3 7.2 1.0 161 V 148 G 88 M 971 G 4.6 6.3 14.1 W5 F24581 6.3 7.2 1.9 150 H 140 G 93 M 1084 H 5.0 6.6 13.5 W5 F24581 6.2 7.1 2.0 186 V 148 G 100 M 4.1 7.3 15.0 W6 F24585 6.4 7.2 2.4 123 H 105 M 123 G 10.0 13.5 W7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 123 H 10.9 W7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 W7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 W7 F24558 6.4 <td>CH7</td> <td>F24577</td> <td></td> <td></td> <td></td> <td></td> <td>104 M</td> <td>169 G</td> <td></td> <td></td> <td></td> <td>27.9</td> <td>67.1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	CH7	F24577					104 M	169 G				27.9	67.1					-		
W1 F24579 6.3 7.1 1.7 205 V 133 G 88 M 971 G 4.6 6.3 13.1 W2 F24580 6.0 7.5 2.0 161 V 148 G 100 M 1223 H 6.0 13.5 W5 F24581 6.6 7.2 1.8 225 V 148 G 100 M 1223 H 5.0 4.5 10.5 W6 F24581 6.6 7.0 1.6 80 G 99 M 93 M 1094 G 4.5 10.5 W7 F24585 6.4 7.2 1.8 225 V 138 G 84 M 849 G 4.1 7.3 15.0 W7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 W6 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 W6 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 <tr< td=""><td>CH8</td><td>F24578</td><td></td><td>-</td><td></td><td></td><td>107 M</td><td>164 G</td><td></td><td></td><td></td><td>27.8</td><td>66.8</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></tr<>	CH8	F24578		-			107 M	164 G				27.8	66.8			-				
W2 F24580 6.0 7.5 2.0 161 V 148 G 87 M 1036 G 4.8 6.6 13.5 W4 F24581 6.3 7.2 1.9 150 H 140 G 93 M 1034 H 5.0 6.0 13.5 W5 F24582 6.6 7.0 1.6 825 V 138 G 90 M 849 G 4.1 4.5 10.4 W6 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1019 G 4.7 4.5 10.2 W6 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 W7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 M7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 4.5 16.2 M8 F24575 52 2.4 123 H 105 M 112 M 1072 H 4.5 16.2 M1 <td>CRAW1</td> <td>F24579</td> <td></td> <td></td> <td></td> <td>05 V</td> <td>133 G</td> <td>88 M</td> <td>971</td> <td></td> <td>_</td> <td>14.1</td> <td>79.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CRAW1	F24579				05 V	133 G	88 M	971		_	14.1	79.6							
W3 F24581 6.3 7.2 1.9 150 H 140 G 93 M 1084 H 5.0 6.0 13.5 W5 F24582 6.6 7.2 1.8 225 V 148 G 100 M 1223 G 7.0 45 104 W6 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 W6 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 W7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 W7 F24585 6.4 7.2 2.4 123 H 105 M 1072 H 5.1 4.5 16.2 M1 F2458 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 M1 F2458 6.4 7.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 <t< td=""><td>CRAW2</td><td>F24580</td><td></td><td></td><td>-</td><td>61 V</td><td>148 G</td><td>87 M</td><td>1036</td><td></td><td>1000</td><td>13.2</td><td>80.2</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>	CRAW2	F24580			-	61 V	148 G	87 M	1036		1000	13.2	80.2		-					
W4 F24582 6.6 7.2 1.8 225 V 148 G 100 M 1223 G 7.0 45 10.4 W5 F24583 6.2 7.1 2.0 185 V 138 G 84 M 849 G 4.1 7.3 15.0 W6 F24584 6.0 7.0 1.6 80 G 99 M 93 M 1019 G 4.7 4.5 16.2 W7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 W7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 W7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 M1 F2457 52 F45 16.2 7.0 4.5 16.2 4.5 16.2 M1 Lab Number F1 M M 107 H 5.1 4.5 16.2 M2 F24575 52 F24	CRAW3	F24581				50 H	140 G	93 M	1084		-	13.5	80.5				_			
WIT F24563 6.0 7.1 2.0 185 V 136 G 99 M 1019 G 4.1 7.3 150 WIT F24563 6.0 7.0 16 80 G 99 M 1019 G 4.1 7.3 150 WIT F24564 6.0 7.0 16 80 G 99 M 1019 G 4.1 7.3 150 WIT F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 MIT F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 MIT F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 Results: P.K. Mg and Ca are extracted by Mehlch-3 (fP) and are reported in ppm 5.1 4.5 16.2 5.1 4.5 16.2 5.1 4.5 5.1 4.5 5.1 4.5	CRAWA	E24587		-		25 \	0 011	ADD M	1000				1 10	1		_				
WU F24583 6.4 7.2 2.4 103 H 0.43 H 4.1 7.3 13.0 WY F24584 6.0 7.0 1.6 80 G 99 M 93 M 1019 G 4.7 4.5 14.5 WY F24585 6.4 7.2 2.4 123 H 105 M 112 M 1019 G 4.7 4.5 16.2 WY F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 Results: P.K. Mg and Ca are extracted by Mehlch-3 (ICP) and are reported in pm 112 M 1072 H 5.1 4.5 16.2 Sample Number ArMedium G=Good H+Hgh V=Very Hgh DF 226 50 7 4.6 16.2 W1 F24575 52 54 7 36 17 36 W1 F24576 7 36 0 32 0 32 0 32 0 32 0 32 0 32		124502					140 0		0771		92. S	10.4								
W0 F-24585 6.4 7.2 2.4 123 H 1019 G 4.5 16.2 W7 F24585 6.4 7.2 2.4 123 H 105 M 1072 H 5.1 4.5 16.2 Results: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Armostic 5.1 4.5 16.2 Results: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Armostic Armostic 4.5 16.2 Results: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Armostic Armostic Armostic Ar.5 16.2 N1 F24575 52 P Montor Armostic Armostic Armostic Ar.5 16.2 Ar.5 17.5 Ar.5 17.5	CLAVO	L24203				> C0	138 6	84 M	849			15.0	1.11				_			
W7 F24585 6.4 7.2 2.4 123 H 105 M 112 M 1072 H 5.1 4.5 16.2 Results: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 1072 H 5.1 4.5 16.2 Results: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 1072 H 5.1 4.5 16.2 Results: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 1072 H 5.1 4.5 16.2 Results: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 1072 H 5.1 4.5 16.2 Results: L=Iow M=Medium G=Good H=High V=Very High DPS P P P Sample Number Lab Number P=V DPS P W1 F24575 52 50 M W2 F24576 75 50 M W3 F24581 204 46 W5 F24582 247 60 W6 F24582 247 60 W6 F24582 139 M W6 F24584 94 W6 F24584 94	CRAW6	F24584				80 G	W 66	93 M	1019			14.5	81.0							
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Friv Distribution Frid Sample Number Lab Number Prist 52 W1 F24576 75 F24576 75 N02 F24578 32 W1 F24578 32 W2 F24578 32 W3 F24578 32 W3 F24583 204 W6 F24584 94	CRAW7	F24585			`	23 H	105 M	M 212 M	1072			16.0	70.3							
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number L=Low M=Medium G=Good H=High V=Very High Made Sample Number L=b Number D=S 52 75 75 W1 F24575 51 51 75 75 W1 F24578 32 36 32 W1 F24581 1167 36 36 W2 F24582 247 60 32 W3 F24583 204 46 46 W5 F24583 204 46 46 W6 F24583 204 46 46 W6 F24585 139 46 46		2001	-						1		si Cari	7.01	0.01			-		_		
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number G=Good H=High V=Very High Sample Number Lab Number DPS W1 F24575 52 F24576 75 51 W1 F24578 32 W2 F24578 32 W3 F24580 179 32 W3 F24583 204 46 W5 F24583 204 46 W6 F24583 204 46 W6 F24583 204 46 W6 F24583 204 46 W6 F24585 139 46																_				
Results: P. K. Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number Sample Number Lab Number N1 F24575 F24576 75 F24576 75 F24576 75 W1 F24578 W2 F24578 W3 F24580 W3 F24581 W4 F24582 W5 F24583 W6 F24583 F24583 204 W6 F24585 F24585 139					ł													_		
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number Lab Number P=FIV DPS ICP) and a results: P <fiv< td=""> ICP) and a results: P<fiv< td=""> ICP) ICP) and a results: P<fiv< td=""> ICP ICP) ICP <</fiv<></fiv<></fiv<>																				
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number FEV DPS ICP) and a retracted by Mehlich-3 (ICP) and a retracted by															1					
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: Lab Number P-FIV DPS CP And a diametriated by Mehlich-3 (ICP) and a results: P-FIV DPS CP And a diametriated by Mehlich-3 (ICP) and a results: P-FIV DPS CP And a diametriated by Mehlich-3 (ICP) and a results: P-FIV DPS CP P-FIV CP P																				
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: Lab Number P=High CP And a results And a results </td <td></td> <td></td> <td>1</td> <td>1</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1	1	+							-								
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number C=Good H=High V=Very High Sample Number Lab Number P.FIV DPS W1 F24575 52 52 W1 F24576 75 51 W2 F24578 32 32 W3 F24580 179 32 W3 F24583 204 46 W5 F24583 204 46 W5 F24583 204 46 W6 F24583 204 46 W6 F24583 204 46																				
Results: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number Lab Number DPS DPS DPS Sample Number Lab Number Lab Number P=FIV DPS DPS Sample Number Lab Number Lab Number P=FIV DPS DPS N1 F24575 52 52 52 50 N W1 F24578 32 51 50 32 N W2 F24580 179 32 36 N 36 N W3 F24583 204 46 36 N 46 N N 46 N 46 179 36 N 46 167 46 46 18 18 46 18 46 18 46 18 46 18 18 18 18 18 46 18 46 18 18 18				-	-															
>>>>>>>		and Ca are extra =Medium G=G	acted by	V Mehlic	h-3 (ICP)		e reported	l in ppm												
F24575 52 F24576 75 F24576 75 F24576 75 F24577 51 W1 F24578 32 W2 F24579 226 W3 F24579 226 W3 F24580 179 W4 F24581 167 W5 F24582 247 W6 F24583 204 W6 F24583 204 W6 F24583 204 W6 F24583 2139	Sample Number	Lab Number	P.FIV	dd	s									Sec. 1						
M1 F24575 52 F24576 75 F24577 51 F24578 32 W1 F24579 32 W2 F24580 179 W3 F24581 167 W4 F24582 247 W5 F24583 204 W6 F24583 204 W6 F24585 139		104676	2																	
W1 F24576 75 F24577 51 F24577 51 F24578 32 W2 F24580 179 W3 F24581 167 W4 F24582 247 W5 F24583 204 W6 F24583 204 W6 F24584 94 W7 F24585 139		C1C471	22		1010															
F24577 51 W1 F24578 32 W2 F24580 179 W3 F24581 167 W4 F24582 247 W5 F24583 204 W6 F24583 204 W7 F24583 204 W7 F24583 204	CH6	F24576	15																	
W1 F24578 32 W2 F24579 226 W2 F24581 179 W3 F24581 167 W4 F24581 167 W5 F24582 247 W6 F24583 204 W6 F24584 94 W7 F24585 139	CH7	F24577	51																	
F24579 226 F24580 179 F24581 167 F24582 247 F24583 204 F24584 94 F24585 139	CH8	F24578	32																	
F24580 179 F24581 167 F24582 247 F24583 204 F24584 94 F24585 139	CRAW1	F24579	226	2(0															
F24581 167 F24582 247 F24583 204 F24584 94 F24585 139	CRAW2	F24580	179	ю.	0															
F24582 247 F24583 204 F24584 94 F24585 139	CRAW3	F24581	167	36																
F24583 204 F24584 94 F24585 139	CRAW4	F24582	247	90																
F24584 94 F24585 139	CRAW5	F24583	204	44																
F24585	CRAWE	E2458A	2	•	,															
F 24000		101121	100																	
	CRAW!	LZ4000	139	_	-															

							Soil	Soil Analysis Report	Repor	t)
		Rep	Report To				10 A	Prel	Prepared For							2.854			
AET Consulting Inc	ing Inc	AE 267 NO	T CON 7 TEL RTH E	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 219	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	01-120	7	RIC	RICH LEVELS GRAIN	ELS G	RAIN				Sampled Tested	d		11-26	11-26-2024 12-04-2024
Sample Number	Lab Number	Soil Bu	Buffer Ma	er	An Phosphorus Pot	alysis Rest	Analysis Result* and Rating Potassium Magnesium	Calcium	CEC	Base	Base Saturation		Sulfur	Boron	Mehlich	<u>Mehlich-3 PPM and Rating</u> Zinc Iron Cop	tating Copper	Mana.	Alum.
DAVIS 1A	EDAE00			-	1001	× vor	Mg	es o	1	%	%	2	s	8	Zn	Fe	Cu	Wn	AI
DAVIS 1B	_		10							- 0	_	20.0							
	_	-		0.0		202	NI 201	0 444 C	_	9.1	100	12.9							
	F24588					117 M	86 M	654 G	_	7.6		73.5							
DAVIS 3	F24589				51 M 1	109 M	82 M	561 G	21	8.0	-	71.6							Ż
E 1			7.2			163 G	108 M	804 G		8.4	19.0	72.5							
E 1A	F24591	6.1 7		1.8 8		184 G	103 M	992 G		8.1	1.5	76.4							
EL1	F24592					111 M	151 G	804 G		5	-	80.1						f	
EI 2	F24593		-			87 M	M act		t 0			1.00							
1 2	00047		2.1		NI IC	IN 10	INI OZI	ואפ	3.0	4.Y		10.8							
EL3	F24594	6.2 7	-			112 M	186 G	714 G	4.3	5.6	31.8	62.5							
					_														
					_					l,									
					_								• • • • • •						
											_		-						
				_								-							
		1	-	-															
* Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: 1 = 1 ow M=Medium G=Good H=Hich V=Very Hich.	Ind Ca are extra Medium G=G	acted by	Mehlich lich V=	Van Hin		re reported in ppm	in ppm												
Samelo Minucho		Ì			:	100			14			Sec. Co	Contraction of the			10 - A 2 10			1000
			5		ALC: NO.		and the second		1						No. No.	A STATISTICS			
DAVIS 1A	F24586	180	4																
DAVIS 1B	F24587	127																	
DAVIS 2	F24588	65																	
DAVIS 3	F24589	63																	
E 1	F24590	83																	
E 1A	F24591	100																	
EI 1	F24592	65																	
EI 2	E24602	35																	
	124090	44																	
EL3	F24594	43																	
				-														10000 July	
Analyzed by Spectrum Analytic Inc.	tic Inc.															8	0000 000		

Transmis Transmis Transmis Transmis Transmis AFT Clors ultime Maintain								Soil	Soil Analysis Report	Repor	t)
Alton RICH LEVELS GRAIN Sampled FT Consulting Inc Right Restrictions Right Restrictions Sampled FT Consulting Inc Right Restrictions Right Restrictions Sampled ET Consulting Inc Right Restrictions Right Restrictions Sampled ET Consulting Inc Right Restrictions Right Restrictions Sampled Line And Antimeter Restrictions Right Restrictions Sampled Sampled Line Antimeter Restrictions Right Restrictions Right Restrictions Sampled Line Antimeter Restrictions Right Restrictions Right Restrictions <th></th> <th></th> <th>Re</th> <th>port To</th> <th></th> <th></th> <th></th> <th></th> <th>Pre</th> <th>pared Fc</th> <th>4</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			Re	port To					Pre	pared Fc	4									
Journe house Jax Norm Table for the state of the sta	AET Consult	ting Inc	S ² S ²	TT COI	NSULT LEGR/ EAST,	NING IN APH RC MD 21	C 901-12	20	ы Мариан Мари Мари Мариан Мариан Мариан Мариан Мариан Мариан Мариан Мариан Ман	CH LEV	/ELS G	BRAIN				Sam Test	pled		11-2	5-2024 4-2024
memory F24305 65 7.2 2.3 3.3 112M 2.15 3.4 5.5 3.5	Samula Niimhar	and Minimback	Hans		ganic Ph		Analysis Res	ult* and Rating			Bas	e Saturatio				Mehlic	h-3 PPM and	Rating		
F24595 65 7.2 2.5 37M 100M 256 637 54 53 22.9 537 25 53.7 25 53.7 25 53.7 25 53.7 25 53.7 23 53.7 23 53.7 23 53.7 23 53.7 53 23 54 56 56 56 <		Lab Number	Hd		atter Ph		k K	Magnesium	Calcium	0	×%	BW %	°a S	Sulfur S	Boron B	Zinc Zn	lron Fe	Copper	Mang. Mn	Alum. Al
F24595 6.0 7.3 2.4 33 M 110 210 9416 67 3.4 24.3 F24595 6.4 7.1 2.1 23 M 106 184 6 53 54 23.5 54 23.5 55 3.4 23.6 55 24.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 24.5 24.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.5 26.5 74.6 78.0 24.3 24.3 24.5 78.2 24.5 78.2 24.5 78.2 24.5 78.2 24.5 78.2 24.5 78.2 24.5 78.2 24.5 78.2 24.5 <td>EI 4</td> <td>EDAEDE</td> <td></td> <td>-</td> <td>2 10</td> <td></td> <td>100 44</td> <td>C J FC</td> <td>074</td> <td>3</td> <td>%</td> <td>%</td> <td>1 %</td> <td>s</td> <td>8</td> <td>Zn</td> <td>Fe</td> <td>Cu</td> <td>Mn</td> <td>AI</td>	EI 4	EDAEDE		-	2 10		100 44	C J FC	074	3	%	%	1 %	s	8	Zn	Fe	Cu	Mn	AI
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EL5	F24596	-	10.1	2.4	33 M	112 M	2116	948 G		30.4	23.2	53.2							
F24598 6.3 7.2 2.1 33M 99M 168.G 550 4.2 24.5 F24505 6.2 7.1 1.9 30M 78M 159.G 931.G 5.0 4.2 5.3 23.3 F24605 6.2 7.1 1.9 30M 78M 159.G 981.G 50 3.4 23.3 F24605 6.3 7.1 2.0 17.1 201 151.G 769.G 981.G 50 3.4 23.3 F24605 6.1 7.1 2.0 18 211.L 112.M 176.G 682.G 4.1 55 3.4.8 30.7 F24605 6.1 7.1 2.0 171.L 2.0 171.L 74M 211.G 73.G 4.8 30.7 F24605 6.1 7.1 2.0 171.L 74M 211.G 73.G 4.8 30.7 F24605 6.1 7.1 2.0 171.L 74M 211.G 73.6 4.8 30.7 F24605 6.1 7.2 2.1 39	EL6	F24597		1.1	2.1	42 M	106 M	184 G	939 6		5.4		69.1							
F24599 6.2 7.1 1.9 30M 78 M 159 G 50 3.4 23.3 F24600 5.9 7.1 1.8 41M 119 G 144 G 781 G 4.2 6.0 24.9 F24603 6.3 7.0 1.7 5.6 151 G 141 G 756 G 4.2 6.0 24.9 F24604 6.0 7.0 1.8 211 L 120 141 G 756 G 4.1 53 31.6 F24605 6.1 7.1 2.0 1.1 L 74 M 211 G 731 G 34.8 33.9 F24605 6.1 7.2 2.1 39 M 101 M 191 G 786 G 4.6 4.8 30.7 F24605 6.1 7.2 2.1 39 M 101 M 191 G 786 G 4.6 4.8 30.7 F24606 6.1 7.2 2.1 39 M 101 M 191 G 786 G 4.6 4.8 30.7 Results: F, K, Mg and Ca are extracted by Mehhch-3 30 M 786 G 4.4 4.8	EL7	F24598		7.2	2.1	33 M	W 66	168 G	953 6		4.2		71.0						_	
F24600 5.9 7.1 1.8 41M 119 144 781 4.2 6.0 24.3 F24603 6.3 7.1 2.0 151 165 M 116 756 4.2 75 24.1 53 31.3 31.9 F24603 6.1 7.1 2.0 151 172 85 4.1 53 31.6 4.4 53 31.6 F24605 6.1 7.2 2.1 138 171 176 682 4.1 53 31.6 F24606 6.1 7.2 2.1 39M 101 191 6 786 4.8 30.7 F24606 6.1 7.2 2.1 39M 101 191 6 78 31.6 F24606 6.1 7.2 2.1 39M 101 191 6 4.8 30.7 F24606 6.1 7.2 2.1 39M 101 191 6 4.8 30.7 F24606 6.1 7.2 2.1 39M 101 <td< td=""><td>EL8</td><td>F24599</td><td></td><td>1.1</td><td>1.9</td><td>30 M</td><td>78 M</td><td>159 G</td><td>981 G</td><td></td><td>34</td><td></td><td>73.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	EL8	F24599		1.1	1.9	30 M	78 M	159 G	981 G		34		73.4							
F24602 6.2 7.0 1.7 56.M 151.G 756.G 4.8 31.3.9 F24603 6.1 7.1 2.0 151.L 74.M 211.G 756.G 4.8 31.3.9 F24603 6.1 7.1 2.0 17.L 7.1 2.0 17.L 789.G 4.6 3.1 33.9 F24605 6.1 7.2 2.1 39.M 101.M 191.G 786.G 4.8 3.0.7 F24605 6.1 7.2 2.1 39.M 101.M 191.G 786.G 4.6 3.4.8 F24605 6.1 7.2 2.1 39.M 101.M 191.G 786.G 4.6 4.8 3.0.7 F24605 6.1 7.2 2.1 39.M 101.M 191.G 786.G 4.6 4.8 30.7 F24605 6.1 7.2 2.1 39.M 101.M 191.G 786.G 4.6 4.8 30.7 Sampelware F24595 44 F24595 44 F24595 44 F24595 44	EL9	F24600		11	18	41 M	119 G	144 G			0.9	0.02	109				1			
F24603 6.3 7.1 2.0 15L 650 4.4 3.6 3.1.3 F24604 6.0 7.0 1.8 211 776 682 4.4 3.6 34.8 F24605 6.1 7.2 2.1 39 101 191 776 682 4.4 3.6 34.8 F24606 6.1 7.2 2.1 39 101 191 776 682 4.6 4.8 30.7 F24606 6.1 7.2 2.1 39 101 191 776 4.8 30.7 F24606 6.1 7.2 2.1 39 101 191 786 4.4 3.6 34.8 F24505 6 7.1 2.0 701 191 786 4.8 30.7 Results: F, K Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 784 30.7 Sampe Number L=Low M-Medium G=004 Helich-3 4.4 4.8 30.7 Sampe Number L=Low M-Medium G=004 Helich-3 5.3 4.4 <	EI 10	F24602		0	-	EG M	1510		756.0	-	0.0		1.00						_	
F24606 6.1 7.1 2.0 13 116 609.0 4.1 53 31.6 F24606 6.1 7.1 2.0 17 176 689.0 4.1 53 31.6 F24606 6.1 7.2 2.1 39 101 191.6 736.6 4.8 30.7 F24606 6.1 7.2 2.1 39 101 191.6 786.6 4.8 30.7 Results: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 191.6 786.6 4.6 4.8 30.7 Results: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 191.6 786.6 4.6 4.8 30.7 Sampe Number Lab Number Lab Number F24505 54 4.8 50.7 F24505 F24503 53 F24503 54 4.8 31.7 F24503 53 F24503 53 F24503 55 F24604 31 F24605 50 F24606 50 F24605 50 F24604 31 F	EI 11	E04602									0.0		0.10							
Results: P.K. Mg and Ca are extracted by Mehich-3 (ICP) and are reported in ppm 711 2.0 17.L 74 M 211.G 731.G 4.4 3.6 34.8 724605 6.1 7.2 2.0 17.L 74 M 211.G 731.G 4.4 3.6 34.8 724505 6.1 7.2 2.0 17.L 74 M 211.G 731.G 4.4 3.6 34.8 74505 6.1 7.2 2.1 39 M 101 M 191.G 786.G 4.6 4.8 30.7 750 74.5 74 76 74 76 74 3.6 34.8 751 75 2.1 39 M 101 M 191.G 786.G 4.6 4.8 30.7 76 78 76 78 76 78 77 78 30.7 Results: P.K. Mg and Ca are extracted by Mehich-3 (ICP) and are reported in ppm 78 745.9 44 74.4 56 4.8 30.7 Sumple Number F24595 54 44 740.5 74.5 74.5 <		L24003		- 0			MI CO	5117			 		63.1							
F24605 6.1 7.2 2.1 39 M 101 M 191 G 736 G 4.4 3.6 3.8 F24605 6.1 7.2 2.1 39 M 101 M 191 G 786 G 4.6 4.8 3.0.7 Results: P.K.Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 191 G 786 G 4.6 4.8 3.0.7 Results: P.K.Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 191 G 786 G 4.6 4.8 3.0.7 Sample Number Anothing 9.50 4.4 4.8 4.4 <		F24604		0.7	2.1	7 17	112 M	176 G			5.9		62.5							
F24606 6.1 7.2 2.1 39 M 101 M 191 G 7.6 G 4.6 4.8 30.7 Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 101 M 191 G 7.8 30.7 Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 101 M 191 G 7.6 G 4.6 4.8 30.7 Sample Number L=D Number P=IV Very High 101 m 191 G 786 G 4.6 4.8 30.7 Sample Number L=24595 48 F24596 44 F24509 41 F24503 52 F24603 52 F24605 50 F2	EL13	F24605		7.1	2.0	17 L	74 M				3.6	34.8	61.6						1	
Results: P.K. Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Retings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number F24595 48 F24596 44 F24593 44 F24593 53 F24594 53 F24600 52 F24601 52 F24602 53 F24603 25 F24603 25 F24605 53 F24605 50 F24605 50	EL14	F24606		7.2	2.1	39 M	101 M			1.22	48	30.7	64 6							
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and at Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number F24596 44 F24597 53 F24598 44 F24596 44 F24596 44 F24597 53 F24600 52 F24603 25 F24604 31 F24605 50 F24606 50)) 		!	i	2				30. 	? F		0.40							
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and al Ratings: L=Low M=Medium CEG0 and al H=High V=Very High Sample Number Lab Number P.FIV ICP) and al ICP) ICP) and al ICP) ICP) ICP) and al ICP)													1							
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and an Ratings: L=Low M=Medium Ga are extracted by Mehlich-3 (ICP) and an Ratings: L=Low M=Medium C=Good H=High V=Very High Sample Number Lab Number F=IV F=IV <td></td> <td></td> <td>Ì</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Ì								6									
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and al Ratings: L=Low M=Medium C=Good H=High V=Very High Sample Number Lab Number P.FIV P.FV P													1							
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and al Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number P.FIV Sample Number Lab Number P.FIV F24596 44 F24596 F24596 44 F24596 F24596 44 F24596 F24596 68 44 F24599 41 F24599 F24600 52 F24603 F24603 25 F24603 F24605 50 31 F24605 50 7					<u></u>															
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and al Ratings: L=Low M=medium G=Good H=High V=Very High Sample Number Lab Number P.FIV ICP) and al Sample Number Lab Number P.FIV ICP) and al F24595 48 F24596 44 F24596 44 F24598 41 F24593 41 F24509 53 F24600 52 F24603 25 F24603 25 F24603 25 F24605 68 F24605 50 F24605 50 31 F24605																				
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and at Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number Sample Number Lab Number F24596 44 F24596 44 F24596 44 F24596 44 F24596 44 F24596 44 F24598 44 F24599 41 F24599 41 F24600 52 F24603 25 F24604 31 F24605 50 F24605 50																			1	
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and an Ratings: L=Low M=Medium G=Good H=High V=Very High Sample Number Lab Number P-FIV P-Very High Sample Number Lab Number P-FIV P-Very High F24595 48 P-44 P-44 F24596 44 F24598 44 F24599 41 F24599 41 F24599 41 F24509 53 F24600 52 68 73 F24603 25 F24603 25 F24604 31 F24605 50 F24605 50 77 54605					-															
	* Results: P, K, Mg	and Ca are extr	acted by	/ Mehlic	:h-3 (ICF) and ar	e reporte	l in ppm				1		1						
Sample number Lab Number F24595 F24596 F24596 F24599 F24599 F24600 F24600 F24600 F24603 F24603 F24605 F24605 F24605 F24606 F24605 F24606 F24605 F24606	vauids. L-LOW R				-very n	ußi	and a start				A SUSSE				1000		Str			
F24595 F24596 F24599 F24599 F24600 F24600 F24600 F24603 F24605 F24605 F24605	Sample Number	Lab Number	P-FIV						のできた											
F24596 F24597 F24599 F24600 F24600 F24600 F24602 F24605 F24605 F24605	EL4	F24595	48																	
F24597 F24599 F24600 F24600 F24600 F24600 F24605 F24605 F24605	EL5	F24596	44															×		
F24598 F24599 F24600 F24602 F24603 F24605 F24605 F24605	ELG	F24597	53																	
F24600 F24600 F24603 F24603 F24603 F24605 F24605 F24605	EL7	F24598	44																	
F24600 F24603 F24603 F24603 F24605 F24605 F24605	EL8	F24599	41																	
F24602 F24603 F24604 F24605 F24606	EL9	F24600	52																	
F24603 F24604 F24605 F24606	EL10	F24602	89																	
F24604 F24605 F24606	EL11	F24603	25																	
F24605 F24606	EI 12	F24604	5.5																	
F24606	EI 13	EDAGOR	10																	
L 24000		124606	17																	
	1	L24000	20	_																

							Soil	Soil Analysis Report	Repor	r									Y
5		Re	Report To				Party of the second	Pre	Prepared For)r					A STATE				STORY S
AET Consulting Inc	Iting Inc	Z % Z	ET CC 377 TE ORTH	ILEGF ELEGF EAST	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 219	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	207	ž	RICH LEVELS GRAIN	VELS (GRAIN				Sampled Tested	pled		11-26	11-26-2024 12-04-2024
		a		Irganic			esult* and Ratin			Bac	e Saturat								
Sample Number	Lab Number	Soil I		Matter P	Matter Phosphorus %		Potassium Magnesium K Mg	Calcium Ca	CEC	×%	Mg %	Sa %	Sulfur S	Boron B	Zinc	Zinc Iron Cop	Copper Cup	Mang.	Alum.
FH1	F24607		7.1	1.8	37 M	206 G	-		4.2	100	22.9	66.6	,	1	5		20	UW	AI
FH2	F24608	6.1	7.2	1.7	36 M	145	106 M	791			19.2	73.1							
FH3	F24609		7.1	2.0	94 H	212 H				9.4	21.3	69.3							
FH4	F24610	5.8	7.2	2.3	44 M						24.0	66.2							
FH5	F24611		7.2	1.8	56 M				4.0	9.5	23.7	6.99							
FH7	F24612		7.2	1.9	66 G	188		-			19.5	73.0						1	
FH8	F24613		7.2	61	77 G				19		18.7	52.5							
FH9	F24614		11	2 4	100 H		113			0.0	100	11.0							
				- L i •							2.0	0.17							
JELI	F24015		1.7	1.5	31 M	101 M	126	744			23.5	71.0							
		_		1															
									1				ł						
		1																	
,																			
													1						
																			11
		1		1															
	Kesults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High	acted b	y Mehli =High	V=Very	P) and a		re reported in ppm												
Sample Number	Lab Number	P.FIV								ALL ALL							The second		
	Too Too						and the first												
	F246U/	φ 1 2																	
	F 246U8	41																	
FH3	F24609	108																	
FH4	F24610	56																	
FH5	F24611	68																	
FH7	F24612	79	- //																
FH8	F24613	06																	
FH9	F24614	115																	
JEF1	F24615	42																	
	2	!																	
																			311-5
			-																
Analyzed by Snectrum Analytic Inc	alutic Inc																1000 C 1000 C 1000 C		

)						Soil	Soil Analysis Report	Repor	t							<i>t</i>	
		Repo	Report To				Prel	Prepared For	r				New York				14-1
AET Consulting Inc	ing Inc	AE1 267 NOI	r cons 7 tele Rth ea	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 219	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	207	RIC	RICH LEVELS GRAIN	ELS G	RAIN			Sampled Tested			11-26-2024 12-04-2024	2024 2024
sample Number JEF2 MC1A MC1B MC2A MC2A MC2A MC2B MC2B MC2B MC3 MC4A MC4A MC4A MC4A	Lab Number Lab Number F24616 F24617 F24619 F24621 F24621 F24621 F24623 F24623 F24623 F24623 F24623 F24625 F24625 F24626	PH PH PH PH PH PH PH PH PH PH PH PH PH P	Affer Organic Affer Matter Matter Matter Matter 1.0 1.0 1.8 1.1 1.8 1.2 1.8 1.3 1.8 1.4 1.8 1.7 1.8 2 1.8 2 1.8 1.8 1.8 2 1.8 2 1.9 2 1.8 2 1.9 2 1.8 2 1.8 2 1.9 2 2 3 1.8 3 1.9 2 2 3 1.8 3 1.8 3 1.8 4 1.8 5 2 6 1.8 7 1.8 8 1.8 8 1.8 1.8 1.8	Phosphorus Phosphorus 92 H 92 H 92 H 111 H 111 H 111 H 111 H 112 H 113 H 122 H 122 H 123 H 124 H 126 V 126 V		Analysis Result" and Raifin Potassium Magnesium Kastium Magnesium 316 V 129 M 2280 V 130 M 295 V 145 G 295 V 145 G 295 V 130 M 296 G 116 M 219 H 141 G 219 H 144 G	a caletum caletum 857 G 857 G 914 G 935 G 935 G 935 G 777 G 826 G 1021 G	ске 5.2 5.2 5.2 7.1 7.4 7.5 7.0 5.2 7.1 7.1 5.2 7.1 7.1 5.2 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	8.5 8.5 11.0 11.0 11.0 8.8 8.8 8.8 8.8 8.8 8.8 8.8	Base Sauration 5.5 14.6 79.5 5.5 14.6 79.5 5.5 14.6 79.5 5.5 14.6 79.5 5.5 14.6 79.5 5.5 14.6 79.5 5.5 14.2 58.4 5.3 19.5 70.2 5.4 23.1 65.0 5.5 14.2 58.4 5.6 13.4 65.1 5.8 19.2 70.2 5.8 19.2 71.6 5.8 19.7 71.6	Sultur	Boron B	Amehilich-3 PPM and Rating Zinc Fon Copper Zin Copper	M and Rating		Mang.	Alum
* Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High	nd Ca are extra Medium G=Go	cted by od H=H	Mehlich-3 ligh V=V	(ICP) and ery High	are reported in ppm	ed in ppm										1]
Sample Number	Lab Number	P-FIV	DPS														
JEF2	F24616	131															
MC1A	F24617	106															
MC DBV	F24618	109															
MC2A	F24620	108															
MC2B	F24621	126		30													
MC2C	F24622	195	41														
MC 2DRY	F24623	148															
MC3	F24624	150															
MC4A	F24625	132	00														
	L 24020	202	8														
Analyzed by Spectrum Analytic Inc.	ic Inc.														0 0000000	0200020	00000

)						Soil	Soil Analysis Report	Repor										2
		Repu	Report To				Pret	Prepared For	11 11									
AET Consulting Inc	ig Inc	AE 267 NO	r cons 7 tele Rth ea	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	NC 8D 21901-12	207	Ж	RICH LEVELS GRAIN	ELS G	RAIN				Sampled Tested	pg		11-26-2024 12-04-2024	-2024 -2024
Sample Number	Lab Number	DH Soli Buffer	organic Matter	C Phosphorus		Anaivsis Result* and Rating Potassium Magnesium	d Calcium Ca	CEC	Base K	Base Saturation		Sulfur	Boron	Mehlich-3 Zinc	Mehlich-3 PPM and Rating Zinc Iron Copp	ting Copper	Mang.	Alum.
MC 4 DRY MX1A MX1B MX1C MX1E MX2 MX3 MX4	F24627 F24628 F24629 F24630 F24633 F24633 F24633 F24633 F24633			0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		185 G 159 G 151 G 151 G 151 G 92 M 92 M		0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.9 8.5 9.3 10.1 11.1 11.1 11.1	214.7 25.7 25.7 25.7 25.8 23.1 23.1 23.1 23.1 21.5 21.5 21.5 21.5 21.0	<u>+ 10 0 0 0 + > + 0</u>		2					t
 Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and Ratings: L=Low M=Medium G=Good H=High V=Very High 	I Ca are extr. Iedium G=G	acted by ood H=I	Mehlich-	8 (ICP) and ery High	are reported in ppm	ed in ppm												
Sample Number	Lab Number	P-FIV																
MC 4 DRY MX1A MX1B MX1C MX1D MX1E MX2 MX3 MX4	F24627 F24628 F24629 F24630 F24631 F24633 F24633 F24633 F24633	147 61 50 66 66 46 40 62 82 82																

)							Soil 4	Soil Analysis Report	Repo	r)
		Rep	Report To				1997 B	Pre	Prepared For	or									
AET Consulting Inc	ing Inc	AE 267 NO	T CON	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	G INC H RD D 2190	1-1207		r T	CHLE	RICH LEVELS GRAIN	BRAIN				Sample Tested	Sampled Tested		11-2	11-26-2024 12-04-2024
Sample Number	Lab Number	Soli Bu	H Organic Buffer Matter	nic Phosphorus	Analy orus Potas	rsis Result sium Ma	Analysis Result* and Rating Potassium Magnesium	Calcium	CEC	Bas	Base Saturation	on Ca	Sulfur	Boron	Mehli	Mehlich-3 PPM and Rating Zinc Iron Copper	f Rating Copper	Mand.	Alum.
MX5A MX5B MX5C MX5D MX5F MX5F MX5G MX6G MX6 PHILLIPS RDNG N RDNG N	F24636 F24637 F24637 F24638 F24639 F24643 F24643 F24644 F24644 F24644 F24644 F24644 F24647 F24647 F24647 F24647 F24647	6.1 6.3 6.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		2.1 50 M 1.8 46 M 1.1.8 54 G 1.1.1 55 63 G 1.1.1 55 6 1.1.1 55 6 1.2 71 G 1.2 73 6 1.2 73 6 1.2 88 G 1.2 88 G	50 M 119 46 M 176 53 G 135 54 M 176 55 M 124 74 G 119 03 H 96 88 G 179 96 179 96 179	119 G 176 G 176 G 179 G 179 G 96 M 96 M 172 G	98 M 98 M 98 M 98 M 79 M 94 M 94 M 92 M 94 M		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		24.2 23.3 23.3 23.3 23.3 23.3 23.5 23.5 20.5 20.5 20.5	67.2 67.3 68.5 68.3 68.3 68.3 70.9 776.7 71.3 71.3		1			30	uw	
* Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High	nd Ca are extra Medium G=Go	cted by vod H=H	Mehlich- High V=1	3 (ICP) a /ery High	nd are rej	re reported in ppm	mqq r												
Sample Number	Lab Number	P-FIV																	
MX5A MX5B	F24636 F24637	62 58																	
MX5C MX5D	F24638 F24639	76 66																	
MX5E	F24640	78																	
MX5G	F24642 F24643	67 84																	
MX5H	F24644	87																	
MIX6 PHILLIPS	F24645 F24646	118																	
RDNG N	F24647	102																	
Analvzed by Spectrum Analytic Inc	in Inc																		

Analyzed by Spectrum Analytic Inc. www.spectrumanalytic.com

)						Soil A	Soil Analysis Report	Report										
		Report To	rt To				Prepa	Prepared For			No. of Contraction							
AET Consulting Inc	ng Inc	AET 267. NOF	CONS 7 TELE RTH EA	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 219	NC RD 21901-1207	7(RIC	RICH LEVELS GRAIN	ELS GF	SAIN				Sampled Tested	bid		11-26	11-26-2024 12-04-2024
Sample Number	Lab Number S	pH Soil Buffer pH	fer Matter	ic Phosphorus		Analysis Result* and Rating Potassium Magnesium K Mg	Calcium Ca	CEC	Base S K %	Base Saturation		Sulfur	Boron	Mehlici Zinc Zn	Mehlich-3 PPM and Rating Zinc Iron Cop Zn Fe C	Rating Copper Cu	Mang. Mn	Alum. Al
RDNG S SIG 1 SIG 2 SIG 3 SIG 5A SIG 5B SIG 5C SIG PAST	F24648 6 F24649 6 F24650 5 F24651 6 F24651 6 F24653 6 F24653 6 F24653 6 F24655 6 F24655 6 F24656 6 F24656 6	6.4 7.3 6.2 7.2 6.5 7.2 6.5 7.2 6.4 7.2 6.3 7.1 6.3 7.1 6.3 7.1 6.3 7.1 7.2 6.3 7.2	22 1 1 2 2 3 1 4 4 1 5 2 5 3 3 1 4 4 1 5 2 5 3 3 1 5 1 5 2 5 3 1 5 2 5 3 1 5 2 5 3 1 5 2 5 3 1 5 2 5 3	4 135 5 98 98 135 98 135 135 135 135 135 135 135 143 143 143 143 143 143 143 143	224 H 263 V 187 G 164 G 221 H 221 H 223 V 229 H 229 H 229 H	118 M 143 G 179 G 1149 G 138 G 195 G	917 G 1046 G 824 G 952 G 949 G 926 G 926 G 926 G	6.5.0 6.5.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	1001 1002 100 100	20.3 6 20	71.8 70.8 72.0 73.4 73.1 69.7 72.2 69.8							
* Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Ratings: L=Low M=Medium G=Good H=High V=Very High	d Ca are extra Vedium G=Go	cted by I tod H=H	Mehlich- Igh V=V	3 (ICP) and 'ery High	are reporte	d in ppm												
Sample Number	Lab Number	P.FIV	SdQ															
RDNG S SIG 1 SIG 2 SIG 2 SIG 4 SIG 5A SIG 5B SIG 5C SIG PAST	F24648 F24649 F24650 F24651 F24651 F24653 F24655 F24655 F24655 F24656	152 113 59 114 114 155 1155 1155	37 38 38			J												

		c				Soi	Soil Analysis Report	Repor	.)
		Keport 10	10				Pre	Prepared For							5 8 10 TO	Same and the second		N 12 12
AET Consulting Inc	ting Inc	AET 2677 NOR	CONS TELEC TH EA	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 211	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	207	ž	RICH LEVELS GRAIN	ELS GI	RAIN				Sampled Tested	pe		11-20	11-26-2024 12-04-2024
Sample Number	Lab Number S	PH Soil Buffer	Organic Batter	c Phosphorus		Analysis Result* and Rating			Başe	Saturation				Mehlich-3	PPM and P.	ofine		
	100		100.0	1101		Mg Mg Mg Mg		0	×% (Sugar La .	æ ,o	Sulfur S	Boron B	Zinc Zn	Zinc Iron Copper Zn Fe Cu	Copper	Mang. Mn	Alum. Al
WA2 WA3 WA4			1.8	249 V 344 V 272 V	157 157 152	162 G 162 G 137 M 115 M	1114 G 1646 G 981 G		5.6 3.7 3.7	23.9 6 16.5 5 11.0 6 17.4 7	65.3 58.0 67.3 75.0							
WA6 WA7 WA8	F24661 6 F24662 5	6.4 7.2 5.8 7.0			148 134			4.6 3.6			70.4							
				_	134 G	12					9.2							
					1													
			-							-								
Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and an Ratings: L=Low M=Medium G=Good H=High V=Very High	and Ca are extract i=Medium G=Goo	ed by Me d H=Hig	hlich-3 (h V=Ver	(ICP) and y High	are reporte	e reported in ppm							1		1			
Sample Number	Lab Number P	P-FIV	SdQ													12122	100	and the second
WA1 WA2	F24657 1 F24658 2	125 272	62															
WA3 WA4	F24659 3	372 296	95 60															the same of
WA6 WA7	-	129	8															
WA8		93																
Analyzed by Spectrum Analytic Inc.	tic Inc.																	

www.spectrumanalytic.com

Tenton International Tenton In)							Soil 4	Soil Analysis Report	Repor										
All All Consulting Inc. Ref Consulting Inc. Sampled sample Sampled transmission Sampled sample Consulting Inc. All Consulting Inc. RICH LEXEL, MD 21901-1207 RICH LEXEL Rich Lexel. Sampled sample Consulting Inc. All Main Time Main Time <th></th> <th></th> <th>Å</th> <th>eport To</th> <th></th> <th></th> <th></th> <th></th> <th>Prep</th> <th>ared Fo</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>11.11.11.11.11.11.11.11.11.11.11.11.11.</th> <th></th> <th></th>			Å	eport To					Prep	ared Fo								11.11.11.11.11.11.11.11.11.11.11.11.11.		
Answere Lask Name Split Proprint Restant Restant Advances Advances Advances Restant Restant <th>AET Consulti</th> <th>ing Inc</th> <th>∡⊼Z</th> <th>ET CC 877 TE ORTH</th> <th>I EAS1</th> <th>TING II RAPH R T, MD 2</th> <th>JC D 1901-12</th> <th>20</th> <th>RIC</th> <th>H LEV</th> <th>ELS</th> <th></th> <th></th> <th></th> <th></th> <th>Sam Test</th> <th>pled</th> <th></th> <th>12-17</th> <th>-2024 -2024</th>	AET Consulti	ing Inc	∡⊼Z	ET CC 877 TE ORTH	I EAS1	TING II RAPH R T, MD 2	JC D 1901-12	20	RIC	H LEV	ELS					Sam Test	pled		12-17	-2024 -2024
memory fieldsort Bit Way State State <t< th=""><th></th><th></th><th>9</th><th>1</th><th></th><th></th><th>Analysis Re:</th><th>sult* and Rating</th><th></th><th></th><th>Base</th><th>Saturatio</th><th></th><th></th><th></th><th>Mehlic</th><th>h-3 PPM and</th><th>Rating</th><th></th><th></th></t<>			9	1			Analysis Re:	sult* and Rating			Base	Saturatio				Mehlic	h-3 PPM and	Rating		
F45627 6.4 7.2 0.1 3.7 8.6 35 27.2 69.3 F45626 6.5 7.2 1.0 3.3 8.6 137 15 27.2 10 3.5 55 25 27.3 67.3 67.2 10 3.6 56 27.2 56 57.5 57.3 57.4 57.4 57.4 57.6 57.3 57.4 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 5	15	Lab Number	12.5	S		hosphorus	Potassium K	Magnesium Mg	Calcium Ca	CEC	×%	Mg %	°°%	Sulfur S	Boron B	Zinc Zn	Iron Fe	Copper	Mang. Mn	Alum. Al
F45628 6.0 7.0 0.9 40 M 85 M 33 M 47 M 2.6 7.2 23.5 54 77.3 25.7 23.5 54 77.3 25.7 17.1 25.6 25.7 17.1 15.6 27.7 10.9 56 37.7 10.1 56 27.7 10.9 56 37.7 10.1 36.4 77.1 10.4 77.7 10.4 77.7 10.4 77.7 10.4 17.1 16.4 7.7 10.8 17.1 16.4 7.7 10.8 17.1 16.4 7.7 10.8 17.1 10.4 10.4 10.4 10.4 10.4 10.4 17.6 10.4	ASP1	F45627	6.4	7.2	1.1	7 L	69 M	157 G	783 G	4.2	3.5		69.3							
F45623 6.2 7.2 1.0 33.M 88.M 130.M 628.G 5.7 2.3 25.7 F45633 6.5 7.3 1.1 13.L 61.L 195.G 57.5 5.4 27.3 22.1 F45633 6.3 7.2 1.0 73.G 78.M 73.G 58.7 11.1 55.6 57.2 23.2 24.9 F45635 6.3 7.2 1.3 46.M 73.M 88.M 73.M 56.6 31.6 5.4 23.2 24.1 F45635 6.3 7.1 1.2 46.M 73.M 73.M 89.9 73.1 10.9 56.7 10.1 10.1 10.6 23.2 4.1 10.8 17.1 10.2 10.1 </td <td>ASP2</td> <td>F45628</td> <td>6.0</td> <td>7.0</td> <td>60</td> <td>40 M</td> <td>85 M</td> <td>R3 M</td> <td>471 M</td> <td>36</td> <td>7 2</td> <td></td> <td>009</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	ASP2	F45628	6.0	7.0	60	40 M	85 M	R3 M	471 M	36	7 2		009						1	
F45631 6.5 7.3 1.1 33 6.4 7.4 1.3 7.6 587 5.3 2.4 2.4 F45631 6.5 7.3 1.2 26L 62M 195 6 31 6.5 2.3 2.4 <td< td=""><td>ASD3</td><td>EAEROO</td><td>50</td><td>0.2</td><td></td><td>AN CC</td><td>NA OO</td><td>M OCT</td><td>0000</td><td>1 0</td><td>1 4</td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	ASD3	EAEROO	50	0.2		AN CC	NA OO	M OCT	0000	1 0	1 4		0.00							
F45631 6.5 7.3 1.1 13.1 61.L 198 G 753 G 23.25.7 F45631 6.5 7.3 1.1 1.2 26.L 62.8 31 50.1 23.25.7 F45633 6.3 7.1 1.4 76.G 91.M 101.M 566.G 31 50.1 13.3 24.1 F45635 6.3 7.1 1.2 246.M 73.M 77.M 566.G 31 50.1 17.1 F45635 6.3 7.1 1.2 246.M 77.M 78.M 50.6 31 50.1 18.4 74.2 F45635 6.3 7.1 1.2 246.M 77.M 78.0 53.5 47.1 18.6 F45637 6.4 7.2 0.8 37.M 113.M 76.M 589.G 30 8.1 18.4 F45637 6.4 7.2 0.8 113.M 76.M 589.G 30 8.1 18.4 F45637 6.4 7.2 0.8 113.M 76.M 589.G 30.0 8.1 <td></td> <td></td> <td>1.0</td> <td>10</td> <td>2</td> <td></td> <td>N 00</td> <td>IN DCI</td> <td>5 070</td> <td>0.0</td> <td>4.0</td> <td></td> <td>01.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>			1.0	10	2		N 00	IN DCI	5 070	0.0	4.0		01.3						_	
F45632 6.4 7.1 1.4 736 78M 97M 588 2.3 44.9 F45632 6.4 7.0 1.3 46M 73M 73M 566 31 5.5 21.1 F45633 6.3 7.1 1.4 73 73 73 849 31 5.5 23.1 F45635 6.3 7.1 1.2 46M 76 93 73 849 31 5.5 23.1 18.4 F45635 6.3 7.1 1.2 46M 76 89M 703 8.1 18.5 F45637 6.4 7.2 0.8 37 113 76 589 30 8.1 18.5 F45637 6.4 7.2 0.8 37 113 76 589 63 30 8.1 18.5 F45637 6.4 7.2 0.8 37 113 76 589 63 30 8.1 18.5 F45631 56 7.2 0.8 77 10.8 76 77.4 <td>AUT4A</td> <td>F45630</td> <td>6.9</td> <td>1.3</td> <td></td> <td>13 L</td> <td>61 L</td> <td>198 G</td> <td>755 G</td> <td>5.7</td> <td>2.3</td> <td></td> <td>50.1</td> <td></td> <td></td> <td></td> <td>ł</td> <td></td> <td></td> <td></td>	AUT4A	F45630	6.9	1.3		13 L	61 L	198 G	755 G	5.7	2.3		50.1				ł			
F45632 6.4 7.1 1.4 73 73 83 7.5 23.1 55.5 23.1 55.2 23.1 55.2 23.1 55.2 24.	ASP4B	F45631	6.5	7.3	1.2	26 L	62 M	195 G	781 G	5.8	2.3	-	50.9							
F45633 6.3 7.2 1.0 76 91 101 566 3.1 5.0 17.1 F45634 6.4 7.0 1.3 46 73 M 73 M 50 63 7.1 18.9 F45635 6.3 7.1 1.2 46 73 M 73 849 3.1 5.0 17.1 F45635 6.3 7.4 1.8 56 1.22 0.8 37 11.3 M 73 8.1 18.5 F45637 6.4 7.2 0.8 37 11.3 76 3.0 8.1 18.5 F45637 6.4 7.2 0.8 37 11.3 76 3.0 8.1 18.5 F45637 6.4 7.2 0.8 37 11.3 76 3.0 8.1 18.5 F45637 6.4 7.2 0.8 37 11.3 76 3.0 8.1 18.5 F45634 6.4 7.2 0.8 37 M 113 M 7.2	ASP5A	F45632	6.4	7.1	1.4	73 G		97 M	587 G	3.1	5.5		71.5	1						
F45634 6.4 7.0 1.3 46.M 73.M 74.7 71.1 74.7 74.7 71.1 76.9 73.2 73.2 73.1 113.6 75.3 74.7 76.9 73.7 76.9 73.7 76.9 73.7 76.9 74.7 76.9 74.7 76.9	ASP5R	F45633	5.3	2 2	10	76.G	01 M	101 10	EGG C		2		0.03							
F45637 6.4 7.1 1.2 46 M 73 M 649 G 3.1 5.0 17.1 F45637 6.3 7.1 1.2 46 M 73 M 815 G 3.5 4.7 18.9 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 F45634 6.4 7.2 0.8 37 M 3.0 8.1 18.5 F45634 51 F45634 51 F45634 52 F45634 53 F45633 58 F45635				10					0 000		1.0		1.20							
F45635 6.3 7.1 1.2 46 M 76 M 89 M 703 G 3.5 4.7 18.9 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.4 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.4 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.4 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 F4563 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 Sults: P,K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 118.5 148.5 148.5 148.5 F45632 51 17 167 Mmbu 23 164.4 178.5 148.5 148.5 148.5 148.5 148.5 148.5 148.5 148.5 148.5 148.5 148.5 148.	ASP6A	F45634	6.4	0.7	1.3	46 M	73 M	73 M	649 G	3.1	5.0		77.8							
F45637 6.7 7.4 1.8 56 M 129 G 132 M 815 G 5.3 5.3 18.4 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 sulfs: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 18.4 <td>ASP6B</td> <td>F45635</td> <td>6.3</td> <td>7.1</td> <td>1.2</td> <td>46 M</td> <td>76 M</td> <td>89 M</td> <td>703 G</td> <td>3.5</td> <td>4.7</td> <td>_</td> <td>76.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ASP6B	F45635	6.3	7.1	1.2	46 M	76 M	89 M	703 G	3.5	4.7	_	76.4							
F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 sults: P.K. Mg and Ga are extracted by Mehlich-3 (LP) and are reported in pm 3.1 18.5 ings: L=Low M=Medium G=Good H=High V=Very High 3.1 18.5 F45623 51 F45623 51 F45623 53 54 F45633 58 F45633 <td< td=""><td>E1</td><td>EA5636</td><td>5</td><td>V L</td><td>1 0</td><td>EG M</td><td>1000</td><td>M CCF</td><td></td><td></td><td></td><td>- 11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	E1	EA5636	5	V L	1 0	EG M	1000	M CCF				- 11								
F45637 6.4 7.2 0.8 37 M 113 M 76 M 589 G 3.0 8.1 18.5 sulfs: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm 133 M 113 M 76 M 589 G 3.0 8.1 18.5 sulfs: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm = = = = = = = = = = = = 18.5 = = 11 18.5 =		140000	1.0	4.	0.	MI OC	ולא פ	132 M	5 61.2	2.0	5.3	100	2.86							
sufts: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm tings: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number PFIV F45623 137 F45623 89 F45633 89 F45633 89 F45633 58 F45633 58 F45633 58 F45633 58 F45633 58 F45633 68 F45633 68 F45633 68 F45633 48 F45633 48 F45633 68 F45633 58 F45633 58 F45633 48 F45633 68 F45633 58 F45633 68 F45633 48 F45633 48 F45633 58 F45633 58 F45633 58 F45633 58 F45633 58 F45633 58 F45633 58 F45633 58 F45633 48 F45633 48 F45633 58 F45633 58 F45634 58 F45634 58 F45635 5	F2	F45637	6.4	7.2	0.8	37 M		76 M		3.0	8.1		734							
sults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a titings: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number P.F/V F45628 51 17 F45628 51 17 F45631 37 F45631 23 F45631 23 F45636 58 F45635 58 F45635 58 F45635 58 F45635 58 F45636 68 F45635 58 F45636 68 F45636 68 F45636 68 F45636 68 F45636 68 F45636 68 F45636 68 F45636 68										2	;	2	5							
sults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a titings: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number P.F/V F45628 51 17 F45628 51 17 F45630 23 F45631 37 F45631 37 F45633 89 F45635 58 F45635 58 F45635 58 F45635 58 F45635 58 F45635 68 F45635 68 F45636 68 F45635 58 F45635 5												ľ								
sults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a titings: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number P+FIV F45628 51 F45628 51 F45630 23 F45631 37 F45631 37 F45631 37 F45633 89 F45635 58 F45635 58 F45635 58 F45635 58 F45635 58 F45636 68 F45635 58 F45635 58 F456		i																		
sults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a titigs: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number P.FIV F45628 51 F45629 44 F45631 37 F45631 37 F45631 37 F45631 58 F45635 58 F45635 58 F45635 58 F45635 58 F45635 58 F45636 68 F45635 58 F45636 68 F45635 58 F45636 68																				
sults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a titigs: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number P-FIV F45628 51 F45628 51 F45630 23 F45631 37 F45631 37 F45631 37 F45635 58 F45635 58 F45635 58 F45635 68 F45635 68 F45635 68 F45636 68												7.1								
sults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a titigs: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number P-FIV F45628 51 F45628 51 F45629 44 F45631 37 F45631 37 F45631 37 F45633 89 F45635 58 F45635 58 F45635 58 F45635 68 F45635 58 F45636 68 F45636 68 F45636 68			4									Ì.				I				
sults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a titings: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number P.FIV F45628 51 F45629 44 F45631 37 F45630 23 F45631 37 F45631 37 F45636 58 F45633 89 F45635 58 F45635 58 F45635 58 F45635 58 F45635 58 F45637 48																				
sults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a titigs: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number P-FIV F45628 51 F45629 44 F45630 23 F45631 37 F45631 37 F45631 37 F45633 89 F45635 58 F45635 58 F45635 68 F45635 68 F45635 68 F45636 68												1								
sults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a titings: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number P_FIV F45628 51 17 F45629 44 F45630 23 F45630 23 F45631 37 F45631 37 F45633 89 F45635 58 F45635 58 F45635 58 F45635 68 F45635 68 F45636 68 F45637 48																				
sults: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a titings: L=Low M=Medium G=Good H=High V=Very High ample Number Lab Number P_FIV F45629 44 F45629 44 F45630 23 F45631 37 F45631 37 F45633 89 F45633 89 F45633 58 F45635 58 F45635 58 F45636 68 F45636 68 F45637 48													-							
Ample Number Lab Number P.FIV ample Number Lab Number P.FIV F45627 17 F45628 F45629 44 F45630 F45630 23 F45633 F45631 37 F45633 F45633 86 F45633 F45633 89 F45633 F45633 58 F45633 F45635 58 F45635 F45635 58 F45636 F45636 68 F45636 F45637 48 F45636	1.1	To are out	4 hoter	Hold W	104-2 (11	o pue la		d in nom				1								
ample Number Lab Number F45627 F45629 F45630 F45631 F45631 F45633 F45633 F45633 F45633 F45633 F45635 F45635 F45635 F45635 F45635 F45637	Ratings: L=Low M=	Medium G=G	H poos	High	V=Very	High	alindara	undd un r												
F45627 F45628 F45629 F45630 F45631 F45633 F45633 F45633 F45635 F45635 F45635 F45635 F45635 F45635 F45635	Sample Number	Lab Number	P-FIV															and a set		
F45627 F45628 F45629 F45631 F45633 F45633 F45633 F45633 F45633 F45635 F45635 F45635 F45635 F45635			-								States -									
F45628 F45629 F45631 F45631 F45633 F45633 F45633 F45635 F45635 F45635 F45635 F45635	ASP1	F45627	11																	
F45629 F45630 F45631 F45632 F45633 F45633 F45635 F45635 F45635 F45635 F45635 F45635	ASP2	F45628	51	20 luik.																
F45630 F45631 F45632 F45633 F45633 F45635 F45635 F45635 F45635 F45635	ASP3	F45629	44																	
F45631 F45632 F45633 F45633 F45635 F45635 F45635 F45635 F45637	ASP4A	F45630	23																	
F45632 F45633 F45634 F45635 F45635 F45635 F45637	ASP4B	F45631	37																	
F45633 F45633 F45635 F45635 F45635 F45637	ASPEA	EA6627	20																	
F45634 F45635 F45635 F45636 F45637	ACDED		88																	
F45634 F45635 F45636 F45637	ASP3D	F40033	83																	
F45635 F45636 F45637	ASP6A	F45634	58																	
F45636 F45637	ASP6B	F45635	58	210																
F45637	F1	F45636	68	5.00m																
10001	E2	F45637	48																	
	1	innot i	2	_																

HID:0323-0419-8522-0006

Analyzed by Spectrum Analytic Inc. www.spectrumanalytic.com

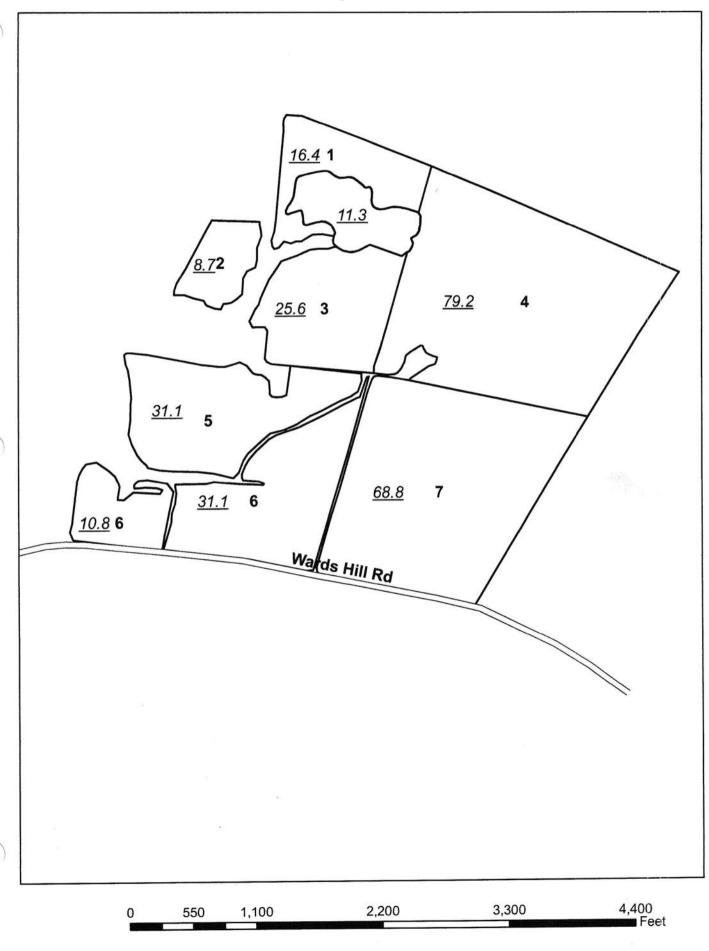
)							Soil A	Soil Analysis Report	Report)
		R	Report To			and states for		Prepa	Prepared For	San Star		1	12.000	12.2			1000		
AET Consulting Inc	ing Inc	∢ ∩ Z	ET CC 677 TI ORTH	I EAS	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 219	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	2	RIC	RICH LEVELS	S					Sample Tested	Sampled Tested		12-1	12-17-2024 12-23-2024
sample Number F3 F4 M1 M1A NEFF1 NEFF2 NEFF3 RL5A RL5B RL5B	Lab Number F45638 F45640 F45642 F45644 F45645 F45645 F45645 F45646	800 PH 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	55 7.3 Buffer Buffer 57 7.3 7.2 7.2 7.3 7.2 7.3 7.2 7.3 7.4 7.3 7.3 7.3 7.4 7.3 7.3 7.3 7.3 7.4 7.3 7.3 7.3 7.3 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	Materia Materi	Phosphorus 51 M 53 M 42 M 43 M 43 M 45 M 45 M 45 M 121 H 117 H 117 H	Analysis Result and Father Potassium Magium 92 M 105 M 73 M 105 M 73 M 106 M 123 G 135 G 61 M 109 M 62 M 100 M 124 G 90 M 209 G 131 M 185 G 101 M	Matter and Retine May May 105 M 106 M 100 M 100 M 101 M 101 M 101 M	Calcium Ca 657 G 538 G 538 G 490 M 515 G 649 G 667 G 897 G 708 G 708 G	CEC 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	Base 7.7 Base 7.7 8.6 7.7 7.7 7.7 8.6 7.7 7.3 3.3 3.3 6.6 7.7 7.8 8.2 7.5 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	Base Statement H.5 T.5 56. H.2 20.6 53.4 S.6 32.0 59.4 S.6 21.3 54.4 S.7 33.9 58.4 S.6 21.3 74.4 S.7 16.1 56.4 S.2 15.3 54.1	56.1 55.1 55.4 55.4 55.4 55.4 55.4 55.4 55	Suffur	B	Zhac Zhac Zhac	Zin Rehitor-3 PPM and Rating Zin Fee Copper	Copper	Mang	Alum.
* Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and are reported in ppm Ratings: L=Low M=Medium G=Good H=High V=Very High	nd Ca are extr =Medium G=G	acted 1	by Mehl I=High	lich-3 (I V=Very	CP) and a	e reported	in ppm												
Sample Number	Lab Number	P-FIV																	
F3 F4 M1 M1A NEFF1 NEFF2 NEFF2 RL5B RL5B	F45638 F45638 F45640 F45642 F45642 F45644 F45645 F45645 F45645 F45645 F45645 F45645	63 55 57 137 133 133																	
			_																

HID:0323-0419-8522-0006

Constraint Tenent fea EFE CONSULTING NC Remain fea EFE CONSULTING NC Remain fea EFE CONSULTING NC AFT Consulting Inc Ref 45600 kg 77 minut 78 minut 78 minut 78 minut AFT Consulting Inc Ref 45600 kg 77 minut 78 minut 78 minut 78 minut 78 minut Ability Inc Risk 74 minut 78 mi							2011	Soil Analysis Report	Report										
AET CONSULTING INC AET CONSULTING INC Real Constraints AET CONSULTING INC TCDDsufting Inc NORTHEEAST, MD 2901-1207 RCH LEVELS Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Fid5656 6.4 7.3 0.0 1.0 Fid5656 6.4 7.3 1.0			Rep	ort To				Prep	ared For						1000				
Support holds Jack Market	AET Consul	ting Inc	AE 267 NO	T CON 7 TELI RTH E	SULTING EGRAPH AST, MD	5 INC I RD 21901-1	207	RIC	H LEV	ELS					Samp Teste	d d		12-2	12-17-2024 12-23-2024
F45646 6.8 7.4 1.8 1.24H 1.86 1.70 1.85 2.2 1.8 5.2.3 1.5 2.2.4 6.2.4 2.3.5 1.24 6.2.4 2.3.5 1.24 1.24 1.3 155V 1.6 1.74 1.45 1.6 1.74 1.14 6.11 6.13 6.21 7.3 1.3 9.91 8.91 8.93 7.3 1.3 9.91 8.91 8.93 7.3 1.3 9.91 8.91 9.91 8.91 9.91 8.91 9.91 8.91 9.91 8.91 9.91 8.91 9.91 8.91 9.91 8.91 9.91 8.91 9.91 8.91<	Sample Number	100	Soil Bu Bu BH			and the second sec	Result* and Rating Magnesium Ma		CEC	Base K	Mg	S.		Boron	Mehlich	3 PPM and Iron	Rating Copper	Mang.	Alum.
F45650 6.5 7.5 0.3 773 103 733 103 74 1.4 56 5.1 5.5 5.1 145 F45650 6.5 7.5 0.8 773 103 733 203 82 5.3 6.7 145 F45655 6.5 7.3 0.2 713 103 74 836 5.5 5.0 11.4 F45655 6.5 7.3 0.6 728 101 944 5.5 5.0 11.4 F45655 6.7 7.3 0.7 144 92 62 860 4.0 4.0 11.4 F45655 6.7 7.3 1.1 102 98 88 82 5.4 2.3 14.7 2.3 14.7 3.14.7 14.7 3.14.7 14.7 3.14.7 14.7	DIGA	+	P 0 2			-	U U U V		0				-	8	uz	Fe	Cu	uw	AI
F45651 6.5 7.3 0.9 173 V 1.6 M 74 M 55 4.0 14.7 F45651 6.5 7.3 0.9 211 V 133 G 79 M 828 G 5.5 5.5 14.0 F45651 6.5 7.3 0.6 211 V 133 G 79 M 828 G 5.1 5.6 11.4 F45655 6.4 7.3 0.7 144 H 90 M 660 G 4.0 4.7 5.0 13.3 F45655 6.7 7.3 0.7 144 H 109 M 86 M 804 G 4.7 5.0 13.3 F45655 6.7 7.3 1.3 90 H 85 M 110 M 639 G 3.4 5.4 23.8 14.7 F45655 6.4 7.3 1.3 90 H 85 M 110 M 639 G 3.4 5.4 23.8 14.7 F45655 6.4 7.3 1.3 90 H 85 M 110 M 639 G 3.4 5.4 23.8 14.7 F45655 6.4 7.3 1.3	PLER				_	100		0 240	0.0			0.0							
F45651 6.3 7.3 0.9 7.3 0.3 7.4 0.4 7.4 0.4 7.4 0.4 7.4 0.4 7.4 0.4 7.4 0.4 7.4 0.4 7.4 1.4 0.4 7.4 1.4 0.4 7.4 1.4 0.4 7.4 1.4 0.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 0.4 1.4 0.4 1.4 0.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 0.4 1.4 0.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 0.4 1.4 0.4 0.4 1.4 0.4 0.4 1.4 0.4 0.4 1.4 0.4 0.4 1.4 0.4 0.4 0.4 1.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 <th0.4< th=""> <th0.4< <="" td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>5 1 10</td><td></td><td></td><td></td><td>4.0</td><td></td><td>8</td><td></td><td></td><td></td><td>_</td><td></td></th0.4<></th0.4<>						_		5 1 10				4.0		8				_	
F45653 6.3 7.3 0.3 7.4 103 7.5 0.1 1.4 F45653 6.4 7.3 0.7 144 92 86 8.3 14.5 F45655 6.7 7.3 0.7 144 92 86 87 4.7 50 13.3 F45655 6.7 7.4 1.1 102 4 93 86 86 4.7 50 13.3 F45656 6.7 7.4 1.1 102 4 98 86 86 3.1 67 23.1 13.3 14.7 F45656 6.4 7.3 1.3 99 85 110 86 12.3 14.7 F45656 6.4 7.3 1.3 99 85 110 86 23.4 5.4 23.8 F45656 6.4 7.3 1.3 99 85 110 86 47 5.4 23.8 F45656 6.4 7.3 1.3 99 85 110 86 47 5.4 23.8		_	-		_			5 000				0.0							
F45655 6.1 7.3 0.6 7.3 0.7 144 H 92 M 660 G 4.0 4.9 114.4 F45655 6.7 7.3 0.7 144 H 92 M 660 G 4.0 4.9 114.4 F45655 6.7 7.3 0.7 144 H 90 M 86 M 804 G 4.7 5.0 13.3 F45655 6.4 7.3 1.0 90 G 80 M 822 G 4.9 14.4 F45657 6.4 7.3 1.1 102 H 80 M 82 H 10.3 14.7 5.1 13.3 14.7 F45658 6.4 7.3 1.3 99 H 85 M 110 M 600 G 4.9 4.3 14.7 5.0 13.3 F45658 6.4 7.3 1.3 99 H 85 M 110 M 630 G 3.4 5.4 23.3 14.7 5.1 23.8 5.4 23.8 5.4 23.8 5.4 23.8 5.4 23.8 5.4 23.8 5.4 23.8 5.4 23.8 5.4 <t< td=""><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td>5 070</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_			_			5 070											
F45655 6.7 7.3 0.7 144 H 109 M 650 G 4.0 4.1 4.1 F45655 6.7 7.3 0.7 144 H 109 M 650 G 4.0 4.3 14.7 F45655 6.7 7.3 0.7 144 H 109 M 86 M 804 G 4.7 5.0 13.3 F45655 6.4 7.3 1.3 90 H 85 M 11.0 93 H 86 M 804 G 4.7 5.4 23.1 F45655 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 F45658 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 F45658 6.4 7.5 1.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 F45658 6.4 7.5 7.2 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 F45651 184 7.4 120 M			-					2444 0	0.0			0.4	-						
F45655 6.7 7.3 0.7 144 H 109 M 66 M 600 G 4.0 4.3 11.4 F45655 6.7 7.4 1.1 102 M 90 G 4.0 4.3 13.3 F45655 6.4 7.3 1.3 90 G 90 G 4.0 4.7 5.0 13.3 F45655 6.4 7.3 1.3 99 H 85 M 80 M 8 M 82 G 3.4 5.4 23.8 F45655 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 F45657 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 F45658 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 F45651 124 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 Statustrist F45658 184 7.3 1.3 7.9 7.2 1.2		-			_			230 6	0.7			8.9	-		I				
5655 6.7 7.3 0.7 144 H 109 M 86 M 804 G 4.7 5.0 13.3 5656 6.7 7.4 1.1 102 H 98 M 98 M 822 G 4.9 4.3 14.7 5655 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.1 6.3 14.7 5658 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 11.7 5658 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 5654 14 7.3 1.3 99 H are reported in ppm 630 G 3.4 5.4 23.8 6643 140 36 3.4 5.4 5.4 23.8 5.6 5.4 23.8 6654 181 36 4.3 5.4 5.4 5.4 5.4 5.4 5.3.8 5654 181 38 5654 181 36 5.4 5.4 <td>KL8B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>660 G</td> <td>4.0</td> <td></td> <td></td> <td>1.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	KL8B							660 G	4.0			1.8							
5656 6.7 7.4 1.1 102 H 98 M 822 G 4.9 4.3 14.7 5657 6.4 7.3 1.0 90 G 100 M 91 M 604 G 3.1 6.8 21.2 5658 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 5658 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 5658 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 6649 78 7 7 7 7 7 23.4 5.4 23.8 6649 70 M 7 7 7 7 7 7 7 6649 181 38 5650 192 42 5 43 5 5 5 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 <td>RL8C</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>109</td> <td></td> <td></td> <td>4.7</td> <td></td> <td>112</td> <td>3.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	RL8C	-	-			109			4.7		112	3.7							
5657 6.4 7.3 1.0 90 G 100 M 639 G 3.4 5.4 23.3 5658 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 53.8 5658 6.4 7.3 1.3 99 H 85 M 110 M 639 G 3.4 5.4 23.8 630 7 <td< td=""><td>RL8D</td><td></td><td></td><td></td><td>- 50 52 - 24</td><td>98</td><td></td><td></td><td>4.9</td><td>_</td><td></td><td>3.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	RL8D				- 50 52 - 24	98			4.9	_		3.0							
5658 6.4 7.3 1.3 99.H 85.M 110.M 639.G 3.4 5.4 23.8 6 7 7 1.3 99.H 85.M 110.M 639.G 3.4 5.4 23.8 7 </td <td>RL9A</td> <td>-</td> <td></td> <td>_</td> <td>_</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td>1.197</td> <td>00</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	RL9A	-		_	_	100					1.197	00				1			
5656 111 35 56 31 33 33 34 34 23 are extracted by Mehlich-3 (ICP) and are reported in ppm 6 34 34 23 Mumber Friv DPS 7 700 34 23 5649 181 38 5650 192 42 5651 232 43 5655 114 5655 161 35 5655 111 34 5655 114 5655 114	PI OB	_			01.67	20.	110				1								
Ammber P-FIV DPS Immedent P-FIV DPS Immedeet Immedeet Immedeet Immedeet Immedeet Immedeet Immedeet Immedeet Immedeet Immedeet Immedeet	NLJU	Ein.				8	2		4.0			0.0							
are extracted by Mehlich-3 (ICP) and a are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High Number P-FIV Number P-FIV 56448 1440 5650 192 5655 144 5655 144 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161 5655 114 5655 114																1			
are extracted by Mehlich-3 (ICP) and a are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High Number P-FIV DPS 56549 181 38 56549 181 38 5655 192 42 5655 192 43 5655 192 43 5655 161 35 5655 161 34 5655 161 34 5655 161 34 5655 117 5655 117 5655 1117										ï					1	1			
Ammber P-FIV DPS Immedent P-FIV DPS Number P-FIV DPS Number P-FIV DPS 56649 181 38 56650 192 42 56651 232 49 56653 144 35 56654 161 35 16655 161 34 56656 117 35 56657 104 35 56658 117 34 56658 117 35 56658 1117 34 56658 1117 34																			
are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High um G=Good H=High V=Very High Number P-FIV 56650 192 42 56650 192 42 56651 232 49 56653 144 35 56654 161 34 56655 161 34 56656 117 35 56657 104 35 56658 111 34 56658 111 34 56658 1117 34 56658 1117 34			-									Ĩ			7		5		
are extracted by Mehlich-3 (ICP) and a are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High Number P-FIV Number P-FIV 56448 140 5650 192 5651 232 5655 192 5655 144 5655 114 5655 161 5655 161 5655 161 5655 117 5655 114 5655 161 5655 161 5655 161 5655 117 5655 114 5655 161 5655 161 5655 161 5655 161 5655 161 5655 161																			
Are extracted by Mehlich-3 (ICP) and a um G=Good H=High V=Very High um G=Good H=High V=Very High um G=Good H=High V=Very High Number P-FIV 56650 181 56650 192 56651 192 56653 144 56653 144 56654 161 56655 161 56656 117 56656 117 56657 104 56658 117 56658 117 56658 1117																			
are extracted by Mehlich-3 (ICP) and a turn G=Good H=High V=Very High (5649 181 28 5650 192 42 5651 232 49 5655 192 42 5655 192 43 5655 192 43 5655 192 43 5655 117 34 5655 161 35 5655 117 34 5655 111 5655 1111 5655 1111 5655 1111 5655 1111 5655 1111 5655 1111 5655 11			_		_	_				-									
RLGA F45648 140 Pes RLGB F45649 181 38 RLGC F45650 192 42 RLGC F45651 232 49 RLGE F45653 144 35 RLBS F45653 144 35 RLBS F45655 133 43 RLBS F45653 144 35 RLBS F45655 161 34 RLBS F45655 161 34 RLBS F45656 161 34 RLBS F45655 161 34 RLBS F45656 117 34 RLBS F45656 117 34 RLBS F45656 114 35 RLBS F45656 117 34 RLBS F45658 114 35		and Ca are extra	acted by	Mehlich	-3 (ICP) an	d are repor	ted in ppm												
56548 140 56549 181 56550 192 56551 232 56553 144 56553 144 56553 144 56555 161 56555 161 56556 117 56557 104 56558 114 56558 111	Samole Number	at Nimber	P-EN	-A life								100-20							
5654 140 5650 192 56551 232 56552 236 56553 144 56554 161 56555 144 56556 117 56556 117 56556 117 56557 104 56558 114			011																
5659 181 5650 192 5651 232 5653 144 5655 161 5655 161 5655 161 5655 161 5655 117 5655 117 5655 114 5655 117		147040	140	00															
56550 192 56551 232 56553 144 56553 144 56555 161 56555 161 56556 117 56556 117 56558 114		F45049	181	8	2007														
5651 232 5652 236 5653 144 5655 161 5655 161 5655 117 5655 117 5658 117 5658 114	RLOC	F45650	192	47															
5652 236 5653 144 5653 161 5655 161 5655 117 5655 117 5657 104 5658 114	KL6U	F45651	232	49															
5653 144 56554 161 56555 161 56556 117 56556 117 56558 114	RLGE	F45652	236	43															
5654 161 5655 161 5655 117 5656 117 5657 104 5658 114	RL8A	F45653	144																
5655 161 15656 117 15656 117 15658 114	RL8B	F45654	161	35															
5656 5657 5658	RL8C	F45655	161	34															
5657	RL8D	F45656	117																
5658	RL9A	F45657	104	<i></i>															
	RL9B	F45658	114	_															
					_														

HID:0323-0419-8522-0006

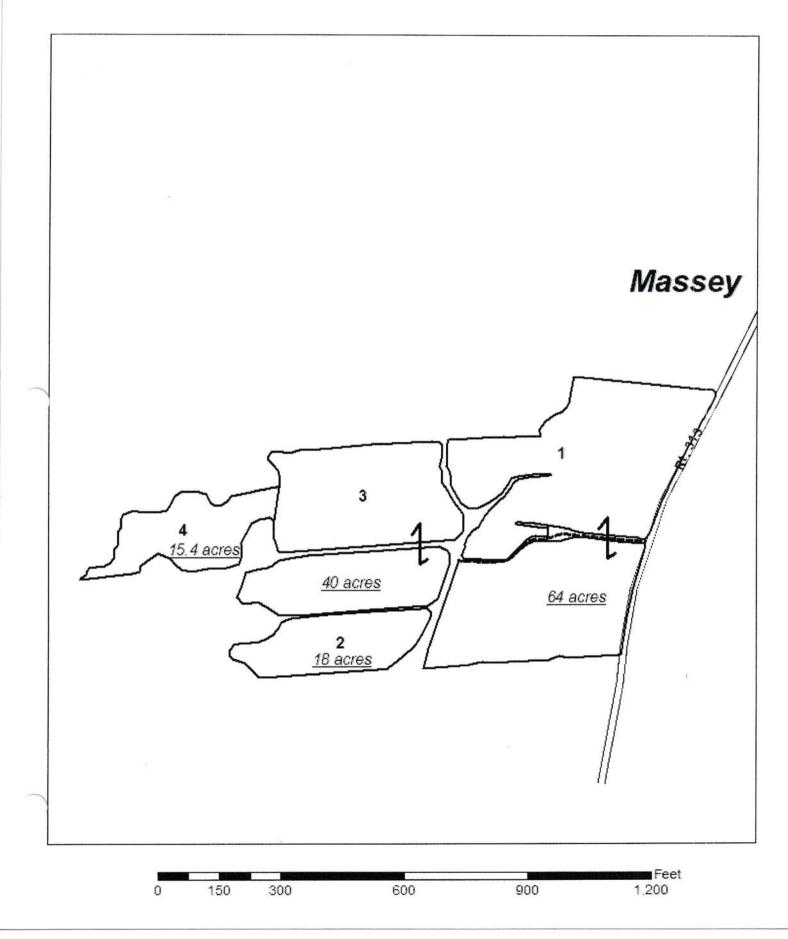
)						Soil	Soil Analysis Report	Report									1
		Rep	Report To				Prep	Prepared For					1.22.23.0	Constant of	100		No. Con
AET Consulting Inc	on pr	AE 267 NO	T CON 77 TEL	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 219	AET CONSULTING INC 2677 TELEGRAPH RD NORTH EAST, MD 21901-1207	207	RIC	RICH LEVELS	ELS				Sampled Tested	p		12-17-2024 12-23-2024	2024
sample Number RL10A RL10B RL11A RL11B RL 7 RL 7	Lab Number F45660 F45661 F45662 F45663 F45663	PH PH 6.7 7.4 6.7 7.5 6.8 7.3 6.6 7.4 6.6 7.4	-Son	^{gantc} ^{gantc} ^{stater} ^{stater} ^{stater} 1.0 119H 1.1 114H 1.1 124G 1.0 113H 0.7 263 V 0.7 263 V	Analysis R Analysis R Analysis K Analysis Analysi An	Analysis Result ^e and Rating Potassium Magnesium (112 M 134 M 90 M 135 M 102 M 142 G 98 M 96 M 194 G 88 M	² ^{calcium} 878 G 938 G 870 G 784 G 723 G 723 G	cec 5.5 5.7 4.7 4.7	88 4 4 0 7 4 0 0 0 0 0 0 0 0	Base Saturation Rese Saturation Mg Ca 4.4 17.8 59.8 3.4 17.3 61.3 4.0 19.2 60.1 4.5 15.0 62.5 3.9 13.7 57.5	Suffur	B	Mehlich-3 Zinc Zinc	Mehlich-3 PPM and Rating Zinc Fon Copper Fo Cu	ating Copper Cu	Mang.	Alum.
* Results: P, K, Mg and Ca are extracted by Mehlich-3 (ICP) and a Ratings: L=Low M=Medium G=Good H=High V=Very High	l Ca are extra ledium G=G	acted by ood H=I	Mehlich High V=	-3 (ICP) ar Very High		re reported in ppm										1]
Sample Number	Lab Number	P-FIV	SdQ														
RL10A RL10B RL11A RL11B RL 1 RL 7	F45659 F45660 F45661 F45661 F45662 F45663	135 129 87 128 287	8														
Analyzed by Spectrum Analytic Inc	Inc														00000000	10 0110	0000 00

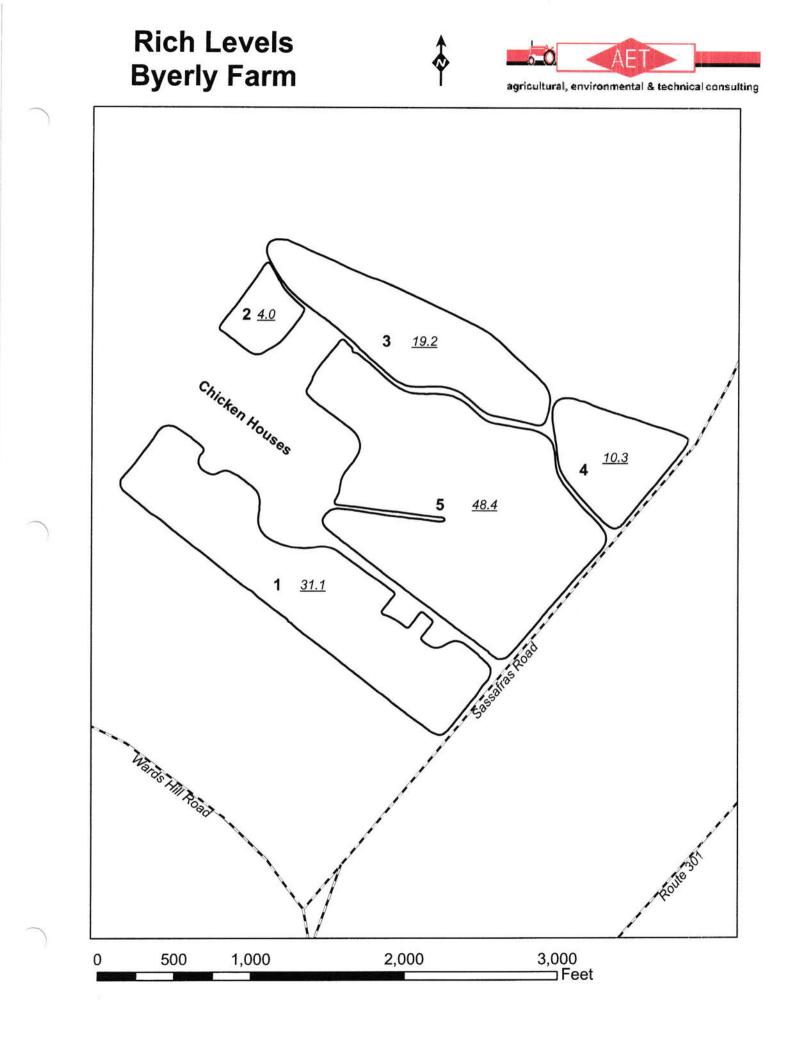

HID:0323-0419-8522-0006

Rich Levels

Crawford Farm

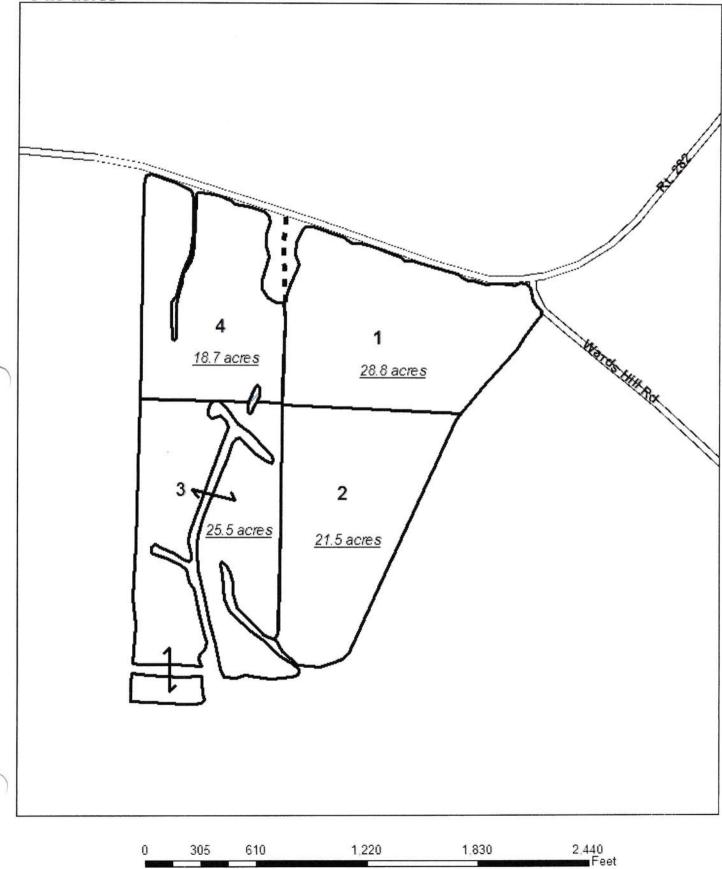
agricultural, environmental & technical consulting

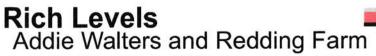



Rich Levels Red Grave Farm

agricultural, environmental & technical consulting

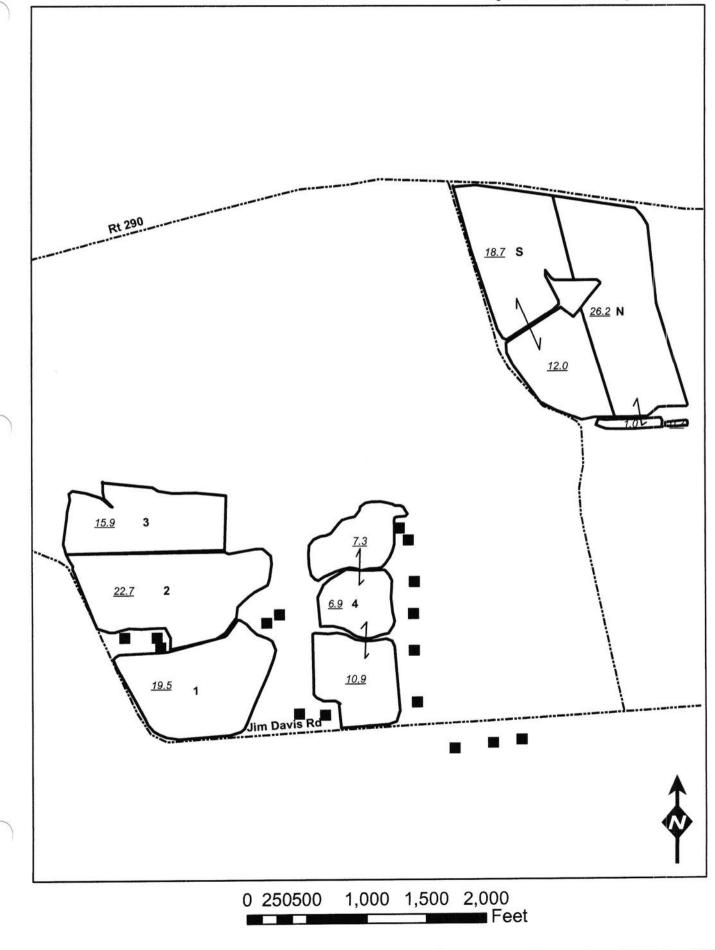
Rich Levels Breggers - Cecil

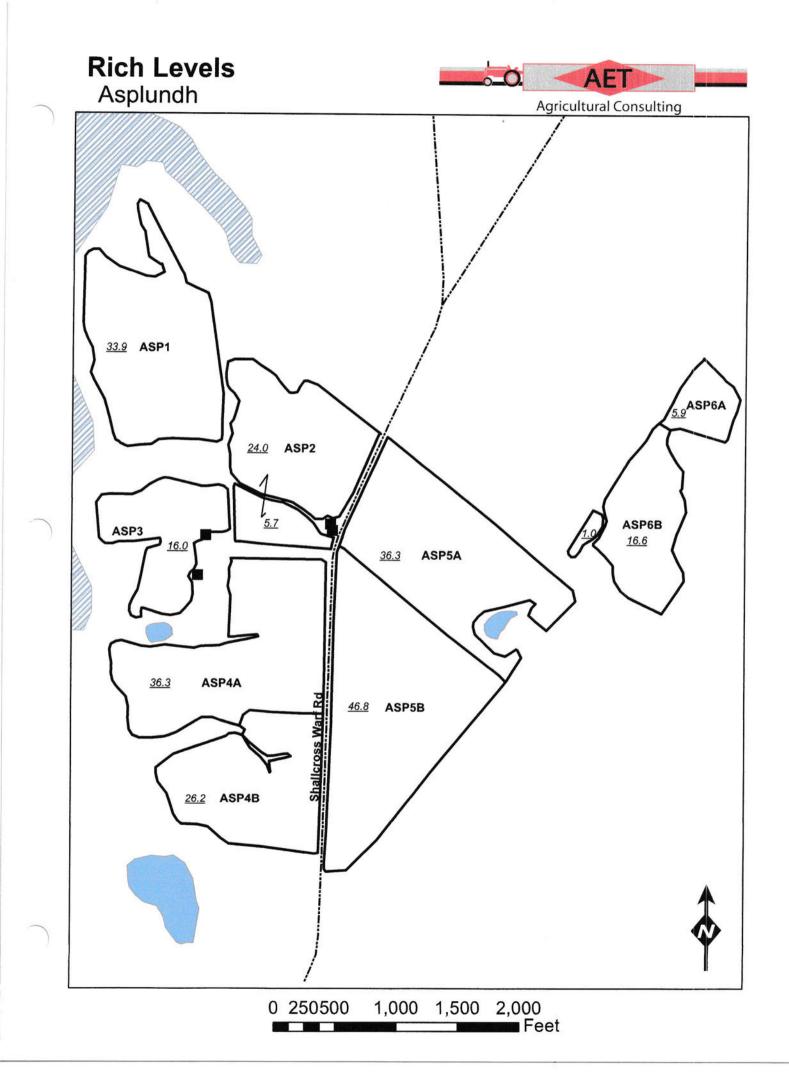


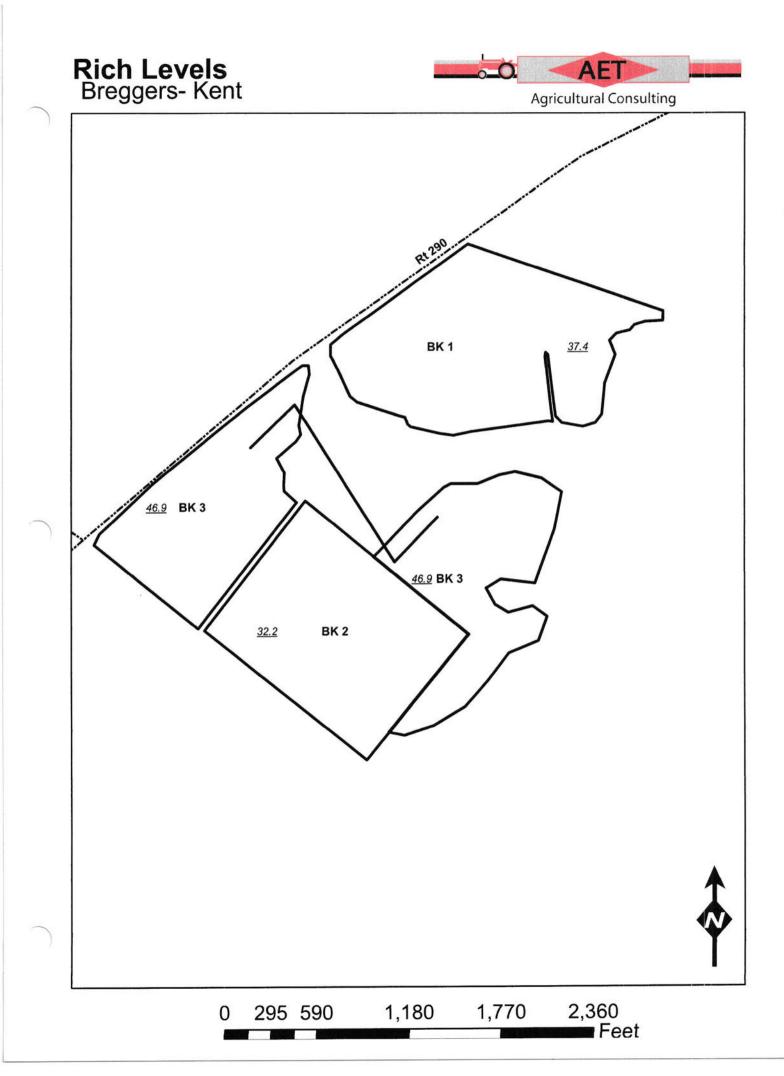


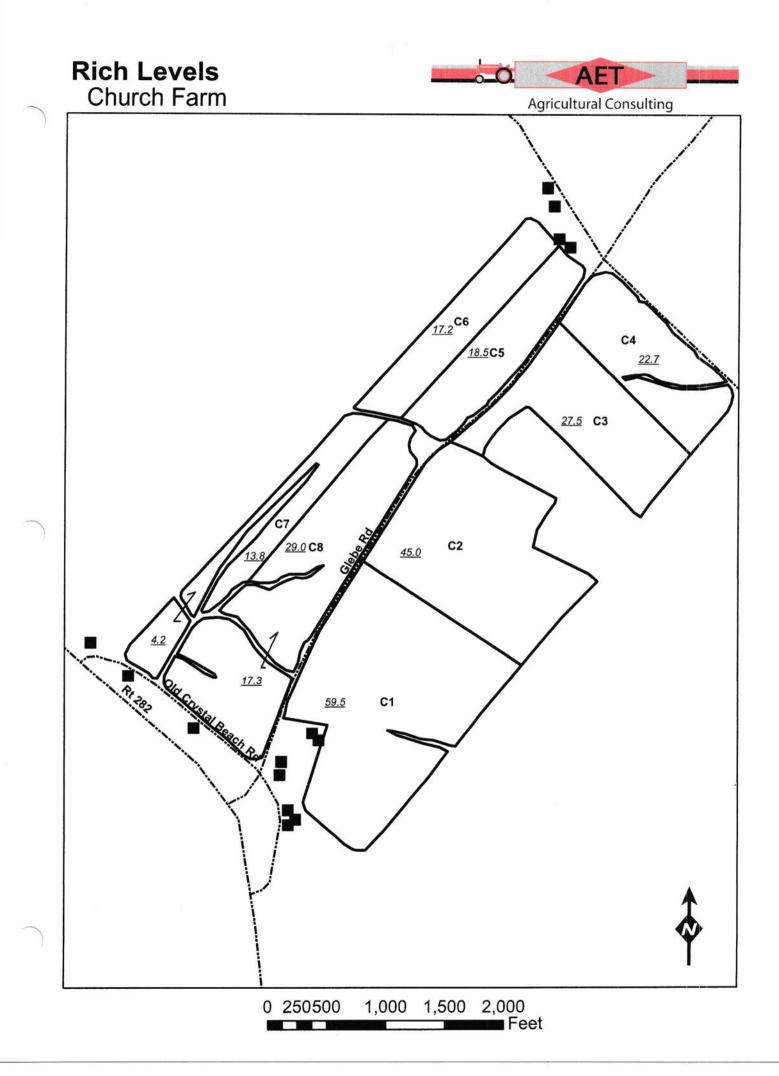
agricultural, environmental & technical consulting

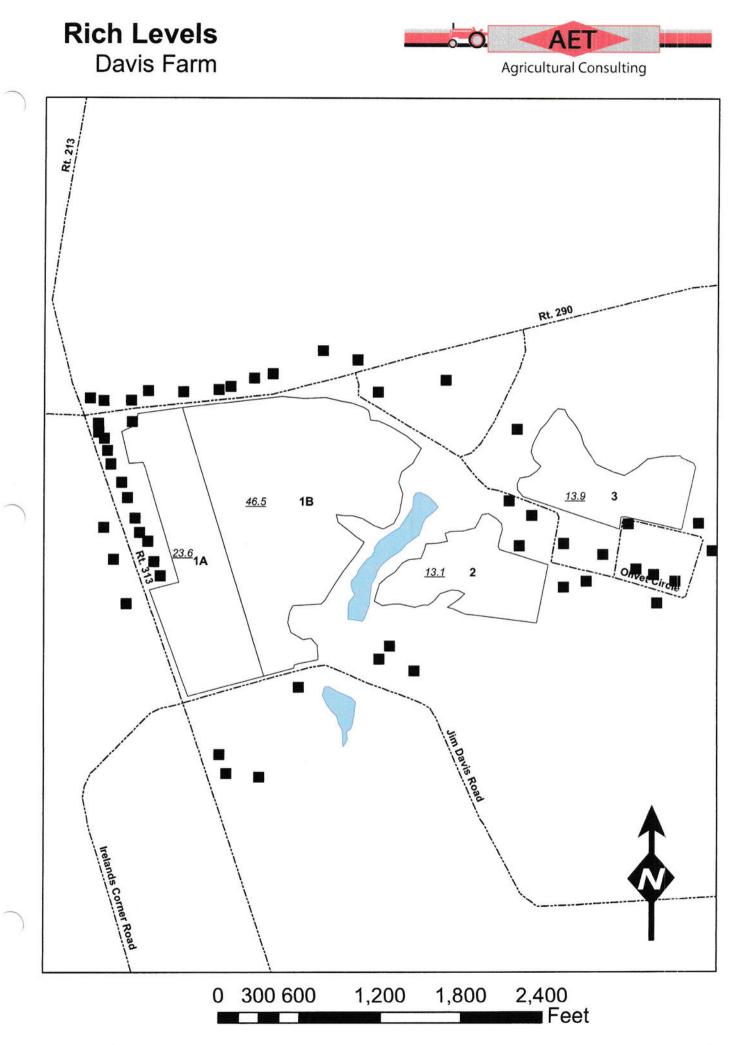
~94.5 acres

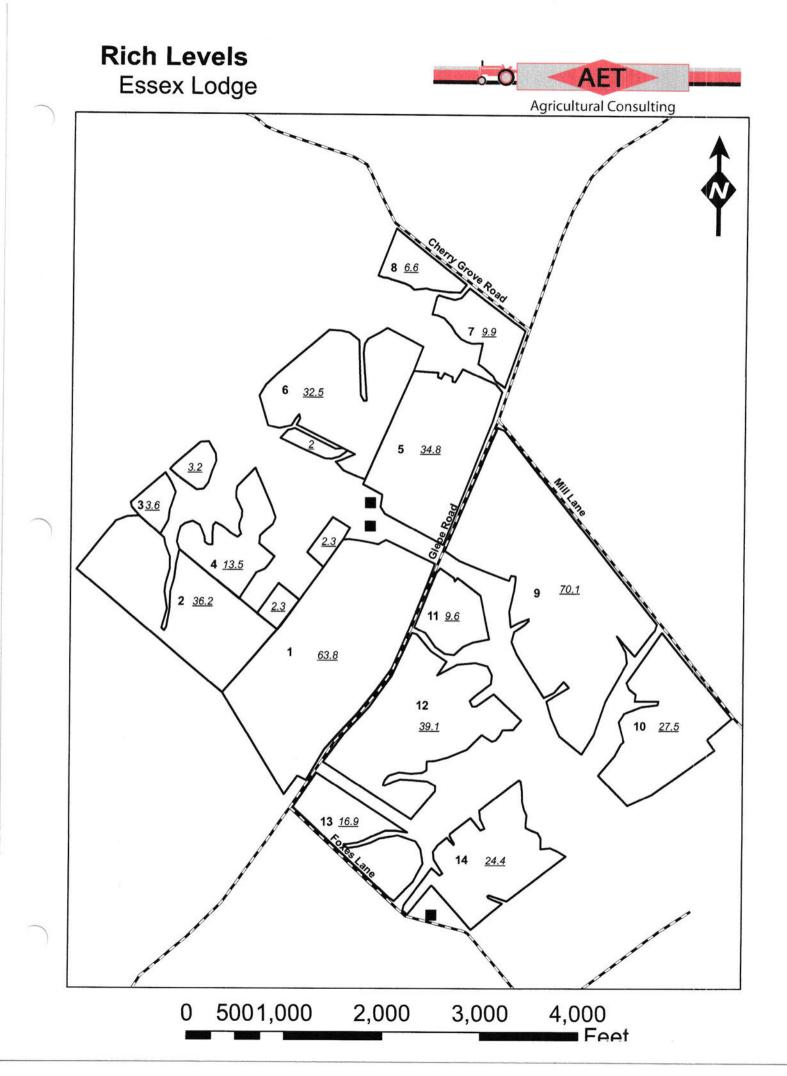

-

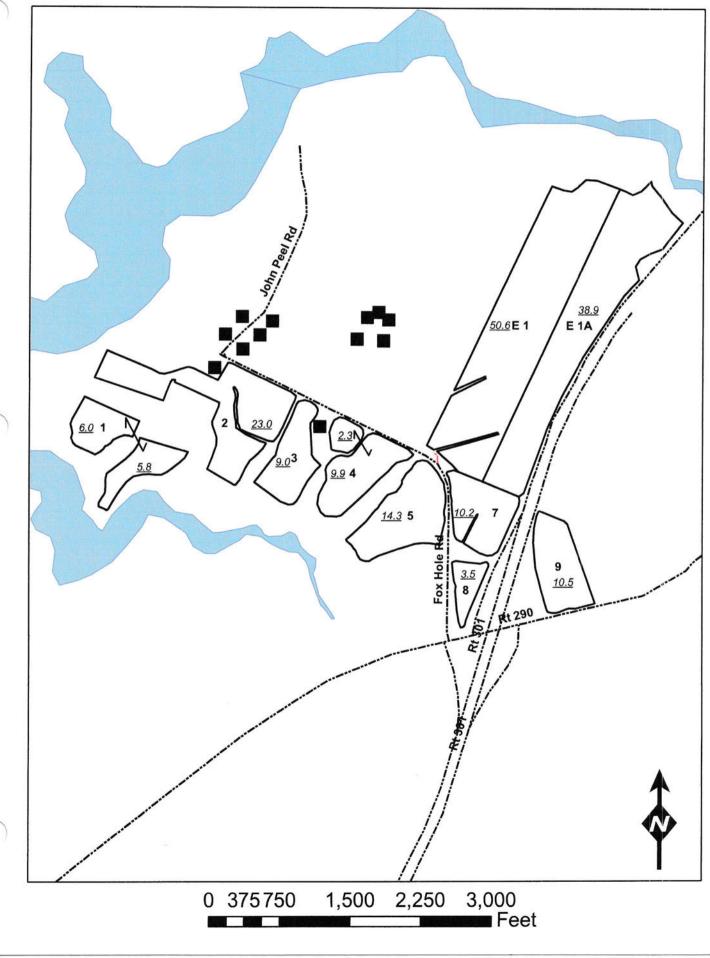


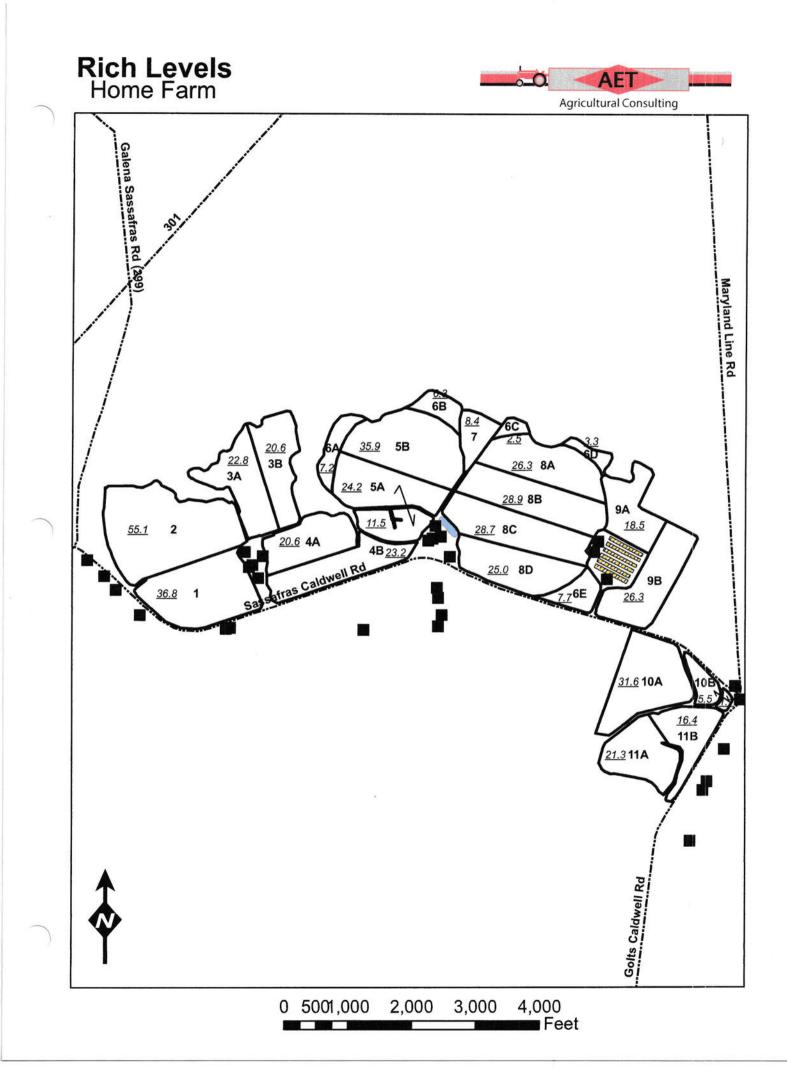


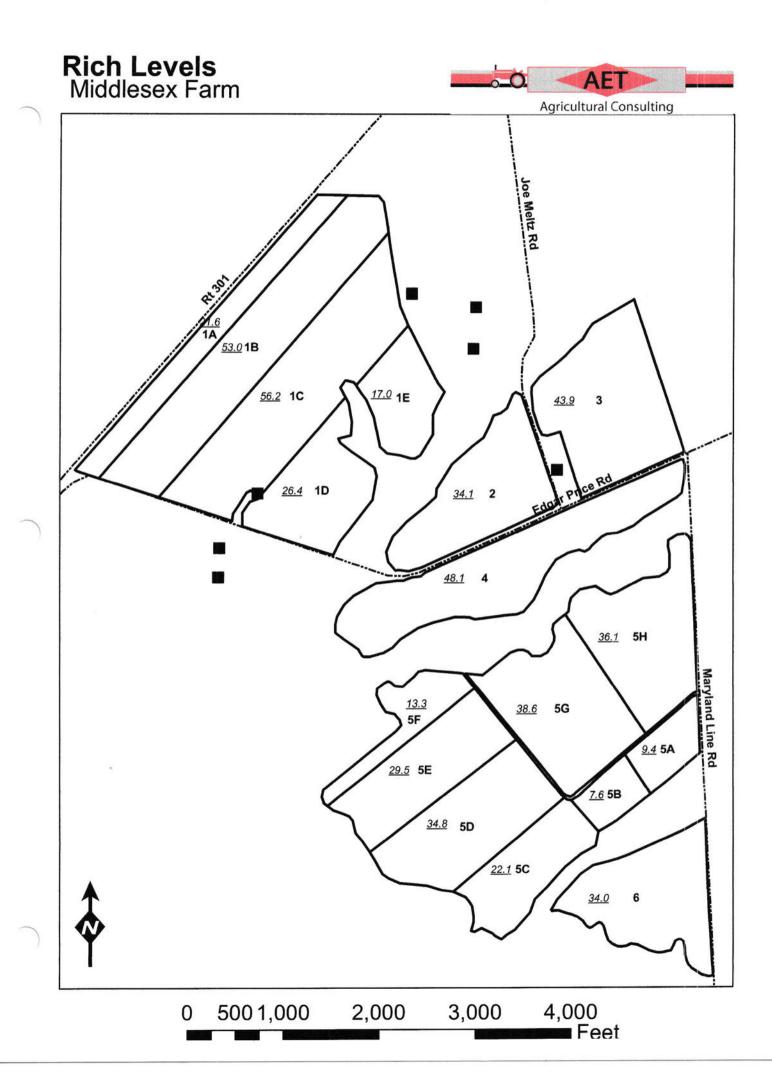

Agricultural Consulting

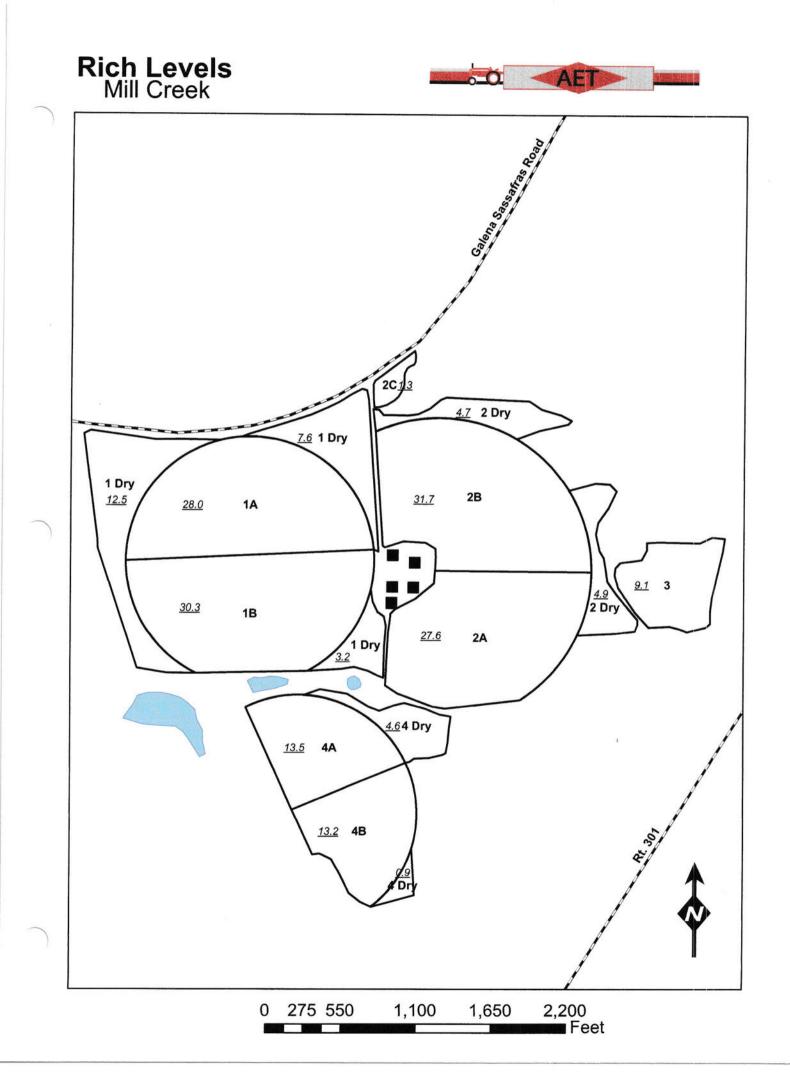

AET

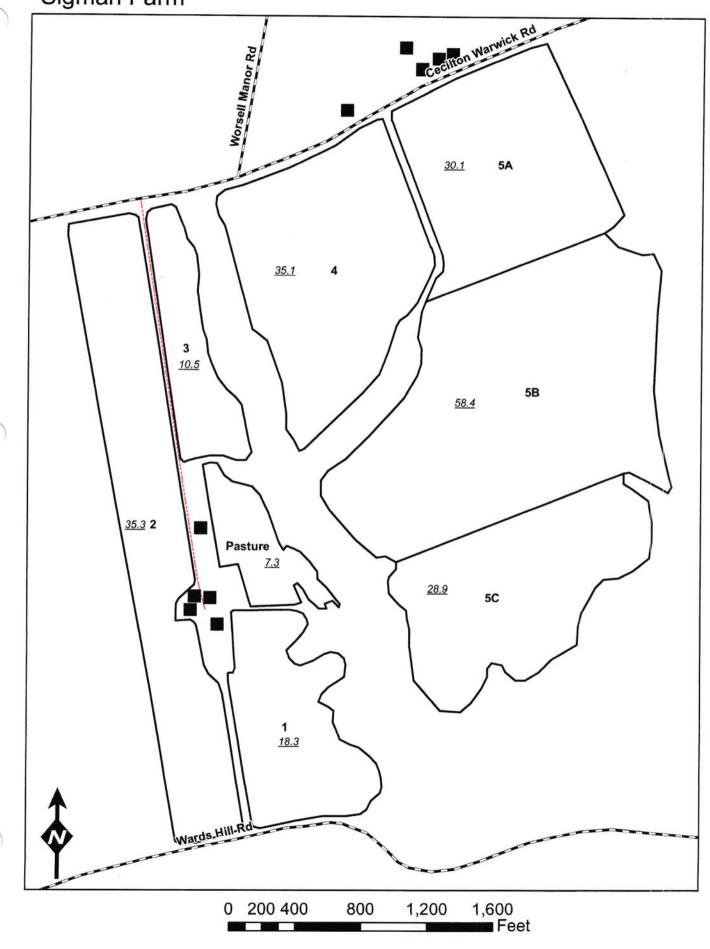







Rich Levels Fox Hole and Fusco





Rich Levels Sigman Farm

In Case of an Emergency Storage Facility Spill, Leak, or Failure:

Implement the following first containment steps and where containment material is located:

This plan will be implemented in the event that animal by-products from your operation are leaking, overflowing, running off site or there is imminent danger that such may occur from damage or failure of the system or a threatening natural occurrence, such as a hurricane. You should not wait until manure reaches surface waters or leaves your property to consider that you have a problem. You should make every effort to ensure that this does not happen. This plan should be posted in an accessible location for all employees at the facility. The following are some action items you should take in the event of an emergency:

Action Plan

In case of an emergency; including a spill, leak, or failure:

Spills from containment areas or structure failures:

- 1. Stop all other activities to address the problem;
- 2. Call for assistance, if needed;
- 3. Construct sand bag or earthen dike to contain or divert spills away from surface inlets, roadways, and surface water features. Add absorbent material such as pads, sawdust, straw or dry soil as needed for containment.
- 4. Remove spill from diked area with appropriate equipment such as: vacuum tank, frontend loader and spreader, or other method as directed by local or state authorities.
- 5. Complete the clean-up and repair the necessary components.
- 6. Initiate additional containment measures, corrective measures, or property restoration measures as directed by emergency agency officials.

Spills during pumping operations:

- 1. Shut off all pumping equipment.
- 2. Build a sand bag or earthen dike.
- 3. Remove spill from diked area with appropriate equipment such as: vacuum tank, frontend loader and spreader, or other method as directed by local or state authorities.
- 4. If the spill was due to a structural failure, contact the local NRCS office immediately for repair recommendations.

Spills during transportation on public roadways:

- 1. Coordinate efforts with local law enforcement and emergency personnel.
- 2. Contain spill and divert waste away from watercourses;
- 3. Call for additional assistance, equipment, and supplies, as appropriate;
- 4. Remove spill with appropriate equipment such as: vacuum tank, front-end loader and spreader, or other method as directed by local or state authorities.

Spill area clean up:

- 1. Break down dike.
- 2. Dry out sand bags.
- 3. Properly discard any absorbent pads used.
- 4. Level any soil disturbance and incorporate residue.
- 5. Re-vegetate disturbed area.

In Case of an Emergency Land Application Manure/Waste Discharge

CNMP EMERGENCY RESPONSE (CONT.)

If manure is spilled directly into waters of the state, it can create an environmental or public health hazard. Contact MDE as soon as possible within 24 hours after a spill.

Provide the following information:

- 1. Name and identification of the farm;
- 2. A description of the discharge and cause, including a description of the flow path to the receiving waters, and an estimate of the volume discharged;
- 3. Any obvious damage, such as a fish kill or property damage;
- 4. The period of discharge, including exact dates and times, and, if not corrected, the anticipated time the discharge is expected to continue;
- 5. Describe the steps being taken to reduce, eliminate, and prevent recurrence of the discharge.

Threatening Natural Occurrences

Prevent or minimize damage caused by threatening natural occurrences, such as hurricanes or strong storms associated with approaching fronts - actions include:

- 1. Do not spread manure on fields just prior to an approaching storm.
- 2. Do not spread manure on fields that flood during high rainfall events.
- 3. Notify State Veterinary Office Animal Emergency Response Coordinator (See Table below) or Local Animal Emergency Response Coordinator for relocation of animals if needed.

Personal injury

- 1. Stop all other activities to deal with the emergency.
- 2. Call for help (See Emergency Contact Information).

Catastrophic deaths – Disease Related

- 1. Notify State Veterinary Office.
- 2. Limit exposure to other animals.
- 3. Prevent visitation by unnecessary people.
- 4. Dead animals should be moved into a DHEC approved transport vehicle or a DHEC approved storage area or bin.
- 5. Record date of catastrophic deaths, number of deaths, method and location of disposal.

Catastrophic deaths – Disaster Related

- 1. Notify State Veterinary Office Animal Emergency Response Coordinator immediately. (See Emergency Contact Information)
- 2. Remove mortality from the barns/houses.
- 3. Dispose of mortality in the manner given in this CNMP for emergency dead animal disposal.
- 4. Record date of catastrophic deaths, number of deaths, method and location of disposal.

Manure Removal

- 1. Place manure in stacking structure if available. Do not stack old manure next to new or wet manure next to dry.
- 2. Records should be kept for any manure which is transported off the farm site.

Fire

- 1. Stop all other activities to deal with the emergency.
- 2. Try to extinguish the fire with the appropriate rated fire extinguishers.
- 3. If fire cannot be contained, call for help (See Emergency Contact Information)

In Case of an Emergency Land Application Manure/Waste Discharge

Assess the extent of the spill and note any obvious damages

- 1. Did the by-product reach any surface waters?
- 2. Approximately how much was released and for what duration?
- 3. Any damage noted, such as employee injury, fish kills, or property damage?
- 4. Did the spill leave the property?
- 5. Did the spill have the potential to reach surface waters?
- 6. Could a future rain event cause the spill to reach surface waters?
- 7. Are potable water wells in danger (either on or off of the property)?
- 8. How much reached surface waters?

Provide the following information when reporting an emergency

- 1. Your name and phone number.
- 2. Directions to the farm.
- 3. Description of emergency.
- 4. Estimate of the amounts, area covered, and distance traveled.
- 5. Has manure reached surface waters or major field drains?
- 6. Is there any obvious damage: employee injury, fish kill, or property damage?
- 7. What activities are currently in progress to contain situation?

Implement procedures as advised by MD NRCS and technical assistance agencies to rectify the damage, repair the system, and reassess the manure management plan to keep problems with release of manure from happening again.

Documentation

The following items shall be documented in writing and filed with your farm operation records for future reference and emergency response training:

- 1. Date and time, location of spill, affected landowners.
- 2. Affect of manure spill on any surface water body or potable water well.
- 3. Approximately how much manure was released and for what duration.
- 4. Amount of manure, if any, which left the farm property.
- 5. Any damage, such as personal injury, fish kill, property damage.
- 6. Cause of the spill.
- 7. Procedure to handle the emergency.
- 8. Clean up efforts.
- 9. List of authorities called, those that responded, and the time it took for them to respond.
- 10. Recommendations to prevent a reoccurrence.

In Case of an Emergency Land Application Manure/Waste Discharge

Implement the following first containment steps and where containment material is located:

- 1. Stop all other activities to deal with the emergency.
- 2. Stop manure pumps and irrigation equipment. Close valves. Separate pipes to create air gap if necessary to stop manure flow.
- 3. Assess the extent of the emergency and determine how much help is needed.
- 4. Call for help if needed.
- 5. If spilled on the road, call the sheriff's office for traffic control and clean the spill immediately from the road and roadside if needed.
- 6. Contain the spill or runoff from entering the stream or waterway using straw bales, saw dust, or soil material.
- 7. Prevent further runoff by incorporating the waste.
- 8. Initiate additional containment measures, corrective measures, or property restoration measures as directed by emergency agency officials.

Follow the above guidelines for:

- Assessing the extent of the spill and noting obvious damages
- Provide information when reporting the emergency
- Documentation of your farm operation records

Biosecurity

Biosecurity means doing everything possible to protect the health of livestock by preventing the transmission of disease. An outbreak of animal disease could not only harm your livestock, it could effect other nearby animals and quickly spread through your area. The economic consequences of a disease outbreak could be devastating. Taking common sense precautions to prevent disease from coming onto your farm is the best investment you can make.

How Diseases Spread (Example – Poultry Operation)

Steps to Take to Avoid Disease Spread

To reduce the risk of introducing disease entering into an animal feeding operation, maintain a biosecurity barrier (physical barrier, personal hygiene, and equipment sanitation) between wildlife, animals, animal containment areas, and other commercial facilities. Some examples of good biosecurity practices include:

- 1. Permit only essential workers and vehicles on the premises.
- 2. Give Germs the Boot
 - a. Keep a pair of shoes or boots to wear only around your animals.
 - b. Clean and disinfect your shoes often.
 - c. Always ask visitors and employees to clean their boots and shoes.
- 3. Don't Haul Home Disease
 - a. Always clean and disinfect vehicles used for moving animals.
 - b. Limit traffic of incoming people, products and vehicles that could bring in a disease.
 - c. Clean and disinfect all equipment that comes in contact with your animals.
- 4. Keep Your Farm Secure
 - a. Restrict access to your property and animals.
 - b. Keep doors and gates locked.

- c. Have tracking records on animals.
- 5. Give Germs Space Newly acquired animals should be isolated for at least two weeks to ensure you don't introduce disease to your main herd or flock. As an added protection, isolate and quarantine new animals for 30 days before putting them with your other animals. Keep show animals segregated for at least two weeks after they've been to a fair or exhibit.
- 6. Look for Signs
 - a. Unusual animal health symptoms or behavior
 - b. Sudden, unexplained death loss in the herd or flock
 - c. Severe illness affecting a high percentage of animals
 - d. Blisters around an animal's mouth, nose, teats or hooves
 - e. Staggering, falling or central nervous system disorders that prevent animals from rising or walking normally.
 - f. Large number of dead insects, rodents or wildlife
- 7. Don't Wait Call in Signs of Disease Immediately

Do not self-diagnose. Seek veterinary services, as early detection is your best protection. If you have animals with signs of suspect disease, call your local veterinarian, extension agent or the state veterinarian. Rapid response and investigation are the only ways to control and eliminate disease and stop large numbers of casualties or damage to our economic system.

In Case of a Chemical Handling Emergency

Chemical Handling

This section contains information on using pesticides safely, emergency contact information, spill information and the proper disposal of pesticide containers. For further information, please contact the Maryland Department of Agriculture Pesticide Regulation Program.

USE PESTICIDES SAFELY

1. Check the label - Be sure the pest you need to control is listed on the label.

2. Buy only enough pesticide for one or, at most, two years. Pesticides stored longer may degrade and become less active.

3. Always wear long trousers, a long-sleeved shirt, socks, and shoes when applying any pesticide. Other protective equipment, such as a respirator, goggles, impermeable gloves and boots maybe necessary or desirable for extra protection.

4. Do not wear leather shoes, boots, or gloves while handling pesticides. Leather absorbs pesticides and cannot be decontaminated easily.

5. Take care to avoid pesticides coming into contact with your eyes, mouth, or skin.

6. Wash your hands with soap and water immediately after applying a pesticide. Shower as soon as possible.

7. Stand upwind while mixing and applying pesticides.

8. Unless the label specifically allows such use, never apply a pesticide where it could contact water sources, and avoid applying to bare ground.

9. Never apply a pesticide at a higher rate than the label directs.

10. Wash all clothing worn during mixing and application separately from household laundry. Use a heavy duty detergent and hot water. Dry the clothes in a hot dryer or outside in the sun.

11. Store pesticides only in their original containers. Keep them away from food, feed, seed, and fertilizers in a locked building or cabinet.

12. Dispose of empty pesticide containers in accordance with label directions and state and local requirements. See Disposal of Pesticide Containers

DISPOSAL OF PESTICIDE CONTAINERS

Pesticides (herbicides, insecticides, fungicides, etc.) are designed to be toxic. Improper disposal of pesticides or their containers can lead to environmental contamination and may incur both civil and criminal penalties. There is usually no safe and legal way to dispose of leftover pesticide; all of the chemical must be used up on registered sites or crops according to directions on the label. The Environmental Protection Agency (EPA) has accepted certain procedures, outlined below, which are designed to remove as much residue from the container as possible. Only after following these procedures may pesticide containers be deposited in a licensed sanitary landfill.

Containers of Liquid Formulations

1. Triple rinse the container immediately after emptying it into the spray tank:

Fill the container 1/4 full with the proper diluent (usually water or oil). Replace the closure or plug the opening. Rotate the container. Add rinsate to the spray tank. Repeat this procedure 2 more times

2. Puncture the top and bottom of the container to prevent its reuse.

3. Deposit the empty container in a licensed sanitary landfill.

Containers of Dry Formulations

1. Empty the contents into the tank, shaking the container to remove as much residue as possible. Take care not to inhale any dust.

- 2. Open both ends of the container to help remove residue and to prevent reuse.
- 3. Deposit the empty container in a licensed sanitary landfill.

If checked, the indicated measures will be taken to prevent chemicals and other contaminants from contaminating process waste water or storm water storage and treatment systems.

٧	Measure
v	All chemicals are stored in proper containers. Expired chemicals and empty containers are properly disposed of in accordance with state and federal regulations. Pesticides and associated refuse are disposed of in accordance with the FIFRA label.
	Chemical storage areas are self-contained with no drains or other pathways that will allow spilled chemicals to exit the storage area.
v	Chemical storage areas are covered to prevent chemical contact with rain or snow.
	Emergency procedures and equipment are in place to contain and clean up chemical spills.
	Chemical handling and equipment wash areas are designed and constructed to prevent contamination of surface waters and waste water and storm water storage and treatment systems.
	All chemicals are custom applied and no chemicals are stored at the operation. Equipment wash areas are designed and constructed to prevent contamination of surface waters and waste water and storm water storage and treatment systems.

EMERGENCY CONTACTS:

For individuals exposed to chemicals the following are the telephone numbers for emergency treatment centers and the telephone number for the nearest poison control center.

1. Maryland Poison Control Center 1-800-222-1222

2. Maryland Department of Agriculture (Pesticide Section), 410-841-2721

3. Delaware Department of Agriculture (Pesticide Section), 302-698-4570

4. CHEMTREC Emergency Hotline, 1-800-424-9300

5. Local Police/Fire 911

6. National Pesticide Information Center (NPIC), 1-800-858-7387, Monday - Friday, 6:30 a.m. to 4:30 p.m. Pacific Time

EMERGENCY SPILLS:

1. Fires, spills or other incidents of pesticide release to the environment must be reported immediately to the Maryland Department of the Environment (MDE), Emergency Response at: 1-866-633-4686 or 1-866 MDE-GOTO (24 hours a day, 7 days a week)

2. Fires, spills or other incidents of pesticide release to the environment can also be reported immediately to the State of Maryland Department of Agriculture: 1-410-841-5710 or 1-800-492-5590 (8:00 AM to 4:30 PM - Monday through Friday)

3. The 24-hour CHEMTRAC telephone number for emergency assistance is: 1-800-424-9300

Animal Mortality Disposal

Animals die because of disease, injury, or other causes in any confined livestock operation. The mortality rate is generally highest for newborn animals because of their vulnerability.

Catastrophic mortality can occur if an epidemic infects and destroys a large portion of the herd or flock in a short time, or if a natural disaster, such as a flood or excessive heat strikes. There are also incidences when an entire herd or flock must be destroyed to protect human health or other farms in the area.

An additional purpose of this CNMP is to present options to manage normal, day-to-day mortalities and even catastrophic mortalities should this occur. Planning for a catastrophic mortality event should include the study of appropriate regulations, locating a site for disposal, and having insurance to cover the cost involved.

Mortality Management Methods

Mortality must be managed for at least three reasons:

- 1. Hygiene
- 2. Environmental protection
- 3. Aesthetics

Acceptable ways for managing mortality include:

- 1. Rendering
- 2. Composting
- 3. Incineration
- 4. Sanitary landfills
- 5. Burial
- 6. Disposal pits

Of these methods, only the rendering and composting methods recycle the nutrients. The other methods, in essence, waste the nutrients.

Typical Mortality Management (planned practice)

This farm operation will use composting for normal mortality and composting for catastrophic mortality. See below:

Composting

Composting is the controlled aerobic biological decomposition of organic matter into a stable, humus-like product, called compost. Decomposition is enhanced and accelerated by mixing organic waste with other ingredients in a manner that optimizes microbial growth. Composting mortality can be likened to aboveground burial in a biomass filter where most of the pathogens are killed by high temperatures.

As the microbial population consumes the most readily degradable material and grows in numbers, the temperature of the compost pile begins to rise. Efficient composting requires that the initial compost mix have:

A balance source of energy (carbon) and nutrients (primarily nitrogen), typically with a carbon-to-nitrogen (C:N) ratio of 15:1 to 35:1.

Sufficient moisture, typically 40% to 60%.

Sufficient oxygen for an aerobic environment. A pH in the range of 6 to 8.

For proper composting, correct proportions of carbon, nitrogen, moisture, and oxygen need to be present in the mix. Common carbon sources are sawdust or wheat straw. It is desirable because of its bulking ability, which allows entry of oxygen. Other carbon sources that could be used are peanut hulls, cottonseed hulls, sawdust, leaves, etc. If lab testing of the litter or experience indicates that the carbon/nitrogen ratio is adequate (20 - 35:1 ratio), then litter alone should be sufficient for composting mortality as long as desirable bulking ability is achieved and moisture is properly managed. Moisture management is critical and must be maintained between 40 and 55 percent (40% -does not leave your hand moist when squeezed, 55% - if more than two drops drip from your hand the material is too moist).

Compost process

The first layer is one foot of pen-pack.

A 4-6 inch layer of carbon amendment (sawdust is preferred) is added according to the recipe A layer of carcasses is added. Carcasses shall be laid side-by-side and shall not be stacked on top of one another. Carcasses placed directly on dirt or concrete floors, or against bin walls will not compost properly.

Water is added (uniform spray).

Carcasses are covered with a 6-inch layer of manure or finished compost. Next layer of carcasses begun with carbon amendment and above steps repeated. When composter is full, cap the 6-inch layer with four additional inches.

Maintain the moisture content at 40 to 55 percent during the composting process (40% - does not leave your hand moist when squeezed, 55% will allow about one drop of water to be released when squeezed, > 55% - if more than two drops drip from your hand the material is too moist, therefore add sawdust or dry carbon source).

Temperature is the primary indicator to determine if the composting process is working properly. A minimum temperature of 130 ° F shall be reached during the composting process. A temperature of 140 ° F is optimum; however, temperatures may range up to 160 ° F. If the minimum temperature is not reached, the resulting compost shall be incorporated immediately after land application or recomposted by turning and adding moisture as needed. Compost managed at the required temperatures will favor destruction of any pathogens and weed seeds.

Good carcass compost should heat up to the 140° range within a few days. Failure of the compost material to heat up properly normally results from two causes. First, the nitrogen source is inadequate (example wet or leached litter). A pound of commercial fertilizer spread over a carcass layer will usually solve this problem. Secondly, the compost fails when too much water has been added and the compost pile becomes anaerobic. An anaerobic compost bin is characterized by temperatures less than 120°, offensive odors, and black oozing compound flowing from the bottom of the compost bin. In this case a drier bulking / carbon amendment should be added to dry the mix. Then, the material should be remixed and composted.

It is possible, though unlikely, for the temperature to rise above the normal range and create conditions suitable for spontaneous combustion. If temperature rises above 170° F, the material should be removed from the bin and cooled, spread on the ground to a depth not to exceed six inches in an area away from buildings. Water should be added only if flames occur. If temperature falls significantly during the composting period and odors develop, or if material does not reach operating temperature, investigate piles for moisture content, porosity, and thoroughness of mixing.

Inspect compost structure at least twice annually when the structure is empty. Replace any broken or badly worn parts or hardware. Patch concrete floors and curbs as necessary to assure water tightness. Examine roof structures for structural integrity and leaks. Inspections shall be documented on the attached worksheet.

The primary and secondary composters and the litter storage area should be protected from outside sources of water such as rain or surface runoff.

In order to assure desired operation of the composting facility, daily records should be kept during the first several compost batches. This can be helpful in identifying certain problems that may occur.

Please Note: If the method of disposing of dead animals changes, the producer should notify the plan writer and the local USDA-NRCS offices.

Vector Control and Abatement

Management and sanitation are the real keys to preventing or eliminating any vectors' problems. If these weaknesses are not addressed, the problems will recur. Pesticides are the final tools in controlling the problem.

Most problems with insects (such as flies), rodents (such as rats and mice) and scavenging animals, (such as dogs, cats, foxes, possums, raccoons, etc.) can be minimized by keeping the facility and surroundings clean and properly maintained. This includes:

- Removing all excess building materials.
- Removal of any excess feed from the houses or around bins.
- Keeping grass and weeds mowed
- Keeping all buildings free of trash and debris.
- The proper use and servicing of bait stations.
- Proper and timely disposal of dead animals.
- Keeping all manure cleaned up caused by spillage from around the houses. Keep all temporary stored manure covered and dry.
- Any spillage of feed should be cleaned as soon as possible and all feed will be kept dry. Covers on feed storage bins should be used. Drainage away from all feed storage containers should be provided to reduce moisture accumulation.

Actions to be taken for the abatement of an *insect problem*:

- Mow vegetation around facility.
- Clean up any spilled feed.
- Repair or replace equipment that is spilling feed.
- Use covers to prevent feed from getting wet.
- Dispose of any wet or contaminated feed.
- Check for leaks from waterers, etc. and repair as needed.
- Remove any garbage or trash from the facility.
- Remove and dispose of all dead animals immediately and appropriately.
- Use approved baits, poisons, etc. as appropriate.

Actions to be taken for the abatement of a <u>rodent problem</u>:

• Mow vegetation around facility.

- Clean up any spilled feed.
- Repair or replace equipment that is spilling feed.
- Use covers to prevent feed from getting wet.
- Dispose of any wet or contaminated feed.
- Remove all excess building materials.
- Remove any garbage or trash from the facility.
- Check for damage or leaks from waterers, etc. and repair as needed.
- Remove and dispose of all dead animals immediately and appropriately.
- Use approved baits, poisons, etc. as appropriate.

Actions to be taken for the abatement of scavenging animal problems:

- Remove and dispose of all dead animals immediately and appropriately.
- Mow vegetation around facility
- Clean up any spilled feed.
- Repair or replace equipment that is spilling feed.
- Use covers to prevent feed from getting wet.
- Dispose of any wet or contaminated feed.
- Remove all excess building materials.
- Remove any garbage or trash from the facility.
- Check for digging activities that could damage or weaken buildings and repair as needed.
- Contact the proper officials for additional control measures.

For more details on specifics (rats, filth flies, etc.) information may be obtained from the Maryland Agricultural Extension Offices or the NRCS office.

Air Quality

NRCS does not have specific technical criteria for these considerations that are required for CNMPs. However, the following items may be considered when addressing Air Quality, most Air Quality issues are associated with odor.

Air quality in and around structures, waste storage areas, and treatment sites may be impaired by excessive dust, gaseous emissions such as ammonia, and odors. Poor air quality may impact the health of workers, animals, and persons living in the surrounding areas. Ammonia emissions from animal operations may be deposited to surface waters, increasing the nutrient load to these regions. Proper sitting of structures and waste storage facilities can enhance dispersion and dilution of odorous gases. Enclosing waste storage or treatment facilities can reduce gaseous emissions from AFO in areas with residential development in the region.

For an odor to be detected downwind, odorous compounds must be (a) formed, (b) released to the atmosphere, and (c) transported to the receptor site. These three steps provide the basis for most odor control. If any one of the steps is inhibited, the odor will diminish.

A. Growing and Storage Facilities

Odor problems can be prevented or reduced through adequate drainage, runoff management, proper care to keep animals and animal facilities clean and dry, and appropriate animal by-product removal, handling, and transport.

Locate animal by-product management facilities and utilization areas as far as practical from neighboring residences, recreational areas, or other conflicting land uses. Avoid sites where radical shifts in air movement occur between day and night, such as those near large bodies of water or steep topography. A component's location in relation to surrounding topography may also strongly influence the transfer of odor because of daily changes in temperature and resulting airflow. To provide optimum conditions, prevailing winds should carry odors away from nearby residences.

Providing conditions or design features that alter the microclimate around specific components can further mitigate odor. An abundance of sunlight and good ventilation helps keep livestock and poultry areas dry and relatively odor free. Southern exposure with adequate slope to provide drainage for runoff is a preferred condition. Keeping animal by-products aerated and at appropriate moisture and temperature levels slows the development of anaerobic conditions and reduces odor.

B. Mitigation of Odor

Odor-causing substances from animal by-products are frequently attracted to dust particles in the air. Collecting or limiting the transport of dust aids in reducing odor. Vegetation is very effective in trapping dust particles. For example, pine trees planted downwind trap odor-laden dust particles and can provide a visual barrier to the animal operation. In addition, vegetation, landform, and structures can channel wind to carry odors away from nearby residences.

Chemical additives for the control or reduction of odors may be added to the bedding in the house or during removal.

C. To reduce Odor Problems during Spreading

- 1. Avoid spreading when wind will blow towards populated areas.
- 2. Avoid spreading just before weekends and holidays when people are more likely to be outdoors.
- 3. Spread in the morning when the air is warming and rising, rather than in the afternoon.
- 4. Animal waste applied to the soil surface should be incorporated within 24 hours of application to reduce odor, minimize surface runoff and maximize nutrient availability to the subsequent crop. Optimum incorporation time is 12 hours.
- 5. Injection of animal wastes beneath the soil surface is the preferred method of application.

D. <u>Safety</u>

- 1. Fencing should be provided to prevent livestock and people from entering the agriculture waste facility.
- All waste storage structures must be posted with a ~caution~ sign Example- DANGER KEEP OUT. If you do not have a sign, one can be provided.
- 3. Manure produces gases caution should be taken so as not to be overcome by such gases *(Gas masks are not adequate protection).
- E. <u>Structure Maintenance*</u>
 - Check backfill areas around structure (concrete, steel, timber, etc) often for excessive settlement. Determine if the settlement is caused by backfill consolidation, piping, or failure of the structure walls or floor. Necessary repairs must be made. Refer to safety items Part A above.
 - 2. Check walls and floors often minimum of 2 times a year when facility is empty for cracks and/or separations. Make needed repairs immediately. Refer to safety items Part A above.

- 3. Outlets of foundations and sub-drains should be checked frequently and kept open. The outflow from these drains should be checked when the facility is being used to determine if there is leakage from the storage structure into these drains. Leakage may be detected by the color and smell of the out-flowing liquid, by lush dark-green growth of vegetation around the outlet, by the growth of algae in the surface ditch, or by the vegetation being killed by the outflowing liquid. If leakage is detected, repairs should be planned and made to prevent the possible contamination of groundwater. Refer to safety items Part A above, when planning and making repairs.
 - 4. To prevent erosion, a good vegetative cover should be established and maintained on berms and embankments. Plantings should be clipped 3 times a year to kill noxious weeds and encourage vigorous growth. If the vegetative is damaged, berms and embankments will need to be re-vegetated as soon as possible.
 - 5. Fences should be inspected and maintained in order to exclude livestock from the berms and embankments and to exclude unauthorized entry by people.
 - 6. Check the channels and berms of the clean water diversions around the barnyard, buildings and storage structure frequently. Channels must be protected from erosion and berms must be maintained at the proper height to ensure adequate capacity. These channels and berms should not be used as haul roads unless they are designed and constructed for this purpose.
 - 7. Check frequently for burrowing animals around buildings, structures, and in the berms and embankments. Remove them when they are found and repair any damage.
 - 8. Inspect haul roads and approaches to and from the storage facility frequently to determine the need for stone, gravel or other stabilizing material.
 - 9. Do not allow runoff from loading areas and from spills to flow into streams or road ditches.
 - 10. Examine and repair all warning and hazard signs as needed.
 - 11. Install and maintain a marking gauge post, which clearly shows the design levels of one-half and full for manure storage pits, ponds, and lagoons.
 - 12. Clear blockages from roof gutters and outlets as needed.
 - 13. Landowner should notify the Soil Conservation District of any major problems or repairs needed.
 - 14. Roof of feed area must be maintained and operate as intended for the life of the practice (15 years). The function of the roof is critical since the manure storage facility is sized accordingly.

F. Miscellaneous

- 1. A Soil Conservation District representative will make an annual inspection.
- 2. Owner/operator fully understands that cost-share agencies can ask for a refund of money received, if an operation and maintenance plan is not followed by the owner/operator.

Other Utilization Activities

If this element of the CNMP should be presented as a consideration for the AFO owner and/or operator in his/her decision-making process, a statement of action would be presented below in a table format.

Using environmentally safe alternatives to land application of manure and organic by-products should be an integral part of the overall CNMP. Alternative uses for animal manure are needed in areas where nutrient supply exceeds the nutrient requirements of crops, and/or where land application would cause significant environmental risk. Manure use for energy production, including burning, methane generation, and conversion to other fuels, is being investigated and even commercially tested as a viable source of energy. Methods to reduce the weight, volume, or form of manure, such as composting or pelletizing, can reduce transportation cost, and create a more valuable product. Manure can be mixed or co-composted with industrial or municipal by-products to produce value-added material for specialized uses. Transportation options are needed to move manure from areas of over supply to areas with nutrient deficiencies (i.e., manure brokering).

& Nutrient Management Requirements

(SEE THE TEMPLATES WHICH FOLLOW)

Record Keeping

It is important that records are kept to effectively document and demonstrate implementation activities associated with CNMPs. Documentation of management and implementation activities associated with a CNMP provides valuable benchmark information for the producer that can be used to adjust his/her CNMP to better meet production objectives. It is the responsibility of AFO owners/operators to maintain records that document the implementation of CNMPs.

CNMP requires that the producer maintain these records for no less than 5 years. Maryland State regulations require that the Nutrient Management Plan records be maintained for a minimum of 5 years as well (see Maryland State Nutrient Management Requirements of this section). It is the producer's responsibility to ascertain the minimum time required for archiving the records listed below. In some cases, if certain USDA programs are in effect, the records may need to be kept as long as fifteen years. In addition, if this operation requires a CAFO permit, annual reporting may be necessary.

Records may be kept in a number of ways:

- Record Forms are available from the NRCS.
- Record forms may be obtained from University of Maryland Extension Office or from the MDA Nutrient Management Program.
- You may develop your own records system provided that all necessary information is included.

Land Application Record Keeping.

Record Keeping (Maintain for 5 years)

Maintaining records to document plan implementation. As applicable, records include:

- □ Soil test results and recommendations for nutrient application.
- Quantities, analyses and sources of nutrients and manure applied.
- Manure Transfer/Export Events
- Dates and methods of nutrient and manure applications.
- □ Crops planted, planting and harvest dates, yields, and crop residues removed.
- □ Results of water, plant, and organic by-product analyses.
- Dates of review and person performing the review, and recommendations that resulted from the review.

Operation and Maintenance

- a. Review the Manure and Nutrient Management Plan component annually and make adjustments when needed.
- b. Calibrate application equipment to ensure uniform distribution and accurate application rates (SEE SECTION 13).

- c. Inspect and repair manure hauling and application equipment to minimize potential of accidental spillage.
- d. Protect fertilizer storage areas from weather to minimize runoff, leakage, and lost of material.
- e. Avoid unnecessary exposure to fertilizer and organic waste (bio-solids), and wear protective clothing when necessary.
- f. Observe set backs required for nutrient applications (specified in this plan) adjacent to water bodies, drainageways, sink holes, and other sensitive areas.
- g. Maintain records of manure and nutrient applications for 5 years (SEE SECTION 6).
- h. Clean up residual materials from equipment and dispose of properly.

Summary:

The development of this Plan only applies to the fields and conditions stated in the Plan. If changes occur in your livestock operations or fields contact the NRCS/SWCD Office or your Technical Service Provider to get this Plan revised.

Documentation of Records

The Table below shows which of the CNMP records which may be required by MD NRCS. Operators should maintain these records to document plan implementation. As applicable, records include:

ltem	Report Details	Frequency	Documentation	Maryland Records Kept For:	Required by MD NRCS?
Monthly Animal and Mortality Count		Monthly	Suggested format available	5 Years	Y
Calibration Record for Spreading Equipment		Annually	Suggested format available	Two Most Recent Records	Y
Soil test results		Every 3 years	Keep Soil Test Reports	5 Years	Y
Results of Pre-Side Dress Nitrogen or Pre-Plant Soil Nitrate Testing	Any alternative sampling technique used to address specific crop requirements that lead to a change in the applied amounts should be documented.	As needed	Keep Test Reports	5 Years	Not Required
Plant Tissue Testing Results	If analysis is used in allocation decisions these results should be maintained	As needed	Keep Test Reports	5 Years	Not Required
Manure Nutrient Analysis	A manure analysis should be completed annually, for each manure storage containment and prior to application. It is essential that a recent analysis be	Annual	Suggested format available or Keep Test Reports	5 Years	Y

	used when updating the nutrient management plan.				
Events associated with manure storage and containment structures (e.g. manure transfer overflow events)	Dates of emptying, level before emptying, and level after emptying Discharge or overflow events, level before and after event	Event Driven	Suggested format available	5 Years	Y
Spill Response	Activities associated with emergency spill response plan.	Event Driven	Suggested format available	5 Years	Y
Crop records	Crops planted and planting/harvesting dates, by field.	Event Driven	Suggested format included	5 Years	Y
Nutrient Application Summary by Field	Nutrient Application records for each application event, including commercial fertilizers that are applied to supplement manure.	Event Driven	Suggested format included	5 Years	Y
Transfer of manure offsite to third parties	Records should include: a. Manure nutrient content b. Amount of manure transferred c. Date of transfer d. Recipient of manure	Event Driven	Suggested format available	5 Years	Y
Reviews by third parties	Records associated with any reviews by NRCS, third-party consultants, or representatives of regulatory agencies:	Scheduled	Suggested format available	5 Years	Not required
Maintenance Records	Records of maintenance performed associated with operation and maintenance plans.	Scheduled Maintenance and Event Driven	Suggested format available	5 Years	Y
Changes Made In CNMP	Some changes to the CNMP will not require a new plan to be created, other decisions will. Ask your local NRCS Field Office Personnel for information regarding changes to this CNMP.	Any actual operational or management variation from the original CNMP must be documented	Suggested format available	5 Years	Y

Animal Facility Management Plan	Records associated with Animal Facility Management Plan	Duration of plan developed or when changes are made to CNMP (See NRCS Field Office)	СММР	As long as facility is in operation	Y
Nutrient Management Plan	State of Maryland requires the NMP and implementation of NMP records be kept.	Duration of Plan Developed	NMP	5 years	Y (Also required by MDA)

Note: Y = Yes

Maryland Department of Agriculture Nutrient Management Requirements

Plan Implementation Records

MDA may periodically review the records of your agricultural operation. Regulations supporting the *Water Quality Improvement Act of 1998* outline the process for the evaluation and implementation of a nutrient management plan. Maintaining records to document plan implantation is the responsibility of the operator. Listed below are items needed for a Maryland Nutrient Management (on-farm) inspection of your nutrient management plan:

- □ All nutrient management plans and updates for the past 3 years.
- □ A record of crops and actual yields for the past 5 years.
- □ Analysis of nutrients (all forms) applied to plants and/or crop acreage.
- □ Soil/Manure analysis results for the entire agricultural operation.
- □ Receipts related to the purchase of nutrients.
- Documentation of when and where nutrients were applied to specific fields; in reference to amounts, farm, field and location.
- Documentation to justify any changes from the nutrient management plan as written.

Nutrient Management Plan Annual Implementation Report

The Maryland Department of Agriculture requires that all farm operators submit an Annual Nutrient Application Annual report on all farm(s) under the Nutrient Management Plan. For more information regarding the Annual Report submittal requirements and time-frame, contact Maryland's Nutrient Management Program at 410-841-5959.

Nutrient Applicator Voucher

If operator is an applicator of nutrients of 10 or more acres; the operator must possess a CURRENT Maryland Nutrient Applicator's Voucher or be a Certified Nutrient Management Consultant. For more information regarding applicator voucher requirements, contact Maryland's Nutrient Management Program at 410-841-5959.

Manure Analysis Sampling Procedures

Solid Manure (Dairy, Beef, Swine, Poultry)

Collect a composite sample by following one of the procedures listed below. A method for mixing a composite sample is to pile the manure and then shovel from the outside to the inside of the pile until well mixed. Fill a one-gallon plastic heavy-duty zip lock bag approximately one-half full with the composite sample, squeeze out excess air, close and seal. Store sample in freezer if not delivered to the laboratory immediately.

Procedure 1. Sampling while loading - *Recommended method for sampling from a stack or bedded pack.* Take at least ten samples while loading several spreader loads and combine to form one composite sample. Thoroughly mix the composite sample and take an approximately one pound sub sample using a one-gallon plastic bag. *Sampling directly from a stack or bedded pack is not recommended.*

Procedure 2. Sampling during spreading - Spread a tarp in field and catch the manure from one pass. Sample from several locations and create a composite sample. Thoroughly mix the composite sample together and take a one-pound sub sample using a one-gallon plastic bag.

Procedure 3. Sampling daily haul - Place a five-gallon bucket under the barn cleaner 4-5 times while loading a spreader. Thoroughly mix the composite sample together and take a one-pound sub sample using a one-gallon plastic bag. Repeat sampling 2-3 times over a period of time and test separately to determine variability.

Procedure 4. Sampling poultry in-house - Collect 8-10 samples from throughout the house to the depth the litter will be removed. Samples near feeders and waterers may not be indicative of the entire house and sub samples taken near here should be proportionate to their space occupied in the whole house. Mix the samples well in a five-gallon pail and take a one-pound sub sample, place it in a one-gallon zip lock bag.

Procedure 5. Sampling stockpiled litter - Take ten sub samples from different locations around the pile at least 18 inches below the surface. Mix in a five-gallon pail and place a one-pound composite sample in a gallon zip lock bag.

Sample Identification and Delivery

Identify the sample container with information regarding the farm, animal species and date. This information should also be included on the sample information sheet along with application method, which is important in determining first year availability of nitrogen.

Keep all manure samples frozen until shipped or delivered to a laboratory. Ship early in the week (Mon.-Wed.) and avoid holidays and weekends.

Nutrient Application Equipment Calibration:

Commercial Fertilizer Application Equipment Calibration:

The nitrogen applicator, the commercial broadcast spreaders, and corn planter will be set per the manufacturers recommendations then filled with a known amount and checked over known acreage. Adjustments will be made to achieve the planned rates.

Manure Spreader Calibration

There are several methods that can be used to calibrate the application rate of a manure spreader. The two best methods are the load-area method and the plastic sheet method. It is desirable to repeat the calibration procedure 2 to 3 times and average the results to establish a more accurate calibration.

Before calibrating a manure spreader, the spreader settings such as splash plates should be adjusted so that the spread is uniform. Most spreaders tend to deposit more manure near the spreader than at the edge of the spread pattern. Overlapping can make the overall application more uniform. Calibrating of application rates when overlapping requires measuring the width of two spreads and dividing by two to get the effective spread width.

Calibration should take place annually or whenever manure is being applied from a different source or consistency.

Load-Area Method

The load-area method is the most accurate and can be used for most types of manure handling. This method consists of determining the amount (volume or weight) of manure in a spreader and the total area over which it is applied. The most accurate method to determine the amount of manure in a spreader is to weigh the spreader when it is full of manure and again when it is empty (portable pad scales work well for this). The difference is the quantity of manure applied over the area covered. Spreader capacities listed by the manufacturers can be used to determine the amount of manure in the spreader. However care must be taken when using manufactures spreader capacities. Heaped loads, loading methods and manure type may vary considerably from what is listed by manufacturers of box and side delivery manure spreaders. Spreader capacities for liquid tankers are accurate provided the tanker is filled to the manufactures recommended levels, and no foam is present in the tank.

The area of spread is determined from measuring the length and width of the spread pattern. Measuring can be done with a measuring wheel, measuring tape or by pacing.

The application rate is calculated using the following formula:

Spreader capacity (tons or gallons) X 43560 sq. ft/acre = Application Rate tons or Gallons/Acre

Distance traveled X Spreading width

Plastic Sheet Method

The plastic sheet method can only be used with solid or semi-solid manure. This method of calibrating spreader application rates involves 1) cutting a plastic sheet to the specified dimensions (56 inches X 56

inches), 2) weighing the clean plastic sheet, 3) laying out the plastic sheet on the ground and driving the manure spreader (applying manure at a recorded speed and spreader setting) over the sheet, 4) weighing the plastic sheet with the manure on it, and 4) determine the net weight of the manure on the sheet (weight of manure and sheet - weight of the clean sheet), and 5) the net pounds of manure equals tons per acre applied.

When calibrating manure spreaders, all details regarding tractor speed and manure spreader settings and date(s) of each calibration should be recorded with manure application information, and directly on the equipment. Mark equipment to ensure a known application rate is applied each time the referenced tractor speed and spreader settings are used. Manure spreader settings can include such things as: fast and slow settings on some box spreaders, gate position on side delivery spreaders and splash plate position and fill levels on liquid tankers.

Irrigation System Calibration:

Place 3-5 buckets throughout the irrigation spray pattern and collect samples while operating the pump at a given rpm and pressure (for a traveling gun record the ground speed also). At the end of the planned sample period measure the amount of liquid collected in inches (average the samples). The following chart shows how many gallons per acre applied per inch applied.

Inches Liquid Manure Applied via	Gallons per
Irrigation	Acre
.20	5,430
.30	8,146
.40	10,860
.50	13,577
.75	20,365
1.0	27,154
1.25	33,942
1.5	40,731

Gallons applied	per inch of liquid	manure applied.
-----------------	--------------------	-----------------

Daily Water Line Inspection Log Sheet

Facility Name: ____

_ NPDES Permit No.:_____

Instructions:

- Initial the form *each day* after the inspection is complete
- If a leak is detected, place a check in the "leak detected" column

January, 20		
Day	Initials	√if Leak Detected
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		

14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

29		
30		
31		
Fe	ebruary, 20_	
Day	Initials	√ if Leak Detected
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
N	March, 20			
Day	Initials	√if Leak Detected		
1				
2				
3				
4				
5				
6				

-	-	
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
	April, 20	-
Day	Initials	√ if Leak Detected

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

29			
30			
May, 20			
Day	Initials	√ if Leak Detected	
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			

25		
26		
27		
28		
29		
30		
31		
	June, 20	-
Day	Initials	√ if Leak Detected
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
	-	

20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
	July, 20	
Day	Initials	√ if Leak Detected
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
14		
15		

16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
А	ugust, 20	_
		√if Leak
Day	Initials	Detected
Day 1	Initials	Detected
	Initials	Detected
1	Initials	Detected
1	Initials	Detected
1 2 3	Initials	Detected
1 2 3 4	Initials	Detected
1 2 3 4 5	Initials	
1 2 3 4 5 6	Initials	
1 2 3 4 5 6 7	Initials	
1 2 3 4 5 6 7 8	Initials	

11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
Sep	tember, 20_	
Day	Initials	√ if Leak Detected
1		
2		
3		
4		
5		
L		

6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

October, 20					
Day	Initials	√ if Leak Detected			
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					

27		
28		
29		
30		
31		
Nov	vember, 20_	
Day	Initials	√ if Leak Detected
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		

22		
23		
24		
25		
26		
27		
28		
29		
30		
Dec	cember, 20_	
Day	Initials	√if Leak Detected
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		

	-	
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		

Manure, Litter, and Wastewater Storage Structures Documentation

Facility Name:

NPDES Permit No.:

Instructions:

For each storage structure, provide the following information in the table below:

- Structure Type: the type of storage structure (e.g. roofed storage shed, storage pond, anaerobic lagoon...)
- Total Design Storage Volume: the total capacity the storage structure was designed to hold (e.g. 100 ft³ or 1000 gallons)
- Design Treatment Volume: (*N/A for dry manure storage) the treatment capacity the structure was designed to treat
- Days of Storage Capacity: (*N/A for dry manure storage) the number of days the structure can accommodate its contents at the rate the operation places waste in it
- Volume for Solids Accumulation: the capacity of the structure available to accumulate solids

Structure Type	Total Design Storage Volume	Design Treatment Volume (N/A for dry manure storage)	Days of Storage Capacity (N/A for dry manure storage)	Volume for Solids Accumulation

Larry Hogan, Governor Boyd K. Rutherford, Lt. Governor

Ben Grumbles, Secretary Horacio Tablada, Deputy Secretary

Manure, Litter, and Wastewater Transfer Record Keeping Form

 Facility Name:
 __________NPDES Permit No.:

Use this sheet any time that manure or poultry litter is removed from a production or storage area and transferred to other persons (not under the control of your CAFO). Use additional sheets as necessary.

Date of Transfer (indicate whether import or export)	Manure Type (e.g. litter, wastewater)	Name and Address of Person(s) Received From or Transferred To	Quantity Transported (tons/gallons)

Nutrient Land Application Log Sheet

Facility Name:

NPDES Permit No.:

Instructions:

For each land application for each field, provide the following information in the table below:

- Date: the date you applied the manure/litter/process wastewater to the field
- Field ID: the field where you applied manure/litter/process wastewater. Use the same field identification that is used in your nutrient management plan
- Method: how you applied the manure/litter/process wastewater (e.g. surface w/incorporation, surface w/out incorporation, subsurface injection...)
- Application Rate: the number of tons or gallons *actually* applied per acre
- Acres Applied: the number of acres the manure/litter/process wastewater was applied to on the field
- Total N: the total amount of nitrogen you applied to the field from animal waste
- Total P: the total amount of phosphorous you applied to the field from animal waste

Date	Field ID	Method	Actual Application Rate	Acres Applied	Total N	Total P

Date	Field ID	Method	Actual Application Rate	Acres Applied	Total N	Total P
Date					1000111	100011

Weather and Soil Condition Documentation

When land applying manure/litter/process wastewater, you also need to document the <u>weather and soil conditions</u>. Please provide this information in the following table:

		Weather Conditions			
Date	Field ID	24 hours before	During	24 hours after	Soil Conditions

Weekly Storage and Containment Structure Inspections Log Sheet

Facility Name: _____ NPDES Permit No.: _____

Instructions:

Use this form to keep records of weekly visual inspections of the structures you use to store or contain manure/litter/process wastewater. Use a separate form for each structure.

*Any deficiencies observed must be corrected within 30 days

Storage or Containment Structure:

	Date	Initials	Depth Marker Reading (N/A for dry manure handling)	OK $(\sqrt{\text{if no}} \text{ problems})$	Description of any Deficiencies Observed (put "N/A" if none observed)	Date Deficiency Corrected*
Week 1						
Week 2						
Week 3						
Week 4						
Week 5						
Week 6						
Week 7						

	Date	Initials	Depth Marker Reading (N/A for dry manure handling)	OK $(\sqrt{\text{if no}} \text{ problems})$	Description of any Deficiencies Observed (put "N/A" if none observed)	Date Deficiency Corrected*
Week 8						
Week 9						
Week 10						
Week 11						
Week 12						
Week 13						
Week 14						
Week 15						
Week 16						
Week 17						
Week 18						
Week 19						

	Date	Initials	Depth Marker Reading (N/A for dry manure handling)	OK (√ if no problems)	Description of any Deficiencies Observed (put "N/A" if none observed)	Date Deficiency Corrected*
Week 20						
Week 21						
Week 22						
Week 23						
Week 24						
Week 25						
Week 26						
Week 27						
Week 28						
Week 29						
Week 30						
Week 31						

	Date	Initials	Depth Marker Reading (N/A for dry manure handling)	OK (√ if no problems)	Description of any Deficiencies Observed (put "N/A" if none observed)	Date Deficiency Corrected*
Week 32						
Week 33						
Week 34						
Week 35						
Week 36						
Week 37						
Week 38						
Week 39						
Week 40						
Week 41						
Week 42						
Week 43						

	Date	Initials	Depth Marker Reading (N/A for dry manure handling)	OK (√ if no problems)	Description of any Deficiencies Observed (put "N/A" if none observed)	Date Deficiency Corrected*
Week 44						
Week 45						
Week 46						
Week 47						
Week 47						
Week 49						
Week 50						
Week 51						
Week 52						

Weekly Wastewater Facilities Inspections Log Sheet

Facility Name:

NPDES Permit No.:

Instructions:

Use this form to keep records of weekly visual inspections of your wastewater facilities (including pumps, storm water and runoff diversion devices, and devices used to channel contaminated storm water to a wastewater storage or containment structure).

*Any deficiencies observed must be corrected within 30 days

List the items that need to be inspected below:

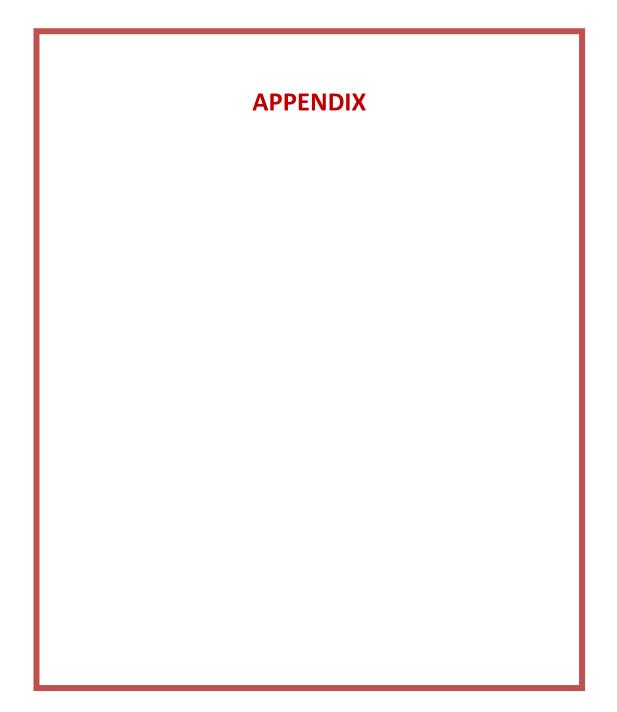
	Date	Initials	OK (√ if no problems)	Description of any Deficiencies Observed (put "N/A" if none observed)	Date Deficiency Corrected*
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					

	Date	Initials	OK (√ if no problems)	Description of any Deficiencies Observed (put "N/A" if none observed)	Date Deficiency Corrected*
Week 7					
Week 8					
Week 9					
Week 10					
Week 11					
Week 12					
Week 13					
Week 14					
Week 15					
Week 16					
Week 17					
Week 18					
Week 19					
Week 20					

	Date	Initials	OK (√ if no problems)	Description of any Deficiencies Observed (put "N/A" if none observed)	Date Deficiency Corrected*
Week 21					
Week 22					
Week 23					
Week 24					
Week 25					
Week 26					
Week 27					
Week 28					
Week 29					
Week 30					
Week 31					
Week 32					
Week 33					
Week 34					

	Date	Initials	OK (√ if no problems)	Description of any Deficiencies Observed (put "N/A" if none observed)	Date Deficiency Corrected*
Week 35					
Week 36					
Week 37					
Week 38					
Week 39					
Week 40					
Week 41					
Week 42					
Week 43					
Week 44					
Week 45					
Week 46					
Week 47					
Week 48					

	Date	Initials	OK (√ if no problems)	Description of any Deficiencies Observed (put "N/A" if none observed)	Date Deficiency Corrected*
Week 49					
Week 50					
Week 51					
Week 52					


Record Keeping - Monthly Animal & Mortality Count

Animal/Type:

Year:

Production Phase:

Month	Animal Count and Weight	Mortality	Mortality %	Comments
January				
February				
March				
April				
Мау				
June				
July				
August				
September				
October				
November				
December				

AFO RESOURCE CONCERNS EVALUATION WORKSHEET

Na	me:	Rich Levels Poultry – Allen D	avis		Agency Interest #:	131204	
Pla	inner:	David D. Kann			Farm # / Tract #:		
Site	e Visit Date:	11/14/2024			Total Acres:	78.2	
Co	unty:	Kent			Production Area Acres:	10 acres	
RE	RESOURCE CONCERN		YES	NO	AS	SSESSMENT	
a.	a. Biosecurity measures			\boxtimes	All precautionary measures are restrictions.	e in place and being followed. Visitor	
b.	Chemical handling	g		\boxtimes	All chemicals are stored in an a this case applied by outside pr	appropriate designated storage area or in ofessionals.	
с.	Cultural resources	5		\boxtimes	The production area is establis disturbance activities schedule	shed and there are no proposed ground ed for the area.	
d.	Feedlot area				N/A		
e.	Floodplains			\square		nd the production area is not located in as per online mapping resources.	
f.	f. Gully erosion			\square	No gully erosion was identified in the production area or associated water conveyances.		
g.	Livestock travel la	ines		\square	N/A		
h.	Nutrient discharge	9		\bowtie	There are no observable nutrient discharges occurring, at the time of the site evaluation, from the production areas.		
i.	Objectionable odd	ors		\boxtimes	No unusual or excessive odors	s were observed during the site visit.	
j.	Particulate matter	emissions		\boxtimes	Through ventilation fans, typic and treat emissions.	al levels. Grass filters in place to harbor	
k.	Ponding, flooding	, seasonal high water table		\boxtimes	No issues were identified duri	ng the site visit.	
I.	Sediment			\boxtimes	No obvious and observable see production areas.	diment discharges are occurring from the	
m.	Streambank/shore	eline erosion		\square	None present.		
n.	Threatened/endangered species			\square	No geospatial indicators have been identified on the production area		
0.	Waste storage			\square		identified with the waste storage. Roofed 120' x 40') being managed appropriately.	
p.	Waterways		\square	In good vigorous sod. All water conveyances are being managed appropriately.			
q.	Wetlands					ble prior converted cropland are either 100 with vegetation and the required setbacks esources.	

Online References

Maryland Department of the Environment (MDE) Regulations and General Permit for Animal Feeding Operations (AFO)

http://www.mde.state.md.us/programs/Land/SolidWaste/CAFOMAFO/Pages/Programs/LandProgra ms/Solid_Waste/cafo/index.aspx

Environmental Protection Agency (EPA) Concentrated Animal Feeding Operations (CAFO) - Final Rule

http://cfpub.epa.gov/npdes/afo/cafofinalrule.cfm

Crop Fertilizer Recommendations

"Soil Fertility Management," Maryland Cooperative Extension, SFM-1, Oct. 2002 http://www.anmp.umd.edu/Pubs/Pubs_Crops.cfm

Nutrient Management Information Sheets

http://www.anmp.umd.edu/Pubs/index.cfm

Manure Nutrient Availability

Maryland Department of Agriculture, COMAR 15.20.08.05 http://www.mda.state.md.us/resource_conservation/nutrient_management/manual/estimated_miner alization_rates.php

Calibrating Manure Spreaders

University of Maryland Extension Fact Sheet 416 and Worksheets http://www.anmp.umd.edu/Pubs/Pubs_Manure.cfm http://www.anmp.umd.edu/Pubs/Pubs_Equip.cfm

Phosphorus Assessment

"The Maryland Phosphorus Site Index: An Overview," Maryland Cooperative Extension SFM-6, April 2005 http://www.anmp.umd.edu/files/SFM-6.pdf

"The Maryland Phosphorus Site Index: Technical Users Guide," Maryland Cooperative Extension SFM-7, April 2005 http://www.anmp.umd.edu/files/SFM-7.pdf

Mid-Atlantic Nutrient Management Handbook

http://www.mawaterquality.org/Publications/pubs/manhcomplete.pdf

Maryland Pesticide Regulation

http://www.mda.state.md.us/plants-pests/pesticide_regulation/index.php

Maryland Practice Standards eFOTG Section IV — Practice Standards and Specifications

http://www.nrcs.usda.gov/technical/efotg/