HESS CORPORATION

CORRECTIVE ACTION PLAN ADDENDUM OIL CONTROL PROGRAM CASE 1991-2100BA FORMER HESS STATION #20204 1613 EAST JOPPA ROAD, TOWSON, MARYLAND

DECEMBER 27, 2018

CORRECTIVE ACTION PLAN ADDENDUM

OIL CONTROL PROGRAM #1991-2100BA FORMER HESS STATION #20204 1613 EAST JOPPA ROAD, TOWSON, MARYLAND

HESS CORPORATION

PROJECT NO. 31400408 DATE: DECEMBER 27, 2018

WSP SUITE 300 13530 DULLES TECHNOLOGY DRIVE HERNDON, VA 20171

PHONE: +1 703-709-6500 FAX: +1 703-709-8505 WSP.COM

wsp

TABLE OF CONTENTS

1	INTRODUCTION1
1.1 1.1.1	Corrective Action Objectives
1.1.2	Asymptotic or Declining Concentration Trends
1.1.3	Observable Site Conditions4
1.1.4	Soil Conditions4
2	SITE DESCRIPTION
2.1	Site Geology/Hydrogeology
2.2	Historic Site Investigations and Remedial Actions5
2.3	Current Conditions 6
2.3.1	Groundwater7
2.3.2	Groundwater Management System7
3	IN SITU DESIGN RATIONALE9
3.1	Injection Treatment Area9
3.2	Chemical Selection and Dosage9
4	IN SITU TREATMENT PROCEDURES10
4.1	Access Agreement and Community Outreach 10
4.2	Permits 10
4.2.1	Health and Safety Planning10
4.2.2	Utility Locate
4.3	General Procedures 11
4.4	
	Monitoring Equipment 11
4.5	Monitoring Equipment
	• • • •
4.5 4.6 4.7	Decontamination
4.6	Decontamination

wsp

4.10	Sample Containers and Labels	14
4.11	Chain of Custody Records	15
4.12	Quality Control and Analytical Procedures	15
4.12.1	Field Duplicates	15
4.12.2	Equipment Blanks	
4.12.3	Trip Blanks	15
4.12.4	Temperature Blanks	16
4.12.5	Analytical Procedures	16
	•	
4.13	Investigation Derived Waste	
4.13 4.14	Investigation Derived Waste	16
		16 16
4.14	Surveying	16 16 17

wsp

FIGURES

FIGURE 1	SITE PLAN
FIGURE 2	GEOLOGICAL CROSS-SECTIONS
FIGURE 3	PROPOSED INJECTION TREATMENT AREAS
FIGURE 4	ISCO QUARTERLY MONITORING LOCATIONS
	LOCATIONS

APPENDICES

APPENDIX A	EMS QUARTERLY REPORT
APPENDIX B	WSP SITE INVESTIGATION SUMMARY LETTER -
	MAY 2018
APPENDIX C	TREND GRAPHS
APPENDIX D	SAFETY DATA SHEETS
APPENDIX E	STANDARD OPERATING PROCEDURES

1 INTRODUCTION

On behalf of Hess Corporation, WSP USA Inc. (WSP) has developed this addendum to the corrective action plan (CAP) for the former Hess filling station located at 1613 Joppa Road in Towson, Maryland. The proposed corrective action will include activities in Ridgely Manor Park, located south of the former Hess filling station on Yakona Road (Figure 1).

In September 2017, a site investigation was performed to define the vertical and horizontal location of maximum concentration of remaining total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and xylene (BTEX) compounds and gather data needed to evaluate in situ treatment options. WSP also completed an in situ chemical oxidation (ISCO) bench scale study (WSP 2017) to evaluate its efficacy at reducing site contaminants. Based on the investigation and bench scale results, this CAP addendum proposes in situ application of unactivated persulfate in the area of significant contaminated mass located in the southern portion of the former Hess filing station and the northeastern portion of Ridgely Manor Park.

This CAP addendum, prepared in accordance with Maryland Environmental Assessment Technology (MEAT) Guidance for Leaking Underground Storage Tanks (LUSTs), revised February 2003, serves to:

- Evaluate the achievement of remedial goals in accordance with the MEAT Guidance
- Evaluate the site status with respect to the seven risk factors in the MEAT Guidance
- Evaluate compliance with previous directives for the site from the Maryland Department of the Environment (MDE)
- Identify a corrective action (ISCO treatment) to address any remaining risk factors and outstanding obligations

The focused ISCO treatment in areas of significant contaminant mass is designed to (1) reduce BTEX and TPH concentrations in groundwater collected by the management system, thereby allowing removal of the activated carbon treatment prior to discharge, (2) shorten the time to reach closure at the site, and (3) demonstrate Hess' continued commitment to addressing impacted groundwater.

1.1 CORRECTIVE ACTION OBJECTIVES

The corrective action objectives are based on the remedial goals from the MEAT Guidance and the site-specific directives issued by MDE. The objectives for the former Hess filling station include:

- Remove all risks posed by the release in accordance with the MEAT guidance including:
 - Prevent contamination migration
 - Reduce potential human health risks via all appropriate pathways for the contaminants originating from the former Hess filling station
- Demonstrate an asymptotic or declining trend in dissolved-phase contamination including benzene, total BTEX, and Methyl Tertiary-butyl ether (MTBE)
- Demonstrate consistent site conditions including absence of iron staining at groundwater discharge locations
- Ensure soils remaining in-place do not pose a risk to human health or environment

1.1.1 SEVEN RISK FACTORS

This section evaluates the status of the site with respect to the following seven risk factors listed in the MEAT guidance:

- 1 Liquid Phase Hydrocarbons (LPH)
- 2 Current and Future Use of Impacted Groundwater
- 3 Migration of Contamination
- 4 Human Exposure
- 5 Environmental Ecological Exposure
- 6 Impact to Utilities and Other Buried Services
- 7 Other Sensitive Receptors

The definition of each risk factor in the MEAT guidance is provided below in *italics*, followed by the lines of evidence from the site.

LIQUID PHASE HYDROCARBONS

The site must demonstrate the presence of LPH has been removed to the maximum extent possible- generally indicated when measurable product can no longer be detected over an extended period of time in site monitoring points used to observe the subsurface and/or groundwater beneath the site.

Existing monitoring wells are monitored for LPH every quarter. LPH has not been detected in any onsite or offsite groundwater monitoring well since July 1995. Therefore, LPH is not present at the site.

CURRENT AND FUTURE USE OF IMPACTED GROUNDWATER

If the groundwater impacted by the release is used for direct consumption within a half mile of the site or the site is located within an approved wellhead protection zone, a site assessment and corrective action plan must be designed. Other uses of groundwater that would warrant remediation include industrial, agricultural, and surface water augmentation. If known, future use of the groundwater must be taken into consideration. If site-specific future use is unsure, regional trends must be considered. Generally, if future use is not clear a more conservative approach to cleanup is applied.

There is no current direct consumption or use of groundwater impacted by the release, and there are no drinking water receptors in the area. Baltimore County provides municipal water and sanitary sewer services to both the former Hess filling station and the surrounding commercial and residential areas.

The development of Ridgely Manor Park has eliminated any potential future risk associated with residual amounts of hydrocarbons in groundwater. The park is zoned for residential properties, but Baltimore County has labeled the property as unbuildable because it is identified as "environmentally constrained." Due to these restrictions, there is no potential future use of groundwater at the filling station site or the park.

As discussed in the sections below, the groundwater management system completed in Ridgely Manor Park is preventing offsite migration of groundwater contamination to other properties. The wells maintained in the monitoring program (YMW-1 through YMW-4 and YP-5) proposed in September 2018 *Groundwater Monitoring Program Modifications* Letter will monitor the potential for offsite migration.

MIGRATION OF CONTAMINATION

The ability of contamination to migrate off site or to migrate to a receptor is a critical measure. If it can be demonstrated that the contamination is stationary and site conditions restrict the potential for migration, the need for cleanup may be reduced.

Four of the wells at the Site have had non-detectable concentrations for all compounds analyzed in the most recent eight or more consecutive quarters, and 11 wells had non-detect concentrations for TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), Naphthalene, and at least three BTEX constituents in the June 2018 sampling event. Monitoring locations such as OW-1, YMW-1 and YMW-2 have been monitored before and after installation of the groundwater management system, and provide clear evidence of decreasing concentrations due to natural attenuation of petroleum compounds and the groundwater management system operations.

Wells near the downgradient property boundary will continue to be monitored, as stated above, to confirm that the extent of affected groundwater has been defined at the downgradient edge of Ridgely Manor Park. Offsite migration of groundwater contamination is unlikely due to the operation of the groundwater management system which prevents groundwater surface discharge and significantly reduces offsite groundwater migration.

HUMAN EXPOSURE

Any exposure to the public warrants site corrective action. There are several exposure pathways that must be considered and include but not limited to inhalation, ingestion, and dermal contact.

The exposure pathways evaluated are ingestion and dermal contact of groundwater for visitors to the site. While groundwater on the property is considered shallow, the wells have locked plugs and a bolted steel well cover to prevent access to wells. By lowering the water table, the groundwater management system prevents groundwater from discharging to the ground surface and has eliminated associated exposure pathways.

ENVIRONMENTAL ECOLOGICAL EXPOSURE

The need to protect the natural resources of the state mandated by Maryland Law. If there is exposure to animal or plant life from the petroleum release or the degradation of a natural resource, correct action is warranted.

The groundwater management system collects any groundwater migrating offsite or groundwater discharging to the surface. Treated groundwater has never exceeded the National Pollutant Discharge Elimination System (NPDES) discharge limits and is discharged to the public storm sewer. No natural resources have been impacted since the installation of the groundwater management system.

IMPACT TO UTILITIES AND OTHER BURIED STRUCTURES

The responsible party must correct adverse effects to utilities. Utility materials have been known to degrade from contact with petroleum products. Utilities may also act as conduits that lead to the migration of contamination. Migration along utilities may cause vapor impacts or other issues at nearby structures.

Groundwater affected by the release is treated by filtration and liquid phase granular activated carbon to meet the NPDES discharge limits prior to being discharged to the public storm sewer system. The treated groundwater effluent sample results demonstrate that benzene, BTEX, and TPH concentrations have never exceeded the NPDES permit limits. Beginning in January 2015, the breathing zone in and above the five onsite storm sewer manholes and the Yakona Road curb inlet have been screened weekly with a photoionization detector (PID) to monitor organic vapor concentrations (Appendix A - Figure1). No organic vapors have ever been detected in the breathing zone at any location. While the PID readings indicate that volatile organic compounds (VOCs) are present in the below grade air space of the collection system manholes, the PID readings for the curb inlet have been non-detectable or near non-detectable. It is anticipated that the organic vapor concentrations in the below grade airspace would decrease after the injection remedy has degraded BTEX and other volatiles.

There are utilities along the southern portion of the property, including underground gas and underground electric lines running along Yakona Road. The groundwater concentrations along the southern boundary of the site (i.e. monitoring wells YMW-1 and YMW-2 through YMW-5) indicate that contamination will not impact the buried utilities.

OTHER SENSITIVE RECEPTORS

Sensitive receptors such as surface water, historic structures, and subways are an indication that a site may warrant further corrective action.

There are no sensitive receptors on the site. The end of Herring Run, a tributary of the Back River, is located approximately 3,080 feet east-southeast of the site. The groundwater management system collects and treats groundwater before it is discharged to the storm sewer system.

There are no historic structures, subway systems or other sensitive receptors on or near the site.

1.1.2 ASYMPTOTIC OR DECLINING CONCENTRATION TRENDS

Groundwater monitoring has been performed for the release since 1991. Groundwater monitoring has been performed on a quarterly basis, and MDE approved a change to semi-annual groundwater monitoring in November 2018 (MDE, 2018). Therefore, the groundwater data set is sufficient to evaluate concentration trends. The quarterly groundwater quality results do not suggest seasonal variability.

The quarterly groundwater samples are analyzed for VOCs and fuel oxygenates by U.S. Environmental Protection Agency (EPA) Method 8260C, TPH–GRO by U.S. EPA Method 8015C, and TPH–DRO by U.S. EPA Method 8015C. An evaluation of the groundwater quality results and concentration trends indicate non-detect, consistent, or decreasing concentrations at

most location/analyte pairs. Many analyte detections in recent sampling events are below the MEAT criteria for groundwater for the respective constituent, or below the laboratory reporting limits.

Monitoring locations such as OW-1, YMW-1 and YMW-2 have been monitored before and after installation of the groundwater management system and provide clear evidence of decreasing concentrations due to natural attenuation of petroleum compounds and the groundwater management system operations. The proposed corrective action will further reduce the BTEX, TPH-GRO and TPH-DRO concentrations in groundwater.

1.1.3 OBSERVABLE SITE CONDITIONS

MDE requested reporting of notable observations about the site in the letter mailed in February 2016 (MDE 2016). Since installation of the groundwater management system, there has been no evidence of surface discharge of groundwater, odors, iron staining, or any other observations indicating contaminant impacts at the site.

1.1.4 SOIL CONDITIONS

The last corrective action objective is to ensure soils remaining in-place do not pose a risk to human health or environment.

In 2017, WSP conducted the site investigation using a membrane interface probe (MIP)/ hydraulic profiling tool (HPT) to identify areas of the site with significant contaminant mass (Appendix B). Soil sample collection was biased towards the areas with the highest contaminant concentrations. The maximum BTEX and TPH concentrations in soil were measured at MIP-02 (25-30 feet below ground surface [bgs]) in soil (Figure 2). All soil concentrations were below the MEAT standards except for the TPH-GRO and TPH-DRO concentrations at MIP-02 (1,220 milligrams per kilogram [mg/kg] and 803 mg/kg, respectively). There is no potential exposure to soil at the depths of the exceedances nor are there buried structures at that depth that could be impacted or a conduit for the contamination to migrate. Therefore, the soils remaining in place do not pose a risk to human health or the environment. The proposed corrective action will further reduce the TPH-GRO and TPH-DRO concentrations in soil in this area of the site.

2 SITE DESCRIPTION

The site includes former Hess filling station No. 20204, located at 1613 East Joppa Road in Baltimore County, Baltimore, Maryland, and Ridgely Manor Park to the south (Figure 1). Ridgely Manor Park is located on 16 contiguous parcels formerly occupied by 8 duplex residences at 1612 through 1642 Yakona Road. The park is topographically lower and hydraulically downgradient of several commercial properties along East Joppa Road including the former Hess Station. The park property slopes from a high of 454 feet above mean sea level (MSL) in the northern corner near the former Hess filling station to a low point of 430 feet above MSL in the southern portion of the park along the sidewalk at Yakona Road. Releases of gasoline constituents from the former Hess filling station were a potential source of petroleum contamination in groundwater beneath the former residences (MDE 2005). The Site Number associated with the releases is MDE Oil Control Program (OCP) Case No. 1991-2100BA.

There are no drinking water receptors in the area. Baltimore County provides municipal water and sanitary sewer services to both the former Hess filling station property and the surrounding commercial and residential areas.

2.1 SITE GEOLOGY/HYDROGEOLOGY

The geologic conditions in the area consist of a surficial unit comprised of layered clayey and sandy deposits believed to represent the Cretaceous-age Potomac Group, which are underlain by saprolite formed by the weathering of the local metamorphic rocks (Baltimore Gneiss). Geologic cross sections that include the former station and park areas are shown in Figure 2. The texture of the saprolitic materials varies from clayey to silty sand to sandy clay and is governed by the lithologic characteristics of the parent (i.e., unweathered) rock. Regional geologic studies in the Baltimore area and Harford County, Maryland indicate the saprolite thickness ranges from approximately 30 to 50 feet (Otton et al. 1964; SRBC 2008).

Saturated portions of the unconsolidated Potomac Group deposits and underlying saprolite are interpreted to comprise a coupled, unconfined hydrogeologic unit of variable permeability. The water table occurs within the surficial Potomac Group deposits, with the depth to the groundwater surface greater than 10 feet bgs in the northern-most portion of the area and less than 10 feet bgs moving south. Water level elevations indicate the historical fluctuation in the groundwater surface at the site has been less than 4 feet bgs. Groundwater flow within this water-bearing unit is in a generally southward direction and appears to mimic the local surface topography. Overall, the groundwater surface contours indicate a lower Site-wide hydraulic gradient in the northern-most area under both high and low water table conditions.

The hydraulic conductivity (K) of the unconsolidated surficial sand (Potomac Group) deposits and saprolite was estimated from slug tests conducted at site monitoring wells. (Detailed information on the test performance and data analysis, and the calculated K values determined from test data, are provided in the WSP 2013 CAP.) The hydraulic conductivity of the aquifer materials exhibits some degree of spatial variability over Ridgely Manor Park. The representative K values for the tested wells range from 0.71 feet per day (ft/day) to 7.8 ft/day, with a geometric mean value of 2.0 ft/day. Further examination of the K estimates indicates a slightly higher permeability for the surficial sand deposits (range: 0.71 to 7.8 ft/day; median: 2.3 ft/day) compared to the saprolitic materials (range: 1.1 to 2.8 ft/day; median: 1.4 ft/day). Additionally, the conductivities for aquifer materials are higher in the northern portion of Ridgely Manor Park (geometric mean = 3.1 ft/day) compared to the south along Yakona Road (geometric mean = 1.1 ft/day). This spatial variability in K values may reflect the increased abundance of fine-grained silt and clay deposits in the upper-most portion of the saturated zone.

2.2 HISTORIC SITE INVESTIGATIONS AND REMEDIAL ACTIONS

Hess designed and implemented corrective actions to treat the impacted groundwater on the gas station property and the former residential properties downgradient of the gas station property, located on Yakona Road. These corrective measures have included the installation of a groundwater treatment system, a soil vapor extraction system, enhanced fluid recovery events, and air-sparging. By-pass drains, interceptor sumps, and vapor abatement systems were also installed in several residences between 1612 and 1640 Yakona Road.

In 2013, Hess purchased the properties from 1610 through 1642 Yakona Road (even numbered properties only) and implemented a corrective action approach that involved groundwater collection, site monitoring, and site development as a

green space. The approach is described in WSP's CAP dated August 14, 2013, and the CAP Addendum (detailing design modifications) dated October 11, 2013. The MDE OCP conditionally approved the corrective action in a letter dated November 22, 2013 (MDE 2013).

During the installation of the groundwater management system in 2014, samples of the collected groundwater did not meet the discharge criterion of 100 parts per billion total BTEX in the General Permit for the Discharge of Treated Ground Water from Oil Contaminated Ground Water Sources to Surface or Ground Waters of the State (NPDES Permit No. MDG915958). A treatment system consisting of granular activated carbon was installed to treat the groundwater discharge from the groundwater management system. Ridgely Manor Park was opened to the public on August 30, 2014, and the groundwater management system began operating in December 2014. Monitoring of the manholes and Yakona road curb inlet began in January 2015.

In September 2017, WSP completed a site investigation to identify areas of maximum concentrations of site contaminants, collect additional groundwater data needed to evaluate in situ treatment options, and perform an ISCO bench scale study. The investigation identified the southern portion of the former Hess filling station and the northeastern portion of Ridgely Manor Park as the area of maximum contaminant concentrations. The groundwater data provided information on the present groundwater contaminant concentrations, as well as geochemical conditions demonstrating that anaerobic (reducing) conditions are present in wells with contamination. The bench scale ISCO treatability study was performed by Terra Systems of Claymont, Delaware, to evaluate the effectiveness of both unactivated and pH-activated Klozur® SP, a persulfate formulation distributed by PeroxyChem, on site soil and groundwater samples collected during the September 2017 investigation. Three concentrations of unactivated and pH-activated persulfate (10 grams per liter [g/l], 20 g/l and 40 g/l) were tested to determine the most suitable concentration for site application. The study compared contaminant concentrations from the baseline samples to the treated samples collected in the study, and evaluated the longevity of persulfate at the end of the study. The bench scale study demonstrated that activated and unactivated persulfate were both effective at reducing contaminant concentrations, with complete to near complete destruction of BTEX and TPH-GRO. Although the TPH-DRO concentrations in the bench scale results were not reduced to levels below the MEAT standard, the persulfate treatment created favorable conditions for continued biodegradation of TPH. The study also determined more favorable results with the unactivated persulfate, including improved persulfate longevity and absence of metals mobilization (which occurred in the activated persulfate test samples). Of the three persulfate concentrations evaluated in the bench scale study, a concentration of 20 g/l was most effective at contaminant mass reduction. Further details and results of the 2017 investigation can be found in the May 2018 Site Investigation Summary letter (Appendix B).

2.3 CURRENT CONDITIONS

The groundwater management system and treatment system remain in operation. EMS Environmental, Inc. (EMS) is responsible for the operation, maintenance, and monitoring of the system and collects bi-monthly system samples in accordance with the discharge permit. EMS also conducts the groundwater monitoring program. The 2018 Third Quarter Site Status Report submitted to MDE by EMS is provided as Appendix A. Historical groundwater monitoring results are tabulated in Table 1 of Appendix A, and the September 2018 groundwater quality results are shown on Figure 1 in Appendix A. The maximum concentrations of TPH-DRO, TPH-GRO, and BTEX compounds detected in groundwater samples were detected at monitoring wells MW-7, YMW-7, and YMW-8 and YP-1 located in Ridgely Manor Park. Contaminant concentrations at these locations are consistent across quarters and have not decreased significantly since installation of the groundwater management system. Given that the groundwater management system controls downgradient migration but does not directly affect residual contamination in the area around these wells, additional corrective action would be needed to reduce the TPH and BTEX concentrations in these areas, the duration of groundwater treatment and groundwater monitoring, and the time required to reach site closure.

As required by MDE's letter Request for Comprehensive Well Sampling letter dated June 7, 2010, dissolved concentrations of benzene, total BTEX, and MTBE are monitored and a summary of the site conditions for each constituent is described below (MDE 2010).

BENZENE

In the past four quarters, benzene has been detected at concentrations above the MEAT Standard (5.0 micrograms per liter $[\mu g/L]$) at seven of the 19 monitoring well locations. The benzene concentrations in samples from these wells have been

relatively constant or decreasing. Benzene concentrations in the other 12 locations are below the MEAT Standards or additionally below the laboratory reporting limits. The proposed ISCO remedy will further reduce benzene concentrations and monitoring will continue at select well locations.

TOTAL BTEX

There is no MEAT Standard for Total BTEX. The concentrations of the individual BTEX constituents varied over time in most of the monitoring locations, and benzene exceeds the MEAT Standard at seven out of 19 locations. It is anticipated that the proposed ISCO remedy will reduce concentrations of all BTEX constituents in the groundwater.

MTBE

One groundwater sample collected in September 2018 contained an MTBE concentration slightly greater than the MEAT criteria of 20 μ g/LMTBE (22.3 ug/L MTBE in the sample from YMW-2). MTBE concentrations in groundwater samples have been below the 20 μ g/L criteria at 15 of 19 current sampling locations for the past eight quarters, or longer for some wells. The detected concentrations appear to be stable or decreasing over time.

The remaining discussion in this CAP will not address MTBE, tertiary butyl alcohol (TBA) or other oxygenates in further detail for the following reasons:

- MTBE concentrations in groundwater samples appear to be stable or decreasing over time (Appendix A).
- TBA has no established MEAT criteria. TBA concentrations have remained below method detection limits for the most recent eight or more consecutive quarters at 6 of the 19 current sampling locations. The detected concentrations at the remaining sampling locations have been consistent over time.
- The ISCO bench scale study showed that chemical oxidation primarily reduced BTEX concentrations, and reduced TPH concentrations to a lesser extent compared to BTEX. The locations for injection wells is determined based on BTEX and TPH concentrations rather than oxygenate concentrations (Section 3.1).

2.3.1 GROUNDWATER

Groundwater flows generally southward before being collected by the groundwater management system for treatment and discharge to the storm sewer system. The distribution of the impacted groundwater is primarily contained between MW-4 (source area) and the southern property boundary of Ridgely Manor Park between YMW-1 and YMW-2. Wells with concentrations of TPH-GRO, TPH-DRO or benzene that exceed MEAT Standards include: MW-4, OW-1, MW-7, YMW-7, YMW-8, YP-1, YP-1, YMW-4 and YMW-2. BTEX compounds and TPH were not detected in samples from wells on the southwestern portion of the site or were detected at very low concentrations.

WSP compiled the quarterly site-wide monitoring data in the EMS 2018 Second Quarter Site Status Report and prepared trend graphs depicting the groundwater elevations and concentrations over time for BTEX, TPH-DRO, and TPH-GRO (Appendix C). Trend graphs were only generated for location/analyte pairings with 3 or more detections; therefore, no trend graphs were generated for YMW-3, YMW-6, and YMW-9. The newest monitoring wells on site have been sampled quarterly for four years, providing sufficient data to identify general trends. The groundwater management system has now been operating for nearly four years, and the start of system operation is also marked on each trend graph. Multiple years of monitoring data collected since installing the groundwater management system also provide a sufficient quantity of data to identify trends such as the noticeable decrease in contaminant concentrations at wells OW-1, YMW-1 and YMW-2.

An evaluation of the groundwater results and graphical trends indicated non-detect, consistent, or decreasing concentrations at most of the location/analyte pairs. Overall, groundwater concentrations of BTEX, TPH-DRO, TPH-GRO, and Naphthalene at wells across the site have been stable or decreasing.

2.3.2 GROUNDWATER MANAGEMENT SYSTEM

The groundwater management system collects groundwater through four underground parallel drains consisting of slotted polyvinyl chloride (PVC) pipe. The groundwater drains by gravity to a manhole, from which it is pumped through bag filters and liquid phase granular activated carbon prior to being discharged to the storm sewer system. The groundwater

management system lowers the water table, thereby eliminating surface discharge of groundwater. The system influent and effluent are sampled by EMS twice each month to ensure compliance with the NPDES permit discharge limits. Influent concentrations of total BTEX remain relatively constant between approximately 200 and 300 μ g/L, which is above the NPDES BTEX discharge limit of 100 μ g/L. Influent concentrations of TPH-DRO and TPH-GRO have fluctuated over time but remain approximately an order of magnitude below the NPDES TPH discharge limit of 15,000 μ g/L TPH. To date, there have been no exceedances of the NPDES discharge limits in the treatment system effluent samples. The historical influent and effluent sample results are provided in the EMS quarterly report (Appendix A).

Based on sampling data, the groundwater management system is operating as designed and fulfilling the Site's corrective action objectives. Based on the influent concentrations of BTEX, treatment of the groundwater is expected to continue for the foreseeable future, unless BTEX concentrations are mitigated. The proposed ISCO remedy is anticipated to reduce BTEX concentrations in the collected groundwater to the extent that the groundwater would no longer require treatment before discharge. The groundwater collection would remain in place to continue to prevent groundwater surface discharge.

3 IN SITU DESIGN RATIONALE

The ISCO injection design, treatment area, treatment chemical selection, and dosage calculations are presented below. Detailed information about the bench scale treatability study are included in the May 2018 *Site Investigation Summary* letter (Appendix B).

3.1 INJECTION TREATMENT AREA

The proposed injection locations have been selected to effectively treat the area of maximum concentrations ("hot spots") remaining and achieve the objectives described in Section 1.1. The proposed injection locations are designed to treat the area of the maximum probe responses from the MIP/HPT investigation: the southern portion of the former Hess filling station and the northeastern portion of Ridgely Manor Park (Figure 3). The design includes installing 3 permanent injection wells (IP-1 through IP-3) to maximum depths of approximately 33 feet below ground surface. These wells will be screened in the most conductive groundwater flow zone (approximately 10 feet thick) based on the HPT data. The injections are designed to treat a 25-foot radius of influence around each well. The estimated total area of treatment is approximately 5,900 square feet. Permanent injection wells were selected over direct push injection points because of their versatility (monitoring or injection use), ability to be used for additional injections if needed, and greater potential radius of influence for the injection.

3.2 CHEMICAL SELECTION AND DOSAGE

The treatability study results determined that unactivated Klozur® SP (Klozur®) sodium persulfate would provide the most effective treatment. The proposed remedy will inject the following amendments in the "hot spot" areas:

- Klozur® SP (Klozur®) sodium persulfate (unactivated), applied at a concentration of 20 g/l (20% solution)
- Micro nutrients (nitrogen and phosphorous source)

The safety data sheets for Klozur® and a typical nitrogen and phosphorus source are provided in Appendix D. The amendment formula (Klozur® and nutrients) will be diluted with potable water and applied through the injection wells at a pressure of less than 40 pounds per square inch (psi). Assuming an average saturated soil mobile porosity value of 0.34, there are 20,026 cubic feet (approximately 567,000 liters or 150,000 gallons) of mobile groundwater are present within the treatment volume for each injection well. The volume of amendment needed to achieve the design amendment distribution was calculated to be equivalent to 9% of the estimated mobile porosity. Therefore, a total volume of 13,085 gallons of Klozur® amendment solution will be distributed equally to each injection well resulting in 4,362 gallons of injection fluid per well. Assuming a delivery flow rate of 5 gallons per minute, the application is estimated to take 7 days to complete.

The estimated amount of each component to be injected in each well (in gallons) is summarized in the table below.

Injection Point	Units	IP-1	IP-2	IP-3	Total
Klozur®	Pounds	8,340	8,340	8,340	25,020
Potable Water	Gallons	4,011	4,011	4,011	12,033
Nutrient – Nitrogen	Pounds	38	38	38	114
Nutrient - Phosphorous	Pounds	5.5	5.5	5.5	16.5

4 IN SITU TREATMENT PROCEDURES

4.1 ACCESS AGREEMENT AND COMMUNITY OUTREACH

Access agreements have been executed with Petroleum Marketing Group, the current owners of the former Hess filling station property, and NeighborSpace, the organization that operates Ridgely Manor Park. The agreements will be reviewed and extended or expanded to include the proposed ISCO injections if necessary.

Prior to conducting any field work activities, Hess will notify Petroleum Marketing Group and NeighborSpace. In addition, Hess will contact members of the board of Ridgely Manor Community Association to describe the focused investigation on Ridgely Manor Park and to discuss the planned work. Communication will be performed directly between a Hess representative and members of the Park Association. Details such as the planned dates of the work, the areas of the park to be temporarily closed to public access during the work, and other safety measures that will be implemented to protect public safety will be presented, as further described in Section 4.2.1.

4.2 PERMITS

The drilling contractor will obtain soil boring permits from Baltimore County in advance of the injection well installation.

WSP contacted the MDE Water Management Administration for underground injection applications to treat affected groundwater. According to Ms. Tracy Rocca-Weikart of MDE in a call on November 1, 2018, an underground injection control permit is not required for this environmental remediation application. Prior to conducting the injections, WSP will provide this CAP Addendum to Ms. Rocca-Weikart for her review and approval. In the e-mail, WSP may also request her to approve up to two additional injections, if they are warranted.

4.2.1 HEALTH AND SAFETY PLANNING

Health and safety planning will include protection for the general public, including residents, Ridgely Manor Park patrons, and employees and customers at the current filling station. As mentioned previously, discussions with members of the Ridgely Manor Community Association in advance of the work will be used to alert residents regarding the injection activities and schedule, as well as any temporary access restrictions in the park for public safety. WSP will order and install temporary barriers to restrict access to the work areas and restricted access signs to alert patrons of the hazards and access restrictions during the planning stage. The temporary barriers may include concrete or plastic jersey barriers, cones, or a temporary fence supported by movable footings. The ground surface conditions will also be restored following completion of the work.

Worker safety planning involves updating the Site-Specific Health and Safety Plan (HASP) to include the activities being conducted under this CAP Addendum. The updated HASP will detail the objectives, project organization, and specific procedures required for all activities conducted during the field work, including the type and location of temporary barriers installed around the work area. WSP's subcontractors are required to prepare their own HASP and will be required to restrict site access as described in the HASP prepared by WSP.

4.2.2 UTILITY LOCATE

A ground penetrating radar survey will be conducted by a private utility locator prior to any intrusive activities at the site to identify potential underground utilities in or near the injection well locations. The locations of the groundwater management system laterals will be marked based on the cleanout and manhole locations. A public utility mark out will also be made a minimum of 72 hours before work begins.

4.3 GENERAL PROCEDURES

All activities will be conducted in accordance with WSP Standard Operating Procedures (SOPs; Appendix E) and the MDE MEAT Guidance. All field activities will be conducted using cleaned equipment; decontamination of non-disposable equipment will be conducted in accordance with WSP's SOPs and manufacturer's specifications.

Before any intrusive work is conducted, the location of each proposed injection well (Figure 3) will be determined in the field during a site reconnaissance; locations may be adjusted in the field based on underground and overhead utilities and site access considerations. Each location will be marked using white marking paint and given a unique identifier that will be written directly on the ground surface.

Standard efforts will be taken to prevent cross contamination and contamination of the environment when installing the injection wells, conducting the injections and collecting samples. Equipment, sample containers and supplies will be protected from accidental contamination. In accordance with WSP's SOPs, a new pair of disposable gloves will be donned immediately before each sample is collected to limit the possibility of cross-contamination from accidental contact. The gloves will not come in contact with the sample and will be changed any time during sample collection that their cleanliness is compromised.

4.4 MONITORING EQUIPMENT

Monitoring equipment used for sample collection and health and safety will be inspected before use to assess the operating condition of the equipment. The condition of the monitoring equipment will be documented in the field log book, and necessary maintenance will be performed on the equipment prior to sampling. WSP will follow the manufacturer's operation manuals for calibration, use, and decontamination procedures.

Manufacturer's guidelines will be consulted before beginning the calibration process and the manufacturer's technical support will be contacted if problems or questions arise. Air and water quality monitoring equipment will be tested and calibrated daily before use and will be recalibrated every twenty samples. All calibration procedures performed will be documented in the field book and will include the date/time of calibration, name of person performing the calibration, reference standard used, temperature at which the readings were taken, and the calibration readings.

- Before calibrating and using air and water quality monitoring equipment in the field, the sensors will be inspected to
 ensure that they are clean, installed properly and are not damaged.
- Field calibration will be conducted in an area sheltered from wind, dust, and temperature/sunlight fluctuations, such as inside a room or vehicle. The standards will be maintained at a temperature >40 degrees Fahrenheit (°F) and <100°F.
- The air and water quality monitoring equipment will be allowed to warm up for at least 10 minutes after being turned on and the display will be set to read the appropriate measurement units.
- The standard solutions will be handled in a manner that prevents their dilution or contamination. Standard solutions will
 not be reused or poured back into the bottle. Expired standard solutions will not be used. Proper chain-of-custody will be
 followed for standard solutions.

Following calibration, the air and water quality monitoring equipment will be used to collect field parameters and the field measurements will be recorded on sampling forms and in the field book; conditions that may affect data quality (e.g., changes in weather) will also be noted.

4.5 DECONTAMINATION

Non-dedicated equipment must be adequately decontaminated between locations. Where possible, each individual piece will be individually decontaminated in accordance with the manufacturer's specifications. Specifically, the decontamination process will include the following steps:

- Physical removal of debris
- Bucket wash with non-phosphate soap such as Liquinox®, or equivalent and scrub brush

- Tap water rinse
- Deionized (DI) water rinse (distilled water can be used as a substitute)

Equipment will be allowed to dry thoroughly after decontamination. Water used for decontamination will be processed through a 5-gallon bucket of granulated carbon and then discharged onto the natural ground surface.

4.6 INJECTION WELL INSTALLATION PROCEDURES

The injection wells will be installed by a licensed Maryland driller. The drilling firm will also be responsible for obtaining Baltimore County boring permits before drilling work is initiated. The final well locations will be surveyed following installation by a licensed Maryland surveyor. Horizontal locations will be determined to +0.1 feet using the Maryland Coordinate System and North American Datum (NAD 83). The surveyed coordinates for the injection wells locations will be added on the existing site plan.

The borings will be installed using track- or cart-mounted direct-push drilling equipment to approximately 33 feet bgs, where the MIP investigation identified the highest concentration of contamination. Soil samples will be collected as necessary to confirm the anticipated stratigraphy. WSP's onsite geologist will determine the final boring depth and screen interval based on observed conditions.

Soil samples will be collected using 2-foot split spoon or Macro-Core® samplers equipped with a disposable acetate liner. Upon recovery, the soils will be visually screened for evidence of contamination and logged using the Unified Soil Classification System. The headspace of each sample will be screened for organic vapors at approximately 2.5-foot intervals using a PID equipped with a 10.6 electron-volt lamp. Soil observations, such as odors, presence of fill, staining, and moisture content will be recorded in the field logbook along with the PID readings.

The wells will be constructed using 10 feet of 2-inch inner diameter (ID), flush-threaded 0.020-inch continuous wrap Schedule 40 (SCH40) PVC well screen fitted with enough blank SCH40 PVC riser to reach the ground surface. The top of casing will be completed with an appropriate, removable, connection to the amendment delivery system. A 10-foot section of 2-inch continuous wrap 20 slotted screen will be installed at the intervals shown in the table below. At each well, the well screen will be surrounded with a high silica content, washed and rounded sand filter pack from the bottom of the screen to approximately 2 feet above the top of the screens. The filter pack will be placed in the annulus of the well in such a manner that bridging of the filter pack material will not occur. A 3-foot bentonite seal will be placed on top of the sand filter pack, delivered to the annular space in one-foot lifts. At each lift, the bentonite will be tamped and charged with potable water. Once the bentonite has been fully hydrated, the remaining annular space will be backfilled with bentonite-cement grout to approximately 1-foot bgs. Grout will be placed in the borehole using a tremie pipe.

Injustion Wall ID	Screen Interval
Injection Well ID	(feet bgs)
IP-1	22-32
IP-2	20-30
IP-3	18-28

The wells will be developed by surging the screened interval to loosen any fine-grained sediment in the sand filter pack and adjacent aquifer material. Groundwater from each well will then be removed by pumping or bailing for a minimum of 1 hour, until the groundwater is sediment free. Well development documentation, including development method(s), time spent on development, volume of water removed, well depth, depth to top of the screen, well diameter, visual appearance (clarity), and discharge water stability parameters (turbidity, pH, temperature, oxidation-reduction potential, specific conductance, and dissolved oxygen) at various stages of pumping, as possible, will be recorded in the field book. Water quality parameters

will be collected by monitoring equipment with procedures as described in Section 4.4. The water level and total well depth will be periodically checked during the mechanical surging and pumping process to assess changes in the well condition. The monitoring well will be developed for a minimum of 1 hour or as directed by WSP's onsite geologist. The wells will be equipped with lockable watertight caps and 12-inch diameter flush mount completion. Water from developing the wells with be characterized for disposal by collecting a water sample for BTEX and TPH-DRO/GRO. The waste will be managed accordingly by a certified disposal contractor in accordance with state and federal regulations.

4.7 BASELINE GROUNDWATER SAMPLING PROCEDURES

Baseline groundwater samples will be collected from the existing wells MW-4, OW-1, MW-7, YMW-7, MDE-4, YP-1, and YMW-8 (Figure 4). The samples will be collected a minimum of 2 weeks after injection well development, and within 30 days prior to the pilot test so that the analytical results are representative of conditions at the time of treatment application. Before initiating any sampling activities, depth to water measurements will be collected at the sampling locations. Purging and sampling will be performed using low-flow techniques with bladder pumps connected to in-line water quality meters. Temperature, pH, specific conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential will be measured at equal time intervals during the purging activities using a multi-parameter water quality meter with a flow-through cell to minimize atmospheric interference. These readings, along with observations on groundwater quality, will be recorded on groundwater purge forms. Groundwater will be removed until parameters stabilize and a minimum of three well volumes have been purged, thereby confirming that formation water is present in the well. After the well has been adequately purged, groundwater samples will be collected using the bladder pump. The samples will then be labeled with the appropriate identification, stored in a cooler with ice and submitted to Phase Separation Science of Catonsville, Maryland for analysis of the following:

- VOCs by US EPA Method 8260C
- TPH-DRO by US EPA Method 8015C
- TPH-GRO by US EPA Method 8015C

BTEX constituents and total BTEX will be determined through the full VOC suite analysis from Method 8260C.

4.8 AMENDMENT PREPARATION AND INJECTION PROCEDURE

The Klozur® and nutrients will be delivered as solids in bulk containers (e.g., totes, drums, or sacks). The Klozur®, nutrients, and dilution water solution will be prepared in a mixing area set up in the fenced area at the rear of the former Hess filling station property before being pumped to the injection point. The amendment will be prepared in batches for each well as specified in Section 3.2. The nutrients and Klozur® will be mixed into potable water until the soluble materials dissolve and any remaining insoluble materials are in a uniform suspension. The amendment solution will then be pumped to the injection areas on a mobile platform (e.g., trailer or lift), which will also be used for staging equipment during treatment.

The wellhead of each injection well (IP-1 through IP-3) will be sealed during the injection as necessary to withstand injection pressures. Additionally, a ball valve will be installed near the well head to minimize spillage when disconnecting the injection hose. Gravity feed of the amendment is preferred, however, if necessary the amendment may be delivered to the well under pressure. A pressure gauge on the application pump or the amendment conveyance line will be used to ensure that the applied injection pressure does not exceed 40 psi. The amendment will be fed or pumped into the screened interval of the injection well at an expected flow rate of approximately 5 gallons per minute. The flow rate will be monitored using an inline flow meter or visual observations of the fluid level decrease in the amendment holding tank over time.

The injections will begin with IP-1, followed by IP-2, and then IP-3. WSP will attempt to evenly distribute the amendment volume between the three injection wells. If delivery to any injection well is unsuccessful, the volume of amendment that was not delivered will be injected into the adjacent injection well. If all other injections have been completed and residual amendment remains, the residual amendment volume will be delivered into a previous location where delivery was successful.

The injection volumes, pressures, and flow rates of the amendment application at each injection well will be recorded. WSP will also regularly monitor water levels in nearby monitoring wells, such as MW-4, MW-5, OW-1, MW-7, MW-1, and YMW-7. When injections are performed within 25 feet of an existing monitoring well, a packer or other device will be used to seal the top of the monitoring well(s) to prevent amendment from reaching the ground surface. WSP will not monitor water levels in sealed wells.

It is possible that diluted amendment may migrate into one or more collection laterals of the groundwater management system. Any amendment would be further diluted by the groundwater in the management system. WSP will monitor the water quality in the downstream manhole of the collection system, Manhole 21 (MH-21, Figure 1 in Appendix A) at regular intervals to check for oxidant discharge to the groundwater management system. MH-21 was selected as the monitoring point due to accessibility and because it receives groundwater from all four collection laterals and represents the overall water quality in water discharging from the groundwater management system. WSP will regularly measure the conductivity, ORP and pH of the water in MH-21. If a significant change in the water quality in MH-21 is observed during the injection process, the injection may be stopped, and the delivery pressure reduced. If the injection pressure is unable to be reduced (such as in the case where the amendment is flowing under gravity feed) then the injection will be stopped and moved to a nearby existing monitoring well or a previous injection point. WSP will continue to monitor water quality in MH-21 at regular intervals over the course of the injection.

4.9 POST-TREATMENT GROUNDWATER SAMPLING AND INJECTION MONITORING

Quarterly groundwater samples will be collected from existing monitoring wells MW-4, OW-1, MW-7, YMW-7, MDE-4, YP-1, and YMW-8 for 1 year following the injections. The groundwater sample will be analyzed for the following parameters:

- VOCs by US EPA Method 8260C
- TPH-DRO by US EPA Method 8015C
- TPH-GRO by US EPA Method 8015C

WSP will review the results from the first two quarterly post-treatments sampling events and, if appropriate, recommend adjustments to the list of parameter analysis for the final two quarterly post-treatment sampling events. The wells will be sampled with procedures described in Section 4.7 and in accordance with WSP SOPs. After 1 year, the wells will be sampled semi-annually as per the MDE-approved groundwater monitoring program (MDE 2018).

4.10 SAMPLE CONTAINERS AND LABELS

Laboratory supplied containers will be used for sample collection. Preservation by pH adjustment will be achieved using appropriate preservatives. Preservatives will be added to the sample containers in the laboratory prior to being shipped to WSP for use. While collecting samples, care must be taken to prevent washing out the preservative by sample container overfilling.

Temperature control will be achieved by placing the samples in a cooler immediately after collection. The cooler will be packed with enough ice to cool the samples to 4° Celsius (C) and maintain the temperature at 4°C until arrival at the laboratory. Field personnel will record the sample temperature on the chain-of-custody form prior to sample shipment. The temperature will be measured upon receipt at the laboratory.

Adhesive, waterproof labels will be used to identify the samples. Each label will provide the following information:

- Sample identification number
- Name of sample collector
- Date
- Time
- Place of collection

- Parameters requested for analysis
- Type of preservative added (if applicable)

This information will be written on the label with an indelible, waterproof marker and be repeated on the chain-of-custody forms.

4.11 CHAIN OF CUSTODY RECORDS

Sample custody will be controlled and maintained through the chain-of-custody procedures. Chain-of-custody procedures will allow for the tracing of possession and handling of samples from the field to the laboratory. A sample is considered to be in a person's custody if it is in the person's possession or it is in the person's view after being in his or her possession or it was in that person's possession and that person has locked it up to prevent tampering. Items to be used to document the possession and handling of samples and protect their integrity include sample labels, custody seals, a logbook, and chain-of-custody forms.

In accordance with WSP's SOPs, the chain-of-custody form will be used to trace sample possession from the time of collection to receipt at the laboratory. Dated and signed adhesive seals will be affixed to the shipping containers to demonstrate that they have not been opened during shipment. The seals will be affixed so that the shipping containers cannot be opened without breaking the seal.

4.12 QUALITY CONTROL AND ANALYTICAL PROCEDURES

The Quality Control and Analytical Procedures are provided to ensure that controls are initiated and maintained throughout sample collection and analysis. Field quality assurance and quality control (QC) procedures, such as the use of proper sampling technique and decontamination procedures, were discussed in earlier sections of this plan. Additional QC measures include the use of control samples.

Control samples are introduced into the train of actual samples as a monitor on the sampling procedures and the analytical system performance. Control samples for this monitoring plan include field duplicates, equipment blanks, trip blanks, and temperature blanks. Each type provides a different form of quality control for the analytical system. The collection of each QC sample will be recorded in the field book and will be limited to VOCs.

4.12.1 FIELD DUPLICATES

Field duplicates are used to assess sampling process precision. One field duplicate will be collected during each sampling event. The duplicate sample will be collected at the same time from the same sample aliquot and in the same order as the corresponding field sample. The field duplicate identity will not be provided to the laboratory. Trip blanks will not be used for field duplicates. The unique sample identification will be chosen from the range of MW-100 through MW-999.

4.12.2 EQUIPMENT BLANKS

Equipment blanks are useful in documenting adequate decontamination of sampling equipment. One equipment blank will be collected per each type of non-dedicated, reused equipment (bladder pumps). Each equipment blank will consist of collecting a rinsate sample from non-dedicated equipment after the equipment has been decontaminated. Laboratory-provided deionized (DI) water will be used for the rinsing the equipment. The equipment blank will be analyzed for all analytes of interest (VOCs, TPH-DRO and TPH-GRO). The unique sample identification will indicate that the sample is an equipment blank and will include the sampling date (e.g., WSP-EB-MMDDYY).

4.12.3 TRIP BLANKS

Trip blanks are used to document contamination attributable to shipping and field handling procedures. One trip blank will be provided in each cooler and will only be analyzed for VOCs. Trip blank(s) will be prepared at the laboratory by filling two

40-milliliter vials with Teflon-lined septum caps with DI water. The trip blank(s) will be labeled in the field and returned to the laboratory in the cooler(s) along with sample containers that contain samples for VOC analysis. The unique sample identification will indicate that the sample is a trip blank and will include the sampling date (e.g., TB-MMDDYY).

4.12.4 TEMPERATURE BLANKS

Temperature blanks are used to determine if proper sample thermal preservation has been maintained by measuring the sample container temperature upon arrival at the laboratory. Laboratory-provided temperature blank(s) will be returned to the laboratory in each cooler.

4.12.5 ANALYTICAL PROCEDURES

All analyses will be performed by Phase Separation Science in Catonsville, Maryland.

A "standard turn-around time" will be requested for the samples with results anticipated within 10 business days of sample receipt by the laboratory. The analytical method used, extraction date, and date of actual analysis will be recorded by the laboratory.

Laboratory QC checks such as lab blanks, spikes, calibration standards, duplicates, and reference samples will be used to provide a measure of accuracy and precision. Laboratory reference QC samples and spikes will be integrated into the analytical scheme in accordance with the Phase Separation Science Quality Control Plan. Laboratory duplicates will be analyzed at the same frequency to assess precision.

4.13 INVESTIGATION DERIVED WASTE

Investigation-derived waste (IDW) such as drill cuttings and drilling fluids will be contained in U.S. Department of Transportation-compliant 55-gallon steel drums. The drums will be labeled as "Non-Hazardous Pending Analysis" and moved to a temporary storage area on the filling station property for subsequent management and disposal. IDW will be promptly characterized and disposed of in accordance with state and federal requirements. Purge water from sampling events will be processed through a 5-gallon bucket of granulated carbon and then discharged onto the natural ground surface.

Personal protective equipment will be disposed of as general trash.

4.14 SURVEYING

Following the injection well installation, the elevations of the new wells will be surveyed by a Maryland-licensed surveyor to the nearest +/-0.01-foot, and the horizontal locations will be measured to the nearest +/0.1 foot.

5 SCHEDULE AND REPORTING

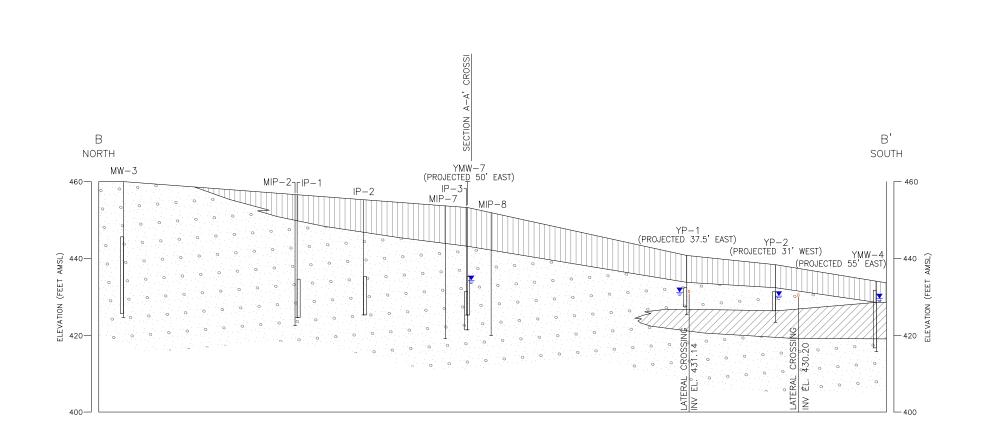
The ISCO remedy will commence after receiving MDE's approval of the injection application described in this CAP Addendum. The approximate schedule shown below is contingent on MDE's approval of this CAP. The injection well installation is expected to take 3 days and will be scheduled a minimum of 2 weeks prior to the baseline groundwater sampling and no more than 30 days prior to the injection event. The amendment application is anticipated to take approximately 1 week, with quarterly groundwater monitoring to continue for 1 year after the injection.

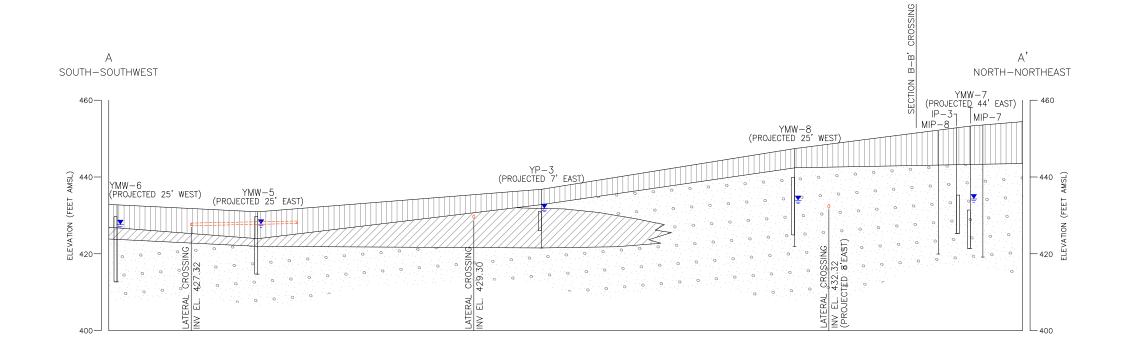
Results will be reported to the MDE OCP in a completion report following the final round of post-injection groundwater monitoring (to occur 1 year following the injections). The completion report will summarize the treatment intervals per injection boring, volume of materials injected, general observations from the injections (e.g., flow rates, pressures), monitoring well construction details, and groundwater monitoring results. Successful treatment will be demonstrated through the groundwater quality samples exhibiting decreasing BTEX concentration trends.

Task	<u>Schedule</u>
CAP Addendum Submitted to MDE Oil Control Program	December 2018
Field Preparations (HASP Modification, Driller Procurement, Permitting, Site Access	January - February 2019
Agreements, Miss Utility One Call)	
Injection Well Installation	March 2019
Baseline Groundwater Monitoring	April 2019
ISCO Injection Implementation	April 2019
Post-Injection Groundwater Monitoring Round #1	July 2019
Post-Injection Groundwater Monitoring Round #2	October 2019
Post-Injection Groundwater Monitoring Round #3	January 2020
Post-Injection Groundwater Monitoring Round #4	April 2020
ISCO Injection Completion Report	June 2020

CAP Addendum Remediation Schedule

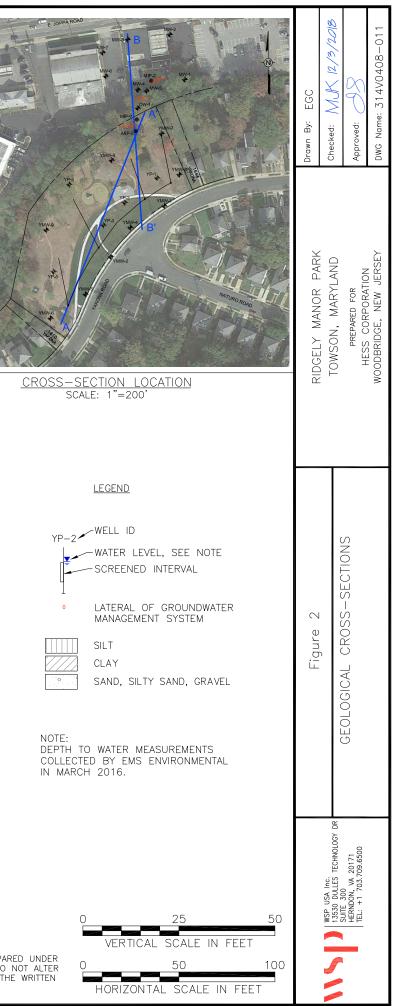
6 **REFERENCES**

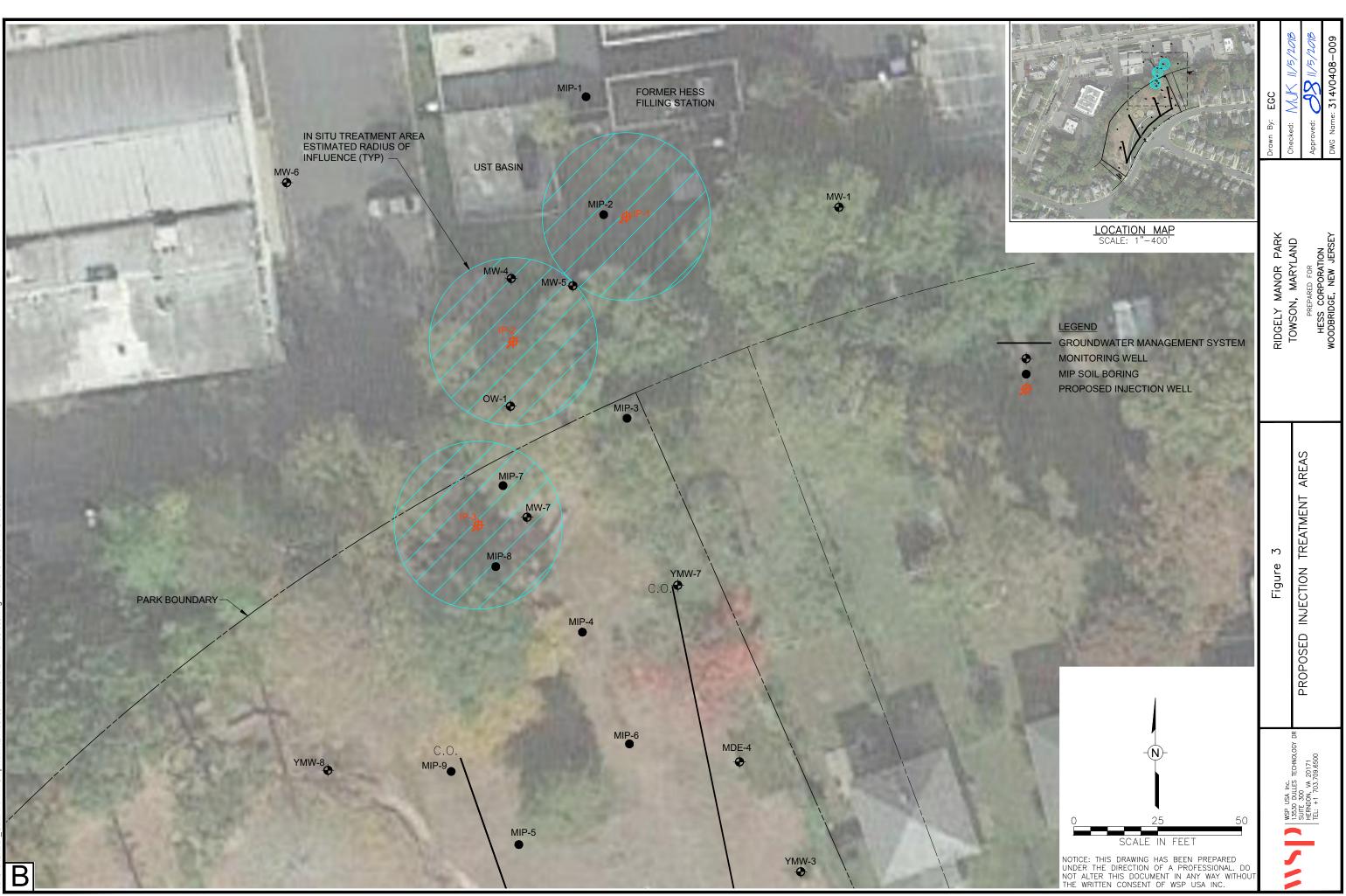

- Maryland Department of the Environment (MDE). 2003. Maryland Environmental Assessment Technology for Leaking Underground Storage Tanks. Oil Control Program Land Management Administration. February.
- MDE. 2005. Environmental Investigation (Yakona Groundwater Investigation) Hess Station No. 2024. February 28.
- MDE. 2010. Response to Request for Comprehensive Well Sampling. June 7.
- MDE. 2013. Approval of CAP Addendum. November 22.
- MDE. 2016. Response to Monthly Monitoring and Reporting Request. February 11.
- MDE. 2018. Groundwater Monitoring Modification Approval. November 15.
- Otton, E.G., R.O.R. Martin, and W.H. Durum. 1964. Water Resources of the Baltimore Area, Maryland, U.S. Geological Survey Water Supply Paper 1499-F.
- Susquehanna River Basin Commission (SRBC). 2008. Deep Creek Water Availability Study, Technical Publication 256. May 2008.
- WSP. 2013. Corrective Action Plan I. August 13.
- WSP. 2017. Site Investigation Work Plan. April 7.
- WSP. 2018. Site Investigation Summary. May 30.


7 ACRONYM LIST

µg/L	micrograms per liter
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, xylene
С	Celsius
CAP	Corrective Action Plan
DI	deionized
DRO	diesel range organics
F	Fahrenheit
ft/day	feet per day
g/L	grams per liter
GRO	gasoline range organics
HASP	health and safety plan
HPT	hydraulic profiling tool
ID	inner diameter
IDW	investigation derived waste
ISCO	in situ chemical oxidation
Κ	hydraulic conductivity
LPH	Liquid Phase Hydrocarbons
LUST	Leaking Underground Storage Tanks
MDE	Maryland Department of the Environment
MEAT	Maryland Environmental Assessment Technology
mg/kg	milligrams per kilogram
MIP	membrane interface probe
MSL	mean sea level
MTBE	methyl tertiary-butyl ether
NAD	north American datum
NPDES	National Pollutant Discharge Elimination System
OCP	oil control program
PID	photoionization detector
psi	pounds per square inch
PVC	polyvinyl chloride
QC	quality control
SCH40	Schedule 40
SOP	standard operating procedure
TBA	tertiary butyl alcohol
TPH	total petroleum hydrocarbons
VOCs	volatile organic compounds
WSP	WSP USA Inc.

FIGURES





NOTICE: THIS DRAWING HAS BEEN PREPARED UNDER THE DIRECTION OF A PROFESSIONAL. DO NOT ALTER THIS DOCUMENT IN ANY WAY WITHOUT THE WRITTEN CONSENT OF WSP USA INC.

В

R:\ACAD\CADD_CLIENT\Hess Corporation\31400408-Hess\CAD\314V0408-009.dwg 11/5/2018 12:54 PM USEC01012

A EMS QUARTERLY REPORT

emsenv.com

October 5, 2018

Ms. Ellen Jackson, Central Region Section Head Maryland Department of the Environment Remediation Division Oil Control Program 1800 Washington Boulevard, Suite 620 Baltimore, Maryland 21230-1719

Via: FedEx

Re: 2018 Third Quarter Site Status Report Former Hess Station #20204 1613 East Joppa Road Towson, Maryland Case Number 1991-2100 BA

Dear Ms. Jackson:

Enclosed please find the above-referenced report. This report includes results from the September 5 and September 6, 2018 groundwater monitoring and sampling event. This report also summarizes the results of the groundwater management system (System) vapor screening, operations and maintenance (O&M), and discharge sampling events conducted during the Third Quarter of 2018. System vapor screening, O&M, and discharge sampling events will continue throughout the Fourth Quarter of 2018. The next groundwater monitoring and sampling event is scheduled for December 2018.

Should you have any questions or require any additional information, please feel free to contact me by telephone at (610) 866-7799 or via email at jfox@emsenv.com. If you have any questions relating to the project, please contact John Schenkewitz of Hess Corporation at (609) 406-3969.

Sincerely, **EMS Environmental, Inc.**

my t. Jos

Jeremy L. Fox Regional Manger

Enclosure

cc: J. Schenkewitz, Hess Corporation
T. Jackson, Baker Botts
G. Helfrick, PMG
B. Hopkins, NeighborSpace
P. Groff Robertson, WSP

NEW YORK

PENNSYLVANIA

NORTH CAROLINA

October 5, 2018

2018 THIRD QUARTER SITE STATUS REPORT FORMER HESS STATION #20204 1613 East Joppa Road Towson, Maryland Case Number 1991-2100 BA

Prepared For:

Hess Corporation Trenton-Mercer Airport 601 Jack Stephan Way West Trenton, NJ 08628

Prepared By:

EMS Environmental, Inc. 4550 Bath Pike Bethlehem, PA 18017

INTRODUCTION

The following is the 2018 Third Quarter Site Status Report for Former Hess Station #20204, located at 1613 East Joppa Road in Towson, Maryland. This report includes results from the September 2018 groundwater monitoring and sampling event. Also included in this report are summaries of the groundwater management system vapor screening, operations and maintenance (O&M), and discharge sampling events. Figure 1 is included as a Site Plan depicting the subject site layout, adjacent properties, the site's below-grade system, as well as all monitoring wells, piezometers, storm drain outlets, and vapor monitoring points bounded by the area known as Ridgely Manor Park. Refer to Tables 1 and 2 for a summary of the groundwater data collected Refer to the Appendix for copies of the during the monitoring and sampling event. corresponding laboratory analytical reports.

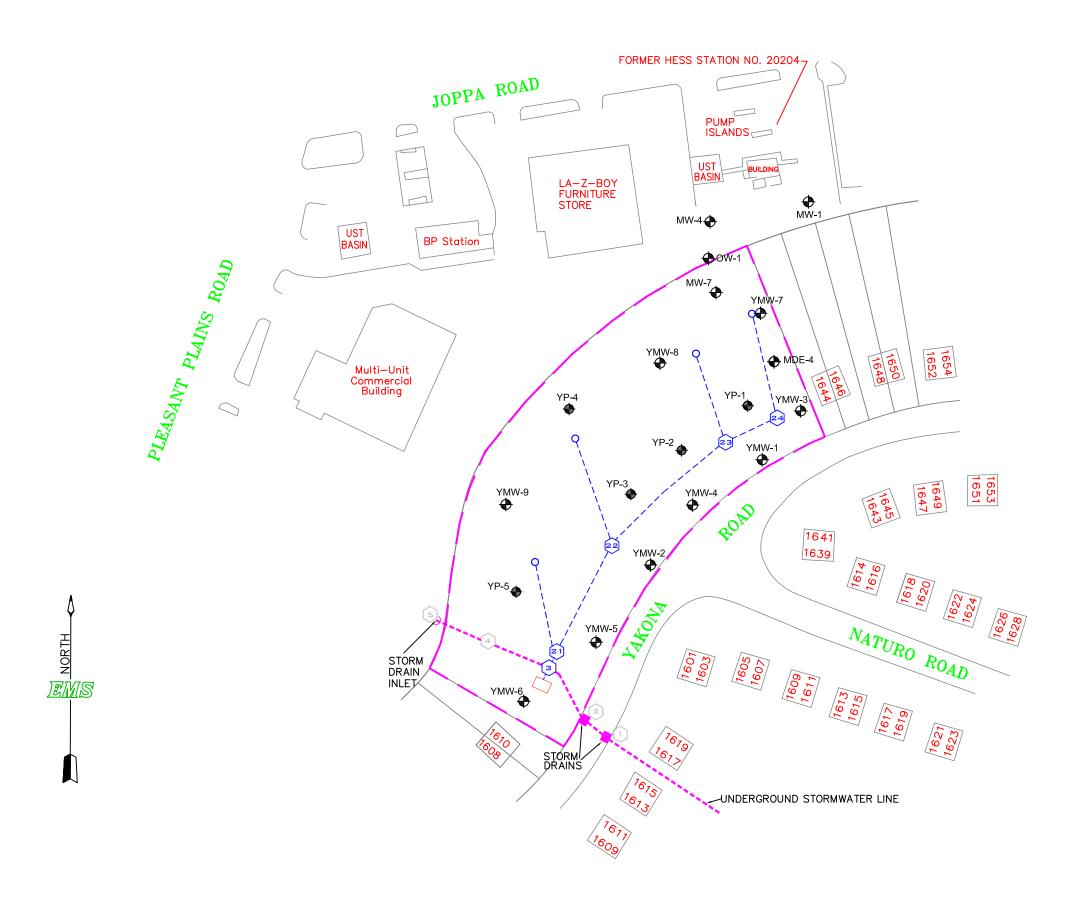
During the Third Ouarter of 2018, continued monthly system vapor screening events, using a photoionization detector (PID), were conducted at the designated vapor monitoring points depicted in Figure 1. Additionally, system O&M events were performed on a bi-monthly basis. Post-treatment discharge samples were collected twice monthly from the system's groundwater collection vault. Besides routine system maintenance (e.g. filter bag and carbon changeouts, pump and hose checks, electrical component maintenance, system throughput monitoring, etc.), noteworthy or unusual conditions, such as surficial dissolved iron staining, were not observed. Tables 3 through 5 summarize the system vapor screening and discharge data.

GENERAL INFORMATION

<u>Site:</u>	Former Hess Station #20204 – Towson, MD
	(See Figure 1)
Sampling Frequency:	Quarterly
Reporting Frequency:	Quarterly
Monitoring Wells/Piezometers Sampled:	MDE-4, MW-1, MW-4, MW-7, OW-1, YMW-1
	through YMW-9, and piezometers YP-1 through
	YP-5
Monitoring Wells/Piezometers Not Sampled:	None
Monitoring Wells/Piezometers Gauged:	MDE-4, MW-1, MW-4, MW-7, OW-1, YMW-1
	through YMW-9, and piezometers YP-1 through
	YP-5
Monitoring Wells/Piezometers Not Gauged:	None
Required Analysis:	Full Scan Volatile Organic Compounds (VOCs)
	+ Fuel Oxygenates by EPA Method 8260C, and
	Total Petroleum Hydrocarbons-Gasoline Range
	Organics (TPH-GRO) and Total Petroleum
	Hydrocarbons-Diesel Range Organics (TPH-
	DRO) by EPA Method 8015C
	· ·
SAMPLING DATA	
Groundwater Sampling Event:	September 5 and September 6, 2018
Depth to Groundwater:	2.51 feet (YMW-2) to 19.61 feet (OW-1)
Groundwater Elevation:	427.63 feet (YMW-6) to 437.21 feet (MW-1)
	(See Table 1, Table 2, and Figure 2)
Groundwater Flow:	Predominantly south (See Figure 2)
Liquid Phase Hydrocarbons (LPH) Identified:	None
Dissolved Phase Concentrations Reported:	See Table 1 and Figure 3

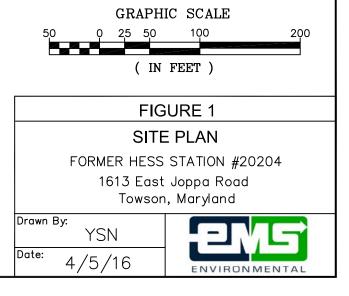
REMEDIATION DATA

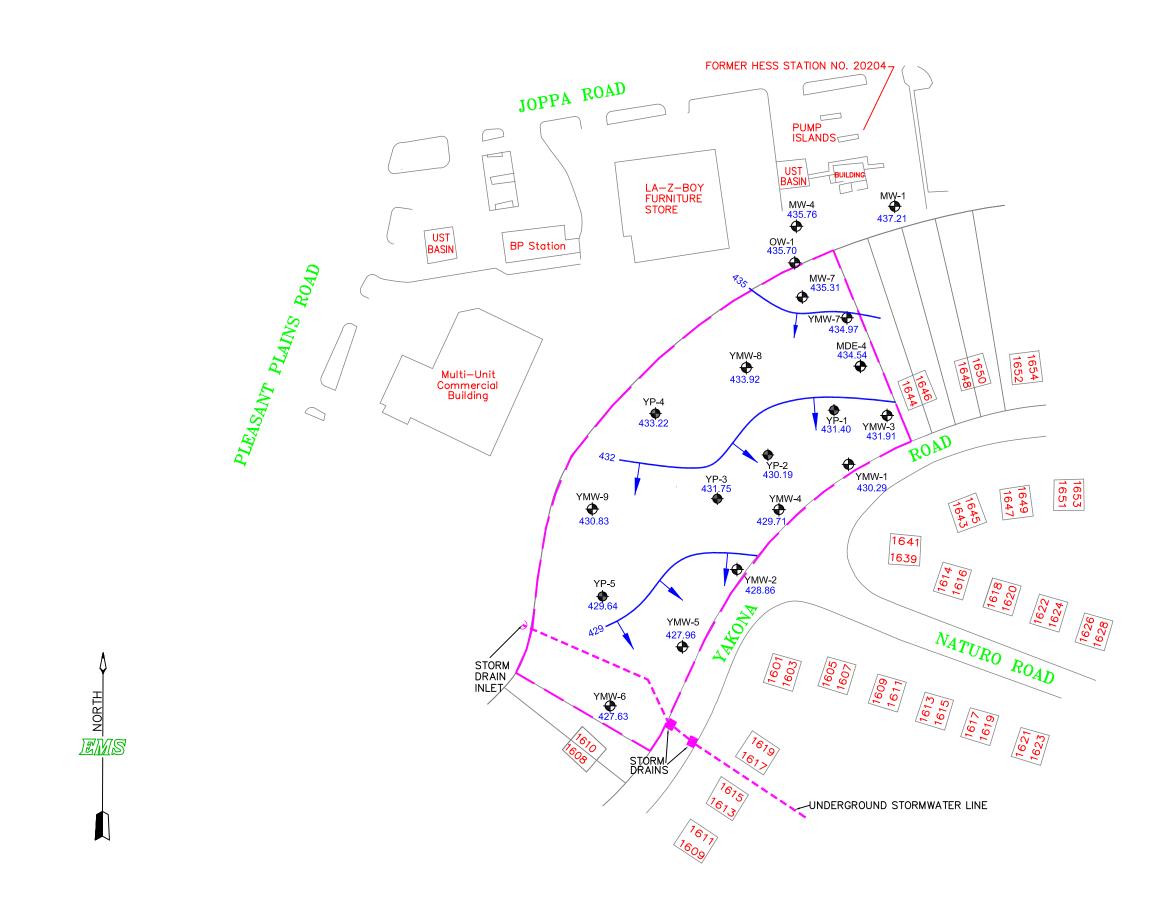
<u>Technology:</u> <u>System Start:</u> Waste Stream Treatment:


<u>Vapor Screening Frequency:</u> <u>O&M Frequency:</u> <u>Discharge Sampling Frequency:</u> <u>System Performance Data:</u> Groundwater Collection System May 22, 2014 Groundwater collected within the site's groundwater collection system vault is treated via the use of both liquid phase carbon adsorbers and filter bags prior to being discharged to the adjacent public storm sewer system. Monthly Weekly Twice monthly See **Tables 4** and **5**

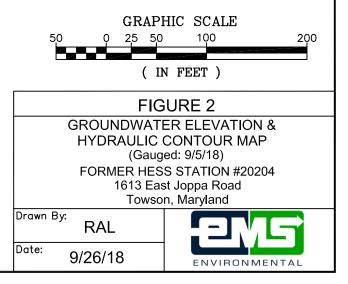
SCHEDULED/PROPOSED WORK

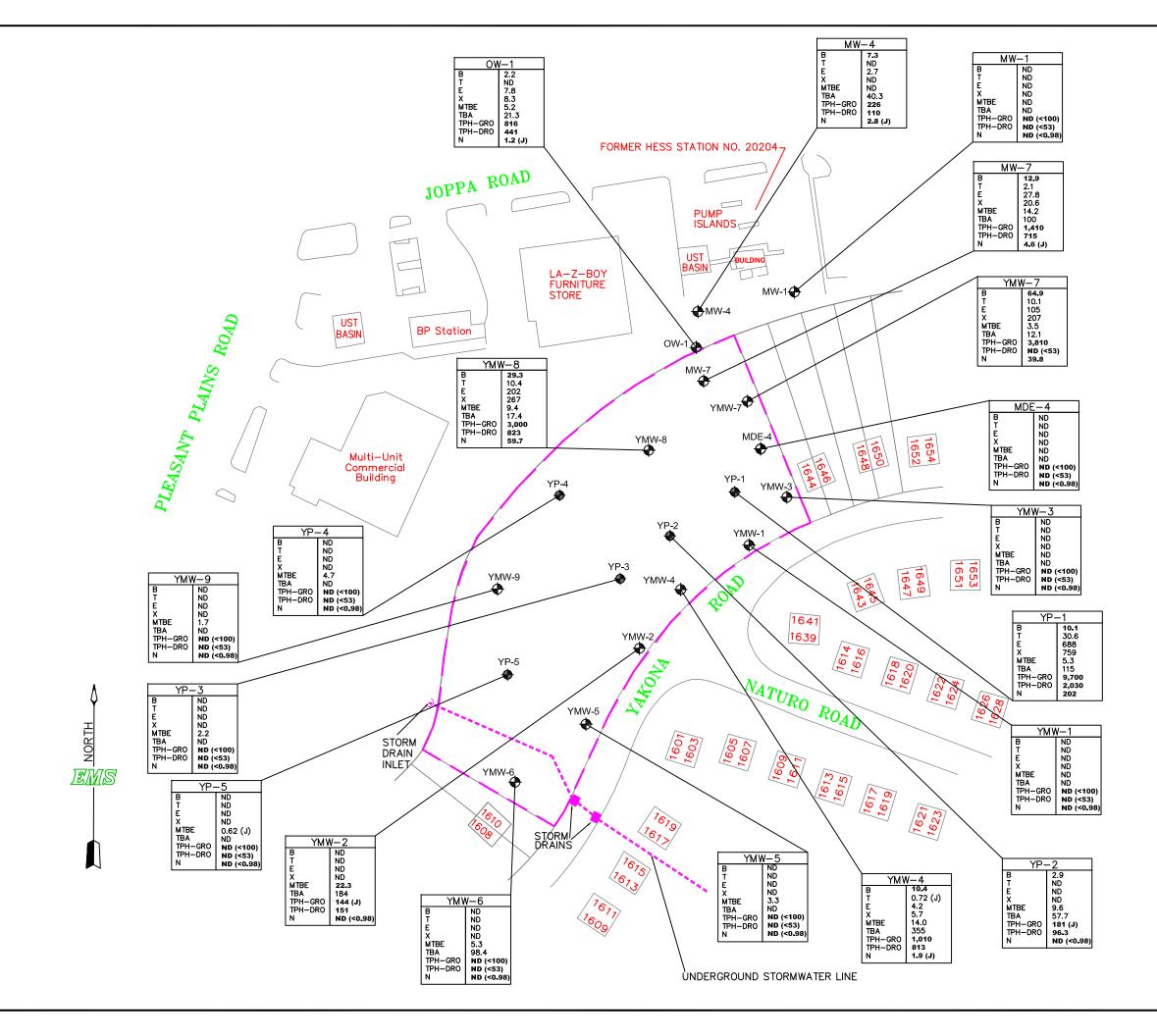
System vapor screening events are scheduled to continue on a monthly basis during the Fourth Quarter of 2018. System O&M events and discharge sampling events are scheduled to continue weekly and twice monthly, respectively, during the Fourth Quarter of 2018. The next groundwater monitoring and sampling event is scheduled for December 2018.


ATTACHMENTS


ur 5
,
,

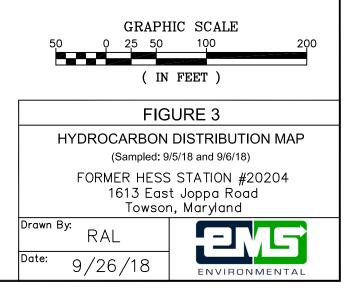
LEGEND


	Ridgely Manor Park Boundary
•	Groundwater Monitoring Well
•	Piezometer
3	Groundwater Management System Access Manhole (Vapor Screening Point)
1	Stormwater Inlet Callout
0	Drainage Piping Cleanout
\Box	Below Grade Groundwater Management System Vault
	Underground Groundwater Management System Drainage Piping



LEGEND

	Ridgely Manor Park Boundary
\	Groundwater Monitoring Well
•	Piezometer
434.65	Groundwater Elevation (In Feet)
432	Groundwater Contour Value (In Feet)
\subset	Groundwater Contour Line



LEGEND

	Ridgely Manor Park Boundary
•	Groundwater Monitoring Well
•	Piezometer
ND	Constituent Compound Not Detected
J	Laboratory-Estimated Value
В	Benzene
т	Toluene
E	Ethylbenzene
х	Total Xylenes
MTBE	Methyl Tertiary Butyl Ether
ТВА	Tertiary Butyl Alcohol
TPH-GRO	Total Petroleum Hydrocarbons-Gasoline Range Organics
TPH-DRO	Total Petroleum Hydrocarbons-Diesel Range Organics
Ν	Naphthalene
All Concent	rations Expressed In Micrograms/Liter (µg/L)

Values Shown In Boldface Type Exceed The Applicable MDE Statewide Health Standard

Categy 11/20/1090 No																
Carling: 11/26/1969 NNO	Well No.	Date	Elevation*	Water	Thickness	Elevation*			benzene						TPH-DRO (µg/L)	Naphthalene (μg/L)
Caling: 3271937 444.03 578 0.05 HO ND ND <td>MDE-4</td> <td>7/17/1996</td> <td>NSVD</td> <td>NM</td> <td>NM</td> <td>NM</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>N</td>	MDE-4	7/17/1996	NSVD	NM	NM	NM	ND	ND	ND	ND	ND	ND	NS	NS	NS	N
0 b 3 tert Science: 3001007 444.03 620 0.00 437.83 ND							3				-			NS	NS	N
Sevent 3 to 13 bet 2 119157 444.03 7.73 0.00 435.61 N0 N0 N0 N0 N0 N0 N0 N0 N0 N8 N8 N8 2 119169 444.03 7.42 0.00 435.02 N0 N6 N 0 0 20 20 7.72 3 1 127198 444.03 7.64 0.00 435.02 N0 10 7.72 30 0.00 435.03 7 1 127198 444.03 7.64 0.00 435.03 7 1 127198 444.03 7.74 0.00 435.03 7 1 1271970 444.03 5.95 0.00 437.13 N0 500 820 2.260 4.27 1 1272000 444.03 7.74 0.00 435.06 7.70 ND ND ND ND ND 3.0 NS NB 8 2 222000 444.03 7.74 0.00 435.06 7.70 ND ND ND ND ND ND 3.0 NS NB 8 2 222000 444.03 7.74 0.00 435.06 7.70 ND ND 2.00 1110 20 NB 8 1 1202000 444.03 7.74 0.00 435.07 ND ND 2.0 1110 220 1100 110 28 NB 8 1 120200 444.03 7.72 0.00 435.07 ND ND 2.0 10 20 120 120 108 NB NB 8 1 120200 444.03 7.72 0.00 435.07 ND ND 2.0 10 20 120 120 108 NB NB 8 1 120200 444.03 7.72 0.00 435.27 ND 2.17 120 120 120 120 140 NB NB 8 1 120200 444.03 7.72 0.00 435.27 ND 2.17 120 120 120 140 140 NB 8 1 120200 444.03 5.52 0.00 435.27 ND 121 120 120 120 140 145 NB 8 1 120200 444.03 5.52 0.00 435.27 ND 121 120 120 120 140 145 NB 8 1 120200 444.03 5.52 0.00 435.27 ND 121 120 120 120 140 145 NB 8 1 120200 444.03 5.52 0.00 435.27 ND 121 120 120 120 140 145 NB 8 1 120200 444.03 5.52 0.00 435.27 ND 10 ND 10 ND 10 ND ND ND NB 8 1 120200 444.03 5.52 0.00 435.07 ND 100 ND 125 44 64 11 NB 8 1 120200 444.03 5.52 0.00 435.07 ND 100 ND 10 ND 10 ND 10 NB 10 NB 8 1 120200 444.03 5.52 0.00 435.07 ND 100 ND 10 ND 10 ND 10 NB										ND				NS	NS	NS
Section 23 0 3 3 3 4 4 4 5 5 4 7 4 2 0 0 4 3 5 5 1 11 6 4 2 89 2 3 5 5 6 4 5 8 7 1 10 5 1 1 2 10 10 3 6 4 4 4 0 5 6 0 0 2 4 3 8 4 4 1 5 6 4 5 7 1 10 10 N 10 N 10 N 10 N 10 N 10 N 10	0 to 3 feet									2				NS	NS NS	NS NS
3 b 13 bet 21%191888 24191988 444.03 6.61 0.00 438.02 ND	Corooni													NS NS	NS	NS
S2871989 444.03 6.50 0.00 438.43 4 5 4 8 721 NNS NNS 11/21/169 444.03 7.64 0.00 435.03 1 8 31 176 621 637 NNS														NS	NS	NS
ehr ehr eta str str <tr< th=""> str str</tr<>	5 10 15 1661													NS	NS	NS
21771989 444.03 7.70 0.00 438.33 3.7 107 193 608 989 N8 N8 N8 02761989 444.03 7.72 0.00 430.16 2.2 10.0 N0 N2 N0 N8 N8 02761989 444.03 6.00 0.00 437.21 N8 N8<							13							NS	NS	NS
5624/1909 444.03 7.02 0.00 443.701 2 ND ND ND 2 ND NS N 11/18/19/09 444.03 6.60 0.00 437.73 ND 550 150.4 440 NS NN N		11/21/1998	444.03	7.64	0.00	436.39	1	8	31	176	216	57	NS	NS	NS	NS
Bit Bit <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
Intergeng 44.03 6.00 0.00 437.13 ND 500 ND ND </td <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
2232000 444.03 6.50 0.00 437.53 ND ND <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
5/17/2000 444.03 6.00 0.00 438.03 ND ND 2.4 11.7 14.1 30 NS NS 11/20/2000 444.03 6.67 0.00 437.67 7.0 9 6.91 10.77 54 NS NS NS 5/20/2001 444.03 6.66 0.00 437.16 7.3 7.3 19 81 11.5 22 NS NS 5/20/2001 444.03 6.65 0.00 435.71 10 4.81 NS NS ND 1772011 444.03 6.52 0.00 435.20 12 91 2.20 1776 11.08 NN ND NS NN ND ND ND NS NN ND														NS NS	NS NS	NS NS
8/32200 444 03 0.00 437 35 7.7 9 55 101 177 54 NS N 2/202001 444 03 7.15 0.00 433 68 NO NO NO NS N 2/202001 444 03 6.66 0.00 437 71 68 83 NO 20.3 44 34 NS N 6/02001 444 03 6.72 0.00 438 77 10 10.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NS</td><td>NS</td><td>NS</td></td<>														NS	NS	NS
11/20/2000 444 03 6.87 NO NO 120 242 382 NO NS N 5/25/2001 444 03 6.68 0.00 437.37 15 8.8 ND 20.3 44 34 NS N 6/2001 444 03 7.68 0.00 435.47 N1 33 330 1220 1.43 87 NS N 11/7/2001 444 03 7.68 0.00 435.30 120 1.43 87 NS N 5/22/2002 444 03 5.62 0.00 435.31 NO 220 1.380 1.021 120 NS N 11/72/2002 444 03 5.42 0.00 435.40 NO NO ND ND ND ND ND NS N 116 116 116 NS NS N NS NS<														NS	NS	NS
5/25/2001 444 03 6 66 0.00 437.77 15 8.8 ND 20.3 44 34 NS N 11/7/2001 444 03 7.6 0.00 435.64 NO 41 220 1.380 1.220 1.443 87 NS N 5/62/02 444 03 6.62 0.00 435.70 ND 27 1.20 1.380 1.703 ND NS N 6/62/02 444 03 6.72 0.00 435.31 ND 280 415 15 NS N 11/75/2012 444 03 5.72 0.00 433.61 ND 0.80 7.00 ND														NS	NS	NS
B8/2001 444.03 7.26 0.00 435.74 9.7 33 380 1.220 1.621 1.220 NS N 2/22/2002 444.03 6.83 0.00 435.20 12 91 220 786 1.021 120 NS N 5/16/2002 444.03 6.22 0.00 435.31 ND 360 1.200 7.86 1.01 NS N 5/16/2002 444.03 6.22 0.00 435.80 ND 610 1.300 5.63 5.600 1.00 NS N 5/16/2003 444.03 5.21 0.00 436.91 1.00 ND														NS	NS	NS
117/2001 444.03 8.39 0.00 435.84 ND 41 220 1.021 1.02 NS NN 5/16/2002 444.03 6.52 0.00 435.51 ND 27 120 288 415 15 NS NN 6/6/2002 444.03 6.52 0.00 435.51 ND 360 100 3.53 ND 360 NS NN 11/1/2002 444.03 6.53 0.00 435.60 ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NS</td><td>NS</td><td>NS</td></t<>														NS	NS	NS
2/22/002 444.03 6.83 0.00 435.20 12 91 220 1380 17.03 ND NS N 84/2002 444.03 6.72 0.00 435.31 ND 360 17.00 5.03 5.090 1450 NS N 3152003 444.03 5.43 0.00 438.60 ND ND ND ND ND ND NS N 5132003 444.03 5.53 0.00 438.61 ND ND ND ND ND ND ND ND NS N														NS	NS	NS
5/16/2002 444 03 6.52 0.00 437.51 ND 277 120 228 415 15 NS N 8/6/2002 444 03 8.23 0.00 435.81 ND 616 1,100 3.53 5.900 7.810 ND														NS	NS	NS
88/2002 444 03 8.72 0.00 433.81 ND 360 1,100 3.530 5.090 160 ND														NS NS	NS NS	NS
11/13/2002 444.03 8.23 0.00 438.80 ND 610 1.300 5.900 7.810 ND														NS	NS NS	NS NS
3/6/2003 444.03 5.43 0.00 438.60 ND ND ND NN NN 8/7/2003 444.03 5.72 0.00 438.61 1.0 ND ND 2.6 4.6 11 NN NN 8/7/2003 444.03 5.72 0.00 438.64 ND														NS	NS	NS
5/13203 444.03 5.38 0.00 438.67 2.0 ND ND 2.6 4.6 11 NS NS 11/1/2203 444.03 6.66 0.00 437.37 ND ND <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
8272203 444.03 5.72 0.00 438.31 1.0 ND ND <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
2/2/2004 444.03 5.34 0.00 438.64 ND DD 26.8 NS NS<		8/27/2003	444.03	5.72	0.00	438.31	1.0	ND	1.8	ND	2.8	ND	NS	NS	NS	NS
5/14/2004 444.03 5.24 0.00 438.76 ND ND ND ND ND ND ND ND ND NS NS </td <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
Bit P2004 444.03 5.97 0.00 438.06 ND ND ND ND ND 26.8 NS														NS	NS	NS
Sri92005 444.03 5.94 0.00 438.09 NS NS <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
B2/42007 444.03 NM NM NM NS														NS NS	NS NS	NS NS
12/27/2007 444.03 NM NM NS														NS	NS	NS
32722008 444.03 6.56 0.00 437.12 NS NS <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
6/52/2008 444.03 6.56 0.00 437.47 NS NS </td <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
12/17/2008 144.03 6.53 0.00 437.50 NS NS<					0.00									NS	NS	NS
312009 444.03 NM NM NM NS ND ND ND ND ND ND ND ND		9/24/2008	444.03	7.14	0.00		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Bit Bit NS N														NS	NS	NS
P/25/2009 444.03 6.60 0.00 437.43 NS ND ND </td <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
12/14/2009 444.03 NM NM NM NS														NS	NS	NS
12/28/2009 444.03 NM NM NM NS ND														NS NS	NS NS	NS NS
3/17/2010 444.03 4.51 0.00 439.52 NS NS </td <td></td> <td>NS</td> <td>NS</td> <td>NS</td>														NS	NS	NS
3/18/2010 444.03 NM NM NM NS ND														NS	NS	NS
1/11/2011 443.68 7.17 0.00 436.51 ND ND 0.42 (J) ND 0.42 (J) ND ND ND R22 6/23/2011 443.68 6.26 0.00 437.42 1.3 0.46 (J) 4.4 3.6 9.76 (J) ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NS</td><td>NS</td><td>NS</td></t<>														NS	NS	NS
6/23/2011 443.68 6.26 0.00 437.42 1.3 0.46 (J) 4.4 3.6 9.76 (J) ND		8/24/2010	443.68	6.69	0.00	436.99	1.3	0.87 (J)	2.8	1.3	6.27 (J)	ND	ND	858	216	1.6 (J
9/28/2011 443.68 6.02 0.00 437.66 ND ND </td <td></td> <td>ND</td> <td>ND (<200)</td> <td>ND (<100)</td> <td>ND</td>													ND	ND (<200)	ND (<100)	ND
12/21/2012 443.68 5.90 0.00 437.78 ND ND<														982	464	3.3 (J
3/21/2012 443.68 6.18 0.00 437.50 ND ND </td <td></td> <td>ND (<100)</td> <td>NE</td>															ND (<100)	NE
5/16/2012 443.68 6.48 0.00 437.20 0.50 (J) ND 0.46 (J) 0.73 (J) 1.69 (J) ND ND 34 8/29/2012 443.68 6.94 0.00 436.74 0.40 (J) 0.50 (J) ND 0.30 (J) 0.43 (J) 1.23 (J) ND ND ND 44 12/19/2012 443.68 6.94 0.00 436.74 0.40 (J) 0.44 (J) 2.5 19.2 22.54 (J) ND															ND (<100)	NE
8/29/2012 443.68 7.67 0.00 436.01 0.50 (J) ND 0.30 (J) 0.43 (J) 1.23 (J) ND ND 44 12/19/2012 443.68 6.94 0.00 436.71 0.40 (J) 0.44 (J) 2.5 19.2 22.54 (J) ND ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND 340</td><td>ND 104</td><td>NE NE</td></td<>														ND 340	ND 104	NE NE
12/19/2012 443.68 6.94 0.00 436.74 0.40 (J) 0.44 (J) 2.5 19.2 22.54 (J) ND ND 33 3/20/2013 443.68 6.57 0.00 437.11 ND ND<														407	104 ND	NL
3/20/2013 443.68 6.57 0.00 437.11 ND ND </td <td></td> <td>390</td> <td>372</td> <td></td>														390	372	
6/19/2013 443.68 6.47 0.00 437.21 0.45 (J) 0.56 (J) 7.0 8.4 16.41 (J) ND ND 33 9/19/2013 443.68 7.31 0.00 436.37 0.71 (J) ND 1.3 0.60 (J) 2.61 (J) ND ND ND 13 11/22/2013 443.68 7.25 0.00 436.43 1.9 3.2 427 1.420 1.852.10 ND ND ND 13,30 32/20/2014 443.68 5.56 0.00 438.12 ND ND 0.99 5.8 6.79 ND ND ND 77 *** 6/18/2014 443.68 8.33 0.00 435.35 ND 1.2 ND 17.5 18.7 ND ND 77 *** 6/30/2014 443.18 9.54 0.00 433.64 ND 0.53 (J) 1.11 2.62 (J) ND ND ND ND ND ND ND ND		3/20/2013					. ,							ND	ND	•
11/22/2013 443.68 7.25 0.00 436.43 1.9 3.2 427 1,420 1,852.10 ND ND 13,31 3/20/2014 443.68 5.56 0.00 438.12 ND ND 0.99 5.8 6.79 ND ND ND *** 6/18/2014 443.68 8.33 0.00 435.35 ND 1.2 ND 17.5 18.7 ND ND 70 *** 6/18/2014 443.68 MM NM NM NS		6/19/2013	443.68	6.47	0.00	437.21	0.45 (J)	0.56 (J)	7.0	8.4	16.41 (J)	ND	ND	328	ND	2.0 (J
3/20/2014 443.68 5.56 0.00 438.12 ND ND 0.99 5.8 6.79 ND ND ND *** 6/18/2014 443.68 8.33 0.00 435.35 ND 1.2 ND 17.5 18.7 ND ND ND 77 *** 6/30/2014 443.68 NM NM NM NS NS </td <td></td> <td>580</td> <td>221</td> <td></td>														580	221	
*** 6/18/2014 443.68 8.33 0.00 435.35 ND 1.2 ND 17.5 18.7 ND ND 74 *** 6/30/2014 443.68 NM NM NM NS														13,300	2,310	
*** 6/30/2014 443.68 NM NM NM NS ND ND ND ND	ۍ د و د													ND 762	ND ***	NE
0/30/2014 443.08 NM NM NS														762 NS	ND	6.9 NS
12/23/2014 443.18 9.94 0.00 433.24 ND ND 0.62 (J) 0.53 (J) 1.15 (J) ND ND <td></td> <td>ND</td> <td>ND (<80)</td> <td></td>														ND	ND (<80)	
3/24/2015 443.18 9.58 0.00 433.60 ND ND </td <td></td> <td>ND</td> <td>ND (<80)</td> <td></td>														ND	ND (<80)	
9/21/2015 443.18 9.28 0.00 433.90 ND ND </td <td></td> <td>ND</td> <td>ND (<77)</td> <td></td>														ND	ND (<77)	
12/9/2015 443.18 9.58 0.00 433.60 ND ND </td <td></td> <td>6/22/2015</td> <td></td> <td>9.25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td>ND</td> <td>NE</td>		6/22/2015		9.25										ND	ND	NE
3/8/2016 443.18 8.98 0.00 434.20 ND ND <td></td> <td>ND</td> <td>125</td> <td></td>														ND	125	
6/7/2016 443.18 9.03 0.00 434.15 ND ND <td></td> <td>ND</td> <td>98.4</td> <td></td>														ND	98.4	
9/13/2016 443.18 9.48 0.00 433.70 ND														ND (<55)	ND (<64)	
														ND (<55)	ND (<58)	
L 11/21/2016L 443 18L 9 90L 0 00L 733 28L NOL NOL NOL NOL NOL NOL NOL NOL NOL NO		9/13/2016	443.18	9.48	0.00	433.70 433.28	ND ND	ND ND		ND ND	ND ND			ND (<100) ND (<100)	94.6 469	
														ND (<100) ND (<100)	469 ND (<64)	
	+													ND (<100)	ND (<64)	
														ND (<100)	ND (<83)	· ·
														ND (<100)	154	
3/6/2018 443.18 9.84 0.00 433.34 ND														ND (<100)	ND (<83)	ND (<1.1
														ND (<100)	ND (<83)	
		9/5/2018	443.18	8.64										ND (<100)	ND (<53)	
MDE MEAT GNCSG** 5 1,000 700 10,000 NA 20 NA 47					MDE M	EAT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7

eps: bithom 52.9 50.9 KG 2 4 6 NS		1													1	1
Virte Dial Process (mp)							Renzene	Toluene	Ethyl-	Xvlenes	Total BTEX	MTRE	TRA	TPH-GRO		Nanhthalene
More than 1 and the second of the s	Well No.	Date								•						
epsilon 626/191 65.9 20.4 0.0 NS			(feet)	(feet)	(feet)	(feet)	(110)	(13.7	(µg/L)	(10)	(1.5.7	(1.0.)	(15)	(13)	(13)	(13-7
Change 9:11/162 455:83 26:30 20:00 20:32 34 80:00 15 17:00 463 N8	MW-1															NS
UD1000 COUNT COUNT <t< td=""><td>a .</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NS</td></t<>	a .															NS
44/2010 460.93 MM	-															
Stores 7757193 555.95 NH	Unknown								7							
Ubinom 10/070700 456.03 NM NM NM 100 NO 37 448 ND NS NS <td>Screen:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NS</td>	Screen:								3							NS
44070494 46553 NM																NS
B G M NM NM NM ND A S0 G S0 S1									-							NS
11/22/1994 455.33 NM																
939998 645.33 NM NM NM NM NM NM NM NM NM ND ND ND <																
50/1905 645.03 NM NM MM NM P10 P10<																
B151968 685.33 NM NM NM ND									-							
2131168 455.50 16.00 0.00 4.39.71 ND 4 ND 6 10 24.3 NS NS </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NS</td>									2							NS
ST01196 455.08 10.80 0.00 47.77 4 ND 6 10 24.3 NS NNS N			455.93							ND	ND					NS
8291196 465.35 16.56 0.00 428.27 3 N10 N0 2 6.6 N5 N5 N6 N8 N8 <td></td> <td>NS</td>																NS
11/20196 455.58 26.71 0.00 442.27 3 ND ND <td></td>																
22771697 455.83 15.73 0.00 440.20 MD ND ND ND ND ND ND NS NS NS NS NS 42711697 455.83 16.00 0.00 437.27 ND ND ND ND ND NS NS <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									-							
Sp01mery 455.83 16.00 0.00 439.83 ND ND ND ND ND ND NS NS NS NS 11/125/167 455.83 11.67 0.00 447.76 ND ND ND ND ND ND ND ND NS NS </td <td></td>																
B2/11/697 455.85 16.86 0.00 437.27 ND ND ND ND ND ND NS NS NS NS 21/19/1964 455.83 15.47 0.00 440.46 ND NO ND ND ND ND ND NS NS<																NS
2191908 445.03 15.47 0.00 440.46 ND ND ND ND ND ND NS NS NS NS 8171998 455.39 15.66 0.00 440.87 ND ND ND ND ND ND NS																NS
52871998 456,293 15,06 0.00 440.871 ND																NS
eff eff< eff eff< eff< eff< eff< eff< e																NS
6/19/2005 455 03 NM NM NS									-	-						
82/42/007 455 53 NM NM NM NM NS																
1227/2007 455 93 17.58 0.00 438.35 NS NS<																NS
0/025/008 455 93 16 41 0.00 439 52 NS NS<																NS
9/24/2006 455.93 16.57 0.00 439.67 NS NS<		3/27/2008	455.93	17.39	0.00	438.54	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1217172008 455.93 16.20 0.00 439.67 NS																NS
3/31/2000 455.93 17.87 0.00 439.86 NS NS<																
6/2/2009 455.33 16.07 0.00 439.46 NS NS </td <td></td>																
0 0 0 0 0 0 0 0 0 NS																
121/12/2009 455.93 15.94 0.00 439.99 NS N																NS
317/2010 455.93 0.01 0.00 455.92 NS NS <td></td> <td>NS</td>																NS
3182010 455.93 NM NM NM NS																NS
8/26/2010 454.42 16.61 0.00 437.81 ND ND<																
11/10/2011 454.42 0.00 438.78 ND ND <td></td>																
#6/22/011 454.42 16.05 0.00 438.37 ND ND<																
1220/2012 454.42 15.90 0.00 438.52 ND ND<																ND
321/2012 454.42 16.41 0.00 438.01 ND ND </td <td></td> <td>9/28/2011</td> <td>454.42</td> <td>6.68</td> <td>0.00</td> <td>447.74</td> <td>ND</td> <td></td> <td></td> <td></td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND (<200)</td> <td>ND (<110)</td> <td>ND</td>		9/28/2011	454.42	6.68	0.00	447.74	ND				ND	ND	ND	ND (<200)	ND (<110)	ND
515/2012 454.42 14.43 0.00 439.99 ND ND </td <td></td> <td>ND</td>																ND
Bits/2/2012 454.42 15.84 0.00 438.88 ND N			-													
12/18/2012 454.42 17.16 0.00 437.26 ND																
3/19/2013 454.42 16.67 0.00 437.85 ND ND<																ND
6/18/2013 454.42 17.45 0.00 436.97 ND ND<																ND
International Interna International International<				17.45	0.00			ND	ND	ND	ND		ND	ND		ND
3/20/2014 454.42 15.89 0.00 438.53 ND ND<																ND
6/18/2014 454.42 18.43 0.00 435.99 ND ND<																ND
*** 6/10/2014 454.42 INM NM ND ND ND	***															
9/23/2014 453.92 18.73 0.00 435.19 ND ND<	***															ND NS
12/23/2014 453.92 19.67 0.00 434.25 ND																
6/22/2015 453.92 18.24 0.00 435.68 ND ND<																
9/21/2015 453.92 18.49 0.00 435.43 ND ND<																NS
12/9/2015 453.92 19.24 0.00 434.68 ND ND<																ND
3/8/2016 453.92 18.28 0.00 435.64 ND ND </td <td></td>																
6/7/2016 453.92 18.21 0.00 435.71 ND ND </td <td></td>																
9/13/2016 453.92 18.92 0.00 435.00 ND ND<																
3/9/2017 453.92 20.49 0.00 433.43 ND ND </td <td></td> <td>9/13/2016</td> <td></td> <td></td> <td></td> <td>435.00</td> <td>ND</td> <td>ND</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(/</td> <td>ND</td>		9/13/2016				435.00	ND	ND	ND						(/	ND
6/7/2017 453.92 19.38 0.00 434.54 ND ND </td <td></td>																
9/6/2017 453.92 19.04 0.00 434.88 ND ND </td <td></td>																
11/1/2017 453.92 19.67 0.00 434.25 ND ND<																
3/6/2018 453.92 20.16 0.00 433.76 ND (<10) 91.9 ND (<1.1 6/20/2018 453.92 17.45 0.00 436.47 ND ND ND ND ND ND (<100)																
6/20/2018 453.92 17.45 0.00 436.47 ND ND<																
9/5/2018 453.92 16.71 0.00 437.21 ND ND ND ND ND ND ND ND ND (<100) ND (<53) ND (<0.98																ND (<1.1)
MDE MEAT GNCSG** 5 1,000 700 10,000 NA 20 NA 47 47 0.7	L	9/5/2018	453.92	16.71			ND	ND	ND	ND	ND	ND	ND			
					MDE M	EAT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7

		Casing	Depth to	Product	Water Table	_		Ethyl-							
Well No.	Date	Elevation*	Water	Thickness	Elevation*	Benzene	Toluene	benzene	Xylenes	Total BTEX	MTBE	TBA	TPH-GRO	TPH-DRO	Naphthalene
		(feet)	(feet)	(feet)	(feet)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-4	3/28/1991	457.11	16.98	0.00	440.13	600	1,300	380	1,500	3,780	40	NS	NS	NS	NS
	6/26/1991	457.11	23.80	0.00	433.31	3,775	4,825	925	4,075	13,600	1,125	NS	NS	NS	NS
Casing:	9/1/1992	457.11	22.00	0.00	435.11	3,500	9,300	1,625	5,225	19,650	1,100	NS	NS	NS	NS
0 to 10 feet	9/4/1992	457.11	22.79	0.01	434.33	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/15/1992	457.11	22.98	sheen	434.13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Screen:	11/9/1992	457.11	23.20	2.50	435.79	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
10 to 25 feet	12/9/1992 1/7/1993	457.11	21.58 21.68	1.36	436.55 435.45	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	2/1/1993	457.11 457.11	21.68	0.02	435.45	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS	NS	NS
	3/8/1993	457.11	20.10	sheen	434.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/12/1993	457.11	18.20	0.05	438.95	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/11/1993	457.11	18.10	0.15	439.12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/3/1993	457.11	18.96	0.38	438.44	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/7/1993	457.11	19.65	0.30	437.69	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/2/1993	457.11	18.95	0.00	438.16	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/1993	457.11	19.34	0.00	437.77	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/19/1993	457.11	19.75	0.00	437.36	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/18/1993	457.11	20.75	sheen	436.36	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/14/1993	457.11	19.85	0.00	437.26	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/25/1994 3/11/1994	457.11	17.84 17.13	0.00	439.27 439.98	NS NS	NS	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS NS
	4/20/1994	457.11	17.13	0.00	439.98 439.43	NS 1.650	NS 6,130	678	3,950	NS 12,408	NS 223	NS NS	NS NS	NS NS	NS
	8/2/1994	457.11	17.00	0.00	439.43	2.630	12.200	1,430	9.070	25,330	223 ND	NS	NS	NS	NS
	11/22/1994	457.11	18.52	0.00	438.59	2,030	7.040	1,430	8,700	20,120	340	NS	NS	NS	NS
	3/3/1995	457.11	20.31	0.00	436.80	1,560	12,400	1,400	9,050	24,700	775	NS	NS	NS	NS
	5/9/1995	457.11	20.25	0.00	436.86	1,600	12,800	1,840	10,400	26,640	499	NS	NS	NS	NS
	8/15/1995	457.11	21.10	0.00	436.01	<200	<200	<200	726	726	<200	NS	NS	NS	NS
	7/24/1995	457.11	19.29	0.02	437.84	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/28/1995	457.11	22.00	0.00	435.11	ND	10	ND	58	68	47	NS	NS	NS	NS
	2/13/1996	457.11	20.20	0.00	436.91	3	11	2	21	37	14	NS	NS	NS	NS
	5/15/1996	457.11	17.60	0.00	439.51	ND	53	18	133	204	6		NS	NS	NS
	8/28/1996	457.11	16.98	0.00	440.13	ND	3	3	10	16	6		NS	NS	NS
	11/26/1996 2/27/1997	457.11 457.11	15.85 14.19	0.00	441.26 442.92	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS
	5/30/1997	457.11	14.19	0.00	442.92	ND ND	ND ND	ND	ND ND	ND ND	ND	NS	NS	NS	NS
	8/21/1997	457.11	19.01	0.00	438.10	15	24	4	27	70	ND	NS	NS	NS	NS
	11/25/1997	457.11	19.15	0.00	437.96	89	75	143	240	547	3	NS	NS	NS	NS
	2/19/1998	457.11	17.68	0.00	439.43	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	5/28/1998	457.11	16.64	0.00	440.47	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	8/18/1998	457.11	18.21	0.00	438.90 437.46	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	11/21/1998 457.11 19.65 0.0					71	1,600	183	731	2,585	19	NS	NS	NS	NS
	2/17/1999	457.11	19.70	0.00	437.41	ND	780	252	460	1,492	<100	NS	NS	NS	NS
	5/24/1999	457.11	18.90	0.00	438.21	ND	14	8.7	21.9	44.6	77.7	NS	NS	NS	NS
	8/26/1999	457.11	20.60	0.00	436.51	ND	ND	35	123	158	220	NS	NS	NS	NS
	11/18/1999 12/29/1999	457.11 457.11	18.52 NM	0.00 NM	438.59 NM	ND ND	ND ND	ND ND	3.8 ND	3.8 ND	2,000 2,100	NS NS	NS NS	NS NS	NS NS
	2/23/2000	457.11	19.21	0.00	437.90	120	4.5	32	106	263	2,100	NS	NS	NS	NS
	5/17/2000	457.11	16.90	0.00	440.21	ND	4.3 ND	ND	ND	203 ND	ND	NS	NS	NS	NS
	8/3/2000	457.11	17.28	0.00	439.83	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	11/20/2000	457.11	19.69	0.00	437.42	87	ND	ND	ND	87	3,000	NS	NS	NS	NS
	2/20/2001	457.11	18.60	0.00	438.51	ND	ND	ND	ND	ND	6.8	NS	NS	NS	NS
	5/25/2001	457.11	17.30	0.00	439.81	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	8/6/2001	457.11	19.17	0.00	437.94	ND	ND	ND	ND	ND	2.0	NS	NS	NS	NS
	11/7/2001	457.11	21.17	0.00	435.94	330	62	370	800	1,562	110	NS	NS	NS	NS
				MDE ME	EAT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7

Mall Na	Data	Casing	Depth to	Product	Water Table	Benzene	Toluene	Ethyl-	Xylenes	Total BTEX	MTBE	TBA	TPH-GRO	TPH-DRO	Naphthalene
Well No.	Date	Elevation* (feet)	Water (feet)	Thickness (feet)	Elevation* (feet)	(µg/L)	(μg/L)	benzene (μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-4	2/22/2002	457.11	20.80	0.00	436.31	81	120	200	510	911	33	NS	NS	NS	NS
(continued)	5/16/2002	457.11	18.12	0.00	438.99	ND	15	12	223	250	2.2	NS	NS	NS	NS
	8/6/2002	457.11	21.61 18.81	0.00	435.50 438.30	3.5 ND	3.2 4.9	7.0 14	22.8 141	36.5 159.9	3.9 ND	NS NS	NS NS	NS NS	NS NS
	3/5/2002	457.11	18.41	0.00	438.70	ND	4.9 ND	ND	ND	159.9 ND	2.0	NS	NS	NS	NS
	5/13/2003	457.11	16.96	0.00	440.15	3.9	ND	ND	ND	3.9		NS	NS	NS	NS
	9/25/2003	457.11	NM	NM	NM	ND	ND	ND	ND	ND	1.5	NS	NS	NS	NS
	11/12/2003	457.11	18.32	0.00	438.79	ND	ND	ND	ND	ND		NS	NS	NS	NS
	2/2/2004	457.11	14.70	0.00	442.41	ND	ND	ND	ND	ND	666	NS	NS	NS	NS
	5/14/2004	457.11	18.09	0.00	439.02	ND	ND	ND	ND	ND	-	NS	NS	NS	NS
	8/19/2004 11/22/2004	457.11 457.11	16.55 19.43	0.00	440.56 437.68	1.6 ND	2.1 ND	36.5 0.31 (J)	92.4 0.57 (J)	132.6 0.88 (J)	1.6 0.29 (J)	NS NS	NS NS	NS NS	NS NS
	2/23/2004	457.11	19.43	0.00	437.08	ND	ND	0.31 (J) ND	0.57 (J) ND	0.66 (J) ND	0.29 (J) 0.65 (J)	NS	NS	NS	NS
	5/19/2005	457.11	16.67	0.00	440.44	ND	ND	ND	ND	ND	0.91 (J)	ND	ND	ND	NS
	8/24/2007	457.11	19.06	0.00	438.05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/27/2007	457.11	18.72	0.00	438.39	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/27/2008	457.11	18.63	0.00	438.48	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/25/2008	457.11	17.57	0.00	439.54	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/24/2008	457.11	19.28	0.00	437.83	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/17/2008	457.11	19.10	0.00	438.01 437.99	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS
	3/31/2009 6/22/2009	457.11 457.11	19.12 15.07	0.00	437.99	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS
	9/25/2009	457.11	17.63	0.00	439.48	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/14/2009	457.11	16.56	0.00	440.55	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/2009	457.11	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/17/2010	457.11	14.98	0.00	442.13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/18/2010	457.11	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/23/2010	455.60	18.10	0.00	437.50	0.52 (J)	22.3	41.1	84.2	148.12 (J)	ND	ND	449		7.2
	1/10/2011	455.60	18.94	0.00	436.66	16.4	16.9	151	235	419.30	2.7	112	1,940		84.1
	6/22/2011 9/28/2011	455.60 455.60	17.57 17.08	0.00	438.03 438.52	8.7 ND	10.6 ND	5.7 ND	8.6 ND	33.60 ND	1.9 ND	128 ND	306 ND (<200)	304 ND (<100)	ND ND
	12/20/2012	455.60	17.30	0.00	438.30	ND	ND	0.29 (J)	ND	0.29 (J)	ND	ND	ND (<200)	ND (<100)	ND
	3/21/2012	455.60	17.78	0.00	437.82	0.24 (J)	ND	1.5	ND	1.74 (J)	ND	ND	ND (1200)	ND (1100)	ND
	5/15/2012	455.60	11.49	0.00	444.11	ND	ND	ND	ND	ND	ND	ND	ND	283	ND
	8/28/2012	455.60	18.91	0.00	436.69	ND	ND	ND	ND	ND	ND	ND	ND	924	ND
	12/18/2012	455.60	18.58	0.00	437.02	6.5	37.2	419	108	570.7	ND	18.5 (J)	2,510		154
	3/19/2013	455.60	17.99	0.00	437.61	ND	ND	ND	ND	ND	ND	ND	ND	350	ND
	6/18/2013 9/19/2013	455.60 455.60	17.77 19.01	0.00	437.83 436.59	ND 3.0	ND 16.1	ND 85.9	ND 16.2	ND 121.2	ND ND	ND 55.8	ND	ND 367	ND
	11/22/2013	455.60	19.01	0.00	436.39	9.9	32.3	38.4	23.7	121.2	1.3	52.9	2,420 4,110		34.3 7.0
	3/20/2014	455.60	15.71	0.00	439.89	2.0	5.2	00.4 ND	5.8	13.0	1.3	71.3	1.870		ND
***	6/18/2014	455.60	18.24	0.00	437.36	87.4	59.2	9.4	24.8	180.8	106	1,770	3,850		1.5 (J)
***	6/30/2014	455.60	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	2,160	ŃŚ
	9/23/2014	455.10	20.69	0.00	434.41	7.3	212	541	567	1,327.3	269	1,150	5,740	2,560	159
	12/23/2014	455.10	21.37	0.00	433.73	88.0	83.0	1,290	1,480	2,941.0	50.6	771	12,200	3,090	490
	3/24/2015	455.10	NM 20.20	NM	NM	NS	NS	NS	NS 400	NS 1 000 4	NS 17.0	NS 2 200	NS	NS	NS
	6/22/2015 9/21/2015	455.10 455.10	20.38 20.57	0.00	434.72 434.53	178 153	34.1 44.3	661 623	409 394	1,282.1	17.3 16.9	3,200 1,730	6,130 10.300	4,540	392 430
	12/9/2015	455.10	20.57	0.00	434.53	7.8	44.3	34.8	10.1	54.1	16.9 ND	250	10,300	3,740	28.3
	3/8/2016	455.10		0.00	434.81	103	9.4	223	49.0	384.4	7.5	553	2,130	874	143
	6/7/2016	455.10	20.28	0.00	434.82	155	27.1	744	139	1,065.1	6.2	3,030	6,540		436
	9/13/2016	455.10	20.87	0.00	434.23	131	23.1	763	150	1,067.1	5.8	2,320	6,520	2,750	422
	11/21/2016	455.10	21.56	0.00	433.54	108	25.9	727	192	1,052.9	12.9	2,480	6,730		439
	3/9/2017	455.10	22.05	0.00	433.05	23.7	5.5	142	42.8	214.0	3.4	ND	2,450	1,090	144
	6/7/2017	455.10	21.18	0.00	433.92	14.6	2.8	50.7	7.8	75.9	2.3	174	1,590		34.3
	9/6/2017 11/1/2017	455.10 455.10	20.94 21.41	0.00	434.16 433.69	44.1 69.8	5.8 7.6	141 146	24.5 42.1	215.4 266	ND 6.1	1,230 1,380	1,980 3,050	1,570 1,900	107 118
	3/6/2018	455.10	21.41	0.00	433.89	69.8 11.3	0.71 (J)	140	42.1	200 28.7 (J)	6.1 ND	9.4 (J)	3,050	1,900	20.6
	6/20/2018	455.10	19.73	0.00	435.37	18.2	0.7 T (3) ND	0.77 (J)	ND	18.97 (J)	2.5	83.4	1,030 124 (J)	1,070	ND (<1.1)
	9/5/2018	455.10	19.34	0.00	435.76	7.3	ND	2.7	ND	10.0	ND	40.3	226	110	2.8 (J)

		Casing	Depth to	Product	Water Table	Benzene	Toluene	Ethyl-	Videore	Total BTEX	MTBE	тва	TRU ORO		Neshthelese
Well No.	Date	Elevation*	Water	Thickness	Elevation*	βenzene (µg/L)	(μg/L)	benzene	Xylenes (µg/L)	ιμg/L)	μg/L)	ιβΑ (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (µg/L)
		(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/∟)	(µg/L)	(µg/L)	(µg/L)
MW-7	3/28/1991	452.69	15.10	0.00	437.59	7,950	6,100	2,700	8,550	25,300	650	NS	NS	NS	NS
	6/26/1991	452.69	16.12	0.00	436.57	2,100	2,400	800	2,300	7,600	1,000	NS	NS	NS	NS
Casing:	9/1/1992	452.69	17.22	0.00	435.47	1,470	3,670	1,350	5,350	11,840	1,200	NS	NS	NS	NS
0 to 8 feet	1/7/1993	452.69	26.25	0.00	426.44	1,550	5,750	1,100	6,250	14,650	600	NS	NS	NS	NS
0	4/12/1993	452.69	NM NM	NM	NM	200	2,550	350	3,600	6,700	ND	NS	NS	NS	NS NS
Screen: 8 to 33 feet	7/15/1993	452.69 452.69	NM	NM NM	NM NM	2,150	8,550 15,700	<u>1,200</u> 1,300	8,950 9,000	20,850 28,400	1,000 870	NS NS	NS NS	NS NS	NS NS
0 10 33 1661	1/26/1994	452.69	NM	NM	NM	1,100	6,200	950	5,650	13,900	ND	NS	NS	NS	NS
	4/19/1994	452.69	NM	NM	NM	11	68	11	86	176	64.4	NS	NS	NS	NS
	8/2/1994	452.69	NM	NM	NM	280	1,160	260	2,280	3,980	180	NS	NS	NS	NS
	11/22/1994	452.69	NM	NM	NM	1,530	1,780	1,380	5,400	10,090	338	NS	NS	NS	NS
	3/3/1995	452.69	NM	NM	NM	1,690	9,600	1,930	11,000	24,220	913	NS	NS	NS	NS
	5/9/1995	452.69	NM	NM	NM	448	2,330	294	3,560	6,632	<200	NS	NS	NS	NS
	8/15/1995	452.69	NM	NM	NM	370	1,790	420	3,430	6,010	<200	NS	NS	NS	NS
	11/28/1995 2/13/1996	452.69 452.69	NM 14.75	NM 0.00	NM 437.94	<u>394</u> 104	3,440 164	646 106	4,230 259	8,710 633	ND ND	NS NS	NS NS	NS NS	NS NS
	2/13/1996 5/15/1996	452.69	14.75	0.00	437.94	104	429	106	259 436	1,098	ND 33	NS NS	NS NS	NS NS	NS NS
	8/28/1996	452.69	15.27	0.00	437.42	422	3,460	480	5,540	9,902	78	NS	NS	NS	NS
	11/26/1996	452.69	15.61	0.00	437.08	96	340	ND	875	1,311	ND	NS	NS	NS	NS
	2/27/1997	452.69	14.69	0.00	438.00	56	225	1,420	3,830	5,531	109	NS	NS	NS	NS
	5/30/1997	452.69	15.10	0.00	437.59	69	293	1,600	4,900	6,862	149	NS	NS	NS	NS
	8/21/1997	452.69	16.53	0.00	436.16	ND	349	1,280	5,730	7,359	ND	NS	NS	NS	NS
	11/25/1997	452.69	16.63	0.00	436.06	ND	175	913	4,160	5,248	57	NS	NS	NS	NS
	2/19/1998	452.69	15.23	0.00	437.46	ND	165	381	2,360	2,906	ND	NS	NS	NS	NS
	5/28/1998 8/18/1998	452.69 452.69	14.36 15.61	0.00	438.33 437.08	<u>100</u> 120	364 313	<u>1,270</u> 1,300	5,070 5,540	6,804 7,273	147 ND	NS NS	NS NS	NS NS	NS NS
	11/21/1998	452.69	16.86	0.00	437.08	<120	195	1,300	6,340	7,273	129	NS	NS	NS	NS
	2/17/1999	452.69	17.02	0.00	435.67	<50	409	1,200	6,230	8,149	125	NS	NS	NS	NS
	5/24/1999	452.69	16.20	0.00	436.49	37	229	1,010	3,230	4,506	211	NS	NS	NS	NS
	8/26/1999	452.69	17.18	0.00	435.51	<50	110	920	3,900	4,930	170	NS	NS	NS	NS
	11/18/1999	452.69	16.02	0.00	436.67	<20	130	870	3,300	4,300	1,400	NS	NS	NS	NS
	12/29/1999	452.69	NM	NM	NM	9		780	3,200	4,129	240	NS	NS	NS	NS
	2/23/2000	452.69	15.43	0.00	437.26	<20	320	990	3,800	5,110	370	NS	NS	NS	NS
	5/17/2000	452.69	14.47	0.00	438.22	ND	180	1,100	3,900	5,180	1,300	NS	NS	NS	NS NS
	8/3/2000 11/20/2000	452.69 452.69	14.92 16.65	0.00	437.77 436.04	84 ND	260 140	<u>1,000</u> 830	4,200 3,180	5,544 4,150	2,100 150	NS NS	NS NS	NS NS	NS NS
	2/20/2001	452.69	17.86	0.00	434.83	70	240	850	2,540	3,700	130	NS	NS	NS	NS
	5/25/2001	452.69	15.05	0.00	437.64	ND	250	1,300	3,600	5,150	ND	NS	NS	NS	NS
	8/6/2001	452.69	16.70	0.00	435.99	11	280	1,400	4,900	6,591	210	NS	NS	NS	NS
	11/7/2001	452.69	17.64	0.00	435.05	ND	64	810	2,284	3,158	98	NS	NS	NS	NS
	2/22/2002	452.69	17.92	0.00	434.77	11	75	660	2,080	2,826	54	NS	NS	NS	NS
	5/16/2002	452.69	15.80	0.00	436.89	ND	140	690	2,110	2,940	51	NS	NS	NS	NS
	8/6/2002	452.69	18.05	0.00	434.64	60	93	800	2,180	3,133	140	NS	NS	NS	NS
	11/13/2002	452.69	17.23	0.00	435.46	ND	ND	760	1,746	2,506	ND	NS	NS	NS	NS
	3/5/2003	452.69	13.94	0.00	438.75	ND	16	100	301	417	5.1	NS	NS	NS	NS
	5/13/2003	452.69	15.10	0.00	437.59	10	10	110	198	328	22	NS	NS	NS	NS
	9/25/2003	452.69	NM	NM	NM	25.6	24.9	343	273	667	16.1	NS	NS	NS	NS
	11/12/2003	452.69	15.36 14.40	0.00	437.33	24.5	91.7	907	1,400	2,423	10 7.0	NS NS	NS NS	NS NS	NS NS
	2/2/2004 5/14/2004	452.69 452.69	14.40	0.00	438.29 438.72	22.6 10.3	76.4	605 499	1,390 595	2,094 1,133	7.0	NS NS	NS NS	NS	NS NS
	8/19/2004	452.69	14.67	0.00	438.02	10.3	82.8	763	2.720	3,585	11.3	NS	NS	NS	NS
	2/23/2004	452.69	16.39	0.00	436.30	3.5 (J)	80	1.080	4.320	5,484 (J)	7.6 (J)	NS	NS	NS	NS
	5/19/2005	452.69	16.25	0.00	436.44	2.1 (J)	61.9	740	2,580	3,384 (J)	3.7 (J)	NS	NS	NS	NS
	8/24/2005	452.69	15.89	0.00	436.80	<10	56.9	1,020	3,770	4,847	8.4 (J)	NS	NS	NS	NS
	11/8/2005	452.69	15.54	0.00	437.15	1.6 (J)	18.1	472	913	1,405 (J)	9.1	NS	NS	NS	NS
				MDE M	EAT GNCSG**	5	1.000	700	10.000	NA	20	NA	47	47	0.7
				= = 100		-	.,		,						

Weil No. Date Elevation* (ingel) <					
S1752006 452.69 15.60 0.00 437.19 +10 34.4 B80 2.600 3.604 222 NS 8/92006 452.69 17.78 0.00 433.21 ND 4.0 911 3.104 4.901 6.1 NS 4/11/2207 452.69 17.78 0.00 435.31 1.5 7.2 200 150 358 4.3 ND 122772007 452.69 16.38 0.00 436.65 ND ND 14 12.22 3.4 ND ND 22772008 452.69 15.56 0.00 437.13 0.42 (J) 3.1 17.4 39 69.9 ND ND 22742008 452.69 15.50 0.00 437.19 1.2 (J) 7.7 278 3.4 ND 10 1.0 ND ND 1.0 ND ND 1.0 1.0 ND ND 1.0 1.0 ND ND 1.0 1.0 1.0	TPH-GRO (µg/L)			TPH-DRO (µg/L)	Naphthalene (µg/L)
Big 2006 452.69 15.41 0.00 437.28 ND 400 911 3.140 4.091 6.1 NS 4/112007 452.69 NG NG NG ND 1.9 57 92 150 930 A3 ND 12/27/2007 452.69 10.02 0.00 436.67 ND ND 14 12.9 2.6 1.0 ND ND 14 12.9 2.6 1.0 ND 14 12.9 2.6 1.0 ND 1.1 1.2 2.2 3.4 ND ND 1.1 1.2 2.6 1.0 ND 1.1 1.2 2.7 2.0 1.0 ND 1.1 1.2 2.7 1.0 1.0 ND 1.1 1.42.5 3.4 ND 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ND 1.0 1.0 ND 1.0 1.0 ND	NS	NS	NS	NS	NS
101722006 452.69 17.28 0.00 435.41 410 42.3 1.170 4.340 5.552 10 NS 87242007 452.69 16.38 0.00 436.63 1.5 7.2 200 150 9.00 ND 12272007 452.69 16.38 0.00 436.63 1.5 7.2 2.20 3.4 ND 12272006 452.69 16.11 0.00 436.56 ND 12272006 452.69 16.11 0.00 436.56 ND 12272007 452.69 16.20 0.00 436.63 ND 12272008 452.69 16.20 0.00 436.64 ND 174 328 559 ND 1217208 452.69 16.20 0.00 436.42 1.7 9.7 278 328 612.4 3.4 ND 1217208 452.69 16.56 0.00 435.42 1.0 ND 1217208 452.69 16.57 0.00 435.52 1.0 ND 12172008 452.69 15.50 0.00 435.42 1.0 ND ND ND ND 1217208 452.69 15.50 0.00 435.42 1.0 ND ND ND ND ND 1.1.425.3 3.4 ND 1217208 452.69 15.50 0.00 437.19 12.(J) 7.9 227 285 551.1 (J) 1.6 (J) ND (<50) 12142009 452.69 15.50 0.00 437.19 12.(J) 9.1 528 459 1.0673.01 ND ND 12142009 452.69 115.50 0.00 437.19 12.(J) 9.1 528 459 1.0673.01 ND ND 12142009 452.69 115.50 0.00 437.79 12.(J) 9.1 528 459 1.0673.01 ND ND 12142009 452.69 115.73 0.00 439.12 NS NS NS NS NS NS NS NS 12282009 452.69 13.57 0.00 437.79 1.8 3 2.38 544 301.2 ND NC/250 31782010 452.69 1NN NM NM ND 10.51 (J) 3.4 69.89 5.7 156.51 (J) ND NC/251 31782010 452.52 15.73 0.00 437.79 1.8 3 2.38 554 30.02 ND NC/251 12428209 13.57 15.50 0.00 437.79 1.8 3 2.38 554 30.02 ND NC/251 12422011 453.52 15.73 0.00 437.79 1.8 3 2.38 554 30.02 ND NC/251 12422011 453.52 15.73 0.00 437.79 1.8 3 2.38 554 30.02 3.1 6.7 ND NC/251 12422011 453.52 15.60 0.00 438.62 3.7 2.8 13.6 3.0 2.31 6.7 Z76 1112011 453.52 15.60 0.00 438.62 1.5 7 300 200 538.2 1.7 18.8 N 57 korder 6242010 453.52 15.20 0.00 438.62 1.5 7 300 200 538.2 1.7 18.8 N 12212012 453.52 15.60 0.00 437.62 3.3 19.6 13.4 19.9 138.46(J) 0.76(J) ND 12212012 453.52 15.60 0.00 438.62 1.5 7 300 200 538.2 1.7 18.8 N 57 korder 6242014 453.52 15.60 0.00 438.62 1.9 0.444 248 00.1 9.7 44.3 0 11222101 453.52 15.60 0.00 438.62 1.5 7.3 30 200 538.2 1.7 18.8 N 11222013 453.52 15.60 0.00 438.62 1.9 0.3 44.128 10.1 1455.4 4.5 188 0.922014 453.52 15.60 0.00 438.62 1.9 0.3 441 52.8 78.7 13.8 150 12402014 453.52 15.60 0.00 438.62 1.	NS	NS	NS	NS	NS
4/11/2007 452.69 NC NG ND 19 97 92 150.95 ND ND 8/24/2007 452.69 16.02 0.00 486.67 ND ND 112 2.2 3.4 ND ND 3/27/2008 452.69 16.01 0.00 436.66 ND ND 14 12.9 2.6.9 1.0 ND 9/24/2008 452.69 16.20 0.00 436.49 1.7 9.7 228 3.3 612.4 3.4 ND 9/24/2006 452.69 16.77 0.00 435.52 1.0 ND ND ND 10 659.8 ND (<45).9	NS			NS	
Best Part of the second seco	NS			NS	NS NS
12/27/2007 452.69 16.02 0.00 436.67 ND ND 12 2.2 3.4 ND ND 9/27/2008 452.69 16.20 0.00 436.68 ND ND 14 12.9 26.9 1.0 ND 9/24/2008 452.69 16.20 0.00 436.46 1.7 9.7 278 323 612.4 3.4 ND 9/24/2008 452.69 16.77 0.00 435.92 1.0 ND ND 1.0 S9.8 ND (-25) 612.1 ND (ND (-63) 612.1 ND (ND (-63) 89.8 ND (-25) 642.69 15.64 0.00 437.05 12.2 (J) 9.1 528 549 1.087.3 (J) ND (ND (-63) 1.0 ND (ND (-25) 1.0 NS (NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS	1,900		1	NE	
9327/2008 452.69 16.11 0.00 436.58 ND ND 14 12.9 29.9 1.0 ND 6/25/2008 452.69 16.50 0.00 436.48 1.7 9.7 278 323 612.4 3.4 ND 12/17/2008 452.69 16.77 0.00 435.49 1.7.3 445.69 11.425.3 3.4 ND 5/312/2004 452.69 16.77 0.00 435.29 1.0 ND ND ND 1.425.3 3.4 ND 9/25/2009 452.69 16.50 0.00 437.19 12.2 (J) 7.9 257 285 551.1 (J) ND ND ND 1.651.10 ND ND ND 1.651.10 ND ND ND 1.52 549.1 (JA7.5 (J) ND ND 1.651.10 ND ND ND 1.62 3.182 1.74 50.7 ND ND ND 1.62 1.74 50.7 ND ND 1.52 </td <td>1,900</td> <td></td> <td></td> <td>1,300</td> <td></td>	1,900			1,300	
9/25/2008 452.69 15.56 0.00 437.13 0.42(u) 3.1 17.4 39 59.9 ND ND 9/24/2008 452.69 16.20 0.00 443.40 2.0 17.3 4495 911 1.425.3 3.4 ND 3/31/2009 452.69 16.77 0.00 435.92 1.0 ND ND ND ND 1.6 (A) ND (-63) 9/25/2009 452.69 15.64 0.00 437.05 12.(J) 9.1 528 549 1.087.3(J) ND ND ND ND ND ND ND NS NS<	ND			4,900	
9/24/2008 452.69 16.20 0.00 436.49 1.71 9.7 7278 323 612.4 3.4 ND 12/17/2008 452.69 9.65 0.00 435.92 1.0 ND ND ND 1.425.3 3.4 ND 6/22/2008 452.69 15.50 0.00 437.19 1.2 (J) 7.9 257 285 551.1 (J) 1.6 (J) ND (<50)	ND			NE	
12/17/2008 452.69 9.65 0.00 443.04 2.0 17.3 495 911 1.425.3 3.4 ND 3/31/2009 452.69 16.77 0.00 437.19 1.2 (J) 7.8 2257 2265 551.1 (J) 1.6 (J) ND (<63)	1,400		,	700 976	
3312009 452.69 16.77 0.00 435.92 1.0 ND ND ND 1.0 598. ND (<25) 6/22/2009 452.69 15.64 0.00 437.05 1.2 (J) 9.1 525 551.1 (J) ND ND (<50)	4,340 8,250			1,160	
6:02/2009 452:69 15:60 0.00 437:19 12(J) 7:9 257 285 551:1(J) 16(J) ND (<63) 9/25/2009 452:69 15:64 0.00 437:05 1.2(J) 9:1 528 549 1,087:3(J) ND ND NC50) 12/14/2009 452:69 NM NM NM NS 163:10:10:10:1	0,250 ND		,	1,160	
912 922/2009 452.69 15.64 0.00 437.05 1.2 (J) 9.1 528 549 1.087.3 (J) ND ND CC 12/14/2009 452.69 13.57 0.00 439.12 NS NS <td>4,810</td> <td></td> <td></td> <td>1,100</td> <td></td>	4,810			1,100	
12/14/2009 452.69 13.57 0.00 439.12 NS ND DD DD	9,450	· · /	,	2,330	
12/28/2009 452.69 NM NM NM 0.51 (J) 3.4 98.9 53.7 156.51 (J) ND ND (<25) 3/17/2010 452.69 13.17 0.00 433.52 NS				2,330 NS	
3/17/2010 452.69 13.17 0.00 439.52 NS NS<	1,490			531	
3/18/2010 452.69 NM NM NM ND ND 43.3 7.4 50.7 ND ND 27.8.umple 8/24/2010 453.52 15.73 0.00 437.79 1.8 3 238 56.4 301.2 ND ND 8/24/2010 453.52 15.73 0.00 437.79 1.8 3 2127 31.3 173.3 53.1 47.6 8/24/2014 453.52 15.20 0.00 438.33 1.5 6.7 330 200 538.2 1.7 18.8 (J) 171 18.6 (J) 171 18.6 (J) 171 18.6 (J) 171 18.6 (J) 145.5 4.5 198 51632 15.60 0.00 438.62 4.0 3.4 128 10.1 145.5 4.5 198 57 199.5 2.9 126 8/29/2012 453.52 15.84 0.00 437.46 3.2 8.9 464 <td>NS</td> <td>· · /</td> <td></td> <td>NS</td> <td></td>	NS	· · /		NS	
27.ft.sample 8/24/2010 453.52 15.73 0.00 437.79 13 2 127 31.3 173.3 53.1 47.6 1/11/2011 453.52 16.36 0.00 437.16 1.8 8.7 492 294 796.5 1.8 NDD 9/29/2011 453.52 15.20 0.00 438.53 1.5 6.7 330 200 538.2 1.7 18.8 (J) 12/1/2012 453.52 14.86 0.00 438.66 3.7 2.8 13.6 3.0 23.1 6.7 276 3/21/2012 453.52 15.60 0.00 437.92 2.3 3.5 138 55.7 199.5 2.9 126 8/29/2012 453.52 15.60 0.00 437.46 3.2 8.9 464 424 900.1 9.7 44.3 (J) 3/20/2013 453.52 16.60 0.00 438.06 1.6 6.1 193 150 350.7 2.4 54.(J)	1,160	VD (<25)		516	
1/11/2011 453.52 16.36 0.00 437.16 1.8 8.7 492 294 796.5 1.8 ND 6/23/2011 453.52 15.20 0.00 438.32 0.76 (J) 3.8 114 19.9 138.46 (J) 0.75 (J) ND 9/29/2011 453.52 14.99 0.00 438.66 3.7 2.8 13.6 3.0 23.1 6.7 276 3/21/2012 453.52 15.26 0.00 438.26 4.0 3.4 128 10.1 145.5 4.5 198 5/16/2012 453.52 15.80 0.00 437.68 3.5 9.3 392 364 758.8 3.5 96.3 12/19/2012 453.52 16.06 0.00 439.07 1.8 7.8 208 289 566.6 3.7 ND 3/20/2013 453.52 16.40 0.00 438.06 1.6 6.1 193 150 350.7 2.4 5.4 (J)	3,000	ND	3,000	567	' NS
6/23/2011 453.52 15.20 0.00 438.32 0.76 (J) 3.8 114 19.9 138.46 (J) 0.75 (J) ND 9/29/2011 453.52 14.99 0.00 438.66 3.7 2.8 13.6 3.0 23.1 6.7 276 3/21/2012 453.52 15.26 0.00 438.26 4.0 3.4 128 10.1 145.5 4.5 198 5/16/2012 453.52 15.60 0.00 437.92 2.3 3.5 138 55.7 199.5 2.9 126 8/29/2012 453.52 15.60 0.00 437.46 3.2 8.9 464 424 900.1 9.7 443.0/ 0 3/20/2013 453.52 16.40 0.00 437.46 3.2 8.9 464 424 900.1 9.7 44.3.0/ 0 3/20/2013 453.52 15.46 0.00 438.06 1.6 6.1 193 150 350.7 2.4 <td>2,080</td> <td>47.6</td> <td>2,080</td> <td>655</td> <td>7.3</td>	2,080	47.6	2,080	655	7.3
9/29/2011 453.52 14.99 0.00 438.53 1.5 6.7 330 200 538.2 1.7 18.8 (J) 12/21/2012 453.52 14.86 0.00 438.66 3.7 2.8 13.6 3.0 23.1 6.7 276 3/21/2012 453.52 15.60 0.00 437.92 2.3 3.5 138 55.7 199.5 2.9 126 8/29/2012 453.52 15.84 0.00 437.68 3.5 9.3 392 354 758.8 3.5 96.3 12/19/2012 453.52 16.06 0.00 437.66 3.2 8.9 464 424 900.1 9.7 44.3 (J) 3/2/2013 453.52 16.46 0.00 438.06 1.6 6.1 193 150 350.7 2.4 5.4 (J) 9/19/2013 453.52 16.69 0.00 438.92 2.1 3.2 147 2.8 ND 11/12/2/2013 453.5	7,180	ND	7,180	2,360	75.4
12/21/2012 453.52 14.86 0.00 438.66 3.7 2.8 13.6 3.0 23.1 6.7 276 3/21/2012 453.52 15.26 0.00 438.26 4.0 3.4 128 10.1 145.5 4.5 198 5/16/2012 453.52 15.84 0.00 437.68 3.5 9.3 392 354 758.8 3.5 96.3 12/19/2012 453.52 16.06 0.00 437.68 3.2 8.9 464 424 900.1 9.7 44.3 (J) 3/20/2013 453.52 16.46 0.00 437.03 2.4 8.0 366 259 647.4 2.8 ND 6/19/2013 453.52 16.49 0.00 437.03 2.4 8.0 366 259 647.4 2.8 ND 11/22/2013 453.52 16.49 0.00 437.03 2.4 8.0 366 259 647.4 2.8 ND 11/22/2013 453.52 16.49 0.00 438.92 1 3.2 147	1,640		1,640	772	
3/21/2012 453.52 15.26 0.00 438.26 4.0 3.4 128 10.1 145.5 4.5 198 5/16/2012 453.52 15.60 0.00 437.92 2.3 3.5 138 55.7 199.5 2.9 126 8/29/2012 453.52 15.84 0.00 437.68 3.2 8.9 464 424 900.1 9.7 44.3 (J) 3/20/2013 453.52 16.06 0.00 437.46 3.2 8.9 464 424 900.1 9.7 44.3 (J) 3/20/2013 453.52 15.46 0.00 438.06 1.6 6.1 193 150 350.7 2.4 5.4 (J) 9/19/2013 453.52 16.49 0.00 438.02 2.1 3.2 147 20.3 172.6 1.5 ND 11/2/2013 453.52 16.80 0.00 438.92 2.1 3.2 147 20.3 172.6 1.5 ND	3,060		,	2,620	48.0
5/16/2012 453.52 15.60 0.00 437.92 2.3 3.5 138 55.7 199.5 2.9 126 8/29/2012 453.52 15.84 0.00 437.68 3.5 9.3 392 354 758.8 3.5 96.3 12/19/2012 453.52 16.66 0.00 437.68 3.2 8.9 464 424 900.1 9.7 44.3 (J) 3/20/2013 453.52 16.46 0.00 439.07 1.8 7.8 208 596.6 3.7 ND 6/19/2013 453.52 16.49 0.00 437.03 2.4 8.0 386 259 647.4 2.8 ND 11/22/2013 453.52 16.60 0.00 438.92 2.1 3.2 147 20.3 172.6 1.5 ND 6/18/2014 453.52 14.60 0.00 436.63 4.8 10.5 396 284 695.3 32.1 256 6/30/2014	452		-	422	
8/29/2012 453.52 15.84 0.00 437.68 3.5 9.3 392 354 758.8 3.5 96.3 12/19/2012 453.52 16.06 0.00 437.46 3.2 8.9 464 424 900.1 9.7 44.3 (J) 3/20/2013 453.52 14.45 0.00 438.06 1.6 6.1 193 150 350.7 2.4 5.4 (J) 9/19/2013 453.52 16.49 0.00 437.03 2.4 8.0 386 259 647.4 2.8 ND 11/22/2014 453.52 16.60 0.00 438.92 2.1 3.2 147 20.3 172.6 1.5 ND 3/20/2014 453.52 16.80 0.00 436.63 4.8 10.5 396 284 695.3 32.1 256 6/18/2014 453.52 NM NM NS	1,820		,	1,390	
12/19/2012 453.52 16.06 0.00 437.46 3.2 8.9 464 424 900.1 9.7 44.3 (J) 3/20/2013 453.52 14.45 0.00 439.07 1.8 7.8 208 289 506.6 3.7 ND 6/19/2013 453.52 15.46 0.00 438.06 1.6 6.1 193 150 350.7 2.4 5.4 (J) 9/19/2013 453.52 16.49 0.00 437.03 2.4 8.0 386 259 647.4 2.8 ND 11/2/2013 453.52 16.56 0.00 436.96 2.1 9.0 481 295 787.1 3.8 10.1 (J) 3/20/2014 453.52 14.60 0.00 438.92 2.1 3.2 147 20.3 172.6 1.5 ND 6/18/2014 453.52 16.89 0.00 436.63 4.8 10.5 396 284 695.3 32.1 256	2,270	-	/ -	1,330	
3/20/2013 453.52 14.45 0.00 439.07 1.8 7.8 208 289 506.6 3.7 ND 6/19/2013 453.52 15.46 0.00 438.06 1.6 6.1 193 150 350.7 2.4 5.4 (J) 9/19/2013 453.52 16.49 0.00 437.03 2.4 8.0 386 259 647.4 2.8 ND 11/2/2013 453.52 16.66 0.00 436.96 2.1 9.0 481 295 787.1 3.8 10.1 (J) 3/20/2014 453.52 14.60 0.00 438.92 2.1 3.2 147 20.3 172.6 1.5 ND 6/18/2014 453.52 14.80 0.00 436.63 4.8 10.5 396 284 695.3 32.1 256 *** 6/30/2014 453.52 NM NM NS NS NS NS NS NS 15.3 320 177.6	6,070		,	1,530	
6/19/2013 453.52 15.46 0.00 438.06 1.6 6.1 193 150 350.7 2.4 5.4 (J) 9/19/2013 453.52 16.49 0.00 437.03 2.4 8.0 386 259 647.4 2.8 ND 11/22/2013 453.52 16.66 0.00 436.96 2.1 9.0 481 295 787.1 3.8 10.1 (J) 3/20/2014 453.52 16.60 0.00 438.92 2.1 3.2 147 20.3 172.6 1.5 ND 6/18/2014 453.52 16.89 0.00 436.63 4.8 10.5 396 284 695.3 32.1 256 6/30/2014 452.69 18.44 0.00 434.25 1.3 5.5 350 389 745.8 28.3 125 12/23/2014 452.69 18.47 0.00 434.02 3.6 1.9 97.4 53.4 156.3 80.0 130	8,770	()		1,760	
9/19/2013 453.52 16.49 0.00 437.03 2.4 8.0 386 259 647.4 2.8 ND 11/22/2013 453.52 16.56 0.00 436.96 2.1 9.0 481 295 787.1 3.8 10.1 (J) 3/20/2014 453.52 14.60 0.00 438.92 2.1 3.2 147 20.3 172.6 1.5 ND 6/18/2014 453.52 14.60 0.00 436.63 4.8 10.5 396 284 695.3 32.1 256 6/30/2014 453.52 NM NM NS 12/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	4,880		,	1,400	
11/22/2013 453.52 16.56 0.00 436.96 2.1 9.0 481 295 787.1 3.8 10.1 (J) 3/20/2014 453.52 14.60 0.00 438.92 2.1 3.2 147 20.3 172.6 1.5 ND 6/18/2014 453.52 16.89 0.00 438.92 2.1 3.2 147 20.3 172.6 1.5 ND *** 6/24/2014 453.52 16.89 0.00 436.63 4.8 10.5 396 284 695.3 32.1 256 *** 6/30/2014 453.52 NM NM NM NS NS NS NS NS NS 9/23/2014 453.69 18.44 0.00 433.67 1.4 4.3 200 177.3 382.7 29.6 90.1 3/24/2015 452.69 18.67 0.00 434.40 5.0 3.6 117 117 242.6 51.0 145 9/21/2015	6,250			1,690	
3/20/2014 453.52 14.60 0.00 438.92 2.1 3.2 147 20.3 172.6 1.5 ND 6/18/2014 453.52	8.920		,	1,320	
6/18/2014 453.52 Inaccessible - Sampled on 6/24/2014 **** 6/24/2014 453.52 16.89 0.00 436.63 4.8 10.5 396 284 695.3 32.1 256 **** 6/30/2014 453.52 NM NM NM NS AS2	2,830			1,560	
**** 6/24/2014 453.52 16.89 0.00 436.63 4.8 10.5 396 284 695.3 32.1 256 **** 6/30/2014 453.52 NM NM NM NS NS <t< td=""><td></td><td></td><td>-,</td><td>.,</td><td>1</td></t<>			-,	.,	1
bi30/2014 433.32 NM NM NS	8,400	256	8,400	**	34.1
12/23/2014 452.69 19.02 0.00 433.67 1.4 4.3 200 177 382.7 29.6 90.1 3/24/2015 452.69 18.67 0.00 434.02 3.6 1.9 97.4 53.4 156.3 80.0 130 6/22/2015 452.69 18.67 0.00 434.02 3.6 1.9 97.4 53.4 156.3 80.0 130 9/2/12015 452.69 18.29 0.00 434.27 5.9 2.6 77.0 73.2 158.7 18.0 89.7 12/9/2015 452.69 18.42 0.00 433.88 7.3 2.5 63.3 40.4 113.5 18.1 93.2 3/8/2016 452.69 18.81 0.00 434.53 8.9 1.6 36.9 11.6 59.0 81.5 138 6/7/2016 452.69 18.16 0.00 434.50 8.3 1.5 32.0 14.4 56.2 25.3 9/13/2016 452.69 18.62 0.00 434.50 8.5 1.5 31.6 <td< td=""><td>NS</td><td>NS</td><td>NS</td><td>1,840</td><td>NS</td></td<>	NS	NS	NS	1,840	NS
3/24/2015 452.69 18.67 0.00 434.02 3.6 1.9 97.4 53.4 156.3 80.0 130 6/22/2015 452.69 18.29 0.00 434.40 5.0 3.6 117 117 242.6 51.0 145 9/21/2015 452.69 18.42 0.00 434.27 5.9 2.6 77.0 73.2 158.7 18.0 89.7 12/9/2015 452.69 18.81 0.00 433.88 7.3 2.5 63.3 40.4 113.5 18.1 93.2 3/8/2016 452.69 18.16 0.00 434.53 8.9 1.6 36.9 11.6 59.0 81.5 138 6/7/2016 452.69 18.19 0.00 434.50 8.3 1.5 32.0 14.4 56.2 25.3 73.8 9/13/2016 452.69 18.62 0.00 434.50 8.5 1.5 31.6 15.6 57.2 10.7 73.5	8,640	125	8,640	232	159
6/22/2015 452.69 18.29 0.00 434.40 5.0 3.6 117 117 242.6 51.0 145 9/21/2015 452.69 18.42 0.00 434.27 5.9 2.6 77.0 73.2 158.7 18.0 89.7 12/9/2015 452.69 18.81 0.00 433.88 7.3 2.5 63.3 40.4 113.5 18.1 93.2 3/8/2016 452.69 18.81 0.00 434.53 8.9 1.6 36.9 11.6 59.0 81.5 138 6/7/2016 452.69 18.19 0.00 434.50 8.3 1.5 32.0 14.4 56.2 25.3 73.8 9/13/2016 452.69 18.62 0.00 434.50 8.5 1.5 31.6 15.6 57.2 10.7 73.5 11/21/2016 452.69 19.14 0.00 433.55 7.6 1.8 39.0 21.8 70.2 7.4 77.1 <td>5,990</td> <td></td> <td></td> <td>1,030</td> <td></td>	5,990			1,030	
9/21/2015 452.69 18.42 0.00 434.27 5.9 2.6 77.0 73.2 158.7 18.0 89.7 12/9/2015 452.69 18.81 0.00 433.88 7.3 2.5 63.3 40.4 113.5 18.1 93.2 3/8/2016 452.69 18.81 0.00 434.37 8.9 1.6 36.9 11.6 59.0 81.5 138 6/7/2016 452.69 18.19 0.00 434.50 8.3 1.5 32.0 14.4 56.2 25.3 73.8 9/13/2016 452.69 18.62 0.00 434.50 8.5 1.5 31.6 15.6 57.2 10.7 73.5 11/21/2016 452.69 19.14 0.00 433.55 7.6 1.8 39.0 21.8 70.2 7.4 77.1	3,540			463	
12/9/2015 452.69 18.81 0.00 433.88 7.3 2.5 63.3 40.4 113.5 18.1 93.2 3/8/2016 452.69 18.16 0.00 434.53 8.9 1.6 36.9 11.6 59.0 81.5 138 6/7/2016 452.69 18.19 0.00 434.50 8.3 1.5 32.0 14.4 56.2 25.3 73.8 9/13/2016 452.69 18.62 0.00 434.07 8.5 1.5 31.6 15.6 57.2 10.7 73.5 11/21/2016 452.69 19.14 0.00 433.55 7.6 1.8 39.0 21.8 70.2 7.4 77.1	2,980	-	,	1,580	
3/8/2016 452.69 18.16 0.00 434.53 8.9 1.6 36.9 11.6 59.0 81.5 138 6/7/2016 452.69 18.19 0.00 434.50 8.3 1.5 32.0 14.4 56.2 25.3 73.8 9/13/2016 452.69 18.62 0.00 434.07 8.5 1.5 31.6 15.6 57.2 10.7 73.5 11/21/2016 452.69 19.14 0.00 433.55 7.6 1.8 39.0 21.8 70.2 7.4 77.1	3,460			902	
6/7/2016 452.69 18.19 0.00 434.50 8.3 1.5 32.0 14.4 56.2 25.3 73.8 9/13/2016 452.69 18.62 0.00 434.07 8.5 1.5 31.6 15.6 57.2 10.7 73.5 11/21/2016 452.69 19.14 0.00 433.55 7.6 1.8 39.0 21.8 70.2 7.4 77.1	2,080		,	714	
9/13/2016 452.69 18.62 0.00 434.07 8.5 1.5 31.6 15.6 57.2 10.7 73.5 11/21/2016 452.69 19.14 0.00 433.55 7.6 1.8 39.0 21.8 70.2 7.4 77.1	1,990			785	
11/21/2016 452.69 19.14 0.00 433.55 7.6 1.8 39.0 21.8 70.2 7.4 77.1	1,390			904	
	2,600 2,240			925 564	
	2,240	77.1 ND	,	434	
3 372017 432.69 13.63 0.00 433.80 6.2 0.81(J) 8.5 7.8 (33.1(J) 43.2 94.7	1,120			434	
9/1/2017 432.69 16.79 0.00 433.91 6.6 2.2 42.6 35.4 86.8 8.2 64.6	1,130	-		665	
11//2017 452.69 19.07 0.00 433.62 8.3 3.3 63.2 56.2 131.0 9.2 96.2	1,550			893	
3/6/2018 452.69 19.31 0.00 433.38 3.3 0.56 (J) 3.3 2.2 9.36 (J) 21.0 72.8	826		,	517	
6/20/2018 452.69 17.74 0.00 434.95 18.4 3.4 59.1 47.2 128.1 52.7 187	1,810			866	
9/5/2018 452.69 17.38 0.00 435.31 12.9 2.1 27.8 20.6 63.4 14.2 100	1,410		,	715	
MDE MEAT GNCSG** 5 1.000 700 10.000 NA 20 NA	47	NA		47	0.7

Well No.	Date	Casing Elevation* (feet)	Depth to Water (feet)	Product Thickness (feet)	Water Table Elevation* (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TBA (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (μg/L)
OW-1	11/22/2004	NSVD	18.36	0.00	NSVD	74.8	169	919	5,220	6,383	25	NS	NS	NS	NS
	2/23/2005	NSVD	17.93	0.00	NSVD	4.4	9.4	168	621	803	19.9	NS	NS	NS	NS
Casing:	5/19/2005	NSVD	17.44	0.00	NSVD	14.5	46	343	1,130	1,534	14.3	NS	NS	NS	NS
0 to 9 feet	8/24/2005	NSVD	18.44	0.00	NSVD	43.1	163	831	3,890	4,927	5.9	NS	NS	NS	NS
	11/8/2005	NSVD	18.57	0.00	NSVD	4.0	17.8	344	1,050	1,416	7.7	NS	NS	NS	NS
Screen:	2/10/2006	NSVD	17.35	0.00	NSVD	1.8	11.2	77.3	328	418	2.2	NS	NS	NS	NS
9 to 34 feet	5/15/2006	NSVD	17.99	0.00	NSVD	4.0 (J)	53.4	414	1,690	2,161	6.4	NS	NS	NS	NS
	8/9/2006	NSVD	18.15	0.00	NSVD	5.8	68.4	432	1,550	2,056	10.8	NS	NS	NS	NS
	10/17/2006	NSVD	18.50	0.00		1.2 (J)	18.6	268	712	1,000	10.2	NS	NS	NS	NS
	4/11/2007	NSVD	17.68	0.00	NSVD	ND	26	320	1,400	1,746	8.7	ND	14,000	3,000	NS
-	8/24/2007	NSVD	19.14	0.00	NSVD	ND	11 5.8	210 120	440	661 128.9	4.2	ND 42	6,900	2,400	NS NS
	12/27/2007 3/27/2008	NSVD NSVD	18.98 18.24	0.00	NSVD NSVD	ND ND	5.8	69	382.5	455.7	3.3 5.0	13 7.6	9,600 9,200	2,400 2,000	NS
	6/25/2008	NSVD	18.24 NM	0.00 NM	NSVD	ND	4.2	163	382.5	400.7	5.0 ND	7.6 ND	9,200	2,000	NS
-	9/24/2008	NSVD	16.30	0.00		0.67 (J)	11.6	170	347	554.3	1.2	13.3 (J)	8,400	1,400	NS
ł	12/17/2008	NSVD	15.95	0.00	NSVD	0.46 (J)	6.2	96.3	248	351.0	ND	ND	6,020	1,330	NS
ł	3/31/2009	NSVD	19.19	0.00	NSVD	0.40 (0) ND	3.4	31.2	157	191.6	1.9	ND (<25)	8,110	1,400	NS
ł	6/22/2009	NSVD	17.74	0.00	NSVD	0.60 (J)	7.5	111	352	471.1 (J)	1.0	ND (<25)	7.200	1,020	NS
-	9/25/2009	NSVD	18.10	0.00	NSVD	ND	3.0		168	244.0	ND	ND (<50)	5,920	2,960	NS
	12/14/2009	NSVD	16.51	0.00	NSVD	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
·	12/28/2009	NSVD	NM	NM	NM	0.30 (J)	6.3	209	934	1,149.6 (J)	0.44 (J)	ND (<25)	8,690	1,440	NS
	3/17/2010	NSVD	15.70	0.00	NSVD	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/18/2010	NSVD	NM	NM	NM	ND	22.1	98.5	378	498.6	ND	ND (<25)	6,880	2,030	NS
23 ft. sample	8/25/2010	455.81	18.27	0.00	437.54	0.71 (J)	14.7	267	376	658.41 (J)	ND	ND	8,780	2,290	NS
28 ft.sample	8/25/2010	455.81	18.27	0.00	437.54	0.88 (J)	13.4	239	384	637.28 (J)	ND	ND	8,290	2,500	ND
	1/10/2011	455.81	18.99	0.00	436.82	0.81 (J)	13.1	143	376	532.91 (J)	ND	ND	7,960	2,800	138
	6/22/2011	455.81	18.73	0.00		ND	0.20 (J)	4.3	9.1	13.6 (J)	ND	ND	353	1,110	4.1 (J)
	9/28/2011	455.81	17.56	0.00	438.25	ND	2.0		110	153.0	ND	ND	3,920	268	53.9
	12/20/2012	455.81	15.49	0.00	440.32	0.53 (J) 0.41 (J)	2.2	33.9	124 107	160.63 (J)	ND	ND ND	4,430	465	61.8
	3/20/2012 5/15/2012	455.81 455.81	17.84 20.16	0.00	437.97 435.65	0.41 (J) 0.65 (J)	2.5	24.2 11.8	57.4	134.11 (J) 70.95 (J)	0.87 (J) ND	ND ND	6,030 2,630	<u>1,760</u> 514	74.4 29.4
-	8/28/2012	455.81	18.31	0.00		0.65 (J) 0.54 (J)	2.8	54.3	95.0	152.64 (J)	ND	ND	2,830	1.840	70.0
-	12/18/2012	455.81	18.64	0.00		0.90 (J)	3.6		145	227.30 (J)		ND	4,890	1,040	58.8
·	3/19/2013	455.81	18.05	0.00	437.76	0.80 (J)	2.0		84.5	108.80 (J)		ND	3,670	1,280	41.3
·	6/18/2013	455.81	17.91	0.00	437.90	ND	1.5	21.8	48.1	71.4	ND	ND	4,330	2,190	56.7
	9/19/2013	455.81	19.03	0.00		ND	2.5	53.7	68.5	124.7	ND	ND	3,910	1,200	65.5
·	11/22/2013	19.13	0.00	436.68	0.38 (J)	5.1	116	92.4	213.88 (J)	ND	ND	5,810	1,620	98.6	
	3/20/2014 455.81 17.24 0.00 43						1.7	27.4	35.5	64.93 (J)	0.52 (J)	ND	4,100	1,240	45.3
***	*** 6/18/2014 455.81 18.82 0.00 43						3.5	47.6	65.1	118.4	7.9	ND	6,150	***	66.4
***	6/30/2014	455.81	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	2,020	NS
ļ	9/23/2014	455.31	20.88	0.00	434.43	0.43 (J)	1.6	53.3	135	190.33 (J)	1.5	56.7	7,780	1,170	72.0
	12/23/2014	455.31	21.28	0.00		0.81 0.47 (J)	1.4	13.1	34.2	49.51	1.5	33.9	4,310	1,280	23.6
	3/24/2015 455.31 21.08 0.00 434						0.64 (J)	2.3	8.9	12.31 (J)	ND	ND	3,180	787	14.6
ļ	6/22/2015 455.31 20.58 0.00 43 9/21/2015 455.31 20.73 0.00 43						0.32 (J)	1.0	1.8 1.8	4.52 (J)	6.9	29.5 24.5	1,370	918	3.4 (J
ŀ	12/9/2015 455.31 21.23 0.00 43						0.27 (J) 0.23 (J)	0.93 (J)	1.8	5.17 (J) 4.76 (J)	5.3 6.9	24.5	982 1.040	515 459	1.3 (J 0.76 (J
ŀ	3/8/2015	455.31	21.23	0.00	434.08 434.77	2.3	0.23 (J) ND	0.93 (J) 0.36 (J)	1.3 ND	4.76 (J) 2.26 (J)	6.9	19.5 ND	1,040	459	0.76 (J 0.33 (J
ł	6/7/2016	455.31	20.54	0.00		2.5	0.33 (J)	2.5	3.0	8.33 (J)	6.6	14.0	934	373	0.33 (J) ND
ł	9/13/2016	455.31	20.30	0.00	434.28	0.99	0.33 (J) ND	ND	3.0 ND	0.33 (3)	3.3	14.0	583	209	ND
ł	11/21/2016	455.31	21.82	0.00	433.49	1.2	ND	0.56 (J)	ND	1.76 (J)	4.2	11.4	486	344	ND
	3/9/2017	455.31	22.04	0.00		1.5	ND	(.)	0.58 (J)	2.42 (J)	7.9	ND	845	298	ND (<1.0
+	6/7/2017	455.31	21.22	0.00	434.09	1.6	ND	0.47 (J)	0.69 (J)	2.76 (J)	7.3	11.5	572	356	ND (<1.0
Ì	9/6/2017	455.31	21.27	0.00	434.04	1.3	ND	0.37 (J)	0.45 (J)	2.12 (J)	4.7	12.8	583	348	ND (<1.1)
	11/1/2017	455.31	21.53	0.00	433.78	1.4	ND	0.49 (J)	0.32 (J)	2.2 (J)	6.1	11.3	439	336	ND (<1.1)
	3/6/2018	455.31	21.77	0.00	433.54	1.5	ND	1.3	8.6	11.4	7.5	19.7	962	511	ND (<1.1)
[6/20/2018	455.31	20.03	0.00	435.28	1.7	0.45 (J)	2.8	16.1	21.1 (J)	6.2	14.2	746	469	ND (<1.1)
	9/5/2018 455.31 19.61 0.00 435.7 MDE MEAT CNCSC					2.2	ND		8.3	18.3	5.2	21.3	816	441	1.2 (J)
	MDE MEAT GNCSG**					5	1,000	700	10,000	NA	20	NA	47	47	0.7

		Casing	Depth to	Product	Water Table	Benzene	Toluene	Ethyl-	Xylenes	Total BTEX	MTBE	ТВА	TPH-GRO	TPH-DRO	Naphthalene
Well No.	Date	Elevation*	Water	Thickness	Elevation*	μg/L)	(μg/L)	benzene	(μg/L)	(μg/L)	(μg/L)	μg/L)	(µg/L)	(µg/L)	μg/L)
		(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
YMW-1	6/13/2006	433.72	3.00	0.00	430.72	21.7	30.1	559	373	984	15.6	NS	NS	NS	NS
	7/17/2006	433.72	3.95	0.00	429.77	5.3	61.4	543	1,390	2,000	ND	NS	NS	NS	NS
Casing:	4/11/2007	433.72	4.89	0.00	428.83	5.5	140	1,200	3,300	4,646	ND	ND	37,000	ND	NS
0 to 2 feet	8/24/2007	433.72	5.94	0.00	427.78	4.6	60	660	850	1,574.6	ND	ND	12,000	1,500	NS
_	12/27/2007	433.72	5.29	0.00	428.43	4.8	32	500	30	566.8	ND	ND	14,000	1,500	NS
Screen:	3/27/2008	433.72	5.19	0.00	428.53	5.6	73	610	1,510	2,198.6	1.2	ND	9,600	1,000	NS
2 to 14 feet	6/25/2008	433.72	1.68	0.00	432.04	4.0	92.7	648	1,700	2,444.7	ND	ND	14,300	1,980	NS
	9/24/2008	433.72	2.55	0.00	431.17	2.3	38.1	477	912	1,429.4	ND	ND	11,200	1,010	NS
	12/17/2008	433.72	2.30	0.00	431.42	2.0	38.5	346	1,000	1,386.5	ND	ND	10,700	731	NS
	3/31/2009	433.72	2.78	0.00	430.94	7.7	20.2	112	290	429.9	6.1		7,790	567	NS
	6/22/2009	433.72	1.13	0.00	432.59	1.9 (J)	54.4	557	1,470	2,083.3 (J)	ND	(<130)	11,600	1,810	NS
	9/25/2009	433.72	0.20	0.00	433.52	2.0	28.1	325	701	1,056.1	ND	ND (<50)	8,540	1,540	NS
-	12/14/2009	433.72	0.00	0.00	433.72	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Ļ	12/28/2009	433.72	NM	NM	NM	ND	40.7	401	1,490	1,931.7	ND	(<130)	10,700	1,760	NS
-	3/17/2010	433.72	0.01	0.00	433.71	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
-	3/18/2010	433.72	NM	NM	NM	ND	60.4	407	1,060	1,527.4	ND	(<130)	10,500	1,080	NS
-	8/25/2010	434.11	1.39	0.00	432.72	2.3 (J)	81.1	635	1,250	1,968.4	ND	131	5,350	796	234
-	1/12/2011	434.11	1.51	0.00	432.60	1.8	40.6	464	1,620	2,126.4	ND	ND	11,500	2,080	168
-	6/22/2011	434.11	1.34	0.00	432.77	0.74 (J)	18.0	181	392	591.74 (J)	ND	ND	4,200	1,530	59.3
-	9/28/2011	434.11	0.03	0.00	434.08	1.6	31.3	463	685	1,180.9	ND	ND	7,580	ND (<110)	168
-	12/20/2012	434.11	1.01	0.00	433.10	1.4 (J)	52.0	792	1,530	2375.4 (J)	ND	ND	12,600	1,161	285
	3/20/2012	434.11	0.90	0.00	433.21	0.51 (J)	11.4	145	298	454.91 (J)	ND	ND	1,690	1,140	58.6
+	5/15/2012	434.11	0.04	0.00	434.07	3.5	7.3	14.1	73.8	98.7	5.8	21.8 (J)	2,420	1,650	83.3
-	8/28/2012	434.11	1.56	0.00	432.55	1.9 (J)	22.0	240	107	370.9 (J)	ND	ND	5,040	1,860	156
	12/18/2012	434.11	0.50	0.00	433.61	2.0	23.4	178	143	346.4	ND	ND	3,790	616	15.1
	3/19/2013	434.11	0.03	0.00	434.08	1.3	54.4	444	645	1,144.7	ND	ND	6,810	807	184
	6/18/2013	434.11	0.89	0.00	433.22	0.90 (J)	21.3	231	164	417.2 (J)	ND	ND	3,770	1,280	104
	9/19/2013 11/22/2013	434.11 434.11	1.49	0.00	432.62 433.61	2.2	27.3 23.0	428 377	173 89.5	630.5 491.7	ND ND	ND ND	5,960	1,560	200
-		-		0.00		2.2		234		-			8,760	1,130 659	186
***	3/20/2014 6/18/2014	434.11 434.11	0.01 3.62	0.00	434.10 430.49	1.4	18.6 19.2	234 96.6	69.5 104	323.5 223.1	ND ND	ND ND	3,210 4,710	609	57.4 132
***			3.62 NM	0.00 NM	430.49 NM	3.3 NS	19.2 NS	96.6 NS	104 NS	223.1 NS	ND	ND	4,710 NS	1.040	NS
	9/23/2014 433.64				428.31	0.72		0.98 (J)	2.7	5.8 (J)	ND	ND	775	269	
ŀ	9/23/2014 433.64				428.31	0.72 0.31 (J)	1.4 0.33 (J)	0.98 (J) 2.5	0.61 (J)	5.8 (J) 3.75 (J)	ND ND	ND ND	277	269 ND (<80)	2.3 (J) ND
ŀ	3/24/2015	433.64	4.19 3.02	0.00	429.45	0.31 (J) ND	0.33 (J) ND	2.5	0.61 (J) 0.57 (J)	2.57 (J)	ND	ND ND	ND	ND (<80) ND (<77)	0.97 (J)
ŀ	6/22/2015	433.64	3.02	0.00	430.60	ND	ND	0.39 (J)	0.37 (3) ND	0.39 (J)	ND	ND	ND	108	0.97 (J) ND
ŀ			4.94	0.00	430.00	0.60	ND	0.59 (J) 0.61 (J)	ND	1.21 (J)	ND	ND	205	100	0.81 (J)
ŀ			4.34	0.00	429.27	0.00 ND	ND	1.7	ND	1.21 (J)	ND	ND	ND	144	0.81 (5) ND
ŀ			3.31	0.00	430.33	ND	ND	ND	ND	ND	ND	ND	ND (<55)	ND (<64)	ND
ŀ	6/7/2016 433.64 3.		3.90	0.00	429.74	ND	ND	ND	ND	ND	ND	ND	ND (<55)	ND (<64)	ND
ŀ	9/13/2016 433.64 5.4		5.47	0.00	428.17	0.86	ND	ND	ND	0.86	ND	ND	157 (J)	112	ND
ŀ	11/21/2016	433.64	6.21	0.00	427.43	0.35 (J)	ND	ND	ND	0.35 (J)	ND	ND	ND (<100)	ND (<64)	ND
ŀ	3/9/2017	433.64	5.40	0.00	428.24	0.41 (J)	ND	13.1	0.46 (J)	13.97 (J)	ND	ND	184	ND (<64)	ND (<1.0)
*	6/7/2017	433.64	4.25	0.00	429.39	0.41 (0) ND	ND	ND	0.40 (0) ND	ND	ND	ND	ND (<100)	ND (<64)	ND (<1.0)
ť	9/6/2017	433.64	4.44	0.00	429.20	ND	ND	ND	ND	ND	ND	ND	ND (<100)	ND(<83)	ND (<1.1)
	11/1/2017	433.64	5.37	0.00	428.27	ND	ND	ND	ND	ND	ND	ND	ND (<100)	ND(<83)	ND (<1.1)
	3/6/2018	433.64	4.16	0.00	429.48	ND	ND	0.86 (J)	ND	0.86 (J)	ND	ND	ND (<100)	90.6	ND (<1.1
t i i i i i i i i i i i i i i i i i i i	6/20/2018	433.64	3.08	0.00	430.56	0.55	ND	ND	ND	0.55	ND	ND	ND (<100)	ND(<83)	ND (<1.1)
	9/5/2018	433.64	3.35	0.00	430.29	ND	ND	ND	ND	ND	ND	ND	ND (<100)	ND(<53)	ND (<0.98)
	MDE MEAT GNCSC					5	1,000	700	10,000	NA	20	NA	47	47	0.7
						-	-,		,						

Physical																
With No. Date Finance in the second of the			Casing	Depth to	Product	Water Table	Deserve	Taluana	Ethyl-	Vidence		MTDE	TDA	TRU ODO	TRU DDO	Nashthalasa
MM2 PT2200 PT2000 PT2000 <td>Well No.</td> <td>Date</td> <td></td> <td>Water</td> <td></td> <td>Elevation*</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>10000000000000000000000000000000000000</td> <td></td>	Well No.	Date		Water		Elevation*				-					10000000000000000000000000000000000000	
Prima Prima <th< td=""><td></td><td></td><td>(feet)</td><td>(feet)</td><td>(feet)</td><td>(feet)</td><td>(µg/L)</td><td>(µg/L)</td><td>(μg/L)</td><td>(µg/∟)</td><td>(µg/L)</td><td>(µg/∟)</td><td>(µg/L)</td><td>(µg/L)</td><td>(µg/∟)</td><td>(µg/L)</td></th<>			(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(μg/L)	(µg/∟)	(µg/L)	(µg/∟)	(µg/L)	(µg/L)	(µg/∟)	(µg/L)
Colarge Delay 2 411/2007 411/2 160 0.00 428/82 178 24 650 670 1.339 64 170 1.460 3.600 NM Secse: 2 to 14 dent 527/305 431.42 1.06 0.00 423.83 1.6 23 525 270 1.07 1.00 4.660 NM NM 1.660 NM NM 1.660 NM NM 1.660 NM NM 1.660 NM NM NM 1.660 NM NM 1.660 NM NM NM NM 1.660 NM NM NM NM 1.660 1.660 NM NM NM 1.660 NM 1.660 NM NM NM NM 1.660 NM 1.660 NM NM NM NM 1.660 NM 1.660 NM NM NM NM NM NM 1.660 NM NM NM NM NM NM NM NM	YMW-2	6/13/2006	431.42	0.89	0.00	430.53	3.3	47.6	211	656	917.9	2.3	NS	NS	NS	NS
0 D 2 met 80/2007 431.42 2 et al 0 00 428.81 141 60 500 900 900 900 900 900 71 50.000 71.000 <td></td> <td>NS</td>																NS
1927/2007 411.42 2.43 0.00 42.84 13 21 370 14 41 </td <td></td>																
Source 3272000 431-42 100 0.00 48.330 4.22 21 200 392 64.57 77 ND 77700 1.400 1.400 19/2/0200 431-42 115 0.00 430-42 115 0.00 213 300 0.00 1.00 6.66 1.01 213 300 1.00 6.66 1.01 213 300 1.00 <	0 to 2 feet															
2 to 14 6ert 6322000 631.42 110 000 430.62 115 485 123 125 105 N0 7.67 2.68 N1 1217/2000 631.42 115 0.00 430.97 115 0.00 7.77 2.80 2.90 13 100 N0 7.77 1.80 0.77 0.80 7.77 NN 7.80 <t< td=""><td>Corooni</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>	Corooni										-					
9944008 43142 115 0.00 45027 135 2427 330 003 11 0.00 904008 100 902 100																
127/2008 431-42 110 100 100 110 100 100 110 100 100 110 100 <th< td=""><td>2 10 14 1001</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NS</td></th<>	2 10 14 1001															NS
e e																NS
922200 431.42 0.50 0.63 1.71 25.8 73.0 178 28.58 1.80 1.81 NS <		3/31/2009	431.42	1.66	0.00	429.76	8.1	23.2	164	357	552.3	5.8	ND (<25)	7,750	1,030	NS
12/14/200 431.42 0.10 0.00 431.32 NS NS </td <td></td> <td>NS</td>																NS
12820000 431.42 NM NM MM 4.8 12.0 117 176 509.8 2.7 KO1-(25) 4.360 554 NNS															,	
strizzerio 431422 0.74 0.00 430.88 NS NS<																
Singerior 43142 NM NM MM MM 4.6 17.0 116 107 23.3 3.8 MO(-25) 3.870 5.800 1.158 11120211 431.34 0.00 430.44 6.90 2.31 440.6 4.53 ND 7.169 1.98 2.21 440.6 4.53 ND 7.169 1.98 1.21 4.31 4.30 4.30 4.31 4.30 4.31 4.30 4.30 4.31 4.30 4.31 4.30 4.30 4.31 4.30 4.30 4.31 4.30 4.30 4.31 4.30 4.30 4.30 4.30 4.50 551 1.40 8.60 4.40 1.90 4.31 4.30 4.40 1.91 7.71 2.23 5.30 1.30 8.50 4.40 1.91 7.71 2.23 5.30 3.30 8.50 4.40 1.90 4.41 4.40 1.92 4.41 4.40 1.92 4.41 4.41 4.40																
#2520701 431.34 0.90 0.00 430.44 6.8 7.9 1.38 116 1251 448.00 ND 5.820 1.880 223 62320711 431.34 0.03 0.00 430.47 1.8 0.00 1.47 5.5 ND 2.140 6.4 ND 7.90 1.950 7.11 1.40 6.5 1.01 1.00 1.01																
																239
e232011 431.34 687 0.00 430.47 1.8 3.0 21 72																215
12210212 43134 10 22										7.8						17.8
32710712 431.34 1.18 0.00 443.16 4.1 8.6 38.1 9.05 141.3 6.5 7.23 3.800 1582 424 6/202012 431.34 0.59 0.00 430.75 4.7 152 254 133 100.3 4.43 30.0 4.33.4 1.30 0.00 430.31 4.5 1.91 7.79 220 330.03 3.1 ND 6.000 1.30 1.61 1.33 1.03 0.00 430.31 4.5 1.91 1.77 220 3.00 3.1 1.65 1.71 2.21 1.00 3.680 682 966 1.61 1.32 2.21 1.00 3.680 682 966 1.61 1.32 2.21 1.00 3.680 932.41 1.71 1.00 3.40 1.91 1.22 1.00 3.72 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.22 1.72 1.22																150
5/16/0702 431 34 1.47 0.00 429.87 110.01 28.6 4400 651 1030.010 ND ND 6.100 1.220 224 12/19/2012 431.34 1.03 0.00 430.31 4.5 191.177.9 228 330.5 3.1 ND 6.000 1.300 147 6/19/2013 431.34 1.03 0.00 430.31 2.2 7.3 6.2 85.8 102.1 4.6 ND 3.190 6.123 6.01 6/19/2013 431.34 0.00 430.78 3.2 1.6 2.23 1.56 102.1 4.6 ND 3.190 6.123 6.01 11/22/2013 431.34 0.00 443.14 4.7 7.7 1.220 1.6 1.23 1.6 8.22 (J) 1.4 ND 4.40 3.3 7.6 2.20 1.4 1.4 ND 4.40 3.3 1.6 1.22 1.6 3.16 1.6 1.6 1.6 1																164
8/292012 431.34 0.59 0.00 430.75 4.7 152 22.4 135 190.3 1.00 0.000 1,300 147 157 124 55.1 133 233.4 5.0 ND 3,660 15.200 144 55.1 133 233.4 5.0 ND 3,660 152 64.1 ND 3,570 156 121 4.6 ND 3,570 142 65.1 133 233.4 5.0 ND 3,570 126 64.1 ND 3,570 126 64.1 ND 123.2 16.8 23.2 16.8 23.2 16.8 23.2 16.9 123.3 126 14.0 ND 17.7 73.7																
12/192012 431.34 1.03 0.00 430.31 4.5 19.1 77.9 228 330.5 3.1 ND 6.000 1.300 144 6/192013 431.34 0.00 0.00 430.76 2.2 7.8 6.2 85.8 102.1 4.6 ND 3.190 612 612 11/22013 431.34 0.00 430.72 3.2 18.8 102.1 4.6 ND 7.70 1.200 102 *** 6/182014 431.34 0.00 430.43 0.48 7.6 7.124 17.8 82.8 (J) 1.4 ND 2.100 7.77 7.20 1.90 7.77 7.20 1.90 7.77 7.21 7.77 7.21 7.70 7.20 7.70 7.20 7.70 7.20 7.70 7.20 7.70 7.20 7.70 7.20 7.70 7.20 7.70 7.20 7.70 7.20 7.70 7.20 7.70 7.20 7.20 7.70 <td></td>																
3/20/2013 43.34 1.00 0.00 43.04 2.0 12.4 65.1 133 20.24 6.0 13.5 0.05 1612 6112																
θ'18/2013 431.34 0.58 0.00 431.26 32 16.9 22 17.22 75 17.22 75 75																96.5
9/19/2013 431:34 0.08 0.00 431:28 32 18.6 20:3 17.6 17.20 17.70 17.20 17.70 17.20 17.70 17.20 17.70 17.20 17.70 17.20 17.70 17.20 17.70 17.20 17.70 17.20 17.70 17.20 17.70 17.20 17.70 17.20 17.77 17.20 17.77 17.20 17.77 17.20 17.77 17.20 17.77 17.20 17.77 17.20 17.77 17.20 17.77 17.20 17.77 17.20 17.77 17.20 1																61.1
3/20/2014 43134 0.00 43134 4.6 7.6 1124 1178 314.1 4.7 ND 4340 934 76.4 **** 6/36/2014 43134 NM NM NM NS		9/19/2013	431.34	0.08	0.00	431.26	3.2	18.9	23.3	158	203.4	2.7	ND		1,250	102
**** 6/18/2014 4/31/4 1/23 0.00 4/30/1 0.89 0.43/0 ND																34.3
*** 0.332.01 0.43.34 1.43 0.334 1.00 1.00 1.10																76.6
99232014 43137 2.51 0.00 428.86 3.4 ND ND ND 3.4 17.3 759 313 NN 12232014 43137 2.64 0.00 428.59 3.0 0.27 (J) ND ND 327 (J) 22.6 62.9 671 309 NN 6/222015 43137 2.51 0.00 428.89 3.0 0.27 (J) ND ND 4.0 ND ND 4.0 18.2 190 391 320 NH 192 190 391 320 NH 191 191 321 191 94 191 94 191 94 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 191 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
YMV-3 12222014 43137 2.64 0.00 428.73 2.7 ND ND ND 2.7 18.7 103 740 310 ND 5/242015 43137 2.51 0.00 428.86 2.4 ND ND ND 2.7 18.7 336 3315 0.41 (J) 9/212015 43137 2.56 0.00 428.46 2.4 ND ND ND 2.1 16.5 202 677 336 3316 0.41 (J) 19/212015 43137 2.84 0.00 428.53 5.2 ND ND ND 2.2 16.6 96.2 366 ND (-64) ND 6/72016 431.37 2.84 0.00 428.43 6.8 ND ND ND 5.8 ND (-64) ND (-64) <t< td=""><td>***</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	***															
3/24/2015 431.37 2.78 0.00 428.59 3.0 0.27 (J) ND ND 3.27 (J) 22.6 92.9 671 309 NM 6/22/2015 431.37 2.56 0.00 428.79 4.0 ND ND ND 16.2 150 391 320 NM 128/2015 431.37 2.57 0.00 428.40 2.2 ND ND ND 2.2 18.6 962 364 ND (e40) ND 4.85 1.6 0.96 (J) 5.7 15.06 (J) 16.5 202 671 345 1.6 (J) 0.7 1.6 (J) 3.3 1.6 (J) 3.3 1.6 (J) <																
66/22/2015 431.37 2.51 0.00 428.86 2.4 ND ND ND 2.41 12.77 87.7 336 315 0.41() 12/20/15 431.37 2.56 0.00 428.79 4.0 ND ND ND A0 142 150 391 300 ND 12/20/15 431.37 2.97 0.00 428.40 2.2 ND ND ND 2.2 18.6 96.2 384 ND (564) ND 9/7/2016 431.37 2.44 0.00 428.43 5.8 ND ND ND 5.2 14.3 99.4 2.22 ND (664) ND (51 9/7/2017 431.37 2.94 0.00 428.43 5.8 ND ND ND 1.1 115 238 366 489 ND (51 9/7/2017 431.37 2.65 0.00 428.72 ND ND ND ND ND 1.11 1.5 238																ND
9/21/2015 431.37 2.58 0.00 428.79 4.0 ND ND ND 4.0 18.2 150 391 320 NN 12/9/2015 431.37 2.97 0.00 428.40 2.2 ND ND ND 2.2 19.6 96.2 364 MD (e64) NN 6/7/2016 431.37 2.44 0.00 428.40 5.2 1.0 ND ND 5.2 14.3 994 222 ND (e64) NN 9/13/2016 431.37 2.44 0.00 428.43 5.8 ND ND ND 5.8 ND 135 304 489 ND 11/12/2016 431.37 2.94 0.00 428.43 5.8 ND 0.51/0 0.45/0 6.76/0 7.8 185 727 ND (e64) ND (e10 9/6/2017 431.37 2.65 0.00 428.72 ND <nd< td=""> ND<nd< td=""> ND 10.7 288 336 ND (e11</nd<></nd<>																0.41 (J)
38/82016 431.37 2.97 0.00 428.40 2.2 ND ND ND 2.2 19.6 96.2 364 ND (sc) 9/13/2016 431.37 2.84 0.00 428.63 5.2 ND ND ND 3.3 116. 135 3.04 489 NN 11/12/12/016 431.37 2.94 0.00 428.43 5.8 ND ND ND 5.8 ND 185 645 260 ND (s4) 39/2017 431.37 2.66 0.00 428.43 5.8 ND ND ND ND 1.1 11.5 238 376 318 ND (s4) 9/6/2017 431.37 2.65 0.00 428.72 ND ND ND ND ND ND 334 336 ND (s4) 36/2018 3374 420 ND (s4) 36/2018 31.37 2.85 0.00 428.79 ND ND ND ND ND ND				2.58	0.00	428.79		ND	ND	ND		18.2	150		320	ND
6/7/2016 431.37 2.84 0.00 428.53 5.2 ND ND ND 5.2 14.3 99.4 222 ND (<64) NN 9/13/2016 431.37 2.44 0.00 428.93 3.3 ND ND ND 3.3 11.6 135 304 489 ND 11/21/2016 431.37 2.94 0.00 428.43 5.8 ND 0.51 (J) 0.45 (J) 6.76 (J) 7.9 185 727 ND (<64)															345	1.6 (J)
9132016 43137 2.44 0.00 428.93 3.3 ND ND ND 3.3 11.6 135 304 469 NN 11/21/2016 431.37 2.94 0.00 428.43 5.8 ND ND 5.8 ND 185 645 260 NC 3/9/2017 431.37 2.94 0.00 428.43 5.8 ND 0.51 (J) 0.45 (J) 6.76 (J) 7.9 185 727 ND (64) ND (1.1 11.1 1.1 2.38 376 318 ND (1.1 1.1 1.1 2.38 376 318 ND (1.1 11/1/2017 431.37 2.67 0.00 428.72 ND ND ND ND ND 338 374 420 ND (1.1 11/1/2017 431.37 2.56 0.00 428.70 ND ND ND ND 2.65 189 150 (J) 162 ND (1.5 ND (1.5 1.44 ND ND (0.53 5.8																ND
YMW-3 9/23/2014 431.37 2.94 0.00 428.43 5.8 ND ND ND 5.8 ND 165 646 260 ND 3/9/2017 431.37 2.94 0.00 428.43 5.6 ND 0.51 (J) 0.45 (J) 6.76 (J) 7.9 185 727 ND (-64) ND (-1.0 9/9/2017 431.37 2.65 0.00 428.72 ND 10.7 280 334 358 ND (-1.1 111/1/2018 431.37 2.58 0.00 428.52 0.53 ND 1.0 1.0 1.0 1.0																
Singeon 3ingeon 431.37 2.94 0.00 428.43 5.8 ND 0.51 (J) 0.45 (J) 6.76 (J) 7.9 165 727 ND (<64) ND (<1.0 0/7/2017 431.37 3.10 0.00 428.27 1.1 ND																
YMW-3 9/3/2014 443.37 3.10 0.00 428.72 1.1 ND N																
9/6/2017 431.37 2.65 0.00 428.72 ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>()</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND (<1.0)</td>									()							ND (<1.0)
11/1/2017 431.37 2.67 0.00 428.70 ND ND ND ND ND ND ND ND 338 374 420 ND(<ft< th=""> 3/6/2018 431.37 2.85 0.00 428.52 0.53 ND ND ND ND 0.53 5.8 200 514 308 ND(1.1 9/5/2018 431.37 2.55 0.00 428.86 ND ND ND ND 2.0 6189 150.0 168 327 1.1 (J 9/5/2018 431.37 2.51 0.00 430.98 ND 0.39 (J) 9.0 5.1 14.49 (J) ND ND ND (<0.98</ft<>																ND (<1.1)
6/20/2018 431.37 2.58 0.00 428.79 ND ND </td <td></td> <td>374</td> <td>420</td> <td>ND (<1.1)</td>														374	420	ND (<1.1)
9/5/2018 431.37 2.51 0.00 428.86 ND ND ND ND 22.3 184 144 (J) 151 ND (<0.98 YMW-3 9/23/2014 440.39 9.41 0.00 430.98 ND 0.39 (J) 9.0 5.1 14.49 (J) ND																ND (<1.1)
YMW-3 9/23/2014 440.39 9.41 0.00 430.98 ND 0.39 (J) 9.0 5.1 14.49 (J) ND ND 268 327 1.1 (J) Casing: 3/24/2015 440.39 9.86 0.00 430.53 ND																
Casing: 0 to 4.5 feet 12/23/2014 440.39 9.86 0.00 430.53 ND ND </td <td></td> <td>9/5/2018</td> <td>431.37</td> <td>2.51</td> <td>0.00</td> <td>428.86</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>22.3</td> <td>184</td> <td>144 (J)</td> <td>151</td> <td>ND (<0.98)</td>		9/5/2018	431.37	2.51	0.00	428.86	ND	ND	ND	ND	ND	22.3	184	144 (J)	151	ND (<0.98)
Casing: 0 to 4.5 feet 12/23/2014 440.39 9.86 0.00 430.53 ND ND </td <td>YM\\/_3</td> <td>9/23/2014</td> <td>440 30</td> <td>Q <u>4</u>1</td> <td>0.00</td> <td>430 08</td> <td>ЛИ</td> <td>039(1)</td> <td>٩n</td> <td>51</td> <td>14 49 (1)</td> <td>ND</td> <td>ND</td> <td>260</td> <td>307</td> <td>11/1</td>	YM\\/_3	9/23/2014	440 30	Q <u>4</u> 1	0.00	430 08	ЛИ	039(1)	٩n	51	14 49 (1)	ND	ND	260	307	11/1
Casing: 0 to 4.5 feet 3/24/2015 440.39 8.17 0.00 432.22 ND ND <td>111144-0</td> <td></td> <td>ND</td>	111144-0															ND
0 to 4.5 feet 6/22/2015 440.39 8.54 0.00 431.85 ND	Casing:															ND
Screen: 9/21/2015 440.39 9.21 0.00 431.18 ND ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></th<>																ND
4.5 to 19.5 feet 3/8/2016 440.39 8.63 0.00 431.76 ND															(/	ND
6/7/2016 440.39 8.86 0.00 431.53 ND ND <td></td> <td>ND</td>																ND
9/13/2016 440.39 9.54 0.00 430.85 ND ND </td <td>4.5 to 19.5 feet</td> <td></td> <td>ND</td>	4.5 to 19.5 feet															ND
11/21/2016 440.39 10.44 0.00 429.95 ND																
3/9/2017 440.39 9.55 0.00 430.84 ND ND <td></td> <td>ND ND</td>																ND ND
I 6/7/2017 440.39 8.82 0.00 431.57 ND ND <td></td> <td>ND (<1.0)</td>																ND (<1.0)
9/6/2017 440.39 8.84 0.00 431.55 ND ND <td>+</td> <td></td> <td>ND (<1.0)</td>	+															ND (<1.0)
3/6/2018 440.39 7.97 0.00 432.42 ND ND ND ND ND 13.3 ND (<100) ND (<83) ND (<1.1 6/20/2018 440.39 8.27 0.00 432.12 ND ND ND ND ND ND (<100)														ND (<100)	. ,	ND (<1.1)
6/20/2018 440.39 8.27 0.00 432.12 ND (<10) ND (<83) ND (<1.1 9/5/2018 440.39 8.48 0.00 431.91 ND ND ND ND ND ND ND (<1.1																ND (<1.1)
9/5/2018 440.39 8.48 0.00 431.91 ND ND ND ND ND ND ND ND (<100) ND (<53) ND (<0.98																ND (<1.1)
MDE MEAT GNCSG** 5 1,000 700 10,000 NA 20 NA 47 47 0.7		9/5/2018	440.39	8.48											· · · ·	
					MDEM	EAT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7

		Casing	Depth to	Product	Water Table	Benzene	Toluene	Ethyl-	Xylenes	Total BTEX	MTBE	ТВА	TPH-GRO	TPH-DRO	Naphthalene
Well No.	Date	Elevation* (feet)	Water (feet)	Thickness (feet)	Elevation* (feet)	(μg/L)	(μg/L)	benzene (μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
20.04	0/02/2014	()	()	、 ,	. ,		0.0		400	204.2	4.2	ND	0 700	4 050	
YMW-4	9/23/2014 12/23/2014	433.72 433.72	4.71 4.31	0.00		6.1 5.7	9.2 14.2	94.0 44.7	192 219	301.3 283.6	4.3 5.9	ND 16.6	3,780 4,240	1,050 612	45.0 57.3
Casing:	3/24/2015	433.72	4.06	0.00		4.0	21.6	36.6	434	496.2	10.6	53.8	4,470	1,190	73.1
0 to 2 feet	6/22/2015	433.72	3.96	0.00		5.6	21.6	36.3	376	439.5	24.5	114	4,280	2,460	124
	9/21/2015	433.72	4.45	0.00		7.8	17.2	33.2	289	347.2	38.9	163	5,480	1,560	138
Screen:	12/9/2015	433.72 433.72	4.34 4.18	0.00		9.2 2.4	<u>13.7</u> 3.1	31.9 4.4	252 39.0	306.8 48.9	38.4 10	251 68.8	5,110 828	1,560 414	87.8 15.8
2 to 17 feet	3/8/2016 6/7/2016	433.72	4.18	0.00		2.4 13.9	9.5	27.8	39.0	48.9	32.3	280	4,040	1,790	98.7
	9/13/2016	433.72	4.46	0.00		18.4	8.7	25.3	108	160.4	24.9	240	3,500	2,490	64.3
	11/21/2016	433.72	4.85	0.00		18.8	5.2	13.6	59.5	97.1	28.4	247	3,520	299	28.9
	3/9/2017	433.72	4.30	0.00		19.6	4.8	8.9	47.4	80.7	50.9	ND	2,830	925	32.4
	6/7/2017 9/6/2017	433.72 433.72	4.26 4.18	0.00		13.4 0.49 (J)	3.0 ND	7.6 0.70 (J)	18.7	42.7 2.79 (J)	21.4 0.46 (J)	169 7.2 (J)	1,940 262	1,300 134	20.8 ND (<1.1)
	11/1/2017	433.72	4.10	0.00		0.49 (J) 20.9	12.9	35.9	1.6 286	2.79 (3)	0.40 (J) 17.8	345	3,570	1,730	50.3
	3/6/2018	433.72	4.24	0.00		6.2	2.2	3.6	29.6	41.6	10.0	144	688	383	4.8 (J)
	6/20/2018	433.72	3.89	0.00		5.0	ND	0.63 (J)	ND	5.6 (J)	16.6	361	591	623	ND (<1.1)
	9/5/2018	433.72	4.01	0.00	429.71	10.4	0.72 (J)	4.2	5.7	21.0 (J)	14.0	355	1,010	813	1.9 (J)
YMW-5	9/23/2014	430.70	4.42	0.00	426.28	ND	ND	ND	0.63 (J)	0.63 (J)	6.6	ND	294	273	ND
111111-0	9/23/2014	430.70	4.42	0.00		0.25 (J)	ND	ND	0.63 (J) ND	0.63 (J) 0.25 (J)	5.6	ND ND	294 ND	273 ND (<80)	ND
Casing:	3/24/2015	430.70	3.05	0.00		0.65	ND	ND	ND	0.65	7.7	7.0 (J)	ND	ND (<80)	ND
0 to 1 feet	6/22/2015	430.70	3.05	0.00		0.92	ND	ND	ND	0.92	6.3	10.3	ND	123	ND
Carrow	9/21/2015 12/9/2015	430.70	3.52	0.00		0.54	ND	ND	ND	0.54	9.2	23.5	ND ND	98.0	ND
Screen: 1 to 16 feet	3/8/2015	430.70 430.70	3.16 2.99	0.00		0.35 (J) 0.38 (J)	ND ND	ND ND	ND ND	0.35 (J) 0.38 (J)	7.4 6.8	27.3 19.7	ND ND (<55)	ND (<64) ND (<64)	ND ND
1 10 10 10 10 10	6/7/2016	430.70	3.01	0.00		0.38 (J) 0.23 (J)	ND	ND	ND	0.38 (J)	6.8	12.6	ND (<55)	ND (<64)	ND
	9/13/2016	430.70	3.39	0.00		0.20 (J)	ND	ND	ND	0.20 (J)	6.6	15.4	ND (<100)	ND (<64)	ND
	11/21/2016	430.70	3.74	0.00		ND	ND	ND	ND	ND	6.2	26.2	ND (<100)	565	ND
	3/9/2017	430.70	3.14	0.00		0.30 (J)	ND	ND	ND	0.30 (J)	5.7	23.2	ND (<100)	ND (<64)	ND (<100)
	6/7/2017 9/6/2017	430.70 430.70	3.07 2.98	0.00		0.25 (J) ND	ND ND	ND ND	ND ND	0.25 (J) ND	4.5	13.5 12.2	ND (<100) ND (<100)	105 171	ND (<100) ND (<1.1)
	11/1/2017	430.70	3.23	0.00		ND	ND	ND	ND	ND	5.5	27.9	ND (<100)	109	ND (<1.1)
	3/6/2018	430.70	2.83	0.00		ND	ND	ND	ND	ND		27.9	ND (<100)	98.6	ND (<1.1)
	6/20/2018	430.70	2.67	0.00		ND	ND	ND	ND	ND	3.0	ND	ND (<100)	ND (<83)	ND (<1.1)
-	9/5/2018	430.70	2.74	0.00	427.96	ND	ND	ND	ND	ND	3.3	ND	ND (<100)	ND (<53)	ND (<0.98)
YMW-6	9/23/2014	432.68	6.61	0.00	426.07	ND	ND	ND	ND	ND	1.5	26.9	ND	ND (<80)	ND
111111 0	12/23/2014	432.68	5.69	0.00		ND	ND	ND	ND	ND	1.4	24.7	ND	ND (<80)	ND
Casing:	3/24/2015	432.68	5.11	0.00		ND	ND	ND	ND	ND	2.1	44.5	ND	ND (<80)	ND
0 to 3 feet	6/22/2015	432.68	5.11	0.00		ND	ND	ND	ND	ND	2.4	65.6	ND	ND	ND
Screen:	9/21/2015 12/9/2015	432.68 432.68	6.11 5.56	0.00		ND ND	ND ND	ND ND	ND ND	ND ND	2.9 2.9	73.3 80.3	ND ND	76.9 ND (<64)	ND ND
3 to 18 feet	3/8/2016	432.68	5.10	0.00		ND	ND	ND	ND	ND	3.3	91.0	ND (<55)	ND (<64)	ND
	6/7/2016	432.68	5.36	0.00		ND	ND	ND	ND	ND		109	ND (<55)	ND (<64)	ND
	9/13/2016	432.68	6.38	0.00		ND	ND	ND	ND	ND	4.3	98.6	ND (<100)	ND (<64)	ND
	11/21/2016	432.68	7.05	0.00		ND	ND	ND	ND	ND	3.8	85.9	ND (<100)	ND (<64)	ND
	3/9/2017 6/7/2017	432.68 432.68	6.25 5.49	0.00		ND ND	ND ND	ND ND	ND ND	ND ND	4.5 4.9	ND 97.3	ND (<100) ND (<100)	ND (<64) ND (<64)	ND (<1.0) ND (<1.0)
	9/6/2017	432.68	6.25	0.00		ND	ND	ND	ND	ND	4.0	89.6	ND (<100)	ND (<83)	ND (<1.1)
	11/1/2017	432.68	6.65	0.00	426.03	ND	ND	ND	ND	ND	4.7	83.7	ND (<100)	ND (<83)	ND (<1.1)
	3/6/2018	432.68	5.35	0.00		ND	ND	ND	ND	ND		85.6	ND (<100)	ND (<83)	ND (<1.1)
	6/20/2018 9/5/2018	432.68 432.68	4.89 5.05	0.00		ND ND	ND ND	ND ND	ND ND	ND ND	5.5 5.3	96.8 98.4	ND (<100) ND (<100)	ND (<83) ND (<53)	ND (<1.1) ND (<0.98)
	9/3/2010	432.00	5.05	0.00	427.03	ND	ND	ND	ND	ND	5.5	50.4	ND (<100)	ND (<53)	ND (<0.96)
YMW-7	9/23/2014	449.40	15.33	0.00		173	141	428	2,240	2,982	10.0	ND	17,500	1,670	73.6
	12/23/2014	449.40	15.16	0.00		176	130	690	2,580	3,576		ND	23,800	2,250	99.7
Casing:	3/24/2015		15.54	0.00		142	78.0	261	2,330	2,811		ND	16,300	2,560	92.8
0 to 18 feet	6/22/2015 9/21/2015	449.40 449.40	15.22 15.32	0.00		134 101	37.4 18.9	146 67.9	828 286	1,145.4 473.8	9.1 8.3	ND 17.0	6,820 4,970	1,680 736	39.8 22.1
Screen:	12/9/2015			0.00		101	80.2	301	1,140			ND	4,970	1,630	122
18 to 28 feet	3/8/2016		15.13	0.00	434.27	136	52.0	140	688	1,016.0	7.3	17.0 (J)	7,050	1,300	97.7
	6/7/2016		15.09	0.00		127	42.3	166	620	955.3	7.6	15.7	7,370	1,320	75.6
	9/13/2016	449.40	15.47	0.00		118 97.2	65.2	296 313	961	1,440.2	6.9	14.0 (J)	9,010	1,480 841	103 108
	11/21/2016 3/9/2017	449.40 449.40	15.69 16.31	0.00		97.2	68.1 81.7	313	1,080 1,450	1,558.3 1,918.7	ND 1.9	ND ND	10,300 12,000	841 1,290	108
+	6/7/2017	449.40	15.24	0.00		40.0 60.0	76.2	303	1,430	1,749.2		ND	13,100	2,350	121
	9/6/2017	449.40	15.68	0.00	433.72	57.3	92.3	398	1,470	2,017.6	ND	ND	13,200	1,650	130
	11/1/2017	449.40	15.91	0.00		48.5		374	1,550	2,062		ND	13,200	2,330	116
	3/6/2018 6/20/2018	449.40 449.40	16.12 14.75	0.00		37.9	54.1 23.6	267 195	1,190 473	1,549 750		ND 15.9 (J)	13,000		
	9/5/2018			0.00		57.9 64.9	23.0	195	207	387	3.5	15.9 (J) 12.1	6,530 3,810	1,100 ND (<53)	63.4 39.8
	2.0.2010				EAT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7
											_~		••		

Number Design Parter				ſ												
WHW Data Print Pr							Benzene	Toluene	-	Xvlenes	Total BTEX	MTBE	тва	TPH-GRO	TPH-DRO	Naphthalene
WWA 9232014 446.9 136.9 0.00 -433.8 44.6 85.0 75.8 22.70 37.12 44.8 No 16.100 14.200 14.200 Carry Ca	Well No.	Date														· · · · · · · · · · · · · · · · · · ·
122/2211 4463 13.66 Cols 1 (2) 44.01 V(1) V(1) V(2) V(2) <thv(2)< th=""> V(2) <thv(2)< th=""></thv(2)<></thv(2)<>			()	· /	、 ,	()										
Openang 32/2010 446.01 12.91 6.00 14.90 100	YMW-8															
bb / bit 6222015 4631 13.40 0.00 433.27 91.8 10.0 225 31.6 17.2 4.330 17.7 4.330 17.7 4.330 17.7 4.330 17.7 4.330 17.7 4.330 17.6 17.5 <th17.5< th=""> <th17.5< th=""> 17.5<td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th17.5<></th17.5<>	0															
Bertom Bertom Bertom Bestom Bestom<	-														1 /	
Biogener Tayozna 44:01 13:04 0.00 44:02 35.5 60:0 0.01 10:00 2277-2 22.6 10:0 12:00 2277-2 12:00 12:00 12:00 12:00 12:00 12:00 12:00 10:00 <t< td=""><td>0 to 7 leet</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td></t<>	0 to 7 leet													,		
The 22 feet 38.0014 44.81 15.0 0.0 4.00 ND ND ND ND ND	Screen:															
977016 446.01 103 0.01 43.02 115 613.0 26.1 20.5 44.60 10.00 110300 46.01 14.03 0.01 43.22 3.10 111 0.00 42.22 12.0 12.0 14.20														,		
Initiation 44931 14.00 0.00 4222 2.23 110 110 110 2.460 3.680 1.68 ND 11.80 0.860 3.680 </td <td></td> <td>6/7/2016</td> <td>446.91</td> <td>13.52</td> <td>0.00</td> <td>433.39</td> <td>72.4</td> <td>14.6</td> <td>341</td> <td>185</td> <td>613.0</td> <td>29.1</td> <td>20.9</td> <td></td> <td></td> <td>77.1</td>		6/7/2016	446.91	13.52	0.00	433.39	72.4	14.6	341	185	613.0	29.1	20.9			77.1
98/0017 446.01 146.01 0.00 443.30 34.2 114 1.00 21.03 ND 29.466 25.66 37.00 42.24 12.0 ND 29.466 3.000 22.4 17.00 18.00																
977017 446.51 11.07 0.00 43.28 41.9 79.5 25.46 3500.52 10.50 23.46 3500.56 350.55 10.50 23.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.46 350.55 35.45 350.55 35.45 350.55																
992007 446.01 14.22 0.00 425.03 7.65 7.69																
Intracrom 448.51 14.40 70.00 42.28 50.80 50.90													()			
3480016 448.81 14.07 0.00 432.94 863 76.0 13.46 46.800 6.02 21.6 102 28.400 44.870 30.201 96.001 44.61 12.20 0.00 44.81 ND ND </td <td></td>																
EC202016 446.81 12.80 0.00 63.411 ND ND </td <td></td> <td></td> <td></td> <td>-</td> <td></td>				-												
942016 446.97 6.20 0.20 283 0.4 0.20 277 5.60 0.40 1.74 3.000 48.3 98.7 NM 6 1222016 445.71 5.61 0.00 430.77 NO																
Casing: 0 to 2 adv2014 438.71 5.94 0.00 430.77 ND		9/5/2018	446.91	12.99	0.00	433.92	29.3	10.4	202	267	509	9.4	17.4			
Casing: 0 to 2 adv2014 438.71 5.94 0.00 430.77 ND																
Casang 0 b 2 5 set 50 c 2 5 set 0 b 2 5 set 0 c 2 5 set	YMW-9															
0 b 2 5 feet 6/22015 436.71 5.81 0.00 430.80 ND	Carling															
Streem: 971/0015 430.71 6.17 0.00 430.84 ND																
Storest. 129/2015 436.71 5.86 0.00 433.85 N.D	0 t0 ∠.5 leet															
2.5 b 17.5 feet 380/2016 436/71 5.43 0.00 431.28 ND	Screen:															
9772016 438.71 6.59 0.00 430.78 ND ND <td></td>																
Internet Internet ND		6/7/2016	436.71	5.93	0.00	430.78	ND	ND	ND	ND	ND	0.48 (J)	ND	ND (<55)	ND (<64)	ND
398207 438.71 6.13 0.00 430.49 ND																
67/2017 438.71 6.43 0.00 430.58 ND ND ND ND ND 0.00 0.06 (J) ND ND (r10)																
998/2017 438.71 6.42 0.00 430.28 ND ND <td></td>																
Intraction Intraction ND ND <td></td>																
38/2018 436/T 5.29 0.00 431.42 ND ND ND ND ND ND ND ND 101 127.5 101 127.5 101 127.5 101 127.5 101 127.5 101																
E8202018 438,71 5.73 0.00 430.88 ND ND <td></td>																
9952018 438.71 5.88 0.00 430.83 ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND (<1.1)</td>						-										ND (<1.1)
Casing: 0 to 8 feet 1222/2014 440.41 9.46 0.00 431.25 0.98 42.1 383 326 752.08 6.3 34.5 4.370 221 677 0 to 8 feet 623/2015 440.41 9.46 0.00 431.23 5.6 75.6 714 1.420 2.215.2 19.3 104 11.100 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.990		9/5/2018	436.71	5.88	0.00	430.83	ND	ND	ND	ND	ND		ND	ND (<100)	ND (<53)	
Casing: 0 to 8 feet 1222/2014 440.41 9.46 0.00 431.25 0.98 42.1 383 326 752.08 6.3 34.5 4.370 221 677 0 to 8 feet 623/2015 440.41 9.46 0.00 431.23 5.6 75.6 714 1.420 2.215.2 19.3 104 11.100 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1.990					c			r								
Casing: 0 to 8 feet 3252(215) 440.41 9.46 0.00 431.15 18.(u) 72.6 72.12 21.30 11.20 70.9 13.300 2.460 166 0 to 8 feet 6/23/2015 440.41 9.20 0.00 431.21 7.0 63.1 807 1.460 2.337.1 9.4 12.0 9.470 2.560 250 288 11.100 1.980 188 9/21/0216 440.41 9.41 0.00 431.21 7.0 63.1 773 1.431.5 50.0 113.13400 1.980 1180 12/10/216 440.41 9.44 0.00 431.17 6.0 28.1 776 7170 1.780.1 50.0 38.4 10.700 1.980 1112 9/14/2016 440.41 9.24 0.00 431.16 7.4 12.7 652 314 966.1 2.4 2.4 76.9 61.30 1.710 1170 1.632 2.00.7 ND ND 8.50 1.710	YP-1															
0 to 8 feet 6232015 440.41 9.18 0.00 43123 5.6 756 714 1420 2.2152 19.3 10.4 11.100 19.80 196 Screen: 30/2016 440.41 9.17 0.00 43124 5.5 31.0 723 1731 15.0 31.13 5.0 113 15.400 1.990 1681 30/2016 440.41 9.14 0.00 431.17 6.0 28.1 7760 1.630 38.4 10.700 1.940 1686 6/6/2016 440.41 8.14 0.00 451.17 6.1 2.22 5.3 7.76 1.437.6 4.2 5.3 8.270 2.490 189 9117220716 440.41 8.14 0.00 431.02 4.0 2.27 6.21 314 986.1 2.4 2.4 6.80 1.710 1.730 1133 1123 10.00 1.730 1130 2.22 1.310 2.2216 3.122.7 3.1 <t< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0															
Screen: 8 to 13 feet 9/22/015 440.41 9.20 0.00 431.21 7.0 63.1 607 1.460 2.337.1 9.4 120 9.470 2.500 280 8 to 13 feet 3/9/2016 440.41 9.14 0.00 431.27 6.6 28.1 756 970 1.760.1 5.0 38.4 10,700 1.940 166 9/14/2016 440.41 8.14 0.00 431.27 6.4 20.2 638 773 1.457.6 4.2 5.3 6.70 1.730 113 9/14/2016 440.41 8.14 0.00 432.23 6.8 12.4 516 2.50 9.700 1.730 113 11/12/20716 440.41 9.39 0.00 431.02 4.2 1.652 314 966.1 2.4 2.4 7.6 53.0 2.300 2.301 150 1.230 1128 2.0.01 3.2.4 1.9 3.4 31.3 7.85 3.98 1.2.2 3.0																
Screen: 8 to 13 feet 12/10/2015 440.41 9.24 0.00 431.24 5.5 310 723 872 1631.5 5.0 113 13.400 1.590 1181 8 to 13 feet 39/2016 440.41 9.44 0.00 431.27 6.4 20.2 638 773 1.437.6 4.2 5.3 8.270 2.490 169 9/14/2016 440.41 9.25 0.00 431.16 7.4 12.7 652 314 9861 2.4 2.4.7 6.960 1.230 129 11/12/2016 440.41 9.25 0.00 431.02 4.0 2.2.7 820 1.160 2.0067 ND ND 8.660 1.770 1.780 1455 9/7/2017 440.41 9.29 0.00 431.12 6.9 23.4 698 466 1.943.3 ND ND 8.70 3.130 222 1.9.01 5.2.7 1.4600 3.600 249.4 9.6 9.62.0 2.000 <td>0100100</td> <td></td>	0100100															
8 to 13 feet 39/2016 440.41 9.24 0.00 431.17 6.0 22.1 756 970 1.760.1 5.0 38.4 10.700 1.940 166 6/8/2016 440.41 9.14 0.00 431.27 6.4 20.2 638 7.73 1.437.6 4.2 5.3 8.270 2.490 118 9/14/2016 440.41 9.25 0.00 431.16 7.4 1.2.7 652 314 966.1 2.4 2.4 7.6 6.950 1.230 1.16 3/10/2017 440.41 9.39 0.00 431.02 4.0 2.2.7 820 1.160 2.067.7 ND ND ND 1.710 1171 9/7/2017 440.41 9.22 0.00 431.12 6.9 23.4 698 466 1.914.3 ND ND ND 8.770 3.130 3/7/2018 440.41 9.41 0.00 431.01 1.0.1 30.6 6787 1.918 </td <td>Screen:</td> <td></td>	Screen:															
9/14/2016 440.41 8.18 0.00 432.23 6.8 124 516 259 794.2 3.5 25.0 6.130 1.730 1132 3/10/2017 440.41 9.35 0.00 431.02 4.0 22.7 620 1.160 2.007.7 ND ND 8.680 1.740 177 9/7/2017 440.41 9.34 0.00 431.02 4.0 22.7 820 1.160 2.007 ND ND 8.680 1.770 177 9/7/2017 440.41 9.29 0.00 431.07 4.4 144 6683 1.020 1.721.8 2.0 (J) 32.4 (J) 11.500 1.780 133 9/7/2017 440.41 9.41 0.00 431.00 5.5 54.7 952 2.210 3.222 1.9 (J) 52.7 14.800 3.660 2.230 2.020 3/7/2018 440.41 9.41 0.00 431.00 5.5 54.7 952 2.210	8 to 13 feet			9.24	0.00	431.17		28.1					38.4	,		
YP-2 9/23/2014 448.35 8.25 0.00 431.10 NS		6/8/2016	440.41	9.14		431.27	6.4	20.2	638		1,437.6		53.3	8,270	2,490	189
9/10/2017 440.41 9.39 0.00 431.02 4.0 22.7 820 1.160 2.0067 ND ND 8.680 1.710 171 9/7/2017 440.41 9.34 0.00 431.07 4.4 14.4 6683 1.020 1.721.8 2.0.(J) 32.4 (J) 11,500 1,700 13,130 228 9/7/2017 440.41 9.32 0.00 431.09 8.4 31.3 785 398 1,222.7 3.1 ND 6,930 2,230 202 3/7/2018 440.41 9.14 0.00 431.07 4.2 22.6 811 1,360 2,198 4.1 89.5 9,620 2,200 245 9/6/2018 440.41 9.14 0.00 431.07 NL NL NL 8.05 9,620 2,000 2,030 202 YP-2 9/23/2014 438.35 8.25 0.00 430.10 NL ND ND ND ND ND																
Image: Product in the image:														,		
9/7/2017 440.41 9.29 0.00 431.12 6.9 23.4 698 466 1.194.3 ND ND 8,770 3,130 228 11/1/2017 440.41 9.41 0.00 431.09 8.4 31.3 785 398 1,222.7 1.1 ND 6,930 2,230 202 3/7/2018 440.41 9.41 0.00 431.07 4.2 22.6 811 1,360 2,198 4.1 89.5 9,620 2,000 245 9/6/2018 440.41 9.01 0.00 431.40 10.1 30.6 688 759 1,488 5.3 115 9,700 2,030 202 YP-2 9/23/2014 438.35 8.25 0.00 430.10 NS ND 10.0 8.5 7.4 (J) ND 0.40 (J) 0.43 (J) ND ND ND 3.0 8.5 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			-													
11/1/2017 440.41 9.32 0.00 431.09 8.4 31.3 785 398 1,222.7 3.1 ND 6,930 2,230 202 3/7/2018 440.41 9.41 0.00 431.00 5.5 54.7 952 2,210 3,222.2 1.9 (J) 52.7 14,600 3,660 284 62/12018 440.41 9.14 0.00 431.40 10.1 30.6 688 759 1.488 5.3 115 9,700 2,030 202 YP-2 9/23/2014 438.35 8.25 0.00 430.10 NS SS	*															
3/7/2018 440.41 9.41 0.00 431.00 5.5 54.7 952 2.210 3.222.2 1.9 (J) 52.7 14,600 3,660 284 6/21/2018 440.41 9.14 0.00 431.27 4.2 22.6 811 1,360 2,198 4.1 89.5 9,620 2,000 245 9/6/2018 440.41 9.01 0.00 431.40 10.1 30.6 688 759 1.488 5.3 115 9,700 2,030 202 VP-2 9/3/2014 438.35 8.25 0.00 430.10 NS			-													
6/21/2018 440.41 9.14 0.00 431.27 4.2 22.6 811 1.360 2.198 4.1 89.5 9.620 2.000 245 9/6/2018 440.41 9.01 0.00 431.40 10.1 30.6 688 759 1.488 5.3 115 9.700 2.30 202 VP-2 9/23/2014 438.35 8.25 0.00 430.10 NS SS <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td>,</td><td></td></t<>														,	,	
YP-2 9/23/2014 438.35 8.25 0.00 430.10 NS ND ND ND R42(1) ND R42(1) ND R41(1) ND R41(1) ND R41(1) ND R41(1) ND R41(1) R42(1) R53(1) R21(1) R21(1) R21(1)							4.2		811			4.1			2,000	
Casing: 12/23/2014 438.35 8.10 0.00 430.25 3.0 ND ND ND 3.0 8.5 7.4 (J) ND ND (<80) 0.43 (J) 0 to 7 feet 3/25/2015 438.35 8.05 0.00 430.37 3.9 ND ND ND 7.0 12.5 ND ND ND (<80)		9/6/2018	440.41	9.01	0.00	431.40	10.1	30.6	688	759	1,488	5.3	115	9,700	2,030	202
Casing: 12/23/2014 438.35 8.10 0.00 430.25 3.0 ND ND ND 3.0 8.5 7.4 (J) ND ND (<80) 0.43 (J) 0 to 7 feet 3/25/2015 438.35 8.05 0.00 430.37 3.9 ND ND ND 7.0 12.5 ND ND ND (<80)		0/05/55									• · · -					
Casing: 0 to 7 feet 3/25/2015 438.35 8.05 0.00 430.30 5.3 ND 1.7 ND 7.0 12.5 ND ND ND (<80) 0.42(J) 0 to 7 feet 6/23/2015 438.35 7.98 0.00 430.37 3.9 ND ND ND 3.9 12.6 4.7 (J) ND 95 ND 9/22/2015 438.35 8.13 0.00 430.22 5.2 0.20 (J) ND 0.44 (J) 10.42 (J) 15.5 7.6 322 224 0.81 (J) 7 to 12 feet 3/9/2016 438.35 8.15 0.00 430.20 62.4 0.21 (J) 2.8 0.44 (J) 65.85 (J) 32.7 18.9 324 110 0.66 (J) 9/14/2016 438.35 8.07 0.00 430.28 2.0 ND ND ND 8.0 6.1 37.0 215 ND (<64)	YP-2															
0 to 7 feet 6/23/2015 438.35 7.98 0.00 430.37 3.9 ND ND 3.9 12.6 4.7 (J) ND 95 ND Screen: 12/10/2015 438.35 8.13 0.00 430.22 5.2 0.20 (J) ND 0.77 (J) 6.17 (J) 13.2 60.2 399 299 0.52 (J) 7 to 12 feet 12/10/2015 438.35 8.15 0.00 430.20 62.4 0.21 (J) 2.8 0.44 (J) 165.85 (J) 32.7 18.9 324 110 0.66 (J) 6/8/2016 438.35 8.07 0.00 430.28 2.0 ND ND ND 2.0 6.1 37.0 215 ND (<64)	Casing															
9/22/2015 438.35 8.13 0.00 430.22 5.2 0.20 (J) ND 0.77 (J) 6.17 (J) 13.2 60.2 399 299 0.52 (J) Screen: 12/10/2015 438.35 8.25 0.00 430.10 9.8 0.18 (J) ND 0.44 (J) 10.42 (J) 15.5 76.0 322 254 0.81 (J) 7 to 12 feet 3/9/2016 438.35 8.15 0.00 430.20 62.4 0.21 (J) 2.8 0.44 (J) 16.2 (J) 32.4 110 0.66 (J) 6/8/2016 438.35 8.07 0.00 430.28 2.0 ND ND ND 13.9 17.7 23.4 159 151 ND 9/14/2016 438.35 8.11 0.00 430.24 6.9 0.46 (J) 15.9 7.4 30.66 (J) 8.6 167 1,030 433 7.7 3/10/2017 438.35 8.10 0.00 430.22 1.4 ND ND ND																
Screen: 12/10/2015 438.35 8.25 0.00 430.10 9.8 0.18 (J) ND 0.44 (J) 10.42 (J) 15.5 76.0 322 254 0.81 (J) 7 to 12 feet 3/9/2016 438.35 8.15 0.00 430.20 62.4 0.21 (J) 2.8 0.44 (J) 16.55 (J) 32.7 18.9 324 110 0.66(J) 0.66(J) 438.35 8.07 0.00 430.28 13.9 ND ND ND 13.9 17.7 23.4 159 151 ND 9/14/2016 438.35 8.07 0.00 430.28 2.0 ND ND ND 2.0 6.1 37.0 215 ND (<64)	0.071001															
3/9/2016 438.35 8.15 0.00 430.20 62.4 0.21 (J) 2.8 0.44 (J) 65.85 (J) 32.7 18.9 324 110 0.66 (J) 6/8/2016 438.35 8.07 0.00 430.28 13.9 ND ND ND 13.9 17.7 23.4 159 151 ND 9/14/2016 438.35 8.07 0.00 430.28 2.0 ND ND ND 2.0 6.1 37.0 215 ND (s64) ND 11/22/2016 438.35 8.11 0.00 430.24 6.9 0.46 (J) 15.9 7.4 30.66 (J) 8.6 167 1,030 437 7.7 3/10/2017 438.35 8.11 0.00 430.24 3.0 ND ND ND 1.6 78.5 168 ND (<64)	Screen:															
9/14/2016 438.35 8.07 0.00 430.28 2.0 ND ND ND 2.0 6.1 37.0 215 ND (<64) ND 11/22/2016 438.35 8.11 0.00 430.24 6.9 0.46 (J) 15.9 7.4 30.66 (J) 8.6 167 1,030 433 7.7 3/10/2017 438.35 8.11 0.00 430.22 3.0 ND ND ND 3.0 11.6 78.5 168 ND (<64)		3/9/2016	438.35					0.21 (J)		0.44 (J)	65.85 (J)	32.7	18.9			
11/22/2016 438.35 8.11 0.00 430.24 6.9 0.46 (J) 15.9 7.4 30.66 (J) 8.6 167 1,030 437 7.7 3/10/2017 438.35 8.11 0.00 430.24 3.0 ND ND ND 3.0 11.6 78.5 168 ND (<64)																
3/10/2017 438.35 8.11 0.00 430.24 3.0 ND ND 3.0 11.6 78.5 168 ND (<64) ND (<1.0) 9/7/2017 438.35 8.10 0.00 430.25 1.4 ND ND ND 1.4 10.1 26.3 121 (J) 196 ND (<1.0)																
9/7/2017 438.35 8.10 0.00 430.25 1.4 ND ND N.1 10.1 26.3 121 (J) 196 ND (<1.1) # 6/8/2017 438.35 8.23 0.00 430.12 2.0 ND ND ND 2.0 13.1 21.6 130 (J) 192 ND (<1.1)								()								
i 6/8/2017 438.35 8.23 0.00 430.12 2.0 ND ND ND 2.0 13.1 21.6 130 (J) 192 ND (<1.1) 9/7/2017 438.35 8.10 0.00 430.25 1.4 ND ND ND 1.4 10.1 26.3 121 (J) 196 ND (<1.1)																
9/7/2017 438.35 8.10 0.00 430.25 1.4 ND ND N.1 10.1 26.3 121 (J) 196 ND (<1.1) 11/1/2017 438.35 8.08 0.00 430.27 6.7 ND 3.0 0.36 (J) 10.1 10.5 257 521 984 4.3 (J) 3/7/2018 438.35 8.12 0.00 430.23 0.93 ND ND 0.93 5.0 44.0 ND (<1.0)	±															
11/1/2017 438.35 8.08 0.00 430.27 6.7 ND 3.0 0.36 (J) 10.1 10.5 257 521 984 4.3 (J) 3/7/2018 438.35 8.12 0.00 430.23 0.93 ND ND 0.93 5.0 44.0 ND (<100)	'															
3/7/2018 438.35 8.12 0.00 430.23 0.93 ND ND 0.93 5.0 44.0 ND (<100) 106 ND (<1.1) 6/21/2018 438.35 8.13 0.00 430.22 0.92 ND ND 0.92 7.0 13.6 ND (<1.0)																
9/6/2018 438.35 8.16 0.00 430.19 2.9 ND ND ND 2.9 9.6 57.7 181(J) 96.3 ND (<0.98)																ND (<1.1)
MDE MEAT GNCSG** 5 1,000 700 10,000 NA 20 NA 47 47 0.7		9/6/2018	438.35	8.16												
					MDE M	EAT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7

Product 6/8/2016 436 51 5.02 0.00 431.49 0.01 ND ND 0.04 4.3 ND ND (refs) 216 11/22/2016 438.51 5.32 0.00 431.49 0.61 ND ND <th></th>																
Viel No. Use Burstein Week (mech) (mech) (mpL)			Casing	Depth to	Product	Water Table	Demmente	Tabuana	Ethyl-	Vidence		MTDE	TDA	TRU ODO		Nashthalasa
VP-3 Cating 0 to 5 fml Cate Cat	Well No.	Date	Elevation*	Water	Thickness	Elevation*			benzene							
Cashng: 1222/2016 438.51 6.21 0.00 431.30 ND ND <th< td=""><td></td><td></td><td>(feet)</td><td>(feet)</td><td>(feet)</td><td>(feet)</td><td>(µg/L)</td><td>(µg/L)</td><td>(µg/L)</td><td>(µg/∟)</td><td>(µg/L)</td><td>(µg/L)</td><td>(µg/L)</td><td>(µg/L)</td><td>(µg/L)</td><td>(µg/L)</td></th<>			(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/∟)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Cashng: 1222/2016 438.51 6.21 0.00 431.30 ND ND <th< td=""><td>YP-3</td><td>9/23/2014</td><td>436.51</td><td>5.21</td><td>0.00</td><td>431.30</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></th<>	YP-3	9/23/2014	436.51	5.21	0.00	431.30	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Casing: 0 is 5, bei 0 is 5, b																NE
Screen: 9222018 436.51 5.19 0.00 431.32 1.0 ND	Casing:	3/25/2015			0.00	431.66	0.30 (J)	ND	ND	ND	0.30 (J)	6.0	ND	ND		NE
Screen: 12/10/2015 436 51 5.27 0.00 431 24 0.09 ND ND ND 0.00 0.98 5.9 5.3 (J) ND ND ND 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ND	0 to 5.5 feet	6/23/2015	436.51	4.75	0.00	431.76	0.91	ND	ND	ND	0.91	6.9	4.8 (J)	ND	199	NE
5.5 to 10.5 feet 39/2016 436.51 4.74 0.00 431.77 0.25 (j) ND ND D 0.25 (j) 2.6 ND ND ND 0.0 2.5 ND ND CS ND ND 0.0 2.5 ND ND CS ND ND ND 0.0 4.4 ND		9/22/2015	436.51	5.19	0.00			ND		=		6.6	ND		122	NE
VP-4 072071 433 0.0 431 0.0 0.84 ND ND 0.84 4.3 ND ND 0.649 11/222016 438.51 5.32 0.000 431.49 0.61 ND ND </td <td></td> <td>NE</td>																NE
9/14/2016 436.51 5.32 0.00 431.19 0.01 ND ND 0.01 6.7 ND ND (r60) NS 3/10/2017 438.51 6.50 0.00 430.88 ND ND ND ND ND ND (r60) NS 6/2017 438.51 5.21 0.00 431.30 0.66 ND ND ND 0.66 4.0 (J) ND (r40) NS (r40) ND (r40)	5.5 to 10.5 feet						· · ·				()					NE
YF-4 11222/016 448.51 6.65 0.00 449.86 ND												-				NE
9 3/10/2017 438.51 5.52 0.00 430.88 0.00 ND ND 0.068 5.01 3.01 ND (r400) ND (r40) ND (r41)																ND
I 068/2017 438.51 5.21 0.00 433.35 0.05 ND ND ND 0.07 0.36 ND ND (10) ND (10) ND (10) (11) (20) (11) (20) (11) (20) (11) (20) (11) (20) (11) (20) (11) (20) (13) (20) (11) (20) (11) (20) (11) (20) (11) (20) (11) (20) (11) (20) (11) (20) (11) (20) (11) (20) (11) (20) (11) (20) (11) (21) <td></td> <td>NE</td>																NE
9/7/2017 436.51 5.16 0.00 431.35 0.67 ND ND 0.67 3.6 ND ND (400) 197 ND 37/2018 439.51 5.94 0.00 431.56 0.25 (J) ND ND 0.00 57 ND ND (410) ND																
Intraction Section ND	Ŧ			-									- (-)			
937/2016 439.5 1 439.5 0.25 (J) ND ND ND 0.25 (J) 2.2 ND ND (r100) <																ND (<1.1 ND (<1.1
Image: Problem Image:																ND (<1.1
96/2018 438.51 4.76 0.00 431.75 ND ND <td></td> <td>1 /</td> <td>ND (<1.1)</td>															1 /	ND (<1.1)
YP-4 9/23/2014 441/83 9.01 0.00 432/20 NS																ND (<0.98)
Casing: 1222/2014 441.83 0.24 0.00 432.99 0.44 (J) ND ND 0.44 (J) 365 19.7 386 ND (r60) 0 to 6 feet 3255/015 441.83 8.65 0.00 432.87 ND																
Casing: 0 to 8 feet (c232015 441.83 (c432.015 8.2.55 (c431.015 0.00 433.88 (c432.015 ND	YP-4													NS		NS
0 to 8 feet 62/32/015 441.83 8.96 0.00 432.87 ND		12/23/2014	441.83	9.24	0.00	432.59	0.44 (J)	ND	ND	ND	0.44 (J)	36.5	19.7	386	ND (<80)	ND
Screen: 9/2/2/015 441.83 9.28 0.00 432.52 ND ND ND ND ND 12/10/2015 13.7 ND ND C64) 3/9/2016 441.83 9.28 0.00 433.29 ND ND ND ND ND ND 2.7 ND ND(c55) ND(c64) 6/8/2016 441.83 9.22 0.00 432.21 ND ND ND ND ND 2.7 ND ND(c55) ND(c64) 9/14/2016 441.83 9.53 0.00 432.20 0.23 (J) ND ND ND 0.02 (J) 14.1 9.3 14.1 (J) ND(c64) DV(c64) 11/12/2016 441.83 9.31 0.00 432.52 ND ND ND ND ND ND 19.9 ND (c100) ND (c49) ND (c40) ND (c40) ND (c40) ND (c40) ND (c40) ND (c43) ND (c40) 111/12/17 441.83 9.42 0.00 432.21																ND
Screen: 12/10/2015 441.83 9.28 0.00 432.255 0.01 (J) ND ND ND 0.14 (J) 19.5 13.7 ND ND (c64) 3/9/2016 441.83 9.02 0.00 432.21 ND ND ND ND ND ND 42 ND ND (c64) 9/14/2016 441.83 9.62 0.00 432.29 ND ND ND ND 42 ND ND (c64) 11/22/2016 441.83 9.52 0.00 432.20 0.23 (J) ND ND ND 0.02 (J) 19.8 18.4 140 (J) 122 3/0/2017 441.83 9.51 0.00 432.20 ND	0 to 8 feet															ND
8 to 13 feet 39/2016 441.83 8.54 0.00 433.29 ND																0.26 (J)
6/8/2016 441.83 9.02 0.00 432.81 ND ND ND ND ND ND ND ND A2 ND ND(c4) 9/14/2016 441.83 9.53 0.00 432.09 0.29 (J) ND ND ND 0.23 (J) 14.1 9.3 (J) 118 (J) ND(c4) 11/22/2016 441.83 9.74 0.00 432.09 0.29 (J) ND																ND
9/14/2016 441.83 9.53 0.00 432.30 0.23 (J) ND ND ND 0.23 (J) 11.1 9.3 (J) 11.8 (J) ND ND 11/22/2016 441.83 9.74 0.00 432.09 0.29 (J) ND ND ND 0.29 (J) 19.8 18.4 140 (J) 122 3/10/2017 441.83 9.51 0.00 432.52 ND (G8/2017 441.83 9.42 0.00 432.52 ND (G8/2017) 441.83 9.42 0.00 432.61 ND ND ND ND ND ND ND ND ND (G8/2012) ND (4100) ND (430) ND (400) ND (430) ND (400) ND (430) ND (410) ND (430) ND (430) ND (430) ND (430) ND (430) ND	8 to 13 feet															ND ND
YP-5 9/23/2014 441.83 9.74 0.00 432.09 0.29 (J) ND																ND ND
YP-5 9/23/2014 441.83 9.91 0.00 431.92 ND																ND
Image: Product				-									-			ND (<1.0)
9/7/2017 441.83 9.72 0.00 432.11 ND ND <td></td> <td>ND (<1.0)</td>																ND (<1.0)
11/1/2017 441.83 9.82 0.00 432.01 ND ND </td <td>T</td> <td></td> <td>ND (<1.1</td>	T															ND (<1.1
3/7/2018 441.83 9.23 0.00 432.60 ND ND <td></td> <td>ND (<1.1</td>																ND (<1.1
6/21/2018 441.83 8.48 0.00 433.35 ND ND </td <td></td> <td>3/7/2018</td> <td>441.83</td> <td></td> <td>0.00</td> <td>432.60</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>8.5</td> <td>ND</td> <td></td> <td></td> <td>ND (<1.1</td>		3/7/2018	441.83		0.00	432.60	ND	ND	ND	ND	ND	8.5	ND			ND (<1.1
YP-5 9/23/2014 433.65 4.01 0.00 429.64 NS ND		6/21/2018	441.83	8.48	0.00	433.35	ND	ND	ND	ND	ND	ND	ND	ND (<100)	ND (<83)	ND (<1.1)
Casing: 12/23/2014 433.65 4.33 0.00 429.32 ND ND <t< td=""><td></td><td>9/6/2018</td><td>441.83</td><td>8.61</td><td>0.00</td><td>433.22</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>4.7</td><td>ND</td><td>ND (<100)</td><td>ND (<53)</td><td>ND (<0.98)</td></t<>		9/6/2018	441.83	8.61	0.00	433.22	ND	ND	ND	ND	ND	4.7	ND	ND (<100)	ND (<53)	ND (<0.98)
Casing: 12/23/2014 433.65 4.33 0.00 429.32 ND ND <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>		-														-
Casing: 0 to 5 feet 3/25/2015 433.65 3.90 0.00 429.75 ND State 0 to 5 feet 6/23/2015 433.65 4.49 0.00 429.63 1.2 ND ND ND 0.28 (J) 32.3 106 ND 117 9/22/2015 433.65 4.12 0.00 429.77 ND ND ND ND ND 3.32 8.7 (J) ND 43.3 0.00 429.77 ND 43.2 8.7 (J) ND 64.3 0.00 429.32 <t< td=""><td>YP-5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NS</td></t<>	YP-5															NS
0 to 5 feet 6/23/2015 433.65 4.49 0.00 429.16 0.28 (J) ND ND 0.28 (J) 32.3 106 ND 117 9/22/2015 433.65 4.12 0.00 429.53 1.2 ND ND ND 1.2 45.7 139 ND 236 Screen: 12/10/2015 433.65 3.88 0.00 429.77 ND ND ND ND ND ND ND Screen: 139/2016 433.65 3.88 0.00 429.34 ND ND ND ND ND ND Screen: 12/10/2016 433.65 4.31 0.00 429.34 ND ND ND ND ND ND ND Screen: 6/8/2016 433.65 4.33 0.00 429.32 ND ND ND ND ND ND ND Screen: 1/1/2/2016 433.65 4.33 0.00 429.32 ND ND ND ND ND																NE
Screen: 9/22/2015 433.65 4.12 0.00 429.53 1.2 ND ND ND 1.2 45.7 139 ND 236 5 to 10 feet 12/10/2015 433.65 3.88 0.00 429.77 ND ND ND ND 33.2 8.7 (J) ND ND (<64)																ND
Screen: 12/10/2015 433.65 3.88 0.00 429.77 ND ND ND ND 33.2 8.7 (J) ND ND (<64) 5 to 10 feet 3/9/2016 433.65 3.97 0.00 429.68 ND ND ND ND ND 1.6 ND ND(<<55)	0 to 5 feet															NE
5 to 10 feet 3/9/2016 433.65 3.97 0.00 429.68 ND	Sereen															NE NE
6/8/2016 433.65 4.31 0.00 429.34 ND ND ND ND 2.2 7.5 (J) ND (<55) 232 9/14/2016 433.65 4.33 0.00 429.32 ND ND ND ND 10.4 32.6 ND (<100)																NL ND
9/14/2016 433.65 4.33 0.00 429.32 ND ND ND ND 10.4 32.6 ND (<100) ND (<64) 11/22/2016 433.65 4.37 0.00 429.28 ND ND ND ND ND 29.7 34.5 ND (<100)	5 to 10 leet															ND
11/22/2016 433.65 4.37 0.00 429.28 ND ND ND ND 29.7 34.5 ND (<100) ND (<64) 3/10/2017 433.65 4.18 0.00 429.47 ND (<100)															-	ND
3/10/2017 433.65 4.18 0.00 429.47 ND ND </td <td></td> <td>NE</td>																NE
6/8/2017 433.65 4.31 0.00 429.34 ND ND <td></td> <td>ND (<1.0</td>																ND (<1.0
9/7/2017 433.65 3.31 0.00 430.34 ND (<100) 140 ND				-		-										ND (<1.0
11/1/2017 433.65 4.33 0.00 429.32 ND ND ND ND ND ND ND ND ND (<100) 299 ND (< 3/7/2018 433.65 3.84 0.00 429.81 ND ND ND ND ND ND ND (<100)																
6/21/2018 433.65 3.93 0.00 429.72 ND ND ND		11/1/2017	433.65	4.33	0.00	429.32	ND	ND	ND	ND	ND	ND	ND			ND (<1.1
9/6/2018 433.65 4.01 0.00 429.64 ND ND ND ND ND 0.62 (J) ND ND (<100) ND (<53) ND (<0																ND (<1.1
																ND (<1.1
MDE MEAT GNCSG** 5 1,000 700 10,000 NA 20 NA 47 47 0.7		9/6/2018	433.65	4.01	0.00	429.64		ND	ND	ND	ND	0.62 (J)	ND	ND (<100)	ND (<53)	ND (<0.98
					MDE MI	EAT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7

Table Notes:

*Elevation is relative to a designated benchmark

(Current Casing elevations surveyed on August 25, 2010.)
**Generic Numeric Cleanup Standards for Groundwater (GNCSG) from Appendix F of the Maryland Department of the Environments (MDE) Maryland Environmental Assessment Technology

(MEAT) for Leaking Undergound Storage Tanks ***The June 18, 2014 TPH-DRO parameters were analyzed out of laboratory holding times; Follow-up samples were collected on June 30, 2014, for analysis of TPH-DRO only +The June 8, 2017 TPH-DRO sample was lost in transit. Follow-up sample was collected on June 21, 2017, for analysis of TPH-DRO only Hold (MDL) = Not Detected above Method Detection Limit. (As of 2012 this changed to mean "Not Detected above Method Detection Limit".) Groundwater elevations corrected for the presence of LPH using the following formula: Water Table Elevation = Water Elevation+(0.75*LPH Thickness) Values in boldface type exceed applicable MDE MEAT GNCSG ND = Nut Detected. X = Betacted. X = Betacted is in provide the presence of LPH using the following formula: Water Table Elevation = Water Elevation+(0.75*LPH Thickness) Values in boldface type exceed applicable MDE MEAT GNCSG V = Net Metacted above More the presence of LPH using the following formula: Water Table Elevation = Water Elevation+(0.75*LPH Thickness) V = Net Metacted Above More the presence of LPH using the following formula: Water Table Elevation = Water Elevation+(0.75*LPH Thickness) V = Net Metacted Above More the presence of LPH using the following formula: Water Table Elevation = Water Elevation+(0.75*LPH Thickness) V = Net Metacted Above Metacted Above Metacted Above Abov

ND = Not Detected

NA = Not Applicable

Total BTEX = sum of Benzene, Toluene, Ethylbenzene, and Xylenes MTBE = Methyl-tertiary-Butyl Ether

NS = Not Sampled for indicated analyte

J = Laboratory Estimated Value

¥ = Bottleware broken in shipment.

μg/L = micrograms per liter † = Samples damaged in shipment, resampled for TPH-DRO on 5/24/12

E= Value Exceeded Laboratory Calibration Range

NM = Not Measured NSVD - Not Surveyed

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
MDE-4	1/19/2015	443.18	0.00	9.89	433.29
	2/25/2015	443.18	0.00	9.99	433.19
Casing:	3/24/2015	443.18	0.00	9.58	433.60
0 to 3 feet	4/20/2015	443.18	0.00	9.41	433.77
_	5/27/2015	443.18	0.00	9.51	433.67
Screen:	6/22/2015	443.18	0.00	9.25	433.93
3 to 13 feet	7/28/2015	443.18	0.00	8.94	434.24
	8/24/2015	443.18	0.00	9.14	434.04 433.90
	9/21/2015	443.18	0.00	9.28	
	10/29/2015	443.18	0.00	9.03	434.15
	11/18/2015 12/9/2015	443.18 443.18	0.00	9.73 9.58	433.45 433.60
	1/12/2016	443.18 443.18	0.00	9.31 8.98	433.87 434.20
	3/8/2016 6/7/2016	443.18	0.00	9.03	434.20
	9/13/2016	443.18	0.00	9.48	434.13
	11/21/2016	443.18	0.00	9.90	433.28
	3/9/2017	443.18	0.00	10.42	433.28
	6/7/2017	443.18	0.00	9.72	433.46
	9/6/2017	443.18	0.00	9.72	433.41
	11/1/2017	443.18	0.00	9.97	433.21
	3/6/2018	443.18	0.00	9.84	433.34
	6/20/2018	443.18	0.00	8.72	434.46
	9/5/2018	443.18	0.00	8.64	434.54
	5.0.2010	110110	0.00	0101	10 110 1
MW-1	1/19/2015	453.92	NM	NM	NM
	2/25/2015	453.92	NM	NM	NM
Casing:	3/24/2015	453.92	NM	NM	NM
Unknown	4/20/2015	453.92	0.00	16.71	437.21
	5/27/2015	453.92	0.00	18.75	435.17
Screen:	6/22/2015	453.92	0.00	18.24	435.68
Unknown	7/28/2015	453.92	0.00	17.20	436.72
	8/24/2015	453.92	0.00	17.42	436.50
	9/21/2015	453.92	0.00	18.49	435.43
	10/29/2015	453.92	0.00	18.36	435.56
	11/18/2015	453.92	0.00	19.40	434.52
	12/9/2015	453.92	0.00	19.24	434.68
	1/12/2016	453.92	0.00	18.45	435.47
	3/8/2016	453.92	0.00	18.28	435.64
	6/7/2016	453.92	0.00	18.21	435.71
	9/13/2016	453.92	0.00	18.92	435.00
	11/21/2016	453.92	0.00	19.83	434.09
	3/9/2017	453.92	0.00	20.49	433.43
	6/7/2017	453.92	0.00	19.38	434.54
	9/6/2017	453.92	0.00	19.04	434.88
	11/1/2017	453.92	0.00	19.67	434.25
	3/6/2018	453.92	0.00	20.16	433.76
	6/20/2018 9/5/2018	453.92 453.92	0.00	17.45 16.71	436.47 437.21
	9/3/2018	433.92	0.00	10./1	437.21

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
MW-4	1/19/2015	455.10	NM	NM	NM
	2/25/2015	455.10	NM	NM	NM
Casing:	3/24/2015	455.10	NM	NM	NM
0 to 10 feet	4/20/2015	455.10	0.00	20.72	434.38
	5/27/2015	455.10	0.00	20.68	434.42
Screen:	6/22/2015	455.10	0.00	20.38	434.72
10 to 25 feet	7/28/2015	455.10	0.00	19.86	435.24
	8/24/2015	455.10	0.00	20.08	435.02
	9/21/2015	455.10	0.00	20.57	434.53
	10/29/2015	455.10	0.00	20.26	434.84
	11/18/2015	455.10	0.00	21.29	433.81
	12/9/2015	455.10		21.08	434.02
	1/12/2016	455.10 455.10	0.00	20.54 20.29	434.56 434.81
	3/8/2016 6/7/2016	455.10	0.00	20.29	434.81
	9/13/2016	455.10	0.00	20.28	434.82
	11/21/2016	455.10	0.00	20.87	434.23
	3/9/2017	455.10	0.00	22.05	433.05
	9/6/2017	455.10	0.00	20.94	434.16
	6/7/2017	455.10	0.00	21.18	433.92
	11/1/2017	455.10	0.00	21.10	433.69
	3/6/2018	455.10	0.00	21.75	433.35
	6/20/2018	455.10	0.00	19.73	435.37
	9/5/2018	455.10	0.00	19.34	435.76
MW-7	1/19/2015	452.69	0.00	19.21	433.48
	2/25/2015	452.69	0.00	19.06	433.63
Casing:	3/24/2015	452.69	0.00	18.67	434.02
0 to 8 feet	4/20/2015	452.69	0.00	18.47	434.22
	5/27/2015	452.69	0.00	15.60	437.09
Screen:	6/22/2015	452.69	0.00	18.29	434.40
8 to 33 feet	7/28/2015	452.69	0.00	17.90	434.79
	8/24/2015	452.69	0.00	18.11	434.58
	9/21/2015	452.69	0.00	18.42	434.27
	10/29/2015	452.69	0.00	18.20	434.49
	11/18/2015	452.69	0.00	18.99	433.70
	12/9/2015	452.69	0.00	18.81	433.88
	1/12/2016 3/8/2016	452.69 452.69	0.00	18.71	433.98 434.53
				18.16	434.50
	6/7/2016 9/13/2016	452.69 452.69	0.00 0.00	18.19 18.62	434.00
	11/21/2016	452.69	0.00	19.14	434.07
	3/9/2017	452.69	0.00	19.14	433.06
	6/7/2017	452.69	0.00	19.03	433.80
	9/6/2017	452.69	0.00	18.78	433.91
	11/1/2017	452.69	0.00	19.07	433.62
	3/6/2018	452.69	0.00	19.31	433.38
	6/20/2018	452.69	0.00	17.74	434.95
	9/5/2018	452.69	0.00	17.38	435.31

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
OW-1	1/19/2015	455.31	0.00	19.33	435.98
	2/25/2015	455.31	0.00	21.66	433.65
Casing:	3/24/2015	455.31	0.00	21.08	434.23
0 to 9 feet	4/20/2015	455.31	0.00	20.66	434.65
-	5/27/2015	455.31	0.00	20.59	434.72
Screen:	6/22/2015	455.31	0.00	20.58	434.73
9 to 34 feet	7/28/2015	455.31	0.00	20.18	435.13
	8/24/2015	455.31	0.00	20.40	434.91
	9/21/2015	455.31	0.00	20.73	434.58
	10/29/2015	455.31	0.00	20.55	434.76
	11/18/2015 12/9/2015	455.31 455.31	0.00	21.38 21.23	433.93 434.08
	1/12/2016	455.31	0.00	21.25	434.08
	3/8/2016	455.31	0.00	20.54	434.23
	6/7/2016	455.31	0.00	20.54	434.77
	9/13/2016	455.31	0.00	20.38	434.73
	11/21/2016	455.31	0.00	21.82	433.49
	3/9/2017	455.31	0.00	22.04	433.27
	9/6/2017	455.31	0.00	21.27	434.04
	6/7/2017	455.31	0.00	21.22	434.09
	11/1/2017	455.31	0.00	21.53	433.78
	3/6/2018	455.31	0.00	21.77	433.54
	6/20/2018	455.31	0.00	20.03	435.28
	9/5/2018	455.31	0.00	19.61	435.70
YMW-1	1/19/2015	433.64	0.00	3.66	429.98
	2/25/2015	433.64	0.00	4.01	429.63
Casing:	3/24/2015	433.64	0.00	3.02	430.62
0 to 2 feet	4/20/2015	433.64	0.00	3.34	430.30
	5/27/2015	433.64	0.00	4.08	429.56
Screen:	6/22/2015	433.64	0.00	3.04	430.60
2 to 14 feet	7/28/2015	433.64	0.00	3.04	430.60
	8/24/2015	433.64	0.00	1.51	432.13
	9/21/2015	433.64	0.00	4.94	428.70
	10/29/2015	433.64	0.00	4.63	429.01
	11/18/2015	433.64	0.00	4.45	429.19
	12/9/2015	433.64	0.00	4.37	429.27
	1/12/2016	433.64	0.00	3.31	430.33
	3/8/2016	433.64	0.00	3.31	430.33
	6/7/2016	433.64	0.00	3.90	429.74
	9/13/2016	433.64	0.00	5.47	428.17
	11/21/2016	433.64	0.00	6.21	427.43
	3/9/2017	433.64	0.00	5.40	428.24
	6/7/2017	433.64	0.00	4.25	429.39
	9/6/2017	433.64	0.00	4.44	429.20
	11/1/2017	433.64	0.00	5.37	428.27
	3/6/2018	433.64	0.00	4.16	429.48
	6/20/2018	433.64	0.00	3.08	430.56
	9/5/2018	433.64	0.00	3.35	430.29

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YMW-2	1/19/2015	431.37	0.00	2.86	428.51
	2/25/2015	431.37	0.00	2.84	428.53
Casing:	3/24/2015	431.37	0.00	2.78	428.59
0 to 2 feet	4/20/2015	431.37	0.00	2.71	428.66
	5/27/2015	431.37	0.00	2.78	428.59
Screen:	6/22/2015	431.37	0.00	2.51	428.86
2 to 14 feet	7/28/2015	431.37	0.00	2.41	428.96
	8/24/2015	431.37	0.00	0.61	430.76
	9/21/2015	431.37	0.00	2.58	428.79
	10/29/2015	431.37	0.00	2.31 4.02	429.06 427.35
	11/18/2015 12/9/2015	431.37 431.37	0.00	3.94	427.35
	1/12/2016	431.37	0.00	2.90	427.43
	3/8/2016	431.37	0.00	2.90	428.47
	6/7/2016	431.37	0.00	2.84	428.53
	9/13/2016	431.37	0.00	2.44	428.93
	11/21/2016	431.37	0.00	2.94	428.43
	3/9/2017	431.37	0.00	2.94	428.43
	6/7/2017	431.37	0.00	3.10	428.27
	9/6/2017	431.37	0.00	2.65	428.72
	11/1/2017	431.37	0.00	2.67	428.70
	3/6/2018	431.37	0.00	2.85	428.52
	6/20/2018	431.37	0.00	2.58	428.79
	9/5/2018	431.37	0.00	2.51	428.86
	1/10/2015	440.20	0.00	9 ()	421.76
YMW-3	1/19/2015 2/25/2015	440.39	0.00	8.63	431.76
Casimar	3/24/2015	440.39 440.39	0.00	8.87 8.17	431.52 432.22
Casing: 0 to 4.5 feet	4/20/2015	440.39	0.00	8.19	432.22
0 10 4.5 1001	5/27/2015	440.39	0.00	8.54	432.20
Screen:	6/22/2015	440.39	0.00	8.54	431.85
4.5 to 19.5 feet	7/28/2015	440.39	0.00	7.76	432.63
1.5 to 19.5 feet	8/24/2015	440.39	0.00	7.97	432.42
	9/21/2015	440.39	0.00	9.21	431.18
	10/29/2015	440.39	0.00	9.00	431.39
	11/18/2015	440.39	0.00	9.09	431.30
	12/9/2015	440.39	0.00	8.83	431.56
	1/12/2016	440.39	0.00	7.97	432.42
	3/8/2016	440.39	0.00	8.63	431.76
	6/7/2016	440.39	0.00	8.86	431.53
	9/13/2016	440.39	0.00	9.54	430.85
	11/21/2016	440.39	0.00	10.44	429.95
	3/9/2017	440.39	0.00	9.55	430.84
	6/7/2017	440.39	0.00	8.82	431.57
	9/6/2017	440.39	0.00	8.84	431.55
	11/1/2017	440.39	0.00	9.34	431.05
	3/6/2018	440.39	0.00	7.97	432.42
	6/20/2018	440.39	0.00	8.27	432.12
	9/5/2018	440.39	0.00	8.48	431.91

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YMW-4	1/19/2015	433.72	0.00	4.29	429.43
	2/25/2015	433.72	0.00	4.02	429.70
Casing:	3/24/2015	433.72	0.00	4.06	429.66
0 to 2 feet	4/20/2015	433.72	0.00	4.09	429.63
	5/27/2015	433.72	0.00	4.33	429.39
Screen:	6/22/2015	433.72	0.00	3.96	429.76
2 to 17 feet	7/28/2015	433.72	0.00	4.13	429.59
	8/24/2015	433.72	0.00	2.34	431.38
	9/21/2015	433.72	0.00	4.45	429.27
	10/29/2015	433.72	0.00	4.24	429.48
	11/18/2015	433.72	0.00	4.55	429.17
	12/9/2015	433.72	0.00	4.34	429.38
	1/12/2016	433.72	0.00	4.71	429.01
	3/8/2016	433.72	0.00	4.18	429.54
	6/7/2016	433.72	0.00	4.18	429.54
	9/13/2016	433.72	0.00	4.46	429.26
	11/21/2016	433.72	0.00	4.85	428.87
	3/9/2017	433.72	0.00	4.30	429.42
	6/7/2017	433.72	0.00	4.26	429.46
	9/6/2017	433.72	0.00	4.18	429.54 429.31
	11/1/2017	433.72 433.72	0.00	4.41	429.31
	3/6/2018 6/20/2018	433.72	0.00	3.89	429.48
	9/5/2018	433.72	0.00	4.01	429.83
	9/3/2018	433.72	0.00	4.01	429.71
YMW-5	1/19/2015	430.70	0.00	3.26	427.44
	2/25/2015	430.70	0.00	3.15	427.55
Casing:	3/24/2015	430.70	0.00	3.05	427.65
0 to 1 feet	4/20/2015	430.70	0.00	3.19	427.51
-	5/27/2015	430.70	0.00	3.25	427.45
Screen:	6/22/2015	430.70	0.00	3.05	427.65
1 to 16 feet	7/28/2015	430.70	0.00	3.23	427.47
	8/24/2015	430.70	0.00	1.43	429.27
	9/21/2015	430.70	0.00	3.52	427.18
	10/29/2015	430.70	0.00	3.23	427.47
	11/18/2015	430.70	0.00	3.32	427.38
	12/9/2015	430.70	0.00	3.16	427.54
	1/12/2016	430.70	0.00	2.91	427.79
	3/8/2016	430.70	0.00	2.99	427.71
	6/7/2016	430.70	0.00	3.01	427.69
	9/13/2016	430.70	0.00	3.39	427.31
	11/21/2016	430.70	0.00	3.74	426.96
	3/9/2017	430.70	0.00	3.14	427.56
	6/7/2017	430.70	0.00	3.07	427.63
	9/6/2017	430.70	0.00	2.98	427.72
	11/1/2017	430.70	0.00	3.23	427.47
	3/6/2018	430.70	0.00	2.83	427.87
	6/20/2018	430.70	0.00	2.67	428.03
	9/5/2018	430.70	0.00	2.74	427.96

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YMW-6	1/19/2015	432.68	0.00	5.42	427.26
	2/25/2015	432.68	0.00	5.59	427.09
Casing:	3/24/2015	432.68	0.00	5.11	427.57
0 to 3 feet	4/20/2015	432.68	0.00	5.08	427.60
-	5/27/2015	432.68	0.00	5.87	426.81
Screen:	6/22/2015	432.68	0.00	5.11	427.57
3 to 18 feet	7/28/2015	432.68	0.00	5.38	427.30
	8/24/2015 9/21/2015	432.68	0.00	3.58	429.10 426.57
		432.68 432.68	0.00	6.11 6.01	426.67
	10/29/2015 11/18/2015	432.68	0.00	5.79	426.89
	12/9/2015	432.68	0.00	5.56	420.89
	1/12/2016	432.68	0.00	5.11	427.57
	3/8/2016	432.68	0.00	5.10	427.58
	6/7/2016	432.68	0.00	5.36	427.32
	9/13/2016	432.68	0.00	6.38	426.30
	11/21/2016	432.68	0.00	7.05	425.63
	3/9/2017	432.68	0.00	6.25	426.43
	6/7/2017	432.68	0.00	5.49	427.19
	9/6/2017	432.68	0.00	6.25	426.43
	11/1/2017	432.68	0.00	6.65	426.03
	3/6/2018	432.68	0.00	5.35	427.33
	6/20/2018	432.68	0.00	4.89	427.79
	9/5/2018	432.68	0.00	5.05	427.63
YMW-7	1/19/2015	449.40	0.00	15.91	433.49
1 141 44 - /	2/25/2015	449.40	0.00	15.98	433.42
Casing:	3/24/2015	449.40	0.00	15.54	433.86
0 to 18 feet	4/20/2015	449.40	0.00	15.47	433.93
	5/27/2015	449.40	0.00	15.51	433.89
Screen:	6/22/2015	449.40	0.00	15.22	434.18
18 to 28 feet	7/28/2015	449.40	0.00	14.89	434.51
	8/24/2015	449.40	0.00	15.10	434.30
	9/21/2015	449.40	0.00	15.32	434.08
	10/29/2015	449.40	0.00	14.97	434.43
	11/18/2015	449.40	0.00	15.83	433.57
	12/9/2015	449.40	0.00	15.68	433.72
	1/12/2016	449.40	0.00	15.29	434.11
	3/8/2016	449.40	0.00	15.13	434.27
	6/7/2016	449.40	0.00	15.09	434.31
	9/13/2016	449.40	0.00	15.47	433.93
	11/21/2016	449.40	0.00	15.69	433.71
	3/9/2017	449.40	0.00	16.31	433.09
	6/7/2017	449.40	0.00	15.24	434.16
	9/6/2017	449.40	0.00	15.68	433.72
	11/1/2017	449.40	0.00	15.91	433.49
	3/6/2018	449.40	0.00	16.12	433.28
	6/20/2018	449.40	0.00	14.75	434.65
	9/5/2018	449.40	0.00	14.43	434.97

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YMW-8	1/19/2015	446.91	0.00	13.86	433.05
	2/25/2015	446.91	0.00	14.52	432.39
Casing:	3/24/2015	446.91	0.00	12.91	434.00
0 to 7 feet	4/20/2015	446.91	0.00	13.34	433.57
	5/27/2015	446.91	0.00	13.61	433.30
Screen:	6/22/2015	446.91	0.00	13.44	433.47
7 to 22 feet	7/28/2015	446.91	0.00	13.34	433.57
	8/24/2015	446.91	0.00	13.55	433.36
	9/21/2015	446.91	0.00	13.85	433.06
	10/29/2015	446.91	0.00	13.56	433.35
	11/18/2015	446.91	0.00	14.11	432.80
	12/9/2015	446.91	0.00	13.94	432.97
	1/12/2016	446.91	0.00	13.57	433.34
	3/8/2016	446.91	0.00	13.05	433.86
	6/7/2016	446.91	0.00	13.52	433.39
	9/13/2016	446.91	0.00	14.03	432.88
	11/21/2016	446.91	0.00	14.39	432.52
	3/9/2017	446.91	0.00	14.61	432.30
	6/7/2017	446.91	0.00	14.07	432.84
	9/6/2017	446.91	0.00	14.28	432.63
	11/1/2017	446.91	0.00	14.43	432.48
	3/6/2018	446.91	0.00	14.07	432.84
	6/20/2018	446.91	0.00	12.80	434.11
	9/5/2018	446.91	0.00	12.99	433.92
YMW-9	1/19/2015	436.71	0.00	5.69	431.02
-	2/25/2015	436.71	0.00	5.93	430.78
Casing:	3/24/2015	436.71	0.00	5.41	431.30
0 to 2.5 feet	4/20/2015	436.71	0.00	4.80	431.91
	5/27/2015	436.71	0.00	6.02	430.69
Screen:	6/22/2015	436.71	0.00	5.81	430.90
2.5 to 17.5 feet	7/28/2015	436.71	0.00	5.94	430.77
	8/24/2015	436.71	0.00	4.14	432.57
	9/21/2015	436.71	0.00	6.17	430.54
	10/29/2015	436.71	0.00	5.99	430.72
	11/18/2015	436.71	0.00	6.13	430.58
	12/9/2015	436.71	0.00	5.86	430.85
	1/12/2016	436.71	0.00	5.04	431.67
	3/8/2016	436.71	0.00	5.43	431.28
	6/7/2016	436.71	0.00	5.93	430.78
	9/13/2016	436.71	0.00	6.44	430.27
	11/21/2016	436.71	0.00	6.50	430.21
	3/9/2017	436.71	0.00	6.23	430.48
	6/7/2017	436.71	0.00	6.13	430.58
	9/6/2017	436.71	0.00	6.42	430.29
	11/1/2017	436.71	0.00	6.34	430.37
	3/6/2018	436.71	0.00	5.29	431.42
	6/20/2018	436.71	0.00	5.73	430.98
	9/5/2018	436.71	0.00	5.88	430.83

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YP-1	1/19/2015	440.41	0.00	9.25	431.16
	2/25/2015	440.41	0.00	9.25	431.16
Casing:	3/24/2015	440.41	0.00	9.26	431.15
0 to 8 feet	4/20/2015	440.41	0.00	9.23	431.18
~	5/27/2015	440.41	0.00	9.34	431.07
Screen:	6/22/2015	440.41	0.00	9.18	431.23
8 to 13 feet	7/28/2015	440.41	0.00	8.79	431.62
	8/24/2015	440.41	0.00	8.99	431.42
	9/21/2015	440.41	0.00	9.20	431.21
	10/29/2015	440.41	0.00	8.96	431.45
	11/18/2015	440.41 440.41	0.00	9.30 9.17	431.11
	12/9/2015	-			431.24
	1/12/2016 3/8/2016	440.41 440.41	0.00	9.14 9.24	431.27 431.17
	6/7/2016	440.41	0.00	9.14	431.17
	9/13/2016	440.41	0.00	8.18	431.27 432.23
	11/21/2016	440.41	0.00	9.25	432.23
	3/10/2017	440.41	0.00	9.39	431.02
	6/8/2017	440.41	0.00	9.34	431.02
	9/7/2017	440.41	0.00	9.29	431.07
	11/2/2017	440.41	0.00	9.32	431.09
	3/7/2018	440.41	0.00	9.41	431.00
	6/21/2018	440.41	0.00	9.14	431.27
	9/6/2018	440.41	0.00	9.01	431.40
	9/0/2010	110.11	0.00	9.01	151.10
YP-2	1/19/2015	438.35	0.00	8.27	430.08
	2/25/2015	438.35	0.00	8.09	430.26
Casing:	3/24/2015	438.35	0.00	8.05	430.30
0 to 7 feet	4/20/2015	438.35	0.00	8.01	430.34
	5/27/2015	438.35	0.00	8.36	429.99
Screen:	6/22/2015	438.35	0.00	7.98	430.37
7 to 12 feet	7/28/2015	438.35	0.00	8.08	430.27
	8/24/2015	438.35	0.00	8.28	430.07
	9/21/2015	438.35	0.00	8.13	430.22
	10/29/2015	438.35	0.00	7.91	430.44
	11/18/2015	438.35	0.00	8.36	429.99
	12/9/2015	438.35	0.00	8.25	430.10
	1/12/2016	438.35	0.00	8.17	430.18
	3/8/2016	438.35	0.00	8.15	430.20
	6/7/2016	438.35	0.00	8.07	430.28
	9/13/2016	438.35	0.00	8.07	430.28
	11/21/2016	438.35	0.00	8.11	430.24
	3/10/2017	438.35	0.00	8.11	430.24
	6/8/2017	438.35	0.00	8.23	430.12
	9/7/2017	438.35	0.00	8.10	430.25
	11/2/2017	438.35	0.00	8.08	430.27
	3/7/2018	438.35	0.00	8.12	430.23
	6/21/2018	438.35	0.00	8.13	430.22
	9/6/2018	438.35	0.00	8.16	430.19

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YP-3	1/19/2015	436.51	0.00	5.09	431.42
	2/25/2015	436.51	0.00	5.01	431.50
Casing:	3/24/2015	436.51	0.00	4.85	431.66
0 to 5.5 feet	4/20/2015	436.51	0.00	5.67	430.84
_	5/27/2015	436.51	0.00	5.47	431.04
Screen:	6/22/2015	436.51	0.00	4.75	431.76
5.5 to 10.5 feet	7/28/2015	436.51	0.00	5.08	431.43
	8/24/2015	436.51	0.00	5.11	431.40
	9/21/2015	436.51	0.00	5.19	431.32
	10/29/2015	436.51	0.00	4.88	431.63
	11/18/2015 12/9/2015	436.51 436.51	0.00	5.40 5.27	431.11 431.24
	1/12/2016	436.51	0.00		431.24
	3/8/2016	436.51	0.00	4.93	431.38
	6/7/2016	436.51	0.00	5.02	431.77
	9/13/2016	436.51	0.00	5.32	431.49
	11/21/2016	436.51	0.00	6.65	429.86
	3/10/2017	436.51	0.00	5.62	429.80
	6/8/2017	436.51	0.00	5.21	431.30
	9/7/2017	436.51	0.00	5.16	431.35
	11/2/2017	436.51	0.00	5.94	430.57
	3/7/2018	436.51	0.00	4.95	431.56
	6/21/2018	436.51	0.00	4.62	431.89
	9/6/2018	436.51	0.00	4.76	431.75
YP-4	1/19/2015	441.83	0.00	9.13	432.70
	2/25/2015	441.83	0.00	9.32	432.51
Casing:	3/24/2015	441.83	0.00	8.25	433.58
0 to 8 feet	4/20/2015	441.83	0.00	8.74	433.09
	5/27/2015	441.83	0.00	9.07	432.76
Screen:	6/22/2015	441.83	0.00	8.96	432.87
8 to 13 feet	7/28/2015	441.83	0.00	8.27	433.56
	8/24/2015	441.83	0.00	9.18	432.65
	9/21/2015	441.83	0.00	9.31	432.52
	10/29/2015	441.83	0.00	9.11	432.72
	11/18/2015	441.83	0.00	9.41	432.42
	12/9/2015	441.83	0.00	9.28	432.55
	1/12/2016	441.83	0.00	8.78	433.05
	3/8/2016	441.83	0.00	8.54	433.29
	6/7/2016	441.83	0.00	9.02	432.81
	9/13/2016	441.83	0.00	9.53	432.30
	11/21/2016	441.83	0.00	9.74	432.09
	3/10/2017	441.83	0.00	9.91	431.92
	6/8/2017	441.83	0.00	9.31	432.52
	9/7/2017	441.83	0.00	9.72	432.11
	11/2/2017	441.83	0.00	9.82	432.01
	3/7/2018 6/21/2018	441.83	0.00	9.23	432.60 433.35
	9/6/2018	441.83 441.83	0.00	8.48	433.35
	9/0/2018	441.83	0.00	8.61	433.22

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YP-5	1/19/2015	433.65	0.00	5.50	428.15
	2/25/2015	433.65	0.00	5.79	427.86
Casing:	3/24/2015	433.65	0.00	3.90	429.75
0 to 5 feet	4/20/2015	433.65	0.00	4.05	429.60
	5/27/2015	433.65	0.00	4.21	429.44
Screen:	6/22/2015	433.65	0.00	4.49	429.16
5 to 10 feet	7/28/2015	433.65	0.00	5.48	428.17
	8/24/2015	433.65	0.00	3.68	429.97
	9/21/2015	433.65	0.00	4.12	429.53
	10/29/2015	433.65	0.00	4.02	429.63
	11/18/2015	433.65	0.00	4.02	429.63
	12/9/2015	433.65	0.00	3.88	429.77
	1/12/2016	433.65	0.00	4.69	428.96
	3/8/2016	433.65	0.00	3.97	429.68
	6/7/2016	433.65	0.00	4.31	429.34
	9/13/2016	433.65	0.00	4.33	429.32
	11/21/2016	433.65	0.00	4.37	429.28
	3/10/2017	433.65	0.00	4.18	429.47
	6/8/2017	433.65	0.00	4.31	429.34
	9/7/2017	433.65	0.00	3.31	430.34
	11/2/2017	433.65	0.00	4.33	429.32
	3/7/2018	433.65	0.00	3.84	429.81
	6/21/2018	433.65	0.00	3.93	429.72
	9/6/2018	433.65	0.00	4.01	429.64

 $\frac{\text{Notes:}}{\text{ft} = \text{feet}}$

LPH = Liquid Phase Hydrocarbons NM = Not Monitored (Well not accessible)

Location (Corresponds with Site Plan)	Date	Breathing Zone Readings	Below Grade Readings
(corresponds with site runn)		(ppm)	(ppm)
	1/19/2015	0.0	0.6
	2/24/2015	0.0	0.0
	3/23/2015	0.0	0.0
	4/27/2015	0.0	0.0
	5/27/2015	0.0	0.0
	6/29/2015	0.0	0.0
	7/28/2015	0.0	0.0
	8/24/2015	0.0	0.0
	9/30/2015	0.0	0.0
	10/29/2015	0.0	0.1
	11/23/2015	0.0	0.0
	12/10/2015	0.0	0.0
	1/26/2016	0.0	0.0
ļ	2/9/2016	0.0	0.0
	3/23/2016	0.0	0.0
	4/6/2016	0.0	0.0
-	5/17/2016	0.0	0.0
-	6/8/2016	0.0	0.0
	7/20/2016	0.0	0.0
-	8/25/2016	0.0	0.0 0.0
-	9/15/2016	0.0 0.0	0.0
	<u>10/18/2016</u> 11/23/2016	0.0	0.0
Yakona Road Curb Inlet	12/28/2016	0.0	0.0
	1/11/2017	0.0	0.0
	1/17/2017	0.0	0.0
	1/25/2017	0.0	0.0
	2/7/2017	0.0	0.0
	2/21/2017	0.0	0.0
	3/1/2017	0.0	0.0
	3/10/2017	0.0	0.0
1	3/23/2017	0.0	0.0
	4/4/2017	0.0	0.0
	4/19/2017	0.0	0.0
1	5/25/2017	0.0	0.0
	6/1/2017	0.0	0.0
1	6/8/2017	0.0	0.0
1	6/21/2017	0.0	0.0
1	6/29/2017	0.0	0.0
1	7/11/2017	0.0	0.0
1	7/20/2017	0.0	0.0
Ĩ	7/28/2017	0.0	0.0
ſ	8/10/2017	0.0	0.0
Ī	8/18/2017	0.0	0.0
Ĩ	9/8/2017	0.0	0.0
ſ	9/18/2017	0.0	0.0

Location (Corresponds with Site Plan)	Date	Breathing Zone Readings (ppm)	Below Grade Readings (ppm)
	10/3/2017	0.0	0.0
	10/17/2017	0.0	0.0
	10/27/2017	0.0	0.0
	11/2/2017	0.0	0.0
	11/9/2017	0.0	0.0
	11/20/2017	0.0	0.0
	11/28/2017	0.0	0.0
	12/8/2017	0.0	0.0
	1/4/2018	0.0	0.0
	1/11/2018	0.0	0.0
	1/22/2018	0.0	0.0
	1/30/2018	0.0	0.0
	2/7/2018	0.0	0.0
	2/14/2018	0.0	0.0
	2/21/2018	0.0	0.0
	2/28/2018	0.0	0.0
	3/7/2018	0.0	0.0
	3/14/2018	0.0	0.0
	3/21/2018	0.0	0.0
	3/29/2018	0.0	0.0
	4/3/2018	0.0	0.0
Yakona Road Curb Inlet	4/11/2018	0.0	0.0
	4/18/2018	0.0	0.0
(continued)	4/26/2018	0.0	0.0
	5/2/2018	0.0	0.0
	5/9/2018	0.0	0.0
	5/15/2018	0.0	0.0
	5/23/2018	0.0	0.0
	5/31/2018	0.0	0.0
	6/6/2018	0.0	0.0
	6/13/2018	0.0	0.0
	6/21/2018	0.0	0.0
	6/28/2018	0.0	0.0
	7/3/2018	0.0	0.0
	7/12/2018	0.0	0.0
	7/18/2018	0.0	0.0
	8/1/2018	0.0	0.0
	8/8/2018	0.0	0.0
	8/15/2018	0.0	0.0
	8/22/2018	0.0	0.0
	8/29/2018	0.0	0.0
	9/6/2018	0.0	0.0
	9/12/2018	0.0	0.0
	9/19/2018	0.0	0.0
	9/25/2018	0.0	0.0

		Breathing Zone	Below Grade
Location	Date	Readings	Readings
(Corresponds with Site Plan)	Dutt	(ppm)	(ppm)
	1/19/2015	0.0	0.4
	2/24/2015	0.0	0.0
	3/23/2015	0.0	0.0
-	4/27/2015	0.0	0.0
-	5/27/2015	0.0	0.0
-	6/29/2015	0.0	2.2
	7/28/2015	0.0	0.2
F	8/24/2015	0.0	0.4
	9/30/2015	0.0	0.7
	10/29/2015	0.0	0.8
	11/23/2015	0.0	0.0
	12/10/2015	0.0	0.1
	1/26/2016	0.0	0.0
-	2/9/2016	0.0	0.0
	3/23/2016	0.0	0.0
	4/6/2016	0.0	0.0
	5/17/2016	0.0	0.0
	6/8/2016	0.0	0.6
	7/20/2016	0.0	0.2
	8/25/2016	0.0	2.4
	9/15/2016	0.0	0.0
	10/18/2016	0.0	0.0
Manhole 3	11/23/2016	0.0	0.0
Wannole 5	12/28/2016	0.0	0.0
	1/11/2017	0.0	0.0
	1/17/2017	0.0	0.0
	1/25/2017	0.0	0.0
	2/7/2017	0.0	0.0
	2/21/2017	0.0	0.0
	3/1/2017	0.0	0.0
	3/10/2017	0.0	0.0
-	3/23/2017	0.0	0.0
-	4/4/2017	0.0 0.0	0.0 0.0
-	4/19/2017	0.0	0.0
-	<u>5/25/2017</u> 6/1/2017	0.0	0.0
-	6/8/2017	0.0	0.0
	6/21/2017	0.0	0.0
4	6/29/2017	0.0	0.0
4	7/11/2017	0.0	0.0
4	7/20/2017	0.0	0.0
4	7/28/2017	0.0	0.0
4	8/10/2017	0.0	0.0
4	8/18/2017	0.0	0.0
4		0.0	0.0
4	9/8/2017	0.0	0.0
	9/18/2017	0.0	0.0

Location (Corresponds with Site Plan)	Date	Breathing Zone Readings (ppm)	Below Grade Readings (ppm)
	10/3/2017	0.0	0.0
	10/17/2017	0.0	0.0
	10/27/2017	0.0	0.0
	11/2/2017	0.0	0.0
	11/9/2017	0.0	0.0
	11/20/2017	0.0	0.0
	11/28/2017	0.0	0.0
	12/8/2017	0.0	0.0
	1/4/2018	0.0	0.0
	1/11/2018	0.0	0.0
	1/22/2018	0.0	0.0
	1/30/2018	0.0	0.0
	2/7/2018	0.0	0.0
	2/14/2018	0.0	0.0
	2/21/2018	0.0	0.0
	2/28/2018	0.0	0.0
	3/7/2018	0.0	0.0
	3/14/2018	0.0	0.0
	3/21/2018	0.0	0.0
	3/29/2018	0.0	0.0
	4/3/2018	0.0	0.0
	4/11/2018	0.0	0.0
Manhole 3 (continued)	4/18/2018	0.0	0.0
	4/26/2018	0.0	0.0
	5/2/2018	0.0	0.0
	5/9/2018	0.0	0.0
	5/15/2018	0.0	0.0
	5/23/2018	0.0	0.0
	5/31/2018	0.0	0.0
	6/6/2018	0.0	0.0
	6/13/2018	0.0	0.0
	6/21/2018	0.0	0.0
	6/28/2018	0.0	0.0
	7/3/2018	0.0	0.0
	7/12/2018	0.0	0.0
	7/18/2018	0.0	0.0
	8/1/2018	0.0	0.0
	8/8/2018	0.0	0.0
	8/15/2018	0.0	0.0
	8/22/2018	0.0	0.0
	8/29/2018	0.0	0.0
	9/6/2018	0.0	0.0
	9/12/2018	0.0	0.0
	9/19/2018	0.0	0.0
	9/25/2018	0.0	0.0

		Breathing Zone	Below Grade
Location	Date	Readings	Readings
(Corresponds with Site Plan)	Date	(ppm)	(ppm)
	1/19/2015	0.0	1.6
	2/24/2015	0.0	1.0
	3/23/2015	0.0	5.0
	4/27/2015	0.0	23.0
	5/27/2015	0.0	1.0
	6/29/2015	0.0	7.9
	7/28/2015	0.0	1.9
	8/24/2015	0.0	2.6
	9/30/2015	0.0	2.9
F	10/29/2015	0.0	3.2
F	11/23/2015	0.0	0.1
F	12/10/2015	0.0	0.7
F	1/26/2016	0.0	0.0
F	2/9/2016	0.0	0.4
	3/23/2016	0.0	0.2
	4/6/2016	0.0	25.9
Ē	5/17/2016	0.0	26.7
Ē	6/8/2016	0.0	21.3
Ē	7/20/2016	0.0	20.4
Ē	8/25/2016	0.0	27.2
Ē	9/15/2016	0.0	2.0
	10/18/2016	0.0	3.3
Manhole 21	11/23/2016	0.0	1.6
Mannole 21	12/28/2016	0.0	1.9
	1/11/2017	0.0	5.8
	1/17/2017	0.0	2.6
	1/25/2017	0.0	1.6
	2/7/2017	0.0	1.1
	2/21/2017	0.0	4.3
	3/1/2017	0.0	20.8
	3/10/2017	0.0	2.4
	3/23/2017	0.0	2.6
	4/4/2017	0.0	270.4
	4/19/2017	0.0	20.1
	5/25/2017	0.0	115.0
	6/1/2017	0.0	71.0
	6/8/2017	0.0	7.0
	6/21/2017	0.0	59.7
Ļ	6/29/2017	0.0	83.1
Ļ	7/11/2017	0.0	75.2
Ļ	7/20/2017	0.0	61.3
Ļ	7/28/2017	0.0	1.7
Ļ	8/10/2017	0.0	41.6
Ļ	8/18/2017	0.0	58.7
Ļ	9/8/2017	0.0	36.1
	9/18/2017	0.0	81.9

Location	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Plan)	Dutt	(ppm)	(ppm)
	10/3/2017	0.0	2.8
	10/17/2017	0.0	0.9
	10/27/2017	0.0	6.8
	11/2/2017	0.0	28.7
	11/9/2017	0.0	0.5
	11/20/2017	0.0	1.8
	11/28/2017	0.0	3.4
	12/8/2017	0.0	3.8
	1/4/2018	0.0	1.1
	1/11/2018	0.0	3.1
	1/22/2018	0.0	9.4
	1/30/2018	0.0	0.2
	2/7/2018	0.0	2.2
	2/14/2018	0.0	7.9
	2/21/2018	0.0	29.6
	2/28/2018	0.0	38.4
	3/7/2018	0.0	1.8
	3/14/2018	0.0	4.1
	3/21/2018	0.0	2.2
	3/29/2018	0.0	14.6
	4/3/2018	0.0	13.2
Manhala 21 (continued)	4/11/2018	0.0 0.0	4.1 31.8
Manhole 21 (continued)	4/18/2018 4/26/2018	0.0	4.6
	5/2/2018	0.0	8.2
	5/9/2018	0.0	29.7
	5/15/2018	0.0	39.6
	5/23/2018	0.0	36.2
	5/31/2018	0.0	1.5
	6/6/2018	0.0	4.4
	6/13/2018	0.0	5.8
	6/21/2018	0.0	29.6
	6/28/2018	0.0	28.4
	7/3/2018	0.0	19.2
	7/12/2018	0.0	31.5
	7/18/2018	0.0	0.2
	8/1/2018	0.0	24.9
	8/8/2018	0.0	20.3
	8/15/2018	0.0	30.7
	8/22/2018	0.0	20.4
	8/29/2018	0.0	30.8
	9/6/2018	0.0	37.1
	9/12/2018	0.0	29.7
	9/19/2018	0.0	21.7
	9/25/2018	0.0	168.3

Location (Corresponds with Site Plan)	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Plan)		(ppm)	(ppm)
	1/19/2015	0.0	63.6
Ē	2/24/2015	0.0	54.2
	3/23/2015	0.0	52.0
	4/27/2015	0.0	48.0
	5/27/2015	0.0	30.0
	6/29/2015	0.0	0.1
	7/28/2015	0.0	28.5
	8/24/2015	0.0	32.1
_	9/30/2015	0.0	37.4
_	10/29/2015	0.0	39.2
_	11/23/2015	0.0	3.8
_	12/10/2015	0.0	30.8
	1/26/2016	0.0	2.1
	2/9/2016	0.0	27.4
	3/23/2016	0.0	3.9
	4/6/2016	0.0	44.2
_	5/17/2016	0.0	3.8
	6/8/2016	0.0	0.0
	7/20/2016	0.0	0.0
	8/25/2016	0.0	0.0
-	9/15/2016	0.0	6.0
	10/18/2016	0.0 0.0	<u>6.1</u> 1.9
Manhole 22	11/23/2016	0.0	0.4
	12/28/2016 1/11/2017	0.0	17.7
	1/17/2017	0.0	23.7
	1/25/2017	0.0	525.0
	2/7/2017	0.0	105.7
	2/21/2017	0.0	210.8
	3/1/2017	0.0	754.6
	3/10/2017	0.0	79.8
	3/23/2017	0.0	82.6
F	4/4/2017	0.0	1.9
F	4/19/2017	0.0	0.5
F	5/25/2017	0.0	0.0
Ē	6/1/2017	0.0	0.0
Ē	6/8/2017	0.0	40.1
Ē	6/21/2017	0.0	0.0
Ē	6/29/2017	0.0	0.0
Ē	7/11/2017	0.0	0.0
Ē	7/20/2017	0.0	0.0
Ē	7/28/2017	0.0	2.3
Ē	8/10/2017	0.0	0.2
Ē	8/18/2017	0.0	0.0
Ē	9/8/2017	0.0	0.4
	9/18/2017	0.0	3.1

Location		Breathing Zone	Below Grade
(Corresponds with Site Plan)	Date	Readings	Readings
(Corresponds with Site Fian)		(ppm)	(ppm)
	10/3/2017	0.0	0.5
	10/17/2017	0.0	58.6
	10/27/2017	0.0	24.9
	11/2/2017	0.0	0.7
	11/9/2017	0.0	70.1
	11/20/2017	0.0	52.8
	11/28/2017	0.0	32.7
	12/8/2017	0.0	45.7
	1/4/2018	0.0	0.0
	1/11/2018	0.0	37.4
	1/22/2018	0.0	5.3
	1/30/2018	0.0	4.6
	2/7/2018	0.0	22.5
	2/14/2018	0.0	68.3
	2/21/2018	0.0	115.8
	2/28/2018	0.0	113.5
	3/7/2018	0.0	48.1
	3/14/2018	0.0	70.3
	3/21/2018	0.0	58.2
	3/29/2018	0.0	79.6
	4/3/2018	0.0	200.0
Manhala 22 (agentinued)	4/11/2018	0.0 0.0	<u> </u>
Manhole 22 (continued)	4/18/2018 4/26/2018	0.0	2.7
	5/2/2018	0.0	0.1
	5/9/2018	0.0	0.0
	5/15/2018	0.0	0.0
	5/23/2018	0.0	0.0
	5/31/2018	0.0	0.0
	6/6/2018	0.0	0.0
	6/13/2018	0.0	0.0
	6/21/2018	0.0	0.0
	6/28/2018	0.0	0.0
	7/3/2018	0.0	0.0
	7/12/2018	0.0	0.1
	7/18/2018	0.0	0.0
	8/1/2018	0.0	0.0
	8/8/2018	0.0	0.0
	8/15/2018	0.0	0.0
	8/22/2018	0.0	0.0
	8/29/2018	0.0	0.0
	9/6/2018	0.0	0.0
	9/12/2018	0.0	0.0
	9/19/2018	0.0	0.0
	9/25/2018	0.0	0.0

		Breathing Zone	Below Grade
Location	Date	Readings	Readings
(Corresponds with Site Plan)	Dute	(ppm)	(ppm)
	1/19/2015	0.0	43.7
	2/24/2015	0.0	2.4
	3/23/2015	0.0	48.0
	4/27/2015	0.0	40.0
	5/27/2015	0.0	6.1
	6/29/2015	0.0	0.3
ŀ	7/28/2015	0.0	9.2
F	8/24/2015	0.0	8.3
F	9/30/2015	0.0	9.3
	10/29/2015	0.0	10.1
	11/23/2015	0.0	19.4
E E E E E E E E E E E E E E E E E E E	12/10/2015	0.0	23.1
	1/26/2016	0.0	15.7
	2/9/2016	0.0	24.1
	3/23/2016	0.0	15.1
Ē	4/6/2016	0.0	15.3
	5/17/2016	0.0	0.0
Ī	6/8/2016	0.0	0.2
Γ	7/20/2016	0.0	0.2
[8/25/2016	0.0	0.0
Γ	9/15/2016	0.0	2.3
[10/18/2016	0.0	0.0
Manhole 23	11/23/2016	0.0	1.8
Mannole 25	12/28/2016	0.0	0.8
	1/11/2017	0.0	25.2
	1/17/2017	0.0	7.3
	1/25/2017	0.0	2.3
	2/7/2017	0.0	6.6
	2/21/2017	0.0	0.7
	3/1/2017	0.0	2.1
	3/10/2017	0.0	33.8
	3/23/2017	0.0	27.4
_	4/4/2017	0.0	10.3
	4/19/2017	0.0	0.0
_	5/25/2017	0.0	0.0
_	6/1/2017	0.0	0.0
	6/8/2017	0.0	14.4
	6/21/2017	0.0	0.0
	6/29/2017	0.0	0.0
	7/11/2017	0.0	0.0
Ļ	7/20/2017	0.0	0.2
Ļ	7/28/2017	0.0	0.0
Ļ	8/10/2017	0.0	0.0
Ļ	8/18/2017	0.0	0.0
Ļ	9/8/2017	0.0	0.3
	9/18/2017	0.0	3.5

Location		Breathing Zone	Below Grade
(Corresponds with Site Plan)	Date	Readings	Readings
(Corresponds with Site Fian)		(ppm)	(ppm)
	10/3/2017	0.0	2.3
	10/17/2017	0.0	3.2
	10/27/2017	0.0	1.6
	11/2/2017	0.0	2.8
	11/9/2017	0.0	21.4
	11/20/2017	0.0	1.2
	11/28/2017	0.0	1.3
	12/8/2017	0.0	4.0
	1/4/2018	0.0	0.0
	1/11/2018	0.0	8.1
	1/22/2018	0.0	20.1
	1/30/2018	0.0	13.1
	2/7/2018	0.0	19.1
	2/14/2018	0.0	25.1
	2/21/2018	0.0	9.2
	2/28/2018	0.0	26.1
	3/7/2018	0.0	73.4
	3/14/2018	0.0	6.8
	3/21/2018	0.0	3.7
	3/29/2018	0.0	102.8
	4/3/2018	0.0	88.9
	4/11/2018	0.0	7.8
Manhole 23 (continued)	4/18/2018	0.0	0.1
	4/26/2018	0.0	2.0
	5/2/2018	0.0	0.0
	5/9/2018	0.0	0.5
	5/15/2018	0.0	1.9
	5/23/2018	0.0	0.6
	5/31/2018	0.0	0.0
	6/6/2018	0.0	0.0
	6/13/2018	0.0	0.0
	6/21/2018	0.0	0.0
	6/28/2018	0.0	0.9
	7/3/2018	0.0	2.3
	7/12/2018	0.0	12.6
	7/18/2018	0.0	9.5
	8/1/2018	0.0	0.0
	8/8/2018	0.0	0.0
	8/15/2018	0.0	0.0
	8/22/2018	0.0	0.0
	8/29/2018	0.0	0.0
	9/6/2018	0.0	0.0
	9/12/2018	0.0	0.0
	9/19/2018	0.0	0.0
	9/25/2018	0.0	0.0

Location		Breathing Zone	Below Grade
	Date	Readings	Readings
(Corresponds with Site Plan)		(ppm)	(ppm)
	1/19/2015	0.0	63.2
	2/24/2015	0.0	5.1
	3/23/2015	0.0	83.0
	4/27/2015	0.0	71.0
	5/27/2015	0.0	10.6
Ē	6/29/2015	0.0	1.0
	7/28/2015	0.0	11.5
	8/24/2015	0.0	11.5
	9/30/2015	0.0	10.2
	10/29/2015	0.0	10.6
	11/23/2015	0.0	23.1
	12/10/2015	0.0	24.3
	1/26/2016	0.0	24.9
	2/9/2016	0.0	19.9
	3/23/2016	0.0	26.5
	4/6/2016	0.0	29.0
	5/17/2016	0.0	0.0
_	6/8/2016	0.0	0.0
_	7/20/2016	0.0	2.1
_	8/25/2016	0.0	0.0
_	9/15/2016	0.0	0.3
-	10/18/2016	0.0	0.0
Manhole 24	11/23/2016	0.0	1.6
-	12/28/2016	0.0	0.5
-	1/11/2017	0.0	38.2
-	1/17/2017	0.0	42.1
-	1/25/2017	0.0	0.2
	2/7/2017	0.0 0.0	<u> </u>
	2/21/2017	0.0	0.0
-	3/1/2017 3/10/2017	0.0	2.4
-	3/23/2017	0.0	75.1
-	4/4/2017	0.0	0.0
-	4/19/2017	0.0	0.0
	5/25/2017	0.0	0.0
	6/1/2017	0.0	0.0
F	6/8/2017	0.0	1.5
F	6/21/2017	0.0	0.0
F	6/29/2017	0.0	0.0
F	7/11/2017	0.0	0.0
F	7/20/2017	0.0	0.0
F	7/28/2017	0.0	0.0
F	8/10/2017	0.0	0.0
F	8/18/2017	0.0	0.0
F	9/8/2017	0.0	0.0
	9/18/2017	0.0	0.0

Location		Breathing Zone	Below Grade
(Corresponds with Site Plan)	Date	Readings	Readings
· · · · · · · · · · · · · · · · · · ·		(ppm)	(ppm)
_	10/3/2017	0.0	2.1
_	10/17/2017	0.0	2.8
_	10/27/2017	0.0	2.1
_	11/2/2017	0.0	5.7
	11/9/2017	0.0	17.6
	11/20/2017	0.0	6.4
	11/28/2017	0.0	<u>18.2</u> 37.1
F	12/8/2017	0.0 0.0	9.2
	1/4/2018	0.0	29.7
	1/11/2018 1/22/2018	0.0	16.8
F	1/22/2018	0.0	40.7
	2/7/2018	0.0	30.6
	2/14/2018	0.0	37.6
	2/21/2018	0.0	0.0
	2/28/2018	0.0	0.0
F	3/7/2018	0.0	40.8
F	3/14/2018	0.0	55.2
F	3/21/2018	0.0	15.9
F	3/29/2018	0.0	5.1
F	4/3/2018	0.0	28.7
F	4/11/2018	0.0	12.6
Manhole 24 (continued)	4/18/2018	0.0	1.9
` ´ ́	4/26/2018	0.0	1.0
F	5/2/2018	0.0	0.0
Γ	5/9/2018	0.0	0.2
Γ	5/15/2018	0.0	0.0
Γ	5/23/2018	0.0	0.0
	5/31/2018	0.0	0.0
	6/6/2018	0.0	0.0
	6/13/2018	0.0	0.0
	6/21/2018	0.0	0.0
	6/28/2018	0.0	0.0
	7/3/2018	0.0	0.0
	7/12/2018	0.0	0.3
	7/18/2018	0.0	0.4
	8/1/2018	0.0	0.0
L	8/8/2018	0.0	0.0
L	8/15/2018	0.0	0.0
Ļ	8/22/2018	0.0	0.0
Ļ	8/29/2018	0.0	0.0
	9/6/2018	0.0	0.0
	9/12/2018	0.0	0.0
	9/19/2018	0.0	0.0
	9/25/2018	0.0	0.0

Notes:

ppm = parts per million

Page 1 of 1

TABLE 4 GROUNDWATER TREATMENT SYSTEM DISCHARGE SUMMARY Ridgely Manor Park Towson, MD Case No. 1991-2100-BA NPDES Permit # MDG915958

Month Year	Monthly Discharge Volume (gallons)	Cumulative Discharge Volume (gallons)
January 2015	51,520	51,520
February 2015	41,600	93,120
March 2015	31,090	124,210
April 2015	18,940	143,150
May 2015	23,180	166,330
June 2015	36,940	203,270
July 2015	24,170	227,440
August 2015	29,460	256,900
September 2015	24,570	281,470
October 2015	18,540	300,010
November 2015	27,850	327,860
December 2015	45,180	373,040
January 2016	35,570	408,610
February 2016	33,300	441,910
March 2016	38,030	479,940
April 2016	54,020	533,960
May 2016	75,280	609,240
June 2016	54,560	663,800
July 2016	37,250	701,050
August 2016	32,410	733,460
September 2016	39,190	772,650
October 2016	34,620	807,270
November 2016	42,680	849,950
December 2016	45,380	895,330
January 2017	57,450	952,780
February 2017	30,100	982,880
March 2017	35,940	1,018,820
April 2017	32,050	1,050,870
May 2017	50,660	1,101,530
June 2017	48,510	1,150,040
July 2017	67,450	1,217,490
August 2017	41,410	1,258,900
September 2017	52,870	1,311,770
October 2017	47,560	1,359,330
November 2017	35,300	1,394,630
December 2017	38,470	1,433,100
January 2018	51,060	1,484,160
February 2018	29,770	1,513,930
March 2018	41,760	1,555,690
April 2018	37,050	1,592,740
May 2018	37,120	1,629,860
June 2018	36,080	1,665,940
July 2018	32,020	1,697,960
August 2018	43,500	1,741,460
September 2018	44,960	1,786,420

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	1/19/2015	1.1	7.7	77.6	107	193.4	11.8	1.42	0.898	2.318	49.3
EFF	1/19/2015	ND	ND	ND	ND	ND	2.7	ND	ND	ND	ND
INN	1/26/2015	0.48 (J)	4.4	35.2	68.7	108.78 (J)	ND	0.973	0.454	1.427	35.1
EFF	1/26/2015	0.26 (J)	2.3	15.7	38.5	56.76 (J)	6.8	0.418	0.267	0.685	12.3
				I		~ /			Γ	Γ	1
INN	2/4/2015	1.2	10.9	96.1	173	281.2	12.4	1.70	1.21	2.91	60.1
EFF	2/4/2015	ND	0.74 (J)	1.6	16.0	18.34 (J)	7.0	ND	ND	ND	0.84 (J)
INN	2/20/2015	0.90	8.7	81.5	167	258.10	14.5	1.79	0.826	2.616	62.5
EFF	2/20/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	3/3/2015	0.77	8.6	71.1	152	232.47	10.9	1.51	0.573	2.083	47.3
EFF	3/3/2015	ND	ND	ND	ND	232.47 ND	0.88 (J)	ND	0.373 ND	2.085 ND	47.3 ND
	5/5/2015	ПЪ	n b	ПЪ	ПЪ	ПВ	0.00 (3)	T(B)	ПЪ	T(B)	ПВ
INF	3/30/2015	1.6	15.3	100	352	468.9	11.5	2.33	0.779	3.109	51.3
EFF	3/30/2015	ND	ND	ND	ND	ND	0.97 (J)	ND	ND	ND	ND
INF	4/7/2015	1.9	16.7	143	439	600.6	12.5	3.52	0.870	4.390	94.1
EFF	4/7/2015	ND	ND	ND	ND	ND	0.59 (J)	ND	ND	ND	ND
INF	4/27/2015	1.7	ND	ND	ND	1.7	ND	2.51	1.24	3.75	79.7
EFF	4/27/2013	ND	ND	ND	ND	ND	0.41 (J)	ND	ND	3.73 ND	/9.7 ND
LIT	4/2//2013	ND	ND	ND	ND	ND	0.41 (J)	ND	ND	ND	ND
INN	5/4/2015	1.4	15.3	117	340	473.7	11.9	2.02	0.873	2.893	76.6
EFF	5/4/2015	ND	ND	ND	ND	ND	1.0	ND	0.192	0.192	ND
INF	5/18/2015	1.7	20.9	141	417	580.6	12.8	3.58	1.17	4.75	71.3
EFF	5/18/2015	ND	ND	ND	0.37 (J)	0.37 (J)	2.2	ND	ND	ND	ND
DIE	(/2/2015	0.02	0.7	75.2	250	224.02	()	1.45	0.461	1.011	28.2
INF	6/2/2015	0.83	8.7	75.3 ND	250	334.83	6.2	1.45	0.461	1.911	38.2
EFF	6/2/2015	ND	ND	ND	ND	ND	1.5	ND	0.114	0.114	ND
INF	6/23/2015	1.6	14.7	116	343	475.3	ND	1.45	0.937	2.387	69.3
EFF	6/23/2015	ND	ND	ND	ND	ND	2.3	ND	ND	ND	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	7/6/2015	1.7	13.1	109	355	478.8	11.6	2.20	1.02	3.22	67.4
EFF	7/6/2015	ND	ND	ND	0.27 (J)	0.27 (J)	3.8	ND	0.212	0.212	ND
INF	7/21/2015	1.4	10.4	81.4	278	371.2	7.0	2.03	0.943	2.973	58.7
EFF	7/21/2015	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND
INN	8/3/2015	2.3	17.7	125	430	575.0	12.4	3.08	0.812	3.892	72.9
EFF	8/3/2015	ND	ND	ND	ND	ND	3.0	ND	ND	ND	ND
INF	8/20/2015	1.1	5.9	22.4	81.3	110.7	5.3	0.476	0.206	0.682	3.6 (J)
EFF	8/20/2015	ND	ND	ND	ND	ND	2.5	ND	0.239	0.239	ND
INF	9/9/2015	3.1	25.5	144	446	618.6	11.2	3.15	1.27	4.42	50.8
EFF	9/9/2015	ND	ND	ND	ND	ND	2.4	ND	0.448	0.448	ND
INN	9/22/2015	2.6	14.4	93.4	272	382.4	8.5	3.16	0.971	4.131	65.8
EFF	9/22/2015	ND	ND	ND	ND	ND	2.6	ND	0.0953	0.0953	ND
INF	10/7/2015	3.1	14.7	105	298	420.8	10.3	2.09	0.290	2.380	58.1
EFF	10/7/2015	ND	ND	ND	ND	420.8 ND	2.1	2.09 ND	0.290	0.0987	38.1 ND
DIE	10/12/2015	2.0	11.7	00.0	2(2	266.2	10.2	2.82	1.40	4.00	40.0
INF EFF	10/13/2015 10/13/2015	2.8 ND	11.7 ND	88.8 ND	263 ND	366.3 ND	10.2	2.82 ND	1.40 0.105	4.22 0.105	48.0 ND
		1	1	1			1			1	
INN EFF	11/10/2015 11/10/2015	2.0 ND	9.1 ND	71.9 ND	177 ND	260.0 ND	ND 1.7	1.98 ND	0.807 ND	2.787 ND	35.7 ND
EFF	11/10/2015	ND	ND	ND	ND	ND	1./	ND	ND	ND	ND
INF	12/2/2015	1.9	4.3	48.7	106	160.9	7.3	1.02	0.502	1.522	39.7
EFF	12/2/2015	ND	ND	ND	ND	ND	3.8	ND	ND	ND	ND
INF	12/16/2015	1.8	5.0	57.4	111	175.2	7.6	1.17	0.527	1.697	51.0
EFF	12/16/2015	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND
INF	1/6/2016	2.4	7.0	86.8	144	240.2	7.2	1.90	0.627	2.527	41.2
EFF	1/6/2016	ND	ND	ND	ND	ND	3.4	ND	ND	ND	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	1/12/2016	1.2	3.7	36.5	83.2	124.6	5.4	1.31	0.376	1.686	21.0
EFF	1/12/2016	ND	ND	ND	ND	ND	3.1	ND	ND	ND	ND
INF	2/3/2016	0.86	3.3	26.6	66.1	96.86	3.2	0.668	0.340	1.008	17.5
EFF	2/3/2016	ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND
									I	I	1
INF	2/9/2016	2.6	11.8	96.2	219	329.6	7.1	1.79	0.665	2.455	49.6
EFF	2/9/2016	ND	ND	ND	ND	ND	2.1	ND	0.0850	0.0850	ND
INF	3/3/2016	3.1	12.2	112	367	494.3	7.6	2.71	0.717	3.427	68.5
EFF	3/3/2016	ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND
					1						
INF	3/9/2016	3.1	14.1	125	377	519.2	6.6	3.03	0.665	3.695	76.7
EFF	3/9/2016	ND	ND	ND	0.78 (J)	0.78 (J)	6.2	ND	ND	ND	ND
INN	4/6/2016	4.6	35.1	156	505	700.7	7.3	3.78	0.947	4.727	75.3
EFF	4/6/2016	ND	0.32 (J)	0.75 (J)	2.3	3.37 (J)	2.4	ND	ND	ND	ND
		1.0	2 0.0	100	100	7 04 0			0.001		
INF	4/12/2016	4.3	29.0	109	439	581.3	7.4	2.83	0.994	3.824	74.9
EFF	4/12/2016	ND	0.17 (J)	0.41 (J)	1.4	1.98 (J)	1.4	ND	ND	ND	ND
INN	5/4/2016	2.7	23.1	123	358	506.8	5.0	2.43	0.656	3.086	63.2
EFF	5/4/2016	ND	0.40 (J)	0.94 (J)	3.6	4.94 (J)	3.7	ND	ND	ND	ND
INN	5/12/2016	3.8	29.2	166	388	587.0	7.4	3.28	1.40	4.68	76.1
EFF	5/12/2016	0.22 (J)	0.58 (J)	1.2	3.1	5.1 (J)	5.8	ND	0.269	0.269	ND
INN	6/8/2016	4.6	33.2	187	466	690.8	7.3	3.24	0.777	4.017	86.0
EFF	6/8/2016	0.50	1.4	3.5	10.4	15.80	7.2	0.226	ND	0.226	ND
		1.0	20.4						0.000	0.540	
INN	6/14/2016	4.9	30.1	164	422	621.0	7.2	2.94	0.822	3.762	74.4
EFF	6/14/2016	0.83	3.0	8.1	20.5	32.43	4.9	0.316	ND	0.316	ND
INN	7/7/2016	3.9	22.1	144	353	523.0	ND	2.64	1.11	3.75	73.8
EFF	7/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NPDES Permit Limits*	-	NI	NI	NI	100	NI	NI	NI	15	NI
	NEDES FERMIT LIMITS*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	7/12/2016	2.2	11.6	68.8	203	285.6	3.5	1.66	0.957	2.617	42.9
EFF	7/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	8/3/2016	3.0	7.0	36.3	147	193.3	4.7	1.28	0.810	2.090	41.4
EFF	8/3/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	8/17/2016	3.5	12.4	81.5	273	370.4	5.2	2.10	0.792	2.892	63.1
EFF	8/17/2016	ND	ND	ND	ND	0.00	0.70 (J)	ND	ND	ND	ND
INN	9/8/2016	4.3	10.2	88.9	263	366.4	5.6	2.26	0.802	3.062	61.0
EFF	9/8/2016	ND	ND	0.36 (J)	0.40 (J)	0.76 (J)	1.4	ND	ND	ND	ND
INN	9/14/2016	3.8	8.4	84.9	218	315.1	4.7	1.92	1.06	2.980	58.2
EFF	9/14/2016	ND	ND	0.30 (J)	0.59 (J)	0.89 (J)	0.84	ND	ND	2.900 ND	ND
INN	10/12/2016	4.4	5.0	15.4	79.2	104.0	5 4	1.24	0.704	1.94	6.1
EFF	10/12/2016	4.4 ND	5.0 ND	15.4 ND	/9.2 ND	104.0 ND	5.4 1.4	1.24 ND	0.704 ND	1.94 ND	0.1 ND
INN	10/18/2016	4.9	6.8	46.0	177	234.7	4.9	2.72	1.06	3.78	53.7
EFF	10/18/2016	ND	ND	0.36 (J)	0.50 (J)	0.86 (J)	1.80	ND	ND	ND	ND
INN	11/3/2016	6.7	7.4	61.0	164	239.1	4.4	2.89	1.01	3.90	65.3
EFF	11/3/2016	ND	ND	0.35 (J)	ND	0.35 (J)	1.70	ND	ND	ND	ND
INN	11/8/2016	7.5	8.1	28.3	193	236.9	4.1	3.75	1.36	5.11	83.1
EFF	11/8/2016	ND	ND	ND	ND	ND	1.40	ND	ND	ND	ND
INN	12/7/2016	2.2	1.4	10.4	23.9	37.9	3.5	0.971	0.329	1.300	8.3
EFF	12/7/2016	ND	ND	ND	ND	ND	3.10	ND	ND	ND	ND
INN	12/15/2016	2.9	2.3	24.2	26.7	56.1	4.3	ND	0.486	0.486	18.2
EFF	12/15/2016	ND	ND	ND	ND	ND	2.3	ND	0.480 ND	0.480 ND	ND
DDI	1/4/2017	2.7	5.2			(0.2		. 1.10	0.46	1.50	12.0
INN EFF	1/4/2017 1/4/2017	2.7 ND	5.3 ND	26.6 ND	34.7 ND	69.3 ND	4.7	1.12 ND	0.46 ND	1.58 ND	13.8 ND
ЕГГ	1/4/2017	ND	ND	ND	ND	IND	1.40	ND	ND	ND	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (µg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	1/11/2017	3.5	4.7	44.2	43.1	95.5	5.4	1.12	0.367	1.49	18.8
EFF	1/11/2017	ND	ND	ND	ND	ND	1.8	ND	ND	ND	ND
INN	2/7/2017	3.9	4.3	53.6	59.0	120.8	5.5	1.58	0.464	2.04	21.1
EFF	2/7/2017	ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND
INN	2/21/2017	3.1	3.3	47.1	60.5	114.0	5.2	1.62	0.394	2.01	17.5
EFF	2/21/2017	ND	ND	ND	ND	ND	2.4	ND	ND	ND	ND
INN	3/1/2017	3.0	3.3	49.6	65.0	120.9	5.3	1.54	0.322	1.86	17.0
EFF	3/1/2017	3.0 ND	3.3 ND	49.8 0.24 (J)	ND	0.24 (J)	2.5	ND	0.322 ND	ND	ND
INN EFF	3/10/2017	2.9	3.0	40.3	59.1	105.3	5.8	1.09	0.444 ND	1.53	21.0 ND
EFF	3/10/2017	0.28 (J)	ND	0.58 (J)	1.2	2.06 (J)	2.5	0.123	ND	0.123	ND
INN	4/4/2017	2.1	4.7	53	187	246.8	6.8	2.07	0.708	2.778	24.9
EFF	4/4/2017	0.31 (J)	ND	0.51 (J)	2.8	3.62 (J)	3.9	0.113	ND	0.113	ND
INN	4/11/2017	2.3	6.2	59.2	168	235.7	8.1	1.63	1.140	2.770	31.8
EFF	4/11/2017	0.55	0.37 (J)	0.95 (J)	4.9	6.77 (J)	3.4	ND	0.114	0.114	ND
INN	5/3/2017	2.0	2.6	43.7	114	162.3	6.2	1.53	0.905	2.435	34.0
EFF	5/3/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	5/16/2017	1.6	2.2	31.6	107	142.4	6.3	1.09	0.813	1.903	34.3
EFF	5/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				L							
INN EFF	6/1/2017 6/1/2017	2.5 ND	4.0 ND	50.5 ND	202 ND	259.0 ND	5.9 ND	1.95 ND	1.03 ND	2.98 ND	47.1 ND
EFF	6/1/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	6/8/2017	2.7	6.0	76	440	524.7	5.1	3.34	1.84	5.18	72.5
EFF	6/8/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	7/11/2017	1.4	2.8	29.6	159	192.8	4.5	0.857	1.63	2.49	41.4
EFF	7/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	7/20/2017	1.4	2.8	31.3	167	202.5	4.2	1.23	1.47	2.70	58.5
EFF	7/20/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9
INN	8/10/2017	1.8	3.2	30.6	129	164.6	4.8	1.06	0.991	2.051	33.8
EFF	8/10/2017	ND	ND	ND	ND	ND	2.2	ND	ND	ND	ND
INN	8/18/2017	0.7	1.4	11.9	47.3	61.3	3.4	0.39	0.64	1.02	23.5
EFF	8/18/2017	ND	ND	ND	47.3 ND	ND	1.9	ND	ND	ND	23.3 ND
											-
INN	9/7/2017	2.5	4.6	42.6	238	287.7	ND	1.97	2.19	4.16	82.5
EFF	9/7/2017	ND	1.4	0.38 (J)	2.4	4.18 (J)	243.0	ND	ND	ND	ND
INN	9/18/2017	3.6	6.5	57.0	167	234.1	4.2	1.23	1.47	2.70	68.9
EFF	9/18/2017	ND	ND	ND	ND	ND	2.4	ND	ND	ND	ND
INN	10/3/2017	3.4	5.5	44.2	157	210.1	3.7	1.82	1.22	3.04	64.3
EFF	10/3/2017	ND	ND	ND	ND	ND	1.6	ND	ND	ND	ND
									I		
INN	10/17/2017	2.3	3.5	31.4	95.2	132.4	3.9	1.24	0.755	2.00	34.8
EFF	10/17/2017	ND	ND	ND	ND	ND	1.6	ND	ND	ND	ND
INN	11/2/2017	2.7	3.0	19.3	86.1	111.1	5.9	1.05	2.780	3.83	24.9
EFF	11/2/2017	ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND
INN	11/9/2017	1.4	1.5	10.3	47.1	60.3	4.4	0.643	1.20	1.84	13.4
EFF	11/9/2017	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND
INN	12/8/2017	2.9	3.3	42.1	75.2	123.5	5.4	1.18	1.04	2.22	33.8
EFF	12/8/2017	ND	ND	ND	0.22 (J)	0.22 (J)	2.3	ND	ND	ND	ND
INN	12/21/2017	3.4	3.3	33.0	54.4	94.1	5.7	0.871	4.72	5.59	29.0
EFF	12/21/2017	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND
INN	1/11/2018	1.1	0.98 (J)	9.3	17.2	28.6 (J)	5.2	0.315	1.72	2.035	17.5
EFF	1/11/2018	ND	0.98 (J) ND	9.3 0.24 (J)	0.42 (J)	0.66 (J)	2.7	0.313 ND	0.0893	0.0893	ND
						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	1/22/2018	2.5	2.2	22.3	32.2	59.2	5.2	0.358	1.48	1.838	15.2
EFF	1/22/2018	ND	ND	ND	ND	ND	2.2	ND	0.133	0.133	ND
INN	2/7/2018	2.0	2.1	18.7	33.1	55.9	5.8	0.656	1.22	1.876	14.3
EFF	2/7/2018	ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND
INN	2/14/2018	1.3	2.5	17.1	44.9	65.8	6.3	0.731	1.05	1.781	8.4
EFF	2/14/2018	ND	ND	0.33 (J)	0.99 (J)	1.32 (J)	3.3	ND	0.108	0.108	ND
INN	3/7/2018	2.1	7.8	49.3	137	196.2	6.3	0.970	2.49	3.460	22.9
EFF	3/7/2018	ND	ND	0.33 (J)	1.2	190.2 1.5 (J)	3.5	ND	ND	ND	ND
	2/1/2010							1.00	4.04		
INN EFF	3/14/2018 3/14/2018	2.3 0.29 (J)	7.6 0.58 (J)	55.2 0.63 (J)	149 15.4	214.1 16.9 (J)	5.8 3.6	1.29 0.196 (J)	1.01 0.173	2.30 0.369 (J)	28.3 ND
EIT	5/14/2018	0.29 (3)	0.38 (3)	0.03 (3)	13.4	10.9 (5)	5.0	0.190 (J)	0.175	0.309 (3)	ND
INN	4/3/2018	2.3	6.3	59.2	162	230	6.3	1.35	0.755	2.11	27.8
EFF	4/3/2018	0.19 (J)	ND	0.60 (J)	2.5	3.3 (J)	3.0	0.110 (J)	0.0990	0.209 (J)	ND
INN	4/11/2018	2.5	5.8	70.6	188	267	5.4	1.41	0.933	2.34	31.1
EFF	4/11/2018	0.53	1.1	5.5	31.4	38.5	3.1	0.301	0.304	0.605	2.5 (J)
INN	5/2/2018	1.7	4.9	51.1	190	248	4.9	1.84	0.889	2.73	40.8
EFF	5/2/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	- /- /			1							
INN EFF	5/9/2018 5/9/2018	2.8 ND	7.6 ND	80.5 ND	302 ND	393 ND	6.8 ND	2.15 ND	1.46 0.179	3.61 0.179	50.6 ND
EIT	5/9/2018	ND	ND	ND	ND	ND	ND	ND	0.179	0.179	ND
INN	6/6/2018	2.1	7.3	48.2	241	299	4.8	1.54	0.907	2.45	35.2
EFF	6/6/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	6/13/2018	2.0	6.8	39.5	214	262	4.4	1.47	0.728	2.20	34.3
EFF	6/13/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	7/3/2018	2.4	9.2	47.9	256	316	4.5	1.81	0.913	2.72	43.2
EFF	7/3/2018	ND	ND	ND	0.29 (J)	0.29 (J)	0.39 (J)	ND	ND	ND	ND
	NDDEC D	-	NI	- NI		100	NI	-	NT	15	NT
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (Total) (µg/L)	Total BTEX (µg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	7/12/2018	3.0	9.5	50.9	271	334	5.2	1.82	0.728	2.55	55.6
EFF	7/12/2018	ND	ND	ND	ND	ND	0.41 (J)	ND	ND	ND	ND
	1										1
INN	8/1/2018	3.0	6.6	36.2	181	227	4.6	1.58	ND	1.58	35.0
EFF	8/1/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
											1
INN	8/8/2018	3.9	9.0	52.8	234	300	5.6	1.81	0.851	2.66	47.2
EFF	8/8/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	9/4/2018	4.6	8.0	59.1	191	263	4.5	1.88	0.716	2.60	42.9
EFF	9/4/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	÷										
INN	9/12/2018	4.0	5.8	43.0	181	234	4.5	1.61	0.315	1.93	34.7
EFF	9/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Notes:

*Effluent Limitations listed in NPDES Permit # MDG915958

NPDES = National Pollutant Discharge Elimination System

EFF = Effluent Sample (Post-filtration)

INF = Influent Sample (Pre-filtration)

INN = Influent Sample (Pre-filtration)

ND = Constituent Compound Not Detected

NL = No limit listed in NPDES permit

NA = Not Analyzed

(J) = Laboratory-Estimated Value

 $\mu g/L = micrograms/Liter$

mg/L = milligrams/Liter

MTBE = Methyl-Tertiary-Butyl Ether

Total BTEX = sum of Benzene, Toluene, Ethylbenzene, and Xylenes

TPH = Total Petroleum Hydrocarbons

DRO = Diesel Range Organics

GRO = Gasoline Range Organics

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

09/24/18

Technical Report for

EMS Environmental, Inc.

HESS #20204, 1613 East Joppa Road, Towson, MD

5713

SGS Job Number: JC73509

Sampling Date: 09/05/18

Report to:

EMS Environmental, Inc. 4550 Bath Pike Bethlehem, PA 18017 jfox@emsenv.com

ATTN: Jeremy Fox

Total number of pages in report: 82

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Elizabeth Lange 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 82

Table of Contents

-N ယ

4

1	
	_

Section 1: Sample Summary	3
Section 2: Summary of Hits	5
Section 3: Sample Results	9
3.1: JC73509-1: YMW-1	10
3.2: JC73509-2: YMW-2	15
3.3: JC73509-3: YMW-3	20
3.4: JC73509-4: YMW-4	25
3.5: JC73509-5: YMW-5	30
3.6: JC73509-6: YMW-6	35
3.7: JC73509-7: YMW-7	40
3.8: JC73509-8: YMW-8	45
3.9: JC73509-9: YMW-9	50
3.10: JC73509-10: OW-1	55
3.11: JC73509-11: MW-1	60
3.12: JC73509-12: MW-4	65
3.13: JC73509-13: MW-7	70
3.14: JC73509-14: MDE-4	75
Section 4: Misc. Forms	80
4.1: Chain of Custody	81

Sample Summary

EMS Environmental, Inc.

Job No: JC73509

HESS #20204, 1613 East Joppa Road, Towson, MD Project No: 5713

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JC73509-1	09/05/18	10:45 BR	09/10/18	AQ	Ground Water	YMW-1
JC73509-2	09/05/18	11:10 BR	09/10/18	AQ	Ground Water	YMW-2
JC73509-3	09/05/18	10:20 BR	09/10/18	AQ	Ground Water	YMW-3
JC73509-4	09/05/18	11:55 BR	09/10/18	AQ	Ground Water	YMW-4
JC73509-5	09/05/18	12:15 BR	09/10/18	AQ	Ground Water	YMW-5
JC73509-6	09/05/18	12:40 BR	09/10/18	AQ	Ground Water	YMW-6
JC73509-7	09/05/18	13:05 BR	09/10/18	AQ	Ground Water	YMW-7
JC73509-8	09/05/18	11:30 BR	09/10/18	AQ	Ground Water	YMW-8
JC73509-9	09/05/18	13:30 BR	09/10/18	AQ	Ground Water	YMW-9
JC73509-10	09/05/18	14:00 BR	09/10/18	AQ	Ground Water	OW-1
JC73509-11	09/05/18	15:00 BR	09/10/18	AQ	Ground Water	MW-1
JC73509-12	09/05/18	09:55 BR	09/10/18	AQ	Ground Water	MW-4
JC73509-13	09/05/18	15:25 BR	09/10/18	AQ	Ground Water	MW-7

Sample Summary (continued)

EMS Environmental, Inc.

Job No: HESS #20204, 1613 East Joppa Road, Towson, MD Project No: 5713 Collected Sample Matrix Client Number Sample ID Date Time By **Received Code Type**

JC73509-14 09/05/18 14:30 BR 09/10/18 AQ Ground Water MDE-4

Job Number:	JC73509
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	09/05/18

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JC73509-1	YMW-1					
No hits reported	in this sample.					
JC73509-2	YMW-2					
Di-Isopropyl ethe 1,2-Dichloroetha Methyl Tert Butyl Tert Butyl Alcoh tert-Amyl Methy TPH-GRO (C6-C TPH-DRO (C10-	ne /l Ether ol l Ether C10)	3.5 2.8 22.3 184 0.63 J 0.144 J 0.151	2.0 1.0 1.0 10 2.0 0.20 0.083	$\begin{array}{c} 0.68 \\ 0.60 \\ 0.51 \\ 5.8 \\ 0.47 \\ 0.10 \\ 0.053 \end{array}$	ug/l ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8015C SW846 8015C
JC73509-3	YMW-3					
No hits reported	in this sample.					
JC73509-4	YMW-4					
Benzene n-Butylbenzene sec-Butylbenzene Di-Isopropyl ethe Ethylbenzene Isopropylbenzene Methyl Tert Buty Naphthalene n-Propylbenzene Tert Butyl Alcoh Toluene 1,2,4-Trimethylb m,p-Xylene Xylene (total) TPH-GRO (C6-C TPH-DRO (C10-	er e /l Ether ol venzene C10)	10.4 2.5 3.1 5.9 4.2 8.5 14.0 1.9 J 14.7 355 0.72 J 2.5 5.7 5.7 1.01 0.813	$\begin{array}{c} 0.50\\ 2.0\\ 2.0\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 5.0\\ 2.0\\ 10\\ 1.0\\ 2.0\\ 1.0\\ 1.0\\ 0.20\\ 0.083 \end{array}$	$\begin{array}{c} 0.43\\ 0.52\\ 0.62\\ 0.68\\ 0.60\\ 0.65\\ 0.51\\ 0.98\\ 0.60\\ 5.8\\ 0.53\\ 1.0\\ 0.78\\ 0.59\\ 0.10\\ 0.053 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8015C
JC73509-5	YMW-5					
Methyl Tert Buty	l Ether	3.3	1.0	0.51	ug/l	SW846 8260C
JC73509-6	YMW-6					
1,2-Dichloroetha Methyl Tert Buty		10.7 5.3	1.0 1.0	0.60 0.51	ug/l ug/l	SW846 8260C SW846 8260C

Job Number:	JC73509
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	09/05/18

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Tert Butyl Alcohol	98.4	10	5.8	ug/l	SW846 8260C
JC73509-7 YMW-7					
Benzene	64.9	0.50	0.43	ug/l	SW846 8260C
n-Butylbenzene	3.2	2.0	0.52	ug/l	SW846 8260C
sec-Butylbenzene	3.4	2.0	0.62	ug/l	SW846 8260C
Ethylbenzene	105	1.0	0.60	ug/l	SW846 8260C
Isopropylbenzene	23.0	1.0	0.65	ug/l	SW846 8260C
p-Isopropyltoluene	2.7	2.0	0.66	ug/l	SW846 8260C
Methyl Tert Butyl Ether	3.5	1.0	0.51	ug/l	SW846 8260C
Naphthalene	39.8	5.0	0.98	ug/l	SW846 8260C
n-Propylbenzene	43.2	2.0	0.60	ug/l	SW846 8260C
Tert Butyl Alcohol	12.1	10	5.8	ug/l	SW846 8260C
Toluene	10.1	1.0	0.53	ug/l	SW846 8260C
1,2,4-Trimethylbenzene	56.0	2.0	1.0	ug/l	SW846 8260C
1,3,5-Trimethylbenzene	28.0	2.0	1.0	ug/l	SW846 8260C
m,p-Xylene	172	1.0	0.78	ug/l	SW846 8260C
o-Xylene	34.7	1.0	0.59	ug/l	SW846 8260C
Xylene (total)	207	1.0	0.59	ug/l	SW846 8260C
TPH-GRO (C6-C10)	3.81	0.20	0.10	mg/l	SW846 8015C
JC73509-8 YMW-8					
Benzene	29.3	0.50	0.43	ug/l	SW846 8260C
n-Butylbenzene	2.4	2.0	0.52	ug/l	SW846 8260C
sec-Butylbenzene	2.0	2.0	0.62	ug/l	SW846 8260C
Chloroform	4.0	1.0	0.50	ug/l	SW846 8260C
Ethylbenzene	202	2.5	1.5	ug/l	SW846 8260C
Isopropylbenzene	16.4	1.0	0.65	ug/l	SW846 8260C
p-Isopropyltoluene	9.3	2.0	0.66	ug/l	SW846 8260C
Methyl Tert Butyl Ether	9.4	1.0	0.51	ug/l	SW846 8260C
Naphthalene	59.7	5.0	0.98	ug/l	SW846 8260C
n-Propylbenzene	47.9	2.0	0.60	ug/l	SW846 8260C
Tert Butyl Alcohol	17.4	10	5.8	ug/l	SW846 8260C
Toluene	10.4	1.0	0.53	ug/l	SW846 8260C
1,2,4-Trimethylbenzene	191	5.0	2.5	ug/l	SW846 8260C
1,3,5-Trimethylbenzene	70.9	2.0	1.0	ug/l	SW846 8260C
m,p-Xylene	259	1.0	0.78	ug/l	SW846 8260C
o-Xylene	8.4	1.0	0.78	ug/l	SW846 8260C
Xylene (total)	267	1.0	0.59	ug/l	SW846 8260C
TPH-GRO (C6-C10)	3.00	0.20	0.39	mg/l	SW846 8015C
TPH-DRO (C10-C28)	0.823	0.20	0.053	mg/l	SW846 8015C SW846 8015C
$\Pi \Pi D O (C I 0 - C Z 0)$	0.025	0.005	0.055	mg/1	5110-00150

Ν

JC73509

Job Number:	JC73509
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	09/05/18

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JC73509-9	YMW-9					
1,2-Dichloroetha Methyl Tert Buty		3.7 1.7	1.0 1.0	0.60 0.51	ug/l ug/l	SW846 8260C SW846 8260C
JC73509-10	OW-1					
Acetone Benzene n-Butylbenzene sec-Butylbenzene Isopropylbenzene Methyl Tert Buty Naphthalene n-Propylbenzene Tert Butyl Alcoh 1,2,4-Trimethylt 1,3,5-Trimethylt m,p-Xylene o-Xylene Xylene (total) TPH-GRO (C6-C TPH-DRO (C10-	e yl Ether ol benzene benzene C10)	6.8 J 2.2 0.86 J 2.4 7.8 4.2 5.2 1.2 J 9.5 21.3 8.3 3.5 7.1 1.2 8.3 0.816 0.441	$ \begin{array}{c} 10\\ 0.50\\ 2.0\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 5.0\\ 2.0\\ 10\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.20\\ 0.083 \end{array} $	$\begin{array}{c} 6.0\\ 0.43\\ 0.52\\ 0.62\\ 0.60\\ 0.65\\ 0.51\\ 0.98\\ 0.60\\ 5.8\\ 1.0\\ 1.0\\ 0.78\\ 0.59\\ 0.59\\ 0.59\\ 0.10\\ 0.053 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C
JC73509-11	MW-1					
No hits reported	in this sample.					
JC73509-12	MW-4					
Benzene Ethylbenzene Naphthalene n-Propylbenzene Tert Butyl Alcoh 1,2,4-Trimethylb TPH-GRO (C6-C TPH-DRO (C10-	ol penzene C10)	7.3 2.7 2.8 J 1.1 J 40.3 11.7 0.226 0.110	0.50 1.0 5.0 2.0 10 2.0 0.20 0.083	$\begin{array}{c} 0.43 \\ 0.60 \\ 0.98 \\ 0.60 \\ 5.8 \\ 1.0 \\ 0.10 \\ 0.053 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8015C SW846 8015C
JC73509-13	MW-7					
Benzene n-Butylbenzene sec-Butylbenzene	9	12.9 0.58 J 3.2	0.50 2.0 2.0	0.43 0.52 0.62	ug/l ug/l ug/l	SW846 8260C SW846 8260C SW846 8260C

N

JC73509

Job Number:	JC73509
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	09/05/18

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Di-Isopropyl ether	7.2	2.0	0.68	ug/l	SW846 8260C
Ethylbenzene	27.8	1.0	0.60	ug/l	SW846 8260C
Isopropylbenzene	4.3	1.0	0.65	ug/l	SW846 8260C
p-Isopropyltoluene	0.83 J	2.0	0.66	ug/l	SW846 8260C
Methyl Tert Butyl Ether	14.2	1.0	0.51	ug/l	SW846 8260C
Naphthalene	4.6 J	5.0	0.98	ug/l	SW846 8260C
n-Propylbenzene	8.4	2.0	0.60	ug/l	SW846 8260C
Tert Butyl Alcohol	100	10	5.8	ug/l	SW846 8260C
Toluene	2.1	1.0	0.53	ug/l	SW846 8260C
1,2,4-Trimethylbenzene	26.3	2.0	1.0	ug/l	SW846 8260C
1,3,5-Trimethylbenzene	3.2	2.0	1.0	ug/l	SW846 8260C
m,p-Xylene	16.4	1.0	0.78	ug/l	SW846 8260C
o-Xylene	4.2	1.0	0.59	ug/l	SW846 8260C
Xylene (total)	20.6	1.0	0.59	ug/l	SW846 8260C
TPH-GRO (C6-C10)	1.41	0.20	0.10	mg/l	SW846 8015C
TPH-DRO (C10-C28)	0.715	0.083	0.053	mg/l	SW846 8015C

JC73509-14 MDE-4

No hits reported in this sample.

N

Dayton, NJ

ω Section 3

Sample Results

Report of Analysis

Lab Samj Matrix: Method: Project:	AQ SW	3509-1 - Ground Wa 346 8260C SS #20204, 1	ater 613 East Joppa Road	l, Tow		Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 2E146455.D	DF 1	Analyzed 09/12/18 12:51	By SS	Prep Date n/a	Prep Batch n/a	Analytical Batch V2E6433
Run #1 Run #2	Purge Volu 5.0 ml	ne					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-1		
-	JC73509-1	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	ND	5.0	0.98	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	ND	10	5.8	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	93%		80-12	20%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

<u>ω</u>

Report of Analysis

Client Sample ID:	YMW-1		
Lab Sample ID:	JC73509-1	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	95%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	99%		80-120%

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

Page 3 of 3 $\overset{\omega}{\underline{}}$

				Report		11 y 51 5			1 age 1 01 1
Client San Lab Samp Matrix: Method: Project:	le ID: J A S	W846	9-1 ound Wate 8015C	r 3 East Joppa Roa	d, Towso	n, MD	Date	Sampled: Received: ent Solids:	09/05/18 09/10/18 n/a
Run #1 Run #2	File ID UV14563	0.D	DF 1	Analyzed 09/11/18 15:45	By KC	Prep D n/a	ate	Prep Batc n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Vo 5.0 ml	olume							
CAS No.	Compou	ınd		Result	RL	MDL	Units	Q	
	TPH-GR	RO (C6-	C10)	ND	0.20	0.10	mg/l		
CAS No.	Surroga	te Reco	overies	Run# 1	Run# 2	Lim	uits		
98-08-8	aaa-Trifl	uorotol	uene	94%		55-1	30%		

Report of Analysis

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

<u>ω</u>

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - G SW846	9-1 Fround Water 8015C SW		d, Towsc	on, MD	Date	I	9/05/18 9/10/18 ⁄a
Run #1 Run #2	File ID 2Y93242.D	DF 1	Analyzed 09/13/18 06:38	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d 5a-Androstane	50	66% 59% 48%		22-1 13-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

<u>ω</u>

Client San Lab Samj Matrix: Method: Project:	ple ID: JC7350 AQ - C SW846	-)9-2 }round Wa 5 8260C	ater 613 East Joppa Road	l, Tow	rson, MD	Date Sampled: Date Received: Percent Solids:	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Run #1 Run #2	File ID 2E146456.D	DF 1	Analyzed 09/12/18 13:20	By SS	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2E6433
Run #1 Run #2	Purge Volume 5.0 ml						

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	3.5	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	2.8	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.2

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-2		
-	JC73509-2	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
-			

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q	
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l		
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l		
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l		
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l		
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l		
1634-04-4	Methyl Tert Butyl Ether	22.3	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
91-20-3	Naphthalene	ND	5.0	0.98	ug/l		
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l		
100-42-5	Styrene	ND	1.0	0.70	ug/l		
75-65-0	Tert Butyl Alcohol	184	10	5.8	ug/l		
994-05-8	tert-Amyl Methyl Ether	0.63	2.0	0.47	ug/l	J	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l		
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l		
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l		
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l		
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m,p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7 Dibromofluoromethane 92% 80-120%							

Page 2 of 3	

3.2

ω

MDL = Method Detection Limit ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JC73509

Report of Analysis

Client Sample ID:	YMW-2		
Lab Sample ID:	JC73509-2	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	95%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	98%		80-120%

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

3.2

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	Ie ID: JC73509-2 AQ - Ground Wa SW846 8015C	er 13 East Joppa Roa	nd, Tows	on, MD	Date	1	0/05/18 0/10/18 a
Run #1 Run #2	File ID DF UV145641.D 1	Analyzed 09/11/18 21:18	By 8 KC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	0.144	0.20	0.10	mg/l	J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene	95%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

ω

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JC7350 AQ - G SW846	9-2 round Water 8015C SW		d, Towsc	on, MD	Date	Received: (09/05/18 09/10/18 n/a
Run #1 Run #2	File ID 2Y93243.D	DF 1	Analyzed 09/13/18 07:11	Ву СР	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C1	0-C28)	0.151	0.083	0.053	mg/l		
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d5 5a-Androstane	50	55% 38% 29%		22-1 13-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

ω

Client San Lab Samj Matrix: Method: Project:	ple ID: JC73 AQ - SW8	509-3 Ground Wa 46 8260C	ater 613 East Joppa Road	l, Tow	vson, MD	Date Sampled: Date Received: Percent Solids:	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Run #1 Run #2	File ID 2E146457.D	DF 1	Analyzed 09/12/18 13:50	By SS	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2E6433
Run #1 Run #2	Purge Volun 5.0 ml	ie					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

ယ ယ

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-3		
Lab Sample ID:	JC73509-3	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropene ND 1.0 0.52 ug/l 1061-01-5 cis-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.66 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 1.0 0.51 ug/l 98-82-8 Methylene bromide ND 2.0 0.66 ug/l 1634-04-4 Methylene bromide ND 2.0 1.0 ug/l 74-95-3 Methylene bromide ND 2.0 0.48 ug/l 75-09-2 Methylene bromide ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 1042-5 <th>CAS No.</th> <th>Compound</th> <th>Result</th> <th>RL</th> <th>MDL</th> <th>Units</th> <th>Q</th>	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.48 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 108-10-1 4-Methyl-pentanone(MIBK) ND 2.0 1.0 ug/l 108-10-1 4-Methyl-pentanone(MIBK) ND 2.0 1.0 ug/l 107-4-95-3 Methylene chloride ND 2.0 1.0 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 103-62-1 n-Propylbenzene ND 1.0 0.60 ug/l <	142-28-9	1.3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1, 1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis-1, 3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/1 98-87-6 p-Isopropylbenzene ND 1.0 0.65 ug/1 108-10-1 4-Methyl Tert Butyl Ether ND 1.0 0.48 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 108-10-1 4-Methylene bromide ND 1.0 0.48 ug/1 108-5.0 Ng hthalene ND 2.0 1.0 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 104-42-5 Styrene ND 1.0 0.60 ug/1 104-42-5			ND	1.0	0.52		
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/1 99-87-6 p-Isopropylbenzene ND 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 2.0 0.48 ug/1 75-09-2 Methylene chloride ND 2.0 0.98 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 104-5-4 tert-Amyl Methyl Ether ND 2.0 0.56 ug/1 107-38-4 tert-Alloroeth			ND	1.0		•	
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.60 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/1 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/1 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 75-09-2 Methylene bromide ND 1.0 0.48 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 104-2-5 Styrene ND 1.0 0.70 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.60 ug/1 630-20-6 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/1 107-18-4 Tetrachloroethene ND 1.0 0.60 ug/1 107-18-	10061-01-5			1.0	0.47	-	
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 108-10-1 4-Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 2.0 1.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.60 ug/l 104-42-5 Styrene ND 1.0 0.60 ug/l 105-54 tert-Butyl Alcohol ND 1.0 0.60 ug/l 107-18-4 Tetrachyloroethane							
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/l 102-15-6 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/l 103-88-3 Toluene ND 1.0 0.53 ug/l 102-88-1 1	100-41-4		ND	1.0	0.60	-	
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.66 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2,4-Tri	87-68-3		ND	2.0	0.56	-	
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 630-20-6 1,1,2.7-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2,4	98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2,4	99-87-6	p-Isopropyltoluene	ND	2.0	0.66	-	
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 630-20-6 1, 1, 2.7-terrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 128-8-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 19-00-5 1, 1,	1634-04-4		ND	1.0	0.51		
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 630-20-6 1, 1, 2.7-terrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 128-8-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 19-00-5 1, 1,	108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4	74-95-3		ND	1.0	0.48	ug/l	
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/1 630-20-6 1,1,2.2-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 108-88-3 Toluene ND 1.0 0.50 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 75-69-4 Trichloroethane ND 2.0 0.84 ug/1 96-18-4 1,2,3-Trichlorop	75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2.2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroptopane ND 2.0 0.84 ug/l 96-18-4	91-20-3	Naphthalene	ND	5.0	0.98	ug/l	
75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l	103-65-1	n-Propylbenzene	ND	2.0	0.60		
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l	100-42-5	Styrene	ND	1.0	0.70	ug/l	
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1,1,1-Trichlorobenzene ND 1.0 0.54 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 96-18-4 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l <	75-65-0		ND	10	5.8	ug/l	
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1,1,1-Trichlorobenzene ND 1.0 0.54 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 96-18-4 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l <	994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
79-34-51,1,2,2-TetrachloroethaneND1.00.65ug/l127-18-4TetrachloroetheneND1.00.90ug/l108-88-3TolueneND1.00.53ug/l87-61-61,2,3-TrichlorobenzeneND1.00.50ug/l120-82-11,2,4-TrichlorobenzeneND1.00.50ug/l71-55-61,1,1-TrichloroethaneND1.00.54ug/l79-00-51,1,2-TrichloroethaneND1.00.53ug/l79-01-6TrichloroethaneND1.00.53ug/l75-69-4TrichlorofluoromethaneND2.00.84ug/l96-18-41,2,3-TrichloropropaneND2.00.70ug/l95-63-61,2,4-TrimethylbenzeneND2.01.0ug/l108-67-81,3,5-TrimethylbenzeneND1.00.79ug/l95-47-6o-XyleneND1.00.79ug/l130-20-7Xylene (total)ND1.00.59ug/l	637-92-3		ND	2.0	0.56	ug/l	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53	ug/l	
71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	95-63-6		ND	2.0	1.0	ug/l	
m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	75-01-4		ND	1.0	0.79	ug/l	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits			ND	1.0		ug/l	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6		ND		0.59	ug/l	
	1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
1868-53-7 Dibromofluoromethane 94% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	1868-53-7	Dibromofluoromethane	94%		80-1	20%	

ND = Not detectedMDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

ယ ပ

21 of 82

JC73509

Report of Analysis

Client Sample ID:	YMW-3		
Lab Sample ID:	JC73509-3	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	96%		81-124%
2037-26-5	Toluene-D8	103%		80-120%
460-00-4	4-Bromofluorobenzene	99%		80-120%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ ပ

Page 3 of 3

JC73509

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	Ie ID: JC73509-3 AQ - Ground Wa SW846 8015C	ter 513 East Joppa Roa	ad, Tows	on, MD	Date	-	0/05/18 0/10/18 a
Run #1 Run #2	File ID DF UV145631.D 1	Analyzed 09/11/18 16:14	By 4 KC	Prep D a n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene	94%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ယ သ

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - G SW846	9-3 round Wate 8015C SW	r V846 3510C 3 East Joppa Roa	d, Towsc	on, MD	Date	I	9/05/18 9/10/18 ⁄a
Run #1 Run #2	File ID 2Y93244.D	DF 1	Analyzed 09/13/18 07:45	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C1	0-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d5 5a-Androstane	50	53% 37% 28%		22-1 13-1 10-1			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ ယ

ω

E = Indicates value exceeds calibration range

Lab Samj Matrix: Method: Project:	AQ SW	73509-4 9 - Ground Wa 7846 8260C SS #20204, 1	ater 613 East Joppa Road	l, Tow	son, MD	Date Sampled: Date Received: Percent Solids:	0,,, = 0, = 0
Run #1 Run #2	File ID 1A184721.1	DF D 1	Analyzed 09/18/18 16:32	By JTP	Prep Date n/a	Prep Batc n/a	h Analytical Batch V1A7893
Run #1 Run #2	Purge Volu 5.0 ml	me					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	10.4	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	2.5	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	3.1	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	5.9	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

3.4

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-4		
Lab Sample ID:	JC73509-4	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
0			

VOA Full List + Oxygenates

142-28-91,3-DichloropropaneND1.00.43ugg $594-20-7$ 2,2-DichloropropaneND1.00.52ugg $563-58-6$ 1,1-DichloropropeneND1.00.82ugg $10061-01-5$ cis-1,3-DichloropropeneND1.00.43ugg $10061-02-6$ trans-1,3-DichloropropeneND1.00.43ugg $100-41-4$ Ethylbenzene4.21.00.60ugg $100-41-4$ Ethylbenzene4.21.00.60ugg $87-68-3$ HexachlorobutadieneND2.00.56ugg $98-82-8$ Isopropylbenzene8.51.00.65ugg $99-87-6$ p-IsopropyltolueneND2.00.66ugg $1634-04-4$ Methyl Tert Butyl Ether14.01.00.51ugg $108-10-1$ 4-Methyl-2-pentanone(MIBK)ND5.01.9ugg $74-95-3$ Methylene bromideND1.00.48ugg $75-09-2$ Methylene chlorideND2.01.0ugg $91-20-3$ Naphthalene1.95.00.98ugg $103-65-1$ n-Propylbenzene14.72.00.60ugg $100-42-5$ StyreneND1.00.70ugg $75-65-0$ Tert Butyl Alcohol355105.8ugg	/1 /1
594-20-72,2-DichloropropaneND1.00.52ug563-58-61,1-DichloropropeneND1.00.82ug10061-01-5cis-1,3-DichloropropeneND1.00.47ug10061-02-6trans-1,3-DichloropropeneND1.00.43ug100-41-4Ethylbenzene4.21.00.60ug87-68-3HexachlorobutadieneND2.00.56ug98-82-8Isopropylbenzene8.51.00.65ug99-87-6p-IsopropyltolueneND2.00.66ug1634-04-4Methyl Tert Butyl Ether14.01.00.51ug108-10-14-Methyl-2-pentanone(MIBK)ND5.01.9ug74-95-3Methylene bromideND2.00.68ug91-20-3Naphthalene1.95.00.98ug103-65-1n-Propylbenzene14.72.00.60ug100-42-5StyreneND1.00.70ug	/1 /1
563-58-61,1-DichloropropeneND1.00.82ugg10061-01-5cis-1,3-DichloropropeneND1.00.47ugg10061-02-6trans-1,3-DichloropropeneND1.00.43ugg100-41-4Ethylbenzene4.21.00.60ugg87-68-3HexachlorobutadieneND2.00.56ugg98-82-8Isopropylbenzene8.51.00.65ugg99-87-6p-IsopropyltolueneND2.00.66ugg1634-04-4Methyl Tert Butyl Ether14.01.00.51ugg108-10-14-Methyl-2-pentanone(MIBK)ND5.01.9ugg74-95-3Methylene bromideND1.00.48ugg91-20-3Naphthalene1.95.00.98ugg103-65-1n-Propylbenzene14.72.00.60ugg100-42-5StyreneND1.00.70ugg	/1
10061-01-5cis-1,3-DichloropropeneND1.00.47ugg10061-02-6trans-1,3-DichloropropeneND1.00.43ugg100-41-4Ethylbenzene4.21.00.60ugg87-68-3HexachlorobutadieneND2.00.56ugg98-82-8Isopropylbenzene8.51.00.65ugg99-87-6p-IsopropyltolueneND2.00.66ugg1634-04-4Methyl Tert Butyl Ether14.01.00.51ugg108-10-14-Methyl-2-pentanone(MIBK)ND5.01.9ugg74-95-3Methylene bromideND1.00.48ugg91-20-3Naphthalene1.95.00.98ugg103-65-1n-Propylbenzene14.72.00.60ugg100-42-5StyreneND1.00.70ugg	
10061-02-6trans-1,3-DichloropropeneND1.00.43ugg100-41-4Ethylbenzene4.21.00.60ugg87-68-3HexachlorobutadieneND2.00.56ugg98-82-8Isopropylbenzene8.51.00.65ugg99-87-6p-IsopropyltolueneND2.00.66ugg1634-04-4Methyl Tert Butyl Ether14.01.00.51ugg108-10-14-Methyl-2-pentanone(MIBK)ND5.01.9ugg74-95-3Methylene bromideND1.00.48ugg75-09-2Methylene chlorideND2.01.0ugg91-20-3Naphthalene1.95.00.98ugg103-65-1n-Propylbenzene14.72.00.60ugg100-42-5StyreneND1.00.70ugg	
100-41-4Ethylbenzene4.21.00.60ugg87-68-3HexachlorobutadieneND2.00.56ugg98-82-8Isopropylbenzene8.51.00.65ugg99-87-6p-IsopropyltolueneND2.00.66ugg1634-04-4Methyl Tert Butyl Ether14.01.00.51ugg108-10-14-Methyl-2-pentanone(MIBK)ND5.01.9ugg74-95-3Methylene bromideND1.00.48ugg75-09-2Methylene chlorideND2.01.0ugg91-20-3Naphthalene1.95.00.98ugg103-65-1n-Propylbenzene14.72.00.60ugg100-42-5StyreneND1.00.70ugg	
87-68-3HexachlorobutadieneND2.00.56ugg98-82-8Isopropylbenzene8.51.00.65ugg99-87-6p-IsopropyltolueneND2.00.66ugg1634-04-4Methyl Tert Butyl Ether14.01.00.51ugg108-10-14-Methyl-2-pentanone(MIBK)ND5.01.9ugg74-95-3Methylene bromideND1.00.48ugg75-09-2Methylene chlorideND2.01.0ugg91-20-3Naphthalene1.95.00.98ugg103-65-1n-Propylbenzene14.72.00.60ugg100-42-5StyreneND1.00.70ugg	
98-82-8Isopropylbenzene8.51.00.65ugg99-87-6p-IsopropyltolueneND2.00.66ugg1634-04-4Methyl Tert Butyl Ether14.01.00.51ugg108-10-14-Methyl-2-pentanone(MIBK)ND5.01.9ugg74-95-3Methylene bromideND1.00.48ugg75-09-2Methylene chlorideND2.01.0ugg91-20-3Naphthalene1.95.00.98ugg103-65-1n-Propylbenzene14.72.00.60ugg100-42-5StyreneND1.00.70ugg	
99-87-6p-IsopropyltolueneND2.00.66ugg1634-04-4Methyl Tert Butyl Ether14.01.00.51ugg108-10-14-Methyl-2-pentanone(MIBK)ND5.01.9ugg74-95-3Methylene bromideND1.00.48ugg75-09-2Methylene chlorideND2.01.0ugg91-20-3Naphthalene1.95.00.98ugg103-65-1n-Propylbenzene14.72.00.60ugg100-42-5StyreneND1.00.70ugg	
1634-04-4Methyl Tert Butyl Ether14.01.00.51ug108-10-14-Methyl-2-pentanone(MIBK)ND5.01.9ug74-95-3Methylene bromideND1.00.48ug75-09-2Methylene chlorideND2.01.0ug91-20-3Naphthalene1.95.00.98ug103-65-1n-Propylbenzene14.72.00.60ug100-42-5StyreneND1.00.70ug	
108-10-14-Methyl-2-pentanone(MIBK)ND5.01.9ug/74-95-3Methylene bromideND1.00.48ug/75-09-2Methylene chlorideND2.01.0ug/91-20-3Naphthalene1.95.00.98ug/103-65-1n-Propylbenzene14.72.00.60ug/100-42-5StyreneND1.00.70ug/	
74-95-3Methylene bromideND1.00.48ug/75-09-2Methylene chlorideND2.01.0ug/91-20-3Naphthalene1.95.00.98ug/103-65-1n-Propylbenzene14.72.00.60ug/100-42-5StyreneND1.00.70ug/	
75-09-2Methylene chlorideND2.01.0ug/91-20-3Naphthalene1.95.00.98ug/103-65-1n-Propylbenzene14.72.00.60ug/100-42-5StyreneND1.00.70ug/	
91-20-3Naphthalene1.95.00.98ug,103-65-1n-Propylbenzene14.72.00.60ug,100-42-5StyreneND1.00.70ug,	
103-65-1n-Propylbenzene14.72.00.60ug/100-42-5StyreneND1.00.70ug/	
100-42-5 Styrene ND 1.0 0.70 ug/	
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/	
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/	/1
630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/	
79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/	
108-88-3 Toluene 0.72 1.0 0.53 ug/	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/	
120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/	
71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/	/1
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/	/1
79-01-6 Trichloroethene ND 1.0 0.53 ug/	/1
75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/	/1
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/	/1
95-63-6 1,2,4-Trimethylbenzene 2.5 2.0 1.0 ug	/1
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/	/1
75-01-4 Vinyl chloride ND 1.0 0.79 ug/	/1
m,p-Xylene 5.7 1.0 0.78 ug/	/1
95-47-6 o-Xylene ND 1.0 0.59 ug/	/1
1330-20-7 Xylene (total) 5.7 1.0 0.59 ug/	/1
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	-
1868-53-7 Dibromofluoromethane 103% 80-120%	-

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.4 3

Report of Analysis

Client Sample ID:	YMW-4		
Lab Sample ID:	JC73509-4	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	102%		81-124%
2037-26-5	Toluene-D8	99%		80-120%
460-00-4	4-Bromofluorobenzene	97%		80-120%

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

JC73509

Page 3 of 3

				Report		ai y 515			1 ago	
Client San Lab Samp Matrix: Method: Project:	ole ID:	SW846	9-4 round Wate 8015C	er 3 East Joppa Roa	d, Towso	n, MD	Date	Sampled: Received: ent Solids:	09/05/18 09/10/18 n/a	
Run #1 Run #2	File ID UV14564	42.D	DF 1	Analyzed 09/11/18 21:47	By KC	Prep D n/a	ate	Prep Batc n/a	Analytical GUV6031	Batch
Run #1 Run #2	Purge V 5.0 ml	olume								
CAS No.	Compo	und		Result	RL	MDL	Units	Q		
	TPH-G	RO (Cé	-C10)	1.01	0.20	0.10	mg/l			
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Lim	its				
98-08-8	aaa-Trif	aaa-Trifluorotoluene		92%		55-130%				

Report of Analysis

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.4

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JC7350 AQ - G SW846	9-4 round Water 8015C SW		d, Towsc	on, MD	Date	I I	9/05/18 9/10/18 /a
Run #1 Run #2	File ID 2Y93245.D	DF 1	Analyzed 09/13/18 08:18	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	0-C28)	0.813	0.083	0.053	mg/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d5 5a-Androstane	50	53% 34% 25%		22-1 13-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

3.4

Lab Samj Matrix: Method: Project:	AQ - 0 SW84	Ground Wa 5 8260C	ater 613 East Joppa Road	l, Tow	son, MD	Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 2E146458.D	DF 1	Analyzed 09/12/18 14:19	By SS	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2E6433
Run #1 Run #2	Purge Volume 5.0 ml	!					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω 5

ω

30 of 82

SGS

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	YMW-5		
Lab Sample ID:	JC73509-5	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
0			

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	3.3	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	ND	5.0	0.98	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	ND	10	5.8	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	92%		80-1	20%	

ND = Not detectedMDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

ω 5

31 of 82

JC73509

Report of Analysis

Client Sample ID:	YMW-5		
Lab Sample ID:	JC73509-5	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	94%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	98%		80-120%

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC73509-5 AQ - Ground W SW846 8015C	ater 613 East Joppa Roa	ad, Towso	on, MD	Date	1	0/05/18 0/10/18 a
Run #1 Run #2	File ID DF UV145632.D 1	Analyzed 09/11/18 16:43	By 3 KC	Prep D an/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene	94%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω 5

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - C SW846	09-5 Ground Wate 5 8015C SV	r V846 3510C 3 East Joppa Roa	d, Towsc	on, MD	Date	Received: 0	9/05/18 9/10/18 /a
Run #1 Run #2	File ID 2Y93246.D	DF 1	Analyzed 09/13/18 08:52	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d 5a-Androstane		54% 32% 23%			40% 39% 35%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.5

Lab Samj Matrix: Method: Project:	A(SV	73509-6 Q - Ground W V846 8260C ESS #20204, 1	'ater 1613 East Joppa Road	l, Tow	rson, MD	Date Sampled: Date Received: Percent Solids:	0,7,7,2,07,2,0
Run #1 Run #2	File ID 2E146459.	DF D 1	Analyzed 09/12/18 14:48	By SS	Prep Date n/a	Prep Batcl n/a	n Analytical Batch V2E6433
Run #1 Run #2	Purge Vol 5.0 ml	ume					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	10.7	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.6

ω

35 of 82 SGS

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-6		
Lab Sample ID:	JC73509-6	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	5.3	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	ND	5.0	0.98	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	98.4	10	5.8	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	bromofluoromethane 92% 80-120%				

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.6

Report of Analysis

Client Sample ID:	YMW-6		
Lab Sample ID:	JC73509-6	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	96%		81-124%
2037-26-5	Toluene-D8	101%		80-120%
460-00-4	4-Bromofluorobenzene	98%		80-120%

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

JC73509

0

Page 3 of 3

3.6

			Report	of Ana	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC73 AQ - SW8	509-6 Ground Wat 46 8015C	ter 513 East Joppa Roa	d, Towsc	on, MD	Date	Received:	09/05/18 09/10/18 n/a
Run #1 Run #2	File ID UV145633.D	DF 1	Analyzed 09/11/18 17:12	By KC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volun 5.0 ml	ie						
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate F	lecoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluor	otoluene	91%		55-1	30%		

Report of Analysis

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.6

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	le ID: JC735 AQ - 0 SW84	09-6 Ground Wat 6 8015C S	er W846 3510C 13 East Joppa Road	l, Towsc	on, MD	Date	Received:	09/05/18 09/10/18 n/a
Run #1 Run #2	File ID 2Y93382.D	DF 1	Analyzed 09/23/18 11:19	By TL	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3541
Run #1 Run #2	Initial Volume 300 ml	e Final V o 1.0 ml	blume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	C10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	47% 26%		22-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.6

Client San Lab Samj Matrix: Method: Project:	ole ID: JC73 AQ - SW8	509-7 Ground Wa 46 8260C	ater 613 East Joppa Road	l. Tow	son. MD	Date Sampled: Date Received: Percent Solids:	0,7,7 = 0,7 = 0
Run #1 Run #2	File ID 2B163585.D	DF 1	Analyzed 09/16/18 18:29	By	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2B7325
Run #1 Run #2	Purge Volun 5.0 ml	ie					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	64.9	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	3.2	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	3.4	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.7

ω

40 of 82 SGS

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-7		
Lab Sample ID:	JC73509-7	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	105	1.0	0.60	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	23.0	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	2.7	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	3.5	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	39.8	5.0	0.98	ug/l	
103-65-1	n-Propylbenzene	43.2	2.0	0.60	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	12.1	10	5.8	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	10.1	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	56.0	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	28.0	2.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	172	1.0	0.78	ug/l	
95-47-6	o-Xylene	34.7	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	207	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	103%		80-12	20%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

3.7

Report of Analysis

Client Sample ID:	YMW-7		
Lab Sample ID:	JC73509-7	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	94%		81-124%
2037-26-5	Toluene-D8	96%		80-120%
460-00-4	4-Bromofluorobenzene	95%		80-120%

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

3.7

				Report		ai y 515			I age I OI I
Client San Lab Samp Matrix: Method: Project:	-	SW846	9-7 Fround Wat 8015C	ter i13 East Joppa Roa	d, Towso	n, MD	Date	Sampled: Received: ent Solids:	09/10/18
Run #1 Run #2	File ID UV1456	645.D	DF 1	Analyzed 09/11/18 23:21	By KC	Prep D n/a	ate	Prep Bate n/a	ch Analytical Batch GUV6031
Run #1 Run #2	Purge V 5.0 ml	olume							
CAS No.	Compo	ound		Result	RL	MDL	Units	Q	
	TPH-C	GRO (Ce	5-C10)	3.81	0.20	0.10	mg/l		
CAS No.	Surrog	gate Rec	coveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Tri	ifluoroto	oluene	97%		55-1	30%		

Report of Analysis

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

Page 1 of 1

3.7

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - G SW846	9-7 Fround Water 8015C SW		d, Towsc	on, MD	Date	Received: 0	99/05/18 99/10/18 J/a
Run #1 Run #2	File ID 2Y93248.D	DF 1	Analyzed 09/13/18 09:58	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d: 5a-Androstane	50	58% 71% 58%			40% 39% 35%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.7

SGS

Lab Sam Matrix: Method:	AQ - 0	JC73509-8 AQ - Ground Water SW846 8260C			I	Date Sampled: 09/05/18 Date Received: 09/10/18 Percent Solids: n/a		
Project: HESS #20204, 1613 East Joppa Road, Towson, MD								
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	2B163586.D	1	09/16/18 18:59	PR	n/a	n/a	V2B7325	
D #2	4B84848.D	2.5	09/12/18 18:18	JP	n/a	n/a	V4B3546	
$\operatorname{Kun} \#2$								
Kun #2	Purge Volume	!						
Run #2 Run #1	Purge Volume 5.0 ml							

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	29.3	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	2.4	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	2.0	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	4.0	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

3.8

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Lab Sample ID: JO			
Lab Sample ID. J	C73509-8	Date Sampled:	09/05/18
Matrix: A	AQ - Ground Water	Date Received:	09/10/18
Method: S	SW846 8260C	Percent Solids:	n/a
Project: H	HESS #20204, 1613 East Joppa Road, Towson, MD		

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	202 ^a	2.5	1.5	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	16.4	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	9.3	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	9.4	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	59.7	5.0	0.98	ug/l	
103-65-1	n-Propylbenzene	47.9	2.0	0.60	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	17.4	10	5.8	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	10.4	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	191 ^a	5.0	2.5	ug/l	
108-67-8	1,3,5-Trimethylbenzene	70.9	2.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	259	1.0	0.78	ug/l	
95-47-6	o-Xylene	8.4	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	267	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	102%	105%	80-1	20%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

Report of Analysis

Client Sample ID:	YMW-8		
Lab Sample ID:	JC73509-8	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	96%	95%	81-124%
2037-26-5	Toluene-D8	96%	93%	80-120%
460-00-4	4-Bromofluorobenzene	99%	94%	80-120%

(a) Result is from Run# 2

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

				Report		11 y 515			1 age 1 01 1
Client San Lab Samp Matrix: Method: Project:	le ID:	SW846	9-8 round Wate 8015C	er 13 East Joppa Roa	d, Towso	n, MD	Date	Sampled: Received: ent Solids:	
Run #1 Run #2	File ID UV14563	34.D	DF 1	Analyzed 09/11/18 17:41	By KC	Prep D n/a	ate	Prep Bato n/a	ch Analytical Batch GUV6031
Run #1 Run #2	Purge V 5.0 ml	olume							
CAS No.	Compo	und		Result	RL	MDL	Units	Q	
	TPH-GI	RO (C6	-C10)	3.00	0.20	0.10	mg/l		
CAS No.	Surroga	ate Rec	overies	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trif	fluoroto	luene	93%		55-1	30%		

Report of Analysis

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ယ အ

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - C SW846)9-8 Ground Wate 5 8015C SV	r V846 3510C 3 East Joppa Roa	d, Towsc	on, MD	Date		9/05/18 9/10/18 /a
Run #1 Run #2	File ID 2Y93252.D	DF 1	Analyzed 09/13/18 12:12	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	0.823	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d: 5a-Androstane		49% 36% 27%			40% 39% 35%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ 8

ω

SGS

Lab Sample ID: Matrix: Method: Project:		AQ - Ground Water				Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 2E146460	DF	Analyzed 09/12/18 15:17	By	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2E6433
Run #1 Run #2	Purge Vol 5.0 ml	lume					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	3.7	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

3.9

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-9		
Lab Sample ID:	JC73509-9	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.66 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.51 ug/l 98-82-8 Isopropylbenzene ND 2.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 2.0 1.0 ug/l 99-87-6 p-Isopropyltouene ND 1.0 0.48 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/l 174-95-3 Methylene chloride ND 2.0 0.60 ug/l 100-42-	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropene ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 100-41-4 Ethylbenzene ND 1.0 0.63 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 1.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 99-87-6 D-Isopropylbonzene ND 2.0 1.0 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/l 75-09-2 Methylene chloride ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-2-5 Styrene ND 1.0 0.60 ug/l 104-5-5 <td>142-28-9</td> <td>1.3-Dichloropropane</td> <td>ND</td> <td>1.0</td> <td>0.43</td> <td>ug/l</td> <td></td>	142-28-9	1.3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/1 108-10-1 4-Methyl-Tert Butyl Ether 1.7 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/1 104-2-5 Methylene bromide ND 2.0 0.60 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 103-65-4 tert-Butyl Alcohol ND 10 5.8 ug/1 103-62-6							
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/1 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/1 108-10-1 4-Methyl-2-pentaone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 2.0 0.66 ug/1 91-20-3 Naphthalene ND 2.0 1.0 ug/1 91-20-3 Naphthalene ND 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 92-405-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 630-20-6 1, 1, 2.7 etrachloroethane ND 1.0 0.65 ug/1 92-34-5 1, 1, 2.2				1.0		0	
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 1.7 1.0 0.51 ug/l 174-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-2-5 Styrene ND 1.0 0.60 ug/l 104-42-5 Styrene ND 1.0 0.61 ug/l 637-92-3 tert-Butyl Ether ND 2.0 0.66 ug/l 79-34-5 1.1,2,2-Tetrachloroeth						-	
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Buyl Ether 1.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 2.0 1.0 ug/l 91-20-5 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 105-5-0 Tert Butyl Alcohol ND 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7etrach							
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbonzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 1.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.66 ug/l 100-42-5 Styrene ND 1.0 0.48 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 105-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/l 104-35-5 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 107-34-5	100-41-4				0.60	-	
98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 1.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 0.60 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-2-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-88-3 Toluene	87-68-3			2.0	0.56	-	
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 1.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.50 ug/l 120-82-1 1.2,4-Trichl						-	
1634-04-4 Methyl Tert Butyl Ether 1.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7 Etrachloroethane ND 1.0 0.60 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2	99-87-6		ND	2.0	0.66	-	
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 127-18-4 Tetrachlorobenzene ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Tri	1634-04-4		1.7	1.0	0.51		
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Z-trachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 17-55-6 1,1,1-Trichlorobenzene ND 1.0 0.53 ug/l 79-01-6 Tri	108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	-	
91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1	74-95-3		ND	1.0	0.48		
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/1 630-20-6 1,1,2.2-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 108-88-3 Toluene ND 1.0 0.50 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/1 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 96-18-4 1,2,3-Trichloroptopane ND 2.0 0.84 ug/1 95-63-6 1,2	75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5 Styrne ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, -Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l	91-20-3	Naphthalene	ND	5.0	0.98	ug/l	
75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 1120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l	103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2.7 Etrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2.7 Etrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1, 3, 5-Trimethylbenzene ND 2.0 1.0 ug/l <td>100-42-5</td> <td>Styrene</td> <td>ND</td> <td>1.0</td> <td>0.70</td> <td>ug/l</td> <td></td>	100-42-5	Styrene	ND	1.0	0.70	ug/l	
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/1 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/1 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/1 108-88-3 Toluene ND 1.0 0.50 ug/1 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/1 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/1 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/1 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/1 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/1	75-65-0	Tert Butyl Alcohol	ND	10	5.8	ug/l	
630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
79-34-51,1,2,2-TetrachloroethaneND1.00.65ug/l127-18-4TetrachloroetheneND1.00.90ug/l108-88-3TolueneND1.00.53ug/l87-61-61,2,3-TrichlorobenzeneND1.00.50ug/l120-82-11,2,4-TrichlorobenzeneND1.00.50ug/l71-55-61,1,1-TrichloroethaneND1.00.54ug/l79-00-51,1,2-TrichloroethaneND1.00.53ug/l79-01-6TrichloroetheneND1.00.53ug/l75-69-4TrichlorofluoromethaneND2.00.84ug/l96-18-41,2,3-TrichloropropaneND2.00.70ug/l95-63-61,2,4-TrimethylbenzeneND2.01.0ug/l108-67-81,3,5-TrimethylbenzeneND2.01.0ug/l75-01-4Vinyl chlorideND1.00.78ug/l95-47-6o-XyleneND1.00.59ug/l130-20-7Xylene (total)ND1.00.59ug/l	637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) </td <td>630-20-6</td> <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td>1.0</td> <td>0.60</td> <td>ug/l</td> <td></td>	630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries </td <td>79-34-5</td> <td>1,1,2,2-Tetrachloroethane</td> <td>ND</td> <td>1.0</td> <td>0.65</td> <td>ug/l</td> <td></td>	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53	ug/l	
71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/1 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichloroethene ND 1.0 0.53 ug/1 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/1 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/1 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/1 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/1 75-01-4 Vinyl chloride ND 1.0 0.79 ug/1 95-47-6 o-Xylene ND 1.0 0.59 ug/1 1330-20-7 Xylene (total) ND 1.0 0.59 ug/1 CAS No. Surrogate Recoveries Run#1 Run#2 Limits	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-69-4				0.84	ug/l	
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	96-18-4		ND	2.0	0.70	ug/l	
75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	95-63-6		ND	2.0	1.0	ug/l	
m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	108-67-8		ND	2.0	1.0	ug/l	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	75-01-4		ND		0.79	ug/l	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits				1.0	0.78		
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6	•		1.0	0.59	ug/l	
	1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
1868-53-7 Dibromofluoromethane 92% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	1868-53-7	Dibromofluoromethane	92%		80-12	20%	

ND = Not detectedMDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

3.9

51 of 82

JC73509

Report of Analysis

Client Sample ID:	YMW-9		
Lab Sample ID:	JC73509-9	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	95%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	98%		80-120%

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

3.9

SGS

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC73509-9 AQ - Ground W SW846 8015C	ater 613 East Joppa Roa	ad, Towso	on, MD	Date	1	0/05/18 0/10/18 a
Run #1 Run #2	File ID DF UV145635.D 1	Analyzed 09/11/18 18:17	By 7 KC	Prep D a n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene	94%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.9

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - C SW846)9-9 Ground Wate 5 8015C SV	or V846 3510C 3 East Joppa Roa	d, Towsc	on, MD	Date	Received: 0	9/05/18 9/10/18 /a
Run #1 Run #2	File ID 2Y93253.D	DF 1	Analyzed 09/13/18 12:45	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d: 5a-Androstane		55% 38% 29%		13-1	40% 39% 35%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ა .9

SGS

Report of Analysis

Client San Lab Samj Matrix: Method: Project:	AQ - 0 SW84	Ground Wa 5 8260C	ater 613 East Joppa Road	l, Tow	son, MD	Date Sampled: Date Received: Percent Solids:	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Run #1 Run #2	File ID A244225.D	DF 1	Analyzed 09/12/18 20:57	By DG	Prep Date n/a	Prep Batc n/a	h Analytical Batch VA9340
Run #1 Run #2	Purge Volume 5.0 ml	:					

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	6.8	10	6.0	ug/l	J
71-43-2	Benzene	2.2	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	0.86	2.0	0.52	ug/l	J
135-98-8	sec-Butylbenzene	2.4	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride ^a	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

55 of 82

JC73509

E = Indicates value exceeds calibration range

Lab Sample ID:JC73509-10Date Sampled:09/05/18Matrix:AQ - Ground WaterDate Received:09/10/18Method:SW846 8260CPercent Solids:n/a	Client Sample ID:	OW-1		
Method: SW846 8260C Percent Solids: n/a	Lab Sample ID:	JC73509-10	Date Sampled:	09/05/18
	Matrix:	AQ - Ground Water	Date Received:	09/10/18
	Method:	SW846 8260C	Percent Solids:	n/a
Project: HESS #20204, 1613 East Joppa Road, Towson, MD	Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	7.8	1.0	0.60	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	4.2	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	5.2	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	1.2	5.0	0.98	ug/l	J
103-65-1	n-Propylbenzene	9.5	2.0	0.60	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	21.3	10	5.8	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane ^a	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	8.3	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	3.5	2.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	7.1	1.0	0.78	ug/l	
95-47-6	o-Xylene	1.2	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	8.3	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	106%		80-12	20%	

ND = Not detectedMDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 2 of 3

Report of Analysis

Client Sample ID:	OW-1		
Lab Sample ID:	JC73509-10	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	109%		81-124%
2037-26-5	Toluene-D8	99%		80-120%
460-00-4	4-Bromofluorobenzene	91%		80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

3.10

ω

57 of 82

bob norm	America me.							
			Report	of An	alysis			Page 1 of 1
Client Sample ID: OW-1 Lab Sample ID: JC73509-10 Date Sampled: 09/05/18 Matrix: AQ - Ground Water Date Received: 09/10/18 Method: SW846 8015C Percent Solids: n/a Project: HESS #20204, 1613 East Joppa Road, Towson, MD								
Run #1 Run #2		DF 1	Analyzed 09/11/18 22:16	By KC	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C	210)	0.816	0.20	0.10	mg/l		
CAS No.	Surrogate Recov	reries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotolu	ene	93%		55-1	30%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - G SW846	round Wate 8015C SV	r V846 3510C 3 East Joppa Roa	d, Towsc	on, MD	Date	Received: (09/05/18 09/10/18 n/a
Run #1 Run #2	File ID 2Y93254.D	DF 1	Analyzed 09/13/18 13:19	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vo l 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	0.441	0.083	0.053	mg/l		
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d 5a-Androstane	50	58% 47% 38%	22-140% 13-139% 10-135%				

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.10

Report	of	Analysis
--------	----	----------

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JC735 AQ - 0 SW84	09-11 Ground Wa 6 8260C	ater 613 East Joppa Road	l, Tows	son, MD	Date Sampled: Date Received: Percent Solids:	0,7, 2,0, 2,0
Run #1 Run #2	File ID A244222.D	DF 1	Analyzed 09/12/18 19:30	By DG	Prep Date n/a	Prep Bate n/a	h Analytical Batch VA9340
Run #1 Run #2	Purge Volume 5.0 ml	2					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride ^a	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

60 of 82

JC73509

Client Sample ID:	MW-1		
Lab Sample ID:	JC73509-11	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
i i oječi.	11E55 #20201, 1015 East Joppa Road, 10 wson, 11E		

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 1061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 878-78 Hsxachlorobutadiene ND 2.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 1.0 0.65 ug/l 1634-04.4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 174-95-3 Methylene bromide ND 2.0 1.0 ug/l 174-95-3 Methylene bromide ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 105-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 1063-02-6	CAS No.	CAS No. Compound		RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis.1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-01-5 cis.1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 98-87-6 p-Isopropyltoluene ND 2.0 0.56 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1034-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/l 104-14-3 Methylene bromide ND 1.0 0.48 ug/l 175-09-2 Methylene chloride ND 2.0 0.60 ug/l 102-3 Naphthalene ND 1.0 0.70 ug/l 104-5-5	142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/1 1034-04-4 Methyl-Tert Buyl Ether ND 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 108-10-1 4-Methylene bromide ND 2.0 0.60 ug/1 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 103-65-1 re-Propylbenzene ND 1.0 0.60 ug/1 104-42-5					0.52		
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 99-87-6 p-Isopropylbenzene ND 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 2.0 0.66 ug/1 91-20-3 Naphthalene ND 2.0 1.0 ug/1 91-20-3 Naphthalene ND 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 92-405-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 630-20-6 1,1,2.7 tetrachloroethane ND 1.0 0.65 ug/1 92-34-5 1,1,2.2.7			ND	1.0	0.82		
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 103-65-4 retr-Butyl Alcohol ND 10 5.8 ug/l 104-2-5 Styrene ND 1.0 0.60 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 107-18-4	10061-01-5		ND	1.0	0.47	0	
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-6 psopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.60 ug/l 104-42-5 styrene ND 1.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Anyl Methyl Ether <td></td> <td></td> <td>ND</td> <td>1.0</td> <td></td> <td>-</td> <td></td>			ND	1.0		-	
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbonzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Maphthalene ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/l 994-05-8 tert-Amyl Methyl Ether ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 <td< td=""><td>100-41-4</td><td>Ethylbenzene</td><td>ND</td><td>1.0</td><td>0.60</td><td></td><td></td></td<>	100-41-4	Ethylbenzene	ND	1.0	0.60		
98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.666 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 0.60 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 976-62-5 Styrene ND 1.0 0.70 ug/l 976-53 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.50 ug/l 120-88-3	87-68-3		ND	2.0	0.56		
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 5.0 0.98 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2,4		Isopropylbenzene	ND				
1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7 tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1127-18-4 Tetrachloroethane a ND 1.0 0.53 ug/l 120-82-1	99-87-6	p-Isopropyltoluene	ND	2.0	0.66		
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7 Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 127-18-4 Tetrachlorobenzene ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1,2,4-Tri	1634-04-4		ND	1.0	0.51	-	
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 120-882-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 171-55-6 1, 1, 1-Trichloroethane ^a ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ^a ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ^a ND 1.0 0.53 ug/l	108-10-1		ND	5.0	1.9		
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 79-34-5 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 175-56 1,1,1-Trichloroethane ^a ND 1.0 0.53 ug/l 179-01-6 Trichlorofluoromethane ^a ND 1.0 0.53 ug/l 179-69-4	74-95-3		ND	1.0	0.48	-	
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2.7 Etrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2.2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.53 ug/l 71-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ^a ND 2.0 0.84 ug/l 96-18-4	75-09-2	Methylene chloride	ND	2.0	1.0		
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 1120-82-1 1,2,4-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroethene ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 95-6	91-20-3	Naphthalene	ND	5.0	0.98	ug/l	
75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane a ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l	103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l <tr< td=""><td>100-42-5</td><td>Styrene</td><td>ND</td><td>1.0</td><td>0.70</td><td>ug/l</td><td></td></tr<>	100-42-5	Styrene	ND	1.0	0.70	ug/l	
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.54 ug/l 71-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ^a ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1, 2, 4-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l	75-65-0	Tert Butyl Alcohol	ND	10	5.8	ug/l	
630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/1 127-18-4 Tetrachloroethene ND 1.0 0.65 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 87-61-6 1, 2, 3-Trichlorobenzene ND 1.0 0.50 ug/1 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.54 ug/1 71-55-6 1, 1, 1-Trichloroethane ^a ND 1.0 0.53 ug/1 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/1 75-69-4 Trichlorofluoromethane ^a ND 2.0 0.84 ug/1 96-18-4 1, 2, 3-Trichloropropane ND 2.0 1.0 ug/1 95-63-6 1, 2, 4-Trimethylbenzene ND 2.0 1.0 ug/1 108-67-8 1, 3, 5-Trimethylbenzene ND 1.0 0.79 ug/1 108-67-8 1, 3, 5-Trimethylbenzene ND 1.0 0.79	994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
79-34-51,1,2,2-TetrachloroethaneND1.00.65ug/l127-18-4TetrachloroetheneND1.00.90ug/l108-88-3TolueneND1.00.53ug/l87-61-61,2,3-TrichlorobenzeneND1.00.50ug/l120-82-11,2,4-TrichlorobenzeneND1.00.50ug/l71-55-61,1,1-TrichloroethaneND1.00.54ug/l79-00-51,1,2-TrichloroethaneND1.00.53ug/l79-01-6TrichloroetheneND1.00.53ug/l75-69-4Trichlorofluoromethane aND2.00.84ug/l96-18-41,2,3-TrichloropropaneND2.00.70ug/l95-63-61,2,4-TrimethylbenzeneND2.01.0ug/l108-67-81,3,5-TrimethylbenzeneND2.01.0ug/l75-01-4Vinyl chlorideND1.00.78ug/lm,p-XyleneND1.00.59ug/l1330-20-7Xylene (total)ND1.00.59ug/l	637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56		
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total)<	630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65		
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53	ug/l	
71-55-6 1, 1, 1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	71-55-6	1,1,1-Trichloroethane ^a	ND	1.0	0.54	ug/l	
75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.84	ug/l	
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
75-01-4 Vinyl chloride m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries	95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits		m,p-Xylene	ND	1.0	0.78	ug/l	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
	1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
1868-53-7 Dibromofluoromethane 108% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
	1868-53-7	Dibromofluoromethane	108%		80-12	20%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

3.11

Report of Analysis

Client Sample ID:	MW-1		
Lab Sample ID:	JC73509-11	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
0			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	106%		81-124%
2037-26-5	Toluene-D8	98%		80-120%
460-00-4	4-Bromofluorobenzene	91%		80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

3.11

			Report	of Ana	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC73509- AQ - Gro SW846 8	ound Water 015C	3 East Joppa Road	d, Towso	on, MD	Date	1	9/05/18 9/10/18 ′a
Run #1 Run #2		DF 1	Analyzed 09/11/18 18:46	By KC	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C	C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Recov	veries	Run# 1	Run# 2 Limits				
98-08-8	aaa-Trifluorotolu	iene	92%	55-130%				

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.11

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - G SW846	MW-1 JC73509-11 AQ - Ground Water SW846 8015C SW846 3510C HESS #20204, 1613 East Joppa Road, Towson, 1				Date	I	9/05/18 9/10/18 /a
Run #1 Run #2	File ID 2Y93255.D	DF 1	Analyzed 09/13/18 13:52	Ву СР	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vo l 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C1	0-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Rec	overies	es Run#1 Ru		Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d5 5a-Androstane	60	42% 33% 25%	22-140% 13-139% 10-135%				

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report	of	Analysis	
--------	----	----------	--

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JC735 AQ - (SW84	09-12 Ground Wa 6 8260C	ater 613 East Joppa Road	l, Tow		Date Sampled: Date Received: Percent Solids:	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Run #1 Run #2	File ID A244224.D	DF 1	Analyzed 09/12/18 20:28	By DG	Prep Date n/a	Prep Batc n/a	h Analytical Batch VA9340
Run #1 Run #2	Purge Volume 5.0 ml	•					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	7.3	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride ^a	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

65 of 82

JC73509

E = Indicates value exceeds calibration range

Client Sample ID:	MW-4		
Lab Sample ID:	JC73509-12	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

CAS No.	Compound	Result	RL	L MDL Units		Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	2.7	1.0	0.60	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	2.8	5.0	0.98	ug/l	J
103-65-1	n-Propylbenzene	1.1	2.0	0.60	ug/l	J
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	40.3	10	5.8	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane ^a	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	11.7	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	111%		80-1	20%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

3.12

66 of 82

JC73509

Report of Analysis

Client Sample ID:	MW-4		
Lab Sample ID:	JC73509-12	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
-			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	109%		81-124%
2037-26-5	Toluene-D8	100%		80-120%
460-00-4	4-Bromofluorobenzene	90%		80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

3.12

SGS

			Report		ai y 515			I age I OI I
Client San Lab Samp Matrix: Method: Project:	le ID: JC73: AQ - SW84	509-12 Ground Wa 16 8015C	ter 513 East Joppa Road	1, Towsc	n, MD	Date	Sampled: Received: ent Solids:	09/05/18 09/10/18 n/a
Run #1 Run #2	File ID UV145640.D	DF 1	Analyzed 09/11/18 20:49	By KC	Prep D n/a	ate	Prep Batc n/a	h Analytical Batch GUV6031
Run #1 Run #2	Purge Volum 5.0 ml	e						
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	0.226	0.20	0.10	mg/l		
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluoro	toluene	95%		55-1	30%		

Report of Analysis

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.12

ω

Report of Analysis									
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - C SW846	Fround Wate 5 8015C SV	er V846 3510C 3 East Joppa Roa	d, Towsc	on, MD	Date	~	9/05/18 9/10/18 /a	
Run #1 Run #2	File ID 2Y93256.D	DF 1	Analyzed 09/13/18 14:25	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535	
Run #1 Run #2	Initial Volume 300 ml	Final Vo 1.0 ml	lume						
CAS No.	Compound		Result	RL	MDL	Units	Q		
	TPH-DRO (C	10-C28)	0.110	0.083	0.053	mg/l			
CAS No.	Surrogate Ree	coveries	Run# 1	Run# 2	Lim	its			
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d: 5a-Androstane		50% 36% 27%			40% 39% 35%			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Client Sa Lab Sam Matrix: Method: Project:	A SV	273509-13 Q - Ground Wa W846 8260C	ater 613 East Joppa Road	l, Tow	son, MD	Date Sampled: Date Received: Percent Solids:	0,7,7 = 0,7 = 0
Run #1 Run #2	File ID A244226.1	DF D 1	Analyzed 09/12/18 21:26	By DG	Prep Date n/a	Prep Batc n/a	h Analytical Batch VA9340
Run #1 Run #2	Purge Vol 5.0 ml	ume					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	12.9	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	0.58	2.0	0.52	ug/l	J
135-98-8	sec-Butylbenzene	3.2	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride ^a	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	7.2	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.13 **3**

Page 1 of 3

Client Sample ID:	MW-7		
Lab Sample ID:	JC73509-13	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 10661-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 2.0 0.56 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene 4.3 1.0 0.65 ug/l 98-82-8 Horpopylbenzene 4.3 1.0 0.56 ug/l 99-87-6 p-Isopropylbouene 0.83 2.0 0.66 ug/l J 1634-04-4 Methyl Tert Buyl Ether 14.2 1.0 0.51 ug/l J 1635-0 P-Isopropylbonzene 8.4 2.0 0.60 ug/l J 108-42-5 Styrene ND 1.0 0.70 ug/l J 100-42-5 Styrene ND 1.0 <t< th=""><th>CAS No.</th><th>Compound</th><th>Result</th><th>RL</th><th>MDL</th><th>Units</th><th>Q</th></t<>	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene 27.8 1.0 0.60 ug/l 87.68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98.82-8 Isopropylbenzene 4.3 1.0 0.65 ug/l 99.87-6 p-Isopropyltoluene 0.83 2.0 0.66 ug/l J 1634-04-4 Methyl Tert Butyl Ether 14.2 1.0 0.51 ug/l J 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l J 108-10-1 4-Methyl nethoride ND 2.0 1.0 ug/l J 103-65-1 n-Propylbenzene 8.4 2.0 0.60 ug/l J 103-65-1 n-Propylbenzene ND	142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1, 1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis.1, 3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene 27.8 1.0 0.60 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-87-6 p-Isopropylbenzene 4.3 1.0 0.65 ug/1 99-87-6 p-Isopropyloluene 0.83 2.0 0.66 ug/1 108-10-1 4-Methyl Tert Butyl Ether 14.2 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 75-09-2 Methylene chloride ND 2.0 1.0 ug/1 91-20-3 Naphthalene 4.6 5.0 0.98 ug/1 J 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 91-20-3 ketrt-Amyl Methyl Ether ND 2.0 0.47 ug/1	594-20-7				0.52		
10061-01-5cis-1,3-DichloropropeneND1.0 0.47 $ug/1$ 10061-02-6trans-1,3-DichloropropeneND1.0 0.43 $ug/1$ 100-41-4Ethylbenzene27.81.0 0.60 $ug/1$ 87-68-3HexachlorobutadieneND2.0 0.56 $ug/1$ 98-82-8Isopropylbenzene4.31.0 0.65 $ug/1$ 99-87-6p-Isopropyltoluene 0.83 2.0 0.66 $ug/1$ 98-82-8Methyl-erbranone(MIBK)ND5.0 1.9 $ug/1$ 108-10-14-Methyl-2-pentanone(MIBK)ND5.0 1.9 $ug/1$ 74-95-3Methylene bromideND2.0 1.0 $ug/1$ 91-20-3Maphthalene4.6 5.0 0.98 $ug/1$ 92-35-50Tert Butyl Alcohol100 10 5.8 $ug/1$ 94-05-8tert-Amyl Methyl EtherND 2.0 0.47 $ug/1$ 99-405-8tert-Amyl Methyl EtherND 2.0 0.47 $ug/1$ 630-20-6 $1, 1, 2.7$ tetrachloroethaneND 1.0 0.66 $ug/1$ 97-34-5 $1, 2.2.7$ tetrachloroethaneND 1.0 0.55 $ug/1$ 127-18-4TetrachloroethaneND 1.0 0.53 $ug/1$ 127-18-4TetrachloroethaneND 1.0 0.50 $ug/1$ 127-18-4TetrachloroethaneND 1.0 0.50 $ug/1$ 127-18-4TetrachloroethaneND 1.0	563-58-6		ND	1.0			
10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene 27.8 1.0 0.60 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene 4.3 1.0 0.65 ug/1 98-87-6 p-Isopropyltoluene 0.83 2.0 0.66 ug/1 J 1634-04-4 Methyl Tert Butyl Ether 14.2 1.0 0.51 ug/1 J 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 J 74-95-3 Methylene bromide ND 2.0 1.0 ug/1 J 103-65-1 n-Propylbenzene 8.4 2.0 0.60 ug/1 J 91-20-3 Naphthalene 4.6 5.0 0.98 ug/1 J 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 637-92-3 tert-Butyl Alcohol 100 10 5.8 ug/1 637-92-3 tert-Butyl Ethyl Ether<	10061-01-5		ND	1.0	0.47		
100-41-4 Ethylbenzene 27.8 1.0 0.60 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene 4.3 1.0 0.65 ug/1 99-87-6 p-Isopropyltoluene 0.83 2.0 0.666 ug/1 J 108-10-1 4-Methyl Tert Butyl Ether 14.2 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 1.0 0.48 ug/1 91-20-3 Naphthalene 4.6 5.0 0.98 ug/1 J 103-65-1 n-Propylbenzene 8.4 2.0 0.660 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.65 ug/1 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.50 ug/1	10061-02-6		ND	1.0	0.43	-	
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene 4.3 1.0 0.65 ug/l 99-87-6 p-Isopropylbenzene 0.83 2.0 0.66 ug/l J 1634-04-4 Methyl Tert Butyl Ether 14.2 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene 4.6 5.0 0.98 ug/l J 103-65-1 n-Propylbenzene 8.4 2.0 0.60 ug/l J 105-65-0 Tert Butyl Alcohol 100 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 1.0 0.65 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53	100-41-4	Ethylbenzene	27.8	1.0	0.60		
98-82-8 Isopropylbenzene 4.3 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene 0.83 2.0 0.66 ug/l J 1634-04-4 Methyl Tert Butyl Ether 14.2 1.0 0.51 ug/l J 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l J 74-95-3 Methylene bromide ND 2.0 1.0 ug/l J 91-20-3 Maphtalene 4.6 5.0 0.98 ug/l J 103-65-1 n-Propylbenzene 8.4 2.0 0.60 ug/l J 975-65-0 Tert Butyl Alcohol 100 10 5.8 ug/l J 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 107-154-5 1,1,2-2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 2.1 1.0 0.53 ug/l 108-88-3 Toluene	87-68-3		ND	2.0	0.56	-	
1634-04-4 Methyl Tert Butyl Ether 14.2 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene 4.6 5.0 0.98 ug/l J 103-65-1 n-Propylbenzene 8.4 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 75-65-0 Tert Butyl Alcohol 100 10 5.8 ug/l J 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l J 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l J 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.61 ug/l J 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l J 108-88-3 Toluene			4.3		0.65		
1634-04-4 Methyl Tert Butyl Ether 14.2 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene 4.6 5.0 0.98 ug/l J 103-65-1 n-Propylbenzene 8.4 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 75-65-0 Tert Butyl Alcohol 100 10 5.8 ug/l J 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l J 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l J 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.61 ug/l J 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l J 108-88-3 Toluene	99-87-6	p-Isopropyltoluene	0.83	2.0	0.66	ug/l	J
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene 4.6 5.0 0.98 ug/l J 103-65-1 n-Propylbenzene 8.4 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 75-65-0 Tert Butyl Alcohol 100 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 179-34-5 1,1,2.7 Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 2.1 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichloroethane a ND 1.0 0.53 ug/l </td <td>1634-04-4</td> <td></td> <td>14.2</td> <td>1.0</td> <td>0.51</td> <td>-</td> <td></td>	1634-04-4		14.2	1.0	0.51	-	
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene 4.6 5.0 0.98 ug/l J 103-65-1 n-Propylbenzene 8.4 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 75-65-0 Tert Butyl Alcohol 100 10 5.8 ug/l J 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 2.1 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichloroethane ^a ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 <td>108-10-1</td> <td></td> <td>ND</td> <td>5.0</td> <td>1.9</td> <td></td> <td></td>	108-10-1		ND	5.0	1.9		
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene 4.6 5.0 0.98 ug/l J 103-65-1 n-Propylbenzene 8.4 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 100 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2.7-Etrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2.2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 2.1 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichloroethane ^a ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ^a ND 1.0 0.53 ug/l	74-95-3		ND	1.0	0.48		
103-65-1 n-Propylbenzene 8.4 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 75-65-0 Tert Butyl Alcohol 100 10 5.8 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/1 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/1 108-88-3 Toluene 2.1 1.0 0.53 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.53 ug/1 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichlorofluoromethane ^a ND 2.0 0.84 ug/1 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/1 <	75-09-2	Methylene chloride	ND	2.0	1.0	-	
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 100 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 2.1 1.0 0.53 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.50 ug/l 108-88-3 Toluene 2.1 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-60-6 Trichlorofluoromethane a ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l	91-20-3	Naphthalene	4.6	5.0	0.98	-	J
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 100 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 2.1 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 96-18-4 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8<	103-65-1	n-Propylbenzene	8.4	2.0	0.60	ug/l	
75-65-0 Tert Butyl Alcohol 100 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene 2.1 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ^a ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.84 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l	100-42-5		ND	1.0			
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.65 ug/l 108-88-3 Toluene 2.1 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ^a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene 2.2 2.0 1.0 ug/l <td>75-65-0</td> <td>Tert Butyl Alcohol</td> <td>100</td> <td>10</td> <td>5.8</td> <td></td> <td></td>	75-65-0	Tert Butyl Alcohol	100	10	5.8		
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 127-18-4 Tetrachlorobenzene ND 1.0 0.50 ug/l 127-18-4 Tetrachlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ^a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l	994-05-8		ND	2.0	0.47	-	
79-34-51,1,2,2-TetrachloroethaneND1.00.65ug/l127-18-4TetrachloroetheneND1.00.90ug/l108-88-3Toluene2.11.00.53ug/l87-61-61,2,3-TrichlorobenzeneND1.00.50ug/l120-82-11,2,4-TrichlorobenzeneND1.00.50ug/l71-55-61,1,1-TrichloroethaneND1.00.53ug/l79-00-51,1,2-TrichloroethaneND1.00.53ug/l79-01-6TrichloroethaneND1.00.53ug/l75-69-4Trichlorofluoromethane aND2.00.84ug/l96-18-41,2,3-TrichloropropaneND2.00.70ug/l95-63-61,2,4-Trimethylbenzene26.32.01.0ug/l108-67-81,3,5-Trimethylbenzene3.22.01.0ug/l95-47-6o-Xylene4.21.00.79ug/l130-20-7Xylene (total)20.61.00.59ug/l	637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56		
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene 2.1 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 1330-20-7 Xylene 16.4 1.0 0.59 ug/l 1330-20-7 <td>630-20-6</td> <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td>1.0</td> <td>0.60</td> <td>-</td> <td></td>	630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	-	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene 2.1 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 1330-20-7 Xylene 16.4 1.0 0.59 ug/l 1330-20-7 <td>79-34-5</td> <td></td> <td>ND</td> <td>1.0</td> <td>0.65</td> <td></td> <td></td>	79-34-5		ND	1.0	0.65		
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 16.4 1.0 0.78 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	-	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 16.4 1.0 0.78 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l	108-88-3	Toluene	2.1	1.0	0.53	ug/l	
71-55-6 1,1,1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 16.4 1.0 0.78 ug/l 95-47-6 o-Xylene 4.2 1.0 0.59 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50		
71-55-6 1,1,1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 16.4 1.0 0.78 ug/l 95-47-6 o-Xylene 4.2 1.0 0.59 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	-	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 16.4 1.0 0.78 ug/l 95-47-6 o-Xylene 4.2 1.0 0.59 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l	71-55-6		ND	1.0	0.54	-	
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 16.4 1.0 0.78 ug/l 95-47-6 o-Xylene 4.2 1.0 0.59 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53		
75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 16.4 1.0 0.78 ug/l 95-47-6 o-Xylene 4.2 1.0 0.59 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	-	
95-63-6 1,2,4-Trimethylbenzene 26.3 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 16.4 1.0 0.78 ug/l 95-47-6 o-Xylene 4.2 1.0 0.59 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l CAS No. Surrogate Recoveries	75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.84		
108-67-8 1,3,5-Trimethylbenzene 3.2 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 16.4 1.0 0.78 ug/l 95-47-6 o-Xylene 4.2 1.0 0.59 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l	96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
75-01-4 Vinyl chloride m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene 16.4 1.0 0.78 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	95-63-6	1,2,4-Trimethylbenzene	26.3	2.0	1.0	ug/l	
75-01-4 Vinyl chloride m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene 16.4 1.0 0.78 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	108-67-8	1,3,5-Trimethylbenzene	3.2	2.0	1.0	ug/l	
m, p-Xylene 16.4 1.0 0.78 ug/l 95-47-6 o-Xylene 4.2 1.0 0.59 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-01-4	Vinyl chloride	ND	1.0	0.79	-	
95-47-6 o-Xylene 4.2 1.0 0.59 ug/l 1330-20-7 Xylene (total) 20.6 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits			16.4	1.0	0.78		
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6	o-Xylene	4.2	1.0	0.59		
	1330-20-7	Xylene (total)	20.6	1.0	0.59	ug/l	
1868-53-7 Dibromofluoromethane 109% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	1868-53-7	Dibromofluoromethane	109%		80-1	20%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 2 of 3

SGS

Report of Analysis

Client Sample ID:	MW-7		
Lab Sample ID:	JC73509-13	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
U U			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	108%		81-124%
2037-26-5	Toluene-D8	98%		80-120%
460-00-4	4-Bromofluorobenzene	94%		80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Page 3 of 3

				Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	-	SW84	09-13 Ground Wat 6 8015C	er 13 East Joppa Roa	d, Towsc	on, MD	Date	e Sampled: e Received: cent Solids:	09/05/18 09/10/18 n/a
Run #1 Run #2	File ID UV145		DF 1	Analyzed 09/11/18 22:45	By KC	Prep D n/a	ate	Prep Batc n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge 5.0 ml	Volume							
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
	TPH-0	GRO (C	6-C10)	1.41	0.20	0.10	mg/l		
CAS No.	Surro	gate Re	coveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Ti	rifluorot	oluene	93%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

SGS

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - G SW846	round Wate 8015C SV	er V846 3510C 3 East Joppa Roa	d, Towsc	on, MD	Date		9/05/18 9/10/18 ′a
Run #1 Run #2	File ID 2Y93257.D	DF 1	Analyzed 09/13/18 14:59	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	0.715	0.083	0.053	mg/l		
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d: 5a-Androstane		46% 37% 30%		13-1	40% 39% 35%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.13

ω

Report	of	Analysis
--------	----	----------

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JC735 AQ - 0 SW84	09-14 Ground Wa 6 8260C	ater 613 East Joppa Road	l, Tow	son, MD	Date Sampled: Date Received: Percent Solids:	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Run #1 Run #2	File ID A244223.D	DF 1	Analyzed 09/12/18 19:59	By DG	Prep Date n/a	Prep Bate n/a	h Analytical Batch VA9340
Run #1 Run #2	Purge Volume 5.0 ml	2					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride ^a	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

E = Indicates value exceeds calibration range

Client Sample ID:	MDE-4		
Lab Sample ID:	JC73509-14	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.51 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.48 ug/l 99-87-6 p-Isopropylbenzene ND 1.0 0.48 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/l 17-90-2 Methylene bromide ND 2.0 0.60 ug/l 100-42-5	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 108-10-1 4-Methyl-pentanone(MIBK) ND 2.0 0.66 ug/l 108-10-1 4-Methylene bromide ND 2.0 1.0 ug/l 108-10-3 Maptinalene ND 2.0 0.60 ug/l 104-2-5 Methylene chloride ND 1.0 0.70 ug/l 103-62-1	142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1, 1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis-1, 3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 108-20-3 Methylene bromide ND 2.0 1.0 ug/1 100-42-5 Styrene ND 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 104-2-5 Styrene ND 1.0 0.70 ug/1 104-2-5 Styrene ND 1.0 0.66 ug/1 637-92.3 tert-Amyl Methy	594-20-7				0.52		
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.51 ug/1 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 2.0 0.48 ug/1 91-20-3 Naphthalene ND 2.0 0.48 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 104-54 Styrene ND 1.0 0.70 ug/1 105-65-0 Tert Butyl Alcohol ND 1.0 0.60 ug/1 104-455 tetrt-Amyl Methyl Ether <td></td> <td></td> <td>ND</td> <td>1.0</td> <td>0.82</td> <td></td> <td></td>			ND	1.0	0.82		
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 1.0 0.51 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 75-09-2 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 103-65-4 tert-Butyl Alcohol ND 10 5.8 ug/l 104-45-5 Styrene ND 1.0 0.66 ug/l 107-18-4 tert-Amyl Methyl Ether ND 2.0 0.66 ug/l 107-18-4 <t< td=""><td>10061-01-5</td><td></td><td>ND</td><td>1.0</td><td>0.47</td><td></td><td></td></t<>	10061-01-5		ND	1.0	0.47		
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Buyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 2.0 1.0 ug/l 91-20-5 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 105-5-0 Tert Butyl Alcohol ND 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1.1,2,2-Tetrac	10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	-	
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Maphthalene ND 2.0 0.68 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.65 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 107-545-0 Tett Butyl Ethyl Ether ND 1.0 0.65 ug/l 103-52-1 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 <td>100-41-4</td> <td></td> <td>ND</td> <td>1.0</td> <td>0.60</td> <td>-</td> <td></td>	100-41-4		ND	1.0	0.60	-	
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7-Tetrachloroethane ND 1.0 0.53 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 120-82-1 1,2,4-T	87-68-3	Hexachlorobutadiene	ND	2.0	0.56		
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7-Tetrachloroethane ND 1.0 0.53 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 120-82-1 1,2,4-T	98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 127-18-4 Tetrachlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.53 ug/l 120-82-1	99-87-6		ND	2.0	0.66		
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichloroethane ^a ND 1.0 0.53 ug/l 79-01-6 Tr	1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51		
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 630-20-6 1, 1, 2.7-Tetrachloroethane ND 1.0 0.65 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 1.0 0.54 ug/l 1120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.54 ug/l 17-55-6 1, 1, 1-Trichloroethane a ND 1.0 0.53 ug/l 179-00-	108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1120-82-1 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroptopane ND 2.0 0.84 ug/l 96-18-4 1,2,3-T	74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 127-18-4 Tetrachloroethanee ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-	75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5 Styrne ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 1120-82-1 1,2,4-Trichloroethane a ND 1.0 0.53 ug/l 79-00-5 1,1,1-Trichloroethane a ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 96-67-8 1,3,5-Trimethylbenzene ND 2.0 0.70 ug/l 108	91-20-3	Naphthalene	ND	5.0	0.98	ug/l	
75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2.7-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2.7-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 1120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane a ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l <t< td=""><td>103-65-1</td><td>n-Propylbenzene</td><td>ND</td><td>2.0</td><td>0.60</td><td>ug/l</td><td></td></t<>	103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ^a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l <	100-42-5	Styrene	ND	1.0	0.70	ug/l	
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l <td< td=""><td>75-65-0</td><td>Tert Butyl Alcohol</td><td>ND</td><td>10</td><td>5.8</td><td>ug/l</td><td></td></td<>	75-65-0	Tert Butyl Alcohol	ND	10	5.8	ug/l	
630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,1-Trichloroethane ^a ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ^a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 130-20-7 Xylene ND 1.0 0.59 ug/l 13	994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 108-67-6 o-Xylene ND 1.0 0.79 ug/l 1330-20-	637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l 1330-20-7 Xylene (total)	630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries<	127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53	ug/l	
71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichloroethene ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	71-55-6	1,1,1-Trichloroethane ^a	ND	1.0	0.54	ug/l	
75-69-4 Trichlorofluoromethane a ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.84	ug/l	
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits					0.70	ug/l	
75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries	108-67-8		ND	2.0	1.0	ug/l	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	75-01-4					ug/l	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits			ND	1.0	0.78	ug/l	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits						ug/l	
	1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
1868-53-7 Dibromofluoromethane 108% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
	1868-53-7	Dibromofluoromethane	108%		80-12	20%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

3.14

ω

Report of Analysis

Client Sample ID:	MDE-4		
Lab Sample ID:	JC73509-14	Date Sampled:	09/05/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
_			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	105%		81-124%
2037-26-5	Toluene-D8	97%		80-120%
460-00-4	4-Bromofluorobenzene	91%		80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Page 3 of 3

		rage r or r						
Client San Lab Samp Matrix: Method: Project:	le ID: JC735 AQ - 0 SW84	09-14 Ground Wa 6 8015C	ter 513 East Joppa Road	d, Towsc	on, MD	Date	Sampled: Received: ent Solids:	
Run #1 Run #2	File ID UV145637.D	DF 1	Analyzed 09/11/18 19:15	Ву КС	Prep D n/a	ate	Prep Bato n/a	ch Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C	6-C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorot	oluene	93%		55-1	30%		

Report of Analysis

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

	Report of Analysis							Page 1 of 1		
	SW846 8015C SW846 3510C				Date Sampled: 09/05/18 Date Received: 09/10/18 Percent Solids: n/a					
Run #1 Run #2	File ID 2Y93258.D	DF 1	Analyzed 09/13/18 15:32	By 2. CP	Prep D 09/12/1		Prep Batch OP14982	Analytical Batch G2Y3535		
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume							
CAS No.	Compound		Result	RL	MDL	Units	Q			
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l				
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its				
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d 5a-Androstane		63% 55% 44%		22-1- 13-1 10-1	39%				

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.14

ω

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

2235 Route 130, Dayton, NJ. 08810 PEDEX Tracking • Bottle Order Control • Accutet Guide • Accutet Jab • Accutet Jab • Accutet Jab • Client/Reporting Information Project Information Requested Analysis M	age 1 of 1
Laboratories Accutest Quote # Accutest Quote #	
Laboratories	
	509
Company Name Project Name: Former Hess 20204	atrix Codes
	DW- Drinking Water GW- Ground Water
Contraction Project Name: Former Hess 20204 H EMS Environmental, Inc. Street	WW- Water
4500 Bath Pike 1613 E. Joppa Road □ 0 <	SW- Surface Water SQ- Soll
EMS Environmental, Inc. Street G 44509 Staff Nic 1613 E. Joppa Road 0	SL-Sludge
Project Contact: E-mail foo@emserv.com Project#	OI-OII
Bethehem PA 10017 International State No <	Q- Other Liquid
610-866-7799 610-866-8195 C	AIR- Air
610-866-7799 0 10-866-4195 0 10-26 2 2 0 3 3 3 4 5 3 3 5 10	SOL-Other Solid
Phone # Fax # Fax # Collection Fax # Collection Collection Fax #	WP-Wipe
Sample # Field ID / Point of Collection MEOH Viai # Date Time Sampled by Matrix bottles 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및	LAB USE ONLY
1 YMW-1 9/5/2018 10 4/5 BR GW 7 7 8 0 1 X X X 0 0	
Z YMW-2 9/5/2018 // / O BR GW 7 7 7 0 0 X X X X 0 0	EYG
3 YMW-3 9/5/2018 /020 BR GW 7 7	V272
YMW4 9/5/2018 J/S S BR GW 7 7 X	V278
YMW-5 9/5/2018 21/5 BR GW 7 7 8 X X X	
6 YMW-6 9/5/2018 240 BR GW 7 7	
7 YMW-7 9/5/2018 305 BR GW 7 7	
YMW-8 9/5/2018 //3C BR GW 7 7 1 X X X L L	
9 YMW-9 9/5/2018 1330 BR GW 7 7	
(0 OW-1 9/5/2018 14 cm BR GW 7 7 7 A X X X A A A A A A A A A A A A A	
1 MW-1 9/5/2018 / STUC BR GW 7 7 7 X X X .	
1L MW-4 9/5/2018 75 55 BR GW 7 7 X X X X	
13 MW-7 9/5/2018 /5-25-BR GW 7 7 1 1 X X X	
Y MDE-4 9/5/2018 Y Solution X	
Turnersal runne (Laures usy) Expression (Carl Control 1/4) Carl Control 1/4) Carl Control 1/4) Carl Control 1/4)	
10 Day RUSH Commercial "B" NYASP Category A	
5 Day RUSH NJ Raduced NYASP Category B 3 Day EMERGENCY NJ Full State Forms	
	R
	/
x Other 14 Day Hess Statioard	
Sample Custody must be documented below each time samples change change covers log. The delivery.	
Reinquished by Sampler Date Time: Received By Reinquished By Date Time: Received By L	AD8 1
	11 A .S
a) 2 m 7/10/18 122 3 2 4 4	
Relinquished by: Data Time: Received By: Sal # Preserved where applicable in ice Cooler To Sal Coler To Cooler To Co	512
	12
	1 ()

JC73509: Chain of Custody Page 1 of 2

44

4

SGS Sample Receipt Summary

Job Number: JC7350	09 Client:		Project:	
Date / Time Received: 9/10/20	018 5:27:00 PM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Measured) Cooler Temps (Corrected)				
1. Custody Seals Present: ✓ 2. Custody Seals Intact: ✓	or N Image: Image		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	<u>Y or N</u> ☑ □ ☑ □ ☑ □
Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: Quality Control_Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 2. Complex approximation	<u>Y or N</u> IR Gun Ice (Bag) 2 <u>Y or N N/A</u> □ V □		Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests	Y or N ✓ □ ✓ □ Intact Y or N/A ✓ □ ✓ □
 Samples preserved properly: VOCs headspace free: 			 Sufficient volume recvd for analysis: Compositing instructions clear: Filtering instructions clear: 	
Test Strip Lot #s: pH 1-	-12:216017	pH 12+:	208717 Other: (Specify)	
Comments				

SM089-03 Rev. Date 12/7/17

JC73509: Chain of Custody Page 2 of 2

44

4

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

09/24/18

Technical Report for

EMS Environmental, Inc.

HESS #20204, 1613 East Joppa Road, Towson, MD

5713

SGS Job Number: JC73508

Sampling Date: 09/06/18

Report to:

EMS Environmental, Inc. 4550 Bath Pike Bethlehem, PA 18017 jfox@emsenv.com

ATTN: Jeremy Fox

Total number of pages in report: 33

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Elizabeth Lange 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 33

JC73508

Table of Contents

-

N

ω

4

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: JC73508-1: YP-1	6
3.2: JC73508-2: YP-2	11
3.3: JC73508-3: YP-3	16
3.4: JC73508-4: YP-4	21
3.5: JC73508-5: YP-5	26
Section 4: Misc. Forms	31
4.1: Chain of Custody	32

Sample Summary

EMS Environmental, Inc.

JC73508 Job No:

HESS #20204, 1613 East Joppa Road, Towson, MD Project No: 5713

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JC73508-1	09/06/18	09:40 BR	09/10/18	AQ	Ground Water	YP-1
JC73508-2	09/06/18	10:00 BR	09/10/18	AQ	Ground Water	YP-2
JC73508-3	09/06/18	10:40 BR	09/10/18	AQ	Ground Water	YP-3
JC73508-4	09/06/18	10:20 BR	09/10/18	AQ	Ground Water	YP-4
JC73508-5	09/06/18	11:00 BR	09/10/18	AQ	Ground Water	YP-5

Summary of Hits

Job Number:	JC73508
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	09/06/18

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC73508-1 YP-1					
Benzene	10.1	1.0	0.85	ug/l	SW846 8260C
n-Butylbenzene	14.8	4.0	1.0	ug/l	SW846 8260C
sec-Butylbenzene	9.7	4.0	1.2	ug/l	SW846 8260C
Di-Isopropyl ether	8.8	4.0	1.4	ug/l	SW846 8260C
Ethylbenzene	688	10	6.0	ug/l	SW846 8260C
Isopropylbenzene	60.9	2.0	1.3	ug/l	SW846 8260C
p-Isopropyltoluene	5.1	4.0	1.3	ug/l	SW846 8260C
Methyl Tert Butyl Ether	5.3	2.0	1.0	ug/l	SW846 8260C
Naphthalene	202	50	9.8	ug/l	SW846 8260C
n-Propylbenzene	191	4.0	1.2	ug/l	SW846 8260C
Tert Butyl Alcohol	115	20	12	ug/l	SW846 8260C
Toluene	30.6	2.0	1.1	ug/l	SW846 8260C
1,2,4-Trimethylbenzene	382	4.0	2.0	ug/l	SW846 8260C
1,3,5-Trimethylbenzene	125	4.0	2.0	ug/l	SW846 8260C
m,p-Xylene	733	2.0	1.6	ug/l	SW846 8260C
o-Xylene	25.3	2.0	1.2	ug/l	SW846 8260C
Xylene (total)	759	2.0	1.2	ug/l	SW846 8260C
TPH-GRO (C6-C10)	9.70	0.20	0.10	mg/l	SW846 8015C
TPH-DRO (C10-C28)	2.03	0.083	0.053	mg/l	SW846 8015C
JC73508-2 YP-2					
Benzene	2.9	0.50	0.43	ug/l	SW846 8260C
Di-Isopropyl ether	2.2	2.0	0.68	ug/l	SW846 8260C
Methyl Tert Butyl Ether	9.6	1.0	0.51	ug/l	SW846 8260C
Tert Butyl Alcohol	57.7	10	5.8	ug/l	SW846 8260C
TPH-GRO (C6-C10)	0.181 J	0.20	0.10	mg/l	SW846 8015C
TPH-DRO (C10-C28)	0.0963	0.083	0.053	mg/l	SW846 8015C
JC73508-3 YP-3					
Acetone	6.3 J	10	6.0	ug/l	SW846 8260C
Methyl Tert Butyl Ether	2.2	1.0	0.51	ug/l	SW846 8260C
JC73508-4 YP-4					
cis-1,2-Dichloroethene	7.5	1.0	0.51	ug/l	SW846 8260C
Methyl Tert Butyl Ether	4.7	1.0	0.51	ug/l	SW846 8260C
JC73508-5 YP-5					
Methyl Tert Butyl Ether	0.62 J	1.0	0.51	ug/l	SW846 8260C
TPH-DRO (C10-C28)	0.157	0.083	0.053	mg/l	SW846 8015C

Ν

Dayton, NJ

ω Section 3

Sample Results

Report of Analysis

Report of	Analysis
------------------	----------

Client Sample ID:YP-1Lab Sample ID:JC73508-1Matrix:AQ - Ground WaterMethod:SW846 8260CProject:HESS #20204, 1613 East Joppa Road, Towson						Date Sampled: 0 Date Received: 0 Percent Solids: n	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2C162130.D	2	09/13/18 11:04	DG	n/a	n/a	V2C7212
Run #2	2E146447.D	10	09/12/18 08:57	SS	n/a	n/a	V2E6433
Run #1 Run #2	Purge Volume 5.0 ml 5.0 ml						

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	12	ug/l	
71-43-2	Benzene	10.1	1.0	0.85	ug/l	
108-86-1	Bromobenzene	ND	2.0	1.1	ug/l	
74-97-5	Bromochloromethane	ND	2.0	0.96	ug/l	
75-27-4	Bromodichloromethane	ND	2.0	1.2	ug/l	
75-25-2	Bromoform	ND	2.0	1.3	ug/l	
74-83-9	Bromomethane	ND	4.0	3.3	ug/l	
78-93-3	2-Butanone (MEK)	ND	20	14	ug/l	
104-51-8	n-Butylbenzene	14.8	4.0	1.0	ug/l	
135-98-8	sec-Butylbenzene	9.7	4.0	1.2	ug/l	
98-06-6	tert-Butylbenzene	ND	4.0	1.4	ug/l	
56-23-5	Carbon tetrachloride	ND	2.0	1.1	ug/l	
108-90-7	Chlorobenzene	ND	2.0	1.1	ug/l	
75-00-3	Chloroethane	ND	2.0	1.5	ug/l	
67-66-3	Chloroform	ND	2.0	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	1.5	ug/l	
95-49-8	o-Chlorotoluene	ND	4.0	1.3	ug/l	
106-43-4	p-Chlorotoluene	ND	4.0	1.2	ug/l	
108-20-3	Di-Isopropyl ether	8.8	4.0	1.4	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan a	ND	4.0	2.4	ug/l	
124-48-1	Dibromochloromethane	ND	2.0	1.1	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.95	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	2.0	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.0	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	2.0	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	4.0	2.7	ug/l	
75-34-3	1,1-Dichloroethane	ND	2.0	1.1	ug/l	
107-06-2	1,2-Dichloroethane	ND	2.0	1.2	ug/l	
75-35-4	1,1-Dichloroethene	ND	2.0	1.2	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	2.0	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	2.0	1.1	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	1.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω -

ယ

Client Sample ID:	YP-1		
Lab Sample ID:	JC73508-1	Date Sampled:	09/06/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	2.0	0.85	ug/l	
594-20-7	2,2-Dichloropropane	ND	2.0	1.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	2.0	1.6	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.94	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.86	ug/l	
100-41-4	Ethylbenzene	688 ^b	10	6.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	4.0	1.1	ug/l	
98-82-8	Isopropylbenzene	60.9	2.0	1.3	ug/l	
99-87-6	p-Isopropyltoluene	5.1	4.0	1.3	ug/l	
1634-04-4	Methyl Tert Butyl Ether	5.3	2.0	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	10	3.7	ug/l	
74-95-3	Methylene bromide	ND	2.0	0.96	ug/l	
75-09-2	Methylene chloride	ND	4.0	2.0	ug/l	
91-20-3	Naphthalene	202 b	50	9.8	ug/l	
103-65-1	n-Propylbenzene	191	4.0	1.2	ug/l	
100-42-5	Styrene	ND	2.0	1.4	ug/l	
75-65-0	Tert Butyl Alcohol	115	20	12	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	4.0	0.94	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	4.0	1.1	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane ^a	ND	2.0	1.2	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	1.3	ug/l	
127-18-4	Tetrachloroethene	ND	2.0	1.8	ug/l	
108-88-3	Toluene	30.6	2.0	1.1	ug/l	
87-61-6	1,2,3-Trichlorobenzene ^a	ND	2.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^a	ND	2.0	1.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	2.0	1.1	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	2.0	1.1	ug/l	
79-01-6	Trichloroethene	ND	2.0	1.1	ug/l	
75-69-4	Trichlorofluoromethane	ND	4.0	1.7	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	4.0	1.4	ug/l	
95-63-6	1,2,4-Trimethylbenzene	382	4.0	2.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	125	4.0	2.0	ug/l	
75-01-4	Vinyl chloride	ND	2.0	1.6	ug/l	
	m,p-Xylene	733	2.0	1.6	ug/l	
95-47-6	o-Xylene	25.3	2.0	1.2	ug/l	
1330-20-7	Xylene (total)	759	2.0	1.2	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	100%	92%	80-1	20%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

<u>ω</u>

Report of Analysis

Client Sample ID:	YP-1		
Lab Sample ID:	JC73508-1	Date Sampled:	09/06/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	108%	94%	81-124%
2037-26-5	Toluene-D8	101%	102%	80-120%
460-00-4	4-Bromofluorobenzene	94%	98%	80-120%

(a) This compound in BS is outside in house QC limits bias high.

(b) Result is from Run# 2

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ω -

SGS

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	-		ad, Towso	on, MD	Date	I I I	//06/18 //10/18 a
Run #1 Run #2	File ID DF UV145625.D 1	Analyzed 09/11/18 13:0	By 1 KC	Prep D a n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	9.70	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene	99%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

<u>ω</u>

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JC7350 AQ - C SW846	Fround Water 8015C SW		d, Towsc	on, MD	Date	I I	9/06/18 9/10/18 a
Run #1 Run #2	File ID 2Y93234.D	DF 1	Analyzed 09/13/18 02:09	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	2.03	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d: 5a-Androstane		51% 50% 39%		22-1 13-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

<u>ω</u>

ω

10 of 33

SGS

Report of Analysis

Client San Lab Sam Matrix: Method: Project:	AQ - 0 SW846	Ground Wa 5 8260C	ater 613 East Joppa Road	l, Tow	vson, MD	Date Sampled: Date Received: Percent Solids:	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Run #1 Run #2	File ID 2E146451.D	DF 1	Analyzed 09/12/18 10:54	By SS	Prep Date n/a	Prep Bate n/a	h Analytical Batch V2E6433
Run #1 Run #2	Purge Volume 5.0 ml						

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	2.9	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	2.2	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ယ

3.2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	YP-2		
Lab Sample ID:	JC73508-2	Date Sampled:	09/06/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
-			

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbonzene ND 1.0 0.66 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.56 ug/l 1634-04-4 Methyl Tert Butyl Ether 9.6 1.0 0.51 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 105-65-0	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 2.0 0.56 ug/l 103-41-4 Methyl Tert Butyl Ether 9.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 0.66 ug/l 103-65-1 n-Propylbenzene ND 2.0 1.0 ug/l 91-20-3 Methylene chloride ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 94-05-8 tert-Amyl Methyl Ether ND 2.0 0.66 ug/l <tr< td=""><td>142-28-9</td><td>1.3-Dichloropropane</td><td>ND</td><td>1.0</td><td>0.43</td><td>ug/l</td><td></td></tr<>	142-28-9	1.3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 98-63 Hexachlorobutadiene ND 2.0 0.66 ug/l 98-76 p-Isopropylbenzene ND 1.0 0.65 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/l 108-2-5 Methylene chloride ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.65 ug/l 637-92-3 t			ND		0.52		
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/1 99-87-6 p-Isopropyltouene ND 2.0 0.66 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 2.0 0.48 ug/1 103-65-1 n-Propylbenzene ND 2.0 0.98 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 104-54 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 104-55 tyrene ND 1.0 0.65 ug/1 107-65-50 Tert Butyl Ethyl Eth			ND	1.0	0.82		
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.60 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.66 ug/1 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/1 1634-04-4 Methyl Tert Butyl Ether 9.6 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 1.0 0.48 ug/1 91-20-3 Naphthalene ND 5.0 0.98 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 104-2-5 Styrene ND 1.0 0.70 ug/1 994-05-8 tert-Butyl Alcohol 57.7 10 5.8 ug/1 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/1 107-18-4	10061-01-5			1.0	0.47	-	
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyloluene ND 2.0 0.66 ug/l 108-10-1 4-Methyl Tert Butyl Ether 9.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 105-54 nert-Butyl Alcohol 57.7 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.2-Te				1.0			
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 9.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.66 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 2.0 0.67 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.66 ug/l 107-65-6 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 127-18-4	100-41-4		ND	1.0	0.60	-	
99-87-6 p-Isoropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 9.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 91-20-3 styrene ND 1.0 0.70 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.60 ug/l 104-42-5 Styrene ND 1.0 0.58 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.50 ug/l 127-18-4 Tetrachloroethane	87-68-3		ND	2.0	0.56	-	
1634-04-4 Methyl Tert Butyl Ether 9.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 57.7 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.66 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,	98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
1634-04-4 Methyl Tert Butyl Ether 9.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 57.7 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1,2,4-Trichl	99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 57.7 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2.7-Etrachloroethane ND 1.0 0.60 ug/l 108-88-3 Toluene ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Tri	1634-04-4	Methyl Tert Butyl Ether	9.6	1.0	0.51		
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 57.7 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2.7-tertachloroethane ND 1.0 0.60 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 79-01-6	108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
91-20-3 Naphthalene ND 5.0 0.98 ug/1 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 75-65-0 Tert Butyl Alcohol 57.7 10 5.8 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/1 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/1 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 75-69-4 Trichloroptopane ND 2.0 0.84 ug/1 96-18-4 1,2,3-	74-95-3		ND	1.0	0.48	ug/l	
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 75-65-0 Tert Butyl Alcohol 57.7 10 5.8 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/1 630-20-6 1,1,2.2-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 108-88-3 Toluene ND 1.0 0.50 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 75-69-4 Trichloroethane ND 2.0 0.84 ug/1 96-18-4 1,2,3-Trichlor	75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 57.7 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 128-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l <t< td=""><td>91-20-3</td><td>Naphthalene</td><td>ND</td><td>5.0</td><td>0.98</td><td>ug/l</td><td></td></t<>	91-20-3	Naphthalene	ND	5.0	0.98	ug/l	
75-65-0 Tert Butyl Alcohol 57.7 10 5.8 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/1 630-20-6 1,1,2.7-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2.7-Tetrachloroethane ND 1.0 0.65 ug/1 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/1 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/1 95-63-6 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/1 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/1	103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l	100-42-5	Styrene	ND	1.0	0.70	ug/l	
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 96-18-4 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l	75-65-0		57.7	10	5.8	ug/l	
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 96-18-4 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l	994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
79-34-51,1,2,2-TetrachloroethaneND1.00.65ug/l127-18-4TetrachloroetheneND1.00.90ug/l108-88-3TolueneND1.00.53ug/l87-61-61,2,3-TrichlorobenzeneND1.00.50ug/l120-82-11,2,4-TrichlorobenzeneND1.00.50ug/l71-55-61,1,1-TrichloroethaneND1.00.54ug/l79-00-51,1,2-TrichloroethaneND1.00.53ug/l79-01-6TrichloroethaneND1.00.53ug/l75-69-4TrichlorofluoromethaneND2.00.84ug/l96-18-41,2,3-TrichloropropaneND2.00.70ug/l95-63-61,2,4-TrimethylbenzeneND2.01.0ug/l108-67-81,3,5-TrimethylbenzeneND1.00.79ug/l95-47-6o-XyleneND1.00.79ug/l130-20-7Xylene (total)ND1.00.59ug/l	637-92-3		ND	2.0	0.56	ug/l	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroethene ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53	ug/l	
71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichloroethene ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l			ND		0.54	ug/l	
75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5		ND	1.0	0.53	ug/l	
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries	75-69-4				0.84		
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries	96-18-4		ND	2.0	0.70	ug/l	
75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits						ug/l	
m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits					1.0	ug/l	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-01-4		ND	1.0	0.79	ug/l	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits			ND	1.0	0.78		
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6			1.0	0.59	ug/l	
	1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
1868-53-7 Dibromofluoromethane 93% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
	1868-53-7	Dibromofluoromethane	93%		80-12	20%	

ND = Not detectedMDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.2

12 of 33

JC73508

Report of Analysis

Client Sample ID:	YP-2		
-	JC73508-2	Date Sampled:	09/06/18
Matrix:	AQ - Ground Water	Date Received:	
Method:	SW846 8260C	Percent Solids:	
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD	i creent sonus.	ii) u

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	95%		81-124%
2037-26-5	Toluene-D8	103%		80-120%
460-00-4	4-Bromofluorobenzene	100%		80-120%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

3.2

ω

13 of 33 SGS

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	-		ad, Towse	on, MD	Date	1	0/06/18 0/10/18 a
Run #1 Run #2	File ID DF UV145624.D 1	Analyzed 09/11/18 12:24	By 4 KC	Prep D a n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	0.181	0.20	0.10	mg/l	J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene	94%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ω

				Report	of Ana	alysis			Page 1 of 1
Client Samj Lab Sample Matrix: Method: Project:	e ID: J(A S'	W846 8	ound Water 015C SW	- 7846 3510C 3 East Joppa Road	l, Towsc	on, MD	Date	Received: (09/06/18 09/10/18 n/a
Run #1 Run #2	File ID 2Y93235.	D	DF 1	Analyzed 09/13/18 02:43	By CP	Prep D a 09/12/1		Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Vo 300 ml	lume	Final Vol 1.0 ml	ume					
CAS No.	Compou	nd		Result	RL	MDL	Units	Q	
	TPH-DR	O (C10	-C28)	0.0963	0.083	0.053	mg/l		
CAS No.	Surrogat	te Reco	veries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphe Tetracosa 5a-Andro	ane-d50		52% 50% 40%		22-1 13-1 10-1	39%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

ω

SGS

Report	of	Analysis	
--------	----	----------	--

Lab Samj Matrix: Method: Project:	AQ - SW84	508-3 Ground Wa 46 8260C	ater 613 East Joppa Roac	l, Tow	rson, MD	Date Sampled: Date Received: Percent Solids:	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Run #1 Run #2	File ID 2E146452.D	DF 1	Analyzed 09/12/18 11:23	By SS	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2E6433
Run #1 Run #2	Purge Volum 5.0 ml	e					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	6.3	10	6.0	ug/l	J
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ယ

Page 1 of 3

SGS

Client Sample ID:	YP-3		
L .	JC73508-3	Date Sampled:	09/06/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 98-82-8 Isopropylbenzene ND 2.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 2.0 0.51 ug/l 98-82-8 Methylene bromide ND 2.0 0.66 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/l 91-20-3 Maphthalene ND 2.0 0.60 ug/l 100-42-5	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1034-04-4 Methyl Tert Butyl Ether 2.2 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 104-4-4 Methylene bromide ND 1.0 0.48 ug/l 175-09-2 Methylene chloride ND 2.0 1.0 ug/l 102-3 Naphthalene ND 1.0 0.70 ug/l 104-5-5	142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-87-6 p-Isopropylbenzene ND 1.0 0.65 ug/1 1634-04-4 Methyl Tert Butyl Ether 2.2 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 108-10-1 4-Methylene bromide ND 2.0 0.60 ug/1 104-5-3 Methylene chornide ND 2.0 0.60 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 103-65-3 tert-Mayl Methyl Ether ND 2.0 0.47 ug/1 637-92					0.52	-	
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 99-87-6 p-Isopropylbenzene ND 1.0 0.61 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 2.0 0.66 ug/1 75-09-2 Methylene bromide ND 2.0 1.0 ug/1 100-42-5 Styrene ND 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 94-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/1 97-34-5 1,1,2-7etr			ND	1.0	0.82		
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 2.2 1.0 0.51 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-2-5 Styrene ND 1.0 0.60 ug/l 104-2-5 Styrene ND 1.0 0.61 ug/l 637-92-3 tert-Butyl Alcohol ND 1.0 0.60 ug/l 637-92-3 tert-Butyl Bthyl Ethe	10061-01-5		ND	1.0	0.47		
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-87-6 p-Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 2.2 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphtalene ND 2.0 1.0 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 105-54 Tert Butyl Alcohol ND 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2,	10061-02-6		ND	1.0	0.43		
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbonzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 2.2 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/l 994-05-8 tert-Amyl Methyl Ether ND 1.0 0.65 ug/l 103-20-6 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-	100-41-4	Ethylbenzene	ND	1.0	0.60		
98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.666 ug/l 1634-04-4 Methyl Tert Butyl Ether 2.2 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 975-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-25-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.50 ug/l 120-88-3 Toluene ND 1.0 0.50 ug/l 120-88-3 Toluen	87-68-3	Hexachlorobutadiene	ND	2.0	0.56		
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 2.2 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2,4	98-82-8	Isopropylbenzene	ND	1.0	0.65		
1634-04-4 Methyl Tert Butyl Ether 2.2 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 1.0 0.48 ug/1 75-09-2 Methylene chloride ND 2.0 1.0 ug/1 91-20-3 Naphthalene ND 5.0 0.98 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/1 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.66 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/1 79-34-5 1,1,2.7 tetrachloroethane ND 1.0 0.65 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 108-88-3 Toluene	99-87-6	p-Isopropyltoluene	ND	2.0	0.66		
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 127-18-4 Tetrachlorobenzene ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1,2,4-Tri	1634-04-4		2.2	1.0	0.51		
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.47 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 17-55-6 1,1,1-Trichlorobenzene ND 1.0 0.53 ug/l 19-00-5	108-10-1		ND	5.0	1.9		
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.66 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 79-34-5 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 17-55-6 1,1,1-Trichlorobenzene ND 1.0 0.53 ug/l 17-55-6 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 19-00-5 1	74-95-3		ND	1.0	0.48	-	
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.53 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloroptopane ND 2.0 0.84 ug/l 96-67-8	75-09-2	Methylene chloride	ND	2.0	1.0		
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Tri	91-20-3	Naphthalene	ND	5.0	0.98	-	
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 1120-82-1 1, 2, 4-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l <	103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 1120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l	100-42-5		ND	1.0	0.70		
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l	75-65-0	Tert Butyl Alcohol	ND	10	5.8		
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l	994-05-8		ND	2.0	0.47	-	
79-34-51,1,2,2-TetrachloroethaneND1.00.65ug/l127-18-4TetrachloroetheneND1.00.90ug/l108-88-3TolueneND1.00.53ug/l87-61-61,2,3-TrichlorobenzeneND1.00.50ug/l120-82-11,2,4-TrichlorobenzeneND1.00.50ug/l71-55-61,1,1-TrichloroethaneND1.00.54ug/l79-00-51,1,2-TrichloroethaneND1.00.53ug/l79-01-6TrichloroetheneND1.00.53ug/l75-69-4TrichlorofluoromethaneND2.00.84ug/l96-18-41,2,3-TrichloropropaneND2.00.70ug/l95-63-61,2,4-TrimethylbenzeneND2.01.0ug/l108-67-81,3,5-TrimethylbenzeneND2.01.0ug/l75-01-4Vinyl chlorideND1.00.78ug/lm,p-XyleneND1.00.59ug/l130-20-7Xylene (total)ND1.00.59ug/l	637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56		
79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene	630-20-6		ND	1.0	0.60	-	
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65		
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53		
120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50		
79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1		ND	1.0	0.50	ug/l	
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits		m,p-Xylene	ND	1.0	0.78	ug/l	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
	1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
1868-53-7 Dibromofluoromethane 91% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
	1868-53-7	Dibromofluoromethane 91% 80-120%					

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

ယ ပ

17 of 33

JC73508

Report of Analysis

Client Sample ID:	YP-3		
Lab Sample ID:	JC73508-3	Date Sampled:	09/06/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
Ū.			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	95%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	99%		80-120%

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

ယ ပ

		Report	of Ana	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC73508-3 AQ - Ground V SW846 8015C		d, Towso	on, MD	Date	L	9/06/18 9/10/18 ⁄a
Run #1 Run #2	File ID DF UV145620.D 1	Analyzed 09/11/18 10:25	By KC	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	s Run# 1	Run# 2	Limi	its		
98-08-8	aaa-Trifluorotoluene	87%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ယ သ

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JC7350 AQ - C SW846	Fround Wate 8015C SV		d, Towsc	on, MD	Date		9/06/18 9/10/18 ′a
Run #1 Run #2	File ID 2Y93236.D	DF 1	Analyzed 09/13/18 03:16	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1o-Terphenyl60%16416-32-3Tetracosane-d5052%438-22-25a-Androstane41%					40% 39% 35%			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ ယ

ω

20 of 33

SGS

Report of Analysis

Client San Lab Samj Matrix: Method: Project:	AQ - 0 SW84	Ground Wa 6 8260C	ater 613 East Joppa Road	l, Tow	vson, MD	Date Sampled: Date Received: Percent Solids:	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Run #1 Run #2	File ID 2E146453.D	DF 1	Analyzed 09/12/18 11:53	By SS	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2E6433
Run #1 Run #2	Purge Volume 5.0 ml	2					

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	7.5	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.4

21 of 33

JC73508

Client Sample ID:	YP-4		
Lab Sample ID:	JC73508-4	Date Sampled:	09/06/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 98-82-8 Isopropylbouene ND 2.0 0.66 ug/l 98-82-8 Isopropylbouene ND 2.0 0.66 ug/l 98-82-8 Isopropylbouene ND 1.0 0.48 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/l 174-95-3 Methylene bromide ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 100-42-5 <th>CAS No.</th> <th colspan="2">Compound Result RL</th> <th>MDL</th> <th>Units</th> <th>Q</th>	CAS No.	Compound Result RL		MDL	Units	Q	
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1034-04-4 Methyl Tert Butyl Ether 4.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/l 104-2-5 Methylene chornide ND 1.0 0.48 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.60 ug/l 104-5-5 <t< td=""><td>142-28-9</td><td>1,3-Dichloropropane</td><td>ND</td><td>1.0</td><td>0.43</td><td>ug/l</td><td></td></t<>	142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-87-6 p-Isopropylbenzene ND 1.0 0.65 ug/1 1634-04-4 Methyl-Tert Butyl Ether 4.7 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 108-10-1 4-Methylene bromide ND 2.0 0.60 ug/1 104-5-3 Methylene chloride ND 2.0 0.60 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 103-65-3 tert-Mayl Methyl Ether ND 2.0 0.47 ug/1 637-92	594-20-7				0.52	0	
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 99-87-6 p-Isopropylbenzene ND 1.0 0.61 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 2.0 0.66 ug/1 74-95-3 Methylene bromide ND 2.0 1.0 ug/1 91-20-3 Naphthalene ND 2.0 0.48 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 94-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/1 97-34-5 1,1,2.7			ND	1.0	0.82		
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 4.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.60 ug/l 107-58 tert-Amyl Methyl Ether ND 2.0 0.61 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 127-18-4	10061-01-5		ND	1.0	0.47		
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Buyl Ether 4.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 2.0 1.0 ug/l 91-20-5 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 105-5-0 Tert Butyl Alcohol ND 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7 Tetra	10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	-	
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 4.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.66 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.65 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4	100-41-4		ND	1.0	0.60	-	
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 4.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2,4	87-68-3	Hexachlorobutadiene	ND	2.0	0.56		
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 4.7 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2,4	98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 127-18-4 Tetrachlorobenzene ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1,2,4-Tri	99-87-6		ND	2.0	0.66		
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichlorobenzene ND 1.0 0.53 ug/l 79-01-6 Trich	1634-04-4	Methyl Tert Butyl Ether	4.7	1.0	0.51		
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 630-20-6 1, 1, 2.7-tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 171-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 170-00-5 1, 1, 2.7-trichloroethane ND 1.0 0.53 ug/l 170-56-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 1	108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 127-18-4 Tetrachlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96	74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 75-61-4 Trichloroethane ND 1.0 0.53 ug/l 79-01-6	75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l	91-20-3	Naphthalene	ND	5.0	0.98	ug/l	
75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 1120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l	103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 1120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l	100-42-5	Styrene	ND	1.0	0.70	ug/l	
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1, 3, 5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l	75-65-0	Tert Butyl Alcohol	ND	10	5.8		
630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 1.0 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l	994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
79-34-51,1,2,2-TetrachloroethaneND1.00.65ug/l127-18-4TetrachloroetheneND1.00.90ug/l108-88-3TolueneND1.00.53ug/l87-61-61,2,3-TrichlorobenzeneND1.00.50ug/l120-82-11,2,4-TrichlorobenzeneND1.00.50ug/l71-55-61,1,1-TrichloroethaneND1.00.54ug/l79-00-51,1,2-TrichloroethaneND1.00.53ug/l79-01-6TrichloroetheneND1.00.53ug/l75-69-4TrichlorofluoromethaneND2.00.84ug/l96-18-41,2,3-TrichloropropaneND2.00.70ug/l95-63-61,2,4-TrimethylbenzeneND2.01.0ug/l108-67-81,3,5-TrimethylbenzeneND2.01.0ug/l75-01-4Vinyl chlorideND1.00.78ug/lm,p-XyleneND1.00.59ug/l130-20-7Xylene (total)ND1.00.59ug/l	637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) </td <td>630-20-6</td> <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td>1.0</td> <td>0.60</td> <td>ug/l</td> <td></td>	630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l m,p-Xylene ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53	ug/l	
71-55-6 1, 1, 1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits					0.70	ug/l	
75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2	108-67-8		ND	2.0	1.0	ug/l	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits		m,p-Xylene	ND	1.0	0.78	ug/l	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6		ND	1.0	0.59	ug/l	
	1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
1868-53-7Dibromofluoromethane92%80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
	1868-53-7	Dibromofluoromethane	92%		80-12	20%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

3.4

Report of Analysis

Client Sample ID:	YP-4		
Lab Sample ID:	JC73508-4	Date Sampled:	09/06/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
0			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	94%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	100%		80-120%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

JC73508

ω

3.4

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	-		ud, Towso	on, MD	Date	I I I	0/06/18 0/10/18 a
Run #1 Run #2	File ID DF UV145621.D 1	Analyzed 09/11/18 10:54	By 4 KC	Prep D a n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene	93%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.4

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JC7350 AQ - G SW846	round Water 8015C SW		d, Towsc	on, MD	Date	I I	9/06/18 9/10/18 /a
Run #1 Run #2	File ID 2Y93237.D	DF 1	Analyzed 09/13/18 03:50	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C1	.0-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d5 5a-Androstane	50	53% 45% 35%		22-1 13-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.4

Report	of	Analysis
--------	----	----------

Client Sat Lab Samj Matrix: Method: Project:	AQ - 0 SW84	Ground Wa 6 8260C	ater 613 East Joppa Roac	l, Tow	rson, MD	Date Sampled: Date Received: Percent Solids:	0,7,1 = 0,7 = 0
Run #1 Run #2	File ID 2E146454.D	DF 1	Analyzed 09/12/18 12:22	By SS	Prep Date n/a	Prep Bate n/a	h Analytical Batch V2E6433
Run #1 Run #2	Purge Volume 5.0 ml						

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ယ

3.5

26 of 33

JC73508

E = Indicates value exceeds calibration range

Client Sample ID:	YP-5		
Lab Sample ID:	JC73508-5	Date Sampled:	09/06/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.47 ug/l 10061-01-5 cisa1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.66 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.51 ug/l J 98-82-8 Isopropylbenzene ND 1.0 0.66 ug/l J 98-82-8 Isopropylbenzene ND 1.0 0.48 ug/l J 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.0 1.0 ug/l 74-95-3 Methylene bromide ND 2.0 0.66 ug/l 10-0-42-5 Styrene ND 1.0 0.70 ug/l	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/1 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/1 98-87-6 p-lsopropylbonene ND 2.0 0.66 ug/1 108-10-1 4-Methyl Tert Butyl Ether 0.62 1.0 0.51 ug/1 108-10-1 4-Methyl-pentanone(MIBK) ND 5.0 1.9 ug/1 75-09-2 Methylene chloride ND 2.0 1.0 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 91-20-3 Maptithalene ND 2.0 0.60 ug/1 103-65-1	142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.60 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/1 1634-044 Methyl-Tert Butyl Ether 0.62 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 108-50 Naphthalene ND 2.0 1.0 ug/1 104-42-5 Styrene ND 1.0 0.70 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 104-42-5 Styrene ND 1.0 0.60 ug/1 104-65-1 n.27-tertalborot	594-20-7	· • • • •			0.52	0	
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 0.66 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 1.0 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1,		· • • • •	ND	1.0	0.82	-	
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.66 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.56 ug/l 1634-04-4 Methyl Tert Butyl Ether 0.62 1.0 0.51 ug/l J 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l J 74-95-3 Methylene bromide ND 1.0 0.48 ug/l J 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 637-92-3 tert-Butyl Alcohol ND 10 5.8 ug/l 637-92-3 tert-Butyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ether ND 1.0	10061-01-5		ND	1.0			
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 0.62 1.0 0.51 ug/l J 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l J 74-95-3 Methylene bromide ND 2.0 0.60 ug/l J 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 637-92-3 tert-Butyl Alcohol ND 10 5.8 ug/l J 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.65 ug/l 79-34-5 1.1,2,2-Tetrachloroethane ND <td>10061-02-6</td> <td></td> <td>ND</td> <td>1.0</td> <td></td> <td>-</td> <td></td>	10061-02-6		ND	1.0		-	
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 0.62 1.0 0.51 ug/l J 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Maphthalene ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-2-5 Styrene ND 1.0 0.60 ug/l 104-4-5 Ityrene ND 1.0 0.66 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.65 ug/l 127-18-4 Tetrachloroetha	100-41-4		ND	1.0	0.60	-	
98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 0.62 1.0 0.51 ug/l J 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l J 74-95-3 Methylene bromide ND 1.0 0.48 ug/l J 91-20-3 Naphthalene ND 2.0 1.0 ug/l J 91-20-3 Naphthalene ND 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 75-65-0 Tert Butyl Alcohol ND 1.0 5.8 ug/l J 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND	87-68-3		ND	2.0	0.56		
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 0.62 1.0 0.51 ug/l J 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 120-82-3 Torichorobenzene ND 1.0 0.50 ug/l 120-82-1	98-82-8	Isopropylbenzene	ND	1.0	0.65	-	
1634-04-4 Methyl Tert Butyl Ether 0.62 1.0 0.51 ug/l J 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 103-65-1 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1<	99-87-6	p-Isopropyltoluene	ND	2.0	0.66	-	
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.53 ug/l 120-82-1 1,2,4-T	1634-04-4		0.62	1.0	0.51		J
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.66 ug/l 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichlorobenzene ND 1.0 0.50 ug/l 17-55-6 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 19-00-5 <	108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	-	
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 0.98 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichloropto	74-95-3		ND	1.0	0.48	-	
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1, 1, 1-Trichlorobenzene ND 1.0 0.53 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 95-63-6 1, 2, 4-Trimethylbenzene ND 2.0 0.70 ug/l	75-09-2		ND	2.0	1.0		
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.84 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.0 ug/l	91-20-3		ND	5.0	0.98	-	
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.84 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.0 ug/l	103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropenpane ND 2.0 0.84 ug/l 96-18-4 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 95-67-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l	100-42-5		ND	1.0	0.70		
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,2,2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l	75-65-0	Tert Butyl Alcohol	ND	10	5.8		
630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l	994-05-8		ND	2.0	0.47	-	
79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 130-20-7 Xylene ND 1.0 0.79 ug/l 1330-20-7 <td>637-92-3</td> <td>tert-Butyl Ethyl Ether</td> <td>ND</td> <td>2.0</td> <td>0.56</td> <td>ug/l</td> <td></td>	637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 1330-20-7 Xylene ND 1.0 0.59 ug/l 1330-20-7	630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichlorobenzene ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries </td <td>79-34-5</td> <td>1,1,2,2-Tetrachloroethane</td> <td>ND</td> <td>1.0</td> <td>0.65</td> <td>ug/l</td> <td></td>	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53	ug/l	
120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	-	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50		
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits		m,p-Xylene	ND	1.0	0.78		
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
	1330-20-7	Xylene (total)	ND	1.0	0.59	-	
1868-53-7Dibromofluoromethane93%80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	1868-53-7	Dibromofluoromethane	93%		80-1	20%	

ND = Not detectedMDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω 5 Page 2 of 3

Report of Analysis

Client Sample ID:	YP-5		
Lab Sample ID:	JC73508-5	Date Sampled:	09/06/18
Matrix:	AQ - Ground Water	Date Received:	09/10/18
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
0			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	97%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	99%		80-120%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω 5

		Report	t of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC73508-5 AQ - Ground Wa SW846 8015C	ater 613 East Joppa Roa	ad, Towso	on, MD	Date	1	0/06/18 0/10/18 a
Run #1 Run #2	File ID DF UV145623.D 1	Analyzed 09/11/18 11:5	By 9 KC	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GUV6031
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
98-08-8	aaa-Trifluorotoluene	92%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω 5

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JC7350 AQ - C SW840	Ground Wate 5 8015C SV	or V846 3510C 3 East Joppa Roa	d, Towsc	on, MD	Date		9/06/18 9/10/18 a
Run #1 Run #2	File ID 2Y93241.D	DF 1	Analyzed 09/13/18 06:05	By CP	Prep D 09/12/1	ate 8 15:00	Prep Batch OP14982	Analytical Batch G2Y3535
Run #1 Run #2	Initial Volume 300 ml	Final Vo l 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	0.157	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 16416-32-3 438-22-2	o-Terphenyl Tetracosane-d 5a-Androstane		55% 43% 33%			40% 39% 35%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω 5

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

1 0. 1		G	W		С	HA							οι)Y										Page 1 of 1
(M.R.)							235 Ro						80	FED-EX	Tracking	*				Bottle O	der Cont	rol#		
and the second	ACCUTES													Accutes	t Quote #	1				Accutest	Job#			2-10
	Laborator	ies																	Accessory of		NUCLEON		<u>(7</u>	3508
	Client / Reporting Information				Proj	ect info	rmation	1	1522									1	Requ	ested A	nalysis	1		Matrix Codes
Company N				Project Name	1 :	Former	Hess 20	204							E B									DW- Drinking Water
Address	EMS Environmental, Inc.			Street											MT	ß	s by	1						GW- Ground Water WW- Water
4550 Bat	h Pike			1613 E. Jopp	a Road										Rs	STAR	nate							SW- Surface Water
City	State		Zip	City					State					Ρ	STA	- D STARSD +TICsD	Oxygenates							SO- Soil SL-Sludge
Bethlehe	m PA	18017		Towson					N	D				5 n	20	L L F	Ô							OI-OII
roject Con	act: Jeremy Fox	E-mail	jfox@emsenv.com	Project #	5713									1 D 6	15 †15	D PPL	Fuel	8	8					LIQ- Other Liquid
hone #				Fax #										8021 0 602 0 0 TBAO NAP	TCL D PPL DSTARS DMTBE +10 D +15 D	TCL D	Full Scan VOC's+ 8260B	TPH-GRO by 8015B	TPH-DRO by 8015B			+	1	
amplers's	610-866-7799 Name Brad Rohrbaugh/Robert Lloyd			Client Purcha	610-86 ase Order #	6-8195									F Ť	F M	l S	à	by 8					AIR- Air
Accutest		SUMMA #	1	Collection			r —	IN-	nhor	of ner	COD IC	d Bottl	5713	0 02 0 MT	4APC	625 [] AE[]	can	SR0	SR 0					SOL-Other Solid WP-Wipe
		SUMMA #		Collection			# of	FNUI		ofpre: 3 ∣ δ		a Botti	es auc	8260 E	8260 🗆 624 🗆 -	8270 D I	11 SC	H	L H				1	LAB USE ONLY
Sample #	Field ID / Point of Collection	MEOH Vial #	Date	Time	Sampled by	Matrix	bottles	Ŷ	0 N	E S	NON	MEO	ENC	28 E	826 19	821 AB.	5 ²	F		[+	LAB USE UNLT
1	YP-1		9/6/2018	940	BR	GW	7	7									X	X	X					
2	YP-2		9/6/2018	1000	BR	GW	7	7									x	x	x					E50
3	YP-3		9/6/2018	1040	BR	GW	7	7									x	x	x					V275
Ý	YP-4		9/6/2018			GW	7	7									X	x	x					
5	YP-5		9/6/2018	11:00	BR	GW	7	7									x	x	x					
-				<i>n</i>						-														
										-		-	-								-			
	£			-						-			-					-					+	
-											$\left \cdot \right $		-											
								\vdash									-							
											\square							-						
																		1						
											ΓT													
	Turnaround Time (Business days)					Data De					.	1.11.25			60. SQ				Co	mments /	Remark	3		
	Std. 15 Business Days	Approved By	:/ Date:		X Comn			_		CLP										-	.1.	1.0		
	10 Day RUSH 5 Day RUSH				Comn	nercial "I duced	D '	1		SP Cat SP Cat											g۴	n		
	3 Day EMERGENCY				NJ Fu	11			State	Form	۰,					ÍNÍ	TIAL	ASE	3 5 1/1					
	2 Day EMERGENCY				Other	Full Til	ER 1		EDD	Form	×						051	FRI	FIC/	TION	-			-
	1 Day EMERGENCY				0		" = Do									0	DEL	¥ 144 14						
	Other 14 Day Hess Standard ency T/A data available VIA Lab	link			Comm	ercial "A	= Kesu	nds Of	нy															
Emerg			e documented b	elow each tir	ne samples	change	posa	ssion	, Inclu	ding	courle	er deliv	ery.									(HI)		1.
Relinguist	ed by Sampler		Date Time:	7:00	Received	_	1		1-	Reli		od by:	Τ)		Date Tim	10:			Received			91	IN/18 7
1 Relinquist		120	Date Time	5	Placetved By	K	, 		\rightarrow	2	aulsh	d By	\leq	\neq		Date Tim	ne:			2/	X /	VH1	4	igio St
3 E	5cm 4/10/18	172	112)	1 >	KĽ	\geq	\sim		4	-		-							4				/
Relinquisi	ed by:	, 	Date Time:	ι	Received By	-				Cas	tody Se	al#			Preserve	d where	applicabl	0				Onice	Coole	
5					5											ш						۳۲.	·`	~ / V
																						2 -	7	25
																					Ľ,	ر، (/	30

JC73508: Chain of Custody Page 1 of 2

JC73508

4:1

4

SGS Sample Receipt Summary

Job Number: JC	73508	(Client:			Project:								
Date / Time Received: 9/1	0/2018 5	:27:00 PM	M Delive	Delivery Method: Airbill #'s:										
• •	ooler Temps (Raw Measured) °C: Cooler 1: (3.7); Cooler Temps (Corrected) °C: Cooler 1: (3.1);													
1. Custody Seals Present:		3.	COC Present: npl Dates/Time	Yor ☑ OK ☑		Sample Integrity - Documentation Sample labels present on bottles: Container labeling complete: Sample container label / COC agree: Sample Integrity - Condition Sample recvd within HT: All containers accounted for: Condition of sample: 	Y V Y V							
Quality Control_Preservati 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved propert 4. VOCs headspace free:		or N	<u>N/A</u>			Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y 9 9 9 1		N	<u>N/A</u>				
Test Strip Lot #s:	oH 1-12:	21	6017	pH 1	2+:	208717 Other: (Specify)								

SM089-03 Rev. Date 12/7/17

> JC73508: Chain of Custody Page 2 of 2

44

4

B WSP SITE INVESTIGATION SUMMARY LETTER-MAY 2018

wsp

VIA ELECTRONIC MAIL

May 30, 2018

Ellen Jackson Maryland Department of the Environment Oil Control Program Suite 260 1800 Washington Boulevard Baltimore, MD 21230-1719

Subject:Site Investigation SummaryFormer Hess Station #20204, 1613 East Joppa Road, Towson, Maryland

Dear Ms. Jackson:

WSP USA Inc. (WSP), on behalf of Hess Corporation, is pleased to present this summary of the site investigation at the former Hess Filling Station on Joppa Road in Towson, Maryland. The site investigation was performed in accordance with WSP's April 7, 2017, Site Investigation Work Plan, approved by the Maryland Department of the Environment (MDE) in a letter dated May 9, 2017.

The scope of the investigation included (1) defining the areas of maximum concentrations of site contaminants, (2) collecting additional groundwater data needed to evaluate in situ treatment options, and (3) performing an in situ chemical oxidation (ISCO) bench scale study. The investigation was designed to collect data needed to evaluate potential corrective measures to reduce concentrations in the areas of the site with significant contaminant mass, primarily benzene, toluene, ethylbenzene, and xylene (BTEX) and total petroleum hydrocarbons (TPH). The investigation results provide the information needed to evaluate a potential corrective action for the area of maximum remaining contaminant concentrations.

SITE INVESTIGATION

The site investigation was performed September 18 through 21, 2017, and extended from the southern area of the former Hess Filling Station onto Ridgely Manor Park, located south of the former Hess Filling Station on Yakona Road.

The investigation was performed in accordance with the Site Investigation Work Plan and consisted of the following steps:

- Field preparation
- Membrane interface probe (MIP)/ Hydraulic profiling tool (HPT) investigation
- Groundwater sampling

FIELD PREPARATION

Before initiating the work, Hess arranged property access with the property owners. Soil boring permits were obtained from Baltimore County, and the health and safety plan was updated. Public safety measures, including temporary barriers, were set up around work zones before initiating work, and public and private utility locates were performed to mark the location of utilities in advance of intrusive work.

WSP USA Suite 300 13530 Dulles Technology Drive Herndon, VA 20171

Tel.: +1 703 709-6500 Fax: +1 703 709-8505 wsp.com

wsp

MIP-HPT INVESTIGATION

The MIP/HPT evaluation was performed by Cascade Technical Services of Millersville, Maryland, on September 18 and 19, 2017. The locations of the 9 MIP/HPT soil borings (MIP-01 through MIP-09) are shown on Figure 1. The MIP/HPT evaluation provided data on the vertical and horizontal location of the 'hot spot' of maximum contaminant concentrations and identified conductive zones where preferential contaminant transport is occurring. The MIP/HPT report is provided as Enclosure A. The maximum probe responses (over 1 x107 microvolts) were measured at MIP-02, located in the southern portion of the former Hess Filling Station, and MIP-07 and MIP-08, located in the northern portion of Ridgely Manor Park. The depth below ground surface (bgs) of the maximum probe responses ranged from 25 to 32 feet bgs at MIP-02 to 21 to 26 feet bgs at MIP-07 to 18 to 32 feet bgs at MIP-08.

Although variability was noted between locations, the HPT pressure tended to be highest, and inversely the flow rate the lowest, at the upper (e.g., less than 5 feet bgs) and lower portion (e.g., greater than 30 feet bgs) of the borings, with the minimum pressures and maximum flow rates noted in the middle interval. The maximum MIP responses occurred at depths typically corresponding to decreasing HPT pressure and increased flow, indicating the intervals containing the maximum contaminant concentrations are present in more permeable flow zones.

Two groundwater and four soil samples were collected after the MIP/HPT screening to provide quantitative laboratory analytical data for comparison to the MIP qualitative data. Groundwater samples were collected at MIP-2 (25-30 feet bgs) and MIP-8 (18-22 feet bgs), corresponding to the depths of maximum probe response and lowest HPT pressure in those two borings. The soil samples were collected from the locations and depths corresponding to the maximum probe responses, MIP-02 (25-30 feet bgs), MIP-07 (21-26 feet bgs), and MIP-08 (18-22 and 27-30 feet bgs). The samples were labeled, stored in an ice cooler, and submitted to Pace Analytical Laboratories for analysis of BTEX by U.S. Environmental Protection Agency (EPA) Method 8260 and TPH-diesel range organics (DRO) and TPH-gasoline-range organics (GRO) by EPA Method 8015. The analytical results are provided as Enclosure B.

Groundwater results were compared to Maryland Environmental Assessment Technology (MEAT) Generic Numeric Cleanup Standards Type I/II Aquifers in Table 1, and soil results were compared to the MEAT Generic Numeric Cleanup Standards for Non-Residential Soil in Table 2. The groundwater and soil results are also displayed on Figures 2 and 3. The maximum BTEX and TPH concentrations were measured at MIP-08 (18-22 feet bgs) in groundwater and MIP-2 (25-30 feet bgs) in soil. TPH-DRO and TPH-GRO concentrations greater than MEAT standards were detected in groundwater samples from both MIP-02 (25-30 feet bgs) and MIP-08 (18-22 feet bgs). Benzene was also detected above the MEAT standard in the groundwater sample at MIP-08 (18-22 feet bgs) at a concentration of 23.5 micrograms per liter (µg/l). All soil concentrations were below the MEAT standards except for the TPH-GRO and TPH-DRO concentrations at MIP-2 (1,220 milligrams per kilogram [mg/kg] and 803 mg/kg, respectively).

Approximately 60 pounds of soil from the identified 'hot spot' was collected from MIP-08 (18-22 feet bgs) for the bench scale ISCO treatability study and shipped to Terra Systems in Claymont, Delaware. The soil was collected from multiple borings installed at MIP-08 until the required mass of soil was collected.

GROUNDWATER SAMPLING

Groundwater samples were collected September 19 and 20, 2017, from four wells south of the former underground storage tank (MW-4, YMW-3, YMW-7, and YP-1; Figure 1). Three of the locations (MW-4, YMW-7, and YP-1) were selected using historical groundwater results to represent maximum contaminant concentrations. The remaining sampling location (YMW-3) was non-detect in previous sampling events for TPH and BTEX compounds, and was selected to provide background geochemical data.

The groundwater samples were collected using low flow sampling methods in accordance with WSP Standard Operating Procedures. Temperature, pH, specific conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential (ORP) were measured during purging using a multi-parameter water quality meter with a flow-through cell to minimize atmospheric interference. These readings, along with observations on groundwater quality, were recorded on groundwater purge forms (Enclosure C). Groundwater was removed via bladder pump from the well until parameters stabilized. After the well was adequately purged, groundwater samples were collected using the bladder pump. The samples were labeled with the appropriate identification, stored in a cooler with ice and

wsp

submitted to Pace Analytical Laboratories for analysis of BTEX by U.S. EPA Method 8260, TPH-DRO/GRO by EPA Method 8015, and selected electron acceptors (alkalinity, sulfate, and sulfide). The analytical results are provided as Enclosure B, and summarized in Figure 2 and Table 1.

One equipment blank and one trip blank were collected during the groundwater sampling event as quality assurance samples. The equipment blank was analyzed for the site contaminants (BTEX and TPH-DRO/GRO), and the trip blank was analyzed for BTEX compounds. Eight liters of groundwater was collected from two contaminated well locations (YMW-7 and YP-1) and shipped to Terra Systems for the bench scale study.

The groundwater samples from MW-4, YMW-7, and YP-1 contained benzene, TPH-DRO, and TPH-GRO concentrations above the MEAT standards, with the maximum BTEX and TPH concentrations detected at YMW-7 (Table 1). Although the samples were collected using a different method in this event (low flow versus traditional multiple volume purge), the contaminant concentrations at each location were consistent with the concentrations measured in recent quarterly sampling events. As anticipated, the site contaminants were non-detect in the sample from background well YMW-3. The quality assurance samples were non-detect for all compounds analyzed, confirming proper equipment decontamination and field handling of samples. Alkalinity concentrations ranged from 24 milligrams per liter (mg/l) at YMW-3 to 242 mg/l at MW-4. Sulfate was only detected at background well YMW-3 (65.2 mg/l), and sulfide was non-detect at all four locations. Ferrous iron was measured using a field test kit at two locations, MW-4 and YP-1, with a concentration above 3.3 mg/l measured at both locations. Dissolved oxygen concentrations in the purge water were low, ranging from 0 to 1.16 mg/l at YP-1, and ORP in the purge water was less than 0 millivolts at all locations except for YMW-3, the background well, where it was measured at 132 millivolts. These measurements demonstrate that anaerobic (reducing) conditions are present in the wells with contamination.

ISCO TREATABILITY STUDY

The bench scale ISCO treatability study was performed by Terra Systems of Claymont, Delaware, to evaluate the effectiveness of Klozur® SP, a persulfate formulation distributed by PeroxyChem, on site soil and groundwater samples collected during the September 2017 investigation. The bench scale study tested both natural activation (also referred to as unactivated) and base activation of the persulfate. The activation of persulfate forms oxidative radical species which will oxidize site contaminants and other organic compounds. The base activation test included the addition of a 25% sodium hydroxide solution to raise and maintain a pH of 10.5 SU in soil and groundwater. The unactivated and activated tests evaluated three different persulfate concentrations (10, 20, and 40 grams per liter [g/l]). Replicate controls were also prepared for each set of tests. The treatability study summary report from Terra Systems is provided as Enclosure D.

Components of the study included the initial sample (baseline) characterization, site soil and groundwater oxidant demand testing, testing of contaminant destruction at the three different oxidant doses and one control, and reporting. All testing was completed using near field-encountered soil to groundwater ratios, in vessels with minimal headspace, and without periodic soil mixing. The treatability study was initiated in October 2017, following receipt of the data for the baseline characterization samples. As the base activation causes faster consumption of the persulfate, the base-activated study was performed over a shorter duration than the unactivated study. The base-activated study was performed for 14 days, through October 30, 2017, and the unactivated study was continued for 91 days, through January 15, 2018.

Periodic measurements of pH, persulfate, and other factors (e.g., oxidant demand) were monitored throughout the study. If the pH of the base-activated persulfate batches fell below 10.5 SU, then additional 25% sodium hydroxide was added to maintain the elevated pH.

During the treatability study, ten soil and twelve groundwater samples were collected from the test batches for laboratory analysis at 0 days (baseline characterization), 14 days (base-activated persulfate study conclusion), and 91 days (unactivated persulfate study conclusion). The samples were submitted to Pace Analytical Laboratories for analysis of BTEX by U.S. EPA Method 8260, TPH-DRO/TPH-GRO by EPA Method 8015. The analytical results are provided as Enclosure B.

vsp

The potential for the treatment to cause mobilization of naturally occurring metals was evaluated by analyzing water samples for chromium, molybdenum, selenium, uranium and vanadium. Groundwater samples of the 20 g/l persulfate dose were collected and analyzed for these oxyanions at baseline, 14 days for the base-activated batches, and 91 days for the unactivated batches. These samples were analyzed by Pace Analytical Laboratories using EPA Method 6020 (Enclosure B).

BENCH SCALE TREATABILITY STUDY RESULTS

The effectiveness of the treatability study was evaluated by comparing the contaminant concentrations from the baseline samples to the treated samples collected in the study, and by evaluating the longevity of the persulfate at the end of the study. Due to limited sample volume, the base-activated samples collected at 14 days and the unactivated samples collected at 91 days were diluted by an order of magnitude. Therefore, the groundwater results provided in Table 3 and the soil results provided in Table 4 are corrected by an order of magnitude dilution. The post-treatment concentrations summarized in the discussion below are corrected for the dilution. Table 5 provides the mass balance and mass removal calculations for the base-activated and unactivated samples.

The base-activated persulfate results indicated a 45 to 90% reduction in persulfate concentrations by the end of the 14-day study, with the highest depletion of persulfate noted in the 20 g/l of persulfate batch (Enclosure D). As mentioned previously, the pH was maintained at 10.5 SU or higher throughout the study, with the pH readings ranging from 10.9 to 12.7 SU. The unactivated persulfate testing results indicated a 51 to 65% reduction in persulfate concentrations through Day 91 of the study, with the highest depletion noted in the 40 g/l of persulfate. The results showed a decrease in pH during the study, from initial readings of 7.5 to 8.6 SU at the beginning of the study to 3.6 to 7.2 SU at the conclusion of the 91-day study.

Metals concentrations, which were non-detect in the baseline water samples, significantly increased in the base-activated tests (Table 3). Chromium and vanadium concentrations increased to concentrations well above the MEAT generic numeric cleanup standards in the 14-day base-activated results. The metals concentrations remained non-detect in the unactivated persulfate tests, except for total chromium, which was detected at a concentration of 11 μ g/l (below the MEAT generic numeric cleanup standard). In summary, these results indicate metals mobilization occurred with the base activation to concentrations above criteria.

MASS REMOVAL

The total contaminant mass for each persulfate concentration tested was calculated as the sum of the mass in the water and soil; the contaminant mass in water and soil were based on the concentrations in the laboratory results, including the correction factor of 10 for diluted samples, and the quantities of groundwater (220 milliliters) and soil (980 g) in each treatability study. The mass reduction was then calculated based on changes in mass from baseline. The mass and mass reduction for each persulfate concentration are shown in Table 5.

Over 97% BTEX reduction was noted at all three persulfate concentrations with the base activation, with TPH-GRO reduction ranging from 65% (10 g/l persulfate) to 78% (40 g/l) persulfate and TPH-DRO reduction ranging from 52% (10 g/l persulfate) to 66% (40 g/l persulfate). Concentrations of TPH-GRO and TPH-GRO in groundwater remained above MEAT standards at the end of the study (Table 3).

The contaminant trends indicated an over 99% reduction in BTEX concentrations, with TPH-GRO reduction ranging from 80% (10 g/l persulfate) to 100% (20 g/l persulfate) and TPH-DRO reduction ranging from 33% (40 g/l persulfate) to 56% (20 g/l persulfate). As shown in Table 3, the concentrations of TPH-DRO remained above MEAT standards at the end of the study for all persulfate test samples. The concentrations of TPH-GRO and BTEX had decreased to below MEAT standards in the unactivated persulfate test samples.

CONCLUSIONS

In conclusion, the bench scale study demonstrated that activated and unactivated persulfate were both effective at reducing contaminant concentrations, with complete to near complete destruction of BTEX and TPH-GRO. Destruction of BTEX, which is still present in the collected groundwater at concentrations above the NPDES permit discharge limit, is necessary to remove the need for granular activated carbon treatment on site. The treatability study indicates that ISCO with persulfate will not reduce TPH-DRO concentrations to less than the MEAT standard. However, it would create favorable conditions for continued biodegradation of TPH.

The unactivated persulfate treatment demonstrated the following advantages:

- Improved persulfate longevity with unactivated persulfate compared to activated persulfate.
- Unactivated persulfate resulted in similar contaminant reduction results as activated persulfate, without causing metals mobilization.

Of the three persulfate concentrations tested, the 20 g/l concentration of persulfate was the most effective at mass reduction (Table 5).

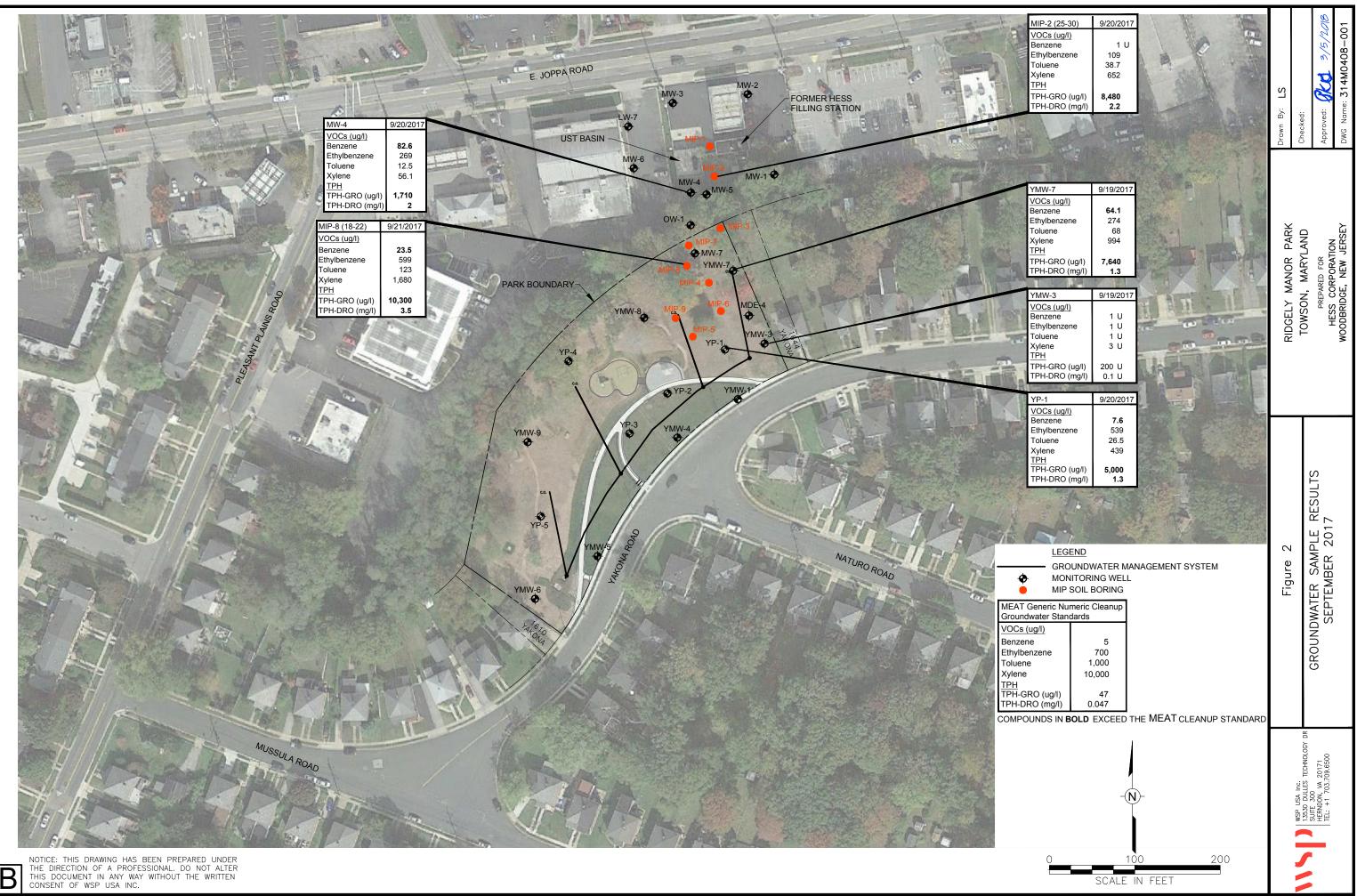
The investigation met the objectives of defining the limits of maximum contaminant concentrations, and collecting data needed to evaluate and design a corrective action. As the next step, Hess Corporation and WSP request a meeting with MDE to review the site investigation results and current site conditions and to discuss remedial goals and the path towards site closure. Any further corrective actions would be presented in a corrective action plan and submitted to MDE for approval.

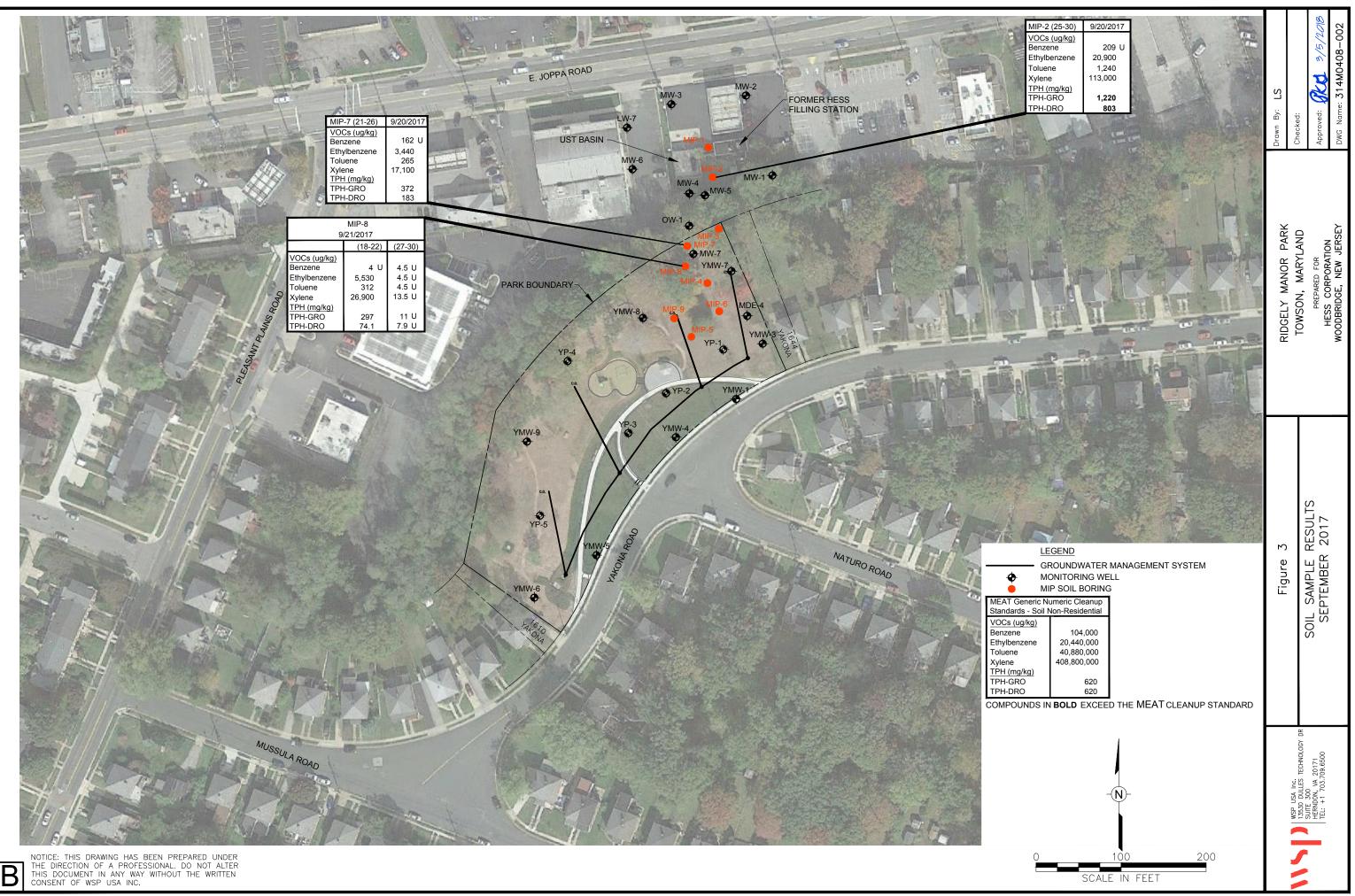
WSP looks forward to scheduling the meeting with you. Should you have any questions in the meanwhile, please contact us at (703) 709-6500.

Kind regards,

Janiel Sam

David Sarr, PE Practice Leader


cc/encl: John Schenkewitz, Hess Thomas Jackson, Baker Botts


Youn Stroff Robertson

Pam Groff Robertson/V Senior Technical Manager

FIGURES

TABLES

Groundwater Sampling Results - September 2017 Monitoring Wells and MIP Locations Former Hess Filling Station Towson, MD

	Units	MEAT Generic Numeric Cleanup Groundwater Standards Type I/II Aquifers	Sample ID: Sample Date: Sample Depth (ft bgs):	MIP-2 (25-30) 9/20/2017 25-30	MIP-8 (18-22) 9/21/2017 18-22	9	MW-4 9/20/2017 10-15	YMW-3 9/19/2017 4.9-19.5	YMW-7 9/19/2017 18-28	YP-1 9/20/2017 8-13	EB-091917 9/19/2017 -	TB-091917 9/19/2017 -
VOCs (8260)												
Benzene	ug/l	5		1 U	23.5		82.6	1 U	64.1	7.6	1 U	1 U
Ethylbenzene	ug/l	700		109	599		269	1 U	274	539	1 U	1 U
Toluene	ug/l	1,000		38.7	123		12.5	1 U	68	26.5	1 U	1 U
Xylene	ug/l	10,000		652	1,680		56.1	3 U	994	439	3 U	3 U
Total Petroleum Hydrocarbons												
TPH-GRO (5030/8015)	ug/l	47		8,480	10,300		1,710	200 U	7,640	5,000	200 U	NA
TPH-DRO (8015)	mg/l	0.047		2.2	3.5		2	0.1 U	1.3	1.3	0.1 U	NA
Natural Attenuation Parameters												
Alkalinity, Total	mg/l	NS		NA	NA		242	24	128	188	NA	NA
Sulfate	mg/l	NS		NA	NA		0.5 U	65.2	0.5 U	0.5 U		NA
Sulfide	mg/l	NS		NA	NA		1 U	1 U	1 U	1 U	NA	NA
Field Parameters												
Total Iron	mg/l	-		-	-		>3.3	NM	NM	>3.3	-	-
Ferrous Iron	mg/l	-		-	-		>3.3	NM	NM	>3.3	-	-
pH	SU	-		-	-		6.89	5.71	6.76	6.89	-	-
Conductivity	mS/cm	-		-	-		0.771	0.248	0.829	1.39	-	-
Turbidity	NTU	-		-	-		25.1	15.2	38.6	195	-	-
DO	mg/l	-		-	-		0	0	0	1.16	-	-
Temperature	°C	-		-	-		22.51	19.65	21.7	19.06	-	-
ORP	mV	-		-	-		-79	132	-59	-57	-	-

Note:

a/ ug/l = micrograms per liter; mg/l = milligrams per liter; SU = standard units; mS/cm = millisiemens per centimeter; NTU = Nephelometric Turbidity Units; $^{\circ}C$ = degrees Celsius; mV = millivolts; U = not detected above laboratory detection limit; NA = not analyzed; NS = no standard; ft bgs = feet bgs; TPH = total petroleum hydrocarbons; TPH-GRO = TPH - gasoline range organics; TPH-DRO = TPH - diesel range organics. Compounds in **bold** exceed the cleanup standard.

Soil Sampling Results - September 2017 MIP Locations Former Hess Filling Station Towson, MD

	Units	MEAT Generic Numeric Cleanup Standards - Soil Non-Residential	Sample ID: Sample Depth (ft bgs): Sample Date:	MIP-2 (25-30) 25-30 9/20/2017	MIP-7 (21-26) 21-26 9/20/2017	MIP-8 (18-22) 18-22 9/21/2017	MIP-8 (27-30) 27-30 9/21/2017
VOCs (8260)							
Benzene	ug/kg	104,000		209 U	162 U	4 U	4.5 U
Ethylbenzene	ug/kg	20,440,000		20,900	3,440	5,530	4.5 U
Toluene	ug/kg	40,880,000		1,240	265	312	4.5 U
Xylene	ug/kg	408,800,000		113,000	17,100	26,900	13.5 U
Total Petroleum Hydrocarbons							
TPH-GRO (5030/8015)	mg/kg	620		1,220	372	297	11 U
TPH-DRO (C10-C28) (8015)	mg/kg	620		803	183	74.1	7.9 U
Percent Moisture	% -			16.5	17	16.5	17.4

Notes:

a/ug/kg = micrograms per kilogram; mg/kg = milligrams per kilogram; U = not detected above laboratory detection limit; ft bgs = feet bgs; TPH = total petroleum hydrocarbons; TPH-DRO = TPH-diesel range organics; TPH-GRO = TPH-gasoline range organics. Compounds in **bold** exceed the cleanup standard.

Bench Scale Treatability Study Groundwater Results Summary Former Hess Filling Station Towson, Maryland

MEAT Generic		Benzene ug/l	Ethylbenzene ug/l	Toluene ug/l	Xylene ug/l	TPH-GRO ug/l	TPH-DRO mg/l	Chromium ug/l	Molybdenum ug/l	Selenium ug/l	Uranium-238 ug/l	Vanadium ug/l
Numeric Cleanup Standards		5	700	1,000	10,000	47	0.047	100 (c)	NS	50 (c)	NS	3.7 (c)
Category												
Baseline	Date											
Baseline	9/25/2017	18.8	359	31.3	581	4,360	1.3	0.5 U	0.5 U	0.5 U	0.5 U	1 U
14 Day - Corrected	l for 10X Diluti	ion Base Activ	vated (d)									
Control	10/30/2017	10 U	122	12	689	4,470	14	NA	NA	NA	NA	NA
10 g/L PS + NaOH	10/30/2017	10 U	44	10 U	170	2,540	29	NA	NA	NA	NA	NA
20 g/L PS + NaOH	10/30/2017	10 U	11	10 U	30 U	901 J	7.9	19,000	4,850	258	3,010	18,800
40 g/L PS + NaOH	10/30/2017	10 U	29	10 U	25 J	1,570 J	32	NA	NA	NA	NA	NA
91 Day - Corrected	l for 10X Diluti	ion Unactivate	ed (d)									
Control	1/15/2018	10 U		10 U		2,810	8.5	NA	NA	NA	NA	NA
10 g/L PS	1/15/2018	10 U		10 U		2,000 U		NA	NA	NA	NA	NA
20 g/L PS	1/15/2018	10 U		10 U		2,000 U		11	5 U		5 U	
40 g/L PS	1/15/2018	10 U	10 U	J 10 U	30 U	2,000 U	9.1	NA	NA	NA	NA	NA

Notes:

a/ ug/l = micrograms per liter; mg/l = milligrams per liter; J = estimated value; U = not detected above laboratory detection limit; NA = not analyzed; NS = no standard; TPH = total petroleum hydrocarbons;

TPH-GRO = TPH - gasoline range organics; TPH-DRO = TPH - diesel range organics. Compounds in **bold** exceed the cleanup standard.

b/ Baseline water sample is a composite of groundwater collected from YMW-7 and YP-1.

c/No MEAT standard promulgated for the compound; standard provided is from MDE Generic Numeric Cleanup Standards for Groundwater.

d/ Results are corrected for a dilution factor of 10 applied in the study.

Bench Scale Treatability Study Soil Results Summary Former Hess Filling Station Towson, Maryland

MEAT Generic		Benzene ug/kg	Ethylbenzene ug/kg	Toluene ug/kg	Xylene ug/kg	TPH-GRO mg/kg	TPH-DRO mg/kg
MLA I Generic Numeric Cleanup Standards		104,000	20,440,000	40,880,000	408,800,000	620	620
Category							
D 11	D (
Baseline	Date						
Hess Soil A	9/25/2017		1,610	244 U	<i>,</i>	89.3	223
Hess Soil B	9/25/2017	245 U	909	245 U	5,310	53.3	99.1
14 Day Base Activate	d						
Control	10/30/2017	4.1 U	104	4.5	572	11.0	82.4
10 g/L PS + NaOH	10/30/2017	5 U	32.6	5 U	148	25	70.7
20 g/L PS + NaOH	10/30/2017	4.5 U	10.3	4.5 U	23.9	13.2	57.3
40 g/L PS + NaOH	10/30/2017	4.2 U	12.7	4.2 U	20.7	15.7	46.8
91 Day Unactivated							
Control	1/15/2018	4.7 U	64.4	4.7 U	323	17.6	33.1
10 g/L PS	1/15/2018	5.4 U	5.4 U	5.4 U	16.2 U	J 14.3	95.5
20 g/L PS	1/15/2018	3 4.4 U	4.4 U	4.4 U	13.3 U	J 11.9 U	67.8
40 g/L PS	1/15/2018	8 4.6 U	4.6 U	4.6 U	13.9 U	J 10.3	106

Notes:

a/ ug/kg = micrograms per kilogram; mg/kg = milligrams per kilogram; U = not detected above laboratory detection limit;

g/L = grams per liter; PS = persulfate; NaOH = sodium hydroxide; TPH = total petroleum hydrocarbons;

TPH-GRO = TPH - gasoline range organics; TPH-DRO = TPH-diesel range organics.

b/ Hess Soil A and Hess Soil B samples were generated from a composite of soil collected from MIP-2 (25-30') and MIP-8 (18-22').

Bench Scale Treatability Study Total Mass and Mass Reduction Summaries Former Hess Filling Station Towson, Maryland

Mass Calcluations								
		Benzene ug	Ethylbenzene ug	Toluene ug	Xylene ug	BTEX ug	TPH-GRO ug	TPH-DRO ug
Category		-	-	-	-	-	-	-
Baseline								
Control (b)	10/30/2017	4.1	1,313.3	6.9	7,262	8,587	70,833	158,115
14 Day Base Activated	d (c)							
Control	10/30/2017	0.0	128.8	7.1	712.1	848.0	11,763	83,832
10 g/L PS + NaOH	10/30/2017	0.0	41.6	0.0	182.4	224.1	25,059	75,666
20 g/L PS + NaOH	10/30/2017	0.0	12.5	0.0	23.4	35.9	13,134	57,892
40 g/L PS + NaOH	10/30/2017	0.0	18.8	0.0	25.8	44.6	15,731	52,904
91 Day Unactivated (c)							
Control	1/15/2018	0.0	85.1	0.0	438.2	523.3	17,866	34,308
10 g/L PS	1/15/2018	0.0	10.3	0.0	48.6	59.0	14,014	96,010
20 g/L PS	1/15/2018	0.0	5.7	0.0	16.5	22.2	0	69,964
40 g/L PS	1/15/2018	0.0	0.0	0.0	0.0	0.0	10,094	105,882

Bench Scale Treatability Study Total Mass and Mass Reduction Summaries Former Hess Filling Station Towson, Maryland

Mass Reduction								
		Benzene %	Ethylbenzene %	Toluene %	Xylene %	BTEX %	TPH-GRO %	TPH-DRO %
Category								
14 Day Base Activate	d (c)							
Control	10/30/2017	100%	90.2%	-2.4%	90.2%	90.1%	83.4%	47.0%
10 g/L PS + NaOH	10/30/2017	100%	96.8%	100.0%	97.5%	97.4%	64.6%	52.1%
20 g/L PS + NaOH	10/30/2017	100%	99.0%	100.0%	99.7%	99.6%	81.5%	63.4%
40 g/L PS + NaOH	10/30/2017	100%	98.6%	100.0%	99.6%	99.5%	77.8%	66.5%
91 Day Unactivated (c)							
Control	1/15/2018	100%	93.5%	100.0%	94.0%	93.9%	74.8%	78.3%
10 g/L PS	1/15/2018	100%	99.2%	100.0%	99.3%	99.3%	80.2%	39.3%
20 g/L PS	1/15/2018	100%	99.6%	100.0%	99.8%	99.7%	100.0%	55.8%
40 g/L PS	1/15/2018	100%	100.0%	100.0%	100.0%	100.0%	85.7%	33.0%

Notes:

a/ug = micrograms; % = percent; g/L PS = grams per liter persulfate; NaOH = sodium hydroxide; BTEX = benzene, toluene, ethylbenzene, and xylenes;

TPH = total petroleum hydrocarbons; TPH-GRO = TPH - gasoline range hydrocarbons; TPH-DRO = TPH-diesel range hydrocarbons.

Mass calculation is the sum of mass in water and soil, calculated using the concentrations provided in Tables 3 and 4 and the quantities of

water and soil in the study (220 milliters of water and 980 grams of soil).

In samples where the groundwater or soil concentration was below a detection limit, a mass value of 0 was assumed in the calcluation.

b/ The baseline control sample's total mass includes the average of the two baseline soil samples.

c/Mass is based on corrected bench scale water results for 14 day and 91 day samples with dilution factor of 10 applied.

ENCLOSURE A

Final Data Package for Membrane Interface Probe – Hydraulic Profiling Tool Services

Site Location: 1613 E. Joppa Road, Towson, Maryland.

Project Number: 202.17.1105

Report Date: November 5th, 2017

DRILLING | TECHNICAL SERVICES

Prepared for:

WSP Pam Groff 13530 Dulles Technologies Drive, Suite 300 Herndon, Virginia 20171 Tel. / (703) 318-3958 E-Mail / pam.groff@wsp.com

Prepared by:

Cascade Technical Services Charles Terry 403 Serendipity Drive Millersville, Maryland 21108 Tel. / (361) 774-5338 E-Mail / cterry@cascade-env.com

Table of Contents

Project Narrative	
Project Site Map and MIHPT Locations	4
MiHPT Probe Data Summary Table	5
MiHPT Data Plots – Low Range Scales	6
MiHPT Data Plots – High Range Scales	25
Reference Material	44
Cascade Personnel	44
Equipment	44
MIP System Overview	
Detector Overview	45
MIP Data Collection	
Response Testing	46
HPT System Overview	
HPT Data Collection	47
HPT Reference Testing and Dissipation Tests	47

Project Narrative

Cascade Technical Services (Cascade) is pleased to present this data report to WSP for the membrane interface-hydraulic profiling tool (MIHPT) services that were provided between the dates of September 18th and 19th 2017 at the site located at 1613 East Joppa Road, Towson, Maryland.

The results associated with the data and plots presented in this report were generated in accordance to Cascade's and Geoprobe's Standard Operating Procedures (SOPs) for MIHPT services.

All field work and data management were completed by trained, scientific professionals and all quality assurance/quality control (QA/QC) measurements associated with these data were found to be within the tolerances set forth in the SOPs for these services. Response tests conducted previous to, and subsequent to the MIHPT borings were found to be within the tolerances set forth for this MIHPT survey and therefore the data are deemed acceptable for use. Exception/deviations regarding these response tests and the related data are noted on the MiHPT summary table that is part of this report.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:

CHARLES TERRY -- EASTERN FIELD SUPERVISOR OF SITE CHARACTERIZATION

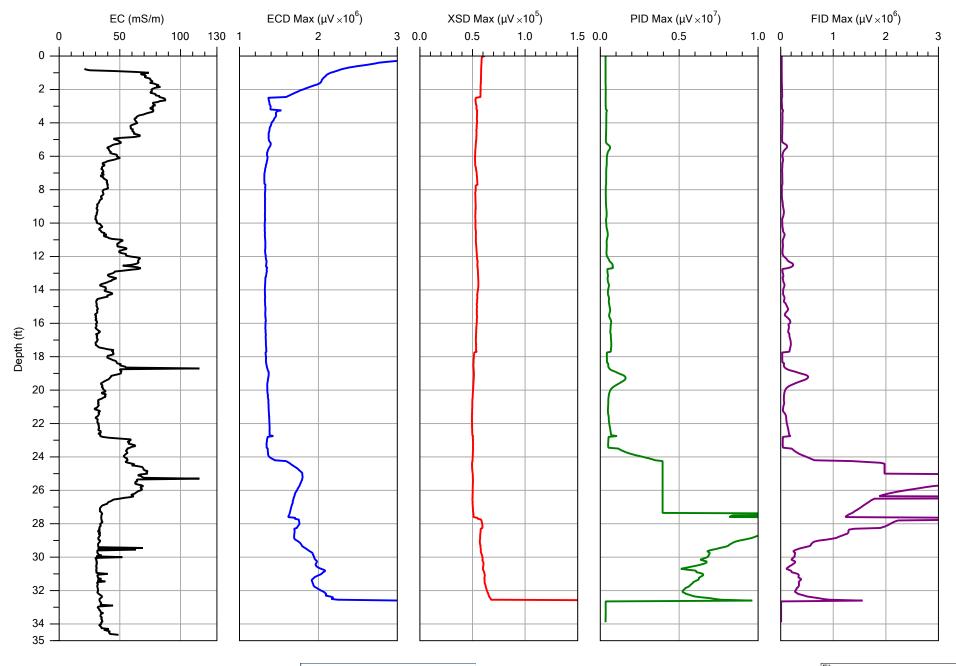
Project Site Map and MIHPT Locations

Approximate boring locations are provided below. Field staff estimated boring locations using reference points observed on site in relation to the same reference points visible in Google Earth map software.

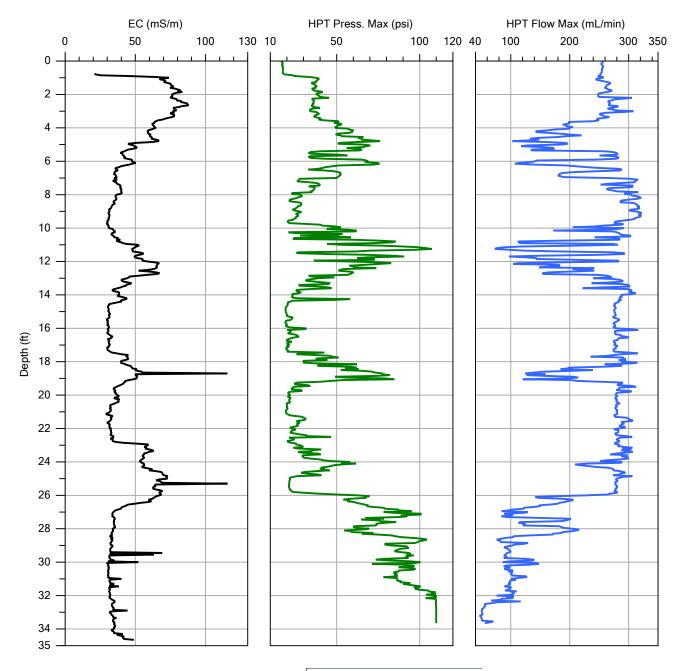
MiHPT Probe Data Summary Table

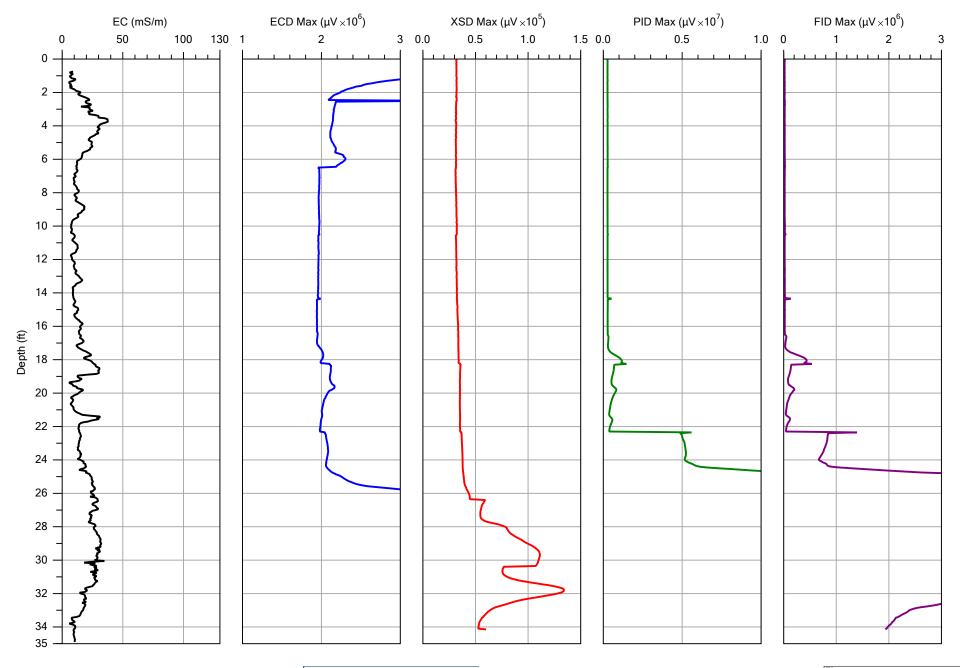
Provided below is a summary of MIP information, including response test acceptability and any deviations from the standard operating procedure that occurred during the field activities.

MIDLesstian	Total Depth	Respor	nse Test Re	esults, ECD - (mV)	Respo	nse Test Res	sults, PID - (mV)	Respo	Response Test Results, XSD - (mV)		Commente/Deviations
MIP Location	(ft)	Pre	Post	Acceptable	Pre	Post	Acceptable	Pre	Post	Acceptable	Comments/Deviations
MIHPT-01	33.90	2304.9	2212.3	YES	52.6	65.6	YES	8.4	8.2	YES	None.
MIHPT-03	30.45	2212.3	2186.3	YES	65.6	81.1	YES	8.2	10.1	YES	None.
MIHPT-04	31.65	2186.3	1950.5	YES	81.1	101.7	YES	10.1	3.9	YES	None.
MIHPT-05	26.35	1950.5	1828.5	YES	101.7	164.4	YES	3.9	4.5	YES	None.
MIHPT-07	34.55	1828.5	1903.4	YES	164.4	65.8	YES	4.5	6.8	YES	None.
MIHPT-06	32.20	1903.4	1606.1	YES	65.8	48.9	YES	6.8	3.8	YES	None.
MIHPT-08	32.00	1606.1	2285.8	YES	48.9	81.8	YES	3.8	7.0	YES	None.
MIHPT-02	34.15	2285.8	1933.7	YES	81.8	25.6	YES	7.0	3.5	YES	None.
MIHPT-09	27.90	1518.2	1535.6	YES	144.7	50.9	YES	2.9	2.3	NO	Unable to allow XSD to properly heat due to time constraints related to site access hours.

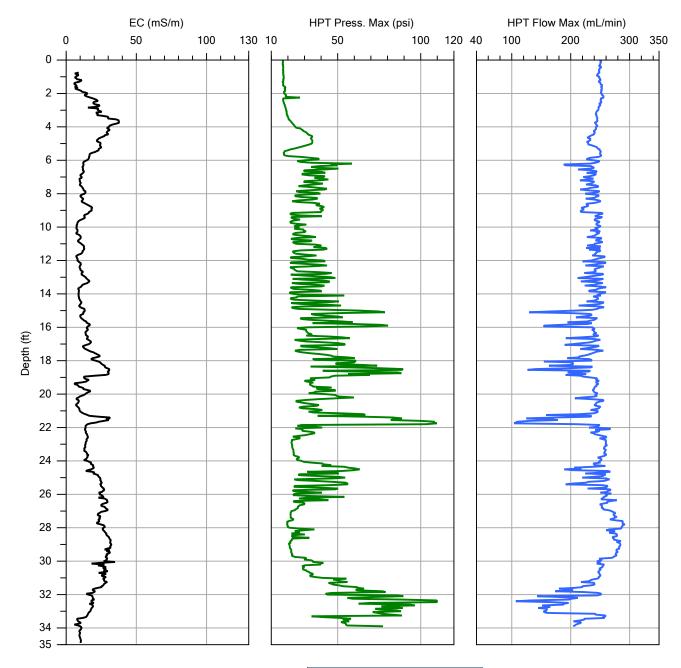

*Acceptable values for ECD, PID, and XSD detectors are 200mV, 25mV, and 3.5mV, respectively

.

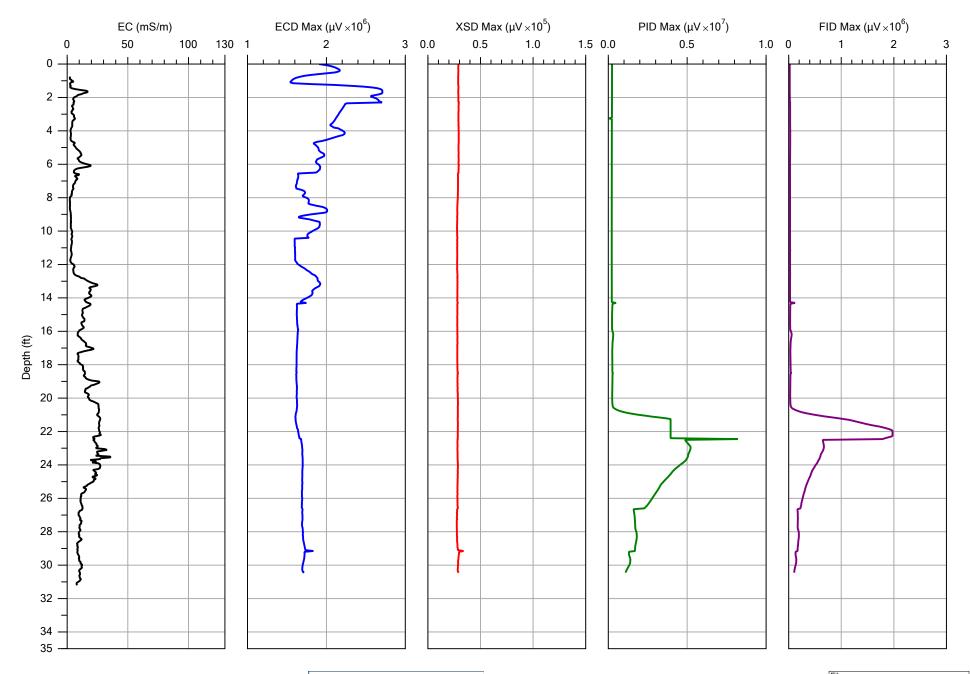

MiHPT Data Plots – Low Range Scales



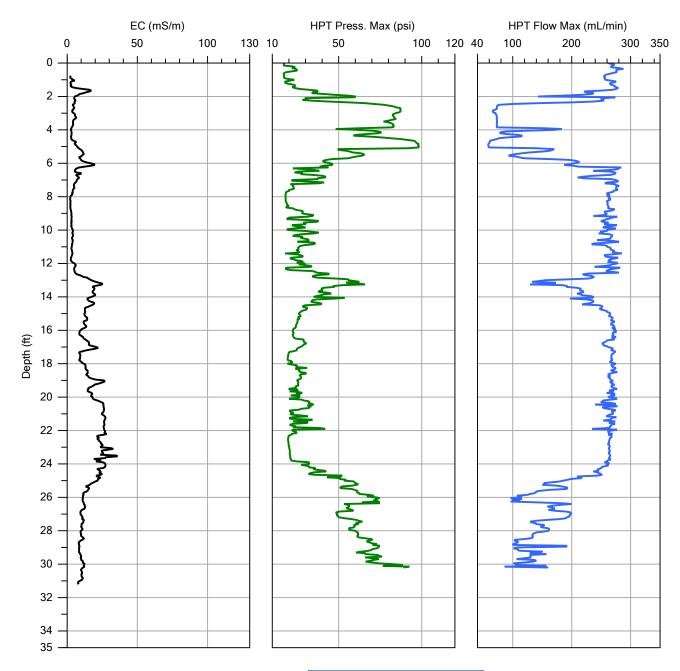
		File:
		MIHPT-01.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



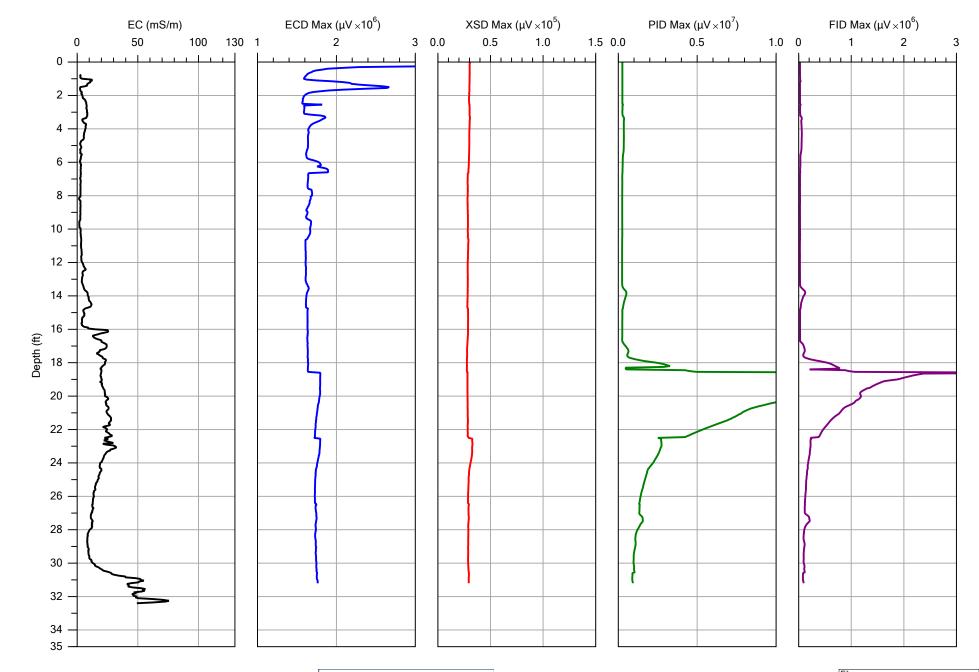
		File:
		MIHPT-01.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



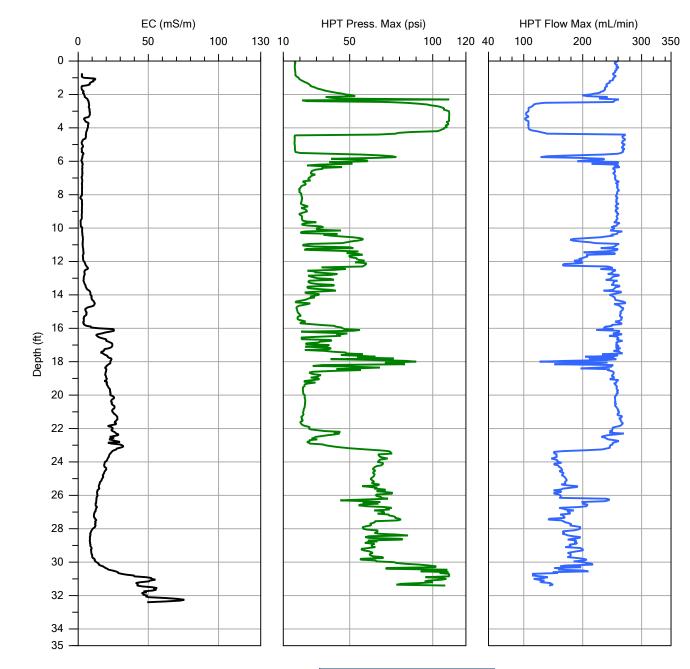
		File:
		MIHPT-02.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



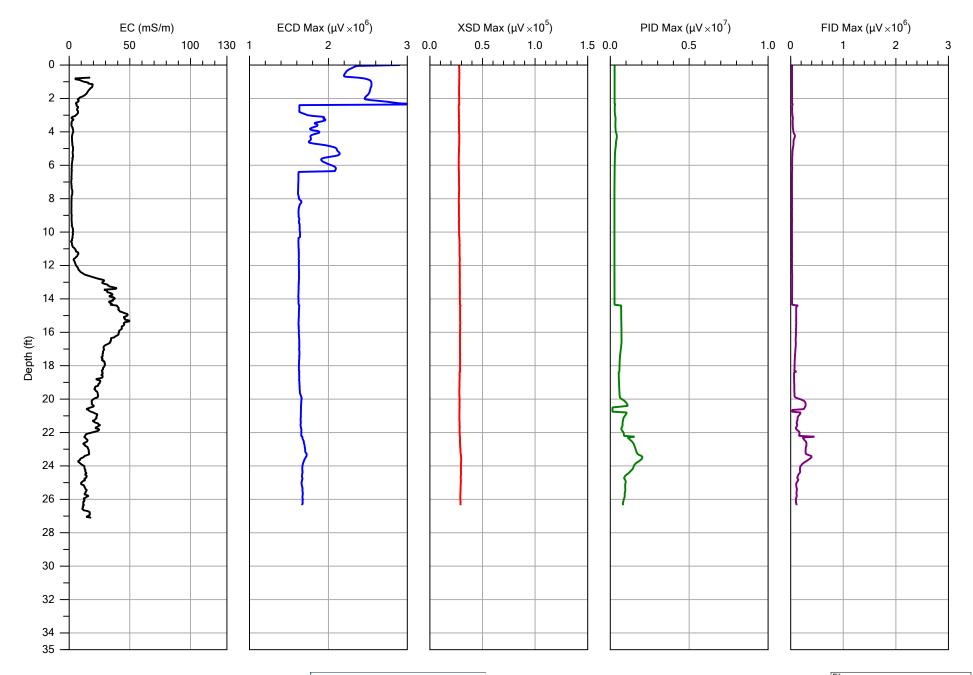
MIHPT-02.MHP		File:		
		MIHPT-02.MHP		
Company: Operator: Date:		Date:	Operator:	Company:
Cascade Technical Services EO 9/19/2017	l	9/19/2017	EO	Cascade Technical Services
Project ID: Client: Location:		Location:	Client:	Project ID:
202.17.1105 WSP USA			WSP USA	202.17.1105



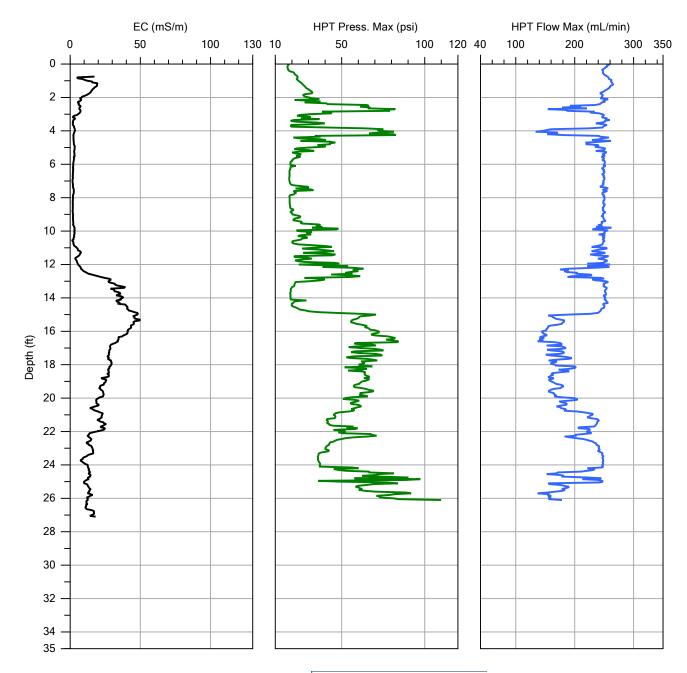
		File:
		MIHPT-03.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



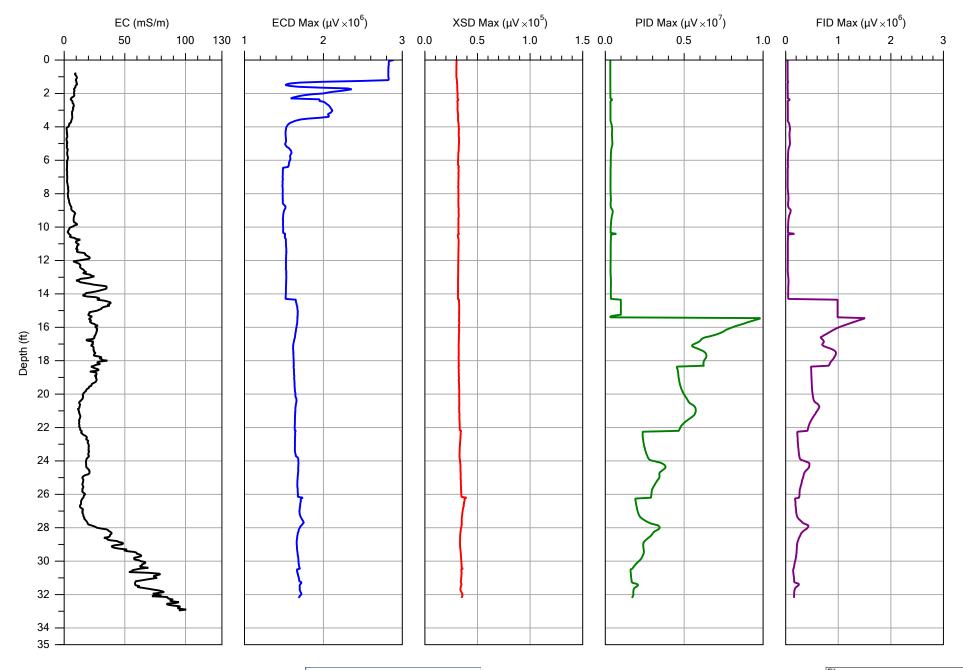
	File:
	MIHPT-03.MHP
Company: Operator:	Date:
Cascade Technical Services EO	9/18/2017
Project ID: Client:	Location:
202.17.1105 WSP USA	



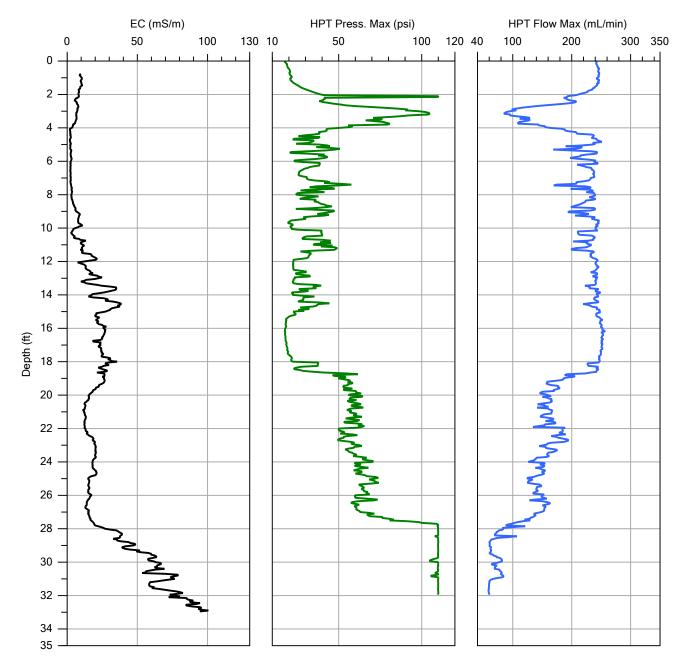
		File:
		MIHPT-04.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



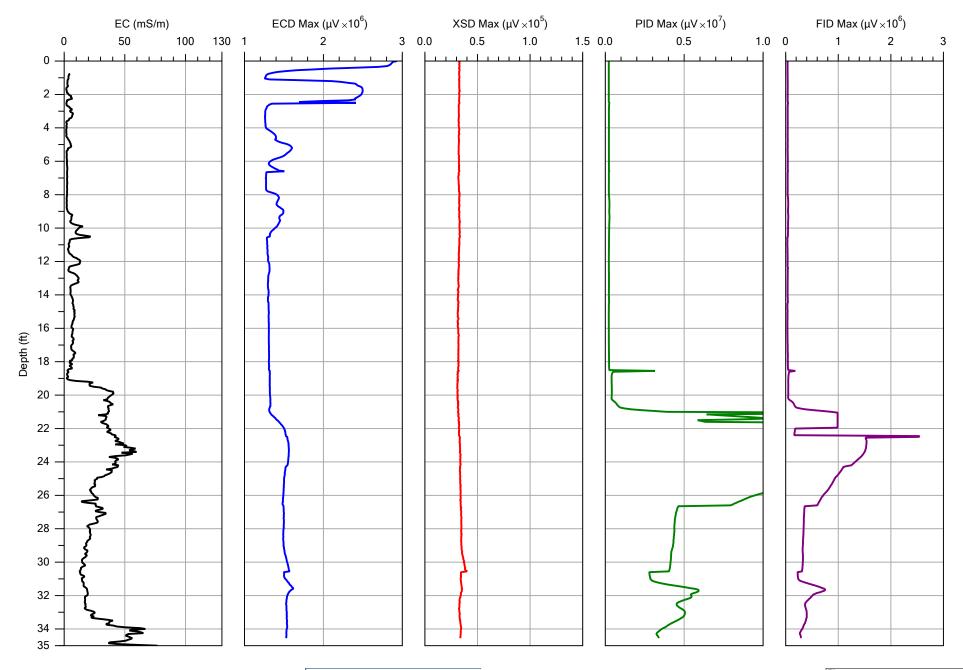
		File:
		MIHPT-04.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



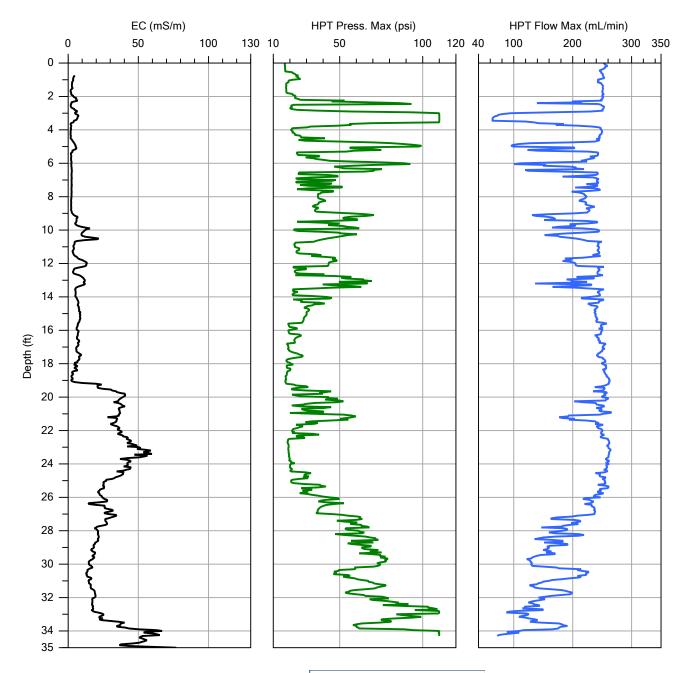
		File:
		MIHPT-05.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



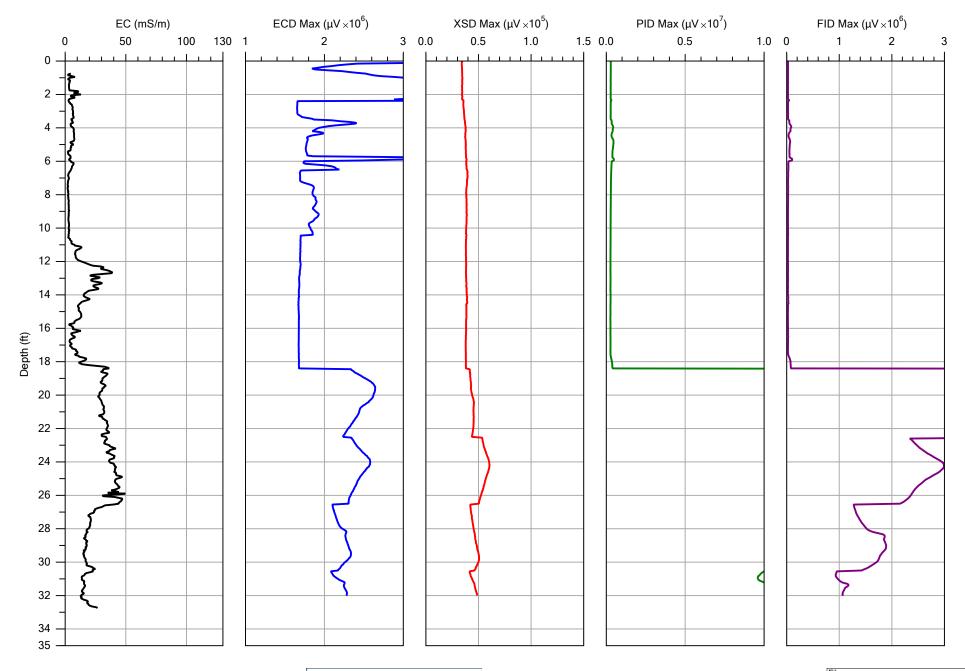
		File:
		MIHPT-05.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



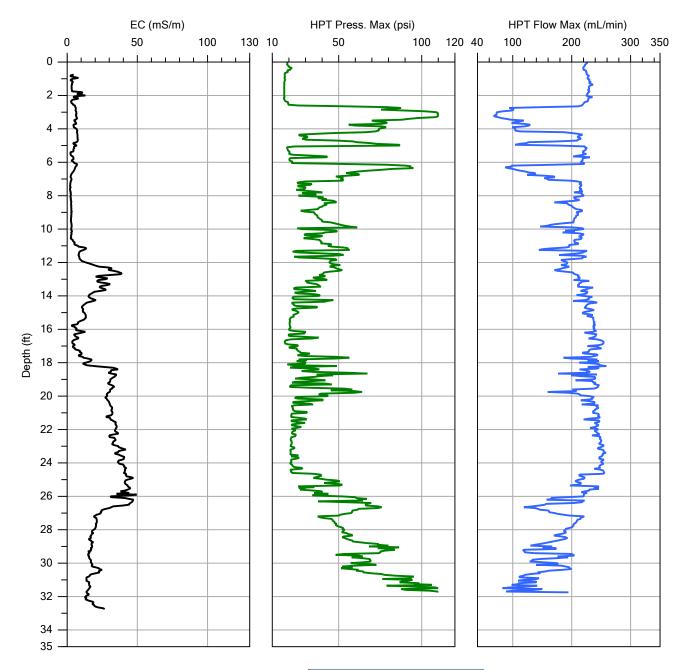
		File:
		MIHPT-06.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



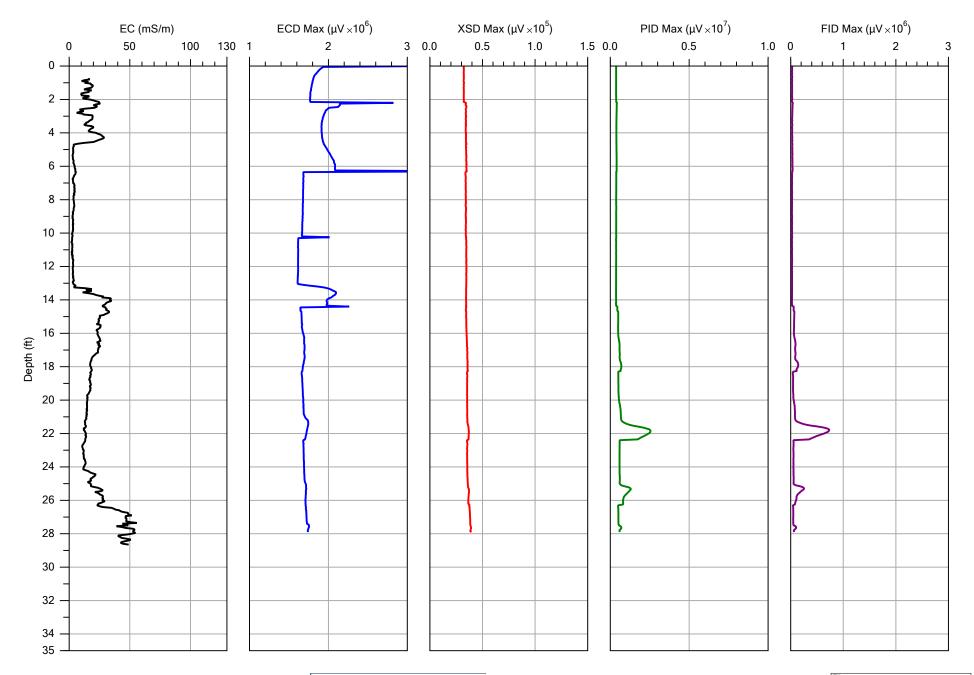
		File:
		MIHPT-06.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



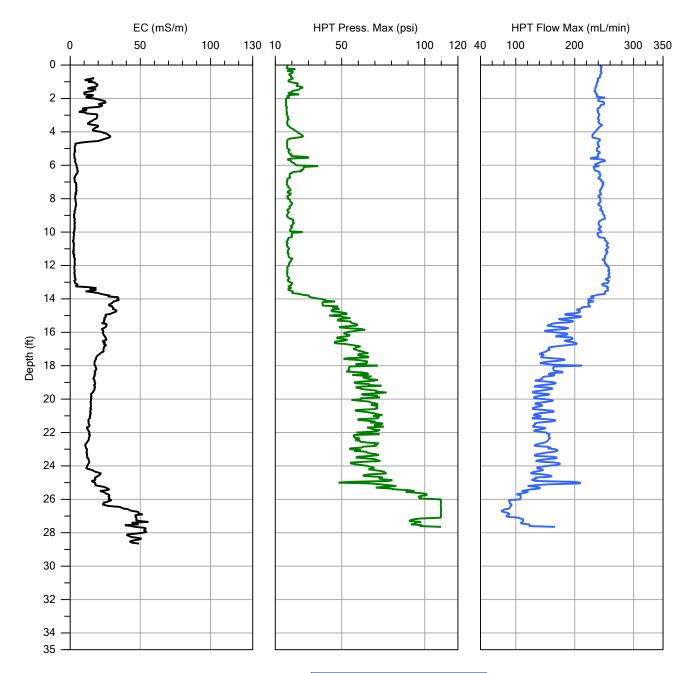
		File:
		MIHPT-07.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



		File:
		MIHPT-07.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

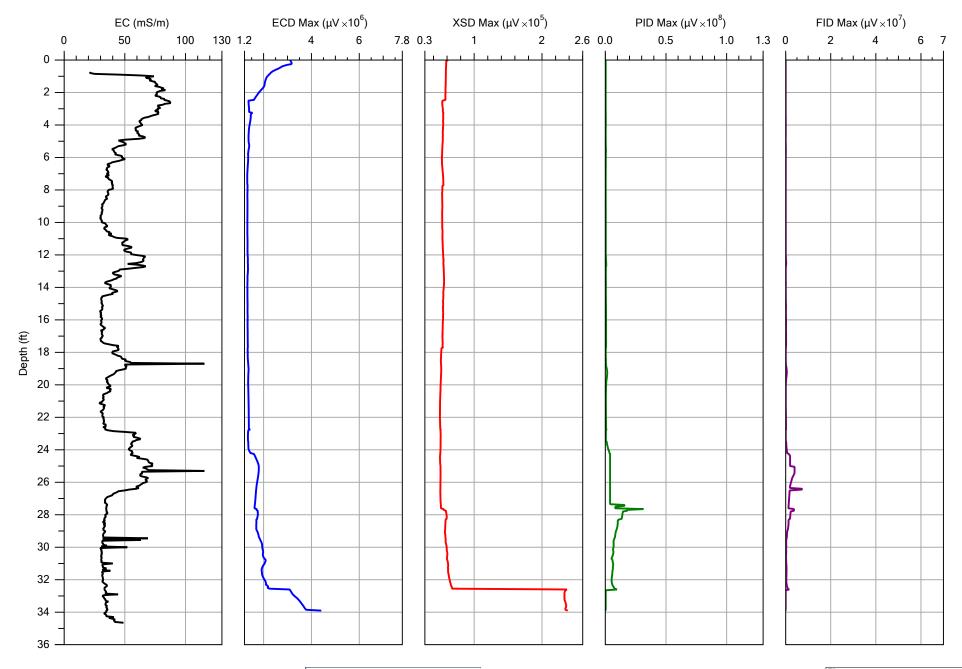


		File:
		MIHPT-08.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

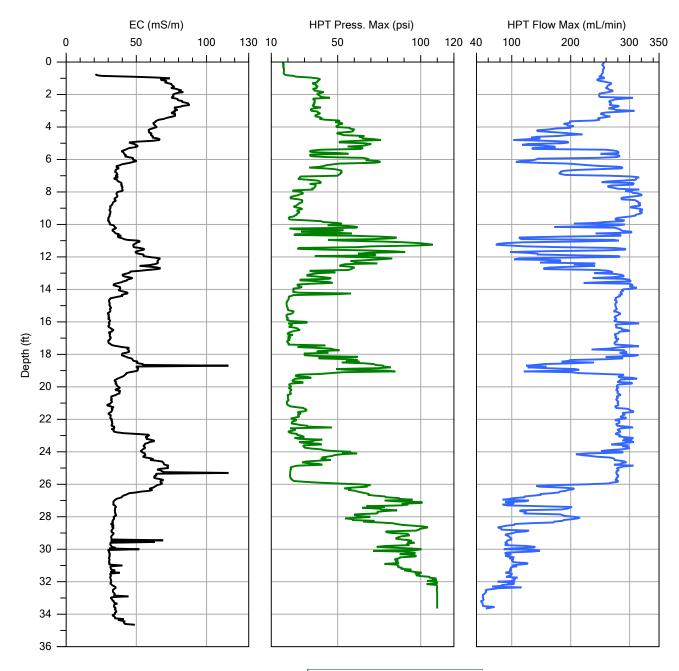


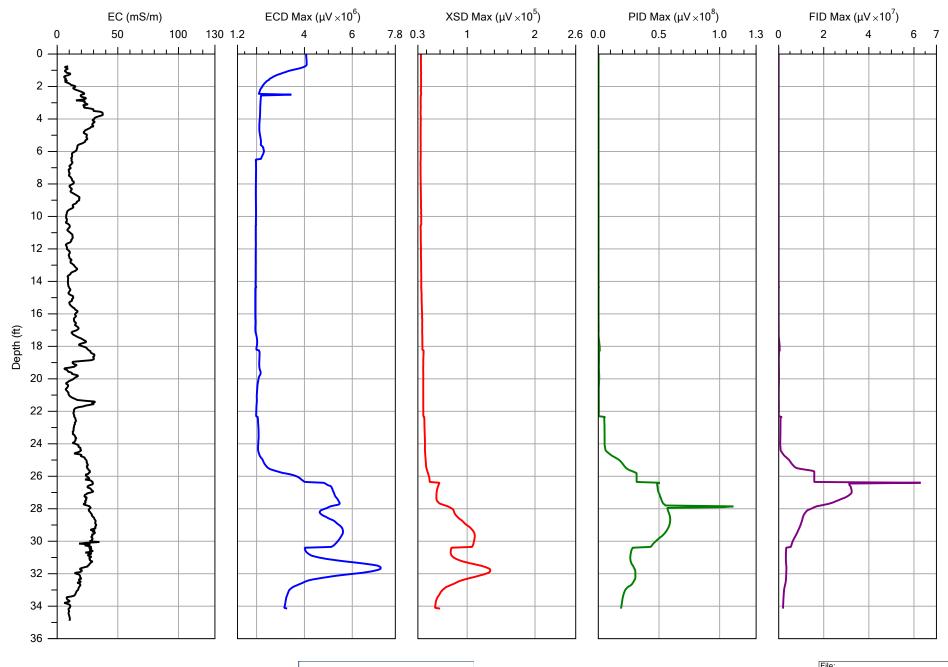
		File:
		MIHPT-08.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

		File:
		MIHPT-09.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	
	•	

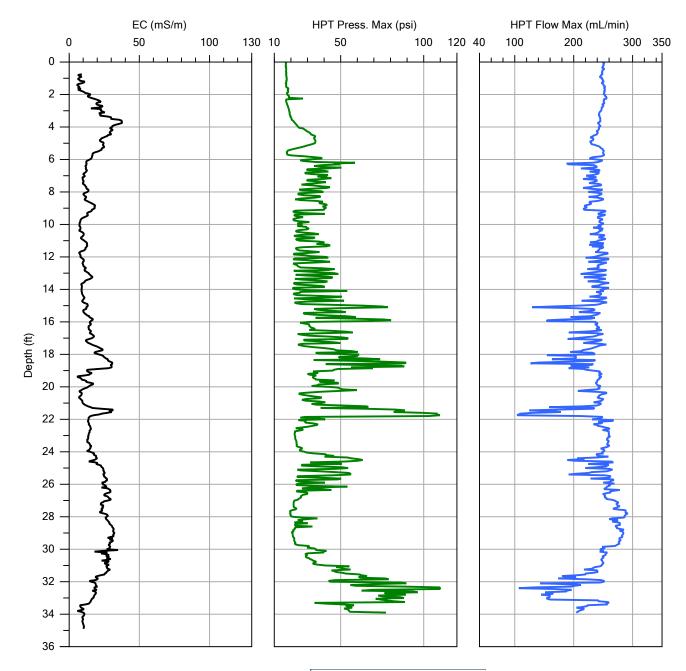


		File:
		MIHPT-09.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	
		· · · · · · · · · · · · · · · · · · ·

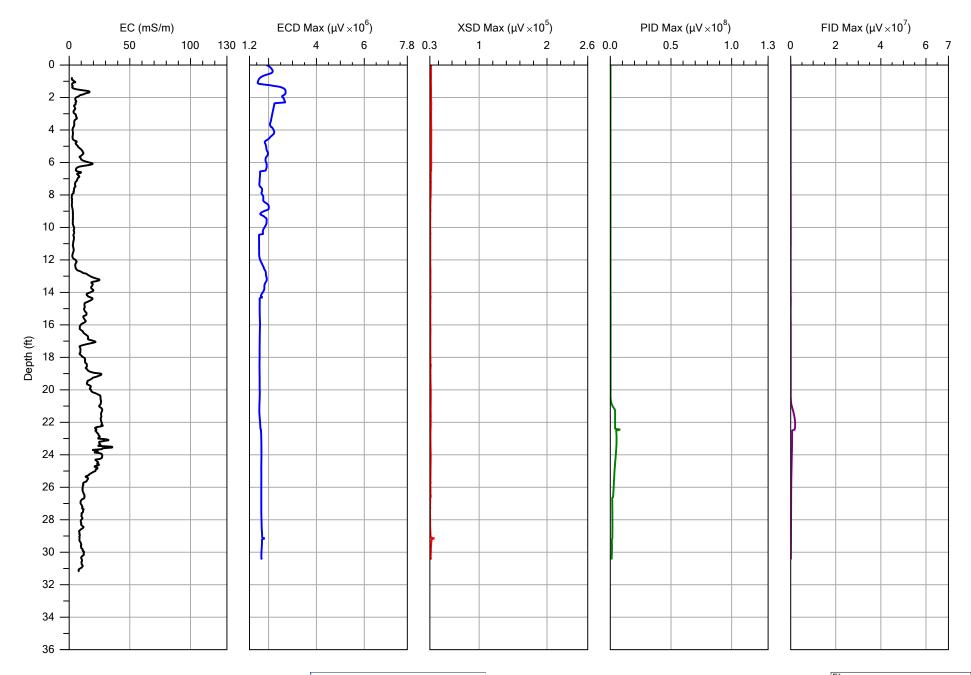

MiHPT Data Plots – High Range Scales



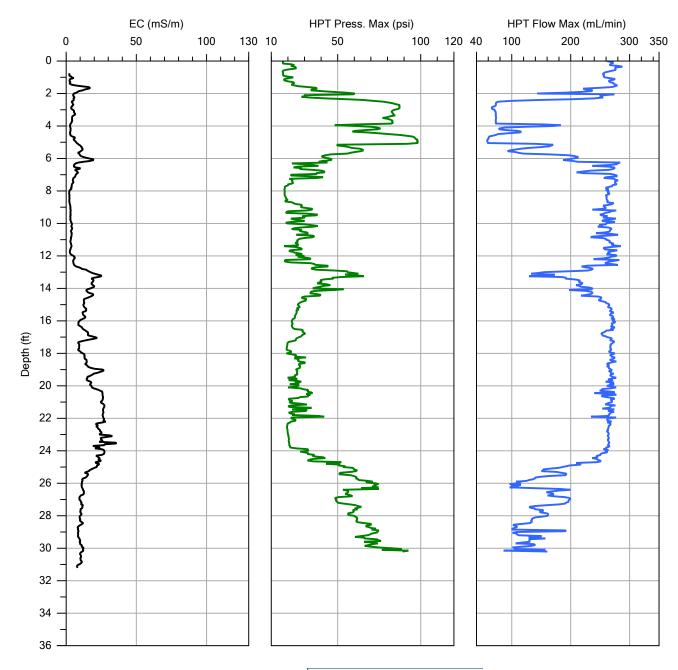
		File:	
		MIHPT-01.MHP	
Company:	Operator:	Date:	
Cascade Technical Services	EO	9/18/2017	
Project ID:	Client:	Location:	
202.17.1105	WSP USA		



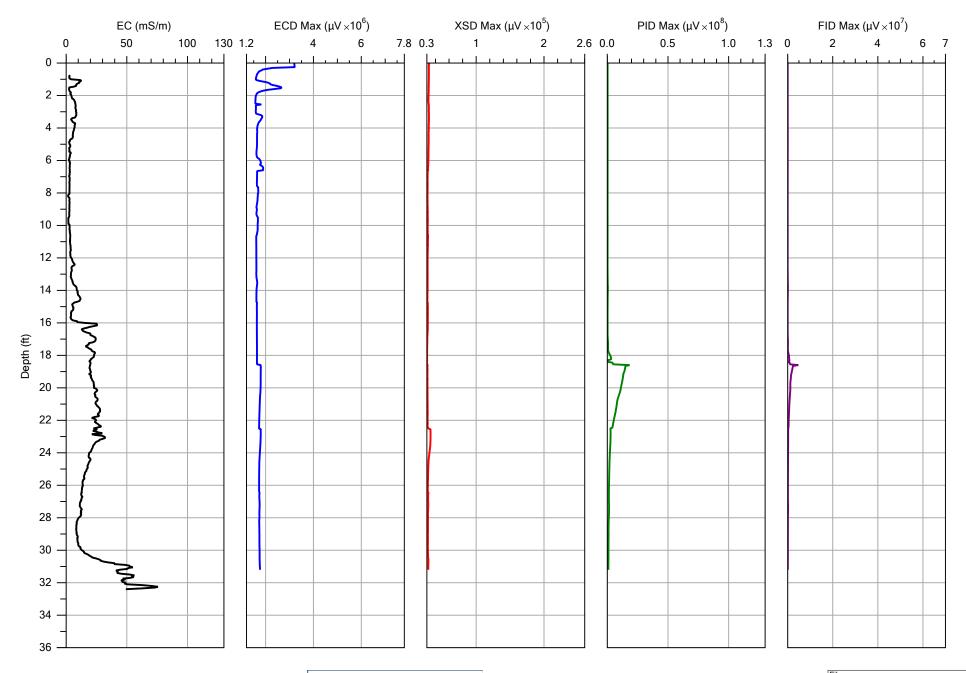
		File:
		MIHPT-01.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



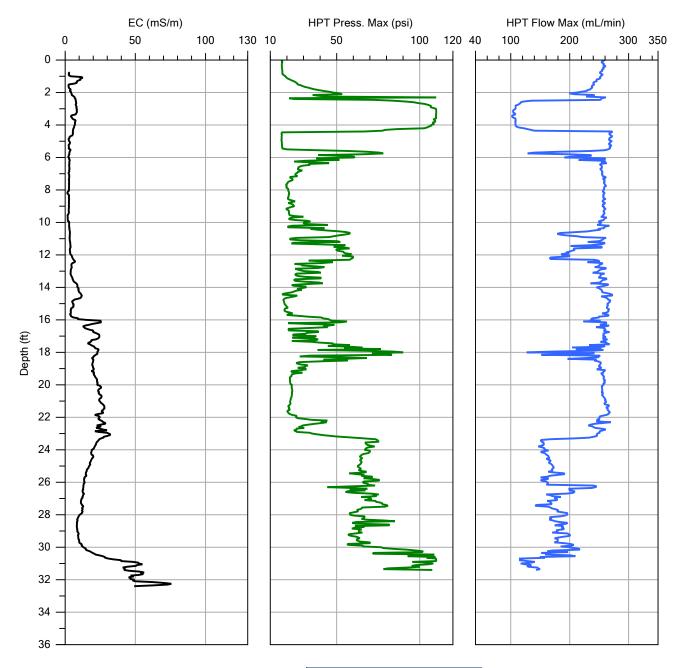
		File:
		MIHPT-02.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



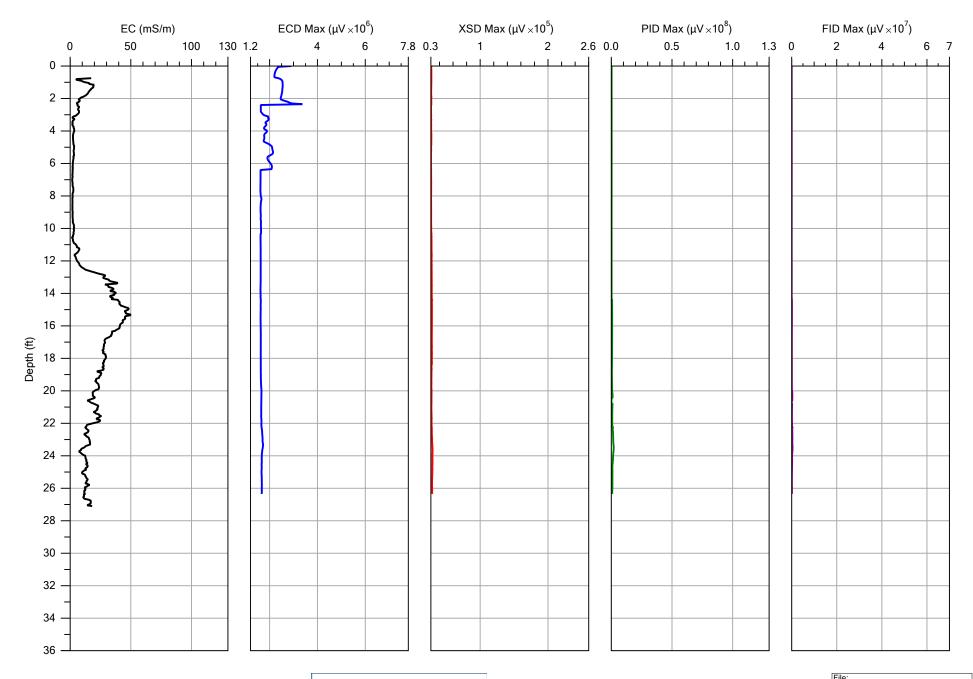
		File:
		MIHPT-02.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



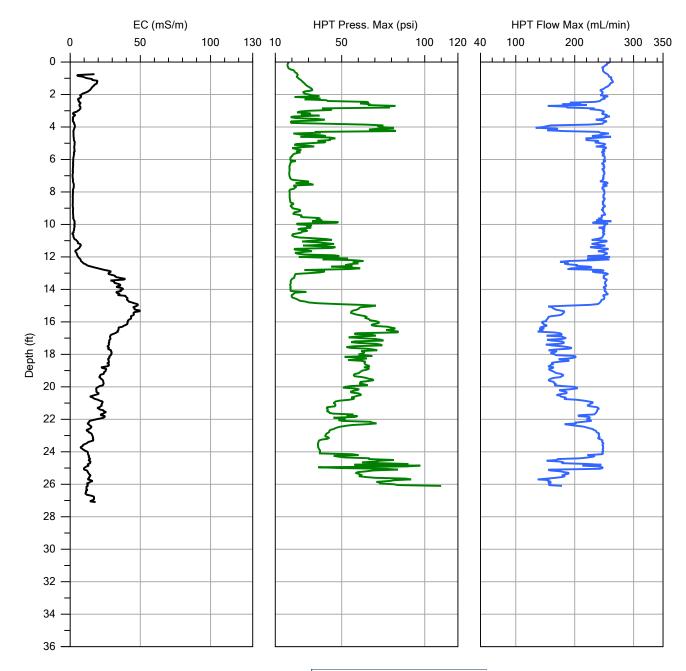
			File:
			MIHPT-03.MHP
- [Company:	Operator:	Date:
	Cascade Technical Services	EO	9/18/2017
Ē	Project ID:	Client:	Location:
	202.17.1105	WSP USA	



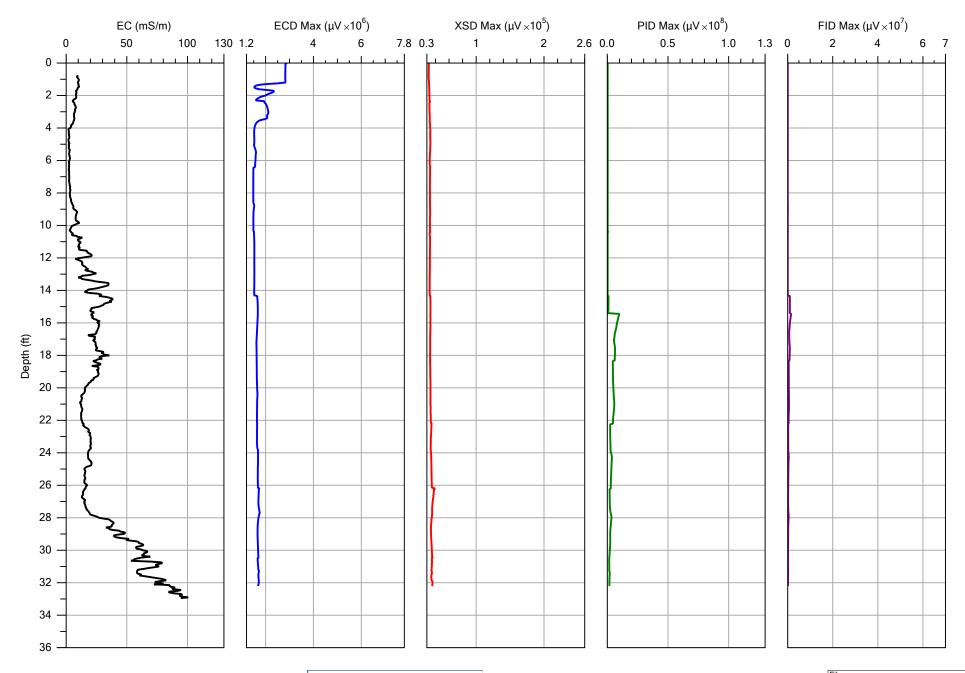
		File:
		MIHPT-03.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



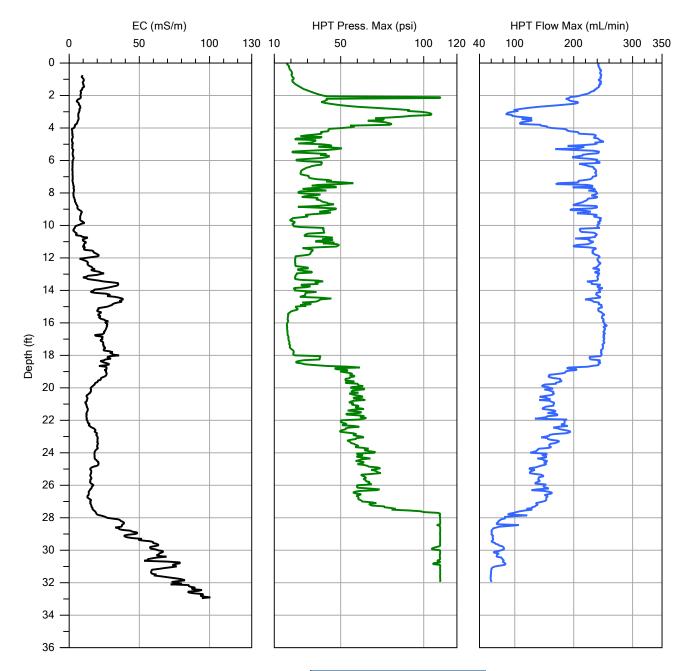
		File:
		MIHPT-04.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



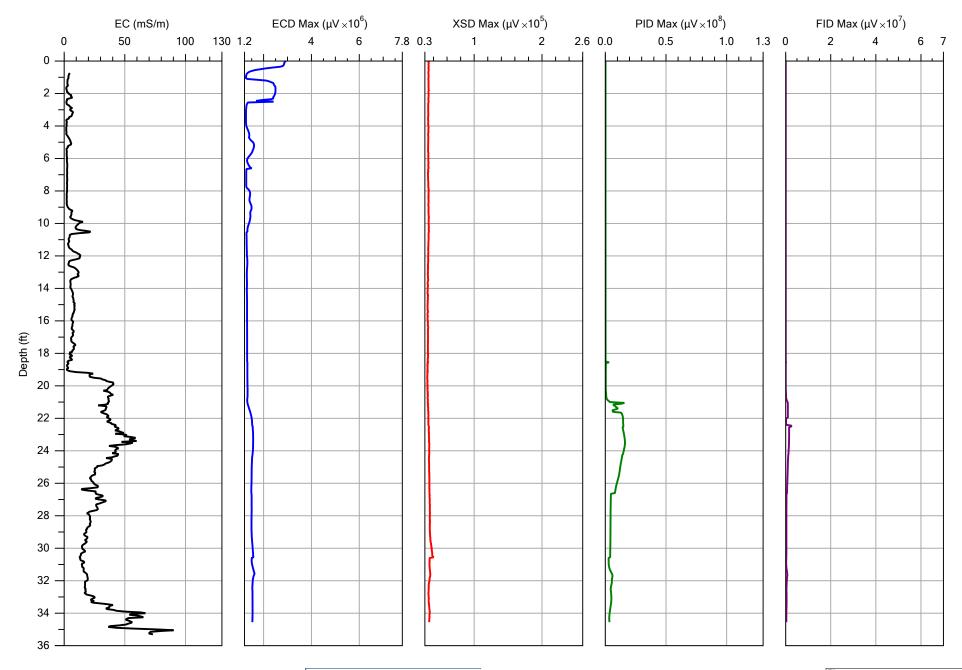
		File:
		MIHPT-04.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



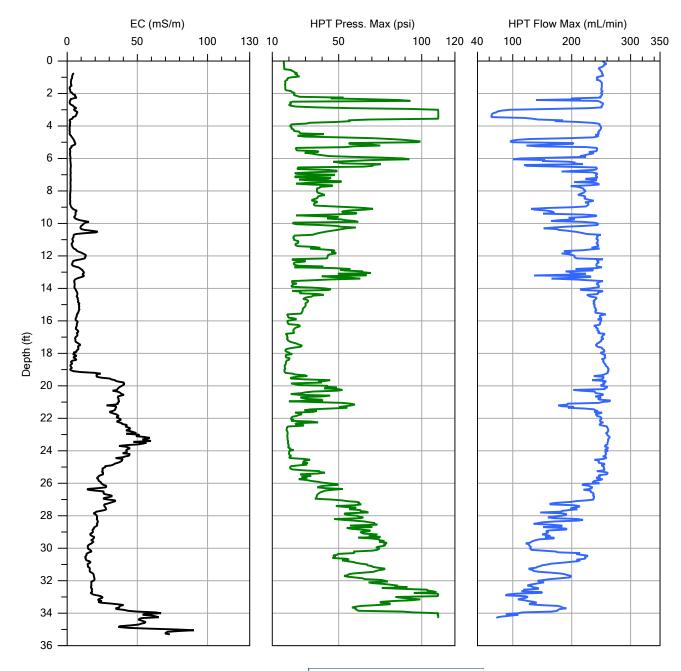
		File:
		MIHPT-05.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



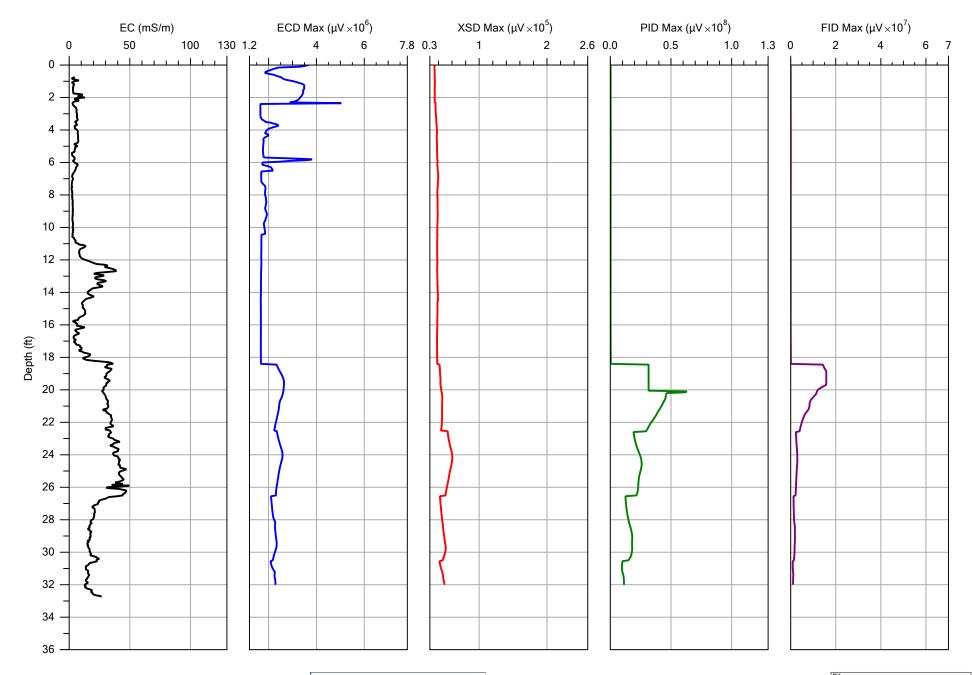
		File:
		MIHPT-05.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



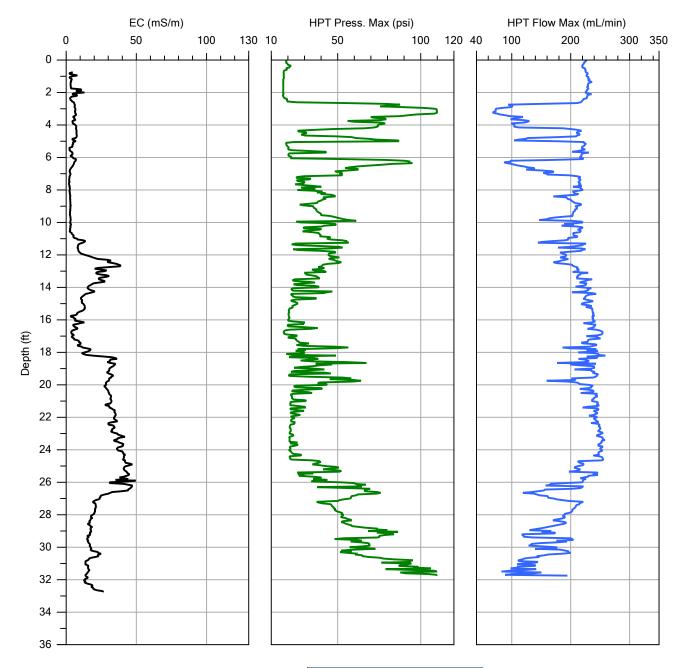
		File:
		MIHPT-06.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



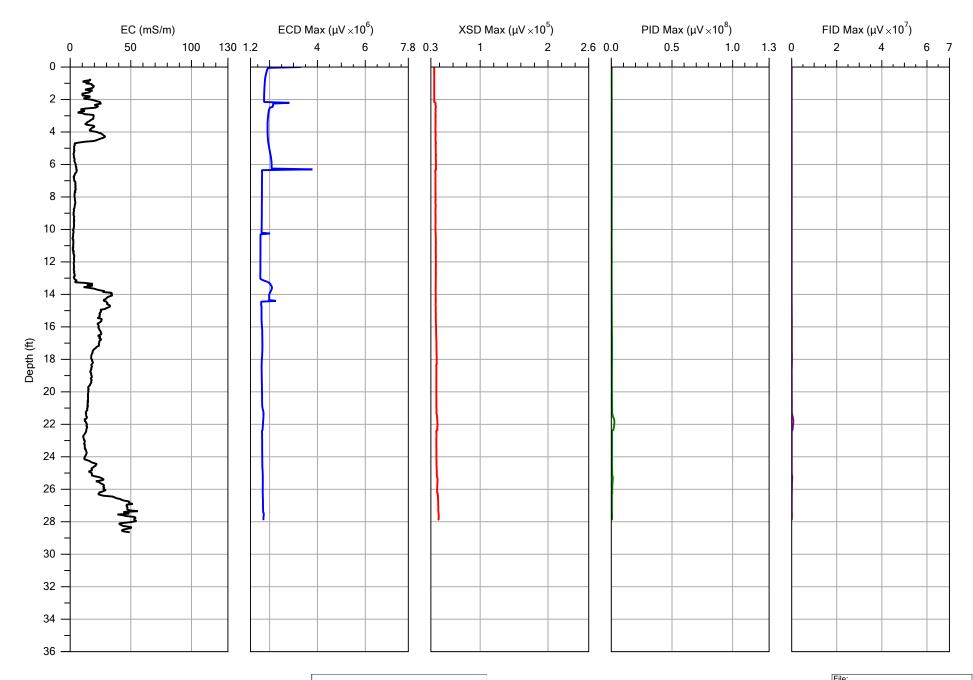
	File:
	MIHPT-06.MHP
Operator:	Date:
EO	9/19/2017
Client:	Location:
WSP USA	
	EO Client:



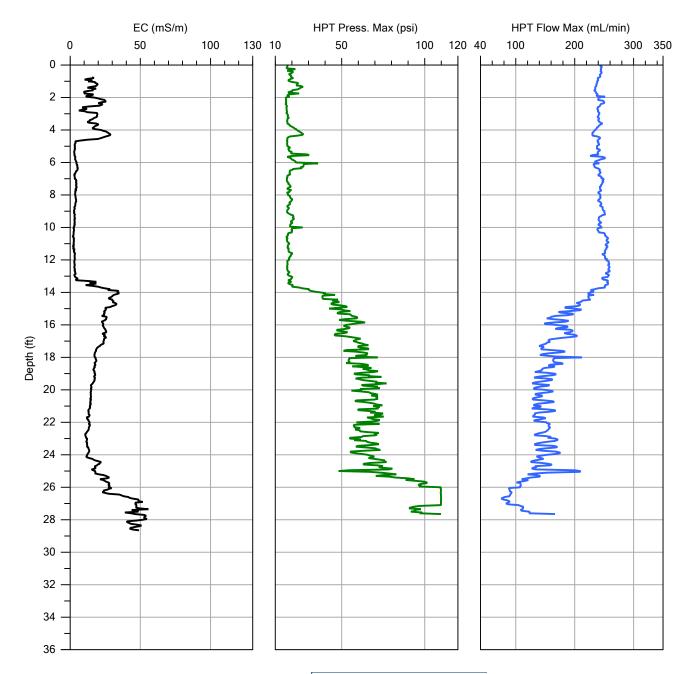
		File:
		MIHPT-07.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



		File:
		MIHPT-07.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



		File:
		MIHPT-08.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



		File:
		MIHPT-08.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

		File:
		MIHPT-09.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

CAS	SCADE
	TECHNICAL SERVICES CE ON EVERY LEVEL™

		File:
		MIHPT-09.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

Reference Material

The sections below provide information regarding the Cascade Personnel present at the site during the field activities, the specific equipment used during field activities, and background information on the MIP and HPT systems.

Cascade Personnel

The following personnel were present during field activities at the Site:

- Mr. Ethan Olson, Cascade Technical Services (HRSC Technician)
- Mr. John Dixon, Cascade Technical Services (DPT Operator)

Equipment

The following equipment was utilized during field activities at this site:

- Geoprobe 78 Series Direct Push Drill Rig
- MIP Controller (Nitrogen Flow and Heater)
- Geoprobe FI 6000 Computer
- HP Model 5890 Gas Chromatograph
- K6300 HPT Controller
- Electrical Conductivity
- ECD (Electron Capture Detector)
- XSD (Halogen Specific Detector)
- PID (Photo Ionization Detector) 10.2 eV Lamp
- FID (Flame Ionization Detector)
- 150' MIP/HPT Trunkline
- 1.75" O.D. MIHPT Probe
- 1.75" O.D. Drive Rods
- Ultra-High Purity Nitrogen
- Ultra-High Purity Hydrogen

MIP System Overview

The MIP is commonly used for quickly determining the locations of volatile organic compound (VOC) source zones and plumes. The MIP is most valuable in terms of its ability to provide "spatial correspondence", meaning that where the MIP detector response show peaks, there is likely to be elevated soil and groundwater concentrations. The MIP can also be used to provide extremely valuable data to streamline subsequent investigative tasks and improve the overall efficiency and accuracy of the site investigation. Vertical profiles, cross sectional views and 3D images of contaminant distribution can all be produced from the electronic data generated by the MIP logs. The unique capability of providing reliable, real-time information allows for informed and timely decision making in the field. The MIP works by heating the soils and groundwater adjacent to the probe to 120 degrees C. This volatilizes the VOCs and allows the VOCs to transfer through a Teflon membrane via a combination of concentration and pressure gradients. These VOCs are then swept into a nitrogen gas loop that carries these vapors to a series of detectors housed at the surface. Continuous chemical profiles are generated from each hole. Electrical conductivity of the soil is also measured and these logs can be compared to the chemical logs to better understand the relationship between the lithology and the contaminant distribution. The MIP technology is only appropriate for VOCs. The following section discusses the various detection systems that are commonly used with the MIP system.

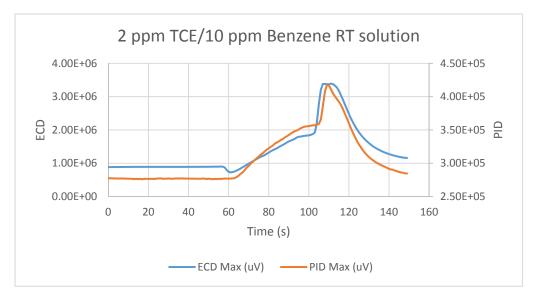
Detector Overview

- ECD Electron Capture Detector uses a radioactive Beta emitter (electrons) to ionize some of the carrier gas and produce a current between a biased pair of electrodes. When organic molecules contain electronegative functional groups, such as halogens, phosphorous, and nitro groups pass by the detector, they capture some of the electrons and reduce the current measured between the electrodes.
- XSD The Halogen Specific Detector converts compounds containing halogens to their oxidation products and free halogen atoms by oxidative pyrolysis. These halogen atoms are adsorbed onto the activated platinum surface of the detector probe assembly resulting in an increase thermionic emission. This emission current provides a corresponding voltage that is measured via an electrometer circuit in the detector controller.
- PID Photo Ionization Detector sample stream flows through the detector's reaction chamber where it is continuously irradiated with high energy ultraviolet light. When compounds are present that have a lower ionization potential than that of the irradiation energy (10.2 electron volts with standard lamp) they are ionized. The ions formed are collected in an electrical field, producing an ion current that is proportional to compound concentration. The ion current is amplified and output by the gas chromatograph's electrometer.
- FID Flame Ionization Detector consists of a hydrogen / air flame and a collector plate. The effluent from the GC (trunkline) passes through the flame, which breaks down organic molecules and produces ions. The ions are collected on a biased electrode and produce an electric signal.

MIP Data Collection

- <u>Depth</u> Data is collected every 0.05 feet, or twenty points per foot.
- <u>Electrical Conductivity</u> Electrical Conductivity data is measured/collected in milli-siemens per Meter (ms/M). The conductivity of soils is different for each type of media. Finer grained sediments, such as silts or clays, will typically have a higher EC signal. While coarser grained sediments, sands and gravel, will typically have a lower EC signal.
- <u>Rate of Penetration</u> Rate of penetration (ROP) is measured/collected in feet per minute (ft/min). Speed is an indication of the advancement rate of the MIP probe. In order to allow

for adequate heating of the MIP tooling, the MIP's ROP should not exceed one foot per minute.


- <u>Temperature</u> Temperature data is measured/collected in Degrees Celsius. Temperature is an indication of the physical temperature of the MIP block. Minimum and Maximum temperature is collected at each vertical interval. Cascade's temperature protocol indicates that the MIP probe temperature shall maintain a minimum temperature of 90 Degrees Celsius.
- <u>Pressure</u> Pressure data is measured/collected in PSI. The pressure readings represent the pressure being delivered to the MIP's nitrogen gas line. Deviations greater than of 1.5 PSI outside of the starting pressure indicate a system leak or obstruction is present.
- <u>Detector (ECD, XSD, PID, FID)</u> Detector responses are measured/collected in micro Volts (uV). Detector responses are an indication of relative contaminant responses. Minimum and Maximum detector responses are collected at each vertical interval.

Response Testing

Response testing (RT) is an integral part of ensuring the quality of data from the MIP system. Response testing is conducted before and after each log. This ensures the validity of the data and the integrity of the system. The RT provides a traceable indication that the MIP system detectors are adequately responding and allows the carrier gas trip time to be calculated on the physical components of the system.

Cascade uses acceptance criteria to evaluate the RTs. The acceptable criteria for an RT is defined for specified concentrations of RT solution and a specified N2 trunkline flow rate. Documenting the RTs will provide a level of quality assurance for each MIP project and will also allow operators and data reviewers to identify systems in need of maintenance.

The trip time is measured by recording the time between the moment when the VOA is placed over the membrane and the response of the detectors, as viewed on the MIP data acquisition unit. The baseline and peak response value are also recorded for comparison with other MIP response tests. The trip time is entered manually into the data acquisition system account for the time it takes for compounds in the subsurface to travel the length of the trunkline during the MIP boring.

HPT System Overview

The HPT system is designed to evaluate the hydraulic behavior of unconsolidated materials. As the probe is pushed or hammered at 2cm/s, clean water is injected through a screen on the side of the HPT probe at a flow rate usually less than 300 mL/min. The injection pressure, which is monitored and plotted with depth, is an indication of the hydraulic properties of the soil. A relatively low pressure response indicates a relatively large grain size, and the ability to easily transmit water. However, a relatively high pressure response indicates a relatively small grain size, which correlates with the inability to transmit water.

HPT Data Collection

The HPT system collects depth, electrical conductivity, advancement rate, hydraulic pressure, and flow information. Additional detail regarding each of these parameters is provided below.

- <u>Depth</u> Data is collected every 0.05 feet, or twenty points per foot.
- <u>Electrical Conductivity</u> Electrical Conductivity (EC) data is collected in milli-siemens per meter (ms/M). The conductivity of soils is different for each type of media. Finer grained sediments, such as silts or clays, will typically have a higher EC signal. While coarser grained sediments, sands and gravel, will typically have a lower EC signal. Rate of penetration (ROP) – ROP is collected in units of feet per minute (ft/min). ROP of the HPT probe can vary due to operator advancement and soil types encountered.
- <u>Pressure</u> Pressure data is collected in pounds per square inch (PSI). Pressure is an indication of hydraulic pressure applied to the subsurface by the HPT system. The system collects both the minimum and maximum pressures over each vertical interval.
- <u>Flow</u> Flow data is collected in milliliters per minute (mL/min). Flow is an indication of the rate water that is pumped out of the membrane at the HPT probe. The system collects both the minimum and maximum flow over each vertical interval.
- <u>Estimated Hydraulic Conductivity (est. K)</u> Hydraulic conductivity, symbolically represented as K, is an in-situ property that describes the ease with which water can move through pore spaces or fractures. It is dependent on the intrinsic permeability of the material and on the degree of saturation. With respect to the HPT system, the estimated K values are only applicable to the saturated portion of the formation. The estimated K value is calculated using the HPT pressure and flow data. It is also necessary to collect HPT response test data before and after each boring. Additionally, it is necessary to conduct at least one pressure dissipation test during the logging operation, below the static water table level.

HPT Reference Testing and Dissipation Tests

Reference testing is done to ensure that the HPT pressure transducer is working correctly and to evaluate the condition of the HPT injection screen. The HPT reference test also calculates atmospheric pressure which is required to obtain static water level readings and to determine the estimated K values for the log. HPT reference test utilizes a test tube to specifications such that a valve is located 6 inches above the HPT injection screen and the top of the tube is 6 inches above the valve. When the tube is filled completely with water, the 12 inches of water will supply an additional 0.433 psi of pressure on the injection screen (in addition to atmospheric pressure). When the valve (located 6 inches from the top of the tube and 6 inches from the injection screen) is opened, only 0.217 psi of additional pressure is

applied to the HPT injection screen. Therefore, the accuracy of the pressure transducer can be assessed by comparing the pressure reading when the tube is filled and when the tube is filled to the valve. There should be a 0.217 psi difference, this value is checked with and without flow. A tolerance of $\pm 10\%$ is applied for a passing test.

Dissipation tests are conducted to determine the additional static pressure added to the HPT pressure values from water in the formation. To conduct a dissipation test, advancement of the tooling is stopped, the HPT pump is stopped, and flow drops to zero. The pressure applied to the HPT pressure transducer by the injection of water into the formation begins to dissipate. This pressure should dissipate to a value equal to atmospheric pressure plus the static water pressure applied by water in the formation. In post-processing of the HPT log, the dissipation value and the atmospheric pressure determined during HPT reference testing can be used to remove the influence of atmospheric pressure and formational static water pressure from the HPT pressure values. Thereby correcting the HPT pressure to values that only indicates the hydraulic properties of the subsurface material.

ENCLOSURE B

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

October 06, 2017

Chris Cresci WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Hess Towson Pace Project No.: 30230598

Dear Chris Cresci:

Enclosed are the analytical results for sample(s) received by the laboratory on September 20, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Timothy Reed for Penny Westrick penny.westrick@pacelabs.com 724 850-5610 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: Hess Towson Pace Project No.: 30230598

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235

Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L

Pace Project No.: 30230598

Sample: MW-4	Lab ID: 3023	30598001	Collected: 09/20/1	17 11:25	Received: 09	/20/17 20:10 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	015B Preparation Me	ethod: E	PA 3510C			
TPH (C10-C28)	2.0	mg/L	0.52	5	09/24/17 12:09	10/04/17 14:08		1c
<i>Surrogates</i> o-Terphenyl (S)	43	%	35-101	5	09/24/17 12:09	10/04/17 14:08	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50	030/8015B					
TPH (C06-C10) <i>Surrogates</i>	1710	ug/L	200	1		10/03/17 17:48		
4-Bromofluorobenzene (S)	112	%	72-124	1		10/03/17 17:48	460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	82.6	ug/L	1.0	1		09/26/17 09:06	71-43-2	
Ethylbenzene	269	ug/L	1.0	1		09/26/17 09:06	100-41-4	
Toluene	12.5	ug/L	1.0	1		09/26/17 09:06	108-88-3	
Xylene (Total) Surrogates	56.1	ug/L	3.0	1		09/26/17 09:06	1330-20-7	
Toluene-d8 (S)	97	%	80-120	1		09/26/17 09:06	2037-26-5	
4-Bromofluorobenzene (S)	103	%	79-129	1		09/26/17 09:06	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	80-120	1		09/26/17 09:06	17060-07-0	
Dibromofluoromethane (S)	97	%	80-120	1		09/26/17 09:06	1868-53-7	
2320B Alkalinity	Analytical Meth	od: SM232	20B-97					
Alkalinity,Total (CaCO3 pH4.5)	242	mg/L	10.0	1		10/02/17 17:35		
4500S2F Sulfide, Iodometric	Analytical Meth	od: SM450	00S2F-00					
Sulfide	ND	mg/L	1.0	1		09/25/17 18:23	18496-25-8	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Sulfate	ND	mg/L	0.50	1		10/02/17 10:36	14808-79-8	

Project: Hess Towson

Pace Project No.: 30230598

Sample: YP-1	Lab ID: 3023	30598002	Collected: 09/20/1	7 08:4	5 Received: 09	/20/17 20:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 801	5B Preparation Me	ethod: E	EPA 3510C			
TPH (C10-C28) <i>Surrogates</i>	1.3	mg/L	0.10	1	09/24/17 12:09	10/04/17 00:59		1c
o-Terphenyl (S)	40	%	35-101	1	09/24/17 12:09	10/04/17 00:59	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 503	80/8015B					
TPH (C06-C10) <i>Surrogates</i>	5000	ug/L	200	1		09/26/17 06:47		
a,a,a-Trifluorotoluene (S)	92	%	60-158	1		09/26/17 06:47	98-08-8	
4-Bromofluorobenzene (S)	104	%	72-124	1		09/26/17 06:47	460-00-4	
8260B MSV	Analytical Meth	od: EPA 826	60B					
Benzene	7.6	ug/L	1.0	1		09/26/17 09:33	71-43-2	
Ethylbenzene	539	ug/L	10.0	10		09/27/17 00:47	100-41-4	
Toluene	26.5	ug/L	1.0	1		09/26/17 09:33		
Xylene (Total)	439	ug/L	3.0	1		09/26/17 09:33	1330-20-7	
<i>Surrogates</i> Toluene-d8 (S)	99	%	80-120	1		09/26/17 09:33	2037-26-5	
4-Bromofluorobenzene (S)	104	%	79-129	1		09/26/17 09:33	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	80-120	1		09/26/17 09:33	17060-07-0	
Dibromofluoromethane (S)	91	%	80-120	1		09/26/17 09:33	1868-53-7	
2320B Alkalinity	Analytical Meth	od: SM2320	B-97					
Alkalinity, Total (CaCO3 pH4.5)	188	mg/L	10.0	1		10/02/17 17:42		
4500S2F Sulfide, Iodometric	Analytical Meth	od: SM4500	S2F-00					
Sulfide	ND	mg/L	1.0	1		09/25/17 18:24	18496-25-8	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
Sulfate	ND	mg/L	0.50	1		10/02/17 10:52	14808-79-8	

Project: Hess Towson

Pace Project No.: 30230598

Sample: YMW-7	Lab ID: 302	30598003	Collected: 09/19/1	7 13:20	Received: 09)/20/17 20:10 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	nod: EPA 80	015B Preparation Me	ethod: E	PA 3510C			
TPH (C10-C28)	1.3	mg/L	0.10	1	09/24/17 12:09	10/04/17 00:13		1c
<i>Surrogates</i> o-Terphenyl (S)	51	%	35-101	1	09/24/17 12:09	10/04/17 00:13	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 50)30/8015B					
TPH (C06-C10) <i>Surrogates</i>	7640	ug/L	2000	10		10/03/17 16:49		
4-Bromofluorobenzene (S)	112	%	72-124	10		10/03/17 16:49	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Benzene	64.1	ug/L	1.0	1		09/26/17 10:11	71-43-2	
Ethylbenzene	274	ug/L	1.0	1		09/26/17 10:11	100-41-4	
Toluene	68.0	ug/L	1.0	1		09/26/17 10:11	108-88-3	
Xylene (Total)	994	ug/L	3.0	1		09/26/17 10:11	1330-20-7	
<i>Surrogates</i> Toluene-d8 (S)	96	%	80-120	1		09/26/17 10:11	2037-26-5	
4-Bromofluorobenzene (S)	106	%	79-129	1		09/26/17 10:11	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	80-120	1		09/26/17 10:11	17060-07-0	
Dibromofluoromethane (S)	91	%	80-120	1		09/26/17 10:11	1868-53-7	
2320B Alkalinity	Analytical Meth	nod: SM232	20B-97					
Alkalinity,Total (CaCO3 pH4.5)	128	mg/L	10.0	1		10/02/17 17:45		
4500S2F Sulfide, Iodometric	Analytical Meth	nod: SM450	00S2F-00					
Sulfide	ND	mg/L	1.0	1		09/25/17 18:21	18496-25-8	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Sulfate	ND	mg/L	0.50	1		10/02/17 11:09	14808-79-8	

Towson

Pace Project No.: 30230598

Sample: YMW-3	Lab ID: 3023	30598004	Collected: 09/19/2	17 11:10) Received: 09)/20/17 20:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	15B Preparation Me	ethod: E	PA 3510C			
TPH (C10-C28)	ND	mg/L	0.10	1	09/24/17 12:09	10/04/17 00:20		1c
<i>Surrogates</i> o-Terphenyl (S)	54	%	35-101	1	09/24/17 12:09	10/04/17 00:20	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50)30/8015B					
TPH (C06-C10) <i>Surrogates</i>	ND	ug/L	200	1		09/26/17 05:28		
a,a,a-Trifluorotoluene (S)	74	%	60-158	1		09/26/17 05:28	98-08-8	
4-Bromofluorobenzene (S)	114	%	72-124	1		09/26/17 05:28	460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/26/17 08:12	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/26/17 08:12	100-41-4	
Toluene	ND	ug/L	1.0	1		09/26/17 08:12	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/26/17 08:12	1330-20-7	
Surrogates	0.4	0/	00.400			00/00/47 00 40	0007 00 5	
Toluene-d8 (S)	94	%	80-120	1		09/26/17 08:12		
4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S)	102 103	% %	79-129 80-120	1 1		09/26/17 08:12 09/26/17 08:12		
Dibromofluoromethane (S)	96	%	80-120	1		09/26/17 08:12		
2320B Alkalinity	Analytical Meth					03/20/17 00.12	1000-00-7	
Alkalinity, Total (CaCO3 pH4.5)	24.0	mg/L	10.0	1		10/02/17 17:47		
		-		•				
4500S2F Sulfide, Iodometric	Analytical Meth	100: 511450	0325-00					
Sulfide	ND	mg/L	1.0	1		09/25/17 18:22	18496-25-8	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Sulfate	65.2	mg/L	50.0	100		09/29/17 23:10	14808-79-8	

Project: Hess Towson

Pace Project No.: 30230598

Sample: EB-091917	Lab ID: 302	30598005	Collected: 09/19/1	7 11:40	Received: 09	/20/17 20:10 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	015B Preparation Me	thod: E	PA 3510C			
TPH (C10-C28)	ND	mg/L	0.10	1	09/24/17 12:09	10/04/17 00:35		1c
<i>Surrogates</i> o-Terphenyl (S)	40	%	35-101	1	09/24/17 12:09	10/04/17 00:35	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50)30/8015B					
TPH (C06-C10)	ND	ug/L	200	1		10/03/17 17:09		
<i>Surrogates</i> 4-Bromofluorobenzene (S)	113	%	72-124	1		10/03/17 17:09	460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/26/17 03:41	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/26/17 03:41	100-41-4	
Toluene	ND	ug/L	1.0	1		09/26/17 03:41	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/26/17 03:41	1330-20-7	
Surrogates								
Toluene-d8 (S)	95	%	80-120	1		09/26/17 03:41	2037-26-5	
4-Bromofluorobenzene (S)	103	%	79-129	1		09/26/17 03:41	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	80-120	1		09/26/17 03:41	17060-07-0	
Dibromofluoromethane (S)	99	%	80-120	1		09/26/17 03:41	1868-53-7	

Project: Hess Towson

Pace Project No.: 30230598

Sample: Trip Blank	Lab ID: 3023	30598006	Collected: 09/19/1	7 00:01	Received: 0	9/20/17 20:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	iod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/26/17 03:14	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/26/17 03:14	100-41-4	
Toluene	ND	ug/L	1.0	1		09/26/17 03:14	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/26/17 03:14	1330-20-7	
Surrogates		-						
Toluene-d8 (S)	96	%	80-120	1		09/26/17 03:14	2037-26-5	
4-Bromofluorobenzene (S)	102	%	79-129	1		09/26/17 03:14	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	80-120	1		09/26/17 03:14	17060-07-0	
Dibromofluoromethane (S)	98	%	80-120	1		09/26/17 03:14	1868-53-7	

Project: Hess Towson

Pace Project No.: 30230598

Sample: MIP-2 (25-30)	Lab ID: 302	30598007	Collected: 09/20/	17 10:1	5 Received: 09)/20/17 20:10 N	Aatrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	justed for p	ercent moisture, s	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Met	hod: EPA 80	15B Preparation M	ethod: E	PA 3546			
TPH (C10-C28) <i>Surrogates</i>	803	mg/kg	159	20	10/03/17 08:56	10/04/17 19:33		
o-Terphenyl (S)	236	%	24-123	20	10/03/17 08:56	10/04/17 19:33	84-15-1	S4
Gasoline Range Organics	Analytical Met	hod: EPA 80	15B Preparation M	ethod: E	PA 5035A/5030B			
Gasoline Range Organics <i>Surrogates</i>	1220	mg/kg	120	10	09/25/17 12:32	09/27/17 15:35		B,L1
a,a,a-Trifluorotoluene (S)	88	%	10-174	10	09/25/17 12:32	09/27/17 15:35	98-08-8	
4-Bromofluorobenzene (S)	89	%	85-109	10	09/25/17 12:32	09/27/17 15:35	460-00-4	
8260B MSV	Analytical Met	hod: EPA 82	60B Preparation M	ethod: E	EPA 5035A			
Benzene	ND	ug/kg	209	50	10/03/17 10:30	10/03/17 19:15	71-43-2	1c
Ethylbenzene	20900	ug/kg	2090	500	10/03/17 10:30	10/04/17 13:43	100-41-4	1c
Toluene	1240	ug/kg	209	50	10/03/17 10:30	10/03/17 19:15	108-88-3	1c
Xylene (Total)	113000	ug/kg	6270	500	10/03/17 10:30	10/04/17 13:43	1330-20-7	
Surrogates								
Toluene-d8 (S)	113	%	76-124	50		10/03/17 19:15		
4-Bromofluorobenzene (S)	104	%	70-133	50	10/03/17 10:30			
1,2-Dichloroethane-d4 (S)	103	%	74-131	50		10/03/17 19:15		
Dibromofluoromethane (S)	79	%	71-130	50	10/03/17 10:30	10/03/17 19:15	1868-53-7	
Percent Moisture	Analytical Met	hod: ASTM [02974-87					
Percent Moisture	16.5	%	0.10	1		10/01/17 12:39		

Project: Hess Towson

Pace Project No.: 30230598

Sample: MIP-2 (GW-25-30)	Lab ID: 302	30598008	Collected: 09/20/1	7 12:25	Received: 09	/20/17 20:10 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	15B Preparation Me	thod: E	PA 3510C			
TPH (C10-C28)	2.2	mg/L	0.55	5	09/24/17 12:09	10/04/17 14:16		1c,A5
<i>Surrogates</i> o-Terphenyl (S)	37	%	35-101	5	09/24/17 12:09	10/04/17 14:16	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50)30/8015B					
TPH (C06-C10) Surrogates	8480	ug/L	2000	10		10/03/17 18:08		
4-Bromofluorobenzene (S)	111	%	72-124	10		10/03/17 18:08	460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/26/17 08:39	71-43-2	
Ethylbenzene	109	ug/L	1.0	1		09/26/17 08:39	100-41-4	
Toluene	38.7	ug/L	1.0	1		09/26/17 08:39	108-88-3	
Xylene (Total)	652	ug/L	3.0	1		09/26/17 08:39	1330-20-7	
Surrogates		•						
Toluene-d8 (S)	97	%	80-120	1		09/26/17 08:39	2037-26-5	
4-Bromofluorobenzene (S)	104	%	79-129	1		09/26/17 08:39	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	80-120	1		09/26/17 08:39	17060-07-0	
Dibromofluoromethane (S)	96	%	80-120	1		09/26/17 08:39	1868-53-7	

Project: Hess Towson

Pace Project No.: 30230598

Sample: MIP-7 (21-26)	Lab ID: 302	30598009	Collected: 09/20/	/17 15:0	0 Received: 09)/20/17 20:10 N	Aatrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	usted for p	ercent moisture, s	ample s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Mether	nod: EPA 80	15B Preparation M	lethod: E	EPA 3546			
TPH (C10-C28) <i>Surrogates</i>	183	mg/kg	39.4	5	10/03/17 08:56	10/04/17 19:52		
o-Terphenyl (S)	59	%	24-123	5	10/03/17 08:56	10/04/17 19:52	84-15-1	
Gasoline Range Organics	Analytical Mether	nod: EPA 80	15B Preparation M	lethod: E	EPA 5035A/5030B			
Gasoline Range Organics <i>Surrogates</i>	372	mg/kg	120	10	09/25/17 12:32	09/27/17 15:55		B,L1
a,a,a-Trifluorotoluene (S)	138	%	10-174	10	09/25/17 12:32	09/27/17 15:55	98-08-8	
4-Bromofluorobenzene (S)	102	%	85-109	10	09/25/17 12:32	09/27/17 15:55	460-00-4	
8260B MSV	Analytical Mether	nod: EPA 82	60B Preparation M	lethod: E	EPA 5035A			
Benzene	ND	ug/kg	162	50	09/29/17 09:36	09/29/17 20:55	71-43-2	1c
Ethylbenzene	3440	ug/kg	162	50	09/29/17 09:36	09/29/17 20:55	100-41-4	1c
Toluene	265	ug/kg	162	50	09/29/17 09:36	09/29/17 20:55	108-88-3	1c
Xylene (Total)	17100	ug/kg	487	50	09/29/17 09:36	09/29/17 20:55	1330-20-7	
Surrogates								
Toluene-d8 (S)	103	%	76-124		09/29/17 09:36	09/29/17 20:55	2037-26-5	
4-Bromofluorobenzene (S)	101	%	70-133	50		09/29/17 20:55		
1,2-Dichloroethane-d4 (S)	87	%	74-131	50	09/29/17 09:36	09/29/17 20:55	17060-07-0	
Dibromofluoromethane (S)	83	%	71-130	50	09/29/17 09:36	09/29/17 20:55	1868-53-7	
Percent Moisture	Analytical Mether	nod: ASTM	D2974-87					
Percent Moisture	17.0	%	0.10	1		10/01/17 12:39		

Associated Lab Samples: 30230598007, 30230598009 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Gasoline Range Organics mg/kg ND 10.0 09/25/17 15:37 CH 4-Bromofluorobenzene (S) % 111 85-109 09/25/17 15:37 ST a,a,a-Trifluorotoluene (S) % 99 10-174 09/25/17 15:37 ST LABORATORY CONTROL SAMPLE: 1342819 Spike LCS LCS % Rec Qualifiers Parameter Units Conc. Result % Rec Limits Qualifiers	QC Batch: 272875		Analysi	s Method:	E	PA 8015B			
METHOD BLANK: 1342818 Matrix: Solid Associated Lab Samples: 30230598007, 30230598009 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Gasoline Range Organics mg/kg ND 10.0 09/25/17 15:37 CH 4-Bromofluorobenzene (S) % 111 85-109 09/25/17 15:37 ST a,a,a-Trifluorotoluene (S) % 99 10-174 09/25/17 15:37 ST LABORATORY CONTROL SAMPLE: 1342819 Imits Conc. Result % Rec Limits Qualifiers Gasoline Range Organics mg/kg 50 61.1 122 71-141 CH, L1 4-Bromofluorobenzene (S) % 50 61.1 122 71-141 CH, L1	QC Batch Method: EPA 5035A/50)30B	Analysi	s Descriptio	on: G	asoline Rang	e Organics		
Associated Lab Samples: 30230598007, 30230598009BlankReporting LimitAnalyzedQualifiersParameterUnitsResultLimitAnalyzedQualifiersGasoline Range Organicsmg/kgND10.009/25/17 15:37CH4-Bromofluorobenzene (S)%11185-10909/25/17 15:37STa,a,a-Trifluorotoluene (S)%9910-17409/25/17 15:37STLABORATORY CONTROL SAMPLE: 1342819SpikeLCSLCS% RecParameterUnitsConc.Result% RecLimitsQualifiersGasoline Range Organicsmg/kg5061.112271-141CH,L14-Bromofluorobenzene (S)%5061.112271-141CH,L1	Associated Lab Samples: 302305	98007, 30230598009							
ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersGasoline Range Organicsmg/kgND10.009/25/1715:37CH4-Bromofluorobenzene (S)%11185-10909/25/1715:37STa,a,a-Trifluorotoluene (S)%9910-17409/25/1715:37STLABORATORY CONTROL SAMPLE:1342819ParameterUnitsConc.Result% RecLimitsQualifiersGasoline Range Organicsmg/kg5061.112271-141CH,L1Gasoline Range Organicsmg/kg5061.112271-141CH,L14-Bromofluorobenzene (S)%%10185-10904	METHOD BLANK: 1342818		M	latrix: Solic	1				
ParameterUnitsResultLimitAnalyzedQualifiersGasoline Range Organicsmg/kgND10.009/25/17 15:37CH4-Bromofluorobenzene (S)%11185-10909/25/17 15:37STa,a,a-Trifluorotoluene (S)%9910-17409/25/17 15:37STLABORATORY CONTROL SAMPLE: 1342819ParameterUnitsConc.Result% RecLimitsQualifiersGasoline Range Organicsmg/kg5061.112271-141CH,L14-Bromofluorobenzene (S)%10185-1094-Bromofluorobenzene (S)%	Associated Lab Samples: 302305	98007, 30230598009							
Gasoline Range Organicsmg/kgND10.009/25/1715:37CH4-Bromofluorobenzene (S)%11185-10909/25/1715:37STa,a,a-Trifluorotoluene (S)%9910-17409/25/1715:37STLABORATORY CONTROL SAMPLE:1342819ParameterUnitsConc.Result% RecLimitsQualifiersGasoline Range Organicsmg/kg5061.112271-141CH,L14-Bromofluorobenzene (S)%%10185-1094-Bromofluorobenzene (S)%			Blank						
4-Bromofluorobenzene (S) % 111 85-109 09/25/17 15:37 ST a,a,a-Trifluorotoluene (S) % 99 10-174 09/25/17 15:37 ST LABORATORY CONTROL SAMPLE: 1342819 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Gasoline Range Organics mg/kg 50 61.1 122 71-141 CH,L1 4-Bromofluorobenzene (S) % % 101 85-109	Parameter	Units	Result	I	Limit	Analyze	d Qua	lifiers	
a,a,a-Trifluorotoluene (S) % 99 10-174 09/25/17 15:37 LABORATORY CONTROL SAMPLE: 1342819 Parameter Units Conc. Result % Rec LCS % Rec Gasoline Range Organics mg/kg 50 61.1 122 71-141 CH,L1 4-Bromofluorobenzene (S) %									
LABORATORY CONTROL SAMPLE: 1342819SpikeLCSLCS% RecParameterUnitsConc.Result% RecLimitsQualifiersGasoline Range Organicsmg/kg5061.112271-141CH,L14-Bromofluorobenzene (S)%10185-10985-109									
ParameterUnitsSpike Conc.LCS Result% Rec % RecQualifiersGasoline Range Organicsmg/kg5061.112271-141CH,L14-Bromofluorobenzene (S)%10185-10985-109	a,a,a- i muorotoiuene (S)	%		99	10-174	09/25/17 1:	5:37		
ParameterUnitsConc.Result% RecLimitsQualifiersGasoline Range Organicsmg/kg5061.112271-141CH,L14-Bromofluorobenzene (S)%10185-10985-109	LABORATORY CONTROL SAMPLE	: 1342819							
Gasoline Range Organics mg/kg 50 61.1 122 71-141 CH,L1 4-Bromofluorobenzene (S) % 101 85-109			•						
4-Bromofluorobenzene (S) % 101 85-109	Parameter	Units	Conc.	Result	t	% Rec	Limits	Qualifiers	
	Gasoline Range Organics	mg/kg	50		61.1	122	71-141	CH,L1	
a,a,a-Trifluorotoluene (S) % 100 10-174	4-Bromofluorobenzene (S)	%				101	85-109)	
	a,a,a-Trifluorotoluene (S)	%				100	10-174	Ļ	
			MS	MSD					
MS MSD		30230586003	Spike	Spike	MS	MSD	MS M	SD % Rec	

	302	20000000	Spike	Spike	1113	IVISD	IVIS	IVISD	70 Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Gasoline Range Organics	mg/kg	10.9 U	54.3	54.3	60.4	61.3	109	110	72-141	1 CH	
4-Bromofluorobenzene (S)	%						101	101	85-109		
a,a,a-Trifluorotoluene (S)	%						99	103	10-174		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 272925		Analysis	Method:	EF	PA 5030/8015	В		
QC Batch Method: EPA 5030/80	15B	Analysis	Description:	Ga	asoline Rang	e Organic	s	
Associated Lab Samples: 302305	598002, 30230598004							
METHOD BLANK: 1342966		Ma	trix: Water					
Associated Lab Samples: 302305	598002, 30230598004							
		Blank	Reporti	ng				
Parameter	Units	Result	Limit		Analyze	b	Qualifiers	3
TPH (C06-C10)	ug/L	1	ND	200	09/26/17 00):13 CH		
4-Bromofluorobenzene (S)	%	1	12 72	-124	09/26/17 00):13		
a,a,a-Trifluorotoluene (S)	%		79 60	-158	09/26/17 00):13		
LABORATORY CONTROL SAMPLE	: 1342967							
		Spike	LCS		LCS	% Rec		
Parameter	Units	Conc.	Result	C	% Rec	Limits	C	Qualifiers
TPH (C06-C10)	ug/L	1000	979		98	71-	-141 CH	
4-Bromofluorobenzene (S)	%				108	72-	-124	
a,a,a-Trifluorotoluene (S)	%				111	60·	-158	

MATRIX SPIKE & MATRIX SPIK	E DUPLICAT	E: 13429	MS	MSD	1342969						
	302	230695001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
TPH (C06-C10)	ug/L	ND	1000	1000	958	1180	93	115	11-165	21	
4-Bromofluorobenzene (S)	%						105	104	72-124		
a,a,a-Trifluorotoluene (S)	%						112	112	60-158		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: I	less Towson										
Pace Project No.:	30230598										
QC Batch:	273768		Analys	is Method:	E	PA 5030/801	15B				
QC Batch Method:	EPA 5030/8015E	3	Analys	is Descripti	on: G	Basoline Ran	ge Organic	S			
Associated Lab Samp	oles: 30230598	8001, 3023059800	03, 30230598	005, 30230	598008						
METHOD BLANK:	1346956		N	latrix: Wat	er						
Associated Lab Samp	oles: 30230598	8001, 3023059800	03, 30230598	005, 30230	598008						
			Blank	Re	eporting						
Parame	eter	Units	Result	t	Limit	Analyz	ed	Qualifiers			
TPH (C06-C10)		ug/L		ND	200	10/03/17	16:10				
4-Bromofluorobenzen	ne (S)	%		112	72-124	10/03/17	16:10				
LABORATORY CON											
	FROL SAMPLE:	1346957									
	FROL SAMPLE:	1346957	Spike	LCS		LCS	% Rec				
Parame		1346957 Units	Spike Conc.	LCS Resul	t	LCS % Rec	% Rec Limits		ualifiers		
Parame TPH (C06-C10)			•		t 970		Limits		ualifiers		
	eter	Units	Conc.			% Rec	Limits	Qı	ualifiers		
TPH (C06-C10)	eter ne (S)	Units ug/L %	Conc. 1000			% Rec 97	Limits	-141 Qu	ualifiers		
TPH (C06-C10) 4-Bromofluorobenzen	eter ne (S)	Units ug/L %	Conc. 1000		970	% Rec 97	Limits	-141 Qu	ualifiers		
TPH (C06-C10) 4-Bromofluorobenzen	eter ne (S)	Units ug/L %	Conc. 1000	Resul	970	% Rec 97	Limits	-141 Qu	valifiers % Rec		
TPH (C06-C10) 4-Bromofluorobenzen	eter ne (S) TRIX SPIKE DUF	Units ug/L % PLICATE: 1346	Conc. 1000	Resul	970	% Rec 97 103	Limits 71 72	-141 -124	% Rec	RPD	Qual
TPH (C06-C10) 4-Bromofluorobenzen MATRIX SPIKE & MA	eter ne (S) TRIX SPIKE DUF r	Units ug/L % PLICATE: 1346 30231469003	G958 MS 3 Spike Conc.	Resul MSD Spike	970 1346959 MS	% Rec 97 103 MSD Result	Limits 71 72 MS	Qu -141 -124 MSD	% Rec	RPD1	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Analysis Method:

Matrix: Solid

Project: Hess Towson

Pace Project No.: 30230598

QC Batch:273621QC Batch Method:EPA 5035A

Analysis Description: 8260B MSV UST-SOIL

EPA 8260B

Associated Lab Samples: 30230598009

METHOD BLANK: 1345838

Associated Lab Samples: 30230598009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	250	09/29/17 12:47	
Ethylbenzene	ug/kg	ND	250	09/29/17 12:47	
Toluene	ug/kg	ND	250	09/29/17 12:47	
Xylene (Total)	ug/kg	ND	750	09/29/17 12:47	
1,2-Dichloroethane-d4 (S)	%	97	74-131	09/29/17 12:47	
4-Bromofluorobenzene (S)	%	99	70-133	09/29/17 12:47	
Dibromofluoromethane (S)	%	95	71-130	09/29/17 12:47	
Toluene-d8 (S)	%	97	76-124	09/29/17 12:47	

LABORATORY CONTROL SAMPLE: 1345839

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Quamoro
Benzene	ug/kg	20	18.1	91	70-130	
Ethylbenzene	ug/kg	20	18.3	91	70-130	
Toluene	ug/kg	20	18.5	93	70-130	
Xylene (Total)	ug/kg	60	58.0	97	70-130	
1,2-Dichloroethane-d4 (S)	%			86	74-131	
4-Bromofluorobenzene (S)	%			99	70-133	
Dibromofluoromethane (S)	%			98	71-130	
Toluene-d8 (S)	%			101	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Hess Towson

Pace Project No.: 30230598

QC Batch Method:

QC Batch: 273981

Analysis Method:

Analysis Description: 8260B MSV UST-SOIL

Matrix: Solid

EPA 8260B

Associated Lab Samples: 30230598007

EPA 5035A

METHOD BLANK: 1347690

Associated Lab Samples: 30230598007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	250	10/03/17 10:26	
Ethylbenzene	ug/kg	ND	250	10/03/17 10:26	
Toluene	ug/kg	ND	250	10/03/17 10:26	
Xylene (Total)	ug/kg	ND	750	10/03/17 10:26	
1,2-Dichloroethane-d4 (S)	%	101	74-131	10/03/17 10:26	
4-Bromofluorobenzene (S)	%	96	70-133	10/03/17 10:26	
Dibromofluoromethane (S)	%	100	71-130	10/03/17 10:26	
Toluene-d8 (S)	%	93	76-124	10/03/17 10:26	

LABORATORY CONTROL SAMPLE: 1347691

_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/kg	20	21.1	106	70-130	
Ethylbenzene	ug/kg	20	21.3	106	70-130	
Toluene	ug/kg	20	20.3	102	70-130	
Xylene (Total)	ug/kg	60	63.3	106	70-130	
1,2-Dichloroethane-d4 (S)	%			98	74-131	
4-Bromofluorobenzene (S)	%			98	70-133	
Dibromofluoromethane (S)	%			104	71-130	
Toluene-d8 (S)	%			98	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson					
Pace Project No.:	30230598					
QC Batch:	273056		Analysis Meth	nod: EF	PA 8260B	
QC Batch Method:	EPA 8260B		Analysis Deso	cription: 82	60B MSV UST-WA	TER
Associated Lab Sam	ples: 3023059	8001, 30230598002	2, 30230598003, 30	0230598004, 30	0230598005, 30230	0598006, 3023059800
METHOD BLANK:	1343359		Matrix:	Water		
Associated Lab Sam	ples: 3023059	8001, 30230598002	, 30230598003, 30	0230598004, 30	0230598005, 30230	598006, 3023059800
			Blank	Reporting		
Param	neter	Units	Result	Limit	Analyzed	Qualifiers
Benzene		ug/L	ND	1.0	09/26/17 02:47	
Ethylbenzene		ug/L	ND	1.0	09/26/17 02:47	
Toluene		ug/L	ND	1.0	09/26/17 02:47	
Xylene (Total)		ug/L	ND	3.0	09/26/17 02:47	
1,2-Dichloroethane-	d4 (S)	%	104	80-120	09/26/17 02:47	
4-Bromofluorobenze	ne (S)	%	104	79-129	09/26/17 02:47	
Dibromofluorometha	ine (S)	%	98	80-120	09/26/17 02:47	
Toluene-d8 (S)		%	95	80-120	09/26/17 02:47	

LABORATORY CONTROL SAMPLE: 1343360

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	19.6	98	70-130	
Ethylbenzene	ug/L	20	19.9	99	70-130	
Toluene	ug/L	20	20.6	103	70-130	
Xylene (Total)	ug/L	60	60.0	100	70-130	
1,2-Dichloroethane-d4 (S)	%			97	80-120	
4-Bromofluorobenzene (S)	%			106	79-129	
Dibromofluoromethane (S)	%			99	80-120	
Toluene-d8 (S)	%			98	80-120	

			MS	MSD							
	302	230867001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/L	30.5	20	20	64.4	49.5	170	95	67-121	26	ин
Ethylbenzene	ug/L	ND	20	20	22.5	23.3	112	117	70-127	4	
Toluene	ug/L	ND	20	20	23.8	24.7	116	121	77-125	4	
Xylene (Total)	ug/L	ND	60	60	68.0	72.1	113	120	69-128	6	
1,2-Dichloroethane-d4 (S)	%						96	90	80-120		
4-Bromofluorobenzene (S)	%						105	103	79-129		
Dibromofluoromethane (S)	%						97	96	80-120		
Toluene-d8 (S)	%						99	100	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Hes	s Towson											
Pace Project No.: 3023	30598											
QC Batch: 27	3938			Analysi	s Method:	E	PA 8015B					
QC Batch Method: EF	A 3546			Analysi	s Descript	ion: E	PA 8015 TP	н				
Associated Lab Samples	30230598	3007, 30	0230598009									
METHOD BLANK: 134	7510			N	latrix: Sol	id						
Associated Lab Samples	30230598	3007, 30	0230598009									
_				Blank		eporting						
Parameter			Units	Result		Limit	Analyz	:ed	Qualifiers			
TPH (C10-C28)			mg/kg		ND	6.7		-				
o-Terphenyl (S)			%		54	24-123	10/04/17	02:27				
LABORATORY CONTRO	L SAMPLE:	13475	511									
				Spike	LCS	;	LCS	% Re	C			
Parameter			Units	Conc.	Resu	lt	% Rec	Limits	s Q	ualifiers		
TPH (C10-C28)			mg/kg	66.7		47.0	71	4	13-98		-	
o-Terphenyl (S)			%				86	24	1-123			
MATRIX SPIKE & MATR	X SPIKE DU	PLICAT	E: 13475 ⁻	12		1347513						
				MS	MSD							
			231631001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
			– 1.	O A A A	0	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Parameter	I	Units	Result	Conc.	Conc.	Result		70 1100	70 IXEC			Quai
Parameter TPH (C10-C28)		Units ng/kg	Result		72.1		 	68	52	10-175	14	Quai

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	Hess Towson 30230598								
QC Batch:	272858		Analysis	Method:	EF	PA 8015B			
QC Batch Method:	EPA 3510C		Analysis	Description:	EF	PA 8015 TPH			
Associated Lab Sar	nples: 30230598	3001, 30230598002	, 3023059800	3, 302305980	004, 30	230598005,	30230598008		
METHOD BLANK:	1342778		Mat	trix: Water					
Associated Lab Sar	nples: 30230598	3001, 30230598002	, 3023059800	3, 302305980	004, 30	230598005,	30230598008		
			Blank	Report	ing				
Paran	neter	Units	Result	Limi	t	Analyzed	d Qualit	fiers	
TPH (C10-C28)		mg/L	1	ND	0.10	10/03/17 23	3:49		
o-Terphenyl (S)		%		36 3	5-101	10/03/17 23	:49		
LABORATORY CO	NTROL SAMPLE:	1342779							
			Spike	LCS		LCS	% Rec		
Parar	neter	Units	Conc.	Result	o,	% Rec	Limits	Qualifiers	
TPH (C10-C28)		mg/L	1	0.48	3	48	41-103		-
o-Terphenyl (S)		%				69	35-101		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson						
Pace Project No .:	30230598						
QC Batch:	273758		Analysis Meth	iod:	ASTM [D2974-87	
QC Batch Method:	ASTM D2974-87		Analysis Desc	cription:	Dry We	ight/Percer	nt Moisture
Associated Lab Sar	mples: 30230598	007, 30230598009					
SAMPLE DUPLICA	Method: ASTM D2974-87 Lab Samples: 30230598007, 30230598009						
			30230590001	Dup			
Paran	neter	Units	Result	Result		RPD	Qualifiers
Percent Moisture		%	37.0	38	8.9	5	
SAMPLE DUPLICA	TE: 1346941						
			30230598007	Dup			
_		Units	Result	Result		RPD	Qualifiers
Paran	neter	Units	Result	Result		N D	Quaimers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: H	less Towson											
Pace Project No.: 3	30230598											
QC Batch:	273912			Analysi	is Method:	S	M2320B-97					
QC Batch Method:	SM2320B-97			Analysi	is Descript	ion: 23	320B Alkalin	ity				
Associated Lab Samp	oles: 3023059	8001, 30	230598002,	302305980	003, 30230	598004						
METHOD BLANK: 1	1347410			M	latrix: Wat	er						
Associated Lab Samp	oles: 3023059	8001, 30	230598002,	302305980	003, 30230)598004						
				Blank	Re	eporting						
Develop	eter		Units	Result	t	Limit	Analyz	ed	Qualifiers			
Parame			onno									
Alkalinity, Total (CaCO			mg/L		ND	10.0	10/02/17	17:32				
	rol sample:	13474	mg/L	Spike Conc.	ND LCS Resu		10/02/17 LCS % Rec	17:32 % Rec Limits		ualifiers		
Alkalinity,Total (CaCO	93 pH4.5) FROL SAMPLE:	13474	mg/L 11	Spike	LCS		LCS	% Rec Limits		ualifiers	-	
Alkalinity,Total (CaCO LABORATORY CONT Parame	P3 pH4.5) FROL SAMPLE: eter P3 pH4.5)	13474	mg/L 11 Units mg/L	Spike Conc. 20	LCS	lt	LCS % Rec	% Rec Limits	Q.	ualifiers		
Alkalinity,Total (CaCO LABORATORY CONT Parame Alkalinity,Total (CaCO	P3 pH4.5) FROL SAMPLE: eter P3 pH4.5)		mg/L 11 Units mg/L	Spike Conc. 20	LCS Resu	lt	LCS % Rec	% Rec Limits	Q.	ualifiers % Rec	-	
Alkalinity, Total (CaCO LABORATORY CONT Parame Alkalinity, Total (CaCO	P3 pH4.5) FROL SAMPLE: eter P3 pH4.5) TRIX SPIKE DU		mg/L 11 Units mg/L E: 134741	Spike Conc. 20	LCS Resul	lt 20.0 1347413	LCS % Rec 100	% Rec Limits 85	Q1		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Tov	wson								
Pace Project No.:	3023059	8								
QC Batch:	272989)		Analysis I	Metho	d:	SM4500S2F-00			
QC Batch Method:	SM450	0S2F-00		Analysis I	Descri	ption:	4500S2F Sulfide	e, lodometric		
Associated Lab Sar	nples: 3	30230598	001, 3023059800	02, 30230598003	3, 302	30598004				
METHOD BLANK:	1343174			Mat	rix: W	ater				
Associated Lab Sar	nples:	30230598	001, 3023059800	02, 30230598003	3, 302	30598004				
				Blank	l	Reporting				
Paran	neter		Units	Result		Limit	Analyzed	Qualifi	ers	
Sulfide			mg/L	N	ID	1.	0 09/25/17 18	:13		
LABORATORY COI		AMPLE:	1343175							
				Spike	LC	S	LCS	% Rec		
Parar	neter		Units	Conc.	Res	sult	% Rec	Limits	Qualifiers	
Sulfide			mg/L	5.7		6.0	105	85-115		
MATRIX SPIKE SAI	MPLE:		1343177							
				302305450	001	Spike	MS	MS	% Rec	
Parar	neter		Units	Result		Conc.	Result	% Rec	Limits	Qualifiers
Sulfide			mg/L		4.0	5.7	9.2	9	1 85-115	
SAMPLE DUPLICA	TE: 134	3176								
				3023034700	1	Dup				
Paran	neter		Units	Result		Result	RPD	Qualifiers		
Sulfide			mg/L	Ν	ID	N	ר			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson							
Pace Project No.:	30230598							
QC Batch:	273520		Analysis Met	thod: E	EPA 300.0			
QC Batch Method:	EPA 300.0		Analysis Des	scription: 3	300.0 IC Anions	28day		
Associated Lab Sar	nples: 3023059	8001, 302305980	02, 30230598003, 3	80230598004				
METHOD BLANK:	1345393		Matrix:	Water				
Associated Lab Sar	nples: 3023059	8001, 302305980	02, 30230598003, 3	30230598004				
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyzed	Qualifie	ers	
Sulfate		mg/L	ND	0.50	0 09/29/17 20:	42		
LABORATORY COI	NTROL SAMPLE:	1345394						
			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc. I	Result	% Rec	Limits	Qualifiers	
Sulfate		mg/L	2	2.0	98	90-110		
MATRIX SPIKE SAI	MPLE:	1345396						
			30230889011	Spike	MS	MS	% Rec	
Paran	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Sulfate		mg/L	1	15 100	209	95	90-110	
SAMPLE DUPLICA	TE: 1345395							
			30230889011	Dup				
Parar	neter	Units	Result	Result	RPD	Qualifiers		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Hess Towson Pace Project No.: 30230598

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 272858

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 273621

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 273981

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- A5 Greater than 5% sediment in sample determined by visual observation. Aqueous portion decanted from the sediment and extracted.
- B Analyte was detected in the associated method blank.
- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- MH Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.
- ST Surrogate recovery was above laboratory control limits. Results may be biased high.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Hess TowsonPace Project No.:30230598

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30230598007	MIP-2 (25-30)	EPA 3546	273938	EPA 8015B	274087
30230598009	MIP-7 (21-26)	EPA 3546	273938	EPA 8015B	274087
30230598001	MW-4	EPA 3510C	272858	EPA 8015B	274070
30230598002	YP-1	EPA 3510C	272858	EPA 8015B	274070
30230598003	YMW-7	EPA 3510C	272858	EPA 8015B	274070
30230598004	YMW-3	EPA 3510C	272858	EPA 8015B	274070
30230598005	EB-091917	EPA 3510C	272858	EPA 8015B	274070
30230598008	MIP-2 (GW-25-30)	EPA 3510C	272858	EPA 8015B	274070
30230598007	MIP-2 (25-30)	EPA 5035A/5030B	272875	EPA 8015B	273006
30230598009	MIP-7 (21-26)	EPA 5035A/5030B	272875	EPA 8015B	273006
30230598001	MW-4	EPA 5030/8015B	273768		
30230598002	YP-1	EPA 5030/8015B	272925		
30230598003	YMW-7	EPA 5030/8015B	273768		
30230598004	YMW-3	EPA 5030/8015B	272925		
30230598005	EB-091917	EPA 5030/8015B	273768		
30230598008	MIP-2 (GW-25-30)	EPA 5030/8015B	273768		
30230598007	MIP-2 (25-30)	EPA 5035A	273981	EPA 8260B	274020
30230598009	MIP-7 (21-26)	EPA 5035A	273621	EPA 8260B	273645
30230598001	MW-4	EPA 8260B	273056		
30230598002	YP-1	EPA 8260B	273056		
30230598003	YMW-7	EPA 8260B	273056		
30230598004	YMW-3	EPA 8260B	273056		
30230598005	EB-091917	EPA 8260B	273056		
30230598006	Trip Blank	EPA 8260B	273056		
30230598008	MIP-2 (GW-25-30)	EPA 8260B	273056		
30230598007	MIP-2 (25-30)	ASTM D2974-87	273758		
30230598009	MIP-7 (21-26)	ASTM D2974-87	273758		
30230598001	MW-4	SM2320B-97	273912		
30230598002	YP-1	SM2320B-97	273912		
30230598003	YMW-7	SM2320B-97	273912		
30230598004	YMW-3	SM2320B-97	273912		
30230598001	MW-4	SM4500S2F-00	272989		
30230598002	YP-1	SM4500S2F-00	272989		
30230598003	YMW-7	SM4500S2F-00	272989		
30230598004	YMW-3	SM4500S2F-00	272989		
30230598001	MW-4	EPA 300.0	273520		
30230598002	YP-1	EPA 300.0	273520		
30230598003	YMW-7	EPA 300.0	273520		
30230598004	YMW-3	EPA 300.0	273520		

C C C C C C C C C C C C C C C C C C C
-660 8015 -660 8015
N-660 80
ber of Containers
e metro
Part Phone WSP USA Contact Phone 70273 (c. 2 Sampler (s) Sampler (s)
Sar MS
HES JUSS Project Location Project Number & Task 31400408 Mally-Lov CMD Cred Ci

<i>Client Name:</i>	. <u></u>	V	SI	>	Projec ()# 2 3 0 5 9 8
Courier: Fed Ex UPS USPS Clier	nt 🗆	Comr	nercial	Pace Other	Label 714
Tracking #: NIA					LIMS Login
Custody Seal on Cooler/Box Present: 2 yes		no no	Seal	s intact: ∕Z yes □) no 📋 🧠
Thermometer Used				Blue None	
				/	°C Final Temp <u>7.ా. ఓ</u> °C
Temp should be above freezing to 6°C		-		<u></u>	**************************************
					Date and initials of person examining contents: 74 3 2 1 1 3
Comments:	Yes	No	N/A		
Chain of Custody Present:				1.	
Chain of Custody Filled Out:	-		Ì	2.	· · · · · · · · · · · · · · · · · · ·
Chain of Custody Relinquished:		 	ļ	3	
Sampler Name & Signature on COC:	//		ļ	4	
Sample Labels match COC:	/		ŀ	5.	
-Includes date/time/ID Matrix:	·	1-31	<u></u>		
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):		-		7.	
Rush Turn Around Time Requested:		/		8.	
Sufficient Volume:	/		Ĺ	9.	
Correct Containers Used:	/			10.	
-Pace Containers Used:	/				
Containers Intact:	/			11.	
Orthophosphate field filtered			-	12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered	1		1	13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests	X		~	15. ARU9/211	<u>1</u>
All containers have been checked for preservation.				16.	
All containers needing preservation are found to be in compliance with EPA recommendation.			/		
	Lł			Initial when	Date/time of
exceptions: VOA, coliform, TOC, O&G, Phenolics				completed CH	preservation
				preservative	
Headspace in VOA Vials (>6mm):		~		17	
Trip Blank Present:	/			18.	
Trip Blank Custody Seals Present	/				
Rad Aqueous Samples Screened > 0.5 mrem/hr			/	Initial when completed:	Date:
Client Notification/ Resolution:					a .
Person Contacted:				Time:	Contacted By:
Comments/ Resolution:	······································				
			····		
					······································
				. <u> </u>	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

I.

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

.

October 13, 2017

Chris Cresci WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Hess Towson Pace Project No.: 30230752

Dear Chris Cresci:

Enclosed are the analytical results for sample(s) received by the laboratory on September 21, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Revision 1 - This report replaces the October 06, 2017 report. This project was revised on October13, 2017 in order to correct the reported DRO and GRO carbon ranges as per the COC.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Timothy Reed for Penny Westrick penny.westrick@pacelabs.com 724 850-5610 Project Manager

Enclosures

cc: Pam Robertson, WSP USA

CERTIFICATIONS

Project: Hess Towson Pace Project No.: 30230752

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235

Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L

Project: Hess Towson

Pace Project No.: 30230752

Sample: MIP-8 (18-22)	Lab ID: 302	30752001	Collected: 0	09/21/1	7 08:30	Received: 09	/21/17 23:30 N	latrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	iusted for pe	ercent moistu	ure, sa	mple si	ze and any dilut	ions.		
Parameters	Results	Units	Report L	_imit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80 ⁴	15B Preparat	ion Me	thod: EF	PA 3546			
TPH (C10-C28) <i>Surrogates</i>	74.1	mg/kg		7.9	1	10/03/17 08:56	10/04/17 05:35		
o-Terphenyl (S)	60	%	24	4-123	1	10/03/17 08:56	10/04/17 05:35	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80 [°]	15B Preparat	ion Me	thod: EF	PA 5035A/5030B			
Gasoline Range Organics <i>Surrogates</i>	297	mg/kg		103	10	09/25/17 12:32	09/27/17 16:15		B,L1
a,a,a-Trifluorotoluene (S)	131	%	10)-174	10	09/25/17 12:32	09/27/17 16:15	98-08-8	
4-Bromofluorobenzene (S)	104	%	85	5-109	10	09/25/17 12:32	09/27/17 16:15	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 826	60B Preparat	ion Me	thod: EF	PA 5035A			
Benzene	ND	ug/kg		4.0	1	10/04/17 11:12	10/04/17 15:56	71-43-2	1c
Ethylbenzene	5530	ug/kg		203	50	10/05/17 12:00	10/05/17 17:23	100-41-4	1c
Toluene	312	ug/kg		4.0	1	10/04/17 11:12	10/04/17 15:56	108-88-3	1c
Xylene (Total)	26900	ug/kg		610	50	10/05/17 12:00	10/05/17 17:23	1330-20-7	
Surrogates									
Toluene-d8 (S)	159	%		6-124	1		10/04/17 15:56		ST
4-Bromofluorobenzene (S)	146	%)-133	1		10/04/17 15:56		ST
1,2-Dichloroethane-d4 (S)	167	%	74	4-131	1	10/04/17 11:12	10/04/17 15:56	17060-07-0	ST
Dibromofluoromethane (S)	49	%	71	1-130	1	10/04/17 11:12	10/04/17 15:56	1868-53-7	SR
Percent Moisture	Analytical Meth	nod: ASTM E	02974-87						
Percent Moisture	16.5	%		0.10	1		10/04/17 13:59		

Project: Hess Towson

Pace Project No.: 30230752

Sample: MIP-8 (27-30)	Lab ID: 302	30752002	Collected: 09/21/2	17 09:05	6 Received: 09	/21/17 23:30 N	/latrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	iusted for p	ercent moisture, sa	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Mether	nod: EPA 80	15B Preparation Me	ethod: E	PA 3546			
TPH (C10-C28) <i>Surrogates</i>	ND	mg/kg	7.9	1	10/03/17 08:56	10/04/17 05:45		
o-Terphenyl (S)	50	%	24-123	1	10/03/17 08:56	10/04/17 05:45	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	15B Preparation Me	ethod: E	PA 5035A/5030B			
Gasoline Range Organics <i>Surrogates</i>	ND	mg/kg	11.0	1	09/25/17 12:32	09/25/17 23:34		B,CH,L1
a,a,a-Trifluorotoluene (S)	82	%	10-174	1	09/25/17 12:32	09/25/17 23:34	98-08-8	
4-Bromofluorobenzene (S)	112	%	85-109	1	09/25/17 12:32	09/25/17 23:34	460-00-4	S3
8260B MSV	Analytical Meth	nod: EPA 82	60B Preparation Me	ethod: E	PA 5035A			
Benzene	ND	ug/kg	4.5	1	10/04/17 11:12	10/04/17 16:15	71-43-2	1c
Ethylbenzene	ND	ug/kg	4.5	1	10/04/17 11:12	10/04/17 16:15	100-41-4	1c
Toluene	ND	ug/kg	4.5	1	10/04/17 11:12	10/04/17 16:15	108-88-3	1c
Xylene (Total)	ND	ug/kg	13.5	1	10/04/17 11:12	10/04/17 16:15	1330-20-7	
Surrogates								
Toluene-d8 (S)	95	%	76-124	1		10/04/17 16:15		
4-Bromofluorobenzene (S)	99	%	70-133	1		10/04/17 16:15		
1,2-Dichloroethane-d4 (S)	103	%	74-131	1	10/04/17 11:12	10/04/17 16:15	17060-07-0	
Dibromofluoromethane (S)	103	%	71-130	1	10/04/17 11:12	10/04/17 16:15	1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM [02974-87					
Percent Moisture	17.4	%	0.10	1		10/04/17 13:59		

Project: Hess Towson

Pace Project No.: 30230752

Sample: MIP-8 (GW-18-22)	Lab ID: 302	30752003	Collected: 09/21/1	7 11:45	Received: 09	0/21/17 23:30 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	015B Preparation Me	ethod: E	PA 3510C			
TPH (C10-C28)	3.5	mg/L	1.1	10	09/24/17 12:09	10/04/17 14:26		1c,A5
<i>Surrogates</i> o-Terphenyl (S)	43	%	35-101	10	09/24/17 12:09	10/04/17 14:26	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50)30/8015B					
TPH (C06-C10) <i>Surrogates</i>	10300	ug/L	2000	10		10/04/17 10:04		
4-Bromofluorobenzene (S)	110	%	72-124	10		10/04/17 10:04	460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	23.5	ug/L	1.0	1		09/28/17 10:52	71-43-2	
Ethylbenzene	599	ug/L	50.0	50		09/28/17 11:19	100-41-4	
Toluene	123	ug/L	1.0	1		09/28/17 10:52	108-88-3	
Xylene (Total)	1680	ug/L	150	50		09/28/17 11:19	1330-20-7	
Surrogates		•						
Toluene-d8 (S)	99	%	80-120	1		09/28/17 10:52	2037-26-5	
4-Bromofluorobenzene (S)	108	%	79-129	1		09/28/17 10:52	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	80-120	1		09/28/17 10:52	17060-07-0	
Dibromofluoromethane (S)	93	%	80-120	1		09/28/17 10:52	1868-53-7	

Project: Hess Towson

Pace Project No.: 30230752

Sample: Trip Blank	Lab ID: 3023	30752004	Collected: 09/21/1	7 00:01	Received: 0	9/21/17 23:30 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/28/17 02:08	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/28/17 02:08	100-41-4	
Toluene	ND	ug/L	1.0	1		09/28/17 02:08	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/28/17 02:08	1330-20-7	
Surrogates		-						
Toluene-d8 (S)	99	%	80-120	1		09/28/17 02:08	2037-26-5	
4-Bromofluorobenzene (S)	104	%	79-129	1		09/28/17 02:08	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	80-120	1		09/28/17 02:08	17060-07-0	
Dibromofluoromethane (S)	93	%	80-120	1		09/28/17 02:08	1868-53-7	

QC Batch: 272875	5	Analysis M	Method:	EPA 8015B		
QC Batch Method: EPA 50	035A/5030B	Analysis Description:		Gasoline Range	e Organics	
Associated Lab Samples:	30230752001, 30230752002					
METHOD BLANK: 1342818	5	Mat	rix: Solid			
Associated Lab Samples:	30230752001, 30230752002					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyze	d Qua	lifiers
Gasoline Range Organics	mg/kg	N	ID 10	09/25/17 15	5:37 CH	
4-Bromofluorobenzene (S)	%	11	11 85-1	09 09/25/17 15	5:37 ST	
a,a,a-Trifluorotoluene (S)	%	ç	99 10-1	74 09/25/17 15	5:37	
LABORATORY CONTROL S	AMPLE: 1342819					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Gasoline Range Organics	mg/kg	50	61.1	122	71-141	CH,L1
4-Bromofluorobenzene (S)	%			101	85-109	
a,a,a-Trifluorotoluene (S)	%			100	10-174	

	302	230586003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Gasoline Range Organics	mg/kg	10.9 U	54.3	54.3	60.4	61.3	109	110	72-141	1 (Ж
4-Bromofluorobenzene (S)	%						101	101	85-109		
a,a,a-Trifluorotoluene (S)	%						99	103	10-174		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

	s Towson											
	30752											
QC Batch: 27	'3768			Analysi	s Method:	E	PA 5030/80	15B				
QC Batch Method: El	PA 5030/8015	В		Analysis Description: Gasoline Range Organics								
Associated Lab Samples	30230752	2003										
METHOD BLANK: 134	6956			N	latrix: Wat	er						
Associated Lab Samples	30230752	2003										
				Blank	Re	eporting						
Parameter			Units	Result		Limit	Analyz	ed	Qualifiers			
TPH (C06-C10)			ug/L		ND	200	10/03/17	16:10				
4-Bromofluorobenzene (S)		%		112	72-124	10/03/17	16:10				
LABORATORY CONTRO		13469	957									
				Spike	LCS		LCS	% Rec	;			
Parameter			Units	Conc.	Resu	lt	% Rec	Limits	Qı	ualifiers		
TPH (C06-C10)			ug/L	1000		970	97	71	-141			
4-Bromofluorobenzene (S)		%				103	72	-124			
MATRIX SPIKE & MATR	IX SPIKE DU	PLICAT	E: 13469	58		1346959						
		-		MS	MSD							
		302	231469003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	I	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
TPH (C06-C10)		ug/L	ND	1000	1000	824	815	82	81	11-165	1	
4-Bromofluorobenzene (%						103	105	72-124		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Hess Towson

Pace Project No.: 30230752

QC Batch: 274174 Analysis Method: EPA 8260B QC Batch Method: EPA 5035A Analysis Description: 8260B MSV UST-SOIL Associated Lab Samples: 30230752001, 30230752002 METHOD BLANK: 1348491 Matrix: Solid Associated Lab Samples: 30230752001, 30230752002 Blank Reporting Limit Qualifiers Parameter Units Result Analyzed 5.0 10/04/17 14:08 Benzene ua/ka ND

Delizerie	uy/ky	ND	5.0	10/04/17 14.00	
Ethylbenzene	ug/kg	ND	5.0	10/04/17 14:08	
Toluene	ug/kg	ND	5.0	10/04/17 14:08	
Xylene (Total)	ug/kg	ND	15.0	10/04/17 14:08	
1,2-Dichloroethane-d4 (S)	%	102	74-131	10/04/17 14:08	
4-Bromofluorobenzene (S)	%	95	70-133	10/04/17 14:08	
Dibromofluoromethane (S)	%	103	71-130	10/04/17 14:08	
Toluene-d8 (S)	%	95	76-124	10/04/17 14:08	

LABORATORY CONTROL SAMPLE: 1348492

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
T didilicitor				/01100		Quainers
Benzene	ug/kg	20	18.5	93	70-130	
Ethylbenzene	ug/kg	20	18.9	94	70-130	
Toluene	ug/kg	20	17.6	88	70-130	
Xylene (Total)	ug/kg	60	55.0	92	70-130	
1,2-Dichloroethane-d4 (S)	%			97	74-131	
4-Bromofluorobenzene (S)	%			93	70-133	
Dibromofluoromethane (S)	%			101	71-130	
Toluene-d8 (S)	%			95	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Hess Towson Pace Project No.: 30230752

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

Toluene-d8 (S)

QC Batch:	274372		Analysis Met	hod: I	EPA 8260B		
QC Batch Method:	EPA 5035A		Analysis Description:		3260B MSV UST-SO	IL	
Associated Lab Sam	ples: 30230752001						
METHOD BLANK:	1349299		Matrix:	Solid			
Associated Lab Sam	ples: 30230752001						
			Blank	Reporting			
Paramo	eter	Units	Result	Limit	Analyzed	Qualifiers	
Ethylbenzene		ug/kg	ND	25	0 10/05/17 12:32		-
Xylene (Total)		ug/kg	ND	75	0 10/05/17 12:32		

98

98

100

95

74-131 10/05/17 12:32

70-133 10/05/17 12:32

71-130 10/05/17 12:32

76-124 10/05/17 12:32

LABORATORY CONTROL SAMPLE: 1349300

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Ethylbenzene	ug/kg	20	18.2	91	70-130	
Xylene (Total)	ug/kg	60	52.8	88	70-130	
1,2-Dichloroethane-d4 (S)	%			99	74-131	
4-Bromofluorobenzene (S)	%			95	70-133	
Dibromofluoromethane (S)	%			103	71-130	
Toluene-d8 (S)	%			97	76-124	

<u>~</u>%

%

%

%

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Hess Towson

Pace Project No.: 30230752

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

Toluene-d8 (S)

QC Batch: 273376 Analysis Method: EPA 8260B QC Batch Method: EPA 8260B Analysis Description: 8260B MSV UST-WATER 30230752003, 30230752004 Associated Lab Samples: METHOD BLANK: 1344663 Matrix: Water Associated Lab Samples: 30230752003, 30230752004 Blank Reporting Limit Qualifiers Parameter Result Analyzed Units Benzene ND 1.0 09/28/17 01:41 ug/L Ethylbenzene ug/L ND 1.0 09/28/17 01:41 ug/L ND Toluene 1.0 09/28/17 01:41 Xylene (Total) ug/L ND 3.0 09/28/17 01:41 1,2-Dichloroethane-d4 (S) % 96 80-120 09/28/17 01:41

101

93

98

79-129

80-120

80-120

09/28/17 01:41

09/28/17 01:41

09/28/17 01:41

LABORATORY CONTROL SAMPLE: 1344664

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	20.8	104	70-130	
Ethylbenzene	ug/L	20	21.1	105	70-130	
Toluene	ug/L	20	21.7	109	70-130	
Xylene (Total)	ug/L	60	64.9	108	70-130	
1,2-Dichloroethane-d4 (S)	%			98	80-120	
4-Bromofluorobenzene (S)	%			106	79-129	
Dibromofluoromethane (S)	%			100	80-120	
Toluene-d8 (S)	%			100	80-120	

%

%

%

MATRIX SPIKE & MATRIX SPIR	KE DUPLICAT	E: 13446	65		1344666						
			MS	MSD							
	302	230912001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/L	ND	20	20	20.6	21.7	103	109	67-121	5	
Ethylbenzene	ug/L	ND	20	20	21.3	20.7	106	104	70-127	3	
Toluene	ug/L	ND	20	20	21.5	21.4	108	107	77-125	1	
Xylene (Total)	ug/L	ND	60	60	64.9	64.3	108	107	69-128	1	
1,2-Dichloroethane-d4 (S)	%						89	95	80-120		
4-Bromofluorobenzene (S)	%						101	101	79-129		
Dibromofluoromethane (S)	%						94	99	80-120		
Toluene-d8 (S)	%						97	99	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Hess Tov	wson										
Pace Project No.:	3023075	2										
QC Batch:	273938	3		Analysi	s Method:	El	PA 8015B					
QC Batch Method:	EPA 35	46		Analysi	s Descript	ion: El	PA 8015 TPI	4				
Associated Lab Sam	nples:	30230752001, 3	0230752002									
METHOD BLANK:	1347510	1		N	latrix: Soli	d						
Associated Lab Sam	nples:	30230752001, 3	0230752002									
				Blank		eporting						
Param	neter		Units	Result		Limit	Analyz	ed	Qualifiers			
TPH (C10-C28)			mg/kg		ND	6.7	10/04/17 (
o-Terphenyl (S)			%		54	24-123	10/04/17 (02:27				
	NTROL SA	AMPLE: 1347	511									
				Spike	LCS	;	LCS	% Rec				
Param	neter		Units	Conc.	Resu	lt	% Rec	Limits	Q	ualifiers		
TPH (C10-C28)											-	
111 (010 020)			mg/kg	66.7		47.0	71	4	3-98			
(,			mg/kg %	66.7		47.0	71 86		3-98 -123			
o-Terphenyl (S)	IATRIX SI	PIKE DUPLICAT	%			47.0						
o-Terphenyl (S)	IATRIX SF	PIKE DUPLICAT	%		MSD	-						
o-Terphenyl (S)	IATRIX SF		%	12 MS Spike	MSD Spike	-		24 MS	-123 MSD	% Rec		
MATRIX SPIKE & M	-		% E: 13475	12 MS		1347513	86	24	-123	% Rec Limits	RPD	Qual
o-Terphenyl (S) MATRIX SPIKE & M	-	30	% E: 13475 231631001	12 MS Spike	Spike	1347513 MS	86 MSD	24 MS	-123 MSD		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:Hess TowsonPace Project No.:30230752								
QC Batch: 272858		Analysis	Method:	EF	A 8015B			
QC Batch Method: EPA 3510C		Analysis	Description:	EP	A 8015 TPH			
Associated Lab Samples: 30230752	2003							
METHOD BLANK: 1342778		Mat	trix: Water					
Associated Lab Samples: 30230752	2003							
		Blank	Repor	ing				
Parameter	Units	Result	Limi	t	Analyze	d Quali	fiers	
TPH (C10-C28)	mg/L		ND	0.10	10/03/17 23	3:49		
o-Terphenyl (S)	%		36 3	5-101	10/03/17 23	3:49		
LABORATORY CONTROL SAMPLE:	1342779							
		Spike	LCS		LCS	% Rec		
Parameter	Units	Conc.	Result	9	% Rec	Limits	Qualifiers	
TPH (C10-C28)	mg/L		0.4	3	48	41-103		
o-Terphenyl (S)	%				69	35-101		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson						
Pace Project No.:	30230752						
QC Batch:	274228		Analysis Meth	od:	ASTM	D2974-87	
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry We	eight/Perce	nt Moisture
Associated Lab San	nples: 30230752	001, 30230752002					
SAMPLE DUPLICA	TE: 1348699						
			30230736001	Dup			
Paran	neter	Units	Result	Result		RPD	Qualifiers
Percent Moisture		%	32.3	17	.9	58	3 D6
SAMPLE DUPLICA	TE: 1348700						
			30230736002	Dup			
Paran	neter	Units	Result	Result		RPD	Qualifiers
Percent Moisture		%	21.0	18	.3	14	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Hess Towson Pace Project No.: 30230752

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 272858

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 274174

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 274372

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- A5 Greater than 5% sediment in sample determined by visual observation. Aqueous portion decanted from the sediment and extracted.
- B Analyte was detected in the associated method blank.
- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- S3 Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated sample.
- SR Surrogate recovery was below laboratory control limits. Results may be biased low.
- ST Surrogate recovery was above laboratory control limits. Results may be biased high.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Hess Towson Pace Project No.: 30230752

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30230752001 30230752002	MIP-8 (18-22) MIP-8 (27-30)	EPA 3546 EPA 3546	273938 273938	EPA 8015B EPA 8015B	274087 274087
30230752003	MIP-8 (GW-18-22)	EPA 3510C	272858	EPA 8015B	274070
30230752001 30230752002	MIP-8 (18-22) MIP-8 (27-30)	EPA 5035A/5030B EPA 5035A/5030B	272875 272875	EPA 8015B EPA 8015B	273006 273006
30230752003	MIP-8 (GW-18-22)	EPA 5030/8015B	273768		
30230752001	MIP-8 (18-22)	EPA 5035A	274174	EPA 8260B	274189
30230752001	MIP-8 (18-22)	EPA 5035A	274372	EPA 8260B	274387
30230752002	MIP-8 (27-30)	EPA 5035A	274174	EPA 8260B	274189
30230752003 30230752004	MIP-8 (GW-18-22) Trip Blank	EPA 8260B EPA 8260B	273376 273376		
30230752001 30230752002	MIP-8 (18-22) MIP-8 (27-30)	ASTM D2974-87 ASTM D2974-87	274228 274228		

5.							Summer.	<u>, (</u> (<u>n</u>	C	*			 Ĺ	40	Buttan	
0 7 5 2 "Page / of /	5 2 8	0 (Location	Pace And WHCU	CARE PETUS IN 2 Requested Turn-around-Time	Standard 24 HR	Sample Comments		6	È	S S			WO#:30230752	1 al	O C.C.MMW 1 223	Tracking Number(s)	Number of Packages Custody Seal Number(s)
20 20 20 20				FL.	· · · · · · · · · · · · · · · · · · ·							h.	WO#:3		l le	Shipment Method	Number of Packages
Y RECORD	Requested Analyses & Preservatives		\$ 10.8 \$ 10.8	> { Z 2 K J	1)- (J & C 1)- (J & C 1)- (J & C	· 0 / · 0 /	XX		A. N.							21/19 11300 Ship	Num
CHAIN-OF-CUSTODY RECORD		20171	@wsb.com	.9 <i>C</i> }	r of Container	Ime Numbe			<u>、</u> 	× 1						Monthe 9	
		HARACO, UN Name	WCUM O O F F WEP USA Contact Ermail PG M & () I O F F	WSP USA Contact Phone 703 - 709 - 6500	La(s)	Collection Start* Collectic Date Time Date	9/21/5 0830	4/1/1 0905	9/11/2 1145							Time Received By (Signature)	Received By (Signafulf)
	1	V. D. Suito3co WSP USA Contact	WSP USA Contact I	WSP USA Contact I	Sampler(s) Signature(s)	Matrix Collec Date	Sul 9/21	Ser 1 9/21/	40 921						[9/2/11/7	Date Date DAC C
	WSP USA Office Address	1532 WUNES JCC/Webery DY SurP3 Contact Name Project Name WSP USA Contact Name	HPSS JOurse Project Location Mar Day Jan	Project Number & Task 3 NYOC4081/3	sampler(s) Name(s) Chris CNS c	Sample Identification	(x1-21/2-0/m)	MIP.8(12-30)	MIP-8/(W-1822)	Trip Blank	-					B	Relinquished By (Signature)

and the second	•					3.0	23075
Pace Analytical	Diant Manag		,	KA	2		£ 0 V / V
ý (Client Name:]>>1		Project #	
Courier: 🔲 Fed Ex 🗍 U		nt 🗍	Com	mercia	Pace Other		bel Coc
		.in 🗆	0011	1101010	in all our	LIMS Lo	
Tracking #:			= <i>0</i>	XZ	123/17 Is intact: - Tyes		am AKAT
Custody Seal on Cooler/B	W Present. Pryes	T	61-	the second			
Thermometer Used	1	J.	° C	- and a state of the state of t		°C Final Tamp	116 .0
Cooler Temperature O Temp should be above freezing	bserved Temp <u><i>l</i></u>	<u> </u>	_ 0	Cor	rection Factor <u>.0.1</u>	•C Final Temp:	<u> </u>
Temp should be above needing	,					Date and Initials of contents:	person examining
Comments:		Yes	s No	N/A	λ]	contents: 7/23	nt ac
Chain of Custody Present:	· · · · · · · · ·				1	<u>ennerne — ennerne</u>	
Chain of Custody Filled Out	•	1 Margania	-		2.		
Chain of Custody Relinquist	ned:				3.		
Sampler Name & Signature	,,, _,		1		4.		
Sample Labels match COC:			1		5.		
-Includes date/time/ID	Matrix:	31	i.M				
Samples Arrived within Hold	Time:			T	6,	· · · · · · · · · · · · · · · · · · ·	
Short Hold Time Analysis (Freeman	-	7.		
Rush Turn Around Time Re		<u> </u>		·	8,		
Sufficient Volume:					9,		
Correct Containers Used:		www.		1	10.		
-Pace Containers Used:		-	/	+			
Containers Intact:					.11.		
Orthophosphate field filtered		1			12.		
Hex Cr Aqueous Compliance/NF	DES sample field filterer	<u>، </u>			13.		
Drganic Samples checked			 -		14.		
Filtered volume received for [115.		
Il containers have been checke					16,	· ····=	
M containers needing preservati	ion are found to be in						
ompliance with EPA recommend			<u> </u>	-			
exceptions: VOA, coliform, T	OC O&G Phenolics				Initial when	Date/time of preservation	
weephand: Ford comoning ,					Lot # of added	[P	
					preservative		
eadspace in VOA Vials (>6	mm):				17.		
rip Blank Present:			·		18.		
rip Blank Custody Seals Pres			-		Initial when	· · · · · · · · · · · · · · · · · · ·	
ad Aqueous Samples Scre	enea > v.s mrein/mr				completed:	Date:	
lient Notification/ Resolution	on:						
Person Contacted:				Date/T	-ime:	Contacted By:	
Comments/ Resolution:							
		~~~~		· · · · · · · · · ·	- <b>-</b>		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office ( i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.



October 10, 2017

Chris Cresci WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: WSP Hess Towson Pace Project No.: 30231096

Dear Chris Cresci:

Enclosed are the analytical results for sample(s) received by the laboratory on September 26, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Timothy Reed for Penny Westrick penny.westrick@pacelabs.com 724 850-5610 Project Manager

Enclosures





#### CERTIFICATIONS

Project: WSP Hess Towson Pace Project No.: 30231096

#### **Minnesota Certification IDs**

1700 Elm Street SE. Suite 200. Minneapolis. MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: UST-078 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: MN00064 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

#### Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970 Wyoming via EPA Region 8 Certification #: 8TMS-L

Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification

#### Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



#### CERTIFICATIONS

Project: WSP Hess Towson Pace Project No.: 30231096

#### Pennsylvania Certification IDs

Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L



# SAMPLE ANALYTE COUNT

Project: WSP Hess Towson Pace Project No.: 30231096

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30231096001	Hess Towson GW	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	MAK	2	PASI-PA
		EPA 6020	ТТ3	5	PASI-M
		EPA 8260B	LEL	8	PASI-PA
30231096002	Hess Towson Soil A	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	MAK	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30231096003	Hess Towson Soil B	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	MAK	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30231096004	Trip Blank	EPA 8260B	LEL	8	PASI-PA



Project: WSP Hess Towson

Pace Project No.: 30231096

Sample: Hess Towson GW	Lab ID: 302	31096001	Collected: 09/25/1	7 15:15	Received: 09	)/26/17 10:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Mether	nod: EPA 80	015B Preparation Me	thod: E	PA 3510C			
TPH (C10-C28) Surrogates	1.3	mg/L	0.10	1	09/28/17 13:16	10/07/17 03:15		1c
o-Terphenyl (S)	44	%	35-101	1	09/28/17 13:16	10/07/17 03:15	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 50	030/8015B					
TPH (C06-C10) <i>Surrogates</i>	4360	ug/L	200	1		10/03/17 21:25		
4-Bromofluorobenzene (S)	106	%	72-124	1		10/03/17 21:25	460-00-4	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	020 Preparation Meth	od: EP	A 3020			
Chromium	ND	ug/L	0.50	1	10/03/17 03:56	10/06/17 01:56	7440-47-3	
Molybdenum	ND	ug/L	0.50	1	10/03/17 03:56	10/06/17 01:56	7439-98-7	
Selenium	ND	ug/L	0.50	1	10/03/17 03:56	10/06/17 01:56	7782-49-2	
Uranium-238	ND	ug/L	0.50	1	10/03/17 03:56	10/06/17 01:56	7440-61-1	
Vanadium	ND	ug/L	1.0	1	10/03/17 03:56	10/06/17 01:56	7440-62-2	
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Benzene	18.8	ug/L	1.0	1		09/29/17 17:48	71-43-2	
Ethylbenzene	359	ug/L	1.0	1		09/29/17 17:48	100-41-4	
Toluene	31.3	ug/L	1.0	1		09/29/17 17:48	108-88-3	
Xylene (Total) <i>Surrogates</i>	581	ug/L	3.0	1		09/29/17 17:48	1330-20-7	
Toluene-d8 (S)	100	%	80-120	1		09/29/17 17:48	2037-26-5	
4-Bromofluorobenzene (S)	101	%	79-129	1		09/29/17 17:48	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	80-120	1		09/29/17 17:48	17060-07-0	
Dibromofluoromethane (S)	98	%	80-120	1		09/29/17 17:48	1868-53-7	



Project: WSP Hess Towson

Pace Project No.: 30231096

Sample: Hess Towson Soil A	Lab ID: 302	31096002	Collected: 09/25/1	7 15:3	0 Received: 09	)/26/17 10:00 N	latrix: Solid	
Results reported on a "dry weight	" basis and are adj	iusted for pe	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Mether	nod: EPA 80 [°]	15B Preparation Me	ethod: E	EPA 3546			
TPH (C10-C28) <i>Surrogates</i>	223	mg/kg	76.2	10	10/03/17 08:56	10/04/17 18:54		
o-Terphenyl (S)	86	%	24-123	10	10/03/17 08:56	10/04/17 18:54	84-15-1	
Gasoline Range Organics	Analytical Mether	nod: EPA 80 [°]	15B Preparation Me	ethod: E	EPA 5035A/5030B			
Gasoline Range Organics <i>Surrogates</i>	89.3	mg/kg	9.6	1	09/28/17 08:28	09/29/17 21:46		
a,a,a-Trifluorotoluene (S)	48	%	10-174	1	09/28/17 08:28	09/29/17 21:46	98-08-8	
4-Bromofluorobenzene (S)	89	%	85-109	1	09/28/17 08:28	09/29/17 21:46	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 826	60B Preparation Me	ethod: E	EPA 5035A			
Benzene	ND	ug/kg	244	50	10/04/17 12:55	10/09/17 14:35	71-43-2	1c
Ethylbenzene	1610	ug/kg	244	50	10/04/17 12:55	10/09/17 14:35	100-41-4	1c
Toluene	ND	ug/kg	244	50	10/04/17 12:55	10/09/17 14:35	108-88-3	1c
Xylene (Total)	9250	ug/kg	731	50	10/04/17 12:55	10/09/17 14:35	1330-20-7	
Surrogates								
Toluene-d8 (S)	97	%	76-124	50		10/09/17 14:35		
4-Bromofluorobenzene (S)	102	%	70-133	50	10/04/17 12:55	10/09/17 14:35	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	74-131	50	10/04/17 12:55	10/09/17 14:35	17060-07-0	
Dibromofluoromethane (S)	102	%	71-130	50	10/04/17 12:55	10/09/17 14:35	1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM E	02974-87					
Percent Moisture	13.5	%	0.10	1		10/07/17 11:48		



Project: WSP Hess Towson

Pace Project No.: 30231096

Sample: Hess Towson Soil B	Lab ID: 302	<b>31096003</b> Co	ollected: 09/25/1	17 15:4	5 Received: 09	/26/17 10:00 N	latrix: Solid	
<b>Results reported on a "dry weight</b> " Comments: • Sample 003 was not			,					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 8015B	Preparation Me	ethod: E	EPA 3546			
TPH (C10-C28) <i>Surrogates</i>	99.1	mg/kg	7.7	1	10/03/17 08:56	10/04/17 03:34		
o-Terphenyl (S)	60	%	24-123	1	10/03/17 08:56	10/04/17 03:34	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 8015B	Preparation Me	ethod: E	PA 5035A/5030B			
Gasoline Range Organics Surrogates	53.3	mg/kg	9.6	1	09/28/17 08:28	09/29/17 22:05		
a,a,a-Trifluorotoluene (S)	43	%	10-174	1	09/28/17 08:28	09/29/17 22:05	98-08-8	
4-Bromofluorobenzene (S)	85	%	85-109	1	09/28/17 08:28	09/29/17 22:05	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 8260B	Preparation Me	ethod: E	PA 5035A			
Benzene	ND	ug/kg	245	50	10/04/17 12:55	10/09/17 15:01	71-43-2	1c
Ethylbenzene	909	ug/kg	245	50	10/04/17 12:55	10/09/17 15:01	100-41-4	1c
Toluene	ND	ug/kg	245	50	10/04/17 12:55	10/09/17 15:01	108-88-3	1c
Xylene (Total)	5310	ug/kg	734	50	10/04/17 12:55	10/09/17 15:01	1330-20-7	
Surrogates								
Toluene-d8 (S)	100	%	76-124	50		10/09/17 15:01	2037-26-5	
4-Bromofluorobenzene (S)	105	%	70-133	50	10/04/17 12:55	10/09/17 15:01	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	74-131	50	10/04/17 12:55	10/09/17 15:01	17060-07-0	
Dibromofluoromethane (S)	100	%	71-130	50	10/04/17 12:55	10/09/17 15:01	1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM D297	74-87					
Percent Moisture	16.0	%	0.10	1		10/07/17 11:48		



Project: WSP Hess Towson

# Pace Project No.: 30231096

Sample: Trip Blank	Lab ID: 302	31096004	Collected: 09/25/	7 00:01	Received: 09	Received: 09/26/17 10:00 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260B MSV	Analytical Meth	nod: EPA 82	260B						
Benzene	ND	ug/L	1.0	1		09/29/17 13:10	71-43-2		
Ethylbenzene	ND	ug/L	1.0	1		09/29/17 13:10	100-41-4		
Toluene	ND	ug/L	1.0	1		09/29/17 13:10	108-88-3		
Xylene (Total)	ND	ug/L	3.0	1		09/29/17 13:10	1330-20-7		
Surrogates		-							
Toluene-d8 (S)	98	%	80-120	1		09/29/17 13:10	2037-26-5		
4-Bromofluorobenzene (S)	102	%	79-129	1		09/29/17 13:10	460-00-4		
1,2-Dichloroethane-d4 (S)	99	%	80-120	1		09/29/17 13:10	17060-07-0		
Dibromofluoromethane (S)	101	%	80-120	1		09/29/17 13:10	1868-53-7		



QC Batch: 273409		Analysis Method: EPA 8015B					
QC Batch Method: EPA 5035A/5	030B	Analysis	Description:	Gasoline Rang	e Organics		
Associated Lab Samples: 30231	096002, 30231096003						
METHOD BLANK: 1344895		Mat	rix: Solid				
Associated Lab Samples: 30231	096002, 30231096003						
		Blank	Reporting	]			
Parameter	Units	Result	Limit	Analyze	d Quali	fiers	
Gasoline Range Organics	mg/kg	١	ND 1	0.0 09/29/17 1	6:30		
4-Bromofluorobenzene (S)	%	1	13 85-1	109 09/29/17 1	6:30		
a,a,a-Trifluorotoluene (S)	%		67 10-1	174 09/29/17 1	6:30		
LABORATORY CONTROL SAMPLI	E: 1344896						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Gasoline Range Organics	mg/kg	50	51.5	103	71-141		
4-Bromofluorobenzene (S)	%			106	85-109		
a,a,a-Trifluorotoluene (S)	%			73	10-174		

MATRIX SPIKE & MATRIX SPIK	E DUPLICAT	E: 13448	97		1344898						
			MS	MSD							
	302	231110001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Gasoline Range Organics	mg/kg	ND	57.4	57.4	49.6	50.2	85	86	72-141	1	
4-Bromofluorobenzene (S)	%						104	105	85-109		
a,a,a-Trifluorotoluene (S)	%						51	57	10-174		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	WSP H	less Towson										
Pace Project No.:	302310	)96										
QC Batch:	27376	68		Analys	sis Method	d: E	PA 5030/80	15B				
QC Batch Method:	EPA 5	5030/8015B		Analys	sis Descrip	otion: G	Sasoline Rar	ige Organic	S			
Associated Lab Sam	ples:	3023109600	1									
METHOD BLANK:	134695	56		Ν	Matrix: Wa	ater						
Associated Lab Sam	ples:	3023109600	1									
				Blank		Reporting						
Paramo	eter		Units	Resul	t	Limit	Analyz	ed	Qualifiers			
TPH (C06-C10)			ug/L		ND	200						
4-Bromofluorobenzer	ne (S)		%		112	72-124	10/03/17	16:10				
LABORATORY CON	TROLS	SAMPLE: 1	346957									
				Spike	LC	S	LCS	% Rec				
Parame	eter		Units	Conc.	Res	ult	% Rec	Limits	Q.	ualifiers	_	
TPH (C06-C10)			ug/L	1000	)	970	97	71	-141			
4-Bromofluorobenzer	ne (S)		%				103	72	-124			
MATRIX SPIKE & MA	ATRIX	SPIKE DUPLI	CATE: 134	6958		1346959						
				MS	MSD							
_			3023146900		Spike	MS	MSD	MS	MSD	% Rec		
Paramete	er	Uni	ts Result	t Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
TPH (C06-C10)		ug/	_	D 1000	1000	824	815	82	81	11-165		
4-Bromofluorobenzer	ne (S)	%						103	105	72-124		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: WSP Hess Towson

Pace Project No.: 30231096

QC Batch: 499864		Analysis	Method:	El	PA 6020					
QC Batch Method: EPA 3020		Analysis	Description:	60	20 MET					
Associated Lab Samples: 3023	31096001									
METHOD BLANK: 2718005		Ma	trix: Water							
Associated Lab Samples: 3023	31096001									
		Blank	Repo	ting						
Parameter	Units	Result	Lin	it	Analyz	ed	Qualifiers			
Chromium	ug/L		ND	0.50	10/06/17 (	01:50		_		
Molybdenum	ug/L		ND	0.50	10/06/17 (	01:50				
Selenium	ug/L		ND	0.50	10/06/17 (					
Uranium-238	ug/L		ND	0.50	10/06/17 (					
Vanadium	ug/L		ND	1.0	10/06/17 (	01:50				
Devenueter	Units	Spike	LCS		LCS	% Rec				
Parameter		Conc	Result		% Rec	Limits		ualifiers	-	
Chromium	ug/L	100	10		107		-120			
Molybdenum	ug/L	100	10	-	103		-120			
Selenium Uranium-238	ug/L ug/L	100 100	11 10	-	113 106		-120 -120			
Vanadium	ug/L	100	10		100		-120			
Valiadian	ug, E	100		-	104	00	120			
MATRIX SPIKE & MATRIX SPIKE	DUPLICATE: 27180	007	27	8008						
		-	MSD							
	30231096001	•		ЛS	MSD	MS	MSD	% Rec		
Parameter	Units Result	Conc.	Conc. R	esult	Result	% Rec	% Rec	Limits	RPD	Qual
Chromium	ug/L ND	100	100	108	108	108	108	75-125	0	

100

100

100

100

104

110

104

106

104

110

104

106

106

112

106

107

75-125

75-125

75-125

75-125

2

1

2

1

106

112

106

107

ND

ND

ND

ND

100

100

100

100

ug/L

ug/L

ug/L

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

Molybdenum

Uranium-238

Selenium

Vanadium

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: WSP Hess Towson

Pace Project No.: 30231096

QC Batch: 2742	208	Analysis Meth	nod: E	PA 8260B	
QC Batch Method: EPA	5035A	Analysis Description:		260B MSV UST-SOI	L
Associated Lab Samples:	30231096002, 30231096003				
METHOD BLANK: 13486	23	Matrix:	Solid		
Associated Lab Samples:	30231096002, 30231096003				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	250	10/09/17 12:23	
Ethylbenzene	ug/kg	ND	250	10/09/17 12:23	
Toluene	ug/kg	ND	250	10/09/17 12:23	
Xylene (Total)	ug/kg	ND	750	10/09/17 12:23	
1,2-Dichloroethane-d4 (S)	%	99	74-131	10/09/17 12:23	
4-Bromofluorobenzene (S)	%	94	70-133	10/09/17 12:23	
Dibromofluoromethane (S)	%	102	71-130	10/09/17 12:23	
Toluene-d8 (S)	%	94	76-124	10/09/17 12:23	

#### LABORATORY CONTROL SAMPLE: 1348624

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/kg	20	17.6	88	70-130	
Ethylbenzene	ug/kg	20	17.0	85	70-130	
Toluene	ug/kg	20	16.5	82	70-130	
Xylene (Total)	ug/kg	60	51.5	86	70-130	
1,2-Dichloroethane-d4 (S)	%			102	74-131	
4-Bromofluorobenzene (S)	%			99	70-133	
Dibromofluoromethane (S)	%			106	71-130	
Toluene-d8 (S)	%			92	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: WSP Hess Towson

Pace Project No.: 30231096

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

Toluene-d8 (S)

QC Batch:	273663	Analysis Met	nod: El	PA 8260B				
QC Batch Method:	EPA 8260B	Analysis Des	cription: 82	8260B MSV UST-WATER				
Associated Lab Samp	les: 30231096001, 302310	96004						
METHOD BLANK: 1	346053	Matrix:	Water					
Associated Lab Samp	les: 30231096001, 302310	96004						
		Blank	Reporting					
Parame	ter Units	Result	Limit	Analyzed	Qualifiers			
Benzene	ug/L	ND	1.0	09/29/17 12:44				
Ethylbenzene	ug/L	ND	1.0	09/29/17 12:44				
Toluene	ug/L	ND	1.0	09/29/17 12:44				
Xylene (Total)	ug/L	ND	3.0	09/29/17 12:44				
1,2-Dichloroethane-d4	(S) %	101	80-120	09/29/17 12:44				

79-129 09/29/17 12:44

80-120 09/29/17 12:44

80-120 09/29/17 12:44

102

102

97

%

%

%

	4040054
LABORATORY CONTROL SAMPLE:	1346054

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	17.6	88	70-130	
Ethylbenzene	ug/L	20	17.2	86	70-130	
Toluene	ug/L	20	17.9	89	70-130	
Xylene (Total)	ug/L	60	52.9	88	70-130	
1,2-Dichloroethane-d4 (S)	%			96	80-120	
4-Bromofluorobenzene (S)	%			98	79-129	
Dibromofluoromethane (S)	%			101	80-120	
Toluene-d8 (S)	%			103	80-120	

MATRIX SPIKE & MATRIX SPIK	CE DUPLICAT	E: 13460		MOD	1346056						
Parameter	302 Units	231099005 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual
Benzene	ug/L	ND	20	20	17.8	17.9	89	89	67-121		
Ethylbenzene	ug/L	ND	20	20	17.5	18.0	88	90	70-127	3	
Toluene	ug/L	ND	20	20	18.5	18.2	93	91	77-125	2	
Xylene (Total)	ug/L	ND	60	60	54.2	53.9	90	90	69-128	0	
1,2-Dichloroethane-d4 (S)	%						98	93	80-120		
4-Bromofluorobenzene (S)	%						99	100	79-129		
Dibromofluoromethane (S)	%						101	98	80-120		
Toluene-d8 (S)	%						101	102	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project:	WSP He	ess Towson											
Pace Project No.:	302310	96											
QC Batch:	27393	8			Analys	is Method	: E	PA 8015B					
QC Batch Method:	EPA 3	546			Analys	is Descrip	tion: E	PA 8015 TP	н				
Associated Lab San	nples:	302310960	02, 30	231096003									
METHOD BLANK:	134751	0			N	latrix: Sol	id						
Associated Lab San	nples:	302310960	02, 30	231096003									
Paran	neter			Units	Blank Result		leporting Limit	Analyz	ed	Qualifiers			
TPH (C10-C28) o-Terphenyl (S)			I	mg/kg %		ND 54	6.7 24-123		-				
LABORATORY CO	NTROL S	AMPLE:	13475	511									
					Spike	LCS	6	LCS	% Rec	:			
Paran	neter			Units	Conc.	Resu	ult	% Rec	Limits	Qı	ualifiers		
TPH (C10-C28) o-Terphenyl (S)			I	mg/kg %	66.7		47.0	71 86	-	3-98 -123			
MATRIX SPIKE & M	IATRIX S	PIKE DUPL	_ICAT	E: 13475	12 MS	MSD	1347513						
			302	31631001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Paramet	ter	Ur	nits	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
TPH (C10-C28) o-Terphenyl (S)			g/kg %	35.5	72.2	72.1	84.6	73.2	68 77	52 78	10-175	14	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: WSP Hess Towso	n						
Pace Project No.: 30231096							
QC Batch: 273432		Analysis Method: E		EPA 8015B			
QC Batch Method: EPA 3510C		Analysis Description:		EPA 8015 TPH			
Associated Lab Samples: 30231096	5001						
METHOD BLANK: 1344962		Mat	trix: Water				
Associated Lab Samples: 3023109	5001						
		Blank	Reportir	g			
Parameter	Units	Result	Limit	Analyze	d Qua	lifiers	
TPH (C10-C28)	mg/L	1	ND	0.10 10/07/17 0	1:49		
o-Terphenyl (S)	%		52 35	-101 10/07/17 0	1:49		
LABORATORY CONTROL SAMPLE:	1344963						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
TPH (C10-C28)	mg/L	1	0.65	65	41-103		
o-Terphenyl (S)	%			79	35-101		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	WSP Hess Towson	n					
Pace Project No .:	30231096						
QC Batch:	274569		Analysis Meth	od:	ASTM D2974-87		
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Percent Moisture		
Associated Lab Sar	nples: 30231096	002, 30231096003					
SAMPLE DUPLICA	TE: 1350754						
			30230930001	Dup			
Parar	neter	Units	Result	Result		RPD	Qualifiers
Percent Moisture		%	5.2	5	.2	(	)
SAMPLE DUPLICA	TE: 1350755						
			30230931001	Dup			
Paran	neter	Units	Result	Result		RPD	Qualifiers
Percent Moisture		%	6.6	2	.3	97 D6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

# Project: WSP Hess Towson

Pace Project No.: 30231096

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

#### S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### LABORATORIES

PASI-M Pace Analytical Services - Minneapolis PASI-PA Pace Analytical Services - Greensburg

#### BATCH QUALIFIERS

Batch: 273432

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume. Batch: 274208

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

#### ANALYTE QUALIFIERS

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- B Analyte was detected in the associated method blank.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	WSP Hess Towson
Pace Project No .:	30231096

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30231096002	Hess Towson Soil A	EPA 3546	273938	EPA 8015B	274087
30231096003	Hess Towson Soil B	EPA 3546	273938	EPA 8015B	274087
30231096001	Hess Towson GW	EPA 3510C	273432	EPA 8015B	274407
30231096002	Hess Towson Soil A	EPA 5035A/5030B	273409	EPA 8015B	273436
30231096003	Hess Towson Soil B	EPA 5035A/5030B	273409	EPA 8015B	273436
30231096001	Hess Towson GW	EPA 5030/8015B	273768		
30231096001	Hess Towson GW	EPA 3020	499864	EPA 6020	500447
30231096002	Hess Towson Soil A	EPA 5035A	274208	EPA 8260B	274227
30231096003	Hess Towson Soil B	EPA 5035A	274208	EPA 8260B	274227
30231096001	Hess Towson GW	EPA 8260B	273663		
30231096004	Trip Blank	EPA 8260B	273663		
30231096002	Hess Towson Soil A	ASTM D2974-87	274569		
30231096003	Hess Towson Soil B	ASTM D2974-87	274569		

Face Analytical[®]

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section B Required Project Information: Report To: M Cheel DUC Attention: Copy To: Door Company N	Diez	Diez		Sect Invoic Atten Com	Sect Invoic Atten Comp	Sect Invoic Comp	e Infi ion: ion:	Section C Invoice Information: Attention: Company Name:					LATORY	Page:		00 of (1) (			
	Plinchase Order No. 1		2				Address: Pace Quote						NPDES	L GROUN	GROUND WATER	L 1	DRINKING WATER	VATER	
	Project Name:	N/CP	2971	Total For	S		Reference: Pace Project Manager	Ŧ				Site	ation						
	Project Number		<i>67</i> ~ 1		-		Pace Profile #;	#				i i T	STATE:			194 - -			
											Requested Analysis Filtered (Y/N)	d Analy:	sis Filtere	(Ν/λ) p				-986	
Matri) MATRI)	les DE	(JWD)		COLLECTED	ED			Prese	Preservatives	N /A	[74] [77]	Enna						nikologi.	
Drinking Water Water Waste Water Product Soll/Solid	ier ater S. P. W. T. W. S. P. W. T. W.	୦୦=୦ ଶ୍ୟମତ	COMPOSITE		COMPOSITE END/GRAB	оггесцои	و			1						Merals= U	s d	\^'ئى'	
Oil Wipe Tissue Other	งมาระบาท มาระการการระห์รู้ให้มุ่มแม่มากระการการการการการการการการการการการการการก		DATE	E H	DATE DATE	ñ Ample temp at C	H OF CONTAINERS Unpreserved	HCI HNO ³ H ⁵ SO ⁴	NaOH Na ₂ S ₂ O ₃ Methanoi	Other Sef Test	105 Q30 0928 1111 GIOZ 0 J8	ng Man			Residual Chlorine	Pace P	/ Pace Project No./ Lab I.D.	Lab I.D.	
	K	5	1		$\vdash$	+	9	X X X			X							8	
4	2 V	5	0 (125/1)	12:25			8		× ×		× × ×	_						88	TTO ASSAULT
																	13	120	
												+							
	,	-																	approximentation of the second s
								~											
	_	-																	
ADDITIONAL COMMENTS		INQUISH	IED BY / AI	RELINQUISHED BY / AFFILIATION		DATE	TIME		ACCEI	PTED BY			DATE	TIME	 90-700	SAMPLE	SAMPLE CONDITIONS	4S	
	michall Co	280		TOVIZ Shirking	~	9/2/17	3, 9) 9)	े ज	2			-							
	5 5 5		1					Ŋ	Solles	J.	KM RO	6	6-98-1)	680	0.0	5			
WO#:30231096	00																		
			0	AMPLER N	SAMPLER NAME AND SIGNATURE	IGNATUF	ַ: ש					_			0		Jer	tact	
			<b>_</b>	P R	PRINT Name of SAMPLER:	SAMPLEF									, ui du	bevie N\Y) e	(N/λ) po Coc γροίει	ni zək (V/Y)	
			L	5	SIGNATURE of SAMPLER:	SAMPLER					DATE Signed	ed O:			naT		Seale		

F-ALL-Q-020rev.07, 15-May-2007

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

Pittsburgh La	ab Sample Conc	litior	ı Up	on F	Receipt		and the second	
<b>16</b>							302310	9 R
Pace Analytical	Client Name:		$\mathbb{W}$	32	) 	Project #_	~	- 0
Courier: 🗗 Fed Ex 🗇 Tracking #: 7066	25367580				-		Label <u>M</u> IMS Login ANV	
Custody Seal on Cooler	/Box Present: Ψ yes			and the second	ls intact: 🗍 yes	🗋 no		
Thermometer Used	<u> </u>	Туре	of Ice	Same?			<i>,</i>	
Cooler Temperature	Observed Temp	$\Sigma O$	_ ° C	Cor	rection Factor <u>: TO</u>	, () °C Final Te	emp: 6.6 °C	
Temp should be above free:	zing to 6°C					Data and init		1
Comments:		Yes	No	N/A	L L L L L L L L L L L L L L L L L L L	contents:	ials of person examining	)
Chain of Custody Present	t	X			1.			
Chain of Custody Filled O	lut:	X	1	1	2.			
Chain of Custody Relingu	ished:	X	1	1	3.			
Sampler Name & Signatu			X	1	4.	//////////////////////////		
Sample Labels match CO					5.			
-Includes date/time/ID	Matrix:		19	1				
Samples Arrived within Ho		X		1	6.	, <b>.</b>		
Short Hold Time Analysi			X		7.			
Rush Turn Around Time	and an			[	8.			
Sufficient Volume:		†			9.			
Correct Containers Used:		X			10.		~~~~~	
-Pace Containers Used	:	X						
Containers Intact:		<u> </u>	X		11. Bereived	ONP VIDA	broken From	ON
Orthophosphate field filtere	ed			X	12.			<i>w</i>
Hex Cr Aqueous Compliance/				$\mathbf{\hat{X}}$	13.	<u> </u>		
Organic Samples check		$\mathbf{X}$		×	14. AM 9-	26-17		
Filtered volume received for				X	15.	<u>a. a. p</u>	······································	
All containers have been chec	ked for preservation.	$\mathbf{X}$		<u> </u>	16.			
All containers needing preserv compliance with EPA recomm		×	-					
exceptions: VOA, coliform					Initial when	Date/time of		
	, TOC, OAG, Phenoics				completed Lot # of added preservative	preservation		
Headspace in VOA Vials ( 3	>6mm):		X			from sai	mole col	
Trip Blank Present:		$\mathbf{X}^{\dagger}$			<u>на исла исла –</u> 18.			
Trip Blank Custody Seals P	resent	Ź			/			
Rad Aqueous Samples Sc			-	w 1	nitial when completed:	Date:		
Client Notification/ Resolu Person Contacted:	a .	«	یل _س ے ہے۔		ime: 26 SEP17 1.	3.55 Contacted	By: TPL	
Comments/ Resolution:	Soil B needs	to	be .	1-1	sume testing	LS SoilA	Scuples	
wire collected	in MD.		. al		val			
Soil B > D	ate Time	san	<u>apre</u>					
	9-25-17/154	5						

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) *PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

		Pac	e Co	ontainer Ord	er #2	2772	30	PLEASE RETURN THIS COPY
Order B Company V Contact P Email <u>P</u> Address 2 City F State F	VSP Pam Groff pam.groff@ws 750 Holiday D Suite 410 Pittsburgh	ci sp.com rive Ad p 15220	Ship Tompany Contact Email Address ddress 2 City State	- 311 2 3 9	() §	88	<ul> <li>Return</li> <li>Company</li> <li>Contact</li> <li>Email</li> <li>Address</li> <li>Address 2</li> <li>City</li> <li>State</li> </ul>	WITHCOC
Project N	Name <u>Hess</u> T	Towson I		00/10/2017	Profile Carrier	FedEx	Standard	Quote
1	anks			Bottle Labels -	) Sample	IDs		ottles Boxed Cases Individually Wrapped Grouped By Sample
	n Shipping o Shipper Nu /ith Shipper N Options — lumber of Blau Pre-Printed	mber		Misc Sampling Instr X Custody Seal X Temp. Blanks X Coolers Syringes				X       Extra Bubble Wrap         Short Hold/Rush Stickers         DI Water       Liter(s)         USDA Regulated Soils
# of Sample		Test	Contai	ner	Total	# of QC		Notes
2	SL	VOC 8260 5035 Low Level Terracore kit w/ sodium bisulfate	1-Terrac	ore kit	4	2	321447 071017-3TE	MS/MSD
2	SL	DRO by 8015	4oz jar		2	0	7192030	
1	WT	VOC by 8260	1(3) 40m 3-40mL	clear vial HCL glass vial HCL-hydrochloric		0	7192030	
1	WT	GRO 8015	acid		3	2	073117-1CK	3 MS/MSD
1	WT	DRO by 8015	L	er glass, unpres ni plastic w/ HNO3	3	0	081417-2AF\	N
1	WT	Metals by 6020			1	0	073117-4CF	χ
1	WT	COD		plastic H2SO4 HCL w/custody seal	2	0	7192030	
1	WΤ	Trip BLANK	12-40mL	FIOL WICHSIGHY Sour	·ــــــــــــــــــــــــــــــــــــ			

*Sample receiving hours are Monday through Friday 8:00 am to 6:00 pm and Saturday from 9:00 am to 12:00 pm unless special arrangements are made with your project manager.

*Pace Analytical reserves the right to return hazardous, toxic, or radioactive samples to you.

*Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage and disposal.

*Payment term are net 30 days.

*Please include the proposal number on the chain of custody to insure proper billing.

Liege lingue de hobert	Ship Date :	09/14/2017
Sample Notes Solid GRO will be run from voc soil kit	Prepared By:	David F Gunsallus
	Verified By:	Ashleigh Lowe

٦

Pace Analytical www.pecelabs.com sted By: 10/10/2017		AINC				i an
Analytica www.pecelebs.com 10/10/2017				r Ja	**: 	
Results Requested By:				l Intact (Y ocument.		
ults Requ	· · · · · · · · · · · · · · · · · · ·		Comments	N Received on Ice Y or N Samples Intact ( sampler's name and signature may not be provided on this COC document. available in the owner laboratory.		
<u> </u>				vided on t		,
9/26/2017 Request				IC N		
ed Date:	3e, V, Cr, Mo	5 'N 0209' ×		ce Y or ure may no atory.		
Owner Received Date:			Date/Time	Received on Ice me and signature ne owner laborato		
Ошие	Preserved Containers			Rece 's name a	:.	
		SONH T		, sampler available		
innesota -	55414 700	Matritx Mater		Y or ppling site rmation is	A second se	
s Towson To nalytical M	Phone (612)607-1700	Lab ID 30231096001	Received By	Custody Seal ame of the sam	***	
Workorder Name:WSP Hess Towson Pace Analytical M	Phone 24	15:15	り Date/Time 校子-スアー/アレ	<b>Cust</b> <b>Cust</b> on/name as is since		
er Name:)		aling and a state		19.0cc Intiality, locati ed complete		
Vorkorde		Sample Vpb		eipt V ^C onfidentia nsidered (		
(po			By M	e on Rec în client cu ody is cor		
Chain of Custody Workorder: 30231096 V Report To Penny Westrick	Pace Analytical Pritsourgn 1638 Roseytown Road Suites 2,3,4 Greensburg, PA 15601 Phone 724 850-5610 Phone 724 850-5610	son GW	Released By	3       3       Cooler Temperature on Receipt VG·OC       Custody Seal Y or N       Received on Ice         Cooler Temperature on Receipt VG·OC       Custody Seal Y or N       Received on Ice         ***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature m         This chain of custody is considered complete as is since this information is available in the owner laboratory.		Page 2
Chain of Workorder: 3 Report To Penny Westrick	ace Analyr 338 Rosey ultes 2,3,4 reensburg none 724 {	tem Sample ID Hess Towson GW	5 Transfers	ooler Ter In order t This cha		

i

and the second sec

and the second		ument Name:	Document Revised: 30Aug2017
Pace Analytical [®]		tion Upon Recei	
		cument No.:	Issuing Authority:
		N-L-213-rev.21	Pace Minnesota Quality Office
Sample Condition Upon Receipt	hunda	Project	* NO#: 10405165
Courier:			i i i i i i i i i i i i i i i i i i i
Commercial Pace Speed		Client	
Tracking Number:			10405165
Custody Seal on Cooler/Box Present?	~	als Intact?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble	Bags Wone	Other:	Temp Blank?
Thermometer 151401163	· · · /\ Туре с		
Used: G87A9155100842			t Blue None Samples on ice, cooling process has begun
	np Corrected (°C):		Biological Tissue Frozen? Yes No XN/A
Temp should be above freezing to 6°C Correctio USDA Regulated Soil ( [] N/A, water sample)	n Factor: $-\mathcal{O}$	5 Date	e and Initials of Person Examining Contents: $\frac{9/28}{17}$
Did samples originate in a quarantine zone within the U	nited States: AL. AR	. CA. FL. GA. ID. I	A. MS, Did samples originate from a foreign source (internationally,
NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?		Yes 🗌	No including Hawaii and Puerto Rico)? [Yes No •Q-338) and include with SCUR/COC paperwork.
			COMMENTS:
Chain of Custody Present?	<b>1</b> ∕∕ Yes	No	1.
Chain of Custody Filled Out?	Yes 🕺		2.
Chain of Custody Relinquished?	Yes	No	3.
Sampler Name and/or Signature on COC?	Yes		4.
Samples Arrived within Hold Time?	Yes		5.
Short Hold Time Analysis (<72 hr)?		<b>₩</b> No	6.
Rush Turn Around Time Requested?		12/No	7.
Sufficient Volume?	Yes		8.
Correct Containers Used?	1 /		
-Pace Containers Used?	Yes	_	9.
Containers Intact?	<u> </u>	<u>No</u>	
	Yes		10
Filtered Volume Received for Dissolved Tests?	N.		11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?		□No	12.
-Includes Date/Time/ID/Analysis Matrix:	<u> </u>		
All containers needing acid/base preservation have bee checked?	n Narres	□No □N/A	13. HNO ₃ H ₂ SO ₄ NaOH Positive for Res.
All containers needing preservation are found to be in	<b>X</b>		Sample # _ ] J
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyanic	1-) AF-38		1 - 1
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease,	de) Yes	□No □N/A	initial when Lot # of added
DRO/8015 (water) and Dioxin.	Yes		completed: preservative:
Headspace in VOA Vials ( >6mm)?	☐Yes		14.
Trip Blank Present?	[]Yes		15.
Trip Blank Custody Seals Present?	Yes		
Pace Trip Blank Lot # (if purchased):	·	- \ 	
<b>CLIENT NOTIFICATION/RESOLUTION</b>			Field Data Required?
Person Contacted:			Date/Time:
Comments/Resolution:			
Project Manager Review:			9/28/17

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).



November 15, 2017

Chris Cresci WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Hess Towson Pace Project No.: 30234624

Dear Chris Cresci:

Enclosed are the analytical results for sample(s) received by the laboratory on October 31, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Revision 1 - This report replaces the November 14, 2017 report. This report was reissued on November 15, 2017 to include estimated values on Samples 30234624005 and 30234624007 per client's request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rachel D Christmer

Rachel Christner rachel.christner@pacelabs.com 724-850-5611 Project Manager

Enclosures

cc: Environment Accounts Payable, WSP, Environmental Accounts Payable Pam Robertson, WSP USA



### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



### CERTIFICATIONS

Project: Hess Towson Pace Project No.: 30234624

### **Minnesota Certification IDs**

1700 Elm Street SE. Suite 200. Minneapolis. MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

### Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

### Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008

Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



### CERTIFICATIONS

Project: Hess Towson Pace Project No.: 30234624

### Pennsylvania Certification IDs

Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L



### SAMPLE SUMMARY

Project:Hess TowsonPace Project No.:30234624

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30234624001	Control S 14 Aq	Water	10/30/17 11:00	10/31/17 10:20
30234624002	Control S 14 Soil	Solid	10/30/17 11:05	10/31/17 10:20
30234624003	10g/LPS + NaOH S 14 Aq	Water	10/30/17 11:15	10/31/17 10:20
30234624004	10g/LPS + NaOH S 14 Soil	Solid	10/30/17 11:20	10/31/17 10:20
30234624005	20g/LPS + NaOH S 14 Aq	Water	10/30/17 11:30	10/31/17 10:20
30234624006	20g/LPS + NaOH S 14 Soil	Solid	10/30/17 11:35	10/31/17 10:20
30234624007	40g/LPS + NaOH S 14 Aq	Water	10/30/17 11:45	10/31/17 10:20
30234624008	40g/LPS + NaOH S 14 Soil	Solid	10/30/17 11:50	10/31/17 10:20
30234624009	Trip Blank Aq	Water	10/30/17 00:01	10/31/17 10:20
30234624010	Trip Blank Soil	Solid	10/30/17 00:01	10/31/17 10:20



### SAMPLE ANALYTE COUNT

Project:Hess TowsonPace Project No.:30234624

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30234624001	Control S 14 Aq	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	MAK	2	PASI-PA
		EPA 8260B	JAS	8	PASI-PA
30234624002	Control S 14 Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	MAK	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30234624003	10g/LPS + NaOH S 14 Aq	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	MAK	2	PASI-PA
		EPA 8260B	JAS	8	PASI-PA
30234624004	10g/LPS + NaOH S 14 Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	MAK	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30234624005	20g/LPS + NaOH S 14 Aq	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	MAK	2	PASI-PA
		EPA 6020	TT3	5	PASI-M
		EPA 8260B	JAS	8	PASI-PA
30234624006	20g/LPS + NaOH S 14 Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	LEL	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30234624007	40g/LPS + NaOH S 14 Aq	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	MAK	2	PASI-PA
		EPA 8260B	JAS	8	PASI-PA
30234624008	40g/LPS + NaOH S 14 Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	LEL	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30234624009	Trip Blank Aq	EPA 8260B	JAS	8	PASI-PA



# Project: Hess Towson

Pace Project No.: 30234624

Sample: Control S 14 Aq	Lab ID:	30234624001	Collected	: 10/30/17	7 11:00	Received: 10/	/31/17 10:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical	Method: EPA 8	8015B Prepa	ration Met	hod: EF	PA 3510C			
TPH (C10-C28) <b>Surrogates</b>	1.4	mg/L	0.098	0.0098	1	11/05/17 08:13	11/09/17 22:13		1c
o-Terphenyl (S)	56	%	17-107		1	11/05/17 08:13	11/09/17 22:13	84-15-1	2c
Gasoline Range Organics	Analytical	Method: EPA 5	5030/8015B						
TPH (C06-C10) <i>Surrogates</i>	447	ug/L	200	45.0	1		11/10/17 16:04		
4-Bromofluorobenzene (S)	96	%	80-120		1		11/10/17 16:04	460-00-4	
8260B MSV	Analytical	Method: EPA 8	3260B						
Benzene	ND	ug/L	1.0	0.24	1		11/07/17 05:09	71-43-2	
Ethylbenzene	12.2	ug/L	1.0	0.31	1		11/07/17 05:09	100-41-4	
Toluene	1.2	ug/L	1.0	0.30	1		11/07/17 05:09	108-88-3	
Xylene (Total) <b>Surrogates</b>	68.9	ug/L	3.0	0.78	1		11/07/17 05:09	1330-20-7	
Toluene-d8 (S)	95	%	80-120		1		11/07/17 05:09	2037-26-5	
4-Bromofluorobenzene (S)	99	%	79-129		1		11/07/17 05:09	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	80-120		1		11/07/17 05:09	17060-07-0	
Dibromofluoromethane (S)	104	%	80-120		1		11/07/17 05:09	1868-53-7	



Project: Hess Towson

Pace Project No.: 30234624

Sample: Control S 14 Soil	Lab ID:	30234624002	Collected	d: 10/30/17	7 11:05	Received: 10/	31/17 10:20 M	atrix: Solid	
Results reported on a "dry weigl	ht" basis and are	adjusted for	percent mo	oisture, sar	nple si	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical	Method: EPA 8	015B Prepa	aration Met	hod: E	PA 3546			
TPH (C10-C28) <i>Surrogat</i> es	82.4	mg/kg	7.6	1.2	1	11/03/17 08:49	11/04/17 05:54		
o-Terphenyl (S)	64	%	30-90		1	11/03/17 08:49	11/04/17 05:54	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA 8	015B Prepa	aration Met	hod: El	PA 5035A/5030B			
TPH (C06-C10) <i>Surrogat</i> es	11.0	mg/kg	8.2	1.4	1	11/08/17 11:37	11/10/17 23:57		В
a,a,a-Trifluorotoluene (S)	66	%	38-123		1	11/08/17 11:37	11/10/17 23:57	98-08-8	
4-Bromofluorobenzene (S)	101	%	84-128		1	11/08/17 11:37	11/10/17 23:57	460-00-4	
8260B MSV	Analytical	Method: EPA 8	260B Prepa	aration Met	hod: El	PA 5035A			
Benzene	ND	ug/kg	4.1	1.2	1	11/03/17 10:33	11/03/17 17:59	71-43-2	1c
Ethylbenzene	104	ug/kg	4.1	1.2	1	11/03/17 10:33	11/03/17 17:59	100-41-4	1c
Toluene	4.5	ug/kg	4.1	1.2	1	11/03/17 10:33	11/03/17 17:59	108-88-3	1c
Xylene (Total) Surrogates	572	ug/kg	12.2	3.6	1	11/03/17 10:33	11/03/17 17:59	1330-20-7	
Toluene-d8 (S)	102	%	76-124		1	11/03/17 10:33	11/03/17 17:59	2037-26-5	
4-Bromofluorobenzene (S)	100	%	70-133		1	11/03/17 10:33	11/03/17 17:59	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	74-131		1	11/03/17 10:33	11/03/17 17:59	17060-07-0	
Dibromofluoromethane (S)	89	%	71-130		1	11/03/17 10:33	11/03/17 17:59		
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	14.0	%	0.10	0.10	1		11/11/17 10:25		



Project: Hess Towson

Pace Project No.: 30234624

Sample: 10g/LPS + NaOH S 14 Aq	Lab ID:	30234624003	Collected	d: 10/30/17	' 11:15	Received: 10/	31/17 10:20 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical	Method: EPA 8	015B Prep	aration Met	hod: EF	PA 3510C			
TPH (C10-C28) <b>Surrogates</b>	2.9	mg/L	0.65	0.065	5	11/05/17 08:13	11/10/17 17:19		1c
o-Terphenyl (S)	46	%	17-107		5	11/05/17 08:13	11/10/17 17:19	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA 5	030/8015B						
TPH (C06-C10) <b>Surrogates</b>	254	ug/L	200	45.0	1		11/10/17 16:24		
4-Bromofluorobenzene (S)	96	%	80-120		1		11/10/17 16:24	460-00-4	
8260B MSV	Analytical	Method: EPA 8	260B						
Benzene	ND	ug/L	1.0	0.24	1		11/07/17 05:34	71-43-2	
Ethylbenzene	4.4	ug/L	1.0	0.31	1		11/07/17 05:34	100-41-4	
Toluene	ND	ug/L	1.0	0.30	1		11/07/17 05:34	108-88-3	
Xylene (Total) <b>Surrogates</b>	17.0	ug/L	3.0	0.78	1		11/07/17 05:34	1330-20-7	
Toluene-d8 (S)	96	%	80-120		1		11/07/17 05:34	2037-26-5	
4-Bromofluorobenzene (S)	100	%	79-129		1		11/07/17 05:34	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	80-120		1		11/07/17 05:34	17060-07-0	
Dibromofluoromethane (S)	102	%	80-120		1		11/07/17 05:34	1868-53-7	



Project: Hess Towson

Pace Project No.: 30234624

Sample: 10g/LPS + NaOH S 14 So	oil Lab ID:	30234624004	Collected	d: 10/30/17	11:20	Received: 10/	31/17 10:20 Ma	atrix: Solid	
Results reported on a "dry weight	t" basis and are	adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical	Method: EPA 8	3015B Prep	aration Met	hod: El	PA 3546			
TPH (C10-C28) <b>Surrogates</b>	70.7	mg/kg	8.9	1.4	1	11/03/17 08:49	11/04/17 06:42		
o-Terphenyl (S)	61	%	30-90		1	11/03/17 08:49	11/04/17 06:42	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA 8	3015B Prep	aration Met	hod: El	PA 5035A/5030B			
TPH (C06-C10)	25.0	mg/kg	10.0	1.7	1	11/08/17 11:37	11/11/17 00:17		В
<i>Surrogates</i> a,a,a-Trifluorotoluene (S)	53	%	38-123		1	11/08/17 11:37	11/11/17 00:17	98-08-8	
4-Bromofluorobenzene (S)	88	%	84-128		1	11/08/17 11:37	11/11/17 00:17	460-00-4	
8260B MSV	Analytical	Method: EPA 8	3260B Prep	aration Met	hod: El	PA 5035A			
Benzene	ND	ug/kg	5.0	1.5	1	11/03/17 10:33	11/03/17 18:25	71-43-2	1c
Ethylbenzene	32.6	ug/kg	5.0	1.5	1	11/03/17 10:33	11/03/17 18:25	100-41-4	1c
Toluene	ND	ug/kg	5.0	1.5	1	11/03/17 10:33	11/03/17 18:25	108-88-3	1c
Xylene (Total) <b>Surrogates</b>	148	ug/kg	15.1	4.4	1	11/03/17 10:33	11/03/17 18:25	1330-20-7	
Toluene-d8 (S)	98	%	76-124		1	11/03/17 10:33	11/03/17 18:25	2037-26-5	
4-Bromofluorobenzene (S)	100	%	70-133		1	11/03/17 10:33	11/03/17 18:25	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	74-131		1	11/03/17 10:33	11/03/17 18:25	17060-07-0	
Dibromofluoromethane (S)	91	%	71-130		1	11/03/17 10:33	11/03/17 18:25	1868-53-7	
Percent Moisture	Analytical	Method: ASTM	1 D2974-87						
Percent Moisture	25.5	%	0.10	0.10	1		11/11/17 10:25		



Project: Hess Towson

Pace Project No.: 30234624

Sample: 20g/LPS + NaOH S 14 Aq	Lab ID:	30234624005	Collected	: 10/30/17	7 11:30	Received: 10/	/31/17 10:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical	Method: EPA 8	015B Prepa	aration Met	hod: EF	PA 3510C			
TPH (C10-C28) <b>Surrogates</b>	0.79	mg/L	0.12	0.012	1	11/05/17 08:13	11/09/17 22:33		1c
o-Terphenyl (S)	43	%	17-107		1	11/05/17 08:13	11/09/17 22:33	84-15-1	2c
Gasoline Range Organics	Analytical	Method: EPA 5	030/8015B						
TPH (C06-C10) <i>Surrogates</i>	90.1J	ug/L	200	45.0	1		11/10/17 16:43		
4-Bromofluorobenzene (S)	99	%	80-120		1		11/10/17 16:43	460-00-4	
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3020			
Chromium	1900	ug/L	10.0	2.6	20	11/08/17 12:57	11/09/17 22:15	7440-47-3	
Molybdenum	485	ug/L	10.0	1.6	20	11/08/17 12:57	11/09/17 22:15	7439-98-7	
Selenium	25.8	ug/L	10.0	3.3	20	11/08/17 12:57	11/09/17 22:15	7782-49-2	
Uranium-238	301	ug/L	10.0	0.66	20	11/08/17 12:57	11/09/17 22:15	7440-61-1	
Vanadium	1880	ug/L	20.0	5.3	20	11/08/17 12:57	11/09/17 22:15	7440-62-2	
8260B MSV	Analytical	Method: EPA 8	260B						
Benzene	1.0 U	ug/L	1.0	0.24	1		11/07/17 06:12	71-43-2	
Ethylbenzene	1.1	ug/L	1.0	0.31	1		11/07/17 06:12	100-41-4	
Toluene	1.0 U	ug/L	1.0	0.30	1		11/07/17 06:12	108-88-3	
Xylene (Total) <i>Surrogates</i>	3.0 U	ug/L	3.0	0.78	1		11/07/17 06:12	1330-20-7	
Toluene-d8 (S)	93	%	80-120		1		11/07/17 06:12	2037-26-5	
4-Bromofluorobenzene (S)	97	%	79-129		1		11/07/17 06:12	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	80-120		1		11/07/17 06:12	17060-07-0	
Dibromofluoromethane (S)	105	%	80-120		1		11/07/17 06:12	1868-53-7	



Project: Hess Towson

Pace Project No.: 30234624

Sample: 20g/LPS + NaOH S 14 So	il Lab ID:	3023462400	6 Collected	l: 10/30/17	11:35	Received: 10/	31/17 10:20 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted fo	r percent mo	isture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical	Method: EPA	8015B Prepa	aration Met	hod: El	PA 3546			
TPH (C10-C28) <b>Surrogates</b>	57.3	mg/kg	8.0	1.2	1	11/03/17 08:49	11/04/17 06:52		
o-Terphenyl (S)	59	%	30-90		1	11/03/17 08:49	11/04/17 06:52	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA	8015B Prepa	aration Met	hod: El	PA 5035A/5030B			
TPH (C06-C10) <b>Surrogates</b>	13.2	mg/kg	10	1.7	1	11/08/17 11:37	11/08/17 16:49		В
a,a,a-Trifluorotoluene (S)	68	%	38-123		1	11/08/17 11:37	11/08/17 16:49	98-08-8	
4-Bromofluorobenzene (S)	84	%	84-128		1	11/08/17 11:37	11/08/17 16:49	460-00-4	
8260B MSV	Analytical	Method: EPA	8260B Prepa	aration Met	hod: El	PA 5035A			
Benzene	ND	ug/kg	4.5	1.3	1	11/03/17 10:33	11/03/17 18:50	71-43-2	1c
Ethylbenzene	10.3	ug/kg	4.5	1.4	1	11/03/17 10:33	11/03/17 18:50	100-41-4	1c
Toluene	ND	ug/kg	4.5	1.3	1	11/03/17 10:33	11/03/17 18:50	108-88-3	1c
Xylene (Total) <b>Surrogates</b>	23.9	ug/kg	13.4	3.9	1	11/03/17 10:33	11/03/17 18:50	1330-20-7	
Toluene-d8 (S)	100	%	76-124		1	11/03/17 10:33	11/03/17 18:50	2037-26-5	
4-Bromofluorobenzene (S)	95	%	70-133		1	11/03/17 10:33	11/03/17 18:50	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	74-131		1	11/03/17 10:33	11/03/17 18:50	17060-07-0	
Dibromofluoromethane (S)	93	%	71-130		1	11/03/17 10:33	11/03/17 18:50	1868-53-7	
Percent Moisture	Analytical	Method: ASTI	M D2974-87						
Percent Moisture	17.3	%	0.10	0.10	1		11/11/17 10:25		



Project: Hess Towson

Pace Project No.: 30234624

Sample: 40g/LPS + NaOH S 14 Aq	Lab ID:	30234624007	Collected	d: 10/30/17	' 11:45	Received: 10/	/31/17 10:20 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical	Method: EPA 8	015B Prep	aration Met	hod: EF	PA 3510C			
TPH (C10-C28) <b>Surrogates</b>	3.2	mg/L	1.0	0.10	10	11/05/17 08:13	11/10/17 17:29		1c
o-Terphenyl (S)	37	%	17-107		10	11/05/17 08:13	11/10/17 17:29	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA 5	030/8015B						
TPH (C06-C10) <i>Surrogates</i>	157J	ug/L	200	45.0	1		11/10/17 17:03		
4-Bromofluorobenzene (S)	96	%	80-120		1		11/10/17 17:03	460-00-4	
8260B MSV	Analytical	Method: EPA 8	260B						
Benzene	1.0 U	ug/L	1.0	0.24	1		11/07/17 06:37	71-43-2	
Ethylbenzene	2.9	ug/L	1.0	0.31	1		11/07/17 06:37	100-41-4	
Toluene	1.0 U	ug/L	1.0	0.30	1		11/07/17 06:37	108-88-3	
Xylene (Total) <i>Surrogates</i>	2.5J	ug/L	3.0	0.78	1		11/07/17 06:37	1330-20-7	
Toluene-d8 (S)	95	%	80-120		1		11/07/17 06:37	2037-26-5	
4-Bromofluorobenzene (S)	97	%	79-129		1		11/07/17 06:37	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	80-120		1		11/07/17 06:37	17060-07-0	
Dibromofluoromethane (S)	98	%	80-120		1		11/07/17 06:37	1868-53-7	



Project: Hess Towson

Pace Project No.: 30234624

Sample: 40g/LPS + NaOH S 14 So	oil Lab ID:	3023462400	B Collected	: 10/30/17	' 11:50	Received: 10/	31/17 10:20 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	r percent mo	isture, sar	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical	Method: EPA	8015B Prepa	aration Met	hod: El	PA 3546			
TPH (C10-C28) <b>Surrogates</b>	46.8	mg/kg	8.3	1.3	1	11/03/17 08:49	11/04/17 07:02		
o-Terphenyl (S)	59	%	30-90		1	11/03/17 08:49	11/04/17 07:02	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA	8015B Prepa	aration Met	hod: El	PA 5035A/5030B			
TPH (C06-C10) <b>Surrogates</b>	15.7	mg/kg	9.3	1.6	1	11/08/17 11:37	11/08/17 17:09		В
a,a,a-Trifluorotoluene (S)	63	%	38-123		1	11/08/17 11:37	11/08/17 17:09	98-08-8	
4-Bromofluorobenzene (S)	84	%	84-128		1	11/08/17 11:37	11/08/17 17:09	460-00-4	
8260B MSV	Analytical	Method: EPA	8260B Prepa	aration Met	hod: El	PA 5035A			
Benzene	ND	ug/kg	4.2	1.2	1	11/03/17 10:33	11/03/17 19:16	71-43-2	1c
Ethylbenzene	12.7	ug/kg	4.2	1.3	1	11/03/17 10:33	11/03/17 19:16	100-41-4	1c
Toluene	ND	ug/kg	4.2	1.2	1	11/03/17 10:33	11/03/17 19:16	108-88-3	1c
Xylene (Total) <b>Surrogates</b>	20.7	ug/kg	12.7	3.7	1	11/03/17 10:33	11/03/17 19:16	1330-20-7	
Toluene-d8 (S)	102	%	76-124		1	11/03/17 10:33	11/03/17 19:16	2037-26-5	
4-Bromofluorobenzene (S)	98	%	70-133		1	11/03/17 10:33	11/03/17 19:16	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	74-131		1	11/03/17 10:33	11/03/17 19:16	17060-07-0	
Dibromofluoromethane (S)	94	%	71-130		1	11/03/17 10:33	11/03/17 19:16	1868-53-7	
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	20.5	%	0.10	0.10	1		11/11/17 10:25		



Project: Hess Towson

Pace Project No.: 30234624

Sample: Trip Blank Aq	Lab ID:	Lab ID: 30234624009			00:01	Received: 10	/31/17 10:20 Ma	Matrix: Water		
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
8260B MSV	Analytical	Method: EPA 8	260B							
Benzene	ND	ug/L	1.0	0.24	1		11/07/17 01:47	71-43-2		
Ethylbenzene	ND	ug/L	1.0	0.31	1		11/07/17 01:47	100-41-4		
Toluene	ND	ug/L	1.0	0.30	1		11/07/17 01:47	108-88-3		
Xylene (Total)	ND	ug/L	3.0	0.78	1		11/07/17 01:47	1330-20-7		
Surrogates		-								
Toluene-d8 (S)	94	%	80-120		1		11/07/17 01:47	2037-26-5		
4-Bromofluorobenzene (S)	97	%	79-129		1		11/07/17 01:47	460-00-4		
1,2-Dichloroethane-d4 (S)	97	%	80-120		1		11/07/17 01:47	17060-07-0		
Dibromofluoromethane (S)	98	%	80-120		1		11/07/17 01:47	1868-53-7		



QC Batch:	278355		Analys	is Metho	d:	EPA 8015B						
QC Batch Method:	EPA 5035A/5030	B	-	is Descri		Gasoline Rar	ige Orc	anics				
Associated Lab Sample	es: 30234624	002, 30234624004	, 30234624	006, 302	34624008		0 0					
METHOD BLANK: 13	367281		N	Atrix: S	olid							
Associated Lab Sample	es: 30234624	002, 30234624004	, 30234624	006, 302	34624008							
			Blank		Reporting							
Paramet	er	Units	Resul	t	Limit	MDL		Analyze	ed (	Qualifiers	5	
TPH (C06-C10)		mg/kg		ND	10	0	1.7	11/08/17 1	2:52			
4-Bromofluorobenzene	e (S)	%		98	84-12	8		11/08/17 1	2:52			
a,a,a-Trifluorotoluene (	S)	%		83	38-12	3		11/08/17 1	2:52			
LABORATORY CONT	ROL SAMPLE:	1367282										
			Spike	LC	S	LCS	%	Rec				
Paramet	er	Units	Conc.	Re	sult	% Rec	Li	mits	Qualifiers	6		
TPH (C06-C10)		mg/kg	50		48.4	97		78-140				
4-Bromofluorobenzene	e (S)	%				93		84-128				
a,a,a-Trifluorotoluene (	S)	%				83		38-123				
MATRIX SPIKE & MAT		PLICATE: 13672	33		1367284	1						
			MS	MSD								
		30234629002	Spike	Spike	MS	MSD	MS	MSI	D % Re	C	Max	
Parameter	Uni	ts Result	Conc	Conc.	Result	Result	% Re	ec %Re	ec Limit	s RPD	RPD	Qu

Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
TPH (C06-C10)	mg/kg	11.5 U	57.4	57.4	55.8	54.4	95	93	50-144	3	25	
4-Bromofluorobenzene (S)	%						92	91	84-128			
a,a,a-Trifluorotoluene (S)	%						81	86	38-123			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	Hess Towson											
Pace Project No.:	30234624											
QC Batch:	278698		Analysi	is Method:	I	EPA 5030/80 ⁻	15B					
QC Batch Method:	EPA 5030/8015E	3	Analysi	is Descript	ion: (	Gasoline Ran	ige Organi	cs				
Associated Lab Samp	oles: 30234624	001, 30234624003	, 302346240	005, 30234	4624007							
METHOD BLANK:	1368713		N	latrix: Wat	ter							
Associated Lab Samp	oles: 30234624	001, 30234624003	, 302346240	005, 30234	4624007							
			Blank		eporting							
Parame	eter	Units	Result	t	Limit	MDL		Analyzed	Qua	alifiers		
TPH (C06-C10)		ug/L		ND	20	0	45.0 11/	10/17 15:24	4			
4-Bromofluorobenzer	ne (S)	%		100	80-12	0	11/	10/17 15:24	4			
LABORATORY CON	FROL SAMPLE:	1368714	<b>o</b> "									
Parame	eter	Units	Spike Conc.	LCS Resu		LCS % Rec	% Re Limits		ualifiers			
			1000		1000	100				-		
TPH (C06-C10) 4-Bromofluorobenzer	ne (S)	ug/L %	1000		1000	94		)-130 )-120				
		70				0.						
MATRIX SPIKE & MA	TRIX SPIKE DUF	PLICATE: 13687	15		1368716	;						
			MS	MSD								
		30234859003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
TPH (C06-C10)	ug,	/L ND	1000	1000	813	808	80	79	56-132	1	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Hess Towson

Project:

### **QUALITY CONTROL DATA**

QC Batch: 506	646		Analys	is Method	E	PA 6020						
QC Batch Method: EPA	A 3020			is Descrip		020 MET						
Associated Lab Samples:	30234624005											
METHOD BLANK: 2754	206		Ν	Aatrix: Wa	ter							
Associated Lab Samples:	30234624005											
			Blank	K R	eporting							
Parameter		Units	Resul	t	Limit	MDL		Analyzed	Qua	alifiers		
Chromium	·	ug/L	·	ND	0.50		0.13 11/	10/17 14:39	 )			
Molybdenum		ug/L		ND	0.50	C	.080 11/	10/17 14:39	1			
Selenium		ug/L		ND	0.50		0.17 11/	10/17 14:39	)			
Uranium-238		ug/L		ND	0.50			10/17 14:39				
Vanadium		ug/L		ND	1.0		0.27 11/	10/17 14:39				
LABORATORY CONTROL	L SAMPLE: 275	54207										
			Spike	LCS	3	LCS	% Re	с				
Parameter		Units	Conc.	Resu	ılt	% Rec	Limits	s Qu	alifiers			
Chromium		ug/L	100		109	109	80	)-120		-		
Molybdenum		ug/L	100		105	105	80	0-120				
Selenium		ug/L	100		106	106		0-120				
Uranium-238		ug/L	100		103	103		0-120				
Vanadium		ug/L	100		108	108	80	)-120				
MATRIX SPIKE & MATRIX		ATE: 27542	08		2754209							
			MS	MSD								
		10409273001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chromium	ug/L	 0.00076 mg/L	100	100	112	112	112	111	75-125	0	20	
Molybdenum	ug/L	1.5	100	100	111	112	109	111	75-125	1	20	
Selenium	ug/L	0.00034J	100	100	111	111	111	111	75-125	0	20	
Uranium-238	ua/!	mg/L 12.6	100	100	119	119	106	106	75-125	0	20	
Vanadium	ug/L	0.0012	100	100	119	119	106	106	75-125	-	20 20	
vanaululli	ug/L	0.0012	100	100	111	111	110	110	10-120	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

mg/L

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: Hess Towson 30234624

Pace Project No.:

QC Batch:	277857	Analysis Method:	EPA 8260B
QC Batch Method:	EPA 5035A	Analysis Description:	8260B MSV UST-SOIL
Associated Lab Sam	ples: 30234624002, 3023462400	4. 30234624006. 3023462400	8

### METHOD BLANK: 1365209 Matrix: Solid Associated Lab Samples: 30234624002, 30234624004, 30234624006, 30234624008

		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
Benzene	ug/kg	ND	5.0	1.4	11/03/17 11:34		
Ethylbenzene	ug/kg	ND	5.0	1.5	11/03/17 11:34		
Toluene	ug/kg	ND	5.0	1.4	11/03/17 11:34		
Xylene (Total)	ug/kg	ND	15.0	4.4	11/03/17 11:34		
1,2-Dichloroethane-d4 (S)	%	98	74-131		11/03/17 11:34		
4-Bromofluorobenzene (S)	%	97	70-133		11/03/17 11:34		
Dibromofluoromethane (S)	%	96	71-130		11/03/17 11:34		
Toluene-d8 (S)	%	100	76-124		11/03/17 11:34		

### LABORATORY CONTROL SAMPLE: 1365210

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/kg	20	17.6	88	70-130	
Ethylbenzene	ug/kg	20	19.0	95	70-130	
Toluene	ug/kg	20	18.9	94	70-130	
Xylene (Total)	ug/kg	60	56.6	94	70-130	
1,2-Dichloroethane-d4 (S)	%			93	74-131	
4-Bromofluorobenzene (S)	%			98	70-133	
Dibromofluoromethane (S)	%			99	71-130	
Toluene-d8 (S)	%			100	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	Hess Towson
Pace Project No :	20224624

Pace Project No.: 30234624

QC Batch:	278139	Analysis Method:	EPA 8260B
QC Batch Method:	EPA 8260B	Analysis Description:	8260B MSV UST-WATER
Associated Lab Same	les: 30234624	30234624003 30234624005 30234624007	30234624009

METHOD BLANK: 1366421 Matrix: Water

Associated Lab Samples: 30234624001, 30234624003, 30234624005, 30234624007, 30234624009

		Blank	Reporting			
Parameter	Units Result		Limit	MDL	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	0.24	11/07/17 00:31	
Ethylbenzene	ug/L	ND	1.0	0.31	11/07/17 00:31	
Toluene	ug/L	ND	1.0	0.30	11/07/17 00:31	
Xylene (Total)	ug/L	ND	3.0	0.78	11/07/17 00:31	
1,2-Dichloroethane-d4 (S)	%	97	80-120		11/07/17 00:31	
4-Bromofluorobenzene (S)	%	96	79-129		11/07/17 00:31	
Dibromofluoromethane (S)	%	101	80-120		11/07/17 00:31	
Toluene-d8 (S)	%	96	80-120		11/07/17 00:31	

### LABORATORY CONTROL SAMPLE: 1366422

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	18.4	92	70-130	
Ethylbenzene	ug/L	20	18.6	93	70-130	
Toluene	ug/L	20	18.5	92	70-130	
Xylene (Total)	ug/L	60	56.0	93	70-130	
1,2-Dichloroethane-d4 (S)	%			97	80-120	
4-Bromofluorobenzene (S)	%			96	79-129	
Dibromofluoromethane (S)	%			101	80-120	
Toluene-d8 (S)	%			95	80-120	

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	TE: 13664	23		1366424							
			MS	MSD								
	3	0234862003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	ND	20	20	20.6	20.4	103	102	67-121	1	30	
Ethylbenzene	ug/L	2.5	20	20	23.2	23.0	103	102	70-127	1	30	
Toluene	ug/L	ND	20	20	21.5	20.3	108	101	77-125	6	30	
Xylene (Total)	ug/L	11.2	60	60	73.0	72.1	103	102	69-128	1	30	
1,2-Dichloroethane-d4 (S)	%						94	94	80-120			
4-Bromofluorobenzene (S)	%						99	97	79-129			
Dibromofluoromethane (S)	%						99	100	80-120			
Toluene-d8 (S)	%						97	95	80-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project:	Hess Towson											
Pace Project No.:	30234624											
QC Batch:	277835		Analys	s Method:	E	EPA 8015B						
QC Batch Method:	EPA 3546		Analys	s Descript	ion: E	EPA 8015 TPI	4					
Associated Lab San	nples: 30234624	002, 30234624004	, 30234624(	006, 30234	1624008							
METHOD BLANK:	1365148		N	latrix: Soli	d							
Associated Lab San	nples: 30234624	002, 30234624004	, 302346240	006, 30234	1624008							
			Blank	R	eporting							
Paran	neter	Units	Result		Limit	MDL		Analyzed	Qua	alifiers		
TPH (C10-C28)		mg/kg		ND	6.7	7	1.0 11/	04/17 04:46	5			
o-Terphenyl (S)		%		73	30-90	0	11/	04/17 04:46	5			
	NTROL SAMPLE:	1365149										
			Spike	LCS		LCS	% Red					
-				-				0				
Paran	neter	Units	Conc.	Resu	lt	% Rec	Limits	i Qi	ualifiers			
Paran 	neter	Units mg/kg	Conc. 66.7	Resu	lt 52.5	% Rec 79		7-86	alifiers			
	neter			Resu			4		alifiers			
TPH (C10-C28)		mg/kg %	66.7	Resu		79	4	7-86	Jalifiers			
TPH (C10-C28) o-Terphenyl (S)		mg/kg %	66.7	MSD	52.5	79	4	7-86	Jalifiers	-		
TPH (C10-C28) o-Terphenyl (S)		mg/kg %	66.7		52.5	79	4	7-86	% Rec		Max	
TPH (C10-C28) o-Terphenyl (S)	IATRIX SPIKE DUP	mg/kg % PLICATE: 13651 30234624002	66.7 60 MS	MSD	52.5	79 91	3	97-86 90-90 ST		RPD	Max RPD	Qual
TPH (C10-C28) o-Terphenyl (S) MATRIX SPIKE & M	IATRIX SPIKE DUP	mg/kg % PLICATE: 136510 30234624002 ts Result	66.7 60 MS Spike	MSD Spike	52.5 1365161 MS	79 91 MSD Result	MS	MSD	% Rec	RPD 8		Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	Hess Towson										
Pace Project No.:	30234624										
QC Batch:	277987		Analysis Method:		EP	A 8015B					
QC Batch Method:	EPA 3510C		Analysis Description: E			A 8015 T	ΡH				
Associated Lab Sam	nples: 30234624	001, 30234624003	3, 3023462400	5, 30234624	007						
METHOD BLANK:	1365966		Mat	rix: Water							
Associated Lab Sam	nples: 30234624	001, 30234624003	3, 3023462400	5, 30234624	007						
			Blank	Report	ting						
Param	neter	Units	Result	Limi	t	MD	L	Analyz	zed	Qualifiers	
TPH (C10-C28)		mg/L	N	ID	0.10		0.010	11/09/17	21:42		-
o-Terphenyl (S)		%	(	68 1	7-107			11/09/17	21:42		
LABORATORY CON		1365967									
		1000001	Spike	LCS		LCS	9	% Rec			
Param	neter	Units	Conc.	Result		6 Rec		_imits	Qualifie	ers	
TPH (C10-C28)		mg/L	1	0.8	9	8	9	44-100			
o-Terphenyl (S)		%				9	2	17-107	2c		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	Hess Towson								
Pace Project No.:	30234624								
QC Batch:	278790		Analysis Method:		ASTM D2974-8	37			
QC Batch Method:	ASTM D2974-87		Analysis Description:		Dry Weight/Percent Moisture				
Associated Lab Sar	mples: 302346240	002, 3023462400	4, 30234624006, 30	234624008					
SAMPLE DUPLICA	TE: 1369336								
			30234624002	Dup			Max		
Parar	neter	Units	Result	Result	RPD		RPD		Qualifiers
Percent Moisture		%	14.0	14	.0	0		20	
SAMPLE DUPLICA	TE: 1369337								
			30234624004	Dup			Max		
Parar	neter	Units	Result	Result	RPD		RPD		Qualifiers
Percent Moisture		%	25.5	22	.2	14		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

Project: Hess Towson Pace Project No.: 30234624

### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

### S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### LABORATORIES

PASI-M Pace Analytical Services - Minneapolis PASI-PA Pace Analytical Services - Greensburg

### SAMPLE QUALIFIERS

Sample: 30234624005

[1] Residual Chlorine detected post analysis by 8260.

Sample: 30234624007

[1] Residual Chlorine detected post analysis by 8260.

### **BATCH QUALIFIERS**

Batch: 277857

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 277987

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

### ANALYTE QUALIFIERS

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- 2c Retention times shifted during the analytical sequence such that the retention times for target analytes and surrogates in samples, QC samples, and standards fell outside of their respective retention time windows. Standards and QC samples were used to aid analyte identification in samples. The peak(s) for this analyte was(were) manually identified.



### QUALIFIERS

Project:	Hess Towson
Pace Project No .:	30234624

### ANALYTE QUALIFIERS

B Analyte was detected in the associated method b	lank.
---------------------------------------------------	-------

ST Surrogate recovery was above laboratory control limits. Results may be biased high.



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Hess Towson
Pace Project No.:	30234624

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30234624002	Control S 14 Soil	EPA 3546	277835	 EPA 8015B	277927
30234624004	10g/LPS + NaOH S 14 Soil	EPA 3546	277835	EPA 8015B	277927
30234624006	20g/LPS + NaOH S 14 Soil	EPA 3546	277835	EPA 8015B	277927
30234624008	40g/LPS + NaOH S 14 Soil	EPA 3546	277835	EPA 8015B	277927
30234624001	Control S 14 Aq	EPA 3510C	277987	EPA 8015B	278619
30234624003	10g/LPS + NaOH S 14 Aq	EPA 3510C	277987	EPA 8015B	278619
30234624005	20g/LPS + NaOH S 14 Aq	EPA 3510C	277987	EPA 8015B	278619
30234624007	40g/LPS + NaOH S 14 Aq	EPA 3510C	277987	EPA 8015B	278619
30234624002	Control S 14 Soil	EPA 5035A/5030B	278355	EPA 8015B	278379
30234624004	10g/LPS + NaOH S 14 Soil	EPA 5035A/5030B	278355	EPA 8015B	278379
30234624006	20g/LPS + NaOH S 14 Soil	EPA 5035A/5030B	278355	EPA 8015B	278379
30234624008	40g/LPS + NaOH S 14 Soil	EPA 5035A/5030B	278355	EPA 8015B	278379
30234624001	Control S 14 Aq	EPA 5030/8015B	278698		
30234624003	10g/LPS + NaOH S 14 Aq	EPA 5030/8015B	278698		
30234624005	20g/LPS + NaOH S 14 Aq	EPA 5030/8015B	278698		
30234624007	40g/LPS + NaOH S 14 Aq	EPA 5030/8015B	278698		
30234624005	20g/LPS + NaOH S 14 Aq	EPA 3020	506646	EPA 6020	507641
30234624002	Control S 14 Soil	EPA 5035A	277857	EPA 8260B	277866
30234624004	10g/LPS + NaOH S 14 Soil	EPA 5035A	277857	EPA 8260B	277866
30234624006	20g/LPS + NaOH S 14 Soil	EPA 5035A	277857	EPA 8260B	277866
30234624008	40g/LPS + NaOH S 14 Soil	EPA 5035A	277857	EPA 8260B	277866
30234624001	Control S 14 Aq	EPA 8260B	278139		
30234624003	10g/LPS + NaOH S 14 Aq	EPA 8260B	278139		
30234624005	20g/LPS + NaOH S 14 Aq	EPA 8260B	278139		
30234624007	40g/LPS + NaOH S 14 Aq	EPA 8260B	278139		
30234624009	Trip Blank Aq	EPA 8260B	278139		
30234624002	Control S 14 Soil	ASTM D2974-87	278790		
30234624004	10g/LPS + NaOH S 14 Soil	ASTM D2974-87	278790		
30234624006	20g/LPS + NaOH S 14 Soil	ASTM D2974-87	278790		
30234624008	40g/LPS + NaOH S 14 Soil	ASTM D2974-87	278790		

Pace Analytical

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Dominad Clinet Information:	Section B Remuted Project Information:	Section C Invoice information:	Page: 1 0f
hent & Ernergy	Report To: Groff, Pam	Attention: Environment Accounts Payable	
13530 Dulles Technology Dr	COPY TO: MI INSE! LER	Nar	
00, Herndon, VA 20171	m/ee a levies yotems, net	Address: 13530 Duttes Technology Dr, Hemdon VA, 20171	Regulatory Agency
Email: parm.groff(Q)WSp.com Phone: 703.318.3658 Fax. F	Project Name: Hess Towson	Pace Project Manager. Penny Westrick	State / Location
sted Due Date: 10 business days	Project #: 31400408, Task 3		MD
		Comparison of the second straits is filtered (XIN)	tered (Y/N)
	(1)+3) O)	Preservatives	
###     Prinding Water       Prinding Water     Prinding Water       Water     Water       Water     Water       Water     Water       Marce     Marce       Marce     Marce <tr< td=""><td>المجلوبة المحالية المحالي</td><td>SAMPLE TEMP PT COLLECTION           \$AMPLE TEMP PT COLLECTION           # OF CONTAINERS           DRO by 8015           Other           Mathward           Machanol           Moreserved           Moreserved           Machanol           Machanol</td><td>Trip BLANK Trip BLANK Residual Chlorine (Y/V)</td></tr<>	المجلوبة المحالية المحالي	SAMPLE TEMP PT COLLECTION           \$AMPLE TEMP PT COLLECTION           # OF CONTAINERS           DRO by 8015           Other           Mathward           Machanol           Moreserved           Moreserved           Machanol           Machanol	Trip BLANK Trip BLANK Residual Chlorine (Y/V)
1 Catel S H Br	- - -		
2 (mapping 2 14 Soll	ى ا	6 XX XX	+ms/nsDVar 22
HOS KX + NSOH			THURSING ORD CC3
2 HI S HULN + 20 YE ON	< 6 1/2 1/2 20		8
>S HIS HOEN + JA YIVAC			7/15/MS/ V&C 000
	W 5 10/2010 12 45	XXX X X X X X X	TWILING DRU
(i's yi SH way BI and a line of	5 6 10/01 11.50	ŠX XX XX	
· Turio Elent Ag			
10 TriBister	•		
12 ADDITIONAL COMMENTS	RELINDUSHED BY (AFFILIATION DATE	TIME ACCERED BY LAFFLATION DATE DATE	IE SAMPLE CONDITIONS
		0 15'20 A 10 10	17 1020 31,35 V V V
M0#:30234624			
	I I SAMPLER NAME AND SIGNATURE	L	
26 of 2	PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	MICHARA D LEC DATE Signed.	,V(V) sc( aubjes coojet vs(eq v(V) c(V) EWb !U C
29		Muchaely tel 10130117	

Pittsburgh La	ab Sample Condi	tion	Upo	n R	eceipt		
Pace Analytical						Project # <u>302346</u>	<u>2</u> <u>4</u> -
Tracking #:	UPS [] USPS [] Clien ひしつ ころろ 7510		Comm	ercial	Pace Other	Label <u>CV</u> LIMS Login XVV	, ,
Custody Seal on Coole	r/Box Present: 🖉 yes					j no	
Thermometer Used					Blue None		
Cooler Temperature	Observed Temp <u>3,1</u>	3,5	°C	Corr	ection Factor: 0,0	_ °С Final Temp <u>: З.1, З.5</u> °С	
Temp should be above free	zing to 6°C						
					-	Date and Initials of person examinin contents: 24/0/31/17-	5
Comments:	14	Yes	No	N/A		and a state of the	
Chain of Custody Presen	nt:		<u> </u>		1		
Chain of Custody Filled C	Dut:		ļ		2.	· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Reling	uished:	/			3.		<u> </u>
Sampler Name & Signatu	ure on COC:		·		4		
Sample Labels match CC	DC:	/			5.		
-Includes date/time/ID	Matrix: 📈	+ +	- <u>51</u>	đ			
Samples Arrived within H					6.		
Short Hold Time Analys	is (<72hr remaining):		/		7.		
Rush Turn Around Time			/		8.		
Sufficient Volume:		ingles	- /		9. 3410 3117	Received LV For DRO	Samples
Correct Containers Used	:	/			10.	тарана съз	, ops, roor.
-Pace Containers Use		/					
Containers Intact:		/			11.		
Orthophosphate field filte	red				12.		
	e/NPDES sample field filtered			/	13.		
Organic Samples chec		_			14.		
Filtered volume received					15.		
All containers have been che					16.		
All containers needing prese compliance with EPA recom	rvation are found to be in mendation.	_					
exceptions VOA, colifor	m, TOC, O&G, Phenolics				Lot # of added	Date/time of preservation	_
	<u></u>				preservative		
Headspace in VOA Vials	( >6mm):				17		
Trip Blank Present:					18.		
Trip Blank Custody Seals					Initial when	1	
Rad Aqueous Samples S	Screened > 0.5 mrem/hr			No. of Concession, Name	completed:	Date:	
Client Notification/ Reso Person Contacted:	blution:			Date/	Гіте:	Contacted By:	
Comments/ Resolution:							
	<u> </u>						~
	AD				<u> </u>		<u> </u>
	<u> </u>			-p			

## □ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

	4     Workorder Name: Hess Towen     0001/2017 Results Requested By: 11       1     Tool and the state of th		unain of custody		NAMES AN ADVANCEMENT OF THE SECOND OF THE ADVANCEMENT OF THE SECOND OF THE	Pace Analytical *
			er: 30234624	ler Name:Hess Towson		Results Requested By:
			enny Westrick ace Analytical Pittsburgh 638 Roseytown Road ulites 2,3,4 ineensburg, PA 15601 hone 724 850-5610	Pace Analytical Minnesota 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 Phone (612)607-1700	. v, mo, U	
			Sample ID.	collect Date/Time Lab ID	Breserved Containers	
				30234624005		
( \)						
<u>Y</u> or	× or	- Vor				(
	In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.	In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.	ooler Temperature on Receipt $O_t$	20°C Custody Seal Y of N	)   Received on Ice Υ or	<u>Y /or</u>

1

FMT-ALL-C-002rev.00 24March2009

Page 28 PM Bage 2017 2:20:36 PM

1

Page 1 of 1

	and the second se		cument		Document Revised: 30Aug2017	
	Pace Analytical"	Sample Conc	lition Up			
			IN-L-213		Issuing Authority: Pace Minnesota Quality Office	
Sample Cor Upon Rec		PA		Project	# WO#:10409672	
Courier:	Fed Ex UPS		C	lient		
Commerc		ee []Other:_				
Tracking N	lumber: <u>7060 253</u>	37 648:	2			
Custody Se	al on Cooler/Box Present?   Yes		Seals Inta	act?	Yes No Optional: Proj. Due Date: Proj. Nam	ne:
Packing Ma	aterial: Bubble Wrap Bubbl	e Bags 🚽 None	• 🗆 (	Other:	Temp Blank? 🗍 Yes ,	-NO
Thermomet Used:	ter 151401163 687A9155100842	Туре	e of Ice:	Wet	et Blue None Samples on ice, cooling process h	has begun
		mp Corrected (°C)	: _ <b></b>		Biological Tissue Frozen? 🗌 Yes 🗌 No 🔎	-
	be above freezing to 6°C Correctinated Soil	on Factor:	. 0 i l	/ Date	e and Initials of Person Examining Contents: <u>ME</u>	3/17
	originate in a quarantine zone within the	United States: AL, A	R, CA, FL	, GA, ID, L	LA. MS, Did samples originate from a foreign source (internatio	≇ mallv.
	OK, OR, SC, TN, TX or VA (check maps)?		ΠY	es 🗌	No including Hawaii and Puerto Rico)?	[]No
	If Yes to either question, fill of	it a Regulated Soil	Checkli	st (F-MN-	-Q-338) and include with SCUR/COC paperwork. COMMENTS:	
Chain of Cust	tody Present?	Yes	□No		1.	
	tody Filled Out?				2.	
	tody Relinguished?				3.	
· ·	ne and/or Signature on COC?	Yes			4.	
	ved within Hold Time?	Tes			5.	
n · _ · · · · ·	ime Analysis (<72 hr)?	 Yes			6.	
	round Time Requested?	☐Yes			7.	
Sufficient Vo	lume?				8.	
Correct Cont	ainers Used?				9.	
-Pace Con	tainers Used?	- Tes	 ⊡No		:	
Containers in	itact?	, Pes	No		10.	
Filtered Volu	me Received for Dissolved Tests?	Yes	□No		11. Note if sediment is visible in the dissolved container	
Sample Label	ls Match COC?	Tes	ΠNο		12.	
-Includes [	Date/Time/ID/Analysis Matrix:	vt				
All container: checked?	s needing acid/base preservation have be			<b>.</b>	13. HINO3 HI2SO4 NaOH Positive	
	s needing preservation are found to be in	Yes	No	∐N/A	Sample # /	≘? Y N
	vith EPA recommendation?					
	1, <2pH, NaOH >9 Sulfide, NaOH>12 Cyan (OA, Coliform, TOC/DOC Oil and Grease,	iide) 🖌 Yes	No	⊡n/a	/ / / / / / / / / / / / / / / / / / /	
	vater) and Dioxin.	[]Yes	No		completed: preservative:	
Headspace in	VOA Vials ( >6mm)?	Yes	ΠNο		14.	
Trip Blank Pre		Yes	ΠNο	<b>⊿</b> N/A	15.	
-	stody Seals Present?	Yes	□No			
·	nk Lot # (if purchased):					
	CLIENT NOTIFICATION/RESOLUTION				Field Data Required?	0
Person Conta					Date/Time:	
Comments/R						
	<u>, y∟</u>	······································				
					11/02/17	



February 05, 2018

Pam Robertson WSP USA 13630 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Hess Towson Pace Project No.: 30240919

Dear Pam Robertson:

Enclosed are the analytical results for sample(s) received by the laboratory on January 16, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rachel D Christman

Rachel Christner rachel.christner@pacelabs.com 724-850-5611 Project Manager

Enclosures

cc: Chris Cresci, WSP USA Michael Lee, Terra Systems, Inc.





Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

#### CERTIFICATIONS

Project: Hess Towson Pace Project No.: 30240919

#### **Minnesota Certification IDs**

1700 Elm Street SE. Suite 200. Minneapolis. MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

#### Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

#### Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008

Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

#### CERTIFICATIONS

Project: Hess Towson Pace Project No.: 30240919

#### Pennsylvania Certification IDs

Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L



## SAMPLE ANALYTE COUNT

Project:Hess TowsonPace Project No.:30240919

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30240919001	Control	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	LEL	3	PASI-PA
		EPA 8260B	RES	8	PASI-PA
30240919002	Control Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	LEL	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30240919003	10 glh PSU	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	LEL	3	PASI-PA
		EPA 8260B	RES	8	PASI-PA
30240919004	10 glh PSU Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	LEL	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30240919005	20 glh PSU	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	LEL	3	PASI-PA
		EPA 6020	RJS	5	PASI-M
		EPA 8260B	RES	8	PASI-PA
0240919006	20 glh PSU Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	LEL	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30240919007	40 glh PSU	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	LEL	3	PASI-PA
		EPA 8260B	RES	8	PASI-PA
30240919008	40 glh PSU Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	LEL	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30240919009	Trip Blank	EPA 8260B	RES	8	PASI-PA



## Project: Hess Towson

Pace Project No.: 30240919

Sample: Control	Lab ID: 3024	40919001	Collected: 01/15/1	8 15:00	Received: 01	/16/18 11:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	15B Preparation Me	thod: E	PA 3510C			
TPH (C10-C28)	0.85	mg/L	0.099	1	01/22/18 12:55	01/24/18 15:16		1c
<i>Surrogates</i> o-Terphenyl (S)	46	%	17-107	1	01/22/18 12:55	01/24/18 15:16	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50	30/8015B					
TPH (C06-C10) Surrogates	281	ug/L	200	1		01/26/18 17:15		
a,a,a-Trifluorotoluene (S)	101	%	62-126	1		01/26/18 17:15	98-08-8	
4-Bromofluorobenzene (S)	103	%	80-120	1		01/26/18 17:15	460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	:60B					
Benzene	ND	ug/L	1.0	1		01/19/18 19:28	71-43-2	
Ethylbenzene	10	ug/L	1.0	1		01/19/18 19:28	100-41-4	
Toluene	ND	ug/L	1.0	1		01/19/18 19:28	108-88-3	
Xylene (Total)	55.3	ug/L	3.0	1		01/19/18 19:28	1330-20-7	
Surrogates		-						
Toluene-d8 (S)	103	%	80-120	1		01/19/18 19:28	2037-26-5	
4-Bromofluorobenzene (S)	97	%	79-129	1		01/19/18 19:28	460-00-4	
1,2-Dichloroethane-d4 (S)	93	%	80-120	1		01/19/18 19:28	17060-07-0	
Dibromofluoromethane (S)	96	%	80-120	1		01/19/18 19:28	1868-53-7	



Project: Hess Towson

Pace Project No.: 30240919

Sample: Control Soil	Lab ID: 302	40919002	Collected: 01/15/1	8 15:05	Received: 01	/16/18 11:10 I	Matrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	usted for p	ercent moisture, sa	mple si	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80	015B Preparation Met	thod: El	PA 3546			
TPH (C10-C28) <b>Surrogates</b>	33.1	mg/kg	8.4	1	01/17/18 18:53	01/20/18 00:27		
o-Terphenyl (S)	54	%	30-90	1	01/17/18 18:53	01/20/18 00:27	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	015B Preparation Met	thod: El	PA 5035A/5030B			
TPH (C06-C10) <i>Surrogates</i>	17.6	mg/kg	10.1	1	01/18/18 10:41	01/18/18 18:58	5	
a,a,a-Trifluorotoluene (S)	68	%	38-123	1	01/18/18 10:41	01/18/18 18:58	98-08-8	
4-Bromofluorobenzene (S)	85	%	84-128	1	01/18/18 10:41	01/18/18 18:58	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B Preparation Met	thod: El	PA 5035A			
Benzene	ND	ug/kg	4.7	1	02/01/18 10:50	02/01/18 20:36	71-43-2	1c,H1, H2
Ethylbenzene	64.4	ug/kg	4.7	1	02/01/18 10:50	02/01/18 20:36	5 100-41-4	1c,H1, H2
Toluene	ND	ug/kg	4.7	1	02/01/18 10:50	02/01/18 20:36	108-88-3	1c,H1, H2
Xylene (Total) <i>Surrogates</i>	323	ug/kg	14.1	1	02/01/18 10:50	02/01/18 20:36	1330-20-7	
Toluene-d8 (S)	112	%	76-124	1	02/01/18 10:50	02/01/18 20:36	2037-26-5	
4-Bromofluorobenzene (S)	144	%	70-133	1	02/01/18 10:50	02/01/18 20:36	460-00-4	ST
1,2-Dichloroethane-d4 (S)	93	%	74-131	1	02/01/18 10:50	02/01/18 20:36	17060-07-0	
Dibromofluoromethane (S)	94	%	71-130	1	02/01/18 10:50	02/01/18 20:36	1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	22.7	%	0.10	1		01/18/18 08:40	)	



Project: Hess Towson

Pace Project No.: 30240919

Sample: 10 glh PSU	Lab ID: 3024	40919003	Collected: 01/15/1	8 15:10	Received: 01	/16/18 11:10	Matrix: Water	
Comments: • 8260 VOA: Post-ana	alysis testing indicate	es the prese	ence of residual chlor	ine.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	nod: EPA 80	015B Preparation Me	ethod: E	PA 3510C			
TPH (C10-C28) Surrogates	1.1	mg/L	0.14	1	01/22/18 12:55	01/24/18 15:25	i	1c,A5
o-Terphenyl (S)	50	%	17-107	1	01/22/18 12:55	01/24/18 15:25	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 50	)30/8015B					
TPH (C06-C10) <i>Surrogates</i>	ND	ug/L	200	1		01/26/18 17:34	ļ	
a,a,a-Trifluorotoluene (S)	105	%	62-126	1		01/26/18 17:34	98-08-8	
4-Bromofluorobenzene (S)	109	%	80-120	1		01/26/18 17:34	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		01/19/18 19:56	71-43-2	
Ethylbenzene	4.7	ug/L	1.0	1		01/19/18 19:56	5 100-41-4	
Toluene	ND	ug/L	1.0	1		01/19/18 19:56	108-88-3	
Xylene (Total)	22.1	ug/L	3.0	1		01/19/18 19:56	1330-20-7	
Surrogates								
Toluene-d8 (S)	100	%	80-120	1		01/19/18 19:56	2037-26-5	
4-Bromofluorobenzene (S)	99	%	79-129	1		01/19/18 19:56	6 460-00-4	
1,2-Dichloroethane-d4 (S)	92	%	80-120	1		01/19/18 19:56	17060-07-0	
Dibromofluoromethane (S)	95	%	80-120	1		01/19/18 19:56	1868-53-7	



Project: Hess Towson

Pace Project No.: 30240919

Sample: 10 glh PSU Soil	Lab ID: 302	40919004	Collected: 01/15/1	8 15:15	Received: 01	/16/18 11:10	Matrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	usted for p	oercent moisture, sa	mple si	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80	015B Preparation Met	thod: El	PA 3546			
TPH (C10-C28) Surrogates	95.5	mg/kg	8.6	1	01/17/18 18:53	01/20/18 00:36	5	
o-Terphenyl (S)	51	%	30-90	1	01/17/18 18:53	01/20/18 00:36	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	015B Preparation Met	hod: E	PA 5035A/5030B			
TPH (C06-C10) <i>Surrogates</i>	14.3	mg/kg	10.7	1	01/18/18 10:41	01/18/18 19:16	6	
a,a,a-Trifluorotoluene (S)	30	%	38-123	1	01/18/18 10:41	01/18/18 19:16	6 98-08-8	S5,SR
4-Bromofluorobenzene (S)	107	%	84-128	1	01/18/18 10:41	01/18/18 19:16	6 460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B Preparation Met	thod: E	PA 5035A			
Benzene	ND	ug/kg	5.4	1	02/01/18 10:50	02/01/18 21:02	2 71-43-2	1c,H1, H2
Ethylbenzene	ND	ug/kg	5.4	1	02/01/18 10:50	02/01/18 21:02	2 100-41-4	1c,H1, H2
Toluene	ND	ug/kg	5.4	1	02/01/18 10:50	02/01/18 21:02	2 108-88-3	1c,H1, H2
Xylene (Total) <i>Surrogates</i>	ND	ug/kg	16.2	1	02/01/18 10:50	02/01/18 21:02	2 1330-20-7	
Toluene-d8 (S)	104	%	76-124	1	02/01/18 10:50	02/01/18 21:02	2037-26-5	
4-Bromofluorobenzene (S)	113	%	70-133	1	02/01/18 10:50	02/01/18 21:02	2 460-00-4	
1,2-Dichloroethane-d4 (S)	86	%	74-131	1	02/01/18 10:50	02/01/18 21:02	2 17060-07-0	
Dibromofluoromethane (S)	96	%	71-130	1	02/01/18 10:50	02/01/18 21:02	2 1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	24.0	%	0.10	1		01/18/18 08:41		



Project: Hess Towson

Pace Project No.: 30240919

Sample: 20 glh PSU	Lab ID: 3024	0919005	Collected: 01/15/1	8 15:20	0 Received: 01	/16/18 11:10 N	Aatrix: Water	
Comments: • 8260 VOA: Post-analy	sis testing indicate	s the prese	ence of residual chlor	ine.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	15B Preparation Me	ethod: E	EPA 3510C			
TPH (C10-C28) <b>Surrogates</b>	1.6	mg/L	0.16	1	01/22/18 12:55	01/24/18 15:33		1c
o-Terphenyl (S)	50	%	17-107	1	01/22/18 12:55	01/24/18 15:33	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50	30/8015B					
TPH (C06-C10) <i>Surrogates</i>	ND	ug/L	200	1		01/26/18 17:52		
a,a,a-Trifluorotoluene (S)	102	%	62-126	1		01/26/18 17:52	98-08-8	
4-Bromofluorobenzene (S)	104	%	80-120	1		01/26/18 17:52		
6020 MET ICPMS	Analytical Meth	od: EPA 60	20 Preparation Met	hod: EP	PA 3020			
Chromium	1.1	ug/L	0.50	1	01/19/18 10:20	01/19/18 13:42	7440-47-3	
Molybdenum	ND	ug/L	0.50	1	01/19/18 10:20	01/19/18 13:42	7439-98-7	
Selenium	0.50	ug/L	0.50	1	01/19/18 10:20	01/19/18 13:42	7782-49-2	
Uranium-238	ND	ug/L	0.50	1	01/19/18 10:20	01/19/18 13:42	7440-61-1	
Vanadium	ND	ug/L	1.0	1	01/19/18 10:20	01/19/18 13:42	7440-62-2	
8260B MSV	Analytical Meth	od: EPA 82	60B					
Benzene	ND	ug/L	1.0	1		01/19/18 20:23	71-43-2	
Ethylbenzene	2.6	ug/L	1.0	1		01/19/18 20:23	100-41-4	
Toluene	ND	ug/L	1.0	1		01/19/18 20:23	108-88-3	
Xylene (Total)	7.5	ug/L	3.0	1		01/19/18 20:23	1330-20-7	
Surrogates								
Toluene-d8 (S)	102	%	80-120	1		01/19/18 20:23		
4-Bromofluorobenzene (S)	96	%	79-129	1		01/19/18 20:23		
1,2-Dichloroethane-d4 (S)	91	%	80-120	1		01/19/18 20:23	17060-07-0	
Dibromofluoromethane (S)	95	%	80-120	1		01/19/18 20:23	1868-53-7	



Project: Hess Towson

Pace Project No.: 30240919

Sample: 20 glh PSU Soil	Lab ID: 302	40919006	Collected: 01/15/1	8 15:25	Received: 01	/16/18 11:10	Matrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	usted for p	ercent moisture, sa	mple si	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: El	PA 3546			
TPH (C10-C28) Surrogates	67.8	mg/kg	8.4	1	01/17/18 18:53	01/20/18 00:54	Ļ	
o-Terphenyl (S)	52	%	30-90	1	01/17/18 18:53	01/20/18 00:54	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	15B Preparation Me	thod: El	PA 5035A/5030B			
TPH (C06-C10) <i>Surrogates</i>	ND	mg/kg	11.9	1	01/18/18 10:41	01/18/18 19:35	5	
a,a,a-Trifluorotoluene (S)	90	%	38-123	1	01/18/18 10:41	01/18/18 19:35	5 98-08-8	
4-Bromofluorobenzene (S)	91	%	84-128	1	01/18/18 10:41	01/18/18 19:35	6 460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B Preparation Me	thod: El	PA 5035A			
Benzene	ND	ug/kg	4.4	1	02/01/18 10:50	02/01/18 21:28	3 71-43-2	1c,H1, H2
Ethylbenzene	ND	ug/kg	4.4	1	02/01/18 10:50	02/01/18 21:28	8 100-41-4	1c,H1, H2
Toluene	ND	ug/kg	4.4	1	02/01/18 10:50	02/01/18 21:28	8 108-88-3	1c,H1, H2
Xylene (Total) Surrogates	ND	ug/kg	13.3	1	02/01/18 10:50	02/01/18 21:28	3 1330-20-7	
Toluene-d8 (S)	102	%	76-124	1	02/01/18 10:50	02/01/18 21:28	3 2037-26-5	
4-Bromofluorobenzene (S)	108	%	70-133	1	02/01/18 10:50	02/01/18 21:28	460-00-4	
1,2-Dichloroethane-d4 (S)	89	%	74-131	1	02/01/18 10:50	02/01/18 21:28	3 17060-07-0	
Dibromofluoromethane (S)	94	%	71-130	1	02/01/18 10:50	02/01/18 21:28	8 1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	22.0	%	0.10	1		01/18/18 08:41		



Project: Hess Towson

Pace Project No.: 30240919

Sample: 40 glh PSU	Lab ID: 302	40919007	Collected: 01/15/1	8 15:30	Received: 01	/16/18 11:10	Aatrix: Water	
Comments: • 8260 VOA: Post-an	alysis testing indicate	es the prese	ence of residual chlor	ine.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	nod: EPA 80	015B Preparation Me	ethod: E	PA 3510C			
TPH (C10-C28) <i>Surrogates</i>	0.91	mg/L	0.32	1	01/22/18 12:55	01/24/18 15:49		1c,A5
o-Terphenyl (S)	54	%	17-107	1	01/22/18 12:55	01/24/18 15:49	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 50	)30/8015B					
TPH (C06-C10) <i>Surrogates</i>	ND	ug/L	200	1		01/26/18 18:29		CL
a,a,a-Trifluorotoluene (S)	103	%	62-126	1		01/26/18 18:29	98-08-8	
4-Bromofluorobenzene (S)	107	%	80-120	1		01/26/18 18:29	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		01/19/18 20:51	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		01/19/18 20:51	100-41-4	
Toluene	ND	ug/L	1.0	1		01/19/18 20:51	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		01/19/18 20:51	1330-20-7	
Surrogates								
Toluene-d8 (S)	98	%	80-120	1		01/19/18 20:51	2037-26-5	
4-Bromofluorobenzene (S)	98	%	79-129	1		01/19/18 20:51	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	80-120	1		01/19/18 20:51	17060-07-0	
Dibromofluoromethane (S)	97	%	80-120	1		01/19/18 20:51	1868-53-7	



Project: Hess Towson

Pace Project No.: 30240919

Sample: 40 glh PSU Soil	Lab ID: 302	40919008	Collected: 01/15/1	8 15:35	Received: 01	/16/18 11:10	Matrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	usted for p	ercent moisture, sa	mple si	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: El	PA 3546			
TPH (C10-C28) Surrogates	106	mg/kg	7.9	1	01/17/18 18:53	01/20/18 01:12	2	
o-Terphenyl (S)	55	%	30-90	1	01/17/18 18:53	01/20/18 01:12	2 84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	15B Preparation Me	thod: El	PA 5035A/5030B			
TPH (C06-C10) <i>Surrogates</i>	10.3	mg/kg	8.9	1	01/18/18 10:41	01/18/18 19:54	Ļ	
a,a,a-Trifluorotoluene (S)	57	%	38-123	1	01/18/18 10:41	01/18/18 19:54	98-08-8	
4-Bromofluorobenzene (S)	84	%	84-128	1	01/18/18 10:41	01/18/18 19:54	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B Preparation Me	thod: El	PA 5035A			
Benzene	ND	ug/kg	4.6	1	02/01/18 10:50	02/01/18 21:55	5 71-43-2	1c,H1, H2
Ethylbenzene	ND	ug/kg	4.6	1	02/01/18 10:50	02/01/18 21:55	5 100-41-4	1c,H1, H2
Toluene	ND	ug/kg	4.6	1	02/01/18 10:50	02/01/18 21:55	5 108-88-3	1c,H1, H2
Xylene (Total) <i>Surrogates</i>	ND	ug/kg	13.9	1	02/01/18 10:50	02/01/18 21:55	5 1330-20-7	
Toluene-d8 (S)	103	%	76-124	1	02/01/18 10:50	02/01/18 21:55	5 2037-26-5	
4-Bromofluorobenzene (S)	108	%	70-133	1	02/01/18 10:50	02/01/18 21:55	5 460-00-4	
1,2-Dichloroethane-d4 (S)	87	%	74-131	1	02/01/18 10:50	02/01/18 21:55	5 17060-07-0	
Dibromofluoromethane (S)	95	%	71-130	1	02/01/18 10:50	02/01/18 21:55	5 1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	17.3	%	0.10	1		01/18/18 08:41		



Project: Hess Towson

Pace Project No.: 30240919

Sample: Trip Blank	Lab ID: 3024	40919009	Collected: 01/15/	8 00:01	Received: 0	1/16/18 11:10 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		01/19/18 15:19	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		01/19/18 15:19	100-41-4	
Toluene	ND	ug/L	1.0	1		01/19/18 15:19	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		01/19/18 15:19	1330-20-7	
Surrogates		-						
Toluene-d8 (S)	102	%	80-120	1		01/19/18 15:19	2037-26-5	
4-Bromofluorobenzene (S)	97	%	79-129	1		01/19/18 15:19	460-00-4	
1,2-Dichloroethane-d4 (S)	92	%	80-120	1		01/19/18 15:19	17060-07-0	
Dibromofluoromethane (S)	97	%	80-120	1		01/19/18 15:19	1868-53-7	



Project:	less Towson										
Pace Project No.: 3	30240919										
QC Batch:	285284		Analys	sis Method	: El	PA 8015B					
QC Batch Method:	EPA 5035A/503	0B	Analys	sis Descrip	tion: G	asoline Ran	ge Organi	ics			
Associated Lab Samp	oles: 3024091	9002, 3024091	9004, 30240919	9006, 3024	0919008						
METHOD BLANK: 1	1399218		١	Matrix: Sol	id						
Associated Lab Samp	oles: 3024091	9002, 3024091	9004, 30240919	9006, 3024	0919008						
			Blank	k R	eporting						
Parame	eter	Units	Resu	lt	Limit	Analyz	ed	Qualifiers	;		
TPH (C06-C10)		mg/kg		ND	10.0	01/18/18	14:13				
4-Bromofluorobenzen	ie (S)	%		92	84-128	01/18/18	14:13				
a,a,a-Trifluorotoluene	(S)	%		99	38-123	01/18/18	14:13				
LABORATORY CONT	FROL SAMPLE:	1399219					_				
			Spike	LCS		LCS	% Re				
5			•								
Parame	eter	Units	Conc.	Resu	ult	% Rec	Limit	s (	Qualifiers	_	
TPH (C06-C10)		mg/kg	•		52.6	105	78	8-140	Qualifiers	-	
TPH (C06-C10) 4-Bromofluorobenzen	e (S)	mg/kg %	Conc.			105 86	73 84	8-140 4-128	Qualifiers	-	
TPH (C06-C10) 4-Bromofluorobenzen	e (S)	mg/kg	Conc.			105	73 84	8-140	Qualifiers	-	
TPH (C06-C10) 4-Bromofluorobenzen a,a,a-Trifluorotoluene	e (S) (S)	mg/kg %	<u>Conc.</u> 50		52.6	105 86	73 84	8-140 4-128	Qualifiers	-	
TPH (C06-C10) 4-Bromofluorobenzen a,a,a-Trifluorotoluene	e (S) (S)	mg/kg %	Conc. 50 3999220	)		105 86	73 84	8-140 4-128	Qualifiers	-	
TPH (C06-C10) 4-Bromofluorobenzen a,a,a-Trifluorotoluene	e (S) (S)	mg/kg % % PLICATE: 13	Conc. 50 399220 MS	MSD	52.6	105 86 94	7: 8: 3:	8-140 4-128 8-123		-	
TPH (C06-C10) 4-Bromofluorobenzen a,a,a-Trifluorotoluene MATRIX SPIKE & MA	ie (S) (S) TRIX SPIKE DU	mg/kg % % PLICATE: 13 302409310	Conc. 50 399220 MS 001 Spike	MSD Spike	52.6 1399221 MS	105 86 94 MSD	73 84 36 MS	8-140 4-128 8-123 MSD	% Rec		0.:
TPH (C06-C10) 4-Bromofluorobenzen a,a,a-Trifluorotoluene	r	mg/kg % % PLICATE: 13 302409310 Units Resu	Conc. 50 399220 MS 001 Spike	MSD	52.6	105 86 94	7: 8: 3:	8-140 4-128 8-123 MSD % Rec	% Rec Limits	RPD	Qua

87

51

96 84-128

54 38-123

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

4-Bromofluorobenzene (S)

a,a,a-Trifluorotoluene (S)

%

%



Project:	Hess Towso	n										
Pace Project No.:	30240919											
QC Batch:	285887			Analys	is Method	l: E	PA 5030/80 ⁻	15B				
QC Batch Method:	EPA 5030/	′8015B		Analys	is Descrip	otion: G	asoline Ran	ige Organio	cs			
Associated Lab Sam	ples: 302	40919001, 3	30240919003	, 30240919	005, 3024	10919007						
METHOD BLANK:	1402276			Ν	Aatrix: Wa	ater						
Associated Lab Sam	ples: 302	40919001, 3	30240919003	-								
Param	eter		Units	Blank Resul		Reporting Limit	Analyz	ed	Qualifiers			
TPH (C06-C10)			ug/L			200	01/26/18			-		
4-Bromofluorobenzei	ne (S)		~9, <u> </u>		101	80-120						
a,a,a-Trifluorotoluene	e (S)		%		111	62-126	01/26/18	15:07				
LABORATORY CON Param		PLE: 1402	2277 Units	Spike Conc.	LC Res	-	LCS % Rec	% Rec Limits		Qualifiers		
TPH (C06-C10)			ug/L	1000		927	93	76	6-138			
4-Bromofluorobenzer	. ,		%				99		)-120			
a,a,a-Trifluorotoluene	e (S)		%				99	62	2-126			
MATRIX SPIKE & M/	ATRIX SPIK	E DUPLICA	TE: 14022	78 MS	MSD	1402279						
		30	)241445002	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
TPH (C06-C10)		ug/L	200 U	1000	1000	869	917	84	8	9 56-132	5	

98

91

100

93

80-120

62-126

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

4-Bromofluorobenzene (S)

a,a,a-Trifluorotoluene (S)

%

%



Project:Hess TowPace Project No.:3024091											
QC Batch: 518787			Analysi	s Method:	EF	PA 6020					
QC Batch Method: EPA 30	20		Analysi	s Descript	tion: 60	20 MET					
Associated Lab Samples: 3	0240919005										
METHOD BLANK: 2817901			N	latrix: Wa	ter						
Associated Lab Samples: 3	0240919005										
			Blank	R	eporting						
Parameter		Units	Result	:	Limit	Analyz	ed	Qualifiers			
Chromium		ug/L		ND	0.50	01/19/18	12:22				
Molybdenum		ug/L		ND	0.50	01/19/18	12:22				
Selenium		ug/L		ND	0.50	01/19/18	12:22				
Uranium-238		ug/L		ND	0.50	01/19/18	12:22				
Vanadium		ug/L		ND	1.0	01/19/18	12:22				
LABORATORY CONTROL SA Parameter	MPLE: 2817	902 Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		ualifiers		
	MPLE: 2817		•				Limits		ualifiers		
Parameter	MPLE: 2817	Units	Conc.		ult ·	% Rec	Limits	Qu	ualifiers		
Parameter	MPLE: 2817	Units ug/L	Conc. 100 100 100		ult 93.0 90.4 96.1	% Rec 93	Limits 80 80 80	Qu -120 -120 -120	ualifiers		
Parameter Chromium Molybdenum Selenium Uranium-238	MPLE: 2817	Units ug/L ug/L ug/L ug/L	Conc. 100 100 100 100		ult 93.0 90.4 96.1 95.0	% Rec 93 90 96 95	Limits 80 80 80 80	Qu -120 -120 -120 -120	ualifiers		
Parameter Chromium Molybdenum Selenium	MPLE: 2817	Units ug/L ug/L ug/L	Conc. 100 100 100		ult 93.0 90.4 96.1	% Rec 93 90 96	Limits 80 80 80 80	Qu -120 -120 -120	ualifiers		
Parameter Chromium Molybdenum Selenium Uranium-238		Units ug/L ug/L ug/L ug/L ug/L	Conc. 100 100 100 100 100		ult 93.0 90.4 96.1 95.0	% Rec 93 90 96 95	Limits 80 80 80 80	Qu -120 -120 -120 -120	ualifiers		
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium		Units ug/L ug/L ug/L ug/L ug/L	Conc. 100 100 100 100 100		ilt         93.0           90.4         96.1           95.0         90.4	% Rec 93 90 96 95	Limits 80 80 80 80	Qu -120 -120 -120 -120	ualifiers		
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium		Units ug/L ug/L ug/L ug/L ug/L	Conc. 100 100 100 100 100 100 100	Resu	ilt         93.0           90.4         96.1           95.0         90.4	% Rec 93 90 96 95	Limits 80 80 80 80	Qu -120 -120 -120 -120	valifiers		
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium		Units ug/L ug/L ug/L ug/L ug/L	Conc. 100 100 100 100 100 100 100 03 MS	MSD	alt 93.0 90.4 96.1 95.0 90.4 2817904	% Rec 93 90 96 95 90	Limits 80 80 80 80 80	Qu -120 -120 -120 -120 -120	% Rec	RPD	Qual
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium MATRIX SPIKE & MATRIX SF	IKE DUPLICAT	Units ug/L ug/L ug/L ug/L E: 281790	Conc. 100 100 100 100 100 100 03 MS Spike	MSD Spike	ult 93.0 90.4 96.1 95.0 90.4 2817904 MS	% Rec 93 90 96 95 90 MSD	Limits 80 80 80 80 80 80	Qu -120 -120 -120 -120 -120 -120	% Rec	RPD 1	Qual
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium MATRIX SPIKE & MATRIX SF Parameter Chromium	PIKE DUPLICAT	Units ug/L ug/L ug/L ug/L E: 28179 417265002 Result	Conc. 100 100 100 100 100 100 03 MS Spike Conc.	MSD Spike Conc.	alt 93.0 90.4 96.1 95.0 90.4 2817904 MS Result	% Rec 93 90 96 95 90 MSD Result	Limits 80 80 80 80 80 80 80 80 80 80 80 80 80	Qu -120 -120 -120 -120 -120 -120 MSD % Rec	% Rec Limits		Qual
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium MATRIX SPIKE & MATRIX SP Parameter	PIKE DUPLICAT	Units ug/L ug/L ug/L ug/L E: 28179 417265002 <u>Result</u> 1.2	Conc. 100 100 100 100 100 100 03 MS Spike Conc. 100	MSD Spike Conc. 100	alt 93.0 90.4 96.1 95.0 90.4 2817904 MS Result 101	% Rec 93 90 96 95 90 MSD Result 99.2	Limits 80 80 80 80 80 80 80 80 80 80 80 80 80	Qu -120 -120 -120 -120 -120 -120 MSD <u>% Rec</u> 98	% Rec Limits 75-125	1	Qual
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium MATRIX SPIKE & MATRIX SF Parameter Chromium Molybdenum	PIKE DUPLICAT	Units ug/L ug/L ug/L ug/L rE: 28179 417265002 Result 1.2 2.3	Conc. 100 100 100 100 100 100 03 MS Spike Conc. 100 100 100	MSD Spike Conc. 100 100	Mt         M           93.0         90.4           96.1         95.0           90.4         90.4           2817904         MS           Result         101           98.8         101	% Rec 93 90 96 95 90 MSD Result 99.2 98.3	Limits 80 80 80 80 80 80 80 80 80 80 80 80 80	Qu -120 -120 -120 -120 -120 -120 MSD % Rec 	% Rec Limits 75-125 75-125	 	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: Hess Towson Pace Project No.: 30240919

QC Batch:	286870	Analysis Method:	EPA 8260B
QC Batch Method:	EPA 5035A	Analysis Description:	8260B MSV UST-SOIL
Associated Lab Sam	ples: 30240919002, 30240919004, 3	0240919006, 3024091900	8

#### METHOD BLANK: 1406634 Matrix: Solid Associated Lab Samples: 30240919002, 30240919004, 30240919006, 30240919008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	5.0	02/01/18 12:40	
Ethylbenzene	ug/kg	ND	5.0	02/01/18 12:40	
Toluene	ug/kg	ND	5.0	02/01/18 12:40	
Xylene (Total)	ug/kg	ND	15.0	02/01/18 12:40	
1,2-Dichloroethane-d4 (S)	%	83	74-131	02/01/18 12:40	
4-Bromofluorobenzene (S)	%	104	70-133	02/01/18 12:40	
Dibromofluoromethane (S)	%	88	71-130	02/01/18 12:40	
Toluene-d8 (S)	%	99	76-124	02/01/18 12:40	

#### LABORATORY CONTROL SAMPLE: 1406635

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/kg		17.5		70-130	
Ethylbenzene	ug/kg	20	16.0	80	70-130	
Toluene	ug/kg	20	16.6	83	70-130	
Xylene (Total)	ug/kg	60	47.8	80	70-130	
1,2-Dichloroethane-d4 (S)	%			86	74-131	
4-Bromofluorobenzene (S)	%			103	70-133	
Dibromofluoromethane (S)	%			91	71-130	
Toluene-d8 (S)	%			98	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Hess Towson Pace Project No.: 30240919

QC

QC

Batch:	285469	Analysis Method:	EPA 8260B
Batch Method:	EPA 8260B	Analysis Description:	8260B MSV UST-WATER

Associated Lab Samples: 30240919001, 30240919003, 30240919005, 30240919007, 30240919009

METHOD BLANK: 1400059

Matrix: Water

Associated Lab Samples: 30240919001, 30240919003, 30240919005, 30240919007, 30240919009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	01/19/18 13:29	
Ethylbenzene	ug/L	ND	1.0	01/19/18 13:29	
Toluene	ug/L	ND	1.0	01/19/18 13:29	
Xylene (Total)	ug/L	ND	3.0	01/19/18 13:29	
1,2-Dichloroethane-d4 (S)	%	89	80-120	01/19/18 13:29	
4-Bromofluorobenzene (S)	%	99	79-129	01/19/18 13:29	
Dibromofluoromethane (S)	%	95	80-120	01/19/18 13:29	
Toluene-d8 (S)	%	101	80-120	01/19/18 13:29	

#### LABORATORY CONTROL SAMPLE: 1400060

_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	20.5	102	70-130	
Ethylbenzene	ug/L	20	22.1	110	70-130	
Toluene	ug/L	20	21.4	107	70-130	
Xylene (Total)	ug/L	60	66.4	111	70-130	
1,2-Dichloroethane-d4 (S)	%			91	80-120	
4-Bromofluorobenzene (S)	%			100	79-129	
Dibromofluoromethane (S)	%			96	80-120	
Toluene-d8 (S)	%			103	80-120	

MATRIX SPIKE & MATRIX SPIK	KE DUPLICAT	E: 14001			1400179						
			MS	MSD							
	302	240922001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/L	ND	20	20	19.5	19.9	98	100	67-121	2	
Ethylbenzene	ug/L	ND	20	20	22.5	23.5	112	117	70-127	4	
Toluene	ug/L	ND	20	20	20.9	21.1	104	106	77-125	1	
Xylene (Total)	ug/L	ND	60	60	65.4	66.4	109	111	69-128	2	
1,2-Dichloroethane-d4 (S)	%						86	92	80-120		
4-Bromofluorobenzene (S)	%						100	98	79-129		
Dibromofluoromethane (S)	%						95	94	80-120		
Toluene-d8 (S)	%						105	103	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: Hess Towson Pace Project No.: 30240919

SAMPLE DUPLICATE: 1400180

		30240922001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Benzene	ug/L	ND	ND		
Ethylbenzene	ug/L	ND	ND		
Toluene	ug/L	ND	ND		
Xylene (Total)	ug/L	ND	ND		
1,2-Dichloroethane-d4 (S)	%	91	91	0	
4-Bromofluorobenzene (S)	%	101	100	0	
Dibromofluoromethane (S)	%	94	93	1	
Toluene-d8 (S)	%	101	99	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project:	Hess Towson												
Pace Project No.:	30240919												
QC Batch:	285182	<u> </u>		Analysi	s Method:	E	PA 8015B						
QC Batch Method:	EPA 3546			Analysi	s Descript	ion: E	PA 8015 TPI	н					
Associated Lab Sam	nples: 3024091	9002, 302	240919004	, 302409190	006, 30240	0919008							
METHOD BLANK:	1398918			М	latrix: Soli	d							
Associated Lab Sam	nples: 3024091	9002, 302	240919004	, 302409190	006, 30240	0919008							
				Blank	R	eporting							
Param	neter	ι	Jnits	Result		Limit	Analyz	ed	Qualifie	rs			
		'n	ng/kg		ND	6.7	01/19/18	23:26					
TPH (C10-C28)			3.3										
o-Terphenyl (S)			%		60	30-90	01/19/18	23:26					
· · · ·					60	30-90	01/19/18 :	23:26					
```	ITROL SAMPLE:	139891	%										
o-Terphenyl (S)		139891	% 19	Spike	LCS		LCS	% Re					
o-Terphenyl (S)		139891	%	Spike Conc.						Qua	lifiers		
o-Terphenyl (S) LABORATORY CON Param TPH (C10-C28)		139891 	% 19 Jnits ng/kg	•	LCS		LCS % Rec 72	% Re Limits	s 47-86	Qua	lifiers		
o-Terphenyl (S) LABORATORY CON Param		139891 	% 19 Units	Conc.	LCS	it	LCS % Rec	% Re Limits	S	Qual	lifiers		
o-Terphenyl (S) LABORATORY CON Param TPH (C10-C28) o-Terphenyl (S)	neter	139891 	% 19 Jnits ng/kg %	Conc. 66.7	LCS	1t 48.1	LCS % Rec 72	% Re Limits	s 47-86	Qua	lifiers		
o-Terphenyl (S) LABORATORY CON Param TPH (C10-C28)	neter	139891 	% 19 Jnits ng/kg %	Conc. 66.7	LCS	it	LCS % Rec 72	% Re Limits	s 47-86	Qua	lifiers		
o-Terphenyl (S) LABORATORY CON Param TPH (C10-C28) o-Terphenyl (S)	neter	139891    IPLICATE	% 19 Jnits ng/kg %	<u>Conc.</u> 66.7	LCS Resu	1t 48.1	LCS % Rec 72	% Re Limits	s 47-86		lifiers % Rec		
o-Terphenyl (S) LABORATORY CON Param TPH (C10-C28) o-Terphenyl (S)	IATRIX SPIKE DU	139891    IPLICATE	% 19 Jnits ng/kg % E: 139892	20 MS	LCS Resu MSD	1398921	LCS % Rec 72 67	% Re Limit:	47-86 30-90		% Rec	RPD	Qual
o-Terphenyl (S) LABORATORY CON Param TPH (C10-C28) o-Terphenyl (S) MATRIX SPIKE & M	IATRIX SPIKE DU	139891     	% 19 Jnits ng/kg % E: 139892 40931001	Conc. 66.7 20 MS Spike	LCS Resu MSD Spike	1398921 MS	LCS % Rec 72 67 MSD	% Re Limits	47-86 30-90 MSD % Rec		% Rec		Qual M6,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	Hess Towson								
Pace Project No.:	30240919								
QC Batch:	285556		Analysis I	Method:	EF	PA 8015B			
QC Batch Method:	EPA 3510C		Analysis I	Description:	EF	PA 8015 TPH			
Associated Lab Sam	ples: 30240919	0001, 3024091900	3, 3024091900	5, 302409190	07				
METHOD BLANK:	1400566		Mat	rix: Water					
Associated Lab Sam	ples: 30240919	9001, 3024091900	3, 3024091900	5, 302409190	07				
			Blank	Report	ng				
Param	eter	Units	Result	Limit		Analyzed	d Quali	fiers	
TPH (C10-C28)		mg/L	N	1D	0.10	01/24/18 14	1:54		
o-Terphenyl (S)		%		44 1 ⁻	7-107	01/24/18 14	1:54		
LABORATORY CON		1400567							
	TROE OR IN LE.	1400001	Spike	LCS		LCS	% Rec		
Param	neter	Units	Conc.	Result	G	% Rec	Limits	Qualifiers	
TPH (C10-C28)		mg/L	1	0.61		61	44-100		_
o-Terphenyl (S)		%				66	17-107		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	Hess Towson			
Pace Project No.:	30240919			
QC Batch:	285258	Analysis Method:	ASTM D2974-87	
QC Batch Method:	ASTM D2974-87	Analysis Description:	Dry Weight/Percent Moisture	
Associated Lab Sa	mples: 30240919002, 30240919004, 3	30240919006, 3024091900	8	
SAMPLE DUPLICA	TE: 1399165			

		30240999001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Percent Moisture	%	48.5	49.3	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

Project: Hess Towson Pace Project No.: 30240919

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

#### S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### LABORATORIES

PASI-M Pace Analytical Services - Minneapolis PASI-PA Pace Analytical Services - Greensburg

#### **BATCH QUALIFIERS**

Batch: 285556

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 286870

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

#### ANALYTE QUALIFIERS

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- A5 Greater than 5% sediment in sample determined by visual observation. Aqueous portion decanted from the sediment and extracted.
- CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
- H1 Analysis conducted outside the EPA method holding time.
- H2 Extraction or preparation conducted outside EPA method holding time.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- ML Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.
- R1 RPD value was outside control limits.



## QUALIFIERS

Project:	Hess Towson
Pace Project No .:	30240919

#### ANALYTE QUALIFIERS

S5 S	urrogate recovery outsid	e control limits due to matrix	interferences (not confirmed by re-	analysis).
------	--------------------------	--------------------------------	-------------------------------------	------------

- SR Surrogate recovery was below laboratory control limits. Results may be biased low.
- ST Surrogate recovery was above laboratory control limits. Results may be biased high.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Hess Towson
Pace Project No .:	30240919

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30240919002	Control Soil	EPA 3546	285182	 EPA 8015B	285492
30240919004	10 glh PSU Soil	EPA 3546	285182	EPA 8015B	285492
30240919006	20 glh PSU Soil	EPA 3546	285182	EPA 8015B	285492
30240919008	40 glh PSU Soil	EPA 3546	285182	EPA 8015B	285492
30240919001	Control	EPA 3510C	285556	EPA 8015B	285874
30240919003	10 glh PSU	EPA 3510C	285556	EPA 8015B	285874
30240919005	20 glh PSU	EPA 3510C	285556	EPA 8015B	285874
30240919007	40 glh PSU	EPA 3510C	285556	EPA 8015B	285874
30240919002	Control Soil	EPA 5035A/5030B	285284	EPA 8015B	285292
30240919004	10 glh PSU Soil	EPA 5035A/5030B	285284	EPA 8015B	285292
30240919006	20 glh PSU Soil	EPA 5035A/5030B	285284	EPA 8015B	285292
30240919008	40 glh PSU Soil	EPA 5035A/5030B	285284	EPA 8015B	285292
30240919001	Control	EPA 5030/8015B	285887		
30240919003	10 glh PSU	EPA 5030/8015B	285887		
30240919005	20 glh PSU	EPA 5030/8015B	285887		
30240919007	40 glh PSU	EPA 5030/8015B	285887		
30240919005	20 glh PSU	EPA 3020	518787	EPA 6020	518889
30240919002	Control Soil	EPA 5035A	286870	EPA 8260B	286871
30240919004	10 glh PSU Soil	EPA 5035A	286870	EPA 8260B	286871
30240919006	20 glh PSU Soil	EPA 5035A	286870	EPA 8260B	286871
30240919008	40 glh PSU Soil	EPA 5035A	286870	EPA 8260B	286871
30240919001	Control	EPA 8260B	285469		
30240919003	10 glh PSU	EPA 8260B	285469		
30240919005	20 glh PSU	EPA 8260B	285469		
30240919007	40 glh PSU	EPA 8260B	285469		
30240919009	Trip Blank	EPA 8260B	285469		
30240919002	Control Soil	ASTM D2974-87	285258		
30240919004	10 glh PSU Soil	ASTM D2974-87	285258		
30240919006	20 glh PSU Soil	ASTM D2974-87	285258		
30240919008	40 glh PSU Soil	ASTM D2974-87	285258		

	3e: j of /	2212398		GROUND WATER DRINKING WATER	OTHER				- : : :	(N/A)	ənirolrtƏ İsut	ର୍ଷ ଜ ଜ ନୁକ୍ଟ Project No./ Lab I.D.		\$ \$	CO 3	۲ 80 1	202 2012		800	200 200					34,	Ved or Voole (V/V) (V) (V)	Temp Teceiv Jeceiv Sealed (Y/ (Y/)	 Мау-2007
<b>cument</b> d accurately.	Page:		REGULATORY AGENCY	NPDES GROU	UST T RCRA	Site Location	STATE:	Requested Analysis Filtered (Y/N)		(۸'n	lins my	1)) 2X0 7()		×		3						DATE TIME			******		11/2 1705	
CHAI WO# : 30240919	roject Information:	REPORT TO: MI CAREN DCOC	CORPAN PARE USP	Address: 30 Dull & Trad Dr. St& 300	Proc. Pace Quote Reference:	Pace Project Manager	Pace Profile #:		des ODE COLLECTED COLLECTED	S S C C C C C C C C C C C C C	IRIX CODE ( PLE TYPE ( PLE TYPE ( PLE TEMP AT C PLE TEMP AT C	AMM DATE DATE DATE DATE DATE DATE DATE DATE	C 1 KB 15 3		Chiralis is up			X X X X X X X X X X X X X X X X X X X	W7 C 115118 1535 13 13 13 XX XX X				Muchael & lee 257_ 1/15/18 1-205 20-		SAMPLER NAME AND SIGNATURE		Middle NCC DATE Signed	t paid within 30 days.
Pace Analytical	Section A Required Client Information:	COMPANY: WSP WSA	13530 Jule	1	<u>~ 6 % } </u>	703 705 500 Fax	Requested Due Date/TAT: 5+4		Section D Matri Required Client Information MATRI	Vater Vater Water Product SolfSolid	aum	؟	Control	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 × × × ×		200	40 JK PS V	8 40 2 4 2 4 Sail	9 10	11	ADDITIONAL COMMENTS			Ρας	ge 21	6 of 3	

Pittsburgh Lab Sample Conc	litior	ı Up	on F	Receipt	
Pace Analytical			•		
Client Name:		$\bigvee$	<u>5</u>	PUSA	Project # <u>3024091</u>
Courier: P Fed Ex UPS USPS Clie	ent 🗆	Com	mercia	I 🗆 Pace Other	Label BUM
Tracking #: 706025387413		_			LIMS Login BVM
Custody Seal on Cooler/Box Present: 🖉 yes		no	Sea	lls intact: ,⊠' yes	🗋 no
Thermometer Used S	Туре	of Ice	ə: 🕡	et) Blue None	
Cooler Temperature Observed Temp /	<u>ک</u>	۰C	Cor	rection Factor: 0	. <u>o</u> °C Final Temp <u>:</u> 1. 🤊 °C
Temp should be above freezing to 6°C		_			formation and account of the second
				_	Date and Initials of person examining contents: <u>7-1 1/16/18</u>
Comments:	Yes	No	N//	<u>\</u>	
Chain of Custody Present:	$\perp$	1	_	1.	
Chain of Custody Filled Out:	$\perp$		ļ	2.	· · · · · · · · · · · · · · · · · · ·
Chain of Custody Relinquished:	$\perp$	<u> </u>		3.	
Sampler Name & Signature on COC:		<u> </u>		4.	
Sample Labels match COC:		1		5.	
-Includes date/time/ID Matrix:	<u>_vr</u>	<u> </u>	<u>5</u> L		
Samples Arrived within Hold Time:	/			6.	
Short Hold Time Analysis (<72hr remaining):	<u> </u>	/_		7.	
Rush Turn Around Time Requested:		/		8.	
Sufficient Volume:	/			9.	
Correct Containers Used:	/			10.	
-Pace Containers Used:	1				
Containers Intact:	/			11.	
Orthophosphate field filtered			/	12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered	; ;		1	13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests			/	15.	
All containers have been checked for preservation.				16.	
All containers needing preservation are found to be in compliance with EPA recommendation.			/		
exceptions, VOA, coliform, TOC, O&G, Phenolics				Initial when Completed 71.	Date/time of preservation
exceptions, vox, collionin, roc, oad, Phenolics				Lot # of added	preservation
	<b></b>			preservative	
leadspace in VOA Vials ( >6mm):				17.	
rip Blank Present:	4	-		18.	
Trip Blank Custody Seals Present				Initial when	
Rad Aqueous Samples Screened > 0.5 mrem/hr			_	completed:	Date:
Client Notification/ Resolution:					
Person Contacted:			Date∕⊓	Time:	Contacted By:
Comments/ Resolution:					
<u> </u>					
	<u> </u>			<u></u>	·····
<b>–</b>					

□ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) *PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

the second se

bade 58 50 Wednesday, January 17, 2018 8:41:45 AM

Hourse a	Document Name: Sample Condition Upon Rece	Document Revised: 14Dec2017 Page 1 of 2
Pace Analytical*	Document No.;	Issuing Authority:
	F-MN-L-213-rev.22	Pace Minnesota Quality Office
Sample Condition Upon Receipt	Project	WUH · 1041/035
Courier:	USPS Client	
Commercial Pace Speed		10417535
Tracking Number: $7040 - 753$	38-8247	
Custody Seal on Cooler/Box Present?	YNo Seals Intact?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: 🛄 Bubble Wrap 🔤 Bubbl	e Bags 📈 None 🗌 Other:	Temp Blank?
Thermometer 51401163 Used: G87A9155100842	Type of Ice:	et 🗍 Blue 🗍 None 🌐 Dry 🗍 Melted
	mp Corrected (°C): 0.2	Biological Tissue Frozen?
Temp should be above freezing to 6°C Correcti USDA Regulated Soil ( X/A, water sample)	on Factor: $\frac{10.2}{}$ Dates	te and Initials of Person Examining Contents: 1/1万/1ダンン
Did samples originate in a quarantine zone within the	United States: AL, AR, CA, FL, GA, ID,	LA. MS, Did samples originate from a foreign source (internationally,
NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?	- Yes [	No including Hawaii and Puerto Rico)? 🗌 Yes 🗌 No
if fes to either question, fill of	ut a Regulated Soli Checklist (F-Win	N-Q-338) and include with SCUR/COC paperwork. COMMENTS:
Chain of Custody Present?		1.
Chain of Custody Filled Out?	Yes No	2.
Chain of Custody Relinquished?	<u> </u>	3.
Sampler Name and/or Signature on COC?	× _	
Samples Arrived within Hold Time?		5.
Short Hold Time Analysis (<72 hr)?	Yes Into	6.
Rush Turn Around Time Requested? Sufficient Volume?	<u> </u>	7.
Correct Containers Used?	× ~	8.
-Pace Containers Used?	Yes No	9.
	Yes 🔲 No	10
Containers Intact?		
Filtered Volume Received for Dissolved Tests?	Yes No KN/A	
Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix:		12.
-Includes Date/Time/ID/Analysis Matrix: UD All containers needing acid/base preservation have be checked? All containers needing preservation are found to be in	een Vyes 🗌 No 🗍 N/A	13. HNO ₃ H ₂ SO ₄ NaOH Positive for Res. Sample # 11.
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyar	4	)/1
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxin.		Initial when Lot # of added
Headspace in VOA Vials ( >6mm)?	YesNo _ <b>X</b> N/A YesNo <b>\\</b> N/A	
Trip Blank Present?		
Trip Blank Custody Seals Present?		
Pace Trip Blank Lot # (if purchased):		
CLIENT NOTIFICATION/RESOLUTION		Field Data Required? Yes No
Person Contacted		Date/Time:
Comments/Resolution:	· · ·	

hold, incorrect preservative, out of temp, incorrect containers).



Ship To: Pace Analytical Minnesota 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 Phone (612)607-1700

#### INTER_LABORATORY WORK ORDER # 30240919

(To be completed by sending lab)

Sending Project No.	30240919
Receiving Project No.	
Check Box for Consolidated Invoice:	
Date Prepared	01/17/18
REQUESTED COMPLETION DATE:	1/30/2018

Sending Region	IR30-Pittsburgh	Sending Project Mgr.	Rachel Christner
Receiving Region	IR10-Minnesota	External Client	WSP USA
State of Sample Origin		QC Deliverable	STD REPORT

All questions should be addressed to sending project manager.

**Requested Reportable Units** 

Report Wet or Dry Weight?

Weight? Dry Weight

Cert. Needed

		EQUESTED			niel wardt i 1997 op in indicate generatiet en New State
Method Description	Container Type		Quantity of Samples	Unit Price	Amount
6020 - Cr, Mo, Se, U, V	BP3N	HNO3	1	\$50.00	\$50.00
				ΤΟΤΑΪ	\$50.00

#### Special Requirements:

	Acctg. Code Tota	s from above	Revenue	Allocation
Receiving Region Department			Receiving Region (80%)	Client Services Dept Sending Region (20%)
Metals	20	\$50.00	\$40.00	
* Custom Revenue Allocation	TOTAL	\$50.00	\$40.00	\$10.00
Matrix: Soil Water	Air Other (ide	· · · · · · · · · · · · · · · · · · ·		
Matrix: Soil Water	Air Other (ide		es to Sending Region:	
CON	FIRMATION OF WOR	K COMPLETED		
Date Completed:	Receiving Project	ct Manager:		
	DISPOSITION of	FORM		

Original sent to the receiving lab - Copy kept at the sending lab.

When work completed: Original sent to the ABM at the receiving laboratory. Copies are made to corporate as needed.

	j of /	2212398		GROUND WATER C DRINKING WATER	C OTHER				. : : :	(N/)	r) əritəc (	17) Isubize	Z Pace Project No./ Lab I.D.		m co	<u>ک</u> م 1	005	3 20 20	200	609 TB			SAMPLE CONDITIONS	2 V V V		et 1	(γ/N) (γ/N) (γ/N) (γ/N) (γ/N) (γ/N)	R = 0.00
	Page:		AGENCY	GROUNI	RCRA			(V/V)															TIME	110 1.	 -			59%
<b>cument</b> d accurately.			REGULATORY AGENCY	NPDES [	UST L	Site Location	STATE:	lysis Filtered		(^'r	1250 5~0 [105	104 LXC	)	×		×	X	×					DATE	1/11/18				18 17
CHAI <b>WO#: 30240919</b> Cur The Chai	30240919	Attention: Pan Grost		L.,	Pace Quote 7	Pace Project Manager:		Requested Analysis Filtered (YIN)			а	1030 3029 1085			X									1 C C So LI 81/41/1		SAMPLER NAME AND SIGNATURE	Michael D Lee	"important Note: By signing this form you are accepting Pages NET 30 day payment terms and agreeling to late charges of 1.3% per month for any involces not peiled within 30 days.
	Section B Required Project Information:	Report To: Conv To:		Durch and Orlan Mail	2 M Purchase Order No.: Protect Name: 1	Hess In wise	100408/31400408/3		8 년 ()) ()) () ())	Watte Water UW des C Waste Water WW des C Compositie Waste Water WW de C C Compositie Product P er BRA START Soll/Sold SL	역			Su C 1113M 15:05	<u> </u>				C IIISIIS					Which all aller ISY		CRICIMAL		you are accepting Pace's NET 30 day payment terms and agreeing to
Pace Analytical"	lient Informatic	COMPANY: WSP WSH	2) 50 Dules	+ 2011		Requested Due hate/TAT.	513		Section D Required Client Information		SAMPLE ID V (A-Z, 0-9 /) A Sample IDS MUST BE UNIQUE T		1 Central	C n th	109K 72 10	100 1 00 1 00 1		HU ak PS U	Woll	9 10	11	12 ADDITIONAL COMMENTS					age 31	

Pittsburgh Lab Sample Co	onditi	on	Up	on F	Receipt	
To and the second s			•		·	
Pâce Analytical Client Name	2: _		V	<u>v 5</u>	PUSA	Project # <u>30240010</u>
Courier: 🖉 Fed Ex 🔲 UPS 🗌 USPS 🗎	Client		Com	mercia	1 🗆 Pace Other	Label BLM
Tracking #: 70602538741					-	LIMS Login 8\M
Custody Seal on Cooler/Box Present:		7	-	Sac	le integt: 🛛 voc 🗍	The second se
					Sintatu. Diyes i Si Blue None	
						ి ^{° C} Final Temp: 1. 7 • C
Temp should be above freezing to 6°C				ÇÜ	rection Factor. O.	
,						Date and initials of person examining contents: 774 1/16/18
Comments:	Γ	(es	No	N/A	7	contents: <u>777 1/16/18</u>
Chain of Custody Present:		/			1.	
Chain of Custody Filled Out:		1		1	2.	
Chain of Custody Relinguished:	·	/			3.	
Sampler Name & Signature on COC:			·	1	4.	
Sample Labels match COC:				-	5.	
-Includes date/time/ID Matrix:		57	-+-	SL.		
Samples Arrived within Hold Time:		/		T	6.	
Short Hold Time Analysis (<72hr remaining)	):		/		7.	
Rush Turn Around Time Requested:			/		8.	
Sufficient Volume:	-	-			9.	
Correct Containers Used:		7			10.	······································
-Pace Containers Used:		7		1		
Containers Intact:		7		1	11.	
Orthophosphate field filtered		Í			12.	
Hex Cr Aqueous Compliance/NPDES sample field fil	tered			1	13.	······································
Organic Samples checked for dechlorination	on:	7			14.	
Filtered volume received for Dissolved tests				1	15.	
All containers have been checked for preservation.		7			16.	
All containers needing preservation are found to be in	n	T		/		
compliance with EPA recommendation.	-					
exceptions VOA, coliform, TOC, O&G, Phenol	lics				completed 71	Date/time of preservation
					Lot # of added	, <u>(*</u>
					preservative	
Headspace in VOA Vials ( >6mm);			4		17.	
Trip Blank Present:	H				18.	
Trip Blank Custody Seals Present Rad Aqueous Samples Screened > 0.5 mrem.	/hr				Initial when	······
					completed:	Date:
Client Notification/ Resolution:						
Person Contacted:		<del></del>	·	Date/T	ime:	Contacled By:
Comments/ Resolution:						
					······	······································
······································						· · · · · · · · · · · · · · · · · · ·

 $\Box_{-}$  A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office ( i.e. out of hold, incorrect preservative, out of temp, incorrect containers) *PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edil Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Piltsburgh (C056-6 18Aug2017) Page 32 of 32

ENCLOSURE C

			5		
--	--	--	---	--	--

#### WSP USA 13530 Dulles Technology Drive, Suite 300 Herndon, VA 20171 (703) 709-6500 • Fax (703) 709-8505

Low-Flow Groundwater Sampling Monitoring Form

N 1420

					(,	9-6500 • Fax	()							
Well ID		YMW-		Site ID:	HOSS TO			Sample Date		9/19/17				
Well Diamo	eter		in	Sampling Ev	ent:	Benc		Treate	Lility	Stinly				
Depth to W	/ater	15.25	ft	Decon Proce	dures:	Non-phosph	ash with DI water rinse ¹ )							
Total Well		38	ft	Samplers:		him								
Screen Le			ft	Weather Cor	nditions:	.0.	~80			1				
Pump Inta			ft	Equipment:		bladd	she.							
Stabilized	· Drawdown <	0 3 feet: nH +	0 1 SU: Speci	fic Conductan	ce + 3% Temp	erature + 3%	DO + 0.2 m	g/l or 10%: Tur	bidity + 10%	for values area				
Otabilized	Diawaowii	0.0 100t, pri 1	0.1 00, 0000	fic Conductance ± 3%; Temperature ± 3%; DO ± 0.2 mg/l or 10%; Turbidity ± 10% for values great than 10 NTU; ORP ± 10 mV										
					ent Calibration		n							
	nH Moto	r Calibration					libration							
nH 7	00 Std.	pH 4.01 Std.	SL (mV/nH)	Notes on cali	bration.									
	NA	NA	NA		manufacturer's	specification	s using calib	ration standard	solutions					
the second s	emp =	100		Calibratou to		opeenieutien	e denig edite							
	ng Informati			Start purge:	1210	End purge:	2.09	Pump Type:	Bladder					
uren nengt	ing milorman	5N		otart purge.					Purge	Г				
		т	- H	ORP/Eh	Conductivity	Turbidity	D.O.	Flow Rate	Volume	Comment				
Time	DTW	(°C)	рН	(mV)	(mS/cm)	(NTU)	(mg/l) *	(mL/min)	(L)	Johnment				
Time			1	-12	6713	86.3	0.90	155		cler				
1218	16.18	26.52	6.43	-13	0.762			and the second se	~					
+23	16.34	23 81	6.70	-48	0.801	\$3.0	0.22	100	1	Clea				
1228	16.45	23.09	6.72	-55	0.815	87.0	0.0.0	100		claur				
1.238	16.60	22.81	6.74	-59	0.823	51.7	0.00	e01	1	Quer				
1243	16.62	22.20	6.75	-60	0.826	57.9	0.00	100	-	Geor				
1248	16.63	22.70	6.75	-59	0.233	49.6	0.00	1230	-	Ca				
3 #	16.73	22.68	6.26	- 59	0.829	43.5		155	)	aller				
1258	16.81	19.30	6.76	- 59	0.832	39.5	0,01	150		Our				
1203	1686	25.02	6.76	- 59	0.829	39.9	0.00	150	1	cla				
1308	16.94 1	21.701	4.76 1	-59 V	0.829 1	38.61	10.05 V	155	-	can				
	and the second	e	nn	no										
				1										
				V										
										×				
		*												
	1													
	1			1						1				
	1			1										
	+			1						1				
		1	I	Labor	atory Analysis	Information	I	I		I				
		•			atory Andrysis				Sample	1				
ш.с	Dottlog	A	lutor	Collection Method	Preservative	Bottle Tuno	Anal. Lab.	Filtered	Time	Comments				
# 01	Bottles	Ana		weitiou	rieservalive	Dotte Type	Andi. Lau.			Commente				
3		37	EX					R	1320	(Styley I				
2		TPH	620	L					1320	L				
ົ		alks Sulfid	ord					R	1320					
<u> </u>		alk 5	state					N	1320					
								/~						
		SULFU	2					·	132.1					

4L feasebility Study

# 1150

## WSP USA 13530 Dulles Technology Drive, Suite 300 Herndon, VA 20171 (703) 709-6500 • Fax (703) 709-8505

Low-Flow Groundwater Sampling Monitoring Form

								0		01.10				
Vell ID		YMW -3		Site ID:	HessTe	owson		Sample Date: 9/19/7						
/ell Diame	ter		in	Sampling Ev										
epth to W	ater	9.15	ft	Decon Proce	edures:			h with DI wate	r rinse	0				
otal Well [		30		Samplers:		MML	Notes:							
creen Len		15		Weather Cor	nditions:	.'0' N	50							
ump Intak		~12		Equipment: bludder, horiba										
Ctobilizod:	Drowdown	1 <0.3 feet; pH ± 0.1 SU; Specific Conductance ± 3%; Temperature ± 3%; DO ± 0.2 mg/l or 10%; Turbidity ± 10% for values greater that the second secon												
Stabilizeu.	Diawuowii	<0.5 leet, pri ±	0.1 30, Speci		n 10 NTU; ORP		, DO 1 0.2 mg		biancy _ rove	for values greater				
					ent Calibratio		n							
		- O - Ith - + th - +		maaam	ient ounoration		riba U-52 Cal	libration						
		r Calibration			hundleur.	FIO	fiba 0-52 Ga	indiation						
	00 Std.	pH 4.01 Std.		Notes on cali				ation standard	lutions					
N		NA	NA	Calibrated to	manufacturer's	specification	is using calibr	ation standard	solutions					
	emp =	100	°F			-								
/ell Purgir	ng Informati	on		Start purge:	0940	End purge:	101	Pump Type:	Bladder					
<b>-</b>	574	т (°С)	pН	ORP/Eh (mV)	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/l) *	Flow Rate (mL/min)	Purge Volume (L)	Comments				
Time	DTW	10	6.12	10)	0.2.02	.30	3.00	1-2		e Part				
1955	9.55	19.81	5.07	151	0.303	139		150		T=19.06 de				
000	9.81	1906	5.44	141	0.270	73.1	0.00	132	م					
1005	9.97	19.02	5.46	143	0,257	47.1	0.0	150	-	clur				
010	10.23	19.19	5:50	148	0.252	21.9	0.00	150	wind	clio				
IOIS	111.38	19.20	5.54	148	0.251	13,2	0.00	150	مارد. م	der				
1020	10,67	10.23	Sille	148	0.251	9.8	0,00	150		den				
1025	10.90	19 36	5.58	148	0.251	8.5	0,00	155	,	clev-				
1030	11.10	19.54	5.59	146	0.251	11.0	0.00	(3)	1	clear				
035	11.31	19.56	5.63	141	0,250	11.6	.0.00	192	-	Clear				
	the second se	19.56		139	0. 249	12.2	0,00	155	enterner.	Cler				
1040	the second s		5.66					150	~					
043	11.65	19.65	5.69	135	0.248	12.3	0.03	155	1	Clan .				
1050	11.85	19-69	5.70	133	0.245	15.3	0.00			Cer-				
1055	11.94	19.69	5.70	133	0.248	15-6	0.00	60.1		da				
1100	12.02	19.65	5.71	132	0. 245	15.2	0.00	100	-	clen				
/	/		/	~				/	/	. cla				
-				me	1 m	2K-								
						1								
						4								
	1		1											
			+		1									
						1		1	-	1				
			I	 	I Ancher	Information		L		L				
		T			atory Analysis	Intormation		T	Sample	T				
				Collection	Desservet	Dotto Tor	Analiah	Filtorod	Sample	Commonto				
# of I	Bottles		alytes	Method	Preservative	Bottle Type	Anal. Lab.	Filtered	Time	Comments				
3		BTE TPH-C	X					N	1110					
3		TPH-C	020					N	11(0					
2		TPIL TU	20					Ν	11,0					
d			RD Inty, sulfied					N	1110					
1		Alkal	inty sultaid	e				N						
/									11(0					

6 NTU

# 1150

# WSP USA 13530 Dulles Technology Drive, Suite 300 Herndon, VA 20171 (703) 709-6500 • Fax (703) 709-8505

Low-Flow Groundwater Sampling Monitoring Form

			H	ernaon, va zu	171 (703) 709	-6500 • Fax (								
Vell ID		MW-4		Site ID:	Hess H	Sample Date: 9/20/7								
Vell Diame	ter	2	in	ent:	Bench Sula Fressability Study									
epth to Wa			ft	Decon Proce	dures:	Non-phospha	ate soap was	h with DI wate	n with DI water rinse					
otal Well D		00.0	ft	Samplers:		m	Notes:							
creen Len			ft	Weather Con	ditions:	-03 -	-755							
umn Intak	•	175	ft	Equipment:										
Stabilized.	Drawdown <	0 3 feet: pH +	0 1 SU: Spec	ific Conductan	ce ± 3%; Tempe	rature ± 3%;	DO ± 0.2 mg	g/l or 10%; Tur	bidity ± 10%	for values greate				
otabilized.	Diawaowii	0.01000, p11 _	o o o, opoo	thar	10 NTU; ORP	± 10 mV			3					
					ent Calibration		1							
	nH Meter	Calibration				Hor	iba U-52 Ca	libration						
pH 7.0	and the second se	pH 4.01 Std.	SI. (mV/pH)	Notes on calif	oration:									
N		NA	NA	Calibrated to	manufacturer's	specifications	s using calibr	ation standard	solutions	· ·				
	emp =	100		1										
	g Informatio			Start purge:	1022	End purge:		Pump Type:	Bladder					
							DO	Flow Rate	Purge					
		Т	pН	ORP/Eh	Conductivity	Turbidity	D.O.		Volume	Comments				
Time	DTW	(°C)		(mV)	(mS/cm)	(NTU)	(mg/l) *	(mL/min)	(L)					
1240	20.90	23.71	6.72	-52	0.750	51.3	0.36	150	-					
1045	21.00	22.98	6.86	-70	0.751	42.6	12.00	15)						
1050	21.00	17.50	6.87	-73	0.764		2.02	c21	<b>)</b> .					
15	21.00	22.52	6.88	-76	0,768	34.0	0.3	155	~					
107	21.04	22.55	6.88	- 76	0,769	25.	0.0	150	-	For school				
1105	21.04	22.50	6.88	-78	0.770	216	0,23	63	1	10=24.0				
1110	21.04	22.50		- 78 - 79	0.771	24,0	0.00	(5)	-					
1115	21.01	2251	6.89	-79	0.771	25,1	0,0	153	1					
1112	210			PA	C1 - 1 - 2	/								
				-tes	par									
					. ()									
			1											
6														
	tra	Testa	Fit											
	11.02	TOTAL	h,mi											
		(	Ψ				2							
		Ferrois	100 )	Recycent			mall							
		FOIDUS	hind .	Y			0		1					
				y										
		Ferrane	Inon	00. 1			mart							
		-ULOW	lien	Recept			0							
							2							
				1										
				+										
				-										
								-						
			-											
		-												
		1		l aboi	atory Analysis	Information	<b>I</b>							
				Collection					Sample					
# ~ 4	Bottles	Ans	alytes	Method	Preservative	Bottle Type	Anal. Lab.	Filtered	Time	Comments				
# 01 2	Domes							N	1125					
2		BTE	X					Ň	1,25					
3			H-GRO			1	1	-K						
2		PH- ALK	DA					N.	1125					
1		ALK	SIFi					N	1125					
	1	SUH	5-111					11	125					
ma	1	SH	, · ·											

1055

	5	

#### WSP USA 13530 Dulles Technology Drive, Suite 300 Herndon, VA 20171 (703) 709-6500 • Fax (703) 709-8505

Low-Flow Groundwater Sampling Monitoring Form

			He	erndon, VA 20	171 (703) 709	-6500 • Fax	(703) 709-85	05					
Well ID		48-1		Site ID:	Hers To	won		Sample Date: 9 30 1					
Well Diame	ter		in	Sampling Ev		Bench Scale Feasability Strain							
Depth to W		9.37							rriðse (	1			
Total Well [			ft	Samplers:			Notes:		(	J			
Screen Len			ft	Weather Con	ditions:	O N7	50-						
Pump Intak	0		ft	Equipment:		plade	ler, hor	-ba		2			
Stabilized:	Drawdown -	<0.3 feet; pH ±	0.1 SU; Speci	fic Conductan	ce ± 3%; Tempe	erature ± 3%	; DO $\pm$ 0.2 mg	g/l or 10%; Tur	bidity ± 10%	for values greater			
				thar	10 NTU; ORP	± 10 mV							
				Instrum	ent Calibration		2222/22/22/20/00/00/00/00/00/00/00/00/00						
	pH Mete	r Calibration				Ho	riba U-52 Cal	ibration					
pH 7.0	00 Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calil	oration:								
N	IA	NA	NA	Calibrated to	manufacturer's	specification	s using calibr	ation standard	solutions				
	emp =	100	°F			22							
Well Purgir	ng Informati	on		Start purge:		End purge:		Pump Type:	Bladder				
Time	DTW	т (°С)	рН	ORP/Eh (mV)	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/l) *	Flow Rate (mL/min)	Purge Volume (L)	Comments			
DEXT	1121	\$ 2 M		-									
0824	9.40	20 30	6.50	-19	1.49	5.36	1.26		Int				
0830	9.40	19.65	6.85	-50	1.40	705	1.10		JUNE				
0834	9.40	19.06	6.89	-57	1.39	195	1,16		3000				
-	ran	sinc				and a local division of the American States							
	)	8					and the second						
And the second s													
1 -			0. h		. 1								
10	A Fe	ting	onno	pch C	T								
		-											
		10	0.0		3.30 000	11	(limit	Ì					
	Ferto	Non zy	Reney	44	2.20 000	14	Cimit	/					
			- 0		· · · · · · · · · · · · · · · · · · ·	1	-						
	Co >	10 10	Rech t		3.30 mg	11	(fimi)			-			
	ferrol	ter Ira	Kleingt		2.20 104	IC.	CLINNY_						
			5		V								
4													
		1											
								1					
	14						-						
9													
	-												
	× 2												
					atory Analysis	Information	1		Comple	ſ			
			h too	Collection	Preservative	Bottle Turs	Anal Lab	Filtered	Sample Time	Comments			
# of	Bottles		alytes	Method				V	0845	Continionta			
10	<u> </u>	MK SU	FILZ H	te BTEX	TPH-DRG	41PH-	SIN _	N	0920				
4		A FOU	sed the	stilled a	Study	1			0440				
Jelli	Jolum	i calci	Intie	,	0			),15 gr ,30 gr ),45 gr	rl				
								0 -	0				
10		) 0.0	2.11		. 0	2 12	1 = 0	,30 gr	L				
13-	9.37	) 0.0	41 =	0.15	off.	0		0					
	1	/			0	3 6	1 = C	), 4 > ga	L				
								Δ	147				
								U					

ENCLOSURE D



February 6, 2018

Matt Burns and Pam Robertson Practice Leader Environmental

300 Trade Center, Suite 4690, Woburn, MA 01801

RE: Draft Report for In Situ Chemical Oxidation Treatability Study for Hess Towson, MD Version 1

Dear Matt and Pam:

Terra Systems, Inc. (TSI) has conducted treatability studies at over 100 sites in support of in situ chemical oxidation (ISCO) using potassium and sodium permanganate, activated persulfate, catalyzed hydrogen peroxide, or ozone, or in situ chemical reduction of volatile organics, semivolatiles organics, and metals. TSI does not perform ISCO or in situ reduction field projects, but works with environmental engineering consultants including ERM, AMEC, TRC, Moraine Environmental, URS, GZA, WSP, and others to evaluate chemical oxidant demand and effectiveness in the laboratory before the consultants go to pilot or full-scale implementation. The treatability work was directed by Michael D. Lee, Ph.D. He has over 30 years of experience in conducting treatability studies and in situ bioremediation of chlorinated solvents and hydrocarbons. He has published over 100 papers.

I have prepared this report for an ISCO treatability study for the Hess Towson, MD site contaminated with hydrocarbons including benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) including diesel range organics or DRO C10-C28 and gasoline range organic or GRO C6-C10. The soil was analyzed in duplicate for the following parameters by Pace Laboratory of Greensburg, PA: BTEX, TPH-GRO, TPH-DRO, and moisture. Pace Laboratory was paid directly by WSP. The groundwater was analyzed for the following parameters: BTEX, TPH-DRO, TPH-GRO, and oxyanions (selenium, chromium, vanadium, molybdenum, and uranium). TSI measured the soil density, soil moisture, soil field holding capacity, and pH of the soil and groundwater and determined the quantities of 25% sodium hydroxide needed to raise and maintain the pH to 10.5 of 136 g soil and 30 mL groundwater for the following treatments: control, Peroxychem product Klozur 10 g/L sodium persulfate, 20 g/L Klozur persulfate, and 40 g/L Klozur persulfate.

A contaminant destruction evaluation was conducted with three dosages of Klozur sodium persulfate activated with sodium hydroxide, three dosages of unactivated Klozur sodium persulfate, and controls. Two replicates of each persulfate treatment were prepared in 783 mL bottles with 980 g soil with a density of 1.74 g/cm³ and 220 mL groundwater or approximately 72% by volume soil and 28% volume groundwater. Three replicates of the control were

prepared. The volumes of sodium hydroxide required to maintain the pH above 10.5 determined in the initial characterization step was added to the two sodium hydroxide amended replicates. The pH, redox potential, and persulfate of one bottle from each treatment was recorded over time. If the pH dropped below 10.5 for the sodium hydroxide amended treatments, additional 25% sodium hydroxide was added to both replicates. Two replicates of each unactivated persulfate treatment were prepared in 712 mL bottles with 980 g soil with a density of 1.74 g/cm³ and about 220 mL groundwater or approximately 72% by volume soil and 28% volume groundwater.

#### 1.0 SUPPLY OF SAMPLES

WSP personnel sent representative soil and groundwater samples on ice and under standard Chain-of-Custody procedures directly to TSI at the following shipping address:

Michael D. Lee, Ph.D. Terra Systems, Inc. 130 Hickman Road, Suite 1 Claymont DE 19703 Phone: 302-798-9553 E-mail: <u>mlee@terrasystems.net</u>.

The following samples were supplied for the treatability studies:

- 10.7 kg (about 8 L) of groundwater from contaminated wells YP-1 and YMW-7
- 32.1 kg of contaminated soil. The soil samples were collected from within the treatment zone from MIP-2 (25-30') and MIP 8 (18-22').

The samples were collected with as little headspace as possible. The groundwater samples were collected on 9/19-20/17, shipped on 9/20/17, and received on 9/21/17. The soil samples were collected on 9/20-21/17, shipped on 9/21/17, and received on 9/22/17.

#### 2.0 SCOPE OF WORK

A comprehensive workplan for the completion of the proposed work was drafted and submitted to WSP. The experimental design for the bench-scale treatability study consisted of four phases of work:

- 1 Initial compositing and characterization of the site soil and groundwater;
- 2 Treatment effectiveness for three loading of sodium hydroxide activated Klozur sodium persulfate, and an unamend control sampled over 14 days
- 3 Treatment effectiveness for three loading of un activated Klozur sodium persulfate, and an unamend control sampled over 91 days
- 4 Report.

Each phase of work is described in detail in the sections that follow.

#### 2.1 Initial Characterization of Site Soils and Groundwater

Prior to beginning the actual treatability experiments, the soil and groundwater samples were composited separately. The soil was screened through a 4.5 cm screen into a 5-gallon bucket and mixed with an auger drill until homogenous. The composited soil was analyzed in duplicate for the following parameters by the Pace Laboratory: VOC and moisture (two Terra Core Kits per sample preserved with bisulfate and methanol), and TPH-DRO and TPH-GRO by 8015 (4-oz jar). The groundwater was analyzed for the following parameters: VOC (3-40 mL VOA vials preserved with hydrochloric acid), TPH-GRO (3-40 mL VOA vials preserved with hydrochloric acid), TPH-GRO (1 Liter amber glass with no preservative); and oxyanions - selenium, chromium, vanadium, molybdenum, and uranium (250 mL plastic bottle preserved with nitric acid). A trip blank for VOCs was also submitted.

TSI measured the soil density, soil moisture, soil field holding capacity, and pH of the soil and groundwater and determined the quantities of 25% sodium hydroxide needed to raise and maintain the pH to 10.5 of 136 g soil and 30 mL groundwater for the following treatments: control, Klozur 10 g/L sodium persulfate, 20 g/L Klozur persulfate, and 40 g/L Klozur persulfate. Each treatment received 1 g/L sodium azide to minimize biological losses. As the persulfate decomposes, it produces sulfuric acid and the pH drops. The pHs were monitored over an eight-day incubation period. When the pH drifted below 10.5, additional 25% sodium hydroxide was added.

#### 2.2 Initial Characterization Results

Table 1 presents the results of the initial characterization. The groundwater contained 1,300 µg/L TPH-DRO, 4,300 µg/L TPH-GRO, no detectable chromium, molybdenum, selenium, uranium, or vanadium (detection limits 0.5 µg/L), 18.8 µg/L benzene, 359 µg/L ethylbenzene, 31.3 µg/L toluene, and 581 µg/L total xylenes with a pH of 6.5 and oxidizing ORP of 104 mV. The trip blank had no detectable BTEX. The soil contained between 99,100 and 223,000 µg/kg TPH-DRO, 53,300 to 89,300 µg/kg TPH-GRO, <244 µg/kg benzene, 909 to 1,610 µg/kg ethylbenzene, <244 µg/kg toluene, and 5,310 to 9,250 µg/kg total xylenes. The soil density was 1.74 g (the equivalent of 109 pounds per cubic foot) with a field holding capacity of 0.14 g/g soil. The soil pH was 6.5 and the redox potential 201 mV.

Table 2 shows the results of the 25% sodium hydroxide (NaOH) titrations with 136 g soil, 30 g groundwater, and 10,000, 20,000, and 40,000 mg/L Klozur sodium persulfate. The initial pH of the Control was 6.8. It took 0.25 mL 25% NaOH to raise the pH to 11.4 and pH remained above 11.3 for the remainder of the 8 days. The sodium hydroxide demand of the Control was 0.46 g/kg. The initial pH of the 10,000 mg/L persulfate treatment was 7.1. It took 0.4 mL of the 25% NaOH to raise the pH to 12.1 and pH remained above 11.3 for the remainder of the 8 days. The sodium hydroxide demand of the 8 days. The sodium hydroxide demand of the 25% NaOH to raise the pH to 12.1 and pH remained above 11.3 for the remainder of the 8 days. The sodium hydroxide demand for the 10,000 mg/L persulfate treatment was 0.74 g/kg or the equivalent of 0.039 gallons of 25% sodium hydroxide per cubic foot of aquifer. The initial pH of the 20,000 mg/L persulfate treatment was 7.0. It took 0.35 mL of the 25% NaOH to raise the pH to 11.9 and pH fell below 11.0 on Day 8 and an additional 0.05 mL of 25% NaOH was added to

raise the pH to 11.3. The sodium hydroxide demand for the 20,000 mg/L persulfate treatment was 0.74 g/kg or the equivalent of 0.039 gallons of 25% sodium hydroxide per cubic foot of aquifer. The initial pH of the 40,000 mg/L persulfate treatment was 6.9. It took 0.4 mL of the 25% NaOH to raise the pH to 12.5 and pH fell below 11.0 on Day 8 and an additional 0.4 mL of 25% NaOH was added to raise the pH to 11.3. The sodium hydroxide demand for the 40,000 mg/L persulfate treatment was 0.83 g/kg or the equivalent of 0.043 gallons of 25% sodium hydroxide per cubic foot of aquifer.

#### 2.3 Site Soil Alkaline Activated Persulfate Demand and Contaminant Destruction Efficiency Testing

Two control vessels were prepared in separate 712 mL vessels containing 980 g site soil and 220 mL groundwater (ratio of 72% soil and 28% groundwater by volume). One control replicate was sampled over time and one remained unopened and undisturbed. Three loadings of Klozur sodium persulfate were added to separate 712 mL vessels containing 980 g site soil and 220 mL groundwater plus sodium hydroxide. Sodium azide (1 g/L) was added to all treatments to minimize biodegradation losses. The persulfate, sodium azide, and sodium hydroxide were added to the groundwater and mixed for several minutes with a magnetic stirrer to dissolve the persulfate, azide, and sodium hydroxide. The amended groundwater was then added to the soil to thoroughly distribute the oxidant. Sufficient groundwater was added to completely fill the bottles. The Klozur sodium persulfate loadings result in oxidant concentrations of 10, 20, and 40 g/L groundwater. The bottles with soil, groundwater, and persulfate were closed and inverted several times to mix. Periodic measurements of pH, ORP, and oxidant concentrations in the groundwater phase were made from one replicate of the treatment and control vessels after 1, 4, 7, 10, and 14 days. The oxidant concentrations were measured using a back-titration method wherein 0.4 M ferrous ammonium sulfate solution was added to a portion of the groundwater with 10 mL 25% sulfuric acid and titrated with potassium permanganate. The concentration of residual persulfate in the groundwater are correlated to the volume of permanganate solution consumed versus a blank. After 14 days, the groundwater from the unopened control and the persulfate and sodium hydroxide treatments were analyzed for pH, ORP, and oxidant concentrations. Groundwater samples from the unopened and undisturbed control and from the unopened and undisturbed persulfate and sodium hydroxide treatments were submitted to the Pace Laboratory for analysis of BTEX, TPH-DRO, and TPH-GRO. The groundwater was diluted 10-fold. The groundwater from the 20 g/L persulfate treatment was analyzed for oxyanions (Se, Cr, V, Mo, and U). After 14 days, soil samples from the unopened and undisturbed control and from the unopened and undisturbed persulfate and sodium hydroxide treatments were submitted to Pace Laboratory for analysis of BTEX, TPH-DRO, TPH-GRO, and moisture.

Sample	Units	GW	Trip Blanl	Units	Soil A	Soil B	Soil Avg
TPH C10-C28 (DRO)	µg/L	1300		µg/kg	223,000	99,100	161,050
TPH C06-C10 (GRO)	µg/L	4360		µg/kg	89,300	53,300	71,300
Chromium	µg/L	< 0.5		µg/kg			
Molybdenum	µg/L	< 0.5		µg/kg			
Selenium	µg/L	< 0.5		µg/kg			
Uranium-238	µg/L	< 0.5		µg/kg			
Vanadium	µg/L	< 0.5		µg/kg			
Benzene	µg/L	18.8	<1.0	µg/kg	<244	<245	<244
Ethylbenzene	µg/L	359	<1.0	µg/kg	1,610	909	1,260
Toluene	µg/L	31.3	<1.0	µg/kg	<244	<245	<244
Total Xylenes	μg/L	581	<1.0	µg/kg	9,250	5,310	7,280
% Moisture				%	13.5	16.0	15
TSI		GW					Soil
Soil Density	g/cm3						1.74
рН	SU	6.5					6.5
Redox Potential	mV	104					210
Field Holding Capacity	g/g						0.14

 Table 1. Initial Characterization Results

Sample	Control										Soil NaOH Demand g/kg
Date			10/3/2017			10/4/2017	10/6/2017	10/11/2017			
Day			0			1	3	8			
Soil	g	136									
GW	g	30									
Klozur Sodium	0										
Persulfate	g	0									
Sodium Azide	g	0.05									
mL 25% NaOH			0	0.2	0.25						
pН	SU		6.8	10.4	11.4	11.9	11.8	11.3			0.46
Sample	10,000 mg/L	Klozur									Soil NaOH Demand g/kg
Date			10/3/2017				10/4/2017	10/6/2017	10/11/2017		
Day			0				1	3	8		
Soil	g	136									
GW	g	30									
Klozur Sodium											
Persulfate	g	0.3									
Sodium Azide	g	0.05									
mL 25% NaOH			0	0.25	0.35	0.4					
pН	SU		7.1	9.2	10.5	12.2	12.1	11.9	11.3		0.74
Sample	20,000 mg/L	Klozur									Soil NaOH Demand g/kg
Date			10/3/2017				10/4/2017	10/6/2017	10/11/2017		
Day			0				1	3	8		
Day Soil	g	136	0						8		
	U	136 30	0						8		
Soil GW	g g		0						8		
Soil	U		0						8		
Soil GW Klozur Sodium	es S	30	0						8		
Soil GW Klozur Sodium Persulfate	g g	30 0.6	0	0.35					8	0.4	
Soil GW Klozur Sodium Persulfate Sodium Azide	g g	30 0.6		0.35					8	0.4	0.74
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH	g g SU	30 0.6 0.05	0				1	3			
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH	g g	30 0.6 0.05	0				1	3			0.74 Soil NaOH Demand g/kg
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample	g g SU	30 0.6 0.05	0 7.0				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date	g g SU	30 0.6 0.05	0 7.0 10/3/2017				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date Day	g g g SU 40,000 mg/L	30 0.6 0.05 Klozur	0 7.0 10/3/2017				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date Date Day Soil GW Klozur Sodium	g g g SU 40,000 mg/L g	30 0.6 0.05 Klozur 136	0 7.0 10/3/2017				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date Day Soil GW	g g g SU 40,000 mg/L g	30 0.6 0.05 <b>Klozur</b> 136 30 1.2	0 7.0 10/3/2017				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date Date Day Soil GW Klozur Sodium Persulfate Sodium Azide	g g g SU 40,000 mg/L g g	30 0.6 0.05 <b>Klozur</b> 136 30	0 7.0 10/3/2017				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date Day Soil GW Klozur Sodium Persulfate	g g g SU 40,000 mg/L g g g	30 0.6 0.05 <b>Klozur</b> 136 30 1.2	0 7.0 10/3/2017				1	3	10.1		

 Table 2. 25% Sodium Hydroxide Titrations

#### 2.4 Unactivated Persulfate Demand and Contaminant Destruction Efficiency Testing

One control vessel was prepared in a separate 712 mL vessel containing 980 g site soil and 220 mL groundwater. The control remained unopened and undisturbed. Three loadings of Klozur sodium persulfate were added to separate 712 mL vessels containing 980 g site soil and 220 mL groundwater (ratio of 72% soil and 28% groundwater by volume). Sodium azide (1 g/L) was added to all treatments to minimize biodegradation losses. The persulfate was added to the groundwater and mixed with a magnetic stirrer for several minutes to dissolve the persulfate and azide. The amended groundwater was added to the soil to thoroughly distribute the oxidant. Sufficient groundwater was added to completely fill the bottles. The Klozur sodium persulfate loadings result in oxidant concentrations of 10, 20, and 40 g/L groundwater. The bottles with soil, groundwater, and persulfate were closed and inverted several times to mix. Periodic measurements of pH, ORP, and oxidant concentrations in the groundwater phase was made from one replicate of the treatment and control vessels after 1, 4, 7, 10, 14, 36, 56, and 91 days. After 91 days, the groundwater from the unopened and undisturbed persulfate replicates and the control were analyzed for pH, ORP, and oxidant concentrations. Groundwater samples from the unopened replicate and undisturbed control and persulfate amended treatments were submitted to the chosen laboratory for analysis of BTEX, TPH-DRO, and TPH-GRO. The sample volumes needed for these analyses are shown in Table 2. The groundwater was diluted 10-fold. The groundwater from the 20 g/L persulfate treatment was analyzed for oxyanions (Se, Cr, V, Mo, and U). After 91 days, soil samples from the unopened replicate of the control and persulfateamended treatments were submitted to Pace Laboratory for analysis of BTEX, TPH-DRO, TPH-GRO, and moisture.

#### 3.0 RESULTS

#### 3.1 Sodium Hydroxide Activated Persulfate Field Parameters

Table 3 presents the field parameter for the sodium hydroxide activated persulfate treatments. The pH of the Control ranged from 6.8 to 7.9 SU and the ORP mildly oxidizing from 108 to 225 mV. The pH of the 10 g/L persulfate activated with sodium hydroxide ranged from 11.1 to 12.4 SU and the ORP from -31 to 89 mV. The elevated pHs impacts the redox potential measurements. The persulfate fell from 10,000 mg/L to 6,925 mg/L from Days 1 to 4 and decreased to 3,280 mg/L in the opened bottle at Day 14. The sample from the unsampled bottle had <1,457 mg/L persulfate. The SOD of the sodium hydroxide activated 10 g/L persulfate treatment was estimated to be 1,509 mg/kg to >1,918 mg/kg with a requirement for 0.74 g sodium hydroxide/kg soil or the equivalent of 0.039 gallons of 25% sodium hydroxide per cubic foot of aquifer. The pH of the 20 g/L persulfate activated with sodium hydroxide ranged from 11.6 to 12.6 SU and the ORP from 38 to 53 mV. The persulfate fell from 20,000 mg/L to 9,963 mg/L on Day 1 to 2,065 mg/L on Day 14. The 20 g/L persulfate amended activated with sodium hydroxide treatment had an SOD estimated to be 4,026 mg/kg with a requirement for 0.74 g sodium hydroxide/kg soil or the equivalent of 0.039 gallons of 25% sodium hydroxide per cubic foot of aquifer. The pH of the 40 g/L persulfate activated with sodium hydroxide ranged from 10.9 to 12.7 SU and the ORP from 62 to 112 mV. The persulfate fell from 40,000 mg/L to 28,797 mg/L on Day 1 to between 4,495 to 22,722 mg/L on Day 14. The 40 g/L persulfate amended treatment had an SOD estimated to be 3,879 to 7,791 mg/kg with a requirement for

0.83 g sodium hydroxide/kg soil or the equivalent of 0.043 gallons of 25% sodium hydroxide per cubic foot of aquifer.

Treatment	Soil	GW	Klozur	Sodium Hydroxide	Date	Day	pН	ORP	Persulfate	
	g	g	g	g			SU	mV	mg/L	
Control 14	867	280	0	0						
Control 80	980	220	0	0						
Control Ex	980	220	0	0	10/17/2017	1	7.8	120		
					10/20/2017	4	6.9	221		
					10/23/2017	7	7.7	108		
					10/26/2017	10	7.7	221		
					10/30/2017	14	6.8	225		
					10/30/2017					
					Diluted 10X	14	6.9	204		
	Soil	GW	Klozur	Sodium Hydroxide	Date	Day	рН	ORP	Persulfate	SOD
	g	g	g	g	Dute	Duj	SU	mV	mg/L	mg/kg
10 g/L PS + NaOH 14	980	220	2.2	0.73		0	~~		10,000	····-B/ •··B
10  g/L PS + NaOH Fx 10  g/L PS + NaOH Ex	980	220	2.2	0.73	10/17/2017	1	12.4	89	6,925	
10 g B 1 B + 1 a O II B I	,00	220		0170	10/20/2017	4	12.7	25	6,925	
					10/23/2017	7	12.4	-1	6,317	
					10/26/2017	10	12.4	7	6,925	
					10/30/2017	14	11.9	-31	3,280	1,509
					10/30/2017	14	11.7	51	5,200	1,507
					Diluted 10X	14	11.1	30	<1,457	>1.918
	Soil	GW	Klozur	Sodium Hydroxide	Date	Day	рН	ORP	Persulfate	SOD
	g	g	g	g			SU	mV	mg/L	mg/kg
20 g/L PS + NaOH 14	980	220	4.4	0.73		0			20,000	
20 g/L PS + NaOH Ex	980	220	4.4	0.73	10/17/2017	1	12.3	41	9,963	
•					10/20/2017	4	12.6	38	8,748	
					10/23/2017	7	12.2	39	10,570	
					10/26/2017	10	12.0	52	10,570	
					10/30/2017	14	11.6	53	2,065	4,026
					10/30/2017					
					Diluted 10X	14	10.9	38	2,065	4,026
	Soil	GW	Klozur	Sodium Hydroxide	Date	Day	рН	ORP	Persulfate	SOD
	g	g	g	g			SU	mV	mg/L	mg/kg
40 g/L PS + NaOH 14	980	220	8.8	0.81		0			40,000	
40 g/L PS + NaOH Ex	980	220	8.8	0.81	10/17/2017	1	12.5	89	28,797	
					10/20/2017	4	12.7	81	27,582	
					10/23/2017	7	12.3	83	25,152	
					10/26/2017	10	12.2	83	25,152	
	l		l		10/30/2017	14	11.7	112	22,722	3,879
			1		10/30/2017					, .

Table 3. Sodium Hydroxide Activated Persulfate Field Data

#### **3.2 Unactivated Persulfate Field Parameters**

Table 4 presents the field parameter for the unactivated persulfate treatments. The pH of the Control ranged from 6.8 to 7.8 SU and the ORP oxidizing from 108 to 314 mV. The pH of the 10 g/L persulfate decreased from 8.6-9.2 SU to 6.2-6.3 SU on Day 91 and the ORP from 170 to 452 mV. The persulfate fell from 10,000 mg/L to 6,925 mg/L from Day 1 and 7,533 mg/L on Day 4 to a low of 3,544 to 3,842 mg/L on Day 91. The SOD of the unactivated 10 g/L persulfate treatment was estimated to be 1,382 to 1,449 mg/kg. The pH of the unactivated 20 g/L persulfate ranged from 8.0 SU on Day 1 to a low of 5.5-5.7 on Day 91 and the ORP increased from 230-256 mV to 514 to 535 mV on Day 91. The persulfate fell from 20,000 mg/L to 14,823 mg/L on Day 1 to between 7,418 to 8.877 mg/L on Day 91. The unactivated 20 g/L persulfate had an SOD estimated to be 2,497 to 2,825 mg/kg. The pH of the unactivated 40 g/L persulfate decreased from 7.5 on Day 1 to 3.6 SU on Day 91 and the ORP increased from 325 to between 16,060 to 19,605 mg/L on Day 91. The unactivated 40 g/L persulfate fell from 40,000 mg/L to 28,797 mg/L on Day 1 to between 16,060 to 19,605 mg/L on Day 91. The unactivated 40 g/L persulfate fell from 325 to 5,374 mg/kg.

#### **3.3** Contaminant Concentrations

Table 5 presents the BTEX, TPH-DRO, TPH-GRO, and oxyanion concentrations in the aqueous and soil phases for each treatment.

The aqueous TPH DRO increased from 1,300  $\mu$ g/L in the initial Characterization to 14,000  $\mu$ g/L in the Control Day 14 sample presumably as TPH DRO partitioned from the soil phase into the aqueous phase. For the alkaline activated persulfate treatments, aqueous TPH DRO was only lower than the Control Day 14 at 7,900  $\mu$ g/L in the 20 g/L Persulfate treatment. At Day 91, aqueous TPH DRO was lowest in the Control Day 91 at 8,500  $\mu$ g/L followed by the 40 g/L unactivated persulfate treatment at 9,100  $\mu$ g/L.

The aqueous TPH GRO increased from 4,360  $\mu$ g/L in the initial Characterization to 4,470  $\mu$ g/L in the Control Day 14 sample presumably as TPH GRO partitioned from the soil phase into the aqueous phase. For the alkaline activated persulfate treatments, aqueous TPH GRO was lower than the Control Day 14 in the 10 g/L persulfate, 20 g/L persulfate, and 40 g/L persulfate treatments. At Day 91, aqueous TPH GRO was detected at 1,570  $\mu$ g/L in the Control Day 91 and was non-detect at <2,000  $\mu$ g/L in the unactivated persulfate amended treatments.

The 20 g/L alkaline persulfate treatment had between 258  $\mu$ g/L for Selenium to 19,000  $\mu$ g/L Chromium compared to the initial characterization samples with <0.5  $\mu$ g/L. The unactivated persulfate treatment only showed an increase to 11  $\mu$ g/L dissolved chromium and 5.0  $\mu$ g/L selenium with no detectable molybdenum, uranium, or vanadium (detection limits of 5 to 10  $\mu$ g/L). Alkaline conditions resulted in much higher oxyanions levels than the unactivated treatments.

Freatment	Soil	GW	Klozur	Date	Day	pН	ORP		
	g	g	g			SU	mV		
Control 14	867	280	0						
Control 90	980	220	0						
Control Ex	980	220	0	10/17/2017	1	7.8	120		
				10/20/2017	4	6.9	221		
				10/23/2017	7	7.7	108		
				10/26/2017	10	7.7	221		
				10/30/2017	14	6.8	225		
				11/21/2017	36	7.4	254		
				12/11/2017	56	7.6	314		
				1/15/2018	91	7.2	230		
	Soil	GW	Klozur	Date	Day	pH	ORP	Persulfate	SOD
	g	g	g			SU	mV	mg/L	mg/kg
10 g/L PS 14	980	220	2.2		0			10,000	
10 g/L PS Ex	980	220	2.2	10/17/2017	1	8.6	230	6,925	
-				10/20/2017	4	9.2	170	7,533	
				10/23/2017	7	8.0	259	6,925	
				10/26/2017	10	7.2	349	6,317	
				10/30/2017	14	6.7	305	5,710	
				11/21/2017	36	6.5	345	4,495	
				12/11/2017	56	6.4	340	6,317	
				1/15/2018	91	6.3	426	3,842	1,382
				1/15/2018	91	6.2	452	3,544	1,449
	Soil	GW	Klozur	Date	Day	pH	ORP	Persulfate	SOD
	g	g	g			SU	mV	mg/L	mg/kg
20 g/L PS 14	980	220	4.4		0			20,000	
20 g/L PS Ex	980	220	4.4	10/17/2017	1	8.0	256.0	14,823	
				10/20/2017	4	7.2	230	14,216	
				10/23/2017	7	6.9	233	12,393	
				10/26/2017	10	6.7	351	12,393	
				10/30/2017	14	6.3	284	9,963	
				11/21/2017	36	5.9	393	9,355	
				12/11/2017	56	5.9	469	11,785	
				1/15/2018	91	5.7	514	7,418	2.825
				1/15/2018	91	5.5	535	8,877	2,497
	Soil	GW	Klozur	Date	Day	pH	ORP	Persulfate	SOD
	g	g	g			SU	mV	mg/L	mg/kg
40 g/L PS 14	980	220	8.8		0			40,000	
40 g/L PS Ex	980	220	8.8	10/17/2017	1	7.5	325.0	28,797	
				10/20/2017	4	6.4	381	29,405	
				10/23/2017	7	5.8	375	27,582	
				10/26/2017	10	3.7	465	27,582	
				10/30/2017	14	4.6		24,544	
				11/21/2017	36	4.0	532	19,076	
		1	1	12/11/2017	56	3.8	498	22,722	
				12/11/2017	50	5.0	470	22,122	
				1/15/2018	91	3.6	621	16,060	5,374

Table 4. Unactivated Persulfate Field Data

Table 5. Contaminant Concentrati
----------------------------------

				10 g/L Persulfate	20 g/L Persulfate	40 g/L Persulfate		10 g/L Unactivated	20 g/L Unactivated	40 g/L Unactivated
			Control	+ NaOH	+ NaOH	+ NaOH	Control	Persulfate	Persulfate	Persulfate
Treatment		Control 0	14	14	14	14	91	91	91	91
Day		0	14	14	14	14	91	91	91	91
Sample Recovered	g		230	106	113.5	156.1	142	105	110	144
DI Water Added	g		2070	954	1022	1405	1278	945	990	1296
Dilution			10	10	10	10	10	10	10	10
TPH C10-C28 (DRO)	µg/L	1,300	14,000	29,000	7,900	32,000	8,500	11,000	16,000	9,100
TPH C06-C10 (GRO)	µg/L	4,360	4,470	2,540	901	1570	2,810	<2,000	<2,000	<2,000
Chromium	μg/L	< 0.5			19,000				11	
Molybdenum	µg/L	< 0.5			4,850				<5.0	
Selenium	µg/L	< 0.5			258				5.0	
Uranium-238	µg/L	< 0.5			3,010				<5.0	
Vanadium	µg/L	< 0.5			18,800				<10	
Benzene	µg/L	18.8	<10	<10	<10	<10	<10	<10	<10	<10
Ethylbenzene	µg/L	359	122	44	11	29	100	47	26	<10
Toluene	µg/L	31.3	12	<10	<10	<10	<3.0	<10	<10	<10
Total Xylenes	µg/L	581	689	170	<30	<30	553	221	75	<30
TPH C10-C28 (DRO)	µg/kg	161,050	82,400	70,700	57,300	46,800	33,100	95,500	67,800	106,000
TPH C06-C10 (GRO)	µg/kg	71,300	11,000	25,000	13,200	15,700	17,600	14,300	<11,900	10,300
Benzene	µg/kg	<244	<4.1	<5.0	<4.5	<4.2	<4.7	<5.4	<4.4	<4.6
Ethylbenzene	µg/kg	1,260	104	32.6	10.3	12.7	64.4	<5.4	<4.4	<4.6
Toluene	µg/kg	<244	4.5	<5.0	<4.5	<4.2	<4.7	<5.4	<4.4	<4.6
Total Xylenes	µg/kg	7,280	572	148	23.9	20.7	323	<16.2	<13.3	<13.9
Moisture	%	14.8	14.0	25.5	17.3	20.5	22.7	24.0	22.0	17.3

The aqueous benzene decreased from 18.8  $\mu$ g/L in the initial Characterization to non-detect  $\mu$ g/L in the Control Days 14 and 91 and the alkaline persulfate and unactivated persulfate samples. Aqueous ethylbenzene decreased from 359  $\mu$ g/L in the Initial Characterization sample to 122  $\mu$ g/L in the Control Day 14 and 100  $\mu$ g/L in the Control Day 91 samples with between <10  $\mu$ g/L in the 40 g/L unactivated persulfate treatment to 47  $\mu$ g/L in the 10 g/L unactivated persulfate treatment. Aqueous toluene decreased from 31.3  $\mu$ g/L in the Initial Characterization sample to 12  $\mu$ g/L in the Control Day 14 sample and were non-detect (<10  $\mu$ g/L) in the Control Day 91 and all persulfate-amended treatments. Aqueous total xylenes increased from 581  $\mu$ g/L in the Initial Characterization sample to 689  $\mu$ g/L in the Control Day 14 and decreased slightly to 553  $\mu$ g/L in the Control Day 91 sample. Aqueous total xylenes ranged from <30  $\mu$ g/L in the alkaline 20 g/L persulfate, alkaline 40 g/L persulfate, and the unactivated 40 g/L persulfate treatment to 221  $\mu$ g/L in the unactivated 10 g/L persulfate treatment.

The soil TPH DRO decreased from an average of 161,050  $\mu$ g/kg in the initial Characterization to 82,400  $\mu$ g/kg in the Control Day 14 sample and 33,100  $\mu$ g/kg in the Control Day 91 sample. For the alkaline activated persulfate treatments, soil TPH DRO was lower than the Control Day 14 in the 10, 20, and 40 g/L Persulfate treatments. At Day 91, soil TPH DRO was lowest in the Control Day 91 at 33,100  $\mu$ g/kg with between 67,800 to 106,000  $\mu$ g/kg in the unactivated persulfate treatments.

The soil TPH GRO decreased from 71,300  $\mu$ g/kg in the initial Characterization to 11,000  $\mu$ g/kg in the Control Day 14 sample. For the alkaline activated persulfate treatments, soil TPH GRO were higher than the Control Day 14 in the 10 g/L persulfate, 20 g/L persulfate, and 40 g/L persulfate treatments. At Day 91, soil TPH GRO was detected at 17,600  $\mu$ g/kg in the Control Day 91 and was non-detect at <11,900  $\mu$ g/L in the unactivated 20 g/L persulfate amended treatment and ranged from 10,300 to 14,300  $\mu$ g/kg in the unactivated 10 g/L and 40 g/L persulfate treatments.

The soil benzene was non-detect in the Control Days 0, 14, and 91 and the alkaline persulfate and unactivated persulfate samples. Soil ethylbenzene decreased from 1,260 µg/kg in the Initial Characterization sample to 104 µg/kg in the Control Day 14 and 64.4 µg/kg in the Control Day 91 samples with between 10.3 to 32.6 µg/kg in the alkaline activated treatments and non-detects in unactivated persulfate treatments. Soil toluene was non-detect (<244 µg/kg) in the Initial Characterization sample with 4.5 µg/kg in the Control Day 14 sample and were non-detect (<4.2 to 5.4 µg/kg) in the Control Day 91 and all persulfate-amended treatments. Soil total xylenes decreased from 7,280 µg/kg in the Initial Characterization sample to 572 µg/kg in the Control Day 14 and decreased to as low as 20.7 µg/kg in the 40 g/L alkaline persulfate treatment. The Control Day 91 sample had 323 µg/kg and with <13.4 to <16.2 µg/kg in the unactivated persulfate treatments.

Table 6 contains mass balance calculations for the soil and groundwater for TPH DRO, TPH GRO, and BTEX. Non-detect concentrations were considered zeros in the mass balance calculations. Table 7 shows the percent removal of the mass balances from the Control Day 0 (Initial Characterization) results.

#### Table 6 Mass Balances

		Control 0	Control 14	10 g/L Persulfate + NaOH 14	20 g/L Persulfate + NaOH 14	40 g/L Persulfate + NaOH 14	Control 91	10 g/L Unactivated Persulfate 91	20 g/L Unactivated Persulfate 91	40 g/L Unactivated Persulfate 91
TPH C10-C28 (DRO)	μg	158,115	83,832	75,666	57,892	52,904	34,308	96,010	69,964	105,882
TPH C06-C10 (GRO)	μg	70,833	11,763	25,059	13,134	15,731	17,866	14,014	0	10,094
Benzene	μg	4.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ethylbenzene	μg	1,313.3	128.8	41.6	12.5	18.8	85.1	10.3	5.7	0.0
Toluene	μg	6.9	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Xylenes	μg	7,262.2	712.1	182.4	23.4	20.3	438.2	48.6	16.5	0.0
BTEX	μg	8,586.5	848.0	224.1	35.9	39.1	523.3	59.0	22.2	0.0

### Table 7. Percent Removal from Control Day 0

	Control 14	10 g/L Persulfate + NaOH 14	20 g/L Persulfate + NaOH 14	40 g/L Persulfate + NaOH 14	Control 91	10 g/L Unactivated Persulfate 91	20 g/L Unactivated Persulfate 91	40 g/L Persulfate Unactivated 91
TPH C10-C28 (DRO)	47.0	52.1	63.4	66.5	78.3	39.3	55.8	33.0
TPH C06-C10 (GRO)	83.4	64.6	81.5	77.8	74.8	80.2	100.0	85.7
Benzene	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Ethylbenzene	90.2	96.8	99.0	98.6	93.5	99.2	99.6	100.0
Toluene	-2.4	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Total Xylenes	90.2	97.5	99.7	99.7	94.0	99.3	99.8	100.0
BTEX	90.1	97.4	99.6	99.5	93.9	99.3	99.7	100.0

The Total TPH DRO mass balance decreased from 158,115 µg in the initial Characterization to 83,832 µg in the Control Day 14 and 34,308 µg in the Control Day 91. The TPH DRO mass balance were lower than the Control Day 14 in the three alkaline persulfate treatments, but were higher than the Control Day 91 in unactivated persulfate treatments at Day 91. The Total TPH GRO mass balance decreased from 70,833 µg in the initial Characterization to 11,763 µg in the Control Day 14 and 17,866 µg in the Control Day 91. The TPH GRO mass balance were higher than the Control Day 14 in the three alkaline persulfate treatments, but were lower than the Control Day 91 in unactivated persulfate treatments at Day 91. TPH-GRO was not detected in either the aqueous or soil phase of the unactivated 20 g/L persulfate treatment. Total benzene decreased from 4.1 µg in the initial Characterization to non-detect µg/L in the Control Days 14 and 91 and the alkaline persulfate and unactivated persulfate samples. Total ethylbenzene decreased from 1,313 µg in the Initial Characterization sample to 129 µg in the Control Day 14 and 85 µg in the Control Day 91 samples with between non-detect µg in the 40 g/L unactivated persulfate treatment to 42 µg in the 10 g/L alkaline persulfate treatment. Total toluene increased from 6.9 µg in the Initial Characterization sample to 7.1 µg in the Control Day 14 sample and were non-detect in the Control Day 91 and all persulfate-amended treatments. The mass balance for total xylenes decreased from 7,262 µg in the Initial Characterization sample to 712 µg in the Control Day 14 and decreased slightly to 438 µg in the Control Day 91 sample. Total xylenes mass balances ranged from 0 µg in the unactivated 40 g/L persulfate treatment to 182 µg in the unactivated 10 g/L persulfate treatment.

Overall removals of TPH-DRO ranged from 33.0% for the unactivated 40 g/L persulfate to a maximum of 78.3% in the Control Day 91 treatment. TPH GRO reductions ranged from 64.6% in the alkaline 10 g/L persulfate treatment to 100% in the unactivated 20 g/L persulfate treatment. Benzene and toluene were reduced to below the detection limits (100%) in the alkaline persulfate, Day 91 Control, and unactivated persulfate treatments. Ethylbenzene removals ranged from 90.2% in the Control 14 to a maximum of 100% in the unactivated 40 g/L persulfate treatment. Total xylenes removals ranged from 90.2% in the Control 14 to a maximum of 100% in the unactivated 40 g/L persulfate treatment. Total BTEX removals ranged from 90.1% in the Control 14 to a maximum of 100% in the unactivated 40 g/L persulfate treatment.

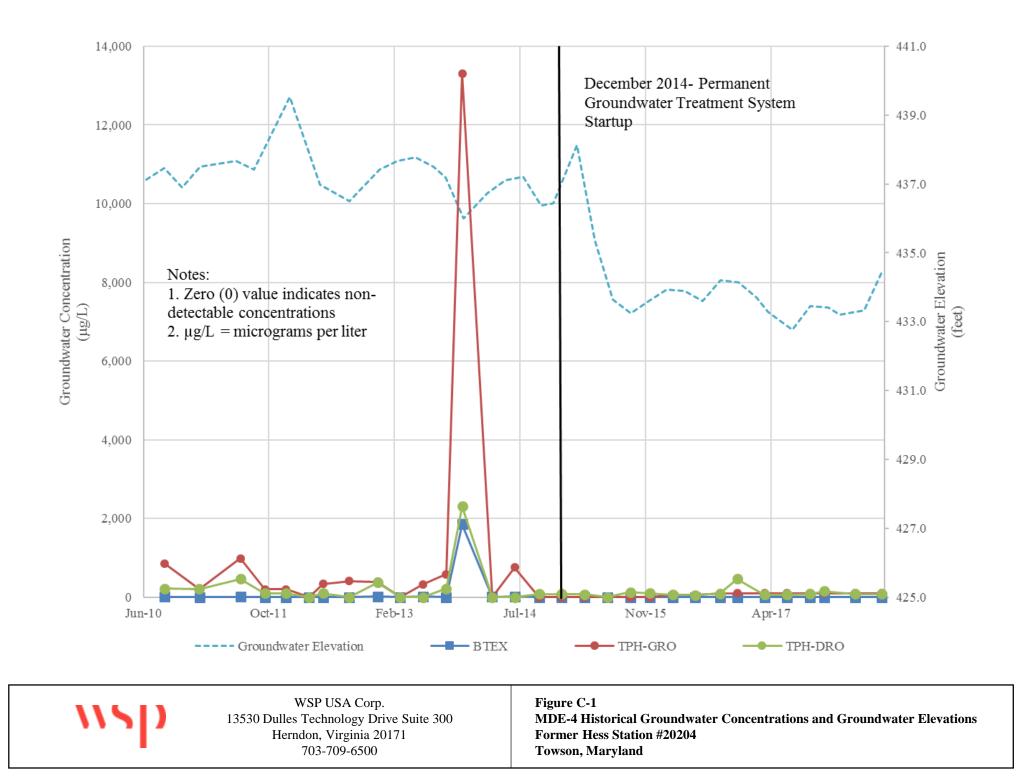
#### 4.0 CONCLUSIONS

The following conclusions can be reached from the treatability study:

- The alkaline activation required between 0.039 to 0.043 gallons of 25% sodium hydroxide solution per cubic foot of aquifer to be treated with 10 to 40 g/L of sodium persulfate.
- The unactivated persulfate persisted for longer than the alkaline activated persulfate with lower soil oxidant demands.
- The TPH-DRO destruction efficiency was higher with alkaline activation. TPH-GRO treatment efficiency was greater with the unactivated persulfate. Total BTEX removal efficiency was slightly greater with the unactivated persulfate.
- The unactivated persulfate treatments resulted in lower oxyanion levels than the alkaline activation.

• Treatment efficiencies were generally slightly higher with the 40 g/L persulfate loadings than the 10 or 20 g/L loadings with highest removal of BTEX with the unactivated 40 g/L persulfate treatment. TPH-DRO and TPH-GRO were reduced, but not as completely as BTEX.

Should you have any questions about the draft report or need additional information, please feel free to contact me.


Sincerely, TERRA SYSTEMS, INC.

michael & lee, PRd.

Michael D. Lee, Ph.D. Vice-President Research and Development



# **C** TREND GRAPHS



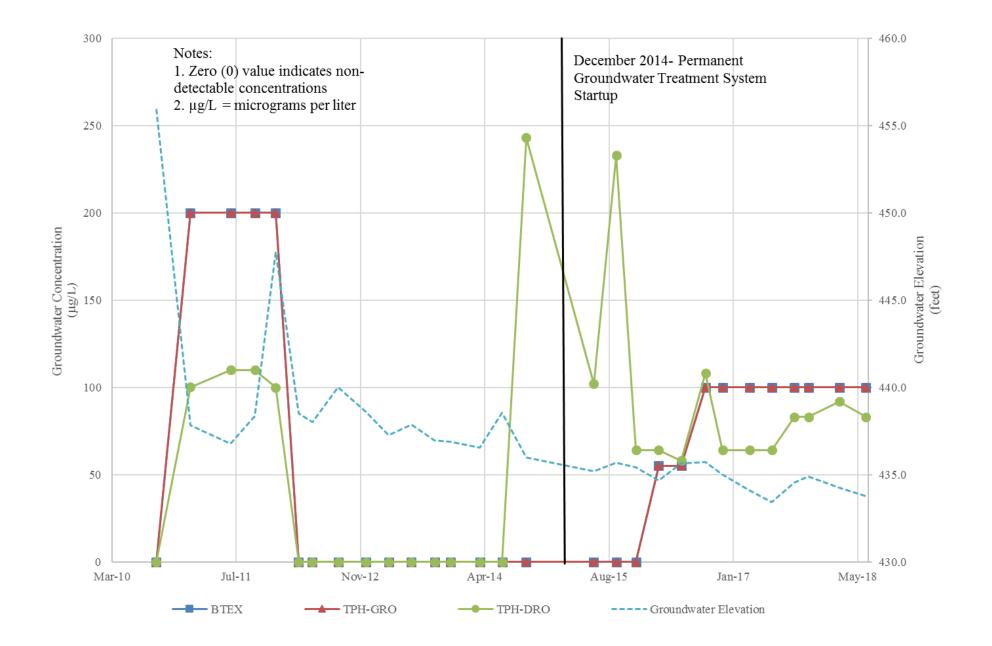
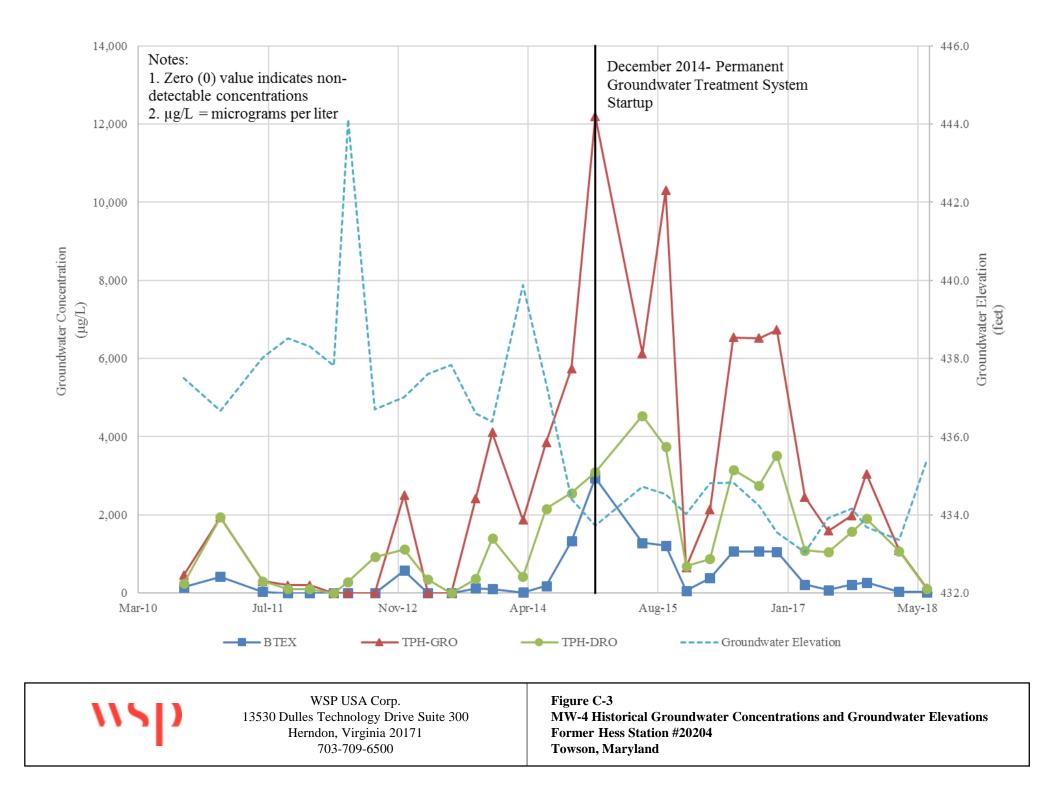
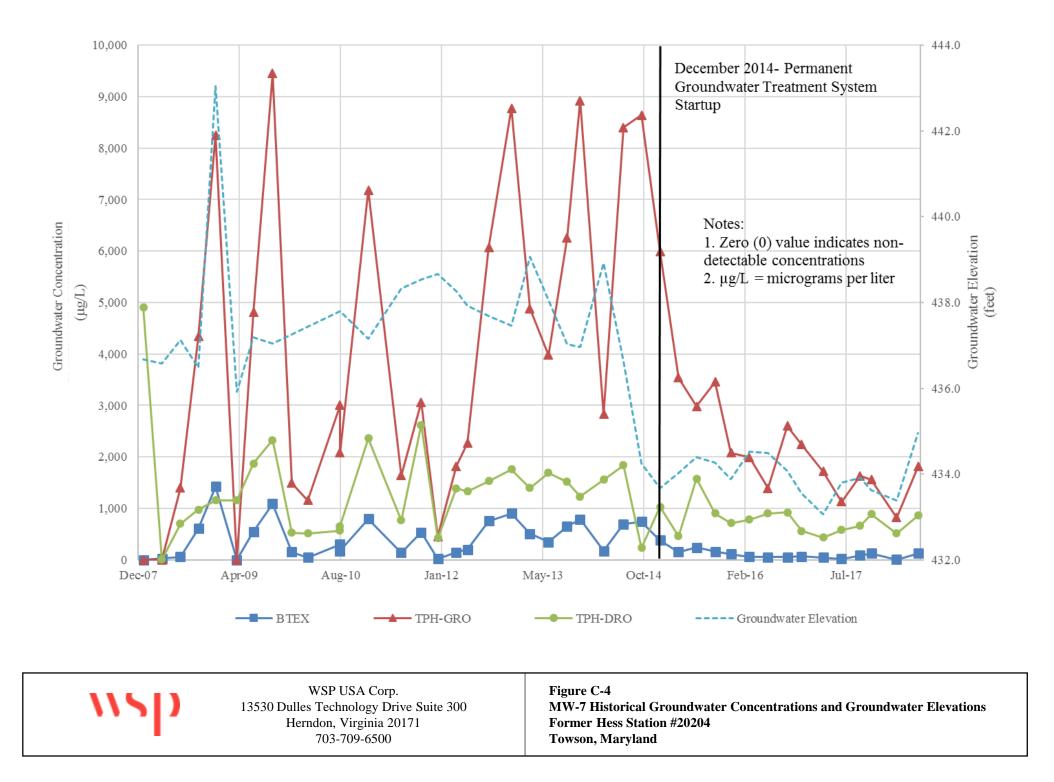
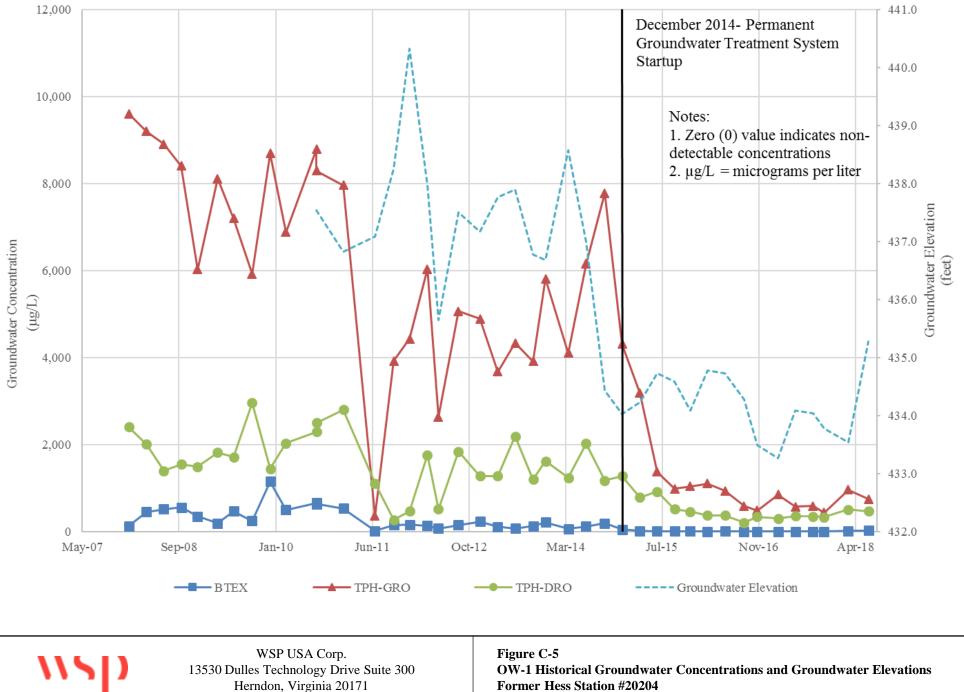
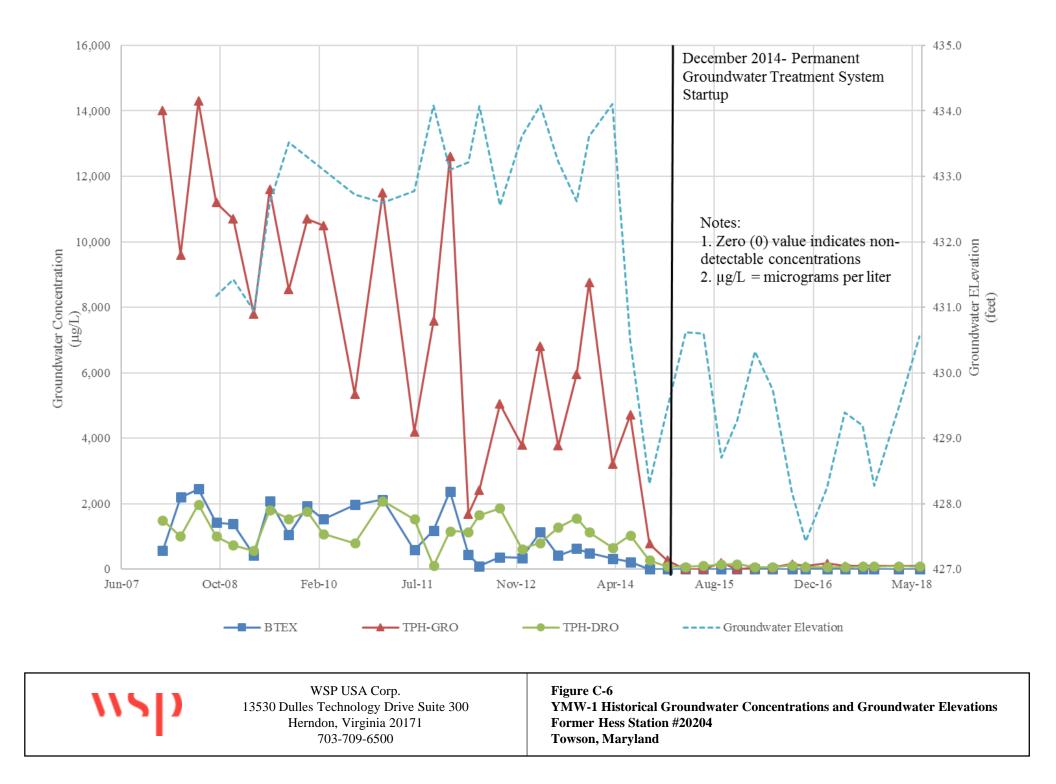
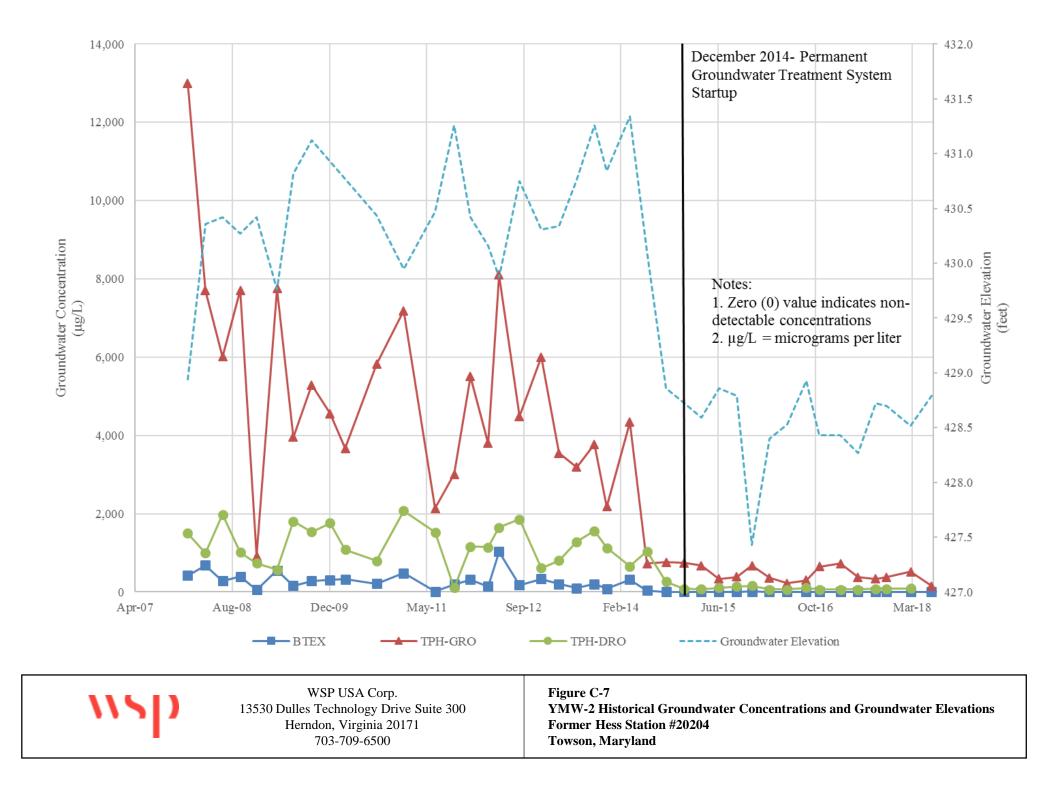
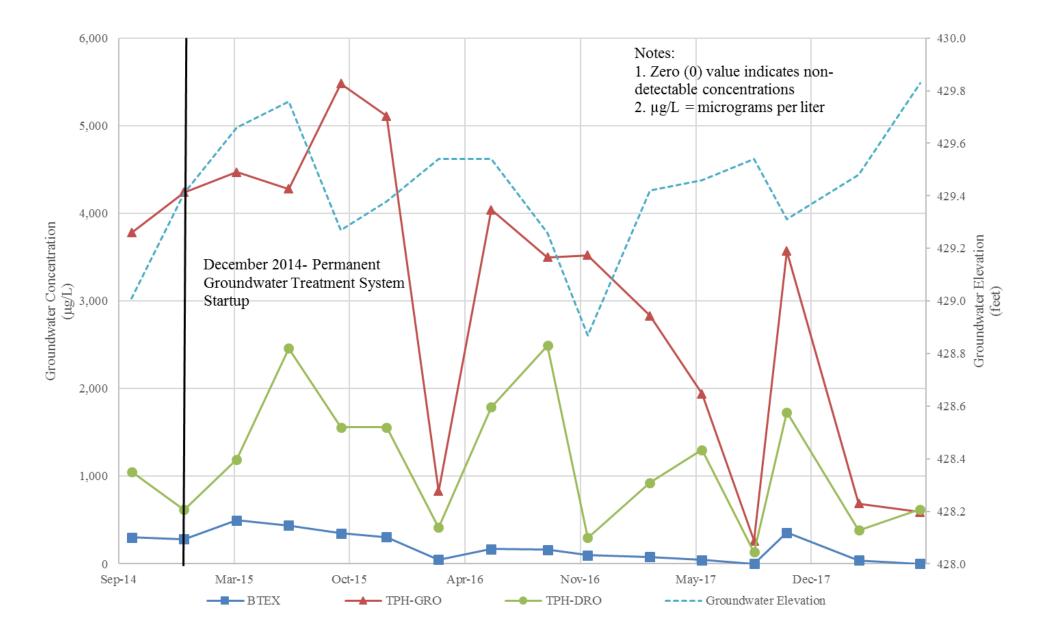





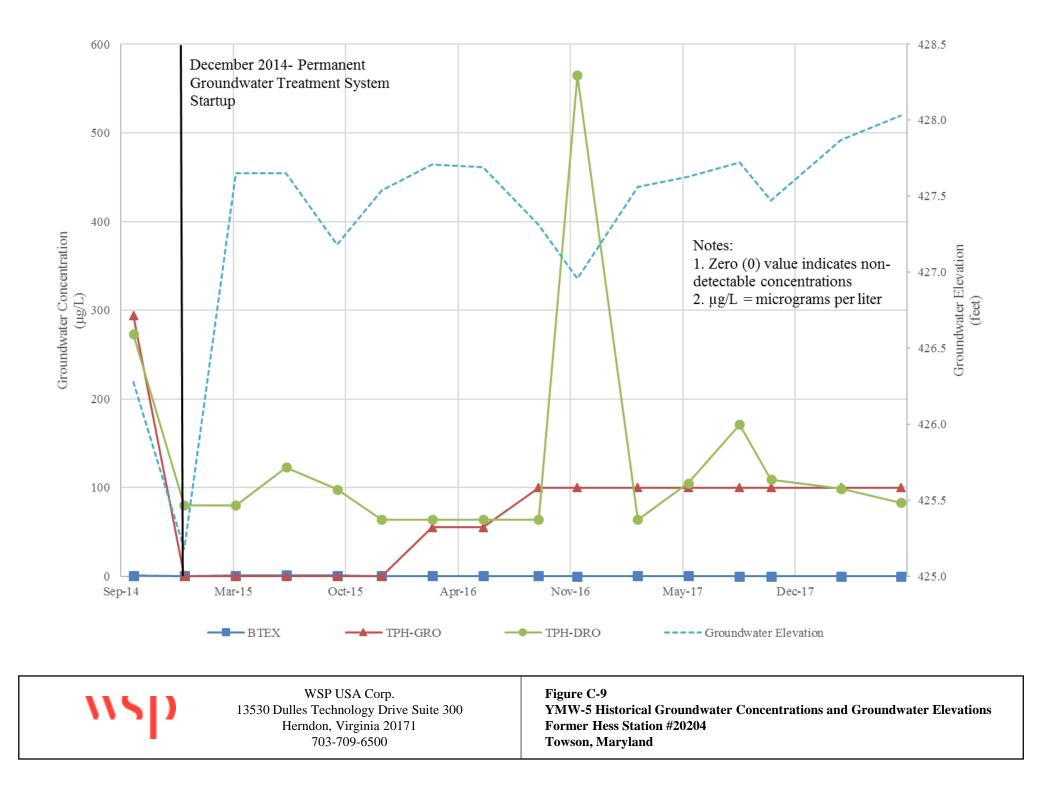

Figure C-2 MW-1 Historical Groundwater Concentrations and Groundwater Elevations Former Hess Station #20204 Towson, Maryland




703-709-6500


## Former Hess Station #20204 Towson, Maryland







#### Figure C-8 YMW-4 Historical Groundwater Concentrations and Groundwater Elevations Former Hess Station #20204 Towson, Maryland



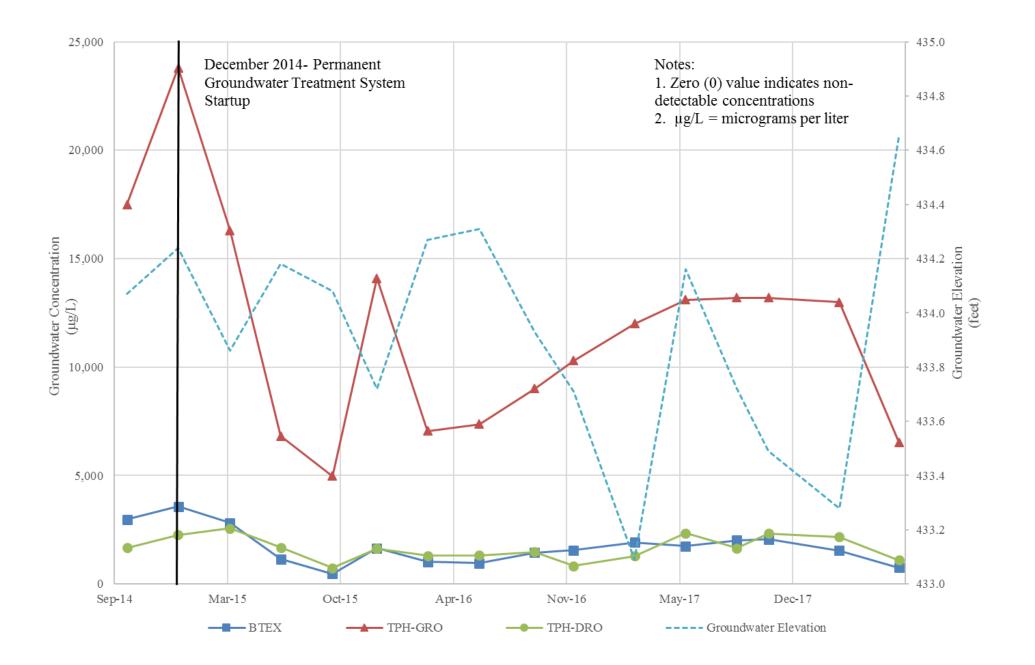
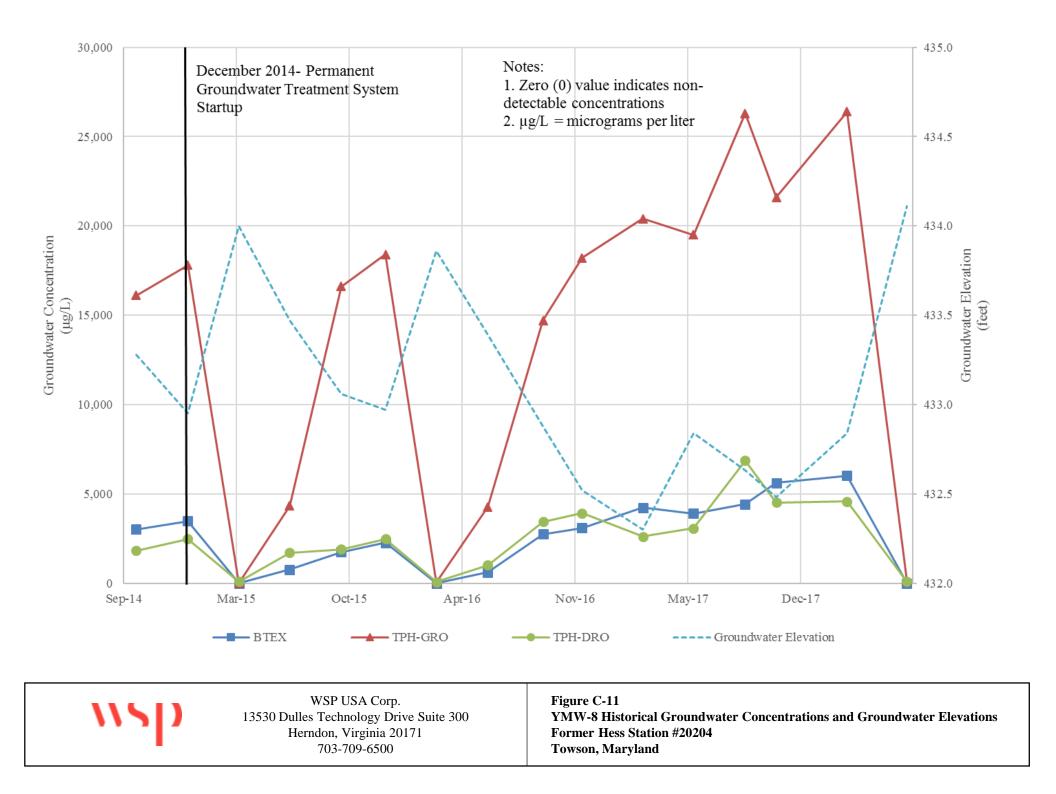
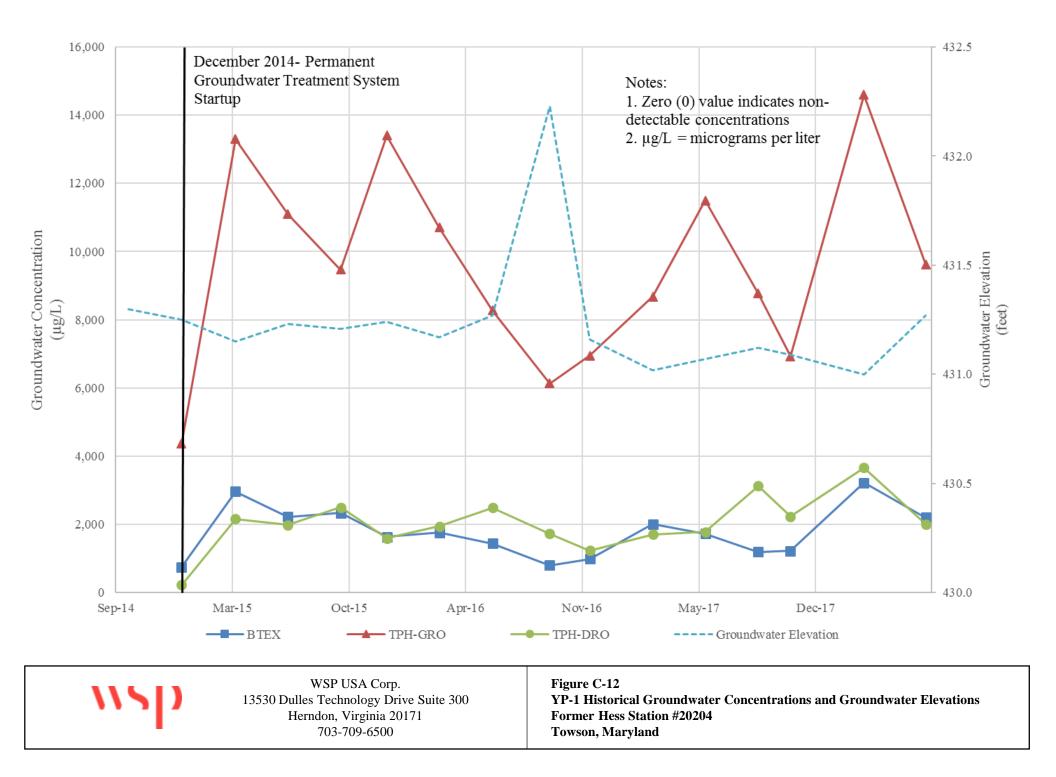
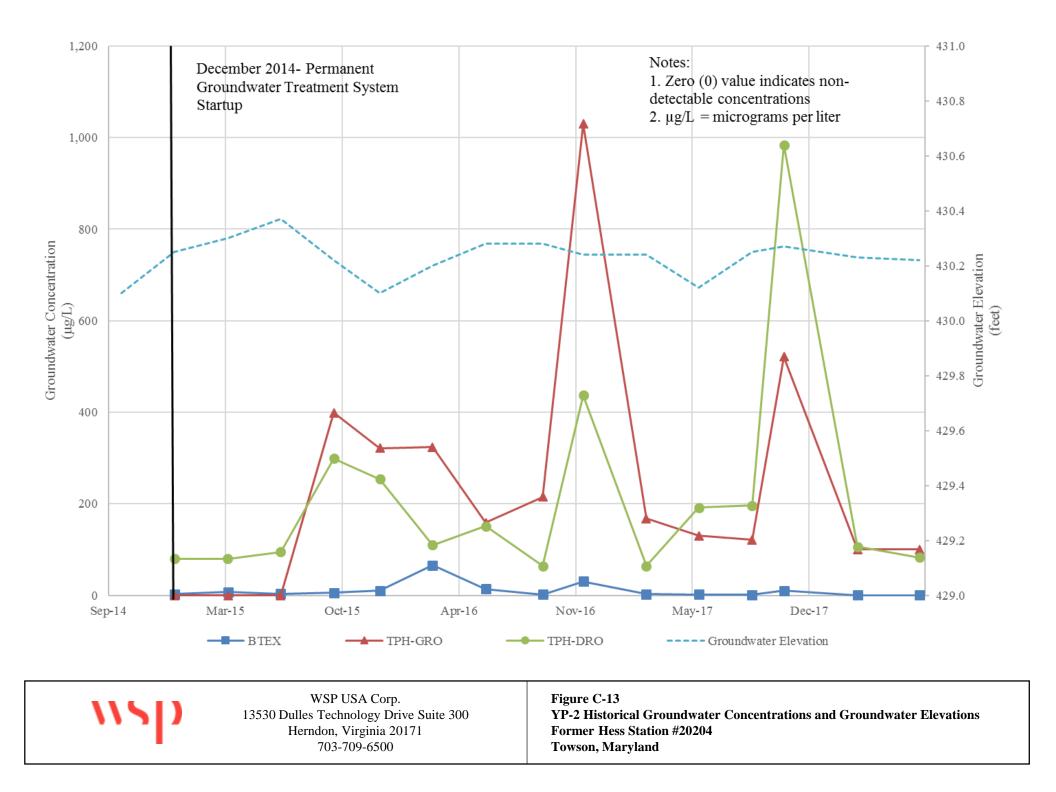






Figure C-10 YMW-7 Historical Groundwater Concentrations and Groundwater Elevations Former Hess Station #20204 Towson, Maryland







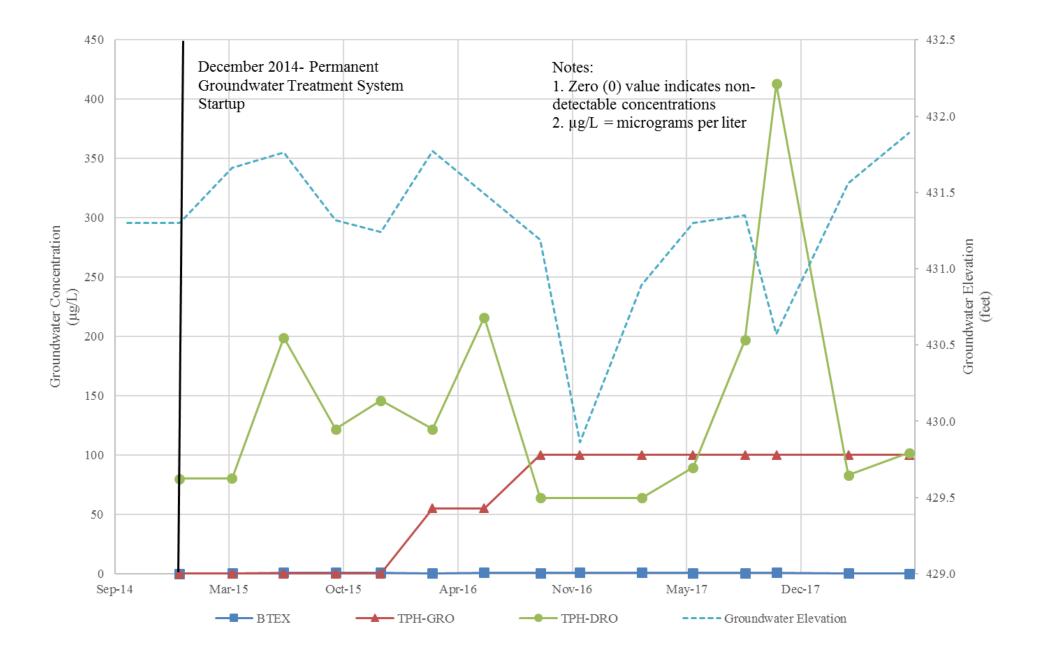
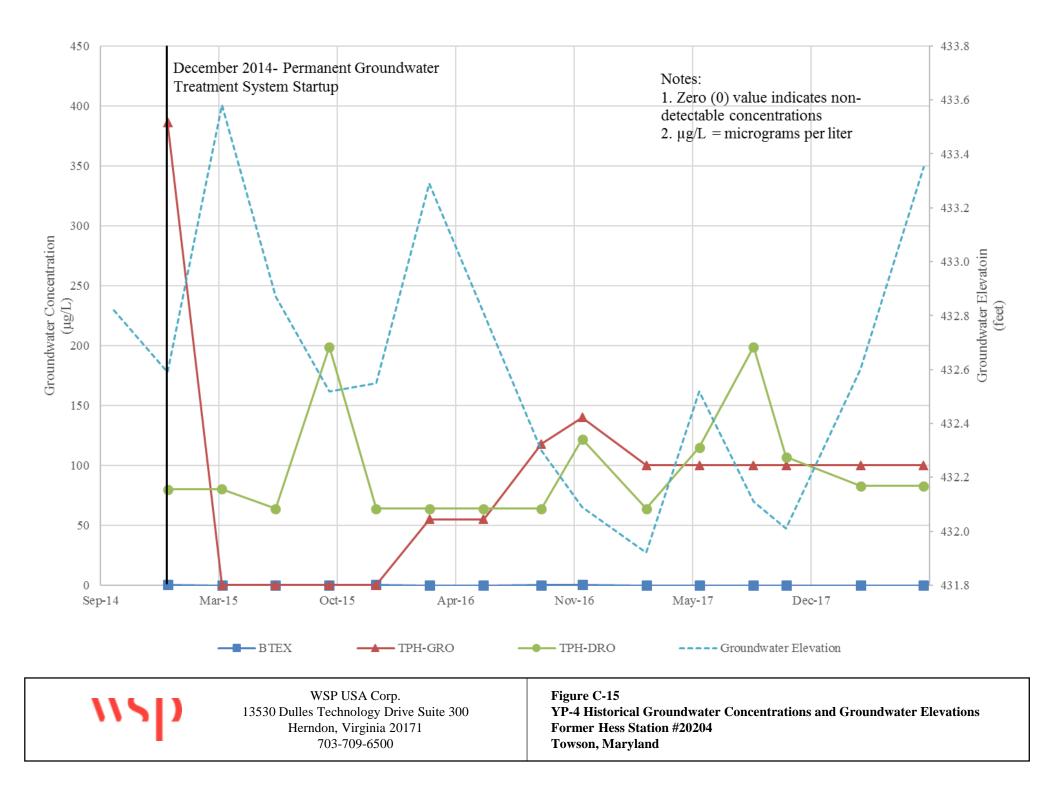
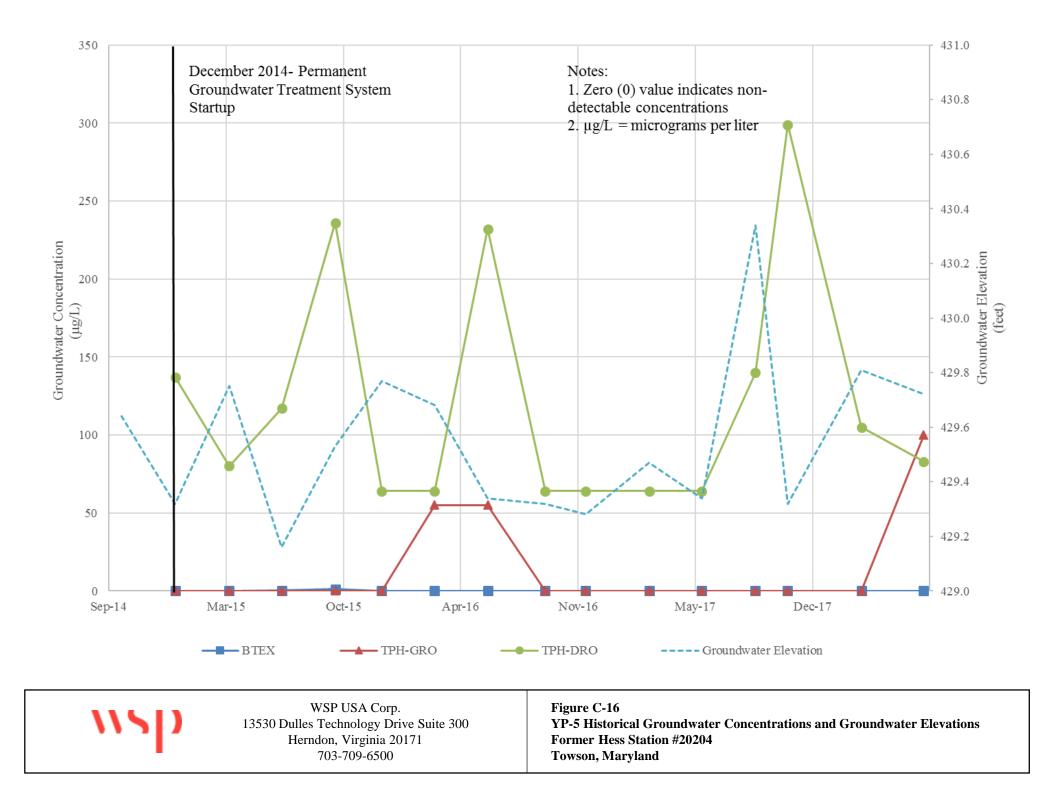





Figure C-14 YP-3 Historical Groundwater Concentrations and Groundwater Elevations Former Hess Station #20204 Towson, Maryland



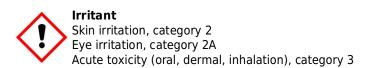




# D SAFETY DATA SHEETS

#### Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3


Effective date : 12.28.2014

Ammonium Sulfate,

SECTION 1 : Identification of the substance/mi	xture and of the supplier	
Product name :	Ammonium Sulfate,	
Manufacturer/Supplier Trade name:		
Manufacturer/Supplier Article number:	S25176A	
Recommended uses of the product and uses re	estrictions on use:	
Manufacturer Details:		
AquaPhoenix Scientific		
9 Barnhart Drive, Hanover, PA 17331		
Supplier Details:		
Fisher Science Education		
15 Jet View Drive, Rochester, NY 14624		
Emergency telephone number:		
Fisher Science Education Emergency Telephon	e No.: 800-535-5053	

#### **SECTION 2 : Hazards identification**

#### Classification of the substance or mixture:



Eye irrit. cat 2 Skin Sens, cat 2 STOT SE 3 AcTox Oral 4 Hazards Not Otherwise Classified - Combustible Dust

#### Signal word :Warning

#### Hazard statements:

Harmful if swallowed Causes skin irritation Causes serious eye irritation May cause respiratory irritation Precautionary statements: Wash ... thoroughly after handling Do not eat, drink or smoke when using this product Avoid breathing dust/fume/gas/mist/vapours/spray Use only outdoors or in a well-ventilated area Wear protective gloves/protective clothing/eye protection/face protection Specific treatment (see supplemental first aid instructions on this label) Rinse mouth Take off contaminated clothing and wash before reuse IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell IF ON SKIN: Wash with soap and water IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing Page 1 of 7

#### Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

Page 2 of 7

#### Ammonium Sulfate,

If skin irritation occurs: Get medical advice/attention If eye irritation persists get medical advice/attention IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do. Continue rinsing Store locked up Store in a well ventilated place. Keep container tightly closed Dispose of contents/container to ...

> WHMIS NFPA/HMIS

#### **Combustible Dust Hazard: :**

May form combustible dust concentrations in air (during processing).

#### Other Non-GHS Classification:





HMIS RATINGS (0-4)

#### **SECTION 3 : Composition/information on ingredients**

Ingredients:		
CAS 7783-20-2	Ammonium Sulfate,ACS	>95 %
	Ре	rcentages are by weight

#### SECTION 4 : First aid measures

#### **Description of first aid measures**

**After inhalation:** Move exposed individual to fresh air. Loosen clothing as necessary and position individual in a comfortable position. Seek medical advice if discomfort or irritation persists. If breathing difficult, give oxygen.

**After skin contact:** Wash affected area with soap and water. Rinse/flush exposed skin gently using water for 15-20 minutes. Seek medical advice if discomfort or irritation persists.

**After eye contact:** Protect unexposed eye. Rinse/flush exposed eye(s) gently using water for 15-20 minutes. Remove contact lens(es) if able to do so during rinsing. Seek medical attention if irritation persists or if concerned.

**After swallowing:** Rinse mouth thoroughly. Do not induce vomiting. Have exposed individual drink sips of water. Seek medical attention if irritation, discomfort or vomiting persists.

#### Most important symptoms and effects, both acute and delayed:

Irritation, Nausea, Headache, Shortness of breath.;

#### Indication of any immediate medical attention and special treatment needed:

If seeking medical attention, provide SDS document to physician.

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

#### Ammonium Sulfate,

#### **SECTION 5 : Firefighting measures**

#### Extinguishing media

**Suitable extinguishing agents:** If in laboratory setting, follow laboratory fire suppression procedures. Use appropriate fire suppression agents for adjacent combustible materials or sources of ignition

#### For safety reasons unsuitable extinguishing agents:

#### Special hazards arising from the substance or mixture:

Combustion products may include carbon oxides or other toxic vapors.Thermal decomposition can lead to release of irritating gases and vapors.Avoid generating dust; fine dust dispersed in air in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard.

#### Advice for firefighters:

Protective equipment: Use NIOSH-approved respiratory protection/breathing apparatus.

**Additional information (precautions):** Move product containers away from fire or keep cool with water spray as a protective measure, where feasible.Use spark-proof tools and explosion-proof equipment.

#### **SECTION 6 : Accidental release measures**

#### Personal precautions, protective equipment and emergency procedures:

Wear protective equipment. Transfer to a disposal or recovery container.Use spark-proof tools and explosionproof equipment.Use respiratory protective device against the effects of fumes/dust/aerosol. Keep unprotected persons away. Ensure adequate ventilation.Keep away from ignition sources. Protect from heat.Stop the spill, if possible. Contain spilled material by diking or using inert absorbent.

#### **Environmental precautions:**

Prevent from reaching drains, sewer or waterway. Collect contaminated soil for characterization per Section 13

#### Methods and material for containment and cleaning up:

If in a laboratory setting, follow Chemical Hygiene Plan procedures.Place into properly labeled containers for recovery or disposal. If necessary, use trained response staff/contractor.Dust deposits should not be allowed to accumulate on surfaces, as these may form an explosive mixture if they are released into the atmosphere in sufficient concentration. Avoid dispersal of dust in the air (i.e., clearing dust surfaces with compressed air). Collect solids in powder form using vacuum with (HEPA filter)

#### **Reference to other sections:**

#### **SECTION 7 : Handling and storage**

#### Precautions for safe handling:

Minimize dust generation and accumulation. Wash hands after handling. Avoid dispersal of dust in the air (i.e., clearing dust surfaces with compressed air). Routine housekeeping should be instituted to ensure that dusts do not accumulate on surfaces. Dry powders can build static electricity charges when subjected to the friction of transfer and mixing operations. Follow good hygiene procedures when handling chemical materials. Do not eat, drink, smoke, or use personal products when handling chemical substances. If in a laboratory setting, follow Chemical Hygiene Plan.Use only in well ventilated areas.Avoid generation of dust or fine particulate.Avoid contact with eyes, skin, and clothing.

#### Conditions for safe storage, including any incompatibilities:

Store in a cool location. Provide ventilation for containers. Avoid storage near extreme heat, ignition sources or open flame. Store away from foodstuffs. Store away from oxidizing agents.Store in cool, dry conditions in well sealed containers. Keep container tightly sealed.Store with like hazards

#### SECTION 8 : Exposure controls/personal protection

Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

### Page 4 of 7

## Ammonium Sulfate,

Control Parameters:	, , OSHA PEL TWA (Total Dust) 15 mg/m3 (50 mppcf*) , , ACGIH TLV TWA (inhalable particles) 10 mg/m3
Appropriate Engineering controls:	Emergency eye wash fountains and safety showers should be available in the immediate vicinity of use/handling.Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapor or dusts (total/respirable) below the applicable workplace exposure limits (Occupational Exposure Limits-OELs) indicated above.Use under a fume hood. It is recommended that all dust control equipment such as local exhaust ventilation and material transport systems involved in handling of this product contain explosion relief vents or an explosion suppression system or an oxygen deficient environment.Ensure that dust-handling systems (such as exhaust ducts, dust collectors, vessels, and processing equipment) are designed in a manner to prevent the escape of dust into the work area (i.e., there is no leakage from the equipment).
Respiratory protection:	Not required under normal conditions of use. Use suitable respiratory protective device when high concentrations are present. Use suitable respiratory protective device when aerosol or mist is formed. For spills, respiratory protection may be advisable.
Protection of skin:	The glove material has to be impermeable and resistant to the product/ the substance/ the preparation being used/handled.Selection of the glove material on consideration of the penetration times, rates of diffusion and the degradation.
Eye protection:	Safety glasses with side shields or goggles.
General hygienic measures:	The usual precautionary measures are to be adhered to when handling chemicals. Keep away from food, beverages and feed sources. Immediately remove all soiled and contaminated clothing. Wash hands before breaks and at the end of work. Do not inhale gases/fumes/dust/mist/vapor/aerosols. Avoid contact with the eyes and skin.

## SECTION 9 : Physical and chemical properties

Appearance (physical state,color):	Colorless Solid	Explosion limit lower: Explosion limit upper:	Not Determined Not Determined
Odor:	Odorless	Vapor pressure:	Not Determined
Odor threshold:	Not Determined	Vapor density:	Not Determined
pH-value:	5-6 (5% aq. sol.)	Relative density:	1.8
Melting/Freezing point:	280 C	Solubilities:	Material is water soluble.
Boiling point/Boiling range:	Not Determined	Partition coefficient (n- octanol/water):	n-octanol/water: log Pow: -5.1
Flash point (closed cup):	Not Determined	Auto/Self-ignition temperature:	Not Determined

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

Page 5 of 7

#### Ammonium Sulfate,

Evaporation rate:	Insignificant	Decomposition temperature:	350 C
Flammability (solid,gaseous):	Not Determined	Viscosity:	a. Kinematic:Not Determined b. Dynamic: Not Determined
Density: Not Determined			

## SECTION 10 : Stability and reactivity

Reactivity: Nonreactive under normal conditions.

**Chemical stability:**No decomposition if used and stored according to specifications.

Possible hazardous reactions: None under normal processing

**Conditions to avoid:**Store away from oxidizing agents, strong acids or bases.Incompatible Materials.excess heat.Dust generation.

**Incompatible materials:**Strong acids.Strong bases.Strong oxidizing agents.

Hazardous decomposition products:sulfur dioxide.nitrogen.Ammonia.ammonium bisulfate.

## **SECTION 11 : Toxicological information**

Acute Toxicity:		
<b>Oral</b> : 2840mg/kg		APS: LD50 orl-rat
Chronic Toxicity: No	additional information.	
<b>Corrosion Irritation</b>	: No additional information.	
Sensitization: N		No additional information.
Single Target Organ (STOT):		No additional information.
Numerical Measures:		No additional information.
Carcinogenicity:		No additional information.
Mutagenicity:		No additional information.
Reproductive Toxicity:		No additional information.

#### **SECTION 12 : Ecological information**

Ecotoxicity Persistence and degradability: Readily degradable in the environment. Bioaccumulative potential: Mobility in soil: Other adverse effects:

#### **SECTION 13 : Disposal considerations**

## Waste disposal recommendations:

Product/containers must not be disposed together with household garbage. Do not allow product to reach sewage system or open water. It is the responsibility of the waste generator to properly characterize all waste materials according to applicable regulatory entities (US 40CFR262.11). Consult federal state/ provincial and local regulations regarding the proper disposal of waste material that may incorporate some amount of this product.

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

#### Ammonium Sulfate,

## **SECTION 14 : Transport information**

#### **UN-Number**

Not Dangerous Goods

#### **UN proper shipping name**

Not Dangerous Goods

## Transport hazard class(es) Packing group:Not Dangerous Goods Environmental hazard: Transport in bulk: Special precautions for user:

#### **SECTION 15 : Regulatory information**

#### **United States (USA)**

#### SARA Section 311/312 (Specific toxic chemical listings):

None of the ingredients is listed

#### SARA Section 313 (Specific toxic chemical listings):

7783-20-2 Ammonium Sulfate

#### RCRA (hazardous waste code):

None of the ingredients is listed

#### TSCA (Toxic Substances Control Act):

All ingredients are listed.

#### CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act):

None of the ingredients is listed

### Proposition 65 (California):

#### Chemicals known to cause cancer:

None of the ingredients is listed

#### Chemicals known to cause reproductive toxicity for females:

None of the ingredients is listed

#### Chemicals known to cause reproductive toxicity for males:

None of the ingredients is listed

#### Chemicals known to cause developmental toxicity:

None of the ingredients is listed

### Canada

#### Canadian Domestic Substances List (DSL):

All ingredients are listed.

#### Canadian NPRI Ingredient Disclosure list (limit 0.1%):

None of the ingredients is listed

#### Canadian NPRI Ingredient Disclosure list (limit 1%):

None of the ingredients is listed

#### **SECTION 16 : Other information**

Page 6 of 7

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

Page 7 of 7

Ammonium Sulfate,

This product has been classified in accordance with hazard criteria of the Controlled Products Regulations and the SDS contains all the information required by the Controlled Products Regulations.Note:. The responsibility to provide a safe workplace remains with the user.The user should consider the health hazards and safety information contained herein as a guide and should take those precautions required in an individual operation to instruct employees and develop work practice procedures for a safe work environment.The information contained herein is, to the best of our knowledge and belief, accurate.However, since the conditions of handling and use are beyond our control, we make no guarantee of results, and assume no liability for damages incurred by the use of this material.It is the responsibility of the user to comply with all applicable laws and regulations applicable to this material.

### GHS Full Text Phrases:

### Abbreviations and acronyms:

IMDG: International Maritime Code for Dangerous Goods PNEC: Predicted No-Effect Concentration (REACH) CFR: Code of Federal Regulations (USA) SARA: Superfund Amendments and Reauthorization Act (USA) RCRA: Resource Conservation and Recovery Act (USA) TSCA: Toxic Substances Control Act (USA) NPRI: National Pollutant Release Inventory (Canada) DOT: US Department of Transportation IATA: International Air Transport Association GHS: Globally Harmonized System of Classification and Labelling of Chemicals ACGIH: American Conference of Governmental Industrial Hygienists CAS: Chemical Abstracts Service (division of the American Chemical Society) NFPA: National Fire Protection Association (USA) HMIS: Hazardous Materials Identification System (USA) WHMIS: Workplace Hazardous Materials Information System (Canada) DNEL: Derived No-Effect Level (REACH)

**Effective date** : 12.28.2014 **Last updated** : 03.19.2015

SDS # : 7775-27-1-12 Revision date: 2018-07-13 Format: NA Version 1.04



1. PRODUCT AND COMPANY IDENTIFICATION		
Product Identifier		
Product Name	Klozur® SP	
CAS-No	7775-27-1	
Synonyms	Sodium Persulfate; Sodium Peroxydisulfate; Disodium Peroxydisulfate; Peroxydisulfuric acid, disodium salt; Peroxydisulfuric acid, sodium salt.	
Alternate Commercial Name	Klozur® Persulfate	
Recommended use of the chemica	and restrictions on use	
Recommended Use:	In situ and ex situ chemical oxidation of contaminants and compounds of concern for environmental remediation applications	
Restrictions on Use	No uses to be advised against were identified.	
<u>Manufacturer/Supplier</u>	PeroxyChem LLC 2005 Market Street Suite 3200 Philadelphia, PA 19103 Phone: +1 267/ 422-2400 (General Information) E-Mail: sdsinfo@peroxychem.com For leak, fire, spill or accident emergencies, call: 1 800 / 424 9300 (CHEMTREC - U.S.A.) 1 703 / 527 3887 (CHEMTREC - Collect - All Other Countries) 1 303/ 389-1409 (Medical - U.S Call Collect)	

## 2. HAZARDS IDENTIFICATION

#### **Classification**

### **OSHA Regulatory Status**

This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)

Acute toxicity - Oral	Category 4
Skin corrosion/irritation	Category 2
Serious eye damage/eye irritation	Category 2B
Respiratory sensitization	Category 1
Skin sensitization	Category 1
Specific target organ toxicity (single exposure)	Category 3
Oxidizing Solids	Category 3

#### GHS Label elements, including precautionary statements

#### **EMERGENCY OVERVIEW**

## Danger

#### Hazard Statements

- H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled
- H335 May cause respiratory irritation
- H320 Causes eye irritation
- H315 Causes skin irritation
- H317 May cause an allergic skin reaction
- H302 Harmful if swallowed
- H272 May intensify fire; oxidizer



#### **Precautionary Statements - Prevention**

- P261 Avoid breathing dust.
- P285 In case of inadequate ventilation wear respiratory protection
- P271 Use only outdoors or in a well-ventilated area
- P280 Wear protective gloves/ protective clothing
- P264 Wash face, hands and any exposed skin thoroughly after handling
- P210 Keep away from heat/sparks/open flames/hot surfaces. No smoking
- P220 Keep/Store away from clothing/combustible materials
- P221 Take any precaution to avoid mixing with combustibles

#### **Precautionary Statements - Response**

P305 + P351 + P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing

- P337 + P313 If eye irritation persists: Get medical advice/ attention
- P302 + P352 IF ON SKIN: Wash with plenty of water.
- P333 + P313 If skin irritation or rash occurs: Get medical advice/ attention
- P304 + P341 IF INHALED: If breathing is difficult, remove to fresh air and keep at rest in a position comfortable for breathing
- P342 + P311 If experiencing respiratory symptoms: Call a POISON CENTER or doctor
- P301 + P312 IF SWALLOWED: Call a POISON CENTER or doctor if you feel unwell
- P330 Rinse mouth

P370 + P378 - In case of fire: Use water spray for extinction

#### **Precautionary Statements - Storage**

P403 + P233 - Store in a well-ventilated place. Keep container tightly closed

#### Hazards not otherwise classified (HNOC)

No hazards not otherwise classified were identified.

#### Other Information

Risk of decomposition by heat or by contact with incompatible materials

#### Unknown acute toxicity

0% of the mixture consists of ingredient(s) of unknown toxicity

## **3. COMPOSITION/INFORMATION ON INGREDIENTS**

Formula

Na2O8S2

Chemical name	CAS-No	Weight %
Sodium Persulfate	7775-27-1	> 99
Sodium sulfate	7757-82-6	< 2

	4. FIRST AID MEASURES
General Advice	May produce an allergic reaction.
Eye Contact	Rinse thoroughly with plenty of water for at least 15 minutes, lifting lower and upper eyelids intermittently. Consult a physician. If symptoms persist, call a physician.
Skin Contact	Wash off immediately with soap and plenty of water while removing all contaminated clothes and shoes. Get medical attention if irritation develops and persists.
Inhalation	Remove from exposure, lie down. If breathing is irregular or stopped, administer artificial respiration. Call a physician immediately.
Ingestion	Do NOT induce vomiting. Call a physician or poison control center immediately. Rinse mouth. Drink 1 or 2 glasses of water.
Most important symptoms and effects, both acute and delayed	Itching; Redness; Coughing and/ or wheezing.
Indication of immediate medical attention and special treatment needed, if necessary	Treat symptomatically
	5. FIRE-FIGHTING MEASURES
Suitable Extinguishing Media	Water. Cool containers with flooding quantities of water until well after fire is out.
Unsuitable extinguishing media	Do not use carbon dioxide or other gas filled fire extinguishers; they will have little effect or decomposing persulfate.
Specific Hazards Arising from the Chemical	Decomposes under fire conditions to release oxygen that intensifies the fire.
Flammable properties	Contact with combustible material may cause fire
<u>Explosion data</u> Sensitivity to Mechanical Impact Sensitivity to Static Discharge	Not sensitive. Not sensitive.
Protective equipment and precautions for firefighters	As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.
	6. ACCIDENTAL RELEASE MEASURES
Personal Precautions	Keep off any unprotected persons. Avoid contact with the skin and the eyes. Avoid breathing dust. Wear personal protective equipment.
Other	Never add other substances or combustible waste to product residues.
Environmental Precautions	Prevent material from entering into soil, ditches, sewers, waterways, and/or groundwater.

	Version 1.04
	See Section 12, Ecological Information for more detailed information.
Methods for Containment	Vacuum, shovel or pump waste into a drum and label contents for disposal. Avoid dust formation. Store in closed container.
Methods for cleaning up	Clean up spill area and treat as special waste. Dispose of waste as indicated in Section 13.
	7. HANDLING AND STORAGE
Handling	Wear personal protective equipment. Use only in area provided with appropriate exhaust ventilation. Avoid dust formation. Handle product only in closed system or provide appropriate exhaust ventilation at machinery. Avoid contact with skin and eyes. Avoid breathing dust. Remove and wash contaminated clothing before re-use. Reference to other sections.
Storage	Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from heat. Do not store near combustible materials. Avoid contamination of opened product. Keep away from food, drink and animal feedingstuffs. Avoid formation and deposition of dust.
Incompatible products	Acids, Alkalis, Halides, Combustible materials, Organic material, Reducing agents. Acids, alkalis, halides (fluorides, chlorides, bromides), combustible materials, reducing agents and organic compounds.

## 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

## Control parameters

## **Exposure Guidelines**

Chemical name	ACGIH TLV	OSHA PEL	NIOSH	Mexico
Sodium Persulfate 7775-27-1	TWA: 0.1 mg/m ³	-	-	-
Chemical name	British Columbia	Quebec	Ontario TWAEV	Alberta
Sodium Persulfate 7775-27-1	TWA: 0.1 mg/m ³	-	TWA: 0.1 mg/m ³	TWA: 0.1 mg/m ³

## Appropriate engineering controls

.

Engineering measures	Provide local exhaust or general ventilation adequate to maintain exposures below permissable exposure limits.
Individual protection measures, su	ch as personal protective equipment
Eye/Face Protection	Eye protection recommended. Chemical goggles consistent with EN 166 or equivalent.
Skin and Body Protection	Wear long-sleeved shirt, long pants, socks, and shoes.
Hand Protection	Protective gloves: Neoprene gloves, Polyvinylchloride, Natural Rubber.
Respiratory Protection	If exposure limits are exceeded or irritation is experienced, NIOSH/MSHA approved respiratory protection should be worn: particulate filtering facepiece respirators.
Hygiene measures	Keep away from food, drink and animal feeding stuffs. Do not eat, drink or smoke when using this product. Wash hands before breaks and after shifts. Keep work clothes separate, remove contaminated clothing - launder after open handling of product.
General information	Protective engineering solutions should be implemented and in use before personal protective equipment is considered.

## 9. PHYSICAL AND CHEMICAL PROPERTIES

## Information on basic physical and chemical properties

Appearance Physical State Color Odor Odor threshold pH Melting point/freezing point Boiling Point/Range Flash point Evaporation Rate Flammability (solid, gas) Flammability Limit in Air Upper flammability limit: Lower flammability limit: Lower flammability limit: Vapor pressure Vapor density Density Specific gravity Water solubility Solubility in other solvents	Crystalline solid Solid White odorless Not applicable 6.0 (1% solution) 180 °C (Decomposes) Decomposes upon heating Not flammable No information available Not flammable Not applicable No information available No information available 6.07E-30 mm Hg at 25°C No information available 2.59 g/cm ³ (crystal density) No information available 42 % @ 25 °C No information available
Water solubility	42 % @ 25 °C
Solubility in other solvents	No information available
Partition coefficient	No information available (inorganic)
Autoignition temperature	No evidence of combustion up to 600°C No evidence of combustion up to 600 °C
Decomposition temperature	> 100 °C (assume)
Viscosity, kinematic	No information available (Solid)
Viscosity, dynamic	No information available
Explosive properties	Not explosive
Oxidizing properties	oxidizer
Molecular weight	238.1
VOC content (%)	Not applicable
Bulk density	1.12 g/cm ³ (loose)

## **10. STABILITY AND REACTIVITY**

Reactivity	None under normal use condtions. Oxidizer. Contact with other material may cause fire
Chemical Stability	Stable.
Possibility of Hazardous Reactions	None under normal processing.
Hazardous polymerization	Hazardous polymerization does not occur.
Conditions to avoid	Heat. Moisture.
Incompatible materials	Acids, alkalis, halides (fluorides, chlorides, bromides), combustible materials, reducing agents and organic compounds. Acids, Alkalis, Halides, Combustible materials, Organic material, Reducing agents.

Hazardous Decomposition Products Oxygen which supports combustion

## **11. TOXICOLOGICAL INFORMATION**

### Product Information

Unknown acute toxicity	0% of the mixture consists of ingredient(s) of unknown toxicity
LD50 Oral	Sodium Persulfate: 895 mg/kg (rat)
LD50 Dermal	Sodium Persulfate: > 10 g/kg
LC50 Inhalation	Sodium Persulfate: >5.10 mg/L (4h) (rat)
Serious eye damage/eye irritation	Irritating to eyes.
Skin corrosion/irritation	Minimally irritating.

## Sensitization

Sodium Persulfate:. May cause sensitization by inhalation and skin contact.

## **Component Information**

Chemical name	al name LD50 Oral LD50 Dermal		LC50 Inhalation	NOAEL Oral Value
Sodium Persulfate	895 mg/kg (Rat)	> 10000 mg/kg (Rabbit)	>21.6 mg/L (Rat)4 h	
(7775-27-1)				
Sodium sulfate	> 10000 mg/kg (Rat)			
(7757-82-6)				

## Information on toxicological effects

Symptoms	Symptoms of allergic reaction may include rash, itching, swelling and trouble breathing.		
Delayed and immediate effects as v	vell as chronic effects from short and long-term exposure		
Irritation corrosivity	Irritating to eyes, respiratory system and skin. None.		
Carcinogenicity	Contains no ingredient listed as a carcinogen.		
Mutagenicity	Did not show mutagenic effects in animal experiments		
Neurological effects	Not neurotoxic		
Reproductive toxicity Developmental toxicity Teratogenicity	This product is not recognized as reprotox by Research Agencies. None known. Not teratogenic in animal studies.		
STOT - single exposure STOT - repeated exposure	May cause respiratory irritation. Not classified.		
Target organ effects	Eyes, Lungs.		
Aspiration hazard	No information available.		

## **12. ECOLOGICAL INFORMATION**

## Ecotoxicity

## Ecotoxicity effects

Sodium Persulfate (7775	5-27-1)			
Active Ingredient(s)	Duration	Species	Value	Units
Sodium Persulfate	96 h LC50	Rainbow trout	163	mg/L
Sodium Persulfate	48 h LC50	Daphnia magna	133	mg/L
Sodium Persulfate	96 h LC50	Grass shrimp	519	mg/L
Sodium Persulfate	72 h EC50	Algae Selenastrum	116	mg/L
		capricornutum		

Persistence and degradability	Biodegradability does not pertain to inorganic substances.
Bioaccumulation	Does not bioaccumulate.
Mobility	Dissociates into ions.
Other Adverse Effects	None known.

## **13. DISPOSAL CONSIDERATIONS**

Waste disposal methods	This material, as supplied, is a hazardous waste according to federal regulations (40 CFR 261). It must undergo special treatment, e.g. at suitable disposal site, to comply with local regulations.	
Contaminated Packaging	Empty remaining contents. Dispose of in accordance with local regulations.	
14. TRANSPORT INFORMATION		

## DOT

UN/ID no Proper Shipping Name Hazard class Packing Group	UN 1505 SODIUM PERSULFATE 5.1 III
TDG UN/ID no Proper Shipping Name Hazard class Packing Group MEX	UN 1505 SODIUM PERSULFATE 5.1 III
UN/ID no Proper Shipping Name Hazard class Packing Group ICAO	UN 1505 SODIUM PERSULFATE 5.1 III
UN/ID no Proper Shipping Name Hazard class Packing Group	UN 1505 SODIUM PERSULFATE 5.1 III
ICAO/IATA UN/ID no Proper Shipping Name Hazard class Packing Group	UN 1505 SODIUM PERSULFATE 5.1 III
<u>IMDG/IMO</u> UN/ID no Proper Shipping Name Hazard class Packing Group	UN 1505 SODIUM PERSULFATE 5.1 III
<u>ADR/RID</u> UN/ID no Proper Shipping Name Hazard class Packing Group	UN 1505 SODIUM PERSULFATE 5.1 III
<u>ADN</u> Proper Shipping Name Hazard class Packing Group	SODIUM PERSULFATE 5.1 III

# U.S. Federal Regulations

## **15. REGULATORY INFORMATION**

### <u>SARA 313</u>

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

## SARA 311/312 Hazard Categories

This product is not subject to reporting under the Emergency Planning and Community Right-to-Know rule.

#### **Clean Water Act**

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

### CERCLA/EPCRA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material

## US State Regulations

#### U.S. State Right-to-Know Regulations

This product contains the following substances regulated under state Right-to-Know laws:

Chemical name	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Sodium Persulfate		Х			
Sodium sulfate	Х		Х		

#### California Proposition 65

This product does not contain any Proposition 65 chemicals

## CANADA

#### Environmental Emergencies

This product contains no substances listed under Canada's Environmental Emergency regulations.

#### Canadian National Pollutant Release Inventory

This product contains no substances reportable under Canada's National Pollutant Release Inventory regulations.

#### International Inventories

Component	TSCA (United States)	DSL (Canada)	EINECS/EL INCS (Europe)	ENCS (Japan)	China (IECSC)	KECL (Korea)	PICCS (Philippines )	AICS (Australia)	NZIoC (New Zealand)
Sodium Persulfate	Х	X	Х	Х	Х	Х	Х	Х	Х
7775-27-1 ( > 99 )									
Sodium sulfate	Х	X	X	Х	X	Х	X	Х	Х
7757-82-6 ( < 2 )									

#### <u>Mexico</u>

#### Mexico - Grade

Slight risk, Grade 1

## **16. OTHER INFORMATION**

NFPA	Health Hazards 1	Flammability 0	Stability 1	Special Hazards OX
HMIS	Health Hazards 1	Flammability 0	Physical hazard 1	Special precautions J

NFPA/HMIS Ratings Legend

Special Hazards: OX = Oxidizer

Protection=J (Safety goggles, gloves, apron, combination dust and vapor respirator)

SDS # : 7775-27-1-12 Revision date: 2018-07-13 Version 1.04

Revision date: Revision note Issuing Date: 2018-07-13 SDS sections updated: 3 2017-03-17

#### **Disclaimer**

PeroxyChem believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specified product designated and may not be applicable where such product is used in combination with any other materials or in any process. Further, since the conditions and methods of use are beyond the control of PeroxyChem, PeroxyChem expressly disclaims any and all liability as to any results obtained or arising from any use of the products or reliance on such information.

Prepared By:

PeroxyChem

KLOZUR - Trademark of Peroxychem © 2018 PeroxyChem. All Rights Reserved. End of Safety Data Sheet



## **1. IDENTIFICATION OF THE MATERIAL AND SUPPLIER**

Product Name:	DISODIUM HYDROGEN ORTHOPHOSPHATE
Other name(s):	Anhydrous disodium phosphate; sodium orthophosphate anhydrous; disodium hydrogen phosphate anhydrous; Disodium Phosphate Food Grade
Supplier: ABN: Street Address:	Ixom Operations Pty Ltd 51 600 546 512 Level 8, 1 Nicholson Street East Melbourne Victoria 3002 Australia
Telephone Number: Facsimile: Emergency Telephone:	+61 3 9906 3000 +61 3 9665 7937 1 800 033 111 (ALL HOURS)

Please ensure you refer to the limitations of this Safety Data Sheet as set out in the "Other Information" section at the end of this Data Sheet.

## 2. HAZARDS IDENTIFICATION

Not classified as Dangerous Goods by the criteria of the Australian Dangerous Goods Code (ADG Code) for transport by Road and Rail; NON-DANGEROUS GOODS.

Based on available information, not classified as hazardous according to Safe Work Australia; NON-HAZARDOUS CHEMICAL.

Poisons Schedule (SUSMP): None allocated.

## **3. COMPOSITION AND INFORMATION ON INGREDIENTS**

Product Description: White powder or crystals.

Used in the chemical, fertilizer, pharmaceutical and textile industries; as a food additive (buffer 339); in boiler water treatment, detergents and fireproofing wood and paper.

Components	CAS Number	Proportion	Hazard Codes
Disodium hydrogen orthophosphate.	7558-79-4	100%	-

## 4. FIRST AID MEASURES

For advice, contact a Poisons Information Centre (e.g. phone Australia 131 126; New Zealand 0800 764 766) or a doctor.

## Inhalation:

Remove victim from area of exposure - avoid becoming a casualty. Seek medical advice if effects persist.

## Skin Contact:

If skin contact occurs, remove contaminated clothing and wash skin with running water. If irritation occurs seek medical advice.



## Eye Contact:

If in eyes, wash out immediately with water. In all cases of eye contamination it is a sensible precaution to seek medical advice.

## Ingestion:

Rinse mouth with water. If swallowed, give a glass of water to drink. If vomiting occurs give further water. Seek medical advice.

## Indication of immediate medical attention and special treatment needed:

Treat symptomatically.

## **5. FIRE FIGHTING MEASURES**

## Suitable Extinguishing Media:

Fine water spray, normal foam, dry agent (carbon dioxide, dry chemical powder).

## Specific hazards arising from the chemical:

Non-combustible material.

## Special protective equipment and precautions for fire-fighters:

Decomposes on heating emitting toxic fumes. Fire fighters to wear self-contained breathing apparatus and suitable protective clothing if risk of exposure to products of decomposition.

## 6. ACCIDENTAL RELEASE MEASURES

## Personal precautions/Protective equipment/Methods and materials for containment and cleaning up:

Avoid accidents, clean up immediately. Wear protective equipment to prevent skin and eye contact and breathing in dust. Sweep up, but avoid generating dust. Collect and seal in properly labelled containers or drums for disposal.

## 7. HANDLING AND STORAGE

## Precautions for safe handling:

Avoid skin and eye contact and breathing in dust. Avoid handling which leads to dust formation.

## Conditions for safe storage, including any incompatibilities:

Store in a cool, dry, well ventilated place and out of direct sunlight. Store away from incompatible materials described in Section 10. Keep containers closed when not in use - check regularly for spills.

## 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

**Control Parameters:** No value assigned for this specific material by Safe Work Australia. However, Workplace Exposure Standard(s) for particulates:

Dusts not otherwise classified: 8hr TWA = 10 mg/m³

TWA - The time-weighted average airborne concentration of a particular substance when calculated over an eight-hour working day, for a five-day working week.

These Workplace Exposure Standards are guides to be used in the control of occupational health hazards. All atmospheric contamination should be kept to as low a level as is workable. These workplace exposure standards should not be used as fine dividing lines between safe and dangerous concentrations of chemicals. They are not a measure of relative toxicity.



## Appropriate engineering controls:

Use in well ventilated areas. If inhalation risk exists: Use with local exhaust ventilation or while wearing dust mask. Keep containers closed when not in use.

#### Individual protection measures, such as Personal Protective Equipment (PPE):

The selection of PPE is dependent on a detailed risk assessment. The risk assessment should consider the work situation, the physical form of the chemical, the handling methods, and environmental factors.

OVERALLS, SAFETY SHOES, SAFETY GLASSES, GLOVES, DUST MASK.

Wear overalls, safety glasses and impervious gloves. If determined by a risk assessment an inhalation risk exists, wear a dust mask meeting the requirements of AS/NZS 1715 and AS/NZS 1716. Always wash hands before smoking, eating, drinking or using the toilet.

water.

## 9. PHYSICAL AND CHEMICAL PROPERTIES

Physical state:	Powder , Crystals
Colour:	White
Solubility:	Very soluble in wa
Specific Gravity:	2.10 at 20°C
Relative Vapour Density (air=1):	Not applicable
Vapour Pressure (20 °C):	Not applicable
Flash Point (°C):	Not applicable
Flammability Limits (%):	Not applicable
Autoignition Temperature (°C):	Not applicable
Boiling Point/Range (°C):	Not applicable
pH:	Not available.
Viscosity:	Not applicable

## **10. STABILITY AND REACTIVITY**

**Chemical stability:** 

May react violently with acids.

## **11. TOXICOLOGICAL INFORMATION**

No adverse health effects expected if the product is handled in accordance with this Safety Data Sheet and the product label. Symptoms or effects that may arise if the product is mishandled and overexposure occurs are:

Ingestion:	No adverse effects expected, however, large amounts may cause nausea and vomiting.
Eye contact:	May be an eye irritant.
Skin contact:	Contact with skin may result in irritation.
Inhalation:	Breathing in dust may result in respiratory irritation.
<b>Acute toxicity:</b> Oral LD50 (rat): 17000 mg/kg	(1)

Chronic effects: No information available for the product.

## **12. ECOLOGICAL INFORMATION**



## Ecotoxicity

Avoid contaminating waterways.

## **13. DISPOSAL CONSIDERATIONS**

## Disposal methods:

Refer to local government authority for disposal recommendations.

## **14. TRANSPORT INFORMATION**

## Road and Rail Transport

Not classified as Dangerous Goods by the criteria of the Australian Dangerous Goods Code (ADG Code) for transport by Road and Rail; NON-DANGEROUS GOODS.

## Marine Transport

Not classified as Dangerous Goods by the criteria of the International Maritime Dangerous Goods Code (IMDG Code) for transport by sea; NON-DANGEROUS GOODS.

## Air Transport

Not classified as Dangerous Goods by the criteria of the International Air Transport Association (IATA) Dangerous Goods Regulations for transport by air; NON-DANGEROUS GOODS.

## **15. REGULATORY INFORMATION**

## Classification:

Based on available information, not classified as hazardous according to Safe Work Australia; NON-HAZARDOUS CHEMICAL.

## Poisons Schedule (SUSMP): None allocated.

All the constituents of this material are listed on the Australian Inventory of Chemical Substances (AICS).

## **16. OTHER INFORMATION**

(1) Safety Data Sheet - Australia Pty Ltd; 08/ 1996.

This safety data sheet has been prepared by Ixom Operations Pty Ltd Toxicology & SDS Services.

## Reason(s) for Issue:

5 Yearly Revised Primary SDS Creation in WERCS database



This SDS summarises to our best knowledge at the date of issue, the chemical health and safety hazards of the material and general guidance on how to safely handle the material in the workplace. Since Ixom Operations Pty Ltd cannot anticipate or control the conditions under which the product may be used, each user must, prior to usage, assess and control the risks arising from its use of the material.

If clarification or further information is needed, the user should contact their Ixom representative or Ixom Operations Pty Ltd at the contact details on page 1.

Ixom Operations Pty Ltd's responsibility for the material as sold is subject to the terms and conditions of sale, a copy of which is available upon request.



Ε

# STANDARD OPERATING PROCEDURES

# FIELD STANDARD OPERATING PROCEDURE #2

## UTILITY LOCATING PROCEDURE

**\\S**|.

The purpose of this procedure is to ensure that all required and appropriate procedures are followed to locate and mark subsurface utilities (e.g., electrical lines, natural gas lines, communication lines) before initiating any intrusive field activities (e.g., drilling, test pits, trenching, excavation). The company's preference, as indicated in our subcontractor agreement templates, is for our contractors to be responsible for both public and private utility mark-outs; this includes contacting the public authority and obtaining a subcontractor for private utility locating services, if needed. Guidance for contractors to follow to conduct a utility clearance is provided in our request for proposal (RFP) template and must be included in all RFP's for intrusive field activities. In certain extraordinary circumstances, the company may choose to be responsible for clearing utilities, which will require a change in the template language of our subcontractor agreement. The revised agreement requires the approval and signature of a member of the Environmental Leadership Team (ELT).

For projects where the company will be responsible for clearing utilities, compliance with this procedure is mandatory. <u>ALL</u> deviations from this standard operating procedure (SOP) <u>MUST</u> be approved by the project manager and a member of the ELT <u>BEFORE</u> beginning intrusive work.

Field personnel have the authority and responsibility to postpone intrusive activities if a contractor has not completed utility clearances to the company's satisfaction; if sufficient information, as stipulated in this SOP, is not available; or if onsite reconnaissance identifies inconsistencies in the findings of utility locators. In these instances, field personnel must notify the project manager or the health and safety officer, or their designee, before proceeding with the proposed work; approval from a member of the ELT is required before the work commences.

The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities.

HASP	Health and safety plan
ELT	Environmental Leadership Team
RFP	Request for proposal
SOP	Standard operating procedure

## 2.1 ACRONYMS AND ABBREVIATIONS

## 2.2 MATERIALS

- Utility Locating Form (Attachment 1)
- Field book
- Wood stakes
- Spray paint
- Flagging tape
- As-built drawings for sub-grade utilities (if available)
- Hand auger or post-hole digger

# wsp

## 2.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field standard operating procedures, and the Quality Management System.

This procedure is intended to allow the work to proceed safely and minimize the potential for damaging underground and aboveground utilities. Intrusive work includes all activities that require the company's employees or its subcontractors to penetrate the ground surface. Examples of intrusive work include, but are not limited to, hand augering, probing, drilling, injections, test pit excavations, trenching, and remedial excavations.

This SOP assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1).

## 2.4 PRE-FIELD MOBILIZATION PROCEDURES

Regardless of who is responsible for completing these activities (company or a contractor), public rights-of-way and private property must be cleared of buried utilities and overhead utilities must be identified before any intrusive work can begin. The first step in this process is notifying the state public utility locating service of the planned work. These services provide a link between the entities performing the work and the various utility operators (e.g., the water company, the electric company, etc.). All of the public utility locating service call centers in the United States have been streamlined under a single "Call Before You Dig" phone number: 811.

<u>Please note</u>, some state laws require that the person who will actually be conducting the intrusive work must be the person who places the call to the public utility locating service. This means that the company cannot make this call on the contractor's behalf; the contractor must place the call in those states where required. The Common Ground Alliance has established a web site that includes state-specific information to assist in making this determination (<u>http://www.call811.com/state-specific.aspx</u>) for sites in the US and some parts of Canada. If there is any doubt about the requirements for the state where a project is located, the relevant state authority must be contacted.

When the call center is contacted, information regarding the site (e.g., location, nearest cross street, township, etc.) and work activity (e.g., drilling, excavation) will need to be provided to the operator to aid in locating the likely utilities at the work site. The information provided on the Utility Locating Form (Attachment 1) must be recorded (by the contractor or the company) and a completed copy of this form must be maintained as part of the project file. Be aware that several states, including California, require that the proposed drilling locations be marked with white spray paint before contacting the locating services.

The following information must accompany the field team at all times during the field project:

The utility clearance ticket number



- The ticket's legal dig date
- The ticket's expiration date
- Utility providers that were contacted

The ticket number serves as a point of reference for both the utility service providers and for the company or contractor should follow up (e.g., renewing the ticket) with the locating service be required. The legal dig and expiration dates reflect the times when it will be legal to perform the proposed work. The legal dig date reflects the lead time necessary, typically between 48 and 72 hours after you call, for the utility service providers to mark the utilities in you work area. Be sure to include this delay when scheduling your work. Most utility clearance tickets expire about 2 weeks after the legal dig date. If your work is delayed beyond the expiration date, the 811 utility locating service will need to be called again and the ticket renewed. The renewed ticket will have a new legal dig date that incorporates the same lead-time (48 to 72 hours) as the original ticket.

The locating service will also provide the caller with a list of utility companies that will be notified. Compare this list with utilities generally expected at all sites (e.g., sewer, water, gas, communication, and electric). Some utilities (e.g., sewer, water, cable TV) may not be included. If any expected utilities are absent from the contact list, the utilities <u>MUST</u> be contacted directly for clearance before the start of intrusive activities. All contacts should be recorded on the Utility Locating Form.

## 2.4.1 PRIVATE UTILITY LOCATORS AND OTHER SOURCES

Public utility service providers will generally mark their underground lines within the public right-of-way up to the private property boundary. A public utility locating service must be contacted prior to any intrusive work, regardless of whether the intrusive work is located on public or private property. However, be aware that most service providers will not locate utilities on private property. If your work is to be conducted on private property, a private utility locating service <u>MUST</u> be used to clear the work area. These companies typically use a variety of methods (e.g., electromagnetic detectors, ground-penetrating radar, acoustic plastic pipe locator, trace wire) to locate utilities in the work area, including those that may be buried beneath onsite buildings. Be aware that witching is not an acceptable utility location method.

For all operating facilities and to the extent possible for closed facilities, identify a site contact familiar with the utilities on the property (e.g., plant manager, facility engineer, maintenance supervisor), and provide this individual with a site plan showing the proposed locations of all soil borings, monitoring wells, test pits, and other areas where intrusive activities will be conducted. These individuals often have knowledge of buried structures or process-specific utilities that may not be identified by the private utility locator. This is particularly important for work performed inside industrial buildings where reinforced concrete and other metallic components of the structure may interfere with the scanning devices used by the private utility locator. Ask the site contact for all drawings concerning underground utilities in the proposed work areas for future reference.

Keep in mind that no intrusive work may be done before the legal dig date provided by the state utility locating service and no digging, drilling, or other ground-breaking activities may be begin until all utilities on the list have been marked and visually verified in the work area (see below). It is **NOT ACCEPTABLE** to rely solely on as-built drawings or verbal utility clearances from the site contact (these should be used as guides only). A private locator may not be necessary in rare instances; however, nonconformity with the private locate requirement must be approved by the project manager <u>AND</u> a member of the ELT before work proceeds.

## 2.5 SITE MOBILIZATION PROCEDURES

Upon arrival, the first step in determining if you are clear of buried and overhead utilities is to locate all of the proposed drilling and trenching locations and mark them with (white) spray paint, stakes, or other appropriate



markers. This will help you judge distances from marked utilities and minimizes any potential misunderstandings regarding the locations between you, the subcontractors (drillers, excavators, private utility locator), and the site contact.

Once you have the proposed work areas marked, verify that ALL utility companies listed by the state public utility locating service, and any contacted directly by the company or the contractor, have either marked the underground lines in the specified work areas or have responded (via telephone, facsimile, or e-mail) with "no conflict." Document on the Utility Locating Form (Attachment 1) and in the field book as each utility mark is visually confirmed. When receiving verbal clearances by telephone from utility companies, or their subcontractors, it is imperative that you verify the utilities that are being cleared, particularly when dealing with subcontractors that may be marking more than one utility.

Review all available as-built utility diagrams and plans and conduct a site walk to identify potential areas where underground lines may be present; include the site contact in these activities. It is a good idea to survey your surroundings during the walk to identify any features that may indicate the presence of underground utilities, such as linear depressions in the ground, old road cuts, catch basins, or manholes. Keep in mind that many sewer lines can be offset from catch basins. The presence of aboveground utilities, such as parking lot lights or padmounted transformers, is also a good indicator of buried electrical lines. Check these items against the Utility Locating Form checklist and discuss the locations with the private utility locating service.

## 2.5.1 SAFE WORKING DISTANCES AND HAND CLEARING

A minimum of 4 feet clearance must exist between utilities and proposed drilling locations, and a minimum of 6 feet between utilities and proposed trenching locations. Be aware that some states and localities (e.g., New York City, Long Island) may require greater minimum working distances, depending on the utility (e.g., for high pressure gas mains). A minimum distance of 15 feet must be maintained by heavy equipment (e.g., excavator buckets, drill rig towers and rods) from overhead power lines and a safe distance of 25 feet must be maintained from high-tension overhead power lines. In the event that work must be conducted within 25 feet of high tension wires, the lines must be wrapped and insulated by the local utilities. Increase these minimum distances whenever possible to offer additional assurance that buried or overhead utilities will not be encountered.

If a utility conflict is identified within the minimum safe clearance distance, adjust the proposed location(s) using the criteria given above. It is recommended to have the private utility locator sweep a relatively large area (e.g., a 20-foot circle around a proposed drilling location) to provide room for adjustment should the proposed drilling or excavation area need to be moved to avoid a buried utility.

Uncertainty may exist in some circumstances (e.g., inside a building) even after the area has been swept for utilities. In these cases, advance the first few feet of a soil boring (or probe the area for excavation) using a hand auger or post-hole digger. If hand digging is unable to penetrate the subsurface soils, soft dig or air knife equipment service providers may be retained to clear the location. This equipment applies high pressure air to penetrate, loosen, and extract subsurface soils in the borehole, thereby safely exposing any utilities. If using either hand digging or soft digging, the probe hole should be advanced a minimum of 5 feet below ground surface at each proposed drilling or excavation location. Complete a sufficient number of probe holes so that the area is cleared for the proposed intrusive activity (i.e., use several holes for a proposed excavation). The use of hand digging or soft digging methods <u>does not</u> replace the need for state and private utility locating services.

## 2.5.2 EXPANDED WORK AREAS AND TICKET RENEWAL

Many projects begin with well-defined work areas only to expand quickly as the investigation or remediation progresses. If the scope of intrusion expands or includes new onsite or offsite area(s), you will need to review the



existing ticket and work performed by the private utility locator to determine whether work can progress into the new area safely. It may be necessary, depending on the scope, to contact (or for the Contractor to contact) the state locating service and request another clearance for the new area(s) of investigation and retain a private locating service. Remember, the new request will provide a new legal dig date before which NO INTRUSIVE WORK CAN BEGIN. Additionally, if a clearance ticket will expire while the work is ongoing (typically after 2 weeks), a new clearance must be requested before the first ticket expires so that work can continue uninterrupted. Refer to the Utility Locating Form (Attachment 1) for the legal dig date time frame required by the state locating service.

## 2.5.3 UTILITY DAMAGE

It is possible, even if you followed all of the procedures outlined in this SOP, to damage an underground or overhead utility. Assuming it can be done safely, quickly turn off the drilling or excavating equipment, or move the equipment from the damaged line. Avoid contact with escaping liquids, live wires, and open flames. Abandon the equipment, evacuate the personnel from the area, and maintain a safe perimeter if there are any concerns about safety. If a fiber optic cable is damaged, do not handle the cable or look into the end of the cable as serious eye damage may occur. Once personnel are in a secure location, immediately notify the facility operator or site contact, 811, and the company's project manager. If the damaged utility has the potential to cause, or is causing, dangerous conditions, immediately notify the local emergency response number listed in your HASP.

** This form is mandatory for all intrusive work, regardless of who is responsible for the public and/or private locate.

Project Name	Project No. and Task	Work bein	g done for (C	ompany	or Individual Name)	Project Manager
Office Address	Office Phone		Field Conta	ct		Field Contact Phone
Project Location: Street Address		City/Town:	ship		County	State
· · · · · · · · · · · · · · · · · · ·						
Nearest Intersecting Street						
					· · · · · · · · · · · · · · · · · · ·	
Description of Work Area (street wor	king on, which side of st	reet, now fa	r in which all	ection fr	om hearest intersecting street; etc.,	
Type of Work	Explosives (Y/N)	Directiona	l Borings (Y/I	J)   F	Dig Locations Marked (Y/N)	Mark Type (e.g., stake)
Type of Work	Explosives (1/14)	Directiona	i bornigs (1/i		Dig Locations Marked (1/14)	Mark Type (e.g., stake)
Scheduled Work Start (Date & Time)	Estimated Work Stop	Date	One-call Ph	one Nur	nber/Website Address	One-call Service Name
	Lotinated Work Stop	Dute				
Call/Web Notification Made By (Name	e. Title and Company)		Date & Tim	e of Call/	Web Notification	Operator Name
	-, <b>,,,</b> ,					
Ticket No.	Legal Dig Date		Ticket Expi	ration Da	ate	Ticket Renewal Date
Utilities Notifie	d	Complet	e After Recei	ving Noti	ification (e.g., e-mail, facsimile) fron	Utilities or Subcontractor
		Utilities Pr	esent (Y/N)	Onsite	e Meeting (Y/N; if "Y" Date & Time)	Contact Name and Phone
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
Form Completed By (Signature)		I				
		(e-mail cor	mpleted page	e 1 to Proj	ject Manager)	N

** This form is mandatory for all intrusive work, regardless of who is responsible for the public and/or private locate.

Utility Locating Form Page 2 of 2

Private Utility Loca	ator Information			
Company		Contact Name	Phone	E-mail
Who Contracted L	ocator?		Scheduled Start (Date & Time)	Contract Executed (Y/N/NA)
			,	
<b>Onsite Visual Conf</b>	irmation of Utilities		Cleared or	
<b>Marking Color</b>	Utility Type and Visual Clues		Marked (Y/N)	No Markings - Comments
Blue	Potable water: fire hydrant, manholes	; water meter, ASTs, interior		
Dide	connections, hose bib, valve box			
Yellow	Gas, oil steam, petroleum: gas meter,	manholes; yellow bollards, interior		
renow	connections, valve box			
	Electric power lines, lighting cables, p			
Red	(telephone poles), conduits: interior c	-		
	manholes, transformers/switchgear, c	-		
Green	Sewer and drain lines: underground v	-		
0.000	field, sand mound, no evidence of sar			
	Communication, alarm or signal lines			
Orange	bollards, telephone poles, interior cor	nections; manholes; conduit on		
	buildings			
Purple	Reclaimed water, irrigation, and slurn	y lines: sprinkler heads, hose bibs		
Pink	Survey markings			
White	Proposed locations for excavation and	d drilling		
Proiect Manager N	otified of any Conflicts? (Y/N)			
i ojoot Managor N				
Notes:				
Marks Verified By	(Signature)			
		(scan and save to	client file)	
		1		



## FIELD STANDARD OPERATING PROCEDURE #3

## SAMPLE PACKAGING AND SHIPMENT PROCEDURE

Shipping samples is a basic but important component of field work. The majority of field activities include the collection of environmental samples. Proper packing and preservation of those samples is critical to ensuring the integrity of our work product. The user is advised to read the entire standard operating procedure (SOP) and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

## 3.1 ACRONYMS AND ABBREVIATIONS

CFR	Code of Federal Regulations
DOT	U.S. Department of Transportation
IATA	International Air Transport Association
HASP	Health and safety plan
PPE	Personal protective equipment
SOP	Standard operating procedure

## 3.2 MATERIALS

- Suitable shipping container (e.g., plastic cooler)
- Chain-of-custody forms
- Custody seals
- Sample container custody seals (as necessary)
- Mailing address labels (as necessary)
- Shipping form (with account number, as necessary)
- Tape (e.g., strapping, clear packing)
- Knife or scissors
- Permanent marker
- PPE
- Bubble wrap or other packing material
- Temperature-preserved samples:
- Large plastic garbage bag
- Wet ice
- Heavy-duty zipper-style plastic bags
- Universal sorbent materials

Note: Some materials will be supplied by the laboratory, while others are must be supplied by the sampler. Confirm supplier of materials prior to mobilizing to the field.

## 3.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field

# wsp

personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field standard operating procedures, and the Quality Management System.

This SOP is designed to provide the user with a general outline for shipping samples and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample collection and quality assurance procedures (SOP 4), and investigation derived waste management procedures (SOP 5).

Most environmental samples are classified non-hazardous materials due to unknown characteristics and hazardous classes, however environmental samples can meet the definition of DOT hazardous materials when shipped by air, ground, or rail from a project site to the laboratory (e.g., free product, samples preserved with a hazardous material [TerraCore® samplers]). As such, field staff must work with their assigned company compliance professional to determine whether the sample shipment is subject to any specific requirements (e.g., packaging, marking, labeling, and documentation) under the DOT hazardous materials regulations.

## 3.4 SAMPLE SHIPMENT PROCEDURES

The two major concerns in shipping samples are incidental breakage during shipment and complying with applicable DOT and courier requirements for hazardous materials shipments.

# NOTE: Many couriers, including Federal Express and UPS, have requirements that the company register with them before shipping hazard materials. In most cases, it is the sampling location, not the company office address, which needs to be registered. Therefore, each project will likely have unique requirements. Please contact your company compliance professional to determine whether or not you will be required to register for your shipment.

Protecting the samples from incidental breakage can be achieved using "common sense." Pack all samples in a manner that will prevent them from moving freely about in the cooler or shipping container. Do not allow glass surfaces to contact each other. When possible, repack the sample containers in the same materials that they were originally received in from the laboratory. Cushion each sample container with plastic bubble wrap, styrofoam, or other nonreactive cushioning material. A more detailed procedure for packing environmental samples is presented below.

## 3.4.1 NON-HAZARDOUS MATERIAL ENVIRONMENTAL SAMPLES

The first step in preparing your samples for shipment is securing an appropriate shipping container. In most cases, the analytical laboratory will supply the appropriate container for bottle shipment, which can be used to return samples once they have been collected. Be sure that the container is large enough to contain the samples plus a sufficient amount of packing materials, and if applicable, enough wet ice to maintain the samples at the preservation temperature (usually 4 degrees Celsius). Use additional shipping containers as needed so that sample containers are protected from breakage due to overcrowding. Do not use lunch-box sized coolers or soft sided coolers, which do not offer sufficient insulation or protection from damage.

## 3.4.1.1 TEMPERATURE-PRESERVED SAMPLE CONTAINER PREPARATION

Temperature-preserved samples should be shipped to the laboratory in an insulated container (e.g., cooler). If using a plastic cooler with a drain, securely tape the inside of the drain plug with duct tape or other material to ensure that no water leaks from the cooler during shipment. Place universal sorbent materials (e.g., sorbent pads) in the bottom of the insulated container. The amount

# wsp

of sorbent material must be sufficient to absorb any condensation from the wet ice and a reasonable volume of water from melted wet ice (if a bag were to rupture) or a damaged (aqueous) sample container.

The next step is to line the insulated container with a large, heavy-duty plastic garbage bag. If shipping breakable sample containers (e.g., glass), place bubble wrap or other packing materials on the bottom of the container. Place the samples on the packing materials with sufficient space to allow for the addition of more bubble wrap or other packing material between the sample containers. Place large or heavy sample containers on the bottom of the cooler with lighter samples placed on top to minimize the potential for breakage. Place all sample containers in the shipping container right-side up. Do not overfill the cooler with samples; room must be left for a sufficient volume of wet ice. Wet ice must be double-bagged in heavy-duty zipper-style plastic bags (1 gallon-sized, or less); properly seal both bags before placing in the insulated container. Place the bags of ice on top of or between the samples. Place as much ice as possible into the cooler to ensure the samples arrive at the lab at the required preservation temperature, even if the shipment is delayed. Fill any remaining space in the container with bubble wrap or other packing material to limit the airspace and minimize the shifting of the sample containers and in-transit melting of ice. Securely close the top of the heavy-duty plastic bag and seal with tape.

## 3.4.1.2 NON-TEMPERATURE-PRESERVED SAMPLE CONTAINER PREPARATION

Non-temperature-preserved samples should be shipped to the laboratory in a durable package (e.g., hard plastic container or cardboard box). If shipping breakable sample containers (e.g., glass), place bubble wrap or other packing materials on the bottom of the container. Place the samples on the packing materials with sufficient space to allow for the addition of more bubble wrap or other packing material between and on top of the sample containers. Place large or heavy sample containers on the bottom of the container with lighter samples placed on top to minimize the potential for breakage. Place all sample containers within the shipping container right-side up. Fill any remaining space in the container with bubble wrap or other packing material to limit the airspace and minimize the shifting of the sample containers and in-transit melting of ice.

## 3.4.1.3 CONTAINER SHIPMENT

Place the original, white, top copy of the chain-of-custody form (i.e., laboratory copy) into a heavy-duty zipper-style plastic bag, affix/tape the bag to the shipping container's inside lid, and then close the shipping container. Only one chain-of-custody form is required to accompany one of the shipping containers per sample shipment; the other coolers in the shipment do not need to include chain-of-custody forms. At this point, sample shipment preparations are complete if using a laboratory courier.

Once the shipping container is sealed, shake test the shipping container to make sure that there are no loose sample containers. If loose sample containers are detected, open the shipping container, repack the contents, and reseal the shipping container. If sending the sample shipment through a commercial shipping vendor, place two signed and dated chain-of-custody seals on alternate sides of the shipping container lid so that it cannot be opened without breaking the seals. Securely fasten the top of the shipping container shut with clear packing tape; carefully tape over the custody seals to prevent damage during shipping.

Using clear tape, affix a mailing label with the company's return address to the top of the shipping container. Ship environmental samples to the contracted analytical laboratory using an appropriate delivery schedule. If applicable, check the appropriate box on the airbill for Saturday delivery (you need to verify with the laboratory that someone will be at the laboratory on a Saturday to receive the sample shipment). Declare the value of samples on the shipping form for insurance purposes, if applicable, and be sure to include the project billable number on the shipping form's internal billing reference section. When shipping samples to a lab, identify a declared value equal to the carrier's default value (\$100); additional fees will be charged based on a higher value declared. Our preferred carrier, Federal Express, will only reimburse for the actual value of the cooler and its contents if a sample shipment is lost; they will not reimburse for the cost of having to re-collect the samples. [Please note: if you are shipping something other than samples, such as field equipment, declare the replacement value of the contents.]

Record the tracking numbers from the shipping company forms (i.e., the airbill number) in the field book and retain a copy of the shipping airbill. On the expected delivery date, confirm sample receipt by contacting the laboratory or tracking the package using the tracking number; provide this confirmation information to the project manager.

NOTE: Most shipping carriers adhere to transit schedules with final pickup times each day; these schedules are subject to change and vary by service location. If shipping containers are dropped off at a service location after the final pickup time, transit to the laboratory will not be initiated until the following day, and samples may not be properly preserved. Therefore, confirm transit schedules in advance of each sampling event, and ensure samples are dropped off before the final pickup time of the day.

## 3.4.2 HAZARDOUS MATERIALS SAMPLES

Employees rarely ship hazardous materials due to DOT shipping requirements. If you find that your samples could be considered a DOT hazardous material, first coordinate with the assigned company compliance professional and project manager to make a hazardous material classification and, if necessary, establish the necessary protocols and to receive the appropriate training/certification.

NOTE: Employees shipping samples regulated as hazardous materials or exempt hazardous materials by air must have International Air Transport Association (IATA) training. IATA training is a separate training required in addition to DOT hazardous materials training for such shipments. Most of our employees do not have IATA training and therefore, anyone who needs to ship by air MUST consult with a company IATA-trained compliance professional.

## FIELD STANDARD OPERATING PROCEDURE #4

## SAMPLE COLLECTION AND QUALITY ASSURANCE PROCEDURE

The purpose of this procedure is to assure that sample volumes and preservatives are sufficient for analytical services required under U.S. Environmental Protection Agency (EPA) or other agency approved protocols. This operating procedure describes sample identification procedures, sampling order for select analytes, quality control and quality assurance (QA/QC) sampling procedures, and custody documentation for environmental sampling. The user is advised to read the entire standard operating procedure (SOP) and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

## 4.1 ACRONYMS AND ABBREVIATIONS

°C	Degrees Celsius
СОС	Chain-of-custody [form]
DI	Deionized water
DOT	U.S. Department of Transportation
EDD	Electronic data deliverable
EPA	U.S. Environmental Protection Agency
HASP	Health and safety plan
ID	Identification [number]
MS/MSD	Matrix spike and matrix spike duplicate
MSA	Master Services Agreement
PPE	Personal protective equipment
QA	Quality assurance
QA/QC	Quality assurance/quality control
QAPP	Quality assurance project plan
SOP	Standard operating procedure
VOCs	Volatile organic compounds

## 4.2 MATERIALS

- Field book
- Indelible (waterproof) markers or pens
- PPE
- Sample containers
- Sample labels
- Clear tape
- Deionized (DI) water
- Cleaned or dedicated sampling equipment



## 4.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's USA Corp. Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company's SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field standard operating procedures, and the Quality Management System.

This SOP is designed to provide the user with a general outline for collecting environmental and quality assurance samples and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample shipment procedures (SOP 3), investigation derived waste management procedures (SOP 5), and equipment decontamination (SOP 6). This SOP does not cover investigation planning, nor does it cover the analysis of the analytical results. These topics are more appropriately addressed in a site-specific work plan or a dedicated quality assurance project plan (QAPP).

## 4.4 SAMPLE IDENTIFICATION PROCEDURES

Information on the sample container labels must include the site/project name, project/task number, unique alpha-numeric sample identification (ID) number, sample collection date, time of collection using the military or 24-hour clock system (i.e., 0000 to 2400 hours), analytical parameters, preservative, and the initials of the sampling personnel. Employees are advised to use preprinted waterproof mailing labels (e.g., Avery[®] 5xxx-series Waterproof Address Labels) for all sample identification. Label templates are available.

The sample identification (ID) number must, unless otherwise approved by your project manager or specified in your site-specific work plan, follow the company's naming protocol. This protocol was developed to aid in determining the type of sample collected (e.g., soil, groundwater, vapor, etc.), the sample location, and, where appropriate, the sample depth. The protocol was also designed to ensure consistency across the company.

Construct sample IDs in the following format:

## SB-10A (4-6)

Where, in this example:

- SB = the first two or three characters will define the sample type (see list of approved prefixes below); in this case, a soil boring
- 10A = the next two or three alpha-numeric digits (separated by a dash from the sample type identifier) indicate the location of the boring on the site; in this case, boring number 10A
- (4-6) = the depth the sample was collected, with the first number (including decimals, if necessary) indicating the top of the sample interval (in feet) and the second number indicating the bottom of the sample interval (in feet); not all sample types will include depth information.

Additional label information may be added after the last character of the sample ID number (e.g., sample date, underground storage tank number, area of concern number, "Area" number, client identifier, etc.). Separate any additional information from the required portion of the sample name by dash(es).

Sample Prefix	Permitted Use
AA	Ambient outdoor air sample

# wsp

Sample Prefix	Permitted Use
СС	Concrete core/chip sample
CS	Confirmation/verification soil sample collected from an excavation
HA	Soil sample collected with a hand auger
IAB	Indoor air sample – basement
IAC	Indoor air sample – crawl space
IAF	Indoor air sample – first floor
MW	Soil sample collected from a monitoring well borehole or a groundwater sample collected from a monitoring well
PZ	Groundwater sample collected from a piezometer
SB	Soil sample collected from boreholes that will not be converted to monitoring wells
SED	Sediment sample
SG	Soil gas sample other than a sub-slab sample (e.g., sample collected from a temporary or permanent polyvinyl chloride sample point or stainless steel screen implant)
SL	Sludge sample
SS	Surface soil sample collected using hand tools (e.g., trowel, spoon, etc.) and typically at depths less than 2 feet below ground surface
SSV	Sub-slab vapor sample
SW	Surface water sample
TC	Tree core sample
ТР	Soil sample collected from a test pit
WC	Waste characterization sample
WP	Wipe sample
WW	Wastewater

## 4.5 SAMPLE CONTAINERS, PRESERVATIVES, AND HOLDING TIMES

The first step in sample collection is to verify that the analytical laboratory has provided the correct number and type of sample containers and each contains the appropriate preservatives for the proposed project (i.e., check against the sampling plan requirements outlined in the site-specific QAPP or, for those projects without a site-specific QAPP, the laboratory Task Order). Inspect all containers and lids for flaws (cracks, chips, etc.) before use. Do not use any container with visible defects or discoloration. Report any discrepancies, or non-receipt, of specific types of sample containers to the team leader or project manager immediately. Make arrangements with the laboratory to immediately ship missing or additional sampling containers.

Precautions must be taken to prevent cross-contamination and contamination of the environment when collecting samples. Wear a clean pair of new, disposable gloves each time a different sample is collected and don the gloves immediately prior to sampling. The gloves must not come in contact with the medium being sampled and must be changed any time during sample collection when their cleanliness is compromised. Sample collection must follow all appropriate SOPs, state and federal regulations, or guidance, for the collection of environmental samples; the recommended order of sample collection is:

- Geochemical measurements (e.g., temperature, pH, specific conductance)
- Volatile organic compounds (VOCs)
- Extractable organics, petroleum hydrocarbons, aggregate organics, and oil and grease
- Total metals
- Dissolved metals
- Inorganic non-metallic and physical and aggregate properties
- Microbiological samples
- Radionuclides



Collected samples that require thermal preservation must be immediately (within 15 minutes) placed in a cooler with wet ice and maintained at a preservation temperature of 4° Celsius ( $^{\circ}$ C).

## 4.6 FIELD QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

Field quality assurance/quality control (QA/QC) samples include equipment blanks, trip blanks, duplicates, and split samples. The project manager or QAPP must specify the type and frequency of QA/QC sample collection. The QA/QC sample identification number must, unless otherwise approved by your project manager or specified in your site-specific work plan, follow the company's naming protocol as discussed in the sections below. QA/QC samples must be clearly identified on our copy of the COC form and in the field book. Failure to properly collect and submit required QA/QC samples can result in invalidation of an entire sampling event.

Collect, preserve, transport and document split samples using the same protocols as the related samples.

## 4.6.1 EQUIPMENT BLANKS

Equipment blanks are used to document contamination attributable to using non-dedicated equipment (i.e., equipment that must be decontaminated after each use). Collect equipment blanks in the field at a rate of one per type of sampling equipment per day, unless otherwise specified. If the site-specific work plan or QAPP indicates that an equipment blank is to be collected from dedicated sampling equipment, collect the equipment blank in the field before sampling begins. If field decontamination of sampling equipment is required, prepare the equipment blanks after the equipment has been used and field-decontaminated at least once. Prepare equipment blanks by filling or rinsing the pre-cleaned equipment with laboratory-provided analyte-free water, deionized water (DI) and collecting the rinsate in the appropriate sample containers. The samples must be labeled, preserved, and filtered (if required) in the same manner as the environmental samples. Record the type of sampling equipment used to prepare the blank. Have the equipment blanks analyzed for all the analytes for which the environmental samples are being analyzed, unless otherwise specified. Decontamination of the equipment following equipment blank procurement is not required. If laboratorygrade DI water is unavailable, store-grade distilled water can be used to prepare these blanks. If store-grade distilled water is used, be sure to record the source and lot number in the field book. Designate equipment blanks using "EB", followed by the date, and in the order of equipment blanks collected that day. For example, the first equipment blank collected on July 4, 2015, would be designated EB070415-1.

## 4.6.2 TRIP BLANKS

Trip blanks are used to document VOC contamination attributable to shipping and field handling procedures. Trip blanks are only required when analyzing samples for VOCs. Trip blank(s) are prepared by the laboratory and sent to the facility along with sample containers. Never open trip blank sample bottles; label them in the field and return them to the laboratory in the same shipping container in which the trip blank sample bottles arrived at the site. Keep the trip blank sample bottles in the same shipping container used to ship and store VOC sample bottles during the sampling event. Unless more stringent project requirements are in place, submit one trip blank in each shipping container of VOC samples. To minimize the number of trip blanks needed per shipment, if possible, ship all of the VOC samples in the same shipping container with the trip blank. If laboratory-provided trip blanks are not available, DI water, or store-grade distilled water and clean, empty VOC sample bottles can be used to prepare additional trip blanks. If store-grade distilled water is used, be sure to record the source and lot number in the field book. Identify trip blanks using "TB", followed by the date. For example, the trip blank shipped with a cooler of samples on July 4, 2015, would be designated TB070415-1. If a second trip blank is needed on that same day, the designation would be TB070415-2.

## 4.6.3 TEMPERATURE BLANK

Temperature blanks are used to determine if proper sample thermal preservation has been maintained by measuring the temperature of the sample container upon arrival at the laboratory. A temperature blank should be included in each sample cooler



used to ship and store the sample bottles during the sampling event. If laboratory-provided temperature blanks are not available, fill a clean, unpreserved sample bottle with potable, DI, or store-grade distilled water and identify the bottle as a temperature blank.

## 4.6.4 DUPLICATES

Duplicates are useful for measuring the variability and documenting the precision of the sampling process. Unless more stringent project requirements are in place, collect duplicate samples at a rate of at least 1 per 20 samples collected. Under no circumstances can equipment or trip blanks be used as duplicates. Sample locations where sufficient sample volume is available and where expected contamination is present should be selected for sample duplication.

Collect each duplicate sample at the same time, from the same sample aliquot and in the same order as the corresponding field environmental sample. When collecting aqueous duplicate samples, alternately fill sample bottle sets (i.e., the actual sample bottle and the bottle to be used for the duplicate) with aqueous samples from the same sampling device. If the sampling device does not hold enough volume to fill the sample containers, fill the first container with equal portions of the sample, and pour the remaining sample into the next sample containers. Obtain additional sample volume and pour the first portion into the last sample container, and pour the remaining portions into the first containers. Continue with these steps until all containers have been filled.

Duplicate samples will be assigned arbitrary sample ID and a false collection time so that they are not identified as duplicates by the laboratory (i.e., submit the samples blind to the lab). The blind duplicate sample "location designation" will be left up to the project manager; however, in no case will "Dup" be allowed to appear in the sample name. Have the duplicate samples analyzed for the same analytes as the original sample. Be sure to record the duplicate sample ID, the false time, and the actual time of collection in the field notebook. The duplicate should also be indicated on our carbon copy of the chain-of-custody.

## 4.6.5 MATRIX SPIKE AND MATRIX SPIKE DUPLICATES

Matrix spike and matrix spike duplicate samples, known as MS/MSD samples, are used to determine the bias (accuracy) and precision of a method for a specific sample matrix. Many of the company's projects require the collection of MS/MSD samples; however, laboratory generated MS/MSD samples are sufficient for some projects. As required by your QAPP or site-specific work plan, collect MS/MSD samples at the required ratio; if the sampling ratio is not specified by your QAPP or site-specific work plan, collect MS/MSD samples at a rate of 1 for every 20 samples. Clearly convey the MS/MSD identity to the laboratory by adding "MS" or "MSD" after the sample name (e.g., MW 01MS) or in the comments section of the chain-of-custody. Under no circumstances can equipment or trip blanks be used as MS/MSD samples.

## 4.6.6 SPLIT SAMPLES

Split samples may be collected as a means of determining compliance or as an added measure of quality control. Unlike duplicate samples that measure the variability of both the sample collection and laboratory procedures, split samples measure only the variability between laboratories. Therefore, the laboratory samples must be subsamples of the same parent sample and every attempt must be made to ensure sample homogeneity. Collect aqueous split samples in the same manner as a duplicate sample.

Collecting split samples of soil, sediment, waste, and sludge is not recommended because the homogenization necessary for a true split sample in these matrices is not possible and the resulting laboratory results would not be comparable.

Spilt samples should have the same sample location designation (e.g., MW-01, SB-03 (4-6), but are differentiated from each other by inserting the laboratory analyzing or the agency/consultant collecting the sample after the sample location (e.g., MW-01-WSP and MW-01-EPA).

## 4.7 CUSTODY DOCUMENTATION

# wsp

Sample custody protocols are used to demonstrate that the samples and sample containers were handled and transferred in such a manner as to prevent tampering. Legal chain of custody (COC) begins when the pre-cleaned sample containers are dispatched to the field from the laboratory and continues through sample analysis and eventual disposal of the sample and sample containers. Maintaining custody requires that samples must be in the actual possession or view of a person who is authorized to handle the samples (e.g., sample collector, laboratory technician), secured by the same person to prevent tampering, or stored in a designated secure area.

It is a good idea to limit, to the extent possible, the number of individuals who physically handle the samples. Samples must be placed in locked storage (e.g., locked vehicle, locked storeroom, etc.) at all times when not in the possession or view of authorized personnel. Do not leave samples in unoccupied motel or hotel rooms or other areas where access cannot be controlled by the person(s) responsible for custody without first securing samples and shipping or storage containers with tamper-indicating evidence tape or custody seals

The COC form is used to trace sample possession from the time of collection to receipt at the laboratory. Although laboratories commonly supply their own COC form, it is recommended that the company's COC be used to ensure that all necessary data are recorded. Unless more stringent project requirements are in place, submit one COC form per sample shipment. At a minimum, the COC needs to have a unique COC number, accompany all the samples, and include the following information:

- Project number, name, and location
- Sampler's printed name(s) and signature(s)
- Sample identification number
- Date and time (military time) of collection
- Sample matrix
- Total number of containers per sample
- Parameters requested for analysis including number of containers per analyte
- Remarks (e.g., irreducible headspace, field filtered sample, expected concentration range, specific turn-around time requested, etc.)
- Signatures of all persons involved in the chain of possession in chronological order
- Requested turn-around-time
- Name and location of analytical laboratory
- Custody seal numbers
- Shipping courier name and tracking information
- Internal temperature of shipping container upon shipment to laboratory, as needed
- Internal temperature of shipping container upon delivery to laboratory
- Employee contact information

Affix tamper-indicating evidence tape or seals to all storage and shipping container closures when transferring or shipping sample container kits or samples to an off-property party. Place the seal so that the closure cannot be opened without breaking the seal. Record the time, calendar date and signatures of responsible personnel affixing and breaking all seals for each sample container and shipping container. Affix new seals every time a seal is broken until continuation of evidentiary custody is no longer required.



## FIELD STANDARD OPERATING PROCEDURE #6

## **DECONTAMINATION PROCEDURE**

The decontamination procedures outlined in this standard operating procedure (SOP) are designed to ensure that all sampling equipment is free from the analytes that could potentially interfere with the sample results. The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

## 6.1 ACRONYMS AND ABBREVIATIONS

DI	Deionized water
DOT	U.S. Department of Transportation
EPA	U.S. Environmental Protection Agency
HASP	Health and safety plan
PPE	Personal protective equipment
QAPP	Quality assurance project plan
SOP	Standard operating procedure

## 6.2 MATERIALS

- Field book
- PPE
- Polyethylene sheeting and/or garbage bags
- Laboratory-grade non-phosphate detergent¹ (e.g., Luminox[®] or Liquinox[®])
- Cleaning reagents, as needed (e.g., isopropyl alcohol, methanol, hexane, etc.)
- Potable water
- Deionized (DI) water
- Containers (e.g., plastic buckets)
- Nylon brushes
- Aluminum foil
- Spray bottles
- Paper towels
- Pressurized steam cleaner (e.g., steam jenny), as needed
- Decontamination pad, as needed

## 6.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

¹ Not all laboratory-grade detergents are phosphate free. Be sure to verify the detergent's phosphate content before use.



This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company's SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field standard operating procedures, and the Quality Management System.

This SOP is designed to provide the user with a general outline for decontamination and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), and investigation-derived waste management procedures (SOP 5). All decontamination references must be available for consultation in the field, including:

- Company's SOPs
- Applicable state and federal guidelines or procedures
- Manufacturer's manuals
- Project-specific work plan and HASP
- QAPP

## 6.4 GENERAL PROCEDURES

The cleaning and decontamination procedures described below are designed to ensure that the equipment used for sample collection is free of analytes that could potentially alter the analytical results. These procedures are primarily targeted at reducing the incidence of cross-contamination (i.e., compounds of interest being transferred on the sampling equipment from one sample location or depth to another) and, when properly implemented, provide a methodology for obtaining high quality, representative results. As with all analytical sampling, the effectiveness of the cleaning procedures must be demonstrated with the collection of equipment blanks. The sampling procedures and equipment blank collection frequency are discussed in SOP 4.

## 6.4.1 EQUIPMENT AND REAGENT SELECTION

It is important for employees to evaluate the expected types of contamination before mobilization to a site. State programs (or the U.S. Environmental Protection Agency [EPA], depending on the site) may require more stringent decontamination procedures than those listed in this SOP, specify the types and grades of various cleaning detergents and reagents (e.g., acids and solvents), or allow the use of phosphate-containing detergents, such as Alconox[®]. Many of these reagents, such as nitric acid or pesticide-grade hexane, are U.S. Department of Transportation (DOT) hazardous materials and must be shipped using a ground delivery service. These compounds may also require specialized PPE (e.g., eye protection for concentrated acids) or have other special handling or disposal procedures that must be considered before arriving onsite. Decontamination equipment (e.g., spray bottles, brushes, etc.) should be constructed of non-reactive, non-leachable materials (e.g., metal, glass, Teflon[®]-coated, polyethylene, etc.) which are compatible with the reagents and solvents being used for decontamination.

In specific cases, it may be necessary to steam clean the field equipment before proceeding with the decontamination steps presented in Section 6.5 (e.g., hollow stem augers). Generally, the company's subcontractors are responsible for bringing or building a decontamination pad, if necessary, to contain the spray from a steam jenny. Decontamination pads should be constructed on a level, paved surface (if possible) in an area known or believed to be free of surface contamination, and should be of sufficient size to contain the decontamination water. Equipment that is steam cleaned should be placed on racks or saw horses and not on the floor of the decontamination pad. Decontamination water should be removed from the decontamination pad frequently to minimize the potential for leaks or overflow.

Consult and involve the company's compliance professionals for storage procedures and disposal requirements of solvent rinsate, detergent wastes, and other decontamination materials.



#### 6.4.2 OTHER CONSIDERATIONS

In preparing for decontamination, you should perform the following activities (with all observations and measurements noted in the field book):

- Perform a quick reconnaissance of the site to identify a decontamination (pad) area and evaluate the accessibility to and safety
  of the location.
- Record a description of the decontamination (pad) area.

Survey the breathing zone around the decontamination area with the appropriate air quality meter(s), as necessary (see HASP), to ensure that the level of PPE is appropriate. When decontaminating equipment, it is important to find a suitable location away from any sources of cross-contamination that could compromise the integrity of the decontamination. As possible, position the decontamination area away from fuel-powered equipment, such as drill rigs or excavators, and upwind of other site activities (e.g., purging, sampling).

## 6.5 DECONTAMINATION PROCEDURES

The decontamination procedures are based on a nine-step process, which is tailored in the field depending on the samples to be collected. Decontaminate all non-dedicated equipment that contacts the sample directly, including spoons, trowels, pumps, etc., before and between each sample location and sampling interval. Record decontamination procedures in the field book. Disposable, single use items, such as bailers or tubing, do not require decontamination.

The decontamination process includes the following four basic steps:

- 1 Physical removal of debris
- 2 Wash with non-phosphate detergent, such as Liquinox®, and nylon brush
- 3 Potable water rinse
- 4 Deionized (DI), analyte-free water rinse (distilled water can be used as a substitute)

The first step is to remove as much soil or other debris from the sampling device as possible near the sampling area to limit the spread of potentially-contaminated materials into clean areas of the site.

Cleaning and decontamination should occur at a designated area(s) (decontamination pad) on the site. If gross contamination or an oily film or residue is observed on the equipment, use steam jenny or wash by hand using a brush to remove the particulate matter or surface film. Heavy oils or grease may be removed with paper towels soaked with isopropyl alcohol.

The physical removal is followed by a hand wash using non-phosphate detergent (mixed to the appropriate dilution in potable water) followed by a potable water rinse. If not using a decontamination pad, the most common set-up uses 5-gallon plastic buckets for washing and rinsing, although plastic garbage pails or plastic tubs can also be used. Place containers on polyethylene sheeting to limit spillage of the decontamination fluids.

Be sure to scrub the equipment thoroughly with a nylon bristle brush (or similar) and allow enough submersion time for the nonphosphate detergent to effectively clean the surfaces (a simple dunk of the equipment in the detergent solution is insufficient). If decontaminating submersible pumps, flush both the non-phosphate detergent wash fluid and the potable water rinse through the pump body itself (usually done in separate buckets) to ensure that the internal components are thoroughly cleaned. The internal decontamination of motorized pumps can be accomplished by pumping the non-phosphate detergent wash fluid and the potable water rinse through the pump. Replace the detergent solution and rinse water when it becomes oily or silty.

Place the DI water for the rinse in a small spray bottle or pour over the equipment after the potable water rinse. Typically, this level of decontamination (i.e., steps 1 through 4) is sufficient.



Following Steps 1 through 4, additional decontamination (steps 5 through 9) may be required by the applicable federal or state guidelines, the project-specific work plan or the QAPP. Typically, these decontamination steps are performed when sampling for inorganics using non-motorized equipment. These steps include:

- 5 10% nitric acid rinse
- 6 DI water rinse
- 7 Pesticide-grade solvent rinse (e.g., hexane or isopropyl alcohol)
- 8 Air dry (solvent must evaporate)
- 9 DI water rinse

Isopropyl alcohol is the recommended solvent for organic contaminants because it is readily available (at most drug and department stores) and is not a DOT hazardous material. However, other solvents (e.g., hexane and methanol) may be more effective in removing certain contaminants, such as oils or polychlorinated biphenyls, but any waste generated using these solvents must be managed accordingly.

Handle the solvents and acid with care and store unused chemicals in their original, labeled, protective containers when not in use. It is a good idea to transfer small quantities of each solution into labeled, laboratory-grade spray bottles, which offer a convenient and controllable way to rinse the equipment. The equipment can then be rinsed over a 5-gallon plastic bucket or other suitable container placed on plastic sheeting as with the first part of the cleaning process. Nitric acid rinses must be used only on noncarbon steel sampling devices. Do not spray acid into pumps.

## 6.6 HANDLING DECONTAMINATED EQUIPMENT

Handle any decontaminated equipment using clean gloves to prevent re-contamination. Place the equipment away (preferably upwind) from the decontamination area once the process has been completed on clean plastic sheeting to allow it to air-dry. Once the equipment is dry, protect it from re-contamination by securely wrapping and sealing with aluminum foil (shiny side out) or clean, disposable plastic bags. Plastic bags may be wrapped directly around wet or dry equipment except when the expected contaminants include volatile and extractable organics; under those circumstances, allow the equipment to completely dry or wrap it in aluminum foil.

All sampling equipment must be decontaminated at the end of the investigation (i.e., prior to departure from the site). Label each piece of equipment with the date of decontamination, the initials of personnel performing the decontamination, and the type of decontamination solution(s) used. Containerize all solvent rinsate, detergent wastes, and other disposable decontamination materials in DOT-compliant containers in accordance with SOP 5 or the project-specific work plan. Dispose of all wastes in conformance with the project-specific work plan and applicable regulations.

## FIELD STANDARD OPERATING PROCEDURE #7

## WATER QUALITY MONITORING EQUIPMENT PROCEDURE

The procedures outlined in this Standard Operating Procedure (SOP) are designed to ensure that water quality monitoring equipment is calibrated and used properly. Specifically, this SOP addresses the short-term or discrete-measurement use of portable water quality monitoring equipment for the collection of physical, chemical, or biological field measurements. Common field parameters include temperature, pH, specific conductance (SC), turbidity, oxidation-reduction potential (ORP), and dissolved oxygen (DO). The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

## 7.1 ACRONYMS AND ABBREVIATIONS

DI	Deionized water
DO	Dissolved oxygen
°F	Degrees Fahrenheit
HASP	Health and safety plan
IDW	Investigation derived waste
mg/l	Milligrams per liter
mV	Millivolts
NTU	Nephelometric turbidity units
ORP	Oxidation-reduction potential
PPE	Personal protective equipment
QAPP	Quality assurance project plan
SC	Specific conductance
SDS	Safety Data Sheets
SOP	Standard operating procedure
SU	Standard units
µS/cm	Microsiemens per centimeter
(mS/cm)	Millisiemens per centimeter

## 7.2 MATERIALS

- Field book
- PPE
- Water quality meter
- Display/logger
- Communication cables
- Calibration cup or beaker



- Standard solutions, as appropriate
- Deionized water (DI) or distilled water
- Decontamination supplies

## 7.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field standard operating procedures, and the Quality Management System.

This SOP is designed to provide the user with a general outline for preparing water quality monitoring equipment for use and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), investigation derived waste (IDW) management procedures (SOP 5), equipment decontamination (SOP 6), groundwater sampling (SOP 11), and surface water sampling (SOP 12). This SOP does not cover the selection of water quality monitoring equipment, nor does it cover water quality monitoring equipment-specific instructions. These topics require a significant amount of planning and are more appropriately addressed in a project-specific work plan. Be sure to review the project-specific work plan or Quality Assurance Project Plan (QAPP) and any applicable state and federal guidelines or calibration procedures. The sampler should be familiar with the use and calibration of all sampling and monitoring equipment. All sampling references must be available for consultation in the field, including:

- Company's SOPs
- Applicable state and federal guidelines or sampling procedures
- Manufacturer's manuals
- Project-specific work plan, HASP, and QAPP

## 7.4 GENERAL EQUIPMENT HANDLING AND MANAGEMENT PROCEDURES

Multi-parameter water quality meters are typically bundled in a single housing unit known as a sonde. These types of units offer a single, convenient device that is capable of measuring most or all of the parameters monitored during a typical sampling event. Individual parameter water quality meters are available and, in some cases, offer a higher degree of accuracy, although the difficulty in deploying multiple meters for most tasks relegates them to specialty use.

## Field personnel must consult their assigned company compliance professionals for assistance in proper use, storage, and disposal of all calibration standard solutions.

The manufacturer's recommendations and instructions vary from one instrument to the next; however, all types of water quality monitoring equipment share common handling and management procedures designed to ensure the integrity of the measurements collected. Based on these procedures, the user should:

- Transport the water quality monitoring equipment in a padded case that is designed to protect the equipment; airtight cases
  need to be vented if using sensors that have flexible or semi-permeable membranes.
- Follow the manufacturer's instructions for assembly, operation, calibration, and maintenance specific to your equipment. The manufacturer's instructions should be followed explicitly in order to obtain accurate results.

# wsp

- Keep either the sensor guard or transportation/calibration cup installed to avoid damaging the sensors. Some sensors require
  a small amount of water in the transportation/calibration cup; follow the manufacturer's recommendations.
- Ensure that all equipment is in proper working condition, and that batteries are properly charged before using the equipment for field testing measurements.
- Protect instruments that are sensitive to static electricity.
- Record manufacturer name and model number for each instrument used in the field book.
- Calibrate the instrument in the field, as close to the time of use as possible, and repeat at the frequency suggested by the manufacturer.
- Protect the instrument from direct sunlight, precipitation, and extremely hot or cold temperatures.
- Store cables only after they are clean, dry, and neatly coiled do not bend or crimp cables.
- Attach any provided storage caps. Protect cables from abrasion or unnecessary tension when in use.
- Unless otherwise instructed by the manufacturer, decontaminate water quality monitoring equipment using a non-phosphate detergent solution with a small, nonabrasive brush, cotton swab or cloth, followed by a thorough DI water rinse.

## 7.5 CALIBRATION PROCEDURES

Water quality monitoring equipment must be inspected and the sensors calibrated before use. Calibration frequency is dependent upon project specifications, instrument performance, and manufacturer's recommendations; repeat the calibration procedures as directed. Consult the manufacturer's guidelines before beginning the calibration process and contact the manufacturer's technical support if problems or questions arise.

Conduct the following procedures to ensure proper testing and calibration and record observations in the field book:

- Inspect the sensors to be sure that they are clean, installed properly and are not damaged before calibrating and using a water quality monitoring equipment in the field.
- Complete field calibration in an area sheltered from wind, dust, and temperature/sunlight fluctuations such as inside a room
  or vehicle in which the ambient temperature of the standards is maintained at a temperature >40 degrees Fahrenheit (°F) and <
  100°F, unless otherwise specified by the manufacturer.</li>
- Use standard calibration solutions in accordance with the project-specific work plan or QAPP. Do not mix or dilute standards in the field. Allow water quality monitoring equipment to warm up for at least 10 minutes after being powered on, or for the specified time period recommended by the manufacturer.
- Record the brand, concentration, lot numbers and expiration dates of standard solutions in the field book.
- Handle standard solutions in a manner that prevents their dilution or contamination. Do not use expired standard solutions.
   Do not reuse standard solutions or pour solutions back into the bottle; ensure that proper chain-of-custody has been followed for standard solutions stored at a site.
- Ensure that the water quality monitoring equipment has been set to display or record the appropriate measurement unit, as available.
- Unless otherwise instructed by the manufacturer, use the calibration cup that comes with the instrument for calibration.
- Use the recommended volume of standard solution when filling the calibration cup (e.g., the standard solution must cover the temperature sensor, as most sensors require temperature compensation).
- Be careful not to over tighten the calibration cup; many calibration cups have vents that allow their equilibration with ambient pressure.
- Rinse sensors thoroughly three times with DI water after use of each standard solution, followed by three rinses with the next standard solution to be used.
- Wait for readings to stabilize (approximately 30 seconds under normal conditions) before adjusting and saving the calibration point.
- In case of a calibration error, troubleshoot the potential causes (e.g., fluid level or air bubbles in the sensor). Repeat the calibration procedure after mitigating the issue. Record calibration end points and readings in the field book.
- Document the time, date, and calibration status for each instrument.
- If calibration fails to meet criteria, follow the manufacturer's instructions for corrective action to adjust instrument
  performance and note any indication of a substandard calibration.
- If the instrument does not start up, meet the requirements above, or calibrate properly, the instrument should not be used.



### 7.5.1 SPECIFIC CONDUCTANCE

Specific conductance, or, more commonly the conductivity, measures the ability of water to conduct an electric current. It is generally reported in either microsiemens per centimeter ( $\mu$ S/cm) or millisiemens per centimeter (mS/cm); be sure to note the units used in the field note book. Natural waters, including groundwater, commonly exhibit SC below 1  $\mu$ S/cm. Elevated SC measurements (i.e., greater than 500  $\mu$ S/cm) are a proxy for the amount of dissolved solids, which may be indicative of inadequate well development, grout contamination (or an inadequate grout seal), or contamination.

When calibrating water quality monitoring equipment for SC:

If not specified in the project-specific work plan, choose a SC standard solution recommended by the instrument manufacturer; otherwise, select a standard that is similar to the anticipated conductivity of the water being sampled.

The presence of air bubbles in conductivity electrodes will cause erroneous readings and incorrect calibration. Transmission lines, alternating-current electrical outlets and radio-frequency noise sources may cause interference; check with the instrument manufacturer's specifications for troubleshooting procedures.

## 7.5.2 DISSOLVED OXYGEN

Dissolved oxygen measurements are used to assess the water quality with respect to certain metals (the amount of oxygen can control the valence state of metals) and, more typically, biological activity. Concentrations of DO in groundwater under ambient conditions generally range from 1 to 4 milligrams per liter (mg/l). Erratic or elevated (greater than 4 mg/l) DO readings may indicate equipment maintenance issues, such as a fouled sonde, torn membrane, or a sensor out of calibration range; or inappropriate monitoring procedures that are causing excessive agitation and aeration of the water column. The meters are sensitive to atmospheric interference: ex situ measurements (i.e., those measured outside of the well itself) should only be collected using a flow-through cell.

Dissolved oxygen meters vary widely in their sensitivity. Select the type of DO sensor (i.e., the polarographic [or Clark cell] sensor or the luminescent [optical] sensor) that is most appropriate for the scope of work detailed in the project-specific work plan. The guidance below is for the more common polarographic sensor; consult the manufacturer's guidance for maintenance and calibration procedures specific to optical DO meters.

- Check the DO membrane for bubbles, wrinkles or tears. If necessary, install a new membrane and replace worn or stretched Orings. Manufacturer guidance generally specifies membrane replacement should be completed at least 3 to 4 hours before use
- Most manufacturers recommend that the sensor be allowed to equilibrate to the temperature of the water-vapor-saturated air for at least 15 minutes before calibration
- Fill the calibration cup with less than 1/8 inch of water, or as recommended by the manufacturer
- Remove any water droplets from the sensor without wiping the membrane. Water droplets on the sensor can cause a temperature compensation error in the DO calibration
- Do not submerge or wet the sensor when loosely attaching the calibration cup.
- Enter the barometric pressure and wait for readings to stabilize before adjusting and saving the calibration point.

#### 7.5.3 PH

The effective concentration (or activity) of hydrogen ions on a numerical scale known as pH, which is expressed as the negative base-10 logarithm of the hydrogen-ion activity in moles per liter. Natural (uncontaminated) waters typically exhibit a pH ranging from 5 to 9 Standard Units (SU). Deviation of pH from background may indicate the presence of groundwater contamination or well construction problems.

Typically, a two-point calibration is used for pH (i.e., a zero-point and span calibration[s]):



- If not specified in the project-specific work plan, select a 7 SU buffer (zero-point) plus a second pH buffer (4 SU or 10 SU) that brackets the range of expected pH.
- If applicable, calibrate the conductivity and DO sensors before calibrating the pH sensor. This helps prevent crosscontamination of the conductivity sensor from pH buffer solutions (pH buffers have much higher conductivities than most environmental waters).
- Allow time for the pH and temperature sensors to equilibrate to the temperature of the buffer and stabilize before adjusting
  and saving the calibration point. Record the temperature reading and use the chart provided by the buffer manufacturer to
  determine the true pH of the buffer at that temperature and adjust the calibration reading to that value.
- Repeat the calibration process with the second buffer.

## 7.5.4 OXIDATION-REDUCTION POTENTIAL

Oxidation-reduction potential is a numerical index of the intensity of the oxidizing or reducing conditions within an aqueous solution. Oxidizing conditions are indicated by positive potentials and reducing conditions are indicated by negative potentials. These values are frequently used when evaluating the biodegradation capacity of a system. The ORP of natural (uncontaminated) waters typically ranges from +500 to -100 millivolts (mV). The meters for ORP, like those for DO, are sensitive to atmospheric interference and must be measured using a flow-through cell. Avoid touching the sensors during calibration and measurement as calibration can be affected by static electricity.

A one-point calibration, at a known temperature, is used to calibrate the ORP sensor:

- Fill the calibration cup with enough standard solution (i.e., ZoBell's solution) to completely cover the temperature and ORP sensors.
- Allow time for the ORP and temperature sensors to equilibrate to the temperature of the buffer and stabilize before adjusting
  and saving the calibration point. Record the temperature reading and use the chart provided by the manufacturer to
  determine the true ORP of the solution at that temperature and adjust the calibration reading to that value.

## 7.5.5 TURBIDITY

Turbidity is the presence of suspended mineral and organic particles in a water sample. Turbid water may indicate inadequate well construction, development or improper sampling procedures, such as purging at an excessive rate that exceeds the well yield. Purging and sampling in a manner that minimizes turbidity is particularly important when analyzing for total metals and other hydrophobic compounds, such as polychlorinated biphenyls, which may exhibit artificially elevated concentrations in high-turbidity samples due to their adsorption to colloidal material. Generally, the turbidity of in situ groundwater is very low (at or below 10 nephelometric turbidity units, NTUs); however, some groundwater zones may have natural turbidity higher than 10 NTUS.

Standard turbidity solutions are not necessarily interchangeable. Serious calibration errors can result from using inappropriate standards. Use only those standard turbidity solutions that are prescribed for the sensor by the instrument manufacturer.

Turbidity consists of a zero-point calibration and a span calibration(s):

- Fill the calibration cup to the reference line with DI or a zero-point standard.
- Allow time for the turbidity sensors to stabilize before adjusting and saving the calibration point. Record the temperature and
  use the chart provided by the buffer manufacturer to determine the true turbidity of the buffer and adjust the calibration
  reading to that value.
- Repeat the calibration process with the standard span calibration standard(s).

## 7.6 EQUIPMENT USE PROCEDURES

The monitoring equipment is ready to use once the calibration has been completed. The specific use of the device will be dictated by the project-specific work plan or QAPP; however, all projects should follow these general procedures during use:



- Ensure that instrument is warmed up and the measured value(s) on the water quality monitoring equipment are equilibrated (i.e., readings are representative of the solution, not ambient air) before recording in the field book.
- Biological growth or debris in the water can foul sensors; as possible, avoid inserting the sonde in areas that will result in
  having to stop and clean algae, sediment, or debris from the sensors (e.g., do not place on bottom of a well or streambed).
- If continuous monitoring is required, follow the manufacturer's instructions for performing continuous data logging events.
- Charge instrument batteries per the manufacturer's instructions, as necessary.

For flow through cells:

- Inspect the integrity of the flow-through cell and O-rings.
- Connect the discharge tubing to the bottom of the flow-through cell using properly-sized tubing and fittings. Connect the
  effluent tubing to the top of the flow-through cell and secure the end of the tubing into the designated groundwater purge
  container.
- Shield the flow-through cell from direct sunlight to minimize changes in the temperature.
- Do not record any measurements until all the air from the flow-through cell and the effluent tubing has been displaced and the sensors have equilibrated. The presence of air bubbles in the flow-through cell will result in highly biased readings.
- Do not collect samples for laboratory analysis from the groundwater in the flow-through cell.

## 7.7 CLOSING NOTES

Once field activities are complete, secure the site in accordance with the project-specific work plan. Decontaminate all equipment prior to departure and properly manage all PPE and IDW in conformance with applicable regulations.

## FIELD STANDARD OPERATING PROCEDURE #11

## **GROUNDWATER SAMPLING PROCEDURE**

Groundwater sampling procedures outlined in this Standard Operating Procedure (SOP) are designed to ensure that collected samples are representative of current site conditions. These procedures can be applied to permanently or temporarily-installed monitoring wells, direct-push sample points, water supply wells with installed plumbing, extraction wells for remedial groundwater treatment systems, and excavations where groundwater is present. The user is advised to read the entire SOP and review the site health and safety plan (HASP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

## 11.1 ACRONYMS AND ABBREVIATIONS

ID	Inside diameter
DI	Deionized
DNAPL	Dense non-aqueous phase liquid
DO	Dissolved oxygen
DTW	Depth-to-water
HASP	Health and safety plan
IDW	Investigation-derived waste
L/min	Liters per minute
LNAPL	Light non-aqueous phase liquid
mg/l	Milligrams per liter
mV	Millivolts
NAPL	Non-aqueous phase liquid
NTU	Nephelometric turbidity unit
ORP	Oxygen reduction potential
PID	Photoionization detector
PPE	Personal protective equipment
QAPP	Quality assurance project plan
SOP	Standard operating procedure
SU	Standard units
TD	Total depth
тос	Top-of-casing
VOCs	Volatile organic compounds



## 11.2 MATERIALS

- Materials
- Field book
- PPE
- Air quality monitoring equipment (e.g., photoionization detector [PID]), as needed
- Electronic water level indicator or interface probe
- Water quality meter(s) with calibration reagents and standards, as needed
- Field test kits, as needed
- Adjustable wrench or manhole wrench, as needed
- Well key(s), as needed
- Pocket knife or scissors
- Power supply, as needed
- Sample bottles, labels, indelible markers, and clear tape
- Distilled (DI) water
- Container(s) for water storage (e.g., bucket, drum)
- Pump or bailers, tubing, and associated lanyard materials
- Filters, as needed
- Decontamination supplies

#### 11.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to WSP policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. WSP employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field standard operating procedures, and the Quality Management System.

This SOP is designed to provide the user with a general outline for conducting groundwater sampling and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), utility location (SOP 2), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), investigation derived waste (IDW) management procedures (SOP 5), equipment decontamination (SOP 6), and use and calibration of all sampling and monitoring equipment (SOPs 7 and 8). This SOP does not cover investigation planning, nor does it cover the analysis of the analytical results. These topics are more appropriately addressed in a project-specific work plan. Before groundwater sampling, be sure to review the project-specific work plan or quality assurance project plan (QAPP) and any applicable state and federal guidelines or sampling procedures. All sampling and monitoring references must be available for consultation in the field, including:

- Company SOPs
- Applicable state and federal guidelines or sampling procedures
- Manufacturer's manuals
- Project-specific work plan and HASP
- QAPP

## 11.4 GENERAL PROCEDURES



Although the techniques used to sample groundwater are varied, most sampling events can be broken down into a three-step sequence:

- 1 Gauging: The measurement of the water column height (i.e., total well depth less depth-to-water) within the well.
- 2 Purging: The removal of stagnant water from the well bore to ensure that samples collected are representative of groundwater conditions in the water-bearing zone surrounding the well.
- 3 Sample Collection: After purging, the collection of aliquots of groundwater in method-specific, preserved (as needed) containers.

The procedures and equipment that are used to accomplish these steps are project-specific and should be discussed by the project team before arriving onsite. All types of groundwater sampling, however, regardless of the equipment used, share common handling and management procedures that are designed to ensure the integrity of the samples collected. These procedures include:

- The use of new, disposable, decontaminated, or dedicated sampling equipment
- The use and rotation of the appropriate PPE
- Selection of a suitable sampling location and staging area

Wear a clean pair of new, disposable gloves each time a different sample is collected and don the gloves immediately prior to collection. This limits the possibility of cross-contamination from accidental contact with gloves soiled during collection of the previous sample. The gloves must not come in contact with the medium being sampled and must be changed any time during sample collection when their cleanliness is compromised. In no case should gloved hands be used as a sampling device: always use the appropriate sampler to move the sample from the sampling device to the laboratory-supplied containers.

## 11.4.1 EQUIPMENT SELECTION

Collect all samples using either new, disposable equipment or properly decontaminated sampling equipment. Groundwater purging and sampling equipment should be selected based on the analytical requirements of the project and the project specific conditions (e.g., well diameter, depth to water, dissolved constituents, etc.) likely to be encountered. The equipment should be constructed of non-reactive, non-leachable materials (e.g., stainless steel, Teflon[®], Teflon[®]-coated steel, polyethylene, polypropylene, etc.) which are compatible with the chemical constituents at the site. Note that project or regulatory guidance may limit the type of equipment for groundwater sampling. When choosing groundwater purging and sampling equipment, give consideration to:

- the diameter and depth of the well
- the depth to groundwater
- the volume of water to be withdrawn
- the sampling and purging technique
- the volume of sample required
- the analytes of interest

Select the decontamination procedures based on the types of sampling to be performed and media encountered; decontamination may require multiple steps or differing cleaning methods (see SOP 6 for decontamination procedures). In no case should disposable, single use materials be used to collect more than one sample.

## 11.4.2 PRE-SAMPLING CONSIDERATIONS

In preparing for sampling, you should perform the following activities (with all observations and measurements noted in the field book and on the project-specific groundwater monitoring log, if appropriate):

- Perform a quick reconnaissance of the site to identify sampling locations and evaluate the accessibility to the sampling location.
- Record the approximate ambient air temperature, precipitation, wind (direction and speed), tide, and other field conditions. In
  addition, any site-specific conditions or situations that could potentially affect the samples at the sample locations should be
  recorded.



- Record sampling locations with respect to approximate distance to and direction from at least one permanent feature.
- Survey the breathing zone around the sampling location with the appropriate air quality meter(s), as necessary (see HASP), to
  ensure that the level of PPE is appropriate.
- As appropriate, install the pump, tubing, or passive sampler to the depth prescribed in the project-specific work plan or QAPP.
- Containerize and/or manage purge water in accordance with the project-specific work plan.

When sampling groundwater, it is important to find a suitable sampling location away from any sources of cross-contamination that could compromise the integrity of the samples. Consider the following:

- Position the sample collection area away from fuel-powered equipment, such as drill rigs or excavators, and upwind of other site activities (e.g., purging, sampling, decontamination) that could influence the sample. This is particularly important when screening samples in the field for volatile organic compounds with a PID, but should not be limited to the active sample collection.
- Establish a secure sample staging area in an uncontaminated area of the site.

#### 11.5 GAUGING PROCEDURES

All wells should be opened to the atmosphere in advance of sampling to allow any pressure differentials, which could artificially raise or depress the water column in the well, to dissipate. The wells should be inspected to ensure that the protective casing is intact and has not been damaged. Remove the well covers and all standing water around the top of the well casing (for flush mounted-protective covers), as necessary, before opening the inner well cap or plug. Unlock and carefully remove well cap and allow the well to stand undisturbed for a minimum of 15 minutes before conducting any down-hole testing or measurements. If required by the HASP, survey the open well casing and the breathing zone around the wellhead with a PID to ensure that the level of PPE is appropriate.

## 11.5.1 GROUNDWATER LEVEL AND TOTAL DEPTH MEASUREMENT PROCEDURES

Depth to water (DTW) and total depth (TD) measurements are typically collected prior to sampling and are used to determine the volume water to be purged from the well (if using techniques other than no-purge or low flow sampling). The DTW measurements are also used after the sampling event is completed to establish the groundwater elevation, flow direction, and gradient. Unless otherwise directed, do not place any objects inside the casing of private water wells; accordingly, DTW and TD measurements should not be collected at private water wells. TD measurements are not required for low-flow and no-purge sampling applications and should not be measured before sampling the well.

Water level measurements must be collected within the shortest interval possible from all selected existing wells to be gauged during the event before beginning any purge and sampling procedures at the site. This will ensure a nearly instantaneous snapshot of the water levels before the formations are disturbed by pumping or acted upon by other outside influences, such as tides, precipitation, barometric pressure, river stage, or intermittent pumping of production, irrigation, or supply wells.

- Record the following observations and measurements in the field book:
- Measure the casing inside diameter (ID) and record in inches
- Measure the DTW with an electronic water level indicator (or an interface meter, if non-aqueous phase liquid [NAPL] is
  potentially present see procedures below) from the top-of-casing (TOC) at the surveyor's mark, if present, and record the
  depth (to the nearest 0.01 foot) in feet below TOC
- If no mark is present, measure from the north side of the casing and mark the measuring point with a knife, metal file (if the inner casing is metal) or indelible marker for future reference
- Measure the TD from TOC at the surveyor's mark or north side of the casing, as appropriate.

Because of tape buoyancy and weight effects encountered in deep wells with long water columns, it may be difficult to determine the TD of the well with an electronic water level indicator; sediment in the bottom of the well can also make it difficult to determine TD. Care must be taken and proper equipment selection must be used in these situations to ensure accurate measurements. Multiple TD measurements in silt-laden wells can provide a more precise assessment of the bottom depth.

## 11.5.2 GAUGING WELLS WITH NON-AQUEOUS PHASE LIQUID

If NAPL is potentially present at the site, the DTW and NAPL thickness measurements are collected using an interface meter capable of distinguishing between the NAPL and the groundwater, or a weighted tape coated with the appropriate reactive indicator paste for the suspected NAPL. Measuring NAPL thicknesses must be done with care to avoid agitating the liquids and generating an emulsion. This is particularly the case for light NAPL (LNAPL; those having a density less than water), which are typically viscous oils that cling to the probe. Oil coating the probe can result in thickness measurements that are biased high (i.e., overestimate the thickness of the NAPL).

Conduct the following procedures to ensure an accurate measurement of the NAPL thickness:

- For LNAPL, slowly lower the electronic interface probe in the well casing until the electronic tone indicates the probe is at the top of the LNAPL layer; measure the depth below the TOC to the nearest 0.01 foot.
- To gauge the NAPL thickness, advance the probe slowly through the layer until the electronic tone indicates top of the water column and then slowly bring the probe back up to the bottom of the LNAPL. Repeat this process several times to ensure an accurate measurement of the bottom of the LNAPL layer (which can include bubbles and an emulsion layer).
- For dense NAPL (DNAPL), advance the probe through the water column until the tone indicates the top of the DNAPL layer; record the depth below TOC.
- To gauge the DNAPL thickness, advance the probe through the layer to the bottom of the well.

## 11.6 GROUNDWATER PURGING PROCEDURES

Purging is a process whereby potentially stagnant water is removed allowing the collection of samples that are representative of groundwater conditions in the water-bearing zone. The water in a well bore that has not been purged may be different than the surrounding formation due to a number of factors, such as exposure to ambient air. There are a number of purging methods and several no-purge methods that may be used, depending on specific conditions encountered (e.g., DTW, hydraulic conductivity of the formation, etc.) and the sampling requirements. Several purge/no purge options are described below.

- Multiple Volume Purge: Traditional well purging technique that relies on the withdrawal of the volume of the well bore and the surrounding filter pack (if present); typically three to five well volumes are removed using pumps or bailers. This methodology relies on equipment that is easy to obtain and use and is generally accepted in most states as an appropriate purging method.
- Temporary Well Purge: A variation of the multiple volume purge technique that typically uses inertia lift pumps, peristaltic pumps, or bailers to remove water from a temporary well or discrete groundwater sampler. This is a less stringent technique that is typically done to minimize the turbidity of the samples, which can be high due to the lack of a well filter pack.
- Private Water Well or In-Place Plumbing Purge: A variation on the multiple volume purge technique whereby a tap or faucet is opened on a fixed water supply pipe and is allowed to remain open until the potentially stagnant water within the well casing and other components of the system (e.g., fixed piping, pressure tanks, etc.) has been removed and groundwater representative of the water-bearing zone is discharged at the tap.
- Low-Flow (Minimal Drawdown/Low Stress) Purge (and Sampling): A modified purging technique that establishes an
  isolated, discrete, horizontal flow zone directly adjacent to the pump intake; this method requires the pump to be placed
  within a screened-interval or open borehole. Pumping rates are typically 0.1 to 0.5 liters per minute (L/min) or less to
  minimize the stress on the surrounding formation and reduce the geochemical alteration of the groundwater caused by
  pumping.
- No-Purge/Passive Sampling Techniques: These techniques use specialized equipment, such as permeable diffusion bags or trap samplers, to sample the undisturbed water column within a screened interval or open borehole. This methodology assumes that the water in the well is representative of the surrounding formation. Depending on the sampling device used, this approach is well suited for some VOCs, metals, and hydrophobic compounds.

## 11.6.1 CALCULATING ONE PURGE VOLUME

For multiple volume purging techniques, a **minimum** of three well volumes of water must be removed before sample collection. The actual amount of water removed may be greater than the three volumes, depending on geochemical parameter stabilization (the field measurement of these parameters is discussed below).

Calculate the volume of water in a well or boring using the following equation:

#### Volume (gallons) = (TD – DTW) x $ID^2$ x 0.041

Alternately, the volume of water in a well or boring may also be calculated by multiplying the water column height by the gallons per foot of water for the appropriate well or boring diameter:

ID	GALLONS PER FOOT OF WATER	GALLONS PER THREE WATER COLUMNS
1-inch	0.04	0.12
2-inch	0.16	0.48
3-inch	0.37	1.11
4-inch	0.65	1.98

Calculate the total volume of the pump, associated tubing and container for in situ measurements (flow-through cell), using the following equation:

#### Volume (in gallons) = P + ((0.0041)*D2*L) + fc

where:

P = volume of pump (gallons)

D = tubing diameter (inches)

L = length of tubing (feet)

fc = volume of flow-through cell (gallons)

## 11.6.2 MULTIPLE VOLUME PURGE PROCEDURES

Begin purging at a rate that will not cause excessive turbulence and drawdown in the well; commonly less than 1 gallon per minute for a typical 2-inch diameter monitoring well. The objective is to remove the stagnant water in the casing and surrounding filter pack or open borehole allowing water from the surrounding water-bearing zone to enter the well for sampling with as little disturbance as possible. Excessive pump rates or well dewatering can result in higher turbidity, potential volatilization, and/or geochemical alteration of dissolved parameters. If drawdown is observed on initiation of pumping, reduce the pump speed and attempt to match the drawdown of the well. Once drawdown is stabilized, measure the flow rate with a calibrated container and stopwatch.

Collect stabilization parameters at a minimum frequency of once for every well volume of water removed during the purge process. Record the measurements in the field book along with any other pertinent details, such as the visual quality of the water (e.g., color, odor, and presence of suspended particulates) and the measured withdrawal rate, as possible. After the minimum purge volume has been removed, review the geochemical measurements to ensure that readings have stabilized. Stabilization occurs when at least three consecutive measurements are within the following tolerances:

TRADITIONAL PURGE STABILIZATION PARAMETERS			
рН	± 0.1 standard units (SU)		
Specific Conductance	± 3%		
Temperature	± 3%		
Dissolved Oxygen (DO)	± 0.2 milligrams per liter (mg/l) or 10% (flow-through cell only)		
Tubidity	± 10% for values greater than 10 nephelometric turbidity units (NTU)		
Oxygen Reduction Potential (ORP)	± 10 millivolts (mV; flow-through cell only)		

If the parameters have not stabilized within five well volumes and your water meter is operating properly, consult your project manager to decide whether or not to collect a sample or to continue purging.

For wells with extremely slow recharge, purging may ultimately dewater the well before the minimum purge can be completed. If the well or borehole is purged dry before removing three well volumes, allow the well or boring to recharge to a level of approximately 90% of the static pre-purge water elevation and proceed immediately to sample collection. If recovery exceeds 2 hours, sample as soon as sufficient sample volume is available, in accordance with applicable regulations.

## 11.6.3 LOW-FLOW PURGE PROCEDURES

Low flow purging and sampling is used to obtain representative groundwater samples without removing all of the water within the well. The protocol uses low pumping rates (i.e., less than 0.5 L/min) to establish an isolated zone around the inlet of the pump where flow is horizontal (i.e., from the water bearing zone) rather than from the stagnant water in the well casing above and below the pump. Selection of an appropriate pump is critical to establishing the flow zone. A pump must be selected that is suited for low pumping rates and is appropriate for the analytical samples; bailers are not appropriate.

Slowly lower the pump and tubing into the water column to avoid agitating the water column; use of a lanyard is recommended. Once the specified sampling depth is reached, secure the pump and tubing at the wellhead; the depth must be noted in the field book. Avoid contacting the bottom of the well by using pre-cut tubing at the appropriate length or by lowering the pump simultaneously with an electronic water level indicator. Once the pump has been inserted and secured, allow the water levels to return to static conditions before initiating the purge.

The discharge tubing must be connected to an in-line flow-through cell equipped with a multi-parameter real-time water quality meter. The flow-through cell minimizes the exposure of the groundwater to ambient air which has a substantial effect on dissolved oxygen and ORP measurements.

Start the pump and maintain a steady flow rate that results in a stabilized water level (less than 0.3 feet of drawdown). If needed, reduce the pumping rate to the minimum capabilities of the pump. Record each adjustment made to the pumping rate and the water level measured immediately after each adjustment. Purging should not exceed 0.5 L/min.

During purging, monitor and record geochemical parameters at 30 seconds to 5 minute intervals (depending on the hydraulic conductivity of the aquifer, diameter of the well, and pumping rate). Stabilization occurs once the following criteria have been met over three successive measurements made at least three minutes apart:

LOW-FLOW PURGE STABILIZATION PARAMETERS			
Water Level Drawdown	<0.3 feet		
рН	± 0.1 SU		
Specific Conductance	± 3%		
Temperature	± 3%		
DO	± 0.2 mg/l or 10% (flow-through cell only)		
Turbidity	± 10% for values greater than 10 NTU		
ORP	± 10 mV (flow-through cell only)		

Record any other notable observations in the field book (e.g., groundwater color).

## 11.6.4 NO-PURGE PASSIVE SAMPLING TECHNIQUES

A number of alternate sampling devices are available, including equilibrated grab samplers, passive diffusion samplers, and other in situ sampling devices. These devices may be particularly useful for sampling low permeability geologic materials, assuming the device is made of materials compatible with the analytical parameters, meets data quality objectives, and has been properly evaluated.

No-purge grab or trap samplers are placed in the well before sampling and typically remain closed (i.e., no water is allowed into the sampler during insertion) until the sampler is activated. This allows the sampler device to equilibrate with the surrounding groundwater (to prevent adsorption to the sampler materials) and for the groundwater to recover and re-establish the natural flow after the disturbance caused by the sampler insertion into the well. Typical equilibration times depend on the well recovery rates and the type of sampler used. Samples are either transferred to containers at the well head or the sampler itself is shipped to the laboratory for analysis. Examples of equilibrated grab samplers include Hydrosleeve®, Snap SamplerTM, and Kemmerer Sampler.

Equilibration time for diffusion samplers are generally dictated by the diffusion rate through the permeable membrane and, thus, are less sensitive to changes induced within the well during deployment. Most diffusion bag samplers have a minimum equilibration time of 14 days prior to sample collection. The samplers may be deployed for an extended period (e.g., three months or longer), although the continuous exchange between the sampler and the well water means that the sampler will likely reflect only the conditions in the few days preceding the sample collection.

## 11.6.5 TEMPORARY WELL PURGE PROCEDURES

Procedures used to purge temporary groundwater monitoring wells differ from permanent wells because temporary wells are installed for immediate sample acquisition. Wells of this type may include open bedrock boreholes, standard polyvinyl chloride well screen and riser placed in open boreholes, or drilling rod-based sampling devices (e.g., Wellpoint[®], Geoprobe[®] Screen Point or Hydropunch[®] samplers). Purging temporary wells of this type may not be necessary because stagnant water is typically not present. However, if water is used in the drilling process, purging would be necessary. Purging can minimize the turbidity in the sample, which can be significant due to the disturbance caused by the sampler installation and to rinse the sampling system with groundwater. The exception is for groundwater profiling applications (e.g., using a Waterloo Profiler[®]) where a more rigorous purge is used (using the multiple volume purge techniques described above) to limit the potential for cross contamination between sample intervals.



## 11.6.6 PRIVATE WATER WELL OR IN-PLACE PLUMBING PURGE PROCEDURES

The configuration and construction of private water wells varies widely, and access points for obtaining groundwater samples may be limited. WSP personnel should coordinate with the property owner/representative to access functioning ports and valves to avoid causing any inadvertent damage.

Collect the groundwater sample as close to the well as possible (e.g., from a sample port at the well head) to ensure the sample is representative. Ideally, the sample should be collected upstream of the piping and treatment equipment (e.g., particulate filter, water softener, carbon filters, ultra-violet lights), heating unit, or storage tanks. The following potential sampling locations are presented in order of preference:

- Sampling port or spigot near the well head or piping system prior to entry into the storage tank
- Sampling port or spigot at storage tank
- Sampling port or spigot downstream of the pressure tank or holding tank but upstream of any water treatment equipment
- Tap or faucet

If purging from a tap or faucet, try to remove any aerators, filters, or other devices from the tap before purging and work with the property owner/representative to bypass any water treatment systems. Document where the sample was collected and any steps that were taken to minimize the potential alteration of the water sample in the field book.

Purge the system by opening the tap or spigot and allowing the water to run for several minutes. Observe and record the purge rate for the system. The minimum purge volume must be more than the combined volume of the pump, tanks, piping, etc. After the minimum purge volume has been removed, review the geochemical measurements to ensure that readings have stabilized using the same procedures as those used for the multiple volume purge detailed above. If the minimum volume is unknown, purge the system for a minimum of 15 minutes, until the parameter readings have stabilized, and no suspended particles (e.g., iron or rust) are visible. Record the final purge volume in the field book and any water quality observations.

## 11.7 GROUNDWATER SAMPLE COLLECTION PROCEDURES

Collect groundwater samples as soon as possible after the geochemical parameters indicate representative groundwater is present. As practically possible, reduce the pump flow rate, but maintain a flow rate high enough to deliver a smooth stream of water without splashing or undue agitation. Collect samples directly from the tubing as it exits the well bore; do not sample on the downstream side of flow through cells or any other instrumentation. If using a bailer for sample collection, lower and raise the bailer slowly and smoothly to minimize the disturbance to the water within the well.

Collect groundwater samples in order of volatilization sensitivity with organic compounds sampled first followed by inorganic compounds:

- VOCs
- Extractable organics, petroleum hydrocarbons, aggregate organics, and oil and grease
- Total metals
- Dissolved metals (see filtering procedures below)
- Inorganic non-metallic and physical and aggregate properties
- Microbiological samples
- Radionuclides

Collect quality assurance/quality control samples in accordance with SOP 4 and the project-specific work plan or QAPP.

As necessary, conduct field tests or screening in accordance with the project-specific work plan and manufacturer's specifications for field testing equipment. Field samples must be directly transferred from the sampling equipment to the container that has been specifically prepared for that given parameter; intermediate containers should be avoided.

Record the depth interval, if applicable, which the sample was collected in the field book. Note the volume, phases, and color of the groundwater in the field book.



## 11.7.1 GROUNDWATER FILTRATION PROCEDURES

Filtered groundwater samples are sometimes used for field kit analyses and should only be collected for laboratory analysis after approval from the appropriate regulatory agency and/or project manager. If groundwater sample filtration is necessary, the following procedures should be followed:

- Use a variable speed peristaltic pump with the in-line filter fitted on the outlet end; pressurized bailers can also be used
- Insert the pump inlet tubing into the intermediate container holding the surface water sample
- Turn on the pump and reduce the flow rate, but maintain a flow rate high enough to deliver a smooth stream of water without splashing or undue agitation, hold the filter upright with the inlet and outlet in the vertical position and pump groundwater through the filter until all atmospheric oxygen has been removed and the minimum volume of water has been flushed through the filter, in accordance with the manufacturer's specifications
- Collect the filtered samples directly into the sample container from the pump-filter assembly
- If sediment is visible in the sample container after filtration, filter break-through has occurred and the sampling and filtering
  process should be repeated
- Discard the tubing and filter appropriately
- If a submersible pump is used to collect the groundwater sample, attached the in-line filter to the outlet end and follow the last four steps described above

## 11.7.2 NON-AQUEOUS PHASE LIQUID SAMPLING PROCEDURES

Non-aqueous phase liquid is typically sampled to identify the compound, usually through an analytical "fingerprint" analysis. The usefulness of this type of sampling is limited as many NAPLs weather in the subsurface making definitive identification problematic. If samples are to be collected, the sampling options and techniques should be discussed with the assigned WSP compliance professional and project manager to ensure that the NAPL is not considered to be a hazardous material for the purpose of shipping to the laboratory (SOP 3). Samples of NAPL should be collected using the same procedures as above and placed in the appropriate laboratory-supplied containers, packed on ice, and shipped to the analytical laboratory using procedures outlined in SOP 3.

## 11.7.3 SAMPLE LABELING AND PREPARATION FOR SHIPMENT

Once collected, prepare the groundwater samples for offsite laboratory analysis:

- 1 Clean the outside of the sample container, if necessary
- 2 Affix a sample tag or label to each sample container and complete all required information (sample number, date, time, sampler's initials, analysis, preservatives, place of collection)
- 3 Place clear tape over the tag or label (if non-waterproof labels are used)
- 4 Preserve samples immediately after collection by placing them into an insulated cooler filled with bagged wet ice to maintain a temperature of approximately 4°Celcius
- 5 Record the sample designation, date, time, and the sampler's initials in the field book and on a sample tracking form, if appropriate
- 6 Complete the chain-of-custody forms with appropriate sampling information, including:
  - location
  - sample name
  - sample collection date and time
  - number of sample containers
  - $\quad \text{analytical method} \quad$
- 7 Secure the sample packing and shipping in accordance with proper procedures

Do not ship hazardous waste samples without first consulting a WSP compliance professional.



## **11.8 CLOSING NOTES**

Once sampling is completed, secure, restore and/or mark all sample locations with spray paint, stakes, or other appropriate marker for future reference or survey in accordance with the project-specific project work plan. Decontaminate all equipment prior to departure and properly manage all PPE and IDW in conformance with applicable regulations.