Site Assessment Report

Stebbins-Burnham Site 2724 Spring Hill Road Owings Mills, MD 21117 MDE-OCP Case No. 03-1335BA2

October 20, 2011

Prepared for:
Oil Control Program
Maryland Department of the Environment
1800 Washington Boulevard
Baltimore, Maryland 21230

Prepared by:
Chesapeake GeoSciences, Inc.
5405 Twin Knolls Road, Suite 1
Columbia, Maryland 21045

CGS Project No. CG-08-0399

John Kosloski, P.G. Senior Project Manager

John Kosloshi

Kevin Howard, P.G.

Principal

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE MONITORING	2
2.1	BI-WEEKLY WELL GAUGING	3
2.2	MONITORING WELL SAMPLING	
	2.2.1 Groundwater Sampling and Analysis	
	2.2.2 Product Sampling and Analysis	
2.3	STREAM AND SEDIMENT SAMPLING	15
	2.3.1 Stream Surface Water Sampling and Analysis	
	2.3.2 Stream Bottom Sediment Sampling and Analysis	17
2.4	SITE CLEARING WORK AND LARGE WELL INSTALLATIONS	
	2.4.1 Site Clearing	
	2.4.2 Large Well Installations	
3.0	LIF SURVEY	21
3.1	SURVEY METHOD	21
3.2	PLUME DELINEATION	
4.0	DOMESTIC WATER WELL SAMPLING	23
5.0	DISCUSSION OF SITE INVESTIGATION	29
5.1	SITE HYDROGEOLOGIC SETTING	29
5.2	NATURE OF SUBSURFACE CONTAMINATION	
5.3	Data Gaps	
6.0	RECOMMENDATIONS	35

APPENDICES

Appendix A – Figures

Appendix B – Tables

Appendix C – Analytical Laboratory Data

Appendix D – LIF Report and LIF Boring Logs

Appendix E – Geophysical Survey Report

Appendix F – UST Exploratory Excavation Report and UST Closure Report

Appendix G – Soil Boring Logs

1.0 Introduction

Per request of the Maryland Department of the Environment (MDE), Chesapeake GeoSciences, Inc. (CGS) has performed a subsurface investigation at the former Stebbins-Burnham property (the 'Site'). The Site is located at 2724 Spring Hill Road in Owings Mills, Maryland (refer to Appendix A - Figure A.1 Site Vicinity Map). This Site Assessment Report summarizes the work performed to-date, and documents the following work:

<u>Task</u>	CGS Project #	MDE Purchase Order #
Site Monitoring	CG-08-0399.03	U00P0400431
Site Monitoring/Product Analysis	CG-08-0399.10	U00P0400878
Stream and Sediment Sampling	CG-08-0399.09	U00P0400854
Laser Induced Fluorescence Survey	CG-08-0399.02	U00P0400418
LIF Survey #2	CG-08-0399.06	U00P0400675
Domestic Water Well Sampling	CG-08-0399.05/.13	U00P0400642/U00P0401440
Site Clearing & Large Well Installs	CG-08-0399.12/.14	U00P1400602/U00P1400874

The work performed by CGS has also included a professional land survey, a geophysical survey, and exploratory excavation for buried underground storage tanks (USTs). The land survey data are included in Appendix B - Table B.1. The report of geophysical survey work was previously submitted to MDE, and is included for reference in Appendix E. The report of exploratory excavation for USTs was also previously submitted, and is included for reference in Appendix F.

The former Stebbins-Burnham facility (parcel #270) is currently inactive and vacant. The Site was formerly utilized as a petroleum storage and distribution facility. Petroleum products were stored in large above-ground storage tanks (ASTs) and USTs, and the ASTs are no longer present on-site. Based on a geophysical survey and subsequent exploratory excavation work performed by CGS on March 8-9, 2010, it was discovered that several USTs remained on the Site and were improperly abandoned (refer to Appendix A Figure A.2 – UST Locations Map). The USTs were described in CGS Exploratory Excavation report # CG-08-0399.08, dated March 23, 2010. The three improperly abandoned USTs were designated UST #1, UST #4/5, and UST #9. Per the request of the MDE, these USTs have now been properly abandoned in-place by CGS. Appendix F contains the Exploratory Excavation report and the UST Closure report. The Site study area includes three tax parcel numbers (#270, #181, and #339) which are all under the ownership of Mr. Leonard Ross, the adjacent resident at 2716 Spring Hill Road (parcel 181). In addition, off-site investigation includes other adjacent tax parcels, whose owners have given MDE access agreements. As of the date of the writing of this report, these additional parcels include: #497, #444, and #553 (refer to Appendix A - Figure A.2 Site Diagram). The Site investigation performed by CGS, has focused primarily on a liquid-phase hydrocarbon (LPH) layer detected in the subsurface. The LPH layer has formed a plume, which extends across several of the property parcels identified above. An additional concern for MDE is that drinking water for the local residents is supplied by private water supply wells.

2.0 SITE MONITORING

Since September 2009, monitoring well sampling, laboratory analysis, and bi-weekly monitoring well gauging (through end of 2010), has been performed by CGS on the existing wells at the CGS has also installed additional GeoProbe test borings, temporary 1-inch wells, performed sampling of nearby stream surface water and stream bottom sediment. The data obtained from subsurface drilling, sampling, and monitoring has assisted in determining the local hydrogeologic setting and providing a preliminary estimate of the thickness and location of the LPH layer at the Site. In January 2011, a clearing operation was performed at the Site by CGS to remove mounds of fill material and dead wood that were present within parcel #'s 339 and 553. After the clearing operation, new 4-inch wells were installed, developed, and gauged, and the LPH product thickness map was revised. More recently per MDE's request, most of the existing temporary 1-inch wells have been removed and their boreholes have been sealed. The new 4inch wells are being used for monitoring the groundwater and LPH layer and may be used as potential recovery wells. Local domestic water supply well (DW) sampling and laboratory analysis is continuing to be performed by CGS on a semi-annual basis (refer to Section 4.0). The list below indicates the existing inventory of shallow groundwater monitoring wells (as of June, 2011) and their locations relative to owner parcel numbers.

Well	Parcel #	Well	Parcel #
GB-3	270	MW-626	553
GB-19	270	MW-627	553
GB-25	339	MW-628	497
GB-26	270	MW-629	497
GB-27	497	MW-630	497
GB-31	339	MW-631	497
GB-36	553	MW-632	339
MW-1	270	MW-633	553
MW-3	270	MW-634	339
MW-5	270	MW-635	339
		MW-636	339
		MW-637	339
		MW-638	339
		MW-639	339
		MW-640	339
		MW-641	444
		MW-642	270
		MW-643	270
		MW-644	270
		MW-645	339
		MW-646	339
		MW-647	270
		MW-648	339

2.1 Bi-Weekly Well Gauging

Bi-weekly well gauging through the end of 2010 has included monitoring of the following: pre-existing 4-inch diameter groundwater monitoring wells installed by Handex, Inc.; 1-inch diameter temporary wells; a 6-inch diameter temporary product recovery well (RW-1) and its associated product recovery AST. Although well completion data were not available to CGS for all pre-existing wells that have been installed on the Site, all of the existing wells are believed to be screening the shallow groundwater table aquifer. Measurements of stream surface water levels have also been collected since the January 25, 2010 gauging event, shortly after two stream monitoring gauges were installed. The stream gauges were labeled SG-1 (down-stream) and SG-2 (up-stream).

The bi-weekly well gauging was performed using an electronic oil-water interface probe. The probe was used to measure the depths to product, groundwater, and the bottom of each well. All readings were referenced from the top of the PVC well casing. The locations and elevations of the tops of well casings, stream monitoring gauges, and other Site features, were surveyed by a licensed professional land surveyor on January 4-5, 2010. The locations are plotted on a 24 X 36 inch fold-out surveyor's base map, which is contained in Appendix A – Figure A.3. The raw survey data is contained in Appendix B – Table B.1. An inventory list of wells and their respective screen intervals, is included in Appendix B – Tables B.2. The well gauging monitoring data for each bi-weekly event is included in Appendix B – Tables B.3 through B.20. After CGS installed new 4-inch diameter monitoring wells in February 2011 and de-commissioned most of the temporary 1-inch wells in June 2011, revisions were made to the surveyor's Site base map, well inventory list and other figures which are included in their respective Appendices. During preparation of the groundwater table elevation maps for each gauging event, corrections were made to apparent water level readings measured within the wells. The method that was used to correct for water level readings was based on empirical data using the following formula:

```
hc = hm + Ho (Po/Pw), where:
```

hc = corrected hydraulic head (in feet)

hm = measured elevation of hydrocarbon/water interface (in feet)

Ho = measured hydrocarbon layer thickness (in feet)

Po = hydrocarbon density (= 0.85)

Pw = density of water (=1.0)

In addition to the bi-weekly gauging that was performed through the end of 2010, recent gauging data was collected from the newly installed 4-inch monitoring wells. The installation of the new 4-inch monitoring wells is discussed in Section 2.4. Data from the following selected gauging events, was used to prepare corrected groundwater table contour maps and isopach maps of product thickness: 1/12/2010, 1/25/2010, 3/24/2010, 6/24/2010, 3/17/2011 (4-inch wells), 3/31/2011 (4-inch wells), and 6/17/2011 (4-inch wells). These maps are included as 24 X 36 inch fold-out maps in Appendix A – Figures A.4 through A.17. A discussion of the gauging data is included in Section 5.0.

2.2 Monitoring Well Sampling

A round of groundwater sampling and laboratory analysis from various on-site groundwater monitoring wells, which did not contain LPH, was performed in October 2009. In addition, various soil and groundwater grab samples were obtained and analyzed in November and December 2009 during GeoProbe drilling. Sampling and analysis of product from selected wells that contained LPH was performed in March 2010. The product was analyzed for the presence of polychlorinated biphenyls (PCBs), and to determine what type of petroleum product(s) is present in the LPH.

2.2.1 Groundwater Sampling and Analysis

Groundwater samples were collected from the following wells on October 27, 2009 for laboratory analysis for dissolved-phase contamination: MW-1, MW-3, GB(geoprobe boring)-5, GB-6, GB-10, GB-13, GB-14, GB-15, GB-17, GB-18, GB-20, GB-21, and GB-25. These wells were selected for sampling and analysis, based on well gauging which indicated no LPH present in these wells on the date of sampling. Dedicated disposable bailers were then used to purge each monitoring well of approximately three well volumes of water, prior to sample collection. Each geoprobe boring well was purged to dryness twice, prior to sample collection. Groundwater samples were collected in lab-cleaned glass sample containers. The containers were placed on ice and a chain of custody form was completed. The samples were shipped along with field blanks, trip blanks, and duplicate samples to an analytical laboratory for analysis of volatile organic compounds (VOCs) via U.S. EPA Method 8260. Wastewater generated during the well sampling activities was pumped into a settling tank, through a bag filter, and then through two carbon tank units to remove dissolved-phase VOC contamination. The treated wastewater was discharged to the ground in accordance with the MDE work approval for the Site dated August 20, 2009. CGS collected mid-point (MID) and effluent (EFF) samples from the water treatment system. The MID and EFF samples were analyzed for VOCs via U.S. EPA Method 8260. The EFF sample was also analyzed for TPH-DRO (total petroleum hydrocarbonsdiesel range organics) and TPH-GRO (total petroleum hydrocarbons-gasoline range organics), via U.S. EPA Method 8015.

The results of laboratory analysis indicated that no VOC compounds were detected in the effluent samples discharged to ground surface. A summary of the results of lab data for each well is included below in Table 2.2.1a. The table only lists those compounds that were detected. In general, relatively low levels of VOCs were detected in most of the wells. Most of the wells that contained VOCs were observed to generally be located along the fringes of the LPH plume. Wells GB-20 and MW-3 did not contain any detected VOCs. Both of these wells are located upslope of the location of the original ASTs that held fuel oil. Well MW-1 located much further upslope to the southwest, did contain some low levels of detected VOCs. Well MW-1 is located close to the former UST area that included gasoline USTs. Of all the detected VOCs from the October sampling event, only naphthalene exceeded MDE groundwater standards in the following wells: GB-5, GB-10, GB-13, GB-14, GB-15, and GB-18. Wells GB-18 and GB-10 contained relatively higher levels of VOCs than the other wells. Well GB-18 is located close to the area with the thickest measured LPH. The complete laboratory analytical report for groundwater and soil sampling is contained in Appendix C.

Table 2.2.1a
Stebbins-Burnham Site - Owings Mills, Maryland
Groundwater Monitoring Well Analytical Results - Detected Analytes Only
Field Sampling Performed on October 27, 2009

	MW-1	MW-3	GB-5	GB-6	GB- 10	GB- 13	GB- 14	GB- 15	MDE Ground- water Standard				
Analytes		Volatile Organic Compounds (VOCs) (ug/kg)											
1,1,1-Trichloroethane	1.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	2.0E+02				
1,1-Dichloroethane	0.3	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	9.0E+01				
1,1-Dichloroethylene	0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	7.0E+00				
1,2,4-Trimethylbenzene	< 0.2	< 0.2	0.4	< 0.2	9.1	1.3	0.5	0.3	NA				
1,3,5-Trimethylbenzene	< 0.2	< 0.2	< 0.2	< 0.2	2.4	< 0.2	< 0.2	< 0.2	NA				
Benzene	< 0.2	< 0.2	< 0.2	< 0.2	0.4	0.2	< 0.2	< 0.2	5.0E+00				
Chloroform	< 0.2	< 0.2	0.2	0.3	0.3	< 0.2	< 0.2	< 0.2	8.0E+01				
Ethylbenzene	< 0.1	< 0.1	0.1	< 0.1	0.6	0.2	0.1	0.1	7.0E+02				
Isopropylbenzene	< 0.1	< 0.1	0.2	2.8	1.3	1.2	< 0.1	< 0.1	6.6E+01				
m,p-Xylenes	< 0.2	< 0.2	< 0.2	< 0.2	1.2	0.6	0.5	0.4	NA				
MTBE	< 0.2	< 0.2	< 0.2	1.7	< 0.2	< 0.2	< 0.2	< 0.2	2.0E+01				
Naphthalene	< 0.2	< 0.2	2.0	< 0.2	11.4	4.2	3.2	<u>1.5</u>	6.5E-01				
n-Butylbenzene	< 0.1	< 0.1	< 0.1	1.3	< 0.1	< 0.1	< 0.1	< 0.1	NA				
n-Propylbenzene	< 0.1	< 0.1	0.1	1.4	2.0	0.9	< 0.1	< 0.1	NA				
o-Xylene	< 0.1	< 0.1	< 0.1	< 0.1	0.5	0.4	0.3	0.2	1.0E+04				
p-Isopropyltoluene	< 0.2	< 0.2	< 0.2	< 0.2	1.6	< 0.2	< 0.2	< 0.2	NA				
sec-Butylbenzene	< 0.1	< 0.1	0.2	1.9	3.0	2.4	< 0.1	0.3	NA				
tert-Butylbenzene	< 0.1	< 0.1	< 0.1	0.6	< 0.1	< 0.1	< 0.1	< 0.1	NA				
Tetrachloroethylene	< 0.2	< 0.2	1.0	1.2	1.4	< 0.2	< 0.2	< 0.2	5.0E+00				
Toluene	0.3	< 0.2	< 0.2	0.3	0.5	0.3	0.3	0.2	1.0E+03				
Trichloroethylene	< 0.2	< 0.2	1.0	1.0	1.5	< 0.2	< 0.2	< 0.2	5.0E+00				
Xylenes, Total	< 0.3	< 0.3	< 0.3	< 0.3	1.7	1.0	0.8	0.6	1.0E+04				

VOC Analytical Method: U.S.EPA Method 8260B

ug/L - micrograms per liter

MDE Groundwater Standards are for Type I and II Aquifers, June 2008, Rev. 2.1

Only those analytes detected above the laboratory lower limit of detection, are included in the table

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

<u>Red, bold, and underline</u> - Detected analyte concentration exceeds the MDE Standard (for Type I and II Aquifers)

MTBE - Methyl tert-butyl ether

NA - Not applicable

Methylene chloride is a common laboratory contaminant.

Table 2.2.1a
Stebbins-Burnham Site - Owings Mills, Maryland
Groundwater Monitoring Well Analytical Results - Detected Analytes Only

Field Sampling Performed on October 27, 2009

	GB- 17	GB- 18	GB- 20	GB- 21	GB- 25	DUPE-	DUPE- 2	FB	MDE Ground- water Standard				
Analytes		Volatile Organic Compounds (VOCs) (ug/kg)											
1,1,1-Trichloroethane	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	2.0E+02				
1,1-Dichloroethane	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	9.0E+01				
1,1-Dichloroethylene	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	7.0E+00				
1,2,4-Trimethylbenzene	0.5	24.1	< 0.2	0.5	< 0.2	< 0.2	< 0.2	< 0.2	NA				
1,3,5-Trimethylbenzene	< 0.2	< 0.2	< 0.2	0.3	< 0.2	< 0.2	< 0.2	< 0.2	NA				
Benzene	0.2	0.4	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	5.0E+00				
Chloroform	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.3	< 0.2	8.0E+01				
Ethylbenzene	0.1	7.7	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	7.0E+02				
Isopropylbenzene	1.3	8.5	< 0.1	0.2	< 0.1	< 0.1	2.0	< 0.1	6.6E+01				
m,p-Xylenes	0.4	3.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	NA				
Methylene chloride	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	5.0E+00				
MTBE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	1.6	< 0.2	2.0E+01				
Naphthalene	< 0.2	<u>5.9</u>	< 0.2	0.5	0.4	0.3	0.5	< 0.1	6.5E-01				
n-Butylbenzene	2.5	11.4	< 0.1	< 0.1	< 0.1	< 0.1	0.6	< 0.1	NA				
n-Propylbenzene	2.4	14.0	< 0.1	0.2	< 0.1	< 0.1	0.8	< 0.1	NA				
o-Xylene	0.2	1.0	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	1.0E+04				
p-Isopropyltoluene	< 0.2	3.3	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	NA				
sec-Butylbenzene	1.7	15.9	< 0.1	0.6	< 0.1	< 0.1	1.1	< 0.1	NA				
tert-Butylbenzene	< 0.1	1.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	NA				
Tetrachloroethylene	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	1.3	< 0.2	5.0E+00				
Toluene	0.2	0.4	< 0.2	< 0.2	< 0.2	< 0.2	0.3	0.4	1.0E+03				
Trichloroethylene	< 0.2	< 0.2	<0.2	< 0.2	<0.2	< 0.2	1.1	<0.2	5.0E+00				
Xylenes, Total	0.6	4.6	< 0.3	< 0.3	< 0.3	< 0.3	0.3	< 0.3	1.0E+04				

Table Notes:

VOC Analytical Method: U.S.EPA Method 8260B

ug/L - micrograms per liter

MDE Groundwater Standards are for Type I and II Aquifers, June 2008, Rev. 2.1

Only those analytes detected above the laboratory lower limit of detection, are included in the table

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

Red, bold, and underline - Detected analyte concentration exceeds the MDE Standard (for Type I and II Aquifers)

MTBE - Methyl tert-butyl ether

NA - Not applicable; FB - Field Blank

DUPE-1 - Duplicate sample of GB-25; DUPE-2 - Duplicate sample of GB-17.

Methylene chloride is a common laboratory contaminant.

Table 2.2.1a
Stebbins-Burnham Site - Owings Mills, Maryland
Groundwater Monitoring Well Analytical Results - Detected Analytes Only
Field Sampling Performed on October 27, 2009

	ТВ	GAC-Mid	GAC-Eff	MDE Ground-water Standard
Analytes		Volatile Organic	Compounds (VOCs)	(ug/kg)
1,1,1-Trichloroethane	< 0.2	< 0.2	< 0.2	200.0
1,1-Dichloroethane	< 0.2	< 0.2	< 0.2	90.0
1,1-Dichloroethylene	< 0.2	< 0.2	< 0.2	NA
1,2,4- Trimethylbenzene	<0.2	0.7	<0.2	NA
1,3,5- Trimethylbenzene	< 0.2	<0.2	< 0.2	NA
Benzene	< 0.2	0.6	< 0.2	5.0
Chloroform	< 0.2	< 0.2	< 0.2	80.0
Ethylbenzene	<0.1	0.3	<0.1	700.0
Isopropylbenzene	<0.1	<0.1	<0.1	66.0
m,p-Xylenes	< 0.2	< 0.2	< 0.2	NA
Methylene chloride	< 0.1	1.4	< 0.1	5.0
MTBE	< 0.2	< 0.2	< 0.2	20.0
Naphthalene	< 0.1	0.2	< 0.1	0.65
n-Butylbenzene	< 0.1	< 0.1	< 0.1	NA
n-Propylbenzene	< 0.1	<0.1	< 0.1	NA
o-Xylene	< 0.1	0.6	< 0.1	10,000.0
p-Isopropyltoluene	< 0.2	< 0.2	< 0.2	NA
sec-Butylbenzene	< 0.1	<0.1	< 0.1	NA
tert-Butylbenzene	< 0.1	<0.1	< 0.1	NA
Tetrachloroethylene	< 0.2	< 0.2	< 0.2	NA
Toluene	0.4	0.7	< 0.2	1,000.0
Trichloroethylene	< 0.2	< 0.2	< 0.2	NA
Xylenes, Total	< 0.3	0.8	< 0.3	10,000.0

VOC Analytical Method: U.S.EPA Method 8260B

ug/L - micrograms per liter

MDE Groundwater Standards are for Type I and II Aquifers, June 2008, Rev. 2.1

Only those analytes detected above the laboratory lower limit of detection, are included in the table

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

MTBE - Methyl tert-butyl ether

NA - Not applicable

TB - Trip Blank

GAC-Mid - Sample from GAC Mid Point; GAC-Eff - Sampled from GAC Effluent Point

Grab groundwater and soil samples were also obtained from various locations in November and December of 2009, after completion of Laser Induced Fluorescence (LIF) survey work and subsequent GeoProbe drilling of additional borings. The groundwater and soil samples were submitted for laboratory analysis of VOCs via U.S.EPA Method 8260. In addition, some of the soil samples collected from the December sampling episode were also submitted for total petroleum hydrocarbons (TPH)-diesel range organics (DRO) via U.S.EPA Method 8015C. The soil samples submitted for analysis were chosen by the field geologist based on the site-specific data obtained in each boring. The soil sample with the highest PID (photo-ionization detector) reading from each boring or the first saturated samples were collected for laboratory analysis. The grab groundwater samples were collected either from the open boreholes or immediately after installing a temporary 1-inch PVC well casing.

A summary of the results of lab analysis for each location sampled in November and December, is included below in Table 2.2.1b and 2.2.1c. As indicated in the tables, various VOCs were detected in both grab groundwater and soil samples at most boring locations. Groundwater samples exceeded the MDE groundwater standards for Naphthalene at locations GB-27, GB-28, GB-29, GB-31, GB-32, GB-36, GB-40, and GB-41. The locations with the highest Naphthalene concentrations appear to be associated with their proximity to the LPH layer at the Site. Groundwater exceeded the MDE standards for Benzene at locations GB-29, and GB-32; for cis-1,2-Dichloroethylene at GB-32; for Isopropylbenzene at GB-28 and GB-29; and for MTBE (methyl-tert-butyl-ether) at GB-40. GB-40 is located in the south central portion of the Site, down-gradient from the former UST area. As indicated in the tables, various VOCs were detected in soil samples from several boring locations. Relatively higher concentrations of VOCs were detected at locations GB-27, GB-29, GB-31, GB-32, and GB-41. None of the VOCs that were detected, exceeded the MDE residential soil cleanup standard. TPH-DRO was detected in concentrations that exceeded the MDE residential soil cleanup standard at locations GB-40 and GB-41. The complete laboratory analytical report for groundwater and soil sampling is contained in Appendix C. Please note the following corrections to sample designations in the lab reports. In the November lab report and COC (chain-of-custody), the sample designated GB-36 is actually sample GB-36B. In the December lab report and COC, the sample designated GB-35 is actually sample GB-35B.

Table 2.2.1b
Stebbins-Burnham Site - Owings Mills, Maryland
Groundwater Grab Sample Analytical Results - Detected Analytes Only
Field Sampling Performed on November 17, 2009

	GB- 27	GB- 28	GB- 29	GB- 31	GB- 32	GB- 35	GB- 36B	DUPE	FB	MDE Ground- water Standard			
Analytes		Volatile Organic Compounds (VOCs) (ug/kg)											
1,2,4-Trimethylbenzene	63.4	655	558	109	992	<1.0	<1.0	937	<1.0	NA			
1,3,5-Trimethylbenzene	<1.0	168	62.8	6.0	211	<1.0	<1.0	107	<1.0	NA			
Benzene	1.1	4.8	<u>5.2</u>	<1.0	<u>116</u>	<1.0	<1.0	< 5.0	<1.0	5.0E+00			
cis-1,2- Dichloroethylene	<1.0	<2.0	<2.0	<1.0	<u>103</u>	<1.0	<1.0	<5.0	<1.0	7.0E+01			
Ethylbenzene	12.7	101	162	39.9	250	<1.0	<1.0	206	<1.0	7.0E+02			
Isopropylbenzene	10.1	<u>67.2</u>	<u>77.6</u>	33.9	< 5.0	5.9	<1.0	<u>124</u>	<1.0	6.6E+01			
m,p-Xylenes	6.8	74.7	177	7.6	322	<2.0	<2.0	229	<2.0	NA			
Naphthalene	<u>130</u>	<u>579</u>	<u>335</u>	<u>137</u>	<u>891</u>	<1.0	<1.0	<u>496</u>	<1.0	6.5E-01			
n-Butylbenzene	14.4	<2.0	74.9	13.0	157	15.3	<1.0	177	<1.0	NA			
n-Propylbenzene	15.8	134	118	33.7	175	4.5	<1.0	205	<1.0	NA			
o-Xylene	9.1	41.4	30.2	<1.0	244	<1.0	<1.0	37.7	<1.0	1.0E+04			
p-Isopropyltoluene	6.5	46.4	35.6	8.9	74.1	<1.0	<1.0	78.3	<1.0	NA			
sec-Butylbenzene	6.9	73.2	53.8	17.7	94.3	54.5	<1.0	119	<1.0	NA			
tert-Butylbenzene	<1.0	<2.0	3.2	1.6	< 5.0	4.7	<1.0	< 5.0	<1.0	NA			
Tetrachloroethylene	<1.0	4.8	<2.0	<1.0	< 5.0	<1.0	<1.0	< 5.0	<1.0	5.0E+00			
Toluene	<1.0	2.8	4.2	<1.0	65.7	<1.0	<1.0	< 5.0	<1.0	1.0E+03			
Trichloroethylene	<1.0	<2.0	<2.0	1.4	< 5.0	<1.0	<1.0	< 5.0	<1.0	5.0E+00			
Xylenes, Total	15.9	116	208	7.6	566	<3.0	<3.0	267	<3.0	1.0E+04			

VOC Analytical Method: U.S.EPA Method 8260B

ug/L - micrograms per liter

MDE Groundwater Standards are for Type I and II Aquifers, June 2008, Rev. 2.1

Only those analytes detected above the laboratory lower limit of detection, are included in the table

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

<u>Red, bold, and underline</u> - Detected analyte concentration exceeds the MDE Standard (for Type I and II Aquifers)

NA - Not applicable

FB - Field Blank

DUPE - Duplicate sample from GB-29

Table 2.2.1b
Stebbins-Burnham Site - Owings Mills, Maryland
Soil Sample Analytical Results - Detected Analytes Only
Field Sampling Performed on November 17, 2009

	GB- 27 (10- 11')	GB- 28 (12- 13')	GB- 29 (10- 11')	GB- 30 (9- 10')	GB-31 (9-10')	GB- 32 (8-9')	GB- 35 (9- 10')	GB- 36B (19- 20')	Soil Dup 1	MDE Residential Soil Cleanup Standard		
Analytes		Volatile Organic Compounds (VOCs) (ug/kg)										
1,2,4- Trimethylbenzene	6,010	124	8,260	<72.9	29,800	2,210	<64.9	<66.6	2,190	NA		
1,3,5- Trimethylbenzene	268	<86.5	1,280	<72.9	3,840	479	<64.9	<66.6	<64.3	NA		
Ethylbenzene	512	<86.5	1,690	<72.9	5,230	220	<64.9	<66.6	153	7.80E+05		
Isopropylbenzene	784	<86.5	1,870	<72.9	4,660	185	<64.9	<66.6	273	7.80E+05		
m,p-Xylenes	169	<86.5	1,400	<72.9	1,210	325	<64.9	<66.6	<64.3	NA		
Naphthalene	9,130	272	6,710	<72.9	28,100	2,070	<64.9	<66.6	3,380	1.60E+05		
n-Butylbenzene	2,510	<86.5	3,750	<72.9	6,920	463	<64.9	<66.6	1,010	NA		
n-Propylbenzene	1,560	<86.5	3,430	<72.9	8,100	343	<64.9	<66.6	564	NA		
o-Xylene	185	<86.5	345	<72.9	<66.2	259	<64.9	<66.6	80.1	1.60E+06		
p-Isopropyltoluene	905	<86.5	1,550	<72.9	3,980	236	<64.9	<66.6	366	NA		
sec-Butylbenzene	969	<86.5	2,310	365	6,330	250	1,300	<66.6	385	NA		
tert-Butylbenzene	<64.5	<86.5	112	90.4	232	<64.5	89.1	<66.6	<64.3	NA		
Xylenes, Total	354	<86.5	1,740	<72.9	1,210	584	<64.9	<66.6	139	1.60E+06		

VOC Analytical Method: U.S.EPA Method 8260B

ug/kg - Micrograms per kilogram (parts per billion)

mg/kg - Milligrams per kilogram (parts per million)

NA - Not applicable

MDE Residential Soil Cleanup Standards dated June 2008, Rev. 2.1

Only those analytes detected above the laboratory lower limit of detection, are included in the table

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

Red, bold, and underline - Detected analyte concentration exceeds the respective standard

Table 2.2.1c Stebbins-Burnham Site - Owings Mills, Maryland Groundwater Grab Sample Analytical Results - Detected Analytes Only Field Sampling Performed on December 18, 2009

			Dupe	FB	MDE Ground- water Standard								
Analytes		Volatile Organic Compounds (VOCs) (ug/kg)											
1,2,4-Trimethylbenzene	108	<1.0	130	82.9	<1.0	NA							
1,3,5-Trimethylbenzene	22.7	<1.0	47.3	28.7	<1.0	NA							
1,2-Dichloroethane	<1.0	3.2	<1.0	<1.0	<1.0	5.0E+00							
Benzene	<1.0	2.4	1.1	1.2	<1.0	5.0E+00							
Ethylbenzene	14.6	<1.0	17.7	14.2	<1.0	7.0E+02							
Isopropylbenzene	9.1	3.3	10.3	7.0	<1.0	6.6E+01							
m,p-Xylenes	24.3	<2.0	14.4	11.5	<2.0	NA							
MTBE	<1.0	<u>109</u>	<1.0	<1.0	<1.0	2.0E+01							
Naphthalene	<u>127</u>	<u>3.6</u>	<u>271</u>	<u>211</u>	<1.0	6.5E-01							
n-Butylbenzene	15.8	<1.0	<1.0	<1.0	<1.0	NA							
n-Propylbenzene	16.8	3.1	16.5	10.7	<1.0	NA							
o-Xylene	7.7	<1.0	19.9	15.7	<1.0	1.0E+04							
p-Isopropyltoluene	9.5	<1.0	26.9	14.6	<1.0	NA							
sec-Butylbenzene	<1.0	5.7	14.2	8.4	<1.0	NA							
tert-Butylbenzene	<1.0	2.7	<1.0	<1.0	<1.0	NA							
Toluene	1.4	<1.0	<1.0	<1.0	<1.0	1.0E+03							
Xylenes, Total	42.0	<3.0	34.4	27.2	<3.0	1.0E+04							

VOC Analytical Method: U.S.EPA Method 8260B

ug/L - micrograms per liter

MDE Groundwater Standards are for Type I and II Aquifers, June 2008, Rev. 2.1

Only those analytes detected above the laboratory lower limit of detection, are included in the table

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

Red, bold, and underline - Detected analyte concentration exceeds the MDE Standard (for Type I and II Aquifers)

MTBE - Methyl tert-butyl ether

NA - Not applicable

Dupe - Duplicate sample from GB-41

Table 2.2.1c Stebbins-Burnham Site - Owings Mills, Maryland Soil Sample Analytical Results - Detected Analytes Only Field Sampling Performed on December 18, 2009

	GB- 35B (19-20')	GB- 36 (7-8')	GB- 37 (5-6')	GB-38 (8-9')	GB-39 (9-10')	GB-40 (9-10')	GB-41 (10-11')	Soil Dupe	MDE Residential Soil Cleanup Standard
Analytes			Vol	atile Orga	nic Compo	unds (VOC	Cs) (ug/kg)		
1,2,4- Trimethylbenzene	<68.4	<56.7	<65.8	<63.4	<72.3	<61.3	346	168	NA
1,3,5- Trimethylbenzene	<68.4	<56.7	<65.8	<63.4	<72.3	<61.3	202	98.6	NA
Ethylbenzene	<68.4	<56.7	<65.8	<63.4	<72.3	<61.3	108	<67.2	7.80E+05
Isopropylbenzene	<68.4	<56.7	<65.8	<63.4	<72.3	<61.3	108	<67.2	7.80E+05
m,p-Xylenes	<68.4	<56.7	<65.8	<63.4	<72.3	<61.3	79.2	<67.2	NA
Methylene chloride	297'	290'	344'	298'	357'	248'	309'	326'	8.50E+04
Naphthalene	<68.4	<56.7	<65.8	<63.4	<72.3	<61.3	950	267	1.60E+05
n-Propylbenzene	<68.4	<56.7	<65.8	<63.4	<72.3	<61.3	147	<67.2	NA
p-Isopropyltoluene	<68.4	<56.7	<65.8	<63.4	<72.3	<61.3	301	70.7	NA
sec-Butylbenzene	<68.4	<56.7	<65.8	<63.4	<72.3	<61.3	156	<67.2	NA
Xylenes, Total	<68.4	<56.7	<65.8	<63.4	<72.3	<61.3	126	<67.2	1.60E+06
Tot	al Petroleu	ım Hydr	ocarbons	s (TPH) - I	Diesel-Rang	ge Organic	s (DRO) (n	ng/kg)	
TPH-DRO	<13.7	<11.3	<13.2	21.4	<14.5	<u> 267</u>	1,290	<u>599</u>	2.3E+02

VOC Analytical Method: U.S.EPA Method 8260B TPH-DRO Analytical Method: U.S.EPA Method 8015C ug/kg - Micrograms per kilogram (parts per billion)

mg/kg - Milligrams per kilogram (parts per million)

NA - Not applicable

MDE Residential Soil Cleanup Standards dated June 2008, Rev. 2.1

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

Red, bold, and underline - Detected analyte concentration exceeds the respective standard

- Methylene Chloride concentration may possibly be due to contamination of the methanol preservative. Unable to confirm.

Methylene chloride is a common laboratory contaminant.

2.2.2 Product Sampling and Analysis

An LPH product sample was collected from each of the following 1-inch wells on March 16, 2010: GB-3, GB-8, GB-11, GB-26, GB-28, and GB-32. These six well locations were chosen based on the following criteria: 1) the presence of liquid phase hydrocarbon (LPH) in the well; 2) their proximity to locations on the historical Stebbins-Burnham facility that may be more likely to be sites where products containing PCBs could have been used (i.e.- near the truck garage, maintenance shop, or UST fields); 3) LIF survey data signatures indicating the possibility of lighter-than-fuel-oil products in some locations; and 4) for general Site coverage. The wells that were sampled were screening the shallow groundwater system on the Site. Since the wells with product were known to be slow rechargers, purging of product prior to sampling was not performed. Product samples were obtained using a clean, dedicated, disposable bailer for each well. Two 40ml vials of product sample were collected for each well, per lab requirements. Remaining product in the bailers was placed into the 500-gallon product recovery AST on the Site, adjacent to well RW-1.

The product samples were submitted to an analytical lab for analysis of PCBs via U.S.EPA Method 8082A, and for product identification ('fingerprint' analysis) to confirm the presence of #2 fuel oil and identify any other product that may be present. The samples were expected to consist of # 2 fuel oil, or possibly a mix of # 2 fuel oil and gasoline or solvents. In order to identify the product type(s) present, the lab analyzed the product by U.S.EPA Method 8015C for both the gasoline (C6-C10) and diesel (C10-C28) ranges. In addition, the samples were analyzed by U.S.EPA Method 8260B for VOCs, in order to identify if solvent-related compounds were present.

The results of laboratory analysis indicated that no PCBs were detected in any of the six product The results of product identification ('fingerprint' analysis) indicated strong concentrations of TPH-DRO and TPH-GRO, and several volatile organic compounds in the samples, as indicated below in Table 2.2.2. The laboratory indicated that the patterns that were present in the samples were typical of #2 heating oil and/or diesel fuel, and not typical of gasoline, solvents, or waste oil. The presence of TPH-GRO was indicated by the laboratory to be common in fingerprint analysis that was typical of #2 heating oil and/or diesel fuel. CGS observed that the concentration of volatile organics was generally higher in wells GB-3 and GB-32, where significantly thicker LPH has been measured. Benzene was also detected in these two wells, but not detected in any of the other four wells that were sampled. The distance of the wells from the original Stebbins-Burnham AST locations, did not appear to affect the level of concentration of VOCs that were present. The relatively lowest concentrations of VOCs, TPH-DRO, and TPH-GRO were present in well GB-11. Well GB-11 is located in an area which has typically been on the southeast edge of the measured product plume, and 'side-gradient' from the AST locations. Well GB-26 did not contain LPH, when gauged again on March 24, 2010, shortly after sampling the wells for product on March 16, 2010. Well GB-26 is located along the southern edge of the measured product plume, and is the most up-gradient of the six wells that were sampled for LPH. The complete laboratory analytical report for product sampling is contained in Appendix C.2.

Table 2.2.2
Stebbins-Burnham Site - Owings Mills, Maryland
LPH Product Analytical Results - PCB results and Detected Analytes Only
Field Sampling Performed on March 16, 2010

read Sampling 1 Cristined on March 10, 2010											
	GB-3	GB-8	GB-11	GB-26	GB-28	GB-32					
Product Thickness in Feet - on 3/2/10:	10.00	1.83	2.61	2.19	3.22	8.99					
Product Thickness in Feet - on 3/24/10:	9.83	3.90	1.26	0.00	3.30	8.15					
Analytes											
Polyc	hlorinated B	Siphenyls (P	CBs) (mg/kg	g)							
PCB-1016	<3.8	<4.2	<4.5	<4.2	<3.8	<4.2					
PCB-1221	<3.8	<4.2	<4.5	<4.2	<3.8	<4.2					
PCB-1232	<3.8	<4.2	<4.5	<4.2	<3.8	<4.2					
PCB-1242	<3.8	<4.2	<4.5	<4.2	<3.8	<4.2					
PCB-1248	<3.8	<4.2	<4.5	<4.2	<3.8	<4.2					
PCB-1254	<3.8	<4.2	<4.5	<4.2	<3.8	<4.2					
PCB-1260	<3.8	<4.2	<4.5	<4.2	<3.8	<4.2					
Volatil	e Organic C	ompounds (VOCs) (ug/l	kg)							
Cyclohexane	<20,000	<20,000	<20,000	<20,000	<20,000	87,000					
cis-1,2-Dichloroethene	<5,000	<5,000	<5,000	<5,000	<5,000	5,400					
Benzene	25,000	<5,000	<5,000	<5,000	<5,000	20,000					
Methylcyclohexane	380,000	200,000	30,000	360,000	100,000	300,000					
Toluene	<5,000	<5,000	<5,000	<5,000	<5,000	41,000					
Ethylbenzene	220,000	150,000	17,000	67,000	110,000	330,000					
m,p-Xylenes	970,000	150,000	<10,000	160,000	94,000	490,000					
o-Xylene	220,000	68,000	<5,000	34,000	46,000	330,000					
Isopropylbenzene	270,000	140,000	43,000	310,000	110,000	270,000					
Naphthalene	1,800,000	870,000	280,000	820,000	1,000,000	1,100,000					
Total Petroleum Hydro	carbons (TP	H) - Diesel-l	Range Orga	nics (DRO)	(mg/kg)						
TPH-DRO	1.20E+06	1.10E+06	8.00E+05	1.20E+06	1.20E+06	1.20E+06					
ТРН - С	asoline-Ran	ge Organics	(GRO) (ug	/kg)							
TPH-GRO	1.50E+08	8.60E+07	4.20E+07	1.20E+08	6.90E+07	9.70E+07					

VOC Analytical Method: U.S.EPA Method 8260B TPH-DRO Analytical Method: U.S.EPA Method 8015C TPH-GRO Analytical Method: U.S.EPA Method 8015C ug/kg - Micrograms per kilogram (parts per billion) mg/kg - Milligrams per kilogram (parts per million)

Only PCBs and those analytes detected above the laboratory lower limit of detection, are included in the table

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

2.3 Stream and Sediment Sampling

A round of stream surface water and stream bottom sediment sampling and analysis was performed in March 2010. Five sample locations were selected along the stream, which flows approximately from west to east, along the northern boundary of the Site study area. The stream is down-slope from the historical Stebbins-Burnham fuel storage and distribution facility. Based on groundwater monitoring well data collected to date, the stream is the discharge area for the shallow water table aquifer on the Site. The samples were collected to determine if VOCs, TPH-DRO, or TPH-GRO are present in these media as a result of surface water discharge from a concrete outfall structure, or migration of nearby subsurface contamination from the Stebbins-Burnham Site. The co-located samples (surface water and sediment pairs) were collected on March 5, 2010 in calm water areas along the south bank of the stream, and were designated as follows:

SED 1 - located down-stream of the adjacent LPH plume.

SED 2, 3, and 4 - each located downstream of the concrete outfall but still within an area that is directly north of the LPH plume adjacent to the south of the stream;

SED 5 – located slightly upstream of the concrete outfall;

2.3.1 Stream Surface Water Sampling and Analysis

The surface water samples were collected at each location with lab-cleaned glassware. The sample locations were recorded on a field map and temporarily marked with a field stake. The staked locations were surveyed by a licensed surveyor upon completion of the work, and plotted to scale (refer to Appendix A – Figure A.3). Sampling was conducted from east to west, moving in an upstream direction. The first surface water sample (SED 1) was taken at the junction of the stream and a smaller tributary creek that emptied into the stream from the south. This location is just north of the edge of parcel 497. A dark layer of organic material was noted here within the soil banks on the south and east sides of the stream and tributary creek. Surface water sample SED 2 was located approximately 50 feet west of stream gauge #1. Surface water sample SED 3 was located half way between stream gauge #1 and #2. Surface water sample SED 4 was located just east of stream gauge #2. Surface water sample SED 5 was located approximately 70 feet west of stream gauge #2, adjacent to the concrete outfall.

The results of laboratory analysis of the stream surface water samples are summarized in Table 2.3.1 below, and indicated the following. Traces of Tetrachloroethylene (PCE) were detected in samples SED 1, SED 2, and SED 4. PCE was also detected in trace amounts in some of the local area drinking water wells (see Section 4.0).

Table 2.3.1 Stebbins-Burnham Site Owings Mills, Maryland

Stream Surface Water Analytical Results - Detected Analytes Only Field Sampling Performed on March 5, 2010

	Sed-1 (Surfac Water		Sed-2 (Surfa Wate	ce	Sed-A (Surfa Wate	ce	Sed-4 (Surfa Water	ce	Sed-S (Surfa Water	ce	MDE Groundwater Standard
Analytes		Volatile Organic Compounds (VOCs)(ug/L)									
Chloromethane	<1.0		<1.0		<1.0		<1.0		<1.0		3.6E+00
Naphthalene	<1.0		<1.0		<1.0		<1.0		<1.0		6.5E-01
o-Xylene	<1.0		<1.0		<1.0		<1.0		<1.0		NA
Tetrachloroethylene (PCE)	0.2	J	0.2	J	<1.0		0.2	J	<1.0		5.0E+00

	Dup 1 (Surface Water)		Dup 2 (Surface Water)		Dup 3 (Surface Water)		FB		MDE Groundwater Standard
Analytes			Volatile O	rgar	nic Compoun	ds (V	OCs)(ug/	L)	
Chloromethane	<1.0		<1.0		<1.0		0.4	J	3.6E+00
Naphthalene	<1.0		<1.0		<1.0		0.3	J	6.5E-01
o-Xylene	<1.0		<1.0		<1.0		0.1	J	NA
Tetrachloroethylene (PCE)	<1.0		<1.0		0.2	J	<1.0		5.0E+00

Table Notes:

VOC Analytical Method: U.S.EPA Method 8260B

ug/L - micrograms per liter

MDE Groundwater Standards are for Type I and II Aquifers, June 2008, Rev. 2.1

Only those analytes detected above the laboratory lower limit of detection, are included in the table.

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

Red, bold, and underline - Detected analyte concentration exceeds the MDE Standard (for Type I and II Aquifers)

J - Estimated concentration. Result is less than the Quantitation Limit (QL) but greater than the DL.

NA - Not applicable

Dup 1 - Duplicate sample of Sed-1 (Surface Water)

Dup 2 - Duplicate sample of Sed-3 (Surface Water)

Dup 3 - Duplicate sample of Sed-4 (Surface Water)

FB - Field blank

2.3.2 Stream Bottom Sediment Sampling and Analysis

The stream bottom sediment samples were collected using a 2-inch diameter core sampling tool, equipped with a liner and core catcher. The sediment samples were collected at each location at the same time as surface water samples, moving from east to west in an upstream direction. A Photoionization Detector (PID) was also used to field-screen the bottom sediment samples. Relatively low PID readings were yielded by most sediment samples, as indicated in Table 2.3.2a below. The highest PID reading was observed in sediment sample Sed 2 at 5.2 ppm.

Sediment Sample	Sampling Location	PID Reading
Sed #1	Location #1	1.6 ppm
Sed #2	Location #2	5.2 ppm
Sed #3	Location #3	1.6 ppm
Sed #4	Location #4	1.3 ppm
Sed #5	Location #5	0.9 ppm
Dup 1	Location #1	1.6 ppm
Dup 2	Location #3	1.6 ppm
Dup 3	Location #4	1.3 ppm

Table 2.3.2a – PID readings on stream sediment samples

The results of laboratory analysis of the stream bottom sediment samples are summarized in Table 2.3.2b below, and indicated the following. TPH-DRO was detected in stream bottom sediment sample locations SED 3, SED 4, and SED 5, at concentrations below the MDE residential soil cleanup standard. No TPH-DRO was detected in bottom sediment sample SED 2, which had the highest PID reading. No VOCs or TPH-GRO were detected in any of the sediment samples.

Table 2.3.2b Stebbins-Burnham Site Owings Mills, Maryland

Stream Bottom Sediment Analytical Results - Detected Analytes Only Field Sampling Performed on March 5, 2010

	Sed-1	Sed-2	Sed-3	Sed-4	Sed-5	Dup-1	Dup-2	Dup-3	MDE Residential Soil Cleanup Standard	
Analytes	7	Total Petroleum Hydrocarbons (TPH) - Diesel-Range Organics (DRO) (mg/kg)								
TPH-DRO	<18.2	<11.9	15.6	14.2	22.4	<24.9	<13.6	19.6	2.3E+02	

Table Notes:

TPH-DRO Analytical Method: U.S.EPA Method 8015C

mg/kg - Milligrams per kilogram (parts per million)

NA - Not applicable

MDE Residential Soil Cleanup Standards dated June 2008, Rev. 2.1

Only those analytes detected above the laboratory lower limit of detection, are included in the table.

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

Dup-1 - Duplicate of Sed-1

Dup-2 - Duplicate of Sed-3

Dup-3 - Duplicate of Sed-4

2.4 Site Clearing Work and Large Well Installations

2.4.1 Site Clearing

On Monday January 17, 2011 CGS began a Site clearing operation to remove mounded fill (moguls) and some dead vegetation primarily within the northeast area of the original Stebbins Burnham parcel #270, and also within parcel #339. This was done to remove any remaining fill material and provide access for drilling rigs to reach selected well locations for installation of large diameter 4-inch monitoring wells. Just prior to beginning the Site clearing operations, a silt fence was installed between the area to be cleared and the nearby stream. The clearing work was completed on Friday January 28, 2011. The work was performed by a 4-man crew utilizing an excavator, loader, brush-clearing tools, chainsaw, and other support equipment. The fill material within the mounds was examined and temporarily segregated into separate piles of brick, concrete, rubber tires, building wood, natural dead wood, and general refuse material (trash). An estimated 120 tons of benign fill material were removed and disposed of at a Construction and Debris (C&D) landfill. In addition, approximately 140 tires were removed and hauled to the Emmanuel tire disposal facility in Baltimore, Maryland. As the mounded areas were excavated

and examined, no petroleum-contaminated soils or apparent hazardous waste was encountered. In addition to the mounds of fill material described above, existing piles of building demolition debris including insulation and drywall, were present near the truck garage area. This material was temporarily stored in 5 lined and covered roll-offs on-site. The demolition building materials were sampled by a certified AHERA inspector (Asbestos Hazards Emergency Response Act) and submitted to EMSL Analytical Laboratory in Beltsville, Maryland to test for the possible presence of asbestos-containing-materials (ACMs). Results of lab analysis indicated that no ACMs were present. The results of the lab analysis are included in Appendix C.6.

After excavating away all mounds of fill material, the area was re-graded back to natural grade level. Remaining natural dead wood was chipped into wood chips and spread throughout the Site as mulch. The silt fence was left in place. CGS made a return trip to the Site on June 17, 2011 to perform a final surface re-grading and grass seeding of the area.

2.4.2 Large Well Installations

After clearing operations were completed, CGS mobilized a truck-mounted drilling rig and CGS geologist to the Site on Monday January 31, 2011 to install 23 large diameter 4-inch monitoring wells. The purpose of the drilling and well installations was to obtain more detailed data of subsurface conditions, in order to prepare a remedial plan for the Site. The 4-inch wells were used to develop a more accurate map of the LPH plume and its thickness, and to potentially serve as product recovery wells. The 4-inch diameter monitoring wells were staked on approximately 30 to 60 foot spacings from each other within the LPH plume, and located based on preliminary 1-inch well data and LIF survey data indicating areas with the thickest occurrence of LPH. The updated Site base map included in Appendix A.3b indicates the finished locations of the wells.

Miss Utility was contacted as required prior to drilling, to clear public utilities at the proposed drilling locations. In addition, a private utility locate company was hired to confirm that no private on-site utilities were present at the staked proposed drilling locations. No drilling was performed in the back yard of parcel # 498, due to the existence of plumbing lines for a shallow septic system. Proposed well location 642 was re-located from an area within parcel # 444 (the Diggs property) to approximately 75 feet to the south within parcel # 270, per request of the Baltimore County Department of Environmental Protection and Resource Management (DEPRM), in order to avoid drilling in a septic reserve area.

The borings for each well were extended through the LPH layer (if detected at a given location) and into the shallow groundwater. A CGS field geologist was present to manage the drilling rig, log the soil borings, collect soil samples for examination, and design and supervise installation of the monitoring wells. No soil samples or grab groundwater samples were submitted for laboratory analysis during well installation work. The geologist logged the soil samples in accordance with the Unified Soil Classification System (USCS). Continuous split-spoon soil sampling was performed from grade to the bottom of each boring using a Standard Penetration Test (SPT). In addition, soil samples were field screened with a photoionization detector (PID). Soil boring and well completion logs were generated and are included in Appendix G. The target depth for the 4-inch wells varied at each location, based on preliminary data from the existing network of 1-inch piezometers and the LIF survey data. Soil cuttings that contained PID

readings above background levels or appeared to be contaminated with fuel oil, were segregated into a lined container for later disposal off-site as special waste. In an attempt to minimize the volume of cuttings requiring disposal, the field geologist began field screening soil cuttings at the beginning of drilling. When it was apparent that the boring had penetrated into the top of the LPH layer and contaminated auger cuttings were present at grade, the drillers helper was then instructed to begin segregating the contaminated soil cuttings from the shallow clean auger cuttings. A Bobcat loader was mobilized along with the drilling crew for the purpose of moving contaminated soils cuttings to the lined container on a daily basis. The container was also covered with a tarp for protection from rain. A total of 8.59 tons of soil cuttings were containerized for disposal as special waste. Clean soil auger cuttings were not containerized and were left on the ground at the Site.

Well installations were completed using 4-inch diameter, schedule 40, PVC, threaded well casing. A 20-slot (0.020 inch) well screen was used for the well screen interval, and solid PVC riser was used for the uppermost portion of the well casing. The length of well screen was designed in the field by the field geologist to extend several feet above the top of the seasonal high level of the LPH layer (if present), while still maintaining at least 1.5 feet of riser. Target depths and well designs were based on field data from split spoon soil sampling, field screening with the PID, and the previous 2 years data collected of seasonal water table level fluctuation. In the area of the LPH plume, the goal was to install partially penetrating wells within the fine-grained soils, but deep enough to provide enough available drawdown to install a typical recovery pump or skimmer at a later date, if desired.

A de-contamination pad was designated close to the truck garage area, and steam cleaning of drilling equipment was performed before drilling at locations along the fringe or just outside of the known LPH plume. However, steam cleaning of drilling equipment and sampling tools was not performed between borings with known conditions of LPH. At the conclusion of drilling, each well was developed using a vaccum tanker truck. A drop pipe was used and each well was pumped dry several times. The discharge fluids from 3 separate episodes of well development were pumped into the tanker truck. Upon conclusion of well development, 1,395 gallons of petroleum-contaminated water was taken off-site for proper disposal as special waste.

After well development, the new wells were allowed to settle for at least 72-hours prior to initial gauging. Two bi-weekly monitoring well and stream gauging events were then performed on March 17 and March 31, 2011. In addition, a third gauging event was performed on June 17, 2011 after additional well development of well 643, and revised groundwater table and product thickness maps were prepared (see Appendix A, Figures A.12 through A.17).

The field data obtained from the drilling, well installations, and well gauging are summarized in Section 5.0 of this report.

3.1 Survey Method

On November 9-11, 2009, an LIF survey was completed by CGS to assist in defining the geometry of the LPH plume. A supplemental LIF survey was also performed on December 16-17, 2009, which extended the LIF survey into parcel # 553, and was designed to attempt to fill in data gaps remaining from the initial LIF survey in November.

Prior to the LIF survey, LIF boring locations were staked in the field by CGS and temporarily located using a field GPS unit. CGS subcontracted Columbia Technologies, LLC of Baltimore, Maryland and Tidewater, Inc. to perform the LIF survey and soil boring program. A CGS geologist supervised the work. The LIF survey was performed using a GeoProbe direct-push technology (DPT) drill rig and a LIF probing system equipped with an Ultraviolet Optical Screening Tool, to delineate the LPH plume. The system basically works by exposing subsurface soils to a laser light source, and measuring the level of fluorescent response in the soils. The level of fluorescent response correlates to the level of LPH that is present. In addition, the wavelength of each response may often indicate the type of LPH product that is present. The system is designed to respond only to liquid phase contamination, and was calibrated to a liquid petroleum standard measured at 100% response prior to the survey.

The LIF borings were extended to the depth of direct-push refusal, or to a depth determined in the field by the field geologist, as conditions warranted. The vertical LIF profiling was coupled with real time data collection, with results posted daily on the Columbia Technologies secure web site. Some of the LIF boring locations were adjusted slightly by the field geologist, as results were obtained. After the completion of the LIF survey, the final LIF/boring locations were surveyed by Professional Surveys, LLC, and the Columbia Technologies data was updated to reflect accurate elevations. Two of the LIF borings were also designated as GB borings (LIF46/GB34B and LIF37/GB33). At these LIF locations, a temporary 1-inch PVC well was installed for monitoring purposes.

3.2 Plume Delineation

As the LIF survey progressed, CGS reviewed LIF response logs and recorded notes of our general observations at each LIF boring location. A map of 3-D imaging of the LIF survey results was prepared by Columbia Technologies and posted on the secure web page. The full Columbia report of the LIF survey, with individual LIF boring logs and graphical maps of the identified LPH plume, is included in Appendix D.

During the LIF survey, it was observed that in general, the location of borings with relatively high LIF response, was fairly consistent with the location of nearby monitoring wells where thicker LPH was measured. Most LIF borings were located to fill in data gaps between existing 1-inch wells, and expand the data obtained from the monitoring wells. A plan view map of the maximum LIF response is included in Appendix D, and indicates a plume that is mostly located

within the northeastern portion of parcel # 270 (the former Stebbins-Burnham Site), most of parcel # 339, and the southern portion of parcel #553. Per CGS request, Columbia Technologies reviewed the LIF logs in an attempt to distinguish between different fuel types that may be present on the Site. This resulted in grouping the LIF data into two major groupings of LIF response - Group A for LIF signatures that are typical of heating oil, and Group B for LIF signatures that are typical of diesel fuel. Group A included borings L-02 through L-09, L-22 through L-24, L-26, L-30, L-31, L-34, L-37, L-39 and L-47. Group B included borings L-10, L-11, L-13, L-15, L-18 through L-26, L-31 through L-33, L-36, L-38, L-41, L-42, L-46, L-48, L-49, L-51, and L-52. A few of the LIF borings were included in both groups. There were no other significant groupings of product types. This is consistent with product sampling and lab analysis which indicated that the patterns that were present in the samples were typical of #2 heating oil and/or diesel fuel, and not typical of gasoline, solvents, or waste oil (see Section 2.2.2). It was observed that most of the borings containing Group A heating oil type signatures are located in the vicinity of the original Stebbins Burnham ASTs. Most of the borings containing Group B diesel fuel type signatures are located downgradient of the original ASTs locations. The LIF operator indicated that this may simply indicate that degradation of one common product has occurred over time, as slow migration has occurred through the finegrained soils on the Site. Based on the LIF data, the depth of the LPH plume generally occurs within elevation 385 to 395 feet referenced to mean sea level (msl) in most areas of the Site. A closer examination of the individual LIF logs, indicated that the LPH was often detected between 6 to 12 feet below grade at most LIF locations. The bottom of the product layer detected by the LIF tool often coincided with the groundwater table level known from soil boring and well data. Smearing of product was observed on the LIF logs, likely related to the seasonal fluctuation of the groundwater table. The top of the LPH plume appears to occur at a shallower depth below grade in the downgradient area of the Site, closer to the stream. The deepest extent of LPH product was indicated in the general vicinity of LIF boring locations L-2 through L-6, where thick sequences of LPH were detected from about 6 to 30 feet below grade (to 30 feet at L-2). The LIF data cross sections appear to illustrate a strong Group A LIF response for heating oil in this deeper zone. The LIF data cross sections indicate that the Group B LIF response for diesel fuel appears to occur at a relatively shallower depth than Group A. This may coincide with a slight difference in specific gravity between heating oil fuel (~0.95) and diesel product (~0.85).

Columbia Technologies prepared a plume volume calculation, based on the LIF data. The results indicated a total plume volume of 88,837 cubic feet. This does not take into account the porosity of the soil present. An estimated 40% porosity for relatively fine grain soils, would yield a volume of LPH present in the formation of 35,535 cubic feet or 265,819 gallons of product, based on the LIF data. This estimate may vary widely from the true amount of product present and may not be representative of mobile, recoverable product. In addition, since fine-grained soils are common within the Site, there could also be a significant amount of capillary fringe contamination that is present above the fully saturated product level.

4.0 Domestic Water Well Sampling

Local domestic water supply well (DW) sampling and laboratory analysis has been performed by CGS on a semi-annual basis. The first round of DW sampling was performed between January 29, 2010 and February 26, 2010, based on homeowner's availability (an earlier individual sampling event for the Diggs Residence alone was also conducted on November 10, 2009, per MDE request). A total of twelve DW samples were collected for the first semi-annual DW sampling event, from a total of seven residences, one irrigation well, and the Stebbins-Burnham on-site DW well. Multiple samples were collected from three locations that had carbon filter systems installed on their water supply (sampled before and after filtration).

The DW samples collected for the first semi-annual event of 2010 were submitted to a certified lab for analysis of VOCs via U.S.EPA method 524.2. The results of the first round of DW sampling and laboratory analysis are summarized in Table 4.1 below, and indicated that low levels of trichloroethylene (TCE) and PCE were detected in the following wells:

Stebbins-Burnham on-site supply well (S/B before filter) – 2724 Spring Hill Road

Leonard Ross supply well (LR-DW – no filter present) – 2716 Spring Hill Road

J. Knutson supply well (JK before filter) – 2714 Spring Hill Road

Stump supply well (Stump-DW) – 4 Cliffholme Road

Fred Smalkin supply well (FS-DW) – 2728 Spring Hill Road

- J. Hilgenberg supply well (JH-DW) 2700 Spring Hill Road
- J. Hilgenberg irrigation well (JH-AgWell) 2702 Spring Hill Road

Rick (Lawrence) Tyler supply well (LT before filter) – 2705 Spring Hill Road

Trace amounts of PCE were also detected in stream surface water samples (see Section 2.3.1). None of the DW wells exceeded the MDE groundwater standard for TCE or PCE. It was also observed that the carbon filtration systems were working on those wells that were contaminated with TCE and PCE. The after-filter sample results from the Stebbins-Burnham on-site supply well, the J. Knutson supply well, and the Rick (Lawrence) Tyler supply well, were all non-detect for TCE and PCE. Chloroform was also detected in trace amounts in some of the samples, but is believed to be a lab artifact.

Table 4.1
Stebbins-Burnham Site Study Area - Owings Mills, Maryland
Drinking Water Sample Analytical Results - Detected Analytes Only
Field Sampling Performed on Various Dates - For 1st Semi-Annual Event

	JD-DW	S/B -BF	S/B- AF	LR- DW	JK- BF	JK- AF	Stump- DW	Dupe	FB	ТВ	MDE Ground- water Standard
Date Sampled	11/10/09		1/29/10								
Analytes			,	Volatil	e Organi	ic Comp	ounds (VO	Cs) (ug/l	kg)		
Chloroform	< 0.5	0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	8.0E+01
Tetrachloroethylene	< 0.5	3.1	< 0.5	3.9	3.2	< 0.5	1.0	3.9	< 0.5	< 0.5	5.0E+00
Trichloroethylene	< 0.5	2.6	< 0.5	3.1	2.4	< 0.5	3.2	3.0	< 0.5	< 0.5	5.0E+00

	FS-DW	JH-DW	JH-AgWell	LT-BF	LT-AF	FB	Dupe	MDE Ground- water Standard	
Date Sampled		1/29/10			2/20				
Analytes		Volatile Organic Compounds (VOCs) (ug/kg)							
Chloroform	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	8.0E+01	
Tetrachloroethylene	2.4	3.1	1.8	2.0	< 0.5	< 0.5	< 0.5	5.0E+00	
Trichloroethylene	3.0	2.3	1.4	1.3	< 0.5	< 0.5	< 0.5	5.0E+00	

VOC Analytical Method: US.EPA Method 524.2

ug/L - micrograms per liter

MDE Groundwater Standards are for Type I and II Aquifers, June 2008, Rev. 2.1

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

JD-DW - Mr. J. Diggs' Domestic Well (411 Greenspring Valley Road)

S/B-BF - Stebbins Burnham on-site Supply Well before filter (2724 Spring Hill Road)

S/B-AF - Stebbins Burnham on-site Supply Well after filter (2724 Spring Hill Road)

LR-DW - Leonard Ross Supply Well - no filter (2716 Spring Hill Road)

JK-BF - J. Knutson's Domestic Well sampled before GAC treatment system (2714 Spring Hill Road)

JK-AF - J. Knutson's Domestic Well sampled after GAC treatment system (2714 Spring Hill Road)

Stump-DW - Mr. Stump's Domestic Well (4 Cliffholme Road)

Dupe (1/29/10) - Duplicate sample of LR-DW

FB - Field Blank

TB - Trip Blank

FS-DW - Mr. Fred Smalkin's Domestic Well (2728 Spring Hill Road)

JH-DW - J. Hilgenberg's Domestic Well (2700 Spring Hill Road)

JH-AgWell - J. Hilgenberg's Irrigation Well (2702 Spring Hill Road)

LT-BF - Lawrence Tyler's Domestic Well sampled before two carbon filters & water softener tank (2705 Spring Hill Road)

LT-AF - Lawrence Tyler's Domestic Well sampled after two carbon filters & water softener tank (2705 Spring Hill Road)

After the first semi-annual 2010 sampling event in Jan/Feb, subsequent DW sampling events were performed as follows:

- June 2010
- December 2010 (with follow through sample in Feb 2011, based on homeowner availability)
- June 2011

The results of the above DW sampling events were relatively consistent with the first semi-annual 2010 sampling event, and the groundwater quality in local supply wells has not changed significantly during the period of monitoring by CGS. The results of the above DW sampling events from June 2010 and December 2010 are summarized in tables 4.2 and 4.3 below. As of the date of this report, the summer 2011 sampling event is still ongoing (based on homeowner availability), and lab results from the June 2011 sampling have not yet been received.

Table 4.2 Stebbins-Burnham Site Study Area - Owings Mills, Maryland Drinking Water Sample Analytical Results - Detected Analytes Only Field Sampling Performed in June 2010

	JD-DW	S/B-BF	S/B-AF	LR- DW	JK-BF	JK-AF	Dupe	FB	MDE Ground- water Standard
Date Sampled	6/29/10	6/29/10	6/29/10	6/29/10	7/1/10	7/1/10	6/29/10	6/29/10	
Analytes			Volati	le Organic	Compoun	ds (VOCs)	(ug/kg)		
Chloroethane	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	3.6
Chloroform	< 0.5	0.6	< 0.5	0.6	0.5	< 0.5	0.6	< 0.5	80.0
Tetrachloroethylene	< 0.5	3.7	4.0	3.7	3.5	0.5	3.9	< 0.5	5.0
Trichloroethylene	< 0.5	2.9	3.1	3.0	2.6	< 0.5	3.4	< 0.5	5.0

	ТВ	FS-DW	JH-DW	JH- AgWell	TM-BF	TM-AF	LT-BF	LT-AF	MDE Ground- water Standard
Date Sampled	6/29/10	6/29/10	6/29/10	6/29/10	6/29/10	6/29/10	7/1/10	7/1/10	
Analytes			Volati	le Organic	Compoun	ds (VOCs)	(ug/kg)		
Chloroethane	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.8	3.6
Chloroform	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	80.0
Tetrachloroethylene	< 0.5	4.0	3.0	3.3	1.8	0.6	2.6	< 0.5	5.0
Trichloroethylene	< 0.5	3.3	2.1	2.3	1.2	< 0.5	1.7	< 0.5	5.0

VOC Analytical Method: U.S.EPA Method 524.2

ug/L - micrograms per liter

MDE Groundwater Standards are for Type I and II Aquifers, June 2008, Rev. 2.1

Only those analytes detected above the laboratory lower limit of detection, are included in the table

< - Analyte not detected above specified Detection Limit

Bold - Detected analyte concentration

JD-DW - Mr. J. Diggs' Domestic Well (411 Greenspring Valley Road)

S/B-BF - Stebbins Burnham on-site Supply Well before filter (2724 Spring Hill Road)

S/B-AF - Stebbins Burnham on-site Supply Well after filter (2724 Spring Hill Road)

LR-DW - Leonard Ross Supply Well - no filter (2716 Spring Hill Road)

JK-BF - J. Knutson's Domestic Well sampled before GAC treatment system (2714 Spring Hill Road)

JK-AF- J. Knutson's Domestic Well sampled after GAC treatment system (2714 Spring Hill Road)

Dupe - Duplicate sample of LR-DW

FB - Field Blank

TB - Trip Blank

FS-DW - Mr. Fred Smalkin's Domestic Well (2728 Spring Hill Road)

JH-DW - J. Hilgenberg's Domestic Well (2700 Spring Hill Road)

JH-AgWell - J. Hilgenberg's Irrigation Well (2702 Spring Hill Road)

TM-BF-Mr. Moore's Domestic Well before filter (405 Greenspring Valley Road)

TM-AF - Mr. Moore's Domestic Well after filter (405 Greenspring Valley Road)

LT-BF - Rick Tyler's Domestic Well sampled before two carbon filters and water softener tank (2705 Spring Hill Rd)

LT-AF - Lawrence (Lawrence) Tyler's Domestic Well sampled after two carbon filters and water softener tank (2705 Spring Hill Road)

Table 4.3
Stebbins-Burnham Site Study Area - Owings Mills, Maryland
Drinking Water Sample Analytical Results - Detected Analytes Only
Field Sampling Performed in December 2010/February 2011

	Diggs- DW	S/B-BF	S/B-AF	LR-DW	JK-BF	JK-AF	MDE Ground- water Standard
Date Sampled	12/16/10	12/20/10	12/20/10	12/20/10	12/20/10	12/20/10	
Analytes			Volatile Orga	nic Compound	s (VOCs)(ug/kg	g)	
Chloroform	< 0.5	0.5	< 0.5	0.6	< 0.5	< 0.5	80.0
Dibromochloromethane	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	80.0
Tetrachloroethylene	< 0.5	3.6	1.8	3.6	3.3	< 0.5	5.0
Trichloroethylene	< 0.5	2.6	1.3	2.9	2.3	< 0.5	5.0

	Stump- DW	FS-DW	Hilgenberg- DW	Hilgenberg- AgWell	Moore-BF	Moore- AF	MDE Ground- water Standard
Date Sampled	12/20/10	12/20/10	12/20/10	12/20/10	12/20/10	12/20/10	
Analytes			Volatile Orga	nic Compound	s (VOCs)(ug/kg	g)	
Chloroform	0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	80.0
Dibromochloromethane	0.9	< 0.5	< 0.5	3.2	1.2	0.8	80.0
Tetrachloroethylene	0.9	4.0	2.8	2.7	1.1	0.8	5.0
Trichloroethylene	3.1	2.9	1.9	2.0	0.6	< 0.5	5.0

	LT-BF	LT-AF	MC-DW	SB-Dupe	SB-FB	SB-TB	MDE Ground- water Standard
Date Sampled	12/23/10	12/23/10	2/25/11	2/25/11	2/25/11	2/25/11	
Analytes			Volatile Orga	nic Compound	s (VOCs)(ug/kg	g)	
Chloroform	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	80.0
Dibromochloromethane	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	80.0
Tetrachloroethylene	2.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5.0
Trichloroethylene	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5.0

VOC Analytical Method: U.S.EPA Method 524.2

ug/L - micrograms per liter

MDE Groundwater Standards are for Type I and II Aquifers, June 2008, Rev. 2.1

Only those analytes detected above the laboratory lower limit of detection, are included in the table

< - Analyte not detected above specified Detection Limit (DL)

Bold - Detected analyte concentration

Diggs-DW - Mr. J. Diggs' Domestic Well (411 Greenspring Valley Road)

S/B-BF - Stebbins Burnham on-site Supply Well before filter (2724 Spring Hill Road)

S/B-AF - Stebbins Burnham on-site Supply Well after filter (2724 Spring Hill Road)

LR-DW - Leonard Ross Supply Well - no filter (2716 Spring Hill Road)

Table Notes (con):

JK-BF - J. Knutson's Domestic Well sampled before GAC treatment system (2714 Spring Hill Road)

JK-AF - J. Knutson's Domestic Well sampled after GAC treatment system (2714 Spring Hill Road)

Stump-DW - Mr. Stump's Domestic Well (4 Cliffholme Road)

Hilgenberg-DW - J. Hilgenberg's Domestic Well (2700 Spring Hill Road)

Hilgenberg-AgWell - J. Hilgenberg's Irrigation Well (2702 Spring Hill Road)

FS-DW - Mr. Fred Smalkin's Domestic Well (2728 Spring Hill Road)

Moore- BF - Mr. Moore's Domestic Well before filter (405 Greenspring Valley Road)

Moore-AF - Mr. Moore's Domestic Well after filter (405 Greenspring Valley Road)

LT-BF - Rick (Lawrence) Tyler's Domestic Well sampled before two carbon filters & water softener tank (2705 Spring Hill Road)

LT-AF - Lawrence Tyler's Domestic Well sampled after two carbon filters & water softener tank (2705 Spring Hill Road)

MC-DW - Mel Col's Domestic Well (2707 Greenspring Valley Road)

SB-Dupe - Duplicate Sample of MC-DW

SB-FB - Stebbins Field Blank

SB-TB - Stebbins Trip Blank

5.1 Site Hydrogeologic Setting

The Site is located on the United States Geological Survey (USGS) 7.5-Minute Cockeysville, Maryland Topographic Quadrangle map, dated 1986. The topography of the local Site study area slopes to the northeast toward the stream, which flows from west to east along the northern boundary of the Site study area. The stream is a tributary to Jones Falls. The elevation of the Site is approximately 400 feet above msl. A copy of the referenced topographic map is included in Appendix A - Figure A.1. The Site is located within the Piedmont Plateau physiographic province, which is characterized by igneous and metamorphic bedrock. Based on the Maryland Geological Survey Geologic Map of Baltimore County (1968), the Site itself appears to lie along the boundary between the Cockeysville marble, Setter's Formation mica schist, and the Baltimore Gneiss.

Based on shallow soil boring data collected to date at the Site, shallow soils are known to include mostly fine-grained sandy-silts and clays, with some gravel and some silty-sand present. During drilling for the installation of 4-inch monitoring wells, bedrock was encountered in several borings. Samples of weathered rock were observed in the bottom of split spoon samples, and were generally observed to consist of a foliated rock similar in appearance to schist or gneiss. The weathered rock that was encountered in the borings did not appear to be from transported fluvial deposits but appeared to be the top of weathered bedrock, generally encountered between 12 to 17 feet below grade (depending on boring location). In some borings in the southeastern area of drilling (wells 630 and 638), marble was encountered. The boring for well 643 located inside the truck garage, was logged as having a thicker sequence of overburden soils and encountered possible weathered bedrock at 32 feet below grade, much deeper than the other borings throughout the Site. Standard penetration tests and split spoon soil samples were not obtained at this location. The boring was drilled using a smaller GeoProbe drill rig due to overhead clearance space within the truck garage. Soil samples were collected utilizing a macrocore sampling tool, which was pushed into the subsurface. The location for 643 is the same general location where approximately 10 feet thick of LPH has been gauged in existing 1-inch well GB-3 in the past. Newly installed 4-inch well 643 is located within 20 feet of GB-3, and has been gauged several times and only detected between 0.23 to 0.84 feet of LPH as follows:

Table 5.1.1

<u>Date</u>	<u>Well</u>	Gauged LPH Thickness (feet)
3/17/11	643	0.37
	GB-3	8.94
3/31/11	643	0.84
	GB-3	7.78
6/17/11	643	0.23 (after additional well development)
	GB-3	7.50

However, field observations during well development indicate that the well screen interval for well 643 may have became clogged during well installation. Subsequent attempts at redevelopment of well 643 have resulted in very large amounts of silt being pumped from the well. Gauging data from well 643 may not be representative of true LPH thickness in the local area. LIF survey data from borings LIF-4 and LIF-2, which are also located close to well 643 and GB-3, indicated that a thick sequence of LPH exists in this local area. Strong LIF responses were detected between 4 to 24 feet in LIF-4, and between 7 to 30 feet in LIF-2. The deeper apparent depth to bedrock at well 643 appears to be localized, and may simply be indicative of a bedrock low, or a highly weathered or solution-weathered localized zone.

The bedrock throughout the Site forms an underlying boundary to the shallow silty sand aquifer at the Site, and may be the bedrock unit that the domestic supply wells are using for local water supply. Deeper borings into the bedrock unit were not a part of the scope of this project. The following borings performed by CGS for installation of 4-inch wells, encountered bedrock as follows (NE – bedrock not encountered):

Table 5.1.2

	Depth of	Depth to	
Boring	Boring (ft)	Rock (ft)	Estimated Rock Type/Notes
626	12.5	NE	NE
627	16.0	unknown	gravel with mica, schist, & quartzite present @ 16'
628	16.0	13.6	foliated rock
629	20.0	16.5	saprolitic schist
630	15.0	11.75	weathered marble
631	16.0	12.0	weathered schist
632	19.0	17.0	foliated rock & marble
633	14.0	NE	NE
634	13.5	NE	NE
635	15.0	unknown	dense sandy material at 12.75'
636	21.0	15.5	saprolite; banded gneiss
637	17.0	unknown	HSA refusal at 17.0'
638	16.0	12.0	marble
639	18.0	15.0	foliated rock
640	20.0	unknown	saprolite at 19.0-20.0'
641	19.0	NE	gravel with mica & quartzite present @ 19'
642	18.0	17.0	highly weathered saprolite at 12-17'
643	36.0	32.0	possible saprolite at 32' with gravel intervals
644	25.0	NE	NE
645	21.0	14.0	weathered bedrock at 14'
646	20.0	NE	apparent saprolite texture from 8' to 14'
647	28.0	NE	apparent saprolite texture from 14' to 28'
648	15.0	12.5	saprolite at 12.5'; & quartzite

The land survey work performed by Professional Surveys, LLC for this project, indicates that surface topography within the Site study area is similar to that shown on the 1986 topographic map, with the land surface sloping to the northeast toward the stream. No major changes to surface topography or natural drainage have been observed on the Site by CGS, except for the presence of several small mogul type areas of mounded fill overgrown with grass and consisting mostly of rubble type fill such as brick, pieces of concrete, rubber tires, wood, and general refuse. Most of these mounds were located within the northeast area of the original Stebbins Burnham parcel #270, and also within parcel # 339. The mounds of fill were removed as indicated in Section 2.4 of this report, and the area was re-graded back to natural grade level.

The groundwater elevation data obtained from well gauging events, along with soil boring data, indicate a pattern throughout the study area that is typical of a hydraulically connected, unconfined, shallow groundwater table system that is discharging to the northeast toward the stream as baseflow. This shallow groundwater aquifer is bounded by underlying bedrock, which was encountered between approximately 12 to 17 feet below grade over most of the Site. The upper portion of the bedrock was sampled by the deepest split spoon samples that could be driven into it, and was often observed to consist of highly weathered rock retaining the original fabric and minerals of the original bedrock (saprolite). Recharge for the shallow groundwater system is surface infiltration of rainfall. Depth to groundwater table in the southern (upgradient) area of the Site was observed to generally range from approximately 5 to 9 feet below grade. Depth to groundwater table in the northern (downgradient) area of the Site, closer to the stream, was observed to generally range from approximately 1 to 5 feet below grade. Apparent depth to the groundwater table was measured at up to approximately 16 feet below grade, within the area of thickest LPH (at well GB-3), where the groundwater table is depressed. The water table was observed to fluctuate approximately 2 to 4 feet throughout most of the Site, during the period of gauging from September 2009 to June 2011. During most of the monitoring events where stream gauging data were available, the data indicates that the stream appears to occur as a losing stream, with some discharge back toward the Site into the southern portion of parcel #553 and the northern portion of parcel #497. During this period the stream surface water level is higher than the adjacent groundwater table level. This is evident on the groundwater table contour maps included in Appendix A. There also appears to be some shallow groundwater flow from west to east along the south side of the stream, toward the northern end of parcel #497. As observed during stream and sediment sampling at location SED 1, the northern end of parcel #497 includes a small tributary channel which drains to the north into the stream. This small tributary channel is not shown on the 1986 topographic map or on the survey maps in Appendix A. During drier periods, the relationship between the shallow groundwater system and the stream surface water is expected to fluctuate somewhat, with the stream becoming a gaining stream. During this period the stream surface water level is lower than the adjacent groundwater table level.

Soil samples obtained during drilling by CGS were logged as mostly fine-grained sandy-silts and clays, with some gravel and some silty-sand present (see Appendix G Boring Logs). The groundwater elevation data does not appear to indicate any areas of perched water within the unconsolidated sediments. This is consistent with most observations made of soil samples obtained during drilling and their moisture content. There is an area of significant depression in the groundwater table surface in the vicinity of the location of the original ASTs. This depression appears to be at its maximum in the vicinity of well GB-3, where apparent readings of LPH product thickness have been measured at up to 10.20 feet thick (10/27/09). The depression

in the groundwater table surface extends generally to the east, and coincides with the thickest part of the LPH layer, that has formed a plume within the relatively fine-grained soils. After installation and gauging of larger 4-inch diameter monitoring wells, it was observed that the general location and shape of the LPH plume is fairly consistent with previous data collected from the temporary 1-inch wells and the LIF survey. LPH thickness as measured in the new 4-inch wells varies from the measurements made in 1-inch wells depending on location. The well gauging performed on the new 4-inch wells in June 2011 indicated that additional 4-inch wells are beginning to detect product where it was not detected earlier during the March 2011 gauging events. This observation is consistent with CGS's field observations over the last 2 years, indicating that LPH takes a long time to migrate into monitoring well casings. One significant difference in the LPH map developed from the new 4-inch wells is that plume is shifted to the east based on questionable readings obtained from well 643 (as indicated above). Attached in Appendix A are Maps A.12, A.14, and A.16, which indicate LPH thickness as measured in 4-inch wells on March 17, March 31, and June 17, 2011.

5.2 Nature of Subsurface Contamination

Based on the Site investigation work performed by CGS to date, several phases of subsurface contamination have been identified within the Site study area. These include:

- 1) Dissolved-phase groundwater contamination detected in several shallow groundwater monitoring wells on the Site. Groundwater samples from these wells exceeded the MDE groundwater standard for Naphthalene and various VOCs as indicated in Table 2.2.1. The locations with the highest Naphthalene concentrations appear to be associated with their proximity to the LPH layer at the Site. Groundwater exceeded the MDE groundwater standard for Benzene at locations GB-29, and GB-32; for cis-1,2-Dichloroethylene at GB-32; for Isopropylbenzene at GB-28 and GB-29; and for MTBE at GB-40. Well GB-40 is located in the south central portion of the Site, down-gradient from the former UST area.
- 2) Contamination of shallow soils at several locations within the Site, with various VOCs and TPH-DRO. None of the VOCs that were detected, exceeded the MDE residential soil cleanup standard. TPH-DRO was detected in concentrations that exceeded the MDE residential soil cleanup standard at locations GB-40 and GB-41.
- 3) Dissolved phase groundwater contamination of the on-site Stebbins-Burnham water supply well and some local area drinking water supply wells, with trace amounts of TCE and PCE. The concentrations of TCE and PCE that were detected did not exceed MDE groundwater standards. These DW wells are expected to be tapping into a deeper source of water. However, well construction specifications for these wells have not been reviewed by CGS.
- 4) Dissolved phase contamination of stream surface water with trace amounts of PCE. The concentrations of PCE detected did not exceed MDE groundwater standards.

- 5) Soils contamination of stream bottom sediment with TPH-DRO. The concentrations of TPH-DRO detected did not exceed MDE residential soil cleanup standards.
- 6) A thick layer of liquid phase hydrocarbon (LPH) product, which is floating on the groundwater table surface, in the central part of the Site study area.

The primary contaminant of concern is the LPH layer at the Site. Based on the various tasks performed to date by CGS, the location of the LPH layer has now been well defined. The large amount of LPH that is present should be the focus of any remedial effort, and this layer is likely the source for most of the other phases of relatively lower levels of contamination in soil and groundwater that have been detected (the source of the stream surface water contamination may be an off-site upgradient source). Based on review of the MDE case file and the subsurface investigation work performed by CGS to date, the source of the LPH contamination is from leakage and/or surface spills that occurred over many years from the former ASTs that were located on the east side of the truck garage area. The location and shape of the LPH plume, which extends downgradient from the former ASTs area, is consistent with the ASTs being the source area. The LPH plume appears to be the thickest in the close vicinity of the location of the former ASTs, and extends to the east and northeast in the downgradient direction. In addition, laboratory analysis has indicated that the LPH sampled from on-site monitoring wells consists primarily of #2 heating oil and/or diesel fuel, which was known to be stored in the ASTs for distribution as heating oil. LIF data has indicated two major groupings of LIF response – Group A for LIF signatures that are typical of heating oil, and Group B for LIF signatures that are typical of diesel fuel. It was observed that most of the LIF borings containing Group A heating oil type signatures are located in the vicinity of the original Stebbins Burnham ASTs. Most of the borings containing Group B diesel fuel type signatures are located downgradient of the original ASTs locations. The LIF operator indicated that this may simply indicate that degradation of one common product has occurred over time, as slow migration has occurred through the fine-grained soils on the Site. Product thickness as measured in the field in the temporary 1-inch wells, was up to approximately 10 feet thick in the vicinity of well GB-3, and approximately 6 feet thick throughout most of the central portion of the plume. Product thickness as measured in the newly installed 4-inch wells, is expected to be more representative of true product thickness in the formation. During the most recent June 17, 2011 gauging event, LPH was measured in 4-inch wells at over 5 feet thick at well 631 (Knutson property back yard) and at over 4 feet thick throughout most of the central portion of the plume, including wells 633, 637, and 644. New 4-inch well 643 installed adjacent to well GB-3 in the truck garage, appears to have a well screen interval that is heavily silted. Although this well has been re-developed several times, product thickness as measured in well 643 so far appears to be too thin, based on known LIF data close to this location and gauging data obtained from GB-3. The latest gauging events performed at the newly installed 4-inch wells indicate that wells 644, 631, and 633 often contain the thickest amount of LPH. These wells are located in the western, eastern, and northern portions of the plume, respectively. The thickest reading of LPH in the newly installed 4-inch wells was gauged at 6.60 feet obtained at well 644 on March 17, 2011. Currently the latest gauging event of June 17, 2011 indicates that the thickest LPH reading was 5.24 feet in well 631 (Knutson property backyard).

There has been very little LPH detected in the vicinity of the UST area in the southern part of the Stebbins-Burnham Site, and the readings have not been repeatable (GB-33 - 0.02ft. on 3/2/10,

and 0.01ft. on 4/24/10; GB-41 – 0.01ft. on 4/6/10, and 0.01ft. on 5/10/10). Dissolved phase MTBE which exceeded the MDE standards, was detected in a grab groundwater sample from boring GB-40. GB-40 is located in the south central portion of the Site, close to and downgradient from the former UST area. TPH-DRO was detected at concentrations that exceeded the MDE residential soil cleanup standard at boring GB-40 (and GB-41). Based on sampling and gauging data, the USTs do not appear to have contributed to the LPH plume in the central portion of the study Site.

The maximum concentration LIF plot in Appendix D illustrates the aerial extent of LPH detected through the LIF survey. Based on the LIF plume volume calculation and an estimated 40% porosity for relatively fine grain soils, the volume of LPH present in the formation is estimated at 265,819 gallons. The actual volume of product may vary widely from this figure. Based on the Site hydrogeology, the LPH plume has been somewhat contained within relatively fine-grained soils, and may only be slowly migrating toward the northeast toward the shallow groundwater discharge area. The limited recovery work performed to date by CGS at temporary recovery well location RW-1, has not had any significant impact on the LPH plume. The observations made during recovery work at RW-1 have indicated that each episode of product skimming from RW-1 basically evacuates only the standing liquid in the well casing, at which point several days are needed for recharge of product back into the well, before the skimmer pump recycles. While the fine grained soils on-site may have assisted in containing the plume, extraction and recovery of the product may be a difficult and lengthy process.

5.3 Data Gaps

After the completion of Site investigative work to date, including installation of new 4-inch diameter monitoring wells, a few remaining data gaps were identified:

- The absence of information regarding deep site-specific geologic stratigraphy and hydrogeologic conditions. The shallow conditions are better known, from the shallow borings performed to date. The rock quality of the underlying bedrock is unknown, since only the top of weathered rock was encountered during drilling. Little is known about potential contaminant pathways (fracture zones or solution-weathered zones) in the underlying bedrock, that may extend toward the depth that local water supply wells are pumping from.
- Lack of soils testing data regarding grain size distribution and permeability, and lack of slug and/or pump test data regarding shallow aquifer properties within the Site.
- Unknown depth and well construction details of surrounding area domestic water supply
 wells. It is expected that the area DW wells are tapping into a deeper source of water, but
 the well construction details of each individual DW well that was sampled and analyzed
 have not been reviewed by CGS. This information would be helpful to fully evaluate the
 results of the DW sampling and lab analysis.

6.0 RECOMMENDATIONS

After review of the data obtained from the Site assessment, CGS recommends preparing a corrective action plan (CAP) to proceed toward remediation of the LPH layer at the Site. Excavation of LPH-contaminated soil is not practical for the Stebbins-Burnham Site, given the wide area of the LPH plume that has been identified, the depth to LPH in certain locations, and the de-watering costs that would be involved. The latest gauging event of the newly installed 4-inch wells conducted on June 17, 2011 indicates that the bottom of the LPH layer extends to depths of over 10 feet below grade at several well locations including wells 631, 637, 644, 645, and RW-1. LPH thickness in these wells was gauged between 3.69 feet thick (at RW-1) to 5.24 feet thick (at well 631). Other technologies such as thermal remediation would have high initial costs and include other difficult issues to manage for the local area, including large amounts of air emissions.

A more practical approach to remediation at the Stebbins-Burnham Site would be to utilize the newly installed 4-inch monitoring wells by converting most of them into product recovery wells. All existing wells should continue to be monitored for changes in the LPH plume. A network of permeable trenches connecting the 4-inch wells would effectively increase the well screen intake area for each well and allow skimming pumps to be somewhat more effective in recovering the LPH layer. However, CGS recommends that more effective recovery of LPH throughout the identified plume area would require pumping of the underlying shallow groundwater in order to move LPH toward recovery wells. The fine-grained soils that have been observed on the Site and observations made during limited recovery work performed at well RW-1, indicate that the recovery of product by skimming alone can be expected to be a lengthy and ineffective process, influencing only the localized area around each well casing. CGS has also observed from the Site gauging data, that during natural seasonal low fluctuations in the water table, that LPH thickness seems to increase in monitoring wells. If groundwater pumping, treatment, and surface discharge of the underlying shallow groundwater is not performed for the Site area, then CGS recommends an approach of containment of the plume by developing an artificial boundary condition to flow in the downgradient direction of the identified LPH plume. This could be accomplished by including a recovery trench that is located along the downgradient leading edge of the plume and includes pumping stations that are spaced more closely than the existing 4-inch well network. recovery trench would basically form an arc that runs along the downgradient side of wells 626, 627, 628, and 629. Product skimming would then focus on the central portion of the LPH plume including selected wells within the thickest portion of the LPH plume including wells 631, 633, 637, 643, 644, 645, and RW-1, in an attempt to recover the LPH along the central axis of the plume. The downgradient trench would exist as a boundary to recover any LPH that still makes its way toward the natural discharge area for the shallow aquifer. Product skimming would then be performed on a continuous basis over long periods of time, in an attempt to reduce the amount of LPH, while the LPH plume is being contained.

Based on the last three well gauging events of March 17, March 31, and June 17, 2011, no LPH is present in wells 626, 627, 628, or 629. Only a sheen of 0.01 feet of LPH was gauged in well 627 on February 17, 2011 shortly after completion of the well. The depth to groundwater measured in these wells during the recent June 17 event, ranges from approximately 2.3 feet below grade at location 626, to approximately 9.2 feet below grade at location 629 (in the Knutson property backyard). Bedrock was encountered at 13.6 feet below grade at the location of well 628 and 16.5 feet at well 629. A down-gradient recovery trench in this area would be excavated at least several

feet into the water table and extend close to weathered bedrock. Other trenches connecting the wells in the central axis of the plume would extend to approximately 15 feet below grade.

Along with planned recovery operations, CGS recommends that the following items also be performed:

- Replace well 643, in order to address the discrepancy between gauging data from well 643 and nearby LIF data and gauging data from GB-3. Pump LPH from GB-3 and monitor for recharge of LPH at this location.
- Continue sampling and laboratory analysis of local area domestic water supply wells, on a semi-annual basis. Human exposure to low levels of chlorinated compounds detected in some water supply wells, can be controlled by installation of carbon filtration systems on those DW wells that do not contain carbon filtration systems.
- Obtain and review driller's logs for the local residential water supply wells, including
 information regarding well depths, well construction, and deeper bedrock geology in the
 Site vicinity. This will assist in an evaluation of the deeper Site hydrogeology and risk of
 contamination to the water supply wells.
- Continue to leave the silt fence in-place during setup of trenching work and recovery pump installations.

APPENDICES

Appendix A –	Figures
Figure A.1	Site Vicinity Map
Figure A.2	Site Diagram
Figure A.3a	Surveyor's Base Map – 24 X 36 inch foldout (includes temporary 1-inch wells)
Figure A.3b	Surveyor's Base Map – updated after 4-inch well installs - 24 X 36 inch foldout
Figure A.4	Product Thickness Map 1/12/2010 (apparent thickness measured in wells)
Figure A.5	Groundwater Table Contour Map 1/12/2010 (with corrected groundwater elevations)
Figure A.6	Product Thickness Map 1/25/2010 (apparent thickness measured in wells)
Figure A.7	Groundwater Table Contour Map 1/25/2010 (with corrected groundwater elevations)
Figure A.8	Product Thickness Map 3/24/2010 (apparent thickness measured in wells)
Figure A.9	Groundwater Table Contour Map 3/24/2010 (with corrected groundwater elevations)
Figure A.10	Product Thickness Map 6/24/2010 (apparent thickness measured in wells)
Figure A.11	Groundwater Table Contour Map 6/24/2010 (with corrected groundwater elevations)
Figure A.12	Product Thickness Map 3/17/2011 (apparent thickness measured in wells)
Figure A.13	Groundwater Table Contour Map 3/17/2011 (with corrected groundwater elevations)
Figure A.14	Product Thickness Map 3/31/2011 (apparent thickness measured in wells)
Figure A.15	Groundwater Table Contour Map 3/31/2011 (with corrected groundwater elevations)
Figure A.16	Product Thickness Map 6/17/2011 (apparent thickness measured in wells)
Figure A.17	Groundwater Table Contour Map 6/17/2011 (with corrected groundwater elevations)
Appendix B –	Tables
Table B.1a	Land Survey Data – prior to 4-inch well installs
Table B.1b	Land Survey Data - updated after 4-inch well installs
Table B.2a	Inventory List of Wells and Screen Intervals -
	prior to 4-inch well installations and 1-inch well decommissioning
Table B.2b	Inventory List of Wells and Screen Intervals -
	after 4-inch well installations and 1-inch well decommissioning
Table B.3	Bi-Weekly Well Gauging Data 9/16/09
Table B.4	Bi-Weekly Well Gauging Data 10/07/09
Table B.5	Bi-Weekly Well Gauging Data 10/27/09
Table B.6	Bi-Weekly Well Gauging Data 11/20/09
Table B.7	Bi-Weekly Well Gauging Data 12/4/09
Table B.8	Bi-Weekly Well Gauging Data 12/15/09
Table B.9	Bi-Weekly Well Gauging Data 12/28/09
Table B.10	Bi-Weekly Well Gauging Data 1/12/10
Table B.11	Bi-Weekly Well Gauging Data 1/25/10
Table B.12	Bi-Weekly Well Gauging Data 3/2/10
Table B.13	Bi-Weekly Well Gauging Data 3/24/10
Table B.14	Bi-Weekly Well Gauging Data 4/6/10
Table B.15	Bi-Weekly Well Gauging Data 4/24/10
Table B.16	Bi-Weekly Well Gauging Data 5/10/10
Table B.17	Bi-Weekly Well Gauging Data 5/25/10

- Table B.18 Bi-Weekly Well Gauging Data 6/10/10
 Table B.19 Bi-Weekly Well Gauging Data 6/24/10
 Table B.20 Bi-Weekly Well Gauging Data 7/07/10
 Table B.21 Bi-Weekly Well Gauging Data 3/17/11
 Table B.22 Bi-Weekly Well Gauging Data 3/31/11
 Table B.23 Bi-Weekly Well Gauging Data 6/17/11
- Appendix C Analytical Laboratory Data
- Lab Data C.1 Groundwater Monitoring Wells
- Lab Data C.2 Product Sampling
- Lab Data C.3 Stream Surface Water
- Lab Data C.4 Stream Bottom Sediment
- Lab Data C.5 Domestic Water Wells
- Lab Data C.6 Demolition Building Materials
- **Appendix D LIF Report and LIF Boring Logs**
- Appendix E Geophysical Survey Report
- Appendix F UST Exploratory Excavation Report and UST Closure Report
- Appendix G Soil Boring Logs

Appendix A Figures

Historical Topographic Map

TARGET QUAD

NAME: COCKEYSVILLE

MAP YEAR: 1986

PHOTOREVISED FROM:1957

SERIES: 7.5 SCALE: 1:24000 SITE NAME: Stebbins-Burnham

ADDRESS: 2724 Spring Hill Road

Owings Mills, MD 21117 LAT/LONG: 39.4068 / 76.7423 CLIENT: Chesapeake GeoScience Inc

CONTACT: Debbie Daniel INQUIRY#: 2625629.4 RESEARCH DATE: 10/29/2009

Appendix B Tables

JOB NAME: STEBBINS-BURNHAM SURVEY DATE: JANUARY 4-5, 2010

PT. NO.	NORTHING	EASTING	ELEV TOP PVC	ELEV @ GRD	LATITUDE	LONGITUDE	WELL
361	633969.909	1385142.150	403.17	401.97	39°24'25.636"N	76°44'32.396"W	GB-1
358	633995.874	1385136.580	402.12	400.32	39°24'25.893"N	76°44'32.466"W	GB-2
367	633995.425	1385088.715	402.66	401.93	39°24'25.889"N	76°44'33.076"W	GB-3
383	633931.304	1385086.328	404.53	403.55	39°24'25.256"N	76°44'33.108"W	GB-5
473	633853.580	1385131.379	405.80	405.80	39°24'24.486"N	76°44'32.537"W	GB-6
222	633957.600	1385179.374	402.05	400.96	39°24'25.513"N	76°44'31.922"W	GB-7
437	633999.521	1385209.673	402.47	399.32	39°24'25.927"N	76°44'31.534"W	GB-8
258	634002.833	1385177.550	400.18	398.98	39°24'25.960"N	76°44'31.944"W	GB-9
223	633922.098	1385186.794	403.72	402.45	39°24'25.162"N	76°44'31.829"W	GB-10
254	633993.279	1385271.845	401.52	400.02	39°24'25.863"N	76°44'30.743"W	GB-11
263	634053.816	1385249.887	399.90	397.40	39°24'26.462"N	76°44'31.020"W	GB-12
265	634093.136	1385229.432	399.59	396.59	39°24'26.851"N	76°44'31.279"W	GB-13
274	634087.217	1385177.363	397.04	396.59	39°24'26.794"N	76°44'31.943"W	GB-14
379	633910.663	1385115.331	405.21	404.08	39°24'25.051"N	76°44'32.740"W	GB-15
365	633962.253	1385099.548	403.44	402.98	39°24'25.561"N	76°44'32.939"W	GB-16
377	633961.469	1385064.655	403.92	403.01	39°24'25.554"N	76°44'33.383"W	GB-17
376	633974.704	1385030.046	402.85	402.32	39°24'25.686"N	76°44'33.824"W	GB-18B
368	633997.705	1385054.272	402.68	401.95	39°24'25.913"N	76°44'33.514"W	GB-19
385	633933.139	1385045.806	404.63	403.47	39°24'25.275"N	76°44'33.624"W	GB-20
339	633999.696	1385021.689	401.84	401.29	39°24'25.933"N	76°44'33.929"W	GB-21
364	633956.779	1385116.546	404.28	403.24	39°24'25.507"N	76°44'32.722"W	GB-22
275	634070.267	1385151.416	400.33	396.85	39°24'26.627"N	76°44'32.274"W	GB-25
378	633938.715	1385112.969	406.08	404.34	39°24'25.328"N	76°44'32.769"W	GB-26
237	634064.270	1385346.450	399.96	397.49	39°24'26.563"N	76°44'29.790"W	GB-27
220	633938.518	1385220.596	403.81	402.33	39°24'25.323"N	76°44'31.397"W	GB-28
332	634038.371	1385113.776	400.53	398.69	39°24'26.313"N	76°44'32.755"W	GB-29
384	633906.016	1385085.697	404.37	404.37	39°24'25.006"N	76°44'33.117"W	GB-30 (NO STICKUP)
225	633928.934	1385156.837	402.97	402.00	39°24'25.230"N	76°44'32.210"W	GB-31
267	634121.441	1385255.603	398.71	395.26	39°24'27.130"N	76°44'30.945"W	GB-32
472	633835.774	1385127.549	410.08	406.39	39°24'24.310"N	76°44'32.587"W	GB-33
236	634023.384	1385311.449	398.91	398.91	39°24'26.160"N	76°44'30.237"W	GB-34 (NO STICKUP)
266	634113.137	1385232.594	396.92	395.44	39°24'27.049"N	76°44'31.238"W	GB-34B
374	633953.898	1385041.974	403.20	403.20	39°24'25.480"N	76°44'33.673"W	GB-35 (NO STICKUP)

JOB NAME: STEBBINS-BURNHAM SURVEY DATE: JANUARY 4-5, 2010

PT. NO.	NORTHING	EASTING	ELEV TOP PVC	ELEV @ GRD	LATITUDE	LONGITUDE	WELL
330	634103.748	1385088.930	399.72	396.60	39°24'26.960"N	76°44'33.069"W	GB-35B
273	634187.240	1385183.390	397.27	393.96	39°24'27.783"N	76°44'31.863"W	GB-36
253	633952.015	1385260.209	401.51	401.51	39°24'25.456"N	76°44'30.892"W	GB-36B (NO STICKUP)
327	634256.224	1385124.316	394.09	394.09	39°24'28.466"N	76°44'32.613"W	GB-37 (NO STICKUP)
328	634153.974	1385179.513	396.20	394.16	39°24'27.454"N	76°44'31.913"W	GB-38
250	634035.038	1385286.518	400.68	398.95	39°24'26.275"N	76°44'30.554"W	GB-39
395	633875.974	1385055.636	407.64	404.92	39°24'24.710"N	76°44'33.501"W	GB-40
456	633792.335	1385078.552	410.42	407.70	39°24'23.882"N	76°44'33.212"W	GB-41
343	633981.590	1385017.487		401.64	39°24'25.755"N	76°44'33.984"W	LIF-1
369	633979.972	1385055.068		402.30	39°24'25.738"N	76°44'33.505"W	LIF-2
370	633961.877	1385048.219		402.65	39°24'25.559"N	76°44'33.593"W	LIF-3
371	633976.245	1385082.635		402.17	39°24'25.700"N	76°44'33.154"W	LIF-4
372	633961.042	1385080.807		402.53	39°24'25.550"N	76°44'33.178"W	LIF-5
373	633941.104	1385079.699		402.97	39°24'25.353"N	76°44'33.192"W	LIF-6
257	633964.808	1385153.737		400.93	39°24'25.585"N	76°44'32.248"W	LIF-7
224	633933.305	1385158.059		401.86	39°24'25.274"N	76°44'32.194"W	LIF-8
256	633939.282	1385182.895		401.83	39°24'25.332"N	76°44'31.878"W	LIF-9
255	633979.895	1385229.856		400.32	39°24'25.732"N	76°44'31.278"W	LIF-10
221	633955.199	1385227.089		401.24	39°24'25.488"N	76°44'31.314"W	LIF-11
252	633964.189	1385285.034		401.18	39°24'25.575"N	76°44'30.576"W	LIF-12
251	634012.030	1385283.125		399.39	39°24'26.048"N	76°44'30.598"W	LIF-13
235	634037.436	1385313.941		398.28	39°24'26.298"N	76°44'30.205"W	LIF-14
231	634082.195	1385304.846		396.58	39°24'26.741"N	76°44'30.319"W	LIF-15
232	634092.695	1385346.167		396.53	39°24'26.844"N	76°44'29.792"W	LIF-16
234	634050.066	1385361.708		397.95	39°24'26.422"N	76°44'29.596"W	LIF-17
233	634061.924	1385332.141		397.57	39°24'26.540"N	76°44'29.972"W	LIF-18
268	634106.098	1385275.003		396.42	39°24'26.978"N	76°44'30.698"W	LIF-19
262	634074.375	1385246.947		396.70	39°24'26.665"N	76°44'31.057"W	LIF-20
264	634092.076	1385236.107		396.42	39°24'26.841"N	76°44'31.194"W	LIF-21
260	634006.482	1385202.221		398.84	39°24'25.996"N	76°44'31.629"W	LIF-22
261	634034.046	1385203.228		397.53	39°24'26.268"N	76°44'31.615"W	LIF-23
259	634006.613	1385162.692		399.02	39°24'25.998"N	76°44'32.133"W	LIF-24
276	634042.855	1385157.872		397.61	39°24'26.356"N	76°44'32.193"W	LIF-25

JOB NAME: STEBBINS-BURNHAM SURVEY DATE: JANUARY 4-5, 2010

PT. NO.	NORTHING	EASTING	ELEV TOP PVC	ELEV @ GRD	LATITUDE	LONGITUDE	WELL
359		1385116.133		400.95	39°24'25.954"N	76°44'32.726"W	LIF-26
279	634115.603	1385304.165		396.36	39°24'27.071"N	76°44'30.326"W	LIF-27
230	634125.276	1385343.317		395.88	39°24'27.166"N	76°44'29.827"W	LIF-28
335		1385034.820			39°24'26.188"N	76°44'33.761"W	LIF-29
334		1385058.513		399.55	39°24'26.128"N	76°44'33.459"W	LIF-30
333		1385097.886		400.24	39°24'26.077"N	76°44'32.958"W	LIF-31
277	634023.690	1385127.654		398.83	39°24'26.168"N	76°44'32.578"W	LIF-32
331	634048.505	1385115.865		398.23	39°24'26.413"N	76°44'32.728"W	LIF-33
386	633943.305	1385050.107		403.26	39°24'25.375"N	76°44'33.569"W	LIF-34
466	633801.824	1385100.701		407.45	39°24'23.976"N	76°44'32.930"W	LIF-35
455	633796.709	1385078.076		407.69	39°24'23.926"N	76°44'33.218"W	LIF-36
472G	633835.774	1385127.549		406.39	39°24'24.310"N	76°44'32.587"W	LIF-37
435	633831.341	1385105.202		406.27	39°24'24.267"N	76°44'32.871"W	LIF-38
402	633828.443	1385007.027		405.86	39°24'24.241"N	76°44'34.122"W	LIF-39
401	633827.181	1385029.246		405.88	39°24'24.228"N	76°44'33.839"W	LIF-40
431	633797.716	1385059.615		407.19	39°24'23.936"N	76°44'33.453"W	LIF-41
429	633834.684	1385078.802		406.14	39°24'24.301"N	76°44'33.208"W	LIF-42
461	633796.178	1385127.236		407.18	39°24'23.919"N	76°44'32.592"W	LIF-43
216	633870.433	1385159.823		405.43	39°24'24.652"N	76°44'32.174"W	LIF-44
269	634146.698	1385256.111		394.77	39°24'27.380"N	76°44'30.937"W	LIF-45
266G	634113.137	1385232.594		395.44	39°24'27.049"N	76°44'31.238"W	LIF-46
270	634119.298	1385199.340		394.97	39°24'27.111"N	76°44'31.662"W	LIF-47
271	634138.065	1385193.525		394.26	39°24'27.296"N	76°44'31.735"W	LIF-48
272	634157.230	1385206.708		393.94	39°24'27.485"N	76°44'31.567"W	LIF-49
50	634233.519	1385218.948		393.29	39°24'28.239"N	76°44'31.408"W	LIF-50
278	634107.820	1385155.124		396.11	39°24'26.998"N	76°44'32.225"W	LIF-51
329	634101.620	1385120.843		396.70	39°24'26.938"N	76°44'32.662"W	LIF-52
375	633942.998	1385025.788		403.11	39°24'25.373"N	76°44'33.879"W	LIF-53
101	633760.125	1384996.057	406.52	407.15	39°24'23.566"N	76°44'34.265"W	MW-1
403	633846.074	1385000.579	404.98	405.56	39°24'24.416"N	76°44'34.204"W	MW-3
362	633956.072	1385139.837	406.09	407.35	39°24'25.499"N	76°44'32.426"W	MW-5
438	633994.926	1385205.635	402.32	399.40	39°24'25.881"N	76°44'31.586"W	RW-1

STREAM GAUGE REPORT

JOB NAME: STEBBINS-BURNHAM SURVEY DATE: JANUARY 4-5, 2010

PT. NO.	NORTHING	EASTING	ELEV. TOP GAUGE	ELEV. BOT. GAUGE	LATITUDE	LONGITUDE	GAUGE
280	634261.586	1385341.592	392.59	388.59	39°24'28.513"N	76°44'29.844"W	#1
302	634304.632	1385173.005	395.10	391.10	39°24'28.943"N	76°44'31.991"W	#2

JOB NAME: STEBBINS-BURNHAM SURVEY DATE: MARCH 4, 2011

	NORTHING		ELEV. TOP PVC	ELEV. @ GRD	LATITUDE	LONGITUDE	WELL
236SO	634023.391				39°24'26.160"N	76°44'30.237"W	GB34 CHK @ GRD
253SO	633952.052	1385260.209		401.48	39°24'25.456"N	76°44'30.892"W	GB36B CHK @ GRD
254SO	633993.457	1385271.828		400.40	39°24'25.865"N	76°44'30.743"W	GB11 CHK @ GRD
258SO	634002.748			398.92	39°24'25.959"N	76°44'31.945"W	GB9 CHK @ GRD
263SO	634053.796			397.08	39°24'26.462"N	76°44'31.020"W	GB12 CHK @ GRD
273SO	634187.179	THE STATE OF STATE OF THE STATE	397.35		39°24'27.782"N	76°44'31.863"W	GB36 CHK @ TOP
274SO	634087.197	1385177.356	397.04		39°24'26.794"N	76°44'31.943"W	GB14 CHK @ TOP
275SO	634070.358		400.31		39°24'26.628"N	76°44'32.278"W	GB25 CHK @ TOP
280CHK	634261.638		392.63		39°24'28.513"N	76°44'29.846"W	GAUGE1 CHK
302CHK	634304.603		395.11		39°24'28.943"N	76°44'31.992"W	GAUGE2 CHK
327SO	634256.242	1385124.316		393.76	39°24'28.466"N	76°44'32.613"W	GB37 CHK @ GRD
364SO	633956.787	1385116.553			39°24'25.507"N	76°44'32.722"W	GB22 CHK @ GRD
374SO	633953.917	1385041.973			39°24'25.480"N	76°44'33.673"W	GB35 CHK @ GRD
377SO	633961.517	1385064.673		403.01	39°24'25.555"N	76°44'33.383"W	GB17 CHK @ GRD
385SO	633933.163	1385045.775	404.60		39°24'25.275"N	76°44'33.625"W	GB20 CHK @ TOP
395SO	633876.024	1385055.641	407.63		39°24'24.710"N	76°44'33.501"W	GB40 CHK @ TOP
437SO	633999.503	1385209.659			39°24'25.926"N	76°44'31.535"W	GB8 CHK @ GRD
473SO	633853.582	1385131.365	405.79		39°24'24.486"N	76°44'32.537"W	GB6 CHK @ TOP
626G	634193.386	1385222.153	393.06		39°24'27.842"N	76°44'31.368"W	MW626 BA-95-3694
627G	634147.047	1385267.999	394.26		39°24'27.383"N	76°44'30.786"W	MW627 BA-95-3695
628G	634096.874	1385325.033	396.41		39°24'26.885"N	76°44'30.061"W	MW628 BA-95-3692
629G	634081.148	1385363.075	396.52		39°24'26.729"N	76°44'29.577"W	MW629 BA-95-3691
630G	634028.943	1385316.504	398.18		39°24'26.214"N	76°44'30.172"W	MW630 BA-95-3690
631G	634062.911	1385331.644	396.93		39°24'26.550"N	76°44'29.978"W	MW631 BA-95-3689
632G	634081.992	1385266.206	396.23		39°24'26.740"N	76°44'30.811"W	MW632 BA-95-3677
633G	634143.772	1385214.312	393.47		39°24'27.352"N	76°44'31.470"W	MW633 BA-95-3693
634G	634122.497	1385173.763	394.40		39°24'27.143"N	76°44'31.987"W	MW634 BA-95-3687
635G	634087.608	1385216.972	395.70		39°24'26.797"N	76°44'31.438"W	MW635 BA-95-3686
636G	634048.164	1385195.841	396.60		39°24'26.408"N	76°44'31.709"W	MW636 BA-95-3685
637G	634024.080	1385236.131	398.64		39°24'26.169"N	76°44'31.196"W	MW637 BA-95-3684
638G	633984.820	1385286.856	400.37		39°24'25.779"N	76°44'30.552"W	MW638 BA-95-3688
639G	633982.156	1385228.312	399.74		39°24'25.754"N	76°44'31.298"W	MW639 BA-95-3683
640G	634015.581	1385161.582	398.06		39°24'26.087"N	76°44'32.147"W	MW640 BA-95-3682
641G	634045.056	1385085.908	398.49		39°24'26.380"N	76°44'33.110"W	MW641 BA-95-3676
642G	633983.692	1385018.796	401.13		39°24'25.775"N	76°44'33.967"W	MW642 NO TAG
643G	633995.696	1385078.810	401.83	402.25	39°24'25.892"N	76°44'33.202"W	MW643 BA-95-3674

WELL LOCATION REPORT JOB NAME: STEBBINS-BURNHAM

SURVEY DATE: MARCH 4, 2011

644G	633985.875	1385130.272	401.15	401.68	39°24'25.794"N	76°44'32.546"W	MW644 BA-95-3675
645G	633970.437	1385172.794	399.66	400.36	39°24'25.640"N	76°44'32.005"W	MW645 BA-95-3680
646G	633928.108	1385220.053	402.04	402.20	39°24'25.220"N	76°44'31.405"W	MW646 BA-95-3679
647G	633951.885	1385112.252	402.91	403.43	39°24'25.458"N	76°44'32.777"W	MW647 BA-95-3681
648G	634117.455	1385232.724	394.80	395.36	39°24'27.091"N	76°44'31.236"W	MW648 BA-95-3678

Stebbins Burnham Site Run Date: 7/8/2010

Inventory List of Wells, Boring Locations for Surveying

Date of Professional Land Survey: Jan 4-5, 2010

tions for Surveying (previous Handex wells in blue)

		-,	
LIF locations	1-inch Well locations		4-inch Well locations
L- 1	GB- 1		MW- 1
L- 2	GB- 2		MW- 2 missing
L- 3	GB- 3		MW- 3
L- 4	GB- 4 missing or	destroyed	MW- 4 missing
L- 5	GB- 5		MW- 5
L- 6	GB- 6 well w. no	stickup to-date	
L- 7	GB- 7		
L- 8	GB- 8 stickup alte		6-inch Recovery Well
L- 9	GB- 9 stickup alte	ered	RW- 1
L- 10	GB- 10		
L- 11	GB- 11		
L- 12	GB- 12 stickup alte	ered	CGS 2/4-inch Monitoring Wells
L- 13	GB- 13		not yet installed
L- 14		y 0.45' to-date	
L- 15	GB- 15		
L- 16	GB- 16		
L- 17	GB- 17		
L- 18	GB- 18		
L- 19	GB- 19		
L- 20	GB- 20 stickup alte	ered	
L- 21	GB- 21	,	
L- 22	GB- 22 stickup alte		
L- 23	GB- 23 boring only	, no well	
L- 24	GB- 24 destroyed	ana al	
L- 25	GB- 25 stickup alte	erea	
L- 26	GB- 26		
L- 27	GB- 27		
L- 28	GB- 28		
L- 29	GB- 29	ma wall	
L- 30	GB- 30 boring only GB- 31	, no well	
L- 31 L- 32	GB- 31		
L- 32 L- 33	GB- 32 well casing	intalled into LIE-37	
L- 34	GB- 34 boring only		
L- 35	GB- 34B well casing		
L- 36		, no well; 11/17/2009	
L- 37	GB- 35B	12/18/2009	
L- 38	GB- 36	12/18/2009	
L- 39	GB- 36B boring only		
L- 40	GB- 37 boring only		
L- 41	GB- 38	,	
L- 42	GB- 39		
L- 43	GB- 40		
L- 44	GB- 41		
L- 45			
L- 46			
L- 47			
L- 48			
L- 49			
L- 50			
L- 51			
L- 52			
L- 53			

Stebbins Burnham Site Well Screen Intervals From Boring Logs (previous Handex wells in blue)

\	Well Screen Inter	, val			Well 9	Screen Interval	
	sured in feet belo		minal Well			in feet below grade)	Nominal Well
`		J ,	ng Diameter	Well ID#	-		Casing Diameter
GB- 1 no	specs no	specs	1-inch	MW- 1	19.6	no specs	4-inch
GB- 2 no	specs no	specs	1-inch	MW- 2	missing or o	destroyed	
GB- 3 no	specs no	specs	1-inch	MW- 3	17.3	no specs	4-inch
GB- 4 missing	g or destroyed			MW- 4	missing or o	destroyed	
	specs no	specs	1-inch	MW- 5	22.8	no specs	4-inch
		specs	1-inch				
	18.0	3.0	1-inch	RW- 1	13.3	3.3	6-inch
	20.0	5.0	1-inch				
	20.0	5.0	1-inch				
	16.0	6.0	1-inch				
	14.0	4.0	1-inch				
	20.0	5.0	1-inch				
	14.0	4.0	1-inch				
	16.0	6.0	1-inch				
	14.0	4.0	1-inch				
	20.0	5.0	1-inch				
	16.0 16.0	1.0 1.0	1-inch 1-inch				
	16.0	1.0	1-inch				
	15.0	0.0	1-inch				
	16.0	1.0	1-inch				
	16.0	1.0	1-inch				
	l here (boring onl		1 111011				
	stroyed	"					
	10.0	0.0	1-inch				
	10.5	0.5	1-inch				
	17.5	2.5	1-inch				
	19.0	4.0	1-inch				
GB- 29	15.0	0.5	1-inch				
GB- 30 no well	I here (boring only	y)					
GB- 31	19.0	4.0	1-inch				
GB- 32	16.0	1.0	1-inch				
GB- 33	15.5	0.5	1-inch	no log; GB-33 is	well casing i	installed into LIF-37	
	I here (boring only						
_	(installed in LIF-4		1-inch				
	I here (boring only	• /					
	17.0	2.0	1-inch				
	12.0	2.0	1-inch				
	I here (boring only						
	I here (boring only	• /	1 in als				
	12.0	2.0	1-inch				
		0.50	1-inch				
		0.50	1-inch				
GB- 41 1	16.00	1.00	1-inch				

Stebbins Burnham Site

L- 51 L- 52 L- 53

June 2011 Inventory List of Wells after installation of 4-inch CGS wells and afer de-commissioning of several temporary 1-inch wells (previous Handex wells in blue)

Date of Professional Land Survey: March 4, 2011

LIF locations	1-inch V	Vell locations	4-inch Wells Installed by Handex
L- 1	GB- 1	Removed and borehole sealed	MW- 1
L- 2	GB- 2	Removed and borehole sealed	MW- 2 missing or destroyed
L- 3	GB- 3	LEFT IN PLACE	MW- 3
L- 4	GB- 4	missing or destroyed	MW- 4 missing or destroyed
L- 5	GB- 5	Removed and borehole sealed	MW- 5
L- 6	GB- 6	Removed and borehole sealed	
L- 7	GB- 7	Removed and borehole sealed	
L- 8	GB- 8	Removed and borehole sealed	6-inch Recovery Well
L- 9	GB- 9	Removed and borehole sealed	RW- 1
L- 10	GB- 10	Removed and borehole sealed	
L- 11	GB- 11	Removed and borehole sealed	
L- 12	GB- 12	Removed and borehole sealed	CGS 4-inch Monitoring Wells
L- 13	GB- 13	Removed and borehole sealed	MW- 626
L- 14	GB- 14	Removed and borehole sealed	MW- 627
L- 15	GB- 15	Removed and borehole sealed	MW- 628
L- 16	GB- 16		MW- 629
L- 17	GB- 17	Removed and borehole sealed	MW- 630
L- 18	GB- 18	Removed and borehole sealed	MW- 631
L- 19	GB- 19	LEFT IN PLACE	MW- 632
L- 20	GB- 20	Removed and borehole sealed	MW- 633
L- 21	GB- 21	Removed and borehole sealed	MW- 634
L- 22	GB- 22	Removed and borehole sealed	MW- 635
L- 23	GB- 23	boring only, no well	MW- 636
L- 24	GB- 24	destroyed	MW- 637
L- 25	GB- 25	LEFT IN PLACE	MW- 638
L- 26	GB- 26	LEFT IN PLACE	MW- 639
L- 27		LEFT IN PLACE	MW- 640
L- 28	GB- 28	Removed and borehole sealed	MW- 641
L- 29	GB- 29	Removed and borehole sealed	MW- 642
L- 30	GB- 30	boring only, no well	MW- 643
L- 31	GB- 31	LEFT IN PLACE	MW- 644
L- 32	GB- 32	Removed and borehole sealed	MW- 645
L- 33	GB- 33	Removed and borehole sealed	
L- 34	GB- 34	boring only, no well	MW- 646
L- 35		Removed and borehole sealed	MW- 647
L- 36		boring only, no well; 11/17/2009	MW- 648
L- 37		Removed and borehole sealed	
L- 38		LEFT IN PLACE	
L- 39	Total NEVEL		
L- 40		B boring only, no well; 11/17/2009	
	GB- 37	boring only, no well	
L- 41	GB- 38	Removed and borehole sealed	
L- 42		Removed and borehole sealed	
L- 43	GB- 40	Removed and borehole sealed	
L- 44	GB- 41	Removed and borehole sealed	
L- 45			
L- 46			
L- 47			
L- 48			
L- 49			
L- 50			

MDE-OCP/Stebbins-Burnham Property (03-1335BA) 2724 Spring Hill Road Owings Mills, Maryland CGS Project No. CG-09-0399

Monitoring Well/Piezometer Gauging Date: 9/16/09 PM

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1	TOPVC		6.17	0.00	19.6	4	406.52	407.15		400.35	
MW-2	TOPVC				NG	4					Under gravel/dirt cover?
MW-3	TOPVC		7.08	0.00	17.3	4	404.98	405.56		397.90	
MW-5	TOPVC	13.79	13.82	0.03	22.8	4	406.09	407.35	392.30	392.27	
GB-1	TOPVC	10.69	15.48	4.79	19.7	1	403.17	401.97	392.48	387.69	
GB-2	TOPVC	8.23	8.78	0.55	12.8	1	402.12	400.32	393.89	393.34	
GB-3	TOPVC	9.38	18.54	9.16	19.2	1	402.66	401.93	393.28	384.12	
GB-5	TOPVC		10.27	0.00	16.5	1	404.53	403.55		394.26	
GB-6	TOPVC		9.96	0.00	14.6	1	405.80	405.80		395.84	
GB-7	TOPVC	9.57	14.11	4.54	19.2	1	402.05	400.96	392.48	387.94	
GB-8	TOPVC	7.48	11.49	4.01	17.1	1					
GB-9	TOPVC	6.26	6.46	0.20	19.8	1					
GB-10	TOPVC		10.22	0.00	16.9	1	403.72	402.45		393.50	
GB-11	TOPVC	9.67	11.31	1.64	15.1	1	401.52	400.02	391.85	390.21	
GB-12	TOPVC	5.48	8.74	3.26	19.3	1					
GB-13	TOPVC		8.21	0.00	13.9	1	399.59	396.59		391.38	
GB-14	TOPVC		5.31	0.00	14.0	1	397.04	396.59		391.73	
GB-15	TOPVC		10.76	0.00	15.3	1	405.21	404.08		394.45	
GB-16	TOPVC	10.68	13.14	2.46	19.3	1	403.44	402.98	392.76	390.30	
GB-17	TOPVC		5.68	0.00	10.0	1	403.92	403.01		398.24	
GB-18	TOPVC		8.06	0.00	15.0	1	402.85	402.32		394.79	
GB-19	TOPVC	8.13	15.34	7.21	16.2	1	402.68	401.95	394.55	387.34	
GB-20	TOPVC		7.96	0.00	15.9	1					
GB-21	TOPVC		7.83	0.00	14.9	1	401.84	401.29		394.01	
GB-22	TOPVC	11.01	12.56	1.55	14.6	1					
GB-24	TOPVC				10.3	1					Destroyed
GB-25	TOPVC		5.71	0.00	9.3	1					
GB-26	TOPVC	12.78	14.96	2.18	21.1	1	406.08	404.34	393.30	391.12	
RW-1	TOPVC	10.46	11.44	0.98	16.3	6"	402.32	399.40	391.86	390.88	

MDE-OCP/Stebbins-Burnham Property (03-1335BA) 2724 Spring Hill Road Owings Mills, Maryland CGS Project No. CG-08-0399

Monitoring Well/Piezometer Gauging Date: 10/07/09 AM

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1	TOPVC		7.38	0.00	19.6	4	406.52	407.15		399.14	
MW-2	TOPVC	_			NG	4					Under gravel/dirt cover?
MW-3	TOPVC		7.46	0.00	17.3	4	404.98	405.56		397.52	
MW-5	TOPVC	14.33	14.68	0.35	22.8	4	406.09	407.35	391.76	391.41	
GB-1	TOPVC	10.94	16.38	5.44	19.7	1	403.17	401.97	392.23	386.79	
GB-2	TOPVC	10.12	10.49	0.37	12.8	1	402.12	400.32	392.00	391.63	
GB-3	TOPVC	9.68	18.98	9.30	19.2	1	402.66	401.93	392.98	383.68	
GB-5	TOPVC		10.68	0.00	16.5	1	404.53	403.55		393.85	
GB-6	TOPVC		10.42	0.00	14.6	1	405.80	405.80		395.38	
GB-7	TOPVC	9.88	14.48	4.60	19.2	1	402.05	400.96	392.17	387.57	
GB-8	TOPVC	7.94	11.68	3.74	17.1	1					
GB-9	TOPVC	7.37	7.50	0.13	19.8	1					
GB-10	TOPVC		10.59	0.00	16.9	1	403.72	402.45		393.13	
GB-11	TOPVC	10.08	11.51	1.43	15.1	1	401.52	400.02	391.44	390.01	
GB-12	TOPVC	5.73	9.67	3.94	19.3	1					
GB-13	TOPVC		8.52	0.00	13.9	1	399.59	396.59		391.07	
GB-14	TOPVC		5.71	0.00	14.0	1	397.04	396.59		391.33	
GB-15	TOPVC		11.14	0.00	15.3	1	405.21	404.08		394.07	
GB-16	TOPVC	11.04	13.98	2.94	19.3	1	403.44	402.98	392.40	389.46	
GB-17	TOPVC		8.14	0.00	10.0	1	403.92	403.01		395.78	
GB-18	TOPVC		8.54	0.00	15.0	1	402.85	402.32		394.31	
GB-19	TOPVC	8.76	15.58	6.82	16.2	1	402.68	401.95	393.92	387.10	
GB-20	TOPVC		8.40	0.00	15.9	1					
GB-21	TOPVC		7.77	0.00	14.9	1	401.84	401.29		394.07	
GB-22	TOPVC	11.16	14.68	3.52	14.6	1					
GB-24	TOPVC				10.3	1					Destroyed
GB-25	TOPVC		5.97	0.00	9.3	1					-
GB-26	TOPVC	13.13	15.66	2.53	21.1	1	406.08	404.34	392.95	390.42	
RW-1	TOPVC	10.89	11.56	0.67	16.3	6"	402.32	399.40	391.43	390.76	

MDE-OCP/Stebbins-Burnham Property (03-1335BA) 2724 Spring Hill Road Owings Mills, Maryland CGS Project No. CG-08-0399

Monitoring Well/Piezometer Gauging Date: 10/27 & 28/09

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1	TOPVC		4.89	0.00	19.6	4	406.52	407.15		401.63	
MW-2	TOPVC				NG	4					Under gravel/dirt cover?
MW-3	TOPVC		6.30	0.00	17.3	4	404.98	405.56		398.68	
MW-5	TOPVC	12.62	12.95	0.33	22.8	4	406.09	407.35	393.47	393.14	
GB-1	TOPVC	8.09	12.78	4.69	19.7	1	403.17	401.97	395.08	390.39	
GB-2	TOPVC	7.39	8.46	1.07	12.8	1	402.12	400.32	394.73	393.66	
GB-3	TOPVC	7.84	18.04	10.20	19.2	1	402.66	401.93	394.82	384.62	
GB-5	TOPVC		9.47	0.00	16.5	1	404.53	403.55		395.06	
GB-6	TOPVC		9.24	0.00	14.6	1	405.80	405.80		396.56	
GB-7	TOPVC	8.17	13.45	5.28	19.2	1	402.05	400.96	393.88	388.60	
GB-8	TOPVC	6.14	7.94	1.80	17.1	1					
GB-9	TOPVC	0.60	0.84	0.24	19.8	1					
GB-10	TOPVC		9.48	0.00	16.9	1	403.72	402.45		394.24	
GB-11	TOPVC	7.53	9.78	2.25	15.1	1	401.52	400.02	393.99	391.74	
GB-12	TOPVC	3.98	7.87	3.89	19.3	1					
GB-13	TOPVC		6.82	0.00	13.9	1	399.59	396.59		392.77	
GB-14	TOPVC		1.77	0.00	14.0	1	397.04	396.59		395.27	
GB-15	TOPVC		9.35	0.00	15.3	1	405.21	404.08		395.86	
GB-16	TOPVC	9.04	11.24	2.20	19.3	1	403.44	402.98	394.40	392.20	
GB-17	TOPVC		4.71	0.00	10.0	1	403.92	403.01		399.21	
GB-18	TOPVC		6.18	0.00	15.0	1	402.85	402.32		396.67	
GB-19	TOPVC	6.48	15.04	8.56	16.2	1	402.68	401.95	396.20	387.64	
GB-20	TOPVC		6.18	0.00	15.9	1					
GB-21	TOPVC		6.09	0.00	14.9	1	401.84	401.29		395.75	
GB-22	TOPVC	9.52	11.28	1.76	14.6	1					
GB-24	TOPVC				10.3	1					Destroyed
GB-25	TOPVC		0.07	0.00	9.3	1					
GB-26	TOPVC	11.17	12.18	1.01	21.1	1	406.08	404.34	394.91	393.90	
RW-1	TOPVC	8.75	9.08	0.33	16.3	6"	402.32	399.40	393.57	393.24	

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 11/20/09 AM

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1	TOPVC		5.98	0.00	19.6	4	406.52	407.15		400.54	
MW-2	TOPVC				NG	4					Under gravel/dirt cover?
MW-3	TOPVC		6.15	0.00	17.3	4	404.98	405.56		398.83	
MW-5	TOPVC	12.21	12.32	0.11	22.8	4	406.09	407.35	393.88	393.77	
GB-1	TOPVC	9.99	13.87	3.88	19.7	1	403.17	401.97	393.18	389.30	
GB-2	TOPVC	8.90	9.10	0.20	12.8	1	402.12	400.32	393.22	393.02	
GB-3	TOPVC	8.53	18.13	9.60	19.2	1	402.66	401.93	394.13	384.53	
GB-5	TOPVC		9.54	0.00	16.5	1	404.53	403.55		394.99	
GB-6	TOPVC		9.25	0.00	14.6	1	405.80	405.80		396.55	
GB-7	TOPVC	8.94	13.83	4.89	19.2	1	402.05	400.96	393.11	388.22	
GB-8	TOPVC	9.60	13.32	3.72	17.1	1					
GB-9	TOPVC	5.59	5.89	0.30	19.8	1					
GB-10	TOPVC		9.68	0.00	16.9	1	403.72	402.45		394.04	
GB-11	TOPVC	8.44	10.34	1.90	15.1	1	401.52	400.02	393.08	391.18	
GB-12	TOPVC	7.20	11.28	4.08	19.3	1					
GB-13	TOPVC		7.14	0.00	13.9	1	399.59	396.59		392.45	
GB-14	TOPVC		2.64	0.00	14.0	1	397.04	396.59		394.40	
GB-15	TOPVC		9.34	0.00	15.3	1	405.21	404.08		395.87	
GB-16	TOPVC	9.84	13.21	3.37	19.3	1	403.44	402.98	393.60	390.23	
GB-17	TOPVC		7.12	0.00	10.0	1	403.92	403.01		396.80	
GB-18	TOPVC		6.94	0.00	15.0	1	402.85	402.32		395.91	
GB-19	TOPVC	7.37	15.48	8.11	16.2	1	402.68	401.95	395.31	387.20	
GB-20	TOPVC		7.90	0.00	15.9	1					
GB-21	TOPVC		6.39	0.00	14.9	1	401.84	401.29		395.45	
GB-22	TOPVC	10.98	13.03	2.05	14.6	1					
GB-24	TOPVC	-			10.3	1					Destroyed
GB-25	TOPVC		3.73	0.00	9.3	1					
GB-26	TOPVC	12.07	14.83	2.76	21.1	1	406.08	404.34	394.01	391.25	
RW-1	TOPVC	9.50	9.72	0.22	16.3	6"	402.32	399.40	392.82	392.60	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 11/20/09

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
GB-27	TOPVC		9.68	0.00	18.55	1	399.96	397.49		390.28	
GB-28	TOPVC	10.89	13.28	2.39	19.05	1	403.81	402.33	392.92	390.53	
GB-29	TOPVC	_	2.87	0.00	15.74	1	400.53	398.69		397.66	
GB-31	TOPVC		9.34	0.00	20.1	1	402.97	402.00		393.63	
GB-32	TOPVC	5.98	12.98	7.00	19.05	1	398.71	395.26	392.73	385.73	

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 12/4/09 PM

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1	TOPVC		4.42	0.00	19.6	4	406.52	407.15		402.10	
MW-2	TOPVC	-			NG	4					Under gravel/dirt cover?
MW-3	TOPVC		6.02	0.00	17.3	4	404.98	405.56		398.96	
MW-5	TOPVC	10.64	10.86	0.22	22.8	4	406.09	407.35	395.45	395.23	
GB-1	TOPVC	9.89	13.56	3.67	19.7	1	403.17	401.97	393.28	389.61	
GB-2	TOPVC	8.65	9.29	0.64	12.8	1	402.12	400.32	393.47	392.83	
GB-3	TOPVC	8.47	18.27	9.80	19.2	1	402.66	401.93	394.19	384.39	
GB-5	TOPVC		9.24	0.00	16.5	1	404.53	403.55		395.29	
GB-6	TOPVC		8.82	0.00	14.6	1	405.80	405.80		396.98	
GB-7	TOPVC	8.68	13.74	5.06	19.2	1	402.05	400.96	393.37	388.31	
GB-8	TOPVC	9.28	14.04	4.76	17.1	1					
GB-9	TOPVC	5.64	5.71	0.07	19.8	1					
GB-10	TOPVC		9.37	0.00	16.9	1	403.72	402.45		394.35	
GB-11	TOPVC	8.66	10.54	1.88	15.1	1	401.52	400.02	392.86	390.98	
GB-12	TOPVC	6.88	11.08	4.20	19.3	1	_				
GB-13	TOPVC		6.98	0.00	13.9	1	399.59	396.59		392.61	
GB-14	TOPVC		2.63	0.00	14.0	1	397.04	396.59		394.41	
GB-15	TOPVC		10.54	0.00	15.3	1	405.21	404.08		394.67	
GB-16	TOPVC	9.70	12.96	3.26	19.3	1	403.44	402.98	393.74	390.48	
GB-17	TOPVC				10.0	1	403.92	403.01		_	Bailer stuck in well
GB-18	TOPVC		6.68	0.00	15.0	1	402.85	402.32		396.17	
GB-19	TOPVC	7.19	15.18	7.99	16.2	1	402.68	401.95	395.49	387.50	
GB-20	TOPVC		8.08	0.00	15.9	1					
GB-21	TOPVC		6.25	0.00	14.9	1	401.84	401.29		395.59	
GB-22	TOPVC	10.79	12.89	2.10	14.6	1					
GB-24	TOPVC				10.3	1					Destroyed
GB-25	TOPVC		3.72	0.00	9.3	1					
GB-26	TOPVC	11.73	14.97	3.24	21.1	1	406.08	404.34	394.35	391.11	
RW-1	TOPVC	9.24	9.46	0.22	16.3	6"	402.32	399.40	393.08	392.86	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 12/04/09

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
GB-27	TOPVC		8.48	0.00	18.55	1	399.96	397.49		391.48	
GB-28	TOPVC	10.53	13.74	3.21	19.05	1	403.81	402.33	393.28	390.07	
GB-29	TOPVC		2.94	0.00	15.74	1	400.53	398.69		397.59	
GB-31	TOPVC		9.08	0.00	20.1	1	402.97	402.00		393.89	
GB-32	TOPVC	5.65	14.03	8.38	19.05	1	398.71	395.26	393.06	384.68	

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 12/15/09 PM

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1	TOPVC		4.22	0.00	19.6	4	406.52	407.15		402.30	
MW-2	TOPVC				NG	4					Under gravel/dirt cover?
MW-3	TOPVC		5.84	0.00	17.3	4	404.98	405.56		399.14	
MW-5	TOPVC	10.93	11.14	0.21	22.8	4	406.09	407.35	395.16	394.95	
GB-1	TOPVC	9.68	13.61	3.93	19.7	1	403.17	401.97	393.49	389.56	
GB-2	TOPVC	8.53	9.13	0.60	12.8	1	402.12	400.32	393.59	392.99	
GB-3	TOPVC	8.26	18.06	9.80	19.2	1	402.66	401.93	394.40	384.60	
GB-5	TOPVC		9.00	0.00	16.5	1	404.53	403.55		395.53	
GB-6	TOPVC		8.56	0.00	14.6	1	405.80	405.80		397.24	
GB-7	TOPVC	8.44	14.13	5.69	19.2	1	402.05	400.96	393.61	387.92	
GB-8	TOPVC	9.04	14.06	5.02	17.1	1					
GB-9	TOPVC	4.06	4.20	0.14	19.8	1					
GB-10	TOPVC		9.13	0.00	16.9	1	403.72	402.45		394.59	
GB-11	TOPVC	8.36	10.56	2.20	15.1	1	401.52	400.02	393.16	390.96	
GB-12	TOPVC	6.64	11.34	4.70	19.3	1	_				
GB-13	TOPVC		6.84	0.00	13.9	1	399.59	396.59		392.75	
GB-14	TOPVC		2.54	0.00	14.0	1	397.04	396.59		394.50	
GB-15	TOPVC		9.38	0.00	15.3	1	405.21	404.08		395.83	
GB-16	TOPVC	9.44	12.58	3.14	19.3	1	403.44	402.98	394.00	390.86	
GB-17	TOPVC				10.0	1	403.92	403.01			BAILER STUCK IN WELL
GB-18	TOPVC		6.54	0.00	15.0	1	402.85	402.32		396.31	
GB-19	TOPVC	6.88	15.60	8.72	16.2	1	402.68	401.95	395.80	387.08	
GB-20	TOPVC		7.86	0.00	15.9	1					
GB-21	TOPVC		6.28	0.00	14.9	1	401.84	401.29		395.56	
GB-22	TOPVC	10.67	12.63	1.96	14.6	1					
GB-24	TOPVC				10.3	1					Destroyed
GB-25	TOPVC		3.74	0.00	9.3	1					
GB-26	TOPVC	11.56	14.32	2.76	21.1	1	406.08	404.34	394.52	391.76	
RW-1	TOPVC	11.08	11.26	0.18	16.3	6"	402.32	399.40	391.24	391.06	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 12/15/09

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
GB-27	TOPVC		7.73	0.00	18.55	1	399.96	397.49		392.23	
GB-28	TOPVC	10.22	14.04	3.82	19.05	1	403.81	402.33	393.59	389.77	
GB-29	TOPVC		2.90	0.00	15.74	1	400.53	398.69		397.63	
GB-31	TOPVC		8.98	0.00	20.1	1	402.97	402.00		393.99	
GB-32	TOPVC	5.39	14.42	9.03	19.05	1	398.71	395.26	393.32	384.29	
GB-33	TOPVC		12.57				410.08	406.39		397.51	
GB-34	TOPVC	4.11	11.68	7.57			396.92	406.39	392.81	385.24	
GB-35	TOPVC		7.27	0.00			399.72	395.44		392.45	
GB-36	TOPVC		5.04	0.00			397.27	393.96		392.23	
GB-38	TOPVC		4.28	0.00			396.20	394.16		391.92	
GB-39	TOPVC		8.42	0.00			400.68	398.95		392.26	_
GB-40	TOPVC		10.29	0.00			407.64	404.92		397.35	_
GB-41	TOPVC		10.86	0.00			410.42	407.70		399.56	

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 12/28/2009 PM

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1	TOPVC		3.94	0.00	19.6	4	406.52	407.15		402.58	
MW-2	TOPVC				NG	4					Under gravel/dirt cover?
MW-3	TOPVC		5.40	0.00	17.3	4	404.98	405.56		399.58	
MW-5	TOPVC	9.66	9.89	0.23	22.8	4	406.09	407.35	396.43	396.20	
GB-1	TOPVC	9.37	12.97	3.60	19.7	1	403.17	401.97	393.80	390.20	
GB-2	TOPVC		8.14	0.00	12.8	1	402.12	400.32	402.12	393.98	
GB-3	TOPVC	7.93	17.93	10.00	19.2	1	402.66	401.93	394.73	384.73	
GB-5	TOPVC		8.56	0.00	16.5	1	404.53	403.55		395.97	
GB-6	TOPVC		7.92	0.00	14.6	1	405.80	405.80		397.88	
GB-7	TOPVC	8.08	13.96	5.88	19.2	1	402.05	400.96	393.97	388.09	
GB-8	TOPVC	8.77	13.26	4.49	17.1	1					
GB-9	TOPVC	5.18	5.32	0.14	19.8	1					
GB-10	TOPVC		8.65	0.00	16.9	1	403.72	402.45		395.07	
GB-11	TOPVC	7.86	10.21	2.35	15.1	1	401.52	400.02	393.66	391.31	
GB-12	TOPVC	6.18	10.64	4.46	19.3	1					
GB-13	TOPVC		6.68	0.00	13.9	1	399.59	396.59		392.91	
GB-14	TOPVC		2.74	0.00	14.0	1	397.04	396.59		394.30	
GB-15	TOPVC		8.70	0.00	15.3	1	405.21	404.08		396.51	
GB-16	TOPVC	9.14	11.48	2.34	19.3	1	403.44	402.98	394.30	391.96	
GB-17	TOPVC	-			10.0	1	403.92	403.01			Bailer stuck in well
GB-18	TOPVC		6.21	0.00	15.0	1	402.85	402.32		396.64	
GB-19	TOPVC	6.53	15.58	9.05	16.2	1	402.68	401.95	396.15	387.10	
GB-20	TOPVC		7.48	0.00	15.9	1					
GB-21	TOPVC		7.61	0.00	14.9	1	401.84	401.29		394.23	
GB-22	TOPVC	10.27	11.76	1.49	14.6	1					
GB-24	TOPVC				10.3	1					Destroyed
GB-25	TOPVC		3.72	0.00	9.3	1					
GB-26	TOPVC	11.33	12.58	1.25	21.1	1	406.08	404.34	394.75	393.50	
AST	TOPVC	4.24	4.26	0.02	4.32 (DTB)	AST	402.32	399.40	398.08	398.06	Rim of Sched 80 PVC is reference
RW-1	TOPVC	8.72	8.92	0.20	16.3	6"	402.32	399.40	398.08	398.06	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 12/28/2009

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
GB-27	TOPVC		6.64	0.00	18.55	1	399.96	397.49		393.32	
GB-28	TOPVC	9.88	13.84	3.96	19.05	1	403.81	402.33	393.93	389.97	
GB-29	TOPVC		3.09	0.00	15.74	1	400.53	398.69		397.44	
GB-31	TOPVC		8.44	0.00	20.1	1	402.97	402.00		394.53	
GB-32	TOPVC	5.18	14.38	9.20	19.05	1	398.71	395.26	393.53	384.33	
GB-33	TOPVC		11.66	0.00	19.36	1	410.08	406.39		398.42	
GB-34	TOPVC	3.44	9.58	6.14	13.08	1	396.92	406.39	393.48	387.34	
GB-35	TOPVC		6.26	0.00	18.39	1	399.72	395.44		393.46	
GB-36	TOPVC		4.94	0.00	12.97	1	397.27	393.96		392.33	
GB-38	TOPVC		3.77	0.00	12.35	1	396.20	394.16		392.43	
GB-39	TOPVC		7.68	0.00	17.20	1	400.68	398.95		393.00	
GB-40	TOPVC		9.24	0.00	18.28	1	407.64	404.92		398.40	
GB-41	TOPVC		10.46	0.00	21.76	1	410.42	407.70		399.96	

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 1/12/10 AM

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
MW-1	TOPVC		6.53	0.00	19.6	4	406.52	407.15		399.99	399.99	
MW-2	TOPVC				NG	4						Under gravel/dirt cover?
MW-3	TOPVC		6.68	0.00	17.3	4	404.98	405.56		398.30	398.30	
MW-5	TOPVC	13.68	13.74	0.06	22.8	4	406.09	407.35	392.41	392.35	392.40	
GB-1	TOPVC	10.48	14.89	4.41	19.7	1	403.17	401.97	392.69	388.28	392.03	
GB-2	TOPVC	9.68	10.10	0.42	12.8	1	402.12	400.32	392.44	392.02	392.38	
GB-3	TOPVC	9.18	18.18	9.00	19.2	1	402.66	401.93	393.48	384.48	392.13	
GB-5	TOPVC		9.98	0.00	16.5	1	404.53	403.55		394.55	394.55	
GB-6	TOPVC		9.63	0.00	14.6	1	405.80	405.80		396.17	396.17	
GB-7	TOPVC	9.42	13.96	4.76	19.2	1	402.05	400.96	392.63	388.09	392.14	
GB-8	TOPVC	10.02	14.26	4.24	17.1	1						
GB-9	TOPVC	8.07	8.19	0.12	19.8	1						
GB-10	TOPVC		10.07	0.00	16.9	1	403.72	402.45		393.65	393.65	
GB-11	TOPVC	9.49	11.07	1.58	15.1	1	401.52	400.02	392.03	390.45	391.79	
GB-12	TOPVC	7.53	11.48	3.95	19.3	1						
GB-13	TOPVC		7.92	0.00	13.9	1	399.59	396.59		391.67	391.67	
GB-14	TOPVC		4.78	0.00	14.0	1	397.04	396.59		392.26	392.26	
GB-15	TOPVC		10.48	0.00	15.3	1	405.21	404.08		394.73	394.73	
GB-16	TOPVC	10.48	13.34	2.86	19.3	1	403.44	402.98	392.96	390.10	392.53	
GB-17	TOPVC		8.52	0.00	10.0	1	403.92	403.01		395.40	395.40	
GB-18	TOPVC		7.78	0.00	15.0	1	402.85	402.32		395.07	395.07	
GB-19	TOPVC	7.86	15.84	7.98	16.2	1	402.68	401.95	394.82	386.84	393.62	
GB-20	TOPVC		9.03	0.00	15.9	1						
GB-21	TOPVC		7.09	0.00	14.9	1	401.84	401.29		394.75	394.75	
GB-22	TOPVC	11.34	14.88	3.54	14.6	1						
GB-24	TOPVC				10.3	1						Destroyed
GB-25	TOPVC		4.99	0.00	9.3	1						
GB-26	TOPVC	12.54	15.04	2.50	21.1	1	406.08	404.34	393.54	391.04	393.17	
AST	TOPVC	A little	e ice at the b	ottom	4.32 (DTB)	AST						Rim of Sched 80 PVC is reference
RW-1	TOPVC	10.26	11.06	0.80	16.3	6"	402.32	399.40	392.06	391.26	391.94	System off (Planned)

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 1/12/10

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
GB-27	TOPVC	9.98	10.02	0.04	18.55	1	399.96	397.49	389.98	389.94	389.97	First reading of product here
GB-28	TOPVC	11.17	14.08	2.91	19.05	1	403.81	402.33	392.64	389.73	392.20	
GB-29	TOPVC		4.30	0.00	15.74	1	400.53	398.69		396.23	396.23	
GB-31	TOPVC		9.60	0.00	20.1	1	402.97	402.00		393.37	393.37	
GB-32	TOPVC	6.54	13.03	6.49	19.05	1	398.71	395.26	392.17	385.68	391.20	
GB-33	TOPVC	—	13.03	0.00	19.36	1	410.08	406.39		397.05	397.05	Installed in LIF Boring-no log
GB-34B	TOPVC	4.84	11.27	6.43	13.08	1	396.92	406.39	392.08	385.65	391.12	Installed in LIF Boring-no log
GB-35B	TOPVC		7.38	0.00	18.39	1	399.72	395.44		392.34	392.34	
GB-36	TOPVC		5.93	0.00	12.97	1	397.27	393.96		391.34	391.34	
GB-38	TOPVC		4.82	0.00	12.35	1	396.20	394.16		391.38	391.38	
GB-39	TOPVC		8.84	0.00	17.20	1	400.68	398.95		391.84	391.84	
GB-40	TOPVC		10.68	0.00	18.28	1	407.64	404.92		396.96	396.96	
GB-41	TOPVC		12.08	0.00	21.76	1	410.42	407.70		398.34	398.34	

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 1/25/2010

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
MW-1	TOPVC		3.74	0.00	19.6	4	406.52	407.15		402.78	402.78	
MW-2	TOPVC				NG	4						Under gravel/dirt cover?
MW-3	TOPVC		5.31	0.00	17.3	4	404.98	405.56		399.67	399.67	
MW-5	TOPVC	8.13	8.44	0.31	22.8	4	406.09	407.35	397.96	397.65	397.91	
GB-1	TOPVC	8.14	12.84	4.70	19.7	1	403.17	401.97	395.03	390.33	394.33	
GB-2	TOPVC	6.78	7.38	0.60	12.8	1	402.12	400.32	395.34	394.74	395.25	
GB-3	TOPVC	8.07	18.08	10.01	19.2	1	402.66	401.93	394.59	384.58	393.09	
GB-5	TOPVC		8.74	0.00	16.5	1	404.53	403.55		395.79	395.79	
GB-6	TOPVC		8.11	0.00	14.6	1	405.80	405.80		397.69	397.69	
GB-7	TOPVC	8.34	13.96	5.62	19.2	1	402.05	400.96	393.71	388.09	392.87	
GB-8	TOPVC	7.11	9.74	2.63	17.1	1						
GB-9	TOPVC	2.42	2.54	0.12	19.8	1						
GB-10	TOPVC		8.94	0.00	16.9	1	403.72	402.45		394.78	394.78	
GB-11	TOPVC	6.34	9.86	3.52	15.1	1	401.52	400.02	395.18	391.66	394.65	
GB-12	TOPVC	6.53	10.96	4.43	19.3	1						
GB-13	TOPVC		6.37	0.00	13.9	1	399.59	396.59		393.22	393.22	
GB-14	TOPVC		2.12	0.00	14.0	1	397.04	396.59		394.92	394.92	
GB-15	TOPVC		8.01	0.00	15.3	1	405.21	404.08		397.20	397.20	
GB-16	TOPVC	8.64	10.76	2.12	19.3	1	403.44	402.98	394.80	392.68	394.48	
GB-17	TOPVC		6.15	0.00	10.0	1	403.92	403.01		397.77	397.77	
GB-18	TOPVC		6.19	0.00	15.0	1	402.85	402.32		396.66	396.66	
GB-19	TOPVC	6.47	15.47	9.00	16.2	1	402.68	401.95	396.21	387.21	394.86	
GB-20	TOPVC		6.79	0.00	15.9	1						
GB-21	TOPVC		4.64	0.00	14.9	1	401.84	401.29		397.20	397.20	
GB-22	TOPVC	10.18	12.72	2.54	14.6	1						
GB-24	TOPVC				10.3	1						Destroyed
GB-25	TOPVC		3.79	0.00	9.3	1						
GB-26	TOPVC	11.32	12.92	1.60	21.1	1	406.08	404.34	394.76	393.16	394.52	
AST	TOPVC	4.18	4.28	0.10	4.32 (DTB)	AST						Rim of Sched 80 PVC is reference
RW-1	TOPVC	8.65	9.45	0.80	16.3	6"	402.32	399.40	393.67	392.87	393.55	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 1/25/2010

I.D.	Reference Point	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Curtose (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
GB-27	TOPVC		8.47	0.00	18.55	1	399.96	397.49		391.49	391.49	
GB-28	TOPVC	10.45	13.46	3.01	19.05	1	403.81	402.33	393.36	390.35	392.91	
GB-29	TOPVC		3.79	0.00	15.74	1	400.53	398.69		396.74	396.74	
GB-31	TOPVC		9.18	0.00	20.1	1	402.97	402.00		393.79	393.79	
GB-32	TOPVC	5.45	13.77	8.32	19.05	1	398.71	395.26	393.26	384.94	392.01	
GB-33	TOPVC		11.84	0.00	19.36	1	410.08	406.39		398.24	398.24	Installed in LIF Boring-no log
GB-34B	TOPVC	3.87	11.68	7.81	13.08	1	396.92	406.39	393.05	385.24	391.88	Installed in LIF Boring-no log
GB-35B	TOPVC		5.71	0.00	18.39	1	399.72	395.44		394.01	394.01	
GB-36	TOPVC		4.81	0.00	12.97	1	397.27	393.96		392.46	392.46	
GB-38	TOPVC		3.81	0.00	12.35	1	396.20	394.16		392.39	392.39	
GB-39	TOPVC		7.78	0.00	17.20	1	400.68	398.95		392.90	392.90	
GB-40	TOPVC		9.41	0.00	18.28	1	407.64	404.92		398.23	398.23	
GB-41	TOPVC		10.11	0.00	21.76	1	410.42	407.70		400.31	400.31	
SG-1 (E)	TOPVC		2.67				392.59	388.59		389.92	389.92	East Stream Gauge
SG-2 (W)	TOPVC		1.19				395.10	391.10		393.91	393.91	West Stream Gauge

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 3/2/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)		Comments
MW-1	-			19.6	4	406.52	407.15					Could not locate (snow)
MW-2				NG	4							- Under gravel/dirt cover?
MW-3				17.3	4	404.98	405.56				-	Could not locate (snow)
MW-5	9.80	10.04	0.24	22.8	4	406.09	407.35	396.29	396.05	396.25		
GB-1	9.27	12.74	3.47	19.7	1	403.17	401.97	393.90	390.43	393.38		
GB-2	4.80	5.39	0.59	12.8	1	402.12	400.32	397.32	396.73	397.23		
GB-3	8.28	18.28	10.00	19.2	1	402.66	401.93	394.38	384.38	392.88		
GB-5		8.78	0.00	16.5	1	404.53	403.55		395.75	395.75		
GB-6		8.38	0.00	14.6	1	405.80	405.80		397.42	397.42		
GB-7	8.40	14.07	5.67	19.2	1	402.05	400.96	393.65	387.98	392.80		
GB-8	8.79	10.62	1.83	17.1	1							
GB-9	2.50	2.65	0.15	19.8	1							
GB-10		8.97	0.00	16.9	1	403.72	402.45		394.75	394.75		
GB-11	7.77	10.38	2.61	15.1	1	401.52	400.02	393.75	391.14	393.36		
GB-12	6.52	11.14	4.62	19.3	1							
GB-13		6.66	0.00	13.9	1	399.59	396.59		392.93	392.93		
GB-14		2.06	0.00	14.0	1	397.04	396.59		394.98	394.98		
GB-15		9.02	0.00	15.3	1	405.21	404.08		396.19	396.19		
GB-16	9.15	11.46	2.31	19.3	1	403.44	402.98	394.29	391.98	393.94		
GB-17		3.51	0.00	10.0	1	403.92	403.01		400.41	400.41		
GB-18	-			15.0	1	402.85	402.32				*	Could not locate (snow)
GB-19	6.68	15.66	8.98	16.2	1	402.68	401.95	396.00	387.02	394.65		
GB-20		7.24	0.00	15.9	1							
GB-21		5.12	0.00	14.9	1	401.84	401.29		396.72	396.72		
GB-22	10.45	12.70	2.25	14.6	1							
GB-24				10.3	1							Destroyed
GB-25		3.68	0.00	9.3	1							
GB-26	11.49	13.68	2.19	21.1	1	406.08	404.34	394.59	392.40	394.26		
AST	4.13	None	0.19	4.32 (DTB)	AST						Rim	of Sched 80 PVC is reference
RW-1	9.69	10.74	1.05	16.3	6"	402.32	399.40	392.63	391.58	392.47		

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 3/2/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
GB-27		7.72	0.00	18.55	1	399.96	397.49		392.24	392.24	
GB-28	10.25	13.47	3.22	19.05	1	403.81	402.33	393.56	390.34	393.08	
GB-29		3.18	0.00	15.74	1	400.53	398.69		397.35	397.35	
GB-31		9.13	0.00	20.1	1	402.97	402.00		393.84	393.84	
GB-32	5.42	14.41	8.99	19.05	1	398.71	395.26	393.29	384.30	391.94	
GB-33	11.81	11.83	0.02	19.36	1	410.08	406.39	398.27	398.25	398.27	Installed in LIF Boring-no log
GB-34B	3.94	9.68	5.74	13.08	1	396.92	406.39	392.98	387.24	392.12	Installed in LIF Boring-no log
GB-35B		6.08	0.00	18.39	1	399.72	395.44		393.64	393.64	
GB-36		4.77	0.00	12.97	1	397.27	393.96		392.50	392.50	
GB-38		3.88	0.00	12.35	1	396.20	394.16		392.32	392.32	
GB-39		7.95	0.00	17.20	1	400.68	398.95		392.73	392.73	
GB-40		9.60	0.00	18.28	1	407.64	404.92		398.04	398.04	
GB-41		10.49	0.00	21.76	1	410.42	407.70		399.93	399.93	
SG-1 (E)		1.83	0.00			392.59	388.59		390.76	390.76	East Stream Gauge
SG-2 (W)		1.82	0.00			395.10	391.10		393.28	393.28	West Stream Gauge

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 3/24/10 AM

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
MW-1		5.31	0.00	19.6	4	406.52	407.15		401.21	401.21	
MW-2	-			NG	4						Under gravel/dirt cover?
MW-3		6.15	0.00	17.3	4	404.98	405.56		398.83	398.83	
MW-5	12.38	12.52	0.14	22.8	4	406.09	407.35	393.71	393.57	393.69	
GB-1	10.03	13.14	3.11	19.7	1	403.17	401.97	393.14	390.03	392.67	
GB-2	4.74	5.04	0.30	12.8	1	402.12	400.32	397.38	397.08	397.34	
GB-3	8.61	18.44	9.83	19.2	1	402.66	401.93	394.05	384.22	392.58	
GB-5		9.26	0.00	16.5	1	404.53	403.55		395.27	395.27	
GB-6		9.02	0.00	14.6	1	405.80	405.80		396.78	396.78	
GB-7	8.84	14.09	5.25	19.2	1	402.05	400.96	393.21	387.96	392.42	
GB-8	9.44	13.34	3.90	17.1	1						
GB-9	4.86	4.95	0.09	19.8	1	_					
GB-10		9.46	0.00	16.9	1	403.72	402.45		394.26	394.26	
GB-11	8.98	10.24	1.26	15.1	1	401.52	400.02	392.54	391.28	392.35	
GB-12	7.09	10.86	3.77	19.3	1						
GB-13		7.17	0.00	13.9	1	399.59	396.59		392.42	392.42	
GB-14		2.34	0.00	14.0	1	397.04	396.59		394.70	394.70	
GB-15		9.78	0.00	15.3	1	405.21	404.08		395.43	395.43	
GB-16	9.94	12.64	2.70	19.3	1	403.44	402.98	393.50	390.80	393.10	
GB-17		6.77	0.00	10.0	1	403.92	403.01		397.15	397.15	
GB-18		6.69	0.00	15.0	1	402.85	402.32		396.16	396.16	
GB-19	7.33	15.64	8.31	16.2	1	402.68	401.95	395.35	387.04	394.10	
GB-20		8.41	0.00	15.9	1						
GB-21		5.17	0.00	14.9	1	401.84	401.29		396.67	396.67	
GB-22	10.78	14.48	3.70	14.6	1						
GB-24				10.3	1						Destroyed
GB-25		3.88	0.00	9.3	1						
GB-26		14.31	0.00	21.1	1	406.08	404.34	406.08	391.77	391.77	
AST	4.08	4.17	0.09	4.32 (DTB)	AST						Rim of Sched 80 PVC is reference
RW-1	9.26	10.48	1.22	16.3	6"	402.32	399.40	393.06	391.84	392.88	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 3/24/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
GB-27	8.96	9.02	0.06	18.55	1	399.96	397.49	391.00	390.94	390.99	Product back in well
GB-28	10.64	13.94	3.30	19.05	1	403.81	402.33	393.17	389.87	392.68	
GB-29		3.78	0.00	15.74	1	400.53	398.69		396.75	396.75	
GB-31		9.25	0.00	20.1	1	402.97	402.00		393.72	393.72	
GB-32	5.86	14.01	8.15	19.05	1	398.71	395.26	392.85	384.70	391.63	
GB-33		12.47	0.00	19.36	1	410.08	406.39		397.61	397.61	Installed in LIF Boring-no log
GB-34B	4.06	11.86	7.80	13.08	1	396.92	406.39	392.86	385.06	391.69	Installed in LIF Boring-no log
GB-35B		6.77	0.00	18.39	1	399.72	395.44		392.95	392.95	
GB-36		4.94	0.00	12.97	1	397.27	393.96		392.33	392.33	
GB-38		4.16	0.00	12.35	1	396.20	394.16		392.04	392.04	
GB-39		8.32	0.00	17.20	1	400.68	398.95		392.36	392.36	
GB-40		10.15	0.00	18.28	1	407.64	404.92		397.49	397.49	
GB-41		11.37	0.00	21.76	1	410.42	407.70		399.05	399.05	
SG-1 (E)		1.73				392.59	388.59		390.86	390.86	East Stream Gauge
SG-2 (W)		0.76		-		395.10	391.10		394.34	394.34	West Stream Gauge

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 4/6/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1		5.87	0.00	19.6	4	406.52	407.15		400.65	
MW-2				NG	4					——— Under gravel/dirt cover?
MW-3		6.34	0.00	17.3	4	404.98	405.56		398.64	
MW-5	12.93	13.08	0.15	22.8	4	406.09	407.35	393.16	393.01	
GB-1	10.10	13.51	3.41	19.7	1	403.17	401.97	393.07	389.66	
GB-2	8.08	8.64	0.56	12.8	1	402.12	400.32	394.04	393.48	
GB-3	8.68	18.56	9.88	19.2	1	402.66	401.93	393.98	384.10	
GB-5		9.61	0.00	16.5	1	404.53	403.55		394.92	
GB-6		9.24	0.00	14.6	1	405.80	405.80		396.56	
GB-7	8.98	14.36	5.38	19.2	1	402.05	400.96	393.07	387.69	
GB-8	9.61	14.24	4.63	17.1	1					
GB-9	7.48	7.59	0.11	19.8	1					
GB-10		9.64	0.00	16.9	1	403.72	402.45		394.08	
GB-11	9.12	10.58	1.46	15.1	1	401.52	400.02	392.40	390.94	
GB-12	7.26	11.08	3.82	19.3	1					
GB-13		7.51	0.00	13.9	1	399.59	396.59		392.08	
GB-14		3.68	0.00	14.0	1	397.04	396.59		393.36	
GB-15		9.97	0.00	15.3	1	405.21	404.08		395.24	
GB-16	10.08	12.95	2.87	19.3	1	403.44	402.98	393.36	390.49	
GB-17		7.38	0.00	10.0	1	403.92	403.01		396.54	
GB-18		7.07	0.00	15.0	1	402.85	402.32		395.78	
GB-19	7.44	15.68	8.24	16.2	1	402.68	401.95	395.24	387.00	
GB-20		8.60	0.00	15.9	1					
GB-21		6.14	0.00	14.9	1	401.84	401.29		395.70	
GB-22	10.85	15.13	4.28	14.6	1					
GB-24				10.3	1					Destroyed
GB-25		4.04	0.00	9.3	1					
GB-26	12.20	14.38	2.18	21.1	1	406.08	404.34	393.88	391.70	
AST	4.02	4.19	0.17	4.32 (DTB)	AST					Rim of Sched 80 PVC is reference
RW-1	9.71	10.87	1.16	16.3	6"	402.32	399.40	392.61	391.45	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 4/6/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
GB-27	9.39	9.69	0.30	18.55	1	399.96	397.49	390.57	390.27	
GB-28	10.81	13.88	3.07	19.05	1	403.81	402.33	393.00	389.93	
GB-29		4.23	0.00	15.74	1	400.53	398.69		396.30	
GB-31		9.39	0.00	20.1	1	402.97	402.00		393.58	
GB-32	5.97	14.08	8.11	19.05	1	398.71	395.26	392.74	384.63	
GB-33		12.63	0.00	19.36	1	410.08	406.39		397.45	Installed in LIF Boring-no log
GB-34B	4.22	11.88	7.66	13.08	1	396.92	406.39	392.70	385.04	Installed in LIF Boring-no log
GB-35B		7.02	0.00	18.39	1	399.72	395.44		392.70	
GB-36		5.22	0.00	12.97	1	397.27	393.96		392.05	
GB-38		4.35	0.00	12.35	1	396.20	394.16		391.85	
GB-39		8.51	0.00	17.20	1	400.68	398.95		392.17	
GB-40		10.32	0.00	18.28	1	407.64	404.92		397.32	
GB-41	11.71	11.72	0.01	21.76	1	410.42	407.70		398.70	
SG-1 (E)		1.73				392.59	388.59		390.86	East Stream Gauge
SG-2 (W)		1.78				395.10	391.10		393.32	West Stream Gauge

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 4/24/10 AM

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1		6.78	0.00	19.6	4	406.52	407.15		399.74	
MW-2	-			NG	4					Under gravel/dirt cover?
MW-3		6.76	0.00	17.3	4	404.98	405.56		398.22	
MW-5	13.94	14.04	0.10	22.8	4	406.09	407.35	392.15	392.05	
GB-1	10.54	15.19	4.65	19.7	1	403.17	401.97	392.63	387.98	
GB-2		9.74	0.00	12.8	1	402.12	400.32	402.12	392.38	
GB-3	9.24	18.96	9.72	19.2	1	402.66	401.93	393.42	383.70	
GB-5		10.10	0.00	16.5	1	404.53	403.55		394.43	
GB-6		9.78	0.00	14.6	1	405.80	405.80		396.02	
GB-7	9.44	14.08	4.64	19.2	1	402.05	400.96	392.61	387.97	
GB-8	10.13	14.28	4.15	17.1	1					
GB-9	8.26	8.44	0.18	19.8	1					
GB-10		10.13	0.00	16.9	1	403.72	402.45		393.59	
GB-11	9.54	11.08	1.54	15.1	1	401.52	400.02	391.98	390.44	
GB-12	7.74	11.59	3.85	19.3	1					
GB-13		8.04	0.00	13.9	1	399.59	396.59		391.55	
GB-14		5.24	0.00	14.0	1	397.04	396.59		391.80	
GB-15		10.56	0.00	15.3	1	405.21	404.08		394.65	
GB-16	10.62	13.16	2.54	19.3	1	403.44	402.98	392.82	390.28	
GB-17		9.38	0.00	10.0	1	403.92	403.01		394.54	
GB-18		7.58	0.00	15.0	1	402.85	402.32		395.27	
GB-19	8.03	15.68	7.65	16.2	1	402.68	401.95	394.65	387.00	
GB-20		9.18	0.00	15.9	1					
GB-21		7.26	0.00	14.9	1	401.84	401.29		394.58	
GB-22	11.38	15.60	4.22	14.6	1					
GB-24				10.3	1					Destroyed
GB-25		7.54	0.00	9.3	1					
GB-26	12.76	14.48	1.72	21.1	1	406.08	404.34	393.32	391.60	
AST	4.01	4.24	0.23	4.32 (DTB)	AST					Rim of Sched 80 PVC is reference
RW-1	10.32	11.72	1.40	16.3	6"	402.32	399.40	392.00	390.60	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 4/24/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thicknes s (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
GB-27	10.36	11.28	0.92	18.55	1	399.96	397.49	389.60	388.68	Significant Increase
GB-28	11.32	14.04	2.72	19.05	1	403.81	402.33	392.49	389.77	
GB-29		8.14	0.00	15.74	1	400.53	398.69		392.39	
GB-31		9.87	0.00	20.1	1	402.97	402.00		393.10	
GB-32	6.56	13.08	6.52	19.05	1	398.71	395.26	392.15	385.63	
GB-33	13.13	13.14	0.01	19.36	1	410.08	406.39		396.94	
GB-34B	4.68	11.48	6.80	13.08	1	396.92	406.39	392.24	385.44	
GB-35B		7.56	0.00	18.39	1	399.72	395.44		392.16	
GB-36		8.07	0.00	12.97	1	397.27	393.96		389.20	
GB-38		4.87	0.00	12.35	1	396.20	394.16		391.33	
GB-39		8.94	0.00	17.20	1	400.68	398.95		391.74	
GB-40		10.86	0.00	18.28	1	407.64	404.92		396.78	
GB-41		12.23	0.00	21.76	1	410.42	407.70		398.19	
SG-1 (E)	1.	63				392.59	388.59		392.59	
SG-2 (W)	0.	74				395.10	391.10		395.10	

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 5/10/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1		6.78	0.00	19.6	4	406.52	407.15		399.74	
MW-2				NG	4					——— Under gravel/dirt cover?
MW-3		6.77	0.00	17.3	4	404.98	405.56		398.21	
MW-5	13.84	13.85	0.01	22.8	4	406.09	407.35	392.25	392.24	
GB-1	*_	10.58	0.00	19.7	1	403.17	401.97	#VALUE!	392.59	*Checked w bailer, no product
GB-2	9.54	9.57	0.03	12.8	1	402.12	400.32	392.58	392.55	
GB-3	9.22	18.89	9.67	19.2	1	402.66	401.93	393.44	383.77	
GB-5		10.13	0.00	16.5	1	404.53	403.55		394.40	
GB-6		9.82	0.00	14.6	1	405.80	405.80		395.98	
GB-7	9.53	14.08	4.55	19.2	1	402.05	400.96	392.52	387.97	
GB-8	10.19	14.24	4.05	17.1	1					
GB-9	8.32	8.42	0.10	19.8	1					
GB-10		10.14	0.00	16.9	1	403.72	402.45		393.58	
GB-11	9.56	11.68	2.12	15.1	1	401.52	400.02	391.96	389.84	
GB-12	7.78	11.47	3.69	19.3	1					
GB-13		8.41	0.00	13.9	1	399.59	396.59		391.18	
GB-14		5.30	0.00	14.0	1	397.04	396.59		391.74	
GB-15		10.84	0.00	15.3	1	405.21	404.08		394.37	
GB-16	10.66	13.14	2.48	19.3	1	403.44	402.98	392.78	390.30	
GB-17		8.78	0.00	10.0	1	403.92	403.01		395.14	
GB-18		7.85	0.00	15.0	1	402.85	402.32		395.00	
GB-19	8.05	15.65	7.60	16.2	1	402.68	401.95	394.63	387.03	
GB-20		9.18	0.00	15.9	1					
GB-21		7.32	0.00	14.9	1	401.84	401.29		394.52	
GB-22	11.42	15.48	4.06	14.6	1					
GB-24				10.3	1					Destroyed
GB-25		8.13	0.00	9.3	1					
GB-26	12.77	14.45	1.68	21.1	1	406.08	404.34	393.31	391.63	
AST	3.98	4.18	0.20	4.32 (DTB)	AST					Rim of Sched 80 PVC is reference
RW-1	10.32	10.76	0.44	16.3	6"	402.32	399.40	392.00	391.56	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 5/10/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
GB-27	10.32	11.24	0.92	18.55	1	399.96	397.49	389.64	388.72	
GB-28	11.34	14.12	2.78	19.05	1	403.81	402.33	392.47	389.69	
GB-29		8.21	0.00	15.74	1	400.53	398.69		392.32	
GB-31		9.95	0.00	20.1	1	402.97	402.00		393.02	
GB-32	6.74	13.04	6.30	19.05	1	398.71	395.26	391.97	385.67	
GB-33		13.18	0.00	19.36	1	410.08	406.39		396.90	Installed in LIF Boring-no log
GB-34B	4.75	11.47	6.72	13.08	1	396.92	406.39	392.17	385.45	Installed in LIF Boring-no log
GB-35B		5.58	0.00	18.39	1	399.72	395.44		394.14	
GB-36		6.27	0.00	12.97	1	397.27	393.96		391.00	
GB-38		4.96	0.00	12.35	1	396.20	394.16		391.24	
GB-39		8.98	0.00	17.20	1	400.68	398.95		391.70	
GB-40		10.88	0.00	18.28	1	407.64	404.92		396.76	
GB-41	12.23	12.24	0.01	21.76	1	410.42	407.70		398.18	
SG-1 (E)	1.	62				392.59	388.59		392.59	East Stream Gauge
SG-2 (W)	0.	75				395.10	391.10		395.10	West Stream Gauge

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 5/25/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1		6.55	0.00	19.6	4	406.52	407.15		399.97	
MW-2	-			NG	4					——— Under gravel/dirt cover?
MW-3		6.78	0.00	17.3	4	404.98	405.56		398.20	
MW-5		13.88	0.00	22.8	4	406.09	407.35	406.09	392.21	
GB-1	10.48	15.88	5.40	19.7	1	403.17	401.97	392.69	387.29	*Checked w bailer, no product
GB-2		8.46	0.00	12.8	1	402.12	400.32	402.12	393.66	
GB-3	9.21	19.03	0.18	19.2	1	402.66	401.93	393.45	383.63	
GB-5		10.09	0.00	16.5	1	404.53	403.55		394.44	
GB-6		13.15	0.00	14.6	1	405.80	405.80		392.65	
GB-7	9.45	13.02	3.57	19.2	1	402.05	400.96	392.60	389.03	
GB-8	10.12	14.21	4.09	17.1	1					
GB-9	8.21	8.30	0.09	19.8	1					
GB-10		10.12	0.00	16.9	1	403.72	402.45		393.60	
GB-11	9.45	11.85	2.40	15.1	1	401.52	400.02	392.07	389.67	
GB-12	7.75	11.33	3.58	19.3	1					
GB-13		8.10	0.00	13.9	1	399.59	396.59		391.49	
GB-14		5.35	0.00	14.0	1	397.04	396.59		391.69	
GB-15		10.82	0.00	15.3	1	405.21	404.08		394.39	
GB-16	10.62	13.02	2.40	19.3	1	403.44	402.98	392.82	390.42	
GB-17		9.61	0.00	10.0	1	403.92	403.01		394.31	
GB-18		7.80	0.00	15.0	1	402.85	402.32		395.05	
GB-19	8.08	15.61	7.60	16.2	1	402.68	401.95	394.60	387.07	
GB-20		9.18	0.00	15.9	1					
GB-21		7.31	0.00	14.9	1	401.84	401.29		394.53	
GB-22	11.37	15.34	3.97	14.6	1					
GB-24				10.3	11					Destroyed
GB-25		8.28	0.00	9.3	1					
GB-26	12.75	14.37	1.62	21.1	1	406.08	404.34	393.33	391.71	
AST	4.02	4.20	0.18	4.32 (DTB)	AST					Rim of Sched 80 PVC is reference
RW-1	10.30	11.04	0.74	16.3	6"	402.32	399.40	392.02	391.28	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 5/25/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
GB-27	10.55	12.18	1.63	18.55	1	399.96	397.49	389.41	387.78	
GB-28	11.30	13.95	2.65	19.05	1	403.81	402.33	392.51	389.86	
GB-29		8.25	0.00	15.74	1	400.53	398.69		392.28	
GB-31		9.91	0.00	20.1	1	402.97	402.00		393.06	
GB-32	6.55	13.26	6.71	19.05	1	398.71	395.26	392.16	385.45	
GB-33		13.04	0.00	19.36	1	410.08	406.39		397.04	Installed in LIF Boring-no log
GB-34B	4.71	11.56	6.85	13.08	1	396.92	406.39	392.21	385.36	Installed in LIF Boring-no log
GB-35B		7.52	0.00	18.39	1	399.72	395.44		392.20	
GB-36		6.05	0.00	12.97	1	397.27	393.96		391.22	
GB-38		4.92	0.00	12.35	1	396.20	394.16		391.28	
GB-39		8.92	0.00	17.20	1	400.68	398.95		391.76	
GB-40		10.98	0.00	18.28	1	407.64	404.92		396.66	
GB-41		12.04	0.00	21.76	1	410.42	407.70		398.38	
SG-1 (E)	1.	67				392.59	388.59		392.59	East Stream Gauge
SG-2 (W)	1.0	62		-	_	395.10	391.10		395.10	West Stream Gauge

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 6/10/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
MW-1		6.89	0.00	19.6	4	406.52	407.15		399.63	
MW-2				NG	4					Under gravel/dirt cover?
MW-3		6.94	0.00	17.3	4	404.98	405.56		398.04	
MW-5		14.04	0.00	22.8	4	406.09	407.35	406.09	392.05	
GB-1	10.64	16.21	5.57	19.7	1	403.17	401.97	392.53	386.96	
GB-2	9.85	10.06	0.21	12.8	1	402.12	400.32	392.27	392.06	
GB-3	9.36	18.88	9.52	19.2	1	402.66	401.93	393.30	383.78	
GB-5		10.34	0.00	16.5	1	404.53	403.55		394.19	
GB-6		9.98	0.00	14.6	1	405.80	405.80		395.82	
GB-7	9.60	14.38	4.78	19.2	1	402.05	400.96	392.45	387.67	
GB-8	10.33	14.42	4.09	17.1	1					
GB-9	8.48	8.60	0.12	19.8	1					
GB-10		10.31	0.00	16.9	1	403.72	402.45		393.41	
GB-11	9.64	12.20	2.56	15.1	1	401.52	400.02	391.88	389.32	
GB-12	7.78	13.78	5.00	19.3	1					
GB-13		8.28	0.00	13.9	1	399.59	396.59		391.31	
GB-14		5.46	0.00	14.0	1	397.04	396.59		391.58	
GB-15		10.78	0.00	15.3	1	405.21	404.08		394.43	
GB-16	10.77	13.28	2.51	19.3	1	403.44	402.98	392.67	390.16	
GB-17		9.94	0.00	10.0	1	403.92	403.01		393.98	
GB-18		8.06	0.00	15.0	1	402.85	402.32		394.79	
GB-19	8.24	15.68	7.44	16.2	1	402.68	401.95	394.44	387.00	
GB-20		9.38	0.00	15.9	1					
GB-21		7.46	0.00	14.9	1	401.84	401.29		394.38	
GB-22	11.48	15.68	4.20	14.6	1					
GB-24				10.3	1					Destroyed
GB-25		8.71	0.00	9.3	1					
GB-26	12.93	14.42	1.49	21.1	1	406.08	404.34	393.15	391.66	
AST	Em	pty		4.32 (DTB)	AST					Rim of Sched 80 PVC is reference
RW-1	10.46	12.18	1.72	16.3	6"	402.32	399.40	391.86	390.14	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 6/10/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Comments
GB-27	10.66	14.04	3.38	18.55	1	399.96	397.49	389.30	385.92	
GB-28	11.53	14.09	2.56	19.05	1	403.81	402.33	392.28	389.72	
GB-29		8.57	0.00	15.74	1	400.53	398.69		391.96	
GB-31		10.11	0.00	20.1	1	402.97	402.00		392.86	
GB-32	6.76	13.26	6.50	19.05	1	398.71	395.26	391.95	385.45	
GB-33		13.34	0.00	19.36	1	410.08	406.39		396.74	Installed in LIF Boring-no log
GB-34B	5.14	11.86	6.72	13.08	1	396.92	406.39	391.78	385.06	Installed in LIF Boring-no log
GB-35B		7.72	0.00	18.39	1	399.72	395.44		392.00	
GB-36		6.61	0.00	12.97	1	397.27	393.96		390.66	
GB-38		5.13	0.00	12.35	1	396.20	394.16		391.07	
GB-39		9.13	0.00	17.20	1	400.68	398.95		391.55	
GB-40		11.04	0.00	18.28	1	407.64	404.92		396.60	
GB-41	12.42	12.57	0.15	21.76	1	410.42	407.70		397.85	
SG-1 (E)	1.	58				392.59	388.59		392.59	East Stream Gauge
SG-2 (W)	0.	74		_		395.10	391.10		395.10	West Stream Gauge

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 6/24/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
MW-1		7.28	0.00	19.6	4	406.52	407.15		399.24	399.24	
MW-2	-			NG	4						Under gravel/dirt cover?
MW-3		7.31	0.00	17.3	4	404.98	405.56		397.67	397.67	
MW-5		14.28	0.00	22.8	4	406.09	407.35		391.81	391.81	
GB-1		10.88	0.00	19.7	1	403.17	401.97		392.29	392.29	
GB-2	10.38	10.64	0.26	12.8	1	402.12	400.32	391.74	391.48	391.70	
GB-3	9.62	19.04	9.42	19.2	1	402.66	401.93	393.04	383.62	391.63	
GB-5		10.56	0.00	16.5	1	404.53	403.55		393.97	393.97	
GB-6		10.26	0.00	14.6	1	405.80	405.80		395.54	395.54	
GB-7	9.88	14.49	4.61	19.2	1	402.05	400.96	392.17	387.56	391.48	
GB-8	10.60	14.43	3.83	17.1	1						
GB-9	8.68	8.78	0.10	19.8	1						
GB-10		10.63	0.00	16.9	1	403.72	402.45		393.09	393.09	
GB-11	9.89	11.30	1.41	15.1	1	401.52	400.02	391.63	390.22	391.42	
GB-12	7.92	13.73	5.81	19.3	1						
GB-13		8.52	0.00	13.9	1	399.59	396.59		391.07	391.07	
GB-14		5.73	0.00	14.0	1	397.04	396.59		391.31	391.31	
GB-15		11.02	0.00	15.3	1	405.21	404.08		394.19	394.19	
GB-16	11.01	13.39	2.38	19.3	1	403.44	402.98	392.43	390.05	392.07	
GB-17		10.22	0.00	10.0	1	403.92	403.01		393.70	393.70	
GB-18		8.29	0.00	15.0	1	402.85	402.32		394.56	394.56	
GB-19	8.54	15.73	7.19	16.2	1	402.68	401.95	394.14	386.95	393.06	
GB-20		9.60	0.00	15.9	1						
GB-21		7.71	0.00	14.9	1	401.84	401.29		394.13	394.13	
GB-22	11.68	15.71	4.03	14.6	1						
GB-24				10.3	1						Destroyed
GB-25		9.06	0.00	9.3	1						
GB-26	13.18	14.46	1.28	21.1	1	406.08	404.34	392.90	391.62	392.71	
AST	4.17		0.15	4.32 (DTB)	AST						Rim of Sched 80 PVC is reference
RW-1	10.65	12.78	2.13	16.3	6"	402.32	399.40	391.67	389.54	391.35	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 6/24/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
GB-27	11.08	15.04	3.96	18.55	1	399.96	397.49	388.88	384.92	388.29	
GB-28	11.78	14.27	2.49	19.05	1	403.81	402.33	392.03	389.54	391.66	
GB-29		8.88	0.00	15.74	1	400.53	398.69		391.65	391.65	
GB-31		10.36	0.00	20.1	1	402.97	402.00		392.61	392.61	
GB-32	7.02	13.31	6.29	19.05	1	398.71	395.26	391.69	385.40	390.75	
GB-33		13.57	0.00	19.36	1	410.08	406.39		396.51	396.51	Installed in LIF Boring-no log
GB-34B	5.18	11.66	6.48	13.08	1	396.92	406.39	391.74	385.26	390.77	Installed in LIF Boring-no log
GB-35B		7.97	0.00	18.39	1	399.72	395.44		391.75	391.75	
GB-36	_	6.78	0.00	12.97	1	397.27	393.96		390.49	390.49	
GB-38		5.38	0.00	12.35	1	396.20	394.16		390.82	390.82	
GB-39	_	9.38	0.00	17.20	1	400.68	398.95		391.30	391.30	
GB-40		11.29	0.00	18.28	1	407.64	404.92		396.35	396.35	
GB-41		12.63	0.00	21.76	1	410.42	407.70		397.79	397.79	
SG-1 (E)	1.	57				392.59	388.59		392.59	392.59	East Stream Gauge
SG-2 (W)	0.	69		-	_	395.10	391.10		395.10	395.10	West Stream Gauge

Monitoring Well/Piezometer Gauging (Page 1 of 2) Date: 7/07/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
MW-1		7.53	0.00	19.6	4	406.52	407.15		398.99	398.99	
MW-2				NG	4						Under gravel/dirt cover?
MW-3		7.39	0.00	17.3	4	404.98	405.56		397.59	397.59	
MW-5	14.48	14.59	0.11	22.8	4	406.09	407.35		391.50	391.59	
GB-1	11.07	17.02	5.95	19.7	1	403.17	401.97		386.15	391.21	
GB-2	10.68	10.98	0.30	12.8	1	402.12	400.32	391.44	391.14	391.40	
GB-3	9.85	19.14	9.29	19.2	1	402.66	401.93	392.81	383.52	391.42	
GB-5		10.75	0.00	16.5	1	404.53	403.55		393.78	393.78	
GB-6		10.49	0.00	14.6	1	405.80	405.80		395.31	395.31	
GB-7	10.08	14.63	4.55	19.2	1	402.05	400.96	391.97	387.42	391.29	
GB-8	10.78	14.43	3.65	17.1	1						
GB-9	9.02	9.08	0.06	19.8	1						
GB-10		10.76	0.00	16.9	1	403.72	402.45		392.96	392.96	
GB-11	10.14	12.32	2.18	15.1	1	401.52	400.02	391.38	389.20	391.05	
GB-12	8.14	13.81	5.67	19.3	1						
GB-13		8.71	0.00	13.9	1	399.59	396.59		390.88	390.88	
GB-14		5.85	0.00	14.0	1	397.04	396.59		391.19	391.19	
GB-15		11.24	0.00	15.3	1	405.21	404.08		393.97	393.97	
GB-16	11.27	13.58	2.37	19.3	1	403.44	402.98	392.17	389.86	391.87	
GB-17		10.49	0.00	10.0	1	403.92	403.01		393.43	393.43	
GB-18		8.50	0.00	15.0	1	402.85	402.32		394.35	394.35	
GB-19	8.75	15.59	6.84	16.2	1	402.68	401.95	393.93	387.09	392.90	
GB-20		9.83	0.00	15.9	1						
GB-21		7.93	0.00	14.9	1	401.84	401.29		393.91	393.91	
GB-22	11.90	15.72	3.82	14.6	1						
GB-24				10.3	1						Destroyed
GB-25		9.36	0.00	9.3	1						
GB-26	13.45	14.62	1.17	21.1	1	406.08	404.34	392.63	391.46	392.45	
AST	4.03	4.19	0.16	4.32 (DTB)	AST						Rim of Sched 80 PVC is reference
RW-1	10.79	13.36	2.13	16.3	6"	402.32	399.40	391.53	388.96	390.77	

Monitoring Well/Piezometer Gauging (Page 2 of 2) Date: 7/07/10

I.D.	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Well Depth (ft)	Well Diameter (in)	Elev Top PVC (ft)	Ground Elevation (ft)	Elevation of Product Surface (ft)	0 ((()	Corrected Hydraulic Head Elevation (ft)	Comments
GB-27	11.39	15.71	4.32	18.55	1	399.96	397.49	388.57	384.25	387.92	
GB-28	12.08	14.48	2.40	19.05	1	403.81	402.33	391.73	389.33	391.37	
GB-29		9.12	0.00	15.74	1	400.53	398.69		391.41	391.41	
GB-31	_	10.51	0.00	20.1	1	402.97	402.00		392.46	392.46	
GB-32	7.22	13.09	5.87	19.05	1	398.71	395.26	391.49	385.62	390.61	
GB-33	_	13.80	0.00	19.36	1	410.08	406.39		396.28	396.28	Installed in LIF Boring-no log
GB-34B	5.47	11.09	5.62	13.08	1	396.92	406.39	391.45	385.83	390.61	Installed in LIF Boring-no log
GB-35B		8.61	0.00	18.39	1	399.72	395.44		391.11	391.11	
GB-36		6.82	0.00	12.97	1	397.27	393.96		390.45	390.45	
GB-38		5.85	0.00	12.35	1	396.20	394.16		390.35	390.35	
GB-39	_	9.56	0.00	17.20	1	400.68	398.95		391.12	391.12	
GB-40		11.51	0.00	18.28	1	407.64	404.92		396.13	396.13	
GB-41		12.81	0.00	21.76	1	410.42	407.70		397.61	397.61	
SG-1 (E)	1.	58				392.59	388.59		392.59	392.59	East Stream Gauge
SG-2 (W)	0.	72				395.10	391.10		395.10	395.10	West Stream Gauge

2724 Spring Hill Road

Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauge/Piezometer Gauging

Date: 3/17/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
GB-1	10.07	12.75	2.68	18.96	1	403.17	401.97	393.10	390.42	392.70	
GB-2	7.06	7.45	0.39	17.24	1	402.12	400.32	395.06	394.67	395.00	
GB-3	8.19	17.13	8.94	19.31	1	402.66	401.93	394.47	385.53	393.13	
GB-6	ND	8.91		14.38	1	405.79	405.79		396.88		
GB-7	8.90	13.62	4.72	18.00	1	402.05	400.96	393.15	388.43	392.44	
GB-8	6.11	6.24	0.13	6.35	1	399.29	399.29	393.18	393.05	393.16	Clogged at 6.35' BTOC; TOC = GS.
GB-9	ND	3.88		4.15	1	398.92	398.92		395.04		Clogged at 4.15' BTOC; TOC = GS.
GB-10	ND	9.39		16.15	1	403.72	402.45		394.33		
GB-11	7.51	10.08	2.57	13.29	1	400.40	400.40	392.89	390.32	392.50	TOC = GS. Top broke off by vac truck.
GB-12	4.32	9.74	5.42	17.90	1	397.08	397.08	392.76	387.34	391.95	TOC = GS.
GB-13	ND	7.41		12.95	1	399.59	396.59		392.18		
GB-14	ND	2.29		13.70	1	397.04	396.59		394.75		
GB-15	ND	9.52		15.11	1	405.21	404.08		395.69		
GB-17	ND	5.29		9.89	1	403.01	403.01		397.72		PVC broken at surface. TOC = GS.
GB-18	ND	6.26		13.34	1	402.85	402.32		396.59		
GB-19	7.30	15.58	8.28	16.19	1	402.68	401.95	395.38	387.10	394.14	
GB-20	ND	8.18		14.42	1	404.60	403.47		396.42		

2724 Spring Hill Road

Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauge/Piezometer Gauging

Date: 3/17/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
GB-21	ND	5.41		14.39	1	401.84	401.29		396.43		
GB-22	9.65	11.18	1.53	13.59	1	403.21	403.21	393.56	392.03	393.33	TOC = GS.
GB-25	ND	3.68		11.85	1	400.31	396.85		396.63		
GB-26	12.03	14.13	2.10	20.36	1	406.08	404.34	394.05	391.95	393.74	
GB-27	7.76	11.66	3.90	18.10	1	399.96	397.49	392.20	388.30	391.62	
GB-28	10.58	12.72	2.14	18.65	1	403.81	402.33	393.23	391.09	392.91	
GB-29	ND	3.03		16.38	1	400.53	398.69		397.50		
GB-31	ND	9.58		19.87	1	402.97	402.00		393.39		
GB-32	5.85	13.76	7.91	18.22	1	398.71	395.26	392.86	384.95	391.67	
GB-33	ND	12.36		18.97	1	410.08	406.39		397.72		Installed in LIF Boring-no log
GB-34B	4.96	8.19	3.23	13.02	1	396.92	395.44	391.96	388.73	391.48	Installed in LIF Boring-no log
GB-35B	ND	5.67		17.35	1	399.72	396.60		394.05		
GB-36	ND	4.76		NG	1	397.35	393.96		392.59		~ 3 foot stickup
GB-38	NG	NG	NG	NG	1	396.20	394.16	NG	NG	NG	Dirt in PVC well; can not gauge
GB-39	ND	8.30		15.13	1	400.68	398.95		392.38		
GB-40	ND	10.11		17.85	1	407.63	404.92		397.52		
GB-41	ND	11.38		21.52	1	410.42	407.70		399.04		

2724 Spring Hill Road

Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauge/Piezometer Gauging

Date: 3/17/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)		Corrected Hydraulic Head Elevation (ft)	Comments
MW-1	ND	4.96		19.55	4	406.52	407.15		401.56		
MW-3	ND	6.13		16.67	4	404.98	405.56		398.85		
MW-5	11.62	11.65	0.03	22.80	4	406.09	407.35	394.47	394.44	394.47	
626	ND	1.01		11.20	4	393.06	393.71		392.05		
627	ND	2.30		14.87	4	394.26	394.78		391.96		Minor repair today on annular space
628	ND	3.48		16.08	4	396.41	396.95		392.93		
629	ND	5.75		19.08	4	396.52	397.18		390.77		
630	ND	5.38		15.71	4	398.18	398.64		392.80		
631	4.02	4.36	0.34	15.67	4	396.93	397.60	392.91	392.57	392.86	
632	ND	2.96		19.07	4	396.23	396.77		393.27		
633	0.80	7.10	6.30	13.20	4	393.47	394.07	392.67	386.37	391.73	
634	ND	1.68		13.24	4	394.40	395.07		392.72		Minor repair today on annular space
635	ND	2.14		13.90	4	395.70	396.41		393.56		Repair done today on annular space
636	3.39	6.53	3.14	20.47	4	396.60	397.02	393.21	390.07	392.74	
637	5.61	9.74	4.13	17.01	4	398.64	399.12	393.03	388.90	392.41	

2724 Spring Hill Road

Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauge/Piezometer Gauging

Date: 3/17/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)		Corrected Hydraulic Head Elevation (ft)	Comments
638	ND	7.97		14.95	4	400.37	400.71		392.40		
639	6.98	9.17	2.19	17.01	4	399.74	400.24	392.76	390.57	392.43	
640	ND	5.46		19.10	4	398.06	398.61		392.60		
641	ND	3.70		18.43	4	398.49	398.83		394.79		
642	ND	4.43		18.44	4	401.13	401.38		396.70		
643	8.75	9.12	0.37	34.20	4	401.83	402.25	393.08	392.71	393.02	Manhole/concrete pad repaired today.
644	7.85	14.45	6.60	24.78	4	401.15	401.68	393.30	386.70	392.31	
645	6.57	11.17	4.60	19.43	4	399.66	400.36	393.09	388.49	392.40	Concrete pad repaired today
646	ND	8.59		20.00	4	402.04	402.20		393.45		
647	ND	9.54		28.50	4	402.91	403.43		393.37		
648	1.66	1.68	0.02	14.05	4	394.80	395.36	393.14	393.12	393.14	
RW-1	9.19	12.36	3.17	16.23	6	402.32	399.40	393.13	389.96	392.65	
SG-1 (E)	ND	2.18		NA	NA	392.63	388.63		390.45		East Stream Gauge ("TOC" is 4')
SG-2 (W)	ND	3.24		NA	NA	395.11	391.11		391.87		West Stream Gauge ("TOC" is 4')

Table Notes:

ND - Not detected NG - Not gauged ft MSL - Feet above Mean Sea Level

NA - Not applicable

TOC - Top of PVC casing

BTOC - Below TOC GS - Ground surface

2724 Spring Hill Road

Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauge/Piezometer Gauging

Date: 3/31/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
GB-1	10.56	14.16	3.60	18.90	1	403.17	401.97	392.61	389.01	392.07	
GB-2	8.67	9.01	0.34	17.08	1	402.12	400.32	393.45	393.11	393.40	
GB-3	9.83	17.61	7.78	19.29	1	402.66	401.93	392.83	385.05	391.66	
GB-6	ND	9.54		14.34	1	405.79	405.79		396.25		
GB-7	9.33	13.94	4.61	17.94	1	402.05	400.96	392.72	388.11	392.03	
GB-8	ND	6.30		6.35	1	399.29	399.29		392.99		Clogged at 6.35' BTOC; TOC = GS.
GB-9	ND	4.01		4.15	1	398.92	398.92		394.91		Clogged at $4.15'$ BTOC; TOC = GS.
GB-10	ND	9.90		16.30	1	403.72	402.45		393.82		
GB-11	7.99	10.36	2.37	13.32	1	400.40	400.40	392.41	390.04	392.05	TOC = GS. Top broke off by vac truck.
GB-12	4.75	10.31	5.56	17.04	1	397.08	397.08	392.33	386.77	391.50	TOC = GS.
GB-13	ND	7.92		13.01	1	399.59	396.59		391.67		
GB-14	ND	4.79		13.69	1	397.04	396.59		392.25		Sediment in bottom of well.
GB-15	ND	10.26		15.01	1	405.21	404.08		394.95		
GB-17	ND	7.05		9.84	1	403.01	403.01		395.96		PVC broken at surface. TOC = GS.
GB-18	ND	7.40		13.29	1	402.85	402.32		395.45		
GB-19	7.83	15.74	7.91	16.26	1	402.68	401.95	394.85	386.94	393.66	
GB-20	ND	8.92		14.31	1	404.60	403.47		395.68		

2724 Spring Hill Road

Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauge/Piezometer Gauging

Date: 3/31/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
GB-21	ND	6.51		14.28	1	401.84	401.29		395.33		
GB-22	10.10	12.76	2.66	14.48	1	403.21	403.21	393.11	390.45	392.71	All screen; found $03/17/11$; TOC = GS.
GB-25	ND	3.98		11.87	1	400.31	396.85		396.33		Sediment in bottom of well.
GB-26	12.54	14.14	1.60	20.40	1	406.08	404.34	393.54	391.94	393.30	
GB-27	9.37	12.94	3.57	18.07	1	399.96	397.49	390.59	387.02	390.05	
GB-28	11.18	13.59	2.41	18.49	1	403.81	402.33	392.63	390.22	392.27	
GB-29	ND	3.84		16.43	1	400.53	398.69		396.69		Water level rises after well cap is removed
GB-31	ND	9.80		19.83	1	402.97	402.00		393.17		
GB-32	6.35	13.65	7.30	18.25	1	398.71	395.26	392.36	385.06	391.27	
GB-33	ND	12.92		18.98	1	410.08	406.39		397.16		Installed in LIF Boring-no log
GB-34B	4.96	10.46	5.50	13.10	1	396.92	395.44	391.96	386.46	391.14	Sediment in bottom of well.
GB-35B	ND	6.91		17.23	1	399.72	396.60		392.81		Sediment in bottom of well.
GB-36	ND	5.33		12.76	1	397.35	393.96		392.02		Sediment in well bottom. ~ 3 foot stickup.
GB-38	NG	NG	NG	3.14	1	396.20	394.16	NG	NG	NG	Clogged 3.14' BTOC. Broken below GS?
GB-39	ND	8.75		15.12	1	400.68	398.95		391.93		
GB-40	ND	10.66		17.86	1	407.63	404.92		396.97		
GB-41	ND	11.83		21.50	1	410.42	407.70		398.59		

MDE-OCP/Stebbins-Burnham Property (03-1335BA)

2724 Spring Hill Road

Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauge/Piezometer Gauging

Date: 3/31/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
MW-1	ND	6.28		19.55	4	406.52	407.15		400.24		Permit tag # BA-92-0283
MW-3	ND	6.62		16.64	4	404.98	405.56		398.36		
MW-5	13.30	13.34	0.04	22.80	4	406.09	407.35	392.79	392.75	392.78	
626	ND	1.46		11.20	4	393.06	393.71		391.60		
627	ND	2.73		14.88	4	394.26	394.78		391.53		
628	ND	5.01		16.09	4	396.41	396.95		391.40		
629	ND	7.29		19.08	4	396.52	397.18		389.23		
630	ND	6.82		15.71	4	398.18	398.64		391.36		
631	5.19	9.89	4.70	15.70	4	396.93	397.60	391.74	387.04	391.04	
632	ND	4.07		19.05	4	396.23	396.77		392.16		
633	1.16	7.39	6.23	13.20	4	393.47	394.07	392.31	386.08	391.38	
634	ND	2.11		13.23	4	394.40	395.07		392.29		
635	ND	2.95		13.89	4	395.70	396.41		392.75		
636	4.15	6.28	2.13	20.46	4	396.60	397.02	392.45	390.32	392.13	
637	6.11	10.48	4.37	17.03	4	398.64	399.12	392.53	388.16	391.87	

MDE-OCP/Stebbins-Burnham Property (03-1335BA)

2724 Spring Hill Road

Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauge/Piezometer Gauging

Date: 3/31/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	of Product	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
638	ND	8.49		14.97	4	400.37	400.71		391.88		
639	7.38	9.83	2.45	17.10	4	399.74	400.24	392.36	389.91	391.99	
640	ND	6.87		19.11	4	398.06	398.61		391.19		
641	ND	4.33		18.40	4	398.49	398.83		394.16		
642	ND	5.02		18.48	4	401.13	401.38		396.11		
643	9.13	9.97	0.84	34.24	4	401.83	402.25	392.70	391.86	392.57	
644	8.28	14.44	6.16	24.81	4	401.15	401.68	392.87	386.71	391.95	
645	6.95	11.81	4.86	19.43	4	399.66	400.36	392.71	387.85	391.98	
646	ND	9.45		20.02	4	402.04	402.20		392.59		
647	ND	9.90		28.50	4	402.91	403.43		393.01		
648	2.68	2.69	0.01	14.06	4	394.80	395.36	392.12	392.11	392.12	
RW-1	9.85	13.28	3.43	16.41	6	402.32	399.40	392.47	389.04	391.96	
SG-1 (E)	ND	2.24		NA	NA	392.63	388.63		390.39		E Stream Gauge ("TOC" is 4', WL=4-1.76')
SG-2 (W)	ND	3.24		NA	NA	395.11	391.11		391.87		W Stream Gauge ("TOC" is 4', WL=4-0.76')

Table Notes:

ND - Not detected NG - Not gauged ft MSL - Feet above Mean Sea Level

NA - Not applicable

TOC - Top of PVC casing

BTOC - Below TOC GS - Ground surface

MDE-OCP/Stebbins-Burnham Property (03-1335BA) 2724 Spring Hill Road Owings Mills, Maryland CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauging/Piezometer Gauging

Date: 6/17/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
GB-1	10.94	16.56	5.62	18.90	1	403.17	401.97	392.23	386.61	391.39	Well removed and borehole sealed today
GB-2	ND	10.34		17.08	1	402.12	400.32		391.78		Well removed and borehole sealed today
GB-3	9.92	17.42	7.50	19.28	1	402.66	401.93	392.74	385.24	391.62	Well left in place
GB-6	10.29	10.30	0.01	14.34	1	405.79	405.79	395.50	395.49	395.50	Well removed and borehole sealed today
GB-7	9.95	14.34	4.39	17.94	1	402.05	400.96	392.10	387.71	391.44	Well removed and borehole sealed today
GB-8	ND	6.30		6.30	1	399.29	399.29		392.99		Clogged at 6.30'; Well removed/sealed
GB-9	ND	ND		4.00	1	398.92	398.92				No water - clogged at 4.00; Well removed
GB-10					1		402.45				Well destroyed; well not visible
GB-11	9.82	12.57	2.75	13.32	1	400.40	400.40	390.58	387.83	390.17	Well removed and borehole sealed today
GB-12	5.35	6.48	1.13	17.92	1	397.08	397.08	391.73	390.60	391.56	Well removed and borehole sealed today
GB-13	ND	8.55		13.01	1	399.59	396.59		391.04		Well removed and borehole sealed today
GB-14	ND	5.73		13.64	1	397.04	396.59		391.31		Well removed and borehole sealed today
GB-15	ND	10.68		15.01	1	405.21	404.08		394.53		Well removed and borehole sealed today
GB-17	9.04	9.05	0.01	9.84	1	403.01	403.01	393.97	393.96	393.97	Well removed and borehole sealed today
GB-18	ND	7.82		13.29	1	402.85	402.32		395.03		Well removed and borehole sealed today
GB-19	8.63	15.66	7.03	16.21	1	402.68	401.95	394.05	387.02	393.00	Well left in place
GB-20	ND	9.64		14.31	1	404.60	403.47		394.96		Well removed and borehole sealed today

MDE-OCP/Stebbins-Burnham Property (03-1335BA) 2724 Spring Hill Road Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauging/Piezometer Gauging

Date: 6/17/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments	
GB-21	ND	7.71		14.28	1	401.84	401.29		394.13		Well removed and borehole sealed today	
GB-22	10.58	14.20	3.62	14.48	1	403.21	403.21	392.63	389.01	392.09	Well removed and borehole sealed today	
GB-25	ND	6.02		11.85	1	400.31	396.85		394.29		Well left in place	
GB-26	13.25	14.53	1.28	20.40	1	406.08	404.34	392.83	391.55	392.64	Well left in place	
GB-27	10.87	15.76	4.89	18.01	1	399.96	397.49	389.09	384.20	388.36	Well left in place	
GB-28	11.86	14.19	2.33	18.49	1	403.81	402.33	391.95	389.62	391.60	Well removed and borehole sealed today	
GB-29	ND	8.83		16.89	1	400.53	398.69		391.70		Well removed and borehole sealed today	
GB-31	ND	10.41		19.83	1	402.97	402.00		392.56		Well left in place	
GB-32	7.03	13.08	6.05	18.22	1	398.71	395.26	391.68	385.63	390.77	Well removed and borehole sealed today	
GB-33	ND	13.77		18.98	1	410.08	406.39		396.31		Well removed and borehole sealed today	
GB-34B	5.26	10.84	5.58	13.00	1	396.92	395.44	391.66	386.08	390.82	Well removed and borehole sealed today	
GB-35B	ND	7.71		16.94	1	399.72	396.60		392.01		Well removed and borehole sealed today	
GB-36	ND	6.91		12.79	1	397.35	393.96		390.44		Well left in place	
GB-38	NG	NG	NG	3.17	1	396.20	394.16	NG	NG	NG	Clogged at 3.17'; Well removed/sealed	
GB-39	ND	9.39		15.09	1	400.68	398.95		391.29		Well removed and borehole sealed today	
GB-40	ND	11.70		17.86	1	407.63	404.92		395.93		Well removed and borehole sealed today	
GB-41	ND	12.76		21.50	1	410.42	407.70		397.66		Well removed and borehole sealed today	

$MDE\text{-}OCP/Stebbins\text{-}Burnham\ Property\ (03\text{-}1335BA)$

2724 Spring Hill Road

Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauging/Piezometer Gauging

Date: 6/17/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
MW-1	ND	7.36		19.58	4	406.52	407.15		399.16		Permit tag # BA-92-0283
MW-3	ND	7.26		16.67	4	404.98	405.56		397.72		
MW-5	ND	14.34		22.81	4	406.09	407.35		391.75		
626	ND	2.28		11.22	4	393.06	393.71		390.78		
627	ND	3.34		14.89	4	394.26	394.78		390.92		
628	ND	6.10		16.09	4	396.41	396.95		390.31		
629	ND	9.18		19.08	4	396.52	397.18		387.34		
630	ND	7.96		15.72	4	398.18	398.64		390.22		
631	6.08	11.32	5.24	15.65	4	396.93	397.60	390.85	385.61	390.06	
632	4.92	5.56	0.64	19.08	4	396.23	396.77	391.31	390.67	391.21	
633	1.96	6.08	4.12	13.20	4	393.47	394.07	391.51	387.39	390.89	
634	3.32	3.37	0.05	13.22	4	394.40	395.07	391.08	391.03	391.07	
635	ND	4.68		13.89	4	395.70	396.41		391.02		
636	4.76	7.87	3.11	20.51	4	396.60	397.02	391.84	388.73	391.37	
637	6.69	11.13	4.44	17.02	4	398.64	399.12	391.95	387.51	391.28	

MDE-OCP/Stebbins-Burnham Property (03-1335BA)

2724 Spring Hill Road

Owings Mills, Maryland

CGS Project No. CG - 08 - 0399

Monitoring Well/Recovery Well/Stream Gauging/Piezometer Gauging

Date: 6/17/11

ID	Product Depth (ft BTOC)	Water Depth (ft BTOC)	Product Thick- ness (ft)	Well Depth (ft BTOC)	Well Diameter (in)	Elevation at TOC (ft)	Ground Elevation (ft MSL)	Elevation of Product Surface (ft)	Elevation of Water Surface (ft)	Corrected Hydraulic Head Elevation (ft)	Comments
638	ND	9.19		14.96	4	400.37	400.71		391.18		
639	ND	7.92		17.05	4	399.74	400.24		391.82		
640	ND	6.55		19.12	4	398.06	398.61		391.51		
641	ND	5.71		18.40	4	398.49	398.83		392.78		
642	ND	5.79		18.45	4	401.13	401.38		395.34		
643	9.82	10.05	0.23	33.67	4	401.83	402.25	392.01	391.78	391.98	
644	9.07	13.51	4.44	24.81	4	401.15	401.68	392.08	387.64	391.41	
645	7.54	11.22	3.68	19.45	4	399.66	400.36	392.12	388.44	391.57	
646	ND	10.13		20.04	4	402.04	402.20		391.91		
647	ND	10.61		28.56	4	402.91	403.43		392.30		
648	3.33	6.32	2.99	14.08	4	394.80	395.36	391.47	388.48	391.02	
RW-1	10.49	14.18	3.69	16.44	6	402.32	399.40	391.83	388.14	391.28	
SG-1 (E)	ND	2.38		NA	NA	392.63	388.63		390.25		E Stream Gauge ("TOC" is 4', WL=4-1.62')
SG-2 (W)	ND	3.26		NA	NA	395.11	391.11		391.85		W Stream Gauge ("TOC" is 4', WL=4-0.74')

Table Notes:

ND - Not detected NG - Not gauged ft MSL - Feet above Mean Sea Level

NA - Not applicable

TOC - Top of PVC casing

BTOC - Below TOC GS - Ground surface

Appendix C Analytical Laboratory Data Appendix C.1
Analytical Laboratory Data
Groundwater Monitoring Wells

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 09100571

Client Name:

Chesapeake Geosciences, Inc.

Date Issued:

November 10, 2009

5405 Twin Knolls Rd.

Suite 1

Columbia, Maryland 21045

Submitted To: Sean Daniel

Project Number

CG-08-0399

Client Site I.D.: Stebbins-Burnham

Purchase Order

CG080399SD

Laboratory Sample ID	Sample ID	Sample Date	Receive Date
09100571-001	MW-1	October 27, 2009	October 29, 2009
09100571-002	MW-3	October 27, 2009	October 29, 2009
09100571-003	GB-5	October 27, 2009	October 29, 2009
09100571-004	GB-6	October 27, 2009	October 29, 2009
09100571-005	GB-10	October 27, 2009	October 29, 2009
09100571-006	GB-13	October 27, 2009	October 29, 2009
09100571-007	GB-14	October 27, 2009	October 29, 2009
09100571-008	GB-15	October 27, 2009	October 29, 2009
09100571-009	GB-17	October 27, 2009	October 29, 2009
09100571-010	GB-18	October 27, 2009	October 29, 2009
09100571-011	GB-20	October 27, 2009	October 29, 2009
09100571-012	GB-21	October 27, 2009	October 29, 2009
09100571-013	GB-25	October 27, 2009	October 29, 2009
09100571-014	Dupe-1	October 27, 2009	October 29, 2009
09100571-015	Dupe-2	October 27, 2009	October 29, 2009
09100571-016	FB	October 27, 2009	October 29, 2009
09100571-017	ТВ	October 27, 2009	October 29, 2009
09100571-018	GAC-Mid	October 27, 2009	October 29, 2009
09100571-019	GAC-Eff	October 27, 2009	October 29, 2009

On October 29, 2009, nineteen samples were received via UPS for analysis in accordance with the attached Chain-Of-Custody. The samples were received with sample containers intact by Ashley McGinley (AWS). Any deviations, discrepancies or irregularities observed in sample condition, including holding times, temperature, containers or preservatives have been notated on the chain-of-custody.

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 09100571

Client Name:

Chesapeake Geosciences, Inc.

Date Issued:

November 10, 2009

5405 Twin Knolls Rd.

Suite 1

Columbia, Maryland 21045

Submitted To: Sean Daniel

Project Number

NA

Client Site I.D.: Stebbins-Burnham

Purchase Order

CG080399SD

The samples were prepared and analyzed in accordance with SW-846 methodology. Quality control data will be issued separately in a Level II data package.

Definition of Terms:

LOQ = Limit of Quantitation

LOD = Limit of Detection

BLOD = Below the Limit of Detection

J = Qualifier used if the reported concentration is less than the LOQ but greater than the LOD. The concentration is considered to be estimated.

J1 = Qualifier used if the reported concentration has been rounded up to the LOQ due to EPA rounding rules. The concentration is considered to be estimated.

Ted Sovars

Laboratory Manager

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Date Issued:

11/10/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	0.3	J 0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	0.8	J 0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.4	4.0	1	ug/L ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.4	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.3	1.0	1	ug/L ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L ug/L
2-Butanone (MEK)	78-93 - 3	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	1.7	10.0	1	ug/L ug/L
2-Chlorotoluene	95-49-8	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	-	1	-
2-Hexanone (MBK)	591-78-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	1.7	1.0	. 1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	10.0 1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	1.2			ug/L
Acetone	67-64-1	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	1.∠ 7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	7.0 0.2	10.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
				Page 1 of 48	. 5/21/00	. 110 1100 10.09	BLOD	0.2	1.0	I	ug/L
				1 290 1 01 70							

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
Bromochloromethane	74-97-5	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L ug/L
Dibromochloromethane	124-48-1	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	25.0	25.0	1	ug/L ug/L
lodomethane	74-88-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.5	10.0	1	ug/L ug/L
Isopropylbenzene	98-82-8	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L ug/L
Naphthalene	91-20-3	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L ug/L
n-Butylbenzene	104-51-8	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L ug/L
n-Propylbenzene	103-65-1	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.1	1.0	1	•
o-Xylene	95-47-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.1	1.0	1	ug/L
p-lsopropyltoluene	99-87-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.1	1.0	1	ug/L ug/L
sec-Butylbenzene	135-98-8	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD	0.2	1.0	1	ug/L
				Page 2 of 48	,			0.1	1.0	•	ug/ L

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	or Units
Styrene	100-42-5	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59		J	0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	MW-1	09100571-001	10/27/09	11/01/09 16:59	BLOD		0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.3	1.0	1	ug/L

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Date Issued: 11/10/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Factor	r Units
1,2-Dichloropropane	78-87-5	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD		0.2	1.0	1	ug/L
				Page 4 of 48		, , , , , , , , , , , , , , , , , , , ,		,			•	gr

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean	Daniel										
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Fact	tor Units
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	25.0	25.0	1	ug/L
lodomethane	74-88-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.5	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	мw-з	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	1.0	1	ug/L ,
n-Butylbenzene	104-51-8	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.1	1.0	1	ug/L
p-Isopropyltoluene	99 - 87-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.1	1.0	1	ug/L ug/L
Styrene	100-42-5	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.1	1.0	1	ug/L ug/L
TAME	994-05-8	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60 - 5	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	1.0	1	ug/L ug/L
Trichloroethylene	79-01-6	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	1.0	1	ug/L ug/L
Trichlorofluoromethane	75-69-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	1.0	1	ug/L ug/L
Vinyl acetate	108-05-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	2.2	1.0	1	
Vinyl chloride	75-01-4	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	MW-3	09100571-002	10/27/09	11/01/09 17:24	BLOD	0.3	3.0	1	ug/L ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.1	1.0	1	ug/L

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	0.4	J 0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	1.7	10.0	1	ug/L
1-Chlorotoluene	106-43-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
I-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-5	. 09100571-003	10/27/09	11/05/09 13:45	BLOD	0.4	1.0	1	ug/L
				Page 6 of 48							•

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Date Issued:	11/10/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Re	esults	Qual	LOD	LOQ	Dil. Facto	or Units
Bromodichloromethane	75-27-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BL	OD		0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45		OD		0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45		OD		0.2	1.0	1	ug/L ug/L
Carbon disulfide	75-15-0	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45		OD		1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45		OD		0.2	1.0	1	
Chlorobenzene	108-90-7	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BL			0.2	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BL			0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45		90	J	0.2	1.0	4	ug/L
Chloromethane	74-87-3	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BL(חר	•	0.2		1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLO				1.0		ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLO			0.2 0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLO			0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLO			0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLO				1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BL(0.2	1.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	0.1		J	5.0	5.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	U. I BLO		J	0.1	1.0	1	ug/L
lodomethane	74-88-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45				25.0	25.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLO			0.5	10.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	0.2 BLC			0.1	1.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45				0.2	2.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLC			1.0	4.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLC	טט		0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45				0.2	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-5	09100571-003	10/27/09		BLC			0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45				0.1	1.0	1	ug/L
p-Isopropyitoluene	99-87-6	SW8260B	GB-5	09100571-003		11/05/09 13:45	BLC			0.1	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-5		10/27/09	11/05/09 13:45	BLC			0.2	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45				0.1	1.0	1	ug/L
		0.702000	QD-0	09100571-003	10/27/09	11/05/09 13:45	BLC	D		0.1	1.0	1	ug/L
				Page 7 of 48									

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Date	Issued:
	loodod.

11/10/2009

TAME TBA	994-05-8	01110000		Sample ID	Date	Date/Time	Sample Results	Qual	LOD	LOQ	Factor	r Units
TRΔ		SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD		5.0	5.0	1	ug/L
IDA	75-65-0	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD		100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD		0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	1.0		0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD		0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD		0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45			0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD		2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD		0.2	1.0	- 1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-5	09100571-003	10/27/09	11/05/09 13:45	BLOD		0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.3	1.0	1	ug/L
,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.3	1.0	1	ug/L
,2,3-Trichloropropane	96-18-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.4	1.0	1	ug/L
,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.3	1.0	1	ug/L
,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.2	1.0	1	ug/L
,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.4	4.0	1	ug/L
,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.4	1.0	•	ug/L
,2-Dichlorobenzene	95-50-1	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.2	1.0		ug/L
,2-Dichloroethane	107-06-2	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.3	1.0		ug/L
,2-Dichloropropane	78-87-5	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD		0.3	1.0		ug/L

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Date Issued:

11/10/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil.	or Units
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD				
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		0.2	1.0	1	ug/L.
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	0.2	1.0	١	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD BLOD	0.2	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		0.3	1.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD BLOD	1.7	10.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		0.2	1.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	1.7	10.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD BLOD	0.2	1.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	1.2	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	7.0	10.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD BLOD	0.2	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	0.4	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		0.2	1.0	1	ug/L "
Bromomethane	74-83-9	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD BLOD	0.3	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	0.2	1.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		1.2	10.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD BLOD	0.2	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	0.1	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		0.2 J 0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	0.3 BLOD		1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	0.3	1.0	1	ug/L "
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD BLOD	0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	BLOD	0.2	1.0	1	ug/L
				Page 9 of 48	.0/2//00	11/03/03 14.07	BLUL	5.0	5.0	1	ug/L
				1 ago 5 01 70							

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sampl	le Results	Qual	LOD	LOQ	Dil. Facto	or Units
Ethylbenzene	100-41-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		25.0	25.0	1	ug/L
Iodomethane	74-88-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.5	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	2.8			0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	1.7			0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	1.3			0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	1.4			0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.1	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	1.9			0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	0.6		J	0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	1.2			0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	0.3		J	0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07	1.0			0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-6	09100571-004	10/27/09	11/05/09 14:07		BLOD		0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38		BLOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38		BLOD		0.2	1.0	1	ug/L

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Date Issued: 11	/10/2009
-----------------	----------

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	9.1	0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	2.4	0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	1.7	10.0	1 `	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	0.4	J 0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	. 0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	0.2	1.0	1	ug/L
				Page 11 of 48							

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	r Units
Bromoform	75-25-2	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L ug/L
Carbon disulfide	75-15-0	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		1.2	10.0	1	ug/L ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	0.3	J	0.2	1.0	1	ug/L ug/L
Chloromethane	74-87-3	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	•	0.3	1.0	1	ug/L ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	0.6	J	0.1	1.0	1	-
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	•	25.0	25.0	1	ug/L ug/L
lodomethane	74-88-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.5	10.0	1	_
isopropylbenzene	98-82-8	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	1.3		0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	1.2		0.1	2.0	1	ug/L ug/L
Methylene chloride	75-09-2	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	•
Naphthalene	91-20-3	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	11.4		0.2	1.0	1	ug/L ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	•
n-Propylbenzene	103-65-1	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	2.0		0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38			0.1	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	1.6	_	0.1		' -	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-10	09100571-005	10/27/09		3.0		0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		5.0	1.0 5.0		ug/L ug/L
				Page 12 of 48			DE-01			5.0	•	uy, L

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

1,3,5-Trimethylbenzene

				,								
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	or Units
ТВА	75-65-0	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	1.4		0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38		j	0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD	_	0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38			0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		2.2	10.0	1	ug/L ug/L
Vinyl chloride	75-01-4	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	BLOD		0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-10	09100571-005	10/27/09	11/05/09 15:38	1.7	J	0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.4	1.0	1	ug/L ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.3	1.0	1	ug/L ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-13	09100571-006	10/27/09		1.3		0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.4	4.0	1	ug/L ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.4	1.0	1	_
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.4	1.0	1	ug/L ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.2	1.0	1	-
1,2-Dichloropropane	78-87-5	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD		0.3	1.0	1	ug/L ug/L

09100571-006

10/27/09

11/05/09 16:00

BLOD

0.3

0.2

1.0

1.0

ug/L

ug/L

SW8260B

108-67-8

GB-13

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Date Issued:

11/10/2009

		Reference	Client	Laboratory	Sample	Analysis				Dil.	
Parameter	CAS	Method	Sample ID	Sample ID	Date	Date/Time	Sample Results	Qual LOD	LOQ		or Units
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	1.7	10.0	1	ug/L.
2-Chlorotoluene	95-49-8	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		J 0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L.
Chloroform	67-66-3	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	0.2	J 0.1	1.0	1	ug/L
				Page 14 of 48							

Date Issued:

11/10/2009

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

1

1

1

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

75-69-4

108-05-4

75-01-4

1330-20-7

630-20-6

71-55-6

79-34-5

SW8260B

SW8260B

SW8260B

SW8260B

SW8260B

SW8260B

SW8260B

GB-13

GB-13

GB-13

GB-13

GB-14

GB-14

GB-14

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Trichlorofluoromethane

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,1-Trichloroethane

Vinyl acetate

Vinyl chloride

Xylenes, Total

Subifficied 10. Ocum	Janio												
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Samp	le Results	Qual	LOD	LOQ	Dil. Facto	or Units
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		25.0	25.0	1	ug/L
lodomethane	74-88-4	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		0.5	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	1.2			0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	0.6		J	0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	4.2			0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	0.9		J	0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	0.4		J	0.1	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	2.4			0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00	0.3		j	0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-13	09100571-006	10/27/09	11/05/09 16:00		BLOD		0.2	1.0	1	ug/L

09100571-006

09100571-006

09100571-006

09100571-006

09100571-007

09100571-007

09100571-007

10/27/09

10/27/09

10/27/09

10/27/09

10/27/09

10/27/09

10/27/09

11/05/09 16:00

11/05/09 16:00

11/05/09 16:00

11/05/09 16:23

11/05/09 16:23

11/05/09 16:23

11/05/09 16:00 1.0

BLOD

BLOD

BLOD

BLOD

BLOD

BLOD

J

0.2

2.2

0.2

0.3

0.1

0.2

0.3

1.0

10.0

1.0

3.0

1.0

1.0

1.0

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Date Issued:

11/10/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LO	D ŁOQ	Dil. Facto	or Units
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2		1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2		1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2		1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.3		1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.3		1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.4		1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.3		1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	0.5	J 0.2		1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.4		1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.4		1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2		1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.3		1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.3		1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2		1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2		1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2		1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2		1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.3		1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2		1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2		1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	1.2		1	ug/L
Acetone	67-64-1	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	7.0		1	ug/L
Benzene	71-43-2	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.3	1.0	1	ug/L
				Page 16 of 48							J

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Submitted To: Sean I	Daniel										
arameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LO	OD LOQ	Dil. Fact	or Units
Bromomethane	74-83-9	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	1.	.2 10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.1 1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.3 1.0	1	ug/L
is-1,2-Dichloroethylene	156-59-2	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
is-1,3-Dichloropropene	10061-01-5	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
ibromomethane	74-95-3	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
ichlorodifluoromethane	75-71 - 8	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
i-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	5.	.0 5.0	1	ug/L
thylbenzene	100-41-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	0.1	J 0.	.1 1.0	1	ug/L
thyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	25	5.0 25.0	1	ug/L
odomethane	74-88-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.5 10.0	1	ug/L
copropylbenzene	98-82-8	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.1 1.0	1	ug/L
n,p-Xylenes	179601-23-1	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	0.5	J 0.	.2 2.0	1	ug/L
lethylene chloride	75-09-2	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	1.	.0 4.0	1	ug/L
1TBE	1634-04-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
laphthalene	91-20-3	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	3.2	0.	.2 1.0	1	ug/L
-Butylbenzene	104-51-8	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.1 1.0	1	ug/L
-Propylbenzene	103-65-1	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.1 1.0	1	ug/L
-Xylene	95-47-6	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	0.3	J 0.	.1 1.0	1	ug/L
-Isopropyltoluene	99-87-6	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.2 1.0	1	ug/L
ec-Butylbenzene	135-98-8	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.1 1.0	1	ug/L
ityrene	100-42-5	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	0.	.1 1.0	1	ug/L
AME	994-05-8	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	5.	.0 5.0	1	ug/L
*BA	75-65-0	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	BLOD	10	00 100	1	ug/L
				Page 17 of 49							

Page 17 of 48

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Samp	le Results	Qual	LOD	LOQ	Dil. Facto	or Units
tert-Butylbenzene	98-06-6	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23		BLOD		0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23		BLOD		0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	0.3		J	0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23		BLOD		0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23		BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23		BLOD		0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23		BLOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23		BLOD		2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23		BLOD		0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-14	09100571-007	10/27/09	11/05/09 16:23	8.0		J	0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	0.3		J	0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Date Issued:	11/10/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
1,3-Dichloropropane	142-28-9	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.4	1.0	. 1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB- 15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	0.1	J 0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	BLOD	25.0	25.0	1	ug/L
				Page 19 of 48							

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample	Results	Qual	LOD	LOQ	Dil. Facto	r Units
iodomethane	74-88-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.5	10.0	1	ug/L
Isopropylbenzene	98-82 - 8	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	0.4		J	0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	1.5			0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	0.2		J	0.1	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	0.3		J	0.1	1.0	. 1	ug/L
Styrene	100-42-5	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		5.0	5.0	1	ug/L
ТВА	75-65-0	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	0.2		J	0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46		BLOD		0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-15	09100571-008	10/27/09	11/05/09 16:46	0.6		J	0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08		BLOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08		BLOD		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08		BLOD		0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08		BLOD		0.2	1.0	1	ug/L

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Resu	lts Qı	ial LOD	LOQ	Dil. Facto	or Units
1,1-Dichloroethane	75-34-3	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	l	0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	1	0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD)	0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD)	0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD)	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD)	0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	0.5	J	0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD)	0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD		0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD		0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD		0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD		0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD		0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD		0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD		0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD		0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD		0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD		1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOE		0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOE	•	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	•	0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	þ	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD)	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	0.2	J	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	•	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD)	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD)	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD)	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD)	0.2	1.0	1	ug/L
				Page 21 of 48								

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Fact	tor Units
Carbon disulfide	75-15-0	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	0.1	J 0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	25.0	25.0	1	ug/L
lodomethane	74-88-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.5	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	1.3	0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	0.4	J 0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	1.0	J 1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	2.5	0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	2.4	0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	0.2	J 0.1	1.0	1	ug/L
p-IsopropyItoluene	99-87-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.2	1.0	· 1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	1.7	0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BLOD	0.1	1.0	1	ug/L
				Page 22 of 48							

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Gubillitted 10: Coall Daill	J.												
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample F	Results	Qual	LOD	LOQ	Dil. Facto	or Units
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	В	LOD		0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	0.2		J	0.2	1.0	1	ug/L
rans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	В	LOD		0.2	1.0	1	ug/L
rans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	ВІ	LOD		0.2	1.0	1	ug/L
Frichloroethylene	79-01-6	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	В	LOD		0.2	1.0	1	ug/L
Frichlorofluoromethane	75-69-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	ВІ	LOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	В	LOD		2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	BI	LOD		0.2	1.0	1	ug/L
Kylenes, Total	1330-20-7	SW8260B	GB-17	09100571-009	10/27/09	11/05/09 17:08	0.6		J	0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	ВІ	LOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	ВІ	LOD		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	ВІ	LOD		0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BI	LOD		0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	ВІ	LOD		0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	ВІ	LOD		0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BI	LOD		0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BI	LOD		0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BI	LOD		0.4	1.0	1	ug/L.
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	ВІ	LOD		0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	24.1			0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	ВІ	LOD		0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	В	LOD		0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	ВІ	LOD		0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	В	LOD		0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	В	LOD		0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	В	LOD		0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	В	LOD		0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	В	LOD		0.2	1.0	1	ug/L

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

		Reference	Client	Laboratory	Sample	Analysis					Dil.	
Parameter	CAS	Method	Sample ID	Sample ID	Date	Date/Time	Sample Results	Qual L	LOD	LOQ		or Units
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	(0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	c	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16			0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	o	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	o).2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	0	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	0).2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	1	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	0).2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	0	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	0).2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD).2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD).3	1.0	1	ug/L
is-1,2-Dichloroethylene	156-59-2	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD).2	1.0	1	ug/L
is-1,3-Dichloropropene	10061-01-5	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD).2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD).2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD	0	.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		i.O	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16).1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		5.0	25.0	1	ug/L
odomethane	74-88-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	BLOD		.5	10.0	1	ug/L
				Page 24 of 48								-

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results Qual LOD		.OD		Dil. Factor Units		
Isopropylbenzene	98-82-8	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	8.5		0),1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	3.5).2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD		.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD).2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	5.9).2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	11.4			.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	14.0			.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	1.0			.1	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	3.3			.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	15.9		0		1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD	0		1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD		.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD		00	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	1.1		0.		1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD		.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	0.4			 .2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD		.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD		.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD		.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD	0.		1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD		.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16		BLOD	0.		1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-18	09100571-010	10/27/09	11/05/09 18:16	4.6		0.		3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54		BLOD	0.	.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54		BLOD	0.	.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54		BLOD	0.		1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54		BLOD	0.		1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54		BLOD	0.		1.0	1	ug/L

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
1,1-Dichloroethylene	75-35-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	1.2	10.0	1	ug/L
				Page 26 of 48							

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
Carbon tetrachloride	56-23-5	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	25.0	25.0	1	ug/L
lodomethane	74-88-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.5	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	2.0	1	ug/ L
Methylene chloride	75-09-2	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.1	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
				Page 27 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
Toluene	108-88-3	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-20	09100571-011	10/27/09	11/01/09 18:54	BLOD	0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17		J 0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	0.3	J 0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
								~. <u>~</u>		•	-s. -

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Date Issued:

11/10/2009

'arameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Fact	or Units
2,2-Dichloropropane	594-20-7	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
1-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17		0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17		0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	25.0	25.0	1	ug/L
lodomethane	74-88-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD	0.5	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	0.2	J 0.1	1.0	1	ug/L
				Page 29 of 48							

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	r Units_
m,p-Xylenes	179601-23-1	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	0.5	J	0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	0.2	J	0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.1	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	0.6	J	0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-21	09100571-012	10/27/09	11/01/09 19:17	BLOD		0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.2	1.0	1	ug/L

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Submitted To: Sean Dani	el										
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
1,1-Dichloropropene	563-58-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40		0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40		0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.3	1.0	1.	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
				Page 31 of 49							-

Page 31 of 48

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	Units
Chlorobenzene	108-90-7	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
sis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0		ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	25.0	25.0	1	ug/L
odomethane	74-88-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.5	10.0	1	ug/L
sopropylbenzene	98-82-8	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.1	1.0	1	ug/L
n,p-Xylenes	179601-23-1	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Vaphthalene	91-20-3	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	0.4	J 0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.1	1.0	1	ug/L
o-Isopropyltoluene	99-87-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.1	1.0	1	ug/L
ГАМЕ	994-05-8	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	5.0	5.0	1	ug/L
ТВА	75-65-0	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	100	100	1	ug/L
ert-Butylbenzene	98-06-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD	0.2	1.0	1	ug/L
				Page 32 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Date Issued:

11/10/2009

Client Site ID: Stebbins-Burnham Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	r Units
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.2	1.0	. 1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-25	09100571-013	10/27/09	11/01/09 19:40	BLOD		0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD .		0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.3	1.0	1	ug/L

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
2-Butanone (MEK)	78-93-3	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	25.0	25.0	1 .	ug/L
Iodomethane	74-88-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.5	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD	0.2	2.0	1	ug/L
				Page 34 of 48							

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

arameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	or Units
Methylene chloride	75-09-2	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	0.3	J	0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.1	1.0	1	ug/L
o-Isopropyltoluene	99-87-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.1	1.0	1	ug/L
ГАМЕ	994-05-8	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		5.0	5.0	1	ug/L
ГВА	75-65-0	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		100	100	1	ug/L
ert-Butylbenzene	98-06-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
rans-1,2-Dichloroethylene	156-60-5	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
rans-1,3-Dichloropropene	10061-02-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
Frichlorofluoromethane	75-69-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.2	1.0	1	ug/L
Kylenes, Total	1330-20-7	SW8260B	Dupe-1	09100571-014	10/27/09	11/01/09 20:02	BLOD		0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD		0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD		0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD		0.3	1.0	1	ug/L

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Date Issued: 11/10/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L.
1,3-Dichlorobenzene	541-73-1	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0.1	1.0	1	ug/L
				Page 36 of 48							
4											

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Jate	issuea:	11/	10/2	2009	,

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample	Results	Qual	LOD	LOQ	Dil. Facto	or Units
Chloroethane	75-00-3	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	0.3		J	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		25.0	25.0	. 1	ug/L
odomethane	74-88-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.5	10.0	1	ug/L
sopropylbenzene	98-82-8	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	2.0			0.1	1.0	1	ug/L
n,p-Xylenes	179601-23-1	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	1.6			0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	0.5		J	0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	0.6		J	0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	8.0		J	0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	0.1		J	0.1	1.0	1	ug/L
o-Isopropyltoluene	99-87-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	1.1			0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		5.0	5.0	1	ug/L
ГВА	75-65-0	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		100	100	1	ug/L
ert-Butylbenzene	98-06-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	0.3		J	0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	1.3			0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	0.3		J	0.2	1.0	1	ug/L
rans-1,2-Dichloroethylene	156-60-5	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04		BLOD		0.2	1.0	1	ug/L
				Page 37 of 48									

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Cabilitioa 10. Coali Dain	- ,										
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual L	OD LOQ	Dil. Fact	or Units
trans-1,3-Dichloropropene	10061-02-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0	.2 1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	1.1	0	.2 1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0	.2 1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	2	.2 10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	BLOD	0	.2 1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	Dupe-2	09100571-015	10/27/09	11/06/09 13:04	0.3	J 0	.3 3.0	1	ug/L
1,1,1,2-Tetrachioroethane	630-20-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.1 1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.2 1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.3 1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.2 1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.2 1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.2 1.0	1	ug/L.
1,1-Dichloropropene	563-58-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.3 1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.3 1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	.0	.4 1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.3 1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.2 1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.4 4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.4 1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.	.2 1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.3 1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.	.3 1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.	.2 1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.2 1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0	.2 1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.	.2 1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.	.3 1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	1.	.7 10.0	1	ug/L

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Date Issued: 11	/10/2009
-----------------	----------

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
2-Chlorotoluene	95-49-8	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	25.0	25.0	1	ug/L
lodomethane	74-88-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.5	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	1.0	4.0	1	ug/L
				Page 39 of 48							

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
МТВЕ	1634-04-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36		0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36		0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36		0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.1	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	0.4	J 0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	FB	09100571-016	10/27/09	11/01/09 16:36	BLOD	0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	тв	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.3	1.0	1	ug/L
1											-

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	r Units
1,2,3-Trichloropropane	96-18-4	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	тв	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	1.7	10.0	1	ug/L
1-Chlorotoluene	106-43-4	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
1-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	TB	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
				Page 41 of 48							

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Chloromethane 74-87-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.3 1.0 1.0 16:1-3. PUblichromethylene 156-59-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1/01/09 16:13 BLOD 0.2 1.0 1.0 1.0 1.1 1.0 1.1 1/01/09 16:13 BLOD 0.2 1.0 1.0 1.0 1.1 1.0 1.0	neter	CAS	Refere Method			Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Factor	r Units
1.00 1.00	roform	67-66	-3 SW820	60B TB	}	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
Dictor 10061-01-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0	romethane	74-87	-3 SW820	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.3	1.0	1	ug/L
Dibromochloromethane 124-48-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Dibromochlane 74-95-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Dichlorodifluoromethane 75-71-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Dichlorodifluoromethane 75-71-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Dichlorodifluoromethane 75-71-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Ethyltenzene 100-41-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.5 25.0 Ethyltenzene 637-92-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.5 25.0 Sopropylbenzene 98-82-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.5 10.0 Sopropylbenzene 98-82-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene chloride 75-09-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 Methylene chloride 75-09-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 Methylene chloride 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Maphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Maphthalene 99-87-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Maphthalene 99-87-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 MEDICAL SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 MEDICAL SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 MEDICAL SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 MEDICAL SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 MEDICAL SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 MEDICAL SW	,2-Dichloroethyle	ne 156-5	9-2 SW826	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
Dibrimomethane 74-95-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0	,3-Dichloroproper	ne 1006 ⁻	-01-5 SW826	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
Dichlorodifluoromethane 75-71-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Dichloropyl ether (DIPE) 108-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 5.0 5.0 5.0 Ethylbenzene 100-41-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Ethyl-butyl ether (ETBE) 637-92-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.5 10.0 Sopropylbenzene 98-82-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.5 10.0 Sopropylbenzene 98-82-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m,p-Xylenes 179601-23-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 Methylene chloride 75-09-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 Methylene chloride 75-09-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Methylene chloride 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Methylene chloride 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Methylene nember of 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13	mochloromethan	ne 124-4	8-1 SW826	60B TB	}	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1 .	ug/L
Di-isopropyl ether (DIPE) 108-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	momethane	74-95	-3 SW826	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
Ethylbenzene 100-41-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Ethyl-t-butyl ether (ETBE) 637-92-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.5 25.0 25.0 codomethane 74-88-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.5 10.0 sopropylbenzene 98-82-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m,p-Xylenes 179601-23-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 Methylene chloride 75-09-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 Methylene chloride 1634-04-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Naphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Naphthalene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Naphthalene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-2-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-2-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-2-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-2-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-2-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-2-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-2-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Naphthalene 104-2-5 SW8260B TB 09100571-017	orodifluorometha	ne 75-71	-8 SW826	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE) 637-92-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 25.0 25.0 cdomethane 74-88-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.5 10.0 sopropylbenzene 98-82-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pXylenes 17961-23-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 Methylene chloride 75-09-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 MTBE 1634-04-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Maphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 m.pEthylbenzene 103-65-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 m.pEthylbenzene 95-47-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 1.0 m.pEthylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	opropyl ether (DIF	PE) 108-2	0-3 SW826	60B TB	;	09100571-017	10/27/09	11/01/09 16:13	BLOD		5.0	5.0	1	ug/L
odomethane 74-88-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.5 10. sopropylbenzene 98-82-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m,p-Xylenes 179601-23-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 Methylene chloride 75-09-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 Methylene chloride 75-09-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Naphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Naphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Naphthalene 91-20-8 SW8260B TB 09100571-017<	benzene	100-4	1-4 SW826	60B TB	•	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.1	1.0	1	ug/L
sopropylbenzene 98-82-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 m,p-Xylenes 179601-23-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 Methylene chloride 75-09-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 2.0 MTBE 1684-04-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Naphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Naphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Naphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Propylbenzene 103-56-8 SW8260B TB 09100571-017	-t-butyl ether (ET	BE) 637-9	2-3 SW826	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		25.0	25.0	1	ug/L
m_p-Xylenes	nethane	74-88	-4 SW826	60B TB	l	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.5	10.0	1	ug/L
Methylene chloride 75-09-2 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 1.0 4.0 MTBE 1634-04-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Naphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Butylbenzene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 103-65-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 95-47-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 99-87-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-88-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-88-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 100-60-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 100-61-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 100-61-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 100-61-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 100-61-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13	opylbenzene	98-82	-8 SW826	60B TB	l	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.1	1.0	1	ug/L
MTBE 1634-04-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Apphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Apphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Apphthalene 103-65-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Appropylbenzene 103-65-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.	Kylenes	17960	1-23-1 SW826	60B TB	l	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	2.0	1	ug/L
Naphthalene 91-20-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Butylbenzene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 103-65-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 95-47-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 99-87-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 99-87-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 100-62-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01	ylene chloride	75-09	-2 SW826	60B TB	l .	09100571-017	10/27/09	11/01/09 16:13	BLOD		1.0	4.0	1	ug/L
n-Butylbenzene 104-51-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 103-65-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 95-47-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 99-87-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 99-87-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 n-Propylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 n-Propylbenzene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 100 100 100 100 100 100 100 100 100 10	E	1634-	04-4 SW826	60B TB	l.	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
n-Propylbenzene 103-65-1 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 0-Xylene 95-47-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 0-lsopropyltoluene 99-87-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 sec-Butylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Styrene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 TAME 994-05-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 TAME 994-05-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 5.0 5.0 TBA 09100571-017 10/27/09 11/01/09 16:13 BLOD 100 100 100 100 100 100 100 100 100 10	ıthalene	91-20	-3 SW826	60B TB	l.	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
Decomposition of the content of the	tylbenzene	104-5	1-8 SW826	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.1	1.0	1	ug/L
Description of the position of	pylbenzene	103-6	5-1 SW826	60B TB	i.	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.1	1.0	1	ug/L
Sec-Butylbenzene 135-98-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Styrene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 TAME 994-05-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 5.0 5.0 TBA 75-65-0 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 100 100 tert-Butylbenzene 98-06-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Tetrachloroethylene (PCE) 127-18-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Toluene 108-88-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,2-Dichloroethylene 156-60-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB	ene	95-47	-6 SW826	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.1	1.0	1	ug/L
Styrene 100-42-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 TAME 994-05-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 5.0 5.0 TBA 75-65-0 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 100 100 100 100 100 100 100 100 100 10	propyitoluene	99-87	-6 SW826	60B TB		09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
TAME 994-05-8 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 5.0 5.0 TBA 75-65-0 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 100 100 100 100 100 100 100 100 100 10	3utylbenzene	135-9	8-8 SW826	60B TB		09100571-017	10/27/09	11/01/09 16:13	BLOD		0.1	1.0	1	ug/L
TBA 75-65-0 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 100 100 100 100 100 100 100 100 100 10	ne	100-4	2-5 SW826	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.1	1.0	1	ug/L
rert-Butylbenzene 98-06-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.1 1.0 Tetrachloroethylene (PCE) 127-18-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Toluene 108-88-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 0.4 J 0.2 1.0 trans-1,2-Dichloroethylene 156-60-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene	E	994-0	5-8 SW826	60B TB		09100571-017	10/27/09	11/01/09 16:13	BLOD		5.0	5.0	1	ug/L
Tetrachloroethylene (PCE) 127-18-4 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 Toluene 108-88-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 0.4 J 0.2 1.0 trans-1,2-Dichloroethylene 156-60-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene		75-65	-0 SW826	60B TB		09100571-017	10/27/09	11/01/09 16:13	BLOD		100	100	1	ug/L
Toluene 108-88-3 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 0.4 J 0.2 1.0 trans-1,2-Dichloroethylene 156-60-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0	Butylbenzene	98-06	-6 SW826	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.1	1.0	1	ug/L
trans-1,2-Dichloroethylene 156-60-5 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0 trans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0	chloroethylene (f	PCE) 127-1	8-4 SW826	60B TB	i	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
rans-1,3-Dichloropropene 10061-02-6 SW8260B TB 09100571-017 10/27/09 11/01/09 16:13 BLOD 0.2 1.0	ene	108-8	8-3 SW826	60B TB		09100571-017	10/27/09	11/01/09 16:13	0.4	J	0.2	1.0	1	ug/L
	-1,2-Dichloroethy	rlene 156-6	0-5 SW826	60B TB	1	09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
Page 42 of 48	-1,3-Dichloroprop	pene 10061	-02-6 SW826	50B TB		09100571-017	10/27/09	11/01/09 16:13	BLOD		0.2	1.0	1	ug/L
					I	Page 42 of 48		-						

Date Issued:

11/10/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
Trichloroethylene	79-01-6	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	ТВ	09100571-017	10/27/09	11/01/09 16:13	BLOD	0.3	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.1	1.0	4	
1,1,1-Trichloroethane	71-55-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.1	1.0	1	ug/L ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.2	1.0	1	ug/L ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.3	1.0	1	ug/L ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.3	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		J 0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0,2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD	0.2	1.0	1	ug/L

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Samp	le Results	Qual	LOD	LOQ	Dil. Facto	or Units
2-Hexanone (MBK)	591-78-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		1.7	10.0	1	ug/L
4-Chiorotoluene	106-43-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	0.6		J	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	0.3		J	0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		25.0	25.0	1	ug/L
Iodomethane	74-88-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.5	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.1	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	1.4		J	1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27		BLOD		0.2	1.0	1	ug/L
													_

Page 44 of 48

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Date	Issued:	11/10/2009
Daie	issucu.	11/10/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	or Units
Naphthalene	91-20-3	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	0.2	J	0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	0.6	J	0.1	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	0.7	J	0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.2	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	BLOD		0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GAC-Mid	09100571-018	10/27/09	11/06/09 13:27	0.8	J	0.3	3.0	1	ug/L
TPH-Volatiles (GRO)	NA	SW8015C	GAC-Eff	09100571-019	10/27/09	11/05/09 17:07	BLOD		0.5	0.5	1	mg/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD		0.1	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD		0.2	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD		0.3	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD		0.2	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD		0.2	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD		0.3	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD		0.3	1.0	1	ug/L

11/10/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
1,2,3-Trichloropropane	96-18-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.4	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.3	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.4	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.4	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.3	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.3	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.3	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	1.7	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	1.7	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	1.2	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	7.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.4	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.3	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	1.2	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.1	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
				Page 46 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham

Submitted To: Sean Daniel

Date Issued: 11/10/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
Chloroform	67-66-3	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.3	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.1	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	25.0	25.0	1	ug/L
Iodomethane	74-88-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.5	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.1	1.0	- 1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	1.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.1	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.1	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.1	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.1	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.1	1.0	1	ug/L
TAME	994-05-8	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	5.0	5.0	1	ug/L
ТВА	75-65-0	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.1	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	0.2	1.0	1	ug/L
				Page 47 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Stebbins-Burnham

Submitted To: Sean Daniel

Client Site ID:

Date Issued:

11/10/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual I	LOD	LOQ	Dil. Facto	or Units
Trichloroethylene	79-01-6	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	(0.2	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	(0.2	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	:	2.2	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	(0.2	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GAC-Eff	09100571-019	10/27/09	11/01/09 17:47	BLOD	(0.3	3.0	1	ug/L
TPH-Semi-Volatiles (DRO)	NA	SW8015C	GAC-Eff	09100571-019	10/27/09	11/03/09 17:01	BLOD	(0.3	0.5	1	mg/L

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a dry weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water & Soil Laboratories, Inc.

Company Name: Chesapeake GeoSciences, Inc.	Project I Sean Da	_	r:							P	arame	eters					CHAIN-OF	-CUSTO	ODY RECORD.	
Project Name: Stebbins-Burnham (03-1335BA2) Page 1 of 2 Sampler(s): Teckins	Project I CG-08-0 P.O. Nu CG0803	399 mber:				Containers	VOCs via EPA 8260	O via EPA 8015	O via EPA 8015								2109A N	lorth Har	aboratories, Inc. milton Street 'A 23230 58-	
Field Sample ID	Date	Time	Water	Soil	Other	No. of	VOCs vi	TPH-DRO	TPH-GRO								Preservative/F	emarks	Lab ID	
	10/27/9		, X			3	Х		<u> </u>							40	1+ Ize	Cinario	Labib	
MW-3		11:25				3	Х		<u> </u>							710	1			
GB-5		4:59				3	Х					+								
GB-6		7:3 / 3:3 /	_			3	Х				\dashv				 					
GB-10		5:38				3	Х					+								
GB-13		5:58	-			3	Х				+	+			 					
GB-14		6:12	+			3	Х													
GB-15		5:15	1			3	Х													
GB-17		4:43				3	Х													
GB-18		4:06				3	Х													
GB-20		1:06				3	Х													
GB-21		1:24				3	Х													
GB-25	1	5:23	_			3	Х									\neg				
Dupe-1			Х			3	Х						1				0010	0571		
Dupe-2			Х			3	Х						991	CG		ırnham		10 Days		
FB	V/	3:51	Х			3	Х						09100571				Recd:	10/29/09	1 000	
TB /	0/27/9		Х			3	Х												11.99	
Relinquishee by: (Signature)	Date/Tim /0/28/ 07:4	19	Receiv 7	>	y: (Sigi	nature	5	2	- li	ver	elinquisl rinted)	hed by	: (Sign	ature)		23.00	Date/Time 10-39-00 15:57-	(Printed)		+
Relinquished by: (Signature)	Date/Tim	e I	Receiv		/ Labo	orator	y: (Sig	gnatur	re)		Date	e/Time	<u> </u>	Plea	ase ind	clude E		el 1 Delivera MTBE, TAMI	106 M LUY hble RMS 2008 Rat E, TBA, ETBE, DIPE, 1,2-E	
(Printed)	: :		(Printe	d)		·											oethane in EPA 8260 sdaniel@cgs.us.com			

Company Name: Chesapeake GeoSciences, Inc.	Sean D	Managei aniel	r:					1		F	Paran	neter	s					CHAIN-0	DF-(CUST	ODY	RE	CORE) .
Project Name: Stebbins-Burnham (03-1335BA2) Page 2 of 2 Sampler(s): J.C. Perkins	Project CG-08-0 P.O. Nu CG0803	0399 ımber:				Containers	VOCs via EPA 8260	O via EPA 8015	O via EPA 8015							And the second s			A No chm	Soil La orth Ha nond, \ (804) 3	amilto VA 23	n Str	The Carlot Could See	
Field Sample ID	Date	Time	Water	Soil	Other	No. of (VOCs via	TPH-DRO	TPH-GRO via									Preservativ	/e/Re	marks			Lab IC)
GAC-Mid	0/27/9	11:55	X			3	Х										HC	(tIce						
	0/27/9					7	Х	Х	Х								V	V						
							_			├														
				\checkmark				ļ		\vdash										$-/\!\!/$				
			1	1					-	_		_	\prec							//				
//			+							ļ		A							-//	<u> </u>				
		-/-	+						_		1/								<i> </i> _					
		/									H		.											
			ļ						ļ	\angle								/_						
	\perp								\angle	<u></u>														
									<u> </u>															
	4																							
													Ì											
/ /																	" ~~!			0910	057 1	i		-
																	CGI	s-Burnham		DUE:				
												\dashv									10/29/0			
1 1 0 /1			ļ	/										_	$/\!\!\!/+$	- "	III						1.0	14
Religable had had been seen to be a seen to	Date/Tim	<u> </u>	Possi	Vod b	y: (Sig			\vdash		l L			<u> </u>											
Religioned by (\$iggature)	0/28	4		e ved b	y. (Sig	Tal ui e	5	1)	2		elinqui 'CZ	sneu A -	by: (Signa	ture)			Date/Time			ed by: (S	signatur	e)	
		'.'. F	(Printe				<u> </u>	1/6	4	(F	Printed)	7						10:5	_ '	(Printed	40/7	M	<u>u</u>	1
Tettrey C. Terking	07: 8									1	,	•					-				<u> 4</u> CG	· ~~~		•
Relinquished by: (Signature)	Date/Tim	ne F	Recei	ved b	y Lab	orator	y: (Się	gnatur	re)		Da	ate/Ti	me		Rema	arks:	MDE-F	RMS Package 1/	Level	•			2008	Rates
(7.1.1.0)										4					Pleas	se inc	lude B	TEX, Naphthale	ne, M	TBE, TAN				
(Printed)			(Printe	ed)														ethane in EPA 8 sdaniel@cgs.us		\nalyses.				

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

Lab ID No.:

Sample Conditions Checkli

Fed Ex

Courier Walk In

Are the custody papers filled out completely and correctly?

Do all bottle labels agree with custody papers?

Opened by: (print)

How were samples received?

Were custody seals used?

(sign)

1.

2.

3.

4.

5.

CGI Stebbins-Burnham 09100571

10 Days DUE: 10/29/09

Recd:

Date Cooler Opened: **YES** <u>NO</u> <u>N/A</u> If yes, are custody seals unbroken and intact at the date and time of arrival?

		,		
6.	Are the samples received on ice?			
7.	Is the temperature blank or representative sample within acceptable limits? (4 degrees Celsius +/-2)	Q		
8.	Are all samples within holding time for requested tests?			
9	Is a sufficient amount of sample provided to perform the tests indicated?	Ø		
10	Are all samples in proper containers for the analyses requested?			
11,	Are all samples appropriately preserved for the analyses requested?		. 🔲 .	
12	Are all volatile organic containers free of headspace?			
	<u>COMMENTS</u>			
				
h-t				

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report Laboratory Order ID 09110387

Client Name:

Chesapeake Geosciences, Inc.

Date Issued:

December 07, 2009

5405 Twin Knolls Rd.

Suite 1

Columbia, Maryland 21045

Submitted To: Sean Daniel

Project Number

CG-08-0399

Client Site I.D.: Stebbins-Burnham (09-1335BA2)

Purchase Order

CG080399SD

Laboratory Sample ID	Sample ID	Sample Date	Receive Date
09110387-001	GB-27	November 17, 2009	November 19, 2009
09110387-002	GB-28	November 17, 2009	November 19, 2009
09110387-003	GB-29	November 17, 2009	November 19, 2009
09110387-004	GB-30	November 17, 2009	November 19, 2009
09110387-005	GB-31	November 17, 2009	November 19, 2009
09110387-006	GB-32	November 17, 2009	November 19, 2009
09110387-007	GB-34	November 17, 2009	November 19, 2009
09110387-008	GB-35	November 17, 2009	November 19, 2009
09110387-009	GB-36	November 17, 2009	November 19, 2009
09110387-010	Soil Dup 1	November 17, 2009	November 19, 2009
09110387-011	GB-27 (GW)	November 17, 2009	November 19, 2009
09110387-012	GB-28 (GW)	November 17, 2009	November 19, 2009
09110387-013	GB-29 (GW)	November 17, 2009	November 19, 2009
09110387-014	GB-31(GW)	November 17, 2009	November 19, 2009
09110387-015	GB-32 (GW)	November 17, 2009	November 19, 2009
09110387-016	GB-35 (GW)	November 17, 2009	November 19, 2009
09110387-017	GB-36 (GW)	November 17, 2009	November 19, 2009
09110387-018	DUPE-(GW)	November 17, 2009	November 19, 2009
09110387-019	FB	November 17, 2009	November 19, 2009

On November 19, 2009, ten soil and nine water samples were received via shipment for analysis in accordance with the attached Chain-Of-Custody. The samples were received with sample containers intact by Ashley McGinley (AWS). Any deviations, discrepancies or irregularities observed in sample condition, including holding times, temperature, containers or preservatives have been notated on the chain-of-custody.

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 09110387

Client Name:

Chesapeake Geosciences, Inc.

Date Issued:

December 07, 2009

5405 Twin Knolls Rd.

Suite 1

Columbia, Maryland 21045

Submitted To: Sean Daniel

Project Number

CG-08-0399

Client Site I.D.: Stebbins-Burnham (09-1335BA2)

Purchase Order

CG080399SD

The samples were prepared and analyzed in accordance with SW-846/Standard Methods 18th edition methodology. Quality control data will be issued separately in a Level II data package.

Definition of Terms:

LOQ = Limit of Quantitation

LOD = Limit of Detection

BLOD = Below the Limit of Detection

Ted Soyars

Laboratory Manager

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Date	Issued:	12/07/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	6010	64.5	64.5	50	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	268	64.5	64.5	50	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	258	64.5	50	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	258	64.5	50	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	258	64.5	50	ug/kg
Acetone	67-64-1	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	258	64.5	50	ug/kg
Benzene	71-43-2	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
				Page 1 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

12/07/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
Bromochloromethane	74-97-5	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Bromodichloromethane	75-27-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Bromoform	75-25-2	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	258	64.5	50	ug/kg
Bromomethane	74-83-9	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Carbon disulfide	75-15-0	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Chloroethane	75-00-3	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Chloroform	67-66-3	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Chloromethane	74-87-3	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	512	64.5	64.5	50	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Iodomethane	74-88-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Isopropylbenzene	98-82-8	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	784	64.5	64.5	50	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	169	64.5	64.5	50	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
MTBE	1634-04-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD	64.5	64.5	50	ug/kg
Naphthalene	91-20-3	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	9130	64.5	64.5	50	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	2510	64.5	64.5	50	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	1560	64.5	64.5	50	ug/kg
o-Xylene	95-47-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	185	64.5	64.5	50	ug/kg
p-Isopropyltoluene	99-87-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	905	64.5	64.5	50	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	969	64.5	64.5	50	ug/kg
·				Page 2 of 48			-				

12/07/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual I	LOD	LOQ	Dil. Facto	r Units_
Styrene	100-42-5	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
TAME	994-05-8	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
TBA	75-65-0	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	322	50	ug/kg
tert-Butylbenzene	98-06-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
Toluene	108-88-3	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	BLOD		64.5	64.5	50	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-27	09110387-001	11/17/09	12/01/09 0:17	354		64.5	64.5	1	ug/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD		86.5	86.5	50	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	: 1	86.5	86.5	50	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD		86.5	86.5	50	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	1	86.5	86.5	50	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	1	86.5	86.5	50	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	{	86.5	86.5	50	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	{	86.5	86.5	50	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD		36.5	86.5	50	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD		36 <i>.</i> 5	86.5	50	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD		36.5	86.5	50	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	124		36.5	86.5	50	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD		36.5	86.5	50	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD		36.5	86.5	50	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD		36.5	86.5	50	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	8	86.5	86.5	50	ug/kg

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

12/07/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
1,2-Dichloropropane	78-87-5	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	346	86.5	50	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	346	86.5	50	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	346	86.5	50	ug/kg
Acetone	67-64-1	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	346	86.5	50	ug/kg
Benzene	71-43-2	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Bromochloromethane	74-97-5	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Bromodichloromethane	75-27-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Bromoform	75-25-2	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	346	86.5	50	ug/kg
Bromomethane	74-83-9	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Carbon disulfide	75-15-0	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Chloroethane	75-00-3	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Chloroform	67-66-3	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Chloromethane	74-87-3	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86.5	86.5	50	ug/kg
·				Page 4 of 48							- -

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID:

Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued: 12/07/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LC	D LOQ	Dil. Facto	or Units
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Iodomethane	74-88-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Isopropylbenzene	98-82-8	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
MTBE	1634-04-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Naphthalene	91-20-3	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	272	86	.5 86.5	50	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
o-Xylene	95-47-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
p-Isopropyltoluene	99-87-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Styrene	100-42-5	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
TAME	994-05-8	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
TBA	75-65-0	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 432	50	ug/kg
tert-Butylbenzene	98-06-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Toluene	108-88-3	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	50	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-28	09110387-002	11/17/09	11/30/09 19:24	BLOD	86	.5 86.5	1	ug/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59	.2 59.2	50	ug/kg

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

12/07/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	Units
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	8260	59.2	59.2	50	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,3,5-Trimethylbenzene	108-67 - 8	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	1280	59.2	59.2	50	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	237	59.2	50	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	237	59.2	50	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	237	59.2	50	ug/kg
Acetone	67-64-1	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	237	59.2	50	ug/kg
Benzene	71-43-2	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Bromochloromethane	74-97-5	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
				Page 6 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued: 12/07/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD) LOQ	Dil. Facto	r Units
Bromodichloromethane	75-27-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	2 59.2	50	ug/kg
Bromoform	75-25-2	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	237		50	ug/kg
Bromomethane	74-83-9	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
Carbon disulfide	75-15-0	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
Chloroethane	75-00-3	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
Chloroform	67-66-3	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
Chloromethane	74-87-3	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	. 59.2	50	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	1690	59.2	59.2	50	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Iodomethane	74-88-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Isopropylbenzene	98-82-8	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	1870	59.2		50	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	1400	59.2		50	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
MTBE	1634-04-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Naphthalene	91-20-3	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	6710	59.2	59.2	50	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	3750	59.2	59,2	50	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	3430	59.2	59.2	50	ug/kg
o-Xylene	95-47-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	345	59.2		50	ug/kg
p-Isopropyltoluene	99-87-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	1550	59.2		50	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	2310	59.2		50	ug/kg
Styrene	100-42-5	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2		50	ug/kg
				Page 7 of 48				- 			5. 5

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

COLUMN OF PRICE POR

Date Issued: 12/07/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	r Units
TAME	994-05-8	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
ТВА	75-65-0	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	296	50	ug/kg
tert-Butylbenzene	98-06-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	112	59.2	59.2	50	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Toluene	108-88-3	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	BLOD	59.2	59.2	50	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-29	09110387-003	11/17/09	11/30/09 23:55	1740	59.2	59.2	1	ug/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued: 12/07/2009

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Factor	r Units
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		292	72.9	50	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		292	72.9	50	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		292	72.9	50	ug/kg
Acetone	67-64-1	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		292	72.9	50	ug/kg
Benzene	71-43-2	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Bromochloromethane	74-97-5	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Bromodichloromethane	75-27-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Bromoform	75-25-2	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		292	72.9	50	ug/kg
Bromomethane	74-83-9	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Carbon disulfide	75-15-0	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Chloroethane	75-00-3	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Chloroform	67-66-3	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Chloromethane	74-87-3	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD		72.9	72.9	50	ug/kg
				Page 9 of 48								

Date Issued:

12/07/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted 10: Sean D	alliel										
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	Units
Ethylbenzene	100-41-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9		ug/kg
lodomethane	74-88-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
Isopropylbenzene	98-82-8	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
MTBE	1634-04-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
Naphthalene	91-20-3	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
o-Xylene	95-47-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
p-lsopropyltoluene	99-87-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9		ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	365	72.9	72.9	50	ug/kg
Styrene	100-42-5	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
TAME	994-05-8	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
TBA	75-65-0	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	364	50	ug/kg
tert-Butylbenzene	98-06-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	90.4	72.9	72.9	50	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
Toluene	108-88-3	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9	50	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-30	09110387-004	11/17/09	11/30/09 20:54	BLOD	72.9	72.9		ug/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	Units
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	29800	66.2	66.2	500	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	3840	66.2	66.2	50	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	265	66.2	50	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	265	66.2	50	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	265	66.2	50	ug/kg
Acetone	67-64-1	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	265	66.2	50	ug/kg
Benzene	71-43-2	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
Bromochloromethane	74-97-5	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
Bromodichloromethane	75-27-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
				Page 11 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual L	_OD		Dil. Factor	Units
Bromoform	75-25-2	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	2	265	66.2	50	ug/kg
Bromomethane	74-83-9	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
Carbon disulfide	75-15-0	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	(66.2	66.2	50	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	(66.2	66.2	50	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	(66.2	66.2	50	ug/kg
Chloroethane	75-00-3	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
Chloroform	67-66-3	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
Chloromethane	74-87-3	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	56.2	66.2	50	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	e	66.2	66.2	50	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	5230	6	66.2	66.2	50	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
lodomethane	74-88-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	. 6	66.2	66.2	50	ug/kg
Isopropylbenzene	98-82-8	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	4660	E	66.2	66.2	50	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	1210	6	66.2	66.2	50	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
MTBE	1634-04-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	6	66.2	66.2	50	ug/kg
Naphthalene	91-20-3	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	28100	ε	66.2	66.2	500	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	6920	ε	66.2	66.2	50	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	8100	6	66.2	66.2	50	ug/kg
o-Xylene	95-47-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	. 6	66.2	66.2	50	ug/kg
p-Isopropyltoluene	99-87-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	3980	6	66.2	66.2	50	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	6330	6	66.2	66.2	50	ug/kg
Styrene	100-42-5	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	ε	66.2	66.2	50	ug/kg
TAME	994-05-8	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	ε	66.2	66.2	50	ug/kg
				Page 12 of 48								
				<u>-</u>								

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Oual LOD	LOQ	Dil.	r Units
TBA	75-65-0	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	331	50	ug/kg
tert-Butylbenzene	98-06-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10		66.2	66.2	50	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
Toluene	108-88-3	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	BLOD	66.2	66.2	50	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-31	09110387-005	11/17/09	11/30/09 23:10	1210	66.2	66.2	1	ug/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	2210	64.5	64.5	50	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	479	64.5	64.5	50	ug/kg
								J	0 1.0		ביי ש-

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	Units
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	258	64.5	50	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	258	64.5	50	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	258	64.5	50	ug/kg
Acetone	67-64-1	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	258	64.5	50	ug/kg
Benzene	71-43-2	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Bromochloromethane	74-97-5	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Bromodichloromethane	75-27-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Bromoform	75-25-2	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	258	64.5	50	ug/kg
Bromomethane	74-83-9	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Carbon disulfide	75-15-0	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Chloroethane	75-00-3	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Chloroform	67-66-3	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Chloromethane	74-87-3	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD	64.5	64.5	50	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	220	64.5	64.5	50	ug/kg
				Page 14 of 48				•			

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	- BLOD		64.5	64.5	50	ug/kg
Iodomethane	74-88-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
Isopropylbenzene	98-82-8	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	185		64.5	64.5	50	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	325		64.5	64.5	50	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
MTBE	1634-04-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
Naphthalene	91-20-3	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	2070		64.5	64.5	50	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	463		64.5	64.5	50	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	343		64.5	64.5	50	ug/kg
o-Xylene	95-47-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	259		64.5	64.5	50	ug/kg
p-Isopropyltoluene	99-87-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	236		64.5	64.5	50	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	250		64.5	64.5	50	ug/kg
Styrene	100-42-5	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
TAME	994-05-8	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
TBA	75-65-0	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	322	50	ug/kg
tert-Butylbenzene	98-06-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
Toluene	108-88-3	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	BLOD		64.5	64.5	50	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-32	09110387-006	11/17/09	11/30/09 23:32	584		64.5	64.5	1	ug/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	r Units
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	268	66.9	50	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	268	66.9	50	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	268	66.9	50	ug/kg
Acetone	67-64-1	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	268	66.9	50	ug/kg
Benzene	71-43-2	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
Bromochloromethane	74-97-5	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
Bromodichloromethane	75-27-4	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	66.9	66.9	50	ug/kg
Bromoform	75-25-2	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD	268	66.9	50	ug/kg
				Page 16 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
74-83-9	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
75-15-0	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
56-23-5	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
108-90-7	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
75-00-3	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
67-66-3	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
74-87-3	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
156-59-2	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
10061-01-5	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
124-48-1	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
74-95-3	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
75-71-8	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
108-20-3	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
100-41-4	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
637-92-3	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
74-88-4	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
98-82-8	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
179601-23-1	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
75-09-2	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
1634-04-4	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
91-20-3	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
104-51-8	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
103-65-1	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
95-47-6	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
99-87-6	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9		50	ug/kg
135-98-8	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
100-42-5	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
994-05-8	SW8260B	GB-34	09110387-007	11/17/09	11/30/09 19:47	BLOD		66.9	66.9	50	ug/kg
75-65-0	SW8260B	GB-34	09110387-007	11/17/09						50	ug/kg
			Page 17 of 48	2							- •
	74-83-9 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 156-59-2 10061-01-5 124-48-1 74-95-3 75-71-8 108-20-3 100-41-4 637-92-3 74-88-4 98-82-8 179601-23-1 75-09-2 1634-04-4 91-20-3 104-51-8 103-65-1 95-47-6 99-87-6 135-98-8 100-42-5 994-05-8	CAS Method 74-83-9 SW8260B 75-15-0 SW8260B 56-23-5 SW8260B 108-90-7 SW8260B 75-00-3 SW8260B 67-66-3 SW8260B 74-87-3 SW8260B 156-59-2 SW8260B 10061-01-5 SW8260B 74-95-3 SW8260B 75-71-8 SW8260B 108-20-3 SW8260B 100-41-4 SW8260B 637-92-3 SW8260B 74-88-4 SW8260B 179601-23-1 SW8260B 1634-04-4 SW8260B 104-51-8 SW8260B 104-51-8 SW8260B 103-65-1 SW8260B 99-87-6 SW8260B 135-98-8 SW8260B 100-42-5 SW8260B	CAS Method Sample ID 74-83-9 SW8260B GB-34 75-15-0 SW8260B GB-34 56-23-5 SW8260B GB-34 108-90-7 SW8260B GB-34 75-00-3 SW8260B GB-34 67-66-3 SW8260B GB-34 74-87-3 SW8260B GB-34 156-59-2 SW8260B GB-34 1061-01-5 SW8260B GB-34 124-48-1 SW8260B GB-34 74-95-3 SW8260B GB-34 75-71-8 SW8260B GB-34 108-20-3 SW8260B GB-34 100-41-4 SW8260B GB-34 637-92-3 SW8260B GB-34 74-88-4 SW8260B GB-34 98-82-8 SW8260B GB-34 175-09-2 SW8260B GB-34 1634-04-4 SW8260B GB-34 104-51-8 SW8260B GB-34 103-65-1 SW8260B GB-34	CAS Method Sample ID Sample ID 74-83-9 SW8260B GB-34 09110387-007 75-15-0 SW8260B GB-34 09110387-007 56-23-5 SW8260B GB-34 09110387-007 108-90-7 SW8260B GB-34 09110387-007 75-00-3 SW8260B GB-34 09110387-007 67-66-3 SW8260B GB-34 09110387-007 74-87-3 SW8260B GB-34 09110387-007 156-59-2 SW8260B GB-34 09110387-007 10061-01-5 SW8260B GB-34 09110387-007 124-48-1 SW8260B GB-34 09110387-007 75-71-8 SW8260B GB-34 09110387-007 108-20-3 SW8260B GB-34 09110387-007 107-41-4 SW8260B GB-34 09110387-007 637-92-3 SW8260B GB-34 09110387-007 75-09-2 SW8260B GB-34 09110387-007 75-09-2 SW8260B GB-34	CAS Method Sample ID Sample ID Date 74-83-9 SW8260B GB-34 09110387-007 11/17/09 75-15-0 SW8260B GB-34 09110387-007 11/17/09 56-23-5 SW8260B GB-34 09110387-007 11/17/09 108-90-7 SW8260B GB-34 09110387-007 11/17/09 75-00-3 SW8260B GB-34 09110387-007 11/17/09 67-66-3 SW8260B GB-34 09110387-007 11/17/09 74-87-3 SW8260B GB-34 09110387-007 11/17/09 156-59-2 SW8260B GB-34 09110387-007 11/17/09 10061-01-5 SW8260B GB-34 09110387-007 11/17/09 74-95-3 SW8260B GB-34 09110387-007 11/17/09 75-71-8 SW8260B GB-34 09110387-007 11/17/09 106-20-3 SW8260B GB-34 09110387-007 11/17/09 107-61-4 SW8260B GB-34 09110387-007 <	CAS Method Sample ID Sample ID Date Date Date/Time 74-83-9 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 75-15-0 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 56-23-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 75-00-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 67-66-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 74-87-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 156-59-2 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 1061-01-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 74-95-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 74-95-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 75-71-8 SW8260	CAS Method Sample ID Sample ID Date Date Sample Results 74-83-9 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 75-15-0 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 56-23-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 75-0-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 67-66-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 74-87-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 166-59-2 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 124-48-1 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 75-71-8 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 100-41-4 </td <td>CAS Method Sample ID Sample ID Date Date/Time Sample Results Qual 74-83-9 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 75-15-0 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 56-23-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 75-00-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 67-66-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 74-87-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 166-59-2 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 124-48-1 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 75-71-8 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD</td> <td>CAS Method Sample ID Sample ID Date Date/Time Sample Results Qual LOD 74-83-9 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 75-15-0 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 56-23-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 108-90-7 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 67-66-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 156-59-2 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 10061-01-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 124-48-1 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9</td> <td>CAS Method Sample ID Sample IÓ Date Date/Time Sample Results Qual LOD LOQ 74-83-9 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 66.9 75-15-0 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 56-23-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 75-00-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 67-66-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 74-87-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 1166-59-2 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 124-48-1</td> <td>CAS Method Sample ID Sample ID Date Date Date/Time Sample Results Qual LOD LOQ Factor 74-83-9 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 75-15-0 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 108-90-7 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 75-00-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 74-8-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 166-59-2 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 124-48-1 SW8260B GB-34 09110387-007 11/17/09</td>	CAS Method Sample ID Sample ID Date Date/Time Sample Results Qual 74-83-9 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 75-15-0 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 56-23-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 75-00-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 67-66-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 74-87-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 166-59-2 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 124-48-1 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 75-71-8 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD	CAS Method Sample ID Sample ID Date Date/Time Sample Results Qual LOD 74-83-9 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 75-15-0 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 56-23-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 108-90-7 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 67-66-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 156-59-2 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 10061-01-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 124-48-1 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9	CAS Method Sample ID Sample IÓ Date Date/Time Sample Results Qual LOD LOQ 74-83-9 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 66.9 75-15-0 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 56-23-5 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 75-00-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 67-66-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 74-87-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 1166-59-2 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 124-48-1	CAS Method Sample ID Sample ID Date Date Date/Time Sample Results Qual LOD LOQ Factor 74-83-9 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 75-15-0 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 108-90-7 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 75-00-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 74-8-3 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 166-59-2 SW8260B GB-34 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 124-48-1 SW8260B GB-34 09110387-007 11/17/09

Date Issued:

12/07/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Chesapeake Geosciences, Inc.

Reference Client Laboratory Analysis Dil. Sample CAS Method Sample ID Sample ID Date Date/Time Sample Results Qual LOD LOQ Factor Units Parameter 11/17/09 tert-Butvlbenzene 98-06-6 SW8260B **GB-34** 09110387-007 11/30/09 19:47 **BLOD** 66.9 66.9 50 ug/kg Tetrachloroethylene (PCE) 127-18-4 SW8260B **GB-34** 09110387-007 11/17/09 11/30/09 19:47 **BLOD** 66.9 66.9 50 ug/kg **GB-34** BLOD 50 ug/kg Toluene 108-88-3 SW8260B 09110387-007 11/17/09 11/30/09 19:47 66.9 66.9 50 trans-1,2-Dichloroethylene 156-60-5 SW8260B **GB-34** 09110387-007 11/17/09 11/30/09 19:47 **BLOD** 66.9 ug/kg 66.9 trans-1.3-Dichloropropene 10061-02-6 SW8260B GR-34 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 50 ug/kg 09110387-007 **GB-34 BLOD** 50 Trichloroethylene 79-01-6 SW8260B 09110387-007 11/17/09 11/30/09 19:47 66.9 66.9 ug/kg 50 75-69-4 **GB-34 BLOD** ug/kg Trichlorofluoromethane SW8260B 09110387-007 11/17/09 11/30/09 19:47 66.9 66.9 **GB-34** 50 Vinyl acetate 108-05-4 SW8260B 09110387-007 11/17/09 11/30/09 19:47 **BLOD** 66.9 66.9 ug/kg Vinvl chloride **GB-34** 50 ug/kg 75-01-4 SW8260B 09110387-007 11/17/09 11/30/09 19:47 BLOD 66.9 66.9 Xvienes, Total 1330-20-7 SW8260B **GB-34** 09110387-007 11/17/09 11/30/09 19:47 **BLOD** 66.9 66.9 1 ug/kg 1,1,1,2-Tetrachloroethane 630-20-6 SW8260B **GB-35** 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 64.9 50 ug/kg 71-55-6 SW8260B **GB-35 BLOD** 50 ug/kg 1,1,1-Trichloroethane 09110387-008 11/17/09 11/30/09 20:32 64.9 64.9 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B **GB-35** 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 50 ug/kg 64.9 1.1.2-Trichloroethane 79-00-5 SW8260B **GB-35** 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 50 ua/ka 64.9 1,1-Dichloroethane 75-34-3 SW8260B **GB-35** 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 64.9 50 ug/kg 1,1-Dichloroethylene 75-35-4 SW8260B **GB-35 BLOD** 50 ug/kg 09110387-008 11/17/09 11/30/09 20:32 64.9 64.9 1.1-Dichloropropene 563-58-6 SW8260B **GB-35** 50 ug/kg 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 64.9 1,2,3-Trichlorobenzene 87-61-6 SW8260B **GB-35** 50 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 64.9 ug/kg 1,2,3-Trichloropropane 96-18-4 SW8260B **GB-35** 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 64.9 50 ug/kg 1,2,4-Trichlorobenzene 120-82-1 SW8260B **GB-35 BLOD** 50 09110387-008 11/17/09 11/30/09 20:32 64.9 64.9 ug/kg 1,2,4-Trimethylbenzene 95-63-6 SW8260B **GB-35** 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 50 ug/kg 64.9 64.9 1,2-Dibromo-3-chloropropane (DBCP) 50 96-12-8 SW8260B **GB-35** 11/17/09 11/30/09 20:32 BLOD ug/kg 09110387-008 64.9 64.9 1,2-Dibromoethane (EDB) 106-93-4 50 ug/kg SW8260B **GB-35** 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 64.9 1.2-Dichlorobenzene 95-50-1 SW8260B **GB-35** 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 64.9 50 ug/kg 1.2-Dichloroethane 107-06-2 50 SW8260B **GB-35** 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 64.9 ug/kg 1,2-Dichloropropane 78-87-5 50 SW8260B **GB-35** 09110387-008 11/17/09 11/30/09 20:32 **BLOD** 64.9 64.9 ug/kg 1,3,5-Trimethylbenzene 108-67-8 SW8260B **GB-35** 09110387-008 50 **BLOD** ug/kg 11/17/09 11/30/09 20:32 64.9 64.9 1,3-Dichlorobenzene 541-73-1 SW8260B **GB-35 BLOD** 50 ug/kg 09110387-008 11/17/09 11/30/09 20:32 64.9 64.9

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
1,3-Dichloropropane	142-28-9	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	260	64.9	50	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	260	64.9	50	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	260	64.9	50	ug/kg
Acetone	67-64-1	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	260	64.9	50	ug/kg
Benzene	71-43-2	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Bromochloromethane	74-97-5	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Bromodichloromethane	75-27-4	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Bromoform	75-25-2	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	260	64.9	50	ug/kg
Bromomethane	74-83-9	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Carbon disulfide	75-15-0	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Chloroethane	75-00-3	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Chloroform	67-66-3	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Chloromethane	74-87-3	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
				Page 19 of 48							

Date Issued:

12/07/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Supmitted 10. Gean B	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	Units
Parameter	74-88-4	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
lodomethane	98-82-8	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Isopropylbenzene		SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Methylene chloride	75-09-2 1634-04-4	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
MTBE		SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Naphthalene	91-20-3	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
n-Propylbenzene	103-65-1	_	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
o-Xylene	95-47-6	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
p-Isopropyltoluene	99-87-6	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	1300	64.9	64.9	50	ug/kg
sec-Butylbenzene	135-98-8	SW8260B SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32	BLOD	64.9	64.9	50	ug/kg
Styrene	100-42-5		GB-35	09110387-008	11/17/09	11/30/09 20:32		64.9	64.9	50	ug/kg
TAME	994-05-8	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32		64.9	325	50	ug/kg
TBA	75-65-0	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32		64.9	64.9	50	ug/kg
tert-Butylbenzene	98-06-6	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20:32		64.9	64.9	50	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-35	09110387-008		11/30/09 20:32		64.9	64.9	50	ug/kg
Toluene	108-88-3	SW8260B		09110387-008		11/30/09 20:32		64.9	64.9	50	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-35	09110387-008		11/30/09 20:32		64.9	64.9	50	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-35	09110387-008	* * * * * * * * * * * * * * * * * * * *	11/30/09 20:32		64.9	64.9	50	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-35	09110387-008		11/30/09 20:32	•	64.9	64.9	50	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-35	09110387-008		11/30/09 20:32		64.9	64.9	50	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-35			11/30/09 20:32		64.9	64.9	50	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-35	09110387-008		11/30/09 20:32		64.9	64.9	1	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-35	09110387-008	11/17/09	11/30/09 20.32	, DLOD	:			
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
1,1,1,2-1 etracinioroetriane 1,1,1-Trichloroethane	71-55-6	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-36	09110387-009		11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg

12/07/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

Laboratory Sample Analysis Dil. Reference Client CAS Method Sample ID Sample ID Date Date/Time Sample Results Qual LOD LOQ Factor Units Parameter 50 ug/kg **GB-36** 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 1.1-Dichloroethane 75-34-3 SW8260B 09110387-009 BLOD 50 1.1-Dichloroethylene 75-35-4 SW8260B GB-36 09110387-009 11/17/09 11/30/09 20:09 66.6 66.6 ug/kg 50 563-58-6 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 ug/kg 1,1-Dichloropropene **BLOD** 50 ug/kg 87-61-6 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 66.6 66.6 1.2.3-Trichlorobenzene **GB-36** 11/30/09 20:09 **BLOD** 66.6 66.6 50 ug/kg 1.2.3-Trichloropropane 96-18-4 SW8260B 09110387-009 11/17/09 50 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 ug/kg 1.2.4-Trichlorobenzene 120-82-1 50 1,2,4-Trimethylbenzene 95-63-6 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 uq/kq 50 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 BLOD 66.6 66.6 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 **BLOD** 50 ug/kg **GB-36** 09110387-009 11/17/09 11/30/09 20:09 66.6 66.6 1,2-Dibromoethane (EDB) 106-93-4 SW8260B SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 50 ug/kg 1,2-Dichlorobenzene 95-50-1 50 **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 ug/kg 107-06-2 SW8260B 1,2-Dichloroethane 11/17/09 **BLOD** 66.6 66.6 50 ug/kg 78-87-5 SW8260B **GB-36** 09110387-009 11/30/09 20:09 1.2-Dichloropropane **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 50 ug/kg 1,3,5-Trimethylbenzene 108-67-8 SW8260B 50 ug/kg SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 1.3-Dichlorobenzene 541-73-1 50 ug/kg 1,3-Dichloropropane 142-28-9 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 50 106-46-7 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 ug/kg 1.4-Dichlorobenzene **BLOD** 50 ug/kg **GB-36** 09110387-009 11/17/09 11/30/09 20:09 66.6 66.6 2,2-Dichloropropane 594-20-7 SW8260B **BLOD** 267 66.6 50 ug/kg 2-Butanone (MEK) 78-93-3 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 50 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 ug/kg 2-Chlorotoluene 95-49-8 SW8260B **GB-36** 09110387-009 50 **BLOD** 267 ug/kg 2-Hexanone (MBK) 591-78-6 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 66.6 **BLOD** 66.6 50 ug/kg 4-Chlorotoluene 106-43-4 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 66.6 50 **BLOD** 267 ug/kg 4-Methyl-2-pentanone (MIBK) 108-10-1 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 66.6 50 67-64-1 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 267 66.6 ug/kg Acetone 50 71-43-2 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 ug/kg Benzene 50 **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 66.6 ug/kg Bromobenzene 108-86-1 SW8260B **BLOD** 66.6 66.6 50 ug/kg Bromochloromethane 74-97-5 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 50 ug/kg Bromodichloromethane 75-27-4 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 BLOD 66.6 66.6 75-25-2 SW8260B GB-36 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 267 66.6 50 ug/kg **Bromoform** 66.6 50 ug/kg 74-83-9 SW8260B **GB-36** 09110387-009 11/17/09 11/30/09 20:09 **BLOD** 66.6 Bromomethane Page 21 of 48

12/07/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID:

Stebbins-Burnham (09-1335BA2)

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
Carbon disulfide	75-15-0	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Chloroethane	75-00-3	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Chloroform	67-66-3	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Chloromethane	74-87-3	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Iodomethane	74-88-4	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Isopropylbenzene	98-82-8	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
MTBE	1634-04-4	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Naphthalene	91-20-3	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
o-Xylene	95-47-6	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
p-Isopropyitoluene	99-87-6	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
Styrene	100-42-5	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
TAME	994-05-8	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
TBA	75-65-0	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	333	50	ug/kg
tert-Butylbenzene	98-06-6	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	66.6	66.6	50	ug/kg
				Page 22 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual I	LOD	LOQ	Dil. Facto	r Units
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD		66.6	66.6	50	ug/kg
Toluene	108-88-3	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD		66.6	66.6	50	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD		66.6	66.6	50	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD		66.6	66.6	50	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	i (66.6	66.6	50	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD		66.6	66.6	50	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD	. (66.6	66.6	50	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD		66.6	66.6	50	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-36	09110387-009	11/17/09	11/30/09 20:09	BLOD		66.6	66.6	1	ug/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	(64.3	64.3	50	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	. (64.3	64.3	50	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	(64.3	64.3	50	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	; (64.3	64.3	50	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	. (64.3	64.3	50	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	. (64.3	64.3	50	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	(64.3	64.3	50	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	(64.3	64.3	50	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	2190	. (64.3	64.3	50	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	. (64.3	64.3	50	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	(64.3	64.3	50	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	(64.3	64.3	50	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	(64.3	64.3	50	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	(64.3	64.3	50	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	(64.3	64.3	50	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg

Date Issued:

12/07/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	· Units
1,4-Dichlorobenzene	106-46-7	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		257	64.3	50	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		257	64.3	50	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		257	64.3	50	ug/kg
Acetone	67-64-1	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		257	64.3	50	ug/kg
Benzene	71-43-2	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Bromobenzene	108-86-1	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Bromochloromethane	74-97-5	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Bromodichloromethane	75-27-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Bromoform	75-25-2	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		257	64.3	50	ug/kg
Bromomethane	74-83-9	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Carbon disulfide	75-15-0	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Chlorobenzene	108-90-7	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Chloroethane	75-00-3	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Chloroform	67-66-3	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Chloromethane	74-87-3	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Dibromochloromethane	124-48-1	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Dibromomethane	74-95-3	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Ethylbenzene	100-41-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	153		64.3	64.3	50	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
Iodomethane	74-88-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD		64.3	64.3	50	ug/kg
				Page 24 of 48								

12/07/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	Units
Isopropylbenzene	98-82-8	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	273	64.3	64.3	50	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
Methylene chloride	75-09-2	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
MTBE	1634-04-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
Naphthalene	91-20-3	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	3380	64.3	64.3	50	ug/kg
n-Butylbenzene	104-51-8	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	1010	64.3	64.3	50	ug/kg
n-Propylbenzene	103-65-1	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	564	64.3	64.3	50	ug/kg
o-Xylene	95-47-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	80.1	64.3	64.3	50	ug/kg
p-lsopropyltoluene	99-87-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	366	64.3	64.3	50	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	385	64.3	64.3	50	ug/kg
Styrene	100-42-5	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
TAME	994-05-8	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
TBA	75-65-0	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	321	50	ug/kg
tert-Butylbenzene	98-06-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
Toluene	108-88-3	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
Trichloroethylene	79-01-6	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
Vinyl acetate	108-05-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
Vinyl chloride	75-01-4	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	BLOD	64.3	64.3	50	ug/kg
Xylenes, Total	1330-20-7	SW8260B	Soil Dup 1	09110387-010	11/17/09	12/01/09 0:40	139	64.3	64.3	1	ug/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
1,1-Dichloroethylene	75-35-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	63.4	1.0	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	4.0	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L.
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	10.0	10.0	1	ug/L.
2-Chlorotoluene	95-49-8	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	10.0	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	10.0	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	10.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	1.1	1.0	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Carbon disulfide	75-15 - 0	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	10.0	10.0	1	ug/L
			- •	Page 26 of 48							- .

12/07/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
Carbon tetrachloride	56-23-5	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Chioromethane	74-87-3	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	12.7	1.0	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	25.0	25.0	1	ug/L
lodomethane	74-88-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	10.0	10.0	1:	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	10.1	1.0	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	6.8	2.0	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	4.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	130	1.0	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	14.4	1.0	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	15.8	1.0	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	9.1	1.0	1.0	1	ug/L
p-lsopropyitoluene	99-87-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	6.5	1.0	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	6.9	1.0	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
				Page 27 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
Toluene	108-88-3	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	10.0	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	BLOD	1.0	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-27 (GW)	09110387-011	11/17/09	11/27/09 18:26	15.9	3.0	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	655	2.0	2.0	2	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	8.0	8.0	2	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	168	2.0	2.0	2	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
		•									

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
2,2-Dichloropropane	594-20-7	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		20.0	20.0	2	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		20.0	20.0	2	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		20.0	20.0	2	ug/L
Acetone	67-64-1	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		20.0	20.0	2	ug/L
Benzene	71-43-2	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	4.8		2.0	2.0	2	ug/L
Bromobenzene	108-86-1	SW8260B	.GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Bromoform	75-25-2	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Bromomethane	74-83-9	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		20.0	20.0	2	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Chloroethane	75-00-3	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Chloroform	67-66-3	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Chloromethane	74-87-3	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Dibromomethane	74-95-3	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		2.0	2.0	2	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		10.0	10.0	2	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	101		2.0	2.0	2	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		50.0	50.0	2	ug/L
Iodomethane	74-88-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD		20.0	20.0	2	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	67.2		2.0	2.0	2	ug/L
				Page 29 of 48								

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Issued:	12/07/2009

Methylene chloride 75-09-2 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 8 MTBE 1634-04-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Naphthalene 91-20-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 n-Butylbenzene 104-51-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 n-Propylbenzene 103-65-1 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 14.4 2 c-Xylene 95-47-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 sec-Butylbenzene 195-87-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 Styrene 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2		CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
MTBE 1634-04-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Naphthalene 91-20-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 579 2 n-Butylbenzene 104-51-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 n-Putylbenzene 103-65-1 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 134 2 o-Xylene 95-47-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 41.4 2 p-lsopropyltoluene 99-87-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 sec-Butylbenzene 135-98-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 Styrene 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 </th <th></th> <th>179601-23</th> <th>-1 SW8260B</th> <th>GB-28 (GW)</th> <th>09110387-012</th> <th>11/17/09</th> <th>11/25/09 17:19</th> <th>74.7</th> <th>4.0</th> <th>4.0</th> <th>2</th> <th>ug/L</th>		179601-23	-1 SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	74.7	4.0	4.0	2	ug/L
Naphthalene 91-20-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 579 2 n-Butylbenzene 104-51-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 n-Propylbenzene 103-65-1 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 14.4 2 c-Xylene 95-47-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 p-Isopropyltoluene 99-87-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 sec-Butylbenzene 135-98-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 1 TAME 994-05-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 <		75-09-2	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	8.0	8.0	2	ug/L
n-Butylbenzene 104-51-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 134 2 0-Xylene 95-47-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 41.4 2 0-Xylene 99-87-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 41.4 2 0-Xylene 99-87-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 41.4 2 0-Xylene 99-87-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 0-Xylene 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 0-Xylene 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 0-Xylene 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 100-42-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD		1634-04-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
n-Propylbenzene 103-65-1 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 134 2 2 0-Xylene 95-47-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 41.4 2 2 p-lsopropyltoluene 99-87-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 2 sec-Butylbenzene 135-98-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 73.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		91-20-3	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	579	2.0	2.0	5	ug/L
o-Xylene 95-47-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 41.4 2 2 p-Isopropyltoluene 99-87-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 2 sec-Butylbenzene 135-98-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 73.2 2 2 Styrene 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 TAME 994-05-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 1 TAME 994-05-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 1 TAME 994-05-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 98-06-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-60-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 1061-02-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-05-4 SW8260B GB-28 (GW) 09110387-013 11/17/09 11/25/09 17:19 BLOD 2 CET-Butylbenzene 108-05-4 SW8260B GB-28 (GW) 0		104-51-8	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
p-Isopropyltoluene 99-87-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 46.4 2 sec-Butylbenzene 135-98-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 73.2 2 2 Styrene 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 TAME 994-05-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 11/17/09 11/25/09 17:19 BLOD 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-06-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 10661-02-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 10661-02-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Styrene 108-05-4 SW8260B GB-28 (GW) 09110387-0		103-65-1	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	134	2.0	2.0	2	ug/L
sec-Butylbenzene 135-98-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 73.2 2 Styrene 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 TAME 994-05-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 11/17/09 TBA 75-65-0 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 tert-Butylbenzene 98-06-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Tetrachloroethylene (PCE) 127-18-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Toluene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 trans-1,3-Dichloroethylene 156-60-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD		95-47-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	41.4	2.0	2.0	2	ug/L
Styrene 100-42-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 TAME 994-05-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 1 TBA 75-65-0 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 tert-Butylbenzene 98-06-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Tetrachloroethylene (PCE) 127-18-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Toluene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 trans-1,2-Dichloroethylene 156-60-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Trichloroethylene 79-01-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD <t< td=""><td></td><td>99-87-6</td><td>SW8260B</td><td>GB-28 (GW)</td><td>09110387-012</td><td>11/17/09</td><td>11/25/09 17:19</td><td>46.4</td><td>2.0</td><td>2.0</td><td>2</td><td>ug/L</td></t<>		99-87-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	46.4	2.0	2.0	2	ug/L
TAME 994-05-8 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 11 TBA 75-65-0 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 tert-Butylbenzene 98-06-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 tert-Butylbenzene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 trans-1,2-Dichloroethylene (PCE) 156-60-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 trans-1,3-Dichloropropene 10061-02-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 trans-1,3-Dichloropropene 10061-02-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 trans-1,3-Dichloropropene 79-01-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 trans-1,3-Dichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 trans-1,3-Dichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 trans-1,3-Dichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 trans-1,3-Dichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 22 trans-1,3-Dichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 24 trans-1,3-Dichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 25 trans-1,3-Dichlorofluoromethane 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 25 trans-1,3-Dichlorofluoromethane 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 25 trans-1,3-Dichlorofluoromethane 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 25 trans-1,3-Dichlorofluoromethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/25/09 17:19 BLOD 25 trans-1,3-Dichlorofluoromethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 25 trans-1,3-Dichlorofluoroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 25 trans-1,3-Dichlorofluoroethane 71-55-6 SW8260B GB-29 (GW)		135-98-8	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	73.2	2.0	2.0	2	ug/L
TBA 75-65-0 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 25 tert-Butylbenzene 98-06-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 4.8 2 Tetrachloroethylene (PCE) 127-18-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 25 Toluene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 2.8 2 trans-1,2-Dichloroethylene 156-60-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 25 trans-1,3-Dichloropropene 10061-02-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 25 Trichloroethylene 79-01-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 25 Trichloroethylene 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 26 Trichloroethylene 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 27 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 28 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 28 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-013 11/17/09 11/25/09 17:19 BLOD 29 (SW260B GB-28 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 29 (SW260B GB-28 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 29 (SW260B GB-28 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 29 (SW260B GB-28 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 29 (SW260B GB-28 (GW		100-42-5	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
tert-Butylbenzene 98-06-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 4.8 2 Tetrachloroethylene (PCE) 127-18-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Toluene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 2.8 2 trans-1,2-Dichloroethylene 156-60-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 trans-1,3-Dichloropropene 10061-02-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Trichloroethylene 79-01-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Trichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Vinyl acetate 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Vinyl chloride 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2 Xylenes, Total 1330-20-7 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 116 6 1,1,1,2-Tetrachloroethane 630-20-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2 1,1,1-Trichloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2		994-05-8	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	10.0	10.0	2	ug/L
Tetrachloroethylene (PCE) 127-18-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Toluene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 2.8 trans-1,2-Dichloroethylene 156-60-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Trans-1,3-Dichloropropene 10061-02-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Trichloroethylene 79-01-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Trichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Vinyl acetate 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Vinyl chloride 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Xylenes, Total 1330-20-7 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Titalloroethane 630-20-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/25/09 17:19 BLOD 2. Titalloroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. Titalloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20		75-65-0	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	200	200	2	ug/L
Toluene 108-88-3 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 2.8 2.5 trans-1,2-Dichloroethylene 156-60-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2.5 trans-1,3-Dichloropropene 10061-02-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2.5 Trichloroethylene 79-01-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2.5 Trichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2.5 Trichlorofluoromethane 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2.5 Trichlorofluoromethane 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/25/09 17:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.5 Trichlorofluoromethylene 108-05-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD		98-06-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	4.8	2.0	2.0	2	ug/L
trans-1,2-Dichloroethylene 156-60-5 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Trichloroethylene 79-01-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Trichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Vinyl acetate 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Vinyl chloride 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Vinyl chloride 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Xylenes, Total 1330-20-7 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 116 6. 1,1,1,2-Tetrachloroethane 630-20-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,1-Trichloroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B G	≣)	127-18-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
trans-1,3-Dichloropropene 10061-02-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Trichloroethylene 79-01-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Trichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Vinyl acetate 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Vinyl chloride 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Xylenes, Total 1330-20-7 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Xylenes, Total 1330-20-6 SW8260B GB-29 (GW) 09110387-012 11/17/09 11/25/09 17:19 116 6. 1,1,1,2-Tetrachloroethane 630-20-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,1-Trichloroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.		108-88-3	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	2.8	2.0	2.0	2	ug/L
Trichloroethylene 79-01-6 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Trichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Vinyl acetate 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Vinyl chloride 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Xylenes, Total 1330-20-7 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 116 6. 1,1,1,2-Tetrachloroethane 630-20-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,1-Trichloroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.	е	156-60-5	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
Trichlorofluoromethane 75-69-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Vinyl acetate 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 20 Vinyl chloride 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Xylenes, Total 1330-20-7 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 116 6. 1,1,1,2-Tetrachloroethane 630-20-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,1-Trichloroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.	е	10061-02-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
Vinyl acetate 108-05-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 26 Vinyl chloride 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 26 Xylenes, Total 1330-20-7 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 116 6 1,1,1,2-Tetrachloroethane 630-20-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2 1,1,1-Trichloroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2		79-01-6	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
Vinyl chloride 75-01-4 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 BLOD 2. Xylenes, Total 1330-20-7 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 116 6. 1,1,1,2-Tetrachloroethane 630-20-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,1-Trichloroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.		75-69-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
Xylenes, Total 1330-20-7 SW8260B GB-28 (GW) 09110387-012 11/17/09 11/25/09 17:19 116 6. 1,1,1,2-Tetrachloroethane 630-20-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,1-Trichloroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.		108-05-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	20.0	20.0	2	ug/L
1,1,1,2-Tetrachloroethane 630-20-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,1-Trichloroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.		75-01-4	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	BLOD	2.0	2.0	2	ug/L
1,1,1-Trichloroethane 71-55-6 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2. 1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.		1330-20-7	SW8260B	GB-28 (GW)	09110387-012	11/17/09	11/25/09 17:19	116	6.0	6.0	1	ug/L
1,1,2,2-Tetrachloroethane 79-34-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.	Э	630-20-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
200 200 200 200 200 200 200 200 200 200		71-55-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
4.4.0 Trickless steers	€	79-34-5	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,1,2-Trichloroethane 79-00-5 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2.		79-00-5	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,1-Dichloroethane 75-34-3 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2		75-34-3	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,1-Dichloroethylene 75-35-4 SW8260B GB-29 (GW) 09110387-013 11/17/09 11/27/09 20:19 BLOD 2		75-35-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L

12/07/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD) LOQ	Dil. Facto	or Units
1,1-Dichloropropene	563-58-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	558	2.0	2.0	2	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	8.0	8.0	2	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	62.8	2.0	2.0	2	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	20.0	20.0	2	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	20.0	20.0	2	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	20.0	20.0	2	ug/L
Acetone	67-64-1	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	20.0	20.0	2	ug/L
Benzene	71-43-2	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	5.2	2.0	2.0	2	ug/L
Bromobenzene	108-86-1	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
Bromoform	75-25-2	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
Bromomethane	74-83-9	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	20.0	20.0	2	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD	2.0	2.0	2	ug/L
				Page 31 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
Chlorobenzene	108-90-7	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Chloroethane	75-00-3	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Chloroform	67-66-3	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Chloromethane	74-87-3	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Dibromomethane	74-95-3	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		10.0	10.0	2	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	162		2.0	2.0	2	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		50.0	50.0	2	ug/L
Iodomethane	74-88-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		20.0	20.0	2	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	77.6		2.0	2.0	2	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	177		4.0	4.0	2	ug/L
Methylene chloride	75-09-2	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		8.0	8.0	2	ug/L
MTBE	1634-04-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Naphthalene	91-20-3	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	335		2.0	2.0	2	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	74.9		2.0	2.0	2	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	118		2.0	2.0	2	ug/L
o-Xylene	95-47-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	30.2		2.0	2.0	2	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	35.6		2.0	2.0	2	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	53.8		2.0	2.0	2	ug/L
Styrene	100-42-5	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
TAME	994-05-8	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		10.0	10.0	2	ug/L
LOD/LOQ raised due	to matrix interfe	erence.										
TBA	75-65-0	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		200	200	2	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	3.2		2.0	2.0	2	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
				Page 32 of 48								
				•								

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Factor	r Units
Toluene	108-88-3	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	4.2		2.0	2.0	2	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		20.0	20.0	2	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	BLOD		2.0	2.0	2	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-29 (GW)	09110387-013	11/17/09	11/27/09 20:19	208		6.0	6.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	109		1.0	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		4.0	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	6.0	-	1.0	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD		1.0	1.0	1	ug/L

Date Issued:

12/07/2009

ug/L

ug/L

ug/L

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

637-92-3

74-88-4

98-82-8

SW8260B

SW8260B

SW8260B

Submitted To: Sean Daniel

Ethyl-t-butyl ether (ETBE)

Iodomethane

Isopropylbenzene

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
2,2-Dichloropropane	594-20-7	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	10.0	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	10.0	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	10.0	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	10.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	10.0	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	39.9	1.0	1.0	1	ug/L

Page 34 of 48

09110387-014

09110387-014

09110387-014 11/17/09

11/17/09

11/17/09

11/27/09 18:04

11/27/09 18:04

11/27/09 18:04

BLOD

BLOD

33.9

25.0

10.0

1.0

25.0

10.0

1.0

GB-31(GW)

GB-31(GW)

GB-31(GW)

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
m,p-Xylenes	179601-23- 1	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	7.6	2.0	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	4.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	137	1.0	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	13.0	1.0	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	33.7	1.0	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	8.9	1.0	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	17.7	1.0	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	5.0	5.0	1	ug/L
TBA	75-65-0	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	1.6	1.0	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	1.4	1.0	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	10.0	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	BLOD	1.0	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-31(GW)	09110387-014	11/17/09	11/27/09 18:04	7.6	3.0	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L

12/07/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	r Units
1,1-Dichloropropene	563-58-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	992		5.0	5.0	5	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		20.0	20.0	5	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	211		5.0	5.0	5	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		50.0	50.0	5	ug/L
2-Chiorotoluene	95-49-8	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		50.0	50.0	5	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		50.0	50.0	5	ug/L
Acetone	67-64-1	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		50.0	50.0	5	ug/L
Benzene	71-43-2	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	116		5.0	5.0	5	ug/L
Bromobenzene	108-86-1	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
Bromoform	75-25-2	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
Bromomethane	74-83-9	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		50.0	50.0	5	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
				Page 36 of 48								

Page 36 of 48

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Oublined 10. Ocan i		Reference	Client	Laboratory	Sample	Analysis				Dii.	
Parameter	CAS	Method	Sample ID	Sample ID	Date	Date/Time	Sample Results	Qual LOD	LOQ		or Units
Chlorobenzene	108-90-7	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
Chloroethane	75-00-3	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
Chloroform	67-66-3	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
Chloromethane	74-87-3	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	103	5.0	5.0	5	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
Dibromomethane	74-95-3	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	25.0	25.0	5	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	250	5.0	5.0	5	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	125	125	5	ug/L
Iodomethane	74-88-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD -	50.0	50.0	5	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	322	10.0	10.0	5	ug/L
Methylene chloride	75-09-2	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	20.0	20.0	5	ug/L
MTBE	1634-04-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
Naphthalene	91-20-3	SW8260B .	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	891	5.0	5.0	5	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	157	5.0	5.0	5	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	175	5.0	5.0	5	ug/L
o-Xylene	95-47-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	244	5.0	5.0	5	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	74.1	5.0	5.0	5	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	94.3	5.0	5.0	5	ug/L
Styrene	100-42-5	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
TAME	994-05-8	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	25.0	25.0	5	ug/L
TBA	75-65-0	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	500	500	5	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD	5.0	5.0	5	ug/L
Toluene	108-88-3	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	65.7	5.0	5.0	5	ug/L
				Page 37 of 48						-	3
				•							

12/07/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	r Units
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		50.0	50.0	5	ug/L.
Vinyl chloride	75-01-4	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	BLOD		5.0	5.0	5	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-32 (GW)	09110387-015	11/17/09	11/25/09 18:27	566		15.0	15.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		4.0	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L.
1,2-Dichloropropane	78-87-5	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD		1.0	1.0	1	ug/L

Date Issued:

12/07/2009

ug/L

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

179601-23-1

SW8260B

Submitted To: Sean Daniel

m,p-Xylenes

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
2-Butanone (MEK)	78-93-3	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	10.0	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	10.0	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	10.0	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	10.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	10.0	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.0	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	25.0	25.0	1	ug/L
Iodomethane	74-88-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	10.0	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	5.9	1.0	1.0	1	ug/L

09110387-016 Page 39 of 48 11/17/09

11/27/09 17:41

BLOD

2.0

2.0

GB-35 (GW)

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LO	OD LOC	Dil. Fact	or Units
Methylene chloride	75-09-2	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	4.	.0 4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	.0 1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	.0 1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	15.3	1.	.0 1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	4.5	1.	.0 1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	.0 1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	.0 1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	54.5	1.	.0 1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	.0 1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	5.	0 5.0	1	ug/L
TBA	75-65-0	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	10	00 100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	4.7	1.	.0 1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	0 1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	0 1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	0 1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	0 1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	0 1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	0 1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	10	0.0 10.0) 1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	1.	0 1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-35 (GW)	09110387-016	11/17/09	11/27/09 17:41	BLOD	3.	0 3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.	0 1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.	0 1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.	0 1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.	0 1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.	0 1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.	0 1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.	0 1.0	1	ug/L

Date Issued:

12/07/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	4.0	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	10.0	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	10.0	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	10.0	10.0	1	ug/L
Acetone	67-64-1	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	10.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	10.0	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
				Page 41 of 48							

Page 41 of 48

12/07/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
Chloroethane	75-00-3	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Chloroform	67-66-3	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	25.0	25.0	1	ug/L
Iodomethane	74-88-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	10.0	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	2.0	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	4.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Styrene	100-42-5	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
TAME	994-05-8	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	5.0	5.0	1	ug/L
ТВА	75-65-0	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Toluene	108-88-3	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
				Page 42 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	r Units
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Trichloroethylene	79-01-6	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	10.0	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	1.0	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	GB-36 (GW)	09110387-017	11/17/09	11/27/09 17:19	BLOD	3.0	3.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	937	5.0	5.0	5	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	20.0	20.0	5	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	107	5.0	5.0	5	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	50.0	50.0	5	ug/L

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Factor	Units
2-Chlorotoluene	95-49-8	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		50.0	50.0	5	ug/L
4-Chiorotoluene	106-43-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		50.0	50.0	5	ug/L
Acetone	67-64-1	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		50.0	50.0	5	ug/L
Benzene	71-43-2	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Bromobenzene	108-86-1	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Bromochloromethane	74-97-5	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Bromodichloromethane	75-27-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Bromoform	75-25-2	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Bromomethane	74-83-9	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Carbon disulfide	75-15-0	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		50.0	50.0	5	ug/L
Carbon tetrachloride	56-23-5	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Chlorobenzene	108-90-7	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L.
Chloroethane	75-00-3	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Chloroform	67-66-3	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Chloromethane	74-87-3	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Dibromochloromethane	124-48-1	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Dibromomethane	74-95-3	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		5.0	5.0	5	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		25.0	25.0	5	ug/L
Ethylbenzene	100-41-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	206		5.0	5.0	5.	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		125	125	5	ug/L
Iodomethane	74-88-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		50.0	50.0	5	ug/L
Isopropylbenzene	98-82-8	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	124		5.0	5.0	5	ug/L
m,p-Xylenes	179601-23-1	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	229		10.0	10.0	5	ug/L
Methylene chloride	75-09-2	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD		20.0	20.0	5	ug/L
			•	Page 44 of 48								

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Fact	or Units
MTBE	1634-04-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
Naphthalene	91-20-3	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	496	5.0	5.0	5	ug/L
n-Butylbenzene	104-51-8	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	177	5.0	5.0	5	ug/L
n-Propylbenzene	103-65-1	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	205	5.0	5.0	5	ug/L
o-Xylene	95-47-6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	37.7	5.0	5.0	5	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	78.3	5.0	5.0	5	ug/L
sec-Butylbenzene	135-98-8	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	119	5.0	5.0	5	ug/L
Styrene	100-42-5	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
TAME	994-05-8	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	25.0	25.0	5	ug/L
TBA	75-65-0	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	500	500	5	ug/L
tert-Butylbenzene	98-06 - 6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
Toluene	108-88-3	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
Trichloroethylene	79-01-6	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
Vinyl acetate	108-05-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	50.0	50.0	5	ug/L
Vinyl chloride	75-01-4	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	BLOD	5.0	5.0	5	ug/L
Xylenes, Total	1330-20-7	SW8260B	DUPE-(GW)	09110387-018	11/17/09	11/25/09 19:34	267	15.0	15.0	1	ug/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,1,2-Trichloroethane	79-00-5	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,1-Dichloroethane	75-34-3	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L

12/07/2009

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	r Units
1,2,3-Trichloropropane	96-18-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	4.0	4.0	1	ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,2-Dichlorobenzene	95-50-1	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	10.0	10.0	1	ug/L
2-Chlorotoluene	95-49-8	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	10.0	10.0	1	ug/L
4-Chlorotoluene	106-43-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	10.0	10.0	1	ug/L
Acetone	67-64-1	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	10.0	10.0	1	ug/L
Benzene	71-43-2	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Bromobenzene	108-86-1	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Bromochloromethane	74-97-5	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Bromodichloromethane	75-27-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Bromoform	75-25-2	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Bromomethane	74-83-9	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Carbon disulfide	75-15-0	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	10.0	10.0	1	ug/L
Carbon tetrachloride	56-23-5	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Chlorobenzene	108-90-7	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Chloroethane	75-00-3	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
				Page 46 of 48							

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Date Issued:

12/07/2009

Parameter (CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Facto	or Units
Chloroform	67-66-3	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Chloromethane	74-87-3	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Dibromochloromethane	124-48-1	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Dibromomethane	74-95-3	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Dichlorodifluoromethane	75-71-8	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	5.0	5.0	1	ug/L
Ethylbenzene	100-41-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	25.0	25.0	1	ug/L
lodomethane	74-88-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	10.0	10.0	1	ug/L
Isopropylbenzene	98-82-8	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
m,p-Xylenes	179601-23-1	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	2.0	2.0	1	ug/L
Methylene chloride	75-09-2	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	4.0	4.0	1	ug/L
MTBE	1634-04-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Naphthalene	91-20-3	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
n-Butylbenzene	104-51-8	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
n-Propylbenzene	103-65-1	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
o-Xylene	95-47-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
p-Isopropyltoluene	99-87-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
sec-Butylbenzene	135-98-8	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Styrene	100-42-5	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
TAME 9	994-05-8	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	5.0	5.0	1	ug/L
ТВА	75-65-0	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	100	100	1	ug/L
tert-Butylbenzene	98-06-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
Toluene	108-88-3	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD	1.0	1.0	1	ug/L
				Page 47 of 48							

Date Issued:

12/07/2009

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Site ID: Stebbins-Burnham (09-1335BA2)

Submitted To: Sean Daniel

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual	LOD	LOQ	Dil. Facto	r Units
Trichloroethylene	79-01-6	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD		1.0	1.0	1	ug/L
Trichlorofluoromethane	75-69-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD		1.0	1.0	1	ug/L
Vinyl acetate	108-05-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD		10.0	10.0	1	ug/L
Vinyl chloride	75-01-4	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD		1.0	1.0	1	ug/L
Xylenes, Total	1330-20-7	SW8260B	FB	09110387-019	11/17/09	11/25/09 16:34	BLOD		3.0	3.0	1	ug/L

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a dry weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water & Soil Laboratories, Inc.

Company Name: Chesapeake GeoSciences, Inc.	Sean D	Manager aniel	•					1	: 	F	Parar	netei I	s		Ī ļ			CHAI	N-OF	-cus	STOD	ΥR	ECOR	RD
Project Name: Stebbins-Burnham (03-1335BA2) Page 1 of 2 Sampler(s): Terkius	Project CG-08- P.O. Nu CG0803	0399 ber:				of Containers	1 EPA 8260												09A N	lorth l mond	医结肠性切迹 医抗	ton S 2323		C.
Field Sample ID	Date	Time	Water	Soil	Other	No. of C	VOCs via										- 15 to	Presei	vative/R				Lab	ID
GB-27 ///	791	4:53		Х		4	Х																	
GB-28	1	11:36		х		4	Х																	
GB-29	1	5:55		х		4	Х																	
GB-30	6	9:34	•	Х		4	Х													·				
GB-31	1	0:51		Х		4	Х											-		also also				
GB-32	1	5:55		Х		4	Х																	
\$\$\$ ((((((((((111	11	X	1/	KI	/ X		//	1	//	1		1	/	//	1	//	11	//	///	/		
GB-34		4.09		Х		4	Х	·						<u>· </u>	T			-			<u> </u>			
GB-35	H	08:56	1-	Х		4	Х																	
GB-36		3:13		Х		4	Х																	
Soil Dupe-1	17/9	-		Х		4	Х																	
/		7													\neg			7						
									/									/					-	
	/	/															$\overline{}$:					
							\mathcal{I}										/	CGI				9110	387	
							/			/						/			s-Burnhar			UE: ecd:	5 Days 11/19/09	
															$\overline{}$			— 		81 834) 1661 IS EL	r.e	ecu.	11/13/03	<u> </u>
Relinguistled by: (Signature)	Date/Tin	9	Receiv	red by	y: (Sigi	nature,	- -	5	Ī	Re	elinqu •••	ished		Signa	ture)				9-00		ceived by	٠ ر_	ature)	
Jefinska) Teffren C. Perkins O	9:4		(Printed	d)					<u> </u>	(P	rinted)		フ					-	5.7.6	Pri	nted)	,	nce.	4
Relinquished by: (Signature)	Date/Tim	ne F	Receiv	ed by	y Labo	orator	y: (Sig	gnature	=)		Da	ate/Ti	me					RMS Packa		el 1 Deli	verable	RI	VIS 2008	
(Printed)		Ī	Printed	d)		-								1	and 1	,2-D	ibromo	TEX, Naph ethane in E sdaniel@c	PA 8260	Analyse	:AIVIĖ, II: 9S.	3A, E I	BE, DIPE,	, 1,2-DCA

Company Name: Chesapeake GeoSciences, Inc.	Project Sean D	t Manager Daniel	:					T	ļ	P	aran	nete	rs T		Г	1	CHAIN-OF-CUSTODY RECORD
Project Narne: Stebbins-Burnham (03-1335BA2) Page 2 of 2	Project CG-08-					rs	260										Air, Water & Soil Laboratories, Inc. 2109A North Hamilton Street
Sampler(s): J. C. Perking	P.O. No CG080			y	•	. Containers	via EPA 8260										Richmond, VA 23230 (804) 358-
Field Sample ID	Date	Time	Water	Soil	Other	No. of	VOCs										Preservative/Remarks Lab ID
GB-27 (GW)	1/17/9	15:15	Х			3	Х										·
бВ-28 (GW)	1	12:09	Х			3	Х										·
GB-29 (GW)		7:43	'X			3	Х										·
947016W)Borchole collegge		11	X	1	//	131	1%	/	//	//	7	//	1	/	1	11	111111111
GB-31 (GW)		11:08	Х			3	Х										
GB-32 (GW)		16:22				3	Х										
\$\$-\$3(\$V\$)///////// \$B\$3\$(\$M\Bonkole collapse		111		11	/	18	/x	//	1	//	//		/	1	/	1	1111/6/11/19
9B/3A GAMBORLOGE collapse		11	XX	1	11	1	ZX.		1	//		1	1	/	/	1	111111111
GB-35 (GW)		09:16	Х]	3	Х			/	-				-	 	
GB-36 (GW)		13:24	X			3	Х										:
Dupe-(GW)	V		X			3	Х										:
FB //	17/9	7:51	Х			3	Х										
/	/						7									ļ	/ 4.18
	1																
	1					7											Stabbing Burnham (00 40050
	/					/								-		1	Stepbins-Burnnam (09-1335B DUE: 5 Days Recd: 11/19/09
0/1/01/	/															/	
Relinchished by (Signature)	Daje/Ti	me	Recei	ved b	ıy: (Sig	gnature	ク	- 1	7	Re 0	elinqu	ished	d by:	/Signa	ature)	1	Date/Time Received by: (Signature)
(Printed) Saffrey C. Penkins	09:9	''	(Printe	d)		X.I	<u> </u>	<u></u>	X		VC Printed		7—				10:40 (Printed)
Relinquished by: (Signature)	Date/Ti	me	Recei	ved b	y Lab	orator	y: (Si	gnatur	e)		D	ate/T	ime				: MDE-RMS Package 1/Level 1 Deliverable RMS 2008 Rates
(Printed)			(Printe	ed)											and	1,2-[nclude BTEX, Naphthalene, MTBE, TAME, TBA, ETBE, DIPE, 1,2-DC/ Dibromoethane in EPA 8260 Analyses. esults to <u>sdaniel@cgs.us.com</u>
																	Sulla to <u>suamerecys.us.com</u>

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

	*		
mnla	Canditio	ma Ch	a al-liet

CGI 09110387

Stebbins-Burnham (09-1335B

OUE: 5 Days ecd: 11/19/09

Recd: Sample Conditions Checklist Opened by: (print) Lab ID No .: (sign) Date Cooler Opened: 11.19-09 **YES** NO N/A 1. How were samples received? Fed Ex **UPS** Courier Walk In 2. Were custody seals used? 3. If yes, are custody seals unbroken and intact at the date and time of arrival? Are the custody papers filled out completely and correctly? ·4. 5. Do all bottle labels agree with custody papers? 6. Are the samples received on ice? 7. Is the temperature blank or representative sample within acceptable limits? (4 degrees Celsius +/-2) 8. Are all samples within holding time for requested tests? 9 Is a sufficient amount of sample provided to perform the tests indicated? 10 Are all samples in proper containers for the analyses requested? 11 Are all samples appropriately preserved for the analyses requested? 12 Are all volatile organic containers free of headspace? **COMMENTS**

2109A North Hamilton Street * Richmond, Virginia 23230 * Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 09120429

Client Name:

Chesapeake Geosciences, Inc.

Date Issued:

January 06, 2010

5405 Twin Knolls Rd.

Suite 1

Columbia, Maryland 21045

Submitted To: Sean Daniel

Project Number

CG-08-0399

Client Site I.D.: Stebbins-Burnham (03-1335BA2)

Purchase Order

CG080399SD

Laboratory Sample ID	Sample ID	Sample Date	Receive Date
09120429-001	GB-35	December 18, 2009	December 22, 2009
09120429-002	GB-36	December 18, 2009	December 22, 2009
09120429-003	GB-37	December 18, 2009	December 22, 2009
09120429-004	GB-38	December 18, 2009	December 22, 2009
09120429-005	GB-39	December 18, 2009	December 22, 2009
09120429-006	GB-40	December 18, 2009	December 22, 2009
09120429-007	GB-41	December 18, 2009	December 22, 2009
09120429-008	Soil Dupe	December 18, 2009	December 22, 2009
09120429-009	GB-36 (GW)	December 18, 2009	December 22, 2009
09120429-010	GB-40 (GW)	December 18, 2009	December 22, 2009
09120429-011	GB-41 (GW)	December 18, 2009	December 22, 2009
09120429-012	FB	December 18, 2009	December 22, 2009
09120429-013	Dupe (GW)	December 18, 2009	December 22, 2009

On December 22, 2009, thirteen samples were received via shipment for analysis in accordance with the attached Chain-Of-Custody. The samples were received with sample containers intact by Ashley McGinley (AWS). Any deviations, discrepancies or irregularities observed in sample condition, including holding times, temperature, containers or preservatives have been notated on the chain-of-custody.

The samples were prepared and analyzed in accordance with SW-846/Standard Methods 18th edition methodology. Quality control data will be issued separately in a Level II data package.

Definition of Terms:

LOQ = Limit of Quantitation

LOD = Limit of Detection

2109A North Hamilton Street * Richmond, Virginia 23230 * Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 09120429

Client Name:

Chesapeake Geosciences, Inc.

Date Issued:

January 06, 2010

5405 Twin Knolls Rd.

Suite 1

Columbia, Maryland 21045

Submitted To: Sean Daniel

Project Number

CG-08-0399

Client Site I.D.: Stebbins-Burnham (03-1335BA2)

Purchase Order

CG080399SD

BLOD = Below the Limit of Detection

Ted Soyars

Laboratory Manager

Certificate of Analysis

Client Name: Client Site ID: Submitted To:	Chesapeake Stebbins-Bu Sean Daniel	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ces, Inc. -1335BA2)						Date Issued:		01/06/2010	010
Parameter		CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	00 1	Dil. Factor Units	Units
1,1,1,2-Tetrachloroethane	ЭС	630-20-6	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,1,1-Trichloroethane		71-55-6	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,1,2,2-Tetrachloroethane	ЭГ	79-34-5	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,1,2-Trichloroethane		79-00-5	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,1-Dichloroethane		75-34-3	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,1-Dichloroethylene		75-35-4	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,1-Dichloropropene		563-58-6	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,2,3-Trichlorobenzene		87-61-6	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,2,3-Trichloropropane		96-18-4	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,2,4-Trichlorobenzene		120-82-1	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,2,4-Trimethylbenzene		95-63-6	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	opane (DBCP)	96-12-8	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,2-Dibromoethane (EDB)	В)	106-93-4	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,2-Dichlorobenzene		95-50-1	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,2-Dichloroethane		107-06-2	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,2-Dichloropropane		78-87-5	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,3,5-Trimethylbenzene		108-67-8	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,3-Dichlorobenzene		541-73-1	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,3-Dichloropropane		142-28-9	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
1,4-Dichlorobenzene		106-46-7	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
2,2-Dichloropropane		594-20-7	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
2-Butanone (MEK)		78-93-3	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	273	68.4	20	ug/kg
2-Chlorotoluene		95-49-8	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
2-Hexanone (MBK)		591-78-6	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	273	68.4	20	ug/kg
4-Chlorotoluene		106-43-4	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
4-Methyl-2-pentanone (MIBK)	MIBK)	108-10-1	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	273	68.4	20	ug/kg
Acetone		67-64-1	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	273	68.4	20	ug/kg
Benzene		71-43-2	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
Bromobenzene		108-86-1	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	ВГОО	68.4	68.4	20	ug/kg

Page 1 of 34

Certificate of Analysis

ug/kg Jg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg Jg/kg ug/kg ug/kg ug/kg Jg/kg Jg/kg ug/kg ug/kg ıg/kg Jg/kg Factor Units Jg/kg Jg/kg .g/kg ug/kg ug/kg 01/06/2010 20 22 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 50 20 20 68.4 68.4 68,4 68.4 58.4 58.4 58.4 58.4 68.4 58.4 68.4 68.4 68.4 68.4 68.4 68.4 gon 58.4 58.4 58.4 58.4 58.4 68.4 68.4 68.4 58.4 38.4 38.4 Date Issued: 58.4 68.4 68.4 68.4 68.4 68.4 68.4 58.4 68.4 58.4 68.4 58.4 58.4 58.4 58.4 68.4 68.4 68.4 68.4 68.4 68.4 68.4 68.4 68.4 Qual LOD Sample Results BLOD 297 12/28/09 15:31 12/28/09 15:31 12/28/09 15:31 12/28/09 15:31 12/28/09 15:31 2/28/09 15:31 2/28/09 15:31 2/28/09 15:31 2/28/09 15:31 2/28/09 15:31 12/28/09 15:31 12/28/09 15:31 12/28/09 15:31 12/28/09 15:31 12/28/09 15:31 12/28/09 15:31 2/28/09 15:31 2/28/09 15:31 2/28/09 15:31 12/28/09 15:31 12/28/09 15:31 12/28/09 15:31 12/28/09 15:31 2/28/09 15:31 12/28/09 15:31 12/28/09 15:31 2/28/09 15:31 Methylene Chloride concentration may possibly be due to contamination of the methanol preservative. Unable to confirm. Date/Time Analysis 12/18/09 12/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 12/18/09 12/18/09 12/18/09 12/18/09 12/18/09 12/18/09 12/18/09 2/18/09 12/18/09 12/18/09 2/18/09 Sample 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 39120429-001 39120429-001 39120429-001 09120429-001 09120429-001 39120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001 09120429-001)9120429-001 Page 2 of 34 Laboratory Sample ID Sample ID GB-35 SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B Stebbins-Burnham (03-1335BA2) Reference SW8260B 3W8260B SW8260B SW8260B SW8260B Chesapeake Geosciences, Inc. Method 179601-23-1 10061-01-5 634-04-4 04-51-8 08-90-7 156-59-2 124-48-1 08-20-3 00-41-4 637-92-3 103-65-1 98-85-8 75-09-2 95-47-6 74-87-3 74-95-3 75-71-8 74-88-4 91-20-3 9-88-66 74-83-9 75-15-0 75-00-3 37-66-3 56-23-5 74-97-5 75-27-4 75-25-2 Sean Daniel Ethyl-t-butyl ether (ETBE) Di-isopropyl ether (DIPE) Dichlorodifluoromethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropene Dibromochloromethane Bromodichloromethane Client Name: Submitted To: Client Site ID: Bromochloromethane Carbon tetrachloride Methylene chloride p-Isopropyltoluene sopropylbenzene Dibromomethane n-Propylbenzene Carbon disulfide Chloromethane Bromomethane n-Butylbenzene Chlorobenzene Chloroethane Ethylbenzene odomethane m,p-Xylenes **Naphthalene** Bromoform Chloroform Parameter o-Xylene

Certificate of Analysis

Client Name: Chesapeake Client Site ID: Stebbins-Bu Submitted To: Sean Daniel	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ces, Inc. -1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	007	Dil. Factor Units	Units
sec-Butylbenzene	135-98-8	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	50	ug/kg
Styrene	100-42-5	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
TAME	994-05-8	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
ТВА	75-65-0	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	342	20	ug/kg
tert-Butylbenzene	9-90-86	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
Toluene	108-88-3	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	20	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	ВГОО	68.4	68.4	20	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	90	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-35	09120429-001	12/18/09	12/28/09 15:31	BLOD	68.4	68.4	-	ug/kg
TPH-Semi-Volatiles (DRO)	NA	SW8015C	GB-35	09120429-001	12/18/09	12/28/09 18:45	BLOD	13.7	13.7	-	mg/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	56.7	20	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	56.7	20	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	26.7	56.7	20	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg
1,2,4-Trimethylbenzene		SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	26.7	29.7	20	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)		SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	ВГОР	26.7	26.7	20	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg

Certificate of Analysis

ug/kg Jg/kg ug/kg Jg/kg ug/kg ug/kg Jg/kg Factor Units 01/06/2010 20 20 20 20 50 20 20 20 20 20 20 20 20 20 20 20 20 20 2 20 20 20 20 20 20 20 g 56.7 56.7 56.7 26.7 56.7 26.7 56.7 Date Issued: 56.7 56.7 56.7 56.7 26.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7 56.7 Sample Results Qual LOD 227 227 227 227 227 BLOD 3LOD 3LOD BLOD 3LOD BLOD 31.00 BLOD BLOD BLOD 3LOD 3LOD 3LOD 12/28/09 15:54 2/28/09 15:54 2/28/09 15:54 2/28/09 15:54 2/28/09 15:54 2/28/09 15:54 12/28/09 15:54 12/28/09 15:54 2/28/09 15:54 12/28/09 15:54 2/28/09 15:54 12/28/09 15:54 2/28/09 15:54 12/28/09 15:54 12/28/09 15:54 12/28/09 15:54 2/28/09 15:54 2/28/09 15:54 2/28/09 15:54 12/28/09 15:54 2/28/09 15:54 2/28/09 15:54 2/28/09 15:54 2/28/09 15:54 2/28/09 15:54 12/28/09 15:54 2/28/09 15:54 2/28/09 15:54 12/28/09 15:54 Date/Time Analysis 12/18/09 12/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 Sample 09120429-002 09120429-002 09120429-002 09120429-002 39120429-002 39120429-002 39120429-002 09120429-002 Laboratory Sample ID Sample ID GB-36 3B-36 Reference Method Stebbins-Burnham (03-1335BA2) SW8260B Chesapeake Geosciences, Inc. 0061-01-5 8-29-80 42-28-9 56-59-2 07-06-2 06-46-7 591-78-6 24-48-1 594-20-7 541-73-1 106-43-4 108-10-1 08-86-1 08-90-7 78-87-5 78-93-3 95-49-8 67-64-1 71-43-2 75-27-4 56-23-5 75-00-3 67-66-3 74-87-3 75-25-2 74-83-9 75-15-0 74-97-5 Sean Daniel 4-Methyl-2-pentanone (MIBK) cis-1,2-Dichloroethylene cis-1,3-Dichloropropene 1,3,5-Trimethylbenzene Dibromochloromethane Bromodichloromethane Submitted To: Client Name: Client Site ID: Bromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane Carbon tetrachloride ,2-Dichloroethane 2-Hexanone (MBK) 2-Butanone (MEK) Carbon disulfide 2-Chlorotoluene 4-Chlorotoluene Bromomethane Chlorobenzene Chloromethane Bromobenzene Chloroethane Bromoform Chloroform Parameter Benzene Acetone

Page 4 of 34

Certificate of Analysis

Client Name: Chesapeak Client Site ID: Stebbins-Bu	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2)	ses, Inc. 1335BA2)						Date Issued:		01/06/2010	010
	<u></u>										
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time S	Sample Results	Qual LOD	LOQ	Dil. Factor Units	Units
Dibromomethane	74-95-3	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	56.7	20	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	29.7	20	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	29.7	20	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	299	20	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	29.7	20	ug/kg
lodomethane	74-88-4	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	29.7	20	ug/kg
Isopropylbenzene	98-82-8	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	29.7	20	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-36	09120429-002	12/18/09	15:54	290	56.7	26.7	20	ug/kg
Methylene Chloride α	oncentration ma	ay possibly be due to	Methylene Chloride concentration may possibly be due to contamination of the methanol preservative. Unable to confirm	nethanol preserva	tive. Unable	to confirm.					
MTBE	1634-04-4	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	29.7	20	ug/kg
Naphthalene	91-20-3	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	29.7	20	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	29.7	29.7	20	ug/kg
o-Xylene	95-47-6	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	26.7	20	ug/kg
p-Isopropyltoluene	9-84-6	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	26.7	29.7	20	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	26.7	29.7	20	ug/kg
Styrene	100-42-5	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	26.7	29.7	20	ug/kg
TAME	994-05-8	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	29.7	29.7	20	ug/kg
ТВА	75-65-0	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	29.7	283	20	ug/kg
tert-Butylbenzene	9-90-86	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	26.7	26.7	20	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	29.7	20	ug/kg
Toluene	108-88-3	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	29.7	20	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	26.7	26.7	20	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	29.7	26.7	20	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	299	26.7	20	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	26.7	29.7	20	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	29.7	29.7	20	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	26.7	26.7	20	ug/kg

Page 5 of 34

Certificate of Analysis

			5	Certain Care of Alianysis	20.0						
Client Name: Chesapeake Client Site ID: Stebbins-Bu Submitted To: Sean Daniel	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ces, Inc. -1335BA2)						Date Issued:	•	01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	roo Too	Dil. Factor Units	Units
Xylenes, Total	1330-20-7	SW8260B	GB-36	09120429-002	12/18/09	12/28/09 15:54	BLOD	56.7	56.7	-	ug/kg
TPH-Semi-Volatiles (DRO)	N A	SW8015C	GB-36	09120429-002	12/18/09	12/28/09 19:10	BLOD	11.3	11.3	-	mg/kg
1,1,1,2-Tetrachioroethane	630-20-6	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)		SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	ВГОР	65.8	65.8	20	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	263	65.8	20	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	263	65.8	20	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	263	65.8	20	ug/kg

Certificate of Analysis

			בור ביינול ב		202						
Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ices, Inc. -1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor	Units
Acetone	67-64-1	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	263	65.8	20	ug/kg
Benzene	71-43-2	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Bromochloromethane	74-97-5	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Bromodichloromethane	75-27-4	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Bromoform	75-25-2	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	263	65.8	20	ug/kg
Bromomethane	74-83-9	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Carbon disulfide	75-15-0	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Chloroethane	75-00-3	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Chloroform	6-99-29	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Chloromethane	74-87-3	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
cis-1,2-Dichloroethylene	e 156-59-2	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
cis-1,3-Dichloropropene	e 10061-01-5	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Dibromochloromethane		SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Dichlorodifluoromethane	re 75-71-8	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Di-isopropyl ether (DIPE)	E) 108-20-3	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Ethyl-t-butyl ether (ETBE)	3E) 637-92-3	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
lodomethane	74-88-4	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Isopropylbenzene	98-85-8	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	344	65.8	65.8	20	ug/kg
	Methylene Chloride concentration may possibly be due to contami	nay possibly be du	e to contamination of	nation of the methanol preservative. Unable to confirm	ative. Unable	e to confirm.					
MTBE	1634-04-4	SW8260B	GB-37	09120429-003	12/18/09	12/28/09 16:16	BLOD	65.8	65.8	20	ug/kg
	1 1 1 1										

Page 7 of 34

ug/kg ug/kg

50

65.8 65.8

65.8 65.8

BLOD

12/28/09 16:16 12/28/09 16:16

12/18/09

09120429-003 09120429-003

GB-37 GB-37

SW8260B SW8260B

91-20-3 104-51-8

Naphthalene n-Butylbenzene

12/18/09

BLOD

Air Water & Soil Laboratories, Inc. 2109 A. North Hamilton Street 804) 358-8295 - Telephone Richmond, Virginia 23230 804) 358-8297 - Fax

Certificate of Analysis

mg/kg ug/kg 01/06/2010 Factor Units 20 20 50 20 65.8 65.8 65.8 65.8 65.8 65.8 gon 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8 63.4 63.4 53.4 63.4 53.4 63.4 3.2 63.4 63.4 63.4 63.4 329 Date Issued: 65.8 65.8 65.8 829 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8 13.2 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 Sample Results Qual LOD BLOD 3LOD 3LOD BLOD BLOD BLOD BLOD BLOD BLOD 3LOD 3LOD 12/28/09 16:16 2/28/09 16:16 2/28/09 16:16 12/28/09 16:16 12/28/09 16:16 12/28/09 16:16 12/28/09 16:16 2/28/09 16:16 12/28/09 16:16 2/28/09 16:16 2/28/09 16:16 2/28/09 16:16 2/28/09 16:16 2/28/09 16:16 12/28/09 16:16 2/28/09 16:16 12/28/09 16:16 12/28/09 19:35 12/28/09 17:02 2/28/09 17:02 12/28/09 17:02 12/28/09 17:02 12/28/09 17:02 12/28/09 17:02 2/28/09 17:02 2/28/09 17:02 2/28/09 17:02 12/28/09 17:02 Date/Time Analysis 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 12/18/09 2/18/09 2/18/09 2/18/09 Sample 09120429-004 39120429-003 09120429-003 39120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-003 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 9120429-004 9120429-004 09120429-004 Laboratory Sample ID Sample ID GB-37 GB-38 GB-37 GB-37 Client Stebbins-Burnham (03-1335BA2) Reference SW8260B 3W8260B SW8260B SW8015C SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B Method Chesapeake Geosciences, Inc. 0061-02-6 1330-20-7 35-98-8 00-42-5 994-05-8 108-88-3 56-60-5 108-05-4 563-58-6 27-18-4 530-20-6 120-82-1 9-88-66 75-65-0 9-90-86 75-69-4 75-01-4 71-55-6 79-34-5 79-00-5 75-34-3 87-61-6 96-18-4 35-47-6 79-01-6 75-35-4 ¥ Sean Daniel **IPH-Semi-Volatiles (DRO) Tetrachloroethylene (PCE)** rans-1,2-Dichloroethylene rans-1,3-Dichloropropene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Trichlorofluoromethane 1,2,3-Trichlorobenzene I,2,4-Trichlorobenzene ,2,3-Trichloropropane Client Name: Client Site ID: Submitted To: 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethylene 1,1-Dichloropropene 1,1-Dichloroethane p-Isopropyltoluene sec-Butylbenzene ert-Butylbenzene Trichloroethylene n-Propylbenzene Kylenes, Total /inyl chloride Vinyl acetate Parameter o-Xylene Styrene Toluene TAME TBA

	f
===	7
Ç	ŋ
3	>
	=
ς	Ç
•	
<	ï
	ě,
4	
7	J
•	9
e	ľ
- 2	_
7	
•	1
	2
-	-
₹	
7	ï
_	Ų
	1
-	_

ug/kg ug/kg ug/kg **ag/kg** ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg Jg/kg ug/kg Jg/kg ug/kg Jg/kg ug/kg ug/kg ug/kg ug/kg Jg/kg ug/kg ug/kg Jg/kg Jg/kg ug/kg ug/kg 01/06/2010 Factor Units 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 20 20 63.4 53.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 63.4 53.4 53.4 53.4 53.4 53.4 63.4 63.4 63.4 63.4 63.4 gon 53.4 53.4 53.4 63.4 Date Issued: 63.4 63.4 33.4 53.4 63.4 63.4 63.4 63.4 63.4 63.4 53.4 33.4 33.4 254 254 254 254 254 Sample Results Qual LOD BLOD 12/28/09 17:02 2/28/09 17:02 2/28/09 17:02 2/28/09 17:02 2/28/09 17:02 12/28/09 17:02 12/28/09 17:02 12/28/09 17:02 2/28/09 17:02 2/28/09 17:02 2/28/09 17:02 2/28/09 17:02 2/28/09 17:02 12/28/09 17:02 12/28/09 17:02 2/28/09 17:02 2/28/09 17:02 2/28/09 17:02 2/28/09 17:02 2/28/09 17:02 12/28/09 17:02 12/28/09 17:02 12/28/09 17:02 12/28/09 17:02 12/28/09 17:02 12/28/09 17:02 2/28/09 17:02 2/28/09 17:02 2/28/09 17:02 Date/Time Analysis 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 Sample Date 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 39120429-004 39120429-004 39120429-004 09120429-004 09120429-004 09120429-004 39120429-004 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 09120429-004 39120429-004 09120429-004 09120429-004 09120429-004 Laboratory Sample ID Sample ID GB-38 3B-38 GB-38 3B-38 GB-38 3B-38 GB-38 **3B-38** SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B Stebbins-Burnham (03-1335BA2) Reference SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B 3W8260B Chesapeake Geosciences, Inc. Method 108-67-8 591-78-6 106-43-4 108-86-1 108-90-7 42-28-9 06-46-7 594-20-7 07-06-2 541-73-1 108-10-1 71-43-2 74-97-5 74-83-9 75-15-0 75-00-3 57-66-3 74-87-3 78-93-3 56-23-5 78-87-5 95-49-8 67-64-1 75-27-4 75-25-2 96-12-8 95-50-1 Sean Daniel 1,2-Dibromo-3-chloropropane (DBCP) 4-Methyl-2-pentanone (MIBK) ,2-Dibromoethane (EDB) 1,2,4-Trimethylbenzene ,3,5-Trimethylbenzene **3romodichloromethane** Submitted To: Client Name: Client Site ID: Bromochloromethane 1,4-Dichlorobenzene ,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 2,2-Dichloropropane ,2-Dichloropropane Carbon tetrachloride ,2-Dichloroethane 2-Hexanone (MBK) 2-Butanone (MEK) Carbon disulfide 2-Chlorotoluene 4-Chlorotoluene **Bromomethane** Chloromethane Bromobenzene Chlorobenzene Chloroethane **Bromoform** Chloroform Parameter Benzene Acetone

⁵age 9 of 34

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.

Client Name: Chesapeake Client Site ID: Stebbins-Bu Submitted To: Sean Daniel	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ces, Inc. ·1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	o O	Dil. Factor Units	Units
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	50	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	50	ug/kg
lodomethane	74-88-4	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Isopropylbenzene	98-82-8	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	298	63.4	63.4	20	ug/kg
Methylene Chloride	concentration ma	ay possibly be due	Methylene Chloride concentration may possibly be due to contamination of the methanol preservative. Unable to confirm.	methanol preserva	tive. Unable	to confirm.))
	1634-04-4	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Naphthalene	91-20-3	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
o-Xylene	95-47-6	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
p-lsopropyltoluene	9-28-66	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Styrene	100-42-5	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
TAME	994-05-8	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
ТВА	75-65-0	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	317	20	ug/kg
tert-Butylbenzene	9-90-86	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
Toluene	108-88-3	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	ВГОР	63.4	63.4	20	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	ВГОО	63.4	63.4	20	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-38	09120429-004	12/18/09	12/28/09 17:02	BLOD	63.4	63.4	20	ug/kg

Page 10 of 34

Certificate of Analysis

ug/kg mg/kg ug/kg ug/kg ug/kg ug/kg Jg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg Jg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg Jg/kg 01/06/2010 Factor Units 20 2 20 20 ည 20 20 20 20 20 20 20 20 20 2 20 20 20 20 20 20 20 ည 20 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 g 63.4 63.4 72.3 72.3 12.7 Date Issued: 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3 2.7 23 Qual LOD Sample Results BLOD 21.4 2/28/09 20:50 12/28/09 17:02 12/28/09 17:02 12/28/09 17:02 12/28/09 17:02 12/28/09 16:39 12/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 12/28/09 16:39 12/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 2/28/09 16:39 Date/Time Analysis 2/18/09 12/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 12/18/09 12/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 Sample 09120429-005 09120429-005 09120429-005 39120429-005 39120429-005 39120429-005 39120429-005 39120429-005 09120429-005 09120429-005 9120429-005 09120429-005 39120429-004 39120429-004 39120429-004 39120429-004 9120429-004 39120429-005 39120429-005 39120429-005 39120429-005 39120429-005 09120429-005 09120429-005 39120429-005 39120429-005 39120429-005 09120429-005 Laboratory Sample ID Sample ID GB-38 GB-38 GB-38 GB-39 GB-39 GB-39 GB-39 GB-39 GB-39 GB-39 GB-39 GB-39 GB-38 GB-38 GB-39 Client Stebbins-Burnham (03-1335BA2) Reference SW8260B SW8015C SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B 3W8260B SW8260B SW8260B Chesapeake Geosciences, Inc. 1330-20-7 142-28-9 563-58-6 8-29-80 08-05-4 630-20-6 120-82-1 106-93-4 07-06-2 06-46-7 594-20-7 96-12-8 78-87-5 541-73-1 75-01-4 71-55-6 79-34-5 79-00-5 75-34-3 75-35-4 87-61-6 96-18-4 95-63-6 95-50-1 78-93-3 35-49-8 Sean Daniel 1,2-Dibromo-3-chloropropane (DBCP) TPH-Semi-Volatiles (DRO) 1,1,2,2-Tetrachloroethane ,1,1,2-Tetrachloroethane 1,2-Dibromoethane (EDB) 1,2,4-Trimethylbenzene ,3,5-Trimethylbenzene ,2,4-Trichlorobenzene Trichlorofluoromethane ,2,3-Trichlorobenzene ,2,3-Trichloropropane Client Site ID: Submitted To: Client Name: 1,1,1-Trichloroethane 1,1,2-Trichloroethane I,3-Dichlorobenzene 1,1-Dichloroethylene ,2-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 1,1-Dichloropropene ,2-Dichloropropane 1,1-Dichloroethane ,2-Dichloroethane 2-Butanone (MEK) 2-Chlorotoluene Xylenes, Total Vinyl chloride /inyl acetate

Sis
-
Analysis
Ö
cate
Certificate
Ŏ

Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	eoscienc nam (03-1	es, Inc. 1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	(0)	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	POO	Dil. Factor Units	Units
2-Hexanone (MBK)	591	591-78-6	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	289	72.3	50	ug/kg
4-Chlorotoluene	•	106-43-4	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
4-Methyl-2-pentanone (MIBK)		108-10-1	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	289	72.3	20	ug/kg
Acetone	67-64-1	34-1	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	289	72.3	20	ug/kg
Benzene	71-4	71-43-2	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Bromobenzene	108	108-86-1	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Bromochloromethane	74-6	74-97-5	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Bromodichloromethane	75-27-4	27-4	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Bromoform	75-25-2	25-2	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	289	72.3	20	ug/kg
Bromomethane	74-6	74-83-9	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Carbon disulfide	75-1	75-15-0	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Carbon tetrachloride	2-99	56-23-5	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Chlorobenzene	108-	108-90-7	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Chloroethane	75-0	75-00-3	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Chloroform	6-99-29	96-3	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Chloromethane	•	37-3	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
cis-1,2-Dichloroethylene		156-59-2	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
cis-1,3-Dichloropropene		10061-01-5	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Dibromochloromethane	124	124-48-1	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Dibromomethane		74-95-3	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Dichlorodifluoromethane		75-71-8	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Di-isopropyl ether (DIPE)	_	108-20-3	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Ethylbenzene	100-	100-41-4	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Ethyl-t-butyl ether (ETBE)		637-92-3	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
lodomethane	74-88-4	38-4	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Isopropylbenzene	3-86	98-82-8	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
m,p-Xylenes	179	179601-23-1	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Methylene chloride	75-0	75-09-2	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	357	72.3	72.3	20	ug/kg

Methylene Chloride concentration may possibly be due to contamination of the methanol preservative. Unable to confirm.

Certificate of Analysis

Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	nces, Inc. 1-1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	00 F00	Dil. Factor Units	Units
MTBE	1634-04-4	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Naphthalene	91-20-3	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
o-Xylene	95-47-6	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
p-Isopropyltoluene	9-28-66	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Styrene	100-42-5	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
TAME	994-05-8	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
TBA	75-65-0	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	361	20	ug/kg
tert-Butylbenzene	9-90-86	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Tetrachloroethylene (PCE))巨) 127-18-4	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Toluene	108-88-3	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
trans-1,2-Dichloroethylene	ne 156-60-5	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
trans-1,3-Dichloropropene	ne 10061-02-6	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	20	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-39	09120429-005	12/18/09	12/28/09 16:39	BLOD	72.3	72.3	-	ug/kg
TPH-Semi-Volatiles (DRO)	(O) NA	SW8015C	GB-39	09120429-005	12/18/09	12/28/09 21:15	BLOD	14.5	14.5	-	mg/kg
1,1,1,2-Tetrachloroethane	ne 630-20-6	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,1,2,2-Tetrachloroethane	ne 79-34-5	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,1,2-Trichloroethane	2-00-62	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg

Certificate of Analysis

Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	iences, Inc. 03-1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	POO	Dil. Factor Units	Units
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	50	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,2,4-Trimethylbenzene	9-63-63	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	ropane (DBCP) 96-12-8	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,2-Dibromoethane (EDB)	JB) 106-93-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,2-Dichloropropane	2-48-82	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,3,5-Trimethylbenzene	e 108-67-8	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	50	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	245	61.3	20	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	245	61.3	20	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
4-Methyl-2-pentanone (MIBK)	(MIBK) 108-10-1	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	245	61.3	20	ug/kg
Acetone	67-64-1	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	245	61.3	20	ug/kg
Benzene	71-43-2	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Bromochloromethane	74-97-5	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Bromodichloromethane	e 75-27-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Bromoform	75-25-2	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	245	61.3	20	ug/kg
Bromomethane	74-83-9	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Carbon disulfide	75-15-0	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
				Page 14 of 34							

Certificate of Analysis

Client Name: Chesapeake Client Site ID: Stebbins-Bu Submitted To: Sean Daniel	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ces, Inc. -1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	roo	Dil. Factor Units	Units
Chloroethane	75-00-3	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Chloroform	67-66-3	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Chloromethane	74-87-3	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	ВГОР	61.3	61.3	20	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Dibromomethane	74-95-3	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
lodomethane	74-88-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Isopropylbenzene	98-82-8	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	248	61.3	61.3	20	ug/kg
	le concentration m	ay possibly be due	Methylene Chloride concentration may possibly be due to contamination of the methanol preservative. Unable to confirm	methanol preserva	tive. Unable	to confirm.					
MTBE	1634-04-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Naphthalene	91-20-3	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
o-Xylene	95-47-6	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
p-Isopropyltoluene	9-28-66	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Styrene	100-42-5	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
TAME	994-05-8	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
ТВА	75-65-0	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	306	20	ug/kg
tert-Butylbenzene	9-90-86	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Toluene	108-88-3	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg

Page 15 of 34

Certificate of Analysis

Client Name: Chesapeake Client Site ID: Stebbins-Bu Submitted To: Sean Daniel	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ces, Inc. ·1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	Pod	Dil. Factor Units	Units
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3	20	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-40	09120429-006	12/18/09	12/28/09 17:24	BLOD	61.3	61.3		ug/kg
TPH-Semi-Volatiles (DRO)	NA	SW8015C	GB-40	09120429-006	12/18/09	12/28/09 21:39	267	12.3	12.3	-	mg/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	ВГОО	66.1	66.1	20	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	ВГОО	66.1	66.1	20	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	22	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	346	66.1	66.1	20	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	202	66.1	66.1	20	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg

Page 16 of 34

t	n
	-
- (n
-	n
1	_
•	Ū
<u></u>	ï
-	4
٠,	y.
4	b
1	_
- (U
4	
ι	Ū
•	ט
=	
*	
3	ī
١,	ť
	٦
•	ð
	•

				Certificate of Analysis	VSIS		٠				
Client Name: Ch Client Site ID: Ste Submitted To: Se	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ices, Inc. -1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	, 100	Dil. Factor Units	Units
2,2-Dichloropropane	594-20-7	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	264	66.1	20	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	264	66.1	20	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
4-Methyl-2-pentanone (MIBK)	IK) 108-10-1	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	264	66.1	20	ug/kg
Acetone	67-64-1	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	264	66.1	20	ug/kg
Benzene	71-43-2	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Bromobenzene	108-86-1	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Bromochloromethane	74-97-5	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Bromodichloromethane	75-27-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Bromoform	75-25-2	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	264	66.1	20	ug/kg
Bromomethane	74-83-9	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Carbon disulfide	75-15-0	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Chlorobenzene	108-90-7	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Chloroethane	75-00-3	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Chloroform	67-66-3	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Chloromethane	74-87-3	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Dibromochloromethane	124-48-1	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ng/kg
Dibromomethane	74-95-3	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	ВГОО	66.1	66.1	20	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Ethylbenzene	100-41-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	108	66.1	66.1	20	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
lodomethane	74-88-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Isopropylbenzene	98-85-8	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	108	66.1	66.1	20	ug/kg
				Page 17 of 34							

Certificate of Analysis

01/06/2010

Date Issued:

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stehbins-Burnham (03-1335B42)

Client Site ID: Submitted To:	Stebbins-Burnham (03-1335BA2) Sean Daniel	1335BA2)									
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor Units	Units
m,p-Xylenes	179601-23-1	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	79.2	66.1	66.1	20	ug/kg
Methylene chloride	75-09-2	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	309	66.1	66.1	20	ug/kg
Methyle	Methylene Chloride concentration may possibly be due to contamination of the methanol preservative. Unable to confirm	ay possibly be due	e to contamination of the	e methanol preserva	tiive. Unable	e to confirm.					
MTBE	1634-04-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Naphthalene	91-20-3	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	950	66.1	66.1	20	ug/kg
n-Butylbenzene	104-51-8	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
n-Propylbenzene	103-65-1	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	147	66.1	66.1	20	ug/kg
o-Xylene	95-47-6	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	50	ug/kg
p-Isopropyltoluene	9-28-66	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	301	66.1	66.1	20	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	156	66.1	66.1	20	ug/kg
Styrene	100-42-5	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
TAME	994-05-8	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
TBA	75-65-0	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	330	20	ug/kg
tert-Butylbenzene	9-90-86	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Tetrachloroethylene (PCE)	E) 127-18-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Toluene	108-88-3	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
trans-1,2-Dichloroethylene	ne 156-60-5	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
trans-1,3-Dichloropropene	ne 10061-02-6	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	ВГОО	66.1	66.1	20	ug/kg
Trichloroethylene	79-01-6	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Vinyl acetate	108-05-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Vinyl chloride	75-01-4	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	BLOD	66.1	66.1	20	ug/kg
Xylenes, Total	1330-20-7	SW8260B	GB-41	09120429-007	12/18/09	12/28/09 17:47	126	66.1	66.1	-	ug/kg
TPH-Semi-Volatiles (DRO)	O) NA	SW8015C	GB-41	09120429-007	12/18/09	12/29/09 13:53	1290	13.2	13.2	10	mg/kg
1,1,1,2-Tetrachloroethane	e 630-20-6	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
1,1,2,2-Tetrachloroethane	ne 79-34-5	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	ВГОО	67.2	67.2	20	ug/kg
1,1,2-Trichloroethane	2-00-62	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg

Certificate of Analysis

ug/kg ıg/kg ug/kg Jg/kg ug/kg Factor Units 01/06/2010 20 22 20 20 20 20 20 20 20 50 20 20 20 20 20 50 20 50 20 50 20 20 22 20 20 20 20 67.2 gon 67.2 Date Issued: 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 269 Qual LOD 269 269 269 Sample Results BLOD 3LOD 3LOD BLOD 98.6 98 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 12/28/09 18:10 2/28/09 18:10 2/28/09 18:10 12/28/09 18:10 12/28/09 18:10 12/28/09 18:10 12/28/09 18:10 12/28/09 18:10 12/28/09 18:10 2/28/09 18:10 12/28/09 18:10 12/28/09 18:10 12/28/09 18:10 12/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 Date/Time Analysis 12/18/09 12/18/09 12/18/09 12/18/09 12/18/09 12/18/09 12/18/09 12/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 12/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 Sample 09120429-008 09120429-008 09120429-008 09120429-008 39120429-008 09120429-008 09120429-008 09120429-008 09120429-008 39120429-008 09120429-008 09120429-008 09120429-008 09120429-008 09120429-008 09120429-008 09120429-008 09120429-008 09120429-008 39120429-008 39120429-008 09120429-008 39120429-008 39120429-008 39120429-008 39120429-008 09120429-008 39120429-008 09120429-008 Page 19 of 34 Laboratory Sample ID Sample ID Soil Dupe Client Stebbins-Burnham (03-1335BA2) SW8260B **Reference** SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B Chesapeake Geosciences, Inc. Method 108-67-8 594-20-7 142-28-9 591-78-6 06-43-4 563-58-6 06-93-4 107-06-2 541-73-1 120-82-1 95-63-6 95-50-1 78-87-5 06-46-7 78-93-3 95-49-8 108-10-1 67-64-1 71-43-2 108-86-1 75-27-4 75-25-2 74-83-9 37-61-6 96-12-8 74-97-5 75-35-4 96-18-4 75-34-3 Sean Daniel ,2-Dibromo-3-chloropropane (DBCP) 4-Methyl-2-pentanone (MIBK) ,2-Dibromoethane (EDB) ,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene **Bromodichloromethane** 1,2,3-Trichlorobenzene ,2,4-Trichlorobenzene ,2,3-Trichloropropane Submitted To: Client Name: Client Site ID: Bromochloromethane I,4-Dichlorobenzene 1,1-Dichloroethylene 1,1-Dichloropropene ,2-Dichlorobenzene ,3-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,2-Dichloroethane 2-Hexanone (MBK) 1,1-Dichloroethane 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene Bromomethane Bromobenzene Bromoform Parameter Benzene Acetone

Certificate of Analysis

Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ences, Inc. 33-1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor Units	Units
Carbon disulfide	75-15-0	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Chlorobenzene	108-90-7	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Chloroethane	75-00-3	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Chloroform	67-66-3	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Chloromethane	74-87-3	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
cis-1,2-Dichloroethylene	9 156-59-2	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
cis-1,3-Dichloropropene	10061-01-5	5 SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Dibromochloromethane	124-48-1	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Dibromomethane	74-95-3	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Dichlorodifluoromethane	e 75-71-8	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Di-isopropyl ether (DIPE)	E) 108-20-3	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Ethylbenzene	100-41-4	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Ethyl-t-butyl ether (ETBE)	E) 637-92-3	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
lodomethane	74-88-4	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Isopropylbenzene	98-85-8	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
m,p-Xylenes	179601-23-1	-1 SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Methylene chloride	75-09-2	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	326	67.2	67.2	20	ug/kg
Methy	Methylene Chloride concentration may possibly be due to contamination of the methanol preservative. Unable to confirm	nay possibly be o	due to contamination of	f the methanol preserva	ative. Unable	e to confirm.					
MTBE	1634-04-4	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Naphthalene	91-20-3	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	237	67.2	67.2	20	ug/kg
n-Butylbenzene	104-51-8	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
n-Propylbenzene	103-65-1	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
o-Xylene	95-47-6	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
p-Isopropyltoluene	9-28-66	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	70.7	67.2	67.2	20	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
Styrene	100-42-5	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
TAME	994-05-8	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	67.2	20	ug/kg
TBA	75-65-0	SW8260B	Soil Dupe	09120429-008	12/18/09	12/28/09 18:10	BLOD	67.2	336	20	ug/kg

Page 20 of 34

Certificate of Analysis

mg/kg Dil. Factor Units Jg/kg ug/kg Jg/kg ug/kg ug/kg ug/kg ug/kg ıg/kg ng/L ng/L 01/06/2010 ng/L ng/L ng/L ng/L ug/L ug/L ng/L ng/L ug/L ng/L ng/L ng/L ng/L ng/L Jg/ 20 20 20 50 20 50 20 67.2 67.2 67.2 67.2 67.2 COO 13.4 0. 0: 6. 4.0 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0 Date Issued: 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 13.4 Qual LOD 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 9 0. 0. 0. 0. 0. Sample Results BLOD 22.7 599 108 12/28/09 18:10 12/28/09 22:29 2/23/09 20:30 2/23/09 20:30 12/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/28/09 18:10 12/28/09 18:10 2/23/09 20:30 12/28/09 18:10 2/28/09 18:10 2/28/09 18:10 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 12/28/09 18:10 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 Date/Time Analysis 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 12/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 Sample 09120429-008 09120429-008 09120429-008 09120429-008 09120429-008 9120429-008 09120429-008 9120429-009 09120429-009 09120429-009 09120429-009)9120429-009 9120429-009 9120429-009 9120429-009 9120429-009 9120429-009 39120429-008 09120429-008 9120429-008 09120429-008 09120429-009 09120429-009 9120429-009 09120429-009 09120429-009 9120429-009 09120429-009 Laboratory Sample ID 3B-36 (GW) Soil Dupe Sample ID Soil Dupe Client Stebbins-Burnham (03-1335BA2) SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8015C SW8260B 3W8260B SW8260B Reference 3W8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B Chesapeake Geosciences, Inc. Method 10061-02-6 330-20-7 106-93-4 08-88-3 108-67-8 27-18-4 56-60-5 08-05-4 630-20-6 563-58-6 107-06-2 120-82-1 75-01-4 79-34-5 75-34-3 96-12-8 78-87-5 71-55-6 79-00-5 75-35-4 96-18-4 95-63-6 95-50-1 79-01-6 75-69-4 87-61-6 ¥ Sean Daniel 1,2-Dibromo-3-chloropropane (DBCP) Fetrachloroethylene (PCE) trans-1,2-Dichloroethylene **TPH-Semi-Volatiles (DRO)** rans-1,3-Dichloropropene I,1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane ,2-Dibromoethane (EDB) ,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene **Frichlorofluoromethane** 1,2,3-Trichlorobenzene ,2,4-Trichlorobenzene ,2,3-Trichloropropane Client Name: Client Site ID: Submitted To: 1,1,1-Trichloroethane ,1,2-Trichloroethane 1,1-Dichloropropene ,1-Dichloroethylene ,2-Dichlorobenzene ,2-Dichloropropane ,1-Dichloroethane ,2-Dichloroethane tert-Butylbenzene **Frichloroethylene** Kylenes, Total Vinyl chloride Vinyl acetate Parameter

Certificate of Analysis

Factor Units 01/06/2010 ng/L ng/L ng/L ug/L ug/L ng/L ug/L ng/L ng/L ng/L ng/L ng/L J/gr ng/L ng/L ng/L ng/L ng/L 10.0 10.0 g 10.0 10.0 10.0 0. 0. 0. 0. 0. 0. 0. 1.0 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0: 5.0 0. Date Issued: 0.0 0.0 10.0 0.0 Sample Results Qual LOD 10.0 0 0 0 o. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. BLOD 3LOD BLOD BLOD 31.00 3LOD BLOD BLOD BLOD BLOD BLOD BLOD BL_{OD} 14.6 12/23/09 20:30 12/23/09 20:30 12/23/09 20:30 2/23/09 20:30 2/23/09 20:30 12/23/09 20:30 2/23/09 20:30 12/23/09 20:30 12/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 12/23/09 20:30 12/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 2/23/09 20:30 Date/Time Analysis 12/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 12/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 2/18/09 Sample 09120429-009 09120429-009 09120429-009 09120429-009 09120429-009 9120429-009 09120429-009 09120429-009 09120429-009 09120429-009 09120429-009 09120429-009 09120429-009 09120429-009 09120429-009 09120429-009 09120429-009 9120429-009 09120429-009 39120429-009 09120429-009 09120429-009 9120429-009 9120429-009 09120429-009 09120429-009 09120429-009 09120429-009 09120429-009 Laboratory Sample ID 3B-36 (GW) GB-36 (GW) 3B-36 (GW) GB-36 (GW) GB-36 (GW) GB-36 (GW) 3B-36 (GW) 3B-36 (GW) 3B-36 (GW) 3B-36 (GW) GB-36 (GW) 3B-36 (GW) Sample ID Client Stebbins-Burnham (03-1335BA2) SW8260B Reference SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B Chesapeake Geosciences, Inc. 0061-01-5 42-28-9 591-78-6 56-59-2 06-46-7 08-10-1 08-20-3 594-20-7 06-43-4 08-86-1 108-90-7 00-41-4 78-93-3 24-48-1 541-73-1 95-49-8 67-64-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 75-15-0 56-23-5 75-00-3 67-66-3 74-87-3 74-95-3 75-71-8 Sean Daniel 4-Methyl-2-pentanone (MIBK) Dichlorodifluoromethane Di-isopropyl ether (DIPE) cis-1,2-Dichloroethylene cis-1,3-Dichloropropene **Dibromochloromethane** Bromodichloromethane Client Name: Client Site ID: Submitted To: Bromochloromethane 1,4-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 2,2-Dichloropropane Carbon tetrachloride 2-Hexanone (MBK) 2-Butanone (MEK) Dibromomethane 2-Chlorotoluene 4-Chlorotoluene Carbon disulfide Chloromethane Bromobenzene Bromomethane Chlorobenzene Ethylbenzene Chloroethane Bromoform Chloroform Parameter Benzene Acetone

Page 22 of 34

Certificate of Analysis

			Cert	Certificate of Analysis							
Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ices, Inc. -1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	007	Dil. Factor	Units
Ethyl-t-butyl ether (ETBE)	E) 637-92-3	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	25.0	25.0	-	ug/L
lodomethane	74-88-4	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	10.0	10.0	-	g/L
Isopropylbenzene	98-85-8	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	9.1	1.0	1.0	-	ng/L
m,p-Xylenes	179601-23-1	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	24.3	2.0	2.0	-	ug/L
Methylene chloride	75-09-2	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	4.0	4.0	,	ng/L
MTBE	1634-04-4	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	1.0	1.0	-	ug/L
Naphthalene	91-20-3	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	127	1.0	1.0	-	g/L
n-Butylbenzene	104-51-8	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	15.8	1.0	1.0	-	ug/L
n-Propylbenzene	103-65-1	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	16.8	1.0	1.0	-	ug/L
o-Xylene	95-47-6	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	17.6	1.0	1.0	-	ng/L
p-Isopropyltoluene	9-28-66	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	7.7	1.0	1.0	-	ng/L
sec-Butylbenzene	135-98-8	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	9.5	1.0	1.0	-	ng/L
Styrene	100-42-5	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	1.0	1.0	-	ng/L
TAME	994-05-8	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	5.0	5.0	-	ng/L
TBA	75-65-0	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	100	100	-	ng/L
tert-Butylbenzene	9-90-86	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	1.0	1.0	-	ng/L
Tetrachloroethylene (PCE))E) 127-18-4	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	1.0	1.0	Ψ.	ng/L
Toluene	_	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	1.4	1.0	1.0	-	ng/L
trans-1,2-Dichloroethylene		SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	1.0	1.0	-	ng/L
trans-1,3-Dichloropropene		SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	1.0	1.0	-	ng/L
Trichloroethylene	79-01-6	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	1.0	1.0	-	ng/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	1.0	1.0	-	ng/L
Vinyl acetate	108-05-4	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	10.0	10.0	-	ng/L
Vinyl chloride	75-01-4	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	BLOD	1.0	1.0	-	ng/L
Xylenes, Total	1330-20-7	SW8260B	GB-36 (GW)	09120429-009	12/18/09	12/23/09 20:30	42.0	3.0	3.0	-	ng/L
1,1,1,2-Tetrachloroethane	эе 630-20-6	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0		ug/L
1,1,2,2-Tetrachloroethane	ne 79-34-5	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L

			Cert	Certificate of Analysis	Ivsis						
Client Name: Che Client Site ID: Stek Submitted To: Sea	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	inces, Inc. 3-1335BA2)						Date Issued:		01/06/2010	:010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	00 TO	Dil. Factor Units	Units
1,1,2-Trichloroethane	2-00-62	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	ВГОО	1.0	1.0	-	na/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0		ng/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	0.1		ng/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0		g/L ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ug/L
1,2,4-Trimethylbenzene		SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	g/L
1,2-Dibromo-3-chloropropane (DBCP)		SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	4.0	4.0	-	- ug/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0		ng/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ug/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	3.2	1.0	1.0	 -	g/L ug/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	_	ug/L
1,3-Dichloropropane	142-28-9	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	,	ng/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	10.0	10.0	-	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	_	ng/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	10.0	10.0	-	ng/L
4-Chlorotoluene		SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
4-Methyl-2-pentanone (MIBK)		SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	10.0	10.0	-	ng/L
Acetone	67-64-1	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	10.0	10.0	-	ng/L
Benzene	71-43-2	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	2.4	1.0	1.0	,	ng/L
Bromobenzene	108-86-1	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0		ug/L
Bromochloromethane	74-97-5	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Bromodichloromethane	75-27-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Bromoform	75-25-2	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ug/L

Page 24 of 34

Certificate of Analysis

Client Name: Chesapeake Client Site ID: Stebbins-Bu Submitted To: Sean Daniel	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ces, Inc. 1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time Sar	Sample Results	Qual LOD	LOQ	Dil. Factor Units	Units
Bromomethane	74-83-9	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ug/L
Carbon disulfide	75-15-0	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	10.0	10.0	τ-	ng/L
Carbon tetrachloride	56-23-5	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Chlorobenzene	108-90-7	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Chloroethane	75-00-3	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Chloroform	67-66-3	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Chloromethane	74-87-3	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	₩.	ng/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	_	ng/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Dibromochloromethane	124-48-1	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Dibromomethane	74-95-3	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	_	ng/L
Dichlorodifluoromethane	75-71-8	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	_	ng/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	5.0	5.0	_	ng/L
Ethylbenzene	100-41-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	25.0	25.0	-	ng/L
Iodomethane	74-88-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	ВГОО	10.0	10.0	-	ng/L
Isopropylbenzene	98-82-8	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52 3.3	8	1.0	1.0	-	ng/L
m,p-Xylenes	179601-23-1	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	2.0	2.0		ng/L
Methylene chloride	75-09-2	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	4.0	4.0	-	ng/L
MTBE	1634-04-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52 10	109	1.0	1.0	-	ng/L
Naphthalene	91-20-3	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52 3.	3.6	1.0	1.0	-	ng/L
n-Butylbenzene	104-51-8	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
n-Propylbenzene	103-65-1	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52 3.1	_	1.0	1.0	-	ng/L
o-Xylene	95-47-6	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
p-Isopropyltoluene	9-84-6	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
sec-Butylbenzene	135-98-8	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52 5.	5.7	1.0	1.0		ng/L
Styrene	100-42-5	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
TAME	994-05-8	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	5.0	5.0	-	ng/L
ТВА	75-65-0	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	100	100	·	ng/L

Page 25 of 34

Certificate of Analysis

Client Name: Chesapeake Client Site ID: Stebbins-Bu Submitted To: Sean Daniel	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ces, Inc. ·1335BA2)						Date Issued:		01/06/2010	2010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	ροσ	Dil. Factor Units	Units
tert-Butylbenzene	9-90-86	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	2.7	1.0	1.0	-	ng/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Toluene	108-88-3	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Trichloroethylene	79-01-6	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0		ng/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Vinyl acetate	108-05-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	10.0	10.0	•	ug/L
Vinyl chloride	75-01-4	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	1.0	1.0	-	ng/L
Xylenes, Total	1330-20-7	SW8260B	GB-40 (GW)	09120429-010	12/18/09	12/23/09 20:52	BLOD	3.0	3.0	-	ng/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
1,1,1-Trichloroethane	71-55-6	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	_	ng/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
1,1,2-Trichloroethane	79-00-5	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
1,1-Dichloroethane	75-34-3	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
1,1-Dichloroethylene	75-35-4	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0		ng/L
1,1-Dichloropropene	563-58-6	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
1,2,3-Trichloropropane	96-18-4	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ug/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	130	1.0	1.0	-	ng/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	4.0	4.0	-	ng/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
1,2-Dichlorobenzene	95-50-1	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0		ng/L
1,2-Dichloroethane	107-06-2	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	4	ng/L
1,2-Dichloropropane	78-87-5	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	47.3	1.0	1.0	-	ng/L
1,3-Dichlorobenzene	541-73-1	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L

			Ser Ser	Certificate of Analysis	Vsis						
Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ces, Inc. -1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	POO	Dii. Factor Units	Units
1,3-Dichloropropane	142-28-9	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
1,4-Dichlorobenzene	106-46-7	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
2,2-Dichloropropane	594-20-7	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	τ-	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	10.0	10.0	-	ug/L
2-Chlorotoluene	95-49-8	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0		ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	10.0	10.0	-	ng/L
4-Chlorotoluene		SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ug/L
4-Methyl-2-pentanone (MIBK)		SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	10.0	10.0		ng/L
Acetone	67-64-1	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	10.0	10.0	-	ng/L
Benzene	71-43-2	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	1.1	1.0	1.0	-	ng/L
Bromobenzene	108-86-1	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Bromochloromethane	74-97-5	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	_	ug/L
Bromodichloromethane	75-27-4	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ug/L
Bromoform	75-25-2	SW8260B		09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	₩-	ug/L
Bromomethane	74-83-9	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Carbon disulfide	75-15-0	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	10.0	10.0	-	ng/L
Carbon tetrachloride	56-23-5	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0		ng/L
Chlorobenzene	108-90-7	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Chloroethane	75-00-3	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Chloroform	6-99-29	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ug/L
Chloromethane	74-87-3	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Dibromochloromethane	124-48-1	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Dibromomethane		SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0		ng/L
Dichlorodifluoromethane		SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Di-isopropyl ether (DIPE)		SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	5.0	2.0	-	ng/L
Ethylbenzene	100-41-4	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	17.7	1.0	1.0	-	ng/L
Ethyl-t-butyl ether (ETBE)	:) 637-92-3	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	25.0	25.0	_	ng/L

Page 27 of 34

Certificate of Analysis

			5	Certificate of Analysis	VSIS						
Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ices, Inc. -1335BA2)			!			Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	POO	Dil. Factor Units	Jnits
lodomethane	74-88-4	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	10.0	10.0	_	ng/L
Isopropylbenzene	98-82-8	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	10.3	1.0	1.0	-	ng/L
m,p-Xylenes	179601-23-1	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	14.4	2.0	2.0	_	J/gr
Methylene chloride	75-09-2	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	4.0	4.0	_	ug/L
MTBE	1634-04-4	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	_	J/gr
Naphthalene	91-20-3	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	271	1.0	1.0	- -	ng/L
n-Butylbenzene	104-51-8	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	0.1	-	ng/L
n-Propylbenzene	103-65-1	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	16.5	1.0	1.0	-	ng/L
o-Xylene	95-47-6	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	19.9	1.0	1.0	-	ug/L
p-Isopropyltoluene	9-28-66	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	26.9	1.0	1.0	-	ng/L
sec-Butylbenzene	135-98-8	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	14.2	1.0	1.0	-	ng/L
Styrene	100-42-5	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ug/L
TAME	994-02-8	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	5.0	5.0	-	ng/L
TBA	75-65-0	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	100	100	-	ug/L
tert-Butylbenzene	9-90-86	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Tetrachloroethylene (PCE)		SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Toluene	-	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
trans-1,2-Dichloroethylene	•	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
trans-1,3-Dichloropropene		SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ug/L
Trichloroethylene	29-01-6	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Trichlorofluoromethane	75-69-4	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Vinyl acetate	108-05-4	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	10.0	10.0	-	ng/L
Vinyl chloride	75-01-4	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	BLOD	1.0	1.0	-	ng/L
Xylenes, Total	1330-20-7	SW8260B	GB-41 (GW)	09120429-011	12/18/09	12/23/09 19:44	34.4	3.0	3.0	-	J/Gr
1,1,1,2-Tetrachloroethane	ne 630-20-6	SW8260B	FB	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ug/L
1,1,1-Trichloroethane	71-55-6	SW8260B	图	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
1,1,2,2-Tetrachloroethane	ne 79-34-5	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
1,1,2-Trichloroethane	79-00-5	SW8260B	FB	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L

Page 28 of 34

			Cert	Certificate of Analysis	Vsis						
Client Name: Chesapeake Client Site ID: Stebbins-Bu Submitted To: Sean Daniel	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ices, Inc. -1335BA2)						Date Issued:		01/06/2010	:010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	oo Co	Dil. Factor Units	Units
1,1-Dichloroethane	75-34-3	SW8260B	FB	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	na/L
1,1-Dichloroethylene	75-35-4	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
1,1-Dichloropropene	563-58-6	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	na/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Æ	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	0.1	ψ	nd/L
1,2,3-Trichloropropane	96-18-4	SW8260B	8	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ig. ua/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	H	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0		ng/L
1,2,4-Trimethylbenzene		SW8260B	FB	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0		ng/L
1,2-Dibromo-3-chloropropane (DBCP)	ا) 96-12-8	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	4.0	4.0	-	g/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	8 2	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	g/L
1,2-Dichlorobenzene	95-50-1	SW8260B	色	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
1,2-Dichloroethane	107-06-2	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	 -	ng/L
1,2-Dichloropropane	78-87-5	SW8260B	E	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	8	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ug/L
1,3-Dichlorobenzene	541-73-1	SW8260B	В	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
1,3-Dichloropropane	142-28-9	SW8260B	巴	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	ψ	ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	g/L
2,2-Dichloropropane	594-20-7	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
2-Butanone (MEK)	78-93-3	SW8260B	19	09120429-012	12/18/09	12/23/09 17:51	BLOD	10.0	10.0	-	ng/L
2-Chlorotoluene	95-49-8	SW8260B	£9	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
2-Hexanone (MBK)	591-78-6	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	10.0	10.0	-	ng/L
4-Chlorotoluene	106-43-4	SW8260B	8	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ug/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	FB	09120429-012	12/18/09	12/23/09 17:51	BLOD	10.0	10.0	-	ng/L
Acetone	67-64-1	SW8260B	8	09120429-012	12/18/09	12/23/09 17:51	BLOD	10.0	10.0	-	ng/L
Benzene	71-43-2	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
Bromobenzene	108-86-1	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
Bromochloromethane	74-97-5	SW8260B	田	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
Bromodichloromethane	75-27-4	SW8260B	1 B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	,-	ng/L
Bromoform	75-25-2	SW8260B	8	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
Bromomethane	74-83-9	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
				1							

Page 29 of 34

Certificate of Analysis

				の人はこうとうと	000						
Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	nces, Inc. 3-1335BA2)						Date Issued:		01/06/2010	2010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Besults	Oual Lob	2	Dil.	dict.
Carbon disulfide	75-15-0	SW8260B	FB	09120429-012	12/18/09	12/23/09 17:51	do la		3 5	1 4010	
Carbon tetrachloride	56-23-5	SW8260B	£8	09120429-012	12/18/09	12/23/09 17:51	2018 CO 18	0.00	5 5	- +	1 /c:
Chlorobenzene	108-90-7	SW8260B	8	09120429-012	12/18/09	19/93/00 17:51	5 G	0. ,	o. ,	- ,	ug/L
Chloroethane	75-00-3	SW8260B	£	09120429-012	12/18/09	12/23/09 17:51		0. 0	0. 0	- ,	ug/L
Chloroform	67-66-3	SW8260B	£	09120429-012	12/18/09	12/23/09 17-51	BLOD	0. 6	2. 6	- 1	ng/L
Chloromethane	74-87-3	SW8260B	FB	09120429-012	12/18/09	12/23/09 17:51	BLOD	0	<u>.</u> .	- +	ug/L
cis-1,2-Dichloroethylene	e 156-59-2	SW8260B	£	09120429-012	12/18/09	12/23/09 17:51	BI OD	<u> </u>	5 5		1 (g/ L
cis-1,3-Dichloropropene		SW8260B	В	09120429-012	12/18/09	12/23/09 17:51	BLOD	0. 1	2 -		1 /G
Dibromochloromethane	124-48-1	SW8260B	1 B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	2 -		1 /OII
Dibromomethane		SW8260B	£	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	10	-	no/L
Dichlorodifluoromethane	•	SW8260B	FB	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	0.	· 	raj r Na/L
Di-isopropyl ether (DIPE)		SW8260B	82	09120429-012	12/18/09	12/23/09 17:51	BLOD	5.0	5.0	. ,-	na/L
Ethylbenzene		SW8260B	£	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	_	na/L
Ethyl-t-butyl ether (ETBE)		SW8260B	82	09120429-012	12/18/09	12/23/09 17:51	BLOD	25.0	25.0	-	rgir. ua/L
lodomethane	74-88-4	SW8260B	Æ	09120429-012	12/18/09	12/23/09 17:51	BLOD	10.0	10.0	-	na/L
Isopropylbenzene	98-85-8	SW8260B	Æ	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
m,p-Xylenes	179601-23-1	SW8260B	留	09120429-012	12/18/09	12/23/09 17:51	BLOD	2.0	2.0	-	na/L
Methylene chloride	75-09-5	SW8260B	8	09120429-012	12/18/09	12/23/09 17:51	BLOD	4.0	4.0	-	ua/L
MTBE	1634-04-4	SW8260B	8	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0		na/L
Naphthalene	91-20-3	SW8260B	æ	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0		na/L
n-Butylbenzene	104-51-8	SW8260B	田	09120429-012	12/18/09	12/23/09 17:51	ВГОО	1.0	1.0	τ	ua/L
n-Propylbenzene	103-65-1	SW8260B	EB	09120429-012	12/18/09	12/23/09 17:51	ВГОО	1.0	1.0	-	ua/L
o-Xylene	92-47-6	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	ВГОО	1.0	0	-	G
p-Isopropyltoluene	9-84-66	SW8260B	£	09120429-012	12/18/09	12/23/09 17:51	BLOD	0.1	2 -	•	1 //02
sec-Butylbenzene	135-98-8	SW8260B	Æ	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	2 -	•	1 /c=
Styrene	100-42-5	SW8260B	8	09120429-012	12/18/09	12/23/09 17:51	COIN		· -		1 /2
TAME	994-05-8	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	5. C	- r		1 2/2
TBA	75-65-0	SW8260B	æ	09120429-012	12/18/09	12/23/09 17:51	BLOD	100	5 5	٠ -	1 /0
tert-Butylbenzene	9-90-86	SW8260B	£	09120429-012	12/18/09	12/23/09 17:51	BLOD	3 0	3 0		- /u
				10 30 00 0000				2	?		2) 1

Page 30 of 34

Certificate of Analysis

				Certificate of Analysis	VSis						
Client Name: Chesapeake Client Site ID: Stebbins-Bu Submitted To: Sean Daniel	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) Sean Daniel	ices, Inc. -1335BA2)						Date Issued:		01/06/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor Units	Units
Tetrachloroethylene (PCE)	127-18-4	SW8260B	æ	09120429-012	12/18/09	12/23/09 17:51	ВГОО	1.0	1.0	-	ng/L
Toluene	108-88-3	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	B	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	8	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
Trichloroethylene	79-01-6	SW8260B	82	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
Trichlorofluoromethane	75-69-4	SW8260B	FB	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
Vinyl acetate	108-05-4	SW8260B	FB	09120429-012	12/18/09	12/23/09 17:51	BLOD	10.0	10.0	-	ng/L
Vinyl chloride	75-01-4	SW8260B	1 8	09120429-012	12/18/09	12/23/09 17:51	BLOD	1.0	1.0	-	ng/L
Xylenes, Total	1330-20-7	SW8260B	£	09120429-012	12/18/09	12/23/09 17:51	BLOD	3.0	3.0	-	ng/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
1,1,1-Trichloroethane	71-55-6	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
1,1,2-Trichloroethane	79-00-5	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
1,1-Dichloroethane	75-34-3	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
1,1-Dichloroethylene	75-35-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
1,1-Dichloropropene	563-58-6	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	ВГОД	1.0	1.0	-	ng/L
1,2,3-Trichloropropane	96-18-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	ВГОБ	1.0	1.0	-	ng/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	ВГО	1.0	1.0		ng/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	82.9	1.0	1.0	-	ng/L
1,2-Dibromo-3-chloropropane (DBCP)	P) 96-12-8	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	4.0	4.0	-	ng/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	,-	ng/L
1,2-Dichlorobenzene	95-50-1	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
1,2-Dichloroethane	107-06-2	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
1,2-Dichloropropane	78-87-5	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	28.7	1.0	1.0	-	ng/L
1,3-Dichlorobenzene	541-73-1	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	ВГОО	1.0	1.0	*	ng/L
1,3-Dichloropropane	142-28-9	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	ВГОД	1.0	1.0	₩	ng/L

Certificate of Analysis

				Certificate of Analysis	VSIS						
	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2)	nces, Inc. -1335BA2)						Date Issued:		01/06/2010	2010
Submitted To:	Sean Daniel										
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	O	Dil. Factor	Dil. Factor Units
1,4-Dichlorobenzene	106-46-7	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	10	-	l/on
2,2-Dichloropropane	594-20-7	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	0.0	-	ra/L
2-Butanone (MEK)	78-93-3	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	10.0	10.0	-	na/L
2-Chlorotoluene	95-49-8	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	na/L
2-Hexanone (MBK)	591-78-6	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	10.0	10.0	-	na/L
4-Chlorotoluene	106-43-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0		ug/L
4-Methyl-2-pentanone (MIBK)	IBK) 108-10-1	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	10.0	10.0	-	ug/L
Acetone	67-64-1	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	10.0	10.0	-	ug/L
Benzene	71-43-2	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	1.2	1.0	1.0		ug/L
Bromobenzene	108-86-1	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0		ng/L
Bromochloromethane	74-97-5	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ug/L
Bromodichloromethane	75-27-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	_	ng/L
Bromoform	75-25-2	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0		ug/L
Bromomethane	74-83-9	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0		ng/L
Carbon disulfide	75-15-0	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	10.0	10.0	-	ug/L
Carbon tetrachloride	56-23-5	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
Chlorobenzene	108-90-7	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
Chloroethane	75-00-3	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ug/L
Chloroform	6-99-29	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0		ng/L
Chloromethane	74-87-3	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	ВГОО	1.0	1.0		ug/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0		ng/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
Dibromochloromethane	124-48-1	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
Dibromomethane	74-95-3	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
Dichlorodifluoromethane	75-71-8	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	5.0	5.0		ng/L
Ethylbenzene		SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	14.2	1.0	1.0		ug/L
Ethyl-t-butyl ether (ETBE)		SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	25.0	25.0	-	ng/L
lodomethane	74-88-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	10.0	10.0	-	ng/L
				700							

Page 32 of 34

Certificate of Analysis

01/06/2010

Date Issued:

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (03-1335BA2) Submitted To: Sean Daniel

Submitted 10: Sean Daniel	alle:										
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	007	Dil. Factor Units	Units
Isopropylbenzene	98-82-8	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	7.0	1.0	1.0	-	na/L
m,p-Xylenes	179601-23-1	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	11.5	2.0	2.0	-	na/L
Methylene chloride	75-09-2	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	4.0	4.0	-	ng/L
MTBE	1634-04-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	τ-	ng/L
Naphthalene	91-20-3	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	211	1.0	1.0	-	na/L
n-Butylbenzene	104-51-8	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0		od/L
n-Propylbenzene	103-65-1	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	10.7	1.0	1.0	-	ng/L
o-Xylene	95-47-6	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	15.7	1.0	1.0	-	ng/L
p-Isopropyltoluene	99-82-6	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	14.6	1.0	1.0	-	ng/L
sec-Butylbenzene	135-98-8	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	8.4	1.0	1.0	-	na/L
Styrene	100-42-5	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	ВГОО	1.0	1.0	-	ng/L
TAME	994-05-8	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	5.0	5.0	-	ug/L
ТВА	75-65-0	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	100	100	-	ug/L
tert-Butylbenzene	9-90-86	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0		ng/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
Toluene	108-88-3	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	ВГОО	1.0	1.0	-	ng/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
Trichloroethylene	79-01-6	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0		ng/L
Trichlorofluoromethane	75-69-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
Vinyl acetate	108-05-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	10.0	10.0		ug/L
Vinyl chloride	75-01-4	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	BLOD	1.0	1.0	-	ng/L
Xylenes, Total	1330-20-7	SW8260B	Dupe (GW)	09120429-013	12/18/09	12/23/09 20:07	27.2	3.0	3.0		ng/L

01/06/2010

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham (03-1335BA2)

Submitted To: Sean Daniel

Dil. Factor Units 00 100 Sample Results Qual LOD Analysis Date/Time Sample Date Laboratory Sample ID Client Sample ID Reference Method CAS Parameter

**	
oţe	
Ž	
P	

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a dry weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water & Soil Laboratories, Inc.

Company Name:	Project Manager:	ıger:			Parameters		CHAIN-OF-CIISTONY RECORD	TONY REC	۵
Cilesapeane Geoociences, Inc.	Sean Daniel								
Project Name: Stebbins-Burnham (03-1335BA2) Page 1 of 2	Project ID: CG-08-0399						Air, Water & Soil Laboratories, Inc. 21094 North Hamilton Street	Laboratories,	.
Sampler(s):	P.O. Number: CG080399SD	0	ntainer S8 A93	C			Richmond, VA 23230	VA 23230	
1.1.2 EXX				סצי			(+00)	-000	
Field Sample ID	Date Time	Water Soil	o .oN	- HdT			Preservative/Remarks		Lab ID
GB-35	12/18/959:08	X 80	ly ×	X					
GB-36	1 /0:10	X	×	X					
GB-37	02:01		1 .	×					
68-38	11:36		N X	×					
68-39	12:56	X 95	X V	X					
GB-40	7	/s ×	XS	×					
GB-4	24:51		X N	*					
SoilDus		×	といって	· ×					
GB-36(GW)	17:10	X	W	_					
68-40 (GW)	12:26	, ×,	M						
GB-41 (GW)	17:40	XOX	X						
73	17:50	X	m X						
Dupe (GW)	- 5/8//2/	×	3 X						
			1			•		00700	
							CG. Britisham		
								DUE: 10 Days Recd: 12/22/09	A . O
		1							くのさ
Relinfaluished by: (Signeture)	Date/Time / 12/21/9	Received by: (S	(Signature)	W. Ver	Relinquished by: (Signature)	re)	Date/Time Receive	Received by: (Signature)	
(Street) C. Pakins	08:00	(Printed)			(Printed)		10	(Printed)	}
Relinquished by: (Signature)	Date/Time	Received by La	_aboratory: (Signature)	gnature)	Date/Time R	emarks: MDE-F	Remarks: MDE-RMS Package 1/Level 1 Deliverable RMS 2008 Rates	erable RMS 20	RMS 2008 Rates
(Printed)		(Printed)			. е ш	nd 1,2-Dibromo -mail results to	and 1,2-Dibromoethane in EPA 8260 Analyses. E-mail results to <u>sdaniel@cgs.us.com</u>	יישרי , בשרי , בישרי ,	E, 1,2-DCA,

2109A North Hamilton Street · Richmond, Virginia 23230 · Tel: (804) 358-8295 Fax: (804) 358-8297

CGI

09120429

2/09

	Sample Conditions Checklist		Recd: 12/22
Opene	d by: (print) Lab ID No.: Date Cooler Opened:	19.39.09	
1.	How were samples received? Fed Ex UPS Courier Walk In	<u>YES NO</u>	<u>N/A</u>
2.	Were custody seals used?		700
3.	If yes, are custody seals unbroken and intact at the date and time of arrival?	过 口	
4.	Are the custody papers filled out completely and correctly?	Ø O	
5.	Do all bottle labels agree with custody papers?		
6.	Are the samples received on ice?		
7.	Is the temperature blank or representative sample within acceptable limits? (4 degrees Celsius +/-2)		
8.	Are all samples within holding time for requested tests?		
9	Is a sufficient amount of sample provided to perform the tests indicated?		
10	Are all samples in proper containers for the analyses requested?		
11	Are all samples appropriately preserved for the analyses requested?		
12	Are all volatile organic containers free of headspace?		
	COMMENTS		·
			_
			-
			_

Appendix C.2
Analytical Laboratory Data
Product Sampling

Analytical Report for

Chesapeake GeoSciences, Inc.

Certificate of Analysis No.: 10031616

Project Manager: John Kosloski Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

March 23, 2010
Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228
Phone: (410) 747-8770

Fax: (410) 788-8723

Page 1 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

March 23, 2010

John Kosloski Chesapeake GeoSciences, Inc. 5405 Twin Knolls Road, Suite 1 Columbia, MD 21045

Reference: PSS Work Order No: 10031616

Project Name: Stebbins-Burnham

Project Location: MD Project ID.: CG-08-0399

Dear John Kosloski:

The attached Analytical and QC Summary lists the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered **10031616**.

All work reported herein has been performed in accordance with referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on May 15, 2010. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 10 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Page 2 of 23

Dan Prucnal

Laboratory Manager

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc.

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Work Order Number: 10031616

The following samples were received under chain of custody by Phase Separation Science (PSS) on 03/16/2010 at 02:30 pm

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
10031616-001	GB-3	OIL	03/16/2010 11:57
10031616-002	GB-8	OIL	03/16/2010 12:41
10031616-003	GB-11	OIL	03/16/2010 12:52
10031616-004	GB-26	OIL	03/16/2010 11:44
10031616-005	GB-28	OIL	03/16/2010 12:12
10031616-006	GB-32	OIL	03/16/2010 12:30

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in the Sample Receipt Checklist.

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Narrative Comments:

Sample 001, 004 BFB surrogate recovery 60% and 57% respectively, limits are 68-121. Sample 006 Toluene d-8 surrogate recovery 113%, limits are 86-108. Sample/oil matrix effect.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- J The target analyte was positively identified below the reporting limit but greater than one-half of the reporting limit.
- LOD Limit of Detection. An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Project ID: CG-08-0399								
Sample ID: GB-3		Date/Tim	ne Sampled:	03/16/	/2010 11:5	7 PSS Sample	e ID: 1003161	6-001
Matrix: OIL		Date/Tim	e Received:	03/16/	/2010 14:3	0		
Total Petroleum Hydrocarbons - DRC) Analytica	l Method:	SW846 80150	;		Preparation Meth	nod: SW846 35	80A
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TDU DDO (Dissal Bango Organica)				гіау		•		
TPH-DRO (Diesel Range Organics)	1,200,000	mg/kg	150,000		1	03/23/10	03/23/10 11:5	7 1040
Total Petroleum Hydrocarbons-GRO	Analytica	l Method:	SW846 80150	;		Preparation Meth	nod: SW846 50	30
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TPH-GRO (Gasoline Range Organics)	150,000,000	ug/kg	1,000,000		200	03/17/10	03/17/10 12:3	7 1035
Polychlorinated Biphenyls	Analytica	l Method:	SW846 8082A	Λ.		Preparation Method		
	Result	Units	RL	Flag	Dil	Clean up Method Prepared	Analyzed	-∖ Analyst
PCB-1016	ND	mg/kg	3.8		1	03/17/10	03/18/10 13:4	
PCB-1221	ND	mg/kg	3.8		1	03/17/10	03/18/10 13:4	7 1029
PCB-1232	ND	mg/kg	3.8		1	03/17/10	03/18/10 13:4	7 1029
PCB-1242	ND	mg/kg	3.8		1	03/17/10	03/18/10 13:4	7 1029
PCB-1248	ND	mg/kg	3.8		1	03/17/10	03/18/10 13:4	7 1029
PCB-1254	ND	mg/kg	3.8		1	03/17/10	03/18/10 13:4	7 1029
PCB-1260	ND	mg/kg	3.8		1	03/17/10	03/18/10 13:4	7 1029

Page 4 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-3 Date/Time Sampled: 03/16/2010 11:57 PSS Sample ID: 10031616-001

Matrix: OIL Date/Time Received: 03/16/2010 14:30

Mati IX.		Jule, I IIIIe	ittootived.				
TCL Volatile Organic Compounds	Analytica	l Method: S	SW846 8260E	3	Preparation Meth	nod: SW846 503	30
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Chloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Vinyl Chloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Bromomethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Chloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Acetone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:03	3 1011
Cyclohexane	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:03	3 1011
Trichlorofluoromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
1,1-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Methylene Chloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
trans-1,2-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Methyl-t-butyl ether	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
1,1-Dichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
2-Butanone (MEK)	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:03	3 1011
cis-1,2-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Bromochloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Chloroform	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
1,1,1-Trichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
1,2-Dichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Carbon Tetrachloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Benzene	25,000	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
1,2-Dichloropropane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Carbon Disulfide	ND	ug/kg	10,000	1000	03/17/10	03/17/10 17:03	3 1011
Methylcyclohexane	380,000	ug/kg	200,000	10000	03/17/10	03/17/10 16:34	1011
Trichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Methyl Acetate	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:03	3 1011
Bromodichloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
cis-1,3-Dichloropropene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
4-Methyl-2-Pentanone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:03	3 1011
trans-1,3-Dichloropropene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011

Page 5 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-3 Date/Time Sampled: 03/16/2010 11:57 PSS Sample ID: 10031616-001

Matrix: OIL Date/Time Received: 03/16/2010 14:30

TCL Volatile Organic Compounds	Analytica	Method:	SW846 8260E	3	Preparation Meth	nod: SW846 503	30
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,1,2-Trichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Toluene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
2-Hexanone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:03	3 1011
1,2-Dibromoethane (EDB)	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Dibromochloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Bromoform	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Tetrachloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Chlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Ethylbenzene	220,000	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
m,p-Xylenes	970,000	ug/kg	100,000	10000	03/17/10	03/17/10 16:34	1011
Styrene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
1,1,2,2-Tetrachloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
o-Xylene	220,000	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Isopropylbenzene	270,000	ug/kg	50,000	10000	03/17/10	03/17/10 16:34	1011
1,3-Dichlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
1,4-Dichlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
1,2-Dichlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
1,2-Dibromo-3-Chloropropane	ND	ug/kg	40,000	1000	03/17/10	03/17/10 17:03	3 1011
1,2,4-Trichlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011
Naphthalene	1,800,000	ug/kg	50,000	10000	03/17/10	03/17/10 16:34	1011
1,2,3-Trichlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:03	3 1011

Page 6 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Project ID. CG-06-0399								
Sample ID: GB-8		Date/Tim	ne Sampled:	03/16/	<mark>/2010 12:</mark> 4	11 PSS Sample	e ID: 1003161	6-002
Matrix: OIL		Date/Tim	e Received:	03/16/	<mark>/2010 14:</mark> 3	80		
Total Petroleum Hydrocarbons - DRO	Analytica	Method:	SW846 8015C	Preparation Method: SW846 3580A				
					D:I			
-	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TPH-DRO (Diesel Range Organics)	1,100,000	mg/kg	150,000		1	03/23/10	03/23/10 11:5	7 1040
Total Petroleum Hydrocarbons-GRO	Analytica	l Method:	SW846 8015C	;		Preparation Meth	nod: SW846 50	30
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TPH-GRO (Gasoline Range Organics)	86,000,000	ug/kg	1,000,000		200	03/17/10	03/17/10 13:0	7 1035
Polychlorinated Biphenyls	Analytica	l Method:	SW846 8082A			Preparation Meth		
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
PCB-1016	ND	mg/kg	4.2		1	03/17/10	03/18/10 11:0	7 1029
PCB-1221	ND	mg/kg	4.2		1	03/17/10	03/18/10 11:0	7 1029
PCB-1232	ND	mg/kg	4.2		1	03/17/10	03/18/10 11:0	7 1029
PCB-1242	ND	mg/kg	4.2		1	03/17/10	03/18/10 11:0	7 1029
PCB-1248	ND	mg/kg	4.2		1	03/17/10	03/18/10 11:0	7 1029
PCB-1254	ND	mg/kg	4.2		1	03/17/10	03/18/10 11:0	7 1029
PCB-1260	ND	mg/kg	4.2		1	03/17/10	03/18/10 11:0	7 1029

Page 7 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-8 Date/Time Sampled: 03/16/2010 12:41 PSS Sample ID: 10031616-002

Matrix: OIL Date/Time Received: 03/16/2010 14:30

TCL Volatile Organic Compounds	Analytica	l Method:	SW846 8260E		Preparation Method: SW846 5030			
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst	
Dichlorodifluoromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
Chloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
Vinyl Chloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
Bromomethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
Chloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
Acetone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:31	1011	
Cyclohexane	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:31	1011	
Trichlorofluoromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
1,1-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
Methylene Chloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	
trans-1,2-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	
Methyl-t-butyl ether	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	
1,1-Dichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	
2-Butanone (MEK)	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:31	I 1011	
cis-1,2-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	
Bromochloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	
Chloroform	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	
1,1,1-Trichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	
1,2-Dichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
Carbon Tetrachloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
Benzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	
1,2-Dichloropropane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
Carbon Disulfide	ND	ug/kg	10,000	1000	03/17/10	03/17/10 17:31	1011	
Methylcyclohexane	200,000	ug/kg	20,000	1000	03/17/10	03/17/10 17:31	1011	
Trichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	
Methyl Acetate	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:31	1011	
Bromodichloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
cis-1,3-Dichloropropene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	1011	
4-Methyl-2-Pentanone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 17:31	1011	
trans-1,3-Dichloropropene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 17:31	I 1011	

Page 8 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-8 Date/Time Sampled: 03/16/2010 12:41 PSS Sample ID: 10031616-002

Matrix: OIL Date/Time Received: 03/16/2010 14:30

TCL Volatile Organic Compounds	Analytica	l Method: S	SW846 8260B	3	Preparation Method: SW846 5030				
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
1,1,2-Trichloroethane	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
Toluene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
2-Hexanone	ND	ug/kg	20,000	1	000	03/17/10	03/17/10 17:31	I 1011	
1,2-Dibromoethane (EDB)	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
Dibromochloromethane	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
Bromoform	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
Tetrachloroethene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
Chlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
Ethylbenzene	150,000	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
m,p-Xylenes	150,000	ug/kg	10,000	1	000	03/17/10	03/17/10 17:31	I 1011	
Styrene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
o-Xylene	68,000	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
Isopropylbenzene	140,000	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
1,3-Dichlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
1,4-Dichlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
1,2-Dichlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
1,2-Dibromo-3-Chloropropane	ND	ug/kg	40,000	1	000	03/17/10	03/17/10 17:31	I 1011	
1,2,4-Trichlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	
Naphthalene	870,000	ug/kg	5,000	E 1	000	03/17/10	03/17/10 17:31	I 1011	
1,2,3-Trichlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 17:31	I 1011	

Page 9 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Project ID. CG-06-0399								
Sample ID: GB-11			ne Sampled:			·	e ID: 1003161	6-003
Matrix: OIL		Date/Tim	e Received:	03/16/	<mark>/2010 14</mark> :	30		
Total Petroleum Hydrocarbons - DRO	Analytica	Method:	SW846 8015C	Preparation Method: SW846 3580A				
					Dil			A 1
-	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TPH-DRO (Diesel Range Organics)	800,000	mg/kg	110,000		1	03/23/10	03/23/10 12:1	9 1040
Total Petroleum Hydrocarbons-GRO	Analytica	l Method:	SW846 8015C	;		Preparation Met	nod: SW846 50)30
	Result	Units	RI	Flag	Dil	Prepared	Analyzed	Analyst
TPH-GRO (Gasoline Range Organics)	42,000,000	ug/kg	1,000,000		200	03/17/10		
Polychlorinated Biphenyls	Analytica	Method:	SW846 8082A			Preparation Meth	nod: SW846 35	80A
						Clean up Method		
-	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
PCB-1016	ND	mg/kg	4.5		1	03/17/10	03/18/10 14:1	5 1029
PCB-1221	ND	mg/kg	4.5		1	03/17/10	03/18/10 14:1	5 1029
PCB-1232	ND	mg/kg	4.5		1	03/17/10	03/18/10 14:1	5 1029
PCB-1242	ND	mg/kg	4.5		1	03/17/10	03/18/10 14:1	5 1029
PCB-1248	ND	mg/kg	4.5		1	03/17/10	03/18/10 14:1	5 1029
PCB-1254	ND	mg/kg	4.5		1	03/17/10	03/18/10 14:1	5 1029
PCB-1260	ND	mg/kg	4.5		1	03/17/10	03/18/10 14:1	5 1029

Page 10 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-11 Date/Time Sampled: 03/16/2010 12:52 PSS Sample ID: 10031616-003

Matrix: OIL Date/Time Received: 03/16/2010 14:30

MIGH IA		Jule, Hille	ittocivea.					
TCL Volatile Organic Compounds	Analytica	I Method: S	W846 8260E	Preparation Method: SW846 5030				
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst	
Dichlorodifluoromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Chloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Vinyl Chloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Bromomethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Chloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Acetone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:00	1011	
Cyclohexane	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:00	1011	
Trichlorofluoromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
1,1-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Methylene Chloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
trans-1,2-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Methyl-t-butyl ether	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
1,1-Dichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
2-Butanone (MEK)	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:00	1011	
cis-1,2-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Bromochloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Chloroform	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
1,1,1-Trichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
1,2-Dichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Carbon Tetrachloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Benzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
1,2-Dichloropropane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Carbon Disulfide	ND	ug/kg	10,000	1000	03/17/10	03/17/10 18:00	1011	
Methylcyclohexane	30,000	ug/kg	20,000	1000	03/17/10	03/17/10 18:00	1011	
Trichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
Methyl Acetate	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:00	1011	
Bromodichloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
cis-1,3-Dichloropropene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	
4-Methyl-2-Pentanone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:00	1011	
trans-1,3-Dichloropropene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011	

Page 11 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-11 Date/Time Sampled: 03/16/2010 12:52 PSS Sample ID: 10031616-003

Matrix: OIL Date/Time Received: 03/16/2010 14:30

TCL Volatile Organic Compounds	Analytica	l Method:	SW846 8260E	3	Preparation Method: SW846 5030					
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst			
1,1,2-Trichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
Toluene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
2-Hexanone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:00	1011			
1,2-Dibromoethane (EDB)	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
Dibromochloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
Bromoform	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
Tetrachloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
Chlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
Ethylbenzene	17,000	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
m,p-Xylenes	ND	ug/kg	10,000	1000	03/17/10	03/17/10 18:00	1011			
Styrene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
1,1,2,2-Tetrachloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
o-Xylene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
Isopropylbenzene	43,000	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
1,3-Dichlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
1,4-Dichlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
1,2-Dichlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
1,2-Dibromo-3-Chloropropane	ND	ug/kg	40,000	1000	03/17/10	03/17/10 18:00	1011			
1,2,4-Trichlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
Naphthalene	280,000	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			
1,2,3-Trichlorobenzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:00	1011			

Page 12 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Project ID: CG-08-0399								
Sample ID: GB-26			ne Sampled:				e ID: 1003161	6-004
Matrix: OIL		Date/Tim	e Received:	03/16/	2010 14 :	30		
Total Petroleum Hydrocarbons - DRC) Analytica	I Method:	SW846 80150	;		Preparation Meth	nod: SW846 35	80A
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TPH-DRO (Diesel Range Organics)	1,200,000	mg/kg	140,000		1	03/23/10	03/23/10 12:1	9 1040
Total Petroleum Hydrocarbons-GRO	Analytica	l Method:	SW846 80150	;		Preparation Meth	nod: SW846 50	30
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TPH-GRO (Gasoline Range Organics)	120,000,000	ug/kg	1,000,000		200	03/17/10	03/17/10 14:0	7 1035
Polychlorinated Biphenyls	Analytica	l Method:	SW846 8082A			Preparation Method		
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
PCB-1016	ND	mg/kg	4.2		1	03/17/10	03/18/10 12:4	9 1029
PCB-1221	ND	mg/kg	4.2		1	03/17/10	03/18/10 12:4	9 1029
PCB-1232	ND	mg/kg	4.2		1	03/17/10	03/18/10 12:4	9 1029
PCB-1242	ND	mg/kg	4.2		1	03/17/10	03/18/10 12:4	9 1029
PCB-1248	ND	mg/kg	4.2		1	03/17/10	03/18/10 12:4	9 1029
PCB-1254	ND	mg/kg	4.2		1	03/17/10	03/18/10 12:4	9 1029
PCB-1260	ND	mg/kg	4.2		1	03/17/10	03/18/10 12:4	9 1029

Page 13 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-26 Date/Time Sampled: 03/16/2010 11:44 PSS Sample ID: 10031616-004

Matrix: OIL Date/Time Received: 03/16/2010 14:30

TCL Volatile Organic Compounds	Analytica	l Method:	SW846 8260B	Preparation Meth	Preparation Method: SW846 5030			
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst	
Dichlorodifluoromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Chloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Vinyl Chloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Bromomethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Chloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Acetone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:29	1011	
Cyclohexane	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:29	1011	
Trichlorofluoromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
1,1-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Methylene Chloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
trans-1,2-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Methyl-t-butyl ether	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
1,1-Dichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
2-Butanone (MEK)	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:29	1011	
cis-1,2-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Bromochloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Chloroform	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
1,1,1-Trichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
1,2-Dichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Carbon Tetrachloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Benzene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
1,2-Dichloropropane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Carbon Disulfide	ND	ug/kg	10,000	1000	03/17/10	03/17/10 18:29	1011	
Methylcyclohexane	360,000	ug/kg	20,000	1000	03/17/10	03/17/10 18:29	1011	
Trichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
Methyl Acetate	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:29	1011	
Bromodichloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
cis-1,3-Dichloropropene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	
4-Methyl-2-Pentanone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:29	1011	
trans-1,3-Dichloropropene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:29	1011	

Page 14 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-26 Date/Time Sampled: 03/16/2010 11:44 PSS Sample ID: 10031616-004

Matrix: OIL Date/Time Received: 03/16/2010 14:30

TCL Volatile Organic Compounds	Analytica	l Method: S	SW846 8260B	•	Preparation Method: SW846 5030				
	Result	Units	RL	Flag [Dil	Prepared	Analyzed	Analyst	
1,1,2-Trichloroethane	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	9 1011	
Toluene	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
2-Hexanone	ND	ug/kg	20,000	100	00	03/17/10	03/17/10 18:29	1011	
1,2-Dibromoethane (EDB)	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
Dibromochloromethane	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
Bromoform	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	9 1011	
Tetrachloroethene	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	9 1011	
Chlorobenzene	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	9 1011	
Ethylbenzene	67,000	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
m,p-Xylenes	160,000	ug/kg	10,000	100	00	03/17/10	03/17/10 18:29	1011	
Styrene	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
o-Xylene	34,000	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
Isopropylbenzene	310,000	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
1,3-Dichlorobenzene	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
1,4-Dichlorobenzene	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	9 1011	
1,2-Dichlorobenzene	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
1,2-Dibromo-3-Chloropropane	ND	ug/kg	40,000	100	00	03/17/10	03/17/10 18:29	1011	
1,2,4-Trichlorobenzene	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	1011	
Naphthalene	820,000	ug/kg	5,000	E 100	00	03/17/10	03/17/10 18:29	9 1011	
1,2,3-Trichlorobenzene	ND	ug/kg	5,000	100	00	03/17/10	03/17/10 18:29	9 1011	

Page 15 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Project ID. CG-06-0399									
Sample ID: GB-28			ne Sampled:			•	e ID: 1003161	6-005	
Matrix: OIL		Date/Tim	e Received:	03/16/	/2010 14:3	0			
Total Petroleum Hydrocarbons - DRO	Analytica	l Method:	SW846 80150	;		Preparation Method: SW846 3580A			
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
TPH-DRO (Diesel Range Organics)	1,200,000	mg/kg	120,000	-	1	03/23/10			
Total Petroleum Hydrocarbons-GRO	Analytica	l Method:	SW846 80150	;		Preparation Meth	nod: SW846 50	30	
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
TPH-GRO (Gasoline Range Organics)	69,000,000	ug/kg	1,000,000		200	03/17/10	03/17/10 14:3	7 1035	
Polychlorinated Biphenyls	Analytica	l Method:	SW846 8082A	1		Preparation Meth	nod: SW846 35	80A	
	D	l lastes	ъ.	F1	Dil	Clean up Method			
-	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
PCB-1016	ND	mg/kg	3.8		1	03/17/10	03/18/10 14:4	4 1029	
PCB-1221	ND	mg/kg	3.8		1	03/17/10	03/18/10 14:4	4 1029	
PCB-1232	ND	mg/kg	3.8		1	03/17/10	03/18/10 14:4	4 1029	
PCB-1242	ND	mg/kg	3.8		1	03/17/10	03/18/10 14:4	4 1029	
PCB-1248	ND	mg/kg	3.8		1	03/17/10	03/18/10 14:4	4 1029	
PCB-1254	ND	mg/kg	3.8		1	03/17/10	03/18/10 14:4	4 1029	
PCB-1260	ND	mg/kg	3.8		1	03/17/10	03/18/10 14:4	4 1029	

Page 16 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-28 Date/Time Sampled: 03/16/2010 12:12 PSS Sample ID: 10031616-005

Matrix: OIL Date/Time Received: 03/16/2010 14:30

-	Julo, 111110						
Analytica	l Method: S	W846 8260E	Preparation Method: SW846 5030				
Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	10,000	1000	03/17/10	03/17/10 18:58	3 1011	
100,000	ug/kg	20,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	20,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
ND	ug/kg	20,000	1000				
ND	ug/kg	5,000	1000	03/17/10	03/17/10 18:58	3 1011	
	Result	Result Units ND ug/kg ND ug/kg	Result Units RL ND ug/kg 5,000 ND ug/kg 20,000 ND ug/kg 5,000 ND ug/kg 5,000	ND ug/kg 5,000 1000 ND ug/kg 20,000 1000 ND ug/kg 20,000 1000 ND ug/kg 5,000 1000	Result Units RL Flag Dil Prepared ND ug/kg 5,000 1000 03/17/10 ND ug/kg 20,000 1000 03/17/10 ND ug/kg 5,000 1000 03/17/10 ND <td>Result Units RL Flag Dil Prepared Analyzed ND ug/kg 5,000 1000 03/17/10 03/17/10 18:58 ND ug/kg<!--</td--></td>	Result Units RL Flag Dil Prepared Analyzed ND ug/kg 5,000 1000 03/17/10 03/17/10 18:58 ND ug/kg </td	

Page 17 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-28 Date/Time Sampled: 03/16/2010 12:12 PSS Sample ID: 10031616-005

Matrix: OIL Date/Time Received: 03/16/2010 14:30

TCL Volatile Organic Compounds	Analytica	l Method: \$	SW846 8260E	3	Preparation Method: SW846 5030				
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
1,1,2-Trichloroethane	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
Toluene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
2-Hexanone	ND	ug/kg	20,000	1	000	03/17/10	03/17/10 18:58	3 1011	
1,2-Dibromoethane (EDB)	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
Dibromochloromethane	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
Bromoform	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
Tetrachloroethene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
Chlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
Ethylbenzene	110,000	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
m,p-Xylenes	94,000	ug/kg	10,000	1	000	03/17/10	03/17/10 18:58	3 1011	
Styrene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
o-Xylene	46,000	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
Isopropylbenzene	110,000	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
1,3-Dichlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
1,4-Dichlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
1,2-Dichlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
1,2-Dibromo-3-Chloropropane	ND	ug/kg	40,000	1	000	03/17/10	03/17/10 18:58	3 1011	
1,2,4-Trichlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	
Naphthalene	1,000,000	ug/kg	5,000	E 1	000	03/17/10	03/17/10 18:58	3 1011	
1,2,3-Trichlorobenzene	ND	ug/kg	5,000	1	000	03/17/10	03/17/10 18:58	3 1011	

Page 18 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Project ID: CG-08-0399								
Sample ID: GB-32			ne Sampled:				e ID: 1003161	6-006
Matrix: OIL		Date/Tim	e Received:	03/16/	2010 1 4	l:30		
Total Petroleum Hydrocarbons - DRO	Analytica	I Method:	SW846 80150	;		Preparation Meth	od: SW846 35	80A
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TPH-DRO (Diesel Range Organics)	1,200,000	mg/kg	130,000		1	03/23/10	03/23/10 12:4	1 1040
Total Petroleum Hydrocarbons-GRO	Analytica	l Method:	SW846 80150	;		Preparation Meth	od: SW846 50	30
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TPH-GRO (Gasoline Range Organics)	97,000,000	ug/kg	1,000,000		200	03/17/10	03/17/10 15:0	7 1035
Polychlorinated Biphenyls	Analytica	l Method:	SW846 8082A			Preparation Meth		
_	Result	Units	RL	Flag	Dil	Clean up Method Prepared	: SW846 3665. Analyzed	A Analyst
PCB-1016	ND	mg/kg	4.2		1	03/17/10	03/18/10 13:1	7 1029
PCB-1221	ND	mg/kg	4.2		1	03/17/10	03/18/10 13:1	7 1029
PCB-1232	ND	mg/kg	4.2		1	03/17/10	03/18/10 13:1	7 1029
PCB-1242	ND	mg/kg	4.2		1	03/17/10	03/18/10 13:1	7 1029
PCB-1248	ND	mg/kg	4.2		1	03/17/10	03/18/10 13:1	7 1029
PCB-1254	ND	mg/kg	4.2		1	03/17/10	03/18/10 13:1	7 1029
PCB-1260	ND	mg/kg	4.2		1	03/17/10	03/18/10 13:1	7 1029

Page 19 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-32 Date/Time Sampled: 03/16/2010 12:30 PSS Sample ID: 10031616-006

Matrix: OIL Date/Time Received: 03/16/2010 14:30

Mati IA.			NCCCIVCU.						
TCL Volatile Organic Compounds	Analytica	Analytical Method: SW846 8260B			Preparation Method: SW846 5030				
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst		
Dichlorodifluoromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Chloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Vinyl Chloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Bromomethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Chloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Acetone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 19:20	6 1011		
Cyclohexane	87,000	ug/kg	20,000	1000	03/17/10	03/17/10 19:20	6 1011		
Trichlorofluoromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
1,1-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Methylene Chloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
trans-1,2-Dichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Methyl-t-butyl ether	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
1,1-Dichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
2-Butanone (MEK)	ND	ug/kg	20,000	1000	03/17/10	03/17/10 19:20	6 1011		
cis-1,2-Dichloroethene	5,400	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Bromochloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Chloroform	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
1,1,1-Trichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
1,2-Dichloroethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Carbon Tetrachloride	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Benzene	20,000	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
1,2-Dichloropropane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Carbon Disulfide	ND	ug/kg	10,000	1000	03/17/10	03/17/10 19:20	6 1011		
Methylcyclohexane	300,000	ug/kg	20,000	1000	03/17/10	03/17/10 19:20	6 1011		
Trichloroethene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
Methyl Acetate	ND	ug/kg	20,000	1000	03/17/10	03/17/10 19:20	6 1011		
Bromodichloromethane	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
cis-1,3-Dichloropropene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		
4-Methyl-2-Pentanone	ND	ug/kg	20,000	1000	03/17/10	03/17/10 19:20	6 1011		
trans-1,3-Dichloropropene	ND	ug/kg	5,000	1000	03/17/10	03/17/10 19:20	6 1011		

Page 20 of 23 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10031616

Chesapeake GeoSciences, Inc., Columbia, MD

March 23, 2010

Project Name: Stebbins-Burnham

Project Location: MD Project ID: CG-08-0399

Sample ID: GB-32 Date/Time Sampled: 03/16/2010 12:30 PSS Sample ID: 10031616-006

Matrix: OIL Date/Time Received: 03/16/2010 14:30

TCL Volatile Organic Compounds	Analytica	l Method: S	SW846 8260E	3	Preparation Method: SW846 5030				
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
1,1,2-Trichloroethane	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
Toluene	41,000	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
2-Hexanone	ND	ug/kg	20,000		1000	03/17/10	03/17/10 19:26	5 1011	
1,2-Dibromoethane (EDB)	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
Dibromochloromethane	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
Bromoform	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
Tetrachloroethene	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
Chlorobenzene	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	5 1011	
Ethylbenzene	330,000	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
m,p-Xylenes	490,000	ug/kg	10,000		1000	03/17/10	03/17/10 19:26	3 1011	
Styrene	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
o-Xylene	330,000	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
Isopropylbenzene	270,000	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
1,3-Dichlorobenzene	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
1,4-Dichlorobenzene	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
1,2-Dichlorobenzene	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	5 1011	
1,2-Dibromo-3-Chloropropane	ND	ug/kg	40,000		1000	03/17/10	03/17/10 19:26	3 1011	
1,2,4-Trichlorobenzene	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	
Naphthalene	1,100,000	ug/kg	5,000	E	1000	03/17/10	03/17/10 19:26	5 1011	
1,2,3-Trichlorobenzene	ND	ug/kg	5,000		1000	03/17/10	03/17/10 19:26	3 1011	

Page 21 of 23 Final Ver. 1.000

Company Name: Chesapeake GeoSciences, Inc.	John Kosloski	anayer. Ioski						ļ	Ра	t Parameters	- 1)	6	ť	CHAIN-OF-CUSTODY RECORD	CUSTODY	RECORD
Project Name: Stebbins-Burnham (03-1335BA2)	Project ID: CG-08-0399	668				8									Phase Sep	Phase Separation Science, Inc.	ance, Inc.
Sampler(s): 7. C. P. Kins	P.O. Number: CG080399JK	iber: 9JK			rtainers	EPA 8260	108 siv O	108 siv O	A \$808 a			<u> </u>		တ် တ	6630 Baltimore National Pike, Suite 104-A Baltimore, MD 21228 (410) 747-8770	more National Pike, S Baltimore, MD 21228 (410) 747-8770	e, Suite 104- 228 n
Field Sample ID	Date	Time	Vater	lioS	Otiner No of Cor				PCB's vis						Preservative/Remarks	amarks	Lab D
GB - 3	3/16/10	11:57		┝	×	×	×	×	×								
GB – 8		7.4		×	2	×	×	×	×								
GB – 11	7/	7.25.7		 	× 2	×	×	×	×								
GB – 26		hh. 11		<u> ^</u>	×	×	×	×	×	!							
GB – 28		2:12		<u> ^</u>	×	×	×	×	×					4	# Of Coolers		
GB – 32	<i>1</i> /	2:30		┝	×	×	×	×	×					Ü	Custody Seal: P.B.S	A High and specific security and security an	day en London Marie Landon de Landon
6B 33	3/16/10			+	*	*	*	X	X			╁		100	ice Present: 000	Solvi Temp:	no: 150c
				 	<u> </u>	+						1	1	되	Shipping Carrier:	10101	TO SOUTH A STATE OF THE SOUTH
				1			 			-				-			
					<u> </u>		-	ļ									
in the second se			<u> </u>														
				<u> </u>	ļ											,	
														B	of Englars: 1	//EU//	
														Cust /	Custody Seal: The	Magroot	011m
														G B	ce Present: 17465/21		727
			 	+	-	-		_				 	-	E I	vipping Carrier:	7	
								_									
Remaduspled by: (Sepantine)	S/16/Time	~ 6	Received by	773	(Signature)	- S	(P	Re	Relinquished by: (Signature)	ed by: (Signatu	re)		Date/Time	Received by: (Signature)	Signature)
Le Bray C. Perkins	17.3	\mathcal{Z}	(Printeb)	- CX	Ö	至	2005	. ^	F	(Printed)						(Printed)	
Relinquished by: (Signature)	Date/Time		Received by Laboratory: (Signature)	d by l	abora	torv: (Signal	ure)		Date/Time	Time	12.0	emark	s: MDE.	Remarks: MDE-RMS Package 1/Level 1 Deliverable RMS 2008 Rates	al 1 Deliverable	RMS 2008 Rates
(Printed)			(Printed)									- е п	nd 1,2	-Dibrom	riease include DTEA, Naphinalene, MTDE, TAI and 1,2-Dibromoethane in EPA 8260 Analyses.	Analyses.	, E.I BE, UIPE, 1,2-U

Phase Separation Science, Inc

Sample Receipt Checklist

Wo Number	10031616	;		Received	Ву	Rachel	Davis	
Client Name	Chesapea	ake GeoScience	es, Inc	Date Rece	eived	03/16/2	010 02:30:00	РМ
Project Name	Stebbins-	Burnham		Delivered	Ву	Client	/	
Project Number	CG-08-03	99		Tracking	No	Not App	olicable	
Disposal Date:	05/15/201	0		Logged In	Ву	Rachel	Davis	
Shipping Conta	iner(s)							
No. of Coo Custody S Seal Cond	eals	1 Not Applicable Not Applicable	/	Ice Temp (Temp E	.	Pre 15 sent No	sent	
		nple labels?	X_ Yes or _ X_ Yes or _			r Name: <u>.</u> ert. No.: _	Jeff Perkins N/A	
Sample Contain	ner							
Intact? Labeled a	e for Specif nd Labels L of Samples	-	/esXNo X S	Custody Seal(s) S	Seal(s) l Signed / l	ntact? [Dated [Absent Not Applicable Not Applicable eceived 12	-
Preservation				,	Yes	No	N/A	
TOX, TKN VOC, BTE	ials have ze	als Rcvd Presei ero headspace?	(pH (pH (pH ved) (pH	>12) >9) <2) <2) <2) <2)	mments		below.)	
For any improper p documentation of dissolved oxygen	preservation any client no	conditions, list sa tification as well a	mple ID, preserv	ative added (re	eagent ID for pH, cl	number) b	elow as well as	
Samples Inspecte			-/~/~g	luis	Date:	3/	16/10	
	PM Revie	w and Approva	1: ————————————————————————————————————	7	Date:	_3	עוןשון	-

Printed: 03/16/2010 04:27 PM

Appendix C.3

Analytical Laboratory Data

Stream Surface Water

2109A North Hamilton Street * Richmond, Virginia 23230 * Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 10030206

Client Name:

Date Issued:

March 19, 2010

Chesapeake Geosciences, Inc.

5405 Twin Knolls Rd.

Suite 1

Columbia, Maryland 21045

Submitted To: John Kosloski

Project Number

03-1335BA2

Client Site I.D.: Stebbins-Burnham

Purchase Order

CG080399JK

Laboratory Sample ID	Sample ID	Sample Date	Receive Date
10030206-001	Stream 1	March 05, 2010	March 09, 2010
10030206-002	Stream 2	March 05, 2010	March 09, 2010
10030206-003	Stream 3	March 05, 2010	March 09, 2010
10030206-004	Stream 4	March 05, 2010	March 09, 2010
10030206-005	Stream 5	March 05, 2010	March 09, 2010
10030206-006	Dup 1	March 05, 2010	March 09, 2010
10030206-007	Dup 2	March 05, 2010	March 09, 2010
. 10030206-008	Dup 3	March 05, 2010	March 09, 2010

On March 9, 2010, eight water samples were received via courier for analysis in accordance with the attached Chain-Of-Custody. The samples were received with sample containers intact by [Receiving Person] (AWS). Any deviations, discrepancies or irregularities observed in sample condition, including holding times, temperature, containers or preservatives have been notated on the chain-of-custody.

The samples were prepared and analyzed in accordance with SW-846 methodology. All spike and surrogate recoveries were accomplished within established Quality Control Limits.

Laboratory Manager

Certificate of Analysis

ng/L Factor Units mg/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L 03/19/2010 ng/L 7gr ng/L 10.0 10.0 10.0 10.0 g 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0 0 0. 0 0. 0.4 o. 0. 0. 0. 0. Date Issued: Qual LOD 0.3 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 5.3 4.0 0.3 0.2 4.0 7.4 7.1 7.7 Sample Results BLOD 3LOD BLOD BLOD BLOD BLOD BLOD 03/12/10 12:12 03/19/10 2:54 33/19/10 2:54 3/19/10 2:54 3/19/10 2:54)3/19/10 2:54 03/19/10 2:54 03/19/10 2:54 13/19/10 2:54 33/19/10 2:54 03/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54)3/19/10 2:54 33/19/10 2:54 33/19/10 2:54 Date/Time Analysis 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 3/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 33/05/10 33/05/10 3/05/10 33/05/10 33/05/10 33/05/10 33/05/10 3/05/10 3/05/10 33/05/10 33/05/10 3/05/10 33/05/10 33/05/10 03/05/10 33/05/10 Sample 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 10030206-001 0030206-001 0030206-001 0030206-001 0030206-001 10030206-001 0030206-001 10030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 Laboratory Sample ID Sample ID Stream 1 Stream 3 Stream . Stream . Stream . Stream Stream Stream Stream Stream **Reference** SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8015C SW8260B 3W8260B 3W8260B SW8260B Chesapeake Geosciences, Inc. Method 107-06-2 142-28-9 563-58-6 8-29-80 541-73-1 391-78-6 06-43-4 330-20-6 120-82-1 06-46-7 594-20-7 06-93-4 78-87-5 78-93-3 95-49-8 Stebbins-Burnham 79-00-5 75-34-3 75-35-4 96-12-8 95-50-1 08-10-1 37-64-1 71-43-2 71-55-6 79-34-5 87-61-6 96-18-4 95-63-6 John Kosloski ,2-Dibromo-3-chloropropane (DBCP) 4-Methyl-2-pentanone (MIBK) 1,1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane ,2-Dibromoethane (EDB) ,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichloropropane Submitted To: Client Site ID: Client Name: 1,1,1-Trichloroethane 1,1,2-Trichloroethane TPH-Volatiles (GRO) ,2-Dichlorobenzene ,4-Dichlorobenzene 2,2-Dichloropropane 1,1-Dichloroethylene I,1-Dichloropropene 1,2-Dichloropropane i,3-Dichlorobenzene 1,3-Dichloropropane ,2-Dichloroethane 1,1-Dichloroethane 2-Hexanone (MBK) 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene Parameter **3enzene** Acetone

²age 1 of 21

Ć	ı	
	-	
đ	í	1
i		
2		•
e	Ÿ	į
3	٠	
S		
e	ŧ	ŕ
•	٠	Ļ
į,	-	
i	ė	١
٩	*	í
١	å	į
٠		•
۹	١	
ŧ	_	ì
=		
Ť	-	-
ī		i
š		
ć	١	١
,`	٩	۰
		j
	(

ng/L Factor Units ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L ug/L ng/L ng/L ng/L ng/L ng/L ng/L ug/L ng/L ng/L ng/L 03/19/2010 ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L 25.0 10.0 10.0 goj 0. 0. 0. 0. 0. 5.0 0. 9 2.0 4.0 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Date Issued: 25.0 Qual LOD 0.2 5.3 0.2 0.2 0.2 0.2 0.2 5.0 0.1 5.5 0.5 0. 0.2 0.2 0.1 5.7 .. Sample Results BLOD 33/19/10 2:54 33/19/10 2:54 33/19/10 2:54 3/19/10 2:54 03/19/10 2:54 03/19/10 2:54 3/19/10 2:54 3/19/10 2:54 33/19/10 2:54 3/19/10 2:54 3/19/10 2:54 33/19/10 2:54 3/19/10 2:54 33/19/10 2:54 3/19/10 2:54 03/19/10 2:54 3/19/10 2:54 33/19/10 2:54 33/19/10 2:54 3/19/10 2:54 03/19/10 2:54 03/19/10 2:54 3/19/10 2:54 3/19/10 2:54 3/19/10 2:54 33/19/10 2:54 3/19/10 2:54 3/19/10 2:54 Date/Time Analysis 03/05/10 33/05/10 03/05/10)3/05/10 03/05/10 03/05/10 33/05/10 03/05/10 33/05/10 03/05/10 01/20/20 33/05/10 33/05/10 33/05/10 3/05/10 33/05/10 33/05/10 03/05/10 03/05/10 33/05/10 03/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 03/05/10 33/05/10 3/05/10 Sample Date 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 10030206-001 0030206-001 10030206-001 0030206-001 10030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 Laboratory Sample ID Sample ID Stream 1 Stream . SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B Reference SW8260B SW8260B 3W8260B 3W8260B SW8260B SW8260B SW8260B Chesapeake Geosciences, Inc. Method 79601-23-1 10061-01-5 634-04-4 04-51-8 03-65-1 08-90-7 56-59-2 24-48-1 08-20-3 00-41-4 337-92-3 75-71-8 91-20-3 95-47-6 9-28-66 74-87-3 74-95-3 56-23-5 75-00-3 38-82-8 75-09-2 Stebbins-Burnham .-98-801 74-97-5 74-83-9 75-15-0 67-66-3 74-88-4 5-27-4 75-25-2 John Kosloski Ethyl-t-butyl ether (ETBE) Di-isopropyl ether (DIPE) Dichlorodifluoromethane sis-1,2-Dichloroethylene cis-1,3-Dichloropropene Dibromochloromethane Bromodichloromethane Submitted To: Client Name: Client Site ID: Bromochloromethane Carbon tetrachloride Methylene chloride o-Isopropyltoluene Dibromomethane sopropylbenzene n-Propylbenzene Carbon disulfide Bromobenzene Bromomethane Chloromethane n-Butylbenzene Chlorobenzene Ethylbenzene Chloroethane odomethane m,p-Xylenes Naphthalene Chloroform Bromoform Parameter o-Xylene MTBE

²age 2 of 21

03/19/2010

Date Issued:

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc. Client Site ID: Stebbins-Burnham

Factor Units ng/L ng/L ng/L ng/L ng/L ng/L ng/L mg/L ng/L ng/L ng/L ug/L ng/L ng/L mg/L ng/L ng/L ng/L ng/L ng/L ng/L ug/L ng/L ng/L J/gr 7/gr J/gr ä 007 10.0 90 0. 0. 0. 0. 0 0. 0: 0. 3.0 0.5 0.5 0. 0: 0. 0. 0. 0. 0: 0. 0. 0. 0. 4.0 Qual LOD 8 0.2 0.2 0.2 0.2 0.2 0.2 2.2 0.2 5.7 0.3 0.3 0.1 0.2 0.2 0.2 Sample Results BLOD BLOD BLOD BLOD BLOD BLOD BLOD BLOD BLOD 3LOD BLOD 0.2 03/12/10 12:36 33/15/10 21:32 33/19/10 3:19 03/19/10 2:54 33/19/10 2:54 03/19/10 2:54 03/19/10 2:54 03/19/10 2:54 3/19/10 2:54 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 2:54 03/19/10 2:54 3/19/10 2:54 33/19/10 2:54 3/19/10 2:54 3/19/10 2:54 33/19/10 2:54 03/19/10 2:54 33/19/10 3:19 3/19/10 3:19 03/19/10 3:19 Date/Time Analysis 03/05/10 33/05/10 03/05/10 33/05/10 03/05/10 33/05/10 33/05/10 03/05/10 03/05/10 03/05/10 33/05/10 03/05/10 03/05/10 33/05/10 03/05/10 03/05/10 03/05/10 3/05/10 03/05/10 03/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 03/05/10 Sample 0030206-002 0030206-002 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-002 0030206-002 0030206-002 0030206-002 0030206-002 0030206-001 0030206-001 0030206-001 10030206-001 0030206-001 0030206-001 0030206-001 0030206-001 0030206-002 0030206-002 0030206-002 0030206-002 0030206-002 0030206-002 Laboratory Sample ID Sample ID Stream 1 Stream 1 Stream 1 Stream 2 Stream 1 Stream 1 Stream 1 Stream 2 Stream 1 Client Reference SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8015C SW8015C SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B 3W8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 0061-02-6 1330-20-7 35-98-8 00-42-5 994-05-8 08-88-3 56-60-5 27-18-4 08-05-4 330-20-6 563-58-6 5-65-0 9-90-86 20-82-1 75-01-4 75-69-4 75-34-3 79-01-6 71-55-6 79-34-5 79-00-5 75-35-4 87-61-6 96-18-4 95-63-6 96-12-8 Ž John Kosloski ,2-Dibromo-3-chloropropane (DBCP) Fetrachloroethylene (PCE) rans-1,2-Dichloroethylene trans-1,3-Dichloropropene 'PH-Semi-Volatiles (DRO) ,1,2,2-Tetrachloroethane ,1,1,2-Tetrachloroethane **Trichlorofluoromethane** i,2,4-Trichlorobenzene i,2,4-Trimethylbenzene ,2,3-Trichlorobenzene Submitted To: ,2,3-Trichloropropane ,1,1-Trichloroethane 1,1,2-Trichloroethane PH-Volatiles (GRO) 1,1-Dichloroethylene I,1-Dichloropropene 1,1-Dichloroethane sec-Butylbenzene tert-Butylbenzene richloroethylene Kylenes, Total Vinyl chloride Vinyl acetate Parameter Styrene **Foluene** TAME TBA

Page 3 of 21

Air Water & Soil Laboratories, Inc. 2109 A. North Hamilton Street (804) 358-8295 - Telephone Richmond, Virginia 23230 (804) 358-8297 - Fax

Certificate of Analysis

Factor Units 03/19/2010 ng/L J/gr ng/L ng/L ng/L ng/L ng/L ng/L 007 10.0 10.0 10.0 10.0 10.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. 9 0. 0. 0. 0. 9. 0. 0. Date Issued: Sample Results Qual LOD 0.2 0.2 7.0 9.0 0.2 0.3 0.2 0.2 0.2 0.3 7. 1.7 ςi BLOD BLOD BLOD BLOD BLOD BLOD BLOD BLOD BLOD 31.00 BLOD BLOD BLOD BLOD BLOD BLOD 3LOD BLOD 03/19/10 3:19 03/19/10 3:19 33/19/10 3:19 3/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 33/19/10 3:19 03/19/10 3:19 33/19/10 3:19 33/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 33/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 33/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 03/19/10 3:19 33/19/10 3:19 33/19/10 3:19 Date/Time Analysis 03/05/10 03/05/10 03/05/10 33/05/10 33/05/10 03/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 03/05/10 3/05/10 03/05/10 33/05/10 03/05/10 03/05/10 33/05/10 03/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 03/02/10 3/05/10 33/05/10 Sample 0030206-002 0030206-002 0030206-002 10030206-002 Page 4 of 21 Laboratory Sample ID Sample ID Stream 2 Client **Reference** SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B **SW8260B** 3W8260B SW8260B SW8260B SW8260B Chesapeake Geosciences, Inc. 0061-01-5 06-93-4 07-06-2 08-67-8 42-28-9 06-46-7 594-20-7 591-78-6 106-43-4 108-10-1 108-86-1 Stebbins-Burnham 78-87-5 541-73-1 56-59-2 71-43-2 08-90-7 78-93-3 95-49-8 67-64-1 74-97-5 75-27-4 75-25-2 74-83-9 75-15-0 56-23-5 75-00-3 35-50-1 37-66-3 74-87-3 John Kosloski 4-Methyl-2-pentanone (MIBK) 1,2-Dibromoethane (EDB) cis-1,2-Dichloroethylene 1,3,5-Trimethylbenzene cis-1,3-Dichloropropene Submitted To: **Bromodichloromethane** Client Name: Client Site ID: Bromochloromethane 1,4-Dichlorobenzene i,2-Dichloropropane ,3-Dichlorobenzene 1,3-Dichloropropane 1,2-Dichlorobenzene 2,2-Dichloropropane Carbon tetrachloride 1,2-Dichloroethane 2-Hexanone (MBK) 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene Carbon disulfide Bromobenzene Bromomethane Chloromethane Chlorobenzene Chloroethane Bromoform Chloroform Parameter Benzene Acetone

Certificate of Analysis

	Chesapeake Geosciences, Inc. Stebbins-Burnham	ces, Inc.						Date Issued:		03/19/2010	:010
Submitted 10: Joint Rosid	USKI										
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor Units	Units
Dibromochloromethane	124-48-1	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0	1	ng/L
Dibromomethane	74-95-3	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0	-	ng/L
Dichlorodifluoromethane	75-71-8	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0	-	ng/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	5.0	5.0	-	ng/L
Ethylbenzene	100-41-4	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.1	1.0	-	ng/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	25.0	25.0	-	ng/L
lodomethane	74-88-4	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.5	10.0	-	ng/L
Isopropylbenzene	98-82-8	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.1	1.0	-	ng/L
m,p-Xylenes	179601-23-1	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	2.0	-	ng/L
Methylene chloride	75-09-2	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	1.0	4.0	-	ng/L
MTBE	1634-04-4	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0	-	ng/L
Naphthalene	91-20-3	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0	-	ng/L
n-Butylbenzene	104-51-8	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.1	1.0	-	ng/L
n-Propylbenzene	103-65-1	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.1	1.0	-	ng/L
o-Xylene	95-47-6	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	ВГОБ	0.1	1.0		ng/L
p-Isopropyltoluene	9-28-66	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0	-	ng/L
sec-Butylbenzene	135-98-8	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.1	1.0	-	ng/L
Styrene	100-42-5	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.1	1.0	τ-	ng/L
TAME	994-05-8	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	5.0	5.0	-	ng/L
ТВА	75-65-0	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	100	100	-	ng/L
tert-Butylbenzene	9-90-86	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	ВГОО	0.1	1.0	_	ng/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	0.2	J 0.2	1.0	-	ng/L
Toluene	108-88-3	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0	·	ng/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0		ng/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0	-	ng/L
Trichloroethylene	79-01-6	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0		ng/L
Trichlorofluoromethane	75-69-4	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0	-	ng/L
Vinyl acetate	108-05-4	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	2.2	10.0		ng/L
Vinyl chloride	75-01-4	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.2	1.0		ng/L

Page 5 of 21

Certificate of Analysis

Client Name: Client Site ID:	Chesapeake Geosciences, Inc. Stebbins-Burnham	oscienc ım	es, Inc.	22,000	THE COLUMN TO				Date Issued:	_	03/19/2010	010
Submitted To:	John Kosloski											
Parameter	CAS		Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	Loa	Dil. Factor Units	Units
Xylenes, Total	1330-20-7	-20-7	SW8260B	Stream 2	10030206-002	03/05/10	03/19/10 3:19	BLOD	0.3	3.0	-	ng/L
TPH-Semi-Volatiles (DRO)	(O) NA		SW8015C	Stream 2	10030206-002	03/05/10	03/15/10 21:57	BLOD	0.3	0.5	-	mg/L
TPH-Volatiles (GRO)	NA		SW8015C	Stream 3	10030206-003	03/05/10	03/12/10 13:00	BLOD	0.5	0.5		mg/L
1,1,1,2-Tetrachloroethane	ne 630-20-6	9-0;	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.1	1.0		ng/L
1,1,1-Trichloroethane	71-55-6	9-1	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0		ng/L
1,1,2,2-Tetrachloroethane	ле 79-34-5	-5	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.3	1.0		ng/L
1,1,2-Trichloroethane	79-00-5	-5	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0		ng/L
1,1-Dichloroethane	75-34-3	5-7-3	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	-	ng/L
1,1-Dichloroethylene	75-35-4	4-1	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0		ng/L
1,1-Dichloropropene	563-58-6	9-8	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.3	1.0		ng/L
1,2,3-Trichlorobenzene	87-61-6	φ	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.3	1.0	-	ng/L
1,2,3-Trichloropropane	96-18-4	1-4	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.4	1.0	-	ng/L
1,2,4-Trichlorobenzene	120-82-1	12-1	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.3	1.0	_	ng/L
1,2,4-Trimethylbenzene	95-63-6	9-6	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	-	ng/L
1,2-Dibromo-3-chloropropane (DBCP)	pane (DBCP) 96-12-8	8-:	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.4	4.0	-	ng/L
1,2-Dibromoethane (EDB)	B) 106-93-4	3-4	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.4	1.0		ng/L
1,2-Dichlorobenzene	95-50-1	<u>-</u>	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0		ng/L
1,2-Dichloroethane	107-06-2	9-5	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.3	1.0		ng/L
1,2-Dichloropropane	78-87-5	.,5	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.3	1.0	-	ng/L
1,3,5-Trimethylbenzene		17-8	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	-	ng/L
1,3-Dichlorobenzene	541-73-1	3-1	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	-	ng/L
1,3-Dichloropropane	142-28-9	6-8	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	-	ng/L
1,4-Dichlorobenzene	106-46-7	2-9 1	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0		ng/L
2,2-Dichloropropane	594-20-7	2-0	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.3	1.0		ng/L
2-Butanone (MEK)	78-93-3	<u>ئ</u> ع	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	ВГОР	1.7	10.0	-	ng/L
2-Chlorotoluene	95-49-8	8-	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	-	ng/L
2-Hexanone (MBK)	591-78-6	78-6	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	1.7	10.0	-	ng/L
4-Chlorotoluene	106-43-4	13-4	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	-	ng/L

Certificate of Analysis

Factor Units 03/19/2010 ng/L ug/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L ä g 10.0 25.0 10.0 0. 0. 0. 0 0. 0.1 0. 0. 0. 0. 0. 0. 6. 5.0 0. 6. 2.0 4.0 0. 0. 0. 0. 0. 0. Date Issued: 25.0 Qual LOD 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.5 0.2 0.1 0. Sample Results BLOD 31.0D 31.0D 31.0D 3LOD BLOD BLOD BLOD BLOD BLOD BLOD 3LOD BLOD 31.0D 300 03/19/10 3:43 03/19/10 3:43 33/19/10 3:43 03/19/10 3:43 03/19/10 3:43 03/19/10 3:43 03/19/10 3:43 33/19/10 3:43 03/19/10 3:43 03/19/10 3:43 03/19/10 3:43 33/19/10 3:43 33/19/10 3:43 33/19/10 3:43 03/19/10 3:43 03/19/10 3:43 33/19/10 3:43 03/19/10 3:43 03/19/10 3:43 33/19/10 3:43 33/19/10 3:43 3/19/10 3:43 33/19/10 3:43 3/19/10 3:43 3/19/10 3:43 33/19/10 3:43 33/19/10 3:43 Date/Time Analysis 03/05/10 03/05/10 33/05/10 03/05/10 3/05/10 33/05/10 33/05/10 03/05/10 33/05/10 03/02/10 33/05/10 33/05/10 33/05/10 03/05/10 03/05/10 03/02/10 33/05/10 03/02/10 33/05/10 03/05/10 3/05/10 03/05/10 33/05/10 33/05/10)3/05/10 33/05/10 33/05/10 33/05/10 3/05/10 Sample 0030206-003 10030206-003 10030206-003 10030206-003 0030206-003 0030206-003 Laboratory Sample ID Sample ID Stream 3 Reference SW8260B Chesapeake Geosciences, Inc. 79601-23-1 0061-01-5 634-04-4 156-59-2 124-48-1 108-20-3 337-92-3 08-90-7 04-51-8 Stebbins-Burnham 71-43-2 08-86-1 74-83-9 75-15-0 56-23-5 75-00-3 74-87-3 74-95-3 75-71-8 00-41-4 37-66-3 74-88-4 74-97-5 75-25-2 98-85-8 75-09-2 37-64-1 75-27-4 John Kosloski 4-Methyl-2-pentanone (MIBK) Ethyl-t-butyl ether (ETBE) Dichlorodifluoromethane Di-isopropyl ether (DIPE) cis-1,2-Dichloroethylene cis-1,3-Dichloropropene Dibromochloromethane Bromodichloromethane Submitted To: Client Name: Client Site ID: Bromochloromethane Carbon tetrachloride Methylene chloride Dibromomethane sopropylbenzene Carbon disulfide Bromobenzene Bromomethane Chloromethane n-Butylbenzene Chlorobenzene Chloroethane Ethylbenzene odomethane Naphthalene n,p-Xylenes Bromoform Chloroform Parameter Acetone MTBE

³age 7 of 21

S
PO
Ø
Analys
a
~~
Ö
0
ஐ
75
"
4-
لبيث
-
Certificate
\circ
_

		-	THE PARTY NAMED IN								
Client Name: Client Site ID: Submitted To:	Oriesapeake Geosciences, Inc. Stebbins-Burnham John Kosloski	nces, Inc.						Date Issued:		03/19/2010	2010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	POO	Dil. Facto	Dil. Factor Units
n-Propylbenzene	103-65-1	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	ВГОР	0.1	1.0	-	ng/L
o-Xylene	95-47-6	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	ВГОД	0.1	1.0	-	ng/L
p-IsopropyItoluene	9-28-66	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	T	ng/L
sec-Butylbenzene	135-98-8	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.1	1.0	-	ug/L
Styrene	100-42-5	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	ВГОБ	0.1	1.0	-	ug/L
TAME	994-05-8	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	5.0	5.0	4	ug/L
TBA	75-65-0	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	100	100	-	ug/L
tert-Butylbenzene		SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.1	1.0	_	ng/L
Tetrachloroethylene (PCE)		SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	-	ng/L
Toluene		SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0		ng/L
trans-1,2-Dichloroethylene		SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	_	ng/L
trans-1,3-Dichloropropene		SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	-	ng/L
Trichloroethylene		SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	-	ng/L
Trichlorofluoromethane		SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0		ng/L
Vinyl acetate	108-05-4	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	2.2	10.0		ng/L
Vinyl chloride	75-01-4	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.2	1.0	,-	ng/L
Xylenes, Total	1330-20-7	SW8260B	Stream 3	10030206-003	03/05/10	03/19/10 3:43	BLOD	0.3	3.0	-	ng/L
TPH-Semi-Volatiles (DRO)	RO) NA	SW8015C	Stream 3	10030206-003	03/05/10	03/15/10 22:23	BLOD	0.3	0.5	-	mg/L
TPH-Volatiles (GRO)	NA	SW8015C	Stream 4	10030206-004	03/05/10	03/12/10 13:24	BLOD	0.5	0.5	-	mg/L
1,1,1,2-Tetrachloroethane	ine 630-20-6	SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.1	1.0	-	ng/L
1,1,1-Trichloroethane	71-55-6	SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.2	1.0	-	ng/L
1,1,2,2-Tetrachloroethane		SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.3	1.0	-	ng/L
1,1,2-Trichloroethane	2-00-62	SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.2	1.0	-	ng/L
1,1-Dichloroethane	75-34-3	SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.2	1.0	-	ng/L
1,1-Dichloroethylene	75-35-4	SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.2	1.0	-	ng/L
1,1-Dichloropropene		SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.3	1.0	-	ng/L
1,2,3-Trichlorobenzene		SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.3	1.0	-	ng/L
1,2,3-Trichloropropane	96-18-4	SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.4	1.0		ng/L

Page 9 of 21

	03/19/2010	Dil. Factor Units	ng/L	ng/L	ng/L	ng/L	ug/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
	03/19	Dil. Fact	-	-	-	_		-	_	_	_	-	-		-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	_
		Loa	1.0	1.0	4.0	1.0	1.0	0.1	0.1	1.0	1.0	1.0	1.0	1.0	10.0	1.0	10.0	1.0	10.0	10.0	1.0	1.0	1.0	1.0	0.1	1.0	10.0	1.0	1.0	1.0	1.0
	Date Issued:	Qual LOD	0.3	0.2	0.4	0.4	0.2	0.3	0.3	0.2	0.2	0.2	0.2	0.3	1.7	0.2	1.7	0.2	1.2	7.0	0.2	0.2	0.4	0.2	0.3	0.2	1.2	0.2	0.1	0.2	0.2
		Sample Results	ВГОО	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD	BLOD
		Analysis Date/Time	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08	03/19/10 4:08
Ilysis		Sample Date	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10	03/05/10
Certificate of Analysis		Laboratory Sample ID	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004	10030206-004
Certi		Client Sample ID	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4	Stream 4
	nces, Inc.	Reference Method	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B	SW8260B
	Chesapeake Geosciences, Inc. Stebbins-Burnham John Kosloski	CAS	120-82-1	95-63-6	CP) 96-12-8	106-93-4	95-50-1	107-06-2	78-87-5	108-67-8	541-73-1	142-28-9	106-46-7	594-20-7	78-93-3	95-49-8	591-78-6	106-43-4	108-10-1	67-64-1	71-43-2	108-86-1	74-97-5	75-27-4	75-25-2	74-83-9	75-15-0	56-23-5	108-90-7	75-00-3	67-66-3
	Client Name: Chesapeake Client Site ID: Stebbins-Burn Submitted To: John Kosloski	Parameter	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane (DBCP)	1,2-Dibromoethane (EDB)	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Butanone (MEK)	2-Chlorotoluene	2-Hexanone (MBK)	4-Chlorotoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform

Certificate of Analysis

03/19/2010 Factor Units ng/L ug/L ug/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L 25.0 gon 10.0 0. 0. 0. 5.0 0. 1.0 2.0 4.0 0. 1.0 90 0. 0. 0. 0. 0. 0. 5.0 0. 0. 9 0. 0. 0. Date Issued: 25.0 Sample Results Qual LOD 0.5 8 0. 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 5.0 0.1 0.2 BLOD 3LOD BLOD BLOD BLOD 0.2 03/19/10 4:08 03/19/10 4:08 03/19/10 4:08 03/19/10 4:08 03/19/10 4:08 33/19/10 4:08 03/19/10 4:08 03/19/10 4:08 33/19/10 4:08 3/19/10 4:08 33/19/10 4:08 33/19/10 4:08 03/19/10 4:08 03/19/10 4:08 03/19/10 4:08 03/19/10 4:08 33/19/10 4:08 03/19/10 4:08 33/19/10 4:08 33/19/10 4:08 03/19/10 4:08 03/19/10 4:08 33/19/10 4:08 03/19/10 4:08 33/19/10 4:08 03/19/10 4:08 33/19/10 4:08 3/19/10 4:08 Date/Time Analysis 03/05/10 03/05/10 01/90/20 33/05/10 33/05/10 33/05/10)3/05/10 3/05/10 03/05/10 03/05/10 33/05/10 03/05/10 01/20/20 03/05/10 3/05/10 03/02/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 02/02/10 33/05/10 3/05/10 3/05/10 33/05/10 3/05/10 03/05/10 Sample 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 10030206-004 10030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 0030206-004 10030206-004 Laboratory Sample ID Sample ID Stream 4 Client Reference SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B Chesapeake Geosciences, Inc. 79601-23-1 0061-01-5 0061-02-6 1634-04-4 135-98-8 56-59-2 08-20-3 00-41-4 337-92-3 04-51-8 00-42-5 994-05-8 56-60-5 27-18-4 08-88-3 24-48-1 Stebbins-Burnham 75-71-8 98-85-8 103-65-1 95-47-6 74-88-4 91-20-3 9-48-66 75-65-0 74-95-3 75-09-2 9-90-86 79-01-6 John Kosloski Tetrachloroethylene (PCE) rans-1,2-Dichloroethylene rans-1,3-Dichloropropene Ethyl-t-butyl ether (ETBE) Di-isopropyl ether (DIPE) Dichlorodifluoromethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropene Dibromochloromethane Client Name: Submitted To: Client Site ID: Methylene chloride p-Isopropyltoluene sec-Butylbenzene Dibromomethane sopropylbenzene ert-Butylbenzene n-Propylbenzene **Trichloroethylene** Chloromethane n-Butylbenzene Ethylbenzene odomethane **Naphthalene** m,p-Xylenes Parameter o-Xylene Styrene MTBE TAME

Page 10 of 21

Certificate of Analysis

				Certificate of Analysis	S S						
Client Name: Chesapeake Geos Client Site ID: Stebbins-Burnham Submitted To: John Kosloski	Chesapeake Geosciences, Inc. Stebbins-Burnham John Kosloski	ces, Inc.						Date Issued:	_	03/19/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	007	Dii. Factor Units	Units
Trichlorofluoromethane	75-69-4	SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.2	10	-	/01
Vinyl acetate	108-05-4	SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	ВГОО		10.0		ag∕r ua∕L
Vinyl chloride	75-01-4	SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	0.0	0	-	
Xylenes, Total	1330-20-7	SW8260B	Stream 4	10030206-004	03/05/10	03/19/10 4:08	BLOD	. O) c	- 1	1 /S
TPH-Semi-Volatiles (DRO)	NA	SW8015C	Stream 4	10030206-004	03/05/10	03/15/10 22:48	BLOD	0.3	0.5	. ,_	ng/L
TPH-Volatiles (GRO)	NA	SW8015C	Stream 5	10030206-005	03/05/10	03/12/10 13:49	ВГОО	0.5	5.5		ma/l
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.1	0.1	· -	ng/L
1,1,1-Trichloroethane	71-55-6	SW8260B		10030206-005	03/05/10	03/19/10 4:32	BLOD	0.2	1.0	-	ug/L
1,1,2,2-l etrachloroethane	79-34-5	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.3	1.0	-	ng/L
1,1,2-Trichloroethane	79-00-5	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.2	0:0	-	g/L
1,1-Dichloroethane	75-34-3	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.2	1.0	-	g/L
1,1-Dichloroethylene	75-35-4	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.2	1.0	-	ug/L
1,1-Dichloropropene	563-58-6	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.3	1.0	-	ng/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.3	1.0	-	g/L
1,2,3-1 richloropropane	96-18-4	SW8260B		10030206-005	03/05/10	03/19/10 4:32	BLOD	0.4	1.0	-	ng/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.3	1.0	-	ng/L
1,2,4-Trimethylbenzene		SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.2	1.0	-	ng/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.4	4.0	-	l on
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	4:0	1.0	-	na/L
1,2-Dichlorobenzene	95-50-1	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.2	1.0	-	g/L
1,2-Dichloroethane	107-06-2	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.3	1.0	~ −	na/L
1,2-Dichloropropane	78-87-5	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.3	1.0	γ	ng/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	ВГОР	0.2	1.0	-	a/L
1,3-Dichlorobenzene	541-73-1	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.2	1.0	-	- ng/L
1,3-Dichloropropane	142-28-9	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.2	1.0	-	ng/L
1,4-Dichlorobenzene	106-46-7	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.2	1.0	<u>-</u>	ng/L
2,2-Dichloropropane	594-20-7	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	0.3	1.0	-	ug/L
2-Butanone (MEK)	78-93-3	SW8260B	Stream 5	10030206-005	03/05/10	03/19/10 4:32	BLOD	1.7	10.0	-	ng/L

Certificate of Analysis

03/19/2010

Factor Units

00

莒

ug/L

10.0

0.

10.0

ng/L

ng/L

ng/L

ng/L

0. 0. 0. 0. 0.

ug/L ug/L ug/L ug/L ug/L ug/L

10.0

0. 0. 0. 0. 0. 0.

ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L

1.0

25.0

10.0

1.0 2.0 4.0

⁵age 12 of 21

ng/L

0. 0. 0. 0.

Date Issued: 25.0 Qual LOD 9.4 0.2 0.1 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 5.0 Sample Results BLOD 31.0D BLOD BLOD BLOD BLOD BLOD 3LOD 3LOD 3LOD 31.00 03/19/10 4:32 3/19/10 4:32 03/19/10 4:32 33/19/10 4:32 03/19/10 4:32 03/19/10 4:32 03/19/10 4:32 03/19/10 4:32 3/19/10 4:32 33/19/10 4:32 33/19/10 4:32 03/19/10 4:32 33/19/10 4:32 33/19/10 4:32 33/19/10 4:32 03/19/10 4:32 03/19/10 4:32 03/19/10 4:32 33/19/10 4:32 03/19/10 4:32 3/19/10 4:32 03/19/10 4:32 03/19/10 4:32 03/19/10 4:32 33/19/10 4:32 3/19/10 4:32 33/19/10 4:32 3/19/10 4:32 03/19/10 4:32 Date/Time Analysis 03/05/10 03/05/10 03/05/10 33/05/10 33/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 33/05/10 3/05/10 33/05/10 03/05/10 03/05/10 3/05/10 03/02/10 03/05/10 33/05/10 03/05/10 33/05/10 33/05/10 03/02/10 3/05/10 03/05/10 33/05/10 33/05/10 3/05/10 3/05/10 Sample 0030206-005 10030206-005 0030206-005 Laboratory Sample ID Sample ID Stream 5 Reference SW8260B Chesapeake Geosciences, Inc. 79601-23-1 10061-01-5 108-90-7 56-59-2 91-78-6 06-43-4 08-20-3 24-48-1 337-92-3 08-10-1 08-86-1 00-41-4 Stebbins-Burnham 75-27-4 74-83-9 75-15-0 56-23-5 75-00-3 67-66-3 74-87-3 74-95-3 75-71-8 74-88-4 37-64-1 71-43-2 74-97-5 75-25-2 38-82-8 75-09-2 John Kosloski 4-Methyl-2-pentanone (MIBK) Ethyl-t-butyl ether (ETBE) Dichlorodifluoromethane Di-isopropyl ether (DIPE) cis-1,2-Dichloroethylene cis-1,3-Dichloropropene Dibromochloromethane Submitted To: Bromodichloromethane Client Name: Client Site ID: Bromochloromethane Carbon tetrachloride 2-Hexanone (MBK) Methylene chloride Dibromomethane Isopropylbenzene 2-Chlorotoluene 4-Chlorotoluene Carbon disulfide Chloromethane Bromobenzene **Bromomethane** Chlorobenzene Chloroethane Ethylbenzene odomethane m,p-Xylenes Chloroform Bromoform Parameter Benzene Acetone

Certificate of Analysis

Factor Units 03/19/2010 ng/L mg/L mg/L ng/L ng/L ng/L ng/L ng/L ng/L ug/L ng/L g 10.0 90 0. 0. 0. 0. 0. 0. 0. 0: 5.0 0. 0. 0. 0. 0. 0. 3.0 0.5 0.5 6. 0. 0. 0.1 0. 0. Date Issued: Sample Results Qual LOD 8 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 BLOD 03/12/10 14:14 3/15/10 23:14 03/19/10 4:32 03/19/10 4:32 3/19/10 4:32 03/19/10 4:32 3/19/10 4:32 3/19/10 4:32 3/19/10 4:32 33/19/10 4:32 03/19/10 4:32 03/19/10 4:32 33/19/10 4:32 33/19/10 4:32 33/19/10 4:32 33/19/10 4:32 33/19/10 4:32 03/19/10 4:32 03/19/10 4:32 03/19/10 4:32 33/19/10 4:57 03/19/10 4:57 33/19/10 4:57 03/19/10 4:57 03/19/10 4:32 03/19/10 4:32 03/19/10 4:57 03/19/10 4:57 Date/Time Analysis 03/05/10 03/05/10 33/05/10 33/05/10 33/05/10 03/05/10 33/05/10 03/05/10 33/05/10 33/05/10 33/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 03/05/10 03/05/10 03/05/10 33/05/10 03/05/10 Sample 0030206-005 0030206-006 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 10030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-005 0030206-006 Laboratory Sample ID Sample ID Stream 5 Dup 1 SW8260B SW8260B Reference SW8260B SW8260B 3W8260B 3W8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8015C SW8015C SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B Chesapeake Geosciences, Inc. 0061-02-6 634-04-4 330-20-7 100-42-5 108-05-4 04-51-8 03-65-1 35-98-8 994-05-8 27-18-4 08-88-3 56-60-5 630-20-6 95-47-6 9-48-66 75-65-0 79-01-6 75-69-4 Stebbins-Burnham 31-20-3 9-90-86 75-01-4 79-34-5 79-00-5 75-34-3 75-35-4 71-55-6 John Kosloski rans-1,2-Dichloroethylene Fetrachloroethylene (PCE) **IPH-Semi-Volatiles (DRO)** rans-1,3-Dichloropropene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane **Frichlorofluoromethane** Client Name: Submitted To: Client Site ID: 1,1,1-Trichloroethane I,1,2-Trichloroethane **TPH-Volatiles (GRO)** I,1-Dichloroethylene ,1-Dichloroethane p-Isopropyltoluene sec-Butylbenzene ert-Butylbenzene n-Propylbenzene **Frichloroethylene** n-Butylbenzene (ylenes, Total /inyl chloride /inyl acetate Naphthalene Parameter o-Xylene Foluene Styrene TAME

Page 13 of 21

Analysis	
2 100to	
ທ	
lane.	
100	
85	
40	
122	
Ö	
n	
•	
-	
w	
O	
2 111111	
dem	
لسؤه	
Š	
Certificate	
~	
\mathbf{C}	
-	

Dit. Factor Units 03/19/2010 ng/L 001 10.0 10.0 10.0 10.0 0. 0. 0. 0. 0. 0. 0.4 0. 0. 0 0 0. 0. 0. 0. 0. 0. 0. 0. 0: Date Issued: Qual LOD 0.2 0.2 0.2 0.2 0.3 1.7 2 7.0 0.2 7. Sample Results BLOD BLOD BLOD BLOD 3LOD BLOD 3LOD BLOD BLOD BLOD BLOD 3LOD 33/19/10 4:57 33/19/10 4:57 03/19/10 4:57 03/19/10 4:57 03/19/10 4:57 03/19/10 4:57 03/19/10 4:57 33/19/10 4:57 03/19/10 4:57 03/19/10 4:57 03/19/10 4:57 03/19/10 4:57 03/19/10 4:57 33/19/10 4:57 03/19/10 4:57 3/19/10 4:57 33/19/10 4:57 3/19/10 4:57 3/19/10 4:57 33/19/10 4:57 03/19/10 4:57 33/19/10 4:57 03/19/10 4:57 03/19/10 4:57 33/19/10 4:57 33/19/10 4:57 3/19/10 4:57 33/19/10 4:57 Date/Time Analysis 03/05/10 03/05/10 33/05/10 03/05/10 33/05/10 03/05/10 33/05/10 03/05/10 33/05/10 33/05/10 33/05/10 33/05/10 03/05/10 33/05/10 03/05/10 03/05/10 03/05/10 33/05/10 3/05/10 03/05/10 33/05/10 03/05/10 03/05/10 33/05/10 33/05/10 03/05/10 33/05/10 33/05/10 33/05/10 Sample Date 10030206-006 0030206-006 0030206-006 0030206-006 10030206-006 10030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 10030206-006 10030206-006 10030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 10030206-006 0030206-006 0030206-006 0030206-006 0030206-006 10030206-006 Laboratory Sample ID Sample ID Dup 1 Oup 1 Jup 1 SW8260B **Peference** SW8260B 3W8260B 3W8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B Chesapeake Geosciences, Inc. 108-67-8 594-20-7 120-82-1 07-06-2 42-28-9 106-46-7 591-78-6 06-93-4 541-73-1 06-43-4 108-10-1 Stebbins-Burnham 108-86-1 96-18-4 78-87-5 95-63-6 96-12-8 95-50-1 78-93-3 95-49-8 67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 75-15-0 56-23-5 74-97-5 John Kosloski ,2-Dibromo-3-chloropropane (DBCP) 4-Methyl-2-pentanone (MIBK) 1,2-Dibromoethane (EDB) ,2,4-Trimethylbenzene ,2,4-Trichlorobenzene ,3,5-Trimethylbenzene 1,2,3-Trichlorobenzene ,2,3-Trichloropropane Bromodichloromethane Client Name: Submitted To: Client Site ID: Bromochloromethane 1,1-Dichloropropene ,2-Dichlorobenzene 1,4-Dichlorobenzene ,3-Dichlorobenzene ,3-Dichloropropane 2,2-Dichloropropane 1,2-Dichloropropane Carbon tetrachloride ,2-Dichloroethane 2-Hexanone (MBK) 2-Butanone (MEK) 2-Chlorotoluene Carbon disulfide 4-Chlorotoluene Bromobenzene Bromomethane Bromoform Parameter Benzene Acetone

Page 14 of 21

Certificate of Analysis

Factor Units 03/19/2010 ng/L 25.0 10.0 8 0. 0. 0. 0. 0. 0 0. 0. 0. 5.0 0. 2.0 4.0 0. 8 0. 0: 0. 0. 0. 0. 0. 5.0 0. 0. 0. Date Issued: 25.0 Qual LOD 2.5 0.5 0. 0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1 Sample Results BLOD 3LOD BLOD BLOD BLOD BLOD 3LOD BLOD BLOD 3LOD 03/19/10 4:57 03/19/10 4:57 33/19/10 4:57 33/19/10 4:57 3/19/10 4:57 33/19/10 4:57 03/19/10 4:57 03/19/10 4:57 33/19/10 4:57 33/19/10 4:57 03/19/10 4:57 33/19/10 4:57 3/19/10 4:57 3/19/10 4:57 3/19/10 4:57 3/19/10 4:57 03/19/10 4:57 03/19/10 4:57 03/19/10 4:57 3/19/10 4:57 03/19/10 4:57 03/19/10 4:57 03/19/10 4:57 33/19/10 4:57 33/19/10 4:57 03/19/10 4:57 03/19/10 4:57 Date/Time Analysis 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 03/05/10 33/05/10 33/05/10 03/05/10 33/05/10 03/05/10 03/05/10 33/05/10 03/05/10 33/05/10 33/05/10 03/05/10 03/05/10 33/05/10 33/05/10 33/05/10 03/02/10 33/05/10 Sample Date 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 10030206-006 0030206-006 0030206-006 0030206-006 10030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 0030206-006 10030206-006 0030206-006 0030206-006 10030206-006 0030206-006 10030206-006 0030206-006 Laboratory Sample ID Sample ID Client Dup 1 Jup 1 Dup 1 Reference SW8260B 3W8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B 3W8260B Chesapeake Geosciences, Inc. 79601-23-1 0061-01-5 634-04-4 104-51-8 56-59-2 08-20-3 00-41-4 637-92-3 103-65-1 135-98-8 00-42-5 Stebbins-Burnham 08-90-7 74-87-3 24-48-1 994-05-8 08-88-3 67-66-3 75-71-8 75-00-3 74-88-4 27-18-4 74-95-3 98-85-8 75-09-2 91-20-3 95-47-6 9-48-66 75-65-0 9-90-86 John Kosloski Tetrachloroethylene (PCE) Ethyl-t-butyl ether (ETBE) Di-isopropyl ether (DIPE) Dichlorodifluoromethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropene Dibromochloromethane Client Name: Client Site ID: Submitted To: Methylene chloride p-Isopropyltoluene **Dibromomethane** sopropylbenzene sec-Butylbenzene ert-Butylbenzene n-Propylbenzene Chloromethane Chlorobenzene n-Butylbenzene Ethylbenzene Chloroethane odomethane Naphthalene m,p-Xylenes Chloroform Parameter o-Xylene Styrene MTBE TAME

Page 15 of 21

Certificate of Analysis

			E O	Certificate of Analysis	Ivsis						
Client Name: Chesapeake Client Site ID: Stebbins-Burn Submitted To: John Kosloski	Chesapeake Geosciences, Inc. Stebbins-Burnham John Kosloski	nces, Inc.						Date Issued:		03/19/2010	2010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	00 1	Dil. Factor Units	Units
trans-1,2-Dichloroethylene	156-60-5	SW8260B	Dup 1	10030206-006	03/05/10	03/19/10 4:57	ВГОР	0.2	1.0	-	na/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	Dup 1	10030206-006	03/05/10	03/19/10 4:57	BLOD	0.2	1.0	-	na/L
Trichloroethylene	79-01-6	SW8260B	Dup 1	10030206-006	03/05/10	03/19/10 4:57	BLOD	0.2	1.0	-	na/L
Trichlorofluoromethane	75-69-4	SW8260B	Dup 1	10030206-006	03/05/10	03/19/10 4:57	BLOD	0.2	1.0	-	ua/L
Vinyl acetate	108-05-4	SW8260B	Dup 1	10030206-006	03/05/10	03/19/10 4:57	BLOD	2.2	10.0		na/L
Vinyl chloride	75-01-4	SW8260B	Dup 1	10030206-006	03/05/10	03/19/10 4:57	BLOD	0.2	0.1	-	ng/L
Xylenes, Total	1330-20-7	SW8260B	Dup 1	10030206-006	03/05/10	03/19/10 4:57	BLOD	0.3	3.0	-	ug/L
TPH-Semi-Volatiles (DRO)	A A	SW8015C	Dup 1	10030206-006	03/05/10	03/15/10 23:39	BLOD	0.3	0.5	-	mg/L
TPH-Volatiles (GRO)	ΥN	SW8015C	Dup 2	10030206-007	03/05/10	03/12/10 14:38	ВГОО	0.5	5	-	ma/i
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.1	9 0		, jon
1,1,1-Trichloroethane	71-55-6	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	0. 0.	. ,	ra/F
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.3	10,0	-	na/L
1,1,2-Trichloroethane	79-00-5	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	0.1	-	na/L
1,1-Dichloroethane	75-34-3	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	-	ug/L
1,1-Dichloroethylene	75-35-4	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	ВГОБ	0.2	1.0	-	ng/L
1,1-Dichloropropene	563-58-6	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	ВГОБ	0.3	1.0	-	ua/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.3	1.0	-	g ng/L
1,2,3-Trichloropropane	96-18-4	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	9.0	1.0		na/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.3	1.0	-	ng/L
1,2,4-Trimethylbenzene		SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	ВГОБ	0.2	1.0	_	g/L
1,2-Dibromo-3-chloropropane (DBCP)	CP) 96-12-8	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	ВГОО	0.4	4.0	-	na/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.4	1.0	,	a/L
1,2-Dichlorobenzene	95-50-1	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0		aa/L
1,2-Dichloroethane	107-06-2	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.3	1.0	, -	g/L
1,2-Dichloropropane	78-87-5	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.3	1.0	-	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	-	ng/L
1,3-Dichlorobenzene	541-73-1	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	,	ng/L
1,3-Dichloropropane	142-28-9	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	-	ng/L

Page 16 of 21

Air Water & Soil Laboratories, Inc. 2109 A. North Hamilton Street (804) 358-8295 - Telephone Richmond, Virginia 23230 (804) 358-8297 - Fax

Factor Units 03/19/2010 ng/L ug/L ng/L ä 10.0 10.0 10.0 0.0 25.0 10.0 0. 0. 0. 0. 0. 0. 0. ö 0. 0. 0. 2.0 0. 0. 0. 0. 0. 0. 0. 0. Date Issued: Qual LOD 0.2 0.2 0.3 0.2 2 0.2 0.2 9.3 0.2 7.4 2. 2.2 0.1 Sample Results 31.OD BLOD 3LOD BLOD BLOD BLOD 03/19/10 5:21 03/19/10 5:21 03/19/10 5:21 03/19/10 5:21 03/19/10 5:21 33/19/10 5:21 33/19/10 5:21 03/19/10 5:21 03/19/10 5:21 33/19/10 5:21 33/19/10 5:21 03/19/10 5:21 03/19/10 5:21 3/19/10 5:21 03/19/10 5:21 33/19/10 5:21 33/19/10 5:21 33/19/10 5:21 3/19/10 5:2-3/19/10 5:21 33/19/10 5:21 3/19/10 5:21 33/19/10 5:21 3/19/10 5:21 3/19/10 5:21 33/19/10 5:21 33/19/10 5:21 3/19/10 5:21 Date/Time Analysis 03/05/10 03/05/10 33/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 33/05/10 33/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 03/05/10 33/05/10 03/05/10 03/02/10 01/20/20 03/05/10 3/05/10 3/05/10 03/05/10 33/05/10 03/05/10 3/05/10 3/05/10 3/05/10 Sample Certificate of Analysis 0030206-007 0030206-007 0030206-007 0030206-007 0030206-007 0030206-007 0030206-007 0030206-007 0030206-007 0030206-007 10030206-007 10030206-007 0030206-007 10030206-007 0030206-007 0030206-007 10030206-007 0030206-007 0030206-007 0030206-007 10030206-007 10030206-007 0030206-007 10030206-007 0030206-007 0030206-007 10030206-007 10030206-007 0030206-007 Laboratory Sample ID Sample ID Dup 2 Dup₂ Dup 2 Dup 2 Dup 2 Dup 2 Dup 2 Dup 2 **Reference** SW8260B SW8260B 3W8260B 3W8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B 3W8260B Chesapeake Geosciences, Inc. Method 0061-01-5 08-10-1 56-59-2 Stebbins-Burnham 94-20-7 591-78-6 06-43-4 108-86-1 108-90-7 24-48-1 08-20-3 00-41-4 337-92-3 78-93-3 71-43-2 74-97-5 74-83-9 56-23-5 74-87-3 75-27-4 75-25-2 75-15-0 75-00-3 75-71-8 67-64-1 57-66-3 74-88-4 35-49-8 74-95-3 John Kosloski 4-Methyl-2-pentanone (MIBK) Ethyl-t-butyl ether (ETBE) Di-isopropyl ether (DIPE) cis-1,2-Dichloroethylene **Dichlorodifluoromethane** cis-1,3-Dichloropropene **Dibromochloromethane** Bromodichloromethane Submitted To: Client Name: Client Site ID: Bromochloromethane 1,4-Dichlorobenzene 2,2-Dichloropropane Carbon tetrachloride 2-Hexanone (MBK) 2-Butanone (MEK) Dibromomethane 2-Chlorotoluene 4-Chlorotoluene Carbon disulfide Bromomethane Chloromethane Bromobenzene Chlorobenzene Chloroethane Ethylbenzene odomethane Bromoform Chloroform Parameter Benzene Acetone

Page 17 of 21

Certificate of Analysis

03/19/2010

Date Issued:

Chesapeake Geosciences, Inc. Stebbins-Burnham Client Name: Client Site ID:

Submitted To: John Kosloski

Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	rog	Dil. Factor Units	Units
Isopropylbenzene	98-85-8	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	ВГОО	0.1	1.0	-	ng/L
m,p-Xylenes	179601-23-1	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	2.0	-	ug/L
Methylene chloride	75-09-2	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	1.0	4.0	-	ng/L
MTBE	1634-04-4	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	-	ng/L
Naphthalene	91-20-3	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	-	ng/L
n-Butylbenzene	104-51-8	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.1	1.0		ng/L
n-Propylbenzene	103-65-1	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.1	1.0		ng/L
o-Xylene	95-47-6	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.1	1.0	-	ng/L
p-Isopropyltoluene	9-88-66	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0		ng/L
sec-Butylbenzene	135-98-8	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.1	1.0	_	ng/L
Styrene	100-42-5	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.1	1.0	-	ng/L
TAME	994-05-8	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	5.0	2.0	-	ng/L
TBA	75-65-0	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	100	100	-	ng/L
tert-Butylbenzene	9-90-86	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.1	1.0	-	ng/L
Tetrachloroethylene (PCE)	127-18-4	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	-	ng/L
Toluene	108-88-3	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	-	ng/L
trans-1,2-Dichloroethylene	156-60-5	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	_	ng/L
trans-1,3-Dichloropropene	10061-02-6	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	-	ng/L
Trichloroethylene	79-01-6	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	_	ng/L
Trichlorofluoromethane	75-69-4	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	-	ng/L
Vinyl acetate	108-05-4	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	2.2	10.0		ng/L
Vinyl chloride	75-01-4	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.2	1.0	-	ng/L
Xylenes, Total	1330-20-7	SW8260B	Dup 2	10030206-007	03/05/10	03/19/10 5:21	BLOD	0.3	3.0	-	ng/L
TPH-Semi-Volatiles (DRO)	NA	SW8015C	Dup 2	10030206-007	03/05/10	03/16/10 0:05	BLOD	0.3	0.5	-	mg/L
TPH-Volatiles (GRO)	NA	SW8015C	Dup 3	10030206-008	03/05/10	03/12/10 15:02	BLOD	0.5	0.5	-	mg/L
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.1	1.0	-	ng/L
1,1,1-Trichloroethane	71-55-6	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.3	1.0	-	ng/L

Certificate of Analysis

			Seg	Certificate of Analysis	Vsis						
Client Name: Che Client Site ID: Ste Submitted To: Joh	Chesapeake Geosciences, Inc. Stebbins-Burnham John Kosloski	nces, Inc.						Date Issued:		03/19/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dii. Factor Units	Units
1,1,2-Trichloroethane	79-00-2	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
1,1-Dichloroethane	75-34-3	SW8260B	E dng	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	g/L
1,1-Dichloroethylene	75-35-4	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	_	ng/L
1,1-Dichloropropene	563-58-6	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.3	1.0	-	g/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.3	1.0	-	ug/L
1,2,3-Trichloropropane	96-18-4	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.4	1.0	-	ug/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.3	1.0	-	ng/L
1,2,4-Trimethylbenzene		SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
1,2-Dibromo-3-chloropropane (DBCP)	e (DBCP) 96-12-8	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.4	4.0	-	ng/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.4	1.0	-	ng/L
1,2-Dichlorobenzene	95-50-1	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
1,2-Dichloroethane	107-06-2	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.3	1.0	_	ug/L
1,2-Dichloropropane	78-87-5	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.3	1.0	-	ug/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
1,3-Dichlorobenzene	541-73-1	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
1,3-Dichloropropane	142-28-9	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
1,4-Dichlorobenzene	106-46-7	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ug/L
2,2-Dichloropropane	594-20-7	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.3	1.0	-	ng/L
2-Butanone (MEK)	78-93-3	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	1.7	10.0	-	ng/L
2-Chlorotoluene	95-49-8	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
2-Hexanone (MBK)	591-78-6	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	1.7	10.0	-	ng/L
4-Chlorotoluene		SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
4-Methyl-2-pentanone (MIBK)		SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	1.2	10.0	-	ng/L
Acetone	67-64-1	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	7.0	10.0	-	ng/L
Benzene	71-43-2	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
Bromobenzene	108-86-1	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
Bromochloromethane	74-97-5	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.4	1.0	-	ng/L
Bromodichloromethane	75-27-4	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
Bromoform	75-25-2	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.3	1.0	-	ng/L

Page 19 of 21

			Cert	Certificate of Analysis	Vsis						
Client Name: Chesa Client Site ID: Stebbi Submitted To: John M	Chesapeake Geosciences, Inc. Stebbins-Burnham John Kosloski	ces, Inc.						Date Issued:		03/19/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	00	Dil. Factor Units	Units
Bromomethane	74-83-9	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	ВГОР	0.2	10	-	na/l
Carbon disulfide	75-15-0	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	. c.	10.0		ra/F
Carbon tetrachloride	56-23-5	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	0.7		ra/r na/L
Chlorobenzene	108-90-7	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.1	0,1	-	na/L
Chloroethane	75-00-3	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ua/L
Chloroform	67-66-3	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	0.1		a/L
Chloromethane	74-87-3	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.3	1.0		ng/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	ВГОО	0.2	1.0	-	ng/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	0.1		ug/L
Dibromochloromethane	124-48-1	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
Dibromomethane	74-95-3	SW8260B	Dup 3	10030206-008	03/02/10	03/19/10 5:46	BLOD	0.2	1.0		ua/L
Dichlorodifluoromethane	75-71-8	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0		ua/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	5.0	5.0	-	ng/L
Ethylbenzene	100-41-4	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.1	1.0	-	ng/L
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	25.0	25.0	-	ng/L
lodomethane	74-88-4	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.5	10.0	-	ng/L
Isopropylbenzene	98-85-8	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.1	1.0	-	ng/L
m,p-Xylenes	179601-23-1	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	2.0	-	ng/L
Methylene chloride	75-09-2	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	1.0	4.0	-	ng/L
MTBE	1634-04-4	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ug/L
Naphthalene	91-20-3	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0	-	ng/L
n-Butylbenzene	104-51-8	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.1	1.0	-	ng/L
n-Propylbenzene	103-65-1	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.1	1.0	-	ng/L
o-Xylene	95-47-6	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.1	1.0		na/L
p-Isopropyltoluene	9-8-66	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.2	1.0		na/L
sec-Butylbenzene	135-98-8	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.1	1.0		ng/L
Styrene	100-42-5	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	0.1	1.0		na/L
TAME	994-05-8	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	5.0	5.0	-	g/L
ТВА	75-65-0	SW8260B	Dup 3	10030206-008	03/05/10	03/19/10 5:46	BLOD	100	100	-	ng/L

Page 20 of 21

Air Water & Soil Laboratories, Inc. 2109 A. North Hamilton Street (804) 358-8295 - Telephone Richmond, Virginia 23230 (804) 358-8297 - Fax

Certificate of Analysis

Date Issued: Sample Results Qual LOD BLOD BLOD BLOD BLOD BLOD BLOD BLOD BLOD 0.2 03/19/10 5:46 03/19/10 5:46 03/19/10 5:46 03/19/10 5:46 03/19/10 5:46 03/19/10 5:46 03/19/10 5:46 03/19/10 5:46 03/19/10 5:46 Date/Time Analysis 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 Sample Date 0030206-008 0030206-008 10030206-008 10030206-008 0030206-008 10030206-008 0030206-008 10030206-008 0030206-008 0030206-008 Laboratory Sample ID Sample ID Dup 3 Reference SW8260B Chesapeake Geosciences, Inc. Method 10061-02-6 330-20-7 108-05-4 108-88-3 156-60-5 27-18-4 Stebbins-Burnham 75-01-4 79-01-6 75-69-4 John Kosloski Tetrachloroethylene (PCE) trans-1,2-Dichloroethylene trans-1,3-Dichloropropene Trichlorofluoromethane Submitted To: Client Name: Client Site ID: tert-Butylbenzene Trichloroethylene Xylenes, Total Vinyl chloride Vinyl acetate Parameter Toluene

Factor Units

g

ng/L ng/L ng/L

0.1 0.

0.1

0.2 0.2 0.2 0.2 0.2 2.2 0.2

ng/L ng/L ng/L ng/L ug/L ng/L

0. 0.1 0. 1.0 10.0

0. 3.0

0.3

BLOD BLOD

03/19/10 5:46

03/05/10

03/16/10 0:30

03/05/10

0030206-008

Dup 3

SW8015C

TPH-Semi-Volatiles (DRO)

mg/L

03/19/2010

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a dry weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water & Soil Laboratories, Inc.

Company Name: Chesapeake GeoSciences, Inc.	Project Manager: John Kosloski	iger: (i				Parameters		CHAIN-OF-CUSTODY RECORD	RECORD
Project Name: Stebbins-Burnham (03-1335BA2) Page 1 of 1	Project ID: CG-08-0399		S	09				Air, Water & Soil Laboratories, Inc. 2109A North Hamilton Street	Itories, Inc.
Sampler(s): J.C. Perkins & L.R. Bennett	P.O. Number: CG080399JK		 nentaineΩ	28 A93 s ,93 siv O	(93 EP.			Richmond, VA 23230 (804) 358-	1230
Field Sample ID	Date Time	Water Soil	Other No. of o	iv sOOV				Preservative/Remarks	<u>f</u>
Stream 1	3/5/10/10:5	N N	12	X	×			1740	
Stream 2	2	× (2)	1	>	X				
Stream 3	-	X 125.11	1	\\ \\\ !\	X				
Stream 4	700	メボ	1	\ <u>\</u>					
Stream 5	13.57	なな	1	<u>/</u>					
Dup 1 (Stream)	(メ							
Dup 2 (Stream)	1	× 1	1/		X				
Dup 3 (Stream)		> 7	1	\ <u></u>					
Sed 1			\ 	† *	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Sed 2					a,				
Sed 3									
Sed 4									
Sed 5									
Dup 1 (Sed)									
Dup 1 (Sed)									
Dup 1 (Sed)									
FB	<u> </u>							<u>.</u>	1003030
shed by: (Signature)	Date/Time	Received by: (Signature)	(Signature			Relinquished by: (Signature)	y: (Signature)	s-Burnham	10 Days (1.0)
(Printed)	3/4/D	(Printed)	Ô			(Printed)			
Relinquished by: (Signature)	Date/Time	Received by Laboratory: (Signature)	Laborato	ry: (Signat	ure)	Date/Time		Remarks: MDE-RMS Package 1/Level 1 Deliverable RMS 2008 Rates	RMS 2008 Rates
(Printed)		(Printed)					and 1,2 E-mail r	and 1,2-Dibromoethane in EPA 8260 Analyses. E-mail results to jkosloski@cgs.us.com	. E i BE, UIPE, 1,Z-UCA,
	7.000							, mineral and a second a second and a second a second and	

2109A North Hamilton Street · Richmond, Virginia 23230 · Tel: (804) 358-8295 Fax: (804) 358-8297

CGI Stephine

10030206

Days 9/10

	Sample Conditions Checklist			DUE: Recd:	10 (03/0
Openeo (sign)	Lab ID No.: Date Cooler Opened:	3-9-1		And I store	
1.	How were samples received? Fed Ex UPS Courier Walk In	<u>YES</u>	<u>NO</u>	<u>N/A</u>	
2.	Were custody seals used?				
3. 4. 5. 6. 7. 8. 9 10 11	If yes, are custody seals unbroken and intact at the date and time of arrival? Are the custody papers filled out completely and correctly? Do all bottle labels agree with custody papers? Are the samples received on ice? Is the temperature blank or representative sample within acceptable limits? (4 degrees Celsius +/-2) Are all samples within holding time for requested tests? Is a sufficient amount of sample provided to perform the tests indicated? Are all samples in proper containers for the analyses requested? Are all samples appropriately preserved for the analyses requested? Are all volatile organic containers free of headspace?				
<u> </u>	comments Disample times provided on For Dup somples	(()C	-	

Appendix C.4
Analytical Laboratory Data
Stream Bottom Sediment

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 10030209

Client Name:

Chesapeake Geosciences, Inc.

Date Issued:

5405 Twin Knolls Rd.

March 23, 2010

Suite 1

Columbia, Maryland 21045

Submitted To: John Kosloski

Project Number

CG-08-0399

Client Site I.D.: Stebbins-Burnham (03-1335BA2)

Purchase Order

CG080399JK

Laboratory Sample ID	Sample ID	Sample Date	Receive Date
10030209-001	Sed 1	March 05, 2010	March 09, 2010
10030209-002	Sed 2	March 05, 2010	March 09, 2010
10030209-003	Sed 3	March 05, 2010	March 09, 2010
10030209-004	Sed 4	March 05, 2010	March 09, 2010
10030209-005	Sed 5	March 05, 2010	March 09, 2010
10030209-006	Dup 1 (sed)	March 05, 2010	March 09, 2010
10030209-007	Dup 2 (sed)	March 05, 2010	March 09, 2010
10030209-008	Dup 3 (sed)	March 05, 2010	March 09, 2010
10030209-009	FB	March 05, 2010	March 09, 2010

On March 09, 2010, nine soil samples were received via courier for analysis in accordance with the attached Chain-Of-Custody. The samples were received with sample containers intact by Georgianna Wenrich (AWS). Any deviations, discrepancies or irregularities observed in sample condition, including holding times, temperature, containers or preservatives have been notated on the chain-of-custody.

The samples were prepared and analyzed in accordance with SW-846/Standard Methods 18th edition methodology. Quality control data will be issued separately in a Level II data package.

Definition of Terms:

LOQ = Limit of Quantitation

LOD = Limit of Detection

BLOD = Below the Limit of Detection

J = Qualifier used if the reported concentration is less than the LOQ but greater than the

LOD. The concentration is considered to be estimated.

2109A North Hamilton Street * Richmond, Virginia 23230 * Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 10030209

Client Name:

Chesapeake Geosciences, Inc.

Date Issued:

March 23, 2010

5405 Twin Knolls Rd.

Suite 1

Columbia, Maryland 21045

Submitted To: John Kosloski

Project Number

CG-08-0399

Client Site I.D.: Stebbins-Burnham (03-1335BA2)

Purchase Order

CG080399JK

Ted Soyars

Laboratory Manager

Certificate of Analysis

Dii. Factor Units mg/kg ug/kg Jg/kg ug/kg Jg/kg ug/kg ug/kg ug/kg ug/kg 03/23/2010 20 50 20 20 20 50 50 20 20 20 20 20 20 20 20 က္ထ 20 20 22 20 20 20 20 20 က္ထ g 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 31.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 Date Issued: 91.1 91.1 91.1 Sample Results Qual LOD 91.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 364 364 364 BLOD 3LOD BLOD 3LOD BLOD BLOD 3LOD BLOD 3,00 3LOD 03/19/10 12:58 03/19/10 12:58 33/19/10 12:58 33/19/10 12:58 33/19/10 12:58 33/19/10 12:58 33/19/10 12:58 03/19/10 12:58 03/19/10 12:58 33/19/10 12:58 03/19/10 12:58 03/19/10 12:58 03/19/10 12:58 03/19/10 12:58 33/19/10 12:58 33/19/10 12:58 03/19/10 12:58 03/19/10 12:58 33/19/10 12:58 03/19/10 12:58 03/19/10 12:58 03/19/10 12:58 33/19/10 12:58 03/19/10 12:58 03/19/10 12:58 03/19/10 12:58 03/19/10 12:58 03/11/10 12:21 Date/Time Analysis 03/05/10 03/05/10 03/05/10 3/05/10 33/05/10 03/05/10 03/05/10 33/05/10 03/05/10 33/05/10 33/05/10 03/05/10 03/05/10 33/05/10 03/05/10 33/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 33/05/10 3/05/10 33/05/10 03/05/10 03/05/10 03/05/10 3/05/10 Sample 10030209-001 10030209-001 0030209-001 0030209-001 0030209-001 0030209-001 0030209-001 0030209-001 0030209-001 Laboratory Sample ID Sample ID Sed 1 Stebbins-Burnham (03-1335BA2) Reference 3W8260B SW8260B 3W8260B SW8260B SW8260B SW8015C SW8260B SW8260B SW8260B Chesapeake Geosciences, Inc. Method 142-28-9 530-20-6 563-58-6 120-82-1 107-06-2 108-67-8 591-78-6 106-43-4 71-55-6 106-93-4 541-73-1 594-20-7 75-34-3 96-18-4 95-63-6 96-12-8 95-50-1 78-87-5 106-46-7 78-93-3 37-64-1 71-43-2 08-10-1 79-34-5 79-00-5 75-35-4 37-61-6 35-49-8 John Kosloski 1,2-Dibromo-3-chloropropane (DBCP) 4-Methyl-2-pentanone (MIBK) 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane ,2-Dibromoethane (EDB) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene ,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Submitted To: 1,2,3-Trichloropropane Client Site ID: Client Name: 1,1,1-Trichloroethane 1,1,2-Trichloroethane TPH-Volatiles (GRO) ,1-Dichloroethylene 1,1-Dichloropropene ,2-Dichlorobenzene 1,2-Dichloropropane I,3-Dichlorobenzene I,4-Dichlorobenzene 1,3-Dichloropropane 2,2-Dichloropropane ,2-Dichloroethane I, 1-Dichloroethane 2-Hexanone (MBK) 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene Parameter Benzene Acetone

Page 1 of 24

Certificate of Analysis

			וכו		000						
	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2)	ces, Inc. -1335BA2)						Date Issued:		03/23/2010	010
Submitted To:	John Kosloski										
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor Units	Units
Bromobenzene	108-86-1	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Bromochloromethane	74-97-5	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Bromodichloromethane	75-27-4	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Bromoform	75-25-2	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	364	91.1	20	ug/kg
Bromomethane	74-83-9	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Carbon disulfide	75-15-0	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Chlorobenzene	108-90-7	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Chloroethane	75-00-3	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Chloroform	62-99-29	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Chloromethane	74-87-3	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Dibromochloromethane	124-48-1	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Dibromomethane	74-95-3	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Di-isopropyl ether (DIPE)	_	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Ethylbenzene	100-41-4	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Ethyl-t-butyl ether (ETBE)	_	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
lodomethane	74-88-4	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Isopropylbenzene	98-85-8	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Methylene chloride	75-09-2	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
MTBE	1634-04-4	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Naphthalene	91-20-3	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
n-Butylbenzene	104-51-8	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
n-Propylbenzene	103-65-1	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
o-Xylene	92-47-6	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
p-Isopropyltoluene	9-8-66	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg

Page 2 of 24

Certificate of Analysis

			5		200						
Client Name: Chesa Client Site ID: Stebbi Submitted To: John P	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	nces, Inc. 1-1335BA2)						Date Issued:		03/23/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	00 1	Dil. Factor Units	Units
sec-Butylbenzene	135-98-8	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Styrene	100-42-5	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
TAME	994-05-8	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
ТВА	75-65-0	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	455	20	ug/kg
tert-Butylbenzene	9-90-86	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Toluene	108-88-3	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Trichloroethylene	79-01-6	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	50	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Vinyl acetate	108-05-4	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Vinyl chloride	75-01-4	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1	20	ug/kg
Xylenes, Total	1330-20-7	SW8260B	Sed 1	10030209-001	03/05/10	03/19/10 12:58	BLOD	91.1	91.1		ug/kg
TPH-Semi-Volatiles (DRO)	ΝΑ	SW8015C	Sed 1	10030209-001	03/05/10	03/22/10 16:28	BLOD	18.2	18.2		mg/kg
TPH-Volatiles (GRO)	NA	SW8015C	Sed 2	10030209-002	03/05/10	03/12/10 16:39	BLOD	9.0	0.9	20	mg/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	29.7	-	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	59.7		ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	29.7	-	ug/kg
1,1,2-Trichloroethane	2-00-62	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	29.7	-	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	29.7	-	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	29.7	-	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	269.7	26.7	-	ug/kg
1,2,4-Trimethylbenzene	92-63-6	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	29.7		ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	BCP) 96-12-8	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	29.7	 -	ug/kg

Certificate of Analysis

Jg/kg ug/kg Jg/kg ug/kg ug/kg ug/kg ug/kg ug/kg Factor Units 03/23/2010 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 g 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 Date Issued: 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 239 59.7 239 239 239 239 Qual LOD Sample Results BLOD 3LOD BLOD BLOD BLOD BLOD BLOD 300 BLOD BLOD 03/19/10 1:06 03/19/10 1:06 03/19/10 1:06 03/19/10 1:06 03/19/10 1:06 03/19/10 1:06 33/19/10 1:06 33/19/10 1:06 33/19/10 1:06 33/19/10 1:06 03/19/10 1:06 33/19/10 1:06 03/19/10 1:06 33/19/10 1:06 03/19/10 1:06 03/19/10 1:06 33/19/10 1:06 33/19/10 1:06 33/19/10 1:06 33/19/10 1:06 33/19/10 1:06 33/19/10 1:06 33/19/10 1:06 03/19/10 1:06 33/19/10 1:06 33/19/10 1:06 33/19/10 1:06 Date/Time 03/05/10 33/05/10 33/05/10 33/05/10 33/05/10 01/20/20 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 3/05/10 33/05/10 03/05/10 03/05/10 33/05/10 3/05/10 3/05/10 3/05/10 3/05/10 33/05/10 3/05/10 33/05/10 33/05/10 3/05/10 33/05/10 Sample 0030209-002 10030209-002 0030209-002 0030209-002 0030209-002 0030209-002 0030209-002 0030209-002 0030209-002 Laboratory Sample ID Sample ID Sed 2 Sed₂ Sed₂ Sed 2 Sed 2 Sed₂ Sed 2 Sed₂ Sed₂ Sed 2 Sed 2 Sed₂ Sed 2 Sed 2 Sed 2 Sed₂ Sed 2 Sed 2 Sed 2 Sed 2 Stebbins-Burnham (03-1335BA2) Reference Method SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B Chesapeake Geosciences, Inc. 0061-01-5 106-46-7 56-59-2 08-67-8 42-28-9 594-20-7 591-78-6 106-93-4 07-06-2 541-73-1 78-93-3 95-49-8 106-43-4 08-10-1 08-86-1 75-27-4 75-25-2 56-23-5 108-90-7 75-00-3 67-66-3 67-64-1 35-50-1 78-87-5 71-43-2 74-97-5 74-83-9 75-15-0 John Kosloski 4-Methyl-2-pentanone (MIBK) 1,2-Dibromoethane (EDB) cis-1,2-Dichloroethylene cis-1,3-Dichloropropene ,3,5-Trimethylbenzene Bromodichloromethane Client Site ID: Submitted To: Client Name: Bromochloromethane ,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene ,2-Dichloropropane ,3-Dichloropropane 2,2-Dichloropropane Carbon tetrachloride ,2-Dichloroethane 2-Hexanone (MBK) 2-Butanone (MEK) Carbon disulfide 2-Chlorotoluene 4-Chlorotoluene Chloromethane Bromobenzene Chlorobenzene Bromomethane Chloroethane Chloroform Bromoform Parameter Benzene Acetone

Page 4 of 24

Certificate of Analysis

					200						
Client Name: C	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2)	nces, Inc. -1335BA2)						Date Issued:		03/23/2010	2010
	John Kosloski	`									
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	ΓOO	Dil. Factor	Dil. Factor Units
Dibromochloromethane	124-48-1	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7		ug/kg
Dibromomethane	74-95-3	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	₩	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	γ	ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	59.7		ug/kg
Ethylbenzene	100-41-4	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	59.7	-	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
lodomethane	74-88-4	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	59.7	-	ug/kg
Isopropylbenzene	98-85-8	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
m,p-Xylenes	179601-23-1	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	59.7	-	ug/kg
Methylene chloride	75-09-2	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
MTBE	1634-04-4	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	26.2	-	ug/kg
Naphthalene	91-20-3	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	29.7	-	ug/kg
n-Butylbenzene	104-51-8	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7		ug/kg
n-Propylbenzene	103-65-1	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
o-Xylene	95-47-6	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	29.7	-	ug/kg
p-Isopropyltoluene	9-8-66	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
sec-Butylbenzene	135-98-8	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
Styrene	100-42-5	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
TAME	994-05-8	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	59.7	v -	ug/kg
TBA	75-65-0	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	298	-	ug/kg
tert-Butylbenzene	9-90-86	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	26.7	26.7	-	ug/kg
Tetrachloroethylene (PCE)	5) 127-18-4	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	59.7	-	ug/kg
Toluene	108-88-3	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	29.7	59.7	-	ug/kg
trans-1,2-Dichloroethylene	e 156-60-5	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	26.7	29.7	-	ug/kg
trans-1,3-Dichloropropene	e 10061-02-6	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	59.7	-	ug/kg
Trichloroethylene	79-01-6	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	29.7	-	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	26.7	-	ug/kg
Vinyl acetate	108-05-4	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	26.7	,-	ug/kg
Vinyl chloride	75-01-4	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	BLOD	59.7	26.7	-	ug/kg

Page 5 of 24

Certificate of Analysis

	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2)	ces, Inc. 1335BA2)						Date Issued:		03/23/2010	010
Submitted 10: Join rosioski Parameter CA	JSKI CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	POO	Dil. Factor Units	Units
Xylenes, Total	1330-20-7	SW8260B	Sed 2	10030209-002	03/05/10	03/19/10 1:06	ВГОР	59.7	59.7	-	ug/kg
TPH-Semi-Volatiles (DRO)	NA	SW8015C	Sed 2	10030209-002	03/05/10	03/22/10 16:55	BLOD	11.9	11.9	-	mg/kg
TPH-Volatiles (GRO)	NA	SW8015C	Sed 3	10030209-003	03/05/10	03/11/10 13:09	BLOD	6.1	6.1	-	mg/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09		ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09		ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09		ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09		ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09		ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09		ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)) 96-12-8	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9'09	9.09	-	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09		ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09		ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09		ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09		ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	242	9.09		ug/kg
2-Chlorotoluene	95-49-8	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	242	9.09		ug/kg
4-Chlorotoluene	106-43-4	SW8260B	Sed 3	10030209-003	03/05/10	03/19/10 1:29	BLOD	9.09	9.09	-	ug/kg

Page 6 of 24

Certificate of Analysis

ug/kg Jg/kg Jg/kg Jg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg Jg/kg ug/kg Jg/kg ug/kg ug/kg Jg/kg Jg/kg Jg/kg ug/kg ug/kg ug/kg ug/kg Jg/kg ug/kg ug/kg Jg/kg Jg/kg Factor Units 03/23/2010 ä 9.09 00 Date Issued: 9.09 Qual LOD 242 Sample Results BLOD BLOD BLOD BLOD BLOD BLOD BLOD BLOD BLOD 3LOD BLOD 3LOD BLOD 33/19/10 1:29 03/19/10 1:29 03/19/10 1:29 03/19/10 1:29 03/19/10 1:29 33/19/10 1:29 03/19/10 1:29 33/19/10 1:29 03/19/10 1:29 33/19/10 1:29 3/19/10 1:29 3/19/10 1:29 3/19/10 1:29 3/19/10 1:29 03/19/10 1:29 03/19/10 1:29 03/19/10 1:29 03/19/10 1:29 03/19/10 1:29 03/19/10 1:29 33/19/10 1:29 03/19/10 1:29 3/19/10 1:29 33/19/10 1:29 33/19/10 1:29 3/19/10 1:29 33/19/10 1:29 33/19/10 1:29 Date/Time Analysis 03/05/10 03/05/10 33/05/10 33/05/10 33/05/10 03/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 03/05/10 33/05/10 33/05/10 03/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 33/05/10 03/05/10 33/05/10 33/05/10 03/05/10 33/05/10 03/05/10 03/05/10 Sample 0030209-003 0030209-003 0030209-003 10030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 10030209-003 10030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 Laboratory Sample ID Sample ID Sed 3 SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B 3W8260B Stebbins-Burnham (03-1335BA2) SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B Reference SW8260B SW8260B Chesapeake Geosciences, Inc. Method 79601-23-1 0061-01-5 634-04-4 637-92-3 04-51-8 56-59-2 08-20-3 00-41-4 24-48-1 91-20-3 108-86-1 7-06-80 75-71-8 74-87-3 74-95-3 74-88-4 108-10-1 75-25-2 74-83-9 75-15-0 56-23-5 75-00-3 67-66-3 38-82-8 75-09-2 71-43-2 75-27-4 74-97-5 57-64-1 CAS John Kosloski 4-Methyl-2-pentanone (MIBK) Ethyl-t-butyl ether (ETBE) Dichlorodifluoromethane Di-isopropyl ether (DIPE) cis-1,2-Dichloroethylene cis-1,3-Dichloropropene Dibromochloromethane Bromodichloromethane Submitted To: Client Name: Bromochloromethane Client Site ID: Carbon tetrachloride Methylene chloride Dibromomethane sopropylbenzene n-Butylbenzene Carbon disulfide Bromobenzene Bromomethane Chloromethane Chlorobenzene Ethylbenzene odomethane Chloroethane m,p-Xylenes Naphthalene Chloroform Bromoform Parameter Benzene Acetone MTBE

Page 7 of 24

Certificate of Analysis

mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ıg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg Jg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg Jg/kg Jg/kg Jg/kg Factor Units 03/23/2010 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 7.07 7.0.7 7.07 7.07 70.7 9.09 9.09 70.7 7.07 70.7 9.09 9.09 9.09 12.1 7.07 007 303 7.1 Date Issued: 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.06 9.09 9.09 9.09 7.07 70.7 70.7 70.7 70.7 70.7 70.7 12.1 7.07 70.7 Qual LOD 7.1 Sample Results BLOD 15.6 33/22/10 17:21 33/11/10 13:33 03/19/10 1:29 33/19/10 1:52 03/19/10 1:52 13/19/10 1:52 33/19/10 1:52 33/19/10 1:52 03/19/10 1:29 03/19/10 1:29 03/19/10 1:29 33/19/10 1:29 03/19/10 1:29 33/19/10 1:29 33/19/10 1:52 33/19/10 1:52 33/19/10 1:52 33/19/10 1:52 03/19/10 1:29 03/19/10 1:29 33/19/10 1:29 03/19/10 1:29 03/19/10 1:29 03/19/10 1:29 03/19/10 1:29 33/19/10 1:29 03/19/10 1:29 33/19/10 1:29 Analysis Date/Time 03/05/10 33/05/10 03/05/10 33/05/10 33/05/10 03/05/10 03/05/10 03/05/10 33/05/10 33/05/10 3/05/10 33/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 02/02/10 33/05/10 33/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 03/05/10 33/05/10 03/05/10 Sample 0030209-003 0030209-004 0030209-004 0030209-004 0030209-004 0030209-003 0030209-003 0030209-003 10030209-004 10030209-004 0030209-004 0030209-004 0030209-004 10030209-003 0030209-003 0030209-003 0030209-003 0030209-003 10030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-003 0030209-004 0030209-003 0030209-003 Laboratory Sample ID Sample ID Sed 3 Sed 4 Sed 4 Sed 4 Sed 3 Sed 4 Sed 3 Sed 3 Sed 3 Sed 3 Reference Method SW8260B SW8015C SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B Stebbins-Burnham (03-1335BA2) SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B 3W8260B SW8260B SW8260B SW8260B SW8015C 3W8260B SW8260B SW8260B 3W8260B Chesapeake Geosciences, Inc. 0061-02-6 330-20-7 127-18-4 08-88-3 56-60-5 108-05-4 630-20-6 563-58-6 35-98-8 00-42-5 994-05-8 103-65-1 75-34-3 75-35-4 87-61-6 75-65-0 9-90-86 79-01-6 75-69-4 75-01-4 71-55-6 79-34-5 79-00-5 96-18-4 95-47-6 9-84-6 CAS ٧ John Kosloski **TPH-Semi-Volatiles (DRO)** trans-1,2-Dichloroethylene Tetrachloroethylene (PCE) 1,1,1,2-Tetrachloroethane rans-1,3-Dichloropropene ,1,2,2-Tetrachloroethane 1,2,3-Trichlorobenzene **Frichlorofluoromethane** ,2,3-Trichloropropane Submitted To: ,1,1-Trichloroethane Client Name: Client Site ID: 1,1,2-Trichloroethane I,1-Dichloroethylene TPH-Volatiles (GRO) I,1-Dichloropropene 1,1-Dichloroethane p-Isopropyltoluene sec-Butylbenzene tert-Butylbenzene n-Propylbenzene Trichloroethylene **Xylenes**, Total Vinyl chloride /inyl acetate Parameter Toluene Styrene TAME TBA

Page 8 of 24

Certificate of Analysis

				Certificate of Analysis	NSIS/						
Client Name: Chesapeake C Client Site ID: Stebbins-Burn	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	es, Inc. 1335BA2)						Date Issued:		03/23/2010	010
	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dii. Factor Units	Units
1.2.4-Trichlorobenzene	120-82-1	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	ВГОБ	7.07	70.7	-	ug/kg
1.2.4-Trimethylbenzene	95-63-6	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	70.7	-	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	ВГОР	7.07	70.7	-	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	70.7	-	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	70.7		ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	70.7	-	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	70.7	-	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	70.7		ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	7.07	-	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	70.7	-	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	70.7	-	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	7.07	-	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	283	70.7	-	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	7.07	-	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	283	7.07	-	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	70.7	-	ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	283	70.7	-	ug/kg
Acetone	67-64-1	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	283	70.7	-	ug/kg
Benzene	71-43-2	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	70.7		ug/kg
Bromobenzene	108-86-1	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	ВГОО	7.07	70.7	-	ug/kg
Bromochloromethane	74-97-5	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	70.7	-	ug/kg
Bromodichloromethane	75-27-4	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	70.7	-	ug/kg
Bromoform	75-25-2	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	283	70.7	-	ug/kg
Bromomethane	74-83-9	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	7.07	7.07	-	ug/kg
Carbon disulfide	75-15-0	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	7.07	-	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	70.7		ug/kg
Chlorobenzene	108-90-7	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	70.7	-	ug/kg
Chloroethane	75-00-3	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	70.7	-	ug/kg
Chloroform	67-66-3	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	70.7	-	ng/kg
				Page 9 of 24							

Certificate of Analysis

ug/kg Jg/kg Jg/kg Jg/kg Jg/kg Jg/kg Jg/kg ug/kg Jg/kg Factor Units 03/23/2010 7.07 7.07 7.0.7 70.7 7.07 7.07 7.0.7 70.7 7.07 7.07 7.07 70.7 7.0.7 70.7 go 7.0.7 70.7 7.07 70.7 70.7 7.07 70.7 70.7 7.0.7 7.07 354 70.7 7.0.7 7.07 Date Issued: 70.7 7.07 7.07 7.07 70.7 7.07 7.07 70.7 7.07 70.7 70.7 7.0.7 70.7 70.7 7.07 70.7 70.7 70.7 70.7 7.07 70.7 70.7 70.7 70.7 70.7 70.7 70.7 Qual LOD Sample Results BLOD 03/19/10 1:52 03/19/10 1:52 33/19/10 1:52 03/19/10 1:52 33/19/10 1:52 33/19/10 1:52 33/19/10 1:52 03/19/10 1:52 03/19/10 1:52 33/19/10 1:52 03/19/10 1:52 03/19/10 1:52 03/19/10 1:52 03/19/10 1:52 03/19/10 1:52 3/19/10 1:52 03/19/10 1:52 03/19/10 1:52 03/19/10 1:52 33/19/10 1:52 33/19/10 1:52 33/19/10 1:52 03/19/10 1:52 33/19/10 1:52 03/19/10 1:52 33/19/10 1:52 33/19/10 1:52 03/19/10 1:52 Date/Time Analysis 03/05/10 03/05/10 33/05/10 33/05/10 03/05/10 03/05/10 33/05/10 03/02/10 01/90/20 03/05/10 01/20/20 03/05/10 03/05/10 03/05/10 33/05/10 33/05/10 33/05/10 03/05/10 33/05/10 03/05/10 03/05/10 03/05/10 33/05/10 33/05/10 03/05/10 03/05/10 33/05/10 3/05/10 33/05/10 Sample Date 0030209-004 0030209-004 0030209-004 10030209-004 10030209-004 10030209-004 10030209-004 0030209-004 0030209-004 0030209-004 10030209-004 10030209-004 0030209-004 0030209-004 10030209-004 0030209-004 0030209-004 0030209-004 0030209-004 0030209-004 0030209-004 10030209-004 0030209-004 10030209-004 0030209-004 0030209-004 0030209-004 0030209-004 0030209-004 Laboratory Sample ID Sample ID Sed 4 SW8260B Reference Method SW8260B 3W8260B SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B Stebbins-Burnham (03-1335BA2) SW8260B 3W8260B 3W8260B 3W8260B 3W8260B 3W8260B SW8260B SW8260B SW8260B 3W8260B 3W8260B SW8260B 3W8260B 3W8260B SW8260B Chesapeake Geosciences, Inc. 79601-23-1 0061-02-6 0061-01-5 634-04-4 104-51-8 56-60-5 337-92-3 03-65-1 35-98-8 00-42-5 994-05-8 08-88-3 24-48-1 08-20-3 00-41-4 27-18-4 79-01-6 56-59-2 75-65-0 9-90-86 95-47-6 9-84-66 74-87-3 7-95-3 98-82-8 75-09-2 91-20-3 75-71-8 74-88-4 John Kosloski Fetrachloroethylene (PCE) rans-1,2-Dichloroethylene trans-1,3-Dichloropropene Ethyl-t-butyl ether (ETBE) Di-isopropyl ether (DIPE) Dichlorodifluoromethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropene Dibromochloromethane Submitted To: Client Name: Client Site ID: Methylene chloride p-Isopropyltoluene sec-Butylbenzene sopropylbenzene tert-Butylbenzene **Frichloroethylene** Dibromomethane n-Propylbenzene Chloromethane n-Butylbenzene Ethylbenzene odomethane Naphthalene m,p-Xylenes Parameter o-Xylene Toluene Styrene TAME MTBE

Page 10 of 24

Certificate of Analysis

Client Name: Chesapeake (Client Site ID: Stebbins-Burr	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	ses, Inc. 1335BA2)						Date Issued:		03/23/2010	010
	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	00	Dil. Factor Units	Units
Trichlorofluoromethane	75-69-4	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	70.7	-	ug/kg
Vinyl acetate	108-05-4	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	70.7	-	ug/kg
Vinyl chloride	75-01-4	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	7.07	-	ug/kg
Xylenes, Total	1330-20-7	SW8260B	Sed 4	10030209-004	03/05/10	03/19/10 1:52	BLOD	70.7	70.7	-	ug/kg
TPH-Semi-Volatiles (DRO)	NA	SW8015C	Sed 4	10030209-004	03/05/10	03/22/10 17:47	14.2	14.1	14.1	-	mg/kg
TPH-Volatiles (GRO)	NA	SW8015C	Sed 5	10030209-005	03/05/10	03/11/10 13:57	ВГОО	7.8	7.8	-	mg/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	ВГОО	78.4	78.4		ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4		ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	ВГОО	78.4	78.4	-	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4		ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	314	78.4	-	ng/kg

Certificate of Analysis

					0						
Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	nces, Inc. 3-1335BA2)						Date Issued:		03/23/2010	2010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	ροη	Dil. Facto	Dil. Factor Units
2-Chlorotoluene	95-49-8	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	314	78.4		ug/kg
4-Chlorotoluene	106-43-4	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
4-Methyl-2-pentanone (MIBK)	(MIBK) 108-10-1	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	314	78.4	-	ug/kg
Acetone	67-64-1	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	314	78.4	-	ug/kg
Benzene	71-43-2	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Bromobenzene	108-86-1	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Bromochloromethane	74-97-5	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Bromodichloromethane	75-27-4	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	4	ug/kg
Bromoform	75-25-2	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	314	78.4		ug/kg
Bromomethane	74-83-9	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Carbon disulfide	75-15-0	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Chlorobenzene	108-90-7	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4		ug/kg
Chloroethane	75-00-3	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4		ug/kg
Chioroform	6-99-29	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4		ug/kg
Chloromethane		SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
cis-1,2-Dichloroethylene	•	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
cis-1,3-Dichloropropene		SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Dibromochloromethane		SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Dibromomethane		SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Dichlorodifluoromethane	e 75-71-8	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Di-isopropyl ether (DIPE)	E) 108-20-3	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Ethylbenzene	100-41-4	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Ethyl-t-butyl ether (ETBE)	E) 637-92-3	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
lodomethane	74-88-4	SW8260B	Sed 5	10030209-005	03/02/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Isopropylbenzene	98-85-8	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
m,p-Xylenes	179601-23-1	1 SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	-	ug/kg
Methylene chloride	75-09-2	SW8260B	Sed 5	10030209-005	03/05/10	03/19/10 2:15	BLOD	78.4	78.4	4	ug/kg

Page 12 of 24

Air Water & Soil Laboratories, Inc. 2109 A. North Hamilton Street (804) 358-8295 - Telephone (804) 358-8297 - Fax Richmond, Virginia 23230

Certificate of Analysis

mg/kg mg/kg ug/kg Jg/kg Jg/kg 03/23/2010 Factor Units ä 78.4 78.4 78.4 007 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 2.5 8.4 15.7 392 25 25 25 125 25 25 Date Issued: 78.4 78.4 78.4 8.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 78.4 2.5 78.4 Qual LOD 5.7 25 25 25 125 25 25 Sample Results BLOD BLOD BLOD BLOD BLOD BLOD BLOD BLOD BLOD 31.0D 31.00 BLOD 22.4 33/22/10 18:13 33/11/10 14:22 03/19/10 2:15 03/19/10 2:15 03/19/10 2:15 03/19/10 2:15 33/19/10 2:15 03/19/10 2:15 33/19/10 2:15 03/19/10 2:15 03/19/10 2:15 03/19/10 2:15 03/19/10 2:15 03/19/10 2:15 33/19/10 2:15 3/19/10 2:15 03/19/10 2:15 33/19/10 2:37 03/19/10 2:15 03/19/10 2:15 03/19/10 2:15 03/19/10 2:15 03/19/10 2:15 3/19/10 2:37 33/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 Date/Time Analysis 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 33/05/10 3/05/10 03/05/10 33/05/10 33/05/10 03/05/10 03/05/10 33/05/10 03/05/10 03/05/10 33/05/10 33/05/10 33/05/10 03/05/10 03/02/10 03/05/10 33/05/10 3/05/10 33/05/10 03/05/10 33/05/10 03/05/10 Sample Date 0030209-005 0030209-005 0030209-006 0030209-006 0030209-006 0030209-006 0030209-006 0030209-006 10030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-005 0030209-006 Laboratory Sample ID Jup 1 (sed) Jup 1 (sed) Oup 1 (sed) Dup 1 (sed) Jup 1 (sed) Oup 1 (sed) Jup 1 (sed) Sample ID Sed 5 Stebbins-Burnham (03-1335BA2) SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8015C SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B 3W8015C Reference SW8260B 3W8260B Chesapeake Geosciences, Inc. Method 10061-02-6 330-20-7 634-04-4 135-98-8 04-51-8 100-42-5 994-05-8 08-88-3 56-60-5 530-20-6 127-18-4 108-05-4 03-65-1 91-20-3 35-47-6 9-88-66 75-65-0 9-90-86 75-01-4 71-55-6 79-34-5 79-00-5 75-34-3 75-35-4 79-01-6 75-69-4 ¥ John Kosloski PH-Semi-Volatiles (DRO) Tetrachloroethylene (PCE) rans-1,2-Dichloroethylene trans-1,3-Dichloropropene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane **Trichlorofluoromethane** Submitted To: Client Name: Client Site ID: 1,1,2-Trichloroethane 1,1,1-Trichloroethane **TPH-Volatiles (GRO)** I,1-Dichloroethylene 1,1-Dichloroethane p-Isopropyltoluene sec-Butylbenzene tert-Butylbenzene **Frichloroethylene** n-Propylbenzene n-Butylbenzene Xylenes, Total /inyl chloride Vinyl acetate Naphthalene Parameter o-Xylene Toluene Styrene TAME

TBA

Certificate of Analysis

Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	e Geoscien urnham (03 ski	nces, Inc. -1335BA2)						Date Issued:		03/23/2010	2010
Parameter	100	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	Pod	Dil. Factor	Dil. Factor Units
1,1-Dichloropropene		563-58-6	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	ВГОВ	125	125	-	ug/kg
1,2,3-Trichlorobenzene		87-61-6	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
1,2,3-Trichloropropane		96-18-4	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
1,2,4-Trichlorobenzene		120-82-1	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
1,2,4-Trimethylbenzene		95-63-6	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	ane (DBCP)	96-12-8	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
1,2-Dibromoethane (EDB)	'В)	106-93-4	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
1,2-Dichlorobenzene		95-50-1	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125		ug/kg
1,2-Dichloroethane		107-06-2	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125		ug/kg
1,2-Dichloropropane		78-87-5	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
1,3,5-Trimethylbenzene		108-67-8	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
1,3-Dichlorobenzene		541-73-1	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
1,3-Dichloropropane		142-28-9	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
1,4-Dichlorobenzene		106-46-7	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
2,2-Dichloropropane		594-20-7	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
2-Butanone (MEK)		78-93-3	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	498	125	-	ug/kg
2-Chlorotoluene		95-49-8	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
2-Hexanone (MBK)		591-78-6	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	ВГОО	498	125	-	ug/kg
4-Chlorotoluene		106-43-4	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	ВГОО	125	125	-	ug/kg
4-Methyl-2-pentanone (MIBK)	MIBK)	108-10-1	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	498	125	-	ug/kg
Acetone		67-64-1	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	ВГОО	498	125	_	ug/kg
Benzene		71-43-2	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
Bromobenzene		108-86-1	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	_	ug/kg
Bromochloromethane		74-97-5	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
Bromodichloromethane		75-27-4	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
Bromoform		75-25-2	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	498	125	-	ug/kg
Bromomethane		74-83-9	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
Carbon disulfide		75-15-0	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
Carbon tetrachloride		56-23-5	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg

Page 14 of 24

Certificate of Analysis

Parameter CAS Chlorobenzene 108-90-7 Chloroethane 75-00-3 Chlorotorm 67-66-3 Chloromethane 74-87-3 cis-1,2-Dichloropropene 10061-01-5 Dibromochloromethane 124-48-1 Dichlorodiffuoromethane 75-71-8 Dichlorodiffuoromethane 75-71-8 Dichlorodiffuoromethane 75-71-8 Dichlorodiffuoromethane 75-71-8 Dichlorodiffuoromethane 75-71-8 Dichlorodiffuoromethane 100-41-4 Ethyl-t-butyl ether (ETBE) 637-92-3 Iodomethane 98-82-8 Indomethane 98-82-8 Impropylbenzene 98-82-8 In-Butylbenzene 103-65-1 In-Propylbenzene 99-87-6 Pisopropyltoluene 99-87-6 Sec-Butylbenzene 100-42-5 TAME 75-65-0 TBA 75-65-0	Reference Method SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B	Client Sample ID Dup 1 (sed)	Laboratory Sample ID 10030209-006 10030209-006 10030209-006 10030209-006 10030209-006 10030209-006 10030209-006	Sample Date 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10	Analysis Date/Time 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37	Sample Results BLOD BLOD BLOD	Qual LOD	C	Ë	
	SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B	Dup 1 (sed)	10030209-006 10030209-006 10030209-006 10030209-006 10030209-006 10030209-006	03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10	03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37	BLOD BLOD BLOD		j) 1	Dil. Factor Units	Units
	SW8260B SW8260B SW8260B SW8260B SW8260B SW8260B	Dup 1 (sed)	10030209-006 10030209-006 10030209-006 10030209-006 10030209-006 10030209-006	03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10	03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B SW8260B SW8260B SW8260B SW8260B	Dup 1 (sed)	10030209-006 10030209-006 10030209-006 10030209-006 10030209-006	03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10	03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B SW8260B SW8260B SW8260B SW8260B	Dup 1 (sed)	10030209-006 10030209-006 10030209-006 10030209-006 10030209-006	03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10	03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37		125	125	-	ug/kg
	SW8260B SW8260B SW8260B SW8260B	Dup 1 (sed)	10030209-006 10030209-006 10030209-006 10030209-006	03/05/10 03/05/10 03/05/10 03/05/10 03/05/10	03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B SW8260B SW8260B	Dup 1 (sed)	10030209-006 10030209-006 10030209-006	03/05/10 03/05/10 03/05/10 03/05/10 03/05/10	03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B SW8260B	Dup 1 (sed) Dup 1 (sed) Dup 1 (sed) Dup 1 (sed)	10030209-006 10030209-006 10030209-006	03/05/10 03/05/10 03/05/10 03/05/10	03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed) Dup 1 (sed) Dup 1 (sed)	10030209-006 10030209-006	03/05/10 03/05/10 03/05/10 03/05/10	03/19/10 2:37 03/19/10 2:37 03/19/10 2:37 03/19/10 2:37	BLOD	125	125	-	ug/kg
		Dup 1 (sed) Dup 1 (sed)	10030209-006	03/05/10 03/05/10 03/05/10	03/19/10 2:37 03/19/10 2:37 03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)		03/05/10 03/05/10	03/19/10 2:37 03/19/10 2:37	BLOD	125	125		ug/kg
	SW8260B	(Can) + 0110	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dab I (sed)	10030209-006			BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	1 SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
3, 1, 1, 3, 3, 1, 1, 3, 1, 1	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
<i>3,</i> 3, 7, 7, 3, 1, 1	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
<i>3</i> , 1, 3, 1, 3	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	ВГОО	125	125	-	ug/kg
3 1 3	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	623	_	ug/kg
	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
Tetrachloroethylene (PCE) 127-18-4	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
108-88-3	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	ВГОО	125	125	-	ug/kg

Page 15 of 24

Certificate of Analysis

Client Name: Chesapeake Client Site ID: Stebbins-Burn Submitted To: John Kosloski	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	ces, Inc. -1335BA2)						Date Issued:		03/23/2010	2010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor Units	Units
trans-1,2-Dichloroethylene	156-60-5	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	4	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
Trichloroethylene	79-01-6	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
Vinyl acetate	108-05-4	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125		ug/kg
Vinyl chloride	75-01-4	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
Xylenes, Total	1330-20-7	SW8260B	Dup 1 (sed)	10030209-006	03/05/10	03/19/10 2:37	BLOD	125	125	-	ug/kg
TPH-Semi-Volatiles (DRO)	N A	SW8015C	Dup 1 (sed)	10030209-006	03/05/10	03/22/10 18:39	BLOD	24.9	24.9	-	mg/kg
TPH-Volatiles (GRO)	NA	SW8015C	Dup 2 (sed)	10030209-007	03/05/10	03/11/10 14:46	BLOD	6.8	6.8	-	mg/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	6.79	-	ug/kg
1,1,1-Trichloroethane	71-55-6	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	6.79	-	ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	67.9	-	ug/kg
1,1,2-Trichloroethane	79-00-5	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	6.79		ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	67.9		ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	6.79	-	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	6.79	₩	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	6.79	-	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	6.79	-	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	6.79	-	ug/kg
1,2,4-Trimethylbenzene	95-63-6	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	67.9	-	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	6.79	 -	ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	6.79	-	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	6.79	-	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	67.9	-	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	6.79	-	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	67.9	•	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	6.79	-	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	67.9	-	ug/kg

Page 16 of 24

Certificate of Analysis

Client Name: Client Site ID: Submitted To:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	nces, Inc. 3-1335BA2)						Date Issued:		03/23/2010	2010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	007	Dil. Factor	Dil. Factor Units
1,4-Dichlorobenzene	106-46-7	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	6.79	-	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	67.9	-	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	272	67.9	-	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	67.9	-	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	272	67.9	*	ug/kg
4-Chlorotoluene	106-43-4	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	67.9		ug/kg
4-Methyl-2-pentanone (MIBK)	IIBK) 108-10-1	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	272	67.9	-	ug/kg
Acetone	67-64-1	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	272	6.79	-	ug/kg
Benzene	71-43-2	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	67.9	-	ug/kg
Bromobenzene	108-86-1	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	6.79		ug/kg
Bromochloromethane	74-97-5	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	67.9	-	ug/kg
Bromodichloromethane	75-27-4	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	67.9	-	ug/kg
Bromoform	75-25-2	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	272	67.9	-	ug/kg
Bromomethane	74-83-9	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	6.79	-	ug/kg
Carbon disulfide	75-15-0	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	67.9	-	ug/kg
Carbon tetrachloride	56-23-5	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	6.79	-	ug/kg
Chlorobenzene	108-90-7	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	6.79	-	ug/kg
Chloroethane	75-00-3	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	6.79	-	ug/kg
Chloroform	67-66-3	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	6.79	4	ug/kg
Chloromethane	74-87-3	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	6.79		ug/kg
cis-1,2-Dichloroethylene	156-59-2	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	67.9	4	ug/kg
cis-1,3-Dichloropropene	10061-01-5	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	6.79	-	ug/kg
Dibromochloromethane	124-48-1	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	6.79		ug/kg
Dibromomethane	74-95-3	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	67.9	-	ug/kg
Dichlorodifluoromethane	75-71-8	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	6.79		ug/kg
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	ВГОО	6.79	67.9	-	ug/kg
Ethylbenzene		SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.79	67.9	-	ug/kg
Ethyl-t-butyl ether (ETBE)		SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	67.9		ug/kg
lodomethane	74-88-4	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	67.9		ug/kg

Page 17 of 24

Certificate of Analysis

Client Name: Chesaneake Geos

Client Name: Client Site ID:	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2)	ices, Inc. -1335BA2)						Date Issued:		03/23/2010	2010
Submitted 10.	JOINT MOSICISMI	Reference	Client	l aboratory	C C C C C C C C C C C C C C C C C C C						
Parameter	CAS	Method	Sample ID	Sample ID	Date	Ariarysis Date/Time	Sample Results	Qual LOD	001	Dil. Factor Units	Inite
Isopropylbenzene	98-85-8	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6 29	67.9	-	lo/ka
m,p-Xylenes	179601-23-1	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	67.0		D 2/2
Methylene chloride	75-09-2	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	GOIS	67.9	5.70		מאַעה פּ
MTBE	1634-04-4	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	E CO	0.79	6.75		מל/ימ
Naphthalene	91-20-3	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	6.70	67.9	- +-	מא/אם
n-Butylbenzene	104-51-8	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BIOD	67.9	67.0		המ/ה מא/ה
n-Propylbenzene	103-65-1	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	e. 10 67 a	- +-	ug/ka
o-Xylene	95-47-6	SW8260B	Dup 2 (sed)	10030209-007	03/02/10	03/19/10 3:00	BLOD	67.9	67.9	· -	ug/ka
p-IsopropyItoluene	9-84-66	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	62.9	-	ua/ka
sec-Butylbenzene	135-98-8	SW8260B	Dup 2 (sed)	10030209-007	03/02/10	03/19/10 3:00	BLOD	62.9	62.9	-	ua/ka
Styrene	100-42-5	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	67.9	4	ua/ka
TAME	994-05-8	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	67.9	-	ua/ka
TBA	75-65-0	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	340		ua/ka
tert-Butylbenzene		SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	62.9	-	ua/ka
Tetrachloroethylene (PCE)	•	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	62.9		ug/kg
Toluene	•	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	62.9	-	ua/ka
trans-1,2-Dichloroethylene	7	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	62.9	-	ua/ka
trans-1,3-Dichloropropene		SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	67.9	-	ug/ka
Trichloroethylene	79-01-6	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	67.9	-	ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	67.9	62.9		ug/kg
Vinyl acetate	108-05-4	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	67.9		ug/kg
Vinyl chloride	75-01-4	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	67.9	-	ug/kg
Xylenes, Total	1330-20-7	SW8260B	Dup 2 (sed)	10030209-007	03/05/10	03/19/10 3:00	BLOD	62.9	62.9	-	ua/ka
TPH-Semi-Volatiles (DRO)	(O) NA	SW8015C	Dup 2 (sed)	10030209-007	03/05/10	03/22/10 19:05	BLOD	13.6	13.6	4	mg/kg
TPH-Volatiles (GRO)	NA	SW8015C	Dup 3 (sed)	10030209-008	03/05/10	03/11/10 15:10	BLOD	7.0	7.0	-	ma/ka
1,1,1,2-Tetrachloroethane		SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	69.6	9.69	-	ua/ka
1,1,1-Trichloroethane	•	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	69.6	9.69		ug/kg
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg

Certificate of Analysis

Client Name: Chesapeake Client Site ID: Stebbins-Burn Submitted To: John Kosloski	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	oes, Inc. 1335BA2)						Date Issued:		03/23/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	Pool	Dil. Factor	Units
1,1,2-Trichloroethane	2-00-62	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	_	ug/kg
1,1-Dichloroethane	75-34-3	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
1,1-Dichloroethylene	75-35-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
1,1-Dichloropropene	563-58-6	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	ВГОР	9.69	9.69	-	ug/kg
1,2,3-Trichlorobenzene	87-61-6	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
1,2,3-Trichloropropane	96-18-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
1,2,4-Trichlorobenzene	120-82-1	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
1,2,4-Trimethylbenzene	92-63-6	SW8260B	Dnp 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69		ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69		ug/kg
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
1,2-Dichlorobenzene	95-50-1	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
1,2-Dichloroethane	107-06-2	SW8260B	Dnp 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
1,2-Dichloropropane	78-87-5	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	4	ug/kg
1,3,5-Trimethylbenzene	108-67-8	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	ВГОР	9.69	9.69	ų	ug/kg
1,3-Dichlorobenzene	541-73-1	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	۲	ug/kg
1,3-Dichloropropane	142-28-9	SW8260B	Dnp 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	ВГОО	9.69	9.69	-	ug/kg
1,4-Dichlorobenzene	106-46-7	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
2,2-Dichloropropane	594-20-7	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
2-Butanone (MEK)	78-93-3	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	278	9.69	-	ug/kg
2-Chlorotoluene	95-49-8	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
2-Hexanone (MBK)	591-78-6	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	278	9.69		ug/kg
4-Chlorotoluene	106-43-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69		ug/kg
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	278	9.69	-	ug/kg
Acetone	67-64-1	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	278	9.69	-	ug/kg
Benzene	71-43-2	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
Bromobenzene	108-86-1	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
Bromochloromethane	74-97-5	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69		ug/kg
Bromodichloromethane	75-27-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
Bromoform	75-25-2	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	278	9.69		ug/kg
				Page 19 of 24							

Certificate of Analysis

			Cer	Certificate of Analysis							
Client Name: Che Client Site ID: Ste Submitted To: Joh	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	nces, Inc. 3-1335BA2)						Date Issued:		03/23/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	ŏ	Dii. Factor Units	Units
Bromomethane	74-83-9	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	69.6	69 6	-	lia/ka
Carbon disulfide	75-15-0	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ua/ka
Carbon tetrachloride	56-23-5	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	69.6	-	ua/ka
Chlorobenzene	108-90-7	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	· -	ua/ka
Chloroethane	75-00-3	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	69.6	-	ua/ka
Chloroform	67-66-3	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69		ug/kg
Chloromethane	74-87-3	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ua/ka
cis-1,2-Dichloroethylene	156-59-2	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	ВГОО	9.69	69.6	-	ua/ka
cis-1,3-Dichloropropene	10061-01-5	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69		ug/kg
Dibromochloromethane	124-48-1	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ua/ka
Dibromomethane	74-95-3	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	ВГОО	9.69	69.6	-	ua/ka
Dichlorodifluoromethane	75-71-8	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	,	ug/ka
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	Dup 3 (sed)	10030209-008	03/02/10	03/19/10 3:22	ВГОР	9.69	9.69	-	ag/ka
Ethylbenzene	100-41-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	ВГОБ	9.69	9.69	-	ug/kg
Ethyl-t-butyl ether (ETBE)	637-92-3	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
lodomethane	74-88-4	SW8260B	Dnb 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	69.6	9.69	-	ug/kg
Isopropylbenzene	98-82-8	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	_	ug/ka
m,p-Xylenes	179601-23-1	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	69.6	9.69	-	ua/ka
Methylene chloride	75-09-2	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69		ug/kg
MTBE	1634-04-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	69.6	9.69	- -	ug/kg
Naphthalene	91-20-3	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
n-Butylbenzene	104-51-8	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
n-Propylbenzene	103-65-1	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
o-Xylene	95-47-6	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	τ	ug/kg
p-Isopropyltoluene	9-8-66	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69		ug/kg
sec-Butylbenzene	135-98-8	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
Styrene	100-42-5	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	_	ng/kg
TAME	994-05-8	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	69.6	9.69		ug/kg
IBA	75-65-0	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	348	 -	ug/kg

Page 20 of 24

Certificate of Analysis

Client Name: Chesapeake C Client Site ID: Stebbins-Burn Submitted To: John Kosloski	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	ces, Inc. 1335BA2)						Date Issued:		03/23/2010	010
Parameter	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time	Sample Results	Qual LOD	LOQ	Dil. Factor Units	Units
tert-Butylbenzene	98-06-6	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
Tetrachloroethylene (PCE)	127-18-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69		ug/kg
Toluene	108-88-3	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
trans-1,2-Dichloroethylene	156-60-5	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	 -	ug/kg
trans-1,3-Dichloropropene	10061-02-6	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
Trichloroethylene	79-01-6	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	ВГОО	9.69	9.69		ug/kg
Trichlorofluoromethane	75-69-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69		ug/kg
Vinyl acetate	108-05-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	ВГОО	9.69	9.69	-	ug/kg
Vinyl chloride	75-01-4	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	BLOD	9.69	9.69	-	ug/kg
Xylenes, Total	1330-20-7	SW8260B	Dup 3 (sed)	10030209-008	03/05/10	03/19/10 3:22	ВГОО	9.69	9.69	-	ug/kg
TPH-Semi-Volatiles (DRO)	NA	SW8015C	Dup 3 (sed)	10030209-008	03/05/10	03/22/10 19:31	19.6	13.9	13.9		mg/kg
1,1,1,2-Tetrachloroethane	630-20-6	SW8260B	£	10030209-009	03/05/10	03/10/10 11:22	ВГОО	0.1	1.0	-	ng/L
1,1,1-Trichloroethane	71-55-6	SW8260B	B	10030209-009	03/05/10	03/10/10 11:22	ВГОО	0.2	1.0	-	ng/L
1,1,2,2-Tetrachloroethane	79-34-5	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	ВГОО	0.3	1.0	-	ng/L
1,1,2-Trichloroethane	79-00-5	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
1,1-Dichloroethane	75-34-3	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
1,1-Dichloroethylene	75-35-4	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	ВГОР	0.2	1.0	-	ng/L
1,1-Dichloropropene	563-58-6	SW8260B	£	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.3	0.1	-	ng/L
1,2,3-Trichlorobenzene	87-61-6	SW8260B	£	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.3	1.0	-	ng/L
1,2,3-Trichloropropane	96-18-4	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.4	1.0		ng/L
1,2,4-Trichlorobenzene	120-82-1	SW8260B	£	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.3	1.0	-	ng/L
1,2,4-Trimethylbenzene	95-63-6	SW8260B	B	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	SW8260B	1 B	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.4	4.0	-	ng/L
1,2-Dibromoethane (EDB)	106-93-4	SW8260B	1 B	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.4	1.0	-	ng/L
1,2-Dichlorobenzene	95-50-1	SW8260B	B	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
1,2-Dichloroethane	107-06-2	SW8260B	B	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.3	1.0		ng/L
1,2-Dichloropropane	78-87-5	SW8260B	巴	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.3	1.0		ng/L
1,3,5-Trimethylbenzene	108-67-8	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0		ng/L

Page 21 of 24

Certificate of Analysis

				こうしゅう ファラン	200						
Client Name: Ches Client Site ID: Stebb	Chesapeake Geosciences, Inc. Stebbins-Burnham (03-1335BA2) John Kosloski	ices, Inc. -1335BA2)						Date Issued:		03/23/2010	010
	CAS	Reference Method	Client Sample ID	Laboratory Sample ID	Sample Date	Analysis Date/Time Sa	Sample Results	Qual LOD	9	Dil. Factor Units	Units
1,3-Dichlorobenzene	541-73-1	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
1,3-Dichloropropane	142-28-9	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0		ug/L
1,4-Dichlorobenzene	106-46-7	SW8260B	£	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
2,2-Dichloropropane	594-20-7	SW8260B	82	10030209-009	03/02/10	03/10/10 11:22	BLOD	0.3	1.0	_	ng/L
2-Butanone (MEK)	78-93-3	SW8260B	8	10030209-009	03/05/10	03/10/10 11:22	BLOD	1.7	10.0	-	ng/L
2-Chlorotoluene	95-49-8	SW8260B	B	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0		ug/L
2-Hexanone (MBK)	591-78-6	SW8260B	8	10030209-009	03/05/10	03/10/10 11:22	BLOD	1.7	10.0	-	ng/L
4-Chlorotoluene	106-43-4	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
4-Methyl-2-pentanone (MIBK)	108-10-1	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	1.2	10.0	-	ng/L
Acetone	67-64-1	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	7.0	10.0	-	ng/L
Benzene	71-43-2	SW8260B	B	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Bromobenzene	108-86-1	SW8260B	B	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Bromochloromethane	74-97-5	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.4	1.0	T	ng/L
Bromodichloromethane	75-27-4	SW8260B	B	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Bromoform	75-25-2	SW8260B	B	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.3	1.0	-	ng/L
Bromomethane	74-83-9	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Carbon disulfide	75-15-0	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	1.2	10.0	-	ng/L
Carbon tetrachloride	56-23-5	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Chlorobenzene	108-90-7	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.1	1.0	-	ng/L
Chloroethane	75-00-3	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Chloroform	67-66-3	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Chloromethane	74-87-3	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22 0.4	4	J 0.3	1.0	-	ng/L
cis-1,2-Dichloroethylene	156-59-2	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
cis-1,3-Dichloropropene	10061-01-5	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Dibromochloromethane	124-48-1	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Dibromomethane	74-95-3	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Dichlorodifluoromethane	75-71-8	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.2	1.0	-	ng/L
Di-isopropyl ether (DIPE)	108-20-3	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	5.0	5.0	-	ng/L
Ethylbenzene	100-41-4	SW8260B	FB	10030209-009	03/05/10	03/10/10 11:22	BLOD	0.1	1.0	-	ng/L

Page 22 of 24

Air Water & Soil Laboratories, Inc. 2109 A. North Hamilton Street (804) 358-8295 - Telephone Richmond, Virginia 23230 804) 358-8297 - Fax

Sample Results Qual LOD 0.3 0.1 03/10/10 11:22 03/10/10 11:22 03/10/10 11:22 03/10/10 11:22 33/10/10 11:22 03/10/10 11:22 03/10/10 11:22 03/10/10 11:22 03/10/10 11:22 03/10/10 11:22 03/10/10 11:22 33/10/10 11:22 33/10/10 11:22 03/10/10 11:22 03/10/10 11:22 03/10/10 11:22 33/10/10 11:22 33/10/10 11:22 33/10/10 11:22 Date/Time Analysis 03/05/10 03/05/10 03/05/10 03/05/10 33/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/05/10 03/02/10 03/05/10 33/05/10 33/05/10 33/05/10 33/05/10 03/05/10 03/05/10 03/05/10 Sample Certificate of Analysis 0030209-009 0030209-009 0030209-009 10030209-009 10030209-009 10030209-009 10030209-009 10030209-009 10030209-009 10030209-009 10030209-009 10030209-009 10030209-009 10030209-009 10030209-009 0030209-009 0030209-009 0030209-009 10030209-009 Laboratory Sample ID Sample ID **E E** 8 B 8 8 B 田田 8 田 Reference Method Stebbins-Burnham (03-1335BA2) SW8260B Chesapeake Geosciences, Inc.

ng/L

ng/L ng/L ng/L ug/L ng/L ug/L ng/L 7/gr βľ J/gr

2.0

BLOD BLOD BLOD

79601-23-1

74-88-4

Ethyl-t-butyl ether (ETBE)

Parameter

John Kosloski

Client Name: Client Site ID: Submitted To: 98-82-8

Isopropylbenzene

m,p-Xylenes

lodomethane

634-04-4

75-09-2

Methylene chloride

04-51-8

91-20-3

Naphthalene

MTBE

03-65-1

95-47-6 9-84-66 35-98-8 00-42-5 994-05-8

p-Isopropyltoluene sec-Butylbenzene

Styrene TAME

n-Propylbenzene n-Butylbenzene

o-Xylene

4.0 0 0. 0. 0. 0. 0. 0. 0.

> 0.1 0.1 0.1 0.2 0.1 0.1

BLOD

BLOD

BLOD BLOD BLOD

ng/L

10.0

BLOD BLOD

Factor Units

T O O

03/23/2010

Date Issued:

10.0

03/10/10 11:22

03/05/10

0030209-009

10030209-009

8

330-20-7

Kylenes, Total Vinyl chloride

08-05-4

Trichlorofluoromethane

/inyl acetate

Trichloroethylene

75-01-4

33/10/10 11:22

33/10/10 11:22

33/05/10 33/05/10

0030209-009

0.

33/10/10 11:22

10030209-009

П

90

90 5.0

0. 0. 0. 0. 0. 0.

0.1

0.2 0.2

BLOD

BLOD BLOD BLOD BLOD BLOD BLOD

33/10/10 11:22 33/10/10 11:22

03/05/10

10030209-009

æ

SW8260B

0061-02-6

08-88-3 56-60-5

27-18-4

Tetrachloroethylene (PCE)

ert-Butylbenzene

rans-1,2-Dichloroethylene rans-1,3-Dichloropropene

Toluene

75-65-0 9-90-86 3W8260B SW8260B SW8260B SW8260B SW8260B

79-01-6 75-69-4

33/05/10 33/05/10

0030209-009

5.0

BLOD BLOD BLOD BLOD BLOD

Certificate of Analysis

Client Name: Chesapeake Geosciences, Inc.
Client Site ID: Stebbins-Burnham (03-1335BA2)
Submitted To: John Kosloski

Pool	
Sample Results Qual LOD	
Analysis Date/Time	
Sample Date	
Laboratory Sample ID	
Client Sample ID	
Reference Method	
CAS	
Parameter	

Dil. Factor Units

03/23/2010

Date Issued:

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a dry weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water & Soil Laboratories, Inc.

CG-08-0399 CG-	Company Name: Chesapeake GeoSciences, Inc.	Project Manager: John Kosloski	iger:						Parameters		CHAIN-OF-CUSTODY RECORD	SUSTODY	RECORD
Field Sample ID Date Time Still Stil	Project Name: Stebbins-Burnham (03-1335BA2) Page 1 of 1	Project ID: CG-08-0399						3108 ₽			Air, Water &	Soil Labora	atories, Inc.
Field Sample ID Date Time Se 5 5 5 5 5 5 5 5 5	Sampler(s): J.C. Perkins & L.R. Bennett	P.O. Number CG080399Jk						(93 siv O			Richm	ond, VA 23 804) 358-	3230
1 1 1 1 1 1 1 1 1 1	Field Sample ID				1			ЯЭ-НЧТ			Preservative/Rer	narks	
Stream S	Stream 1												
Stream S	Stream 2					-							
(Stream) (St	Stream 3												
Stream Stream Stream	Stream 4												
(Stream) (St	Stream 5												
(Stream) (St	Dup 1 (Stream)												
(Steam) (Sed) X (Se	Dup 2 (Stream)												
(Sed) 3 (370 X X X X X X X X X X X X X X X X X X X	Dup 3 (Stream)												7700
(Sed) 2 (2:02		01/9	54		X	7	×	×					
(Sed) 2 (3/10)	Sed 2	o ll	23		X	ベカ	X	X					
(Sed)	Sed 3	(2;	60		X	7	X	X					
(Sed)	Sed 4	7	25		×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X	X					
	Sed 5	/ 13%	35		X	7	X	X			150		10030209
	Dup 1 (Sed)	-	ſ		X	X X	X	X			Stebbins-Burn		
	Dup 1/(Sed) 2	\	 		Z	X K	X	X					
	10 (July 2		1		X	1	×	X					
Date/Time Received by: (Signature) Relinquished by: (Signature) (Printed) Date/Time Received by Laboratory: (Signature) (Printed) (Printed) (Printed)	FB	7	<u>(</u> Q)	و ي	<u>'</u>	3 X							77
Date/Time Received by Laboratory: (Signature) (Printed) (Printed) (Printed) (Printed) (Printed) (A 0 0	#	Date/Time 8,0 l	Rec	eived b	y: (Signε	ıture)			Relinquished by: (Sig	nature)	Date/Time	Received by: (9	Signature)
Date/Time Received by Laboratory: (Signature) (Printed) (Printed) (CUEVILLET 1000	کی	3/8/10	(Prin	ited)	_				(Printed)		T	(Printed)	
The state of the s	Relinquished by; (Signature)	Date/Time	Recc (Prin	eived b	y Labor	atory: (6	Signatur		5/9/10 7/9/10	Remarks: MDE Please include and 1,2-Dibron E-mail results t	-RMS Package 1/Level BTEX, Naphthalene, MT oethane in EPA 8260 Av jkosloski@cgs.us.com	1 Deliverable TBE, TAME, TBA nalyses.	RMS 2008 Rates , ETBE, DIPE, 1,2-DCA

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

		CGI	1003020)9
	Sample Conditions Checklist	Stebbins-Burnham (03-1335B	DUE: 10 D Recd: 03/09	-
Opened	Date Cooler Opened:	3/9/10		
,		YES NO	<u>N/A</u>	
1.	How were samples received? Fed Ex UPS Courier Walk In			
2.	Were custody seals used?			
3.	If yes, are custody seals unbroken and intact at the date and time of arrival?			
4.	Are the custody papers filled out completely and correctly?			
5.	Do all bottle labels agree with custody papers?			
6.	Are the samples received on ice?			
7.	Is the temperature blank or representative sample within acceptable limits? (4 degrees Celsius +/-2)			
8.	Are all samples within holding time for requested tests?	9 0		
9	Is a sufficient amount of sample provided to perform the tests indicated?			
10	Are all samples in proper containers for the analyses requested?			
11	Are all samples appropriately preserved for the analyses requested?			
12	Are all volatile organic containers free of headspace?			
	COMMENTS			
A-1-10 CO-100-100-100-100-100-100-100-100-100-10	Dup ID's taken from Containers.	13/9/10		
\searrow	o sample times ordided	tor Dup	2 D	

Appendix C.5

Analytical Laboratory Data

Domestic Water Wells

Analytical Report for

Chesapeake GeoSciences, Inc.

Certificate of Analysis No.: 9111021

Project Manager: Sean Daniel

Project Name: Stebbins-Burnham
Project Location: Maryland
Project ID: CG-08-0399

November 25, 2009

Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228

Phone: (410) 747-8770 Fax: (410) 788-8723

PHASE SEPARATION SCIENCE, INC.

November 25, 2009

Sean Daniel Chesapeake GeoSciences, Inc.5405 Twin Knolls Road, Suite 1
Columbia, MD 21045

Reference: PSS Work Order No: 9111021

Project Name: Stebbins-Burnham Project Location: Maryland Project ID.: CG-08-0399

Dear Sean Daniel:

The attached Analytical and QC Summary lists the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered **9111021**.

All work reported herein has been performed in accordance with referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on December 15, 2009. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 10 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Dan Prucnal

Laboratory Manager

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc.
Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 9111021

The following samples were received under chain of custody by Phase Separation Science (PSS) on 11/10/2009 at 05:37 pm

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
9111021-001	JD-DW	WATER	11/10/2009 15:42

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in the Sample Receipt Checklist.

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- J The target analyte was positively identified below the reporting limit but greater than one-half of the reporting limit.
- ND Not Detected at or above the reporting limit.
- RL Reporting Limit.
- U Not detected.

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 9111021

Chesapeake GeoSciences, Inc., Columbia, MD

November 25, 2009

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: JD-DW Date/Time Sampled: 11/10/2009 15:42 PSS Sample ID: 9111021-001

Matrix: WATER Date/Time Received: 11/10/2009 17:37

_	Result	Units	Rep Limit Flag	Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Bromodichloromethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Bromoform	ND	ug/L	5	1	11/18/09	11/18/09 13:12	1014
Bromomethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Chlorobenzene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Chloroethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Chloroform	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Chloromethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	11/18/09	11/18/09 13:12	1014
Dibromochloromethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Ethylbenzene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Isopropylbenzene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Naphthalene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Styrene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Diisopropyl ether	ND	ug/L	5	1	11/18/09	11/18/09 13:12	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Tetrachloroethylene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 9111021

Chesapeake GeoSciences, Inc., Columbia, MD

November 25, 2009

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: JD-DW Date/Time Sampled: 11/10/2009 15:42 PSS Sample ID: 9111021-001

Matrix: WATER Date/Time Received: 11/10/2009 17:37

-	Result	Units	Rep Limit Flag	Dil	Prepared	Analyzed	<u>Analyst</u>
Toluene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	2 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Trichloroethene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
Vinyl Chloride	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
o-Xylene	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
m,p-Xylenes	ND	ug/L	0.5	1	11/18/09	11/18/09 13:12	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	11/18/09	11/18/09 13:12	1014
tert-Butyl alcohol	ND	ug/L	20	1	11/18/09	11/18/09 13:12	1014
tert-Amyl methyl ether	ND	ug/L	5	1	11/18/09	11/18/09 13:12	1014

Company Name: Project Manager: CHAIN-OF-CUSTODY RECORD Chesapeake GeoSciences, Inc. Sean Daniel	Project ID: CG-08-0399	P.O. Number: CG080399SD CG080399SD		11/10/9/15:42 × 2 ×										Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time Received by: (Signature)	Pate/Time Received by Signature) Relinquished by: (Signature) Pate/Time (Printed)	Date/Time Received by:/Senatory (Signature) Cff.ulcsh.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.csh.ch.ch.csh.ch.csh.ch.ch.ch.ch.ch.ch.ch.ch.ch.ch.ch.ch.ch	Detertine Received by Signature) Relinquished by: (Signature) (Printed) Frinted) Date/Time Received by: (Signature) Date/Time Received by Laboratory: (Signature) Date/Time Remarks: MDE-RMS Package 1/Level 1 Deliverable Please include BTEX, Naphthalene, MTBE, TAME, TBA,
Project Name: Stebbins-Burnham (03-1335BA2)		Sampler(s): Sampler(s):	Field Sample ID	JD-DW (411 Greenspring Valley Rd.)								/ '		Phin Mish of Day Spinasura)	Something of the Control of the Cont	Comment of the Commen	Rehinduished by: (Signature)

Printed: 11/11/2009 09:59 AM

Phase Separation Science, Inc

Sample Receipt Checklist

Wo Number	9111021	Received By	Rachel Davis
Client Name	Chesapeake GeoSciences, Inc.	Date Received	11/10/2009 05:37:00 PM
Project Name	Stebbins-Burnham	Delivered By	Client
Project Number	CG-08-0399	Tracking No	Not Applicable
Disposal Date:	12/15/2009	Logged In By	Rachel Davis
Shipping Conta	iner(s)		
No. of Coo Custody S Seal Cond	eals Not Applicable	lce Temp (deg C) Temp Blank Pre	Present 10 / sent No
Documentation COC agree Chain of C	es with sample labels? X Yes or ustody (COC) Yes or	No Sample	r Name: <u>J.C Perkins</u> ert. No.: NA
Sample Contair	ner		
Intact? Labeled ar	of for Specified Analysis? Yes X No And Labels Legible X of Samples Received 1	Custody Seal(s) I Seal(s) Signed / [
Preservation		Yes I	No N/A
VOC, BTE Do VOA vi Comments: (Ar For any improper p documentation of a), Phenols , NH3, Total Phos	servative added (reagent ID ructions. Samples for pH, ch	number) below as well as nlorine and
Samples Inspecte	d/Checklist Completed By: PM Review and Approval:	Date:	11/11/9

Analytical Report for

Chesapeake GeoSciences, Inc.

Certificate of Analysis No.: 10012907

Project Manager: Sean Daniel

Project Name : Stebbins-Burnham Project Location: Maryland

February 12, 2010

Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228
Phone: (410) 747-8770

Fax: (410) 788-8723

PHASE SEPARATION SCIENCE, INC.

February 12, 2010

Sean Daniel Chesapeake GeoSciences, Inc. 5405 Twin Knolls Road, Suite 1 Columbia, MD 21045

Reference: PSS Work Order No: 10012907

Project Name: Stebbins-Burnham Project Location: Maryland Project ID.: CG-08-0399

Dear Sean Daniel:

The attached Analytical and QC Summary lists the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered **10012907**.

All work reported herein has been performed in accordance with referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on March 5, 2010. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 10 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Dan Prucnal

Laboratory Manager

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc. Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 10012907

The following samples were received under chain of custody by Phase Separation Science (PSS) on 01/29/2010 at 11:15 am

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
10012907-001	S/B-BF	WATER	01/29/2010 09:29
10012907-002	S/B-AF	WATER	01/29/2010 09:25
10012907-003	LR-DW	WATER	01/29/2010 09:01
10012907-004	JK-BF	WATER	01/29/2010 08:19
10012907-005	JK-AF	WATER	01/29/2010 08:15
10012907-006	Stump-DW	WATER	01/29/2010 09:51
10012907-007	Dupe	WATER	01/29/2010 00:00
10012907-008	FB	WATER	01/29/2010 08:40
10012907-009	TB	WATER	01/29/2010 08:05
10012907-010	FS-DW	WATER	01/29/2010 08:35
10012907-011	JH-DW	WATER	01/29/2010 10:10
10012907-012	JH-AgWell	WATER	01/29/2010 10:31

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in the Sample Receipt Checklist.

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- J The target analyte was positively identified below the reporting limit but greater than one-half of the reporting limit.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: S/B-BF Date/Time Sampled: 01/29/2010 09:29 PSS Sample ID: 10012907-001

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	
Bromodichloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Bromoform	ND	ug/L	5	1	02/05/10	02/05/10 13:10	1014
Bromomethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Chlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Chloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Chloroform	0.5	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Chloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/05/10	02/05/10 13:10	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Ethylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Naphthalene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Styrene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Diisopropyl ether	ND	ug/L	5	1	02/05/10	02/05/10 13:10	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Tetrachloroethylene	3.1	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Toluene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: S/B-BF Date/Time Sampled: 01/29/2010 09:29 PSS Sample ID: 10012907-001

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL Fla	ag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Trichloroethene	2.6	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
Vinyl Chloride	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
o-Xylene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/05/10	02/05/10 13:10	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/05/10	02/05/10 13:10	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/05/10	02/05/10 13:10	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/05/10	02/05/10 13:10	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: S/B-AF Date/Time Sampled: 01/29/2010 09:25 PSS Sample ID: 10012907-002

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Bromoform	ND	ug/L	5	1	02/05/10	02/05/10 13:50	1014
Bromomethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Chlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Chloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Chloroform	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Chloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/05/10	02/05/10 13:50	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Ethylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Naphthalene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Styrene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Diisopropyl ether	ND	ug/L	5	1	02/05/10	02/05/10 13:50	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Tetrachloroethylene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Toluene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: S/B-AF Date/Time Sampled: 01/29/2010 09:25 PSS Sample ID: 10012907-002

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Trichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
Vinyl Chloride	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
o-Xylene	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/05/10	02/05/10 13:50	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/05/10	02/05/10 13:50	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/05/10	02/05/10 13:50	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/05/10	02/05/10 13:50	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: LR-DW Date/Time Sampled: 01/29/2010 09:01 PSS Sample ID: 10012907-003

Matrix: WATER Date/Time Received: 01/29/2010 11:15

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Bromoform	ND	ug/L	5	1	02/05/10	02/05/10 12:27	1014
Bromomethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Chlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Chloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Chloroform	0.6	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Chloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/05/10	02/05/10 12:27	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Ethylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Naphthalene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Styrene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Diisopropyl ether	ND	ug/L	5	1	02/05/10	02/05/10 12:27	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Tetrachloroethylene	3.9	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Toluene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: LR-DW Date/Time Sampled: 01/29/2010 09:01 PSS Sample ID: 10012907-003

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Trichloroethene	3.1	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
Vinyl Chloride	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
o-Xylene	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/05/10	02/05/10 12:27	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/05/10	02/05/10 12:27	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/05/10	02/05/10 12:27	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/05/10	02/05/10 12:27	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: JK-BF Date/Time Sampled: 01/29/2010 08:19 PSS Sample ID: 10012907-004

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Bromoform	ND	ug/L	5	1	02/05/10	02/05/10 14:30	1014
Bromomethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Chlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Chloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Chloroform	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Chloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/05/10	02/05/10 14:30	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Ethylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Naphthalene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Styrene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Diisopropyl ether	ND	ug/L	5	1	02/05/10	02/05/10 14:30	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Tetrachloroethylene	3.2	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Toluene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: JK-BF Date/Time Sampled: 01/29/2010 08:19 PSS Sample ID: 10012907-004

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Trichloroethene	2.4	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
Vinyl Chloride	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
o-Xylene	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/05/10	02/05/10 14:30	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/05/10	02/05/10 14:30	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/05/10	02/05/10 14:30	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/05/10	02/05/10 14:30	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: JK-AF Date/Time Sampled: 01/29/2010 08:15 PSS Sample ID: 10012907-005

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Bromoform	ND	ug/L	5	1	02/05/10	02/05/10 15:09	1014
Bromomethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Chlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Chloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Chloroform	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Chloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/05/10	02/05/10 15:09	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Ethylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Naphthalene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Styrene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Diisopropyl ether	ND	ug/L	5	1	02/05/10	02/05/10 15:09	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Tetrachloroethylene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Toluene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: JK-AF Date/Time Sampled: 01/29/2010 08:15 PSS Sample ID: 10012907-005

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Trichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
Vinyl Chloride	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
o-Xylene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/05/10	02/05/10 15:09	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/05/10	02/05/10 15:09	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/05/10	02/05/10 15:09	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/05/10	02/05/10 15:09	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: Stump-DW Date/Time Sampled: 01/29/2010 09:51 PSS Sample ID: 10012907-006

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Bromoform	ND	ug/L	5	1	02/04/10	02/04/10 16:11	1014
Bromomethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Chlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Chloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Chloroform	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Chloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/04/10	02/04/10 16:11	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Ethylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Naphthalene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Styrene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Diisopropyl ether	ND	ug/L	5	1	02/04/10	02/04/10 16:11	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Tetrachloroethylene	1.0	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Toluene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: Stump-DW Date/Time Sampled: 01/29/2010 09:51 PSS Sample ID: 10012907-006

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL F	Flag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Trichloroethene	3.2	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
Vinyl Chloride	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
o-Xylene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/04/10	02/04/10 16:11	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/04/10	02/04/10 16:11	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/04/10	02/04/10 16:11	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/04/10	02/04/10 16:11	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: Dupe Date/Time Sampled: 01/29/2010 00:00 PSS Sample ID: 10012907-007

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Bromoform	ND	ug/L	5	1	02/04/10	02/04/10 16:51	1014
Bromomethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Chlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Chloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Chloroform	0.6	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Chloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/04/10	02/04/10 16:51	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Ethylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Naphthalene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Styrene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Diisopropyl ether	ND	ug/L	5	1	02/04/10	02/04/10 16:51	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Tetrachloroethylene	3.9	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
Toluene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: Dupe Date/Time Sampled: 01/29/2010 00:00 PSS Sample ID: 10012907-007

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	I 1014
Trichloroethene	3.0	ug/L	0.5	1	02/04/10	02/04/10 16:51	l 1014
Vinyl Chloride	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	I 1014
o-Xylene	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	I 1014
m,p-Xylenes	ND	ug/L	0.5	1	02/04/10	02/04/10 16:51	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/04/10	02/04/10 16:51	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/04/10	02/04/10 16:51	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/04/10	02/04/10 16:51	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: FB Date/Time Sampled: 01/29/2010 08:40 PSS Sample ID: 10012907-008

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Bromoform	ND	ug/L	5	1	02/04/10	02/04/10 17:31	1014
Bromomethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Chlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Chloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Chloroform	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Chloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/04/10	02/04/10 17:31	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Ethylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Naphthalene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Styrene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Diisopropyl ether	ND	ug/L	5	1	02/04/10	02/04/10 17:31	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Tetrachloroethylene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Toluene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: FB Date/Time Sampled: 01/29/2010 08:40 PSS Sample ID: 10012907-008

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Trichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
Vinyl Chloride	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
o-Xylene	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/04/10	02/04/10 17:31	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/04/10	02/04/10 17:31	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/04/10	02/04/10 17:31	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/04/10	02/04/10 17:31	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: TB Date/Time Sampled: 01/29/2010 08:05 PSS Sample ID: 10012907-009

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Bromoform	ND	ug/L	5	1	02/04/10	02/04/10 18:11	1014
Bromomethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Chlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Chloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Chloroform	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Chloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/04/10	02/04/10 18:11	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Ethylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Naphthalene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Styrene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Diisopropyl ether	ND	ug/L	5	1	02/04/10	02/04/10 18:11	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Tetrachloroethylene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Toluene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: TB Date/Time Sampled: 01/29/2010 08:05 PSS Sample ID: 10012907-009

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Trichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
Vinyl Chloride	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
o-Xylene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/04/10	02/04/10 18:11	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/04/10	02/04/10 18:11	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/04/10	02/04/10 18:11	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/04/10	02/04/10 18:11	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: FS-DW Date/Time Sampled: 01/29/2010 08:35 PSS Sample ID: 10012907-010

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Bromoform	ND	ug/L	5	1	02/04/10	02/04/10 18:50	1014
Bromomethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Chlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Chloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Chloroform	0.5	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Chloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/04/10	02/04/10 18:50	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Ethylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Naphthalene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Styrene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Diisopropyl ether	ND	ug/L	5	1	02/04/10	02/04/10 18:50	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Tetrachloroethylene	2.4	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Toluene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: FS-DW Date/Time Sampled: 01/29/2010 08:35 PSS Sample ID: 10012907-010

Matrix: WATER Date/Time Received: 01/29/2010 11:15

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
Trichloroethene	3.0	ug/L	0.5	1	02/04/10	02/04/10 18:50	0 1014
Vinyl Chloride	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
o-Xylene	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/04/10	02/04/10 18:50	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/04/10	02/04/10 18:50	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/04/10	02/04/10 18:50	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/04/10	02/04/10 18:50	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: JH-DW Date/Time Sampled: 01/29/2010 10:10 PSS Sample ID: 10012907-011

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Bromoform	ND	ug/L	5	1	02/04/10	02/04/10 19:30	1014
Bromomethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Chlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Chloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Chloroform	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Chloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/04/10	02/04/10 19:30	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Ethylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Naphthalene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Styrene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Diisopropyl ether	ND	ug/L	5	1	02/04/10	02/04/10 19:30	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Tetrachloroethylene	3.1	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Toluene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: JH-DW Date/Time Sampled: 01/29/2010 10:10 PSS Sample ID: 10012907-011

Matrix: WATER Date/Time Received: 01/29/2010 11:15

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Trichloroethene	2.3	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
Vinyl Chloride	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
o-Xylene	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/04/10	02/04/10 19:30	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/04/10	02/04/10 19:30	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/04/10	02/04/10 19:30	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/04/10	02/04/10 19:30	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: JH-AgWell Date/Time Sampled: 01/29/2010 10:31 PSS Sample ID: 10012907-012

Matrix: WATER Date/Time Received: 01/29/2010 11:15

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Bromodichloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Bromoform	ND	ug/L	5	1	02/05/10	02/05/10 15:49	1014
Bromomethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Chlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Chloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Chloroform	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Chloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	02/05/10	02/05/10 15:49	1014
Dibromochloromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Ethylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Isopropylbenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Naphthalene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Styrene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Diisopropyl ether	ND	ug/L	5	1	02/05/10	02/05/10 15:49	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Tetrachloroethylene	1.8	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Toluene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10012907

Chesapeake GeoSciences, Inc., Columbia, MD

February 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: JH-AgWell Date/Time Sampled: 01/29/2010 10:31 PSS Sample ID: 10012907-012

Matrix: WATER Date/Time Received: 01/29/2010 11:15

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Trichloroethene	1.4	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
Vinyl Chloride	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
o-Xylene	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
m,p-Xylenes	ND	ug/L	0.5	1	02/05/10	02/05/10 15:49	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	02/05/10	02/05/10 15:49	1014
tert-Butyl alcohol	ND	ug/L	20	1	02/05/10	02/05/10 15:49	1014
tert-Amyl methyl ether	ND	ug/L	5	1	02/05/10	02/05/10 15:49	1014

Phase Separation Science, Inc

Sample Receipt Checklist

Wo Number	1001290	7	Recei	ved By	Rachel Davis	
Client Name	Chesape	ake GeoSciences, Inc	Date	Received	01/29/2010 11:15:00 AM	
Project Name	Stebbins	-Burnham	Delive	ered By	Client 6	
Project Number	CG-08-0	399	Track	ing No	Not Applicable	
Disposal Date:	03/05/20	10	Logge	ed in By	Rachel Davis	
Shipping Conta	iner(s)					
No. of Coo Custody S Seal Cond	eals	1 Not Applicable Not Applicable		mp (deg C) mp Blank Pr	Present 9 ✓ resent No	
Documentation COC agree Chain of C		mple labels? X Ye	es or No	Sample MD DW (er Name: <u>J.C. Perkins</u> Cert No.: <u>NOT AUALL</u>	
Sample Contair	ner					
Intact? Labeled ar	nd Labels I	fied Analysis? YesX Legible Received 12	Cus Sea	tody Seal(s) tody Seal(s) l(s) Signed / ll No of Con	Intact? Not Applicable	/
Preservation				Yes	No N/A	
	, NH3, Tot X (VOA Vi	al Phos als Rcvd Preserved) ero headspace?	(pH<2) (pH>12) (pH>9) (pH<2) (pH<2) (pH<2)		<u>×</u>	
Comments: (An	y "No" re	esponse must be de	etailed in the	comments	s section below)	
For any improper p documentation of a	reservation ny client no		preservative add	ed (reagent ID	number) below as well as	
			20		1 /	
Samples Inspected	d/Checklis	t Completed By:	1 Que	Date:	1/29/10	
	PM Revie	w and Approval:	MI	Date:	1/29/10	

Printed: 01/29/2010 02.55 PM

Analytical Report for

Chesapeake GeoSciences, Inc.

Certificate of Analysis No.: 10022610

Project Manager: Sean Daniel

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

March 12, 2010
Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228
Phone: (410) 747-8770

Fax: (410) 788-8723

Page 1 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

March 12, 2010

Sean Daniel Chesapeake GeoSciences, Inc.5405 Twin Knolls Road, Suite 1
Columbia, MD 21045

Reference: PSS Work Order No: 10022610

Project Name: Stebbins-Burnham Project Location: Maryland Project ID.: CG-08-0399

Dear Sean Daniel:

The attached Analytical and QC Summary lists the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered **10022610**.

All work reported herein has been performed in accordance with referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on April 2, 2010. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 10 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Dan Prucnal

Laboratory Manager

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc.

Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 10022610

The following samples were received under chain of custody by Phase Separation Science (PSS) on 02/26/2010 at 10:57 am

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
10022610-001	Dupe	WATER	02/26/2010 00:00
10022610-002	FB	WATER	02/26/2010 09:24
10022610-003	LT-BF	WATER	02/26/2010 09:08
10022610-004	LT-AF	WATER	02/26/2010 09:18

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in the Sample Receipt Checklist.

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- J The target analyte was positively identified below the reporting limit but greater than one-half of the reporting limit.
- LOD Limit of Detection. An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Page 3 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10022610

Chesapeake GeoSciences, Inc., Columbia, MD

March 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: Dupe Date/Time Sampled: 02/26/2010 00:00 PSS Sample ID: 10022610-001

Matrix: WATER Date/Time Received: 02/26/2010 10:57

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Bromodichloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Bromoform	ND	ug/L	5	1	03/03/10	03/03/10 16:53	1014
Bromomethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Chlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Chloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Chloroform	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Chloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	03/03/10	03/03/10 16:53	1014
Dibromochloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Ethylbenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Isopropylbenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Naphthalene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Styrene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Diisopropyl ether	ND	ug/L	5	1	03/03/10	03/03/10 16:53	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Tetrachloroethylene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014
Toluene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:53	1014

Page 4 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10022610

Chesapeake GeoSciences, Inc., Columbia, MD

March 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: Dupe Date/Time Sampled: 02/26/2010 00:00 PSS Sample ID: 10022610-001

Matrix: WATER Date/Time Received: 02/26/2010 10:57

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Flag	g Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:5	3 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:5	3 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 16:5	3 1014
Trichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:5	3 1014
Vinyl Chloride	ND	ug/L	0.5	1	03/03/10	03/03/10 16:5	3 1014
o-Xylene	ND	ug/L	0.5	1	03/03/10	03/03/10 16:5	3 1014
m,p-Xylenes	ND	ug/L	0.5	1	03/03/10	03/03/10 16:5	3 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	03/03/10	03/03/10 16:5	3 1014
tert-Butyl alcohol	ND	ug/L	20	1	03/03/10	03/03/10 16:5	3 1014
tert-Amyl methyl ether	ND	ug/L	5	1	03/03/10	03/03/10 16:5	3 1014

Page 5 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10022610

Chesapeake GeoSciences, Inc., Columbia, MD

March 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: FB Date/Time Sampled: 02/26/2010 09:24 PSS Sample ID: 10022610-002

Matrix: WATER Date/Time Received: 02/26/2010 10:57

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Bromodichloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Bromoform	ND	ug/L	5	1	03/03/10	03/03/10 17:33	1014
Bromomethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Chlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Chloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Chloroform	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Chloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	03/03/10	03/03/10 17:33	1014
Dibromochloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Ethylbenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Isopropylbenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Naphthalene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Styrene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Diisopropyl ether	ND	ug/L	5	1	03/03/10	03/03/10 17:33	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Tetrachloroethylene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014
Toluene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:33	1014

Page 6 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10022610

Chesapeake GeoSciences, Inc., Columbia, MD

March 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: FB Date/Time Sampled: 02/26/2010 09:24 PSS Sample ID: 10022610-002

Matrix: WATER Date/Time Received: 02/26/2010 10:57

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:3	3 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:3	3 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 17:3	3 1014
Trichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:3	3 1014
Vinyl Chloride	ND	ug/L	0.5	1	03/03/10	03/03/10 17:3	3 1014
o-Xylene	ND	ug/L	0.5	1	03/03/10	03/03/10 17:3	3 1014
m,p-Xylenes	ND	ug/L	0.5	1	03/03/10	03/03/10 17:3	3 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	03/03/10	03/03/10 17:3	3 1014
tert-Butyl alcohol	ND	ug/L	20	1	03/03/10	03/03/10 17:3	3 1014
tert-Amyl methyl ether	ND	ug/L	5	1	03/03/10	03/03/10 17:3	3 1014

Page 7 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10022610

Chesapeake GeoSciences, Inc., Columbia, MD

March 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: LT-BF Date/Time Sampled: 02/26/2010 09:08 PSS Sample ID: 10022610-003

Matrix: WATER Date/Time Received: 02/26/2010 10:57

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Bromodichloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Bromoform	ND	ug/L	5	1	03/03/10	03/03/10 18:13	1014
Bromomethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Chlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Chloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Chloroform	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Chloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	03/03/10	03/03/10 18:13	1014
Dibromochloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Ethylbenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Isopropylbenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Naphthalene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Styrene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Diisopropyl ether	ND	ug/L	5	1	03/03/10	03/03/10 18:13	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Tetrachloroethylene	2.0	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014
Toluene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:13	1014

Page 8 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10022610

Chesapeake GeoSciences, Inc., Columbia, MD

March 12, 2010

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: LT-BF Date/Time Sampled: 02/26/2010 09:08 PSS Sample ID: 10022610-003

Matrix: WATER Date/Time Received: 02/26/2010 10:57

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL Fla	ag Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:1	3 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:1	3 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:1	3 1014
Trichloroethene	1.3	ug/L	0.5	1	03/03/10	03/03/10 18:1	3 1014
Vinyl Chloride	ND	ug/L	0.5	1	03/03/10	03/03/10 18:1	3 1014
o-Xylene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:1	3 1014
m,p-Xylenes	ND	ug/L	0.5	1	03/03/10	03/03/10 18:1	3 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	03/03/10	03/03/10 18:1	3 1014
tert-Butyl alcohol	ND	ug/L	20	1	03/03/10	03/03/10 18:1	3 1014
tert-Amyl methyl ether	ND	ug/L	5	1	03/03/10	03/03/10 18:1:	3 1014

Page 9 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10022610

Chesapeake GeoSciences, Inc., Columbia, MD

March 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: LT-AF Date/Time Sampled: 02/26/2010 09:18 PSS Sample ID: 10022610-004

Matrix: WATER Date/Time Received: 02/26/2010 10:57

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
<u> </u>	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Bromodichloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Bromoform	ND	ug/L	5	1	03/03/10	03/03/10 18:53	1014
Bromomethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Chlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Chloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Chloroform	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Chloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	03/03/10	03/03/10 18:53	1014
Dibromochloromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Ethylbenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Isopropylbenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Naphthalene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Styrene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Diisopropyl ether	ND	ug/L	5	1	03/03/10	03/03/10 18:53	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Tetrachloroethylene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014
Toluene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:53	1014

Page 10 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10022610

Chesapeake GeoSciences, Inc., Columbia, MD

March 12, 2010

Project Name: Stebbins-Burnham Project Location: Maryland

Project ID: CG-08-0399

Sample ID: LT-AF

Date/Time Sampled: 02/26/2010 09:18 PSS Sample ID: 10022610-004

Matrix: WATER Date/Time Received: 02/26/2010 10:57

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:5	3 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:5	3 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	03/03/10	03/03/10 18:5	3 1014
Trichloroethene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:5	3 1014
Vinyl Chloride	ND	ug/L	0.5	1	03/03/10	03/03/10 18:5	3 1014
o-Xylene	ND	ug/L	0.5	1	03/03/10	03/03/10 18:5	3 1014
m,p-Xylenes	ND	ug/L	0.5	1	03/03/10	03/03/10 18:5	3 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	03/03/10	03/03/10 18:5	3 1014
tert-Butyl alcohol	ND	ug/L	20	1	03/03/10	03/03/10 18:5	3 1014
tert-Amyl methyl ether	ND	ug/L	5	1	03/03/10	03/03/10 18:5	3 1014

Page 11 of 13 Final Ver. 1.000

						001	01016		
Company Name:	Project Manager:	Ľ			Darameters) !	CHAIN-OF-CUSTODY RECORD	USTODY	RECORD
Chesapeake GeoSciences, Inc.	Sean Daniel								
Project Name: Stebbins-Burnham (03-1335BA2)	Project ID: CG-08-0399						Phase Separation Science, Inc. 6630 Baltimore National Pike, Suite 104-A	ration Scie ational Pik	ince, Inc. e, Suite 104-A
Sampler(s):	P.O. Number: CG080399SD		Containe				Baltimo (410	Baltimore, MD 21228 (410) 747-8770	228
Field Sample ID	Date Time	Water Soil Other	ło oM				Preservative/Remarks	narks	Lab ID
S/B-BF (2724 Spring Hill Rd.)	/	×	2 X						
6/B-AF (2734 Spring Hill Rd.)		×	2 X						
LR, 6W (2/16 Spring Hill Rg.)		×	2				, , ,		
JK-BF (2714 Spring Hill Pd.)		×	2/ X				ř .		
JK-AF (2714 Spring Hil/Rd.)		×	/ 7/	×			,	/	
Stump (4 Cliffholme Rd.)		×	2)	×					
SQ-1 (Eqst)		×	2 >	×					
\$G-2 (West)		/ x	2)	/ ×					
i Dupe	- 01/92/2	×	2	×					
Z FB	hz:60 1	× 6	2	X					
# FSC///////	11 /11/1	1/1/	12	\times		7	1////		11/11/
3 LT. BF(2705 SHR)	80:60	* * *		· ×					
LT. AFC2705 SHR	81:60 01/2/2	××	72	X			# of Coolers:	A THE CONTRACTOR TO SERVICE SECTION SE	e. ja de de Lago e la pala de Commandamenta judicia de la paga de Lago de Lago de Lago de Lago de Lago de Lago
	•		1				Custody Seal: 965	/\$<	Application of the second of t
							Ice Present: PIZESEN		emp: X sim
							Shipping Carriery		· · · · · · · · · · · · · · · · · · ·
Relimination by Signature	Date/Time	Received by:	signature) OUL	Z	Relinquished by: (Signature)	ature)	Date/Time	Received by: (Signature)	Signature)
Johnson C. Parking	10:57	(Printed)	2. DAVIS	V1.S	(Printed)			(Printed)	
Relinquished by: (Signature)	Date/Time	Received by Laboratory: (Signature)	aboratory:	(Signature)	Date/Time	Remarks: Please inc	Remarks: MDE-RMS Package 1/Level 1 Deliverable RMS 2008 Rates Please include BTEX, Naphthalene, MTBE, TAME, TBA, ETBE, DIPE, 1,2-DCA,	1 Deliverable TBE, TAME, TBA	RMS 2008 Rates ETBE, DIPE, 1,2-DCA,
(Printed)		(Printed)			1	and 1,2-Di E-mail res	and 1,2-Dibromoethane in EPA 8260 Analyses. E-mail results to <u>sdaniel@cgs.us.com</u>	malyses.	

- N
Page 12 of 13

t m

Final Ver. 1.000

Printed: 02/26/2010 01:50 PM

Phase Separation Science, Inc

Sample Receipt Checklist

Vo Number	10022610		Receive	ed By	Rachel Davis
Client Name	Chesapeak	e GeoSciences, Inc.	Date Re	eceived	02/26/2010 10:57:00 AM
Project Name	Stebbins-Bu	ırnham	Deliver	ed By	Client
Project Number	CG-08-0399	9	Trackir	g No	Not Applicable
Disposal Date:	04/02/2010		Logged	l In By	Rachel Davis
Shipping Conta	niner(s)				
No. of Coo Custody S Seal Cond	eals N lition N	ot Applicable ot Applicable	Tem	p (deg C) p Blank Pro	
		ole labels? X Yes C) X Yes		Sample MD DW C	er Name: J.C. Perkins Cert. No: NOT AVAIL
Sample Contain	ner				
Intact? Labeled a	e for Specified and Labels Legor of Samples R		Custo	s) Signed /	Intact? Not Applicable
Preservation				Yes	No N/A
TOX, TKN VOC, BTE	•	Phos s Rcvd Preserved) o headspace?	(pH<2) (pH>12) (pH>9) (pH<2) (pH<2) (pH<2)		
For any improper production of	oreservation co any client notifi	ponse must be de enditions, list sample ID, ication as well as client in yzed as soon as possible	preservative adde	d (reagent ID ples for pH, c	number) below as well as chlorine and
Samples Inspecte		Completed By:	Deix	Date:	0 lat 117)

Page 2 of 2

Analytical Report for

Chesapeake GeoSciences, Inc.
Certificate of Analysis No.: 10062907

Project Manager: John Kosloski Project Name: Stebbins-Burnham

Project ID : CG-08-0399

July 14, 2010
Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228
Phone: (410) 747-8770

Fax: (410) 788-8723

Page 1 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

July 14, 2010

John Kosloski Chesapeake GeoSciences, Inc. 5405 Twin Knolls Road, Suite 1 Columbia, MD 21045

Reference: PSS Work Order No: 10062907

Project Name: Stebbins-Burnham

Project ID.: CG-08-0399

Dear John Kosloski:

The attached Analytical and QC Summary lists the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered **10062907**.

All work reported herein has been performed in accordance with referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on August 3, 2010. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 10 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Dan Prucnal

Laboratory Manager

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc. Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Work Order Number: 10062907

The following samples were received under chain of custody by Phase Separation Science (PSS) on 06/29/2010 at 11:33 am

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
10062907-001	JD-DW	WATER	06/29/2010 07:30
10062907-002	FS-DW	WATER	06/29/2010 08:04
10062907-003	JH-DW	WATER	06/29/2010 08:52
10062907-004	JH-Ag Well	WATER	06/29/2010 08:42
10062907-005	LR-DW	WATER	06/29/2010 09:49
10062907-006	S/B-AF	WATER	06/29/2010 09:59
10062907-007	S/B-BF	WATER	06/29/2010 10:01
10062907-008	TM-BF	WATER	06/29/2010 10:52
10062907-009	TM-AF	WATER	06/29/2010 10:58
10062907-010	Dupe	WATER	06/29/2010 00:00
10062907-011	FB	WATER	06/29/2010 07:32
10062907-012	TB	WATER	06/29/2010 07:15

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in the Sample Receipt Checklist.

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than one-half of the reporting limit.
- LOD Limit of Detection. An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JD-DW Date/Time Sampled: 06/29/2010 07:30 PSS Sample ID: 10062907-001

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/09/10 19:52	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Chloroform	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/09/10 19:52	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/09/10 19:52	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
Tetrachloroethylene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	1014
		-					

Page 4 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JD-DW Date/Time Sampled: 06/29/2010 07:30 PSS Sample ID: 10062907-001

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	2 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	2 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	2 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	2 1014
Trichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	2 1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	2 1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/09/10 19:52	2 1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/09/10 19:52	2 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/09/10 19:52	2 1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/09/10 19:52	2 1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/09/10 19:52	2 1014

Page 5 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: FS-DW Date/Time Sampled: 06/29/2010 08:04 PSS Sample ID: 10062907-002

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/09/10 20:31	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Chloroform	0.6	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/09/10 20:31	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/09/10 20:31	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Tetrachloroethylene	4.0	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014

Page 6 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: FS-DW Date/Time Sampled: 06/29/2010 08:04 PSS Sample ID: 10062907-002

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1 1014
Trichloroethene	3.3	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/09/10 20:31	1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/09/10 20:31	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/09/10 20:31	1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/09/10 20:31	1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/09/10 20:31	I 1014

Page 7 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JH-DW Date/Time Sampled: 06/29/2010 08:52 PSS Sample ID: 10062907-003

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/09/10 21:11	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Chloroform	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/09/10 21:11	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/09/10 21:11	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Tetrachloroethylene	3.0	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
•	_	-					

Page 8 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JH-DW Date/Time Sampled: 06/29/2010 08:52 PSS Sample ID: 10062907-003

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL Flag	j Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Trichloroethene	2.1	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:11	1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/09/10 21:11	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/09/10 21:11	1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/09/10 21:11	1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/09/10 21:11	1014

Page 9 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JH-Ag Well Date/Time Sampled: 06/29/2010 08:42 PSS Sample ID: 10062907-004

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/09/10 21:51	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Chloroform	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/09/10 21:51	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/09/10 21:51	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Tetrachloroethylene	3.3	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014

Page 10 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JH-Ag Well Date/Time Sampled: 06/29/2010 08:42 PSS Sample ID: 10062907-004

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Trichloroethene	2.3	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/09/10 21:51	1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/09/10 21:51	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/09/10 21:51	1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/09/10 21:51	1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/09/10 21:51	1014

Page 11 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: LR-DW Date/Time Sampled: 06/29/2010 09:49 PSS Sample ID: 10062907-005

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/09/10 22:23	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Chloroform	0.6	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/09/10 22:23	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/09/10 22:23	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
Tetrachloroethylene	3.7	ug/L	0.5	1	07/09/10	07/09/10 22:23	1014
•		-					

Page 12 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: LR-DW Date/Time Sampled: 06/29/2010 09:49 PSS Sample ID: 10062907-005

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	3 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	3 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	3 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	3 1014
Trichloroethene	3.0	ug/L	0.5	1	07/09/10	07/09/10 22:23	3 1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	3 1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:23	3 1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/09/10 22:23	3 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/09/10 22:23	3 1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/09/10 22:23	3 1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/09/10 22:23	3 1014

Page 13 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: S/B-AF Date/Time Sampled: 06/29/2010 09:59 PSS Sample ID: 10062907-006

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/09/10 22:51	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Chloroform	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/09/10 22:51	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/09/10 22:51	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Tetrachloroethylene	4.0	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014

Page 14 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: S/B-AF Date/Time Sampled: 06/29/2010 09:59 PSS Sample ID: 10062907-006

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:5	1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Trichloroethene	3.1	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/09/10 22:51	1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/09/10 22:51	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/09/10 22:51	1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/09/10 22:51	1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/09/10 22:51	1014

Page 15 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: S/B-BF Date/Time Sampled: 06/29/2010 10:01 PSS Sample ID: 10062907-007

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/09/10 23:18	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Chloroform	0.6	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/09/10 23:18	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/09/10 23:18	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014
Tetrachloroethylene	3.7	ug/L	0.5	1	07/09/10	07/09/10 23:18	1014

Page 16 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: S/B-BF Date/Time Sampled: 06/29/2010 10:01 PSS Sample ID: 10062907-007

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Flag	j Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	3 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	3 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	3 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	3 1014
Trichloroethene	2.9	ug/L	0.5	1	07/09/10	07/09/10 23:18	3 1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	3 1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/09/10 23:18	3 1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/09/10 23:18	3 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/09/10 23:18	3 1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/09/10 23:18	3 1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/09/10 23:18	3 1014

Page 17 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: TM-BF Date/Time Sampled: 06/29/2010 10:52 PSS Sample ID: 10062907-008

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

Benzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Bromodichloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Bromoform ND ug/L 5 1 07/09/10 07/10/10 23:45 1014 Bromomethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Carbon Tetrachloride ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloroform ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromo-3-Chloropropane ND ug/L 0.5 1
Bromoform ND ug/L 5 1 07/09/10 07/10/10 23:45 1014 Bromomethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Carbon Tetrachloride ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloroform ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromo-3-Chloropropane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromoethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichlorobenzene ND ug/L 0.5 1
Bromomethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Carbon Tetrachloride ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloroform ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromo-3-Chloropropane ND ug/L 5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromoethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,3-Dichlorobenzene ND ug/L 0.5
Carbon Tetrachloride ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloroform ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromo-3-Chloropropane ND ug/L 5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromoethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,3-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,4-Dichlorobenzene ND ug/L 0.5 </td
Chlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloroform ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromo-3-Chloropropane ND ug/L 5 1 07/09/10 07/10/10 23:45 1014 Dibromochloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromoethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,3-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,4-Dichlorobenzene ND ug/L 0.5 </td
Chloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloroform ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromo-3-Chloropropane ND ug/L 5 1 07/09/10 07/10/10 23:45 1014 Dibromochloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromoethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,3-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,4-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,1-Dichloroethane ND ug/L
Chloroform ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Chloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromo-3-Chloropropane ND ug/L 5 1 07/09/10 07/10/10 23:45 1014 Dibromochloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromoethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,3-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,4-Dichlorodifluoromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,1-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L
Chloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromo-3-Chloropropane ND ug/L 5 1 07/09/10 07/10/10 23:45 1014 Dibromochloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromoethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,3-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,4-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Dichlorodifluoromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/
1,2-Dibromo-3-Chloropropane ND ug/L 5 1 07/09/10 07/10/10 23:45 1014 Dibromochloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromoethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,3-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,4-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Dichlorodifluoromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
Dibromochloromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dibromoethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,3-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,4-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Dichlorodifluoromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
1,2-Dibromoethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,3-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,4-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Dichlorodifluoromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
1,2-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,3-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,4-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Dichlorodifluoromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,1-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
1,3-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,4-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Dichlorodifluoromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,1-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
1,4-Dichlorobenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 Dichlorodifluoromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,1-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
Dichlorodifluoromethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,1-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
1,1-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014 1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
1,2-Dichloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
•
cis-1 2-Dichloroethene ND ug/l 0.5 1 07/09/10 07/10/10 23:45 1014
65-1,2-Didillotoetherie 14D ug/L 0.5 1 07/09/10 07/10/10/25.45 1014
trans-1,2-Dichloroethene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
1,1-Dichloroethene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
1,2-Dichloropropane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
Ethylbenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
Isopropylbenzene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
Methyl-t-butyl ether ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
Naphthalene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
Styrene ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
Diisopropyl ether ND ug/L 5 1 07/09/10 07/10/10 23:45 1014
1,1,2,2-Tetrachloroethane ND ug/L 0.5 1 07/09/10 07/10/10 23:45 1014
Tetrachloroethylene 1.8 ug/L 0.5 1 07/09/10 07/10/10 23:45 1014

Page 18 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: TM-BF Date/Time Sampled: 06/29/2010 10:52 PSS Sample ID: 10062907-008

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Fla	ıg Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/10/10 23:45	5 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 23:45	5 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 23:45	5 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 23:45	5 1014
Trichloroethene	1.2	ug/L	0.5	1	07/09/10	07/10/10 23:45	5 1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/10/10 23:45	5 1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/10/10 23:45	5 1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/10/10 23:45	5 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/10/10 23:45	5 1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/10/10 23:45	5 1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/10/10 23:45	5 1014

Page 19 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: TM-AF Date/Time Sampled: 06/29/2010 10:58 PSS Sample ID: 10062907-009

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/10/10 00:32	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Chloroform	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/10/10 00:32	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/10/10 00:32	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014
Tetrachloroethylene	0.6	ug/L	0.5	1	07/09/10	07/10/10 00:32	1014

Page 20 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: TM-AF Date/Time Sampled: 06/29/2010 10:58 PSS Sample ID: 10062907-009

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10 0	7/10/10 00:32	2 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10 0	7/10/10 00:32	2 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10 0	7/10/10 00:32	2 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10 0	7/10/10 00:32	2 1014
Trichloroethene	ND	ug/L	0.5	1	07/09/10 0	7/10/10 00:32	2 1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10 0	7/10/10 00:32	2 1014
o-Xylene	ND	ug/L	0.5	1	07/09/10 0	7/10/10 00:32	2 1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10 0	7/10/10 00:32	2 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10 0	7/10/10 00:32	2 1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10 0	7/10/10 00:32	2 1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10 0	7/10/10 00:32	2 1014

Page 21 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Dupe Date/Time Sampled: 06/29/2010 00:00 PSS Sample ID: 10062907-010

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/10/10 01:40	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Chloroform	0.6	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/10/10 01:40	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/10/10 01:40	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Tetrachloroethylene	3.9	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014

Page 22 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Dupe Date/Time Sampled: 06/29/2010 00:00 PSS Sample ID: 10062907-010

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
Trichloroethene	3.4	ug/L	0.5	1	07/09/10	07/10/10 01:40) 1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/10/10 01:40	1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/10/10 01:40	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/10/10 01:40	1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/10/10 01:40	1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/10/10 01:40	1014

Page 23 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: FB Date/Time Sampled: 06/29/2010 07:32 PSS Sample ID: 10062907-011

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/10/10 02:30	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Chloroform	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/10/10 02:30	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/10/10 02:30	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Tetrachloroethylene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014

Page 24 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: FB Date/Time Sampled: 06/29/2010 07:32 PSS Sample ID: 10062907-011

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Trichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/10/10 02:30	1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/10/10 02:30	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/10/10 02:30	1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/10/10 02:30	1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/10/10 02:30	1014

Page 25 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: TB Date/Time Sampled: 06/29/2010 07:15 PSS Sample ID: 10062907-012

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Bromoform	ND	ug/L	5	1	07/09/10	07/10/10 03:10	1014
Bromomethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Chlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Chloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Chloroform	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Chloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/09/10	07/10/10 03:10	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Ethylbenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Naphthalene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Styrene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Diisopropyl ether	ND	ug/L	5	1	07/09/10	07/10/10 03:10	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Tetrachloroethylene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014

Page 26 of 29 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10062907

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: TB Date/Time Sampled: 06/29/2010 07:15 PSS Sample ID: 10062907-012

Matrix: WATER Date/Time Received: 06/29/2010 11:33

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
Trichloroethene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10) 1014
Vinyl Chloride	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
o-Xylene	ND	ug/L	0.5	1	07/09/10	07/10/10 03:10	1014
m,p-Xylenes	ND	ug/L	1	1	07/09/10	07/10/10 03:10	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/09/10	07/10/10 03:10	1014
tert-Butyl alcohol	ND	ug/L	20	1	07/09/10	07/10/10 03:10	1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/09/10	07/10/10 03:10	1014

Page 27 of 29 Final Ver. 1.000

162001	Parameters CHAIN-OF-CUSTODY RECORD	Phase Separation Science, Inc. 6630 Baltimore National Pike. Suite 104-A	Baltimore, MD 21228 (410) 747-8770	Preservative/Remarks Lab ID					# of Coolers; /	Custody Seal: 1905	Chiming Caming (1) 17 of 1										Relinquished by: (Signature) Date/Time Received by: (Signature)	(Printed)	Date/Time Remarks: MDE-RMS Package 1/Level 1 Deliverable RMS 2008 Rates	and 1,2-Dibromoethane in EPA 8260 Analyses. E-mail results to <u>sdaniel@cgs.us.com</u>
	:		Containe		× 2	2 X	x x	ر ×	X	X 2		X	× 7			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5 ×	2 X	2 X	`	(Signature)	2.080.0	Received by Laboratory: (Signature)	
Project Manager:	John Kosloski	Project ID: CG-08-0399	P.O. Number: CG080399SD	Date Time Soil Soil	29/10 07:30 X	× 40:80	X.25:80	X 24:80	X 64.60	04.59 N	x 10:01	× 25:01	× 85:0/	/			×	07:32×	24/10 D7: 15×	/ / /	rate/Time Received by: (Signature)	(.33 (Printed)	Date/Time Received by	(Printed)
Company Name:	Chesapeake GeoSciences, Inc.	Project Name: Stebbins-Burnham (03-1335BA2)		Field Sample ID	1 JD-DW/4116massingv RD6/2	2 FS- DW (27285pring Hill Rd)	15	4 JH-A. La Ce702 Soin, HIIB)	5 LR-DW/C716 Spring 4:11 Rd	6 5/8- AF (2724 Spring HII P.)	N	TM-BF(405 Greenspring VR)	1				Ol pade	FB	B	Wer. 1	Relinguished by Wangured	Jakes C. Pakins 1	Relinquished by: (Signature)	(Printed)

Phase Separation Science, Inc

Sample Receipt Checklist

Wo Number	1006200	,	D		Dealest Davis
	10062907		Received	-	Rachel Davis
Client Name	•	ake GeoSciences, Inc.	Date Rec		06/29/2010 11:33:00 AM
Project Name	Stebbins-	Burnham	Delivere	d By	Client /
Project Number	CG-08-03	399	Tracking	No	Not Applicable
Disposal Date:	08/03/201	0	Logged I	ln By	Rachel Davis
Shipping Conta	iner(s)				
No. of Coo Custody S Seal Cond	eals	1 Not Applicable / Not Applicable	•	(deg C) Blank Pre	Present 10 / sent No
Documentation COC agree Chain of C		mple labels? <u>X</u> Yes OC) <u>X</u> Yes	or No or No		r Name: <u>Jeff Perkins</u> ert. No : <u>NOT AVAL</u> ,
Sample Contain	er				
Appropiate Intact? Labeled ar Total No. c	nd Labels i	·	Custod Seal(s)	Signed / [Absent ntact? Not Applicable Dated Not Applicable ainers Received 24
Preservation				Yes I	No N/A
	, NH3, Tot X (VOA Vi	al Phos als Rcvd Preserved) ero headspace?	(pH<2) (pH>12) (pH>9) (pH<2) (pH<2) (pH<2)		
Comments: (An	v "No" r	esponse must be det	ailed in the co	omments	section below.)
For any improper p documentation of a	reservation iny client no	conditions, list sample ID, p tification as well as client ir alyzed as soon as possible	reservative added	(reagent ID : es for pH, ch	number) below as well as Norine and
Samples Inspecte	d/Checklis	t Completed By:)01. 20X)	D-4	10/29/10
,		ew and Approval:	ON .	Date: Date:	6/19/10

Printed: 06/29/2010 12:35 PM

Analytical Report for

Chesapeake GeoSciences, Inc.
Certificate of Analysis No.: 10070201

Project Manager: John Kosloski Project Name: Stebbins-Burnham

Project ID : CG-08-0399

July 19, 2010
Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228
Phone: (410) 747-8770

Fax: (410) 788-8723

Page 1 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

July 19, 2010

John Kosloski Chesapeake GeoSciences, Inc. 5405 Twin Knolls Road, Suite 1 Columbia, MD 21045

Reference: PSS Work Order No: 10070201

Project Name: Stebbins-Burnham

Project ID.: CG-08-0399

Dear John Kosloski:

The attached Analytical and QC Summary lists the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered **10070201**.

All work reported herein has been performed in accordance with referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on August 6, 2010. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 10 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Page 2 of 13

John Richardson

Laboratory Director

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc. Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 10070201

The following samples were received under chain of custody by Phase Separation Science (PSS) on 07/02/2010 at 08:05 am

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
10070201-001	JK-BF	WATER	07/01/2010 19:18
10070201-002	JK-AF	WATER	07/01/2010 19:08
10070201-003	LT-BF	WATER	07/01/2010 19:40
10070201-004	LT-AF	WATER	07/01/2010 19:31

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in the Sample Receipt Checklist.

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than one-half of the reporting limit.
- LOD Limit of Detection. An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10070201

Chesapeake GeoSciences, Inc., Columbia, MD

July 19, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JK-BF Date/Time Sampled: 07/01/2010 19:18 PSS Sample ID: 10070201-001

Matrix: WATER Date/Time Received: 07/02/2010 08:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Bromoform	ND	ug/L	5	1	07/14/10	07/14/10 18:09	1014
Bromomethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Chlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Chloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Chloroform	0.5	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Chloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/14/10	07/14/10 18:09	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Ethylbenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Naphthalene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Styrene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Diisopropyl ether	ND	ug/L	5	1	07/14/10	07/14/10 18:09	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Tetrachloroethylene	3.5	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014

Page 4 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10070201

Chesapeake GeoSciences, Inc., Columbia, MD

July 19, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JK-BF Date/Time Sampled: 07/01/2010 19:18 PSS Sample ID: 10070201-001

Matrix: WATER Date/Time Received: 07/02/2010 08:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL F	Flag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	9 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	9 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	9 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	9 1014
Trichloroethene	2.6	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
Vinyl Chloride	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
o-Xylene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:09	1014
m,p-Xylenes	ND	ug/L	1	1	07/14/10	07/14/10 18:09	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/14/10	07/14/10 18:09	1014
tert-Butyl alcohol	ND	ug/L	20	1	07/14/10	07/14/10 18:09	1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/14/10	07/14/10 18:09	1014

Page 5 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10070201

Chesapeake GeoSciences, Inc., Columbia, MD

July 19, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JK-AF Date/Time Sampled: 07/01/2010 19:08 PSS Sample ID: 10070201-002

Matrix: WATER Date/Time Received: 07/02/2010 08:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Bromoform	ND	ug/L	5	1	07/14/10	07/14/10 18:49	1014
Bromomethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Chlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Chloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Chloroform	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Chloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/14/10	07/14/10 18:49	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Ethylbenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Naphthalene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Styrene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Diisopropyl ether	ND	ug/L	5	1	07/14/10	07/14/10 18:49	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Tetrachloroethylene	0.5	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014

Page 6 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10070201

Chesapeake GeoSciences, Inc., Columbia, MD

July 19, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JK-AF Date/Time Sampled: 07/01/2010 19:08 PSS Sample ID: 10070201-002

Matrix: WATER Date/Time Received: 07/02/2010 08:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Trichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
Vinyl Chloride	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
o-Xylene	ND	ug/L	0.5	1	07/14/10	07/14/10 18:49	1014
m,p-Xylenes	ND	ug/L	1	1	07/14/10	07/14/10 18:49	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/14/10	07/14/10 18:49	1014
tert-Butyl alcohol	ND	ug/L	20	1	07/14/10	07/14/10 18:49	1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/14/10	07/14/10 18:49	1014

Page 7 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10070201

Chesapeake GeoSciences, Inc., Columbia, MD

July 19, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: LT-BF Date/Time Sampled: 07/01/2010 19:40 PSS Sample ID: 10070201-003

Matrix: WATER Date/Time Received: 07/02/2010 08:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
	Result	Units	RL Fla	ag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Bromoform	ND	ug/L	5	1	07/14/10	07/14/10 19:29	1014
Bromomethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Chlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Chloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Chloroform	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Chloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/14/10	07/14/10 19:29	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Ethylbenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Naphthalene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Styrene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Diisopropyl ether	ND	ug/L	5	1	07/14/10	07/14/10 19:29	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Tetrachloroethylene	2.6	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014

Page 8 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10070201

Chesapeake GeoSciences, Inc., Columbia, MD

July 19, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: LT-BF Date/Time Sampled: 07/01/2010 19:40 PSS Sample ID: 10070201-003

Matrix: WATER Date/Time Received: 07/02/2010 08:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	9 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	9 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	9 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	9 1014
Trichloroethene	1.7	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
Vinyl Chloride	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
o-Xylene	ND	ug/L	0.5	1	07/14/10	07/14/10 19:29	1014
m,p-Xylenes	ND	ug/L	1	1	07/14/10	07/14/10 19:29	9 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/14/10	07/14/10 19:29	9 1014
tert-Butyl alcohol	ND	ug/L	20	1	07/14/10	07/14/10 19:29	9 1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/14/10	07/14/10 19:29	1014

Page 9 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10070201

Chesapeake GeoSciences, Inc., Columbia, MD

July 19, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: LT-AF Date/Time Sampled: 07/01/2010 19:31 PSS Sample ID: 10070201-004

Matrix: WATER Date/Time Received: 07/02/2010 08:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	,						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Bromodichloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Bromoform	ND	ug/L	5	1	07/14/10	07/14/10 20:09	1014
Bromomethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Chlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Chloroethane	0.8	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Chloroform	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Chloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/14/10	07/14/10 20:09	1014
Dibromochloromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Ethylbenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Isopropylbenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Naphthalene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Styrene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Diisopropyl ether	ND	ug/L	5	1	07/14/10	07/14/10 20:09	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Tetrachloroethylene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014

Page 10 of 13 Final Ver. 1.000

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10070201

Chesapeake GeoSciences, Inc., Columbia, MD

July 19, 2010

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: LT-AF Date/Time Sampled: 07/01/2010 19:31 PSS Sample ID: 10070201-004

Matrix: WATER Date/Time Received: 07/02/2010 08:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	9 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	9 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	9 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	9 1014
Trichloroethene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	1014
Vinyl Chloride	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	9 1014
o-Xylene	ND	ug/L	0.5	1	07/14/10	07/14/10 20:09	9 1014
m,p-Xylenes	ND	ug/L	1	1	07/14/10	07/14/10 20:09	9 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	07/14/10	07/14/10 20:09	9 1014
tert-Butyl alcohol	ND	ug/L	20	1	07/14/10	07/14/10 20:09	9 1014
tert-Amyl methyl ether	ND	ug/L	5	1	07/14/10	07/14/10 20:09	1014

Page 11 of 13 Final Ver. 1.000

Sciences, Inc. n (03-1335BA2) - Bon labels think think Sample ID Spring Hill RA Spring Hill RA Spring Hill RA Think Spring Hill RA Think Spring Hill RA Think Think		Company Name:	Project	Project Manager:	.			-						7	\$	7020	1			
Project Name: Startholic		Chesapeake GeoSciences, Inc.	John Ko	sloski	<u>:</u>				-		Pa	ramete	3rS			ರ	IAIN-OF	-CUST	ODY R	KECORD
Fleid Sample(15) Time Second Sample(15) Time			Project CG-08-0	ID:					7't+							PI PI	nase Sep	paration	Scier	ice, Inc.
Field Sample ID 17.		Sampler(s):	P.O. Nu CG0803	mber:					26 AY⊐ 5i								Baltir (4	nore, M 10) 747	ID 212 -8770	, suite 104-7 28
### 17:09 X		Field Sample ID	Date	Time	VVater	lioS	Other] d	servative/R	emarks		de de
### 18 19 19 19 19 19 19 19		I	7/1/10		 		•••	1	>	_				-						Lai, iD
		JK-AFLZ714Sprim, Hill Rol)		80:6/	├			┝╌	ىد											
The Companies Hill By Filtho 19:31 x 2 x x 2 x x 2 x x 2 x x 2 x x x 2 x x x 2 x x x 2 x x x 2 x x x 2 x x x 2 x x x 2 x x x x 2 x x x x 2 x		LT-BF(27055prim Hill Ril	→	19:40			1.4		ע											
The C. Parine The C. Parine Shed by: (Signature) Date/Time Received by Laboratory: (Signature) Printed) (Printed)		LT-AFC2305Spring Hill R.S.					.3		بد											
The Control of Signature) The Control of Signature) The Control of Signature) The Control of Signature) The Control of Signature of		/ / /		\										-						
The Continue Date/Time Received by Signature) The Continue Date/Time Received by Laboratory, (Signature) Printed by (Signature) Printed by Laboratory, (Signature) Printed by Laboratory, (Signature) Printed by Laboratory, (Signature)		\												<u> </u>						
The Visingius A 2 X 2 X 2 X 2 X 2 X 2 X 2 X X X 2 X X X 2 X X X 2 X									\vdash											
Tey C. Jeking The Colored by Laboratory, (Signature) Tey C. Jeking Tey C. Jeki	•								\perp											
The Date/Time Received by Asymptoms (Printed) The Committee Received by Laboratory: (Signature) The Committee Received by Laboratory: (Signature) (Printed)								-												
The Date Time Received by Signalure) The Color of Signature) The Color of Signalure) The Color of Signalure) Date Time Received by Laboratory. (Signalure) (Printed)						/			1											
The definition of the following shed by: (Signature) The Color of the following of the fol																		i i		
The by Signature) The by Signature) The convertibility (Signature) The convertibility (Sign																				
The by (Signature) The by (Signature) The by (Signature) The convertible of the conver	_															#	f Coolers:	,		
The by (Signature) The Color of the Color o		Dupe			×		\		$\stackrel{\times}{\longrightarrow}$							8	tody Seal:	PLS		
The by (Signature) The by (Signature) The bate/Time Received by Signature) Date/Time Received by Laboratory: (Signature) (Printed) (Printed)		FB			×			~	\searrow							3)	Present:			Cemp: 52
Thed by (Signature) The bate/Time Received by (Signature) The bate/Time Received by Laboratory: (Signature) Date/Time Received by Laboratory: (Signature) (Printed) (Printed)		/B			X			N	×								ning Carr			
Truck Cignature) Truck Comments Truck Comments Truck Comments Date/Time Received by Isgnature) Printed) Printed) Date/Time (Printed) (Printed)				1																77.77.1
Two C. Parkins (Printed) Shed by: (Signature) Date/Time Received by Laboratory: (Signature) (Printed)		howfred by Signature	2 Jate/Tim		Receiv	A SE	ing of	$\mathcal{O}_{\frac{3}{2}}$	13	X	Reli	nquishe	d by: (S	ignature)			Date/Time	Receive	ed by: (Sigr	iature)
shed by: (Signature) Date/Time Received by Laboratory: (Signature) Date/Time (Printed)	W. C.	skins	08:1	5	(Printe	\mathcal{L}	(至	1	1	(Prir	nted)						(Printed		
(Printed)		Relinquished by: (Signature)	Date/Tim		Receiv	/ed by	Labor	atory:	(Signatı	(eur	\$	Date/	Fime	Ren	narks: N	IDE-RMS P	ackage 1/Lev	el 1 Delivera	able R	MS 2008 Rates
		(Printed)		1	(Printex	ਿ ਚ					T			a pue	1,2-Dib ail resul	romoethane ts to <u>sdanie</u>	in EPA 8260 @cgs.us.con	Analyses.	다. 15A, F	16E, VIPE, 1,2-DC/

Printed. 07/02/2010 08:46 AM

Phase Separation Science, Inc

Sample Receipt Checklist

Wo Number	10070201	Rece	ived By	Rachel Davis
Client Name	Chesapeake GeoSciences		Received	07/02/2010 08:05:00 AM
Project Name	Stebbins-Burnham		ered By	Client
Project Number	CG-08-0399		king No	Not Applicable
Disposal Date:	08/06/2010		ed In By	Rachel Davis
Shipping Conta		99	ou iii by	Traditor Davis
No. of Coo Custody S Seal Cond	lers 1 eals Not Applicable		e emp (deg C) emp Blank Pres	Present 5 sent No
Documentation COC agree Chain of C	es with sample labels? ustody (COC)	Yes or No Yes or No	Sampler MD DW Ce	Name: Jeff Perkins
Sample Contair	er			
Intact? Labeled ar	for Specified Analysis? Ye d Labels Legible f Samples Received 4	<u><</u>	al(s) Signed / D	Absent ntact? Not Applicable nated Not Applicable niners Received 8
Preservation			Yes N	lo N/A
VOC, BTE	, Phenols NH3, Total Phos ((VOA Vials Rcvd Preservals have zero headspace?	(pH<2) (pH>12) (pH>9) (pH<2) (pH<2) ed) (pH<2)		× × × × × × × × × × × × × × × × × × ×
Comments: (An	y "No" response must	be detailed in the	comments	section below.)
documentation of a	reservation conditions, list sam ny client notification as well as nould be analyzed as soon as p	client instructions. Sa	mples for pH, chi	orine and
Samples Inspected	I/Checklist Completed By: ⁽ PM Review and Approval:	A Days	Date:	7/2/10

Page 2 of 2

Analytical Report for

Chesapeake GeoSciences, Inc.

Certificate of Analysis No.: 10121602

Project Manager: Sean Daniel
Project Name: Stebbins-Burnham

Project ID: CG-08-0399

January 3, 2011
Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228
Phone: (410) 747-8770

Fax: (410) 788-8723

PHASE SEPARATION SCIENCE, INC.

January 3, 2011

Sean Daniel Chesapeake GeoSciences, Inc. 5405 Twin Knolls Road, Suite 1 Columbia, MD 21045

Reference: PSS Work Order No: 10121602

Project Name: Stebbins-Burnham

Project Location: N/A Project ID.: CG-08-0399

Dear Sean Daniel:

The attached Analytical and QC Summary lists the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered **10121602**.

All work reported herein has been performed in accordance with current NELAP standards referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on January 20, 2011. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 10 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Dan Prucnal

Laboratory Manager

Sample Summary

Client Name: Chesapeake GeoSciences, Inc. Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 10121602

The following samples were received under chain of custody by Phase Separation Science (PSS) on 12/16/2010 at 11:10 am

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
10121602-001	Diggs-DW	WATER	12/16/2010 10:41

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or commone laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the LOD.
- LOD Limit of Detection. An estimate of the minimum amount of a substance that an analytical process can reliably detect.

 An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Page 3 of 8 Final 1.000. WO#: 10121602

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc.

Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 10121602

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

Page 4 of 8 Final 1.000. WO#: 10121602

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10121602

Chesapeake GeoSciences, Inc., Columbia, MD

January 3, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Diggs-DW Date/Time Sampled: 12/16/2010 10:41 PSS Sample ID: 10121602-001

Matrix: WATER Date/Time Received: 12/16/2010 11:10

VOC In Drinking Water plus Oxygenates Analytical Method: 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Bromodichloromethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Bromoform	ND	ug/L	5	1	12/17/10	12/17/10 19:26	1014
Bromomethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Chlorobenzene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Chloroethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Chloroform	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Chloromethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/17/10	12/17/10 19:26	1014
Dibromochloromethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Ethylbenzene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Isopropylbenzene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Naphthalene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Styrene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Diisopropyl ether	ND	ug/L	5	1	12/17/10	12/17/10 19:26	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014
Tetrachloroethylene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10121602

Chesapeake GeoSciences, Inc., Columbia, MD

January 3, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Diggs-DW Date/Time Sampled: 12/16/2010 10:41 PSS Sample ID: 10121602-001

Matrix: WATER Date/Time Received: 12/16/2010 11:10

VOC In Drinking Water plus Oxygenates Analytical Method: 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	5 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	5 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	5 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	5 1014
Trichloroethene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	5 1014
Vinyl Chloride	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	6 1014
o-Xylene	ND	ug/L	0.5	1	12/17/10	12/17/10 19:26	6 1014
m,p-Xylenes	ND	ug/L	1	1	12/17/10	12/17/10 19:26	6 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	12/17/10	12/17/10 19:26	6 1014
tert-Butyl alcohol	ND	ug/L	20	1	12/17/10	12/17/10 19:26	5 1014
tert-Amyl methyl ether	ND	ug/L	5	1	12/17/10	12/17/10 19:26	5 1014

Chesapeake GeoSciences, Inc.	John Kosloski	sloski			_l _		Parameters		CHAIN-OF-CUSTOUY RECORD	こつこのこう	スロくしろし
Project Name: Stebbins-Burnham (03-1335BA2)	Project ID: CG-08-0399	D: D: 3399				7·L-			$\begin{array}{c c} & O 2 62 \\ \hline & Phase Separation Science, Inc. \\ \hline & Separation Science, Inc. \\ \hline & Separational Pike Suite 104.4 \\ \hline \end{array}$	2 62	ence, Inc.
Sampler(s): Lara Bennett	P.O. Number: CG080399SD	mber:			Containe	via EPA 52			Baltim (41	Baltimore, MD 21228 (410) 747-8770	228 0
Field Sample ID	Date	Time	Water Soil	Other		A SOC 4			Preservative/Remarks	marks	Lab ID
(PO 11:11 00; (PO 10:10) = 1-0/(77.10	1	>		c						
3/5-At (ETETE)											
(:p.,					4						
(PC 11.1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	>		╁								
			╢								
DIM (1 Olimpa Rd.)											7.
(570) MAG					2						<u>G</u>
ANMOII (2700 CANTE TIII NO.		I									:aur
			: ;] \ \
			\		٦						13
(100 H) (100 H) (100 H) (100 H)					\parallel						1-1°
Diggs-DW (411 Greenspring Valley Rd.)	1.) STUTE	3. O	×		2 2	×) 1 2 8 1
			k							1	//
nocice (400 Cree					ç					1	ju:
											VDC VDC
											18u⊃ 18u⊃ 19o 19o
			×		2						
Relinquished by: (Signature)	Date/Time	<u> </u>	Received by:	by: (Sig	(Signature)		Relinquished by: (Signature)	inature)	Date/Time	Received by: (Signature)	ignature)
Pated Bennett	1:10	а)	(Printed)	ن	Mo	.moran	(Printed)			(Printed)	
Relinquished by: (Signature)	Date/Time	Re	ceived	by Lab	oratory:	Received by Laboratory: (Signature)	Date/Time	Remarks: N Please inclu	Remarks: MDE-RMS Package 1/Level 1 Deliverable RMS 2008 Rates Please include BTEX, Naphthalene, MTBE, TAME, TBA, ETBE, DIPE, 1.2-DCA,	1 Deliverable TBE, TAME, TBA,	RMS 2008 Rates ETBE, DIPE, 1.2-DCA
(Printed)		<u>a</u>	(Printed)				_	and 1,2-Dib	and 1,2-Dibromoethane in EPA 8260 Analyses.	nalyses.	

Phase Separation Science, Inc

Sample Receipt Checklist

Work Order #	10121602		I	Received By	Lynn Moran
Client Name	Chesapeake GeoSo	ciences, Inc.	1	Date Received	12/16/2010 11:10:00 AM
Project Name	Stebbins-Burnham		[Delivered By	Client
Project Number	CG-08-0399		•	Tracking No	Not Applicable
Disposal Date	01/20/2011			Logged In By	Rachel Davis
Shipping Contai	ner(s)				
No. of Coolers	1			Ice	Present
Custody Seal(s Seal(s) Signed	•		N/A N/A	Temp (deg C) Temp Blank Pres	
Documentation				Sampler Name	Lara Bennett
COC agrees wi Chain of Custo	th sample labels? dy		Yes Yes	MD DW Cert. No.	<u>N/A</u>
Sample Contain	er			Custody Seal(s) I	ntact? Not Applicable
	Specified Analysis?		Yes Yes Yes	Seal(s) Signed / [Dated Not Applicable
Total No. of Sa	mples Received 1			Total No. of Conta	ainers Received 2
Metals			(pH<2)	N/A	
Cyanides			(pH>12)		
Sulfide			(pH>9)	N/A	
TOC, COD, Ph	enols		(ph<2)	N/A	
TOX, TKN, NH			(pH<2)	N/A	
	OA Vials Rcvd Prese		(pH<2)	Yes	
	ave zero headspace			Yes	
Comments: (Ar	ny "No" response	must be d	etailed i	n the comments	section below.)
documentation of should be analyze preservation shall hand delivered on	any client notification as d as soon as possible, p be considered acceptak	s well as client preferably in the ple when receivated may no	instruction e field at the ved at a ten of meet thes	ns. Samples for pH, che time of sampling. Some sampling. Some students above freezing criteria but shall be	number) below as well as alorine and dissolved oxygen amples which require thermal ng to 6°C. Samples that are considered acceptable if there
Samples Inspected/	Checklist Completed By:	Lacled &	Jauus achel Davis	Date:	12/16/2010
P	M Review and Approval:	any Free	<i>llænde</i> y Friedlande		12/17/2010

Analytical Report for

Chesapeake GeoSciences, Inc.
Certificate of Analysis No.: 10122009

Project Manager: John Kosloski Project Name: Stebbins-Burnham

Project ID: CG-08-0399

January 6, 2011
Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228
Phone: (410) 747-8770

Fax: (410) 788-8723

PHASE SEPARATION SCIENCE, INC.

January 6, 2011

John Kosloski Chesapeake GeoSciences, Inc. 5405 Twin Knolls Road, Suite 1 Columbia, MD 21045

Reference: PSS Work Order No: 10122009

Project Name: Stebbins-Burnham

Project Location: N/A Project ID.: CG-08-0399

Dear John Kosloski:

The attached Analytical and QC Summary lists the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered **10122009**.

All work reported herein has been performed in accordance with current NELAP standards referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on January 24, 2011. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 10 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Dan Prucnal

Laboratory Manager

Sample Summary

Client Name: Chesapeake GeoSciences, Inc. Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 10122009

The following samples were received under chain of custody by Phase Separation Science (PSS) on 12/20/2010 at 11:00 am

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
10122009-001	S/B-BF	WATER	12/20/2010 10:25
10122009-002	S/B-AF	WATER	12/20/2010 10:17
10122009-003	LR-DW	WATER	12/20/2010 10:12
10122009-004	JK-BF	WATER	12/20/2010 10:01
10122009-005	JK-AF	WATER	12/20/2010 09:50
10122009-006	Stump-DW	WATER	12/20/2010 08:37
10122009-007	Hilgenberg-DW	WATER	12/20/2010 09:02
10122009-008	Hilgenberg-Ag Well	WATER	12/20/2010 09:18
10122009-009	FS-DW	WATER	12/20/2010 08:07
10122009-010	Moore-BF	WATER	12/20/2010 07:45
10122009-011	Moore-AF	WATER	12/20/2010 07:41

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or commone laboratory contaminant was identified in the method blank. Its presence indicates possible
- field or laboratory contamination.

 C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the LOD.
- LOD Limit of Detection. An estimate of the minimum amount of a substance that an analytical process can reliably detect.

 An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Page 3 of 28 Final 1.000. WO#: 10122009

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc.

Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 10122009

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Sample Receipt:

All sample receipt conditions were acceptable.

 $NELAP\ accreditation\ was\ held\ for\ all\ analyses\ performed\ unless\ noted\ below.\ See\ www.phase online.com\ for\ complete\ PSS\ scope\ of\ accreditation.$

Page 4 of 28 Final 1.000. WO#: 10122009

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: S/B-BF Date/Time Sampled: 12/20/2010 10:25 PSS Sample ID: 10122009-001

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Bromoform	ND	ug/L	5	1	12/22/10	12/22/10 15:40	1011
Bromomethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Chlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Chloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Chloroform	0.5	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Chloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/22/10	12/22/10 15:40	1011
Dibromochloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Ethylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Naphthalene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Styrene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Diisopropyl ether	ND	ug/L	5	1	12/22/10	12/22/10 15:40	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Tetrachloroethylene	3.6	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: S/B-BF Date/Time Sampled: 12/20/2010 10:25 PSS Sample ID: 10122009-001

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL Flag	j Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Trichloroethene	2.6	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
Vinyl Chloride	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
o-Xylene	ND	ug/L	0.5	1	12/22/10	12/22/10 15:40	1011
m,p-Xylenes	ND	ug/L	1	1	12/22/10	12/22/10 15:40	1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/22/10	12/22/10 15:40	1011
tert-Butyl alcohol	ND	ug/L	20	1	12/22/10	12/22/10 15:40	1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/22/10	12/22/10 15:40	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: S/B-AF Date/Time Sampled: 12/20/2010 10:17 PSS Sample ID: 10122009-002

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Bromoform	ND	ug/L	5	1	12/22/10	12/22/10 16:21	1011
Bromomethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Chlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Chloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Chloroform	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Chloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/22/10	12/22/10 16:21	1011
Dibromochloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Ethylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Naphthalene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Styrene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Diisopropyl ether	ND	ug/L	5	1	12/22/10	12/22/10 16:21	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Tetrachloroethylene	1.8	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: S/B-AF Date/Time Sampled: 12/20/2010 10:17 PSS Sample ID: 10122009-002

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL I	Flag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	I 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	I 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	I 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	I 1011
Trichloroethene	1.3	ug/L	0.5	1	12/22/10	12/22/10 16:21	1011
Vinyl Chloride	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	I 1011
o-Xylene	ND	ug/L	0.5	1	12/22/10	12/22/10 16:21	I 1011
m,p-Xylenes	ND	ug/L	1	1	12/22/10	12/22/10 16:21	I 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/22/10	12/22/10 16:21	I 1011
tert-Butyl alcohol	ND	ug/L	20	1	12/22/10	12/22/10 16:21	I 1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/22/10	12/22/10 16:21	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: LR-DW Date/Time Sampled: 12/20/2010 10:12 PSS Sample ID: 10122009-003

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Bromoform	ND	ug/L	5	1	12/22/10	12/22/10 17:02	1011
Bromomethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Chlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Chloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Chloroform	0.6	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Chloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/22/10	12/22/10 17:02	1011
Dibromochloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Ethylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Naphthalene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Styrene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Diisopropyl ether	ND	ug/L	5	1	12/22/10	12/22/10 17:02	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011
Tetrachloroethylene	3.6	ug/L	0.5	1	12/22/10	12/22/10 17:02	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: LR-DW Date/Time Sampled: 12/20/2010 10:12 PSS Sample ID: 10122009-003

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	2 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	2 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	2 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	2 1011
Trichloroethene	2.9	ug/L	0.5	1	12/22/10	12/22/10 17:02	2 1011
Vinyl Chloride	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	2 1011
o-Xylene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:02	2 1011
m,p-Xylenes	ND	ug/L	1	1	12/22/10	12/22/10 17:02	2 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/22/10	12/22/10 17:02	2 1011
tert-Butyl alcohol	ND	ug/L	20	1	12/22/10	12/22/10 17:02	2 1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/22/10	12/22/10 17:02	2 1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JK-BF Date/Time Sampled: 12/20/2010 10:01 PSS Sample ID: 10122009-004

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Bromoform	ND	ug/L	5	1	12/22/10	12/22/10 17:43	1011
Bromomethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Chlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Chloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Chloroform	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Chloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/22/10	12/22/10 17:43	1011
Dibromochloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Ethylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Naphthalene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Styrene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Diisopropyl ether	ND	ug/L	5	1	12/22/10	12/22/10 17:43	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011
Tetrachloroethylene	3.3	ug/L	0.5	1	12/22/10	12/22/10 17:43	1011

Page 11 of 28 Final 1.000. WO#: 10122009

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JK-BF Date/Time Sampled: 12/20/2010 10:01 PSS Sample ID: 10122009-004

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	3 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	3 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	3 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	3 1011
Trichloroethene	2.3	ug/L	0.5	1	12/22/10	12/22/10 17:43	3 1011
Vinyl Chloride	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	3 1011
o-Xylene	ND	ug/L	0.5	1	12/22/10	12/22/10 17:43	3 1011
m,p-Xylenes	ND	ug/L	1	1	12/22/10	12/22/10 17:43	3 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/22/10	12/22/10 17:43	3 1011
tert-Butyl alcohol	ND	ug/L	20	1	12/22/10	12/22/10 17:43	3 1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/22/10	12/22/10 17:43	3 1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JK-AF Date/Time Sampled: 12/20/2010 09:50 PSS Sample ID: 10122009-005

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Bromoform	ND	ug/L	5	1	12/22/10	12/22/10 18:24	1011
Bromomethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Chlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Chloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Chloroform	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Chloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/22/10	12/22/10 18:24	1011
Dibromochloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Ethylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Naphthalene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Styrene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Diisopropyl ether	ND	ug/L	5	1	12/22/10	12/22/10 18:24	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011
Tetrachloroethylene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1011

Page 13 of 28 Final 1.000. WO#: 10122009

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: JK-AF Date/Time Sampled: 12/20/2010 09:50 PSS Sample ID: 10122009-005

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1 1011
Trichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1 1011
Vinyl Chloride	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1 1011
o-Xylene	ND	ug/L	0.5	1	12/22/10	12/22/10 18:24	1 1011
m,p-Xylenes	ND	ug/L	1	1	12/22/10	12/22/10 18:24	1 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/22/10	12/22/10 18:24	1 1011
tert-Butyl alcohol	ND	ug/L	20	1	12/22/10	12/22/10 18:24	1 1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/22/10	12/22/10 18:24	1 1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Stump-DW Date/Time Sampled: 12/20/2010 08:37 PSS Sample ID: 10122009-006

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Bromoform	ND	ug/L	5	1	12/22/10	12/22/10 19:05	1011
Bromomethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Chlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Chloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Chloroform	0.5	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Chloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/22/10	12/22/10 19:05	1011
Dibromochloromethane	0.9	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Ethylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Naphthalene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Styrene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Diisopropyl ether	ND	ug/L	5	1	12/22/10	12/22/10 19:05	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011
Tetrachloroethylene	0.9	ug/L	0.5	1	12/22/10	12/22/10 19:05	1011

Page 15 of 28 Final 1.000. WO#: 10122009

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Stump-DW Date/Time Sampled: 12/20/2010 08:37 PSS Sample ID: 10122009-006

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	5 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	5 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	5 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	5 1011
Trichloroethene	3.1	ug/L	0.5	1	12/22/10	12/22/10 19:05	5 1011
Vinyl Chloride	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	5 1011
o-Xylene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:05	5 1011
m,p-Xylenes	ND	ug/L	1	1	12/22/10	12/22/10 19:05	5 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/22/10	12/22/10 19:05	5 1011
tert-Butyl alcohol	ND	ug/L	20	1	12/22/10	12/22/10 19:05	5 1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/22/10	12/22/10 19:05	5 1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Hilgenberg-DW Date/Time Sampled: 12/20/2010 09:02 PSS Sample ID: 10122009-007

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Bromoform	ND	ug/L	5	1	12/22/10	12/22/10 19:46	1011
Bromomethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Chlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Chloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Chloroform	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Chloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/22/10	12/22/10 19:46	1011
Dibromochloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Ethylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Naphthalene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Styrene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Diisopropyl ether	ND	ug/L	5	1	12/22/10	12/22/10 19:46	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011
Tetrachloroethylene	2.8	ug/L	0.5	1	12/22/10	12/22/10 19:46	1011

Page 17 of 28 Final 1.000. WO#: 10122009

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Hilgenberg-DW Date/Time Sampled: 12/20/2010 09:02 PSS Sample ID: 10122009-007

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	5 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:40	5 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:40	5 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 19:40	5 1011
Trichloroethene	1.9	ug/L	0.5	1	12/22/10	12/22/10 19:40	5 1011
Vinyl Chloride	ND	ug/L	0.5	1	12/22/10	12/22/10 19:46	5 1011
o-Xylene	ND	ug/L	0.5	1	12/22/10	12/22/10 19:40	5 1011
m,p-Xylenes	ND	ug/L	1	1	12/22/10	12/22/10 19:40	5 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/22/10	12/22/10 19:40	5 1011
tert-Butyl alcohol	ND	ug/L	20	1	12/22/10	12/22/10 19:40	5 1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/22/10	12/22/10 19:46	5 1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Hilgenberg-Ag Well Date/Time Sampled: 12/20/2010 09:18 PSS Sample ID: 10122009-008

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Bromoform	ND	ug/L	5	1	12/22/10	12/22/10 20:28	1011
Bromomethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Chlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Chloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Chloroform	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Chloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/22/10	12/22/10 20:28	1011
Dibromochloromethane	3.2	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Ethylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Naphthalene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Styrene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Diisopropyl ether	ND	ug/L	5	1	12/22/10	12/22/10 20:28	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Tetrachloroethylene	2.7	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011

Page 19 of 28 Final 1.000. WO#: 10122009

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Hilgenberg-Ag Well Date/Time Sampled: 12/20/2010 09:18 PSS Sample ID: 10122009-008

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Trichloroethene	2.0	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
Vinyl Chloride	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
o-Xylene	ND	ug/L	0.5	1	12/22/10	12/22/10 20:28	1011
m,p-Xylenes	ND	ug/L	1	1	12/22/10	12/22/10 20:28	1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/22/10	12/22/10 20:28	1011
tert-Butyl alcohol	ND	ug/L	20	1	12/22/10	12/22/10 20:28	1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/22/10	12/22/10 20:28	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: FS-DW Date/Time Sampled: 12/20/2010 08:07 PSS Sample ID: 10122009-009

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Bromoform	ND	ug/L	5	1	12/22/10	12/22/10 21:09	1011
Bromomethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Chlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Chloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Chloroform	0.6	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Chloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/22/10	12/22/10 21:09	1011
Dibromochloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Ethylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Naphthalene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Styrene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Diisopropyl ether	ND	ug/L	5	1	12/22/10	12/22/10 21:09	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Tetrachloroethylene	4.0	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011

Page 21 of 28 Final 1.000. WO#: 10122009

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: FS-DW Date/Time Sampled: 12/20/2010 08:07 PSS Sample ID: 10122009-009

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	9 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	9 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	9 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	9 1011
Trichloroethene	2.9	ug/L	0.5	1	12/22/10	12/22/10 21:09	1011
Vinyl Chloride	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	9 1011
o-Xylene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:09	9 1011
m,p-Xylenes	ND	ug/L	1	1	12/22/10	12/22/10 21:09	9 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/22/10	12/22/10 21:09	9 1011
tert-Butyl alcohol	ND	ug/L	20	1	12/22/10	12/22/10 21:09	9 1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/22/10	12/22/10 21:09	9 1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Moore-BF Date/Time Sampled: 12/20/2010 07:45 PSS Sample ID: 10122009-010

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Bromoform	ND	ug/L	5	1	12/22/10	12/22/10 21:50	1011
Bromomethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Chlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Chloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Chloroform	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Chloromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/22/10	12/22/10 21:50	1011
Dibromochloromethane	1.2	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Ethylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Naphthalene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Styrene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Diisopropyl ether	ND	ug/L	5	1	12/22/10	12/22/10 21:50	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Tetrachloroethylene	1.1	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Moore-BF Date/Time Sampled: 12/20/2010 07:45 PSS Sample ID: 10122009-010

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

_	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Trichloroethene	0.6	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
Vinyl Chloride	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
o-Xylene	ND	ug/L	0.5	1	12/22/10	12/22/10 21:50	1011
m,p-Xylenes	ND	ug/L	1	1	12/22/10	12/22/10 21:50	1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/22/10	12/22/10 21:50	1011
tert-Butyl alcohol	ND	ug/L	20	1	12/22/10	12/22/10 21:50	1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/22/10	12/22/10 21:50	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Moore-AF Date/Time Sampled: 12/20/2010 07:41 PSS Sample ID: 10122009-011

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Bromodichloromethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Bromoform	ND	ug/L	5	1	12/23/10	12/23/10 12:04	1011
Bromomethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Chlorobenzene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Chloroethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Chloroform	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Chloromethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	12/23/10	12/23/10 12:04	1011
Dibromochloromethane	0.8	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Ethylbenzene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Isopropylbenzene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Naphthalene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Styrene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Diisopropyl ether	ND	ug/L	5	1	12/23/10	12/23/10 12:04	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011
Tetrachloroethylene	0.8	ug/L	0.5	1	12/23/10	12/23/10 12:04	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122009

Chesapeake GeoSciences, Inc., Columbia, MD

January 6, 2011

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Sample ID: Moore-AF Date/Time Sampled: 12/20/2010 07:41 PSS Sample ID: 10122009-011

Matrix: WATER Date/Time Received: 12/20/2010 11:00

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2

	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	4 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	4 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	4 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	4 1011
Trichloroethene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	4 1011
Vinyl Chloride	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	4 1011
o-Xylene	ND	ug/L	0.5	1	12/23/10	12/23/10 12:04	4 1011
m,p-Xylenes	ND	ug/L	1	1	12/23/10	12/23/10 12:04	4 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	12/23/10	12/23/10 12:04	4 1011
tert-Butyl alcohol	ND	ug/L	20	1	12/23/10	12/23/10 12:04	4 1011
tert-Amyl methyl ether	ND	ug/L	5	1	12/23/10	12/23/10 12:04	4 1011

Chesapeake GeoSciences, Inc.	John Kosloski	oski					Parameters		CHAIN-OF-CUSTODY RECORD	-CUSTODY	RECORD
Project Name: Stebbins-Burnham (03-1335BA2)	Project ID: CG-08-0399	66	ļ			7:47			101 Phase Sep	Phase Separation Science, Inc.	ence, Inc.
Sampler(s): Lara Bennett	P.O. Number: CG080399SD	ber: 9SD			Container	S2 A93 si			6650 Baltimore National Pike, Suite 104-A Baltimore, MD 21228 (410) 747-8770	nore National Pike, S Baltimore, MD 21228 (410) 747-8770	(e, Sulte 10 1228 0
Field Sample ID	Date Tin	H H Water	lioS	Other		Λ S Ο Ο Λ			Preservative/Remarks	emarks	
S/B-BF (2724 Spring Hill Rd.)	26:01 01 06 CI	×			2	×					Lab ID
S/B-AF (2724 Spring Hill Rd.)	2	x 71:01			2	×					
LR-DW (2716 Spring Hill Rd.)	<u>8</u>	× ch S	_		2	×					
JK-BF (2714 Spring Hill Rd.)	10:01	×			2	×					
JK-AF (2714 Spring Hill Rd.)	8:b	× S			2	×					
Stump-DW (4 Cliffholme Rd.)	18/30 to 18:37	× 72			2	×					700
Hilgenberg-DW (2700 Spring Hill Rd.)		× 20%			2	×					
S Hilgenberg-AgWell (2702 Spring Hill Rd.)	(d.) 4:18	× 91		_	2	×					dma
ot Brigade Carina Lill Day											
					\dagger						No
FS-DW (2728 Spring Hill Rd.)	To:80 alaca	× 10:	Щ_		2	×					WZ
						+					D 52 94
Moore-BF (405 Greenspring Valley Rd.)	13/20th A7-45	×		╫	2	×					:.13) FOC J
Moore-AF (405 Greenspring Valley Rd.)		+		\dagger	+	+					1 :188
S. Comp 6:	11 30 01	+			+	<u> </u>					เนอ
		X		f	7						od Ne
											Cust
		1		1	1						
elinquished by: (Signerary)	Date/Time 19/26/10	Recei	Ned b	Received by: (Signat		1,3	Relinquished by: (Signature)	(Signature)	Date/Time	Received by: (Signature)	ignature)
Clara Bennett	11:00	(Printed)) (g		DAC	(5	(Printed)			(Printed)	
Relinquished by: (Signature)	Date/Time	Recei	ved by	Received by Laboratory:		(Signature)	Date/Time	Remarks: MD	Remarks: MDE-RMS Package 1/Level 1 Deliverable	11 Deliverable	RMS 2008 Rates
(Printed)		(Printed)	<u></u>					and 1,2-Dibror E-mail results	inease include bitch, Naphititalene, MilbE, TAME, TBA, ETBE, DIPE, 1,2-DCA, and 1,2-Dibromoethane in EPA 8260 Analyses. E-mail results to ikosloski@cos us com	II BE, I AME, I BA, Analyses.	E I BE, DIPE, 1,2-I
_		_									

Phase Separation Science, Inc

Sample Receipt Checklist

Work Order #	10122009			Received By	Rachel Davis
Client Name	Chesapeake GeoS	ciences, Inc.		Date Received	12/20/2010 11:00:00 AM
Project Name	Stebbins-Burnham			Delivered By	Client
Project Number	CG-08-0399			Tracking No	Not Applicable
Disposal Date	01/24/2011			Logged In By	Rachel Davis
Shipping Contai	iner(s)				
No. of Coolers	1			Ice	Present
Custody Seal(s	·		N/A	Temp (deg C) Temp Blank Pres	5
Seal(s) Signed	/ Dated?		N/A	Tomp Blank Troc	one no
Documentation				Sampler Name MD DW Cert. No	<u>Lara Bennett</u> . N/A
COC agrees wi Chain of Custo	ith sample labels? dy		Yes Yes		. <u></u>
Sample Contain	er			Custody Seal(s) I	ntact? Not Applicable
Appropriate for Intact?	Specified Analysis?		Yes Yes	Seal(s) Signed / I	Dated Not Applicable
Labeled and La	abels Legible?		Yes		
	mples Received 11			Total No. of Cont	ainers Received 22
Preservation Metals			(pH<2)	N/A	
Cyanides			(pH>12)		
Sulfide			(pH>9)	N/A	
TOC, COD, Ph	enols		(ph<2)	N/A	
TOX, TKN, NH	3, Total Phos		(pH<2)	N/A	
VOC, BTEX (V	OA Vials Rcvd Prese	erved)	(pH<2)	Yes	
Do VOA vials h	ave zero headspace	?		Yes	
Comments: (A	ny "No" response	must be d	letailed i	n the comments	section below.)
documentation of should be analyze preservation shall hand delivered on	any client notification as d as soon as possible, p be considered acceptal	s well as clien preferably in the ple when recei llected may no	t instruction ne field at the eved at a ter ot meet the	ns. Samples for pH, cl ne time of sampling. S nperature above freez se criteria but shall be	number) below as well as hlorine and dissolved oxygen amples which require thermal ing to 6°C. Samples that are considered acceptable if there
Samples Inspected/	Checklist Completed By:	Lacled A	Oaws Rachel Davis		12/20/2010
P	M Review and Approval:	any Ffree	llændes ny Friedland		12/20/2010

Printed: 01/06/2011 11:42 AM Page 28 of 28 Final 1.000. WO#: 10122009

Analytical Report for

Chesapeake GeoSciences, Inc.

Certificate of Analysis No.: 10122307

Project Manager: John Kosloski
Project Name: Stebbins-Burnham
Project Location: Maryland

Project ID: CGS-08-0399

January 11, 2011
Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228
Phone: (410) 747-8770

Fax: (410) 788-8723

PHASE SEPARATION SCIENCE, INC.

January 11, 2011

John Kosloski Chesapeake GeoSciences, Inc. 5405 Twin Knolls Road, Suite 1 Columbia, MD 21045

Reference: PSS Work Order No: 10122307

Project Name: Stebbins-Burnham Project Location: Maryland Project ID.: CGS-08-0399

Dear John Kosloski:

The attached Analytical and QC Summary lists the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered **10122307**.

All work reported herein has been performed in accordance with current NELAP standards referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on January 27, 2011. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 10 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Dan Prucnal

Laboratory Manager

Sample Summary

Client Name: Chesapeake GeoSciences, Inc. Project Name: Stebbins-Burnham

Project ID: CGS-08-0399 Work Order Number: 10122307

The following samples were received under chain of custody by Phase Separation Science (PSS) on 12/23/2010 at 11:25 am

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
10122307-001	RT-BF	WATER	12/23/2010 10:25
10122307-002	RT-AF	WATER	12/23/2010 10:21

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or commone laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the LOD.
- LOD Limit of Detection. An estimate of the minimum amount of a substance that an analytical process can reliably detect.

 An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Page 3 of 10 Final 1.000. WO#: 10122307

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc.

Project Name: Stebbins-Burnham

Project ID: CGS-08-0399 Work Order Number: 10122307

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

Page 4 of 10 Final 1.000. WO#: 10122307

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122307

Chesapeake GeoSciences, Inc., Columbia, MD

January 11, 2011

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CGS-08-0399

Sample ID: RT-BF Date/Time Sampled: 12/23/2010 10:25 PSS Sample ID: 10122307-001

Matrix: WATER Date/Time Received: 12/23/2010 11:25

VOC In Drinking Water plus Oxygenates Analytical Method: 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Bromodichloromethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Bromoform	ND	ug/L	5	1	01/03/11	01/03/11 20:09	1014
Bromomethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Chlorobenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Chloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Chloroform	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Chloromethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	01/03/11	01/03/11 20:09	1014
Dibromochloromethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Ethylbenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Isopropylbenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Naphthalene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Styrene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Diisopropyl ether	ND	ug/L	5	1	01/03/11	01/03/11 20:09	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Tetrachloroethylene	2.5	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122307

Chesapeake GeoSciences, Inc., Columbia, MD

January 11, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CGS-08-0399

Sample ID: RT-BF Date/Time Sampled: 12/23/2010 10:25 PSS Sample ID: 10122307-001

Matrix: WATER Date/Time Received: 12/23/2010 11:25

VOC In Drinking Water plus Oxygenates Analytical Method: 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Trichloroethene	1.7	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
Vinyl Chloride	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
o-Xylene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:09	1014
m,p-Xylenes	ND	ug/L	1	1	01/03/11	01/03/11 20:09	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	01/03/11	01/03/11 20:09	1014
tert-Butyl alcohol	ND	ug/L	20	1	01/03/11	01/03/11 20:09	1014
tert-Amyl methyl ether	ND	ug/L	5	1	01/03/11	01/03/11 20:09	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122307

Chesapeake GeoSciences, Inc., Columbia, MD

January 11, 2011

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CGS-08-0399

Sample ID: RT-AF Date/Time Sampled: 12/23/2010 10:21 PSS Sample ID: 10122307-002

Matrix: WATER Date/Time Received: 12/23/2010 11:25

VOC In Drinking Water plus Oxygenates Analytical Method: 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Bromodichloromethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Bromoform	ND	ug/L	5	1	01/03/11	01/03/11 20:50	1014
Bromomethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Chlorobenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Chloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Chloroform	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Chloromethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	01/03/11	01/03/11 20:50	1014
Dibromochloromethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Ethylbenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Isopropylbenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Naphthalene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Styrene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Diisopropyl ether	ND	ug/L	5	1	01/03/11	01/03/11 20:50	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Tetrachloroethylene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 10122307

Chesapeake GeoSciences, Inc., Columbia, MD

January 11, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CGS-08-0399

Sample ID: RT-AF Date/Time Sampled: 12/23/2010 10:21 PSS Sample ID: 10122307-002

Matrix: WATER Date/Time Received: 12/23/2010 11:25

VOC In Drinking Water plus Oxygenates Analytical Method: 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Trichloroethene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
Vinyl Chloride	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
o-Xylene	ND	ug/L	0.5	1	01/03/11	01/03/11 20:50	1014
m,p-Xylenes	ND	ug/L	1	1	01/03/11	01/03/11 20:50	1014
tert-Butyl ethyl ether	ND	ug/L	5	1	01/03/11	01/03/11 20:50	1014
tert-Butyl alcohol	ND	ug/L	20	1	01/03/11	01/03/11 20:50	1014
tert-Amyl methyl ether	ND	ug/L	5	1	01/03/11	01/03/11 20:50	1014

Chesapeake GeoSciences, Inc.	Project Manager: John Kosloski	ager: Ki				110	1016 Parameters		CHAIN-OF-CUSTODY RECORD	CUSTODY	RECORD
Project Name: Stebbins-Burnham (03-1335BA2)	Project ID: CG-08-0399							8	Phase Separation Science, Inc. 6630 Baltimore National Pike, Suite 104-A	Phase Separation Science, Inc. Baltimore National Pike, Suite 1	nce, Inc. Suite 104-A
Sampler(s): Lara Bennett	P.O. Number: CG080399JK	 :			Containe				Baltim (41)	Baltimore, MD 21228 (410) 747-8770	28
Field Sample ID	Date Tir	Time Water	lioS	Other					Preservative/Remarks	marks	Lab ID
C.		k								1	ļ
RT-BF	३८:01 अंड्रब्स	× 22			\ \						
RT. AF	1c:01	メド			7						
										ē	
Pr											
age 9											E
of 10											
								*			
		•									
			•						# Of Coolers:	a been	n'Antonna's Tr. and septim metaboun bear the control
									Ice Present:	Yes	Job do
Fin									Shipping Carrier:	Client	Actualization (White application)
at 1.00											
00. WO									e E		
Relinquished by: (Signature)	Date/Time	A Kece	ived by	Received by: (Signature)	ature)	<u> </u>	Relinquished by: (Signature)	ignature)	Date/Time	Received by: (Signature)	nature)
(Philippa) Bennett	1:32	(Printed)	(pe				(Printed)			(Printed)	
Relinquished by: (Signature)	Date/Time	Received	\$ C		atory: (aboratory: (Signature)	Date/Time	Remarks: MDE Please include	Remarks: MDE-RMS Package 1/Level 1 Deliverable RMS 2008 Rates Please include BTEX, Naphthalene, MTBE, TAME, TBA, ETBE, DIPE, 1.2-DCA.	1 Deliverable F TBE, TAME, TBA, E	RMS 2008 Rates ETBE, DIPE, 1,2-DCA
(Printed)		(Print	ک ا	(Printed)	\frac{\z^2}{2}		Γ	and 1,2-Dibrom E-mail results to	and 1,2-Dibromoethane in EPA 8260 Analyses. E-mail results to įkosloski@cgs.us.com	ınalyses.	

Phase Separation Science, Inc

Sample Receipt Checklist

Work Order #	10122307		I	Received By	Cathy Thompson
Client Name	Chesapeake GeoSc	ciences, Inc.	I	Date Received	12/23/2010 11:25:00 AM
Project Name	Stebbins-Burnham		[Delivered By	Client
Project Number	CGS-08-0399		•	Tracking No	Not Applicable
Disposal Date	01/27/2011			Logged In By	Lynn Moran
Shipping Contai	ner(s)				
No. of Coolers	1			Ice	Present
Custody Seal(s Seal(s) Signed	•		N/A N/A	Temp (deg C) Temp Blank Pres	
Documentation				Sampler Name	Lara Bennett
COC agrees wi Chain of Custon	th sample labels? dy		Yes Yes	MD DW Cert. No.	<u>N/A</u>
Sample Contain	er			Custody Seal(s) I	ntact? Not Applicable
-	Specified Analysis?		Yes Yes	Seal(s) Signed / [Dated Not Applicable
Labeled and La	bels Legible?		Yes		
Total No. of Sa	mples Received 2			Total No. of Conta	ainers Received 4
Metals			(pH<2)	N/A	
Cyanides			(pH>12)		
Sulfide			(pH>9)	N/A	
TOC, COD, Ph	enols		(ph<2)	N/A	
TOX, TKN, NH			(pH<2)	N/A	
	OA Vials Rcvd Prese		(pH<2)	Yes	
	ave zero headspace			Yes	
Comments: (Ar	ny "No" response	must be d	etailed i	n the comments	section below.)
documentation of should be analyzed preservation shall hand delivered on	any client notification as d as soon as possible, p be considered acceptak	s well as client preferably in the ple when receivallected may no	instruction e field at the ved at a ten of meet thes	ns. Samples for pH, cheetime of sampling. Some entime of sampling. Some entime of sampling. Some se criteria but shall be	number) below as well as allorine and dissolved oxygen amples which require thermal ng to 6°C. Samples that are considered acceptable if there
Samples Inspected/	Checklist Completed By:	Vii Yrgm	Maynn Moran	Date:	12/23/2010
Pl	M Review and Approval:	any Free	<i>llænde</i> y Friedlande		12/23/2010

Printed: 01/11/2011 10:08 AM Page 10 of 10 Final 1.000. WO#: 10122307

Analytical Report for

Chesapeake GeoSciences, Inc.
Certificate of Analysis No.: 11022507

Project Manager: John Kosloski
Project Name: Stebbins-Burnham
Project Location: Maryland
Project ID: CG-08-0399

March 11, 2011
Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228
Phone: (410) 747-8770

Fax: (410) 788-8723

PHASE SEPARATION SCIENCE, INC.

March 11, 2011

John Kosloski Chesapeake GeoSciences, Inc. 5405 Twin Knolls Road, Suite 1 Columbia, MD 21045

Reference: PSS Work Order No: 11022507

Project Name: Stebbins-Burnham Project Location: Maryland Project ID.: CG-08-0399

Dear John Kosloski:

The attached Analytical and QC Summary lists the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered **11022507**.

All work reported herein has been performed in accordance with current NELAP standards referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on April 1, 2011. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 10 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Dan Prucnal

Laboratory Manager

Sample Summary

Client Name: Chesapeake GeoSciences, Inc. Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 11022507

The following samples were received under chain of custody by Phase Separation Science (PSS) on 02/25/2011 at 11:05 am

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
11022507-001	MC-DW	WATER	02/25/2011 08:06
11022507-002	SB-Dupe	WATER	02/25/2011 00:00
11022507-003	SB-FB	WATER	02/25/2011 08:24
11022507-004	SB-TB	WATER	02/25/2011 07:02

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or commone laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the LOD.
- LOD Limit of Detection. An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Page 3 of 14 Final 1.000. WO#: 11022507

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc.

Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 11022507

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

Page 4 of 14 Final 1.000. WO#: 11022507

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11022507

Chesapeake GeoSciences, Inc., Columbia, MD

March 11, 2011

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

VOC In Drinking Water plus Oxygenates

Sample ID: MC-DW Date/Time Sampled: 02/25/2011 08:06 PSS Sample ID: 11022507-001

Date/Time Received: 02/25/2011 11:05 **Matrix: WATER**

Analytical Method: EPA 524.2 Preparation Method: 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Bromodichloromethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Bromoform	ND	ug/L	5	1	03/07/11	03/07/11 23:47	1014
Bromomethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Chlorobenzene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Chloroethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Chloroform	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Chloromethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	03/07/11	03/07/11 23:47	1014
Dibromochloromethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Ethylbenzene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Isopropylbenzene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Naphthalene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Styrene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Diisopropyl ether	ND	ug/L	5	1	03/07/11	03/07/11 23:47	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014
Tetrachloroethylene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11022507

Chesapeake GeoSciences, Inc., Columbia, MD

March 11, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: MC-DW Date/Time Sampled: 02/25/2011 08:06 PSS Sample ID: 11022507-001

Matrix: WATER Date/Time Received: 02/25/2011 11:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	7 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	7 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	7 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	7 1014
Trichloroethene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	7 1014
Vinyl Chloride	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	7 1014
o-Xylene	ND	ug/L	0.5	1	03/07/11	03/07/11 23:47	7 1014
m,p-Xylenes	ND	ug/L	1	1	03/07/11	03/07/11 23:47	7 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	03/07/11	03/07/11 23:47	7 1014
tert-Butyl alcohol	ND	ug/L	20	1	03/07/11	03/07/11 23:47	7 1014
tert-Amyl methyl ether	ND	ug/L	5	1	03/07/11	03/07/11 23:47	7 1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11022507

Chesapeake GeoSciences, Inc., Columbia, MD

March 11, 2011

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: SB-Dupe Date/Time Sampled: 02/25/2011 00:00 PSS Sample ID: 11022507-002

Matrix: WATER Date/Time Received: 02/25/2011 11:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Bromodichloromethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Bromoform	ND	ug/L	5	1	03/08/11	03/08/11 11:35	1014
Bromomethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Chlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Chloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Chloroform	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Chloromethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	03/08/11	03/08/11 11:35	1014
Dibromochloromethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Ethylbenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Isopropylbenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Naphthalene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Styrene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Diisopropyl ether	ND	ug/L	5	1	03/08/11	03/08/11 11:35	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014
Tetrachloroethylene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11022507

Chesapeake GeoSciences, Inc., Columbia, MD

March 11, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: SB-Dupe

Date/Time Sampled: 02/25/2011 00:00 PSS Sample ID: 11022507-002

Matrix: WATER Date/Time Received: 02/25/2011 11:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	5 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	5 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	5 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	5 1014
Trichloroethene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	5 1014
Vinyl Chloride	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	5 1014
o-Xylene	ND	ug/L	0.5	1	03/08/11	03/08/11 11:35	5 1014
m,p-Xylenes	ND	ug/L	1	1	03/08/11	03/08/11 11:35	5 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	03/08/11	03/08/11 11:35	5 1014
tert-Butyl alcohol	ND	ug/L	20	1	03/08/11	03/08/11 11:35	5 1014
tert-Amyl methyl ether	ND	ug/L	5	1	03/08/11	03/08/11 11:35	5 1014

PHASE SEPARATION SCIENCE, INC.

Preparation Method: 524.2

CERTIFICATE OF ANALYSIS

No: 11022507

Chesapeake GeoSciences, Inc., Columbia, MD

March 11, 2011

Analytical Method: EPA 524.2

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

VOC In Drinking Water plus Oxygenates

1,1,2,2-Tetrachloroethane

Tetrachloroethylene

Sample ID: SB-FB Date/Time Sampled: 02/25/2011 08:24 PSS Sample ID: 11022507-003

Matrix: WATER Date/Time Received: 02/25/2011 11:05

Dil Result Units **RL Flag Prepared** Analyzed Analyst Benzene ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 1 ND 0.5 03/08/11 03/08/11 12:14 1014 Bromodichloromethane ug/L Bromoform ND 5 03/08/11 03/08/11 12:14 1014 ug/L 1 Bromomethane ND 0.5 03/08/11 03/08/11 12:14 1014 ug/L 1 Carbon Tetrachloride ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 Chlorobenzene ND 0.5 03/08/11 03/08/11 12:14 1014 ug/L 1 Chloroethane ND 0.5 03/08/11 03/08/11 12:14 1014 ug/L 1 ND ug/L 0.5 1 03/08/11 12:14 1014 Chloroform 03/08/11 ND 03/08/11 03/08/11 12:14 1014 Chloromethane ug/L 0.5 1 ND ug/L 5 03/08/11 03/08/11 12:14 1014 1,2-Dibromo-3-Chloropropane 1 ND Dibromochloromethane ug/L 0.5 03/08/11 03/08/11 12:14 1014 1 1.2-Dibromoethane ND ug/L 0.5 03/08/11 03/08/11 12:14 1014 1 1.2-Dichlorobenzene ND ua/L 0.5 03/08/11 03/08/11 12:14 1014 1 1,3-Dichlorobenzene ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 1,4-Dichlorobenzene ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 Dichlorodifluoromethane ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 0.5 1,1-Dichloroethane ND ug/L 1 03/08/11 03/08/11 12:14 1014 1,2-Dichloroethane ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 cis-1,2-Dichloroethene ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 ND trans-1,2-Dichloroethene ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 1,1-Dichloroethene ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 1,2-Dichloropropane ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 ND 0.5 03/08/11 03/08/11 12:14 1014 Ethylbenzene ug/L 1 Isopropylbenzene ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 Methyl-t-butyl ether ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 Naphthalene ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 Styrene ND ug/L 0.5 1 03/08/11 03/08/11 12:14 1014 Diisopropyl ether ND ug/L 5 1 03/08/11 03/08/11 12:14 1014

Final 1.000. WO#: 11022507

03/08/11

03/08/11 12:14 1014

03/08/11 03/08/11 12:14 1014

0.5

0.5

1

1

ND

ND

ug/L

ug/L

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11022507

Chesapeake GeoSciences, Inc., Columbia, MD

March 11, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: SB-FB

Date/Time Sampled: 02/25/2011 08:24 PSS Sample ID: 11022507-003

Matrix: WATER Date/Time Received: 02/25/2011 11:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

_	Result	Units	RL Fla	ag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:14	4 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:14	4 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:14	4 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:14	4 1014
Trichloroethene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:14	4 1014
Vinyl Chloride	ND	ug/L	0.5	1	03/08/11	03/08/11 12:14	4 1014
o-Xylene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:14	4 1014
m,p-Xylenes	ND	ug/L	1	1	03/08/11	03/08/11 12:14	4 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	03/08/11	03/08/11 12:14	4 1014
tert-Butyl alcohol	ND	ug/L	20	1	03/08/11	03/08/11 12:14	4 1014
tert-Amyl methyl ether	ND	ug/L	5	1	03/08/11	03/08/11 12:14	4 1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11022507

Chesapeake GeoSciences, Inc., Columbia, MD

March 11, 2011

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: SB-TB Date/Time Sampled: 02/25/2011 07:02 PSS Sample ID: 11022507-004

Matrix: WATER Date/Time Received: 02/25/2011 11:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Bromodichloromethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Bromoform	ND	ug/L	5	1	03/08/11	03/08/11 12:54	1014
Bromomethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Carbon Tetrachloride	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Chlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Chloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Chloroform	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Chloromethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	03/08/11	03/08/11 12:54	1014
Dibromochloromethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
1,2-Dibromoethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
1,2-Dichlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
1,3-Dichlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
1,4-Dichlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Dichlorodifluoromethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
1,1-Dichloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
1,2-Dichloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
1,1-Dichloroethene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
1,2-Dichloropropane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Ethylbenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Isopropylbenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Methyl-t-butyl ether	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Naphthalene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Styrene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Diisopropyl ether	ND	ug/L	5	1	03/08/11	03/08/11 12:54	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014
Tetrachloroethylene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1014

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11022507

Chesapeake GeoSciences, Inc., Columbia, MD

March 11, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: SB-TB Date/Time Sampled: 02/25/2011 07:02 PSS Sample ID: 11022507-004

Matrix: WATER Date/Time Received: 02/25/2011 11:05

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1 1014
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1 1014
1,1,1-Trichloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1 1014
1,1,2-Trichloroethane	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1 1014
Trichloroethene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1 1014
Vinyl Chloride	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1 1014
o-Xylene	ND	ug/L	0.5	1	03/08/11	03/08/11 12:54	1 1014
m,p-Xylenes	ND	ug/L	1	1	03/08/11	03/08/11 12:54	1 1014
tert-Butyl ethyl ether	ND	ug/L	5	1	03/08/11	03/08/11 12:54	1 1014
tert-Butyl alcohol	ND	ug/L	20	1	03/08/11	03/08/11 12:54	1 1014
tert-Amyl methyl ether	ND	ug/L	5	1	03/08/11	03/08/11 12:54	1014

Company reality.	Project Manager:	er:				Parameters		CHAIN-OF-CUSTODY RECORD	STODY RE	CORD
Chesapeake GeoSciences, Inc.	John Kosloski							102.2307	507	
Project Name: Stebbins-Burnham (03-1335BA2)	Project ID: CG-08-0399						В 0899 	Phase Separation Science, Inc. 6630 Baltimore National Pike, Suite 104-A	ation Science Ilonal Pike, S	e, Inc. Suite 104-A
Sampler(s): Lara Bennett	P.O. Number: CG080399JK			Containe	via EPA 5			Baltimore (410)	Baltimore, MD 21228 (410) 747-8770	
Field Sample ID	Date Time	Water	lio2	Other Of			<u>ā</u>	Preservative/Remarks	rks	Lab ID
Q.		×		7	k					
MC-DW (2707 GRENCY Pd. 3)	30:8 11/3c/		_	3	- 1					
SB-Dupe		X	\dashv	4	Ť					
SB-FB	£34	X	_	3	×					
6B-TB	4 7:03	×		d	×					
		1		\dashv						
				\dashv			1			
									1	
		+		4			-			
		\dashv	_	\dashv		+				i i
		_		\dashv						i.
				\dashv						
		_								
			i				# of Coolers:			
							Custody Seal:	eal: (HS)	T- 2	
				\vdash			Shinping Ca		dinist 1	
			<u> </u>	-			7		tonois, with positioned	[04]
Relinquished by: (Signature)	Date/Time 2/85/11		Received by: (Signature)	(Signal	rure)	Relinquished by: (Signature)	(e)	Date/ IIIIe	Received by. (Signature)	ure)
Bennett	1:05	(Printed)	rinted)	DOR	7	(Printed)			(Printed)	
Relinquished by: (Signature)	Date/Time	Recei	ved by	Labor	Received by Laboratory: (Signature)	Date/Time R	temarks: MDE-RMS	Remarks: MDE-RMS Package 1/Level 1 Deliverable RMS 2008 Rates Please include BTEX, Naphthalene, MTBE, TAME, TBA, ETBE, DIPE, 1,2-DCA,	Deliverable RM E, TAME, TBA, ETB	RMS 2008 Rates ETBE, DIPE, 1,2-DCA
(Printed)		(Printed)	g g			<u> е ш</u>	and 1,2-Dibromoethane in EPA 8260 A	and 1,2-Dibromoethane in EPA 8260 Analyses.	llyses.	

Phase Separation Science, Inc

Sample Receipt Checklist

NG THE SIP					
Work Order #	11022507			Received By	Sara Dorr
Client Name	Chesapeake GeoSc	ciences, Inc.		Date Received	02/25/2011 11:05:00 AM
Project Name	Stebbins-Burnham			Delivered By	Client
Project Number	CG-08-0399			Tracking No	Not Applicable
Disposal Date	04/01/2011			Logged In By	Sara Dorr
Shipping Contai	ner(s)			,	
No. of Coolers	1			Ice	Present
140. 01 0001613	,			Temp (deg C)	2
Custody Seal(s Seal(s) Signed	•		N/A N/A	Temp Blank Pres	sent No
Documentation				Sampler Name	Not Provided
COC agrees wi Chain of Custo	th sample labels? dy		Yes Yes		<u>N/A</u>
Sample Contain	۵r			Custody Seal(s)	Intact? Not Applicable
•	Specified Analysis?		Yes	Seal(s) Signed /	Dated Not Applicable
Intact?			Yes		
Labeled and La	ibels Legible?		Yes		
Total No. of Sa	mples Received 4			Total No. of Cont	cainers Received 8
Preservation					
Metals			(pH<2)	N/A	
Cyanides			(pH>12)		
Sulfide TOC, COD, Ph	onole		(pH>9) (ph<2)	N/A N/A	
TOX, TKN, NH			(pH<2)	N/A N/A	
	OA Vials Rcvd Prese	erved)	(pH<2)	Yes	
,	ave zero headspace	•	(Yes	
Comments: (Ar	ny "No" response	must be d	etailed i	n the comments	s section below.)
documentation of should be analyze preservation shall hand delivered on	any client notification as d as soon as possible, p be considered acceptat	s well as client preferably in the ple when receivallected may no	instruction e field at the ved at a ter of meet the	ns. Samples for pH, c ne time of sampling. S nperature above freez se criteria but shall be	number) below as well as hlorine and dissolved oxygen samples which require thermal ing to 6°C. Samples that are considered acceptable if there
Samples Inspected/	Checklist Completed By:	Saia Du	Sara Dorr	Date:	02/25/2011
Pl	M Review and Approval:	any Free	lander y Friedlande		02/25/2011

Printed: 03/11/2011 07:53 AM Page 14 of 14 Final 1.000. WO#: 11022507

Analytical Report for

Chesapeake GeoSciences, Inc.

Certificate of Analysis No.: 11062938

Project Manager: John Kosloski
Project Name: Stebbins-Burnham
Project Location: Maryland
Project ID: CG-08-0399

July 14, 2011
Phase Separation Science, Inc.
6630 Baltimore National Pike
Baltimore, MD 21228
Phone: (410) 747-8770

Fax: (410) 788-8723

PHASE SEPARATION SCIENCE, INC.

July 14, 2011

John Kosloski Chesapeake GeoSciences, Inc. 5405 Twin Knolls Road, Suite 1 Columbia, MD 21045

Reference: PSS Work Order No: 11062938

Project Name: Stebbins-Burnham Project Location: Maryland Project ID.: CG-08-0399

Dear John Kosloski:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order numbered 11062938.

All work reported herein has been performed in accordance with current NELAP standards referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on August 3, 2011. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Dan Prucnal

Dan Perund

Laboratory Manager

Sample Summary

Client Name: Chesapeake GeoSciences, Inc.

Project Name: Stebbins-Burnham

Project ID: CG-08-0399

Work Order Number: 11062938

The following samples were received under chain of custody by Phase Separation Science (PSS) on 06/29/2011 at 03:30 pm

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
11062938-001	BC-DW	WATER	06/29/2011 12:27
11062938-002	Diggs-DW	WATER	06/29/2011 12:17
11062938-003	Hilgenberg-DW	WATER	06/29/2011 11:45
11062938-004	Smalkin-DW	WATER	06/29/2011 12:01
11062938-005	Stebbins-Dupe	WATER	06/29/2011 00:00
11062938-006	Stebbins-FB	WATER	06/29/2011 12:45

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of common laboratory contaminants such as acetone, methylene chloride and phthalates, may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. The following analytical results are never reported on a dry weight basis: pH, flashpoint, moisture and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].

Standard Flags/Abbreviations:

- B A target analyte or commone laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- The target analyte was positively identified below the reporting limit but greater than the LOD.
- LOD Limit of Detection. An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Page 3 of 18 Final 1.000. WO#: 11062938

Case Narrative Summary

Client Name: Chesapeake GeoSciences, Inc.

Project Name: Stebbins-Burnham

Project ID: CG-08-0399 Work Order Number: 11062938

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

Page 4 of 18 Final 1.000. WO#: 11062938

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: BC-DW

Matrix: WATER

Date/Time Sampled: 06/29/2011 12:27 PSS Sample ID: 11062938-001

Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	7 wildiy woo		2.7.022		1 Toparation Mot	104. 02 1.2	
	Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Bromodichloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Bromoform	ND	ug/L	5	1	07/08/11	07/08/11 15:05	1011
Bromomethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Chlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Chloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Chloroform	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Chloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/08/11	07/08/11 15:05	1011
Dibromochloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Ethylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Isopropylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Naphthalene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Styrene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Diisopropyl ether	ND	ug/L	5	1	07/08/11	07/08/11 15:05	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011
Tetrachloroethylene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: BC-DW Date/Time Sampled: 06/29/2011 12:27 PSS Sample ID: 11062938-001

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	5 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	5 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	5 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	5 1011
Trichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	5 1011
Vinyl Chloride	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	5 1011
o-Xylene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:05	5 1011
m,p-Xylenes	ND	ug/L	1	1	07/08/11	07/08/11 15:05	5 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	07/08/11	07/08/11 15:05	5 1011
tert-Butyl alcohol	ND	ug/L	20	1	07/08/11	07/08/11 15:05	5 1011
tert-Amyl methyl ether	ND	ug/L	5	1	07/08/11	07/08/11 15:05	5 1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: Diggs-DW Date/Time Sampled: 06/29/2011 12:17 PSS Sample ID: 11062938-002

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Bromodichloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Bromoform	ND	ug/L	5	1	07/08/11	07/08/11 15:46	1011
Bromomethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Chlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Chloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Chloroform	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Chloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/08/11	07/08/11 15:46	1011
Dibromochloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Ethylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Isopropylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Naphthalene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Styrene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Diisopropyl ether	ND	ug/L	5	1	07/08/11	07/08/11 15:46	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011
Tetrachloroethylene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: Diggs-DW Date/Time Sampled: 06/29/2011 12:17 PSS Sample ID: 11062938-002

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	5 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	5 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	5 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	5 1011
Trichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	5 1011
Vinyl Chloride	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	5 1011
o-Xylene	ND	ug/L	0.5	1	07/08/11	07/08/11 15:46	5 1011
m,p-Xylenes	ND	ug/L	1	1	07/08/11	07/08/11 15:46	5 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	07/08/11	07/08/11 15:46	5 1011
tert-Butyl alcohol	ND	ug/L	20	1	07/08/11	07/08/11 15:46	5 1011
tert-Amyl methyl ether	ND	ua/L	5	1	07/08/11	07/08/11 15:46	3 1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: Hilgenberg-DW Date/Time Sampled: 06/29/2011 11:45 PSS Sample ID: 11062938-003

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Bromodichloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Bromoform	ND	ug/L	5	1	07/08/11	07/08/11 16:26	1011
Bromomethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Chlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Chloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Chloroform	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Chloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/08/11	07/08/11 16:26	1011
Dibromochloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Ethylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Isopropylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Naphthalene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Styrene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Diisopropyl ether	ND	ug/L	5	1	07/08/11	07/08/11 16:26	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011
Tetrachloroethylene	2.9	ug/L	0.5	1	07/08/11	07/08/11 16:26	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: Hilgenberg-DW Date/Time Sampled: 06/29/2011 11:45 PSS Sample ID: 11062938-003

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL Flag	g Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	5 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	5 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	5 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	5 1011
Trichloroethene	1.9	ug/L	0.5	1	07/08/11	07/08/11 16:26	5 1011
Vinyl Chloride	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	5 1011
o-Xylene	ND	ug/L	0.5	1	07/08/11	07/08/11 16:26	5 1011
m,p-Xylenes	ND	ug/L	1	1	07/08/11	07/08/11 16:26	5 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	07/08/11	07/08/11 16:26	5 1011
tert-Butyl alcohol	ND	ug/L	20	1	07/08/11	07/08/11 16:26	5 1011
tert-Amyl methyl ether	ND	ug/L	5	1	07/08/11	07/08/11 16:26	5 1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: Smalkin-DW Date/Time Sampled: 06/29/2011 12:01 PSS Sample ID: 11062938-004

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

· · · · · · · · · · · · · · · · · · ·	ranalytical Motifica. 21 71 02 112				rioparation motifod. 02 n.2				
	Result	Units	RL Fla	ıg Dil	Prepared	Analyzed	Analyst		
Benzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Bromodichloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Bromoform	ND	ug/L	5	1	07/08/11	07/08/11 17:06	1011		
Bromomethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Carbon Tetrachloride	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Chlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Chloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Chloroform	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Chloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/08/11	07/08/11 17:06	1011		
Dibromochloromethane	4.4	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
1,2-Dibromoethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
1,1-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
1,2-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
1,1-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
1,2-Dichloropropane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Ethylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Isopropylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Naphthalene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Styrene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Diisopropyl ether	ND	ug/L	5	1	07/08/11	07/08/11 17:06	1011		
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		
Tetrachloroethylene	4.4	ug/L	0.5	1	07/08/11	07/08/11 17:06	1011		

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: Smalkin-DW Date/Time Sampled: 06/29/2011 12:01 PSS Sample ID: 11062938-004

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	5 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	6 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	6 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	6 1011
Trichloroethene	2.9	ug/L	0.5	1	07/08/11	07/08/11 17:06	6 1011
Vinyl Chloride	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	5 1011
o-Xylene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:06	5 1011
m,p-Xylenes	ND	ug/L	1	1	07/08/11	07/08/11 17:06	5 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	07/08/11	07/08/11 17:06	6 1011
tert-Butyl alcohol	ND	ug/L	20	1	07/08/11	07/08/11 17:06	6 1011
tert-Amyl methyl ether	ND	ug/L	5	1	07/08/11	07/08/11 17:06	3 1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: Stebbins-Dupe Date/Time Sampled: 06/29/2011 00:00 PSS Sample ID: 11062938-005

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Bromodichloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Bromoform	ND	ug/L	5	1	07/08/11	07/08/11 17:47	1011
Bromomethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Chlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Chloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Chloroform	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Chloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/08/11	07/08/11 17:47	1011
Dibromochloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Ethylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Isopropylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Naphthalene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Styrene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Diisopropyl ether	ND	ug/L	5	1	07/08/11	07/08/11 17:47	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011
Tetrachloroethylene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	1011

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: Stebbins-Dupe Date/Time Sampled: 06/29/2011 00:00 PSS Sample ID: 11062938-005

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	7 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	7 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	7 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	7 1011
Trichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	7 1011
Vinyl Chloride	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	7 1011
o-Xylene	ND	ug/L	0.5	1	07/08/11	07/08/11 17:47	7 1011
m,p-Xylenes	ND	ug/L	1	1	07/08/11	07/08/11 17:47	7 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	07/08/11	07/08/11 17:47	7 1011
tert-Butyl alcohol	ND	ug/L	20	1	07/08/11	07/08/11 17:47	7 1011
tert-Amyl methyl ether	ND	ug/L	5	1	07/08/11	07/08/11 17:47	7 1011

OFFICES: 6630 BALTIMORE NATIONAL PIKE ROUTE 40 WEST BALTIMORE, MD 21228 410-747-8770 800-932-9047 FAX 410-788-8723

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham Project Location: Maryland Project ID: CG-08-0399

Sample ID: Stebbins-FB Date/Time Sampled: 06/29/2011 12:45 PSS Sample ID: 11062938-006

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Bromodichloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Bromoform	ND	ug/L	5	1	07/08/11	07/08/11 18:27	1011
Bromomethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Carbon Tetrachloride	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Chlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Chloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Chloroform	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Chloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
1,2-Dibromo-3-Chloropropane	ND	ug/L	5	1	07/08/11	07/08/11 18:27	1011
Dibromochloromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
1,2-Dibromoethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
1,2-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
1,3-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
1,4-Dichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Dichlorodifluoromethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
1,1-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
1,2-Dichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
cis-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
trans-1,2-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
1,1-Dichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
1,2-Dichloropropane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Ethylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Isopropylbenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Methyl-t-butyl ether	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Naphthalene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Styrene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Diisopropyl ether	ND	ug/L	5	1	07/08/11	07/08/11 18:27	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011
Tetrachloroethylene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:27	1011

Final 1.000. WO#: 11062938

OFFICES: 6630 BALTIMORE NATIONAL PIKE ROUTE 40 WEST BALTIMORE, MD 21228 410-747-8770 800-932-9047 FAX 410-788-8723

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS

No: 11062938

Chesapeake GeoSciences, Inc., Columbia, MD

July 14, 2011

Project Name: Stebbins-Burnham

Project Location: Maryland Project ID: CG-08-0399

Sample ID: Stebbins-FB Date/Time Sampled: 06/29/2011 12:45 PSS Sample ID: 11062938-006

Matrix: WATER Date/Time Received: 06/29/2011 15:30

VOC In Drinking Water plus Oxygenates Analytical Method: EPA 524.2 Preparation Method: 524.2

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Toluene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:23	7 1011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:23	7 1011
1,1,1-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:23	7 1011
1,1,2-Trichloroethane	ND	ug/L	0.5	1	07/08/11	07/08/11 18:23	7 1011
Trichloroethene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:23	7 1011
Vinyl Chloride	ND	ug/L	0.5	1	07/08/11	07/08/11 18:23	7 1011
o-Xylene	ND	ug/L	0.5	1	07/08/11	07/08/11 18:23	7 1011
m,p-Xylenes	ND	ug/L	1	1	07/08/11	07/08/11 18:23	7 1011
tert-Butyl ethyl ether	ND	ug/L	5	1	07/08/11	07/08/11 18:23	7 1011
tert-Butyl alcohol	ND	ug/L	20	1	07/08/11	07/08/11 18:23	7 1011
tert-Amyl methyl ether	ND	ug/L	5	1	07/08/11	07/08/11 18:23	7 1011

Final 1.000. WO#: 11062938

	Company Name:	Project Manager:	t Mar	nageı ski	į.					Parameters	eters			CHAIN-OF-CUSTODY RECORD	CUSTOD	Y RECORI	
	Cilesapeake Geoociatices, itic.			<u> </u>									<u> </u>	<u> 9()</u>	()07938		
	Project Name: Stebbins-Burnham (03-1335BA2) Page 1 of 1	Project ID: CG-08-0399	t ID:	6			SIG	24.2					663	Phase Separation Science, Inc. 6630 Baltimore National Pike, Suite 104-A	aration Sc Vational Pi	ience, Inc. ike, Suite 1	A-40
	Sampler(s):	P.O. Number: CG080399JK	10mbe	.: ₹			Containe	č A93 siv						Baltim (41	Baltimore, MD 21228 (410) 747-8770	21228 70	į
	Field Sample ID	Date	Time	Water	lioS	Other	lo .oM	ΛOC ² Λ						Preservative/Remarks	marks	Lab ID	
	9 (0.70 p.)			1										il) Alone			
				1	1	1	4	ł	1				9			-	
_	BC-DW (2707 Greenspring Valley Rd.)	Modul	19:27	×			2	×					Samp	Sample Tri-annually (Jun/Oct/Feb)	n/Oct/Feb)	-	
7	Diggs-DW (411 Greenspring Valley Rd.)	28	2	×	_	[2	×				_	Samp	Sample Tri-annually (Jun/Oct/Feb)	n/Oct/Feb)		
				1			d	X	1						1	,0)	~~~
W _s	Hilgenberg-DW (2700 Spring Hill Rd.)	6/21/n 11:45	11:4	× ×			2	×					Samp	Sample Tri-annually (Jun/Oct/Feb)	n/Oct/Feb)	:du	
ige 1	P. 444 DE (0744 D			*			d	*					1			ĐŢ	
17 o	AF (0744.0)							 }									
f 18				H	+		,	;							100	.W.	
				$\mid \mid$												31 1	
				1										Ti oppiolit (t) Si	
											l			,		:13 10 11	
			4					;								169	
43	Smalkin- DW (2728 Spring Hill Rd.)	10:61 11/60/9	1 5 5	×	-		2	×					Samp	Sample Tri-annually (Jun/Oct/Feb)	n/Oct/Feb)	i uəsə	
•	27-PE (070E 0. 1															913 1015	
Fina	E			+1	┦												
1 1.00	Stebbins-Dupe	6/29/h		×	1		2	×					Samp	Sample Tri-annually (Jun/Oct/Feb)	n/Oct/Feb)		
2 S	Stebbins-FB	5/25/11/29/3	25.	₹ ×	 	_	2	×		-			Samp	Sample Tri-annually (Jun/Oct/Feb)	n/Oct/Feb)		
1106	Relinquished by: (Signatura)	Date/Time		\$ C	3ived	(S)	Received by: (Signature		1	Relinqui	Relinquished by: (Signature)	nature)		Date/Time	Received by: (Signature)	(Signature)	
2000	Printed) Bennett	15:30				Ø	SACH DORP			(Printed)					(Printed)		
	ure)	Date/Time		Rece	eived	by Lal	oorator	Received by Laboratory: (Signature)	rej	² O	Date/Time	Remark Please i	s: MDE-f	Remarks: MDE-RMS Package 1/Level 1 Deliverable Please include BTEX, Naphthalene, MTBE, TAME, TBA,	1 Deliverable TBE, TAME, TB	RMS 2008 Rates	Rates 2-DCA.
	(Printed)			(Printed)	ted)							and 1,2 E-mail r	-Dibromo esults to	and 1,2-Dibromoethane in EPA 8260 Analyses. E-mail results to <u>ikosloski@ogs.us.com</u>	งnalyses. <u>เ</u>		

Phase Separation Science, Inc

Sample Receipt Checklist

ONG THE STAND		•		•	
Work Order #	11062938			Received By	Sara Dorr
Client Name	Chesapeake GeoS	ciences, Inc.		Date Received	06/29/2011 03:30:00 PM
Project Name	Stebbins-Burnham			Delivered By	Client
Project Number	CG-08-0399		•	Tracking No	Not Applicable
Disposal Date	08/03/2011			Logged In By	Sara Dorr
Shipping Contai	ner(s)				
No. of Coolers	1			Ice	Present
Custody Seal(s Seal(s) Signed	•		N/A N/A	Temp (deg C) Temp Blank Pres	6 sent No
Documentation				Sampler Name	Lara Bennett
COC agrees wi Chain of Custo	th sample labels? dy		Yes Yes	MD DW Cert. No	. <u>N/A</u>
Sample Contain	er			Custody Seal(s) I	ntact? Not Applicable
-	Specified Analysis?		Yes Yes Yes	Seal(s) Signed / I	Dated Not Applicable
Total No. of Sa	mples Received 6			Total No. of Cont	ainers Received 12
Preservation					
Metals			(pH<2)	N/A	
Cyanides			(pH>12)		
Sulfide TOC, COD, Ph	onole		(pH>9) (ph<2)	N/A N/A	
TOX, TKN, NH			(pri<2) (pH<2)	N/A N/A	
	OA Vials Rcvd Prese	erved)	(pH<2)	Yes	
•	ave zero headspace	•	u ,	Yes	
Comments: (Ar	ny "No" response	must be d	etailed i	n the comments	section below.)
documentation of should be analyze preservation shall hand delivered on	any client notification a d as soon as possible, p be considered acceptal	s well as client preferably in the ble when receivallected may no	instruction e field at the ved at a ter of meet thes	ns. Samples for pH, cl ne time of sampling. S nperature above freezi se criteria but shall be	number) below as well as hlorine and dissolved oxygen amples which require thermaling to 6°C. Samples that are considered acceptable if there
Samples Inspected/	Checklist Completed By:	Nin Yng	Ma		06/29/2011
P	M Review and Approval:		-	Date:	06/30/2011

Appendix C.6
Analytical Laboratory Data
Demolition Building Materials

10768 Baltimore Avenue, Beltsville, MD 20705

Phone: (301) 937-5700 Fax: (301) 937-5701 Email: beltsvillelab@emsl.com

Attn: Brian Croyle

Tidewater, Inc.

7161 Columbia Gateway Drive

Suite C

Fax:

Columbia, MD 21046

(410) 997-8713

Project: 2724 SPRING HILL RD.

Phone: (410) 997-4458

EMSL Proj:

Customer ID:

Customer PO:

EMSL Order:

Received:

Analysis Date:

1/22/2011

TIDE50

191100663

01/20/11 10:05 AM

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using **Polarized Light Microscopy**

				Non-Ask	<u>bestos</u>	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
RT2662-C1 191100663-0001	ROOF FELT	Brown/Black Fibrous Heterogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected
RT1868-C2 191100663-0002	ROOF FELT	Brown/Black Fibrous Heterogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
RT2663-C3 191100663-0003	ROOF FELT	Brown/Black Fibrous Heterogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
RT844-C4 191100663-0004	ROOF FELT	Brown/Black Fibrous Heterogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected
RT2669-4-Drywall 191100663-0005	DRYWALL	Brown/Gray Fibrous Heterogeneous	30%	Cellulose	20% Non-fibrous (other) 50% Gypsum	None Detected
RT2669-4-Joint Compound 191100663-0005A	DRYWALL	Tan Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected
RT2669-5-Drywall 191100663-0006	DRYWALL	Brown/Gray Fibrous Heterogeneous	40%	Cellulose	10% Non-fibrous (other) 50% Gypsum	None Detected

Initial report from 01/24/2011 07:15:44

Analyst(s)

Emily Baker (15) George Malone (6) Joe Centifonti, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility for the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Samples analyzed by EMSL Analytical, Inc. 10768 Baltimore Avenue, Beltsville MD NVLAP Lab Code 200293-0

10768 Baltimore Avenue, Beltsville, MD 20705

Phone: (301) 937-5700 Fax: (301) 937-5701 Email: beltsvillelab@emsl.com

Attn: Brian Croyle

Tidewater, Inc.

7161 Columbia Gateway Drive

Suite C

Columbia, MD 21046

(410) 997-8713 Fax:

Project: 2724 SPRING HILL RD.

Phone: (410) 997-4458

EMSL Proj:

Customer ID:

Customer PO:

EMSL Order:

Received:

Analysis Date: 1/22/2011

TIDE50

191100663

01/20/11 10:05 AM

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using **Polarized Light Microscopy**

				Non-Asl	pestos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
RT2669-5-Joint Compound 191100663-0006A	DRYWALL	White Non-Fibrous Heterogeneous			85% Non-fibrous (other) 15% Mica	None Detected
RT2669-6-Drywall 191100663-0007	DRYWALL	Brown/White Fibrous Heterogeneous	25%	Cellulose	0% Non-fibrous (other) 75% Gypsum	None Detected
RT2669-6-Joint Compound 191100663-0007A	DRYWALL	Brown/White/Beige Fibrous Heterogeneous	40%	Cellulose	50% Non-fibrous (other) 10% Mica	None Detected
RT2669-1 191100663-0008	MINERAL WOOL	White Fibrous Heterogeneous	60%	Glass	40% Non-fibrous (other)	None Detected
RT2669-2 191100663-0009	MINERAL WOOL	White Fibrous Heterogeneous	40%	Glass	60% Non-fibrous (other)	None Detected
RT2669-3 191100663-0010	MINERAL WOOL	Brown/Gray/White Fibrous Heterogeneous	5% 85%	Cellulose Glass	10% Non-fibrous (other)	None Detected

Initial report from 01/24/2011 07:15:44	
Analyst(s)	Jugh Centiforch
Fmily Baker (15)	loe Centifonti Laboratory Manager

or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Samples analyzed by EMSL Analytical, Inc. 10768 Baltimore Avenue, Beltsville MD NVLAP Lab Code 200293-0

George Malone (6)

10768 Baltimore Avenue, Beltsville, MD 20705

Phone: (301) 937-5700 Fax: (301) 937-5701 Email: beltsvillelab@emsl.com

Attn: Brian Croyle

Tidewater, Inc.

7161 Columbia Gateway Drive

Suite C

Columbia, MD 21046

Fax: (410) 997-8713

Phone: (410) 997-4458

Project: 2724 SPRING HILL RD.

Customer ID:

TIDE50

Customer PO: Received:

01/20/11 10:05 AM

EMSL Order:

191100663

EMSL Proj:

Analysis Date:

1/22/2011

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

				Non-Ask	estos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
RT2662-A1 191100663-0011	TAR PAPER	Black Fibrous Heterogeneous	30%	Synthetic	70% Non-fibrous (other)	None Detected
RT1868-A2 191100663-0012	TAR PAPER	Brown/Black Fibrous Heterogeneous	40%	Synthetic	60% Non-fibrous (other)	None Detected
RT2663-A3 191100663-0013	TAR PAPER	Brown/Black Fibrous Heterogeneous	30%	Synthetic	70% Non-fibrous (other)	None Detected
RT884-A4 191100663-0014	TAR PAPER	Brown/Black Fibrous Heterogeneous		Cellulose Synthetic	38% Non-fibrous (other)	None Detected
RT2662-B1 191100663-0015	BLACK MASTIC ON CLOSED CELL INSULATION	Brown/Black Fibrous Heterogeneous	75%	Cellulose	25% Non-fibrous (other)	None Detected
RT1868-B2 191100663-0016	BLACK MASTIC ON CLOSED CELL INSULATION	Brown/Black Fibrous Heterogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected

Initial report from 01/24/2011 07:15:44	
Analyst(s)	Juga Centiforch
Emily Baker (15) George Malone (6)	Joe Centifonti, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, Inc. 10768 Baltimore Avenue, Beltsville MD NVLAP Lab Code 200293-0

10768 Baltimore Avenue, Beltsville, MD 20705

Phone: (301) 937-5700 Fax: (301) 937-5701 Email: beltsvillelab@emsl.com

Attn: Brian Croyle

Tidewater, Inc.

7161 Columbia Gateway Drive

Suite C

Columbia, MD 21046

Fax: (410) 997-8713

Phone: (410) 997-4458

Project: 2724 SPRING HILL RD.

Customer ID: Customer PO: Received: TIDE50

01/20/11 10:05 AM

EMSL Order:

191100663

EMSL Proj:

Analysis Date:

1/22/2011

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

				Non-As	<u>bestos</u>	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
RT2663-B3 191100663-0017	BLACK MASTIC ON CLOSED CELL INSULATION	Brown/Black Fibrous Heterogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
RT884-B4 191100663-0018	BLACK MASTIC ON CLOSED CELL INSULATION	Brown/Black Fibrous Heterogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected

Initial report from 01/24/2011 07:15:44

Analyst(s)

Emily Baker (15) George Malone (6) Joe Centifonti, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, Inc. 10768 Baltimore Avenue, Beltsville MD NVLAP Lab Code 200293-0

Appendix D
LIF Report and LIF Boring Logs

Summary of CGS Field Notes - LIF Survey #1 - Nov 9-11, 2009

*all depths measured from grade

	Depth to	Relative LIF	Depth of LIF	
LIF Boring #	BOB (feet)	Response (%)	Response (ft)	<u>Notes</u>
L- 1	15.65	not significant	-	
L- 2	33.70	300% / 400%	7 to 13.5 / 20 to 28	2 separate response zones
L- 3	19.24	100% / 400%	6 to 11 / 12 to 19.24+	increasing response with depth-strongest at 12 to 19 feet below grade
L- 4	27.80	100% / 500%	various / 13 to 15	strongest response at 13.5 to 14.5 feet below grade
L- 5	26.02	150%	10 to 22	inconsistent response
L- 6	23.27	150% / 500%	6 to 15 / 20.5 to 23	strongest response at 20.5 to 23 feet below grade
L- 7	17.70	25%	10.5 to 13.5	
L- 8	18.11	100% / 500%	7 to 9 / 10 to 12	
L- 9	17.69	15%	10 to 11	very thin, minor response
L- 10	17.87	200%	10.5 to 12	lower wavelength response
L- 11	17.78	150%	9.5 to 11.5	lower wavelength response
L- 12	29.01	not significant	-	one very thin response of ~25% at 28 feet below grade; v.low wavelength
L- 13	14.04	200%	8 to 11	lower wavelength response
L- 14	11.99	not significant	-	almost no response below surface
L- 15	15.09	20% / 70%	various / 8.5	very thin response at 8.5
L- 16	16.06	not significant	-	
L- 17	18.08	not significant	-	
L- 18	15.40	250% / 100%	9 to 10 / 10.5 to 12	lower wavelength response
L- 19	16.13	250%	6.5 to 9	consistent response; lower wavelength
L- 20	14.27	280% / 200%	4.5 to 5.5 / 7 to 8	
L- 21	17.61	30%	0 to 3	shallow response only
L- 22	17.41	350% / 150%	7 to 8 / 10 to 12	higher wavelength from 7 to 8; lower wavelength from 10 to 12
L- 23	16.73	400%	6.5 to 10	strong consistent response
L- 24	18.17	100% / 400%	6 to 10 / 11 to 12	higher wavelength from 11 to 12
L- 25	18.01	60%	8 to 9	
L- 26	17.93	80% / 250%	2.5 to 4 / 10.5 to 13.5	
L- 27	16.13	not significant	-	
L- 28	14.04	not significant	-	
L- 29	15.99	not significant	-	
L- 30	14.19	120%	8.5 to 10.5	
L- 31	16.35	80% / 20%	8.5 to 10.5 / 11 to 12.5	
L- 32	17.60	200%	10 to 11	
L- 33	17.58	8%	6 to 11	minor response at estimated water table
L- 34	21.72	40%	8 to 10	

Summary of CGS Field Notes - LIF Survey #2 - Dec 16 & 17, 2009

*all depths measured from grade

				Depth of Hole	Depth to	
	Depth to	Relative LIF	Depth of LIF	Upon Completion	Liquid Upon	
LIF Boring #	BOB (feet)	Response (%)	Response (ft)	After Caving (ft)	Completion (ft)	<u>Notes</u>
L-35	17.79	100%	9 to 12	13.7	9.0	Fuel Oil odor; refusal at 17.79; low LIF wavelength
L-36	20.12	150% / 60%	9.5 to 11 / 11 to 13.5	14.5	10.0	Fuel Oil odor; low to med LIF wavelength
L-37	17.52	200%	10.5 to 11.5	17.0	9.0	Most repsonse <75%, v. thin zone 200%; installed GB-33 in hole;
						bailer in GB-33 indicates thin layer of free phase product
L-38	12.30	70% / 40%	7 to 8 / 9.5 to 10.5	10.0	6.0	2 separate response zones from smearing (water table fluctuation)
L-39	16.90	20%	7.0 to 7.5	9.5	6.0	very thin zone of relatively low response
L-40	19.70	not significant	-	17.5	10.5	
L-41	19.62	120%	7 to 10	18.0	9.0	
L-42	11.66	80%	7.5 to 11.5	10.5	5.0	much fuel oil on probe; several thin bands of response
L-43	16.38	not significant	-	13.5	8.5	only 6% response of low wavelength at estimated water table
L-44	12.03	not significant	-	11.5	8.0	
L-45	17.09	not significant	-	10.5	5.0	
L-46	17.14	250%	4 to 8	14.0	8.0	2 separate response zones from smearing (water table fluctuation)
L-47	13.51	300%	5.0 to 8.5	left open temp	6.0	strong consistent response
L-48	9.86	250%	4.5 to 7.0	left open temp	5.0	
L-49	12.24	300%	4.5 to 7	left open temp	5.0	
L-50	17.63	not significant	-	9.5	6.5	
L-51	13.90	140%	6 to 7.5	10.0	5.0	
L-52	13.66	25%	0 to 1	10.0	7.5	surface noise
L-53	13.85	not significant	-	10.0	5.0	attempted deep hole here to target 35 feet;
						refusal at 13.85; thin band of 7% response at 2.5 to 30

Subsurface Characterization Using Laser Induced Fluorescence (LIF) Technology Stebbins-Burnham Site Owings Mills, Maryland

PREPARED FOR

Chesapeake GeoSciences, Inc. 5405 Twin Knolls Road, Suite 1 Columbia, Maryland 21045

February 17, 2010

PREPARED BY

COLUMBIA Technologies, LLC

1448 South Rolling Road Baltimore, Maryland 21227 410-536-9911

www.columbiatechnologies.com

Data contained herein is proprietary to COLUMBIA Technologies, LLC (COLUMBIA), and may not be used, disclosed, reproduced, recorded, modified, performed, or displayed, in whole or in part, without the prior written approval of COLUMBIA. This data is provided for review purposes only, with no transfer of License Rights. This data represents Trade Secrets and is non-releasable under the Freedom of Information Act.

Page

TABLE OF CONTENTS

Introduction	
ObjectivesLIF/UVOST TM Equipment Description	
LIF/UVOST System Performance Test	
Investigation Methods	
LIF/UVOSTTM Log Interpretation	
Explanation of Various UVOST Responses on Sand	
Correlating LIF/UVOST TM Results to Sampling And Laboratory Analyses	
SmartData Solutions® Delineation and Volume	
3-Dimensional Orientation	
FIGURES	
Figure 1 Sitemap and LIF Locations	
Entire Site Graphics	
Figure 2 Plan View, LIF Maximum Concentration Plot	
Figure 3 Plan View, LIF Response > 30%RE	
Figure 4 Oblique View Relative Azimuth 195°, Looking Northeast, LIF Response > 30%RE	
Figure 5 Transect View Relative Azimuth 180° , Looking North, LIF Response $> 30\%$ RE	
Figure 6 Transect View Relative Azimuth 270°, Looking East, LIF Response > 30%RE	
Figure 7 Transect View Relative Azimuth 0° , Looking South, LIF Response > 30%RE	
Figure 8 Transect View Relative Azimuth 90°, Looking West, LIF Response > 30%RE	
Group A Graphics	
Figure 9 Plan View, LIF Maximum Concentration Plot, Group A	
Figure 10 Plan View, LIF Response > 30%RE, Group A	
Figure 11 Oblique View Relative Azimuth 195°, Looking NE, LIF Response > 30%RE, Group A	1
Figure 12 Transect View Relative Azimuth 180°, Looking N, LIF Response > 30%RE, Group A	
Figure 13Transect View Relative Azimuth 270°, Looking E, LIF Response > 30%RE, Group A	
Figure 14 Transect View Relative Azimuth 0° , Looking S, LIF Response > 30%RE, Group A	
Figure 15 Transect View Relative Azimuth 90°, Looking W, LIF Response > 30%RE, Group A	1

Group B Graphics

Figure 16.. Plan View, LIF Maximum Concentration Plot, Group B

Figure 17.. Plan View, LIF Response > 30%RE, Group B

Figure 18 Oblique View Relative Azimuth 195°, Looking NE, LIF Response > 30%RE, Group B

Figure 19.. Transect View Relative Azimuth 180°, Looking N, LIF Response > 30%RE, Group B

Figure 20 ... Transect View Relative Azimuth 270°, Looking E, LIF Response > 30%RE, Group B

Figure 21.. Transect View Relative Azimuth 0°, Looking S, LIF Response > 30%RE, Group B

Figure 22.. Transect View Relative Azimuth 90°, Looking W, LIF Response > 30%RE, Group B

APPENDIX

Appendix A: LIF/UVOSTTM Logs

Appendix B: UVOST Response to Various Random Products Saturated on Wet Sand

Introduction

Chesapeake GeoSciences, Inc. (Client) contracted COLUMBIA Technologies, LLC (COLUMBIA) to conduct an investigation of subsurface contamination at the Stebbins-Burnham Site site, located in Owings Mills, Maryland. This investigation involved delineating the depth and horizontal extent of residual petroleum contamination using Laser Induced Fluorescence/Ultraviolet Optical Screening Tool (LIF/UVOSTTM) technology.

The investigation was conducted November 9, 2009 through November 11, 2009 and December 16, 2009 through December 17, 2009, and consisted of 53 LIF/UVOSTTM screening locations to depths ranging from 9.86 feet to 33.695 below ground surface (bgs). A Geoprobe Direct Push Technology (DPT) drilling rig was used to advance the locations.

Objectives

The objectives of the LIF/UVOSTTM investigation were to:

- Collect high density data sets of the residual petroleum contamination distribution throughout the investigation area.
- Delineate the vertical and horizontal extent of residual petroleum contamination in the investigation area.
- Develop 2D and 3D graphics of the collected data and incorporate these graphics into a model that can be used to determine the location and depths for future field activities, including sampling, well installations, and remediation remedies.

LIF/UVOSTTM **Equipment Description**

The LIF system utilized for this investigation is the latest generation UVOSTTM system developed by Dakota Technologies, Inc (DTI). The LIF/UVOSTTM system consists of an Excimer laser, two fiber optic cables that are pre-strung through the DPT rods, an optical detection system, a toughbooks laptop computer, and Shock Prevention Optical Cavity (SPOC). The SPOC consists of a sapphire window and a parabolic mirror, as well as a shock absorbing gel that allows the SPOC to maintain mirror alignment under the duress of percussion during advancement.

LIF/UVOSTTM screening was performed by pushing/hammering the SPOC into the soil at the constant rate of 2 cm/sec (0.8 inches per second). As the probe is being advanced, the excimer laser generates energy in the form of photons (308nm). This energy is transferred

through one of the fiber optic cables at a rate of 50 pulses per second to the optical cavity where the parabolic mirror reflects the energy through the sapphire window. Any polycyclic aromatic hydrocarbons (PAHs) that are in contact with the sapphire window then absorb this photon energy. These PAHs then emit fluorescence in order to return to their base state. A portion of this fluorescence is carried back to the optical detection system via the second fiber optic.

Once at the surface, the emitted fluorescence is measured and recorded across four specific wavelengths – 350, 400, 450, and 500 nanometers (nm). These wavelengths represent a common range of fluorescence associated with PAHs. Typically the lighter fuels (jet fuel and gasoline) emit fluorescence at the shorter wavelengths – 350nm and 400nm, while heavier compounds such as coal tar, creosote, and crude emit fluorescence at the longer wavelengths – 450nm and 500nm. As the test proceeds, the total monitored fluorescence is recorded and displayed in real-time at one (1) second intervals as a function of depth on the LIF/UVOSTTM system computer. In addition, the intensity and duration of the fluorescence at each of the four monitored wavelengths are recorded and presented in real time at one (1) second intervals as a separate graph on the LIF/UVOSTTM system computer.

Immediately upon completion of each location, the dataset is wirelessly delivered to **COLUMBIA's** remote servers for Quality Assurance/Quality Control (QA/QC) review and upload to a password secure website using Columbia's patented *SmartData Solutions*® technology.

UVOSTTM is a trademark of DTI.

LIF/UVOSTTM System Performance Test

As a quality control check, the LIF/UVOSTTM system response is evaluated prior to and upon completion of each LIF/UVOSTTM screening location. This evaluation is completed using a Reference Emitter (RE) that consists of a blend of Non-Aqueous Phase Liquid (NAPL) and produces a consistent fluorescence response over the four wavelengths monitored by the LIF/UVOSTTM system. Collected data is then presented as a percentage of the RE. Using the same RE at each location and site, allows normalization of data collected over several locations, sites, or screening events. The RE standard is provided by DTI, and is the same for all LIF/UVOSTTM systems currently in operation.

In addition to obtaining a baseline RE for each location, the background reading of the LIF/UVOSTTM system is electronically recorded prior to insertion into the soil. This background reading is required to be below 0.5% of RE prior to the start of any testing. The background during tool advancement typically stays at or below the surface background reading – giving confidence that any increases in fluoresce are "true" readings and not fluctuations or variations in background.

Investigation Methods

A total of 53 LIF/UVOSTTM locations were completed at the Stebbins-Burnham Site site. Each location was selected by Chesapeake GeoSciences, Inc.'s representative onsite, and the termination depth of each location was also determined by Chesapeake GeoSciences, Inc.'s representative onsite. The results from each location are shown in Appendix A. Maps and 2D/3D graphics of the site have been prepared for easier visualization of the subsurface. Per conversations with Chesapeake GeoSciences Inc.'s representative, graphics have been produced of the entire site, "Group A" logs which exhibit a heating oil signature, and "Group B" logs which exhibit a diesel signature. Group A logs include locations L-02 through L-09, L-22 through L-24, L-26, L-30, L-31, L-34, L-37, L-39 and L-47. Group B logs include locations L-10, L-11, L-13, L-15, L18 through L-26, L-31 through L-33, L-36, L-38, L-41, L-42, L-46, L-48, L-49, L-51 and L-52. Locations not included in Group A or Group B did not exhibit a strong heating oil or diesel response.

LIF/UVOSTTM Log Interpretation

There are three primary characteristics of fluorescence that are considered when interpreting LIF/UVOSTTM data. These characteristics are:

- 1. Fluorescence intensity how brightly does the compound fluoresce,
- 2. Wavelength what color does the compound fluoresce at, and
- 3. Duration how long does the compound fluoresce at each monitored wavelength

Individual LIF/UVOSTTM logs consist of a primary graph of total fluorescence versus depth, an information box and up to five waveform "callouts". In the primary fluorescence graph, depth is plotted on the Y axis and the combined total fluorescence intensity of the four monitored wavelengths is plotted on the X axis. Total fluorescence intensity is presented as a percentage of the RE standard. Since various PAHs fluoresce at differing intensities, there are

several compounds that fluoresce brighter than the RE standard, and therefore the total RE can exceed 100%. Total fluorescence intensity is typically proportional to concentration and responds linearly as concentration increases.

Waveform callouts are presented along the left-hand side of the primary graph. These callouts present the fluoresce intensity of each of the monitored wavelengths on the Y axis (in microvolts (mV)) and the duration of fluorescence of each wavelength on the X axis. No scale is given along the X axis, however; it is a consistent 320 nanoseconds wide. The four peaks are due to the fluorescence at the four monitored wavelengths – called channels. Each channel is assigned a color. Various NAPLs will have a unique waveform signature based on the relative amplitude of the four channels and/or the broadening of one or more of the channels. Callouts are selected by the operator and typically correspond to peaks on the primary graph.

The fill color of the response on the primary graph is based on the relative contribution of each of the four channels' area versus the total waveform area. This allows the viewer to discern different substances at different depths based on the fill color.

Explanation of Various UVOST Responses on Sand

Appendix B contains anticipated UVOST responses to various products saturated on wet sand. This document is the result of manufacturer bench-testing and details what a typical response to an individual compound should be in a controlled setting. Please note these waveforms and colors are intended to be used a guide only. Several variables in the subsurface can affect the actual response that may be encountered in the field. These variables include age of product, % saturation, soil color, soil type, oxygen content, and additional site by site variables.

The responses presented were created by taking liquid product of each compound and saturating it on clean Fisher Sand. The sand was then placed on the UVOST's sapphire window and a response was recorded. The sapphire window was then cleaned and a new RE was taken. This process was repeated for each compound listed.

Correlating LIF/UVOSTTM Results to Sampling And Laboratory Analyses

Generalized correlation between LIF/UVOSTTM response and laboratory sample results can be inferred, but cannot be viewed as a linear comparison. LIF/UVOSTTM response and laboratory results are collected, analyzed and reported in different units and by different procedures, so correlation is not a fair "apples to apples" comparison. The LIF/UVOSTTM uses a process whereas a 2 dimensional soil surface is exposed to excitation light, and any fluorescent light emitted is analyzed at the ground surface. Soil and groundwater results involve the collection of a sample, extraction of sub-sample at the surface, and then transporting them to a laboratory for further extraction and analysis. These two processes are different by definition.

SmartData Solutions®

COLUMBIA's *SmartData Solutions*® is a patented process (U.S. Patent No, 7,058,509) that enables the rapid processing of field data into easy to understand 2D/3D visualizations posted to a password protected website. This process includes QA/QC review, formatting and rapid visualization of the data for the project team and enables a complete check of the dataset prior to completion of fieldwork.

Delineation and Volume

The *SmartData Solutions*® graphics display a 3-dimensional view of the contamination plume. These plumes are calculated by extrapolating data in three dimensions between measured data points, and the plumes are only calculated within the bounds of the outermost measured points. A plume is considered to be unbounded when it extends to the bounds of those outermost measured points. A fully bounded plume will exist entirely within the confines of the outermost measured points.

The *SmartData Solutions*® graphics also display a plume volume calculation in the heading title, located in the upper left-hand corner of each graphic. This volume is based on the minimum response level listed in the heading. Volume is calculated by using the scale of the map provided. As a result, the plume calculation is only as accurate as the scale and details of the map. It is important to note that the plume volume calculation reflects only the portion of the plume that exists within the outermost measured points. The volume reported of an unbounded plume may be greatly understated. In any case, the volumes reported are intended for general planning purposes only and may vary from actual volumes.

3-Dimensional Orientation

The *SmartData Solutions*® graphics use a relative azimuth system to describe map orientation as a map may not be oriented with true North at the top of the map. The relative azimuth system uses a 360° compass to describe the position *from which* the graphic is being viewed. For example, a viewer "looking east" on a North oriented map would have a relative azimuth of 270°., i.e. the viewer would be standing on the "western" 270° azimuth point looking through the center to the "east".

The header also describes elevation. Elevation is the number of degrees that the graphic is tilted on the vertical Z axis. A plan view has an elevation of 90° ; a transect view has an elevation of 0° .

Entire Site Graphics

Croup A Cropbies

Group A Graphics		
	Includes locations L-02 through L-09, L-22 through L-24, L-26, L-30, L-31, L-34, L-37, L-39 and L-47	

Figure 11 Oblique View Looking Northeast, LIF Response >30%, Group A
November 9, 2009 – December 17, 2009

Figure 12 Transect View Looking North, LIF Response >30%, Group A November 9, 2009 – December 17, 2009

Figure 13 Transect View Looking East, LIF Response >30%, Group A November 9, 2009 – December 17, 2009

Figure 14 Transect View Looking South, LIF Response >30%, Group A November 9, 2009 – December 17, 2009

Figure 15 Transect View Looking West, LIF Response >30%, Group A November 9, 2009 – December 17, 2009

,

Figure 18 Oblique View Looking Northeast, LIF Response >30%, Group B
November 9, 2009 – December 17, 2009

Figure 19 Transect View Looking North, LIF Response >30%, Group B November 9, 2009 – December 17, 2009

Figure 21 Transect View Looking South, LIF Response >30%, Group B November 9, 2009 – December 17, 2009

Figure 22 Transect View Looking West, LIF Response >30%, Group B November 9, 2009 – December 17, 2009

$\begin{array}{c} \textbf{APPENDIX A} \\ \textbf{LIF/UVOST^{TM} Logs} \end{array}$

APPENDIX B

UVOST Response to Various Random Products Saturated on Wet Sand

Appendix E Geophysical Survey Report

5405 Twin Knolls Road, Suite 1 · Columbia, MD 21045 · ph: 410.740.1911 · fax: 410.740.3299 · www.cgs.us.com

January 13, 2010

Mr. Paul Certeza
Oil Control Program
Maryland Department of the Environment
1800 Washington Boulevard
Baltimore, Maryland 21230

RE: Geophysical Investigation

Stebbins-Burnham Site (MDE-OCP Case No. 03-1335BA2)

Owings Mills, Baltimore County, Maryland Remedial Management Services Contract CGS Project Number CG-08-0399

Dear Mr. Certeza:

Chesapeake GeoSciences, Inc. (CGS) is pleased to present the attached surface geophysical survey report for work performed on December 15, 2009 at the Stebbins-Burnham Site in Owings Mills, Maryland. The purpose of the work was to search for potential remnant underground storage tanks (USTs) at the site. The survey area was limited to most of tax parcel #270, the former Stebbins-Burnham fuel storage and distribution facility.

The surface geophysical survey included the use of an electromagnetic (EM) survey instrument and ground penetrating radar (GPR). The survey design and field methodology that were used are described in the attached report. Based on interpretation of geophysical survey data, there are five potential UST target locations each estimated in size as follows (see attached NAEVA Figure 1 map with notes):

Target #1 - 6,000 gallons Target #2 - 2,000 gallons Target #3 - 550 gallons Target #4 - 550 gallons Target #5 - 550 gallons

Target #1 is located partially beneath a brick patio and wood deck attached to the main building on-site. Target #2 is located immediately adjacent to a known underground electric line and a potential septic plumbing line. Two of the 550 gallon UST targets (#4 and #5) are adjacent to each other, and could actually be one 4,000 gallon UST that MDE file records indicate was slurried and abandoned in-place.

The geophysical survey also indicated two other areas worth exploring that appear to be buried metal, but do not exhibit a GPR signature typical of a UST cylinder shape. These areas are marked on the attached map as target #6 and target #7. A temporary 1-inch PVC well (GB-33) was installed adjacent to target #6. Shortly after installation of GB-33, approximately ½ inch of liquid phase product (apparently fuel oil) was observed in a bailer of liquid retrieved from the well.

Target #6 - GPR signature indicative of 3 parallel pipelines Target #7 - metal detector anomaly

In addition to the geophysical survey targets, MDE-OCP file records indicate two more 4,000-gallon UST locations plotted on a Handex, Inc. map dated 4/15/92 that are worth exploring (see attached Handex map). These areas are marked on the attached NAEVA Figure 1 map as target #8 and target #9. Target #8 could be a former UST location (already removed), and target #9 could be another slurried UST which was abandoned in-place. Because of incomplete or conflicting data in the files, these additional Handex locations could also be existing USTs that have not been abandoned.

Target #8 - ?former 4,000 gallon UST (already removed?)
Target #9 - ?slurried 4,000 gallon UST (abandoned in place?)

Therefore a total of 9 excavation areas are recommended, 5 of which are believed to be potential USTs. CGS has presented a work plan for exploratory excavation in our recently submitted proposal # CG-P10-0852, dated January 12, 2010. This work plan would include the use of an air vacuum extraction tool to carefully excavate in the area of target #2 adjacent to the known underground electric line, and target #1 which is partially under the brick patio and wood deck.

CGS is pleased to have had the opportunity to work on this project for the Maryland Department of the Environment. If there are any questions, please feel free to contact our office in Columbia, Maryland at (410) 740-1911. Our facsimile number is (410) 740-3299.

Respectfully yours,

Chesapeake GeoSciences, Inc.

John Kislishi

John Kosloski, P.G. Senior Project Manager

Attachments: Figure 1 NAEVA map with notes; Handex map 4/15/92; NAEVA geophysical survey report

cc: Chris Ralston – MDE

Sean Daniel - CGS

CGS Project File # CG-08-0399

Subsurface Geophysical Surveys

GPR

MAGNETICS

ELECTROMAGNETICS SEISMICS

RESISTIVITY

UTILITY LOCATION

UXO DETECTION

BOREHOLE CAMERA

STAFF SUPPORT

Results of Geophysical Investigation

Stebbins Fuel Distribution Site Owings Mills, Maryland

Prepared for: Chesapeake GeoSciences, Inc.

Columbia, Maryland

Date of Investigation: December 15, 2009

Prepared by:

Robert Curren

Geologist

NAEVA Geophysics, Inc.

P.O. Box 7325 Charlottesville, VA

22906

Daniel Hennessey

Geologist

NAEVA Geophysics, Inc.

P.O. Box 7325 Charlottesville, VA

22906

NEW YORK

50 N. Harrison Ave. Suite 11 Congers New York 10920 (845) 268-1800 (845)268-1802 Fax

<u>VIRGINIA</u>

P.O. Box 7325 Charlottesville Virginia 22906 (434) 978-3187 (434) 973-9791 Fax

Contents:

Introduction

Survey Design

Methods

Results / Conclusions

Figure 1: Site map showing location of interpreted

features of interest and surface culture.

Figure 2: Site map showing location of interpreted

features with contoured EM61 data overlay.

Results of Geophysical Investigation Stebbins Fuel Distribution Site, Owings Mills, Maryland

Introduction

NAEVA Geophysics, Inc. conducted a geophysical investigation utilizing an electromagnetic (EM) instrument, a radio frequency utility locating instrument, and ground penetrating radar (GPR) at 2724 Spring Hill Rd, Owings Mills, Baltimore County, Maryland. The purpose of this investigation was to mark-out the surface trace of any underground storage tanks (UST's) on the property. At this location, two tank vent pipes were visible at the ground surface, and five possible USTs were located. The survey area and locations of anomalies are depicted in Figure 1 of this report.

Survey Design

A survey grid was established by the NAEVA crew over roughly a third of the site, with points marked with plastic pin flags on a grid system, using ten foot grid nodes. The grid system permitted systematic coverage of the site with the EM instrument, and allowed for notation of grid locations while collecting GPR data. Grid north for the survey parallels Greenspring Valley Road (to the west).

Methods

The equipment selected for this investigation included a Geonics EM61-MK2 electromagnetic metal detector, a 3M Dynatel 2250 Cable Locator, a Fisher TW-6 (an EM metal-detector), and a Sensors & Software pulse EKKO ground penetrating radar system. Additionally, a Sensors and Software Noggin Smart Cart system was used at this site, in an attempt to acquire higher resolution images of shallow subsurface features.

The EM61-MK2 is a high resolution time-domain electromagnetic instrument designed to detect, with high spatial resolution, shallow ferrous and non-ferrous metallic objects. In comparison with other metal detectors, especially magnetometers, it is much better suited for work in close proximity to man-made structures and in areas of dense subsurface metallic debris.

The EM61-MK2 system consists of one 1 meter by 0.5 meter air-cored coil, a digital data recorder, batteries and processing electronics. The EM61-MK2's transmitter generates a pulsed primary magnetic field, which then induces eddy currents in nearby metallic objects. Four time gates from the bottom coil were recorded for the digital geophysical mapping (DGM) survey. Earlier time gates provide enhanced detection of smaller metallic objects. Due to large amounts of surface debris known to be on the site, a later time gate (Channel 3) was selected to

successfully distinguish large UST's from smaller metallic items. Secondary voltages induced in the coil are measured in millivolts (mV). The data are collected using Geonics' EM61MK2 program and temporarily stored in a Juniper Allegro CX data logger prior to downloading to a laptop computer.

The EM61-MK2 was used to survey along transects spaced 10 feet apart, orientated N-S, across the site. Upon completion of this initial survey, the data were interpreted using a computer in order to find anomalies large enough to be UST's.

The Dynatel 2250 Cable Locator was used in an attempt to mark out the surface trace of the vent lines, in order to locate the UST's. The instrument's transmitter was used to apply a signal to each line where it was exposed at the surface. The Dynatel receiver was then used to search for the response indicating the position of the underground line.

The Fisher TW-6 metal-detector was used in a refining fashion for the areas showing responses indicative of UST's. The instrument was used to determine the boundaries of the anomalies in order to determine the size and shape, allowing a more efficient approach with the GPR.

Fisher TW-6 Metal Detector (left), EM61 MK2 (center), Noggin GPR (right)

Ground penetrating radar utilizes the propagation and reflection of high frequency electromagnetic (EM) energy to image subsurface structures and objects. The GPR transmitter emits a pulse, which then travels through the ground and is partially reflected when it encounters an interface of two materials with differing electrical properties. The remaining energy continues downward, encountering other reflectors, or eventually dissipating due to spreading losses or attenuation in conductive materials.

The GPR receiving antenna is connected to console electronics, which digitizes the signal. The travel time of the reflected energy is very accurately measured in nanoseconds (10^{-9} seconds), as well as the relative amplitude of the signal. The amplitude of the returning signal is a function of the contrast in electrical properties of the materials, and the depth. Conductive materials such as clay or moist soil very rapidly attenuate GPR energy, limiting depth penetration.

Both the Sensors and Software pulse EKKO and Noggin Smart Cart GPR systems were used at this site; with the preference of using the Noggin to obtain higher resolution images. The Noggin GPR antennae are shielded and mounted on a fiberglass and plastic cart, equipped with an odometer, which was set to trigger the system at 2.5 centimeter intervals along the survey lines. The system records data as amplitude of the reflected signal over time. Data are displayed and recorded on a

Digital Video Logger (DVL), shown in the photo above, right.

Sensors and Software pulse EKKO 100 (shown with 100 MHz antennas)

NAEVA brought a second GPR system to this site, anticipating poor GPR surveying conditions. A Sensors and Software pulse EKKO GPR system, outfitted with 200 MHz antennas was used to attempt to image the suspected UST's at the Stebbins site. The system is shown in the photograph above, at another site. Unlike the Noggin Smart cart system described above, the pulse EKKO utilizes unshielded antennas, at a lower frequency. This enables the system to achieve greater penetration, at a cost of lower resolution, and increased effects from nearby surface culture. Both GPR systems successfully imaged UST's behind the buildings on the south side of the property.

Results / Conclusions

The Dynatel 2250 was successful in locating the underground path of two vent pipes shown in Figure 1. A vent pipe was traced from a concrete retaining wall near the main office to a UST located to the north. Another exposed vent pipe located on the eastern side of the truck garage was traced approx. 20 ft east in the direction of the former AST's. Along with the two vent pipes, an electric line was marked from the main building to the garage as well as from the garage to the truck garage on the northern end of the site.

The placement of the transect lines across the area of interest resulted in the detection of only the edges of two tanks (in the southwest corner), and a suspected pipe (Figure 2). Additional characterization of the EM61 transect anomalies using the TW-6, and real time exploration with the EM61 determined all other anomalies in the area are not indicative of UST's.

The TW-6 EM metal detector along with the EM61 were successful in locating three USTs outside the transect area, along with a large metal anomaly directly east of the supposed pump house on the southwest corner of the property, depicted in Figure 1. The Noggin was used to characterize this anomaly, and was not found to be a UST. To further characterize these, GPR data were collected, first with the Noggin Smart Cart, and then with the pulse EKKO system.

GPR data were collected bi-directionally with the pulse EKKO across the metal detector anomalies to image any possible UST's. North-south oriented GPR survey lines over the anomalies revealed hyperbolic reflectors that were interpreted to represent USTs. Field review of the GPR data showed good images. The anomaly in the southwestern portion of the site which was investigated with GPR did not provide a clear enough image to determine whether it was a UST. But using the data collected from the GPR and the EM61 together revealed two tanks next to each other.

Located 15 feet east of the two UST's found was another anomaly with a similar size and EM61 mV response. After investigating closer with the GPR the crew imaged a perfect outline of a UST (pictured below). Two other areas located closer to the building were explored and each revealed a location of a UST.

Highlighted pulse EKKO image of the UST located directly southeast of the concrete pad

On the northeastern portion of the site NAEVA was asked to investigate an area where two AST's were located and removed. The hope was to find UST's in the same area but no evidence was found to support this. However, a drainage pipe from the removed AST's was found, positioned to drain excess petroleum onto an adjacent property. Additionally, the foundation of the truck garage was searched for USTs, but none were found.

Appendix F
UST Exploratory Excavation Report
and UST Closure Report

5405 Twin Knolls Road, Suite 1 • Columbia, MD 21045 • ph: 410.740.1911 • fax: 410.740.3299 • www.cgs.us.com

March 23, 2010

Mr. Paul Certeza Oil Control Program Maryland Department of the Environment 1800 Washington Boulevard Baltimore, Maryland 21230

RE: Exploratory Excavation for USTs

Stebbins-Burnham Site (MDE-OCP Case No. 03-1335BA2)

Owings Mills, Baltimore County, Maryland Remedial Management Services Contract CGS Project Number CG-08-0399.08

Dear Mr. Certeza:

Chesapeake GeoSciences, Inc. (CGS) is pleased to present this letter report of exploratory excavation work performed at the Stebbins-Burnham Site in Owings Mills, Maryland. The purpose of the work was to search for remaining improperly abandoned underground storage tanks (USTs) at the Site. Nine target areas were selected for excavation, as indicated on attached Figure 1. The areas were selected based on interpretation of results from a Geophysical Survey performed on December 15, 2009 (as described in CGS's Geophysical Investigation report dated January 13, 2010), and historical file review information.

Scope/Field Procedures

The exploratory excavation was performed on March 8-9, 2010, using an air vacuum extraction tool working in tandem with a backhoe. Prior to excavation work, a private utility contractor was used to mark underground utilities in the target excavation areas. Initial excavation was performed with the air vacuum extraction tool to gently remove soil in sensitive target areas, to avoid damage to known utilities, plumbing, and the access ports to USTs. The backhoe was then used to perform a partial excavation to uncover the tops of the USTs for inspection, and to perform test pits to just below the water table surface in some locations. No soil or ground water samples were collected as part of the scope of work. However, a Photo-Ionization Detector (PID) was used to field-screen soils and the interior headspace of the USTs that were accessible. After confirmation of the presence of a UST, and completion of field screening of soils, the excavated soil was placed back over the UST and tamped back into place with the backhoe. The test pits were also backfilled. The UST access ports wore temporarily secured with the original cap or with an inverted 55-gallon drum, to provide later access for liquid removal. The general area of each excavation was then scraped level with the backhoe and restored as much as possible back to original grade condition. Photographs are attached documenting some of the work that was performed at the Site.

Results of Exploration

The exploratory UST excavation work at the Site confirmed the geophysical targets, revealing four USTs at locations #1, 2, 4&5 (one long tank), and #9. The results of exploratory excavation at each location are summarized below.

Target #1

Target #1 is located partially beneath a brick patio and a wood deck overhang attached to the main building on-site. Partial excavation work was performed without disturbing the brick or deck, and revealed a steel UST at this location with the following estimated specifications:

Diameter	Length	Volume	Depth to	Depth to	Depth to	Product	Fuel	Liquid
(inches)	(feet)	(gallons)	Bottom	Product	Water	Thickness	Type	Remaining
			(ft)	(ft)	(ft)	(ft)		(gallons)
64	18	3,000	5.85	2.80	2.94	0.14	Heating Oil	1,500

A small two-inch pipe located on the top of the UST, provided access for measuring the contents. The UST was not properly de-commissioned, and the bottom half of the UST was still filled with water and a thin layer of fuel oil measured at 0.14 feet thick. An estimated 1,500 gallons of liquid remain in UST #1.

A test pit was excavated to a depth of approximately seven feet below grade, adjacent to the east end of UST #1 (see attached Figure 1). Observations in the test pit indicated a small amount of heating oil seeping under the bottom of the UST and along the side of the UST. After leaving the test pit open for about an hour, an inch of water was observed seeping into the bottom of the test pit, indicating that the test pit may have extended into the groundwater table. PID readings of 80 to 160 ppm (referenced to isobutylene) were obtained in the soils within the test pit. Upon completion of the inspection, the test pit and UST excavation area were backfilled with the excavated soils. An inverted 55-gallon drum was used to secure the opening to the UST, for later access. The inverted drum was temporarily packed into place with backfill soils.

Target #2

Target #2 is located on the north central side of the main building on-site. Partial excavation work was performed, and revealed a steel UST at this location with the following estimated specifications:

Ī	Diameter	Length	Volume	Depth to	Depth to	Depth to	Product	Fuel	Liquid
	(inches)	(feet)	(gallons)	Bottom	Product	Water	Thickness	Type	Remaining
				(ft)	(ft)	(ft)	(ft)		(gallons)
	64	15	2,500	NM	NA	NA	NA	??	0

NM= not measurable; NA= not applicable; ??= unknown

Two 24-inch diameter, riveted steel, manhole covers, and a smaller 10-inch access port were observed on the top of the UST. Inspection through the smaller access port indicated that the UST had been slurried with concrete up to the top. Only a couple inches of void air space and

some tree roots were observed within the access port. No liquid remains in UST #2. Insignificant PID readings at approximately background levels (0.2 to 0.6 ppm) were measured in the surrounding soils. Upon completion of the inspection, the excavation area was backfilled with excavated soils.

Target #3

Excavation in the area of Target #3 revealed a 12-inch, corrugated metal, storm drain pipe that was oriented in a NW-SE direction. No UST was found here. Insignificant PID readings at approximately background levels (0.2 to 0.6 ppm) were measured in the surrounding soils. Upon completion of the inspection, the storm drain pipe was covered with excavated soils and the area was leveled back to grade.

Target #'s 4 & 5

Target #'s 4 and 5 are located in the far western portion of the Site, and adjacent to the south side of a large concrete pad. Target #'s 4 and 5, were thought to be two small UST targets, based on interpretation of geophysical survey results. Partial excavation work here revealed one long steel UST at this location with the following estimated specifications:

Diameter	Length	Volume	Depth to	Depth to	Depth to	Product	Fuel	Liquid
(inches)	(feet)	(gallons)	Slurry	Product	Water	Thickness	Type	Remaining
			(ft)	(ft)	(ft)	(ft)		(gallons)
72	24	5,000	*2.95	NA	0 (at top)	NA	??	2,500

NM= not measurable; NA= not applicable; ??= unknown

* Note: Depth to bottom of UST was NM at this location, however depth to slurry was measured at 2.95 feet, which was estimated to be the mid-point of the UST (half way to bottom). Measurements were made from the top of the UST.

A small 3-inch pipe located on the top of the UST, provided access for measuring the contents. The UST was found to be half-filled with hard slurry. The top half of the UST contained water with no measurable liquid-phase product. An estimated 2,500 gallons of liquid remain in UST #4/5. PID readings of approximately 40 ppm were obtained in the surrounding soils. Upon completion of the inspection, the UST excavation area was backfilled with excavated soils. An inverted 55-gallon drum was used to secure the opening to the UST, for later access. The drum was temporarily packed into place with backfill soils.

Target #6

Excavation in the area of Target #6 revealed two 3-inch diameter steel pipelines that are oriented in an E-NE to W-SW direction. Approximately 10 feet of trenching was excavated with the air vacuum extraction tool here to avoid damage to the pipelines. PID readings of approximately 80 ppm were detected in soils throughout the 10-foot length trench. It is not known how far to the west the pipelines extend or what the pipelines are for. It was observed that they run from a small concrete pad on the east edge of the Site, toward the direction of UST #4/5, which is located along the far western portion of the Site (about 130 feet from the small concrete pad). Upon completion of the inspection, the pipelines were covered with excavated soils and the area was leveled back to grade.

Target #7

Air vacuum extraction work which extended into the area of Target #7, did not reveal any USTs or other items in this area, except for some minor amounts of construction-type rubble.

Target #8

Excavation in the area of Target #8 did not reveal a UST. However, it was noted that the excavated soil at this location consisted of a light tan, fine to medium grained, sand backfill (not native soil). This location coincides with a location plotted on a Handex, Inc. map dated 4/15/92, as a 'former 4,000-gallon gasoline/fuel oil tank'. Insignificant PID readings at approximately background levels (0.2 to 0.6 ppm) were measured within the sandy backfill itself. However, it was observed that nearby soils adjacent to the southwest side of the excavated area, were highly contaminated with gasoline. Although no liquid phase gasoline was observed, very strong gasoline odors and PID readings of up to 1,250 ppm were recorded in these adjacent soils. The contaminated soils appeared to also extend toward the west side of UST Target #9 (described below).

A test pit was located adjacent to the SW side of Target #8 and the west side of Target #9 (see attached Figure 1), and dug to a depth of approximately 10 feet below grade. After letting the test pit sit for several hours, groundwater was observed seeping into the pit at about eight feet below grade. Gasoline odors within the test pit and surrounding soils were very strong. High PID readings of 1,250 ppm extended from about one to eight feet below grade. The PID readings began to drop below eight feet. PID readings of 450 ppm were measured in the bottom of the test pit. No liquid phase gasoline product was observed on the surface of the groundwater within the test pit, during the time the test pit was left open. Based on field observations and PID readings, it is likely that some dissolved-phase gasoline contamination exists within the shallow groundwater here. No groundwater or soil samples were collected from the test pit as part of the scope of this work.

Upon completion of the inspection, the excavation of Target #8 was backfilled with the excavated clean fill sand. The test pit was backfilled with the gasoline-contaminated soils excavated from the test pit.

Target #9

Target #9 was located on the northwest side of the main building on-site, and adjacent to the south of Target #8. Partial excavation work was performed here and revealed a steel UST at this location with the following estimated specifications:

Diameter	Length	Volume	Depth to	Depth to	Depth to	Product	Fuel	Liquid
(inches)	(feet)	(gallons)	Slurry	Product	Water	Thickness	Type	Remaining
			(ft)	(ft)	(ft)	(ft)		(gallons)
64	24	4,000	*0.5	NA	NA	0	??	0

NM= not measurable; NA= not applicable; ??= unknown

^{*} Note: Depth to bottom of UST was NM at this location, however depth to slurry was measured at 0.5 feet. Measurements were made from the top of the UST.

A small 3-inch access port located on the top of UST #9, provided access for measuring the contents. The UST was found to be filled with concrete slurry up to approximately six inches below the top of the UST. The top six inches of the UST contained air space. No liquid was present within the UST. PID readings of 0 ppm were recorded in the headspace within the UST. Strong gasoline odors and high PID readings were obtained in nearby soils adjacent to the west of UST #9, as described above in section 'Target #8'. Upon completion of the inspection, the UST excavation area was backfilled with excavated soils. The original fill pipe was capped and secured, for later access.

Conclusions/Recommendations

Based on the exploratory excavation work and inspection of the USTs, it was observed that an attempt was made in the past to abandon several of the USTs in-place with concrete slurry. However, this process was incomplete, especially as noted at UST #4/5, where half of the UST remains filled with liquid. Relatively low levels of PID readings were recorded in soils surrounding USTs #2 and #4/5, and within the east end excavated area of UST #9. Therefore, CGS recommends that these USTs can be abandoned in-place, by pumping the remaining liquid contents and sealing the remaining air space with flowable concrete slurry, formulated to minimize shrinkage. An estimated cumulative total of 4,000 gallons of liquid remain in the USTs on-site for disposal.

UST #1 was not abandoned properly, and contains water and liquid phase fuel oil product. PID readings of approximately 80 to 160 ppm were recorded in the soils immediately surrounding UST #1. A small amount of liquid phase fuel oil product was also observed seeping from under UST #1. It appears that this UST can be removed without affecting the wooden back deck adjacent to it. The brick patio would have to be removed and replaced, but could be accomplished without much additional effort. The bricks located here were not cemented in place (only placed into compacted soil).

CGS recommends the following actions:

- 1) Drain the liquid contents from all USTs and transport off-site for proper disposal. Slurry any remaining headspace in USTs #2, #4/5, and #9 to complete proper in-place abandonment of these USTs.
- 2) Perform proper closure of UST #1 by excavation and removal. Remove contaminated soils immediately surrounding UST #1. Perform backfill and compaction of new clean replacement soil, and replacement of the brick in this area. Continue to monitor the existing GeoProbe 1-inch well in this area, for potential liquid phase product.
- 3) Install several GeoProbe test borings and a 2-inch groundwater monitoring well adjacent to former UST #8 and UST #9, where very high levels of gasoline-contaminated soils (above 1,000 ppm on the PID) were observed. Sample soil and groundwater in this area and submit for laboratory analysis for VOCs and TPH-GRO. Based on the analytical results, a limited remedial excavation of contaminated soils may be warranted. The analytical groundwater data will provide information regarding whether gasoline UST leakage has contributed to groundwater contamination at the Site.

CGS is pleased to have had the opportunity to work on this project for the Maryland Department of the Environment. If there are any questions, please feel free to contact our office in Columbia, Maryland at (410) 740-1911. Our facsimile number is (410) 740-3299.

Respectfully yours,

Chesapeake GeoSciences, Inc.

John Kosloshi

John Kosloski, P.G. Senior Project Manager

Attachments: Figure 1 map with notes; Photographs

cc: Chris Ralston – MDE Sean Daniel – CGS

CGS Project File # CG-08-0399.08

Photo 1: Overview of air vacuum extraction rig parked at UST #2.

Photo 2: Excavation at the east end of UST #9.

Photo 3: Access into UST #4/5.

Photo 4: View of the air-knife and vacuum tube exposing tree roots within UST#2's access port.

USTs - Exploratory Excavation March 8-9, 2010 Stebbins-Burnham Site Owings Mills, Maryland CGS Project #08-0399.08

Photo 5: Excavation reveals clean sand backfill at UST target area #8.

Photo 6: View of steel manhole exposed with air vacuum extraction at UST #2.

Photo 7: Test pit adjacent to exposed UST #1.

Photo 8: Test pit with gasoline-contaminated soils, adjacent to UST Target #'s 8 and 9.

USTs - Exploratory Excavation March 8-9, 2010 Stebbins-Burnham Site Owings Mills, Maryland CGS Project #08-0399.08

5405 Twin Knolls Road, Suite 1 . Columbia, MD 21045 . ph: 410.740.1911 . fax: 410.740.3299 . www.cgs.us.com

June 28, 2010

Mr. Paul Certeza
Oil Control Program
Maryland Department of the Environment
1800 Washington Boulevard, Suite 620
Baltimore, MD 21230-1719

Re:

UST Closure Report

Stebbins-Burnham Site

2724 Spring Hill Road, Owings Mills, Maryland 21117

MDE-OCP Case No. **03-1335BA2** CGS Project No. CG-08-0399.11

Dear Mr. Certeza:

Chesapeake GeoSciences, Inc. (CGS) is pleased to submit this UST Closure Report for the Stebbins-Burnham Property located at 2724 Spring Hill Road in Owings Mills, Baltimore County, Maryland. The project was completed for the Maryland Department of the Environment Oil Control Program (MDE-OCP).

If you have any questions, please feel free to contact our office in Columbia, Maryland at (410) 740-1911. Our facsimile number is (410) 740-3299.

Sincerely,

Chesapeake GeoSciences, Inc.

John Kosloshi

John Kosloski, P.G.

Senior Project Manager

Sean P. Daniel

Principal

/jwk

cc:

Chris Ralston – MDE-OCP CGS Project File 08-0399.11

Attachments

TABLE OF CONTENTS

1.0	INTRODUCTION					
2.0		CLOSURE				
		H&S PLAN/UTILITY CLEARANCE				
	2.2	ABANDONMENT OF USTS	2			
	2.3	TRANSPORTATION AND DISPOSAL OF LIQUID	3			
	2.4	BACKFILL AND RESTORATION OF EXCAVATION AREA	3			
3.0	SUM	[MARY	3			

APPENDICES

A	11.0
A	Figures:
~ ~	T THE STATE OF

- A.1 Site Location Map
- A.2 UST Locations Map
- B 30-Day Written Notification Form
- C Photographic Documentation
 D ARRA Daily Report Notes
- E Manifest Forms and Receipts
 - E.1 Waste Manifest for Transportation of Fuel Oil/Water
- F Closure Notification For Underground Storage Tanks

1.0 INTRODUCTION

The former Stebbins-Burnham facility is located at 2724 Spring Hill Road in Owings Mills, Baltimore County, Maryland (Site). The Site is located along the north side of Spring Hill Road and approximately 125 feet east of Greenspring Valley Road (refer to Appendix A Figure A.1 – Site Vicinity Map). The Site is now owned by adjacent property owner Mr. Leonard Ross (Ross/Isabelle Productions, Inc.). The Site is currently inactive and was formerly utilized as a petroleum storage and distribution facility between 1914 and 1994. Petroleum products were stored in above-ground storage tanks (ASTs) and underground storage tanks (USTs). The ASTs are no longer present on-site.

Based on a geophysical survey and subsequent exploratory excavation work performed by CGS on March 8-9, 2010, it was discovered that several USTs remained on the Site. Three were improperly abandoned (refer to Appendix A Figure A.2 – UST Locations Map). The USTs were described in CGS Exploratory Excavation report # CG-08-0399.08, dated March 23, 2010. The three improperly abandoned USTs were designated UST #1, UST #4/5, and UST #9. Per request of the Maryland Department of the Environment (MDE), these USTs have now been properly abandoned in-place by CGS. This report summarizes the work that was performed.

2.0 UST CLOSURE

On June 4, 2010, CGS submitted the required 30-day written notification form to MDE for abandonment in-place of the USTs at the Stebbins-Burnham Site (Appendix B). Upon approval from MDE, CGS mobilized equipment to the Site on June 9, 2010, for proper de-commissioning of UST #1, UST #4/5, and UST #9. Each UST is located as indicated on Figure A.2. UST #1 is located partially under a brick patio and close to the piling supports for a wood deck, which is attached to the north side of the main building at the Site. UST #1 was estimated to have a capacity of approximately 3,000 gallons. Previous inspection indicated that it contained both fuel oil and water. UST #4/5 is located adjacent to a chain link fence, which demarcates the western property boundary of the Site. UST #4/5 was estimated to have a capacity of approximately 5,000 gallons. Previous inspection indicated that it was half-filled with concrete and contained only water. UST #9 is located adjacent to the northwest corner of the main building. UST #9 was estimated to have a capacity of approximately 4,000 gallons. Previous inspection indicated that it was mostly filled with concrete and contained several inches of air space in the top of the UST and fill pipe area. The three USTs were properly abandoned inplace in one day, under the direction of an MDE-certified UST technician. Photographs were taken documenting the UST closure process, and are included in Appendix C. Field notes were recorded by CGS, and are included in Appendix D.

2.1 H&S Plan/Utility Clearance

A Health and Safety Plan was prepared prior to mobilizing to the Site to address safety issues relevant to working with a vacuum truck, concrete mixer truck, and related support equipment. Miss Utility was not contacted prior to work, since no significant excavation work was performed. Only limited hand shovel excavation was performed directly over the tops of the known access ports to UST #1 and UST #4/5.

2.2 Abandonment of USTs

A 3,600 gallon capacity vacuum tanker truck provided by Tidewater, Inc., was used to pump the water and remaining product from the USTs. In addition, the vacuum truck was used to remove 80 gallons of recovered heating oil from a 550 gallon AST. The AST is located in the northeastern portion of the Site, and is being used to hold product recovered from operational recovery well RW-1. A cumulative total of 1,875 gallons of water and heating oil were pumped from the AST and three USTs, estimated as follows:

Tank #	Water Removed	Product Removed	Rinse Water Removed
AST	NA	80 gallons heating oil	NA
UST #1	1,105 gallons	200 gallons	40-45 gallons
UST #4/5	445 gallons	NA	NA
UST #9	5-10 gallons	NA	NA

After hand excavation work was performed directly above the access pipe for UST #1, an additional 12 inch access opening was then cut into the top of the UST. This was done in order to provide more space for liquid removal, inspection, and sealing of the UST. The same procedure was used for UST #4/5. After draining the existing liquid contents from USTs #1 and #4/5, the interior of each UST was inspected from grade with a flashlight. It was observed that UST #1 contained some sludge in the bottom. Inspection of the interior of UST #4/5 indicated that it was previously half-filled with concrete, but no petroleum residue could be observed. UST #9 was accessible through a 3-inch steel access pipe. The steel pipe was removed and the hole stayed open. After draining a limited amount of water from the hole and the top of UST #9, concrete was observed in the bottom of the hole.

After each UST was drained of its existing liquid contents, the interior of UST #1 was spray washed clean using a spray gun and potable water. The rinse water and remaining sludge was vacuumed from the bottom of UST #1. Approximately 45 gallons of rinse water was used and recovered. The interior was then inspected and observed to be clean and free of holes. No groundwater recharge into the UST was observed.

The interior of the USTs were then sealed with a non-shrinking, flowable fill product (CLSM 100 psi Rheocell). The flowable fill was delivered in a cement mixer truck and

fed into the top cutout opening in UST #1, and UST #4/5. The flowable fill sealed the interior space of each UST and was extend several inches above the top cutout and within 6 inches of grade. Several mixer loads totaling 12 cubic yards of flowable fill were needed to seal UST #1. Two cubic yards of flowable fill were needed to seal UST #4/5. Only about 10 gallons of flowable fill were needed to seal the top of UST #9 up to grade

2.3 Transportation and Disposal of Liquid

A cumulative total of 1,875 gallons of liquid, containing water and some heating oil product, were transported off the site by a licensed Clean Venture tanker truck to the Water Depot disposal facility in New Windsor, Maryland and disposed of as special waste. A manifest form for transportation of the liquid is included in Appendix E.1.

2.4 Backfill and Restoration of Excavation Area

Soil restoration work was performed at UST #1 and UST #4/5, by adding clean sandy silt fill soil above the flowable fill. The soil was raked level with grade. A temporary plywood barricade was placed over each UST, while the flowable fill began to cure. The existing vent pipe for UST #1 was cutoff at grade, and was observed to be already sealed inside with tightly packed clay and fine gravel. At UST #9, the three-inch access hole was sealed to grade with the flowable fill. No additional soil restoration work was performed at UST #9.

3.0 SUMMARY

Three USTs have been abandoned in-place at the former Stebbins-Burnham Site. Based on previous geophysical surveying and exploratory excavation work performed by CGS, there is no evidence of additional USTs that require de-commissioning at the Site. Upon completion of the UST abandonments and related field work, a Closure Notification Report For Underground Storage Tanks was completed by CGS, and is included in Appendix F.

APPENDIX A - FIGURES

A.1 – Site Location Map A.2 – UST Locations Map

Historical Topographic Map

N

TARGET QUAD

NAME: COCKEYSVILLE

MAP YEAR: 1986

PHOTOREVISED FROM:1957

SERIES: 7.5 SCALE: 1:24000

SITE NAME: ADDRESS:

Stebbins-Burnham 2724 Spring Hill Road

Owings Mills, MD 21117

LAT/LONG:

39.4068 / 76.7423

CLIENT:

Chesapeake GeoScience Inc

CONTACT: INQUIRY#:

Debbie Daniel

2625629.4 RESEARCH DATE: 10/29/2009

APPENDIX B

30-Day Written Notification Form

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Boulevard • Suite 620• Baltimore, Maryland 21230-1719 410-537- 3442 • 800-633-6101 x3442 • http://www.mde.state.md.us

Land Management Administration • Oil Control Program

Underground Storage System Removal/Abandonment 30-Day Written Notification

Case No: MDE OCP	CASE No. 03-1335	BA2
Facility No: 300 2138		
(check box if facility was not previously registered		
This form shall be used to notif y the	e Department at least 30 da ys befo	ore beginning underground storage
tank rem oval and/or abandonm ent-	in-place. When fully completed,	this form may be accepted as an
amendment to the Notification for U	nde rground Storage Tanks current	ly on file with the Department, for
the rem ovals and/or aban donments	listed. New ta nk installations m	ust be reported on the five-page
notification (Form Number MDE/L	MA/PER.012). The Depart ment r	reserves t he right to re quire Form
Number MDE/LMA/PER.012, if det	ermined necessary to properly upda	ate Department records.
(1) Type of facility:Government	ntCommercialFarm/l	Nursery
Residential (non-rental)	Other (please specify)	
(check one)		
(2) Type of work being performed:		
	UnstallationU	pgrade of Existing Tank/Piping
(check all that apply)		
		TO ADTUSTMENT
(3) Date work is to be performed:	TUNE 9, 2010 - SUPPENDI	NE VAC PRICE AVAITABILITY
(4) Estimated time that work will be	ready for inspection:2	2 PM
(5)		
(5) Insurance Information:S	elf InsuranceInsurance Po	oolRisk Retention Group
	er of CreditSurety Bond	
(check one)		_Commercial Insurance:
Policy No.:Insurer:	Agent/Broker:	Phone:
Other method allowed: (specify)		
(6) Contractor	(7) Facility Information:	(8) Owner Information:
Information:	(1) Fuculy Information:	(8) Owner Information:
injoimuton.	STEBBINS-BURN HAM FACILITY	Y. MR. EECHARD ROSS/TSAbel
ALLER A DEALE CONCRETE		Owner Name PRODUCTI
CHESAPEAKE GEOSCIENCES	2724 SPRING HILL RD	2716 SPRING HILL RD INC
Company Name	Street Address	Mailing Address
5405 TWIN KNOLLS RD		Adding Address
Mailing Address	OWINGS MILLS, MD 21117 City/State/Zip	City/State/Zip
COLUMBIA, MD 21045	City/State/Zip	City/State/Zip
City/State/Zip	GREENSPRING VALLEY RD	
JOHN KOSLOSKI, P.G.	Nearest Cross Street	Contact Person at owner location (not contractor)
Name of Contact Person	MR. LEONARD ROSS	410-654-2268
910-740-1911 -3299	Name of Contact Person at Site	
Telephone No. Fax No.	410-654-2268	Telephone No. Fax No.
MIKE LIBERTO	Telephone No. of Contact Person	410-733-4027
Name of Person certified to do work		Name/Title of person authoriz ed to
MDIC		represent owner
exp date 12/1/10		Killer Mull-Alan
		n de la companya de l
Form Number MDE/LMA/COM.039		there cloud Page 1 of 2
Revision Date: 8/1/03	• /	

Form Number MDE/LMA/COM.039 Revision Date: 8/1/03 TTY Users: 1-800-735-2258

(9) Tank Information:

Tank	Type of	Material of Construction	Material of Construction	Date Tank	Date Tank	Pass or	Type of
Capacity	Product	Tank	Piping	Last Used	Last Tested	Failed?	Test
ESTIMATED 3,010 GAL	OIL	STEEL	STEEL	UNKNOWN	UNKNOWN		
ESTIMATED 5,000 GAL	ONKNOWN	-,	STEEL	UNKNOWN	UNKNOWN		
ESTIMATED 4,000 GAL	UNKNOWN	STEEL	STEEL	UNKNOWN	UNKNOWN	_	Company of the Compan

(10) Are there Yes	additional	underground	storage	tanks a	it this	facility	not listed	above?
√ Yes	No 7	THE ADDI	TIONA	L UST	Ts Wa	ERE	PREV 10	USL4
	-	ABAND	ONED	IN-P	LAC	E.		

(11) Certification:

I certify, under penalty of law, that I have personally examined and am familiar with the information submitted in this and all attached documents. Based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information submitted is true, accurate and complete. I understand the is form may not be accepted by the Oil Control Program if the information is incomplete. (Complete items 1 through 11)

Signature of	UST O	wner/	Authorized Owner	Representative:	6/3	10	
1 September 1			l in section 8 of this form)		4/-/	/	_

APPENDIX C

Photographic Documentation

Photo 1: Draining product from AST at recovery well RW-1

Photo 2: Preparation for draining product from UST #1.

Photo 3: Cutout hole on UST #1 for rinsing and sealing.

Photo 4: Sludge in bottom of UST #1 after initial vacuum work.

Photo 5: Closeup of sludge in UST #1 after initial vacuum work.

Photo 6: Water tank for spray washing interior of UST #1.

Photo 7: Setting up the spray and wash gun for UST #1 rinsing.

Photo 8: Spraying, washing, and vacuuming interior of UST #1.

Photo 9: Sealing UST # 1 with flowable fill.

Photo 10: Soil restoration at UST # 1 location.

Photo 11: Cutting off vent pipe associated with UST # 1.

Photo 12: Sealed vent pipe associated with UST # 1.

Photo 13: Setting up at UST # 4/5 to vacuum liquid contents.

Photo 14: Draining water from UST # 4/5.

Photo 15: Water removed from UST # 4/5.

Photo 16: Exposed concrete at bottom half of UST # 4/5.

Photo 17: Setting up on UST #4/5 for sealing.

Photo 18: Sealing UST #4/5 with flowable fill.

Photo 19: Soil restoration at UST #4/5.

Photo 20: Removed 3-inch access pipe from UST #9; Sealed UST # 9 and access hole.

APPENDIX D

ARRA Daily Report Notes

Phone: (410) 740-1911 Facsimile: (410) 740-3299

ARRA DAILY PROJECT REPORT

Project Name: Stebbins-Burnham - UST Abandonments Project Number: CG-08-0399.11 Client's Name: MD Dept. of the Env. (MDE) 6/9/2010 Date:

Project Address: 2724 Spring Hill Road Owings Mills, MD 21117 Prepared By: JWK

Summary of A	<u>ctivities</u>
<u>Time</u>	Activity
0700	CREW ARRIVED AT SITE TO BEGIN UST ABANDON MENTS.
Parameter and the second	MOVED TO AST ADJACENT TO RW-1 AND DRAINED
,	~ 80 GALLONS HEATING OIL PRODUCT FROM AST (EMPTIED)
0800	MOVED VAC TRUCK TO UST #1 (BEHIND BACK WOOD DECK)
	STUCK CONTENTS OF UST WITH CALIBRATED WOOD STICK,
	MEASURED DEPTH TO BOTTOM UST (FROM TOP UST) = 62",
	MEASURED DEPTH TO HOUD @ = 38, LIQUID MOSTLY
	WATER WITH = 2" FUEL OIL FLOATING. BEGAN
	DRAINING ALL LIQUID FROM UST #1. DRAINED
	1,305 GALLONS LIGUID FROM UST #1.
0930	MOVED VAC TRUCK TO UST 4/5 AND BEGAN
	DRAINING LIQUID FROM UST. ALL WATER HERE.
9	STUCK UST FROM TOP UST TO CONCRETE INSIDE UST II
Inspections Cor	
-INTERIOR	OF UST #1 AFTER VAC-TRUCK 3,500 GALLON CAPACITY G AND SPIN WASH Z SUPPORT TRUCKS-PICKUPS
	3 20/9 OPT 1/2 1 200
DRAINING	- WATER CONCRETE PUMP UNIT-TRAILER
Site Contractors	S/Visitors: Other: SLOSKI, P.G CHESAPEAKE GEOSCIENCES
MIKE LIZ	BERTO - TIDEWATER, INCSOIL RESTORATION PERFORMED
WILL CV	ZINA - CLEAN VENTURE, INC.
BELAN LO	PEZ -TIDENATER,INC PHOTOS OBTAINED
	Page / of 3 HEATING OIL,
	Page / of 3 HEATING 0/L,

Project Name: <u>Stebbins-Burnham - UST Abandonments</u>

Client's Name: MD Dept. of the Env. (MDE)

Phone: (410) 740-1911 Facsimile: (410) 740-3299

Project Number: CG-08-0399.11

6/9/2010

Date:

ARRA DAILY PROJECT REPORT

Project Addre	ess: 2724 Spring Hill Road Owings Mills, M	ID 21117	Prepared By: JWK
Summary of A	Activities		
<u>Time</u>	Activity		
1000	MOVED VAC TRUCK TO	UST #9	AND MEASURED 42"
	FROM GRADE TO HAR	D 30770M	(CONCRETE), STILL 142
	OF OPEN SPACE MEASU	RED WHICH	Y CONTAINS WATER,
	(THAT 14/2" OPEN SPACE	WITHIN VS	N UST AND 3" ACCESS PIPE
	WATER DRAINED FROM	UST #9 A	AND 3" ACCESS PIPE -
	DRAINED ~ 5-10 C	SALLONS.	
1030	BEGAN SPRAY WASH OF	INTERIOR	OF UST #1 AND ADDITIONAL
	VACUM OF PINSE W.	ATER. 4	45 GALLONS OF SPRAY
	RINGE USED AND A	LE COVERED	, INSPECTED INTERIOR
	y of Activities		
	FROM GROUNDWATE	IR, NO	HOLES OBSERVED IN
Inspections Co	onducted:	Equipment O	n-Site:
		o	
Site Contractor	rs/Visitors:	Other:	
A			
		9 7	

Project Name: Stebbins-Burnham - UST Abandonments

ARRA DAILY PROJECT REPORT

Phone: (410) 740-1911 Facsimile: (410) 740-3299

Project Number: CG-08-0399.11

Client's Name:	: MD Dept. of the Env. (MDE)	Date: 6/9/2010
Project Addres	ss: 2724 Spring Hill Road Owings Mills, MD 21117	Prepared By: JWK
Summary of A	ctivities	
Time	Activity	
1130	BEGAN SEALING UST'S # 1, 4/3	T, AND 9.
	FLOWABLE FILL DELIVERED IN	CEMENT MIXER
	TRUCK FROM SHUSTER CONCI	RETE AND GRAVITY
	DUMPED INTO ~12 OPENINGS	
	UST 5 # 1 AND # 9/5. THE	REETRUCK RUNS NEEDED,
	12 cubic yards OF FLOWABLE	E FILL EMPLACED INTO
	UST #1. 2 cubic yards	of FLOWABLE FILL
	EMPLACED INTO UST # 4/5.	UST #9 SEALED
	THROUGH ~3" STEEL ACCESS PI	PE (PIPE THEN REMOVED).
	~10 GALLONS FLOWABLE FILL	USED IN UST #9.
1300	MET WITH OWNER MR. ROSS	TO SIGN COMPLETED
	AMENDED NOTIFICATION FOR U	STS FORM REPORT,
	SOLI DESTORATION DERFORMED	AT UST #151 AND 4/5
Inspections Cor	TEMPORARY PLYWOOD COVER Equipment	On-Site: UST'S#1 AND 4/5
		WHILE FLOWABLE
		FILL CURES,
Site Contractors	Ć	ENT PIPE AT UST #/ UTOFF AT GRADE AND SEALED.
		TOTAL OF 1875 GALLONS
		- AND ALLINA WHATERE
		PROPER DISPOSALS BY CLEAN VENTURE, INC.
	Page 3 of 3	(CLEAN VENTURE, 1/10 C)
	rage on	

APPENDIX E – MANIFEST FORMS and RECEIPTS

E.1 Waste Manifest for Transportation of Fuel Oil/Water

cvcc 079915

NON-HAZARDOUS SOLID WASTE

The Environmental Services Source

П	BILL OF LADING							- 46
	Generator's Name and Mailing Address	· ·	DO	1				. 10
	lide water		ВО	LXC) 7	99	1	-
Ш	2724 Springhill Rd	*	*	,				
	Generator's Phone () Owings Milk M 2111 Transporter 1 Company Name		44					
	Transporter Company Name		State	Trans. ID-NJDE	PE			
	Transporter 2 Company Name			Decal N		-		
			Tran	sporter's Phone	4/1	0136	59	TIE
	Designated Facility Name and Site Address 10. US EPA ID Nur	mber	State	Trans. ID-NJDE	PE	No.	-	
	Water Deport			Decal N	0			
	130 Avandale >4		Trans	sporter's Phone ()		
	New Windsor Med 2171611111			ity's Phone (💄	10)	3480	020	29
	US DOT Description (Including Proper Shipping Name, Hazard Class or Division, ID Number and Packing Group)	Contair No.	Type	Total Quantity	Unit Wt/Vol	Was	te No.	
	a NON DOT NOW RULA	No.	Туре					
	(petroleum impacted worter)	XXI	+	1875	tac.	(,		
G E	b.			8 05 8 005	-			
NE								
R	C.				-			***
A T								
0								
R	d.					5.	-0.5	
							254	7
1	A Addison I Day of the Control of th					-		1,4
	J. Additional Descriptions for Materials Listed Above							
П								
11	a.						Λ.,	
	b. d.							
1	CCI Generator # and Product Codes:							
	MPTM - 19047 MD 41948-04-05							
	MD 41148 01 03		V.					
-	GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are	fully and accurate	alv descri	hed above by pr	oner shi	oning nam	e and	are
$\ $	GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are classified, packed, marked, and labeled, and are in all respects in proper condition for transport b regulations and are non-hazardous by USEPA & applicable state regulations.	y highway accord	ing to app	olicable internation	nal and	national go	overnn	nent
П	rogalizations and are non-mazzardous by ober 17 a applicable state regulations.							
П	PLACARDS REQUIRED	PLACA	RDS	L VES LATA	6- FURN	ISHED BY C	ARRIE	R
IL	The state of the s	SUPPL	IED	1				
11	Printed/Typed Name Signature	/			I	Month Da	ay \	/ear
4	Mit wall							
R -	Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Signature	DE	-			Month Da	av/)	/ear
N	Donah Rock	>	Mark de marks after		1	110	11	\cap
P	Transporter 2 Acknowledgement of Receipt of Materials	Congression . St	- Andrewson and			4/1	10	-
T	Printed/Typed Name Signature				I	Aonth Da	y Y	/ear
R								
A								
1								9.
1	Facility Owner or Operator: Certification of receipt of hazardous materials covered by this manifes	st.						-
7	Printed/Typed Name Signature			****	Λ	Aonth Da	ay Y	'ear
	e ·				1			

APPENDIX F
Closure Notification For Underground Storage Tanks

MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Boulevard • Suite 620 • Baltimore, Maryland 21230-1719 410-537-3442 • 800-633-6101 ext. 3442 • http://www.mde.state.md.us

Land Management Administration • Oil Control Program NOTIFICATION FOR UNDERGROUND STORAGE TANKS

Return completed form to:	State Use Only
Maryland Department of the Environment Oil Control Program 1800 Washington Boulevard, Suite 620 Baltimore MD 21230-1719 Facility ID Number: 300 21 38 MDE 000 CASE No. 03-1335BA 2 Type Of Notification: New Facility Amended Closure (mark one) Number of tanks at facility 3 USTS ABANDONED Number of continuation sheets attached	State Use Only Facility ID Number: Alt ID Number: Date Entered into Computer: Data Clerk's Initials: Owner Contacted to Clarify Response: Comments:
Is this an Owner Name Change?	Type of Owner: (mark one) Government Commercial Corporation State Company Local Partnership Individual Non-Commercial Agricultural Non-Profit Agency
II. LOCATION OF TANKS: Facility Name or Company Site Identifier: Street Address: 2724 SPRING HILL ROAD OWINGS MILLS MD 2/117 City State Zip Code Facility Water Supply (mark one): Mailing Address (if different from above):	his a Facility Name Change?yesno -BURNHAM FACILITY BALTIMORE County
Facility Operator:Primary Phone	Number:

Form Number: MDE/LMA/PER.012

Date April 30, 2009 TTY Users: 800-201-7165

III. TYPE OF FACILITY: (chec	k one)	
Aircraft Owner Airline Apartment/Condo Auto Dealership Commercial Contractor Educational Farm/Nursery Other:	Federal Military Federal Non-Military Fire/Rescue/Ambulance Gas Station Industrial Local Government Marina Office	Petroleum Distributor - FORMER' Railroad NO LONGER Residential // SERVICE State Government Store Trucking/Transport Utilities Not Listed
Employer: CHESA PEAKE	KI P.G. GEO SCIENCE	
Mailing Address.	City	State Zip
Phone Number: 4/0-740-/9 Email Address: 1/K05/05/K/		-3299 n
	0	
V. FINANCIAL RESPONSIBIL Not Required For This Facili Policy #: Insurer: Agent/Broker: Type of Financial Responsibility Used:	ty - heating oil for direct Period of Coverage	consumptive use only. NO LONGER IN SERVICE AND
Financial Test of Self Insurance	Cupranta a*	Local Cout Insurance Deal
	Guarantee*	Local Govt. Insurance Pool
Third Party Insurance	Surety Bond*	Local Govt. Bond Rating Test
Risk Retention Group	Letter of Credit*	Local Govt. Financial Test
Trust Fund	Standby Trust Fund	Local Govt. Guarantee
Other (specify)		
*requires Standby Trust Fund		. •

y ID Number: 300 2)38

Facilit

VI. DESCRIPTION OF UNDERGROUND STORAGE TANKS: (complete for each tank at this facility)

Tank Identification Number	Tank No		Tank No.		Tank No.		Tank No.		Tank No.	
Alternate Tank ID Number	Tank No	. /	Tank No.	4/5	Tank No.	9	Tank No.		Tank No.	
Status of Tank (mark only one)				/						
- Currently in Use										
- Temporarily Out of Use				,						
- Permanently Out of Use (Complete Item 8)	. 1		ı		ı					
2. Date of Installation (month/year)	UNK	NOWN	UNK	NowW	UNK	UNKNOWN ~ 4,000 GAL.				
3. Total Capacity (gallons)	~3	,000 GA	~5,0	OOO GAL	~ 4,0	OO GAL				
3A. Compartmentalized?		YES				YES	NO			
Enter Compartment Gallons:	Tank "A'	,	Tank "B"		Tank "A"		Tank "B"			
3B. Manifolded?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO
4. Tank Construction (mark all that apply)										
- Asphalt Coated of Bare Steel	V		✓		V					
- Cathodically Protected Steel (Coating w/CP – Galvanic)										
- Cathodically Protected Steel (CP Steel - Impressed Current)										
- Composite Clad Steel (Steel w/FRP)										
- Fiberglass Reinforced Plastic (FRP)										
- Polyethylene Tank Jacket										
- Other (must describe)										
- Double-walled										
- Excavation Liner										
- Lined Interior										
- Lined Interior with Impressed Current										
- Has tank been repaired?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO

Form Number: MDE/LMA/PER.012 Date April 30, 2009 TTY Users: 800-201-7165

VI. DESCRIPTION OF UNDERGROUND STORAGE TANKS: (complete for each tank at this facility)

Tank Identification Number	Tank No.		Tank No.	,	Tank No.		Tank No.		Tank No.	
Alternate Tank ID Number	Tank No.	1	Tank No.	4/5	Tank No.	9	Tank No.		Tank No.	
5. Piping Construction (mark all that apply)										
- Aboveground Piping	VENT	GGRA	E NO	NE	NON	IE				
- Bare or Galvanized Steel	V		V		L					
- Bare or Galvaized Steel - sleeved in PVC, FRP, or Plastic										
- Copper										
- Copper (CP Protected)										
 Copper-sleeved in PVC, FRP, or Plastic 										
- CP Steel (Galvanic)										
- CP Steel (Impressed Current)										
- Fiberglass Reinforced Plastic (FRP)										
- Flexible Plastic										
- Other (must describe)										
- No Piping										
- Double-walled		:								
- Double-walled with Containment Sumps										
- Secondary Containment (specify)				W						
6. Type of Piping (mark all that apply)	UNKN	OWN	UNK	NOWN	UNF	KNOWN	1			
Pressurized? (if yes, select type of Automatic Line Leak Detector (ALLD)										
Electronic ALLD										
Mechanical ALLD	L		ļ		ļ				ļ	
- Gravity Feed										
- Suction, no valve at tank (Safe Suction)										
- Suction, valve at tank (U.S. Suction)										
- Has piping been repaired?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO

Form Number: MDE/LMA/PER.012 Date April 30, 2009 TTY Users: 800-201-7165

Facility ID Number: 300 2138

VI. DESCRIPTION OF UNDERGROUND STORAGE TANKS: (complete for each tank at this facility)

Tank Identification Number	Tank No.		Tank No.		Tank No.		Tank No.		Tank No.	
Alternate Tank ID Number	Tank No.	1	Tank No.	4/5	Tank No.	9	Tank No.		Tank No.	
7. Substance Currently or Last Stored			UNK	4/5 NOWN	UNF	LNOWN				
- Bio-Diesel										
- Car Wash-Oil/Water Separator UST - Diesel										
- Ethanol (E-85)							*			
- Gasohol (E-10)										
- Gasoline										
- Hazardous Substance (specify): - Heating Oil #2	V									
- Heating Oil #4	<u> </u>			-						
- Heating Oil #5										
- Heating Oil #6										
- Kerosene										
- Lube Oil										
- Methanol										
- Mixture (specify):										
- Used Oil										
- Other (must describe)										
	YES	NO	YES	NO NO	YES	NO	YES	NO	YES	NO
7A. On-site consumptive use? 7B. Emergency Generator?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO
8. Closing of Tank										
- Estimated date last used (month/day/year)		IOWN	UNK	NOWN 2010	UNK	NOWN				
- Date Tank Closed (month/day/year)	6/9	20/0	6/9/	12010	6/9	12010				
- Tank Removed From Ground?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO
- Tank Filled with Inert Material?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO
- If yes, inert material used.	FLOU	NABLE		WABLE		ABLE				
- Change in service to non- regulated substance?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO
8A. Site Assessment Completed?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO
8B. Assessment Report submitted to MDE?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO

SITE ASSESSMENT OF GENERAL SITE AREA COMPLETED THE RESULTS OF THIS WORK WERE Page 5 of 7

PREVIOUSLY SUBMITTED TO MDE. Page 5 of 7 INCLUDING TEST BORINGS, WELLS, Form Number: MDE/LMA/PER.012 Date April 30, 2009

TTY Users: 800-201-7165

VI. DESCRIPTION OF UNDERGROUND STORAGE TANKS: (complete for each tank at this facility)

Tank Identification Number	Tank No.		Tank No.	,	Tank No.		Tank No.		Tank No.	
Alternate Tank ID Number	Tank No.	1	Tank No.	4/5	Tank No.	9	Tank No.		Tank No.	
9. Release Detection (see instructions)	TANK	PIPING	TANK	PIPING	TANK	PIPING	TANK	PIPING	TANK	PIPING
9A. Tank – Mark One Primary (P) and All Secondary (S) Methods										
- Manual Tank Gauging				1000						1000
- Tank Tightness Testing (See Instructions)										
- ATG 0.2 gph Test	4	Edit of				THE REAL PROPERTY.		19.00		
- Inventory/Statistical Inventory Reconciliation (SIR)										
- Groundwater Monitoring						THE REAL			1	MODEST
- Interstitial Monitoring Double-Walled Tank - Other Method Approved				1						
9B. Piping – Mark One							Russi I			
Primary (P) and All Secondary (S) Methods - Interstitial Monitoring										
Double-Walled Piping - Electronic ALLD Testing			1		1					
(0.1 or 0.2 gph) - Annual Line Tightness					1				- REALING	
Testing (Pressurized) - 2-year Line Tightness			-		Burge.		THE REAL PROPERTY.		-	
Testing (U.S. Suction) - Inventory/Statistical							Name of Street			
Inventory Reconciliation (SIR)			350		THE REAL PROPERTY.					
- Groundwater Monitoring - Other Method Approved						-	Harry Con	7		2
by MDE (must specify)		Sales and Sales								
10. Spill and Overfill Protection										
10A. Overfill Device Installed? (if yes, select one below)	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO
> Flapper Valve (FV)										
> Ball Float Valve (BFV)										
> High Level Alarm (HLA)										
> Other (must describe)										
10B. Spill Catch Basin Fill Pipe? (5 gallon minimum)	YES	NO	YES	NO	YES	NO	YES	мо	YES	NO
11. Stage I Vapor Recovery?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO
12. Stage II Vapor Recovery?	YES	NO	YES	NO	YES	NO	YES	NO	YES	NO

USTS ARE PROPERLY DE-COMMISSIONED -

Form Number: MDE/LMA/PER.012 Date April 30, 2009

Facility ID Number: 300 2/38

VII. UNDERGROUND STORAGE TANK (UST) TECHNICIAN CERTIFICATION OF COMPLIANCE: (Complete for all new installed, replaced, and upgraded underground storage systems at this location)

I certify, under penalty of law, that I am certified by the State of Maryland as an UST Technician, that I am in good standing as a certified Technician with the State, and that I am familiar with the UST regulatory requirements in COMAR 26.10.02—26.10.11. I further certify, under penalty of law that, based upon my personal inspection and/or work upon the UST system(s) at the Facility identified on this Notification Form, the UST system(s) is/are in compliance with the requirements of COMAR 26.10.02—26.10.11.

Installer; <u>Michae</u>	1 liberto	Infra	6/09/10	0
Print Namo		Signature	Date	
MDIC: 2008-195	54	12/1/10	TIDEWATER.	IN C
State Identification	Number	Expiration Date	Сотрану	

Penalties for Pulse Statements: Any person who makes any false statement, representation, or certification havein is subject to criminal penalties of a fine and imprisonment and to civil monetary penalties, pursuant to \$4-417 of the Environment Article of the Annotated Code of Maryland,

VIII. OWNER CERTIFICATION: (to be completed by owner or owner's representative)

I certify, under penalty of law, that I have personally examined and am familiar with the information submitted in this Notification Form and all attached documents, and that the Information provided is true, accurate, and complete. I further certify, under penalty of law, that I have met the financial responsibility (FR) requirements in accordance with applicable federal and State laws (40CFR Part 280 Subpart H; §4-409(b) of the Environment Article; and COMAR 26.10.11) and that I can provide documentation thereof to the Maryland Department of the Environment upon its request, or that I am not required to meet the FR requirements because the UST system stores heating oil for direct consumptive use only.

Name (print / type): _	LEONARD	ROSS	Title:_	, ,
Signature:	روع (مع)	Keer	Date:	6-9-90

Penalties for False Statements: Any person who makes any false statement, representation, or cortification herein is subject to criminal penalties of a fine and imprisonment and to civil monetary penalties, pursuant to 54-417 of the Environment Article of the Annatated Code of Maryland.

Form Number: MDE/EMA/PER.012 Date April 30, 2009 TTY Users: 800-201-7165 Appendix G Soil Boring Logs

<u>C</u>	GS .	LOG OF	BORIN	IG GB - 7
	eake Geosciences, Inc.			
	CT NAME: MDE/Stebbins-Burnham	DRILL METHOD		
	CT NUMBER: CG-07-0194	GEOLOGIST: Je		ns
	T: MDE - OCP	DRILLER: Allen		
	FION: Spring Hill Rd. Owings Mills Rd. G DATE: 03/11/08 BORING DIAMETER: 2.0"	SURFACE FINIS TOTAL DEPTH:		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0-	0-1' Orange-brown SILTY SAND w F to M GRAVEL 1-5' Brownish-orange SILTY CLAY w M to C GRAVEL LAYERS	Dry SI. Moist	0 0	
5-	▼ 5-8' Brownish-orange SILTY CLAY w M to C GRAVEL LAYERS and thin layers of medium SAND & brick debris	Dry	0	
	8-18' Mottled brown, dark tan, orange, grey SILTY CLAY with some F to M GRAVEL and thin layers of SAND	Moist	148	
10-		to	206 375	
15— - -		Sat @ 15'	185 to 220 range	
20-	Refusal @ 18' Piz set. Screen from 18 to 3'			
25—				
30-				
35—				

C	GS .	LOG OF	BORIN	G GB - 8
Chesar	peake Geosciences, Inc.	'		
	ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD	: Direct Push	/ GEOPROBE
	ECT NUMBER: CG-07-0194	GEOLOGIST: Je		
	T: MDE - OCP	DRILLER: Allen		
	FION: Spring Hill Rd. Owings Mills Rd.	SURFACE FINIS		S
	IG DATE: 03/11/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 — — — — — — — — — — — — — — — — — — —	0-1' Brown SILTY CLAY and brick debris, M to C GRAVEL 1-8' Mottled brown, green, tan, gray SILTY CLAY and some F to M GRAVEL 8-20' Greenish-grey SILTY CLAY w some F GRAVEL	Dry SI Moist	0 0 	
20	Stopped @ 20' (Target depth w ample moisture) Piz set. Screen from 20-5'	+	245	
25— 30— 35— 40				

	eake Geosciences, Inc.	LOG OF	BORIN	G GB - 9
	CT NAME: MDE/Stebbins-Burnham	DRILL METHOD	: Direct Push	/ GEOPROBE
	CT NUMBER: CG-07-0194	GEOLOGIST: Je	effrey C. Perki	ns
	Γ: MDE - OCP	DRILLER: Allen		
LOCAT	TON: Spring Hill Rd. Owings Mills Rd.	SURFACE FINIS	H: Field grass	S
BORIN	G DATE: 03/11/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:	20' (ft.) GW	@ 11' (ft.)
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 -	0-6" Dark brown SILTY LOAM and F to M GRAVEL 6"-4' Tan SILTY CLAY w some F GRAVEL	Moist	0 0	
5	4-8' Mottled Brown, grey, tan, and orange SILTY CLAY and F to M GRAVEL and a couple thin layers of coal debris		50	
10-	8-16' Mottled Green, grey, and tan SILTY CLAY with some F GRAVEL	▼ Sat @ 11'	375	
15—	16-20' Mottled Green, orange, tan SILTY CLAY and		640	
	some F GRAVEL		462 196	
20	Stopped @ 20' (Target depth w ample moisture) Piz set. Screen from 20-5'			
25— - - -				
30-				
35—				
40				

	GS .	T		
<u>し</u>	<u>.G.S</u>	LOG OF	BORING	G GB - 10
Chesap	eake Geosciences, Inc.			
	ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD:	: Direct Push	/ GEOPROBE
	CT NUMBER: CG-07-0194	GEOLOGIST: Je		าร
	T: MDE - OCP	DRILLER: Allen		
	FION: Spring Hill Rd. Owings Mills Rd. G DATE: 03/11/08 BORING DIAMETER: 2.0"	SURFACE FINIS TOTAL DEPTH:		
	1			
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 — - - - 5— - - 10— - - - - -	0-8' Brownish-tan SILTY SAND w some M to C GRAVEL Layers 8-16' Micacious Tan and orange SILTY CLAY w some F GRAVEL	Dry Wet layer at 14'		
20-	Refusal @ 16', Piz set. Screen from 16-6'			
30				

<u>C</u>	GS	LOG OF	BORING	G GB - 11
	peake Geosciences, Inc.			
	ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD		
	ECT NUMBER: CG-07-0194	GEOLOGIST: Je		าร
	T: MDE - OCP	DRILLER: Allen SURFACE FINIS		
BODIA	TION: Spring Hill Rd. Owings Mills Rd. IG DATE: 03/12/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:		V @ 11 (ft.)
			1 ' '	
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 — - - 5— - 10— -	0-4' Brown SILTY CLAY and F to C GRAVEL 4-8' Orange-brown SILTY CLAY w dark streaks with some F to M GRAVEL 10-14' Same as 4-8' but with a distinct greenish tint	Dry Moist Sat @ 11'	0 V 0 82 40 22 6	
15— - 20— - 25— - 30— - 35— - 40—	Refusal @ 14' Piz set. Screen from 14-4'			

	GS .	LOG OF	BORINO	G GB - 12
			DOMING	J OD 12
	eake Geosciences, Inc.			
	ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD		
	ECT NUMBER: CG-07-0194	GEOLOGIST: Je		1S
	T: MDE - OCP FION: Spring Hill Rd. Owings Mills Rd.	DRILLER: Allen SURFACE FINIS		
	IG DATE: 03/12/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:		
			1	
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 — - - - 5— - - 10— - - - - - - - - - - - - - - - - - - -	0-8' Brown SILTY CLAY and F to C GRAVEL and some brick and coal debris in pockets 8-20' Mottled Brown, orange, and dark grey SILTY CLAY w some F to M GRAVEL	Moist SI Moist Sat @ 13'	0 0 40 20 11 0	
20	Stopped @ 20' (Target depth w ample moisture) Piz set. Screen from 20-5'	*	•	
25— - - 30— - - - 35— - - - - - - - - - - - - - - - - - - -				

GS	LOG OF	BORING	G GB - 13
	DDILL METHOD	Direct Buch	/ CEOPPORE
			13
			2
IG DATE: 03/12/08 BORING DIAMETER: 2.0"			V @ 10 (ft.)
		1	Sample Time
Geologic Description	Moisture	PID (ppm)	Sample Time
0-14' Brown SILTY CLAY w F to C GRAVEL (some layers) and some brick and coal debris in pockets throughout	Dry SI Moist Sat @ 10	0	
Refusal @ 14' Piz set. Screen from 14-4'			
	Deake Geosciences, Inc. ECT NAME: MDE/Stebbins-Burnham ECT NUMBER: CG-07-0194 T: MDE - OCP TION: Spring Hill Rd. Owings Mills Rd. G DATE: 03/12/08 BORING DIAMETER: 2.0" Geologic Description 0-14' Brown SILTY CLAY w F to C GRAVEL (some layers) and some brick and coal debris in pockets throughout	peake Geosciences, Inc. CCT NAME: MDE/Stebbins-Burnham CCT NUMBER: CG-07-0194 T: MDE - OCP TION: Spring Hill Rd. Owings Mills Rd. G DATE: 03/12/08 BORING DIAMETER: 2.0" Geologic Description O-14' Brown SILTY CLAY w F to C GRAVEL (some layers) and some brick and coal debris in pockets throughout SI Moist Sat @ 10	peake Geosciences, Inc. CT NAME: MDE/Stebbins-Burnham CT NUMBER: CG-07-0194 GEOLOGIST: Jeffrey C. Perking Common Driller: Allen Dupree GON: Spring Hill Rd. Owings Mills Rd. G DATE: 03/12/08 Geologic Description Geologic Description O-14' Brown SILTY CLAY w F to C GRAVEL (some layers) and some brick and coal debris in pockets throughout SI Moist Sat @ 10

<u>C</u>	GS	LOG OF	BORING	G GB - 14
	peake Geosciences, Inc.			
	ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD		
	ECT NUMBER: CG-07-0194	GEOLOGIST: Je		าร
	T: MDE - OCP	DRILLER: Allen		
	TION: Spring Hill Rd. Owings Mills Rd.	SURFACE FINIS		
	IG DATE: 03/12/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:		@ 8 (ft.)
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 — - - - 5 — - - 10 — - - - - 15 —	0-16' Brown SILTY CLAY with some random F to M GRAVEL and some layers of M to C GRAVEL throughout	SI Moist Sat @ 8'	0 0 24 8 4	
20—	Stopped @ 16' Good depth with ample moisture Piz set @ 16' with screen from 16-6'			
30-				

0-8' Dark brown grading to Lt brown SILTY CLAY w some F to C GRAVEL (layered) and brick and coal debris 8-16' Micacious Tan and orange SILTY CLAY w some F GRAVEL and some SILTY SAND layers Sat @ 10' (In layers) 0 Refusal @ 14' Piz set. Screen from 14-4'	GB - 15
PROJECT NUMBER: CG-07-0194 CLIENT: MDE - OCP LOCATION: Spring Hill Rd. Owings Mills Rd. BORING DATE: 03/12/08 BORING DATE: 03/12/08	ODDODE
CLIENT: MDE - OCP LOCATION: Spring Hill Rd. Owings Mills Rd. BORING DATE: 03/12/08 BORING DIAMETER: 2.0" TOTAL DEPTH: 14 (ft.) GW @ 10 Depth Geologic Description O-8' Dark brown grading to Lt brown SILTY CLAY w some F to C GRAVEL (layered) and brick and coal debris 8-16' Micacious Tan and orange SILTY CLAY w some F GRAVEL and some SILTY SAND layers Sat @ 10' (In layers) 15— Refusal @ 14' Piz set. Screen from 14-4' 25— 25— 25— 25— 25— 26— 27— 28— 28— 28— 28— 28— 28— 28— 28— 28— 28	OPROBE
DOCATION: Spring Hill Rd. Owings Mills Rd. BORING DATE: 03/12/08 BORING DIAMETER: 2.0" TOTAL DEPTH: 14 (ft.) GW @ 10 Depth Geologic Description Moisture PID (ppm) Sam 0 O-8' Dark brown grading to Lt brown SILTY CLAY w some F to C GRAVEL (layered) and brick and coal debris 10 Same F GRAVEL and some SILTY SAND layers 15 Refusal @ 14' Piz set. Screen from 14-4' 25 -	
BORING DATE: 03/12/08 BORING DIAMETER: 2.0" TOTAL DEPTH: 14 (ft.) GW @ 10 Depth Geologic Description Moisture PID (ppm) Sam 0-8' Dark brown grading to Lt brown SILTY CLAY w some F to C GRAVEL (layered) and brick and coal debris 8-16' Micacious Tan and orange SILTY CLAY w some F GRAVEL and some SILTY SAND layers 10- 15- Refusal @ 14' Piz set. Screen from 14-4' 25- 25-	
Depth Geologic Description Moisture PID (ppm) Same O-8' Dark brown grading to Lt brown SILTY CLAY w some F to C GRAVEL (layered) and brick and coal debris 8-16' Micacious Tan and orange SILTY CLAY w some F GRAVEL and some SILTY SAND layers Sat @ 10' (In layers) Refusal @ 14' Piz set. Screen from 14-4'	0 (ft.)
0-8' Dark brown grading to Lt brown SILTY CLAY w some F to C GRAVEL (layered) and brick and coal debris 8-16' Micacious Tan and orange SILTY CLAY w some F GRAVEL and some SILTY SAND layers Sat @ 10' (In layers) Refusal @ 14' Piz set. Screen from 14-4'	
0-8' Dark brown grading to Lt brown SILTY CLAY w some F to C GRAVEL (layered) and brick and coal debris 8-16' Micacious Tan and orange SILTY CLAY w some F GRAVEL and some SILTY SAND layers Sat @ 10' (In layers) Refusal @ 14' Piz set. Screen from 14-4'	mple Time
15— Refusal @ 14' Piz set. Screen from 14-4' 20— 25—	
30—	

	eake Geosciences, Inc.	LOG OF	BORING	G GB - 16
	ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD	Direct Push	/ GEOPROBE
	ECT NUMBER: CG-07-0194	GEOLOGIST: Je		
	T: MDE - OCP	DRILLER: Allen		-
LOCAT	FION: Spring Hill Rd. Owings Mills Rd.	SURFACE FINIS		
BORIN	G DATE: 3/13/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0-	0-4' Brown SILTY CLAY w layers of F to C GRAVEL	Dry to	0	
	↓	SI Moist	0	
5-	4-8' Mottled brown, orange, and grey SILTY CLAY		58	
	8-20' Mottled Green and dark grey SILTY CLAY w some F GRAVEL		240	
10-			300	
		↓ Sat @ 13'	502 208	
15—			333 280	
	↓	 	650	
20	Stopped @ 20' (Target depth w ample moisture) Piz set. Screen from 20-5'			
25— - - -				
30-				
35—				
40				

	GS	LOG OF	BORING	G GB - 17
Chess	eake Geosciences, Inc.			
	CT NAME: MDE/Stebbins-Burnham	DRILL METHOD	Direct Push	/ GEOPROBE
	CT NUMBER: CG-07-0194	GEOLOGIST: Je		
	T: MDE - OCP	DRILLER: Allen		
	ION: Spring Hill Rd. Owings Mills Rd.	SURFACE FINIS		
_	G DATE: 03/12/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:	16 (ft.) GW @	
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
│ ⁰┐	0-4' M to C GRAVEL with brick debris and little brown	Dry	0	
	SILTY CLAY	SI Moist		
	Dark grey SILTY SAND AND SOME F GRAVEL		♦ 290	
5_		+	290	
-		Sat @ 6'		
			to	
10			to	
-				
			252	
15	↓	\	353	
-	Refusal @ 16' Piz set. Screen from 16-1'			
20-				
25—				
-				
30-				
-				
35—				
₄₀				
40 –				

		1		
し	GS	LOG OF	BORING	G GB - 18
L		1		
	eake Geosciences, Inc. ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD	Direct Buch	/ CEOPPORE
	CT NUMBER: CG-07-0194	GEOLOGIST: Je		
	T: MDE - OCP	DRILLER: Allen		
	TION: Spring Hill Rd. Owings Mills Rd.	SURFACE FINIS		
	G DATE: 03/12/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:	· · ·	
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
⁰	0-4' Brown SILTY CLAY w layers of F to C GRAVEL			
_				
-		Wet in sand layers	80	
I _ ∃	4-8' Dark grayish-green SILTY SAND	Salid layers		
5		SI moist		
		in	756	
-	8-12' Mottled dark brown, orange, green, gray SILTY CLAY	S/C layers		
-	16-12 Mottled dark brown, brange, green, gray SiLTY CLAY			
10			256	
1 -	12-16' Dark grey SILTY SAND	Sat @ 12'		
_				
15—				
	Refusal @ 16' Piz set. Screen from 16-1'			
-				
-				
20-				
-				
25				
-				
30				
1 4		1		
_				
35				
1 4				
40 –				

	GS	LOG OF	BORING	G GB - 19
	peake Geosciences, Inc.			/ 0500005
	ECT NAME: MDE/Stebbins-Burnham ECT NUMBER: CG-07-0194	DRILL METHOD		
	T: MDE - OCP	GEOLOGIST: Je		15
	TION: Spring Hill Rd. Owings Mills Rd.	DRILLER: Allen SURFACE FINIS		vol.
BORIN	IG DATE: 3/13/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 — — — — — — — — — — — — — — — — — — —	0-2' M to C GRAVEL and Coal debris 2-16' Layered Greenish-brown SILTY CLAY and M to C GRAVEL with some brick and coal debris in pockets Stopped @ 16' Sufficant depth & moisture	SI Moist in S/C layers Wet in Gravel Sat @ 12.5 '	160 80 506 320 721	
30— 				

		1		
	GS	LOG OF	BORING	G GB - 20
Chara	calla Canadianaca Inc	1		
	eake Geosciences, Inc. ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD:	Direct Buch	/ CEOPPOPE
	CT NUMBER: CG-07-0194	GEOLOGIST: Je	ffrey C. Perkir	r GEOFROBE
	T: MDE - OCP	DRILLER: Allen		13
	TION: Spring Hill Rd. Owings Mills Rd.	SURFACE FINIS		3
	G DATE: 03/13/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
5	0-4' Mottled brown-grey SILTY CLAY w some F GRAVEL 4-15' Light brown, micacious SILTY CLAY w some F GRAVEL	Dry Moist Sat @ 12'	0	
15	▼ Refusal @ 15' Piz set. Screen from 15-0'		0	
20-				
25— - - -				
30—				
40				

CGS LOG OF BORING GB - 2				G GB - 21
	eake Geosciences, Inc.			
	CT NAME: MDE/Stebbins-Burnham	DRILL METHOD:		
	CT NUMBER: CG-07-0194	GEOLOGIST: Je		าร
	T: MDE - OCP	DRILLER: Allen		
BODIN	FION: Spring Hill Rd. Owings Mills Rd. G DATE: 03/13/08 BORING DIAMETER: 2.0"	SURFACE FINIS TOTAL DEPTH:	H: Fleid grass	@ 13 (ft.)
	1		· • •	· · ·
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
5-	0-1' Dark brown SILTY LOAM and coal debris 1-7' Brown SILTY SAND w some CLAY and F GRAVEL	Dry SI Moist	0 ↓ 20 360	
10-	GRAVEL	Sat @ 13'	180 20 0	
20—	Refusal @ 16' Piz set. Screen from 16-1'			
35—				

<u>C</u>	GS	LOG OF	BORING	G GB - 22
	eake Geosciences, Inc.			
	CT NAME: MDE/Stebbins-Burnham	DRILL METHOD		
	ECT NUMBER: CG-07-0194 T: MDE - OCP	GEOLOGIST: Je		ns .
	TION: Spring Hill Rd. Owings Mills Rd.	DRILLER: Allen SURFACE FINIS		
	G DATE: 4/25/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0-	Geologic Description	Worsture	T ID (ppiii)	oumple Time
	0-3' Brown SILTY CLAY w some F GRAVEL 3-8' Greenish-grey SILTY CLAY w some F to C GRAVEL (In packets)	SI. Moist	0 73.9	
5— - - 10— - - - 15—	(In pockets) 8-16' Mottled brown/grey/greenish grey SILTY CLAY with some pockets of F to C GRAVEL No recovery from 16-20' (Tip of macrocore clogged)	▼ Sat @ 11'	102 406 No Recovery	
20	Stopped @ 20' Piz set @ 15' (Borehole collapse 20-15')		Receivery	
25— 30— 35— 40—				

CGS LOG OF BORING GB - 23				G GB - 23
	eake Geosciences, Inc.	DDILL METUCS	Dine - (D)	/ OF OPPOSE
	ECT NAME: MDE/Stebbins-Burnham ECT NUMBER: CG-07-0194	DRILL METHOD GEOLOGIST: Je		
	T: MDE - OCP	DRILLER: Allen		15
	FION: Spring Hill Rd. Owings Mills Rd.	SURFACE FINIS		
BORIN	G DATE: 4/25/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:	12 (ft.) GW @	② 7 (ft.)
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0-	0-1.5' Brown SILTY CLAY with few pockets of M to C Gravel	Dry	0	
	1.5-12' Grey/brown/greenish-grey SILTY CLAY with few M to C Gravel	Moist	74	
5-		\		
		Sat @ 7'	104	
10-	↓		115	
1 	Stopped @ 12' - No Piz set here (per MDE)			
	,			
15—				
'				
1 4				
1 -				
-				
20-				
1 1				
1 7				
25				
 -				
I -				
-				
1+				
30-				
]				
35—				
1 4				
1,, 1				
40 🏻				

CGS LOG OF BORING GB - 2			
Chesapeake Geosciences, Inc.			
PROJECT NAME: MDE/Stebbins-Burnham	DRILL METHOD		
PROJECT NUMBER: CG-07-0194	GEOLOGIST: Je		าร
CLIENT: MDE - OCP	DRILLER: Allen		
LOCATION: Spring Hill Rd. Owings Mills Rd. BORING DATE: 4/25/08 BORING DIAMETER: 2.0"	SURFACE FINIS		
	TOTAL DEPTH:		
Depth Geologic Description	Moisture	PID (ppm)	Sample Time
0-1.5' Brown SILTY CLAY with few pockets of F to M Gravel	SI. Moist	0	
1.5-10' Mottled Dark grey/brown/grey SILTY CLAY with few pockets of F to C Gravel	 	119 150	
"-	Sat @ 5'		
		212	
10-10-10-10-10-10-10-10-10-10-10-10-10-1	<u> </u>	70	
Refusal @ 10', Piz set @ 10' 15— 20— 30— 35— 40—			

	CGS LOG OF BORING GB - 2			G GB - 25
	eake Geosciences, Inc.	DDILL METHOD	Direct Duck	/ CEODBODE
	ECT NAME: MDE/Stebbins-Burnham ECT NUMBER: CG-07-0194	DRILL METHOD GEOLOGIST: Je		
	T: MDE - OCP	DRILLER: Allen		15
	FION: Spring Hill Rd. Owings Mills Rd.	SURFACE FINIS		
	G DATE: 4/25/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 —			(I-1- /	
	0-3' Brown SILTY CLAY 3-4' Mottled grey/brown CLAY with some Silt and F Gravel	Moist SI. Moist	0	
5-	4-11' Mottled grey/brown SILTY CLAY and M to C Gravel	to		
10-	11-16' Greenish-brown SILTY SAND with some Clay and	Moist	18	
	some pockets of F Gravel	Wolet	315	
15—	₩	Sat @ 15'		
20—	Stopped @ 16', Piz set @ 10' (Borehole collapse)			
40				

	GS	LOG OF	BORING	G GB - 26
	eake Geosciences, Inc. ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD	· Direct Bush	/ GEODPORE
	CT NUMBER: CG-07-0194	GEOLOGIST: Je		
	T: MDE - OCP	DRILLER: Allen		
	FION: Spring Hill Rd. Owings Mills Rd.	SURFACE FINIS		,
BORIN	G DATE: 4/25/08 BORING DIAMETER: 2.0"	TOTAL DEPTH:		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0-	0-3' Brown SILTY LOAM with some M to C Gravel	SI. Moist	0	
5	3-4' Greenish-brown SILTY CLAY 4-12' Mottled brown/grey/black SILTY CLAY with		18	
	pockets of M to C Gravel		20	
10-			68	
	12-16' Mottled brown/grey SILTY CLAY with pockets of M to C Gravel & Lignite		98	
15—	↓ 16-20' Orange-tan SILTY CLAY with little F Gravel		174	
		↓ Sat @ 18'	56	
20	Stopped @ 20', Piz set		9.6	
25—				
30-				
35— -				
40				

CGS, Inc. LOG OF BORING GB			G GB - 27	
	Chesapeake Geosciences, Inc.			
	CT NAME: MDE/Stebbins-Burnham	DRILL METHOD		
	ECT NUMBER: CG-08-0399 T: MDE/OCP	GEOLOGIST: Je DRILLER: Tidew		18
	pring Hill Rd.	SURFACE FINIS		
	G DATE: 11/17/09 BORING DIAMETER: 4.25"	TOTAL DEPTH:		V @ 7 (ft.)
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
5	0-2" Sod 2"-7' Brown SILTY CLAY, soft	Moist Slightly Moist	0	
10-	7-17.5' Greenish-brown SILTY CLAY	Wet at 7'	80.4 at 7.5' 320 at 10 140 at 11.5 30 at 14	GB-27 (10-11') at 14:53hrs.
20-	Refusal at 17.5' 1" Well set, screen from 17.5 to 2.5' below grade GB-27 (GW) at 15:15hrs. Well depth (TOC) 18.55' DTW 9.68', No product (11.20.09) NOTE: SOIL DUPLICATE FROM HERE (GB-27)	*	28 at 16	
35—				

CGS, Inc. LOG OF BORING GB			GB - 28	
DDO IE	Chesapeake Geosciences, Inc. ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD	N. Diroct Buch	/ CEODBOBE
	CT NUMBER: CG-08-0399	GEOLOGIST: Je		
	T: MDE/OCP	DRILLER: Tidev		
	pring Hill Rd.	SURFACE FINIS		is/leaves
	G DATE: 11/17/09 BORING DIAMETER: 4.25"	TOTAL DEPTH:		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 -	0-4' Brown SILTY CLAY with sporadic fine gravel 4-13' Light brown SILTY CLAY with 4 layers (about 2" each)	Silghtly Moist	2.1 at 1' 1.4 at 2' 1.8 at 3' 2.4 at 4.5'	
5 -	of medium to coarse, angular Gravel from 4 to 8'		6.0 at 7.5'	
10—	13-14.5 Light brown SILTY CLAY with dark staining 14.5-20' Light brown SILTY CLAY	₩et at 13'	50.6 at 10' 34.4 at 11.5' 112 at 12.5' 33.6 at 14'	GB-28 (12-13') at 11:36hrs.
20	Stopped at 20', goals attained		22 at 16.5' 12.4 at 18' 9.6 at 19.5'	
25—	1" Well set, screen from 19 to 4' GB-28 (GW) at 12:09hrs no measurable product at sampling Well depth (TOC) 19.05, DTP: 10.89, DTW: 13:28 (11.20.09) Thickness: 2.39'			
30-				
40				

	CGS, Inc.	LOG	G OF I	BORING	GB - 29
	Chesapeake Geosciences, Inc.				
	CT NAME: MDE/Stebbins-Burnham				/ GEOPROBE
	ECT NUMBER: CG-08-0399 T: MDE/OCP		R: Tidew	ffrey C. Perkir	15
	pring Hill Rd.		CE FINIS		
	G DATE: 11/17/09 BORING DIAMETER: 4.25"			20 (ft.) GW @	2 8.5 (ft.)
Depth	Geologic Description	Moi	sture	PID (ppm)	Sample Time
0 —	0-2" Sod 4-6' Brown SILTY CLAY with fine gravel 6-6.5' White, angular medium to coarse GRAVEL 6.5-10' Brown SILTY CLAY with fine to coarse Gravel 10-20' Dark grey and greenish-brown SILTY CLAY with some Medium to coarse Gravel	M	ghtly oist Vet 8.5'	0 4.2 at 2' 8.9 at 3' 103 at 5' 62 at 6' 47.4 at 7' 89.6 at 8.5 134 at 10' 248 at 11' 186 at 13' 202 at 15'	GB-29 (10-11') at 16:55hrs
20	Refusal at 20'	,		145 at 17' 132 at 19.5	
25—	1" well set (borehole partially collapsed), screen from .5 to 15' GB-29 (GW) at 17:43hrs. DTW: 2.87', No product 11.20.09 NOTE: GW DUPLICATE FROM THIS WELL				
35-					

CGS, Inc. Chesapeake Geosciences, Inc. LOG OF BORING GB -			G GB - 30	
PROJECT NAME: MDE/Stebbins-Burnham DRILL METHOD: Direct Push / GEOPI				
	ECT NUMBER: CG-08-0399	GEOLOGIST: J		
CLIEN	T: MDE/OCP	DRILLER: Tide		
	pring Hill Rd.	SURFACE FINIS		
BORIN	IG DATE: 11/17/09 BORING DIAMETER: 4.25"	TOTAL DEPTH:	20 (ft.) GW @	11 (ft.)
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 —	0-6" Dark brown SILTY CLAY and vegetation 6-7" Light grey, angular GRAVEL 7"-5' Mottled dark grey, black, and brown SILTY CLAY 5-9' Brown SILTY CLAY with some fine Gravel 9-13' Brown SILTY CLAY with dark grey/black staining 13-20' Mottled light tan, white, and light grey SILTY SAND with some Clay	Moist Slightly Moist Wet at 11'	0 1.0 at 2' 3.5 at 3.5' 11.4 at 4.5' 8.0 at 5.5' 16.7 at 6.5' 127 at 7.5' 104 at 8.5' 214 at 9.5' 96.8 at 11.5 20.5 at 14' 5.5 at 15' 4.0 at 17'	GB-30 (9-10') at 09:34hrs.
20————————————————————————————————————	Stopped at 20' No well set, borehole collapse, No GW attained		2.3 at 19'	

	CCS Inc	1,00.05		
	CGS, Inc.	LOG OF	BORING	G GB - 31
	Chesapeake Geosciences, Inc.			
	CT NAME: MDE/Stebbins-Burnham	DRILL METHOD		
	CT NUMBER: CG-08-0399	GEOLOGIST: Je		ıs
	T: MDE/OCP	DRILLER: Tidew		•
	pring Hill Rd. G DATE: 11/17/09 BORING DIAMETER: 4.25"	SURFACE FINIS TOTAL DEPTH:		
Depth				
	Geologic Description	Moisture	PID (ppm)	Sample Time
5-	0-4' Brown SILTY CLAY speckled with sporadic black coal/charcoal chips 4-8' Light brown, brown SILTY CLAY with sporadic fine to coarse angular Gravel	Dry Sllightly Moist	0	
10-	8-20' Brown to light brown SILTY CLAY	Wet	66.8 at 8.5' 116 at 9.5' 88.2 at 10' 40.4 at 11' 26.8 at 12.5' 40.8 at 13' 17.2 at 15' 9.3 at 17.5'	GB-31 (9-10') at 10:51hrs
20	1	1	9.2 at 19.5'	
25—	1" well set, screen from about 19-4' BGS GW attained GB-31(GW) at 11:08hrs Well gauged, DTW 14.02', No product detected			
30-				
40]				

PROJECT NAME: MDE/Stebbins-Burnham PROJECT NUMBER: CG-08-0399 CLIENT: MDE/OCP 2724 Spring Hill Rd. BORING DATE: 11/17/09 BORING DIAMETER: 4.25" Depth Geologic Description O-6' Dark grading to light brown SILTY CLAY BORING DATE: Dark grey & dark brown SILTY SAND with sporatic fine to coarse angular Gravel throughout Copious free product from 8' to bottom of boring DRILL METHOD: Direct Push / GEOPROBE GEOLOGIST: Jeffrey C. Perkins DRILLER: Tidewater SURFACE FINISH: Wood debris/leaves TOTAL DEPTH: 17.5 (ft.) Product/GW @ 8 (ft.) Slightly Moist O 84.6 at 5' 589 at 7' 749 at 8.5' GB-32	CGS, Inc. Chesapeake Geosciences, Inc. LOG OF BORING GB -			G GB - 32	
PROJECT NUMBER: CG-08-0399 CLIENT: MDe/OCP CLIENT: MDe/OCP TZ74 Spring Hill Rd. BORING DIAMETER: 4.25" Depth Geologic Description O-6' Dark grading to light brown SILTY CLAY 6-17.5' Dark grey & dark brown SILTY SAND with sporatic fine to coarse angular Gravel throughout Copious free product from 8' to bottom of boring 10- 15- 16- 17- 18- 18- 18- 18- 18- 18- 18- 18- 18- 18	PROJE		DRILL METHOD	: Direct Push	/ GEOPROBE
### SURFACE FINISH: Wood debris/fleaves BORING DATE: 11/17/09 BORING DIAMETER: 4.25" TOTAL DEPTH: 17.5 (ft.) Product/GW @ 8 (ft.) Depth Geologic Description Moisture PID (ppm) Sample Time	PROJE	CT NUMBER: CG-08-0399			
BORING DATE: 11/17/09 BORING DIAMETER: 4.25" TOTAL DEPTH: 17.5 (ft.) Product/GW @ 8 (ft.) Geologic Description Moisture PID (ppm) Sample Time 0 -6 Dark grading to light brown SILTY CLAY 6-17.5 Dark grey & dark brown SILTY SAND with sporatic fine to coarse angular Gravel throughout Copious free product from 8' to bottom of boring 10 -					
Depth Geologic Description Moisture PID (ppm) Sample Time 0					
0-6' Dark grading to light brown SILTY CLAY 0-6' Dark grading to light brown SILTY CLAY 6-17.5' Dark grey & dark brown SILTY SAND with sporatic fine to coarse angular Gravel throughout Copious free product from 8' to bottom of boring 10— 15— Refusal at 17.5', partial borehole collapse 1" well set, screen from 16 to 1' below grade. Aquired GW, GB-32 (GW) at 16:22hrs DTP:5.98', DTW: 12.98 11.20.09 Thickness: 7.0' Slightly Moist 0 84.6 at 5' 589 at 7' 749 at 8.5' (Product) 664 at 10.5' 543 at 11.5' 552 at 15.5' 249 at 16.5' Refusal at 17.5', partial borehole collapse 1" well set, screen from 16 to 1' below grade. Aquired GW, GB-32 (GW) at 16:22hrs DTP:5.98', DTW: 12.98 11.20.09 Thickness: 7.0'	BORIN	G DATE: 11/17/09 BORING DIAMETER: 4.25"	TOTAL DEPTH:	17.5 (ft.) Pro	
0-6' Dark grading to light brown SILTY CLAY 6-17.5' Dark grey & dark brown SILTY SAND with sporatic fine to coarse angular Gravel throughout Copious free product from 8' to bottom of boring 10- 15- 16-17.5' Dark grey & dark brown SILTY SAND with sporatic fine to coarse angular Gravel throughout Copious free product from 8' to bottom of boring GB-32 (8-9') at 15:55hrs GW mixed in around 14' 552 at 15.5' 249 at 16.5' Refusal at 17.5', partial borehole collapse 1" well set, screen from 16 to 1' below grade. Aquired GW, GB-32 (GW) at 16:22hrs DTP:5.98', DTW: 12.98 11.20.09 Thickness: 7.0'	Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
6-17.5' Dark grey & dark brown SILTY SAND with sporatic fine to coarse angular Gravel throughout Copious free product from 8' to bottom of boring 15— 15— Refusal at 17.5', partial borehole collapse 1" well set, screen from 16 to 1' below grade. Aquired GW, GB-32 (GW) at 16:22hrs DTP:5.98', DTW: 12.98 11.20.09 Thickness: 7.0' 64 at 10.5' 549 at 11.5' 249 at 16.5' 687 at 13.5' 552 at 15.5' 249 at 16.5' 749 at 8.5' (Product) 664 at 10.5' 552 at 15.5' 249 at 16.5' 7552 at 15.5' 249 at 16.5' 7552 at 15.5' 249 at 16.5'	0-	0-6' Dark grading to light brown SILTY CLAY	Slightly Moist	0	
1" well set, screen from 16 to 1' below grade. Aquired GW, GB-32 (GW) at 16:22hrs DTP:5.98', DTW: 12.98 11.20.09 Thickness: 7.0'		fine to coarse angular Gravel throughout	(Product) GW mixed in	589 at 7' 749 at 8.5' 664 at 10.5' 543 at 11.5' 240 at 12.5' 687 at 13.5'	GB-32 (8-9') at 15:55hrs
1 11	25— - - - 30— - -	1" well set, screen from 16 to 1' below grade. Aquired GW, GB-32 (GW) at 16:22hrs DTP:5.98', DTW: 12.98 11.20.09			

	CGS, Inc.	LOG OF	BORING	G GB - 34
	Chesapeake Geosciences, Inc.			
	ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD		
	ECT NUMBER: CG-08-0399	GEOLOGIST: Je	ffrey C. Perkir	ıs
	T: MDE/OCP	DRILLER: Tidew		
	pring Hill Rd. G DATE: 11/17/09 BORING DIAMETER: 4.25"	SURFACE FINIS TOTAL DEPTH:		@ 11 /ft\
	1		ı , , ,	, ,
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
5	0-2" Sod 2"-7' Brown SILTY CLAY, soft 7-7.5' White, angular medium to coarse GRAVEL 7.5-16' Brown SILTY CLAY with some sporadic fine to medium angular Gravel 17-20' White SILT & fine powder with medium to coarse angular GRAVEL	Slightly Moist Wet at 11' Dry		GB-34 (10-11') at
25— 30— 35— 40	Refusal at 20', borehole collapse, unable to attain GW		0	

	Chesapeake Geosciences, Inc.	LOG OF	BORING	GB - 35
PRO.IF	ECT NAME: MDE/Stebbins-Burnham	DRILL METHOD	Direct Push	/ GEOPROBE
	ECT NUMBER: CG-08-0399	GEOLOGIST: Je		
	T: MDE/OCP	DRILLER: Tidew		13
	pring Hill Rd.	SURFACE FINIS		is/leaves
	IG DATE: 11/17/09 BORING DIAMETER: 4.25"	TOTAL DEPTH:		
	I			
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 —	0-6" Brown mix of SILTY SAND and SILTY CLAY with fine to coarse Gravel 6"-1.5' broken black asphault and gravel 1.5-4' Dark brown to black SILTY CLAY with some medium to coarse Gravel 4-5' Mottled brown & tan SILTY SAND and SILTY CLAY mix 5-8' Mottled tan, orange/brown, and light grey SILTY CLAY with some sporatic fine black gravel 8-9' Greenish-brown & dark grey SILTY CLAY 9-10' Dark brown SILTY CLAY with 2-3" layer of SILTY SAND 10-16' Orange-brown SILTY CLAY/SILTY SAND mix (soft)	Slightly Moist Wet at 11'	0 27.2 at 2' 5.1 at 4' 29.2 at 5' 111.7 at 6' 174 at 9' 35 at 12' 46 at 14' 27 at 16' 6.0 at 19'	GB-35 (9-10') at 08:56hrs.
20	Stopped at 20', goals attained No well set, GW attained, GB-35 (GW) at 09:16hrs. Borehole gauged, 8.4' DTW, no product detected		6.0 at 19	

CGS LOG OF BORING GB - 3				NG GB - 35B
	eake Geosciences, Inc.			
	CT NAME: MDE/OCP/Stebbins-Burnham			Push / GEOPROBE
	CT NUMBER: CG-08-0399	GEOLOGIST:		erkins
_	T: MDE/OCP	DRILLER: Tid		
	FION: 2724 Spring Hill Rd. Owings Mills, MD	SURFACE FIN		NW @ 0 (%)
	G DATE: 12/18/09 BORING DIAMETER: 2.0"	TOTAL DEPT	` '	` ′
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
5—	0-1' Sod then dark brown SILTY CLAY 1-2' Brown SILTY CLAY with some fine to medium Gravel 2-3' Orange-brown SILTY CLAY 3-6' Mottled grey, tan, and brown SILTY CLAY 6-9' Mottled orange-brown, tan, and grey SILTY CLAY with	Moist Slightly Moist Dry Slightly Moist	0	
10-	4" layer of broken concrete and medium to coarse gravel at about 7' 9-16' Orange-brown SILTY CLAY with sporadic fine to coarse angular white gravel	Wet Slightly Moist		
15 —	16-20' Orange-brown SILTY CLAY with some Sand	₩et Slightly Moist	0	GB-35 (19-20') at 09:08 hrs *
20	Stopped at 20' investiagation goals attained 1" well set, well partially collapsed-screen set from 17-2', riser from 2' below grade to 3' above ground surface Post-installation gauging: DTW 7.27', no product detected DTB: 18:39 (TOC) * NOTE: Discovered there was a previous GB-35 in another area, the desigination on this well was changed to GB-35B post sample submission			
30 —				

	CC			
	GS .	LOG OF	BORING	G GB - 36
Chesan	eake Geosciences, Inc.			
	CT NAME: MDE/OCP/Stebbins-Burnham	DRILL METHOD	Direct Push	/ GEOPROBE
	CT NUMBER: CG-08-0399	GEOLOGIST: Je		
	T: MDE/OCP	DRILLER: Tidew		
	FION: 2724 Spring Hill Rd. Owings Mills, MD	SURFACE FINIS		or
	G DATE: 12/18/09 BORING DIAMETER: 2.0"	TOTAL DEPTH:	12 (ft.) GW @	8 (ft.)
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 —	0-1' Dark brown SILTY CLAY	Slightly Moist	0	
	1-3' Brown SILTY CLAY	Oligitity Wolst		
1 7	3-7' Orange-brown SILTY CLAY with some sporadic	Dry		
1 7	medium to coarse Gravel			
		Moist		
5				
1 1	 			
1 7	7-11' Light tan SANDY SILT with some fine to medium			GB-36 (7-8')
	Gravel	Wet		at 10:10 hrs.
10			1 1	
'0	▼		▼	
▎ ∔	11-12' Orange-brown SILTY SAND with some fine Gravel	V	0	
1 4	Stopped at 12', investigation goals attained			
_				
15	1" well set, screen set from 12-2',			
1 4	riser from 2' below grade to 3' above ground surface			
1 -	Post-installation gauging: DTW 5.04', no product detected			
1 -	DTB: 12.97 (TOC) GB-36 (GW) sampled at 17:10 hrs			
	GB-30 (GW) Sampled at 17.10 ms			
20				
1 -				
1 7				
1 7				
I				
25				
30				
"				
]				
1 -				
35 —				
] -				
1 1				
40 🗖				
	ı			

	CGS, Inc.	LOG OF BORING GB - 36B		
	Chesapeake Geosciences, Inc.			
DDO IE	ECT NAME: MDE/Stebbins-Burnham	DDILL METHO	D. Diroct Buo	h / CEODDODE
	ECT NAME: MDE/Stephins-burnham ECT NUMBER: CG-08-0399	DRILL METHOD: Direct Push / GEOPROBE GEOLOGIST: Jeffrey C. Perkins		
	T: MDE/OCP	DRILLER: Tide		MIIIS
	pring Hill Rd.	SURFACE FINI		bris/leaves
	G DATE: 11/17/09 BORING DIAMETER: 4.25"	TOTAL DEPTH		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
0 — — — — — — — — — — — — — — — — — — —	0-6' Light brown SILTY CLAY with some angular medium to coarse Gravel 6-16' Orange-brown SILTY CLAY with sporadic black fine Gravel, soft	Dry Silghtly Moist Moist Wet at 11'	8.3 at 1' 7.6 at 2' 4 at 4.5' 5.1 at 5.5' 6.1 at 7.5' 5.6 at 10' 4.4 at 11.5' 1.8 at 12.5'	
	16-20' Mix of orange-brown SILTY CLAY with light grey/whiteSILTY POWDER and fine to medium Gravel	Dry	5.5 at 16.5' 7.4 at 19.5'	GB-36 (19-20') at 13:13hrs
20	No well set, GW attained, GB-36 (GW) at 13:24hrs. Borehole gauged: DTW:9.28', No product			
25— 30— 35— 40				

C	GS	LOG OF	BORINO	G GB - 37
		20001	DOMINO	
	ake Geosciences, Inc.	DDII I METUOD	D' I D I	/ 050DD0D5
	CT NAME: MDE/OCP/Stebbins-Burnham	DRILL METHOD		
	CT NUMBER: CG-08-0399 : MDE/OCP	GEOLOGIST: Jeffrey C. Perkins		
	ON: 2724 Spring Hill Rd. Owings Mills, MD	DRILLER: Tidewater		
PODING	B DATE: 12/18/09 BORING DIAMETER: 2.0"	SURFACE FINISH: Woods floor		
-		TOTAL DEPTH: 12 (ft.) GW @ 6 (ft.)		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
5—	0-2' Dark brown SILTY CLAY 2-4' Brown SILTY CLAY with sporadic medium to coarse Gravel 4-11' Brown SILTY CLAY with some fine to medium Gravel	Slightly Moist Wet	0	GB-37 (5-6') at 10:50 hrs.
	Stopped at 12', investigation goals attained No well set at this location			

<u>C</u>	GS .	LOG OF	BORING	G GB - 38
Chesap	eake Geosciences, Inc.			
PROJE	CT NAME: MDE/OCP/Stebbins-Burnham	DRILL METHOD:		
	CT NUMBER: CG-08-0399	GEOLOGIST: Jeffrey C. Perkins		
	T: MDE/OCP	DRILLER: Tidewater		
	ION: 2724 Spring Hill Rd. Owings Mills, MD	SURFACE FINISH: Woods floor		
	G DATE: 12/18/09 BORING DIAMETER: 2.0"	TOTAL DEPTH: 12 (ft.) GW @ 9 (ft.)		
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time
5-	0-1' Dark brown SILTY CLAY with some fine to coarse Gravel 1-3' Tan and grey SILTY CLAY with sporadic fine to medium Gravel 3-8' Mottled orange-brown, grey SILTY CLAY with some Sand and fine to coarse Gravel mixed in 8-12' Brown SILTY SAND and fine to medium GRAVEL	Moist Slightly Moist Wet	0	GB-38 (8-9') at 11:36 hrs.
15 -	Stopped at 12', investigation goals attained 1" well set, screen set from 12-2', riser from 2' below grade to 3' above ground surface Post-installation gauging: DTW 4.28', no product detected DTB: 12.35 (TOC)	·	0	
25 —				
35 —				

<u>C</u>	GS	LOG OF	BORING	G GB - 39	
Chesap	eake Geosciences, Inc.				
PROJECT NAME: MDE/OCP/Stebbins-Burnham		DRILL METHOD: Direct Push / GEOPROBE			
	CT NUMBER: CG-08-0399	GEOLOGIST: Jeffrey C. Perkins			
	T: MDE/OCP	DRILLER: Tidewater			
	FION: 2724 Spring Hill Rd. Owings Mills, MD G DATE: 12/18/09 BORING DIAMETER: 2.0"	SURFACE FINISH: Woods floor TOTAL DEPTH: 16 (ft.) GW @ 12 (ft.)			
Depth					
	Geologic Description	Moisture	PID (ppm)	Sample Time	
0 -	O-1' Dark brown SILTY CLAY 1-4' Orange-brown SILTY CLAY with sporadic medium to coarse Gravel 4-8' Mottled orange-brown, grey SILTY CLAY	Slightly Moist Dry Slightly Moist	0		
5—	8-12' Orange-brown SILTY CLAY	Unigrity Worst		GB-39(9-10')	
10 -	↓ 12-16' Orange-brown SILTY SAND	Moist Wet		at 12:56 hrs.	
15	↓	1	0		
20 —	Stopped at 16', investigation goals attained 1" well set, screen set from 15.5-0.5', riser from 0.5' below grade to 4.5' above ground surface Post-installation gauging: DTW 8.42', no product detected DTB: 17.20 (TOC)				
25 — - -					
30 -					
35					

CGS LOG OF BORING GB - 4 Chesapeake Geosciences, Inc.				G GB - 40
	ECT NAME: MDE/OCP/Stebbins-Burnham	DRILL METHOD: Direct Push / GEOPROBE		
PROJECT NUMBER: CG-08-0399				
	PROJECT NUMBER: CG-08-0399 GEOLOGIST: Jeffrey C. Perkins CLIENT: MDE/OCP DRILLER: Tidewater			13
	FION: 2724 Spring Hill Rd. Owings Mills, MD	SURFACE FINIS		halt driveway
	G DATE: 12/18/09 BORING DIAMETER: 2.0"			
Depth		TOTAL DEPTH: 16' (ft.) GW @ 10 (ft.)		
Deptili	Geologic Description	Moisture	PID (ppm)	Sample Time
0 -	0-6" Black & grey broken asphalt, concrete, & GRAVEL 6"-2' Brown & grey SILTY CLAY with fine to medium Gravel 2-6' Orange-brown SILTY CLAY with some sporadic medium to coarse Gravel	Dry Slightly Moist Dry	0	
	6-6.5' Grey medium to coarse angular GRAVEL	Slightly Moist	. ↓	
	6.5-16' Orange-brown SILTY CLAY with some fine to medium Gravel		0	
10-		Moist	1.1 1.4 0.4 0.8 0	GB-40 (9-10') at 14:16 hrs.
15	▼	*	0	
20 —	Stopped at 16', investigation goals attained 1" well set, screen set from 15.5-0.5', riser from 0.5' below grade to 4.5' above ground surface Post-installation gauging: DTW 10.29', no product detected GB-40 (GW) sampled at 17:26 hrs. DTB: 18.28 (TOC)			
25 —				
35 —				

	GS					
<u> </u>	.63	LOG OF	BORING	G GB - 41		
	eake Geosciences, Inc.					
	PROJECT NAME: MDE/OCP/Stebbins-Burnham PROJECT NUMBER: CG-08-0399		DRILL METHOD: Direct Push / GEOPROBE			
	T: MDE/OCP	GEOLOGIST: Jeffrey C. Perkins DRILLER: Tidewater				
	FION: 2724 Spring Hill Rd. Owings Mills, MD	SURFACE FINISH: Soil & weeds				
BORIN	IG DATE: 12/18/09 BORING DIAMETER: 2.0"	TOTAL DEPTH: 16 (ft.) GW @ 6 (ft.)				
Depth	Geologic Description	Moisture	PID (ppm)	Sample Time		
0 -	0-1' Dark brown & black SILTY CLAY and fine GRAVEL 1-4' Brown with dark stained SILTY CLAY	Slightly Moist	2.8			
5-	4-8' Dark grey & brown SILTY CLAY with some Sand and fine to coarse Gravel	₩et	1.4 0.8 0.4			
10	8-12' Mottled brown, grey, and greenish-grey SILTY CLAY and some fine to coarse Gravel		12.2 14	GB-41 (10-11') at 15:42 hrs.		
45	12-16' Mottled grey & greenish-grey SILTY CLAY with some fine dark Gravel		4.6 4.2	at 13.42 1115.		
15 —	Defined at 46!	V	3.4			
20-	Refusal at 16', 1" Well set, screen from 16-1', riser from 1' below grade to 4' above ground surface, Post-installation gauging: DTW 10.86', no product detected DTB: 21.76 (TOC) NOTE: SOIL AND GROUNDWATER DUPES FROM HERE GB-41 (GW) sampled at 17:40 hrs.					
25 — - - - -	NOTE: Field Blank taken at 17:50 hrs.					
30-						
35 —						