PHASE II INVESTIGATION REPORT

AREA B: PARCEL B2 TRADEPOINT ATLANTIC SPARROWS POINT, MARYLAND

Prepared For:

ENVIROANALYTICS GROUP 1650 Des Peres Road, Suite 230 Saint Louis, Missouri 63131

Prepared By:

ARM GROUP INC.

9175 Guilford Road Suite 310 Columbia, Maryland 20146

ARM Project No. 150300M-6

Respectfully Submitted,

eandra Glumac

Leandra M. Glumac Staff Geologist

Nul Pets

T. Neil Peters, P.E. Senior Vice President

Revision 0 – April 2, 2018

TABLE OF CONTENTS

1.0 I	NTRO	DUCTION	1
1.1.	Site	History	2
1.2.	Obje	ectives	3
2.0 E	ENVIR	ONMENTAL SETTING	4
2.1.	Land	d Use and Surface Features	4
2.2.	Regi	ional Geology	4
2.3.	Site	Geology	5
3.0 S		NVESTIGATION	
3.1.	Sam	ple Target Identification	6
3.2.	Soil	Investigation	8
3.3.	Sub-	-Slab Soil Gas Investigation	9
3.4.	Supp	plemental Groundwater Sampling	11
3.4	4.1.	B2-051-SB (Parcel Coverage) Groundwater Sample	11
3.4	4.2.	Plant Garage Groundwater Samples	11
3.5.	Man	agement of Investigation-Derived Waste (IDW)	12
4.0 A	ANAL	YTICAL RESULTS	.14
4.1.	Soil	Conditions	14
4.1	l.1.	Soil Conditions: Organic Compounds	14
4.1	1.2.	Soil Conditions: Inorganic Constituents	15
4.1	1.3.	Soil Conditions: Results Summary	15
4.2.	Sum	mary of NAPL Observations	15
4.3.	Grou	undwater Conditions	17
4.3	3.1.	Area B Groundwater Investigation	17
4.3	3.2.	Supplemental Groundwater Sampling – B2-051-PZ	17
4.3	3.3.	Supplemental Groundwater Sampling – Plant Garage	18
4.3	3.4.	Vapor Intrusion Screening Analysis	19
4.4.	Sub-	-Slab Soil Gas Conditions	20
5.0 I	DATA	USABILITY ASSESSMENT	.21
5.1.	Data	Verification	21
5.2.	Data	Nalidation	22
5.3.	Data	۱ Usability	23
6.0 H	HUMA	N HEALTH SCREENING LEVEL RISK ASSESSMENT (SLRA)	.26
6.1.	Ana	lysis Process	26
6.2.	Parc	el B2 SLRA Results and Risk Characterization	28

TABLE OF CONTENTS(CONT.)

7.0	FINDINGS AND RECOMMENDATIONS	
7.1.	Soil	
7.2.	Non-Aqueous Phase Liquid	
7.3.	Groundwater (Supplemental)	
7.4.	Sub-Slab Soil Gas	
7.5.	Human Health Screening Level Risk Assessment	
7.6.	Recommendations	
8.0	REFERENCES	

FIGURES

Figure 1	Area A and Area B Parcel Map	.Following Text
Figure 2	1916 Shoreline Map	.Following Text
Figure 3	Soil Boring Sample Locations	.Following Text
Figure 4	Sub-Slab Soil Gas Sample Locations	.Following Text
Figure S-1	Soil SVOC Exceedances	.Following Text
Figure S-2	Soil TPH/Oil & Grease Exceedances	.Following Text
Figure S-3	Soil Inorganic Exceedances	.Following Text
Figure GW-1	Groundwater PAL Exceedances at B2-051-PZ	.Following Text
Figure GW-2	Groundwater PAL Exceedances at Plant Garage	.Following Text
Figure 5	Risk Assessment Exposure Units	.Following Text

TABLES

Table 1	Historical Site Drawing Details	Following Text
Table 2	Field Shifted Boring Locations	Following Text
Table 3	Characterization Results for Solid IDW	Following Text
Table 4	Characterization Results for Liquid IDW	Following Text
Table 5	Summary of Organics Detected in Soil	Following Text
Table 6	Summary of Inorganics Detected in Soil	Following Text
Table 7	Summary of Soil PAL Exceedances	Following Text
Table 8	Soil PAL Exceedances for Specific Targets	Following Text
Table 9	Summary of Organics and Inorganics Detected in Groundwater	
	Supplemental Sampling – B2-051-PZ	Following Text
Table 10	Summary of VOCs, TPH, and Lead Detected in Groundwater	
	Supplemental Sampling – Plant Garage	Following Text
Table 11	Groundwater Cumulative Vapor Intrusion Comparison	Following Text

TABLE OF CONTENTS (CONT.)

Summary of VOCs Detected in Sub-Slab Soil Gas	.Following Text
Rejected Analytical Soil Results	.Following Text
Rejected Analytical Groundwater Results	.Following Text
COPC Screening Analysis	.Following Text
Assessment of Lead	.Following Text
Soil Exposure Point Concentrations	.Following Text
Risk Ratios – Composite Worker Surface Soil	.Following Text
Risk Ratios – Composite Worker Sub-Surface Soil	.Following Text
Risk Ratios – Composite Worker Pooled Soil	.Following Text
	Summary of VOCs Detected in Sub-Slab Soil Gas Rejected Analytical Soil Results Rejected Analytical Groundwater Results COPC Screening Analysis Assessment of Lead Soil Exposure Point Concentrations Risk Ratios – Composite Worker Surface Soil Risk Ratios – Composite Worker Sub-Surface Soil Risk Ratios – Composite Worker Pooled Soil

APPENDICES

Final Sampling Plan Summary	Following Text
Soil Boring Logs	Following Text
PID Calibration Log	Following Text
Temporary Groundwater Sample Collection Point	
Construction Logs	Following Text
Groundwater Purge & Multiparameter Meter Calibration Logs	Following Text
Parcel Specific IDW Drum Log	Following Text
NAPL Gauging Activities	Following Text
Shallow Groundwater PAL Exceedance Figure (from separate	
Area B Groundwater Investigation)	Following Text
Summary of QA/QC Samples	Following Text
Evaluation of Data Completeness	Following Text
	Soil Boring Logs PID Calibration Log Temporary Groundwater Sample Collection Point Construction Logs Groundwater Purge & Multiparameter Meter Calibration Logs Parcel Specific IDW Drum Log NAPL Gauging Activities Shallow Groundwater PAL Exceedance Figure (from separate Area B Groundwater Investigation) Summary of QA/QC Samples

ELECTRONIC ATTACHMENTS

Laboratory Certificates of Analysis (Soil)	Electronic Attachment
Data Validation Reports (Soil)	Electronic Attachment
Laboratory Certificates of Analysis (Groundwater)	Electronic Attachment
Data Validation Report (Groundwater)	Electronic Attachment
Laboratory Certificates of Analysis (Sub-Slab Soil Gas)	Electronic Attachment
Data Validation Report (Sub-Slab Soil Gas)	Electronic Attachment
ProUCL Input Tables (formatted soil analytical data)	Electronic Attachment
ProUCL Output Tables	Electronic Attachment
Lead Evaluation Spreadsheet	Electronic Attachment

1.0 INTRODUCTION

ARM Group Inc. (ARM), on behalf of EnviroAnalytics Group (EAG), has completed a Phase II Investigation of a portion of the Tradepoint Atlantic property (formerly Sparrows Point Terminal, LLC) that has been designated as Area B: Parcel B2 (the Site). Parcel B2 is comprised of 122.7 acres of the approximately 3,100-acre former steel making facility (**Figure 1**). The Site is bounded to the west by the Slab Mill within the Primary Rolling Mills Area (within Parcel B1), to the north by a locomotive shop (within Parcel B23) and the Finishing Mills Area (within Parcel B21), and to the east by the Roll Grinding Facility and several administrative buildings (within Parcel B3), and to the south by a portion of the Blast Furnace Area (within Parcel B5).

The Phase II Investigation was performed in accordance with procedures outlined in the approved Phase II Investigation Work Plan – Area B: Parcel B2. This Work Plan (Revision 1 dated May 17, 2017) and an associated comment response letter (dated June 14, 2017) were collectively approved by the Maryland Department of the Environment (MDE) and the United States Environmental Protection Agency (USEPA) on June 26, 2017. The agencies later made a determination that three additional soil borings proposed in the June 14, 2017 comment response letter in the vicinity of the Slab Hauler Repair Shop would not be required, as stated in correspondence received from the MDE on December 22, 2017. This Work Plan was completed in compliance with requirements pursuant to the following:

- Administrative Consent Order (ACO) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the MDE effective September 12, 2014; and
- Settlement Agreement and Covenant Not to Sue (SA) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the USEPA effective November 25, 2014.

Parcel B2 is part of the acreage that was removed (Carveout Area) from inclusion in the Multimedia Consent Decree between Bethlehem Steel Corporation, the USEPA, and the MDE (effective October 8, 1997) as documented in correspondence received from the USEPA on September 12, 2014. Based on this agreement, the USEPA determined that no further investigation or corrective measures will be required under the terms of the Consent Decree for the Carveout Area. However, the SA reflects that the property within the Carveout Area will remain subject to the USEPA's Resource Conservation and Recovery Act (RCRA) Corrective Action authorities.

An application to enter the full Tradepoint Atlantic property (3,100 acres) into the Maryland Department of the Environment Voluntary Cleanup Program (MDE-VCP) was submitted to the MDE and delivered on June 27, 2014. The property's current and anticipated future use is Tier 3 (Industrial), and plans for the property include demolition and redevelopment over the next several years.

1.1. SITE HISTORY

From the late 1800s until 2012, the production and manufacturing of steel was conducted at Sparrows Point. Iron and steel production operations and processes at Sparrows Point included raw material handling, coke production, sinter production, iron production, steel production, and semi-finished and finished product preparation. In 1970, Sparrows Point was the largest steel facility in the United States, producing hot and cold rolled sheets, coated materials, pipes, plates, and rod and wire. The steel making operations at Sparrows Point ceased in fall 2012.

Parcel B2 was formerly occupied by a fire and police station, the Plant Garage (which replaced the former Mason's Garage), Steelside Electronics, Sparrows Point Scrap Processing, and several small storage areas and shops. A large portion of the western-central parcel area was occupied by railways which were installed in the former Sparrows Point Scrap Processing area. The majority of the eastern-central areas of the parcel are occupied by a network of roadways indicative of a former residential area that was occupied by mill workers. The former residential town is now wooded, but the paved roadways still exist. Site visits by ARM personnel on November 2 and 3, 2016 verified that all buildings in the parcel had been demolished at that time with the exception of the former Slab Hauler Repair Shop and the Railroad Office. The concrete slabs of the demolished buildings (Slab Mill, Steelside Electronics Building, Old 7th St Steam Station, Fire & Police Station, and Plant Garage) remained on grade. The former Slab Hauler Repair Shop is proposed for demolition; whereas, the Railroad Office in the northwest corner of the Site will remain standing for the foreseeable future.

The Mason's Garage, Plant Garage, and several petroleum storage tanks formerly occupied the southeastern corner of the parcel. At the time of the Phase I Environmental Site Assessment (ESA) prepared by Weaver Boos Consultants dated May 19, 2014, the Plant Garage was still in operation. The findings presented in Weaver Boos' Phase I ESA suggested that the Plant Garage was constructed at the same location as the former Mason's Garage; however, a review of historical plant drawings suggests that the Plant Garage was constructed in a new location approximately 750 feet to the southeast of the former Mason's Garage. Therefore, both of these garages represent locations of potential concern for historical environmental releases; both were targeted during this Phase II Investigation.

The Plant Garage included several underground storage tanks (USTs), aboveground storage tanks (ASTs), gas pumps, and drums. During the Phase I ESA site visit, the Plant Garage was observed to be conducting refueling and maintenance activities for the vehicles operating at the plant property. Weaver Boos observed several ASTs, fuel dispensers, and drums. The drums in this storage area appeared to be in good condition. The ASTs appeared to be in fair to good conditions with either secondary containment or with double-walled construction. However, overfill leaks and staining near the tanks, dispensers, and connection piping were observed by Weaver Boos on the ground surface. According to Weaver Boos' Phase I ESA, USTs previously

containing gasoline, diesel fuel, and waste oil products were closed possibly without assessment sampling at the Plant Garage. Weaver Boos did not observe any indications of any former USTs at the Site during their visit in 2014. According to the Closure of Underground Storage Tanks Report prepared by Geraghty & Miller, Inc. dated June 1992, three USTs associated with the Mason's Garage were closed by 1990 and removed. These tanks were closed with assessment sampling as documented in the referenced closure report.

1.2. OBJECTIVES

The objective of this Phase II Investigation was to fully characterize the nature and extent of contamination at the Site. This report includes a summary of the work performed, including the environmental setting, site investigation methods, analytical results and data usability assessment, and findings and recommendations. A summary table of the site investigation locations, including the boring identification numbers and the analyses performed, is provided as **Appendix A**. A human health Screening Level Risk Assessment (SLRA) was prepared to identify constituents and pathways of potential concern and to evaluate the significance of any observed impacts or elevated concentrations with respect to the potential future use of the Site.

As specified in the approved Work Plan for Parcel B2, groundwater at the Site was investigated as described in the separate Area B Groundwater Investigation Work Plan (dated October 6, 2015), the final version of which was approved by the agencies on October 5, 2015. A separate Area B Groundwater Phase II Investigation Report has been submitted (Revision 0 dated September 30, 2016) to discuss the detailed findings of the groundwater investigation.

2.0 ENVIRONMENTAL SETTING

2.1. LAND USE AND SURFACE FEATURES

The Tradepoint Atlantic property consists of the former Sparrows Point steel mill. According to the Phase I ESA prepared by Weaver Boos dated May 19, 2014, the property is zoned Manufacturing Heavy-Industrial Major (MH-IM). Surrounding property zoning classifications (beyond Tradepoint Atlantic) include the following: Manufacturing Light (ML); Resource Conservation (RC); Density Residential (DR); Business Roadside (BR); Business Major (BM); Business Local (BL); and Residential Office (RO). Light industrial and commercial properties are located northeast of the property and northwest of the property across Bear Creek. Residential areas of Edgemere and Fort Howard are located northeast of the property across Jones Creek and to the southeast across Old Road Bay, respectively. Residential and commercial areas of Dundalk are located northwest of the property across Bear Creek.

According to topographic maps provided by EAG, the surface elevations within Parcel B2 range between approximately 6 and 25 feet above mean sea level (amsl). The elevations across the Site appear to be relatively uniform in most areas, with typical elevations ranging from approximately 10 to 14 feet amsl. Several small stockpiled mounds have historically been located throughout the Site and were visible on the topographic maps; these mounds are responsible for the highest elevations reported at the Site (18 to 25 feet amsl). According to Figure B-2 of the Stormwater Pollution Prevention Plan (SWPPP) Revision 5 dated June 1, 2017, stormwater from the majority of the Site is discharged through the permitted National Pollution Discharge Elimination System (NPDES) Outfalls 016 and 017 to the adjoining surface waters of Jones Creek and Old Road Bay located to the east. Stormwater from the far northwestern corner of the Site is discharged through NPDES Outfall 013 to the adjoining surface waters of Bear Creek located to the west.

2.2. REGIONAL GEOLOGY

The Site is located within the Atlantic Coastal Plain Physiographic Province (Coastal Plain). The western boundary of the Coastal Plain is the "Fall Line", which separates the Coastal Plain from the Piedmont Plateau Province. The Fall Line runs from northeast to southwest along the western boundary of the Chesapeake Bay, passing through Elkton (MD), Havre de Grace (MD), Baltimore City (MD), and Laurel (MD). The eastern boundary of the Coastal Plain is the off-shore Continental Shelf.

The unconsolidated sediments beneath the Site belong to the Talbot Formation (Pleistocene), which is then underlain by the Cretaceous formations which comprise the Potomac Group (Patapsco Formation, Arundel Formation and the Patuxent Formation). The Potomac Group formations are comprised of unconsolidated sediments of varying thicknesses and types, which

may be several hundred feet to several thousand feet thick. These unconsolidated formations may overlie deeper Mesozoic and/or Precambrian bedrock. Depth to bedrock is approximately 700 feet within the Site.

2.3. SITE GEOLOGY

Groundcover at the Site is comprised of approximately 45% natural soils and 55% fill materials based on the approximate shoreline of the Sparrows Point Peninsula in 1916, as shown on **Figure 2** (adapted from Figure 2-20 in the Description of Current Conditions (DCC) Report prepared by Rust Environment and Infrastructure dated January 1998).

In general, the encountered subsurface geology included interbedded non-native fill materials (sand, gravel, slag, and brick) and natural soils, which included fine-grained sediments (clays and silts) and coarse grained sediments (sands and gravel). Non-native fill materials were encountered at depths of up to 12 feet below the ground surface (bgs). The shallow groundwater table was observed in soil borings at depths ranging from 3.5 to 19.5 feet bgs across the Site; however, groundwater was not encountered at every boring location. Soil boring logs are provided in **Appendix B**. Please note that unless otherwise indicated, all Unified Soil Classification System (USCS) group symbols provided on the attached boring logs are from visual observations, and not from laboratory testing.

3.0 SITE INVESTIGATION

A total of 118 soil samples (from 55 boring locations) and six sub-slab soil gas samples were collected for analysis between May 26, 2017 and July 27, 2017 as part of the Parcel B2 Phase II Investigation. A total of six supplemental groundwater samples were collected between June 23, 2017 and July 17, 2017 from five temporary piezometers installed in the Plant Garage area and from one additional location installed for site-wide coverage (all of which were installed for the purpose of evaluating potential non-aqueous phase liquid (NAPL)). This Phase II Investigation utilized methods and protocols that followed the procedures included in the Quality Assurance Project Plan (QAPP) dated April 5, 2016 approved by the agencies to support the investigation and remediation of the Tradepoint Atlantic property. Information regarding the project organization, field activities and sampling methods, sampling equipment, sample handling and management procedures, investigation-derived waste (IDW) management methods, and reporting requirements are described in detail in the approved Parcel B2 Work Plan dated May 17, 2017 (and associated comment response letter dated June 14, 2017), and the QAPP.

All site characterization activities were conducted under the property-wide Health and Safety Plan (HASP) provided as Appendix E of the approved Work Plan.

3.1. SAMPLE TARGET IDENTIFICATION

Previous activities within and around the buildings and facilities located on the Tradepoint Atlantic property may have been historical sources of environmental contamination. If present, source areas were identified as targets for sampling through a careful review of historical documents. When a sampling target was identified, a boring was placed at or next to its location using Geographic Information Systems (GIS) software (ArcMap Version 10.3.1).

Sampling targets included, as applicable, 1) Recognized Environmental Conditions (RECs) shown on the REC Location Map provided in Weaver Boos' Phase I ESA, 2) additional findings (non-RECs) from the Phase I ESA which were identified as potential environmental concerns, and 3) Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified from the DCC Report prepared by Rust Environment and Infrastructure. The following RECs were identified in the Parcel B2 Work Plan: Former Diesel Fuel UST Area (HREC, Finding 236, AOC Q), ASTs (REC 15A-15B, Finding 252, AOC H), Mason's Garage Drums (REC 15A-15B, Finding 253, AOC H, SWMU 197), Mason's Garage Former USTs and Gas Pumps (REC 15A-15B, Finding 254, AOC H), Possible USTs (REC 15A-15B, Finding 254, AOC H), Residential Town Tanks (REC 21, Finding 271), and Scrap Processing Facility and Bulk Petroleum Storage (REC 9C, 239). As described in Section 1.1, the Phase I ESA suggested that the Plant Garage was constructed at the same location as the former Mason's Garage, but other historical plant drawings indicated that the Plant Garage was constructed in a new location to the southeast of

the former Mason's Garage. Therefore, the findings designated as REC 15A-15B may refer to the Plant Garage rather than the Mason's Garage. All of the listed RECs are further described in detail in the Parcel B2 Work Plan. There were no additional SWMUs or AOCs identified at the Site based on the DCC Report, besides those cross-listed as RECs.

Four sets of historical drawings were also reviewed to identify potential sampling targets for the Site. These drawings included the 5000 Set (Plant Arrangement), the 5100 Set (Plant Index), the 5500 Set (Plant Sewer Lines), and a set of drawings indicating coke oven gas distribution drip leg locations. Drip legs are points throughout the distribution system where coke oven gas condensate was removed from the gas pipelines. The condensate from the drip legs was typically discharged to drums, although it is possible some spilled out of the drums and on to the ground. There were no drip legs identified inside the boundary of Parcel B2. A summary of the specific drawings covering the Site is presented in **Table 1**. Sampling target locations were identified if the historical drawings depicted industrial activities or a specific feature at a location that may have been a source of environmental contamination that potentially impacted the Site.

Based on the review of plant drawings (or based on direct agency guidance), additional non-REC sampling targets were identified at the Site that included the following: Tanks (unknown contents), Slab Hauler Repair Shop, Sludge and Acid Trailers, Steelside Electronics Building, Sub-Stations, and Mason's Garage (Former USTs and Gas Pumps). A summary of the areas that were investigated, along with the applicable boring identification numbers and the analyses performed, has been provided as **Appendix A**. This appendix was updated to more accurately designate the sampling targets associated with the Plant Garage, which may have been listed as the Mason's Garage in the Phase I ESA. Sample locations were distributed to fill in large spatial gaps between proposed borings to provide complete coverage of the Site. During the completion of fieldwork, it was necessary to shift some borings from the approved locations given in the Work Plan, primarily due to access restrictions and/or refusal. **Table 2** provides the identification numbers of the field adjusted borings, the coordinates of the proposed and final locations, and the distance/direction of the field shifts.

The density of soil borings met the requirements set forth in QAPP Worksheet 17 – Sampling Design and Rationale. As defined in the Work Plan, Parcel B2 contained a total of 90.1 acres without engineered barriers and 32.5 acres with engineered barriers. Of the 32.5 acres with engineered barriers, 1.8 acres contained current/former building slabs and 30.7 acres consisted of parking/roads. In accordance with the relevant sampling density requirements, a minimum of 37 soil boring locations were required to cover the area without engineered barriers. A total of 48 borings were required to meet the density specification; 55 locations were completed during this Phase II Investigation (two closely associated borings B2-005-SB and B2-005A-SB are treated as a single location and are further described in Section 3.2).

3.2. SOIL INVESTIGATION

Continuous core soil borings were advanced at 55 locations across the Site to assess the presence or absence of soil contamination, and to assess the vertical distribution of any encountered contamination (Figure 3). Soil boring B2-005-SB provided analytical soil data from two completion dates (June 1 and June 27, 2017). On the initial date, this soil boring could only be completed to a depth of 1-foot bgs due to equipment refusal and restrictions due to ongoing Another supplemental boring was completed at a nearby location utility mark-outs. (approximately 25 feet to the southeast of the original location) in order to provide subsurface data once the utilities were marked. The initial shallow boring from June 1, 2017 has been assigned ID# B2-005A-SB, and the boring completed on June 27, 2017 has been assigned ID# B2-005-SB. The continuous core soil borings were advanced to depths between 5 and 20 feet bgs using the Geoprobe[®] MC-7 Macrocore soil sampler (surface to 10 feet bgs), the Geoprobe[®] D-22 Dual-Tube Sampler (depths >10 feet bgs). At each boring location, each soil core was visually inspected and screened with a hand-held photoionization detector (PID) prior to logging soil types. Soil boring logs have been included as **Appendix B**, and the PID calibration log has been included as Appendix C. Unless otherwise indicated, all USCS group symbols provided on the attached boring logs are from visual observations.

One shallow sample was collected from the 0 to 1 foot depth interval, and a deeper sample was collected from the 4 to 5 foot depth interval from each continuous core soil boring. If clean surface cover materials (such as paving or gravel) were present, the first 1 foot of fine-grained material beneath this layer was collected as the surface sample. If the PID or other field observations indicated contamination to exist at a depth greater than 3 feet bgs but less than 9 feet bgs, and above the water table, the sample from the deeper 4 to 5 foot interval was shifted to the alternate depth interval. One additional set of samples was also collected from the 9 to 10 foot depth interval if groundwater had not been encountered. The 10-foot bgs samples may have been held by the laboratory prior to analysis in accordance with the requirements given in the Parcel B2 Work Plan. These project-specific requirements for the analysis of 10-foot bgs samples are further described below. It should be noted that soil samples were not collected from a depth that was below the water table, with two exceptions in the vicinity of the former An intermediate sample was collected at B2-014-SB-7 from below the Plant Garage. groundwater (observed at 6 feet bgs) because of a high PID reading (84.3 ppm) and a strong fuellike odor in the soil core from 6 to 7.3 feet bgs. An intermediate sample was collected at B2-011-SB-8 from below the groundwater (observed at 7 feet bgs) because of a strong fuel-like odor in the soil core and a light amount of visible NAPL from 7 to 9 feet bgs.

Soil sampling activities were conducted in accordance with the procedures and methods referenced in **Field Standard Operating Procedure (SOP) Numbers 008, 009, 012, and 013** provided in Appendix A of the QAPP. Down-hole soil sampling equipment was decontaminated

after soil sampling had been concluded at a location, according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Each soil sample collected during this investigation was submitted to Pace Analytical Services, Inc. (PACE) for analysis. As stated above, the 10-foot bgs samples may have been held prior to analysis in accordance with the Parcel B2 Work Plan. Excluding these deep samples, the remaining soil samples were analyzed for Target Compound List (TCL) semi-volatile organic compounds (SVOCs) via USEPA Methods 8270D and 8270D SIM, Oil & Grease via USEPA Method 9071, total petroleum hydrocarbon (TPH) diesel range organics (DRO) and gasoline range organics (GRO) via USEPA Methods 8015B and 8015D, Target Analyte List (TAL) Metals via USEPA Methods 6010C and 7471C, hexavalent chromium via USEPA Method 7196A, and cyanide via USEPA Method 9012. Samples from any depth interval with a sustained PID reading of greater than 10 ppm were also analyzed for TCL volatile organic compounds (VOCs) via USEPA Method 8260B. Additionally, the shallow soil samples collected across the Site from the 0 to 1 foot bgs interval were analyzed for polychlorinated biphenyls (PCBs) via USEPA Method 8082. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

If the PID reading from the 9 to 10 foot bgs interval was less than 10 ppm, all parameters were held by the laboratory pending the analysis of the 0 to 1 and 4 to 5 foot bgs (or field adjusted interval) samples. If the 9 to 10 foot bgs interval exhibited a sustained PID reading of 10 ppm, this sample was released to be analyzed for VOCs, SVOCs, TPH-DRO, TPH-GRO, and Oil & Grease. However, the samples for metals and cyanide were held by the laboratory pending the analysis of the 0 to 1 and 4 to 5 foot bgs interval samples. If the preliminary laboratory results from the 4 to 5 foot bgs interval indicated exceedances of the Project Action Limits (PALs) for any constituents, the held sample from the 9 to 10 foot bgs interval was then released to be analyzed for those constituents that exhibited PAL exceedances in the overlying sample.

3.3. SUB-SLAB SOIL GAS INVESTIGATION

A total of six temporary vapor monitoring probes were installed at the locations provided on **Figure 4** to collect sub-slab soil gas samples. The sub-slab soil gas samples were collected according to procedures and methods referenced in **Field SOP Number 002** provided in Appendix A of the QAPP. During the completion of fieldwork, it was necessary to shift the locations of the monitoring probes within the Railroad Office (B2-056-SG through B2-058-SG) from the approved locations given in the Work Plan, due to access restrictions associated with the layout of the building interior. **Table 2** provides the coordinates of the proposed and final locations, and the distance/direction of the field shifts.

A core-drill was used to create a pilot-hole approximately 3 inches in diameter that extended through the concrete floor to facilitate the collection of each sub-slab soil gas sample. A hammer

drill was then used to create a borehole that extended through the subgrade and into the soil to a depth of at least 8 inches below the bottom of the floor slab. A 6-inch soil gas implant, constructed of double woven stainless steel wire screen, was then attached to an appropriate length of polyethylene tubing and lowered to the bottom of the borehole. Once the implant and tubing were installed, the tubing was capped with a 3-way valve, and clean sand was added around the implant to create a permeable layer that extended at least 2 inches above the implant. Bentonite was then added and hydrated to create a seal above the sand pack that extended to the surface. Once installed, each sub-slab soil gas monitoring probe was allowed to equilibrate for at least 24 hours.

Leak tests were performed prior to sample collection to ensure that valid sub-slab soil gas samples were collected, and to provide quantitative proof of the integrity of the surface seal. The testing involved the introduction of a gaseous tracer compound (helium) into a shroud which covered the sampling point, and then monitoring with a hand held meter for the presence of helium in the air withdrawn from the subsurface.

While the shroud was inflated, air was purged from the monitoring point using a three-way valve and a syringe. Using the same three-way valve and a syringe, a Tedlar bag was then filled with at least 500 mL of air that was withdrawn from the monitoring point. The air inside of the Tedlar bag was then screened in the field with the meter.

As stated in **Field SOP Number 002**, if less than 10% of the starting concentration of the tracer gas within the shroud was observed in the Tedlar bag sample, the seal could be considered competent and sampling would continue. During fieldwork, the concentration of helium measured in the Tedlar bag was always significantly less than 10%, and each seal was deemed adequate to proceed.

Prior to sampling, a syringe was attached to the 3-way valve and three purge volumes of air were removed. After the probe had been purged of any ambient air, an evacuated stainless steel canister (summa canisters) with a flow restrictor set for a 24-hour intake time was attached to the tubing. The sub-slab soil gas sample was then collected over a period of 24 hours. At the completion of the sampling period, the valve of the summa canister was closed, and an identification tag was attached to the canister. The probes were then removed, the borehole filled, and the surface repaired.

Sub-slab soil gas samples were submitted to PACE, and analyzed for TCL-VOCs via USEPA Method TO-15.

3.4. SUPPLEMENTAL GROUNDWATER SAMPLING

3.4.1. B2-051-SB (Parcel Coverage) Groundwater Sample

A trace to light tar substance was observed in the soil core in boring B2-051-SB from 6 to 6.2 feet bgs. A temporary NAPL screening piezometer was installed at this location on June 22, 2017 with a screen interval from 3 to 13 feet bgs. This piezometer was installed in accordance with the procedures and methods referenced in **Field SOP Number 028**. The construction log for this piezometer has been included in **Appendix D**. Due to the location of this piezometer on the Tradepoint Atlantic property (in a high traffic area), a groundwater sample was collected to characterize any potential impacts in case the piezometer was damaged/destroyed.

The groundwater sample was collected in accordance with methods referenced in **Field SOP Number 007** provided in Appendix A of the QAPP; which employed the use of laboratory supplied sample containers and preservatives, a peristaltic pump, dedicated polyethylene tubing, and a water quality multiparameter meter with a flow-through cell. The groundwater sample submitted for analysis of dissolved metals was filtered in the field with an in-line 0.45 micron filter. The sampling and purge log for location B2-051-PZ has been included in **Appendix E**. Calibration of the multiparameter meter was performed before the start of the sampling event, and a calibration post-check was completed following the event. Appropriate documentation of the multiparameter meter calibration has also been included in **Appendix E**.

The groundwater sample from B2-051-PZ was submitted to PACE and analyzed for TCL-VOCs via USEPA Method 8260B, TCL-SVOCs via USEPA Methods 8270D and 8270D SIM, Oil & Grease via USEPA Method 1664A, TPH-DRO/GRO via USEPA Methods 8015B and 8015D, TAL-Dissolved Metals via USEPA Methods 6010C and 7470A, dissolved hexavalent chromium via USEPA Method 7196A, and total cyanide via USEPA Method 9012A. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

3.4.2. Plant Garage Groundwater Samples

Visual observations of NAPL and/or strong fuel-like odors were noted in several of the soil cores installed within the Plant Garage area. These locations with physical evidence of NAPL and/or strong odors (as documented on the boring logs) were B2-007-SB, B2-011-SB, B2-013-SB, B2-014-SB, and B2-015-SB. Temporary piezometers were installed at each of the five locations to investigate the potential presence of NAPL and associated dissolved petroleum impacts in groundwater. Each piezometer was installed in accordance with the procedures and methods referenced in **Field SOP Number 028**. The construction logs for these piezometers have been included in **Appendix D**.

Groundwater samples were collected in accordance with methods referenced in **Field SOP Number 007** provided in Appendix A of the QAPP; which employed the use of laboratory supplied sample containers and preservatives, a peristaltic pump, dedicated polyethylene tubing, and a water quality multiparameter meter with a flow-through cell. The sampling and purge logs have been included in **Appendix E**. Calibration of the multiparameter meter was performed at the start of the day (all samples were collected on July 17, 2017), and a calibration post-check was completed at the end of the day. Appropriate documentation of the multiparameter meter calibration has also been included in **Appendix E**.

Since gasoline contamination was suspected to be present in the Plant Garage area based on the field observations, the groundwater samples were submitted to PACE and analyzed for TCL-VOCs via USEPA Method 8260B, TPH-DRO/GRO via USEPA Methods 8015B and 8015D, and total lead via USEPA Method 6010C. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

3.5. MANAGEMENT OF INVESTIGATION-DERIVED WASTE (IDW)

In accordance with **Field SOP Number 005** provided in Appendix A of the QAPP, potentially impacted materials, or IDW, generated during this Phase II Investigation was containerized in 55-gallon (DOT-UN1A2) drums. The types of IDW that were generated during this Phase II Investigation included the following:

- soil cuttings generated from the installation of soil borings or temporary groundwater points;
- purged groundwater;
- decontamination fluids; and
- used personal protective equipment

Following the completion of field activities, composite samples were gathered with aliquots from each of the Parcel B2 Phase II IDW soil drums for waste characterization. Following the analysis of each sample, the waste soil was characterized as non-hazardous. A list of all results from the soil waste characterization procedure can be found in **Table 3**. IDW drums containing aqueous materials (including aqueous waste generated during the Parcel B2 Phase II Investigation) were characterized by preparing composite samples from randomly selected drums. Each composite sample included aliquots from several individual drums that were chosen as a subset of the aqueous drums being staged on-site at the date of collection. Following the analysis of each sample, the aqueous waste was characterized as non-hazardous. A list of all results from the aqueous waste characterized as non-hazardous. A list of all results from the aqueous waste characterized as non-hazardous.

The parcel specific IDW drum log from the Phase II investigation is included as **Appendix F**. All IDW procedures were carried out in accordance with methods referenced in the QAPP Worksheet 21 - Field SOPs and Appendix A of the QAPP.

4.0 ANALYTICAL RESULTS

4.1. SOIL CONDITIONS

Soil analytical results were screened against PALs established in the property-wide QAPP (or other direct guidance from the agencies; i.e. TPH/Oil & Grease) to determine exceedances. PALs are generally based on the USEPA's Regional Screening Levels (RSLs) for the Composite Worker exposure to soil. The Composite Worker is defined by the USEPA as a long-term receptor exposed during the work day who is a full time employee that spends most of the workday conducting maintenance activities (which typically involve on-site exposures to surface soils) outdoors.

The analytical results for the detected parameters are summarized and compared to the PALs in **Table 5** (Organics) and **Table 6** (Inorganics). The laboratory Certificates of Analysis (including Chains of Custody) and Data Validation Reports (DVRs) have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to individual results in the attached summary tables.

4.1.1. Soil Conditions: Organic Compounds

As provided on **Table 5**, several VOCs were identified above the laboratory's method detection limits (MDLs) in the soil samples collected from across the Site. There were no VOCs detected above their respective PALs.

Table 5 provides a summary of SVOCs detected above the laboratory's MDLs in the soil samples collected from across the Site. The PALs for relevant polynuclear aromatic hydrocarbons (PAHs) have been adjusted upward based on revised toxicity data published in the USEPA RSL Composite Worker Soil Table. Therefore, exceedances for PAHs are based on the adjusted PALs rather than those presented in the QAPP. One SVOC (benzo[a]pyrene) was detected above its adjusted PAL in five soil samples (B2-020-SB-4, B2-031-SB-7, B2-046-SB-1, B2-050-SB-1, and B2-055-SB-1). The maximum detection of benzo[a]pyrene was 10.5 mg/kg in sample B2-046-SB-1. The SVOC PAL exceedance locations and results have been provided on **Figure S-1**.

Shallow soil samples collected across the Site from the 0 to 1 foot bgs interval were analyzed for PCBs. **Table 5** provides a summary of the PCBs detected above the laboratory's MDLs. There were no PCBs detected above their respective PALs.

Table 5 provides a summary of the Oil & Grease and TPH-DRO/GRO detections above the laboratory's MDLs in the soil samples collected in the parcel. Exceedances of the TPH/Oil & Grease PAL (6,200 mg/kg) were noted in four samples (collected from three borings) at the Site. Oil & Grease exceeded its PAL in the following samples: B2-011-SB-8, B2-014-SB-1.5, B2-

014-SB-7, and B2-024-SB-1. The maximum detection of Oil & Grease was 13,600 mg/kg in sample B2-014-SB-7. There was only one DRO PAL exceedance, which was identified in sample B2-011-SB-8 with a detection of 9,730 mg/kg. GRO did not exceed its PAL in any soil samples collected at the Site. The TPH/Oil & Grease exceedance locations and results have been provided on **Figure S-2**. In addition to the analytical exceedances, several other Phase II Investigation borings had physical evidence of NAPL (i.e., free product or sheen) in the soil cores. There were also a few locations where strong non-visual evidence of NAPL was recorded (i.e., strong fuel-like odors and elevated PID readings). These borings are also highlighted on the exceedance figure, and the specific locations are discussed in greater detail in Section 4.2.

4.1.2. Soil Conditions: Inorganic Constituents

Table 6 provides a summary of inorganic constituents detected above the laboratory's MDLs in the soil samples collected from across the Site. Four inorganic compounds (arsenic, hexavalent chromium, lead, and manganese) were detected above their respective PALs. Arsenic was by far the most common inorganic exceedance, and was detected above the PAL in 90 soil samples collected from the Site with a maximum detection of 173 mg/kg at B2-017-SB-5. Manganese, lead, and hexavalent chromium were detected above their respective PALs in 23 samples (maximum detection of manganese at 59,300 mg/kg in B2-016-SB-1), seven samples (maximum detection of lead at 12,000 mg/kg in B2-017-SB-5), and three samples (maximum detection of hexavalent chromium at 16.9 mg/kg in B2-039-SB-5). The inorganic PAL exceedance locations and results have been provided on **Figure S-3**.

4.1.3. Soil Conditions: Results Summary

Table 5 and Table 6 provide a summary of the detected organic and inorganic compounds in the soil samples submitted for laboratory analysis, and Figure S-1 through Figure S-3 present a summary of the soil sample results that exceeded the PALs. Table 7 provides a summary of results for all PAL exceedances in soil, including maximum values and detection frequencies. Table 8 indicates which soil impacts (PAL exceedances) are associated with the specific targets listed in the Parcel B2 Work Plan. There were no detections of VOCs or PCBs above the applicable PALs. Exceedances of the PALs in soil within Parcel B2 consisted of four inorganics (arsenic, hexavalent chromium, lead, and manganese), one SVOC (benzo[a]pyrene), DRO, and Oil & Grease. Petroleum impacts, including a discussion of the analytical exceedance of the TPH/Oil & Grease PAL as well as borings with physical evidence of NAPL in the soil cores, are further discussed in Section 4.2. The soil analytical results are further evaluated in the SLRA provided in Section 6.0.

4.2. SUMMARY OF NAPL OBSERVATIONS

During the completion of the Phase II soil borings in Parcel B2, soil cores were screened for evidence of possible NAPL contamination. During the field screening, five boring locations

exhibited physical evidence of possible NAPL. Soil borings B2-007-SB, B2-011-SB, B2-013-SB, B2-015-SB, and B2-051-SB had observations of sheen or NAPL in the soil cores. In addition, three borings (B2-014-SB, B2-053-SB, and B2-055-SB) had very strong fuel-like odors and/or highly elevated PID readings during screening of the soil cores. The specific observations are noted on each relevant soil boring log provided in **Appendix B**. Each of these eight locations is highlighted on **Figure S-2**. Seven of the eight identified locations (all except B2-051-SB) were completed in the vicinity of either the Plant Garage or the Mason's Garage. Elevated detections of TPH/Oil & Grease above the PAL of 6,200 mg/kg were observed in soil samples collected from three boring locations (B2-011-SB, B2-014-SB, and B2-024-SB). Note that boring B2-024-SB was the only location which had a PAL exceedance without documented evidence of NAPL. Oil & Grease was detected at 12,400 mg/kg in the shallow soil sample collected from this location. No underlying soil samples were collected based on the shallow depth to groundwater at this location (less than 4 feet bgs).

Based on these considerations, temporary screening piezometers were installed at B2-007-SB, B2-011-SB, B2-013-SB, B2-014-SB, B2-015-SB, B2-024-SB, B2-051-SB, B2-053-SB, and B2-055-SB over the duration of the Phase II Investigation to delineate and assess the potential mobility of free-phase product (NAPL) to groundwater. Each screening piezometer was installed in accordance with the procedures and methods for the installation of temporary groundwater sample collection points referenced in **Field SOP Number 028** (example construction logs can be viewed in **Appendix D**). Following the installation of each NAPL screening piezometer, it was gauged using an oil-water interface probe after 0-hours, 48-hours, and at least 30-days. No measurable NAPL was observed in any of the temporary screening piezometers. The exact dates of gauging activities completed through December 4, 2017 (the date of the final 30-day measurement for location B2-024-PZ) as well as water level measurements for that time period, have been included in **Appendix G**. This attachment also includes the specific installation date of each of the nine piezometers, as well as relevant construction details (total depths, screen intervals, etc.).

The only exception to the standard gauging schedule (0-hours, 48-hours, and 30-days) was implemented at location B2-051-PZ. A 30-day gauging measurement was not obtained at this location. Due to the position of the piezometer in a high traffic area, Tradepoint Atlantic requested the early abandonment of B2-051-PZ which was completed on July 10, 2017. A final gauging measurement was not recorded on the abandonment date (MDE guidance has since been updated to require a gauging event immediately prior to abandonment), but no visible product was noted in or on the PVC casing once the piezometer was withdrawn from the ground. None of the other screening piezometers in Parcel B2 have yet been abandoned. B2-051-PZ and the five locations in the vicinity of the former Plant Garage (B2-007-PZ, B2-011-PZ, B2-013-PZ, B2-014-PZ, and B2-015-PZ) were sampled for groundwater in accordance with standard methods to further evaluate the potential presence of NAPL and associated dissolved-phase contamination. The results of the groundwater sampling events are discussed below.

4.3. GROUNDWATER CONDITIONS

4.3.1. Area B Groundwater Investigation

As specified in the approved Parcel B2 Work Plan, groundwater at the Site was investigated as described in the separate Area B Groundwater Investigation Work Plan (dated October 6, 2015). A separate Area B Groundwater Phase II Investigation Report has been submitted (Revision 0 dated September 30, 2016) to discuss the detailed findings of the groundwater investigation. Groundwater results obtained during this separate investigation were screening against the PALs established in the property-wide QAPP (or other direct guidance from the agencies) to determine exceedances. The complete findings of the groundwater investigation, including detection summary tables and exceedance figures, are presented in the Area B Groundwater Phase II Investigation Report. A figure summarizing the shallow aqueous PAL exceedances (for all classes of compounds) in the vicinity of Parcel B2 is provided in **Appendix H**. The groundwater analytical results obtained from the intermediate and lower hydrogeologic zones are not relevant for this Parcel B2 Phase II Investigation, but can be reviewed in the separate Area B Groundwater Phase II Investigation Report.

Regarding the shallow groundwater exceedances, some of the PALs have been updated since the submission of the Area B Groundwater Phase II Investigation Report. In particular, the aqueous screening levels for some PAH constituents have been adjusted upward. Similar to the evaluation of soil data, the PALs for relevant PAHs have been modified based on revised toxicity data published in the USEPA RSL Resident Tapwater Table. Aqueous PAL exceedances in the shallow groundwater in the vicinity of Parcel B2 consisted of three VOCs (benzene, chloroform, and methyl tert-butyl ether), three SVOCs (benz[a]anthracene naphthalene. and pentachlorophenol), four total/dissolved metals (vanadium, cobalt, iron, and manganese), DRO, and GRO. For simplicity, the inorganic PAL exceedances shown on the figure do not include duplicate exceedances of total and dissolved metals at relevant sample locations. If both total and dissolved concentrations exceeded the PAL for a specific compound, the value for total metals is displayed on the figure for each sample.

Each permanent well sampled during the Area B Groundwater Investigation was also checked for the potential presence of NAPL using an oil-water interface probe prior to sampling. During these checks, NAPL was not detected in any of the permanent monitoring wells.

4.3.2. Supplemental Groundwater Sampling – B2-051-PZ

Table 9 provides a summary of constituents detected above the laboratory's MDLs in the supplemental groundwater sample collected from temporary piezometer B2-051-PZ. This piezometer was originally installed due to observations of NAPL in a thin soil layer within the soil core from 6 to 6.2 feet bgs. The NAPL screening piezometer was sampled because it was installed in a high traffic area, and there was a possibility that the piezometer might be

damaged/destroyed. The sample from this groundwater point was analyzed for VOCs, SVOCs, TPH/Oil & Grease, dissolved metals (with hexavalent chromium), and total cyanide. The laboratory Certificate of Analysis (including the Chain of Custody) for the sample collected from B2-051-PZ is provided in the electronic attachments. This sample was not designated to be validated, so no DVR is provided.

Only three parameters were detected above the aqueous PALs in the sample from B2-051-PZ. Benz[a]anthracene, DRO, and dissolved vanadium were detected at 0.056 μ g/L, 198 μ g/L, and 110 μ g/L, respectively. These exceedances are shown on **Figure GW-1**, which also displays the relevant groundwater exceedances from the three permanent monitoring wells which were sampled in the vicinity of this supplemental point under the Area B Groundwater Investigation. The PAL exceedances from the nearby permanent monitoring wells are also displayed in **Appendix H**, along with the remaining site-wide shallow permanent monitoring wells.

4.3.3. Supplemental Groundwater Sampling – Plant Garage

Table 10 provides a summary of constituents detected above the laboratory's MDL in the supplemental groundwater samples collected from the five temporary screening piezometers in the vicinity of the former Plant Garage (B2-007-PZ, B2-011-PZ, B2-013-PZ, B2-014-PZ, and B2-015-PZ). Since gasoline contamination was suspected to be present in the Plant Garage area based on the field observations, these piezometers were sampled for VOCs, DRO, GRO, and total lead. The laboratory Certificate of Analysis (including the Chain of Custody) and the DVR have been included as electronic attachments. The DVR contains a glossary of qualifiers for the final flags assigned to individual results in the attached summary table. The relevant analytical results from the permanent monitoring well SW-055-MWS (sampled under the separate Area B Groundwater Investigation) are also displayed on **Table 10**. Since SW-055-MWS was sampled for a more comprehensive set of analytes in accordance with the Area B Groundwater Investigation Work Plan, only the comparable parameter lists (VOCs, DRO, GRO, and total lead) are displayed on the detection summary table.

Among the NAPL screening piezometers, there were four parameters that exceeded their respective aqueous PALs in the vicinity of the Plant Garage. These PAL exceedances were limited to one VOC (benzene), total lead, DRO, and GRO. These exceedances are shown on **Figure GW-2**, which also displays the relevant groundwater exceedances from the permanent monitoring well SW-055-MWS in the immediate vicinity. SW-055-MWS had detections of benzene, DRO, and GRO above the applicable PALs. Additional PAL exceedances at location SW-055-MWS (for SVOCs) can be viewed in **Appendix H**, but the information displayed on **Figure GW-2** is limited to the results for comparable parameters (VOCs, DRO, GRO, and total lead). Including the data from SW-055-MWS, benzene exceeded its PAL in two groundwater samples, with a maximum detection of 17.5 μ g/L at location B2-013-PZ. Total lead exceeded its PAL in three groundwater samples (B2-007-PZ, B2-014-PZ, and B2-015-PZ) with a maximum

detection of 804 μ g/L at B2-015-PZ. DRO and GRO exceeded their aqueous PAL (47 μ g/L) in all five piezometers and the permanent monitoring well SW-055-MWS. The highest detections of DRO (24,900 μ g/L) and GRO (1,350 μ g/L) were both observed at location B2-011-PZ.

Based on the historical use of the Plant Garage area and existing impacts which have been documented in the groundwater, additional monitoring and/or appropriate response actions will be coordinated as needed with the MDE. Although NAPL was not detected in the groundwater in the vicinity of the Plant Garage (see Section 4.2), the dissolved-phase contamination suggests that further action may be needed.

4.3.4. Vapor Intrusion Screening Analysis

Groundwater data were screened to determine whether any individual sample results, or cumulative results summed by sample location, may exceed the USEPA Vapor Intrusion (VI) Screening Levels (Target Cancer Risk (TCR) of 1E-5 and Target Hazard Quotient (THQ) of 1) as determined by the Vapor Intrusion Screening Level (VISL) Calculator version 3.5 (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls). The aqueous PALs specified in the QAPP are based upon drinking water use, which is not a potential exposure pathway for groundwater at the Site.

The permanent monitoring wells which were sampled under the Area B Groundwater Investigation were previously evaluated for potential VI risk within the separate Area B Groundwater Phase II Investigation Report. Total cyanide had previously been identified as a potential VI risk in the Area B Groundwater Phase II Investigation Report, but the screening level for cyanide has since been adjusted upward by the USEPA, eliminating this concern. There were no additional VI risks identified from among the shallow permanent monitoring wells that are relevant for Parcel B2.

The groundwater results obtained from temporary piezometers during the Phase II Investigation of Parcel B2 (B2-007-PZ, B2-011-PZ, B2-013-PZ, B2-014-PZ, B2-015-PZ, and B2-051-PZ) have been evaluated for potential VI risks at these locations. It should be noted that the samples obtained in the vicinity of the Plant Garage were analyzed only for VOCs, DRO, GRO, and total lead. None of the aqueous results exceeded the individual VI TCR or THQ criteria as specified by the VISL Calculator. Following the initial screening, a cumulative VI risk assessment was also performed for each individual sample location, with the results separated by cancer versus non-cancer risk. All compounds with detections were included in the computation of the cumulative cancer risk, and all compounds with detections exceeding 10% of the THQ level were included in the evaluation of non-cancer hazard. None of the cumulative VI cancer risks were greater than 1E-5, and there were no compounds that were identified above the 10% THQ level to be included in the cumulative VI evaluation for non-cancer hazard. The results of the cumulative VI comparisons for the six aqueous samples obtained during the Parcel B2 Phase II Investigation are provided in **Table 11**.

4.4. SUB-SLAB SOIL GAS CONDITIONS

The detected VOCs in sub-slab soil gas are summarized and compared to the PALs in **Table 12**. While there were VOCs detected, none of the detections exceeded the PALs for any respective compound in any of the sub-slab soil gas samples submitted for analysis. These results indicate that potential impacts by VOCs below the building slabs appear to be minimal, and there is an apparent insignificant risk for vapor intrusion due to VOCs. The laboratory Certificates of Analysis (including Chains of Custody) and the DVR for the validated sample group have been included as electronic attachments. The DVR contains a glossary of qualifiers for the final flags assigned to individual results in the attached summary table.

5.0 DATA USABILITY ASSESSMENT

The approved property-wide QAPP specified a process for evaluating data usability in the context of meeting project goals. Specifically, the goal of the Phase II Investigation is to determine if potentially hazardous substances or petroleum products (VOCs, SVOCs, PCBs, metals, cyanide, Oil & Grease, or TPH-DRO/GRO) are present in site media (soil, groundwater, and sub-slab soil gas) at concentrations that could pose an unacceptable risk to Site receptors. Individual results are compared to the PALs established in the QAPP (i.e., the most current USEPA RSLs) or based on other direct guidance from the agencies, to identify the presence of exceedances in each environmental medium.

Quality control (QC) samples were collected during field studies to evaluate field/laboratory variability. A summary of QA/QC samples associated with this investigation has been included as **Appendix I**. The following QC samples were submitted for analysis to support the data validation:

- Trip Blank at a rate of one per cooler with VOC samples
 - \circ Soil VOCs only
 - \circ Water VOCs only
- Blind Field Duplicate at a rate of one per twenty samples
 - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, PCBs, hexavalent chromium, and cyanide
 - Water VOCs, TPH-DRO, TPH-GRO, and total lead
 - Soil Gas VOCs only
- Matrix Spike/Matrix Spike Duplicate at a rate of one per twenty samples
 - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, PCBs, and hexavalent chromium
 - Water VOCs, TPH-DRO, TPH-GRO, and total lead
- Field Blank and Equipment Blank at a rate of one per twenty samples
 - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide
 - Water VOCs, TPH-DRO, TPH-GRO, and total lead
 - Soil Gas VOCs only

The QC samples were collected and analyzed in accordance with the QAPP Worksheet 12 – Measurement Performance Criteria, QAPP Worksheet 20 – Field Quality Control, and QAPP Worksheet 28 – Analytical Quality Control and Corrective Action.

5.1. DATA VERIFICATION

A verification review was performed on documentation generated during sample collection and analysis. The verification included a review of field log books, field data sheets, and Chain of Custody forms to ensure that all planned samples were collected, and to ensure consistency with

the field methods and decontamination procedures specified in the QAPP Worksheet 21 - Field SOPs and Appendix A of the QAPP. In addition, calibration logs were reviewed to ensure that field equipment was calibrated and/or checked once per day. The logs have been provided in **Appendix C** (PID calibration log) and **Appendix E** (multiparameter meter calibration log).

The laboratory deliverables were reviewed to ensure that all records specified in the QAPP as well as necessary signatures and dates are present. Sample receipt records were reviewed to ensure that the sample condition upon receipt was noted, and any missing/broken sample containers (if any) were noted and reported according to plan. The data packages were compared to the Chains of Custody to verify that results were provided for all collected samples. The data package case narratives were reviewed to ensure that all exceptions (if any) are described.

5.2. DATA VALIDATION

USEPA Stage 2B data validation was completed for a representative 50% of the environmental sample analyses performed by PACE and supporting Level IV Data Package information by Environmental Data Quality Inc. (EDQI). The DVRs provided by EDQI have been included as electronic attachments.

Sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. The Stage 2B review was performed as outlined in "Guide for Labeling Externally Validated Laboratory Analytical Data for Superfund Use", EPA-540-R-08-005. Results have been validated or qualified according to general guidance provided in "USEPA National Functional Guidelines for Inorganic Superfund Data Review (ISM02.1)", USEPA October 2013. Region III references this guidance for validation requirements. This document specifies procedures for validating data generated for Contract Laboratory Program (CLP) analyses. The approved QAPP dated April 5, 2016 and the quality control requirements specified in the methods and associated acceptance criteria were also used to evaluate the non-CLP data.

The PACE-Greensburg (PA) laboratory facility implements quality assurance and reporting requirements through the TNI certification program with the State of Pennsylvania; which is accepted by Maryland. Since late-January 2017, these requirements include the flagging of contaminants with a "B" qualifier when an analyte is detected in an associated laboratory method blank, regardless of the level of the contaminant detected in the sample. A method blank is analyzed at a rate of one blank for each 20 sample analytical batch. The USEPA has previously specified that results flagged with the "B" qualifier do not represent legitimate detections. They have also specified that results flagged with a "JB" qualifier are invalid, and any such results should be revised to display the "B" qualifier only.

Although elevated sample results may be "B" qualified by the laboratory as non-detects due to low-level blank detections, EDQI corrects any erroneous "B" qualifiers during the data

validation procedure to avoid under-reporting analytical detections. EDQI removes the "B" qualifiers for relevant samples according to the guidance given in the table below. Therefore, a result originally flagged with a "B" qualifier in the laboratory certificate may be reported as a legitimate detection without this qualifier. Likewise, a result originally flagged with a "JB" qualifier in the laboratory certificate may be reported as a "J" qualifier if the erroneous "B" qualifier can be eliminated, but would be reported as a "B" qualified non-detect result if the original "B" qualifier is legitimate.

Blank Result	Sample Result	Qualifying Action
Result less than RL	Result less than RL	Result is Qualified "B"
Kesut less than KL	Result greater than RL	Remove "B"
Desult encotes they DI	Result less than Blank Result	Result is Qualified "B"
Result greater than RL	Result greater than Blank Result	Remove "B"

RL = Reporting Limit

As directed by EDQI, ARM has reviewed all non-validated laboratory reports (those which were not designated to be reviewed by EDQI), and applied the same validation corrections to any relevant "B" or "JB" qualified results. This review of the non-validated data ensures that any elevated detections of parameters, including those which may exceed the PALs, are not mistakenly reported as non-detect values simply because they did not undergo the formal validation procedure by EDQI. ARM has also revised the non-validated results to eliminate any laboratory-specific, non-standardized qualifiers (L2, 6c, ip, 4c, etc.), which are customarily removed by EDQI during the validation procedure.

5.3. DATA USABILITY

The data were evaluated with respect to the quality control elements of precision, bias, representativeness, comparability, completeness, and sensitivity relative to data quality indicators and performance measurement criteria outlined in QAPP Worksheet 12 – Measurement Performance Criteria. The following discussion details deviation from the performance measurement criteria, and the impact on data quality and usability.

The measurement performance criteria of precision and bias were evaluated in the data validation process as described in the DVRs provided as electronic attachments. Where appropriate, potential limitations in the results have been indicated through final data flags. These flags indicate whether particular data points were quantitative estimates, biased high/low, associated with blank contamination, etc. Individual data flags are provided with the results in

the detection summary tables. A qualifier code glossary is included with each DVR provided by EDQI. Particular results may have been marked with the "R" flag if the result was deemed to be unreliable and was not included in any further data evaluation. Lists of the analytical results that were rejected during data validation are provided as **Table 13** (soil) and **Table 14** (groundwater). There were no rejected analytical results from the sub-slab soil gas validated dataset, so an additional table is not warranted. A discussion of data completeness (the proportion of valid data) is included below.

Representativeness is a measure of how accurately and precisely the data describe the Site conditions. Representativeness of the samples submitted for analysis was ensured by adherence to standard sampling techniques and protocols, as well as appropriate sample preservation prior to analysis. Sampling was conducted in accordance with the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP. Specific Field SOPs applicable to the assessment of representativeness include **Field SOP Numbers 002, 007, 008, 009, 010, 011, 017, and 024**. Review of the field notes and laboratory sample receipt records indicated that collection of soil, groundwater, and sub-slab soil gas at the Site was representative, with no significant deviations from the SOPs.

Comparability describes the degree of confidence in comparing two sets of data. Comparability is maintained across multiple datasets by the use of consistent sampling and analytical methods across multiple project phases. Comparability of sample results was ensured through the use of approved standard sampling and analysis methods outlined in the QAPP. QA/QC protocols help to maintain the comparability of datasets, and in this case were assessed via blind duplicates, blank samples, and spiked samples, where applicable. No significant deviations from the QAPP were noted in the dataset.

Sensitivity is a determination of whether the analytical methods and quantitation limits will satisfy the requirements of the project. The laboratory reports were reviewed to verify that reporting limits met the quantitation limits for specific analytes provided in QAPP Worksheet #15 – Project Action Limits and Laboratory-Specific Detection/Quantitation Limits. In general the laboratory reporting limits met the detection and quantitation limits specified in the QAPP.

Completeness is expressed as a ratio of the number of valid data points to the total number of analytical data results. Non-usable ("R" flagged) data results were determined through the data validation process. The approved QAPP specifies that the completeness of data is assessed by professional judgement, but should be greater than or equal to 90%. Data completeness for each compound is provided in **Appendix J**. This evaluation of completeness includes only the representative 50% of sample results which were randomly selected for validation.

A total of 13 analytes did not meet the completeness goal of 90% for soils in Parcel B2. Of these 13 analytes, 11 acid extractable SVOCs (2,3,4,6-tetrachlorophenol, 2,4,5-trichlorophenol, 2,4-dichlorophenol, 2,4-dimethylphenol, 2,4-dinitrophenol, 2-chlorophenol, 2-

methylphenol, 3&4-methylphenol (m&p Cresol), pentachlorophenol, and phenol) had soil completeness values of \geq 74.6%. Some of the results for these compounds were rejected due to poor recoveries, which are believed to be due to the highly alkaline conditions typical of slag fill. These compounds had completeness ratios which were fairly close to the 90% goal, and since these compounds either were not detected in soil across the Site or were detected at low concentrations, the rejected soil results for the acid extractable SVOCs are not considered to be significant data gaps. Of the remaining two soil compounds with completeness values less than 90% (1,4-dioxane and benzaldehyde), only benzaldehyde was detected in soil. The maximum benzaldehyde detection (0.28 mg/kg) was well below the established PAL (120,000 mg/kg). Based on the infrequency and low magnitude of soil detections for these compounds, these are not considered to be significant data gaps. The rejection of the soil results for these compounds has not been uncommon for data obtained from the Tradepoint Atlantic property. Overall, the soil data can be used as intended.

The five groundwater samples collected from the temporary NAPL screening piezometers in the vicinity of the Plant Garage were validated and are included in the aqueous evaluation of data completeness. Among these five samples, the only analyte with less than 100% completeness was bromomethane (all results were rejected). The lack of groundwater data for this compound is not considered to be a significant data gap. Overall, the groundwater data can be used as intended.

There were no rejected results among the validated sub-slab soil gas dataset, and the analytical data from this site media can be used as intended.

6.0 HUMAN HEALTH SCREENING LEVEL RISK ASSESSMENT (SLRA)

6.1. ANALYSIS PROCESS

A human health Screening Level Risk Assessment (SLRA) has been conducted for soils to further evaluate the Site conditions in support of the design of necessary response measures. The SLRA included the following evaluation process:

Identification of Exposure Units (EUs): Three EUs were identified for the Site, as indicated in **Figure 5**. The three EUs (EU1 through EU3) are comprised of 25.3 acres (EU1), 46.4 acres (EU2), and 51.0 acres (EU3).

Identification of Constituents of Potential Concern (COPCs): Compounds that are present at concentrations at or above the USEPA RSLs set at a target cancer risk of 1E-6 or target non-cancer Hazard Quotient (HQ) of 0.1 were identified as COPCs to be included in the SLRA. A COPC screening analysis is provided in **Table 15** to identify compounds above the relevant screening levels in Parcel B2.

Exposure Point Concentrations (EPCs): The COPC soil datasets for each EU were divided into surface (0 to 1 foot) and subsurface (>1 foot) depths for estimation of potential EPCs. An evaluation of pooled surface and subsurface soil data was also performed for each EU. Thus, for Parcel B2 there are three soil datasets associated with each EU. A statistical analysis was performed for each COPC dataset using the ProUCL software (version 5.0) developed by the USEPA to determine representative reasonable maximum exposure (RME) values for the EPC for each constituent. The RME value is typically the 95% Upper Confidence Limit (UCL) of the mean. For lead, the arithmetic mean for each depth was calculated for comparison to the Adult Lead Model (ALM)-based values, and any individual results exceeding 10,000 mg/kg would be delineated for possible excavation and removal (if applicable). For PCBs, all results equaling or exceeding 50 mg/kg would be delineated for excavation and removal (if applicable).

Risk Ratios: The surface soil EPCs, subsurface soil EPCs, and pooled soil EPCs were compared to the USEPA RSLs for the Composite Industrial Worker. Risk ratios were calculated with a cancer risk of 1E-6 and a non-cancer HQ of 1. The risk ratios for the carcinogens were summed to develop a screening level estimate of the baseline cumulative cancer risk. The risk ratios for the non-carcinogens were segregated and summed by target organ to develop a screening level estimate of the baseline cumulative non-cancer hazard. There is no potential for human exposure to groundwater for a Composite Worker since groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized).

Assessment of Lead: For lead, the arithmetic mean concentrations for surface soils, subsurface soils, and pooled soils for each EU were compared to the applicable RSL (800 mg/kg) as an initial screening. If the mean concentrations for the EU were below the applicable RSL, the EU was identified as requiring no further action for lead. If a mean concentration exceeded the RSL, the mean values were compared to calculated ALM values (ALM Version dated 6/21/2009 updated with the 5/17/2017 OLEM Directive) with inputs of 1.8 for the geometric standard deviation and a blood baseline lead level of 0.6 ug/dL. The ALM calculation generates a soil lead concentration of 2,518 mg/kg, which is the most conservative (i.e., lowest) concentration which would yield a probability of 5% of a blood lead concentration of 10 ug/dL. If the arithmetic mean concentrations for the EU were below 2,518 mg/kg, the EU was identified as requiring no further action for lead. The lead averages and ALM screening levels are presented for surface, subsurface, and pooled soils in **Table 16**. For lead, any results equaling or exceeding 10,000 mg/kg would be identified to be delineated for possible excavation and removal (see below).

Assessment of TPH-DRO/GRO and Oil & Grease: EPCs were not calculated for TPH-DRO/GRO or Oil & Grease. Instead, the individual results were compared to the PAL set to a HQ of 1 (6,200 mg/kg). TPH/Oil & Grease PAL exceedances and/or evidence of NAPL in the soil cores were noted at several locations throughout the Site. These locations include B2-007-SB, B2-011-SB, B2-013-SB, B2-014-SB, B2-015-SB, B2-024-SB, B2-051-SB, B2-053-SB, and B2-055-SB. The specific observations for each location are provided in the boring logs (**Appendix B**). NAPL screening piezometers were installed at each of the listed locations to evaluate the potential for product mobility throughout the Site, and none of these piezometers accumulated product. Additional discussion is presented following the SLRA in Section 7.2.

Risk Characterization Approach: For each EU, if the baseline risk ratio for each noncarcinogenic COPC or cumulative target organ does not exceed 1 (with the exception of lead), and the sum of the risk ratios for the carcinogenic COPCs does not exceed a cumulative cancer risk of 1E-5, then a no further action determination will be recommended. The primary EPC comparison to determine the need for possible remedial action will be the Composite Worker comparison to the surface soil EPCs. However, no further action will only be approvable if subsurface soil EPCs are also compared to the Composite Worker RSLs, and the cancer and non-cancer risk estimates are equal to or less than 1E-5 and 1, respectively. Pooled soil data has also been evaluated and included for discussion.

If the baseline estimate of cumulative cancer risk exceeds 1E-5, but is less than or equal to 1E-4, then capping of the EU will be considered to be an acceptable remedy for the Composite Worker. The efficacy of capping for elevated non-cancer hazard will be

evaluated in terms of the magnitude of the exceedance and other factors such as bioavailability of the COPC. Similarly, for lead, if the ALM results indicate that the mean concentrations would present a 5% to 10% probability of a blood concentration of 10 ug/dL for the EU, then capping of the EU would be an acceptable presumptive remedy. The mean soil lead concentrations corresponding to ALM probabilities of 5% and 10% are 2,518 mg/kg, and 3,216 mg/kg, respectively. If capping of the identified area is not proposed, additional more detailed quantitative evaluation of risk will be required for the EU. This supplemental risk evaluation may include a selective removal (excavation) remedy to reduce site-wide risks/hazards to acceptable levels.

The USEPA's acceptable risk range is between 1E-6 and 1E-4. If the sum of the risk ratios for carcinogens exceeds a cumulative cancer risk of 1E-4, further analysis of site conditions will be required including the consideration of toxicity reduction in any proposal for a remedy. The magnitude of non-carcinogen hazard exceedances and bioavailability of the COPC will also dictate further analysis of site conditions including consideration of toxicity reduction in any proposal for a remedy. In addition, if the ALM indicates that the mean concentrations would present a >10% probability of a blood concentration will be completed such that the probability would be reduced to less than 10% after toxicity reduction, but before capping.

6.2. PARCEL B2 SLRA RESULTS AND RISK CHARACTERIZATION

Soil data were divided into three datasets (surface, subsurface, and pooled) for each of the Parcel B2 EUs to evaluate potential current and future exposure scenarios. The current Composite Worker will be exposed only to surface soils. However, if construction activities in the future were to result in the placement of subsurface material over existing surface soils, a future Composite Worker could be exposed to a mixture of surface and subsurface soils.

If the detection frequency of an analyte is less than 5% in a dataset with a minimum of 20 samples, the COPC can be eliminated from the risk assessment assuming the detections are not extremely high (based on agency discretion). A single detection that is extremely high could require delineation rather than elimination. No analyte designated as a COPC in Parcel B2 had a detection frequency less than 5%; thus, no COPCs were removed due to low detection frequencies. All COPCs identified in **Table 15** have been retained for the risk assessment.

EPCs were calculated for each soil dataset (i.e., surface, subsurface, and pooled surface/subsurface) in each EU. ProUCL output tables (with computed UCLs) derived from the data for each COPC in soils are provided as electronic attachments, with computations presented and EPCs calculated for COPCs within each of the three datasets. The ProUCL input tables are also included as electronic attachments. The results were evaluated to identify any samples that may require additional assessment or special management based on the risk characterization

approach. The calculated site-wide EPCs for the surface and subsurface exposure scenarios are provided in **Table 17**. The supplemental EPCs generated from the pooled surface and subsurface soils are also included in the EPC table.

As indicated above, the EPCs for lead are the average (i.e., arithmetic mean) values for each dataset. A lead evaluation spreadsheet, providing the computations used to determine lead averages for each dataset in each EU, is also included as an electronic attachment. The average lead concentrations are presented for each dataset in **Table 16**, which indicates that neither surface nor pooled soils exceeded an average lead value of 800 mg/kg in any EU. The screening criterion for lead was set at an EU arithmetic mean of 800 mg/kg based on the RSL, with a secondary limit of 2,518 mg/kg based on the May 2017 updated ALM developed by the USEPA (corresponding to a 5% probability of a blood lead level of 10 ug/dL). Subsurface soils in EU1 had a computed average lead concentration of 1,127 mg/kg. This concentration exceeded the lead screening level of 800 mg/kg but was well below the secondary limit of 2,518 mg/kg. The average lead concentrations in subsurface soils in EU2 and EU3 did not exceed the lowest lead screening level of 800 mg/kg.

One sample had a detection of lead that exceeded 10,000 mg/kg, the designated threshold at which delineation is required. Sample B2-017-SB-5 had a detection of lead of 12,000 mg/kg, which was the maximum reported lead result in soil in Parcel B2. The maximum soil detection of arsenic (173 mg/kg) was also identified in this sample. Delineation of lead (and associated elevated arsenic) has been completed at this location in accordance with the agency-approved Work Plan for Delineation/Characterization of Lead & Arsenic Impacted Soil at B2-017-SB dated September 18, 2017. This plan was approved via email on September 20, 2017, and the plan was implemented on September 25, 2017. Following review of the delineation results, the MDE and USEPA have agreed that no further action is warranted with respect to the lead/arsenic impacts at location B2-017-SB. Any future reporting, including the Supplemental Investigation Report which will formally document the findings in the vicinity of B2-017-SB, will be covered outside of this Phase II Investigation Report to avoid the need for continued updates. The delineation results have not been incorporated into the SLRA presented herein (although the maximum lead and arsenic detections reported in sample B2-017-SB-5 have been retained) because the addition of this delineation data would unnecessarily bias the sampling results due to the large number of samples collected within the delineation area. It has been standard practice in Phase II Investigation Reports to exclude any supplemental delineation data from the baseline risk assessment.

None of the detections of PCBs exceeded the mandatory excavation criterion of 50 mg/kg.

Composite Worker Assessment:

Risk ratios for the estimates of potential EPCs for the Composite Worker scenario are shown in **Table 18** (surface), **Table 19** (subsurface), and **Table 20** (pooled surface and subsurface soils). The results are summarized as follows:

Worker Scenario	EU	Medium	Hazard Index (>1)	Total Cancer Risk
	EU1 (25.3 ac.)	Surface Soil	none	6E-6
		Subsurface Soil	none	1E-5
		Surface & Subsurface Soil	none	9E-6
	EU2 (46.4 ac.)	Surface Soil	none	4E-6
Composite Worker		Subsurface Soil	Nervous System = 2	7E-6
worker		Surface & Subsurface Soil	none	4E-6
	EU3 (51.0 ac.)	Surface Soil	none	3E-6
		Subsurface Soil	none	6E-6
		Surface & Subsurface Soil	none	4E-6

The current Composite Worker will be exposed only to surface soils. The risk ratios indicated that the cumulative cancer risks for potential Composite Worker exposures to surface soils were less than the acceptable limit for no further action (1E-5) in each EU. When the non-cancer risks were segregated and summed by target organ for cumulative Hazard Index (HI), no target organ exceeded a cumulative HI of 1 in surface soils in any EU.

Future construction activities were assumed to result in the placement of subsurface material over existing surface soils exposing a future Composite Worker to a mixture of surface and subsurface soils. This exposure scenario is dependent on any future development proposed for the parcel. The risk ratios indicated that the cumulative cancer risks for the Composite Worker scenario were less than or equal to 1E-5 (the acceptable level for no further action) in each EU for both subsurface soils and pooled soils. A single elevated hazard above the HI of 1 was calculated for potential subsurface exposures for the nervous system in EU2 (HI=2) due to elevated detections of manganese (HQ=2). There were no HI values above 1 for the potential subsurface exposures to pooled soils (which may be applicable depending on any proposed development) resulted in no elevated hazards above the HI of 1 in any EU.

The calculated total cancer risks and cumulative non-cancer hazards for potential Composite Worker exposures to surface, subsurface, and pooled soils did not exceed the regulatory standards identified in the SLRA Risk Characterization Approach, excluding an elevated HI for the nervous system (HI=2) in EU2 subsurface soils. Based on this assessment, an unacceptable non-cancer hazard to a future Composite Worker may be encountered if soil disturbances occur

which relocate manganese-impacted subsurface soils in EU2 to the surface. Potential hazards resulting from such a development scenario should be addressed by institutional controls to ensure proper notification and management of any future disturbance of subsurface soil to provide protection for the future Composite Worker.

7.0 FINDINGS AND RECOMMENDATIONS

The objective of this Phase II Investigation was to fully characterize the nature and extent of contamination at the Site. During the Phase II Investigation, a total of 118 soil samples (all locations/depths), six sub-slab soil gas samples, and six supplemental groundwater samples were collected and analyzed to define the nature and extent of contamination in Parcel B2. The sampling and analysis plan for the parcel was developed to target specific features which represented a potential release of hazardous substances and/or petroleum products to the environment. Soil samples were analyzed for TCL-VOCs, TCL-SVOCs, Oil & Grease, TPH-DRO/GRO, TAL-Metals, hexavalent chromium, and cyanide. Shallow soil samples (0 to 1 foot bgs) were additionally analyzed for PCBs. Sub-slab soil gas samples were analyzed for TCL-VOCs, TCL-VOCs, TCL-SVOCs, Oil & Grease, TPH-DRO/GRO, TAL-SVOCs, Oil & Grease, TPH-DRO/GRO, TAL-SVOCs, Oil & Grease, TPH-DRO/GRO, TAL-Metals, dissolved for TCL-VOCs, TCL-VOCs, TCL-SVOCs, Oil & Grease, TPH-DRO/GRO, TAL-Metals, dissolved for TCL-VOCs, TCL-SVOCs, TCL-SVOCs, Oil & Grease, TPH-DRO/GRO, TAL-Dissolved Metals, dissolved hexavalent chromium, and total cyanide. The supplemental groundwater samples collected in the vicinity of the Plant Garage were analyzed for TCL-VOCs, TPH-DRO/GRO, and total lead.

7.1. SOIL

The concentrations of constituents in the soil have been characterized by the Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

PCB concentrations are well below levels that would warrant evaluation of a removal remedy (50 mg/kg), indicating that no further action is needed with respect to PCBs. The computed average lead concentrations in the surface, subsurface, and pooled (surface and subsurface) soils in each EU were below the 800 mg/kg RSL, with the exception of subsurface soils in EU1. Subsurface soils in EU1 had a computed average lead concentration of 1,127 mg/kg. This concentration exceeded the lead screening level of 800 mg/kg but was well below the secondary limit of 2,518 mg/kg. There was one soil sample (B2-017-SB-5) in which the detection of lead exceeded 10,000 mg/kg, the designated threshold at which delineation would be required.

Sample B2-017-SB-5 had a detection of lead of 12,000 mg/kg, which was the maximum reported lead result in soil in Parcel B2. The maximum soil detection of arsenic (173 mg/kg) was also identified in this sample. Delineation of lead (and associated elevated arsenic) has been completed at this location in accordance with the agency-approved Work Plan for Delineation/Characterization of Lead & Arsenic Impacted Soil at B2-017-SB dated September 18, 2017. Following review of the delineation results, the MDE and USEPA have agreed that no further action is warranted with respect to the lead/arsenic impacts at location B2-017-SB. Any future reporting, including the Supplemental Investigation Report which will formally document the findings in the vicinity of B2-017-SB, will be covered outside of this Phase II Investigation Report to avoid the need for continued updates.

There were no soil PAL exceedances of VOCs or PCBs, indicating that VOCs and PCBs are not significant contaminants in soil at the Site. Exceedances of the PALs in soil within Parcel B2 consisted of four inorganics (arsenic, hexavalent chromium, lead, and manganese), one SVOC (benzo[a]pyrene), DRO, and Oil & Grease. Arsenic exceeded its PAL in the largest proportion of the samples analyzed site-wide. Arsenic was detected in 86% of the soil samples analyzed for this compound (with 90 total PAL exceedances), with a maximum detection of 173 mg/kg in sample B2-017-SB-5. The remaining inorganic exceedances were less common in comparison. Manganese, lead, and hexavalent chromium were detected above their respective PALs in 23 samples (maximum detection of manganese at 59,300 mg/kg in B2-016-SB-1), seven samples (maximum detection of lead at 12,000 mg/kg in B2-017-SB-5). Benzo[a]pyrene exceeded its PAL in five soil samples with a maximum detection of 13,600 mg/kg in sample B2-014-SB-7. DRO exceeded its PAL in only one soil sample (B2-011-SB-8) with a detection of 9,730 mg/kg.

Petroleum impacts, including a discussion of the borings with analytical exceedance of the TPH/Oil & Grease PAL (B2-011-SB, B2-014-SB, and B2-024-SB) as well as borings with evidence of NAPL or sheen in the soil cores (B2-007-SB, B2-011-SB, B2-013-SB, B2-015-SB, and B2-051-SB) or other non-visual evidence of NAPL (B2-014-SB, B2-053-SB, and B2-055-SB), are further discussed below in Section 7.2.

7.2. NON-AQUEOUS PHASE LIQUID

There were several elevated detections of DRO and Oil & Grease above the soil PAL throughout the parcel, which could be indicative of potential NAPL impacts. There were four Oil & Grease soil PAL exceedances in Parcel B2 (B2-011-SB-8, B2-014-SB-1.5, B2-014-SB-7, and B2-024-SB-1), with a maximum detection of 13,600 mg/kg at B2-014-SB-7. DRO exceeded the soil PAL in only one sample (B2-011-SB-8) with a detection of 9,730 mg/kg. During field screening of the soil cores installed during this investigation, borings B2-007-SB, B2-011-SB, B2-013-SB, B2-014-SB, B2-015-SB, B2-051-SB, B2-053-SB, and B2-055-SB had visible observations of product (i.e., NAPL or sheen) and/or strong petroleum odors and elevated PID readings in the soil cores. The specific observations are noted on each relevant soil boring log provided in **Appendix B**. Each of these eight locations is highlighted on **Figure S-2**. Seven of the eight identified locations (all except B2-051-SB) were installed in the vicinity of either the Plant Garage or the Mason's Garage.

The potential mobility of NAPL to groundwater was investigated via the installation of nine temporary NAPL piezometers at the following boring locations: B2-007-SB, B2-011-SB, B2-013-SB, B2-014-SB, B2-015-SB, B2-024-SB, B2-051-SB, B2-053-SB, and B2-055-SB. Based on 0-hour, 48-hour, and 30-day gauging measurements of each screening piezometer using an

oil-water interface probe, NAPL was not detected at these locations and therefore is not believed to be present in groundwater at quantities that are likely to migrate. In addition to the NAPL screening piezometers, none of the permanent groundwater monitoring wells located within, or adjacent to, Parcel B2 showed any evidence of NAPL during the mandatory checks prior to sampling under the Area B Groundwater Investigation.

The only exception to the standard gauging schedule (0-hours, 48-hours, and 30-days) was implemented at location B2-051-PZ. A 30-day gauging measurement was not obtained at this location, but the piezometer was sampled to provide aqueous data. Due to the position of the piezometer in a high traffic area, Tradepoint Atlantic requested the early abandonment of B2-051-PZ which was completed on July 10, 2017. A final gauging measurement was not recorded on the abandonment date (MDE guidance has since been updated to require a gauging event immediately prior to abandonment), but no visible product was noted in or on the PVC casing once the piezometer was withdrawn from the ground. None of the other screening piezometers in Parcel B2 have yet been abandoned. Since there was no measurable NAPL recorded in B2-024-PZ, B2-053-PZ, or B2-055-PZ, no additional action is recommended at this time, and these screening piezometers will be abandoned in accordance with the Maryland abandonment standards as stated in COMAR 26.04.04.34 through 36. Each of these piezometers will be gauged a final time on the abandonment date in accordance with current MDE guidance.

Groundwater samples were collected from the five piezometers installed in the vicinity of the former Plant Garage (B2-007-SB, B2-011-SB, B2-013-SB, B2-014-SB, and B2-015-SB) to further evaluate the potential presence of dissolved-phase contamination. The results of this groundwater sampling event (as well as the results from B2-051-PZ) are discussed below. The piezometers in the vicinity of the Plant Garage are not proposed to be abandoned at this time.

The proximity of all TPH/Oil & Grease impacted borings and NAPL screening piezometers to proposed utilities should be evaluated in any future development planning for Parcel B2. Appropriate protocols should be documented in a Response and Development Work Plan (as necessary) to prevent the mobilization of any product if future utilities are proposed in the vicinity of these impacts.

7.3. GROUNDWATER (SUPPLEMENTAL)

Six supplemental groundwater samples were collected from temporary NAPL screening piezometers to characterize potential groundwater impacts in select areas of the Site. No groundwater samples were originally specified to be collected in the Parcel B2 Work Plan.

The temporary piezometer B2-051-PZ was installed due to observations of NAPL in a thin soil layer within the soil core. This screening piezometer was sampled because it was installed in a high traffic area, and there was a possibility that the piezometer might be damaged or destroyed. Due to the position of the piezometer in a high traffic area, Tradepoint Atlantic requested the

early abandonment of B2-051-PZ which was completed on July 10, 2017 (after it had previously been sampled). Only three parameters were detected above the aqueous PALs in the sample from B2-051-PZ. Benz[a]anthracene, DRO, and dissolved vanadium were detected at 0.056 μ g/L, 198 μ g/L, and 110 μ g/L, respectively. No additional action is proposed in this area.

Five temporary piezometers were installed in the vicinity of the former Plant Garage based on evidence of NAPL which was observed in this area. Since gasoline contamination was suspected to be present based on the field observations, these piezometers were sampled for VOCs, DRO, GRO, and total lead. The comparable results for VOCs, DRO, GRO, and total lead from the nearby permanent monitoring well SW-055-MWS (sampled during the separate Area B Groundwater Investigation) are also relevant for comparison to the data obtained from the temporary piezometers. Among the NAPL screening piezometers, benzene, DRO, GRO, and total lead were detected above the aqueous PALs. Exceedances of benzene, DRO, and GRO were also observed at location SW-055-MWS. Including the data from SW-055-MWS, benzene exceeded its PAL in two groundwater samples, with a maximum detection of 17.5 µg/L at location B2-013-PZ. Total lead exceeded its PAL in three groundwater samples (B2-007-PZ, B2-014-PZ, and B2-015-PZ) with a maximum detection of 804 µg/L at B2-015-PZ. TPH-DRO/GRO exceeded their respective aqueous PALs in all six sample locations, with the maximum detections of DRO and GRO (24,900 µg/L and 1,350 µg/L, respectively) both observed at B2-011-PZ.

Based on the historical use of the Plant Garage area and existing impacts which have been documented in the groundwater, additional monitoring and/or appropriate response actions will be coordinated as needed with the MDE.

7.4. SUB-SLAB SOIL GAS

The nature and extent of constituents in sub-slab soil gas have been adequately characterized by the Phase II Investigation. The sub-slab samples collected during the investigation of the Railroad Office and the Slab Hauler Repair Shop did not contain any VOC compounds that exceeded their specified PALs. Further investigation is not recommended based on the documentation of minimal impacts below the building slabs, and the apparent insignificant risk for vapor intrusion.

7.5. HUMAN HEALTH SCREENING LEVEL RISK ASSESSMENT

Groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized), therefore there is no potential for direct human exposure for a Composite Worker. Findings from the Area B Groundwater Phase II Investigation which include the groundwater data obtained from permanent monitoring wells within and surrounding Parcel B2 are presented in the Area B Groundwater Phase II Investigation Report (Revision 0) dated September 30, 2016, which was submitted to the agencies for review. An aqueous PAL exceedance figure is provided in

Appendix H to indicate the locations of any shallow groundwater exceedances from the Area B Groundwater Investigation. The groundwater data were screened to determine whether any cumulative (or individual) sample results exceeded the USEPA VI TCR (carcinogen) or THQ (non-carcinogen) Screening Levels. Among the samples obtained during the separate Area B Groundwater Investigation, there were no potential VI risks identified from the permanent monitoring wells located in the vicinity of Parcel B2. Total cyanide had previously been identified as a potential VI risk in the Area B Groundwater Phase II Investigation Report, but the screening level for cyanide has since been adjusted upward by the USEPA, eliminating this concern. Among the six supplemental groundwater samples which were collected from temporary NAPL screening piezometers at select locations in Parcel B2, none of the individual results exceeded the VI TCR or THQ criteria. When the aqueous results were summed by sample location, none of the cumulative VI cancer risks were greater than or equal to 1E-5, and none of the cumulative VI non-cancer HI values exceeded 1. There are no concerns related to potential VI risks at the Site based on the existing sampling information.

The current Composite Worker could potentially be exposed to surface soils at the Site. The risk ratios indicated that the cumulative cancer risks for the Composite Worker scenario was less than 1E-5 for surface soils (equal to the target benchmark) in each EU. A non-cancer cumulative HI of 1 was not exceeded for any target organ system evaluated for Composite Worker exposure to surface soils in any EU. Since the cumulative HI values did not exceed 1 for any target organ and the estimates of cumulative cancer risk did not exceed 1E-5, no additional action is required to address potential risks to a Composite Worker who may be exposed to surface soils at the Site in its current condition.

The cumulative carcinogenic risk estimates for potential future Composite Worker exposures to subsurface soils were less than or equal to 1E-5 (equal to the target benchmark) in each EU. When the non-cancer risks were segregated and summed by target organ, a cumulative HI of 1 was exceeded for the nervous system (HI=2) for subsurface soils in EU2 due to elevated detections of manganese (HQ=2). Based on this assessment, an unacceptable non-cancer hazard to a future Composite Worker may be encountered if soil disturbances occur that relocate manganese-impacted soils to the surface. Institutional controls to ensure proper oversight and management of any future construction activity that includes disturbances of the existing subsurface soil below 1-foot bgs would be protective of future Composite Workers by limiting potential exposures to relocated subsurface material that may be impacted above the acceptable criteria. Potential risks associated with any proposed future intrusive construction activities should be addressed in a Response and Development Work Plan for that work.

7.6. RECOMMENDATIONS

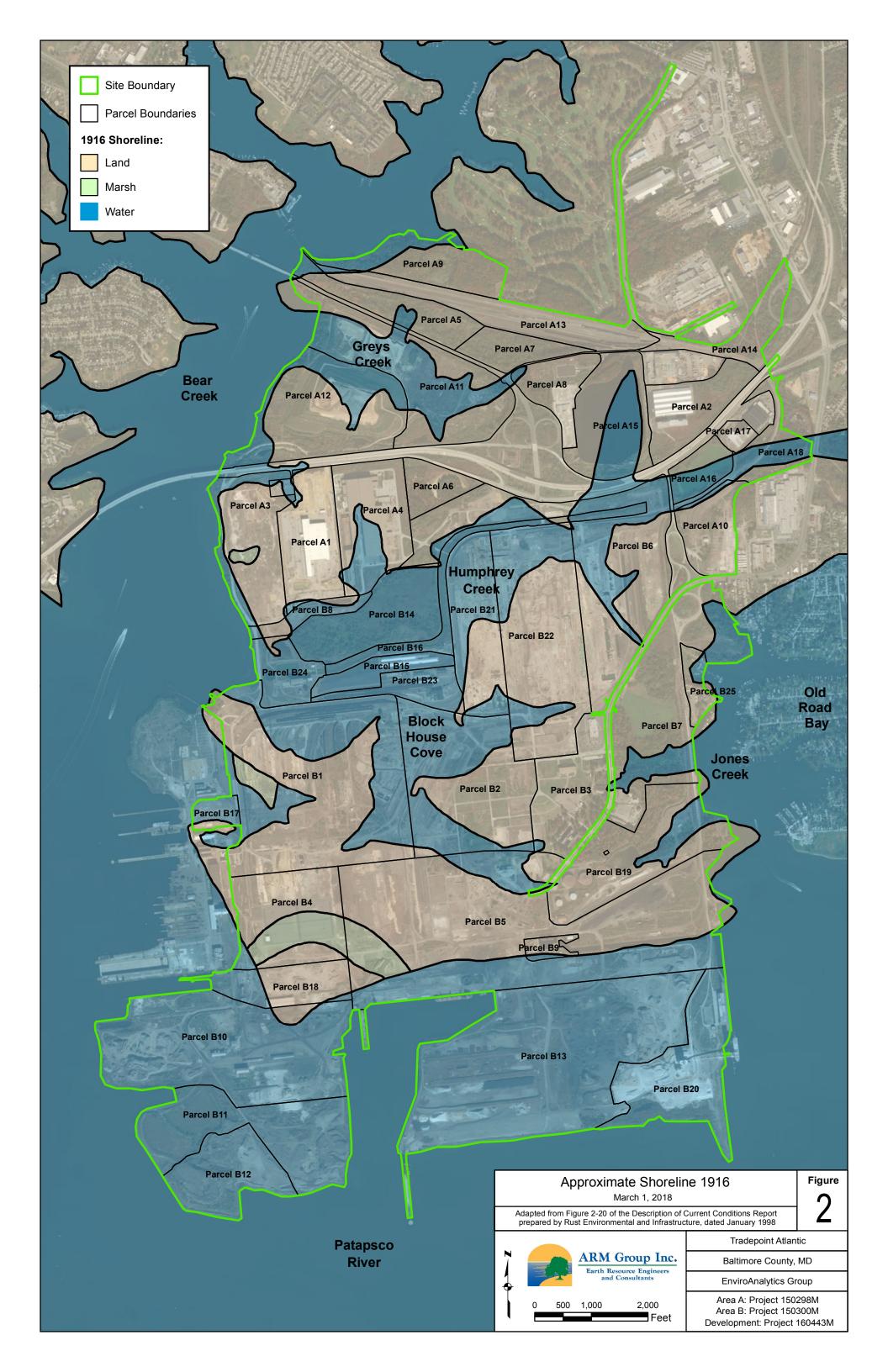
Sufficient remedial investigation data has been collected to present this evaluation of the nature and extent of possible constituents of concern in Parcel B2. The presence and absence of soil and sub-slab soil gas impacts within Parcel B2 have been adequately described and further

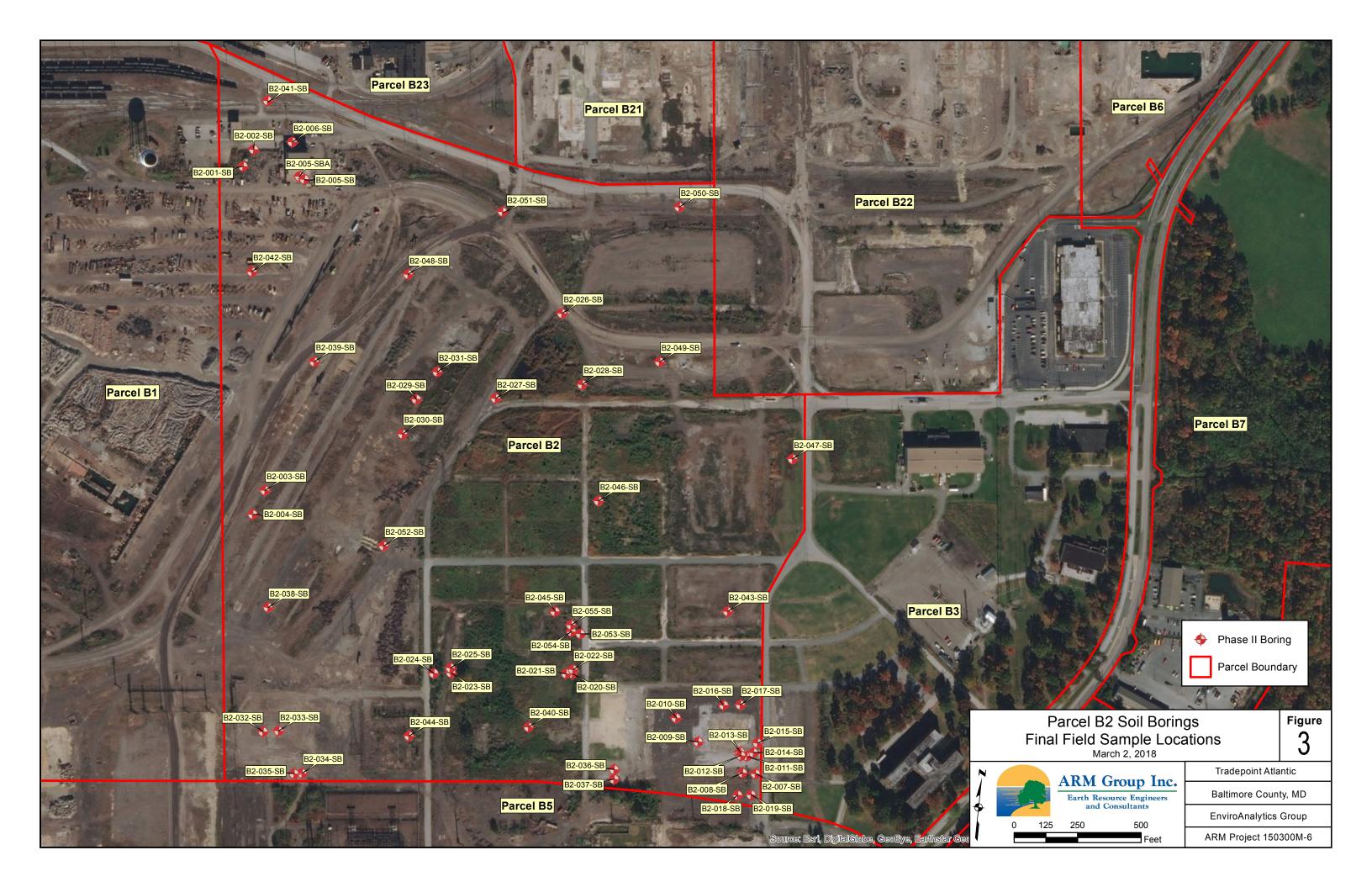
investigation is not warranted for these site media to characterize overall conditions. Due to the historical use of the Plant Garage and the existing impacts which have been documented in the groundwater, further action may be needed in this area. Based on the evaluation of risk presented in the SLRA, the Site is suitable for use by Composite Workers; remedial action is not required to support occupancy and use of the parcel in its current condition. Recommendations for the parcel are as follows:

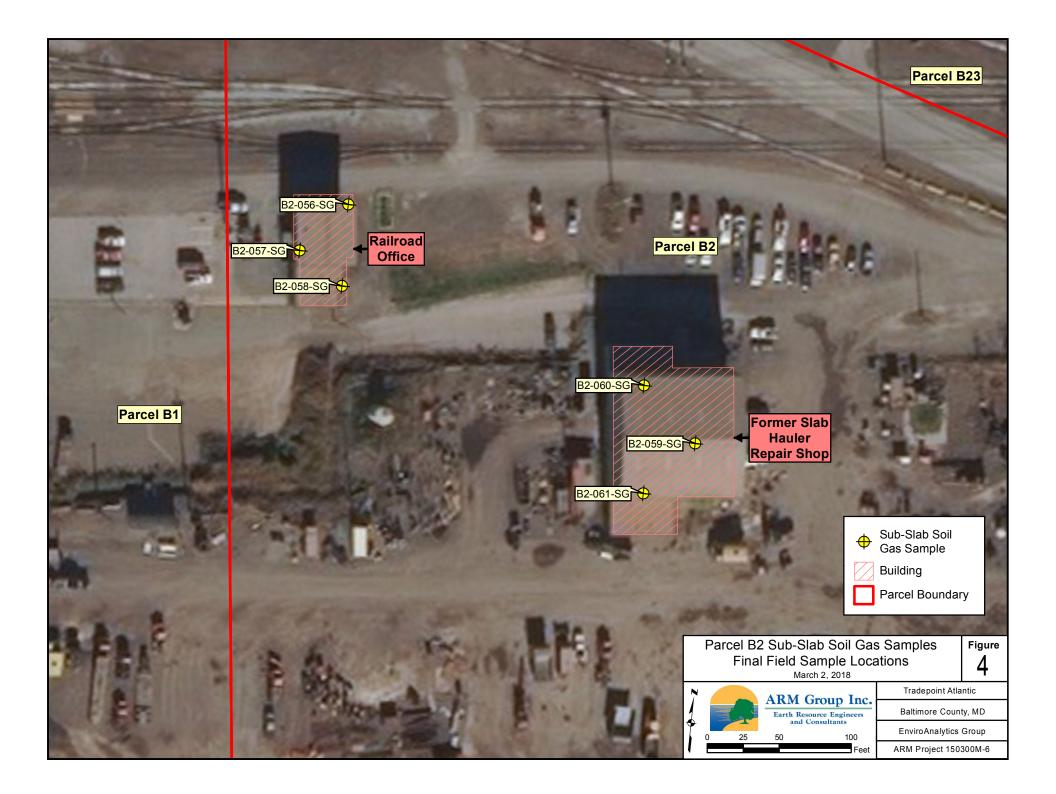
- The SLRA presented in this Phase II Investigation Report evaluated the baseline risks for potential Composite Workers for an industrial use scenario. Therefore, unless additional assessment of risk to other potential receptors is conducted as part of a Response and Development Work Plan, the future use of the parcel should be restricted as follows:
 - Deed restriction for industrial Site use only; no portion of the Site should be used for commercial/recreational or residential purposes. A supplemental SLRA in a project-specific Response and Development Work Plan would be required prior to non-industrial use of any portion of the Site.
 - Deed restriction on groundwater use; no subsurface water or groundwater should be extracted from aquifers for any purpose.
- Institutional controls should be implemented for the protection of Composite Workers and Construction Workers to ensure proper oversight and management of any future construction activity that includes disturbances of the existing soil. These institutional controls will necessarily include a written notice to the MDE of any future soil disturbance activities, proper management and characterization of any material disturbed at the Site, and may require health and safety requirements for any excavations of substantial time periods. Construction Worker risks will be evaluated in site-specific Response and Development Work Plans.
- Elevated detections of lead and arsenic in the vicinity of boring B2-017-SB have been delineated in accordance with the approved Work Plan for Delineation/Characterization of Lead & Arsenic Impacted Soil at B2-017-SB dated September 18, 2017. It is recommended that no further action is required in the vicinity of B2-017-SB. Following review of the delineation results, the MDE and USEPA have agreed that no further action is warranted with respect to these impacts. Any future reporting, including the Supplemental Investigation Report which will formally document the findings in the vicinity of B2-017-SB, will be covered outside of this Phase II Investigation Report.
- The soil borings with elevated detections of TPH/Oil & Grease and/or physical evidence of NAPL in the soil cores (B2-007-SB, B2-011-SB, B2-013-SB, B2-014-SB, B2-015-SB, B2-024-SB, B2-051-SB, B2-053-SB, and B2-055-SB) should be considered for proximity to proposed utilities in any future development planning. If future utilities are

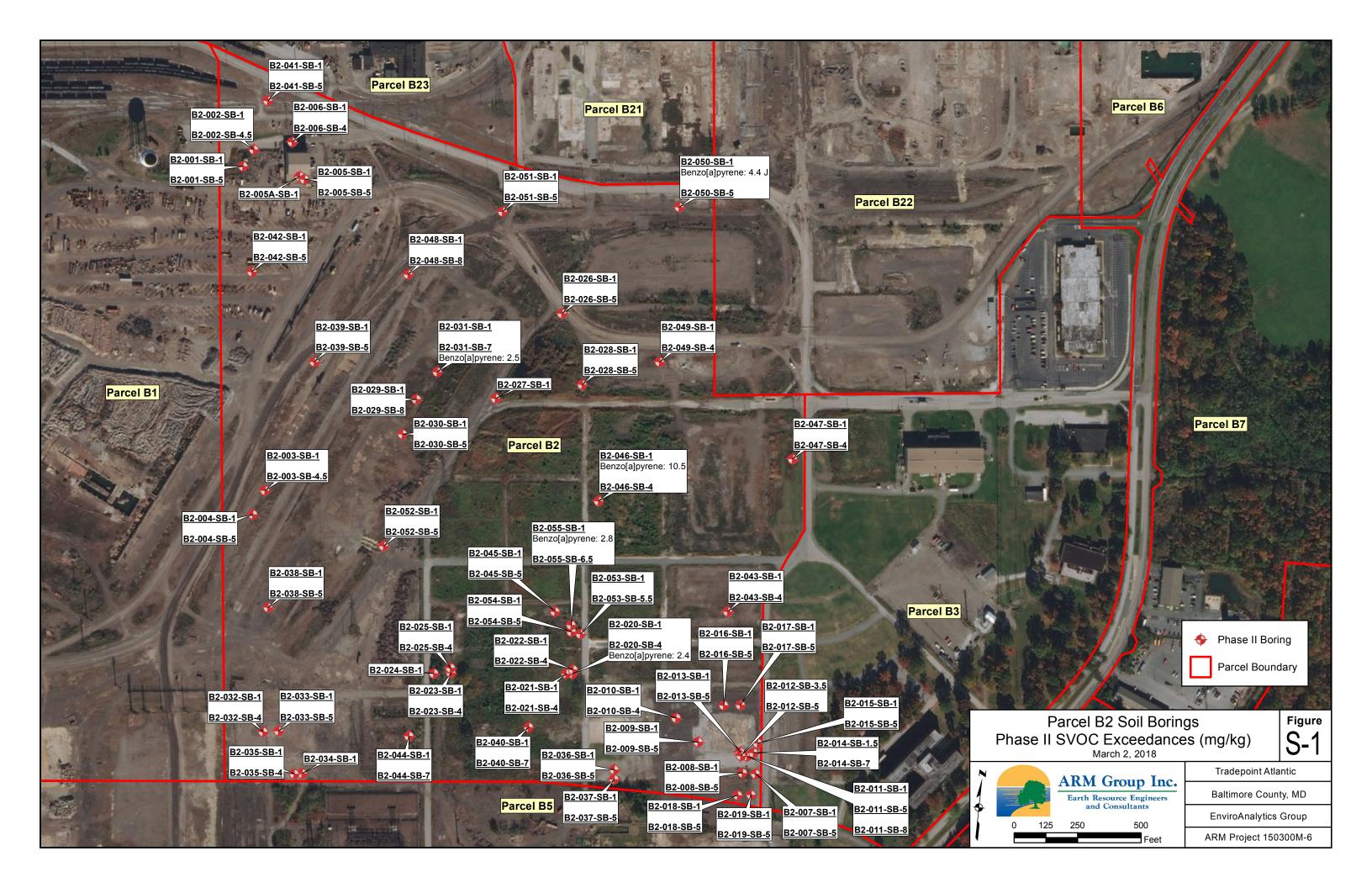
proposed in the vicinity of these borings/piezometers, appropriate protocols for the mitigation of potential product (NAPL) mobility should be addressed in a Response and Development Work Plan.

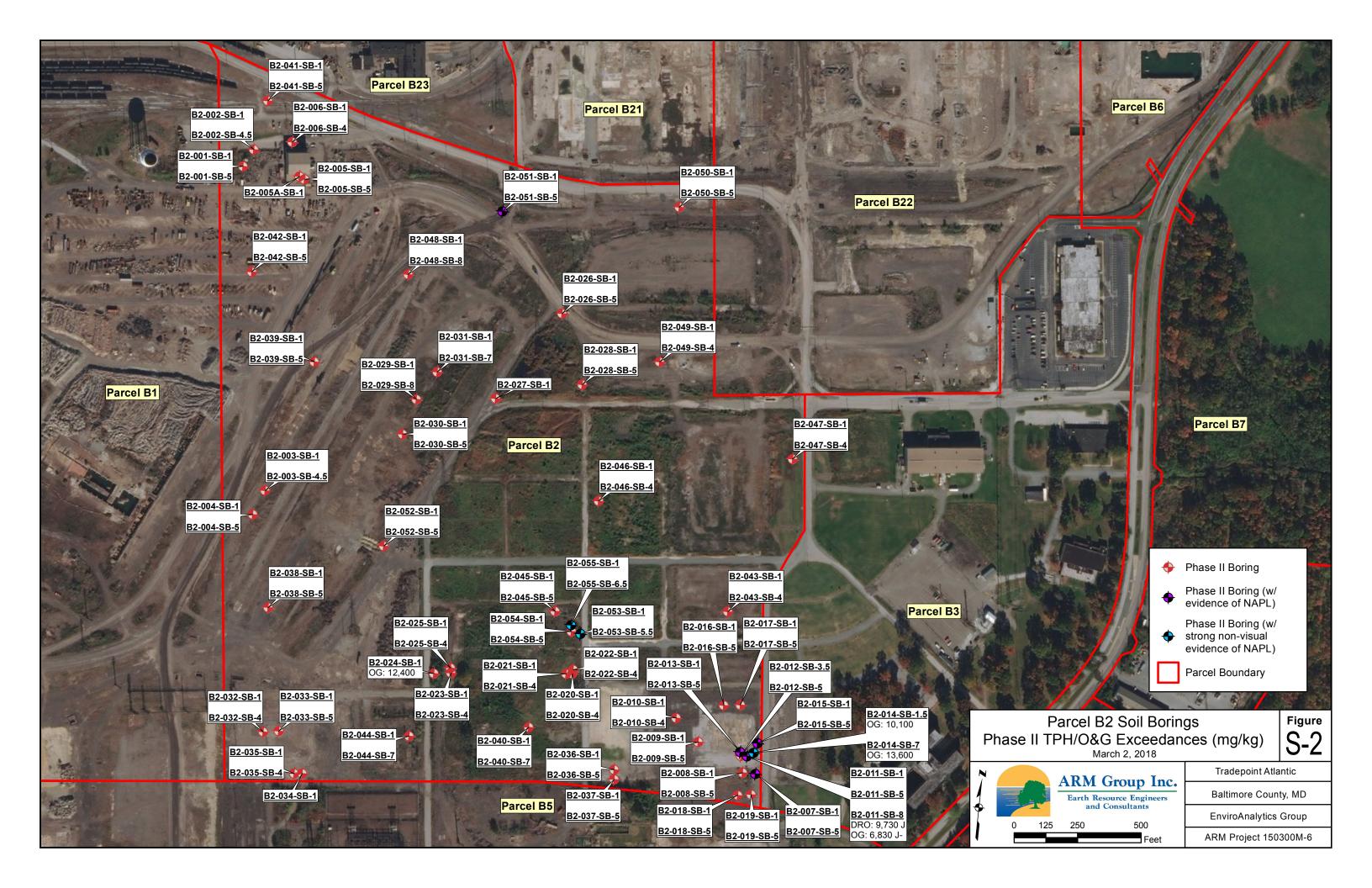
• Based on the historical use of the Plant Garage area and existing impacts which have been documented in the groundwater, additional monitoring and/or appropriate response actions will be coordinated as needed with the MDE.

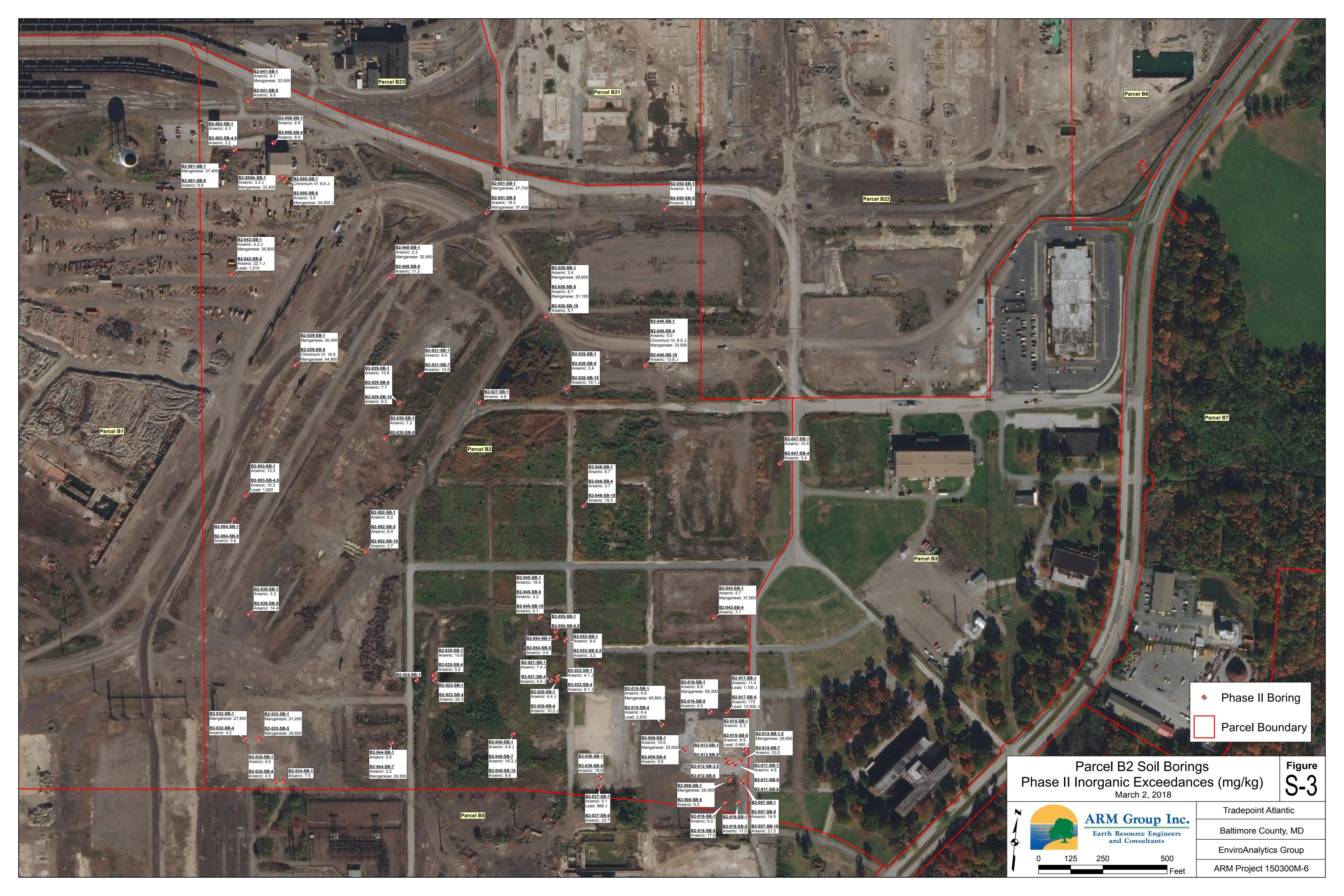

8.0 REFERENCES

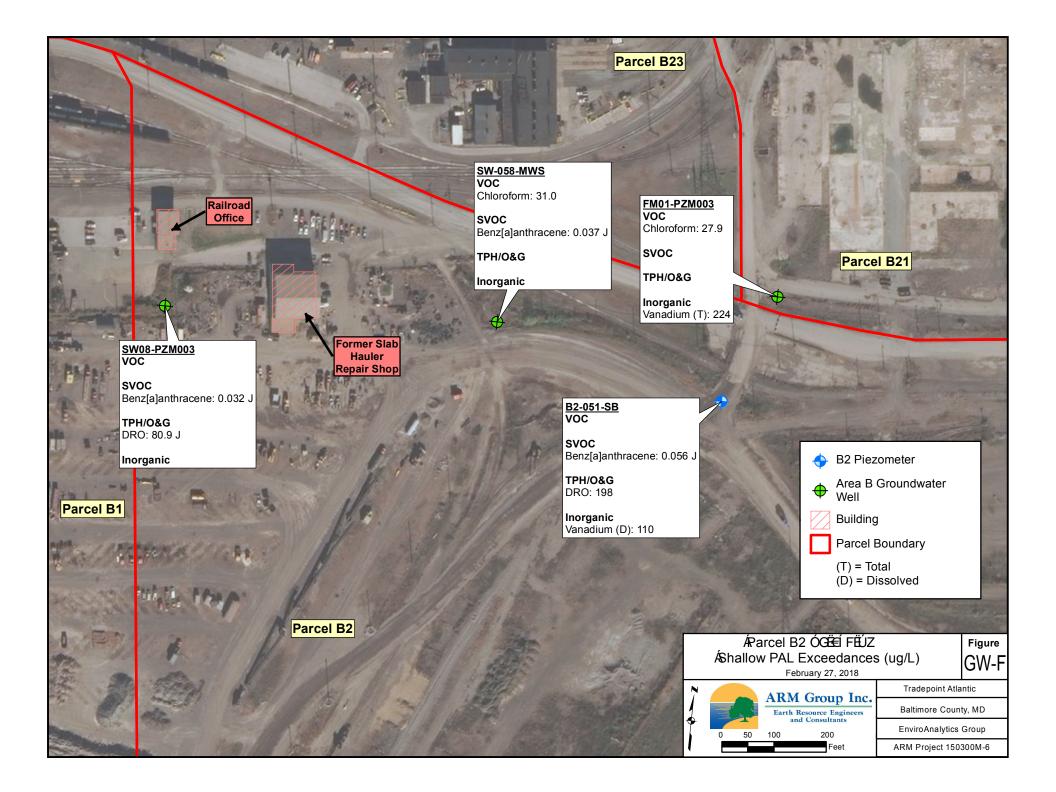

- ARM Group Inc. (2016). Area B Groundwater Phase II Investigation Report. Revision 0. September 30, 2016.
- ARM Group, Inc. (2017). Delineation/Characterization of Lead & Arsenic Impacted Soil at B2-017-SB – Area B: Parcel B2. Final Draft. September 18, 2017.
- ARM Group, Inc. (2017). Parcel B2 Phase II Investigation Work Plan (Revision 1): Response to Agency Comment. June 14, 2017.
- ARM Group, Inc. (2015). *Phase II Investigation Work Plan: Area B Groundwater Investigation*. Revision 3. October 6, 2015.
- ARM Group, Inc. (2017). *Phase II Investigation Work Plan Area B: Parcel B2*. Revision 1. May 17, 2017.
- ARM Group, Inc. (2016). *Quality Assurance Project Plan: Sparrows Point Terminal Site*. Revision 3. April 5, 2016.
- ARM Group, Inc. (2017). *Stormwater Pollution Prevention Plan (SWPPP)*. Revision 5. June 1, 2017.
- Geraghty & Miller, Inc. (1992). Closure of Underground Storage Tanks: Bethlehem Steel Corporation Sparrows Point Plant. Final Draft. June 12, 1992.
- Rust Environment & Infrastructure (1998). Description of Current Conditions: Bethlehem Steel Corporation. Final Draft. January 1998.
- USEPA (2017). Vapor Intrusion Screening Level (VISL) Calculator version 3.5. (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls).
- Weaver Boos Consultants (2014). Phase I Environmental Site Assessment: Former RG Steel Facility. Final Draft. May 19, 2014.

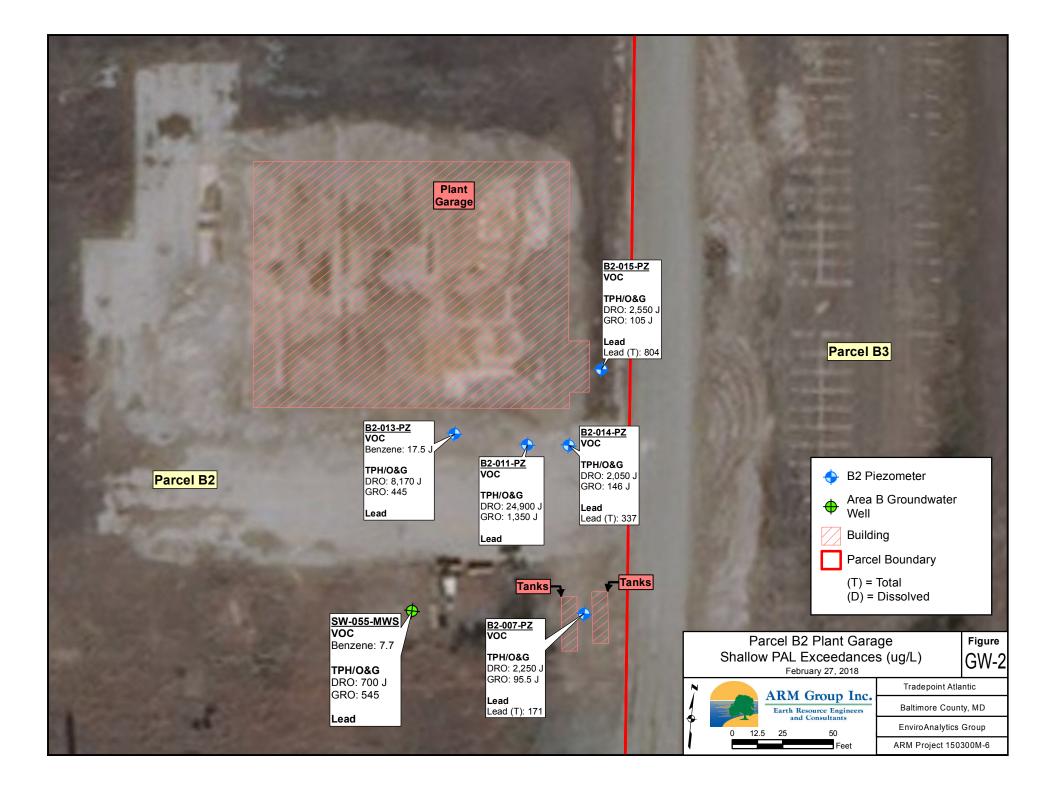


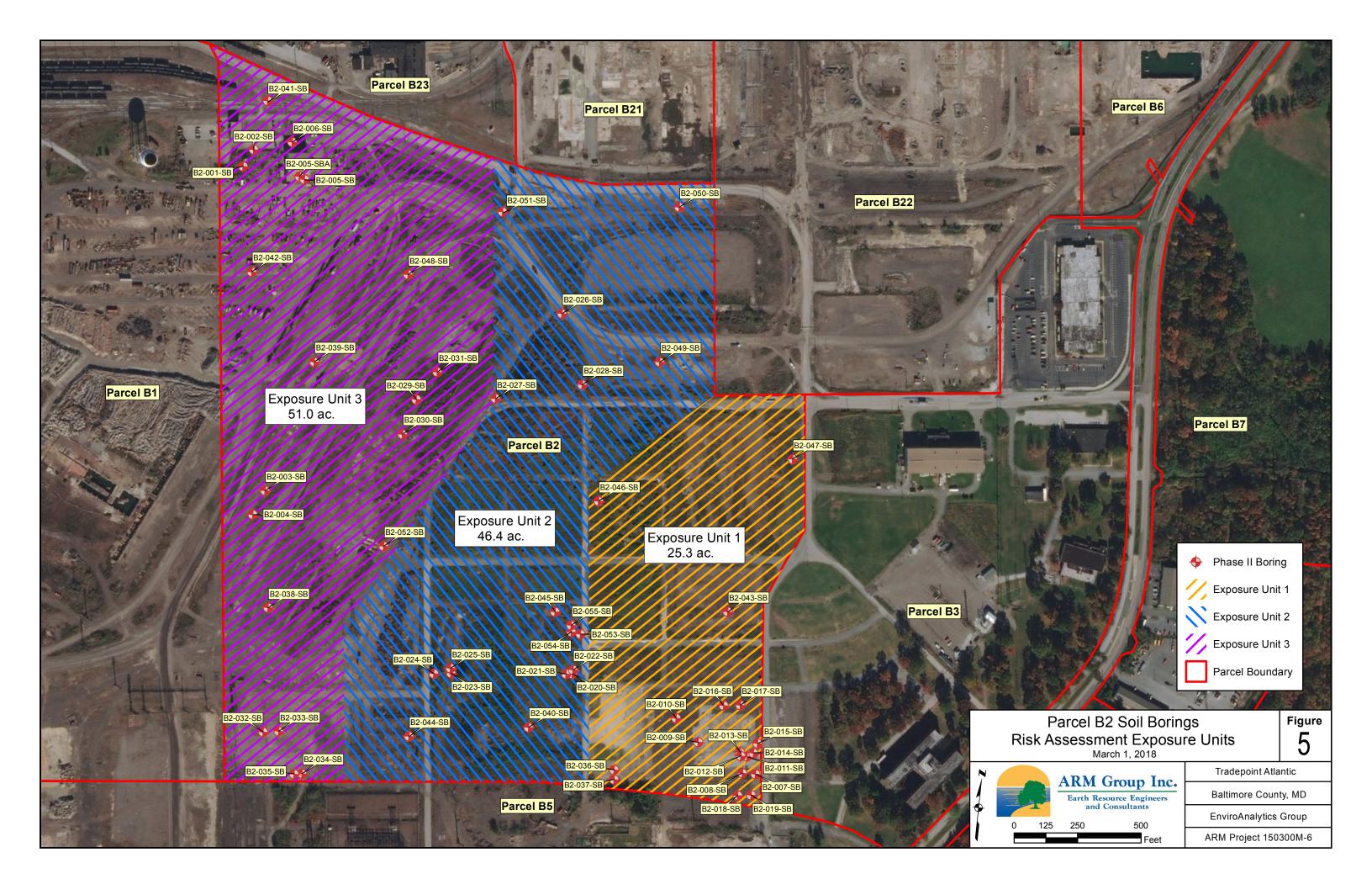

FIGURES











TABLES

	TABLE 1 HISTORICAL SITE DRAWI	ING DETAI	LS	
<u>Set Name</u>	Typical Features Shown	<u>Drawing</u> <u>Number</u>	<u>Original Date</u> <u>Drawn</u>	Latest Revision Date
		5023	9/8/1958	3/11/1982
		5027	6/24/1959	3/11/1982
	Roads, water bodies,	5028	6/24/1959	3/11/1982
Plant Arrangement	building/structure footprints, electric lines, above-ground pipelines	5033	6/23/1958	3/11/1982
	(e.g.: steam, nitrogen, etc.)	5034	6/23/1958	3/19/1982
		5039	9/1/1958	3/11/1982
		5040	6/15/1958	3/19/1982
		5123	Unknown	11/7/2008
		5127	Unknown	8/14/2008
	Roads, water bodies, demolished	5128	Unknown	12/14/2007
Plant Index	buildings/structures, electric lines,	5133	Unknown	7/9/2008
	above-ground pipelines	5134	Unknown	1/8/2008
		5139	Unknown	1/18/2008
		5140	Unknown	8/15/2008
		5523	Unknown	2/24/1982
		5527	Unknown	9/10/2008
	Same as above plus trenches, sumps,	5528	Unknown	9/10/2008
Plant Sewer Lines	underground piping (includes pipe	5533	8/25/1959	6/8/1976
	materials)	5534	8/28/1959	3/19/1976
		5539	8/28/1959	2/21/1975
		5540	6/15/1958	7/14/1991
Drip Legs	Coke Oven Gas Drip Legs Locations	5886B	Unknown	Sept. 1988

	TABLE 2 FIELD SHIFTED BORIN		S				
		Proposed	Location [¥]	Final L	ocation [¥]	Reloc	ation
Location ID	Sample Target	Northing	<u>Easting</u>	Northing	Easting	Distance & Dire	
B2-001-SB	Tank (unknown contents)	568,146	1,459,140	568,121	1,459,144	25	Ν
B2-002-SB	Tank (unknown contents)	568,151	1,459,174	568,192	1,459,179	41	NE
B2-005-SB	Slab Hauler Repair Shop	568,104	1,459,369	568,095	1,459,391	24	Е
B2-006-SB	Slab Hauler Repair Shop	568,219	1,459,328	568,235	1,459,327	19	Ν
B2-011-SB	Plant Garage	566,033	1,461,364	566,018	1,461,361	16	SW
B2-013-SB	Plant Garage	566,035	1,461,328	566,033	1,461,331	5	SE
B2-016-SB	Possible UST	566,210	1,461,244	566,209	1,461,248	3	SE
B2-022-SB	Residential Town Tanks	566,283	1,460,631	566,286	1,460,644	13	E
B2-023-SB	Residential Town Tanks	566,218	1,460,136	566,223	1,460,167	31	E
B2-025-SB	Residential Town Tanks	566,240	1,460,133	566,242	1,460,163	30	E
B2-026-SB	Residential Town Tanks	567,647	1,460,435	567,676	1,460,454	35	NE
B2-027-SB	Residential Town Tanks	567,348	1,460,247	567,316	1,460,229	37	SW
B2-029-SB	Scrap Processing Facility and Bulk Petroleum Storage	567,262	1,459,932	567,280	1,459,918	23	NW
B2-032-SB	Steelside Electronics Building	565,919	1,459,459	565,915	1,459,456	4	SW
B2-041-SB	Parcel B2 Coverage	568,393	1,459,181	568,388	1,459,214	34	SE
B2-042-SB	Parcel B2 Coverage	567,715	1,459,243	567,712	1,459,222	21	W
B2-051-SB	Parcel B2 Coverage	568,041	1,460,194	568,051	1,460,179	18	NW
B2-056-SG	Railroad Office	568,285	1,459,098	568,292	1,459,115	18	Е
B2-057-SG	Railroad Office	568,260	1,459,101	568,256	1,459,085	17	W
B2-058-SG	Railroad Office	568,232	1,459,105	568,235	1,459,117	13	Е

^{*}Reported northings and eastings are not survey accurate. Coordinates are reported in NAD 1983 Maryland State Plane (US feet).

	CHARACTERIZAT	TABLE		OLID IDW		
Sample ID	Parameter	Result (mg/kg)	TCLP Limit (mg/kg)	TCLP Exceedance	Laboratory Flag	LOQ (mg/kg)
	1,1-Dichloroethene	0.05	0.7	no	U	0.05
	1,2-Dichloroethane	0.05	0.5	no	U	0.05
	1,4-Dichlorobenzene	0.5	7.5	no	U	0.5
	2,4,5-Trichlorophenol	5	400	no	U	5
	2,4,6-Trichlorophenol	0.1	2	no	U	0.1
	2,4-Dinitrotoluene	0.1	0.13	no	U	0.1
	2-Butanone (MEK)	5	200	no	U	5
	2-Methylphenol	2	200	no	U	2
	3&4-Methylphenol(m&p Cresol)	2	200	no	U	2
	Arsenic	0.05	5	no	U	0.05
	Barium	0.081	100	no	J	1
	Benzene	0.05	0.5	no	U	0.05
B2 Waste	Cadmium	0.05	1	no	U	0.05
Disposal	Carbon tetrachloride	0.05	0.5	no	U	0.05
6/14/2017	Chlorobenzene	1	100	no	U	1
0/14/2017	Chloroform	0.5	6	no	U	0.5
	Chromium	0.025	5	no	В	0.05
	Hexachlorobenzene	0.1	0.13	no	U	0.1
	Hexachloroethane	0.5	3	no	U	0.5
	Lead	0.1	5	no	U	0.1
	Mercury	0.001	0.2	no	U	0.001
	Nitrobenzene	0.1	2	no	U	0.1
	Pentachlorophenol	5	100	no	U	5
	Selenium	0.0081	1	no	В	0.1
	Silver	0.05	5	no	U	0.05
	Tetrachloroethene	0.05	0.7	no	U	0.05
	Trichloroethene	0.05	0.5	no	U	0.05
	Vinyl chloride	0.05	0.2	no	U	0.05

TABLE 3

Г

	CHARACTERIZAT	TABLE		OLID IDW		
Sample ID	Parameter	Result (mg/kg)	TCLP Limit (mg/kg)	TCLP Exceedance	Laboratory Flag	LOQ (mg/kg)
	1,1-Dichloroethene	0.05	0.7	no	U	0.05
	1,2-Dichloroethane	0.05	0.5	no	U	0.05
	1,4-Dichlorobenzene	0.5	7.5	no	U	0.5
	2,4,5-Trichlorophenol	5	400	no	U	5
	2,4,6-Trichlorophenol	0.1	2	no	U	0.1
	2,4-Dinitrotoluene	0.1	0.13	no	U	0.1
	2-Butanone (MEK)	0.1	200	no	U	0.1
	2-Methylphenol	2	200	no	U	2
	3&4-Methylphenol(m&p Cresol)	2	200	no	U	2
	Arsenic	0.025	5	no	U	0.025
	Barium	0.51	100	no		0.05
	Benzene	0.05	0.5	no	U	0.05
B2 Soil	Cadmium	0.015	1	no	U	0.015
Waste	Carbon tetrachloride	0.05	0.5	no	U	0.05
9/29/2017	Chlorobenzene	0.05	100	no	U	0.05
9/29/2017	Chloroform	0.05	6	no	U	0.05
	Chromium	0.025	5	no	U	0.025
	Hexachlorobenzene	0.1	0.13	no	U	0.1
	Hexachloroethane	0.2	3	no	U	0.2
	Lead	0.12	5	no	U	0.12
	Mercury	0.001	0.2	no	U	0.001
	Nitrobenzene	0.1	2	no	U	0.1
	Pentachlorophenol	5	100	no	U	5
	Selenium	0.04	1	no	U	0.04
	Silver	0.03	5	no	U	0.03
	Tetrachloroethene	0.05	0.7	no	U	0.05
	Trichloroethene	0.05	0.5	no	U	0.05
	Vinyl chloride	0.05	0.2	no	U	0.05

TARLE 3

J: The positive result reported for this analyte is a quantitative esstimate below the laboratory LOQ.

U: The analyte was not detected in the sample. The numeric value represents the sample LOQ.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

TCLP: Toxicity Characteristic Leaching Procedure

LOQ: Limit of Quantitation

Γ

		TABL				
	CHARACTERIZATI	ON RES	ULTS FOR L	IQUID IDW	1	1
Sample	Parameter	Result	TCLP Limit	TCLP	Laboratory	LOQ
ID	i arameter	(mg/L)	(mg/L)	Exceedance	Flag	(mg/L)
	1,1-Dichloroethene	0.001	0.7	no	U	0.001
	1,2-Dichloroethane	0.001	0.5	no	U	0.001
	1,4-Dichlorobenzene	0.001	7.5	no	U	0.001
	2-Butanone (MEK)	0.01	200	no	U	0.01
	Arsenic	0.0132	5	no		0.01
	Barium	0.238	100	no		0.02
	Benzene	0.001	0.5	no	U	0.001
	Cadmium	0.0031	1	no	J	0.006
B2 Water	Carbon tetrachloride	0.001	0.5	no	U	0.001
Waste	Chlorobenzene	0.001	100	no	U	0.001
9/29/2017	Chloroform	0.001	6	no	U	0.001
	Chromium	0.121	5	no		0.01
	Lead	0.0567	5	no		0.01
	Mercury	0.00035	0.2	no		0.0002
	Selenium	0.016	1	no	U	0.016
	Silver	0.012	5	no	U	0.012
	Tetrachloroethene	0.001	0.7	no	U	0.001
	Trichloroethene	0.001	0.5	no	U	0.001
	Vinyl chloride	0.001	0.2	no	U	0.001
	1,1-Dichloroethene	0.005	0.7	no	U	0.005
	1,2-Dichloroethane	0.005	0.5	no	U	0.005
	1,4-Dichlorobenzene	0.005	7.5	no	U	0.005
	2,4,5-Trichlorophenol	0.0026	400	no	U	0.0026
	2,4,6-Trichlorophenol	0.001	2	no		0.001
	2,4-Dinitrotoluene	0.001	0.13	no	U	0.001
	2-Butanone (MEK)	0.05	200	no	U	0.05
	2-Methylphenol	0.001	200	no	U	0.001
	3&4-Methylphenol(m&p Cresol)	0.0021	200	no	U	0.0021
Water	Arsenic	0.005	5	no	U	0.005
Disposal	Barium	0.0261	100	no		0.01
6/14/2017	Benzene	0.005	0.5	no	U	0.005
	Cadmium	0.0803	1	no		0.003
	Carbon tetrachloride	0.005	0.5	no	U	0.005
	Chlorobenzene	0.005	100	no	U	0.005
	Chloroform	0.005	6	no	U	0.005
	Chromium	0.0039	5	no	J	0.005
	Hexachlorobenzene	0.001	0.13	no	U	0.001
	Hexachloroethane	0.001	3	no	U	0.001
	Lead	0.0058	5	no		0.005
	Mercury	0.0002	0.2	no	U	0.0002

	CHARACTERIZATI	TABLI ON RES		IQUID IDW		
Sample ID	Parameter	Result (mg/L)	TCLP Limit (mg/L)	TCLP Exceedance	Laboratory Flag	LOQ (mg/L)
	Nitrobenzene	0.001	2	no	U	0.001
	Pentachlorophenol	0.0026	100	no	U	0.0026
Water	Selenium	0.008	1	no	U	0.008
Disposal	Silver	0.006	5	no	U	0.006
6/14/2017	Tetrachloroethene	0.005	0.7	no	U	0.005
	Trichloroethene	0.005	0.5	no	U	0.005
	Vinyl chloride	0.005	0.2	no	U	0.005

J: The positive result reported for this analyte is a quantitative estimate below the laboratory LOQ.

U: The analyte was not detected in the sample. The numeric value represents the sample LOQ.

TCLP: Toxicity Characteristic Leaching Procedure

LOQ: Limit of Quantitation

Parameter	Units	PAL	B2-001-SB-1	B2-001-SB-5	B2-002-SB-1	B2-002-SB-4.5	B2-003-SB-1*	B2-003-SB-4.5*	B2-004-SB-1*
Volatile Organic Compounds		u							
1,2,3-Trichlorobenzene	mg/kg	930	N/A	0.0043 U	N/A	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	mg/kg	110	N/A	0.0043 U	N/A	N/A	N/A	N/A	N/A
1,2-Dichloroethane	mg/kg	2	N/A	0.0043 U	N/A	N/A	N/A	N/A	N/A
2-Butanone (MEK)	mg/kg	190,000	N/A	0.0086 U	N/A	N/A	N/A	N/A	N/A
Acetone	mg/kg	670,000	N/A	0.019 J	N/A	N/A	N/A	N/A	N/A
Benzene	mg/kg	5.1	N/A	0.0043 U	N/A	N/A	N/A	N/A	N/A
Carbon disulfide	mg/kg	3,500	N/A	0.0043 U	N/A	N/A	N/A	N/A	N/A
Cyclohexane	mg/kg	27,000	N/A	0.0086 U	N/A	N/A	N/A	N/A	N/A
Ethylbenzene	mg/kg	25	N/A	0.0043 U	N/A	N/A	N/A	N/A	N/A
Isopropylbenzene	mg/kg	9,900	N/A	0.0043 U	N/A	N/A	N/A	N/A	N/A
Toluene	mg/kg	47,000	N/A	0.0043 U	N/A	N/A	N/A	N/A	N/A
Xylenes	mg/kg	2,800	N/A	0.013 U	N/A	N/A	N/A	N/A	N/A
Semi-Volatile Organic Compounds'	\								
1,1-Biphenyl	mg/kg	200	0.076 U	0.073 U	0.078 U	0.078 U	0.031 J	0.072 U	0.016 J
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.076 U	0.073 U	0.078 U	0.078 U	0.073 U	0.072 U	0.074 U
2,4-Dimethylphenol	mg/kg	16,000	0.035 J	0.073 U	0.078 U	0.078 U	0.073 U	0.072 U	0.074 U
2,4-Dinitrotoluene	mg/kg	7.4	0.076 U	0.073 U	0.078 U	0.078 U	0.073 U	0.072 U	0.074 U
2-Chloronaphthalene	mg/kg	60,000	0.076 U	0.073 U	0.078 U	0.078 U	0.073 U	0.072 U	0.074 U
2-Methylnaphthalene	mg/kg	3,000	0.15	0.056 J	0.016 J	0.003 J	0.29	0.032	0.067
2-Methylphenol	mg/kg	41,000	0.076 R	0.073 U	0.078 U	0.078 U	0.073 U	0.072 U	0.074 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.15 R	0.15 U	0.16 U	0.15 U	0.15 U	0.14 U	0.15 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.076 U	0.073 UJ	0.078 U	0.078 U	0.073 U	0.072 U	0.074 U
4-Chloroaniline	mg/kg	11	0.076 U	0.073 U	0.078 U	0.078 U	0.073 U	0.072 U	0.074 U
Acenaphthene	mg/kg	45,000	0.098	0.022 J	0.016 J	0.0006 J	0.05	0.013	0.11
Acenaphthylene	mg/kg	45,000	0.15	0.034 J	0.078 UJ	0.0041 J	0.16	0.042	0.051
Acetophenone	mg/kg	120,000	0.027 J	0.028 J	0.078 U	0.078 U	0.033 J	0.072 U	0.021 J
Anthracene	mg/kg	230,000	0.087 J	0.053 J	0.009 J	0.0099	0.25	0.12	0.092
Benz[a]anthracene	mg/kg	21	0.0084	0.27	0.047 J	0.038	1.2	0.37	0.44
Benzaldehyde	mg/kg	120,000	0.076 U	0.023 J	0.053 J	0.078 U	0.083	0.072 U	0.031 J
Benzo[a]pyrene	mg/kg	2.1	0.0029 J	0.29	0.071 J	0.028	1.1	0.29	0.72
Benzo[b]fluoranthene	mg/kg	21	0.013	0.41	0.14	0.06	2.6	0.49	1.3
Benzo[g,h,i]perylene	mg/kg		0.0059 J	0.25	0.047 J	0.012	0.73	0.19	0.7
Benzo[k]fluoranthene	mg/kg	210	0.01	0.12	0.11	0.048	0.65	0.15	0.98
bis(2-Chloroethyl)ether	mg/kg	1	0.076 U	0.073 U	0.078 U	0.078 U	0.073 U	0.072 U	0.074 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.076 U	0.67 J	0.078 U	0.078 U	0.073 U	0.072 U	0.024 B
Caprolactam	mg/kg	400,000	1.3	0.043 J	0.2 U	0.19 U	0.18 U	0.18 U	0.19 U
Carbazole	mg/kg	2 100	0.076 U	0.073 U	0.078 U	0.078 U	0.16	0.11	0.019 J
Chrysene	mg/kg	2,100	0.026	0.32	0.043 J	0.032	1.3	0.33	0.46
Dibenz[a,h]anthracene	mg/kg	2.1	0.0075 U	0.072 J	0.078 U	0.0043 J	0.31	0.069	0.17
Diethylphthalate	mg/kg	660,000	0.076 U	0.073 U	0.078 U	0.078 U	0.073 U	0.072 U	0.074 U
Di-n-butylphthalate Di-n-ocytlphthalate	mg/kg	82,000	0.054 B	0.062 B	0.078 U	0.078 U	0.073 U	0.038 B	0.074 U
Fluoranthene	mg/kg	8,200 30,000	0.076 U 0.03 J	0.073 UJ 0.31	0.078 UJ 0.058 J	0.078 UJ 0.062	0.073 U 2.6	0.072 U 0.64	0.074 U 0.6
Fluoranthene	mg/kg mg/kg	30,000	0.03 J 0.071	0.31 0.016 J	0.058 J 0.078 UJ	0.062 0.0013 J	0.04	0.64	0.6
Hexachloroethane	mg/kg mg/kg	<u> </u>	0.071 0.039 J	0.016 J 0.031 J	0.078 UJ 0.078 U	0.0013 J 0.078 U	0.073 U	0.022 0.072 U	0.027 0.074 U
Indeno[1,2,3-c,d]pyrene	mg/kg mg/kg	8 21	0.039 J 0.0039 J	0.031 J	0.078 U 0.043 J	0.078 0	0.073 0	0.072 0	0.074 0
Isophorone	mg/kg mg/kg	21	0.0039 J	0.073 U	0.078 U	0.013 0.078 U	0.073 U	0.072 U	0.074 U
Naphthalene	mg/kg	2,400	0.042	0.073 U	0.078 UJ	0.078 U 0.0079 UJ	0.073 0	0.072 0	0.074 0
Nitrobenzene	mg/kg	22	0.042 0.076 U	0.073 U	0.078 U	0.079 UJ	0.073 U	0.072 U	0.071 0.074 U
N-Nitrosodiphenylamine	mg/kg	470	0.078 0	0.075 U	0.078 U	0.078 U	0.073 U	0.072 U	0.074 U
Phenanthrene	mg/kg	7 0	0.87 J	0.14	0.078 C	0.078 U 0.024 J	1.3	0.072 0	0.37
Phenol	mg/kg	250,000	0.076 R	0.073 U	0.078 U	0.024 J 0.078 U	0.073 U	0.072 U	0.074 U
Pyrene	mg/kg	23,000	0.38 J	0.39	0.078 C	0.047	<u>0.075 C</u> 2.1	0.072 0	0.6
PCBs	111 <u>5</u> / Kg	23,000	0.00 J	0.37	0.000 J	0.047	4.1	U-T /	0.0
	ma/1	0.04	0.010.11		0.010 U	NT/A	0.010 U	NT/A	0.010 U
Aroclor 1248	mg/kg	0.94	0.019 U	N/A	0.019 U	N/A	0.019 U	N/A	0.019 U
Aroclor 1254	mg/kg	0.97	0.019 U	N/A	0.019 U	N/A	0.11	N/A	0.025
Aroclor 1260	mg/kg	0.99	0.019 U	N/A	0.019 U	N/A	0.019 U	N/A	0.019 U
PCBs (total)	mg/kg	0.97	0.13 U	N/A	0.14 U	N/A	0.11 J	N/A	0.13 U
TPH/Oil and Grease									
Diesel Range Organics	mg/kg	6,200	1,310 J	218 J	81.5 J	5.4 B	61.6	19.6	64.7
Gasoline Range Organics	mg/kg	6,200	20.4	2.9 B	5.8 B	5.2 B	2.1 B	4.6 B	2.2 B
Oil and Grease	mg/kg	6,200	1,240	3,230	4,700	248	424	244	396
Detections in hold				he Project Action					

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

 $N\!/\!A$ indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-004-SB-5*	B2-005A-SB-1	B2-005-SB-1	B2-005-SB-5	B2-006-SB-1	B2-006-SB-4	B2-007-SB-1*
Volatile Organic Compounds	II	I							I
1,2,3-Trichlorobenzene	mg/kg	930	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
1,2,4-Trichlorobenzene	mg/kg	110	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
1,2-Dichloroethane	mg/kg	2	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	N/A	N/A	N/A	N/A	0.0059 J
Acetone	mg/kg	670,000	N/A	N/A	N/A	N/A	N/A	N/A	0.03
Benzene	mg/kg	5.1	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
Cyclohexane	mg/kg	27,000	N/A	N/A	N/A	N/A	N/A	N/A	0.0092 U
Ethylbenzene	mg/kg	25	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
Isopropylbenzene	mg/kg	9,900	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
Xylenes	mg/kg	2,800	N/A	N/A	N/A	N/A	N/A	N/A	0.014 U
Semi-Volatile Organic Compounds^		200	0.07611	0.072.11	0.074.11	0.072.11	0.000 X	0.0 <i>C</i> 0 T	0.072.11
1,1-Biphenyl	mg/kg	200 350	0.076 U	0.073 U	0.074 U	0.073 U	0.022 J	0.063 J	0.073 U
1,2,4,5-Tetrachlorobenzene	mg/kg	350 16,000	0.076 U 0.076 U	0.073 U 0.073 UJ	0.074 U 0.074 R	0.073 U 0.073 R	0.073 U 0.073 U	0.019 J 0.059 J	0.073 U 0.073 U
2,4-Dimethylphenol 2,4-Dinitrotoluene	mg/kg mg/kg	7.4	0.076 U	0.073 U	0.074 K 0.074 U	0.073 K	0.073 U	0.082 U	0.073 U
2,4-Dimtrototuene 2-Chloronaphthalene	mg/kg	60,000	0.076 U	0.073 U	0.074 U 0.074 U	0.073 U 0.073 U	0.073 U 0.073 U	0.082 U 0.082 U	0.073 U
2-Methylnaphthalene	mg/kg	3,000	0.078 0	0.075 U	0.074 U 0.074 U	0.075 U 0.0062 J	0.073 U	0.082 0	0.073 U 0.025 J
2-Methylphenol	mg/kg	41,000	0.076 U	0.073 UJ	0.074 C	0.073 R	0.073 U	0.039 J	0.073 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.15 U	0.15 UJ	0.15 R	0.15 R	0.15 U	0.035 J	0.14 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.076 U	0.073 UJ	0.074 U	0.073 U	0.073 UJ	0.082 UJ	0.073 U
4-Chloroaniline	mg/kg	11	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
Acenaphthene	mg/kg	45,000	0.013	0.0008 J	0.074 UJ	0.0073 UJ	0.058 J	0.044 J	0.0069 J
Acenaphthylene	mg/kg	45,000	0.5	0.0091	0.074 UJ	0.0073 UJ	0.17	0.12	0.0054 J
Acetophenone	mg/kg	120,000	0.076 U	0.073 U	0.074 U	0.073 U	0.02 J	0.045 J	0.073 U
Anthracene	mg/kg	230,000	0.35	0.0058 J	0.0043 J	0.0036 J	0.33	0.22	0.015 J
Benz[a]anthracene	mg/kg	21	1.8	0.019	0.019 J	0.013	0.91	0.54	0.072 U
Benzaldehyde	mg/kg	120,000	0.076 U	0.073 U	0.019 J	0.073 U	0.025 J	0.11 J	0.073 U
Benzo[a]pyrene	mg/kg	2.1	2	0.013	0.012 J	0.0099	0.8	0.51	0.072 U
Benzo[b]fluoranthene	mg/kg	21	2.9	0.033	0.057 J	0.027	1.5	1	0.04 J
Benzo[g,h,i]perylene	mg/kg	210	1.4	0.021	0.023 J	0.0062 J	0.41	0.53	0.015 J
Benzo[k]fluoranthene	mg/kg	210	1.2	0.026	0.045 J	0.021	1.2	0.85	0.032 J
bis(2-Chloroethyl)ether	mg/kg	160	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
bis(2-Ethylhexyl)phthalate	mg/kg	160 400,000	0.076 U 0.19 U	0.047 J 0.18 U	0.033 J 0.19 U	0.073 U 0.18 U	0.057 B	0.09 B	0.095 0.18 U
Caprolactam Carbazole	mg/kg mg/kg	400,000	0.19 0	0.18 U	0.19 U 0.074 U	0.18 U	0.023 J 0.078 J	0.066 J 0.075 J	0.18 U 0.073 U
Chrysene	mg/kg	2,100	1.8	0.073 0	0.074 U	0.073 0	0.82	0.58	0.073 U
Dibenz[a,h]anthracene	mg/kg	2,100	0.56	0.0022 0.0034 J	0.074 U	0.0014 0.0016 J	0.15	0.15	0.072 U
Diethylphthalate	mg/kg	660,000	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.023 B	0.086
Di-n-butylphthalate	mg/kg	82,000	0.076 U	0.12 B	0.074 U	0.073 U	0.05 B	0.058 B	0.059 B
Di-n-ocytlphthalate	mg/kg	8,200	0.076 U	0.073 UJ	0.074 UJ	0.073 U	0.073 UJ	0.082 UJ	0.073 U
Fluoranthene	mg/kg	30,000	2.4	0.035	0.055 J	0.032	1.3	0.9	0.072 U
Fluorene	mg/kg	30,000	0.12	0.0013 J	0.074 UJ	0.0073 UJ	0.094	0.053 J	0.0082 J
Hexachloroethane	mg/kg	8	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	1.4	0.011	0.074 U	0.0058 J	0.49	0.41	0.072 U
Isophorone	mg/kg	2,400	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
Naphthalene	mg/kg	17	0.23	0.0094	0.074 UJ	0.0061 J	0.18	0.48	0.072 U
Nitrobenzene	mg/kg	22	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
N-Nitrosodiphenylamine	mg/kg	470	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
Phenanthrene	mg/kg		1.3	0.016	0.022 J	0.02 J	1	1.2	0.064 J
Phenol	mg/kg	250,000	0.076 U	0.073 UJ	0.074 R	0.073 R	0.073 U	0.046 J	0.073 U
Pyrene	mg/kg	23,000	1.9	0.03	0.077	0.025	0.99	0.73	0.074
PCBs									
Aroclor 1248	mg/kg	0.94	N/A	0.018 U	0.018 U	N/A	0.019 U	N/A	0.018 U
Aroclor 1254	mg/kg	0.97	N/A	0.018 U	0.018 U	N/A	0.019 U	N/A	0.018 U
Aroclor 1260	mg/kg	0.99	N/A	0.018 U	0.018 U	N/A	0.019 U	N/A	0.018 U
PCBs (total)	mg/kg	0.97	N/A	0.13 U	0.13 U	N/A	0.13 U	N/A	0.13 U
TPH/Oil and Grease		1							
Dissal Danas Ossanias	mg/kg	6,200	30.1	113 J	507 J	31.3 J	53.3 J	90.5 J	605
Diesel Range Organics		,							
Gasoline Range Organics Oil and Grease	mg/kg mg/kg	6,200 6,200	4.6 B 438	4.1 B 436 J-	4.7 B 2,440	4.3 B 254	3.4 B 460	3.5 B 552	7.4 B 4,810

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-007-SB-5*	B2-008-SB-1*	B2-008-SB-5*	B2-009-SB-1	B2-009-SB-5	B2-010-SB-1	B2-010-SB-4
Volatile Organic Compounds	<u>II</u>								
1,2,3-Trichlorobenzene	mg/kg	930	0.0057 U	N/A	N/A	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	mg/kg	110	0.0057 U	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichloroethane	mg/kg	2	0.0013 J	N/A	N/A	N/A	N/A	N/A	N/A
2-Butanone (MEK)	mg/kg	190,000	0.0095 J	N/A	N/A	N/A	N/A	N/A	N/A
Acetone	mg/kg	670,000	0.068	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	mg/kg	5.1	0.0057 U	N/A	N/A	N/A	N/A	N/A	N/A
Carbon disulfide	mg/kg	3,500	0.0057 U	N/A	N/A	N/A	N/A	N/A	N/A
Cyclohexane	mg/kg	27,000	0.011 U	N/A	N/A	N/A	N/A	N/A	N/A
Ethylbenzene	mg/kg	25	0.0057 U	N/A	N/A	N/A	N/A	N/A	N/A
Isopropylbenzene	mg/kg	9,900	0.0057 U	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	mg/kg	47,000	0.0057 U	N/A	N/A	N/A	N/A	N/A	N/A
Xylenes	mg/kg	2,800	0.017 U	N/A	N/A	N/A	N/A	N/A	N/A
Semi-Volatile Organic Compounds^	0 0								
1,1-Biphenyl	mg/kg	200	0.084 U	0.039 J	0.073 U	0.07 U	0.093 U	0.36 U	0.019 J
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.084 U	0.071 U	0.073 U	0.07 U	0.093 U	0.36 U	0.075 U
2,4-Dimethylphenol	mg/kg	16,000	0.084 U	0.071 U	0.073 U	0.07 U	0.093 U	0.36 U	0.075 U
2,4-Dinitrotoluene	mg/kg	7.4	0.084 U	0.071 U	0.073 U	0.07 U	0.093 U	0.36 U	0.075 U
2-Chloronaphthalene	mg/kg	60,000	0.084 U	0.071 U	0.073 U	0.07 U	0.093 U	0.36 U	0.12
2-Methylnaphthalene	mg/kg	3,000	0.26	0.12	0.015 J	0.11	0.028	0.025 J	0.053
2-Methylphenol	mg/kg	41,000	0.084 U	0.071 U	0.073 U	0.07 U	0.046 J	0.36 U	0.075 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.021 J	0.14 U	0.15 U	0.14 U	0.047 J	0.72 U	0.15 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.084 U	0.071 U	0.073 U	0.07 UJ	0.093 U	0.36 U	0.075 U
4-Chloroaniline	mg/kg	11	0.47	0.071 U	0.073 U	0.07 U	0.093 U	0.36 U	0.075 U
Acenaphthene	mg/kg	45,000	0.086 U	0.0073 J	0.073 U	0.0073	0.0011 J	0.072 UJ	0.0077 J
Acenaphthylene	mg/kg	45,000	0.044 J	0.055	0.0097 J	0.036	0.0041 J	0.048 J	0.019 J
Acetophenone	mg/kg	120,000	0.097	0.021 J	0.073 U	0.07 U	0.093 U	0.36 U	0.075 U
Anthracene	mg/kg	230,000	0.61	0.11	0.018 J	0.019	0.0068 J	0.12	0.047
Benz[a]anthracene	mg/kg	21	0.21	0.36	0.04 J	0.053	0.02	0.61	0.21
Benzaldehyde	mg/kg	120,000	0.047 J	0.071 U	0.073 U	0.07 R	0.093 R	0.36 U	0.054 J
Benzo[a]pyrene	mg/kg	2.1	0.21	0.29	0.038 J	0.045	0.028	0.48	0.2
Benzo[b]fluoranthene	mg/kg	21	0.43	0.54	0.093	0.17	0.07	1.2	0.42
Benzo[g,h,i]perylene	mg/kg		0.1	0.12	0.017 J	0.034	0.011	0.27	0.11
Benzo[k]fluoranthene	mg/kg	210	0.12	0.15	0.07 J	0.13	0.055	0.95	0.33
bis(2-Chloroethyl)ether	mg/kg	1	0.084 U	0.071 U	0.073 U	0.07 U	0.093 U	0.36 U	0.075 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.084 U	0.071 U	0.073 U	0.042 J	0.093 U	0.36 U	0.075 U
Caprolactam	mg/kg	400,000	0.21 U	0.022 J	0.18 U	0.18 U	0.23 U	0.91 U	0.03 J
Carbazole	mg/kg		0.084 U	0.061 J	0.073 U	0.07 U	0.093 U	0.17 J	0.04 J
Chrysene	mg/kg	2,100	0.22	0.34	0.038 J	0.077	0.027	0.56	0.23
Dibenz[a,h]anthracene	mg/kg	2.1	0.036 J	0.041	0.073 U	0.0087	0.0032 J	0.077	0.032
Diethylphthalate	mg/kg	660,000	0.084 U	0.089	0.11	0.07 U	0.093 U	0.36 U	0.075 U
Di-n-butylphthalate	mg/kg	82,000	0.084 U	0.037 B	0.054 B	0.07 U	0.093 U	0.36 U	0.075 U
Di-n-ocytlphthalate	mg/kg	8,200	0.084 U	0.071 U	0.073 U	0.07 UJ	0.093 U	0.36 U	0.075 U
Fluoranthene	mg/kg	30,000	0.33	0.76	0.055 J	0.12	0.034	1.2	0.38
Fluorene	mg/kg	30,000	0.43	0.014	0.073 U	0.0088	0.0023 J	0.072 UJ	0.017 J
Hexachloroethane	mg/kg	8	0.084 U	0.071 U	0.073 U	0.07 U	0.093 U	0.36 U	0.075 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.11	0.12	0.018 J	0.036	0.011	0.28	0.1
Isophorone	mg/kg	2,400	0.084 U	0.071 U	0.073 U	0.07 U	0.093 U	0.36 U	0.075 U
Naphthalene	mg/kg	17	0.19	0.18	0.073 U	0.12	0.025	0.046 J	0.11 J
Nitrobenzene	mg/kg	22	0.084 U	0.071 U	0.073 U	0.07 U	0.093 U	0.36 U	0.075 U
N-Nitrosodiphenylamine	mg/kg	470	0.84	0.071 U	0.017 J	0.07 U	0.093 U	0.36 U	0.075 U
Phenanthrene	mg/kg		0.41	0.53	0.031 J	0.17	0.037	0.47 J	0.26 J
Phenol	mg/kg	250,000	0.084 U	0.071 U	0.073 U	0.07 U	0.098	0.36 U	0.075 U
Pyrene	mg/kg	23,000	0.5	0.57	0.071 J	0.088	0.034	0.91	0.31
PCBs									
Aroclor 1248	mg/kg	0.94	N/A	0.018 U	N/A	0.018 U	N/A	0.018 U	N/A
Aroclor 1254	mg/kg	0.97	N/A	0.018 U	N/A	0.018 U	N/A	0.018 U	N/A
Aroclor 1260	mg/kg	0.99	N/A	0.018 U	N/A	0.018 U	N/A	0.018 U	N/A
PCBs (total)	mg/kg	0.97	N/A	0.13 U	N/A	0.13 U	N/A	0.13 U	N/A
TPH/Oil and Grease									
Diesel Range Organics	mg/kg	6,200	1,480	55.8	211	201 J	24.1 J	160 J	38.4 J
Gasoline Range Organics	mg/kg	6,200	21.5	7.5 B	6.7 B	4.4 B	7.6 B	8.1 B	5.6 B
Oil and Grease	mg/kg	6,200	2,020	223	442	1,260 J-	163 J-	1,410	219
Uil and Grease									

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-011-SB-1	B2-011-SB-5	B2-011-SB-8	B2-012-SB-3.5	B2-012-SB-5	B2-013-SB-1	B2-013-SB-5
Volatile Organic Compounds	<u> </u>								
1,2,3-Trichlorobenzene	mg/kg	930	N/A	N/A	0.28 U	N/A	N/A	0.0049 U	0.0044 U
1,2,4-Trichlorobenzene	mg/kg	110	N/A	N/A	0.28 U	N/A	N/A	0.0049 U	0.0044 U
1,2-Dichloroethane	mg/kg	2	N/A	N/A	0.28 U	N/A	N/A	0.0049 U	0.0044 U
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	0.55 U	N/A	N/A	0.0033 J	0.0087 U
Acetone	mg/kg	670,000	N/A	N/A	0.55 U	N/A	N/A	0.057 J	0.052 J
Benzene	mg/kg	5.1	N/A	N/A	0.28 U	N/A	N/A	0.0049 U	0.0022 J
Carbon disulfide	mg/kg	3,500	N/A	N/A	0.28 UJ	N/A	N/A	0.0049 UJ	0.0026 J
Cyclohexane	mg/kg	27,000	N/A	N/A	0.55 U	N/A	N/A	0.0098 U	0.075
Ethylbenzene	mg/kg	25	N/A	N/A	0.54	N/A	N/A	0.0049 U	0.0074
Isopropylbenzene	mg/kg	9,900	N/A	N/A	9.3	N/A	N/A	0.0049 U	0.025
Toluene	mg/kg	47,000	N/A	N/A	0.28 U	N/A	N/A	0.0049 U	0.0044 U
Xylenes Semi-Volatile Organic Compounds	mg/kg	2,800	N/A	N/A	0.55 J	N/A	N/A	0.015 U	0.013 U
1,1-Biphenyl	mg/kg	200	0.073 U	0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	141
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.073 U	0.074 U 0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	1.4 J 1.4 U
2,4-Dimethylphenol	mg/kg	16,000	0.073 C	0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	0.34 J
2,4-Dinitrotoluene	mg/kg	7.4	0.073 U	0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	1.4 U
2-Chloronaphthalene	mg/kg	60,000	0.073 U	0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	1.4 U
2-Methylnaphthalene	mg/kg	3,000	0.0082 J	0.023 J	2.6	0.072 U	0.00075 J	0.012	10.2
2-Methylphenol	mg/kg	41,000	0.073 R	0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	1.4 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.15 R	0.15 U	3 U	0.14 U	0.15 U	0.14 U	2.8 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.073 UJ	0.074 UJ	1.5 U	0.072 U	0.076 U	0.069 U	1.4 U
4-Chloroaniline	mg/kg	11	0.073 U	0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	1.4 U
Acenaphthene	mg/kg	45,000	0.074 U	0.0066 J	3	0.073 U	0.0076 U	0.00081 J	0.95
Acenaphthylene	mg/kg	45,000	0.074 U	0.0077 J	1.3	0.073 U	0.0076 U	0.007 U	0.11
Acetophenone	mg/kg	120,000	0.073 U	0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	1.4 U
Anthracene	mg/kg	230,000	0.014 J	0.019 J	2.4	0.073 U	0.0076 U	0.0012 J	0.93
Benz[a]anthracene	mg/kg	21	0.1	0.076	0.024 J	0.073 U	0.0076 U	0.001 J	0.07 U
Benzaldehyde	mg/kg	120,000	0.073 R	0.074 R	1.5 R	0.072 R	0.076 R	0.069 R	1.4 R
Benzo[a]pyrene Benzo[b]fluoranthene	mg/kg	2.1 21	0.083	0.07 J 0.16	0.018 J 0.041 J	0.073 U 0.073 U	0.0076 U 0.0076 U	0.007 U 0.007 U	0.07 U 0.07 U
Benzo[g,h,i]perylene	mg/kg mg/kg	21	0.24 0.042 J	0.16 0.031 J	0.041 J 0.0089 J	0.073 U	0.0076 U	0.007 U	0.07 U
Benzo[k]fluoranthene	mg/kg	210	0.042 J 0.19	0.031 J	0.0033 J	0.073 U	0.0076 U	0.007 U	0.07 U
bis(2-Chloroethyl)ether	mg/kg	1	0.073 U	0.074 U	1.5 U	0.073 U	0.076 U	0.069 U	1.4 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.23 J	0.28 J	1.5 U	0.072 U	0.076 U	0.19	1.4 U
Caprolactam	mg/kg	400,000	0.18 U	0.1 J	37.9	0.18 U	0.19 U	0.17 U	6.4
Carbazole	mg/kg		0.073 U	0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	1.4 U
Chrysene	mg/kg	2,100	0.12	0.06 J	0.15	0.073 U	0.0076 U	0.0016 J	0.068 J
Dibenz[a,h]anthracene	mg/kg	2.1	0.074 U	0.074 U	0.073 U	0.073 U	0.0076 U	0.007 U	0.07 U
Diethylphthalate	mg/kg	660,000	0.073 U	0.074 U	1.5 U	0.072 U	0.066 J	0.048 J	1 J
Di-n-butylphthalate	mg/kg	82,000	0.3 J	0.37	1.5 U	0.072 U	0.076 U	0.069 U	1.4 U
Di-n-ocytlphthalate	mg/kg	8,200	0.073 UJ	0.074 UJ	1.5 U	0.072 U	0.076 U	0.069 U	1.4 U
Fluoranthene	mg/kg	30,000	0.21	0.11	0.25	0.073 U	0.0076 U	0.0021 J	0.12
Fluorene	mg/kg	30,000	0.074 U	0.0092 J	4.5	0.073 U	0.0076 U	0.007 U	2
Hexachloroethane	mg/kg	8 21	0.073 U 0.034 J	0.074 U 0.027 J	1.5 U 0.073 U	0.072 U 0.073 U	0.076 U 0.0076 U	0.069 U 0.007 U	3.4 0.07 U
Indeno[1,2,3-c,d]pyrene Isophorone	mg/kg mg/kg	21	0.034 J 0.073 U	0.027 J 0.074 U	0.073 U 1.5 U	0.073 U 0.072 U	0.0076 U	0.007 U 0.069 U	1.4 U
Naphthalene	mg/kg	2,400	0.073 U 0.074 U	0.074 U	2.8	0.072 U	0.0076 U	0.0056 B	0.79
Nitrobenzene	mg/kg	22	0.074 U	0.074 U	1.5 U	0.073 U	0.076 U	0.069 U	1.4 U
N-Nitrosodiphenylamine	mg/kg	470	0.073 U	0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	2.1
Phenanthrene	mg/kg		0.096	0.065 J	8.9	0.072 U	0.0076 U	0.0089	3.6
Phenol	mg/kg	250,000	0.073 R	0.074 U	1.5 U	0.072 U	0.076 U	0.069 U	1.4 U
Pyrene	mg/kg	23,000	0.22	0.11	1.9	0.073 U	0.0076 U	0.0033 J	0.81
PCBs							-		
Aroclor 1248	mg/kg	0.94	0.092 U	N/A	N/A	0.018 U	N/A	0.017 U	N/A
Aroclor 1254	mg/kg	0.97	0.092 U	N/A	N/A	0.018 U	N/A	0.017 U	N/A
Aroclor 1260	mg/kg	0.99	0.092 U	N/A	N/A	0.018 U	N/A	0.017 U	N/A
PCBs (total)	mg/kg	0.97	0.65 U	N/A	N/A	0.13 U	N/A	0.12 U	N/A
TPH/Oil and Grease							• 	· · · · ·	
Diesel Range Organics	mg/kg	6,200	162 J	197 J	9,730 J	9.7 J	8.2 J	137 J	2,830 J
Gasoline Range Organics	mg/kg	6,200	9 B	8.1 B	1,120	5.3 B	6.5 B	5.7 B	101
Oil and Grease	mg/kg	6,200	2,620 J-	373 J-	6,830 J-	234 J-	141 J-	290 J-	2,310 J-
· ····································		-,00	_,0_0	0100		-010			_,0100

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

 $N\!/\!A$ indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-014-SB-1.5*	B2-014-SB-7*	B2-015-SB-1	B2-015-SB-5	B2-016-SB-1	B2-016-SB-5	B2-017-SB-1
Volatile Organic Compounds									
1,2,3-Trichlorobenzene	mg/kg	930	N/A	0.0059 U	N/A	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	mg/kg	110	N/A	0.0059 U	N/A	N/A	N/A	N/A	N/A
1.2-Dichloroethane	mg/kg	2	N/A	0.0059 U	N/A	N/A	N/A	N/A	N/A
2-Butanone (MEK)	mg/kg	190,000	N/A	0.0064 J	N/A	N/A	N/A	N/A	N/A
Acetone	mg/kg	670,000	N/A	0.038	N/A	N/A	N/A	N/A	N/A
Benzene	mg/kg	5.1	N/A	0.0059 U	N/A	N/A	N/A	N/A	N/A
Carbon disulfide	mg/kg	3,500	N/A	0.0059 U	N/A	N/A	N/A	N/A	N/A
Cyclohexane	mg/kg	27,000	N/A	0.012 U	N/A	N/A	N/A	N/A	N/A
Ethylbenzene	mg/kg	25	N/A	0.0059 U	N/A	N/A	N/A	N/A	N/A
Isopropylbenzene	mg/kg	9,900	N/A	0.0059 U	N/A	N/A	N/A	N/A	N/A
Toluene	mg/kg	47,000	N/A	0.0059 U	N/A	N/A	N/A	N/A	N/A
Xylenes	mg/kg	2,800	N/A	0.018 U	N/A	N/A	N/A	N/A	N/A
Semi-Volatile Organic Compounds^	0 0	,					"		
1,1-Biphenyl	mg/kg	200	0.072 U	1.6 U	0.071 U	0.08 U	0.071 U	0.022 J	0.072 U
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.072 U	1.6 U	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
2,4-Dimethylphenol	mg/kg	16,000	0.072 U	0.49 J	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
2,4-Dinitrotoluene	mg/kg	7.4	0.072 U	1.6 U	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
2-Chloronaphthalene	mg/kg	60,000	0.072 U	1.6 U	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
2-Methylnaphthalene	mg/kg	3,000	0.072 C	1.5	0.081	0.0074 J	0.022 J	0.075 J	0.072 C
2-Methylphenol	mg/kg	41,000	0.072 U	1.6 U	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.14 U	3.3 U	0.14 U	0.16 U	0.14 U	0.15 U	0.14 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.024 J	1.6 U	0.071 UJ	0.08 UJ	0.071 U	0.075 U	0.072 UJ
4-Chloroaniline	mg/kg	11	0.072 U	1.6 U	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
Acenaphthene	mg/kg	45,000	0.072 U	0.43	0.015 J	0.08 U	0.071 U	0.075 U	0.072 U
Acenaphthylene	mg/kg	45,000	0.072 U	0.36	0.013 J	0.025 J	0.072 C	0.0084 J	0.012 C
Acetophenone	mg/kg	120,000	0.072 U	1.6 U	0.071 U	0.025 J	0.071 U	0.075 U	0.072 U
Anthracene	mg/kg	230,000	0.0066 J	0.6	0.07 J	0.0088 J	0.023 J	0.016 J	0.012 C
Benz[a]anthracene	mg/kg	230,000	0.073	0.99	0.39	0.081 J	0.23	0.11	0.091
Benzaldehyde	mg/kg	120,000	0.073 U	1.6 U	0.071 R	0.08 R	0.071 R	0.075 R	0.072 R
Benzo[a]pyrene	mg/kg	2.1	0.065 J	1.1	0.32	0.085 J	0.19	0.075 K	0.085
Benzo[b]fluoranthene	mg/kg	2.1	0.19	2	0.69	0.19	0.45	0.27	0.005
Benzo[g,h,i]perylene	mg/kg	21	0.04 J	0.39	0.17	0.066 J	0.11	0.081	0.2 0.065 J
Benzo[k]fluoranthene	mg/kg	210	0.15	0.56	0.54	0.15	0.36	0.001	0.16
bis(2-Chloroethyl)ether	mg/kg	1	0.072 U	1.6 U	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.072 0	1.6 U	0.13 J	0.08 UJ	0.071 U	0.075 U	0.36 J
Caprolactam	mg/kg	400,000	0.18 U	4.1 U	0.18 U	0.2 U	0.18 U	0.043 J	0.18 U
Carbazole	mg/kg	100,000	0.072 U	1.6 U	0.022 J	0.08 U	0.071 U	0.075 U	0.072 U
Chrysene	mg/kg	2,100	0.11	0.94	0.36	0.085 J	0.21	0.12	0.089
Dibenz[a,h]anthracene	mg/kg	2.1	0.072 U	0.12	0.044 J	0.08 U	0.032 J	0.017 J	0.015 J
Diethylphthalate	mg/kg	660,000	0.1	0.6 B	0.071 U	0.08 U	0.071 U	0.069 J	0.072 U
Di-n-butylphthalate	mg/kg	82,000	0.07 B	1.6 U	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
Di-n-ocytlphthalate	mg/kg	8,200	0.072 U	1.6 U	0.071 UJ	0.08 UJ	0.037 J	0.075 U	0.072 UJ
Fluoranthene	mg/kg	30,000	0.097	1.8	0.69	0.15 J	0.34	0.17	0.13
Fluorene	mg/kg	30,000	0.072 U	0.56	0.019 J	0.08 U	0.072 U	0.076 U	0.072 U
Hexachloroethane	mg/kg	8	0.072 U	1.6 U	0.071 U	0.08 U	0.072 C	0.075 U	0.072 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.072 C	0.44	0.18	0.055 J	0.11	0.079 C	0.072 C
Isophorone	mg/kg	2,400	0.072 U	0.58 J	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
Naphthalene	mg/kg	17	0.072 U	0.4	0.038 B	0.08 U	0.071 U	0.075 U	0.072 U
Nitrobenzene	mg/kg	22	0.072 U	1.6 U	0.071 U	0.08 U	0.072 U	0.075 U	0.072 U
N-Nitrosodiphenylamine	mg/kg	470	0.072 U	3.8	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
Phenanthrene	1112/102			0.0				0.075 C	0.072 C
	<u> </u>		0.022 J	1.8	0.29	0.044 J	0.07.1	0.072.1	
	mg/kg	250.000	0.022 J 0.072 U	1.8 1.6 U	0.29 0.071 U	0.044 J 0.08 U	0.07 J 0.071 U		
Phenol	mg/kg mg/kg	250,000 23,000	0.072 U	1.6 U	0.071 U	0.08 U	0.071 U	0.075 U	0.072 U
Phenol Pyrene	mg/kg	250,000 23,000							
Phenol Pyrene PCBs	mg/kg mg/kg mg/kg	23,000	0.072 U 0.12	1.6 U 1.7	0.071 U 0.58	0.08 U 0.12 J	0.071 U 0.29	0.075 U 0.15	0.072 U 0.12
Phenol Pyrene PCBs Aroclor 1248	mg/kg mg/kg mg/kg mg/kg	23,000 0.94	0.072 U 0.12 0.018 U	1.6 U 1.7 N/A	0.071 U 0.58 0.018 U	0.08 U 0.12 J N/A	0.071 U 0.29 0.018 U	0.075 U 0.15 N/A	0.072 U 0.12 0.018 U
Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254	mg/kg mg/kg mg/kg mg/kg	23,000 0.94 0.97	0.072 U 0.12 0.018 U 0.018 U	1.6 U 1.7 N/A N/A	0.071 U 0.58 0.018 U 0.018 U	0.08 U 0.12 J N/A N/A	0.071 U 0.29 0.018 U 0.018 U	0.075 U 0.15 N/A N/A	0.072 U 0.12 0.018 U 0.018 U
Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1260	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	23,000 0.94 0.97 0.99	0.072 U 0.12 0.018 U 0.018 U 0.018 U	1.6 U 1.7 N/A N/A N/A	0.071 U 0.58 0.018 U 0.018 U 0.018 U	0.08 U 0.12 J N/A N/A N/A	0.071 U 0.29 0.018 U 0.018 U 0.018 U	0.075 U 0.15 N/A N/A N/A	0.072 U 0.12 0.018 U 0.018 U 0.018 U
Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1260 PCBs (total)	mg/kg mg/kg mg/kg mg/kg	23,000 0.94 0.97	0.072 U 0.12 0.018 U 0.018 U	1.6 U 1.7 N/A N/A	0.071 U 0.58 0.018 U 0.018 U	0.08 U 0.12 J N/A N/A	0.071 U 0.29 0.018 U 0.018 U	0.075 U 0.15 N/A N/A	0.072 U 0.12 0.018 U 0.018 U
Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1260 PCBs (total) TPH/Oil and Grease	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	23,000 0.94 0.97 0.99 0.97	0.072 U 0.12 0.018 U 0.018 U 0.018 U 0.13 U	1.6 U 1.7 N/A N/A N/A N/A	0.071 U 0.58 0.018 U 0.018 U 0.018 U 0.13 U	0.08 U 0.12 J N/A N/A N/A N/A	0.071 U 0.29 0.018 U 0.018 U 0.018 U 0.13 U	0.075 U 0.15 N/A N/A N/A N/A	0.072 U 0.12 0.018 U 0.018 U 0.018 U 0.13 U
Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1260 PCBs (total)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	23,000 0.94 0.97 0.99	0.072 U 0.12 0.018 U 0.018 U 0.018 U 0.13 U 238	1.6 U 1.7 N/A N/A N/A N/A 2,840	0.071 U 0.58 0.018 U 0.018 U 0.018 U 0.13 U 105 J	0.08 U 0.12 J N/A N/A N/A	0.071 U 0.29 0.018 U 0.018 U 0.018 U	0.075 U 0.15 N/A N/A N/A	0.072 U 0.12 0.018 U 0.018 U 0.018 U 0.018 U 0.13 U 66.8 J
Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1260 PCBs (total) TPH/Oil and Grease	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	23,000 0.94 0.97 0.99 0.97	0.072 U 0.12 0.018 U 0.018 U 0.018 U 0.13 U	1.6 U 1.7 N/A N/A N/A N/A	0.071 U 0.58 0.018 U 0.018 U 0.018 U 0.13 U	0.08 U 0.12 J N/A N/A N/A N/A	0.071 U 0.29 0.018 U 0.018 U 0.018 U 0.13 U	0.075 U 0.15 N/A N/A N/A N/A	0.072 U 0.12 0.018 U 0.018 U 0.018 U 0.13 U

Detections in **bold**. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-017-SB-5	B2-018-SB-1*	B2-018-SB-5*	B2-019-SB-1*	B2-019-SB-5*	B2-020-SB-1	B2-020-SB-4
Volatile Organic Compounds	U								
1,2,3-Trichlorobenzene	mg/kg	930	N/A	0.0051 U	0.0072 U	0.0048 U	0.0049 U	N/A	N/A
1,2,4-Trichlorobenzene	mg/kg	110	N/A	0.0051 U	0.0072 U	0.0048 U	0.0049 U	N/A	N/A
1,2-Dichloroethane	mg/kg	2	N/A	0.0051 U	0.0072 U	0.0048 U	0.0049 U	N/A	N/A
2-Butanone (MEK)	mg/kg	190,000	N/A	0.01 U	0.014 U	0.0095 U	0.0098 U	N/A	N/A
Acetone	mg/kg	670,000	N/A	0.011	0.039	0.025	0.028	N/A	N/A
Benzene	mg/kg	5.1	N/A	0.0051 U	0.0059 J	0.0048 U	0.0049 U	N/A	N/A
Carbon disulfide	mg/kg	3,500	N/A	0.0051 U	0.0072 U	0.0048 U	0.0049 U	N/A	N/A
Cyclohexane	mg/kg	27,000	N/A	0.01 U	0.014 U	0.0095 U	0.0098 U	N/A	N/A
Ethylbenzene	mg/kg	25	N/A	0.0051 U	0.0028 J	0.0048 U	0.0049 U	N/A	N/A
Isopropylbenzene	mg/kg	9,900	N/A	0.0051 U	0.0072 U	0.0048 U	0.0049 U	N/A	N/A
Toluene Xylenes	mg/kg	47,000 2,800	N/A N/A	0.0051 U	0.0076 0.022 U	0.0048 U 0.014 U	0.0049 U	N/A N/A	N/A N/A
Semi-Volatile Organic Compounds^	mg/kg	2,800	N/A	0.015 U	0.022 0	0.014 0	0.015 U	N/A	IN/A
1,1-Biphenyl	mg/kg	200	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.041 J
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.072 U
2,4-Dimethylphenol	mg/kg	16,000	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.072 U
2,4-Dinitrotoluene	mg/kg	7.4	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.072 U
2-Chloronaphthalene	mg/kg	60,000	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.072 U
2-Methylnaphthalene	mg/kg	3,000	0.081	0.013 J	0.044	0.015 J	0.01	0.01	0.1
2-Methylphenol	mg/kg	41,000	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.072 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.16 U	0.14 U	0.15 U	0.15 U	0.15 U	0.18 U	0.035 J
3,3'-Dichlorobenzidine	mg/kg	5.1	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.072 UJ
4-Chloroaniline	mg/kg	11	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.072 U
Acenaphthene	mg/kg	45,000	0.0023 J	0.071 U	0.035	0.074 U	0.0011 J	0.012	0.29
Acenaphthylene	mg/kg	45,000	0.023	0.071 U	0.019	0.074 U	0.0076 U	0.0023 J	0.079
Acetophenone	mg/kg	120,000	0.079 U	0.07 U	0.023 J	0.073 U	0.077 U	0.089 U	0.072 U
Anthracene	mg/kg	230,000	0.016	0.0074 J	0.02	0.074 U	0.0042 J	0.011	0.33
Benz[a]anthracene	mg/kg	21	0.15 0.079 R	0.03 J	0.11 0.075 U	0.021 J 0.073 U	0.0094	0.064	1.5
Benzaldehyde Benzo[a]pyrene	mg/kg mg/kg	120,000 2.1	0.079 K 0.28	0.07 U 0.033 J	0.073 U 0.11	0.073 U 0.014 J	0.077 U 0.0085	0.033 J 0.1	0.027 J 2.4
Benzo[b]fluoranthene	mg/kg	2.1	0.28	0.053 J 0.06 J	0.11	0.014 J 0.027 J	0.0085	0.13	3.2
Benzo[g,h,i]perylene	mg/kg	21	0.17	0.00 J	0.059	0.045 J	0.02 0.004 J	0.13	2.4
Benzo[k]fluoranthene	mg/kg	210	0.18	0.02 J 0.019 J	0.055	0.074 U	0.015	0.045	1
bis(2-Chloroethyl)ether	mg/kg	1	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.072 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.079 U	0.07 U	0.075 U	0.044 J	0.077 U	0.089 U	0.13 J
Caprolactam	mg/kg	400,000	0.028 J	0.18 U	0.19 U	0.18 U	0.19 U	0.22 U	0.18 U
Carbazole	mg/kg		0.079 U	0.07 U	0.022 J	0.073 U	0.077 U	0.089 U	0.43 J
Chrysene	mg/kg	2,100	0.13	0.032 J	0.11	0.015 J	0.012	0.064	1.4
Dibenz[a,h]anthracene	mg/kg	2.1	0.033	0.071 U	0.014	0.074 U	0.0076 U	0.027	0.54
Diethylphthalate	mg/kg	660,000	0.079 U	0.098	0.063 B	0.11	0.053 B	0.089 U	0.072 U
Di-n-butylphthalate	mg/kg	82,000	0.079 U	0.038 B	0.025 B	0.081	0.042 B	0.074 B	0.083 B
Di-n-ocytlphthalate	mg/kg	8,200	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.072 UJ
Fluoranthene	mg/kg	30,000	0.14	0.035 J	0.17	0.023 J 0.074 U	0.015	0.089	1.8
Fluorene Hexachloroethane	mg/kg	30,000 8	0.0045 J 0.079 U	0.071 U 0.07 U	0.028 0.075 U	0.074 U 0.073 U	0.0007 J 0.077 U	0.0047 J 0.089 U	0.12 0.072 U
Indeno[1,2,3-c,d]pyrene	mg/kg mg/kg	8 21	0.079 U 0.18	0.07 U 0.018 J	0.075 0	0.073 U 0.074 U	0.077 U	0.089 0	2
Isophorone	mg/kg	2,400	0.079 U	0.07 U	0.075 U	0.074 U 0.073 U	0.077 U	0.089 U	0.072 U
Naphthalene	mg/kg	17	0.079 0	0.071 U	0.075 0	0.073 U	0.0067 J	0.087 0	0.072 0
Nitrobenzene	mg/kg	22	0.079 U	0.07 U	0.075 U	0.074 U	0.077 U	0.089 U	0.072 U
N-Nitrosodiphenylamine	mg/kg	470	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.072 U
Phenanthrene	mg/kg		0.085	0.025 J	0.1	0.027 J	0.026	0.053	1.2
Phenol	mg/kg	250,000	0.079 U	0.07 U	0.075 U	0.073 U	0.077 U	0.089 U	0.028 J
Pyrene	mg/kg	23,000	0.12	0.031 J	0.13	0.019 J	0.015	0.072	1.6
PCBs									
Aroclor 1248	mg/kg	0.94	N/A	0.017 U	N/A	0.018 U	N/A	0.022 U	N/A
	mg/kg	0.97	N/A	0.017 U	N/A	0.018 U	N/A	0.022 U	N/A
Aroclor 1254	mg/kg				NT/A	0.018 U	N/A	0.022 U	N/A
Aroclor 1254 Aroclor 1260	mg/kg	0.99	N/A	0.017 U	N/A	0.018 0	IN/A	0.022 0	10/A
		0.99 0.97	N/A N/A	0.017 U 0.12 U	N/A N/A	0.018 U	N/A N/A	0.022 U 0.15 U	N/A N/A
Aroclor 1260	mg/kg								
Aroclor 1260 PCBs (total)	mg/kg								
Aroclor 1260 PCBs (total) TPH/Oil and Grease	mg/kg mg/kg	0.97	N/A	0.12 U	N/A	0.13 U	N/A	0.15 U	N/A

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

 $N\!/\!A$ indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-021-SB-1	B2-021-SB-4	B2-022-SB-1	B2-022-SB-4	B2-023-SB-1*	B2-023-SB-4*	B2-024-SB-1*
Volatile Organic Compounds				I	I	I		I	
1,2,3-Trichlorobenzene	mg/kg	930	N/A	0.0048 U	N/A	N/A	N/A	0.0054 U	N/A
1,2,4-Trichlorobenzene	mg/kg	110	N/A	0.0048 U	N/A	N/A	N/A	0.0054 U	N/A
1,2-Dichloroethane	mg/kg	2	N/A	0.0048 U	N/A	N/A	N/A	0.0054 U	N/A
2-Butanone (MEK)	mg/kg	190,000	N/A	0.0096 U	N/A	N/A	N/A	0.011 U	N/A
Acetone	mg/kg	670,000	N/A	0.037 J	N/A	N/A	N/A	0.042	N/A
Benzene	mg/kg	5.1	N/A	0.0048 U	N/A	N/A	N/A	0.0054 U	N/A
Carbon disulfide	mg/kg	3,500	N/A	0.0048 U	N/A	N/A	N/A	0.0074	N/A
Cyclohexane	mg/kg	27,000	N/A	0.0096 UJ	N/A	N/A	N/A	0.011 U	N/A
Ethylbenzene	mg/kg	25	N/A	0.0048 U	N/A	N/A	N/A	0.0054 U	N/A
Isopropylbenzene	mg/kg	9,900	N/A	0.0048 U	N/A	N/A	N/A	0.0054 U	N/A
Toluene	mg/kg	47,000	N/A	0.0048 U	N/A	N/A	N/A	0.0054 U	N/A
Xylenes Semi-Volatile Organic Compounds^	mg/kg	2,800	N/A	0.014 U	N/A	N/A	N/A	0.016 U	N/A
1,1-Biphenyl		200	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
1,2,4,5-Tetrachlorobenzene	mg/kg mg/kg	350	0.077 U 0.077 U	0.079 U 0.079 U	0.072 U 0.072 U	0.086 U 0.086 U	0.07 U	0.079 U	0.075 U
2,4-Dimethylphenol	mg/kg	16,000	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
2,4-Dinitrotoluene	mg/kg	7.4	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
2-Chloronaphthalene	mg/kg	60,000	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
2-Methylnaphthalene	mg/kg	3,000	0.031 J	0.007 J	0.0061 J	0.064 J	0.0071 U	0.0079 J	0.02 J
2-Methylphenol	mg/kg	41,000	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.15 U	0.16 U	0.14 U	0.17 U	0.14 U	0.16 U	0.15 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.077 UJ	0.079 U	0.072 UJ	0.086 UJ	0.07 U	0.079 U	0.075 U
4-Chloroaniline	mg/kg	11	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
Acenaphthene	mg/kg	45,000	0.07 J	0.01	0.012	0.11	0.0071 U	0.0015 J	0.031 J
Acenaphthylene	mg/kg	45,000	0.02 J	0.019	0.002 J	0.037 J	0.00053 J	0.0069 J	1.3
Acetophenone	mg/kg	120,000	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
Anthracene	mg/kg	230,000	0.074 J	0.05	0.011	0.2	0.00042 B	0.0097	0.33
Benz[a]anthracene	mg/kg	21	0.34	0.22	0.071 0.072 U	0.61	0.0021 J 0.07 U	0.042	0.85
Benzaldehyde Benzo[a]pyrene	mg/kg mg/kg	120,000	0.057 J 0.53	0.079 U 0.2	0.072 U 0.11	0.023 J 0.8	0.07 U 0.0013 J	0.087 0.053	0.021 J 1.9
Benzo[b]fluoranthene	mg/kg	2.1	0.53	0.2	0.11	0.8	0.0013 J 0.0071 U	0.053	2.9
Benzo[g,h,i]perylene	mg/kg	21	0.49	0.4	0.18	0.76	0.0071 U	0.032	1.6
Benzo[k]fluoranthene	mg/kg	210	0.24	0.32	0.15	0.34	0.0071 U	0.035	0.71
bis(2-Chloroethyl)ether	mg/kg	1	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.038 J	0.079 U	0.024 J	0.037 J	0.07 U	0.026 J	0.075 U
Caprolactam	mg/kg	400,000	0.19 U	0.2 U	0.18 U	0.22 U	0.18 U	0.2 U	0.19 U
Carbazole	mg/kg		0.044 J	0.058 J	0.023 J	0.088	0.07 U	0.059 J	0.14
Chrysene	mg/kg	2,100	0.29	0.22	0.066	0.6	0.001 J	0.053	0.94
Dibenz[a,h]anthracene	mg/kg	2.1	0.11	0.036	0.029	0.18	0.0071 U	0.0075 J	0.38
Diethylphthalate	mg/kg	660,000	0.041 B	0.079 U	0.072 U	0.13 B	0.07 U	0.079 U	0.016 J
Di-n-butylphthalate	mg/kg	82,000	0.046 B	0.04 B	0.048 B	0.035 B	0.064 B	0.065 B	0.022 B
Di-n-ocytlphthalate	mg/kg	8,200	0.077 UJ	0.079 U	0.072 UJ	0.086 UJ	0.07 U	0.079 U	0.075 U
Fluoranthene	mg/kg	30,000	0.41	0.43	0.087	0.84	0.0015 B	0.084	1.2
Fluorene Hexachloroethane	mg/kg mg/kg	30,000 8	0.034 J 0.077 U	0.013 0.079 U	0.0025 J 0.072 U	0.062 J 0.086 U	0.0071 U 0.07 U	0.0019 J 0.079 U	0.057 J 0.075 U
Indeno[1,2,3-c,d]pyrene	mg/kg	8 21	0.0 // U 0.39	0.079 0	0.072 0	0.086 0	0.07 U 0.0071 U	0.079 0	1.5
Isophorone	mg/kg	2,400	0.077 U	0.079 U	0.092 0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
Naphthalene	mg/kg	17	0.035 J	0.016	0.0072 C	0.073 J	0.007 U	0.021	0.076
Nitrobenzene	mg/kg	22	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
N-Nitrosodiphenylamine	mg/kg	470	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.079 U	0.075 U
Phenanthrene	mg/kg		0.22	0.19	0.039	0.68	0.00092 B	0.059	0.29
Phenol	mg/kg	250,000	0.077 U	0.079 U	0.072 U	0.086 U	0.07 U	0.18	0.075 U
Pyrene	mg/kg	23,000	0.36	0.36	0.078	0.86	0.0013 B	0.069	1.5
PCBs									
Aroclor 1248	mg/kg	0.94	0.02 U	N/A	0.018 U	N/A	0.36 U	N/A	0.38 U
Aroclor 1254	mg/kg	0.97	0.02 U	N/A	0.018 U	N/A	0.36 U	N/A	0.38 U
Aroclor 1260	mg/kg	0.99	0.02 U	N/A	0.018 U	N/A	0.36 U	N/A	0.38 U
PCBs (total)	mg/kg	0.97	0.14 U	N/A	0.13 U	N/A	2.5 U	N/A	2.6 U
TPH/Oil and Grease									
	mg/kg	6,200	41.4 J	12.9 J	14.5 J	143 J	4.1	68.8	137
Diesel Range Organics	mg/kg	0,200	11.1.0	12.7 5	1110 0	1.0 0			
Diesel Range Organics Gasoline Range Organics	mg/kg	6,200	10.7 U	10.5 U	10.7 U	15.4 U	3.3 B	12 U	3.1 B

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-025-SB-1*	B2-025-SB-4*	B2-026-SB-1	B2-026-SB-5	B2-027-SB-1	B2-028-SB-1	B2-028-SB-5
Volatile Organic Compounds					I		I		
1,2,3-Trichlorobenzene	mg/kg	930	N/A	N/A	N/A	0.0034 J	N/A	0.0044 U	0.0066 U
1,2,4-Trichlorobenzene	mg/kg	110	N/A	N/A	N/A	0.011	N/A	0.0044 U	0.0066 U
1,2-Dichloroethane	mg/kg	2	N/A	N/A	N/A	0.0053 U	N/A	0.0044 U	0.0066 U
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	N/A	0.011 U	N/A	0.0088 U	0.013 U
Acetone	mg/kg	670,000	N/A	N/A	N/A	0.022 J	N/A	0.0088 U	0.013 U
Benzene	mg/kg	5.1	N/A	N/A	N/A	0.0053 U	N/A	0.0044 U	0.0066 U
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	0.0033 J	N/A	0.0044 UJ	0.0066 UJ
Cyclohexane	mg/kg	27,000	N/A	N/A	N/A	0.011 U	N/A	0.0088 U	0.013 U
Ethylbenzene	mg/kg	25	N/A	N/A	N/A	0.0053 U	N/A	0.0044 U	0.0066 U
Isopropylbenzene	mg/kg	9,900	N/A	N/A	N/A	0.0053 U	N/A	0.0044 U	0.0066 U
Toluene	mg/kg	47,000	N/A	N/A	N/A	0.0053 U	N/A	0.0044 U	0.0066 U
Xylenes	mg/kg	2,800	N/A	N/A	N/A	0.016 U	N/A	0.013 U	0.02 U
Semi-Volatile Organic Compounds		200	0.071 U	0.00 11	0.075 11	0.077.11	0.076 11	0.074.11	0.010 T
1,1-Biphenyl 1,2,4,5-Tetrachlorobenzene	mg/kg	200 350	0.071 U 0.071 U	0.08 U 0.08 U	0.075 U 0.075 U	0.077 U 0.077 U	0.076 U 0.076 U	0.074 U 0.074 U	0.019 J 0.075 U
2,4-Dimethylphenol	mg/kg mg/kg	16,000	0.071 U	0.08 U	0.075 C	0.077 C	0.076 U	0.074 U 0.074 U	0.075 U
2,4-Dinitrotoluene	mg/kg	7.4	0.071 U	0.08 U	0.075 U	0.077 U	0.076 U	0.074 U	0.075 U
2-Chloronaphthalene	mg/kg	60,000	0.071 U	0.08 U	0.075 U	0.077 U	0.076 U	0.074 U	0.075 U
2-Methylnaphthalene	mg/kg	3,000	0.014	0.0046 J	0.0043 J	0.015	0.093	0.074 0	0.23
2-Methylphenol	mg/kg	41,000	0.071 U	0.08 U	0.075 R	0.077 R	0.076 U	0.074 U	0.075 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.14 U	0.16 U	0.15 R	0.15 R	0.15 U	0.15 U	0.15 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.071 U	0.08 U	0.075 U	0.077 U	0.076 U	0.074 U	0.075 UJ
4-Chloroaniline	mg/kg	11	0.071 U	0.08 U	0.075 U	0.077 U	0.076 U	0.074 U	0.075 U
Acenaphthene	mg/kg	45,000	0.0043 J	0.0014 J	0.0014 J	0.0011 J	0.0083 J	0.075 U	0.077 U
Acenaphthylene	mg/kg	45,000	0.0066 J	0.0076 J	0.00092 J	0.02	0.017 J	0.075 U	0.041 J
Acetophenone	mg/kg	120,000	0.071 U	0.08 U	0.075 U	0.077 U	0.021 J	0.074 U	0.075 U
Anthracene	mg/kg	230,000	0.014	0.005 B	0.0074 J	0.014	0.056 J	0.075 U	0.042 J
Benz[a]anthracene	mg/kg	21	0.054	0.026	0.03	0.071	0.11	0.016 J	0.24
Benzaldehyde	mg/kg	120,000	0.071 U	0.08 U	0.075 U	0.077 U	0.035 J	0.074 R	0.017 J
Benzo[a]pyrene	mg/kg	2.1	0.055	0.029	0.018	0.062	0.094	0.075 U	0.2
Benzo[b]fluoranthene	mg/kg	21	0.087 0.036	0.049 0.018	0.054	0.12 0.025	0.28 0.065 J	0.026 J 0.075 U	0.48 0.068 J
Benzo[g,h,i]perylene Benzo[k]fluoranthene	mg/kg mg/kg	210	0.036	0.018	0.0092 0.048	0.025	0.065 J	0.073 U 0.017 J	0.008 J
bis(2-Chloroethyl)ether	mg/kg	1	0.027 0.071 U	0.012 0.08 U	0.048 0.075 U	0.049 0.077 U	0.076 U	0.074 U	0.075 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.021 J	0.08 U	0.015 B	0.077 U	0.34	0.074 U	0.075 UJ
Caprolactam	mg/kg	400,000	0.18 U	0.2 U	0.19 U	0.19 U	0.19 U	0.19 U	0.033 J
Carbazole	mg/kg	,	0.071 U	0.08 U	0.075 U	0.077 U	0.076 U	0.074 U	0.075 U
Chrysene	mg/kg	2,100	0.054	0.031	0.036	0.083	0.24	0.012 J	0.14
Dibenz[a,h]anthracene	mg/kg	2.1	0.0094	0.0048 J	0.0025 J	0.011	0.077 U	0.075 U	0.017 J
Diethylphthalate	mg/kg	660,000	0.071 U	0.08 U	0.075 U	0.077 U	0.076 U	0.074 U	0.075 U
Di-n-butylphthalate	mg/kg	82,000	0.018 B	0.047 B	0.043 B	0.026 B	0.06 B	0.074 U	0.075 U
Di-n-ocytlphthalate	mg/kg	8,200	0.071 U	0.08 U	0.075 U	0.077 U	0.076 UJ	0.074 U	0.075 UJ
Fluoranthene	mg/kg	30,000	0.1	0.048	0.073	0.1	0.23	0.017 J	0.27
Fluorene	mg/kg	30,000	0.0053 J	0.0023 J	0.001 J	0.0024 J	0.018 J	0.075 U	0.077 U
Hexachloroethane	/1							0.074 U	0.075 U
Indono[1 2 2 a dimensiona	mg/kg	8	0.071 U	0.08 U	0.075 U	0.077 U	0.076 U		0.040 1
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.032	0.017	0.0089	0.029	0.045 J	0.075 U	0.068 J
Isophorone	mg/kg mg/kg	21 2,400	0.032 0.071 U	0.017 0.08 U	0.0089 0.075 U	0.029 0.077 U	0.045 J 0.076 U	0.075 U 0.074 U	0.075 U
Isophorone Naphthalene	mg/kg mg/kg mg/kg	21 2,400 17	0.032 0.071 U 0.019	0.017 0.08 U 0.009	0.0089 0.075 U 0.0046 B	0.029 0.077 U 0.019	0.045 J 0.076 U 0.09	0.075 U 0.074 U 0.075 UJ	0.075 U 0.15 J
Isophorone Naphthalene Nitrobenzene	mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22	0.032 0.071 U 0.019 0.071 U	0.017 0.08 U 0.009 0.08 U	0.0089 0.075 U 0.0046 B 0.075 U	0.029 0.077 U 0.019 0.077 U	0.045 J 0.076 U 0.09 0.076 U	0.075 U 0.074 U 0.075 UJ 0.074 U	0.075 U 0.15 J 0.075 U
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine	mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17	0.032 0.071 U 0.019 0.071 U 0.071 U	0.017 0.08 U 0.009 0.08 U 0.08 U	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U	0.029 0.077 U 0.019 0.077 U 0.077 U	0.045 J 0.076 U 0.09 0.076 U 0.076 U	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U	0.075 U 0.15 J 0.075 U 0.075 U
Isophorone Naphthalene Nitrobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22	0.032 0.071 U 0.019 0.071 U	0.017 0.08 U 0.009 0.08 U	0.0089 0.075 U 0.0046 B 0.075 U	0.029 0.077 U 0.019 0.077 U	0.045 J 0.076 U 0.09 0.076 U	0.075 U 0.074 U 0.075 UJ 0.074 U	0.075 U 0.15 J 0.075 U
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22 470	0.032 0.071 U 0.019 0.071 U 0.071 U 0.058	0.017 0.08 U 0.009 0.08 U 0.08 U 0.08 U 0.028	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U 0.039	0.029 0.077 U 0.019 0.077 U 0.077 U 0.038	0.045 J 0.076 U 0.09 0.076 U 0.076 U 0.17	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U 0.074 U 0.018 J	0.075 U 0.15 J 0.075 U 0.075 U 0.15
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22 470 250,000	0.032 0.071 U 0.019 0.071 U 0.071 U 0.058 0.071 U	0.017 0.08 U 0.009 0.08 U 0.08 U 0.028 0.08 U	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U 0.039 0.075 R	0.029 0.077 U 0.019 0.077 U 0.077 U 0.038 0.077 R	0.045 J 0.076 U 0.09 0.076 U 0.076 U 0.17 0.076 U	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U 0.074 U 0.018 J 0.074 U	0.075 U 0.15 J 0.075 U 0.075 U 0.15 0.075 U
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22 470 250,000	0.032 0.071 U 0.019 0.071 U 0.071 U 0.058 0.071 U	0.017 0.08 U 0.009 0.08 U 0.08 U 0.028 0.08 U	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U 0.039 0.075 R	0.029 0.077 U 0.019 0.077 U 0.077 U 0.038 0.077 R	0.045 J 0.076 U 0.09 0.076 U 0.076 U 0.17 0.076 U	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U 0.074 U 0.018 J 0.074 U	0.075 U 0.15 J 0.075 U 0.075 U 0.15 0.075 U
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22 470 250,000 23,000	0.032 0.071 U 0.019 0.071 U 0.071 U 0.058 0.071 U 0.081	0.017 0.08 U 0.09 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.041	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U 0.075 U 0.039 0.075 R 0.051	0.029 0.077 U 0.019 0.077 U 0.077 U 0.038 0.077 R 0.1 N/A	0.045 J 0.076 U 0.09 0.076 U 0.076 U 0.17 0.076 U 0.28	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U	0.075 U 0.15 J 0.075 U 0.075 U 0.15 0.075 U 0.24
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22 470 250,000 23,000 0.94	0.032 0.071 U 0.019 0.071 U 0.071 U 0.058 0.071 U 0.081 0.018 U	0.017 0.08 U 0.09 0.08 U 0.08 U 0.028 0.08 U 0.08 U 0.041 N/A	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U 0.075 U 0.039 0.075 R 0.051	0.029 0.077 U 0.019 0.077 U 0.077 U 0.038 0.077 R 0.1	0.045 J 0.076 U 0.09 0.076 U 0.076 U 0.17 0.076 U 0.28 0.019 U	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U 0.074 U 0.018 J 0.074 U 0.012 J	0.075 U 0.15 J 0.075 U 0.075 U 0.15 0.075 U 0.24 N/A
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$ \begin{array}{r} 21 \\ 2,400 \\ 17 \\ 22 \\ 470 \\ \hline 250,000 \\ 23,000 \\ \hline 0.94 \\ 0.97 \\ \hline \end{array} $	0.032 0.071 U 0.019 0.071 U 0.071 U 0.058 0.071 U 0.081 0.018 U 0.018 U 0.018 U	0.017 0.08 U 0.09 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.041 N/A N/A	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U 0.075 R 0.075 R 0.075 R 0.051 0.019 U 0.019 U	0.029 0.077 U 0.019 0.077 U 0.077 U 0.038 0.077 R 0.1 N/A N/A	0.045 J 0.076 U 0.09 0.076 U 0.076 U 0.076 U 0.076 U 0.076 U 0.28 0.019 U 0.019 U	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.012 J	0.075 U 0.15 J 0.075 U 0.075 U 0.15 0.075 U 0.24 N/A N/A
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1260	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22 470 250,000 23,000 23,000 0.94 0.97 0.99	0.032 0.071 U 0.019 0.071 U 0.071 U 0.058 0.071 U 0.058 0.071 U 0.018 U	0.017 0.08 U 0.09 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.041 N/A N/A N/A	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U 0.075 U 0.039 0.075 R 0.051 0.019 U 0.019 U 0.019 U	0.029 0.077 U 0.019 0.077 U 0.077 U 0.038 0.077 R 0.1 N/A N/A N/A	0.045 J 0.076 U 0.09 0.076 U 0.076 U 0.076 U 0.076 U 0.076 U 0.076 U 0.019 U 0.019 U 0.019 U 0.019 U	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.012 J 0.019 U 0.019 U 0.019 U	0.075 U 0.15 J 0.075 U 0.075 U 0.15 0.075 U 0.24 N/A N/A N/A
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 PCBs (total) TPH/Oil and Grease	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22 470 250,000 23,000 23,000 0.94 0.97 0.99 0.97	0.032 0.071 U 0.019 0.071 U 0.071 U 0.058 0.071 U 0.081 0.018 U 0.018 U 0.018 U 0.069 0.069 J	0.017 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.041 N/A N/A N/A N/A	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U 0.075 U 0.039 0.075 R 0.051 0.019 U 0.019 U 0.019 U 0.019 U	0.029 0.077 U 0.019 0.077 U 0.077 U 0.038 0.077 R 0.1 N/A N/A N/A N/A	0.045 J 0.076 U 0.09 0.076 U 0.076 U 0.076 U 0.076 U 0.28 0.019 U 0.019 U 0.019 U 0.18 0.18	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.012 J 0.019 U 0.019 U 0.019 U 0.019 U 0.13 U	0.075 U 0.15 J 0.075 U 0.075 U 0.15 0.075 U 0.24 N/A N/A N/A N/A
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 PCBs (total) TPH/Oil and Grease Diesel Range Organics	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22 470 250,000 23,000 23,000 0.94 0.97 0.99 0.97 6,200	0.032 0.071 U 0.019 0.071 U 0.071 U 0.058 0.071 U 0.081 0.018 U 0.018 U 0.018 U 0.069 0.069 J 17.5	0.017 0.08 U 0.09 0.08 U 0.08 U 0.028 0.08 U 0.041 N/A N/A N/A N/A N/A N/A 29	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U 0.075 U 0.039 0.075 R 0.051 0.019 U 0.019 U 0.019 U 0.019 U 0.13 U	0.029 0.077 U 0.019 0.077 U 0.077 U 0.038 0.077 R 0.1 N/A N/A N/A N/A N/A N/A	0.045 J 0.076 U 0.09 0.076 U 0.076 U 0.076 U 0.17 0.076 U 0.28 0.019 U 0.019 U 0.019 U 0.18 0.18 85.7 J	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U 0.074 U 0.018 J 0.074 U 0.012 J 0.019 U 0.019 U 0.019 U 0.019 U 0.13 U	0.075 U 0.15 J 0.075 U 0.075 U 0.15 0.075 U 0.24 N/A N/A N/A N/A N/A 99.8
Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 PCBs (total) TPH/Oil and Grease	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	21 2,400 17 22 470 250,000 23,000 23,000 0.94 0.97 0.99 0.97	0.032 0.071 U 0.019 0.071 U 0.071 U 0.058 0.071 U 0.081 0.018 U 0.018 U 0.018 U 0.069 0.069 J	0.017 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.041 N/A N/A N/A N/A	0.0089 0.075 U 0.0046 B 0.075 U 0.075 U 0.075 U 0.039 0.075 R 0.051 0.019 U 0.019 U 0.019 U 0.019 U	0.029 0.077 U 0.019 0.077 U 0.077 U 0.038 0.077 R 0.1 N/A N/A N/A N/A	0.045 J 0.076 U 0.09 0.076 U 0.076 U 0.076 U 0.076 U 0.28 0.019 U 0.019 U 0.019 U 0.18 0.18	0.075 U 0.074 U 0.075 UJ 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.012 J 0.019 U 0.019 U 0.019 U 0.019 U 0.13 U	0.075 U 0.15 J 0.075 U 0.075 U 0.15 0.075 U 0.24 N/A N/A N/A N/A

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

 $N\!/\!A$ indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-029-SB-1*	B2-029-SB-8*	B2-030-SB-1*	B2-030-SB-5*	B2-031-SB-1*	B2-031-SB-7*	B2-032-SB-1*
Volatile Organic Compounds		l			I	I			
1,2,3-Trichlorobenzene	mg/kg	930	N/A	N/A	N/A	N/A	N/A	0.0062 U	N/A
1,2,4-Trichlorobenzene	mg/kg	110	N/A	N/A	N/A	N/A	N/A	0.0062 U	N/A
1,2-Dichloroethane	mg/kg	2	N/A	N/A	N/A	N/A	N/A	0.0062 U	N/A
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	N/A	N/A	N/A	0.012 U	N/A
Acetone	mg/kg	670,000	N/A	N/A	N/A	N/A	N/A	0.024	N/A
Benzene	mg/kg	5.1	N/A	N/A	N/A	N/A	N/A	0.0062 U	N/A
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A	N/A	0.0062 U	N/A
Cyclohexane	mg/kg	27,000	N/A	N/A	N/A	N/A	N/A	0.012 U	N/A
Ethylbenzene	mg/kg	25	N/A	N/A	N/A	N/A	N/A	0.0062 U	N/A
Isopropylbenzene	mg/kg	9,900	N/A	N/A	N/A	N/A	N/A	0.0062 U	N/A
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A	N/A	0.0062 U	N/A
Xylenes	mg/kg	2,800	N/A	N/A	N/A	N/A	N/A	0.019 U	N/A
Semi-Volatile Organic Compounds^		200	0.072 11	0.070 11	0.070.11	0.070.11	0.07.11	0.07611	0.072.11
1,1-Biphenyl	mg/kg	200	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.076 U	0.073 U
1,2,4,5-Tetrachlorobenzene 2,4-Dimethylphenol	mg/kg	350 16,000	0.072 U 0.072 U	0.079 U 0.079 U	0.078 U 0.078 U	0.078 U 0.078 U	0.07 U 0.032 J	0.076 U 0.057 J	0.073 U 0.073 U
2,4-Dinitrotoluene	mg/kg mg/kg	7.4	0.072 U	0.079 U	0.078 U	0.078 U	0.032 J 0.07 U	0.076 U	0.073 U
2-Chloronaphthalene	mg/kg	60,000	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.076 U	0.073 U
2-Methylnaphthalene	mg/kg	3,000	0.072 0	0.0081 U	0.078 0	0.078 U	0.070	0.078 0	0.073 0
2-Methylphenol	mg/kg	41,000	0.072 U	0.079 U	0.078 U	0.078 U	0.025 0.07 U	0.048 J	0.073 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.14 U	0.16 U	0.16 U	0.16 U	0.07 U	0.1 J	0.15 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.076 U	0.073 U
4-Chloroaniline	mg/kg	11	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.076 U	0.073 U
Acenaphthene	mg/kg	45,000	0.0012 J	0.0081 U	0.0086	0.0042 J	0.002 J	0.073 J	0.002 J
Acenaphthylene	mg/kg	45,000	0.0067 J	0.0081 U	0.033	0.0015 J	0.013	0.85	0.0097
Acetophenone	mg/kg	120,000	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.025 J	0.073 U
Anthracene	mg/kg	230,000	0.011	0.0081 U	0.061	0.0099	0.023	0.5	0.023
Benz[a]anthracene	mg/kg	21	0.025	0.0081 U	0.3	0.066	0.07 U	2.5	0.069
Benzaldehyde	mg/kg	120,000	0.059 J	0.079 U	0.022 J	0.078 U	0.07 U	0.28	0.073 U
Benzo[a]pyrene	mg/kg	2.1	0.019	0.0081 U	0.24	0.072	0.022 J	2.5	0.052
Benzo[b]fluoranthene	mg/kg	21	0.055	0.0081 U	0.54	0.12	0.092	4.9	0.094
Benzo[g,h,i]perylene	mg/kg	210	0.025	0.0081 U	0.2	0.063	0.026 B	1.8	0.037
Benzo[k]fluoranthene	mg/kg	210	0.042	0.0081 U	0.42	0.094	0.075	3.8	0.029
bis(2-Chloroethyl)ether	mg/kg	1	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.076 U	0.073 U
bis(2-Ethylhexyl)phthalate Caprolactam	mg/kg mg/kg	160 400,000	0.034 B 0.18 U	0.079 U 0.2 U	0.053 B 0.2 U	0.078 U 0.2 U	0.07 U 0.18 U	0.076 U 0.19 U	0.073 U 0.18 U
Carbazole	mg/kg	400,000	0.18 U	0.2 U	0.2 0	0.2 U	0.18 U 0.07 U	0.19 0	0.073 U
Chrysene	mg/kg	2,100	0.072 0	0.0081 U	0.32	0.078 0	0.07 U	2.6	0.073 0
Dibenz[a,h]anthracene	mg/kg	2,100	0.004 0.006 J	0.0081 U	0.057	0.001	0.07 U	0.58	0.009
Diethylphthalate	mg/kg	660,000	0.000 J	0.079 U	0.078 U	0.078 U	0.07 U	0.076 U	0.073 U
Di-n-butylphthalate	mg/kg	82,000	0.05 B	0.023 B	0.042 B	0.043 B	0.07 U	0.076 U	0.039 B
Di-n-ocytlphthalate	mg/kg	8,200	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.076 U	0.073 U
Fluoranthene	mg/kg	30,000	0.059	0.0081 U	0.46	0.063	0.094	4.1	0.19
Fluorene	mg/kg	30,000	0.0039 J	0.0081 U	0.0096	0.0026 J	0.0038 J	0.16	0.0032 J
Hexachloroethane	mg/kg	8	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.043 J	0.073 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.02	0.0081 U	0.17	0.047	0.07 U	1.6	0.034
Isophorone	mg/kg	2,400	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.076 U	0.073 U
Naphthalene	mg/kg	17	0.026	0.0081 U	0.043	0.0065 J	0.017	0.79	0.077
Nitrobenzene	mg/kg	22	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.076 U	0.073 U
N-Nitrosodiphenylamine	mg/kg	470	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.076 U	0.073 U
Phenanthrene	mg/kg	0.50.51	0.061	0.0081 U	0.26	0.03	0.057	2.4	0.13
Phenol	mg/kg	250,000	0.072 U	0.079 U	0.078 U	0.078 U	0.07 U	0.058 J	0.073 U
Pyrene	mg/kg	23,000	0.056	0.0081 U	0.39	0.061	0.08	3.3	0.14
PCBs									
Aroclor 1248	mg/kg	0.94	0.15	N/A	0.02 U	N/A	0.017 U	N/A	0.018 U
			0.15	N/A	0.02 U	N/A	0.017 U	N/A	0.018 U
Aroclor 1254	mg/kg	0.97	0.15		_				
Aroclor 1254 Aroclor 1260	mg/kg	0.99	0.018 U	N/A	0.02 U	N/A	0.1	N/A	0.018 U
Aroclor 1254 Aroclor 1260 PCBs (total)	00				0.02 U 0.14 U	N/A N/A	0.1 0.1 J	N/A N/A	0.018 U 0.13 U
Aroclor 1254 Aroclor 1260 PCBs (total) TPH/Oil and Grease	mg/kg	0.99 0.97	0.018 U 0.3	N/A N/A	0.14 U	N/A	0.1 J	N/A	0.13 U
Aroclor 1254 Aroclor 1260 PCBs (total) TPH/Oil and Grease Diesel Range Organics	mg/kg mg/kg mg/kg	0.99 0.97 6,200	0.018 U 0.3 151	N/A N/A 3.9 B	0.14 U 49.6	N/A 7.9	0.1 J 265	N/A 126	0.13 U 24.5
Aroclor 1254 Aroclor 1260 PCBs (total) TPH/Oil and Grease	mg/kg mg/kg	0.99 0.97	0.018 U 0.3	N/A N/A	0.14 U	N/A	0.1 J	N/A	0.13 U

Detections in **bold.** Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

 $N\!/\!A$ indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-032-SB-4*	B2-033-SB-1*	B2-033-SB-5*	B2-034-SB-1*	B2-035-SB-1*	B2-035-SB-4*	B2-036-SB-1
Volatile Organic Compounds	11								
1,2,3-Trichlorobenzene	mg/kg	930	0.0047 U	N/A	N/A	N/A	N/A	0.0065 U	0.0068 U
1,2,4-Trichlorobenzene	mg/kg	110	0.0047 U	N/A	N/A	N/A	N/A	0.0065 U	0.0068 U
1,2-Dichloroethane	mg/kg	2	0.0047 U	N/A	N/A	N/A	N/A	0.0065 U	0.0068 U
2-Butanone (MEK)	mg/kg	190,000	0.0093 U	N/A	N/A	N/A	N/A	0.013 U	0.014 U
Acetone	mg/kg	670,000	0.0093 U	N/A	N/A	N/A	N/A	0.036	0.037
Benzene	mg/kg	5.1	0.0047 U	N/A	N/A	N/A	N/A	0.0065 U	0.0068 U
Carbon disulfide	mg/kg	3,500	0.0047 U	N/A	N/A	N/A	N/A	0.0065 U	0.0068 UJ
Cyclohexane	mg/kg	27,000	0.0093 U	N/A	N/A	N/A	N/A	0.013 U	0.014 U
Ethylbenzene	mg/kg	25	0.0047 U	N/A	N/A	N/A	N/A	0.0065 U	0.0068 U
Isopropylbenzene	mg/kg	9,900	0.0047 U	N/A	N/A	N/A	N/A	0.0065 U	0.0068 U
Toluene	mg/kg	47,000	0.0047 U	N/A	N/A	N/A	N/A	0.0065 U	0.0068 U
Xylenes	mg/kg	2,800	0.014 U	N/A	N/A	N/A	N/A	0.019 U	0.02 U
Semi-Volatile Organic Compounds^		200	0.047.7	0.052.11	0.054.11	0.055 II	0.050 XX	0.001 11	0.051 11
1,1-Biphenyl	mg/kg	200	0.017 J	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
2,4-Dimethylphenol	mg/kg	16,000	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
2,4-Dinitrotoluene 2-Chloronaphthalene	mg/kg mg/kg	7.4 60,000	0.078 U 0.078 U	0.073 U 0.073 U	0.074 U 0.074 U	0.077 U 0.077 U	0.079 U 0.079 U	0.081 U 0.081 U	0.071 U 0.071 U
2-Chloronaphthalene	mg/kg mg/kg	3,000	0.078 0	0.073 U 0.01	0.074 0	0.0770	0.079 U 0.001 J	0.081 0	0.071 0
2-Methylphenol	mg/kg	41,000	0.094 0.078 U	0.01 0.073 U	0.025 0.074 U	0.0095 0.077 U	0.079 U	0.081 U	0.099 0.071 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.16 U	0.15 U	0.15 U	0.15 U	0.16 U	0.16 U	0.14 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 UJ
4-Chloroaniline	mg/kg	11	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
Acenaphthene	mg/kg	45,000	0.27	0.0012 J	0.0039 J	0.00099 J	0.0079 U	0.085	0.073 U
Acenaphthylene	mg/kg	45,000	0.023 J	0.0043 J	0.009	0.0047 J	0.0079 U	0.019	0.073 U
Acetophenone	mg/kg	120,000	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
Anthracene	mg/kg	230,000	0.17	0.011	0.019	0.0037 B	0.00055 B	0.31	0.073 U
Benz[a]anthracene	mg/kg	21	0.19	0.029	0.052	0.021	0.0039 J	0.79	0.073 U
Benzaldehyde	mg/kg	120,000	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 R
Benzo[a]pyrene	mg/kg	2.1	0.12	0.022	0.046	0.022	0.0033 J	0.66	0.073 U
Benzo[b]fluoranthene	mg/kg	21	0.17	0.049	0.11	0.036	0.0052 J	0.96	0.073 U
Benzo[g,h,i]perylene	mg/kg		0.059 J	0.017	0.045	0.017	0.0027 J	0.37	0.073 U
Benzo[k]fluoranthene	mg/kg	210	0.063 J	0.038	0.086	0.01	0.002 J	0.3	0.073 U
bis(2-Chloroethyl)ether	mg/kg	1	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 UJ
Caprolactam	mg/kg	400,000	0.2 U	0.18 U	0.19 U	0.19 U	0.2 U	0.2 U	0.18 U
Carbazole	mg/kg mg/kg	2,100	0.066 J 0.18	0.073 U 0.03	0.074 U 0.06	0.077 U 0.023	0.079 U 0.0039 J	0.081 U 0.76	0.071 U 0.073 U
Chrysene Dibenz[a,h]anthracene	mg/kg	2,100	0.079 U	0.003 0.0034 J	0.06	0.023 0.0053 J	0.0039 J 0.0079 U	0.76	0.073 U
Diethylphthalate	mg/kg	660,000	0.079 U	0.073 U	0.074 U	0.0055 J 0.018 J	0.0079 U	0.12 0.021 J	0.073 U 0.071 U
Di-n-butylphthalate	mg/kg	82,000	0.025 B	0.073 U	0.074 U	0.039 B	0.046 B	0.021 J 0.058 B	0.071 U
Di-n-ocytlphthalate	mg/kg	8,200	0.023 D 0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 UJ
Fluoranthene	mg/kg	30,000	0.86	0.061	0.14	0.039	0.0062 B	1.8	0.012 J
Fluorene	mg/kg	30,000	0.31	0.001	0.0024 J	0.0013 J	0.0079 U	0.093	0.073 U
Hexachloroethane	mg/kg	8	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.053 J	0.014	0.037	0.015	0.002 J	0.35	0.073 U
Isophorone	mg/kg	2,400	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
Naphthalene	mg/kg	17	0.12	0.025	0.11	0.016	0.0079 U	0.08	0.073 UJ
Nitrobenzene	mg/kg	22	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
N-Nitrosodiphenylamine	mg/kg	470	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
Phenanthrene	mg/kg		1.2	0.059	0.13	0.02	0.0032 B	1.3	0.013 J
Phenol	mg/kg	250,000	0.078 U	0.073 U	0.074 U	0.077 U	0.079 U	0.081 U	0.071 U
Pyrene	mg/kg	23,000	0.6	0.047	0.1	0.032	0.0052 B	1.5	0.019 J
PCBs									
Aroclor 1248	mg/kg	0.94	N/A	0.018 U	N/A	0.019 U	0.02 U	N/A	0.018 U
Aroclor 1254	mg/kg	0.97	N/A	0.018 U	N/A	0.019 U	0.02 U	N/A	0.018 U
Aroclor 1260	mg/kg	0.99	N/A	0.018 U	N/A	0.019 U	0.02 U	N/A	0.018 U
PCBs (total)	mg/kg	0.97	N/A	0.13 U	N/A	0.14 U	0.14 U	N/A	0.13 U
TPH/Oil and Grease									
Diesel Range Organics	mg/kg	6,200	21.8	10.7	18	10.9	9.8	41.3	181
Gasoline Range Organics	mg/kg	6,200	11.7 U	2.8 B	2.5 B	2.8 B	2.1 B	2.5 B	31.8
Oil and Grease	mg/kg	6,200	1,280	355	428	343	368	387	3,590
		u / -	,		-				- ,

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

 $N\!/\!A$ indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-036-SB-5	B2-037-SB-1	B2-037-SB-5	B2-038-SB-1	B2-038-SB-5	B2-039-SB-1*	B2-039-SB-5*
Volatile Organic Compounds									
1,2,3-Trichlorobenzene	mg/kg	930	0.0074 U	0.0061 U	0.014 U	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	mg/kg	110	0.0074 U	0.0061 U	0.014 U	N/A	N/A	N/A	N/A
1.2-Dichloroethane	mg/kg	2	0.0074 U	0.0061 U	0.014 U	N/A	N/A	N/A	N/A
2-Butanone (MEK)	mg/kg	190,000	0.015 U	0.012 U	0.028 U	N/A	N/A	N/A	N/A
Acetone	mg/kg	670,000	0.04	0.012 U	0.023 J	N/A	N/A	N/A	N/A
Benzene	mg/kg	5.1	0.0074 U	0.0061 U	0.014 U	N/A	N/A	N/A	N/A
Carbon disulfide	mg/kg	3,500	0.0074 UJ	0.0061 UJ	0.014 UJ	N/A	N/A	N/A	N/A
Cyclohexane	mg/kg	27,000	0.015 U	0.012 U	0.028 U	N/A	N/A	N/A	N/A
Ethylbenzene	mg/kg	25	0.0074 U	0.0061 U	0.014 U	N/A	N/A	N/A	N/A
Isopropylbenzene	mg/kg	9,900	0.0074 U	0.0061 U	0.014 U	N/A	N/A	N/A	N/A
Toluene	mg/kg	47,000	0.0074 U	0.0061 U	0.014 U	N/A	N/A	N/A	N/A
Xylenes	mg/kg	2,800	0.022 U	0.018 U	0.042 U	N/A	N/A	N/A	N/A
Semi-Volatile Organic Compounds^									
1,1-Biphenyl	mg/kg	200	0.052 J	0.072 U	0.15 J	0.029 J	0.071 U	0.074 U	0.075 U
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.073 U	0.072 U	0.081 U	0.071 U	0.071 U	0.074 U	0.075 U
2,4-Dimethylphenol	mg/kg	16,000	0.019 J	0.072 U	0.059 J	0.071 R	0.071 U	0.074 U	0.075 U
2,4-Dinitrotoluene	mg/kg	7.4	0.02 J	0.072 U	0.037 J	0.071 U	0.071 U	0.074 U	0.075 U
2-Chloronaphthalene	mg/kg	60,000	0.14 J	0.072 U	0.063 J	0.071 U	0.071 U	0.074 U	0.075 U
2-Methylnaphthalene	mg/kg	3,000	0.57	0.11	1.1	0.24	0.035	0.0063 J	0.0011 J
2-Methylphenol	mg/kg	41,000	0.018 J	0.072 U	0.06 J	0.071 R	0.071 U	0.074 U	0.075 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.051 J	0.14 U	0.15 J	0.14 R	0.14 U	0.15 U	0.15 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.073 UJ	0.072 UJ	0.081 UJ	0.071 U	0.071 U	0.074 U	0.075 U
4-Chloroaniline	mg/kg	11	0.073 U	0.072 U	0.081 U	0.071 U	0.071 U	0.074 U	0.075 U
Acenaphthene	mg/kg	45,000	0.023 J	0.073 U	0.042 J	0.0024 J	0.0078	0.0006 J	0.0074 U
Acenaphthylene	mg/kg	45,000	0.09	0.0076 J	0.13	0.0049 J	0.078	0.0015 J	0.00062 J
Acetophenone	mg/kg	120,000	0.024 J	0.072 U	0.073 J	0.071 U	0.071 U	0.074 U	0.075 U
Anthracene	mg/kg	230,000	0.28	0.015 J	0.32	0.026	0.1	0.0037 J	0.0011 J
Benz[a]anthracene	mg/kg	21	0.5	0.067 J	1.1	0.033 J	0.56 J	0.0092	0.0074 U
Benzaldehyde	mg/kg	120,000	0.041 J	0.018 J	0.14 J	0.071 U	0.071 U	0.074 U	0.075 U
Benzo[a]pyrene	mg/kg	2.1	0.4	0.047 J	0.96	0.071 U	0.57 J	0.0068 J	0.0074 U
Benzo[b]fluoranthene	mg/kg	21	1.1	0.12	2.2	0.14	1.3	0.02	0.0074 U
Benzo[g,h,i]perylene	mg/kg		0.22	0.045 J	0.68	0.019 J	0.37	0.0057 B	0.0074 U
Benzo[k]fluoranthene	mg/kg	210	0.73	0.084	1.5	0.13	1.1	0.015	0.0074 U
bis(2-Chloroethyl)ether	mg/kg	1	0.073 U	0.072 U	0.081 U	0.071 U	0.071 U	0.074 U	0.075 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.073 UJ	0.032 J	0.081 UJ	0.071 U	0.053 B	0.074 U	0.075 U
Caprolactam	mg/kg	400,000	0.093 J	0.18 U	0.19 J	0.18 U	0.18 U	0.18 U	0.19 U
Carbazole	mg/kg	2,100	0.041 J	0.072 U	0.083 J	0.021 J	0.058 J	0.074 U	0.075 U
Chrysene Dibenz[a,h]anthracene	mg/kg	2,100	0.6	0.049 J 0.073 U	1.2 0.37	0.17 0.071 U	0.54 J	0.016	0.00091 J 0.0074 U
Diethylphthalate	mg/kg	660,000	0.094 0.073 U	0.073 U 0.072 U	0.081 U	0.071 U	0.14 0.071 U	0.0015 J 0.074 U	0.074 U
Di-n-butylphthalate	mg/kg mg/kg	82,000	0.073 U	0.072 U 0.072 U	0.081 U 0.081 U	0.071 U 0.031 B	0.52 J	0.074 U 0.02 B	0.075 U 0.025 B
Di-n-ocytlphthalate	mg/kg	82,000	0.073 UJ	0.072 U 0.072 UJ	0.081 U 0.081 UJ	0.031 B 0.071 U	0.52 J 0.029 J	0.02 B 0.074 U	0.023 B 0.075 U
Fluoranthene	mg/kg	30,000	0.073 03	0.072 03	1	0.52	0.82 J	0.074 0	0.073 U
Fluorene	mg/kg	30,000	0.046 J	0.073 U	0.088	0.0031 J	0.0097	0.013 0.0012 J	0.0074 U
Hexachloroethane	mg/kg	8	0.073 U	0.073 U	0.034 J	0.0031 J 0.071 U	0.0097 0.071 U	0.074 U	0.074 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.073 0	0.072 U	0.68	0.021 J	0.35 J	0.074 0	0.0073 U
Isophorone	mg/kg	2,400	0.073 U	0.072 U	0.081 U	0.071 U	0.071 U	0.074 U	0.074 U
Naphthalene	mg/kg	17	0.31 J	0.072 U	0.46 J	0.28	0.043	0.0064 J	0.0035 J
Nitrobenzene	mg/kg	22	0.073 U	0.073 U	0.081 U	0.071 U	0.071 U	0.074 U	0.075 U
N-Nitrosodiphenylamine	mg/kg	470	0.073 U	0.072 U	0.081 U	0.071 U	0.071 U	0.074 U	0.075 U
Phenanthrene	mg/kg		1.9	0.066 J	2.9	0.54	0.19	0.014	0.015
Phenol	mg/kg	250,000	0.028 J	0.072 U	0.075 J	0.071 R	0.071 U	0.074 U	0.075 U
Pyrene	mg/kg	23,000	0.64	0.064 J	1.1	0.43	0.77 J	0.011	0.0021 J
PCBs	88	2,230							
Aroclor 1248		0.94	N/A	0.018 U	N/A	0.018 U	N/A	0.019 U	N/A
1100101 1270	$m\sigma/k\sigma$			0.010 U	11/1	0.010 U	11/1	0.017 0	
Aroclor 1254	mg/kg mg/kg				N/Δ	0 030 T	N/Δ	0.010 U	N/Δ
Aroclor 1254 Aroclor 1260	mg/kg	0.97	N/A	0.018 U	N/A N/A	0.039 J	N/A N/A	0.019 U	N/A N/A
Aroclor 1260	mg/kg mg/kg	0.97 0.99	N/A N/A	0.018 U 0.0095 J	N/A	0.018 U	N/A	0.019 U	N/A
Aroclor 1260 PCBs (total)	mg/kg	0.97	N/A	0.018 U					
Aroclor 1260 PCBs (total) TPH/Oil and Grease	mg/kg mg/kg mg/kg	0.97 0.99 0.97	N/A N/A N/A	0.018 U 0.0095 J 0.13 U	N/A N/A	0.018 U 0.039 J	N/A N/A	0.019 U 0.13 U	N/A N/A
Aroclor 1260 PCBs (total) TPH/Oil and Grease Diesel Range Organics	mg/kg mg/kg mg/kg mg/kg	0.97 0.99 0.97 6,200	N/A N/A N/A 291	0.018 U 0.0095 J 0.13 U 77	N/A N/A 439	0.018 U 0.039 J 573 J	N/A N/A 41.4 J	0.019 U 0.13 U 8.4	N/A N/A 12.9
Aroclor 1260 PCBs (total) TPH/Oil and Grease	mg/kg mg/kg mg/kg	0.97 0.99 0.97	N/A N/A N/A	0.018 U 0.0095 J 0.13 U	N/A N/A	0.018 U 0.039 J	N/A N/A	0.019 U 0.13 U	N/A N/A

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

 $N\!/\!A$ indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-004-SB-5*	B2-005A-SB-1	B2-005-SB-1	B2-005-SB-5	B2-006-SB-1	B2-006-SB-4	B2-007-SB-1*
Volatile Organic Compounds	II	I							I
1,2,3-Trichlorobenzene	mg/kg	930	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
1,2,4-Trichlorobenzene	mg/kg	110	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
1,2-Dichloroethane	mg/kg	2	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	N/A	N/A	N/A	N/A	0.0059 J
Acetone	mg/kg	670,000	N/A	N/A	N/A	N/A	N/A	N/A	0.03
Benzene	mg/kg	5.1	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
Cyclohexane	mg/kg	27,000	N/A	N/A	N/A	N/A	N/A	N/A	0.0092 U
Ethylbenzene	mg/kg	25	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
Isopropylbenzene	mg/kg	9,900	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A	N/A	N/A	0.0046 U
Xylenes	mg/kg	2,800	N/A	N/A	N/A	N/A	N/A	N/A	0.014 U
Semi-Volatile Organic Compounds^		200	0.07611	0.072.11	0.074.11	0.072.11	0.000 X	0.0 <i>C</i> 0 T	0.072.11
1,1-Biphenyl	mg/kg	200 350	0.076 U	0.073 U	0.074 U	0.073 U	0.022 J	0.063 J	0.073 U
1,2,4,5-Tetrachlorobenzene	mg/kg	350 16,000	0.076 U 0.076 U	0.073 U 0.073 UJ	0.074 U 0.074 R	0.073 U 0.073 R	0.073 U 0.073 U	0.019 J 0.059 J	0.073 U 0.073 U
2,4-Dimethylphenol 2,4-Dinitrotoluene	mg/kg mg/kg	7.4	0.076 U	0.073 U	0.074 K 0.074 U	0.073 K	0.073 U	0.082 U	0.073 U
2,4-Dimtrototuene 2-Chloronaphthalene	mg/kg	60,000	0.076 U	0.073 U	0.074 U 0.074 U	0.073 U 0.073 U	0.073 U 0.073 U	0.082 U 0.082 U	0.073 U
2-Methylnaphthalene	mg/kg	3,000	0.078 0	0.075 U	0.074 U 0.074 U	0.075 U 0.0062 J	0.073 U	0.082 0	0.073 U 0.025 J
2-Methylphenol	mg/kg	41,000	0.076 U	0.073 UJ	0.074 C	0.073 R	0.073 U	0.039 J	0.073 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.15 U	0.15 UJ	0.15 R	0.15 R	0.15 U	0.035 J	0.14 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.076 U	0.073 UJ	0.074 U	0.073 U	0.073 UJ	0.082 UJ	0.073 U
4-Chloroaniline	mg/kg	11	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
Acenaphthene	mg/kg	45,000	0.013	0.0008 J	0.074 UJ	0.0073 UJ	0.058 J	0.044 J	0.0069 J
Acenaphthylene	mg/kg	45,000	0.5	0.0091	0.074 UJ	0.0073 UJ	0.17	0.12	0.0054 J
Acetophenone	mg/kg	120,000	0.076 U	0.073 U	0.074 U	0.073 U	0.02 J	0.045 J	0.073 U
Anthracene	mg/kg	230,000	0.35	0.0058 J	0.0043 J	0.0036 J	0.33	0.22	0.015 J
Benz[a]anthracene	mg/kg	21	1.8	0.019	0.019 J	0.013	0.91	0.54	0.072 U
Benzaldehyde	mg/kg	120,000	0.076 U	0.073 U	0.019 J	0.073 U	0.025 J	0.11 J	0.073 U
Benzo[a]pyrene	mg/kg	2.1	2	0.013	0.012 J	0.0099	0.8	0.51	0.072 U
Benzo[b]fluoranthene	mg/kg	21	2.9	0.033	0.057 J	0.027	1.5	1	0.04 J
Benzo[g,h,i]perylene	mg/kg	210	1.4	0.021	0.023 J	0.0062 J	0.41	0.53	0.015 J
Benzo[k]fluoranthene	mg/kg	210	1.2	0.026	0.045 J	0.021	1.2	0.85	0.032 J
bis(2-Chloroethyl)ether	mg/kg	160	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
bis(2-Ethylhexyl)phthalate	mg/kg	160 400,000	0.076 U 0.19 U	0.047 J 0.18 U	0.033 J 0.19 U	0.073 U 0.18 U	0.057 B	0.09 B	0.095 0.18 U
Caprolactam Carbazole	mg/kg mg/kg	400,000	0.19 0	0.18 U	0.19 U 0.074 U	0.18 U	0.023 J 0.078 J	0.066 J 0.075 J	0.18 U 0.073 U
Chrysene	mg/kg	2,100	1.8	0.073 0	0.074 U	0.073 0	0.82	0.58	0.073 U
Dibenz[a,h]anthracene	mg/kg	2,100	0.56	0.022 0.0034 J	0.074 U	0.0014 0.0016 J	0.15	0.15	0.072 U
Diethylphthalate	mg/kg	660,000	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.023 B	0.086
Di-n-butylphthalate	mg/kg	82,000	0.076 U	0.12 B	0.074 U	0.073 U	0.05 B	0.058 B	0.059 B
Di-n-ocytlphthalate	mg/kg	8,200	0.076 U	0.073 UJ	0.074 UJ	0.073 U	0.073 UJ	0.082 UJ	0.073 U
Fluoranthene	mg/kg	30,000	2.4	0.035	0.055 J	0.032	1.3	0.9	0.072 U
Fluorene	mg/kg	30,000	0.12	0.0013 J	0.074 UJ	0.0073 UJ	0.094	0.053 J	0.0082 J
Hexachloroethane	mg/kg	8	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	1.4	0.011	0.074 U	0.0058 J	0.49	0.41	0.072 U
Isophorone	mg/kg	2,400	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
Naphthalene	mg/kg	17	0.23	0.0094	0.074 UJ	0.0061 J	0.18	0.48	0.072 U
Nitrobenzene	mg/kg	22	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
N-Nitrosodiphenylamine	mg/kg	470	0.076 U	0.073 U	0.074 U	0.073 U	0.073 U	0.082 U	0.073 U
Phenanthrene	mg/kg		1.3	0.016	0.022 J	0.02 J	1	1.2	0.064 J
Phenol	mg/kg	250,000	0.076 U	0.073 UJ	0.074 R	0.073 R	0.073 U	0.046 J	0.073 U
Pyrene	mg/kg	23,000	1.9	0.03	0.077	0.025	0.99	0.73	0.074
PCBs									
Aroclor 1248	mg/kg	0.94	N/A	0.018 U	0.018 U	N/A	0.019 U	N/A	0.018 U
Aroclor 1254	mg/kg	0.97	N/A	0.018 U	0.018 U	N/A	0.019 U	N/A	0.018 U
Aroclor 1260	mg/kg	0.99	N/A	0.018 U	0.018 U	N/A	0.019 U	N/A	0.018 U
PCBs (total)	mg/kg	0.97	N/A	0.13 U	0.13 U	N/A	0.13 U	N/A	0.13 U
TPH/Oil and Grease		1							
Dissal Danas Ossanias	mg/kg	6,200	30.1	113 J	507 J	31.3 J	53.3 J	90.5 J	605
Diesel Range Organics		,							
Gasoline Range Organics Oil and Grease	mg/kg mg/kg	6,200 6,200	4.6 B 438	4.1 B 436 J-	4.7 B 2,440	4.3 B 254	3.4 B 460	3.5 B 552	7.4 B 4,810

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-043-SB-4	B2-044-SB-1*	B2-044-SB-7*	B2-045-SB-1*	B2-045-SB-5*	B2-046-SB-1*	B2-046-SB-4*
Volatile Organic Compounds	1					I		I	
1,2,3-Trichlorobenzene	mg/kg	930	0.0047 U	N/A	N/A	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	mg/kg	110	0.0047 U	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichloroethane	mg/kg	2	0.0047 U	N/A	N/A	N/A	N/A	N/A	N/A
2-Butanone (MEK)	mg/kg	190,000	0.0095 U	N/A	N/A	N/A	N/A	N/A	N/A
Acetone	mg/kg	670,000	0.076 J	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	mg/kg	5.1	0.0047 U	N/A	N/A	N/A	N/A	N/A	N/A
Carbon disulfide	mg/kg	3,500	0.0047 U	N/A	N/A	N/A	N/A	N/A	N/A
Cyclohexane	mg/kg	27,000	0.0095 U	N/A	N/A	N/A	N/A	N/A	N/A
Ethylbenzene	mg/kg	25	0.0047 U	N/A	N/A	N/A	N/A	N/A	N/A
Isopropylbenzene	mg/kg	9,900	0.0047 U	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	mg/kg	47,000	0.0047 U	N/A	N/A	N/A	N/A	N/A	N/A
Xylenes	mg/kg	2,800	0.014 U	N/A	N/A	N/A	N/A	N/A	N/A
Semi-Volatile Organic Compounds ⁴		1				Ī			
1,1-Biphenyl	mg/kg	200	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.38	0.082 U
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.077 U	0.082 U
2,4-Dimethylphenol	mg/kg	16,000	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.028 J	0.082 U
2,4-Dinitrotoluene	mg/kg	7.4	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.077 U	0.082 U
2-Chloronaphthalene	mg/kg	60,000 3,000	0.079 U 0.0082 U	0.079 U	0.073 U 0.024	0.082 U	0.083 U 0.0084 U	0.077 U 0.5	0.082 U
2-Methylnaphthalene 2-Methylphenol	mg/kg mg/kg	3,000	0.0082 U 0.079 U	0.031 J 0.079 U	0.024 0.073 U	0.046 J 0.082 U	0.0084 U 0.083 U	0.5 0.029 J	0.0014 J 0.082 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.16 U	0.16 U	0.15 U	0.082 U	0.16 U	0.029 J 0.12 J	0.082 U
3.3'-Dichlorobenzidine	mg/kg mg/kg	5.1	0.18 U 0.079 U	0.16 U	0.13 U	0.16 U 0.082 U	0.16 U	0.12 J 0.077 U	0.16 U 0.082 U
4-Chloroaniline	mg/kg	11	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.077 U	0.082 U
Acenaphthene	mg/kg	45,000	0.0082 U	0.13	0.075 0	0.077 J	0.003 U	0.075 J	0.0084 U
Acenaphthylene	mg/kg	45,000	0.0082 U	0.067 J	0.0044 J	0.027 J	0.0084 U	3.2	0.0028 J
Acetophenone	mg/kg	120,000	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.021 J	0.082 U
Anthracene	mg/kg	230,000	0.0082 U	0.13	0.028	0.28	0.00083 B	2.2	0.001 B
Benz[a]anthracene	mg/kg	21	0.00098 J	0.69	0.22	1.8	0.0044 J	9.4	0.0053 J
Benzaldehyde	mg/kg	120,000	0.079 U	0.021 J	0.073 U	0.026 J	0.083 U	0.049 J	0.082 U
Benzo[a]pyrene	mg/kg	2.1	0.0082 U	0.86	0.51	1.7	0.0041 J	10.5	0.0049 J
Benzo[b]fluoranthene	mg/kg	21	0.0082 U	1.2	0.65	2.6	0.0065 J	6.7	0.011
Benzo[g,h,i]perylene	mg/kg		0.0082 U	0.67	0.52	0.95	0.004 J	5.7	0.022
Benzo[k]fluoranthene	mg/kg	210	0.0082 U	0.41	0.21	0.99	0.002 J	6	0.009
bis(2-Chloroethyl)ether	mg/kg	1	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.077 U	0.082 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.079 U	0.024 J	0.073 U	0.056 J	0.02 J	0.049 J	0.082 U
Caprolactam	mg/kg	400,000	0.2 U	0.2 U	0.18 U	0.2 U	0.21 U	0.065 J	0.2 U
Carbazole	mg/kg	2 1 0 0	0.079 U	0.079 U	0.018 J	0.082 U	0.083 U	0.077 U	0.082 U
Chrysene	mg/kg	2,100	0.0082 U	0.64	0.22	1.8	0.004 J	9.4	0.0037 J
Dibenz[a,h]anthracene Diethylphthalate	mg/kg	2.1 660,000	0.0082 U 0.079 U	0.18 0.02 J	0.15 0.016 J	0.25 0.082 U	0.0084 U 0.083 U	2 0.077 U	0.003 J 0.082 U
Dienyphthalate Di-n-butylphthalate	mg/kg mg/kg	82,000	0.069 B	0.02 J 0.049 B	0.038 B	0.082 U 0.032 B	0.083 0	0.077 0	0.082 U
Di-n-ocytlphthalate	mg/kg	82,000	0.079 U	0.079 U	0.073 U	0.032 B	0.083 U	0.077 U	0.082 U
Fluoranthene	mg/kg	30,000	0.0079 U	1.2	0.25	3.5	0.0076 B	17.6	0.0052 B
Fluorene	mg/kg	30,000	0.0082 U	0.032 J	0.012	0.075 J	0.0084 U	0.71	0.0032 B
Hexachloroethane	mg/kg	8	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.077 U	0.082 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.0082 U	0.6	0.48	0.92	0.0031 J	6.4	0.016
Isophorone	mg/kg	2,400	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.077 U	0.082 U
Naphthalene	mg/kg	17	0.0082 U	0.044 J	0.039	0.064 J	0.0084 U	1.2	0.0084 U
Nitrobenzene	mg/kg	22	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.077 U	0.082 U
N-Nitrosodiphenylamine	mg/kg	470	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.1	0.082 U
Phenanthrene	mg/kg		0.0082 U	0.43	0.12	1.4	0.0032 B	6.7	0.0021 B
Phenol	mg/kg	250,000	0.079 U	0.079 U	0.073 U	0.082 U	0.083 U	0.11	0.082 U
Pyrene	mg/kg	23,000	0.0082 U	0.99	0.22	2.9	0.0062 B	11.5	0.004 B
PCBs									
Aroclor 1248	mg/kg	0.94	N/A	0.02 U	N/A	0.021 U	N/A	0.19 U	N/A
Aroclor 1254	mg/kg	0.97	N/A	0.02 U	N/A	0.021 U	N/A	0.19 U	N/A
Aroclor 1260	mg/kg	0.99	N/A	0.02 U	N/A	0.021 U	N/A	0.19 U	N/A
PCBs (total)	mg/kg	0.97	N/A	0.14 U	N/A	0.15 U	N/A	1.3 U	N/A
TPH/Oil and Grease								-	
Diesel Range Organics	mg/kg	6,200	5.9 B	27.1	28.1	238	6.2 B	474	6.5 B
Gasoline Range Organics	mg/kg	6,200	2.7 B	4.5 B	2.5 B	4.5 B	10.5 U	3.6 B	2.5 B
Gasonne Range Organies			D .7 D	1.5 D	2.J D		10.5 0	5.0 D	2.5 D
Oil and Grease	mg/kg	6,200	125 J-	536	365	688	446	3,030	<u>398</u>

Detections in **bold.** Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-047-SB-1	B2-047-SB-4	B2-048-SB-1	B2-048-SB-8	B2-049-SB-1	B2-049-SB-4	B2-050-SB-1
Volatile Organic Compounds	Ш								
1.2.3-Trichlorobenzene	mg/kg	930	N/A	0.0047 U	N/A	N/A	0.0051 U	0.0044 U	N/A
1,2,4-Trichlorobenzene	mg/kg	110	N/A	0.0047 U	N/A	N/A	0.0051 U	0.0044 U	N/A
1,2-Dichloroethane	mg/kg	2	N/A	0.0047 U	N/A	N/A	0.0051 U	0.0044 U	N/A
2-Butanone (MEK)	mg/kg	190,000	N/A	0.0094 U	N/A	N/A	0.01 U	0.0088 U	N/A
Acetone	mg/kg	670,000	N/A	0.055 J	N/A	N/A	0.022	0.0074 J	N/A
Benzene	mg/kg	5.1	N/A	0.0047 U	N/A	N/A	0.0051 U	0.0044 U	N/A
Carbon disulfide	mg/kg	3,500	N/A	0.0046 J	N/A	N/A	0.0051 UJ	0.0044 UJ	N/A
Cyclohexane	mg/kg	27,000	N/A	0.0094 U	N/A	N/A	0.01 U	0.0088 U	N/A
Ethylbenzene	mg/kg	25	N/A	0.0047 U	N/A	N/A	0.0051 U	0.0044 U	N/A
Isopropylbenzene	mg/kg	9,900	N/A	0.0047 U	N/A	N/A	0.0051 U	0.0044 U	N/A
Toluene	mg/kg	47,000	N/A	0.0047 U	N/A	N/A	0.0051 U	0.0044 U	N/A
Xylenes	mg/kg	2,800	N/A	0.014 U	N/A	N/A	0.015 U	0.013 U	N/A
Semi-Volatile Organic Compounds	\								
1,1-Biphenyl	mg/kg	200	0.067 J	0.08 U	0.074 U	0.082 U	0.071 U	0.071 U	0.072 U
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.079 U	0.08 U	0.074 U	0.082 U	0.071 U	0.071 U	0.072 U
2,4-Dimethylphenol	mg/kg	16,000	0.079 U	0.08 U	0.074 R	0.082 U	0.071 R	0.071 R	0.072 U
2,4-Dinitrotoluene	mg/kg	7.4	0.079 U	0.08 U	0.074 U	0.082 U	0.071 U	0.071 U	0.072 U
2-Chloronaphthalene	mg/kg	60,000	0.079 U	0.08 U	0.074 U	0.082 U	0.071 U	0.071 U	0.072 U
2-Methylnaphthalene	mg/kg	3,000	0.8	0.0042 J	0.15	0.0019 J	0.01	0.012	0.14
2-Methylphenol	mg/kg	41,000	0.023 J	0.08 U	0.074 R	0.082 U	0.071 R	0.071 R	0.072 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.045 J	0.16 U	0.15 R	0.16 U	0.14 R	0.14 R	0.14 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.079 U	0.08 U	0.074 UJ	0.082 U	0.071 U	0.071 U	0.072 UJ
4-Chloroaniline	mg/kg	11	0.079 U	0.08 U	0.074 U	0.082 U	0.071 U	0.071 U	0.072 U
Acenaphthene	mg/kg	45,000	0.032 J	0.008 U	0.0058 J	0.0083 U	0.0072 U	0.0072 U	0.024 J
Acenaphthylene	mg/kg	45,000	0.34	0.008 U	0.0054 J	0.0011 J	0.0072 U	0.0072 U	0.86
Acetophenone	mg/kg	120,000	0.032 J	0.08 U	0.074 U	0.082 U	0.071 U	0.071 U	0.072 U
Anthracene	mg/kg	230,000	0.45	0.00046 J	0.016 J	0.0018 J	0.0009 J	0.0072 U	0.4
Benz[a]anthracene	mg/kg	21	0.87	0.008 U	0.072 J	0.008 J	0.0039 J	0.0016 J	3.9
Benzaldehyde	mg/kg	120,000	0.21 J	0.08 U	0.04 J	0.082 U	0.071 R	0.071 R	0.072 R
Benzo[a]pyrene	mg/kg	2.1	1.1	0.008 U	0.044 J	0.0071 J	0.0022 J	0.0013 J	4.4 J
Benzo[b]fluoranthene	mg/kg	21	3.1	0.008 U	0.13	0.018	0.012	0.0038 J	11.3 J
Benzo[g,h,i]perylene	mg/kg		0.56	0.008 U	0.062 J	0.0024 J	0.0081	0.0015 J	1.9 J
Benzo[k]fluoranthene	mg/kg	210	2.7	0.008 U	0.12	0.016	0.008	0.0015 J	7.7 J
bis(2-Chloroethyl)ether	mg/kg	1	0.079 U	0.08 U	0.074 U	0.082 U	0.071 U	0.071 U	0.072 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.079 U	0.08 U	0.074 UJ	0.082 U	0.071 U	0.071 U	0.072 UJ
Caprolactam	mg/kg	400,000	0.2 U	0.2 U	0.19 U	0.2 U	0.18 U	0.18 U	0.18 U
Carbazole	mg/kg		0.11	0.08 U	0.074 U	0.082 U	0.071 U	0.071 U	0.032 J
Chrysene	mg/kg	2,100	1.3	0.008 U	0.16	0.011	0.011	0.004 J	2.8
Dibenz[a,h]anthracene	mg/kg	2.1	0.24	0.008 U	0.074 U	0.0083 U	0.0072 U	0.0072 U	0.69 J
Diethylphthalate	mg/kg	660,000	0.079 U	0.08 U	0.074 U	0.082 U	0.071 U	0.071 U	0.072 U
Di-n-butylphthalate	mg/kg	82,000	0.043 B	0.071 B	0.041 B			0 071 U	0.070 II
Di-n-ocytlphthalate	mg/lzg					0.037 B	0.071 U	0.071 U	0.072 U
.1	mg/kg	8,200	0.049 J	0.08 U	0.16 J	0.082 U	0.071 U	0.071 U	0.072 UJ
Fluoranthene	mg/kg	30,000	0.98	0.08 U 0.008 U	0.16 J 0.12	0.082 U 0.013	0.071 U 0.01	0.071 U 0.0098	0.072 UJ 3.7
Fluorene	mg/kg mg/kg	30,000 30,000	0.98 0.061 J	0.08 U 0.008 U 0.008 U	0.16 J 0.12 0.0077 J	0.082 U 0.013 0.0083 U	0.071 U 0.01 0.0072 U	0.071 U 0.0098 0.0072 U	0.072 UJ 3.7 0.043 J
Fluorene Hexachloroethane	mg/kg mg/kg mg/kg	30,000 30,000 8	0.98 0.061 J 0.079 U	0.08 U 0.008 U 0.008 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U	0.082 U 0.013 0.0083 U 0.082 U	0.071 U 0.01 0.0072 U 0.071 U	0.071 U 0.0098 0.0072 U 0.071 U	0.072 UJ 3.7 0.043 J 0.072 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene	mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21	0.98 0.061 J 0.079 U 0.57	0.08 U 0.008 U 0.008 U 0.08 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.018 J	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone	mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400	0.98 0.061 J 0.079 U 0.57 0.079 U	0.08 U 0.008 U 0.008 U 0.08 U 0.008 U 0.008 U	0.16 J 0.12 0.0077 J 0.074 U 0.018 J 0.074 U	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59	0.08 U 0.008 U 0.008 U 0.08 U 0.008 U 0.08 U 0.008 U	0.16 J 0.12 0.0077 J 0.074 U 0.018 J 0.074 U 0.074 U 0.092	0.082 U 0.013 0.0083 U 0.082 U 0.082 U 0.082 U 0.082 U 0.083 U	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.0037 J	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 J
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17 22	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U	0.08 U 0.008 U 0.008 U 0.08 U 0.008 U 0.08 U 0.08 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.092 0.074 U	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.0083 U 0.082 U	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.0037 J 0.071 U	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.07 J 0.072 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.079 U 0.069 J	0.08 U 0.008 U 0.008 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U	0.082 U 0.013 0.0083 U 0.082 U 0.082 U 0.082 U 0.083 U 0.082 U 0.082 U	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.0037 J 0.071 U 0.071 U	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17 22 470	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3	0.08 U 0.008 U 0.008 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.0083 U 0.082 U 0.082 U 0.082 U 0.082 U	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 U	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17 22 470 250,000	0.98 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3 0.029 J	0.08 U 0.008 U 0.008 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 R	0.082 U 0.013 0.0083 U 0.082 U 0.082 U 0.082 U 0.083 U 0.082 U 0.082 U 0.082 U 0.082 U	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 R	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.0037 J 0.071 U 0.071 U 0.071 U 0.071 R	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17 22 470	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3	0.08 U 0.008 U 0.008 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.0083 U 0.082 U 0.082 U 0.082 U 0.082 U	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 U	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$ \begin{array}{r} 30,000 \\ 30,000 \\ 8 \\ 21 \\ 2,400 \\ 17 \\ 22 \\ 470 \\ 250,000 \\ 23,000 \\ \end{array} $	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3 0.029 J 1.1	0.08 U 0.008 U 0.008 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 R 0.074 R	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 R 0.0093	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 R 0.0076	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 3.9
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17 22 470 250,000 23,000 0.94	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3 0.029 J 1.1	0.08 U 0.008 U 0.008 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.018 J 0.074 U 0.092 0.074 U 0.074 U 0.074 U 0.074 R 0.092 0.074 R 0.18	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.0083 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.084 J 0.082 U 0.081	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 R 0.0093 0.018 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 R 0.0076 N/A	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 3.9 0.018 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254	mg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kg	30,000 30,000 8 21 2,400 17 22 470 250,000 23,000 23,000 0.94 0.97	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3 0.029 J 1.1 0.02 U 0.02 U	0.08 U 0.008 U 0.008 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 R 0.074 R 0.18 0.019 U 0.019 U	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.084 J 0.082 U 0.081	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 R 0.0062 J 0.071 R 0.0093 0.018 U 0.018 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 R 0.071 R 0.0076 N/A N/A	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 3.9 0.018 U 0.018 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1260	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17 22 470 250,000 23,000 23,000 0.94 0.97 0.99	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3 0.029 J 1.1 0.02 U 0.02 U 0.02 U	0.08 U 0.008 U 0.008 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 R 0.074 R 0.18 0.019 U	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.084 J 0.082 U 0.084 J 0.082 U	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 R 0.0093 0.018 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 R 0.071 R 0.071 R 0.071 R 0.0776	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 3.9 0.018 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1260	mg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kg	30,000 30,000 8 21 2,400 17 22 470 250,000 23,000 23,000 0.94 0.97	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3 0.029 J 1.1 0.02 U 0.02 U	0.08 U 0.008 U 0.008 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 R 0.074 R 0.18 0.019 U 0.019 U	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.084 J 0.082 U 0.081	0.071 U 0.01 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 R 0.0062 J 0.071 R 0.0093 0.018 U 0.018 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 R 0.071 R 0.0076 N/A N/A	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 3.9 0.018 U 0.018 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1260	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17 22 470 250,000 23,000 23,000 0.94 0.97 0.99	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3 0.029 J 1.1 0.02 U 0.02 U 0.02 U	0.08 U 0.008 U 0.008 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 R 0.074 R 0.074 R 0.019 U 0.019 U 0.019 U 0.056	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.084 J 0.082 U 0.084 J 0.082 U	0.071 U 0.0072 U 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 R 0.0062 J 0.071 R 0.0093 0.018 U 0.018 U 0.018 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 R 0.071 R 0.071 R 0.071 R 0.0776	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 3.9 0.018 U 0.018 U 0.018 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1260 PCBs (total)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17 22 470 250,000 23,000 23,000 0.94 0.97 0.99	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3 0.029 J 1.1 0.02 U 0.02 U 0.02 U	0.08 U 0.008 U 0.008 U 0.08 U	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 R 0.074 R 0.074 R 0.019 U 0.019 U 0.019 U 0.056	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.084 J 0.082 U 0.084 J 0.082 U	0.071 U 0.0072 U 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 R 0.0062 J 0.071 R 0.0093 0.018 U 0.018 U 0.018 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 R 0.071 R 0.071 R 0.071 R 0.0776	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 0.072 U 3.9 0.018 U 0.018 U 0.018 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 PCBs (total) TPH/Oil and Grease	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	30,000 30,000 8 21 2,400 17 22 470 250,000 23,000 23,000 0.94 0.97 0.99 0.97	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3 0.029 J 1.1 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U	0.08 U 0.008 U 0.008 U 0.08 U 0.008 U N/A N/A N/A	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 U 0.074 R 0.074 R 0.074 R 0.019 U 0.019 U 0.019 U 0.056 J	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.081 N/A N/A N/A N/A	0.071 U 0.0072 U 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.0071 U 0.071 U 0.0062 J 0.071 R 0.0093 0.018 U 0.018 U 0.018 U 0.018 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 R 0.0076 N/A N/A N/A N/A	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 0.073 U 0.072 U 0.072 U 0.072 U 0.073 U 0.072 U 0.073 U 0.073 U 0.073 U 0.072 U 0.073 U 0.018 U 0.013 U
Fluorene Hexachloroethane Indeno[1,2,3-c,d]pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodiphenylamine Phenanthrene Phenol Pyrene PCBs Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1254 Color 1260 PCBs (total) TPH/Oil and Grease Diesel Range Organics	mg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kg	30,000 30,000 8 21 2,400 17 22 470 250,000 23,000 0.94 0.97 0.99 0.97 6,200	0.98 0.061 J 0.079 U 0.57 0.079 U 0.59 0.079 U 0.069 J 1.3 0.029 J 1.1 0.02 U 0.02 U 0.02 U 0.02 U 0.14 U 135 J	0.08 U 0.008 U 0.008 U 0.08 U 0.008 U N/A N/A N/A N/A N/A 9.4 J	0.16 J 0.12 0.0077 J 0.074 U 0.074 U 0.074 U 0.092 0.074 U 0.074 U 0.074 U 0.074 U 0.074 R 0.092 0.074 R 0.019 U 0.019 U 0.019 U 0.056 J 446 J	0.082 U 0.013 0.0083 U 0.082 U 0.0025 J 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.082 U 0.084 J 0.082 U 0.084 J 0.082 U 0.084 J 0.082 U 0.084 J 0.082 U 0.084 J 0.082 U 0.084 J 0.082 U 0.084 J 0.084 J 0.085 J 0.082 U 0.084 J 0.084 J 0.085 J 0.085 J 0.085 J 0.085 J 0.085 U 0.084 J 0.084 J 0.085 J 0.085 J 0.085 J 0.085 J 0.085 J 0.085 J 0.085 J 0.085 J 0.084 J 0.085 J 0.0	0.071 U 0.0072 U 0.0072 U 0.071 U 0.0028 J 0.071 U 0.0072 UJ 0.071 U 0.071 U 0.071 U 0.071 R 0.0062 J 0.071 R 0.0093 0.018 U 0.018 U 0.018 U 0.018 U 0.018 U 0.018 U	0.071 U 0.0098 0.0072 U 0.071 U 0.0072 U 0.071 U 0.071 U 0.071 U 0.071 U 0.071 R 0.071 R 0.0076 N/A N/A N/A N/A N/A N/A	0.072 UJ 3.7 0.043 J 0.072 U 1.8 J 0.072 U 0.072 U 3.9

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

 $N\!/\!A$ indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-050-SB-5	B2-051-SB-1	B2-051-SB-5	B2-052-SB-1	B2-052-SB-5	B2-053-SB-1
Volatile Organic Compounds								<u> </u>
1,2,3-Trichlorobenzene	mg/kg	930	N/A	N/A	N/A	N/A	N/A	0.0063 U
1,2,4-Trichlorobenzene	mg/kg	110	N/A	N/A	N/A	N/A	N/A	0.0063 U
1,2-Dichloroethane	mg/kg	2	N/A	N/A	N/A	N/A	N/A	0.0063 U
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	N/A	N/A	N/A	0.013 U
Acetone	mg/kg	670,000	N/A	N/A	N/A	N/A	N/A	0.013 U
Benzene	mg/kg	5.1	N/A	N/A	N/A	N/A	N/A	0.0063 U
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A	N/A	0.0063 UJ
Cyclohexane	mg/kg	27,000	N/A	N/A	N/A	N/A	N/A	0.013 U
Ethylbenzene	mg/kg	25	N/A	N/A	N/A	N/A	N/A	0.0063 U
Isopropylbenzene	mg/kg	9,900	N/A	N/A	N/A	N/A	N/A	0.0063 U
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A	N/A	0.0063 U
Xylenes	mg/kg	2,800	N/A	N/A	N/A	N/A	N/A	0.019 U
Semi-Volatile Organic Compounds ⁴		Π					-	
1,1-Biphenyl	mg/kg	200	0.073 U	0.021 J	0.07 U	0.074 U	0.078 U	0.018 J
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.073 U	0.071 U	0.07 U	0.074 U	0.078 U	0.076 U
2,4-Dimethylphenol	mg/kg	16,000	0.073 U	0.071 R	0.07 R	0.074 U	0.078 U	0.076 U
2,4-Dinitrotoluene	mg/kg	7.4	0.073 U	0.071 U	0.07 U	0.074 U	0.078 U	0.076 U
2-Chloronaphthalene	mg/kg	60,000	0.073 U	0.071 U	0.07 U	0.074 U	0.078 U	0.076 U
2-Methylnaphthalene	mg/kg	3,000	0.047 0.073 U	0.12 0.071 R	0.11 0.07 R	0.098 0.074 U	0.0041 J 0.078 U	0.28 0.076 U
2-Methylphenol	mg/kg	41,000						
3&4-Methylphenol(m&p Cresol) 3.3'-Dichlorobenzidine	mg/kg mg/kg	41,000 5.1	0.15 U 0.073 UJ	0.14 R 0.071 U	0.14 R 0.07 U	0.15 U 0.074 U	0.16 U 0.078 U	0.15 U 0.076 U
4-Chloroaniline	mg/kg	11	0.073 U	0.071 U	0.07 U	0.074 U	0.078 U	0.076 U
Acenaphthene	mg/kg	45,000	0.002 J	0.071 U	0.0083 J	0.074 0	0.035	0.070 C
Acenaphthylene	mg/kg	45,000	0.002 3	0.071 U	0.073	0.17	0.0023 J	0.032 J
Acetophenone	mg/kg	120,000	0.073 U	0.071 U	0.07 U	0.074 U	0.078 U	0.032 J
Anthracene	mg/kg	230,000	0.035	0.071 U	0.1	0.28	0.094	0.082
Benz[a]anthracene	mg/kg	21	0.2	0.04 J	0.49	0.78	0.15	0.44
Benzaldehyde	mg/kg	120,000	0.073 R	0.071 R	0.07 R	0.018 J	0.078 U	0.054 J
Benzo[a]pyrene	mg/kg	2.1	0.15	0.016 J	0.37	0.75	0.13	0.42
Benzo[b]fluoranthene	mg/kg	21	0.35 J	0.063 J	0.92	1.9	0.23	0.97
Benzo[g,h,i]perylene	mg/kg		0.06	0.047 J	0.11	0.38	0.044	0.21
Benzo[k]fluoranthene	mg/kg	210	0.24 J	0.043 J	0.63	1.7	0.21	0.77
bis(2-Chloroethyl)ether	mg/kg	1	0.073 U	0.071 U	0.07 U	0.074 U	0.078 U	0.076 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.073 UJ	0.071 U	0.07 U	0.081	0.016 B	0.076 U
Caprolactam	mg/kg	400,000	0.18 U	0.18 U	0.18 U	0.18 U	0.2 U	0.19 U
Carbazole	mg/kg	. 100	0.073 U	0.071 U	0.032 J	0.071 J	0.078 U	0.037 J
Chrysene	mg/kg	2,100	0.14	0.12	0.32	0.85	0.14	0.46
Dibenz[a,h]anthracene	mg/kg	2.1	0.027	0.071 U	0.035 J	0.13	0.015	0.064 J
Diethylphthalate	mg/kg	660,000	0.073 U	0.071 U	0.07 U	0.074 U	0.078 U	0.076 U
Di-n-butylphthalate Di-n-ocytlphthalate	mg/kg	82,000 8,200	0.073 U 0.073 UJ	0.071 U 0.071 UJ	0.07 U 0.07 U	0.077 0.074 UJ	0.081 0.078 U	0.076 U 0.076 UJ
Fluoranthene	mg/kg	30,000	0.073 0J 0.31	0.071 0.1	0.07 0	1.1	0.078 0	0.63
Fluorene	mg/kg mg/kg	30,000	0.0033 J	0.12 0.071 U	0.74 0.0063 J	0.031 J	0.026	0.05 0.011 J
Hexachloroethane	mg/kg	8	0.073 U	0.071 U	0.0003 J 0.07 U	0.074 U	0.028 0.078 U	0.076 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.075 0	0.071 U	0.07 0	0.074 0	0.078 0	0.070 0
Isophorone	mg/kg	2,400	0.073 U	0.071 U	0.07 U	0.074 U	0.078 U	0.21 0.076 U
Naphthalene	mg/kg	17	0.037 J	0.071 UJ	0.071 UJ	0.07 B	0.0048 B	0.22 J
Nitrobenzene	mg/kg	22	0.073 U	0.071 U	0.07 U	0.074 U	0.078 U	0.076 U
N-Nitrosodiphenylamine	mg/kg	470	0.073 U	0.071 U	0.07 U	0.074 U	0.078 U	0.076 U
Phenanthrene	mg/kg		0.23	0.33	0.29	0.32	0.29	0.5 J
Phenol	mg/kg	250,000	0.073 U	0.071 R	0.07 R	0.074 U	0.078 U	0.076 U
Pyrene	mg/kg	23,000	0.24	0.16	0.61	1.1	0.32	0.58
PCBs								
Aroclor 1248	mg/kg	0.94	N/A	0.018 U	N/A	0.018 U	N/A	0.019 U
Aroclor 1254	mg/kg	0.97	N/A	0.018 U	N/A	0.018 U	N/A	0.019 U
Aroclor 1260	mg/kg	0.99	N/A	0.018 U	N/A	0.14 J	N/A	0.019 U
PCBs (total)	mg/kg	0.97	N/A	0.13 U	N/A	0.14	N/A	0.13 U
TPH/Oil and Grease								
Diesel Range Organics	mg/kg	6,200	62.3 J	235	29.3	86.8 J	6.8 B	136 J
Gasoline Range Organics	mg/kg	6,200	5 J	3 J	2.8 J	2.4 B	2.5 B	8.4 J
Oil and Grease	mg/kg	6,200	139	1,430	267	342 J-	437 J-	538
		-,==0		-,				

Detections in bold. Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-053-SB-5.5	B2-054-SB-1	B2-054-SB-5	B2-055-SB-1	B2-055-SB-6.5
Volatile Organic Compounds	u						
1,2,3-Trichlorobenzene	mg/kg	930	0.25 U	0.0073 U	0.0046 U	0.0067 U	0.27 U
1,2,4-Trichlorobenzene	mg/kg	110	0.25 U	0.0073 U	0.0046 U	0.0067 U	0.27 U
1,2-Dichloroethane	mg/kg	2	0.25 U	0.0017 J	0.0046 U	0.0067 U	0.27 U
2-Butanone (MEK)	mg/kg	190,000	0.5 U	0.015 U	0.0092 U	0.013 U	0.54 U
Acetone	mg/kg	670,000	0.5 U	0.015 U	0.024 J	0.013 U	14.6 J
Benzene	mg/kg	5.1	0.25 U	0.0073 U	0.0046 U	0.0067 U	0.16 J
Carbon disulfide	mg/kg	3,500	0.25 UJ	0.0073 UJ	0.0046 UJ	0.0033 J	0.27 UJ
Cyclohexane	mg/kg	27,000	19	0.015 U	0.0092 U	0.013 U	26.9 J
Ethylbenzene	mg/kg	25	1.8	0.0073 U	0.0046 U	0.0067 U	0.39
Isopropylbenzene	mg/kg	9,900	2.7	0.0073 U	0.0046 U	0.0067 U	5.2 J
Toluene	mg/kg	47,000	0.19 J	0.0073 U	0.0046 U	0.0067 U	0.27 U
Xylenes	mg/kg	2,800	1.4	0.022 U	0.014 U	0.02 U	0.44 J
Semi-Volatile Organic Compounds^		ī	-				-
1,1-Biphenyl	mg/kg	200	0.079 U	0.4 U	0.082 U	1.4 U	0.39 U
1,2,4,5-Tetrachlorobenzene	mg/kg	350	0.079 U	0.4 U	0.082 U	1.4 U	0.39 U
2,4-Dimethylphenol	mg/kg	16,000	0.057 J	0.4 U	0.082 U	1.4 U	0.14 J
2,4-Dinitrotoluene	mg/kg	7.4	0.079 U	0.4 U	0.082 U	1.4 U	0.39 U
2-Chloronaphthalene	mg/kg	60,000	0.079 U	0.4 U	0.082 U	1.4 U	0.39 U
2-Methylnaphthalene	mg/kg	3,000	0.7	0.052 J	0.0082 U	0.042 J	1.8
2-Methylphenol	mg/kg	41,000	0.079 U	0.4 U	0.082 U	1.4 U	0.39 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.16 U	0.79 U	0.16 U	2.8 U	0.77 U
3,3'-Dichlorobenzidine	mg/kg	5.1	0.079 U	0.4 U	0.082 U	1.4 U	0.39 U
4-Chloroaniline	mg/kg	11	0.079 U	0.4 U	0.082 U	1.4 U	0.12 J
Acenaphthene	mg/kg	45,000	0.0024 J	0.043 J	0.0082 UJ	0.0079 J	0.077 J
Acenaphthylene	mg/kg	45,000	0.0013 J	0.069 J	0.0082 UJ	0.59 J	0.032 J
Acetophenone	mg/kg	120,000	1.2	0.4 U	0.082 U	1.4 U	0.39 U
Anthracene	mg/kg	230,000	0.0031 J	0.22	0.0082 U	0.21	0.19
Benz[a]anthracene	mg/kg	21	0.013	1.1	0.0082 U	1.6	0.29
Benzaldehyde	mg/kg	120,000	0.079 U	0.4 U	0.082 U	1.4 U	0.28 J
Benzo[a]pyrene Benzo[b]fluoranthene	mg/kg	2.1	0.012 0.027	1.1	0.0082 U	2.8	0.24
Benzo[g,h,i]perylene	mg/kg mg/kg	21	0.027 0.0054 J	2.4 0.56	0.0082 U 0.0082 U	5.5 1.6	0.53 0.095
Benzo[k]fluoranthene	mg/kg	210	0.0034 J	1.9	0.0082 U 0.0082 U	4.4	0.095
bis(2-Chloroethyl)ether	mg/kg	1	0.021	0.4 U	0.082 U	4.4 1.4 U	0.42 0.39 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.079 U	0.4 U 0.4 U	0.082 U	1.4 U	0.39 U
Caprolactam	mg/kg	400,000	0.2 U	1 U	0.082 U	3.5 U	0.97 U
Carbazole	mg/kg	400,000	0.079 U	0.17 J	0.082 U	1.4 U	0.39 U
Chrysene	mg/kg	2,100	0.013	1	0.002 U	1.6	0.23
Dibenz[a,h]anthracene	mg/kg	2.1	0.0081 U	0.18	0.0082 U	0.44	0.03 J
Diethylphthalate	mg/kg	660,000	0.079 U	0.4 U	0.082 U	1.4 U	0.39 U
Di-n-butylphthalate	mg/kg	82,000	0.079 U	0.4 U	0.082 U	1.4 U	0.39 U
Di-n-ocytlphthalate	mg/kg	8,200	0.079 UJ	0.4 UJ	0.082 UJ	1.4 U	0.39 UJ
Fluoranthene	mg/kg	30,000	0.02	2	0.0015 J	2	0.72
Fluorene	mg/kg	30,000	0.0033 J	0.033 J	0.0082 UJ	0.016 J	0.13 J
Hexachloroethane	mg/kg	8	0.079 U	0.4 U	0.082 U	1.4 U	3.7
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.0053 J	0.54	0.0082 U	1.6	0.1
Isophorone	mg/kg	2,400	0.071 J	0.4 U	0.082 U	1.4 U	0.19 J
Naphthalene	mg/kg	17	0.076 J	0.098 J	0.0082 UJ	0.13 J	0.16 J
Nitrobenzene	mg/kg	22	0.079 U	0.4 U	0.082 U	1.4 U	0.3 J
N-Nitrosodiphenylamine	mg/kg	470	0.079 U	0.4 U	0.082 U	1.4 U	0.39 U
Phenanthrene	mg/kg		0.017 J	0.76 J	0.0082 UJ	0.24 J	0.58 J
Phenol	mg/kg	250,000	0.079 U	0.4 U	0.082 U	1.4 U	0.39 U
Pyrene	mg/kg	23,000	0.017	1.7	0.0014 J	2.7	0.62
PCBs							
Aroclor 1248	mg/kg	0.94	N/A	0.02 U	N/A	0.018 U	N/A
Aroclor 1254	mg/kg	0.97	N/A	0.02 U	N/A	0.018 U	N/A
Aroclor 1260	mg/kg	0.99	N/A	0.02 U	N/A	0.018 U	N/A
PCBs (total)	mg/kg	0.97	N/A	0.14 U	N/A	0.12 U	N/A
TPH/Oil and Grease							
Diesel Range Organics	mg/kg	6,200	201 J	55.9 J	15.1 J	121 J	817 J
Gasoline Range Organics	mg/kg	6,200	1,130	16	355	8.6 B	1,270
Oil and Grease	mg/kg	6,200	262	672	312	455	348
on and Groupe	111 <u>5</u> / Ag	0,200	202	014	J14	JJJ	070

Values in red indicate exceedances of the Project Action Limit (PAL) Detections in bold.

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The compound/analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-001-SB-1	B2-001-SB-5	B2-002-SB-1	B2-002-SB-4.5	B2-003-SB-1*	B2-003-SB-4.5*	B2-004-SB-1*	B2-004-SB-5*
Metals	<u>u</u>									
Aluminum	mg/kg	1,100,000	20,900	23,300	7,880	12,900	9,600	11,600	16,000	4,610
Antimony	mg/kg	470	2.9 UJ	2.5 UJ	2.6 UJ	3 UJ	2.8 U	2.3 U	2.7 U	2.3 U
Arsenic	mg/kg	3	2.4 U	9.8	4.3	3.2	13.3	10.3	2.2 U	5.6
Barium	mg/kg	220,000	34	260	77.6 J	53.6 J	176	552	50.2	45.6
Beryllium	mg/kg	2,300	0.95 U	3.1	0.62 J	0.75 J	0.64 J	0.56 J	0.13 J	0.17 J
Cadmium	mg/kg	980	1.4 U	1 J	0.42 J	1.5 U	5.9	2.3	0.59 J	1.1 U
Chromium	mg/kg	120,000	1,390	95.7	454	33.7	306	642	1,180	55.6
Chromium VI	mg/kg	6.3	5.6 J-	0.6 B	0.64 B	1.1 B	0.69 B	1 B	5.2	0.56 B
Cobalt	mg/kg	350	0.65 J	9.7	5.5	5.5	16.4	14.8	2.3 J	6.3
Copper	mg/kg	47,000	13.9	125	42.5 J	16.4 J	160	131	36.9	47.4
Iron	mg/kg	820,000	169,000	141,000	141,000	24,900	118,000	179,000	180,000	51,800
Lead	mg/kg	800	2.5	124	69.3	18	401	1,920	106	68.5
Manganese	mg/kg	26,000	37,400	4,060	13,700 J	285 J	7,140	13,400	24,500	1,220
Mercury	mg/kg	350	0.11 U	0.049 J	0.12 U	0.019 J	0.13	0.044 B	0.018 B	0.044 B
Nickel	mg/kg	22,000	14.4 J	34.8 J	23.3	18.6	49.1	33.1	19.3	16.7
Selenium	mg/kg	5,800	3.8 U	3.4 U	3.5 U	4 U	3.7 U	3.1 U	3.5 U	3.1 U
Silver	mg/kg	5,800	29.1 J	9.3 J	28.3	1.4 J	15	21.4	22.8	3.6
Vanadium	mg/kg	5,800	662	97.9	1,180	29.9	720	3,260	806	320
Zinc	mg/kg	350,000	18	308	98.2	54.4	1,070	752	121	207
Other										
Cyanide	mg/kg	150	0.4 J	0.37 J	0.36 J+	1 U	0.54 J	3.2	0.34 J	0.35 J

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-005A-SB-1	B2-005-SB-1	B2-005-SB-5	B2-006-SB-1	B2-006-SB-4	B2-007-SB-1*	B2-007-SB-5*	B2-007-SB-10*
Metals		0								
Aluminum	mg/kg	1,100,000	12,800	14,000	10,400	18,800	11,100	43,200	18,900	N/A
Antimony	mg/kg	470	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.9 UJ	2.6 U	3 U	N/A
Arsenic	mg/kg	3	3.3 J	2.9	3	8.9	8.9	1.7 J	14.5	21.3
Barium	mg/kg	220,000	59.7	98.5 J	39.3 J	174	125	472	602	N/A
Beryllium	mg/kg	2,300	0.35 B	0.88	0.84 U	2.8	1.7	5	1.5	N/A
Cadmium	mg/kg	980	1.3 U	1.2 U	0.5 J	1.7	0.77 J	1.3 U	3.1	N/A
Chromium	mg/kg	120,000	1,460	970	1,420	413	72.8	216	74.2	N/A
Chromium VI	mg/kg	6.3	4 J-	9.8 J-	3.6 J-	0.71 B	0.61 B	0.68 B	0.81 B	N/A
Cobalt	mg/kg	350	0.79 J	1.7 J	1.6 J	13	11.3	2.7 J	20.5	N/A
Copper	mg/kg	47,000	21.8	28.2 J	28 J	92.1	66	22.9	167	N/A
Iron	mg/kg	820,000	189,000	150,000	216,000	156,000	97,500	61,400	75,400	N/A
Lead	mg/kg	800	7.3	8.5	6.4	152	84.5	4.7	643	N/A
Manganese	mg/kg	26,000	33,400	24,600 J	34,000 J	10,700	1,730	14,300	3,460	N/A
Mercury	mg/kg	350	0.013 J	0.11 U	0.097 U	0.061 J	0.21	0.1 U	0.14	N/A
Nickel	mg/kg	22,000	16.7 J	19.9	21.5	49.2 J	30.8 J	7 J	58.5	N/A
Selenium	mg/kg	5,800	3.4 U	3.3 U	3.4 U	3.3 U	3.9 U	2.6 J	4.1 U	N/A
Silver	mg/kg	5,800	25 J	24.6	27.5	18.4 J	6 J	37.6	9.2	N/A
Vanadium	mg/kg	5,800	865	660	755	707	88.2	220	111	N/A
Zinc	mg/kg	350,000	64.5	114	56.8	433	224	24.2	1,030	N/A
Other										
Cyanide	mg/kg	150	0.23 J	0.29 J+	0.14 J +	1 J	0.86 J	0.97	1.3	N/A

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-008-SB-1*	B2-008-SB-5*	B2-009-SB-1	B2-009-SB-5	B2-010-SB-1	B2-010-SB-4	B2-011-SB-1	B2-011-SB-5
Metals		<u>u</u>								
Aluminum	mg/kg	1,100,000	13,100	12,800	10,500	19,800	16,700	9,540	9,560	12,000
Antimony	mg/kg	470	2.6 U	2.6 U	2.5 UJ	3.5 UJ	2.7 UJ	2.8 UJ	2.6 UJ	2.7 UJ
Arsenic	mg/kg	3	2.1 U	5.2	10	5.6	6.8	6.4	4.6	2.3 U
Barium	mg/kg	220,000	110	318	171	286	242 J	118 J	73	108
Beryllium	mg/kg	2,300	0.75 J	0.56 J	0.53 J	1.6	0.66 B	0.59 B	0.58 J	1.2
Cadmium	mg/kg	980	1 J	1.3 U	3	22	1.9	0.73 J	1.3 U	1.4 U
Chromium	mg/kg	120,000	1,060	67.8	869 J	56.6 J	1,750	76.3	55.7 J	541 J
Chromium VI	mg/kg	6.3	2.4	0.58 B	0.78 B	1 B	0.75 B	0.46 B	1.2 J-	0.77 B
Cobalt	mg/kg	350	2.4 J	4.1 J	17	14.5	9.5	10.5	5	2.5 J
Copper	mg/kg	47,000	25.3	14.8	163 J	237 J	109 J	132 J	40.2 J	12.6 J
Iron	mg/kg	820,000	185,000	19,300	180,000	110,000	157,000	65,200	31,400	78,100
Lead	mg/kg	800	25.7	54.1	347 J	293 J	140	2,830	75.1 J	18.5 J
Manganese	mg/kg	26,000	26,300	1,490	33,500	13,200	45,600 J	15,700 J	1,140	12,100
Mercury	mg/kg	350	0.021 J	0.048 J	0.2 J+	0.022 J+	0.068 J	0.072 J	0.051 J+	0.018 J+
Nickel	mg/kg	22,000	28.6	8.6 J	60.7 J	16.7 J	25.3	44.6	13.6 J	7.6 J
Selenium	mg/kg	5,800	3.4 U	3.5 U	3.4 U	4.7 U	3.7 U	3.8 U	3.5 U	3.6 U
Silver	mg/kg	5,800	21.2	5	46.4 J	15.1 J	58.8	15.5	5.1 J	12.7 J
Vanadium	mg/kg	5,800	488	79.1	1,540 J	75.3 J	2,420	75	45.7 J	389 J
Zinc	mg/kg	350,000	477	131	937	8,670	453	685	135	65.7
Other										
Cyanide	mg/kg	150	0.46 J	0.22 J	1.1 J-	0.86 J-	0.79 J-	0.95 J-	0.4 J-	0.65 J-

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-011-SB-8	B2-012-SB-3.5	B2-012-SB-5	B2-013-SB-1	B2-013-SB-5	B2-014-SB-1.5*	B2-014-SB-7*	B2-015-SB-1
Metals										
Aluminum	mg/kg	1,100,000	689	1,750	1,770	5,790	3,520	19,300	9,260	22,300
Antimony	mg/kg	470	2.8 UJ	2.7 UJ	2.7 UJ	2.4 UJ	2.6 UJ	2.5 U	2.9 U	2.5 UJ
Arsenic	mg/kg	3	2.3 U	2.3 U	2.2 U	2 U	2.1 U	2.6	33	5.3
Barium	mg/kg	220,000	3.3 J	16.4	12.2	32.5	9	244	124	356
Beryllium	mg/kg	2,300	0.93 U	0.9 U	0.9 U	0.23 J	0.86 U	1.8	0.56 J	1.7
Cadmium	mg/kg	980	1.4 U	1.4 U	1.3 U	1.2 U	1.3 U	1.6	1.2 J	1.3
Chromium	mg/kg	120,000	5.4 J	10 J	3.7 J	50.6 J	27.6 J	401	373	521 J
Chromium VI	mg/kg	6.3	0.69 B	0.48 B	0.51 B	0.53 B	0.52 B	0.53 B	0.55 B	0.64 B
Cobalt	mg/kg	350	0.59 J	0.66 J	0.68 J	3.2 J	4.1 J	7.2	18.8	8.6
Copper	mg/kg	47,000	3.9 J	3.4 J	4.5 U	8.3 J	5.5 J	49.8	70.6	46 J
Iron	mg/kg	820,000	2,770	2,110	1,460	14,100	11,000	88,500	45,600	86,800
Lead	mg/kg	800	2.9 J	2.2 J	1.2 J	11.2 J	3.1 J	108	645	100 J
Manganese	mg/kg	26,000	55	231	16.3	865	345	28,600	3,960	21,000
Mercury	mg/kg	350	0.11 U	0.1 U	0.11 U	0.097 U	0.11 U	0.029 J	0.075 J	0.032 J+
Nickel	mg/kg	22,000	1.4 J	1.5 J	1.5 J	8.1 J	6.1 J	24.3	128	19.8 J
Selenium	mg/kg	5,800	3.7 U	3.6 U	3.6 U	3.2 U	3.4 U	3.4 U	3.9 U	3.3 U
Silver	mg/kg	5,800	2.8 U	1.2 J	1 J	3.3 J	0.96 J	31.2	6.1	35.6 J
Vanadium	mg/kg	5,800	11.4 J	15.5 J	3.8 J	24.9 J	20.3 J	816	76.3	915 J
Zinc	mg/kg	350,000	49.3	7.5	2.8 J	110	12.6	538	410	400
Other										
Cyanide	mg/kg	150	0.17 J-	1 UJ	1 UJ	0.27 J-	0.93 UJ	1.5	0.8 J	1.2 J-

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-015-SB-5	B2-016-SB-1	B2-016-SB-5	B2-017-SB-1	B2-017-SB-5	B2-018-SB-1*	B2-018-SB-5*	B2-019-SB-1*
Metals	<u> </u>	u								
Aluminum	mg/kg	1,100,000	5,110	15,500	8,200	10,100	16,300	38,900	6,370	23,100
Antimony	mg/kg	470	2.9 UJ	2.6 UJ	2.8 UJ	2.7 UJ	24.1 J	2.5 U	2.7 U	2.7 U
Arsenic	mg/kg	3	6.9	6.6	4	11.4	173	5	17.6	2.2 U
Barium	mg/kg	220,000	783	204	98	151	531	303	86.3	142
Beryllium	mg/kg	2,300	0.39 J	0.51 J	0.44 J	0.61 J	0.89 J	5.7	0.49 J	2.2
Cadmium	mg/kg	980	6.8	1.7	1.4 U	7.5	6.8	0.44 J	0.55 J	0.56 J
Chromium	mg/kg	120,000	91.9 J	1,150 J	56.2 J	455 J	489 J	155	261	1,000
Chromium VI	mg/kg	6.3	0.71 B	0.57 B	0.78 B	0.95 B	1.2 J-	0.63 B	0.51 B	0.92 B
Cobalt	mg/kg	350	4.4 J	7	8.1	18.6	24.9	3.7 J	59.1	1.9 J
Copper	mg/kg	47,000	21.4 J	66.1 J	69.9 J	562 J	1,220 J	23.6	331	28.1
Iron	mg/kg	820,000	12,100	127,000	34,900	174,000	110,000	113,000	97,100	176,000
Lead	mg/kg	800	5,660 J	86 J	80.4 J	1,100 J	12,000 J	12.4	42.5	14.8
Manganese	mg/kg	26,000	1,240	59,300	785	16,600	1,240	7,220	2,600	24,300
Mercury	mg/kg	350	0.39 J+	0.031 J+	0.082 J+	0.27 J+	1.7 J+	0.12 U	0.0049 J	0.0046 J
Nickel	mg/kg	22,000	10.8 J	27.6 J	29.1 J	61.8 J	131 J	26.3	398	24
Selenium	mg/kg	5,800	3.9 U	3.4 U	3.7 U	3.6 U	3.8 U	3.3 U	3.6 U	3.5 U
Silver	mg/kg	5,800	3.4 J	93.9 J	3.6 J	25.8 J	18.9 J	10.6	4.9	23.3
Vanadium	mg/kg	5,800	80.4 J	3,300 J	77.2 J	778 J	165 J	113	36.9	718
Zinc	mg/kg	350,000	2,670	285	199	18,800	10,800	70.2	180	103
Other										
Cyanide	mg/kg	150	2.6 J-	0.99 J-	0.91 J-	1.8 J-	0.17 J-	1.2	0.26 J	0.58 J

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-019-SB-5*	B2-020-SB-1	B2-020-SB-4	B2-021-SB-1	B2-021-SB-4	B2-022-SB-1	B2-022-SB-4	B2-023-SB-1*
Metals		u								
Aluminum	mg/kg	1,100,000	6,180	13,300	11,500	10,800	16,700	13,800	26,200	51,000
Antimony	mg/kg	470	3.1	3.1 UJ	2.4 UJ	3.3 UJ	2.6 UJ	2 UJ	2.8 UJ	2.7 U
Arsenic	mg/kg	3	11	4.4 J	10.2 J	7.4 J	4.9 J	4.1 J	6.1 J	2.3 U
Barium	mg/kg	220,000	102	51.5	201	87.3	89	69.5	153	329
Beryllium	mg/kg	2,300	0.54 J	0.4 B	0.89	0.7 B	0.74 B	0.66	1.1	7.1
Cadmium	mg/kg	980	1.6	1.6 U	0.49 J	1 J	1.3 U	0.99 U	1.4 U	1.4 U
Chromium	mg/kg	120,000	66.5	28.9	1,600	126	33.1	34.5	1,170	8.5
Chromium VI	mg/kg	6.3	0.56 B	0.61 B	0.64 B	0.54 B	0.64 B	0.45 B	0.59 B	0.49 B
Cobalt	mg/kg	350	18.6	3.8 J	42.6	10.3	8.1	4.7	26.4	4.5 U
Copper	mg/kg	47,000	130	15.7	204	64.2	17.6	21.2	135	1.5 J
Iron	mg/kg	820,000	36,800	18,700	140,000	50,900	21,200	19,000	89,100	3,290
Lead	mg/kg	800	140	18.2	259	146	72.4	40	112	2.3 U
Manganese	mg/kg	26,000	2,470	155	14,800	2,190	281	307	9,480	2,850
Mercury	mg/kg	350	0.024 J	0.02 J	0.059 J	0.068 J	0.29	0.038 J	0.023 J	0.12 U
Nickel	mg/kg	22,000	121	10.7 J	244 J	31.7 J	17.2 J	11.1 J	145 J	9 U
Selenium	mg/kg	5,800	3.7 U	4.1 U	3.2 U	4.4 U	3.4 U	2.6 U	3.7 U	2.5 J
Silver	mg/kg	5,800	3.6	2.3 J	15.3 J	4.3 J	3.5 J	1.1 J	14 J	11.2
Vanadium	mg/kg	5,800	17.9	34.3	368	129	36.5	40.2	152	9.2
Zinc	mg/kg	350,000	633	59.6	204	368	107	107	99.5	1.7 B
Other										
Cyanide	mg/kg	150	0.69 J	1.1 U	0.77 J	0.39 J	1.1 U	0.56 J	0.78 J	0.55 J

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-023-SB-4*	B2-024-SB-1*	B2-025-SB-1*	B2-025-SB-4*	B2-026-SB-1	B2-026-SB-5	B2-026-SB-10	B2-027-SB-1
Metals										
Aluminum	mg/kg	1,100,000	15,700	42,000	13,400	5,020	16,800	26,000	N/A	18,100
Antimony	mg/kg	470	2.6 U	2.6 U	2.5 U	2.7 U	2.4 UJ	2.4 UJ	N/A	3.1 UJ
Arsenic	mg/kg	3	24.3	2.4	10.6	5.5	3.4	6.1	5.7	4.9
Barium	mg/kg	220,000	105	840	92.6	45.6	95.1	286	N/A	185
Beryllium	mg/kg	2,300	1.1	3.1	1.1	0.36 J	0.64 B	1.9	N/A	1.7
Cadmium	mg/kg	980	1.3 J	0.69 J	1.5	1.4 U	1.2 U	0.4 J	N/A	2.3
Chromium	mg/kg	120,000	346	171	28.9	23.3	1,190	957	N/A	798
Chromium VI	mg/kg	6.3	0.65 B	0.76 B	0.58 B	0.64 B	3.1 J-	0.68 B	N/A	0.98 B
Cobalt	mg/kg	350	27.2	5.1	7	4 J	0.52 B	5.1	N/A	4.6 B
Copper	mg/kg	47,000	71.4	34.6	27.4	30.9	19 J	30.6 J	N/A	284 J
Iron	mg/kg	820,000	105,000	28,800	25,500	17,600	185,000	132,000	N/A	152,000
Lead	mg/kg	800	213	46.8	92.6	55.7	1.7 J	35.8	N/A	87.4
Manganese	mg/kg	26,000	7,800	7,350	736	130	29,600	31,100	551 J	17,900
Mercury	mg/kg	350	0.19	0.098 U	0.17	0.036 J	0.0085 B	0.024 B	N/A	0.08 B
Nickel	mg/kg	22,000	30.4	14.7	14.3	10.8	14.7 J	20.8 J	N/A	46.7 J
Selenium	mg/kg	5,800	3.5 U	2.8 J	3.3 U	3.6 U	3.1 U	3.1 U	N/A	4.1 U
Silver	mg/kg	5,800	8.3	20.2	3.5	1.9 J	21.7 J	29.3 J	N/A	19.3 J
Vanadium	mg/kg	5,800	396	163	43.8	22.1	906	1,140	N/A	405
Zinc	mg/kg	350,000	453	155	308	90.7	55.4 J	70.7 J	N/A	462 J
Other										
Cyanide	mg/kg	150	0.78 J	1.3	0.34 J	1.1 U	0.15 J	1 J+	N/A	0.56 J

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-028-SB-1	B2-028-SB-5	B2-028-SB-10	B2-029-SB-1*	B2-029-SB-8*	B2-029-SB-10*	B2-030-SB-1*	B2-030-SB-5*
Metals	<u> </u>	<u>u</u>							•	
Aluminum	mg/kg	1,100,000	19,500	61,100	N/A	18,000	18,800	N/A	21,700 B	47,800
Antimony	mg/kg	470	2.6 UJ	2.7 UJ	N/A	2.3 U	2.9 U	N/A	2.7 U	2.7 U
Arsenic	mg/kg	3	2.1	3.4	19.1 J	10.9	7.7	8.3	7.2	2.3 U
Barium	mg/kg	220,000	114	933	N/A	212	31.8	N/A	207	409
Beryllium	mg/kg	2,300	1.1	5.2	N/A	0.76 J	0.79 J	N/A	1.7	8.3
Cadmium	mg/kg	980	1.3 U	0.58 J	N/A	1.7	1.4 U	N/A	1.3 J	1.4 U
Chromium	mg/kg	120,000	897 J	30.8 J	30.4	537	45.1	N/A	653	13.3
Chromium VI	mg/kg	6.3	2.6 J-	0.72 B	0.91 B	1.3	0.6 B	N/A	0.65 B	0.52 B
Cobalt	mg/kg	350	2.5 J	3 J	N/A	14.8	9.4	N/A	9	0.62 J
Copper	mg/kg	47,000	23.9 J	13.8 J	N/A	203	14.1	N/A	88.6	6.3
Iron	mg/kg	820,000	164,000 J	14,400 J	N/A	198,000	27,600	N/A	162,000	6,240
Lead	mg/kg	800	6.6 J	35.2 J	N/A	127	11.8	N/A	302	2.3 U
Manganese	mg/kg	26,000	23,400	8,400	272 J	17,000	466	N/A	16,400	2,730
Mercury	mg/kg	350	0.093 U	0.045 J	N/A	0.086 B	0.01 B	N/A	0.24	0.0068 B
Nickel	mg/kg	22,000	17.9 J	9.5 J	N/A	72.9	16.9	N/A	51.9	3.3 J
Selenium	mg/kg	5,800	3.4 U	3.6 U	N/A	3.1 U	3.8 U	N/A	3.6 U	3.6 U
Silver	mg/kg	5,800	23.5	22.8	N/A	13.3	5	N/A	19.4	10.1
Vanadium	mg/kg	5,800	493	75.4	N/A	313	55.2	N/A	527	15.2
Zinc	mg/kg	350,000	100 J	70.3 J	N/A	542	47.6	N/A	585	7.2
Other										
Cyanide	mg/kg	150	0.14 J-	0.48 J-	N/A	0.44 J	1.1 U	N/A	1 J	0.32 J

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-031-SB-1*	B2-031-SB-7*	B2-032-SB-1*	B2-032-SB-4*	B2-033-SB-1*	B2-033-SB-5*	B2-034-SB-1*	B2-035-SB-1*
Metals	<u> </u>									
Aluminum	mg/kg	1,100,000	17,200	15,900	12,500	16,100	13,600	12,700	13,400	21,300
Antimony	mg/kg	470	2.3 U	2.7 U	2.5 U	2.5 U	2.7 U	2.5 U	2.7 U	3 U
Arsenic	mg/kg	3	8	13.5	2.4	4.2	2.3 U	2.1 U	7.5	4
Barium	mg/kg	220,000	691	373	72.3	57.3	76	107	67.4	67.1
Beryllium	mg/kg	2,300	2.1	1.4	0.84 U	0.76 J	0.9 U	0.88	0.71 J	0.55 J
Cadmium	mg/kg	980	0.7 J	2.8	0.48 J	1.2 U	0.62 J	0.42 J	1.4	1.5 U
Chromium	mg/kg	120,000	348	94.3	1,270	59.1	1,160	1,160	45.6	25.3
Chromium VI	mg/kg	6.3	0.62 B	0.57 B	0.74 B	0.53 B	0.76 B	0.72 B	0.72 B	0.85 B
Cobalt	mg/kg	350	10.8	8.1	1.8 J	44.1	1.6 J	1.4 J	7.7	3.8 J
Copper	mg/kg	47,000	88.5	97.5	36.9	59.2	42	25.3	42.3	12.3
Iron	mg/kg	820,000	263,000	31,200	212,000	31,600	209,000	189,000	37,700	22,200
Lead	mg/kg	800	82.5	443	9.8	27.1	6.3	5.6	166	17.7
Manganese	mg/kg	26,000	9,320	4,390	27,800	862	31,200	29,600	620	49.3
Mercury	mg/kg	350	0.036 B	0.45	0.11 U	0.078 J	0.0077 B	0.018 B	0.12	0.028 J
Nickel	mg/kg	22,000	56.3	32.9	16	30.6	19.8	12.1	19.1	12.2
Selenium	mg/kg	5,800	3.1 U	3.6 U	3.4 U	3.3 U	3.6 U	3.3 U	3.6 U	4 U
Silver	mg/kg	5,800	16.2	9	22.9	2.8	28.6	29.6	2.9	2.5 J
Vanadium	mg/kg	5,800	492	141	608	75	712	689	55.3	34.3
Zinc	mg/kg	350,000	840	659	262	56	221	69.4	593	49.3
Other										
Cyanide	mg/kg	150	0.42 J	1.9	0.24 B	0.14 B	0.36 J	0.52 J	0.13 B	1 U

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-035-SB-4*	B2-036-SB-1	B2-036-SB-5	B2-037-SB-1	B2-037-SB-5	B2-038-SB-1	B2-038-SB-5	B2-039-SB-1*
Metals		0.								
Aluminum	mg/kg	1,100,000	18,600	48,100	9,580	40,500	4,720	12,500	16,000	12,200
Antimony	mg/kg	470	2.9 U	2.8 UJ	2.7 UJ	2.7 UJ	2.5 UJ	2.5 UJ	2.5 UJ	3 U
Arsenic	mg/kg	3	4.5	2.3 J	18.6	5.1	23.7	3.3	14.4	2.5 U
Barium	mg/kg	220,000	103	670	328	742	43	56.2	216	55.5
Beryllium	mg/kg	2,300	0.92 J	5.5	0.37 J	4.4	0.35 J	0.38 B	2.3	0.24 J
Cadmium	mg/kg	980	1.4 U	1.4 U	2.9	1.1 J	3.1	0.83 J	1.9	0.59 J
Chromium	mg/kg	120,000	46.2	45 J	1,470 J	260 J	86 J	743	261	1,550
Chromium VI	mg/kg	6.3	0.97 B	0.54 B	0.55 B	0.6 B	0.9 B	5.3 J-	0.68 B	1.3
Cobalt	mg/kg	350	8.2	4.6 J	30.3 J	6.3 J	20.4 J	2.9 B	11.5	1.6 J
Copper	mg/kg	47,000	28.7	15.2 J	116 J	65.8 J	132 J	67.2 J	162 J	37.8
Iron	mg/kg	820,000	29,800	26,700 J	55,000 J	81,500 J	29,700 J	191,000	150,000	226,000
Lead	mg/kg	800	60.1	8.7 J	56.6 J	988 J	25.6 J	31.5	198	6.4
Manganese	mg/kg	26,000	980	6,590	16,600	9,220	1,370	20,100	6,090	30,400
Mercury	mg/kg	350	0.025 J	0.13 U	0.082 J	0.026 J	0.052 J	0.041 B	0.19 J-	0.017 B
Nickel	mg/kg	22,000	20.8	17.3 J	215 J	26.5 J	124 J	26.9 J	104 J	15.4
Selenium	mg/kg	5,800	3.8 U	5.1	3.6 U	3.6 U	2.5 J	3.3 U	3.3 U	3.9 U
Silver	mg/kg	5,800	3	30.9	15.9	23.4	2.1 J	17.5 J	10.9 J	25.9
Vanadium	mg/kg	5,800	71.3	142	335	178	17.4	472	336	870
Zinc	mg/kg	350,000	163	40.3 J	193 J	562 J	691 J	195 J	572 J	62.5
Other										
Cyanide	mg/kg	150	2.1	0.66 J-	1.1 J-	1.6 J-	0.3 J-	0.59 J+	0.61 J+	0.39 J

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-039-SB-5*	B2-040-SB-1	B2-040-SB-7	B2-040-SB-10*	B2-041-SB-1*	B2-041-SB-5*	B2-042-SB-1	B2-042-SB-5
Metals				•	•			•	•	
Aluminum	mg/kg	1,100,000	26,000	14,400	20,500	N/A	9,640	34,100	9,530	6,660
Antimony	mg/kg	470	2.5 U	2.8 UJ	3.9 UJ	N/A	2.6 U	2.9 U	2.4 UJ	2.4 UJ
Arsenic	mg/kg	3	2.1 U	4.6 J	18.3 J	8.8	5.1	9.6	4.3 J	22.1 J
Barium	mg/kg	220,000	53.5	52.7	133	N/A	80.9	334	36.5	74.5
Beryllium	mg/kg	2,300	0.85 U	0.73 B	0.8 B	N/A	0.14 J	1.8	0.11 B	0.96
Cadmium	mg/kg	980	0.49 J	1.4 U	1.9 U	N/A	0.52 J	1.1 J	1.2 U	15.8
Chromium	mg/kg	120,000	2,480	25.3	72.7	N/A	2,970	302	1,340	267
Chromium VI	mg/kg	6.3	16.9	0.55 B	0.96 B	N/A	0.67 B	1.1 B	5.4 J-	0.47 B
Cobalt	mg/kg	350	4.2 U	4 J	8.1	N/A	2.3 J	22.7	1.3 J	14.6
Copper	mg/kg	47,000	14.6	10	71.4	N/A	25.4	167	15.1	213
Iron	mg/kg	820,000	179,000	20,800	39,200	N/A	178,000	41,900	197,000	318,000
Lead	mg/kg	800	2.1 U	14.1	248	N/A	11.1	167	1.6 J	1,310
Manganese	mg/kg	26,000	44,900	130	257	N/A	33,500	1,710	35,800	5,230
Mercury	mg/kg	350	0.0044 B	0.11 U	0.52	N/A	0.048 J	0.048 J	0.099 U	0.059 J
Nickel	mg/kg	22,000	10.9	11.1 J	23.4 J	N/A	17.1	167	17.7 J	77.8 J
Selenium	mg/kg	5,800	3.4 U	3.8 U	5.2 U	N/A	3.4 U	2 J	3.2 U	3.3 U
Silver	mg/kg	5,800	26.8	2.1 J	2.8 J	N/A	20.6	11.2	26.7 J	13.2 J
Vanadium	mg/kg	5,800	946	43.1	69	N/A	576	86.5	623	244
Zinc	mg/kg	350,000	16.4	61.9	237	N/A	70	507	19.1	13,300
Other										
Cyanide	mg/kg	150	0.29 J	0.21 J	0.24 J	N/A	0.66 J	1.1	1 U	0.51 J

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-043-SB-1	B2-043-SB-4	B2-044-SB-1*	B2-044-SB-7*	B2-045-SB-1*	B2-045-SB-5*	B2-045-SB-10	B2-046-SB-1*
Metals	<u> </u>	<u>u</u>								
Aluminum	mg/kg	1,100,000	8,920	17,700	24,700	7,810	19,700	15,900	N/A	22,700
Antimony	mg/kg	470	2.6 UJ	2.6 UJ	3 U	2.8 U	3 J	3 U	N/A	2.9 U
Arsenic	mg/kg	3	5.7	7.1	5.9	3.2	18.4	3.2	5.1	6.7
Barium	mg/kg	220,000	33.9	82.1	331	60	308	52.8	N/A	369
Beryllium	mg/kg	2,300	0.15 B	0.7 B	3.1	0.93 U	1.5	0.39 J	N/A	1.2
Cadmium	mg/kg	980	1.3 U	1.3 U	2.3	1.4 U	2.4	1.5 U	N/A	1.6
Chromium	mg/kg	120,000	1,750	32.6	313	1,160	31.6	25.5	N/A	72.4
Chromium VI	mg/kg	6.3	3 J-	0.71 B	0.64 B	1.2	0.67 B	0.62 B	N/A	0.61 B
Cobalt	mg/kg	350	4.3 U	4.6	4.3 J	5.6	8.2	4.8 J	N/A	9.6
Copper	mg/kg	47,000	21.8 J	11.8 J	116	45.6	95.6	12	N/A	124
Iron	mg/kg	820,000	183,000	27,800	60,700	162,000	67,900	18,100	N/A	55,200
Lead	mg/kg	800	3	10.2	153	23.8	361	20.4	N/A	241
Manganese	mg/kg	26,000	37,500	285	12,900	29,500	5,590	162	N/A	3,110
Mercury	mg/kg	350	0.0094 B	0.022 B	0.19	0.14 U	0.045 J	0.039 J	N/A	0.043 J
Nickel	mg/kg	22,000	15.8 J	12.2 J	16.4	18.8	13.1	13.6	N/A	26.3
Selenium	mg/kg	5,800	3.4 U	3.4 U	4 U	3.7 U	4.1 U	4 U	N/A	3.9 U
Silver	mg/kg	5,800	26.1 J	3.4 J	41.1	77.2	9.3	3.6	N/A	11.4
Vanadium	mg/kg	5,800	744	39.8	1,100	2,800	57.7	29.9	N/A	95.1
Zinc	mg/kg	350,000	30 J	41.2 J	3,490	129	417	46	N/A	335
Other										
Cyanide	mg/kg	150	0.2 J	1 U	1.3	0.61 B	0.44 J	1.3 U	N/A	1.2

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-046-SB-4*	B2-046-SB-10	B2-047-SB-1	B2-047-SB-4	B2-048-SB-1	B2-048-SB-8	B2-049-SB-1	B2-049-SB-4
Metals		u								•
Aluminum	mg/kg	1,100,000	19,700	N/A	22,800	18,300	18,000	17,500	24,200	13,200
Antimony	mg/kg	470	2.4 U	N/A	2.9 UJ	2.9 UJ	3.2 UJ	3.5 UJ	2.4 UJ	2.6 UJ
Arsenic	mg/kg	3	3.7	19.3	10.5	3.4	3.3	11.3	2.8	5
Barium	mg/kg	220,000	55.7	N/A	390	115	74	67.8	184	36.3
Beryllium	mg/kg	2,300	0.46 J	N/A	2.3	0.87 B	0.89 B	0.83 B	2.6	0.87 U
Cadmium	mg/kg	980	1.2 U	N/A	2.3	1.4 U	1.6 U	1.7 U	0.38 J	0.48 J
Chromium	mg/kg	120,000	25.9	N/A	123	21.5	1,380	36.9	680 J	1,390 J
Chromium VI	mg/kg	6.3	1 B	N/A	0.53 B	0.44 B	1.8 J-	0.71 B	2.2 J-	8.5 J-
Cobalt	mg/kg	350	3.9 J	N/A	10.9	3.6 B	0.7 B	4.4 B	2 J	1.4 J
Copper	mg/kg	47,000	8.9	N/A	86.1 J	4.7 B	21.1 J	16.8 J	23.3 J	15.7 J
Iron	mg/kg	820,000	19,700	N/A	54,300	9,860	207,000	29,000	129,000 J	207,000 J
Lead	mg/kg	800	11.9	N/A	170	10.8	1.5 J	14	3.5 J	2.2 UJ
Manganese	mg/kg	26,000	71.9	N/A	3,070	70.5	32,900	519	16,500	33,900
Mercury	mg/kg	350	0.015 J	N/A	0.62 J-	0.066 B	0.012 B	0.021 B	0.097 U	0.096 U
Nickel	mg/kg	22,000	11.7	N/A	44.6 J	9 J	18 J	12 J	14.2 J	19.2 J
Selenium	mg/kg	5,800	3.2 U	N/A	3.9 U	3.8 U	4.3 U	4.6 U	3.2 U	3.5 U
Silver	mg/kg	5,800	3.6	N/A	12.5 J	1.2 J	25.3 J	2 J	16.6	25.1
Vanadium	mg/kg	5,800	35.9	N/A	142	28.2	905	42.5	416	563
Zinc	mg/kg	350,000	33.4	N/A	595 J	17.6 J	31.7 J	41.3 J	48 J	13.7 J
Other										
Cyanide	mg/kg	150	0.16 J	N/A	7	1.2 U	0.55 J+	0.42 J+	0.11 J-	0.089 J-

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-049-SB-10	B2-050-SB-1	B2-050-SB-5	B2-051-SB-1	B2-051-SB-5	B2-052-SB-1	B2-052-SB-5	B2-052-SB-10
Metals									•	
Aluminum	mg/kg	1,100,000	N/A	39,000	38,200	18,300	14,900	21,300	16,900	N/A
Antimony	mg/kg	470	N/A	2.6 UJ	2.6 UJ	2.5 UJ	2.6 UJ	2.3 UJ	2.4 UJ	N/A
Arsenic	mg/kg	3	13.8 J	5.2	3.3	2.5	16.3	8.2	6	3.7
Barium	mg/kg	220,000	N/A	743	798	127	90.2	672	70.9	N/A
Beryllium	mg/kg	2,300	N/A	4.1	3.3	1.8	0.18 J	2.6	0.57 J	N/A
Cadmium	mg/kg	980	N/A	1.9	0.44 J	1.3 U	0.55 J	1.6	0.45 J	N/A
Chromium	mg/kg	120,000	N/A	114 J	227 J	1,210 J	1,440 J	220	38.6	N/A
Chromium VI	mg/kg	6.3	1 B	0.65 B	0.71 B	1.7 J-	2.6 J-	0.6 B	0.63 B	N/A
Cobalt	mg/kg	350	N/A	4.3 J	4.6 J	0.55 J	1.9 J	9.8	6.6	N/A
Copper	mg/kg	47,000	N/A	44 J	20.4 J	13.2 J	30.8 J	1,220 J	9.6 J	N/A
Iron	mg/kg	820,000	N/A	33,700 J	29,000 J	151,000 J	184,000 J	116,000	25,600	N/A
Lead	mg/kg	800	N/A	225 J	33.5 J	2.1 UJ	36.9 J	198	10.3	N/A
Manganese	mg/kg	26,000	N/A	9,710	7,310	27,700	37,400	14,400	588	N/A
Mercury	mg/kg	350	N/A	0.014 J	0.11 U	0.097 U	0.089 U	0.25 J-	0.081 B	N/A
Nickel	mg/kg	22,000	N/A	15.9 J	10.2 J	12.3 J	25.7 J	53.2 J	13.1 J	N/A
Selenium	mg/kg	5,800	N/A	3.5 U	3.5 U	3.3 U	3.5 U	3.1 U	3.2 U	N/A
Silver	mg/kg	5,800	N/A	26	14.9	25.3	29.3	13.7 J	3.7 J	N/A
Vanadium	mg/kg	5,800	N/A	334	757	778	837	152	50.5	N/A
Zinc	mg/kg	350,000	N/A	568 J	51.5 J	37.5 J	95 J	653 J	125 J	N/A
Other										
Cyanide	mg/kg	150	N/A	3.4 J-	0.92 J-	0.22 J-	0.33 J-	0.58 J	0.84 J	N/A

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B2-053-SB-1	B2-053-SB-5.5	B2-054-SB-1	B2-054-SB-5	B2-055-SB-1	B2-055-SB-6.5
Metals								
Aluminum	mg/kg	1,100,000	14,800	23,100	44,500	15,100	49,000	14,600
Antimony	mg/kg	470	2.6 UJ	2.7 UJ	2.8 UJ	3.1 UJ	2.8 UJ	2.9 UJ
Arsenic	mg/kg	3	8	3.2	2.6	3.4	2.2 J	2.4 U
Barium	mg/kg	220,000	145 J	63 J	259 J	37.6 J	408 J	62.7 J
Beryllium	mg/kg	2,300	0.81 J	0.5 J	2.8	0.5 J	8	0.76 J
Cadmium	mg/kg	980	1.3 U	1.4 U	1.4 U	1.6 U	1.4 U	1.5 U
Chromium	mg/kg	120,000	288	24.8	6.3	23.1	53.7	15.9
Chromium VI	mg/kg	6.3	0.57 B	0.88 B	0.65 B	0.44 B	0.49 B	0.54 B
Cobalt	mg/kg	350	15.3	2.7 J	0.79 J	4.3 J	0.86 J	4 J
Copper	mg/kg	47,000	43.6 J	11.9 J	37 J	9.2 J	7.4 J	5.6 J
Iron	mg/kg	820,000	26,300	15,500	6,960	23,600	10,700	8,800
Lead	mg/kg	800	135	12.4	5.4	8.6	22.4	8.9
Manganese	mg/kg	26,000	4,350 J	76.8 J	1,010 J	101 J	3,970 J	217 J
Mercury	mg/kg	350	0.036 J	0.036 J	0.019 J	0.019 J	0.11 U	0.025 J
Nickel	mg/kg	22,000	121	10.6	1.8 J	12.5	4.1 J	8.9 J
Selenium	mg/kg	5,800	1.7 B	3.6 U	6.2	2.7 B	3.2 B	3.9 U
Silver	mg/kg	5,800	5.6	2.1 J	11.9	3.7	9.4	1.7 J
Vanadium	mg/kg	5,800	27.8	29.3	7.3	32.3	20.9	17.8
Zinc	mg/kg	350,000	152	18.6	15.3	32.5	53.9	24.3
Other								
Cyanide	mg/kg	150	1.3 J+	1.1 U	3.1 J+	1.3 U	1.7 J+	0.13 J+

Detections in bold Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result for this analyte is a quantitative estimate.

J+: The positive result for this analyte is a quantitative estimate but may be biased high.

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

TABLE 7 SUMMARY OF SOIL PAL EXCEEDANCES											
<u>Parameter</u>	<u>CAS#</u>	<u>Frequency of</u> <u>Detections (%)</u>	<u>Sample ID of</u> <u>Max Result</u>	<u>Max Result</u>	PAL Solid	<u>Units</u>					
Arsenic	7440-38-2	86	B2-017-SB-5	173	3	mg/kg					
Benzo[a]pyrene	50-32-8	88	B2-046-SB-1	10.5	2.1	mg/kg					
Chromium VI	18540-29-9	20	B2-039-SB-5	16.9	6.3	mg/kg					
Diesel Range Organics	DRO	94	B2-011-SB-8	9,730	6,200	mg/kg					
Lead	7439-92-1	95	B2-017-SB-5	12,000	800	mg/kg					
Manganese	7439-96-5	100	B2-016-SB-1	59,300	26,000	mg/kg					
Oil & Grease	O&G	100	B2-014-SB-7	13,600	6,200	mg/kg					

S	OIL PAL EXC		BLE 8 CS FOR SPECIFIC TARC	GETS		
Target Feature	Boring ID	<u>Sample</u> Depth (ft)	Parameter	PAL	<u>Result</u> (mg/kg)	<u>Final</u> <u>Flag</u>
	B2-001-SB	1	Manganese	26,000	37,400	
Tank	D2-001-5D	5	Arsenic	3	9.8	
(unknown contents)	B2-002-SB	1	Arsenic	3	4.3	
	B2-002-3B	4.5	Arsenic	3	3.2	
		1	Arsenic	3	13.3	
Former Diesel Fuel	B2-003-SB	4.5	Arsenic	3	10.3	
UST Area		4.5	Lead	800	1,920	
	B2-004-SB	5	Arsenic	3	5.6	
	B2-005A-SB	1	Arsenic	3	3.3	J
Slab Hauler Repair	B2-005/A-5B	1	Manganese	26,000	33,400	
		1	Chromium VI	6.3	9.8	J-
Shop	B2-005-SB	5	Arsenic	3	3	
Shop		5	Manganese	26,000	34,000	J
	B2-006-SB	1	Arsenic	3	8.9	
	B2-000-SB	4	Arsenic	3	8.9	
	B2-007-SB	5	Arsenic	3	14.5	
ASTs	B2-007-SB	10	Arsenic	3	21.3	
ASIS	B2-008-SB	1	Manganese	26,000	26,300	
	D2-000-5D	5	Arsenic	3	5.2	
		1	Arsenic	3	10	
	B2-009-SB	1	Manganese	26,000	33,500	
Mason's [Plant]		5	Arsenic	3	5.6	
Garage Drums		1	Arsenic	3	6.8	
Garage Druins	B2-010-SB	1	Manganese	26,000	45,600	J
	B2-010-3D	4	Arsenic	3	6.4	
		4	Lead	800	2,830	

S	OIL PAL EX(BLE 8 ES FOR SPECIFIC TAR	GETS		
Target Feature	Boring ID	<u>Sample</u> Depth (ft)	Parameter	PAL	<u>Result</u> (mg/kg)	<u>Final</u> <u>Flag</u>
		1	Arsenic	3	4.8	
	B2-011-SB	8	Diesel Range Organics	6,200	9,730	J
		8	Oil and Grease	6,200	6,830	J-
Magan's [Dlant]		1.5	Manganese	26,000	28,600	
Mason's [Plant]	B2-014-SB	1.5	Oil and Grease	6,200	10,100	
Garage Former USTs	D2-014-3D	7	Arsenic	3	33	
and Gas Pumps		7	Oil and Grease	6,200	13,600	
		1	Arsenic	3	5.3	
	B2-015-SB	5	Arsenic	3	6.9	
		5	Lead	800	5,660	J
		1	Arsenic	3	6.6	
	B2-016-SB	1	Manganese	26,000	59,300	
		5	Arsenic	3	4	
Possible USTs		1	Arsenic	3	11.4	
		1	Lead	800	1,100	J
	B2-017-SB	5	Arsenic	3	173	-
		5	Lead	800	12,000	J
		1	Arsenic	3	5	
Sludge and Acid	B2-018-SB	5	Arsenic	3	17.6	
Trailers	B2-019-SB	5	Arsenic	3	11	
		1	Arsenic	3	4.4	J
	B2-020-SB	4	Arsenic	3	10.2	J
		4	Benzo[a]pyrene	2.1	2.4	-
	D 0 0 1 0 D	1	Arsenic	3	7.4	J
	B2-021-SB	4	Arsenic	3	4.9	J
		1	Arsenic	3	4.1	J
	B2-022-SB	4	Arsenic	3	6.1	J
	B2-023-SB	4	Arsenic	3	24.3	
	B2-024-SB	1	Oil and Grease	6,200	12,400	
Residential Town		1	Arsenic	3	10.6	
Tanks	B2-025-SB	4	Arsenic	3	5.5	
		1	Arsenic	3	3.4	
		1	Manganese	26,000	29,600	
	B2-026-SB	5	Arsenic	3	6.1	
		5	Manganese	26,000	31,100	
		10	Arsenic	3	5.7	
	B2-027-SB	1	Arsenic	3	4.9	
		5	Arsenic	3	3.4	
	B2-028-SB	10	Arsenic	3	19.1	J

S	TABLE 8 SOIL PAL EXCEEDANCES FOR SPECIFIC TARGETS										
Target Feature	Boring ID	<u>Sample</u> Depth (ft)	Parameter	<u>PAL</u>	<u>Result</u> (mg/kg)	<u>Final</u> <u>Flag</u>					
		1	Arsenic	3	10.9						
	B2-029-SB	8	Arsenic	3	7.7						
Scrap Processing		10	Arsenic	3	8.3						
Facility and Bulk	B2-030-SB	1	Arsenic	3	7.2						
Petroleum Storage		1	Arsenic	3	8						
	B2-031-SB	7	Arsenic	3	13.5						
		7	Benzo[a]pyrene	2.1	2.5						
	B2-032-SB	1	Manganese	26,000	27,800						
Steelside Electronics	B2-032-SB	4	Arsenic	3	4.2						
Building	B2-033-SB	1	Manganese	26,000	31,200						
	D2-035-3D	5	Manganese	26,000	29,600						
	B2-034-SB	1	Arsenic	3	7.5						
	B2-035-SB	1	Arsenic	3	4						
	D2-033-3D	4	Arsenic	3	4.5						
Sub-stations	B2-036-SB	5	Arsenic	3	18.6						
		1	Arsenic	3	5.1						
	B2-037-SB	1	Lead	800	988	J					
		5	Arsenic	3	23.7						
	B2-053-SB	1	Arsenic	3	8						
Magan'a Caraca	B2-033-3B	5.5	Arsenic	3	3.2						
Mason's Garage	B2-054-SB	5	Arsenic	3	3.4						
	B2-055-SB	1	Benzo[a]pyrene	2.1	2.8						

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate, but may be biased low.

Table 9Summary of Organics and Inorganics Detected in Groundwater
Supplemental Sampling at B2-051-PZ
Parcel B2
Tradepoint Atlantic
Sparrows Point, Maryland

Parameter	Units	PAL	B2-051-PZ*
Volatile Organic Compounds		II	
Toluene	μg/L	1,000	0.84 J
Semi-Volatile Organic Compounds			
1,4-Dioxane	μg/L	0.46	0.025 J
2,4-Dimethylphenol	μg/L	360	0.52 J
2-Methylnaphthalene	μg/L	36	0.55
2-Methylphenol	μg/L	930	0.31 J
3&4-Methylphenol(m&p Cresol)	μg/L	930	0.85 J
Acenaphthene	μg/L	530	0.49
Acenaphthylene	μg/L	530	0.42
Anthracene	μg/L	1,800	0.27
Benz[a]anthracene	μg/L	0.03	0.056 J
Carbazole	μg/L		1.6
Fluoranthene	μg/L	800	0.45
Fluorene	μg/L	290	0.99
Phenanthrene	μg/L		1.8
Pyrene	μg/L	120	0.28
TPH/Oil and Grease			
Diesel Range Organics	μg/L	47	198
Dissolved Metals			
Aluminum, Dissolved	μg/L	20,000	1,130
Arsenic, Dissolved	μg/L	10	5.1
Barium, Dissolved	μg/L	2,000	100
Chromium, Dissolved	μg/L	100	1 J
Iron, Dissolved	μg/L	14,000	121
Manganese, Dissolved	μg/L	430	5.6
Vanadium, Dissolved	μg/L	86	110
Other			
Cyanide	μg/L	200	0.016

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

J: The positive result reported for this analyte is a quantitative estimate.

Table 10Summary of VOCs, TPH, and Lead Detected in GroundwaterSupplemental Sampling at the Plant Garage

Parcel B2

Tradepoint Atlantic

Sparrows Point, Maryland

Parameter	Units	PAL	B2-007-PZ	B2-011-PZ	B2-013-PZ	B2-014-PZ	B2-015-PZ	SW-055-MWS
Volatile Organic Compounds								
2-Butanone (MEK)	μg/L	5,600	10 U	10.1 J	3.7 J	10 U	10 U	10 U
Acetone	μg/L	14,000	35.8 J	29.9 J	19.4 B	22.2 J	15.8 B	10 U
Benzene	μg/L	5	1 UJ	3.9 J	17.5 J	1 UJ	1 UJ	7.7
Cyclohexane	μg/L	13,000	10 U	19.4 J	6.4 J	10 U	10 U	7.9 J
Ethylbenzene	μg/L	700	1 U	6.4	7.8	1 U	1 U	20.3
Isopropylbenzene	μg/L	450	1 U	43.5	10.9	1 U	1 U	2.3
Methyl tert-butyl ether (MTBE)	μg/L	14	8.3	1.6 J	3.6	11.3	0.89 J	1.4
Toluene	μg/L	1,000	1 UJ	2.5 J	0.32 J	1 UJ	1 UJ	29.8
Xylenes	μg/L	10,000	3 U	10.2	2.6 J	3 U	3 U	79.6
TPH/Oil and Grease								
Diesel Range Organics	μg/L	47	2,250 J	24,900 J	8,170 J	2,050 J	2,550 J	700 J
Gasoline Range Organics	μg/L	47	95.5 J	1,350 J	445	146 J	105 J	545
Total Metal								
Lead	μg/L	15	171	5 U	5.3	337	804	5 U

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

U: This analyte was not detected in the sample. The numeric value represents the sample quantitative/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

				B2-007-PZ		B2-01	B2-011-PZ		B2-013-PZ	
Parameter	Туре	Organ Systems	VI Screening Criteria	Conc. (ug/L)	Risk/ Hazard	Conc. (ug/L)	Risk/ Hazard	Conc. (ug/L)	Risk/ Hazard	
Cancer Risk										
1,4-Dioxane	SVOC		130,000	NA	-	NA	-	NA	-	
Naphthalene	SVOC		200	NA	-	NA	-	NA	-	
Benzene	VOC		69	1 UJ	0	3.9 J	5.7E-07	17.5 J	2.5E-06	
Ethylbenzene	VOC		150	1 U	0	6.4	4.3E-07	7.9	5.2E-07	
Methyl tert-butyl ether (MTBE)	VOC		20,000	8	4.2E-09	1.6 J	8.0E-10	3.6	1.8E-09	
Cumulative Vapor Intrusion Cancer Risk					4E-09		1E-06		3E-06	
Non-Cancer Hazard				-		-				
Cumulati	ve Vapor Intrus	sion Non-C	Cancer Hazard		0		0		0	
Cumulan	the tupor minute		anoor razara		0		0		0	
Cumulat	ve vapor maa				Ū.		0		0	
Cumula				B2-01		B2-01		B2-05	-	
Parameter	Туре	Organ	VI Screening Criteria	B2-01 Conc. (ug/L)		B2-01 Conc. (ug/L)		B2-05 Conc. (ug/L)	-	
	-		VI Screening		4-PZ Risk/		5-PZ Risk/		1-PZ* Risk/	
Parameter	-	Organ	VI Screening		4-PZ Risk/		5-PZ Risk/		1-PZ* Risk/	
Parameter Cancer Risk	Туре	Organ	VI Screening Criteria	Conc. (ug/L)	4-PZ Risk/ Hazard	Conc. (ug/L)	5-PZ Risk/ Hazard	Conc. (ug/L)	1-PZ* Risk/ Hazard	
Parameter Cancer Risk 1,4-Dioxane	Type	Organ	VI Screening Criteria 130,000	Conc. (ug/L)	4-PZ Risk/ Hazard	Conc. (ug/L)	5-PZ Risk/ Hazard	Conc. (ug/L)	1-PZ* Risk/ Hazard 1.9E-12	
Parameter Cancer Risk 1,4-Dioxane Naphthalene	Type SVOC SVOC	Organ	VI Screening Criteria 130,000 200	Conc. (ug/L) NA NA	4-PZ Risk/ Hazard - -	Conc. (ug/L) NA NA	5-PZ Risk/ Hazard - -	Conc. (ug/L) 0.025 J 4.1 B	1-PZ* Risk/ Hazard 1.9E-12 0	
Parameter Cancer Risk 1,4-Dioxane Naphthalene Benzene	Type SVOC SVOC VOC	Organ	VI Screening Criteria 130,000 200 69	Conc. (ug/L) NA NA 1 UJ	4-PZ Risk/ Hazard - - 0	Conc. (ug/L) NA NA 1 UJ	5-PZ Risk/ Hazard - - 0	Conc. (ug/L) 0.025 J 4.1 B 1 U	1-PZ* Risk/ Hazard 1.9E-12 0 0	
Parameter Cancer Risk 1,4-Dioxane Naphthalene Benzene Ethylbenzene Methyl tert-butyl ether (MTBE)	Type SVOC SVOC VOC VOC	Organ Systems	VI Screening Criteria 130,000 200 69 150 20,000	Conc. (ug/L) NA NA 1 UJ 1 U	4-PZ Risk/ Hazard - - 0 0	Conc. (ug/L) NA NA 1 UJ 1 U	5-PZ Risk/ Hazard - - 0 0	Conc. (ug/L) 0.025 J 4.1 B 1 U 1 U	1-PZ* Risk/ Hazard 1.9E-12 0 0 0	
Parameter Cancer Risk 1,4-Dioxane Naphthalene Benzene Ethylbenzene Methyl tert-butyl ether (MTBE)	Type SVOC SVOC VOC VOC VOC	Organ Systems	VI Screening Criteria 130,000 200 69 150 20,000	Conc. (ug/L) NA NA 1 UJ 1 U	4-PZ Risk/ Hazard - - 0 0 0 5.7E-09	Conc. (ug/L) NA NA 1 UJ 1 U	5-PZ Risk/ Hazard - - 0 0 0 4.5E-10	Conc. (ug/L) 0.025 J 4.1 B 1 U 1 U	1-PZ* Risk/ Hazard <u>1.9E-12</u> 0 0 0 0 0	

 Table 11

 Cumulative Vapor Intrusion Criteria Comparison

Highlighted values indicate exceedances of the cumulative vapor intrusion criteria:

TCR>1E-05 THI>1

Conc. = Concentration

NA = Not analyzed

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

Table 12 Summary of VOCs Detected in Sub-Slab Soil Gas Parcel B2 Tradepoint Atlantic Sparrows Point, Maryland

Parameter	Units	PAL	B2-056-SG	B2-057-SG	B2-058-SG	B2-059-SG*	B2-060-SG*	B2-061-SG*
Volatile Organic Compour	nd							
1,1,1-Trichloroethane	µg/m3	2,200,000	5.6	16.2	6.64	6.73	4.8	26.6
1,2,4-Trimethylbenzene	µg/m3	3,100	1.44	1.5	1.96	2.38	4.53	3.03
1,2-Dichloroethene (Total)	µg/m3	2,700	0.79 U	2.99	0.79 U	0.79 U	0.79 U	0.79 U
1,4-Dichlorobenzene	µg/m3	1,200	1.2 U	1.2 U	3.24	1.2 U	1.2 U	1.2 U
1,4-Dioxane	µg/m3	250	0.74	1.17	0.72 U	0.98	0.72 U	1.42
2-Butanone (MEK)	µg/m3	2,200,000	4	18.8	8.03	15	13.3	30.1
Acetone	µg/m3	14,000,000	20.4	49.3	25.1	219	176	278
Benzene	µg/m3	1,600	0.64 U	0.64 U	0.64 U	3.64	4.71	8.27
Bromodichloromethane	µg/m3		1.34 U	3.69	1.34 U	21.9	18.9	35.3
Carbon disulfide	µg/m3	310,000	27.5	2.44	2.59	112	71.2	193
Chloroform	µg/m3	540	4.33	25.1	2.55	192	154	236
Chloromethane	µg/m3	40,000	0.41 U	0.41 U	0.41 U	0.98	1.14	1.33
Cyclohexane	µg/m3	2,700,000	1.5 J	1.11 J	1.13 J	2.72	4.34	5.69
Dibromochloromethane	µg/m3	460	1.7 U	1.7 U	1.7 U	1.7 U	1.73	2.15
Dichlorodifluoromethane	µg/m3	44,000	1,200	89.6	48.2	2.81	3.02	2.93
Ethylbenzene	µg/m3	5,000	0.87 U	0.87 U	0.87 U	1.08	3.87	1.55
Methylene Chloride	µg/m3	270,000	0.78 U	0.78 U	0.78 U	1.81	1.81	1.92
Naphthalene	µg/m3	370	2.62 U	2.62 U	2.62 U	5.1	1.44 J	8.88
Tetrachloroethene	µg/m3	18,000	1.36 U	2.6	1.36 U	5.46	1.36 U	1.36 U
Toluene	µg/m3	2,200,000	2.01	3.63	1.93	10.1	44.8	17.7
trans-1,2-Dichloroethene	µg/m3	27,000	0.79 U	2.98	0.79 U	0.79 U	0.79 U	0.79 U
Trichlorofluoromethane	µg/m3	310,000	1.53	1.38	1.51	2.17	1.79	2.21
Vinyl chloride	µg/m3	2,800	0.51 U	0.51 U	0.51 U	0.51 U	0.51 U	0.71
Xylenes	µg/m3	44,000	1.5	1.8	1.58	4.59	15.4	7

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitative/detection limit.

J: The positive result reported for this analyte is a quantitative estimate.

Parcel B2 - Table 13

Rejected Results for Soil

Parameter	Result	Units	PAL	Exceeds PAL?	Flag
Sample: B2-001-SB-1					
2,3,4,6-Tetrachlorophenol	0.076	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.19	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.076	mg/kg	210	no	R
2,4-Dichlorophenol	0.076	mg/kg	2,500	no	R
2,4-Dinitrophenol	0.19	mg/kg	1,600	no	R
2-Chlorophenol	0.076	mg/kg	5,800	no	R
2-Methylphenol	0.076	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.15	mg/kg	41,000	no	R
Pentachlorophenol	0.19	mg/kg	4	no	R
Phenol	0.076	mg/kg	250,000	no	R

Sample:

B2-001-SB-5

1,4-Dioxane 0.086 mg/kg 24 no R	4.4.D	0.000		04			
	1,4-Dioxane	0.086	mg/ kg	24	no	R	1

Sample:

B2-005-SB-1

2,3,4,6-Tetrachlorophenol	0.074	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.19	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.074	mg/kg	210	no	R
2,4-Dichlorophenol	0.074	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.074	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.19	mg/kg	1,600	no	R
2-Chlorophenol	0.074	mg/kg	5,800	no	R
2-Methylphenol	0.074	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.15	mg/kg	41,000	no	R
Pentachlorophenol	0.19	mg/kg	4	no	R
Phenol	0.074	mg/kg	250,000	no	R

Sample:

B2-005-SB-5

2,3,4,6-Tetrachlorophenol	0.073	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R

Parameter	Result	Units	PAL	Exceeds PAL?	Flag
ample: B2-005-SB-5			_		
2,4,6-Trichlorophenol	0.073	mg/kg	210	no	R
2,4-Dichlorophenol	0.073	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.073	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R
2-Chlorophenol	0.073	mg/kg	5,800	no	R
2-Methylphenol	0.073	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.15	mg/kg	41,000	no	R
Pentachlorophenol	0.18	mg/kg	4	no	R
Phenol	0.073	mg/kg	250,000	no	R
ample: B2-009-SB-1					
Benzaldehyde	0.07	mg/kg	120,000	no	R
Benzaldehyde	0.093	mg/kg	120,000	no	R
ample: B2-011-SB-1			······	no	
ample: <u>B2-011-SB-1</u> 2,3,4,6-Tetrachlorophenol	0.073	mg/kg	25,000	no	R
<i>B2-011-SB-1</i> 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	0.073 0.18	mg/kg mg/kg	25,000 82,000	- L	R R
<i>B2-011-SB-1</i> 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	0.073 0.18 0.073	mg/kg mg/kg mg/kg	25,000 82,000 210	no	R R R
Bample:B2-011-SB-12,3,4,6-Tetrachlorophenol2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol	0.073 0.18 0.073 0.073	mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500	no no no no	R R R R
B2-011-SB-12,3,4,6-Tetrachlorophenol2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dimethylphenol	0.073 0.18 0.073 0.073 0.073	mg/kg mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500 16,000	no no no no no no	R R R R R
B2-011-SB-12,3,4,6-Tetrachlorophenol2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dimethylphenol2,4-Dinitrophenol	0.073 0.18 0.073 0.073 0.073 0.073 0.18	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500 16,000 1,600	no no no no	R R R R R R
B2-011-SB-12,3,4,6-Tetrachlorophenol2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dimethylphenol2,4-Dinitrophenol2,4-Dinitrophenol	0.073 0.18 0.073 0.073 0.073 0.18 0.073	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500 16,000 1,600 5,800	no no no no no no	R R R R R R R
B2-011-SB-12,3,4,6-Tetrachlorophenol2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dinethylphenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrophenol	0.073 0.18 0.073 0.073 0.073 0.18 0.073 0.073	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500 16,000 1,600 5,800 41,000	no no no no no no no no	R R R R R R R R R
B2-011-SB-12,3,4,6-Tetrachlorophenol2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dimethylphenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Methylphenol3&4-Methylphenol(m&p Cresol)	0.073 0.18 0.073 0.073 0.073 0.18 0.073 0.073 0.073 0.15	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500 16,000 1,600 5,800 41,000 41,000	no no no no no no no no no	R R R R R R R R R R
B2-011-SB-12,3,4,6-Tetrachlorophenol2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dinethylphenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrophenol	0.073 0.18 0.073 0.073 0.073 0.18 0.073 0.073	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500 16,000 1,600 5,800 41,000	no no no no no no no no no no no no	R R R R R R R R R
B2-011-SB-12,3,4,6-Tetrachlorophenol2,4,5-Trichlorophenol2,4,6-Trichlorophenol2,4-Dichlorophenol2,4-Dimethylphenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Dinitrophenol2,4-Methylphenol3&4-Methylphenol(m&p Cresol)	0.073 0.18 0.073 0.073 0.073 0.18 0.073 0.073 0.073 0.15	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500 16,000 1,600 5,800 41,000 41,000	no no no no no no no no no no no no no	R R R R R R R R R R

Sample:

B2-011-SB-5

Benzaldehyde 0.074 mg/kg 120,000 no		R	
-------------------------------------	--	---	--

		5				
Parameter		Result	Units	PAL	Exceeds PAL?	Flag
Sample:	B2-011-SB-8					
1,4-Dioxane	e	5.5	mg/kg	24	no	R
Benzaldehy	/de	1.5	mg/kg	120,000	no	R
Sample:	B2-012-SB-3.5			_		
Benzaldehy	/de	0.072	mg/kg	120,000	no	R
Sample:	B2-012-SB-5			_		
Benzaldehy	/de	0.076	mg/kg	120,000	no	R
Sample:	B2-013-SB-1			_		
1,4-Dioxane	e	0.098	mg/kg	24	no	R
Benzaldehy	/de	0.069	mg/kg	120,000	no	R
Sample:	B2-013-SB-5			_		
1,4-Dioxane	e	0.087	mg/kg	24	no	R
Benzaldehy	/de	1.4	mg/kg	120,000	no	R
Sample:	B2-015-SB-1			_		
Benzaldehy	/de	0.071	mg/kg	120,000	no	R
Sample:	B2-015-SB-5			_		
Benzaldehy	/de	0.08	mg/kg	120,000	no	R
Sample:	B2-016-SB-1			_		
Benzaldehy	/de	0.071	mg/kg	120,000	no	R
Sample:	B2-016-SB-5					
Benzaldehy	/de	0.075	mg/kg	120,000	no	R
Sample:	B2-017-SB-1			_		
Benzaldehy	/de	0.072	mg/kg	120,000	no	R
Sample:	B2-017-SB-5					
Benzaldehy	/de	0.079	mg/kg	120,000	no	R

Parameter	Result	Units	PAL	Exceeds PAL?	Flag
Sample: B2-021-SB-4			_		
1,4-Dioxane	0.096	mg/kg	24	no	R
Sample: B2-026-SB-1			_		
2,3,4,6-Tetrachlorophenol	0.075	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.19	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.075	mg/kg	210	no	R
2,4-Dichlorophenol	0.075	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.075	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.19	mg/kg	1,600	no	R
2-Chlorophenol	0.075	mg/kg	5,800	no	R
2-Methylphenol	0.075	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.15	mg/kg	41,000	no	R
Pentachlorophenol	0.19	mg/kg	4	no	R
Phenol	0.075	mg/kg	250,000	no	R

Sample:

B2-026-SB-5

1,4-Dioxane	0.11	mg/kg	24	no	R
2,3,4,6-Tetrachlorophenol	0.077	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.19	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.077	mg/kg	210	no	R
2,4-Dichlorophenol	0.077	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.077	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.19	mg/kg	1,600	no	R
2-Chlorophenol	0.077	mg/kg	5,800	no	R
2-Methylphenol	0.077	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.15	mg/kg	41,000	no	R
Pentachlorophenol	0.19	mg/kg	4	no	R
Phenol	0.077	mg/kg	250,000	no	R

Sample:

B2-028-SB-1

1,4-Dioxane	0.088	mg/kg	24	no	R
Benzaldehyde	0.074	mg/kg	120,000	no	R

	5	,			
Parameter	Result	Units	PAL	Exceeds PAL?	Flag
Sample: B2-028-SB-5					
· · · · · · · · · · · · · · · · · · ·			•		
1,4-Dioxane	0.13	mg/kg	24	no	R
Sample: B2-036-SB-1			_		
1,4-Dioxane	0.14	mg/kg	24	no	R
Benzaldehyde	0.071	mg/kg	120,000	no	R
Sample: B2-036-SB-5			_		
1,4-Dioxane	0.15	mg/kg	24	no	R
Sample: B2-037-SB-1			_		
1,4-Dioxane	0.12	mg/kg	24	no	R
Sample: B2-037-SB-5			_		
1,4-Dioxane	0.28	mg/kg	24	no	R
Sample: B2-038-SB-1			_		
2,3,4,6-Tetrachlorophenol	0.071	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.071	mg/kg	210	no	R
2,4-Dichlorophenol	0.071	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.071	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R
2-Chlorophenol	0.071	mg/kg	5,800	no	R
2-Methylphenol	0.071	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.14	mg/kg	41,000	no	R
Pentachlorophenol	0.18	mg/kg	4	no	R
Phenol	0.071	mg/kg	250,000	no	R
Sample: B2-038-SB-5					
Pentachlorophenol	0.18	mg/kg	4	no	R
Sample: B2-040-SB-7		:::::-			
			-		

1,4-Dioxane	 0.13	mg/kg	24	 no	R	1	
1	 			 			

Parameter	Result	Units	PAL	Exceeds PAL?	Flag
ample: B2-042-SB-1			_		
2,3,4,6-Tetrachlorophenol	0.073	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.073	mg/kg	210	no	R
2,4-Dichlorophenol	0.073	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.073	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R
2-Chlorophenol	0.073	mg/kg	5,800	no	R
2-Methylphenol	0.073	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.14	mg/kg	41,000	no	R
Pentachlorophenol	0.18	mg/kg	4	no	R
Phenol	0.073	mg/kg	250,000	no	R
ample: B2-042-SB-5					
2,3,4,6-Tetrachlorophenol	0.071	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.071	mg/kg	210	no	R

2,4,0-11101000100100	0.071	iiig/ kg	210	110	IV IV	
2,4-Dichlorophenol	0.071	mg/kg	2,500	no	R	
2,4-Dimethylphenol	0.071	mg/kg	16,000	no	R	
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R	
2-Chlorophenol	0.071	mg/kg	5,800	no	R	
2-Methylphenol	0.071	mg/kg	41,000	no	R	
3&4-Methylphenol(m&p Cresol)	0.14	mg/kg	41,000	no	R	
Pentachlorophenol	0.18	mg/kg	4	no	R	
Phenol	0.071	mg/kg	250,000	no	R	

Sample:

B2-043-SB-1

2,3,4,6-Tetrachlorophenol	0.072	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.072	mg/kg	210	no	R
2,4-Dichlorophenol	0.072	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.072	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R
2-Chlorophenol	0.072	mg/kg	5,800	no	R
2-Methylphenol	0.072	mg/kg	41,000	no	R

	nejecie	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Parameter	Result	Units	PAL	Exceeds PAL?	Flag
Sample: B2-043-SB-1			_		
3&4-Methylphenol(m&p Cresol)	0.14	mg/kg	41,000	no	R
Pentachlorophenol	0.18	mg/kg	4	no	R
Phenol	0.072	mg/kg	250,000	no	R
Sample: B2-043-SB-4					
1,4-Dioxane	0.095	mg/kg	24	no	R
Sample: B2-047-SB-4					
1,4-Dioxane	0.094	mg/kg	24	no	R
Sample: B2-048-SB-1					
2,3,4,6-Tetrachlorophenol	0.074	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.19	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.074	mg/kg	210	no	R
2,4-Dichlorophenol	0.074	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.074	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.19	mg/kg	1,600	no	R
2-Chlorophenol	0.074	mg/kg	5,800	no	R
2-Methylphenol	0.074	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.15	mg/kg	41,000	no	R
Pentachlorophenol	0.19	mg/kg	4	no	R
Phenol	0.074	mg/kg	250,000	no	R
Sample: B2-049-SB-1			_		
1,4-Dioxane	0.1	mg/kg	24	no	R
2,3,4,6-Tetrachlorophenol	0.071	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.071	mg/kg	210	no	R
2,4-Dichlorophenol	0.071	mg/kg	2,500	no	R

			-		
1,4-Dioxane	0.1	mg/kg	24	no	R
2,3,4,6-Tetrachlorophenol	0.071	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.071	mg/kg	210	no	R
2,4-Dichlorophenol	0.071	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.071	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R
2-Chlorophenol	0.071	mg/kg	5,800	no	R
2-Methylphenol	0.071	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.14	mg/kg	41,000	no	R

Parameter	Result	Units	PAL	Exceeds PAL?	Flag
ample: B2-049-SB-1			_		
Benzaldehyde	0.071	mg/kg	120,000	no	R
Pentachlorophenol	0.18	mg/kg	4	no	R
Phenol	0.071	mg/kg	250,000	no	R
ample: B2-049-SB-4					
1,4-Dioxane	0.088	mg/kg	24	no	R
2,3,4,6-Tetrachlorophenol	0.071	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.071	mg/kg	210	no	R
2,4-Dichlorophenol	0.071	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.071	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R
2-Chlorophenol	0.071	mg/kg	5,800	no	R
2-Methylphenol	0.071	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.14	mg/kg	41,000	no	R
Benzaldehyde	0.071	mg/kg	120,000	no	R
Pentachlorophenol	0.18	mg/kg	4	no	R
Phenol	0.071	mg/kg	250,000	no	R

Benzaldehyde	(0.072		mg/kg	120,000	no		R
--------------	---	-------	--	-------	---------	----	--	---

Sample:

B2-050-SB-5

2,3,4,6-Tetrachlorophenol	0.073	mg/kg	25,000	no	R
-					
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R
Benzaldehyde	0.073	mg/kg	120,000	no	R
	+				
Pentachlorophenol	0.18	mg/kg	4	no	R

Sample:

B2-051-SB-1

			•		
2,3,4,6-Tetrachlorophenol	0.071	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.071	mg/kg	210	no	R
2,4-Dichlorophenol	0.071	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.071	mg/kg	16,000	no	R

Rejected Results for Soil

	Rejected	i Results for Sol	L		
Parameter	Result	Units	PAL	Exceeds PAL?	Flag
Sample: B2-051-SB-1					
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R
2-Chlorophenol	0.071	mg/kg	5,800	no	R
2-Methylphenol	0.071	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.14	mg/kg	41,000	no	R
Benzaldehyde	0.071	mg/kg	120,000	no	R
Pentachlorophenol	0.18	mg/kg	4	no	R
Phenol	0.071	mg/kg	250,000	no	R
Sample: B2-051-SB-5					
2,3,4,6-Tetrachlorophenol	0.07	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.07	mg/kg	210	no	R
2,4-Dichlorophenol	0.07	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.07	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R
2-Chlorophenol	0.07	mg/kg	5,800	no	R
2-Methylphenol	0.07	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.14	mg/kg	41,000	no	R
Benzaldehyde	0.07	mg/kg	120,000	no	R
Pentachlorophenol	0.18	mg/kg	4	no	R
Phenol	0.07	mg/kg	250,000	no	R
Sample: B2-053-SB-1					
1,4-Dioxane	0.13	mg/kg	24	no	R
Sample: B2-053-SB-5.5			_		
1,4-Dioxane	5	mg/kg	24	no	R
Sample: B2-054-SB-1			_		
1,4-Dioxane	0.15	mg/kg	24	no	R

Sample: B2-054-SB-5

1,4-Dioxane	0.092	mg/kg	24		no		R	
	i			i		i		İ -

Rejected Results for Soil

Parameter		Result	Units	PAL	Exceeds PAL?	Flag
Sample:	B2-055-SB-1			_		
1,4-Dioxane)	0.13	mg/kg	24	no	R
Sample:	B2-055-SB-6.5			_		
1,4-Dioxane	9	5.4	mg/kg	24	no	R

Parcel B2 - Table 14

Rejected Results for Groundwater

Parameter	Parameter		Result	Units	PAL	Exceeds PAL?	Flag
Sample:	B2-007-PZ						
Bromomethane			1	µg/L	7.5	no	R
Sample:	B2-011-PZ						
Bromomethane			1	µg/L	7.5	no	R
Sample:	B2-013-PZ						
Bromomet	hane		1	µg/L	7.5	no	R
Sample:	B2-014-PZ						
Bromomet	hane		1	µg/L	7.5	no	R
Sample:	B2-015-PZ						
Bromomethane			1	µg/L	7.5	no	R

Parameter	CAS#	Location of Max Result	Max Detection (mg/kg)	Final Flag	Min Detection (mg/kg)	Average Detection (mg/kg)	Total Samples	Frequency of Detection (%)	Cancer TR=1E-06 (mg/kg)	Non-Cancer HQ=0.1 (mg/kg)	COPC?
1,1-Biphenyl	92-52-4	B2-013-SB-5	1.4	J	0.016	0.13	109	17.43	410	20	no
1,2,3-Trichlorobenzene	87-61-6	B2-026-SB-5	0.0034	J	0.0034	0.003	35	2.86		93	no
1,2,4,5-Tetrachlorobenzene	95-94-3	B2-006-SB-4	0.019	J	0.019	0.02	109	0.92		35	no
1,2,4-Trichlorobenzene	120-82-1	B2-026-SB-5	0.011		0.011	0.01	35	2.86	110	26	no
1,2-Dichloroethane	107-06-2	B2-054-SB-1	0.0017	J	0.0013	0.002	35	5.71	2	14	no
2,4-Dimethylphenol	105-67-9	B2-011-SB-8	1	J	0.019	0.19	95	12.63		1,600	no
2,4-Dinitrotoluene	121-14-2	B2-037-SB-5	0.037	J	0.02	0.03	109	1.83	7.4	160	no
2-Butanone (MEK)	78-93-3	B2-040-SB-7	0.025	J	0.0033	0.01	35	14.29		19,000	no
2-Chloronaphthalene	91-58-7	B2-036-SB-5	0.14	J	0.063	0.11	109	2.75		6,000	no
2-Methylnaphthalene	91-57-6	B2-013-SB-5	10.2		0.00075	0.26	109	93.58		300	no
2-Methylphenol	95-48-7	B2-037-SB-5	0.06	J	0.018	0.04	94	7.45		4,100	no
3,3'-Dichlorobenzidine	91-94-1	B2-014-SB-1.5	0.024	J	0.024	0.02	109	0.92	5.1		no
4-Chloroaniline	106-47-8	B2-007-SB-5	0.47		0.12	0.30	109	1.83	11	330	no
Acenaphthene	83-32-9	B2-011-SB-8	3		0.00057	0.09	109	68.81		4,500	no
Acenaphthylene	208-96-8	B2-046-SB-1	3.2		0.00053	0.14	109	78.90			no
Acetone	67-64-1	B2-055-SB-6.5	14.6	J	0.0074	0.62	35	71.43		67,000	no
Acetophenone	98-86-2	B2-053-SB-5.5	1.2		0.02	0.10	109	16.51		12,000	no
Aluminum	7429-90-5	B2-028-SB-5	61,100		689	18,020	109	99.08		110,000	no
Anthracene	120-12-7	B2-011-SB-8	2.4		0.00046	0.16	109	85.32		23,000	no
Antimony	7440-36-0	B2-017-SB-5	24.1	J	3	10.1	109	2.75		47	no
Aroclor 1248	12672-29-6	B2-029-SB-1	0.15		0.15	0.15	56	1.79	0.95		no
Aroclor 1254	11097-69-1	B2-029-SB-1	0.15		0.025	0.08	56	7.14	0.97	1.5	no
Aroclor 1260	11096-82-5	B2-027-SB-1	0.18		0.0095	0.09	56	10.71	0.99		no
Arsenic	7440-38-2	B2-017-SB-5	173		1.7	9.52	118	85.59	3	48	YES (C/NC)
Barium	7440-39-3	B2-028-SB-5	933		3.3	203	109	100.00		22,000	no
Benz[a]anthracene	56-55-3	B2-046-SB-1	9.4		0.00098	0.43	109	90.83	21		no
Benzaldehyde	100-52-7	B2-031-SB-7 & B2-055-SB-6.5	0.28	- J	0.017	0.06	86	37.21	820	12,000	no
Benzene	71-43-2	B2-055-SB-6.5	0.16	J	0.0022	0.06	35	8.57	5.1	42	no
Benzo[a]pyrene	50-32-8	B2-046-SB-1	10.5		0.0013	0.49	109	88.07	2.1	22	YES (C)
Benzo[b]fluoranthene	205-99-2	B2-050-SB-1	11.3	J	0.0038	0.81	109	89.91	21		no
Benzo[g,h,i]perylene	191-24-2	B2-046-SB-1	5.7		0.00084	0.31	109	88.07			no
Benzo[k]fluoranthene	207-08-9	B2-050-SB-1	7.7	J	0.0015	0.52	109	88.99	210		no

Table 15 - Parcel B2COPC Screen Analysis

Parameter	CAS#	Location of Max Result	Max Detection (mg/kg)	Final Flag	Min Detection (mg/kg)	Average Detection (mg/kg)	Total Samples	Frequency of Detection (%)	Cancer TR=1E-06 (mg/kg)	Non-Cancer HQ=0.1 (mg/kg)	COPC?
Beryllium	7440-41-7	B2-030-SB-5	8.3		0.13	1.67	109	75.23	6,900	230	no
bis(2-Chloroethyl)ether	111-44-4	B2-053-SB-5.5	0.087		0.087	0.09	109	0.92	1		no
bis(2-Ethylhexyl)phthalate	117-81-7	B2-001-SB-5	0.67	J	0.02	0.12	109	24.77	160	1,600	no
Cadmium	7440-43-9	B2-009-SB-5	22		0.38	2.18	109	56.88	9,300	98	no
Caprolactam	105-60-2	B2-011-SB-8	37.9		0.022	2.73	109	15.60		40,000	no
Carbazole	86-74-8	B2-020-SB-4 & B2-004-SB-5	0.43	J -	0.018	0.10	109	30.28			no
Carbon disulfide	75-15-0	B2-023-SB-4	0.0074		0.0026	0.004	35	14.29		350	no
Chromium	7440-47-3	B2-041-SB-1	2,970		3.7	490	110	100.00		180,000	no
Chromium VI	18540-29-9	B2-039-SB-5	16.9		1.2	4.09	111	19.82	6.3	350	YES (C)
Chrysene	218-01-9	B2-046-SB-1	9.4		0.00091	0.43	109	91.74	2,100		no
Cobalt	7440-48-4	B2-018-SB-5	59.1		0.55	8.78	109	91.74	1,900	35	YES (NC)
Copper	7440-50-8	B2-052-SB-1 & B2-017-SB-5	1,220	J	1.5	86.7	109	98.17		4,700	no
Cyanide	57-12-5	B2-047-SB-1	7		0.089	0.84	109	82.57		120	no
Cyclohexane	110-82-7	B2-055-SB-6.5	26.9	J	0.075	15.3	35	8.57		2,700	no
Dibenz[a,h]anthracene	53-70-3	B2-046-SB-1	2		0.0015	0.13	109	63.30	2.1		no
Diethylphthalate	84-66-2	B2-013-SB-5	1	J	0.015	0.11	109	15.60		66,000	no
Di-n-butylphthalate	84-74-2	B2-038-SB-5	0.52	J	0.077	0.23	109	7.34		8,200	no
Di-n-ocytlphthalate	117-84-0	B2-048-SB-1	0.16	J	0.029	0.07	109	3.67		820	no
Ethylbenzene	100-41-4	B2-053-SB-5.5	1.8		0.0028	0.55	35	14.29	25	2,000	no
Fluoranthene	206-44-0	B2-046-SB-1	17.6		0.0015	0.70	109	90.83		3,000	no
Fluorene	86-73-7	B2-011-SB-8	4.5		0.0007	0.14	109	66.97		3,000	no
Hexachloroethane	67-72-1	B2-055-SB-6.5	3.7		0.031	1.21	109	5.50	8	46	no
Indeno[1,2,3-c,d]pyrene	193-39-5	B2-046-SB-1	6.4		0.002	0.32	109	82.57	21		no
Iron	7439-89-6	B2-042-SB-5	318,000		1,460	92,574	109	100.00		82,000	YES (NC)
Isophorone	78-59-1	B2-014-SB-7	0.58	J	0.071	0.24	109	3.67	2,400	16,000	no
Isopropylbenzene	98-82-8	B2-011-SB-8	9.3		0.025	4.31	35	11.43		990	no
Lead^	7439-92-1	B2-017-SB-5	12,000	J	1.2	333	109	95.41		800	YES (NC)
Manganese	7439-96-5	B2-016-SB-1	59,300		16.3	12,000	111	100.00		2,600	YES (NC)
Mercury	7439-97-6	B2-017-SB-5	1.7	J+	0.0046	0.13	109	57.80		35	no
Naphthalene	91-20-3	B2-011-SB-8	2.8		0.0035	0.18	109	64.22	17	59	no
Nickel	7440-02-0	B2-018-SB-5	398		1.4	37.3	109	99.08	64,000	2,200	no

Table 15 - Parcel B2COPC Screen Analysis

Parameter	CAS#	Location of Max Result	Max Detection (mg/kg)	Final Flag	Min Detection (mg/kg)	Average Detection (mg/kg)	Total Samples	Frequency of Detection (%)	Cancer TR=1E-06 (mg/kg)	Non-Cancer HQ=0.1 (mg/kg)	COPC?
Nitrobenzene	98-95-3	B2-055-SB-6.5	0.3	J	0.3	0.30	109	0.92	22	130	no
N-Nitrosodiphenylamine	86-30-6	B2-014-SB-7	3.8		0.017	0.98	109	7.34	470		no
PCBs (total)*	1336-36-3	B2-029-SB-1	0.3		0.039	0.12	56	14.29	0.94		no
Phenanthrene	85-01-8	B2-011-SB-8	8.9		0.0007	0.53	109	91.74			no
Phenol	108-95-2	B2-023-SB-4	0.18		0.028	0.07	94	9.57		25,000	no
Pyrene	129-00-0	B2-046-SB-1	11.5		0.0014	0.61	109	91.74		2,300	no
Selenium	7782-49-2	B2-054-SB-1	6.2		2	3.39	109	6.42		580	no
Silver	7440-22-4	B2-016-SB-1	93.9	J	0.96	16.0	109	99.08		580	no
Toluene	108-88-3	B2-053-SB-5.5	0.19	J	0.0076	0.10	35	5.71		4,700	no
Vanadium	7440-62-2	B2-016-SB-1	3,300	J	3.8	422	109	100.00		580	YES (NC)
Xylenes	1330-20-7	B2-053-SB-5.5	1.4		0.44	0.80	35	8.57		250	no
Zinc	7440-66-6	B2-017-SB-1	18,800		2.8	758	109	99.08		35,000	no

Table 15 - Parcel B2
COPC Screen Analysis

J: The positive result reported for this analyte is a quantitative estimate.

J+: The positive result reported for this analyte is a quantitative estimate but may be biased high.

TR = Target Risk C = Comound was identified as a cancer COPC

HQ = Hazard Quotient NC = Compound was identified as a non-cancer COPC

*PCBs (total) include the sum of all detected aroclor mixtures, including those without regional screening levels (e.g. Aroclor 1262, Aroclor 1268) which are not displayed. ^The COPC screening level for lead was not adjusted to the HQ=0.1 because lead is not assessed in the SLRA. The 800 mg/kg PAL is relevant to the Adult Lead Model procedure.

Table 16 - Parcel B2Assessment of Lead

Exposure Unit	Surface/Sub-Surface	Arithmetic Mean (mg/kg)
EU1	Surface	202
(25.3 ac.)	Sub-Surface	1,127
(25.5 ac.)	Pooled	702
EU2	Surface	75.7
-	Sub-Surface	73.6
(46.4 ac.)	Pooled	74.7
EU2	Surface	85.4
EU3	Sub-Surface	248
(51.0 ac.)	Pooled	163

Adult Lead Model (ALM) Risk Levels							
Soil Concentration (mg/kg)	Probability of Blood						
	Concentration of 10 ug/dL						
2,518 mg/kg	5%						
3,216 mg/kg	10%						

Table 17 - Parcel B2Soil Exposure Point Concentrations

					EU1 (25.3 ac	:.)		
			Surface Soil EPCs Sub-Surface			EPCs	Pooled Soil EF	PCs
Parameter	Cancer COPC Screening Level (mg/kg)	Non-Cancer COPC Screening Level (mg/kg)	EPC Type EU1	EPC EU1 (mg/kg)	EPC Type EU1	EPC EU1 (mg/kg)	EPC Type EU1	EPC EU1 (mg/kg)
Arsenic	3.00	48.0	95% KM (t) UCL	6.61	95% KM (BCA) UCL	33.7	95% KM (BCA) UCL	21.6
Chromium VI	6.30	350	Maximum Value	3.00	Maximum Value	1.20	95% KM (t) UCL	0.77
Cobalt	1,900	35.0	95% KM (t) UCL	9.20	95% KM (Percentile Bootstrap) UCL	18.3	95% KM (Chebyshev) UCL	18.1
Iron		82,000	95% Student's-t UCL	131,312	95% Student's-t UCL	56,087	95% Student's-t UCL	87,378
Manganese		2,600	95% Student's-t UCL	27,089	95% Adjusted Gamma UCL	7,926	95% Adjusted Gamma UCL	17,869
Vanadium		580	95% Adjusted Gamma UCL	1,385	95% Adjusted Gamma UCL	136	95% Chebyshev (Mean, Sd) UCL	887
Benzo[a]pyrene	2.10	22.0	99% KM (Chebyshev) UCL	6.90	95% KM (Chebyshev) UCL	0.49	99% KM (Chebyshev) UCL	3.29

Bold indicates EPC higher than lowest COPC Screening Level

COPC = Constituent of Potential Concern

Table 17 - Parcel B2Soil Exposure Point Concentrations

					EU2 (46.4 ac	.)			
			Surface Soil El	PCs	Sub-Surface Soil	EPCs	Pooled Soil EPCs		
Parameter	Cancer COPC Screening Level (mg/kg)	Non-Cancer COPC Screening Level (mg/kg)	EPC Type EU2	EPC EU2 (mg/kg)	EPC Type EU2	EPC EU2 (mg/kg)	EPC Type EU2	EPC EU2 (mg/kg)	
Arsenic	3.00	48.0	95% Adjusted Gamma KM-UCL7.3995% KM (Chebyshev) UCL14.		14.2	95% KM (Chebyshev) UCL	10.7		
Chromium VI	6.30	350	95% KM (t) UCL	1.28	Maximum Value	8.50	95% Adjusted Gamma KM-UCL	1.58	
Cobalt	1,900	35.0	95% KM (t) UCL	6.00	95% H-UCL	17.6	95% KM (Chebyshev) UCL	13.5	
Iron		82,000	95% Adjusted Gamma UCL	105,692	95% Adjusted Gamma UCL	128,169	95% H-UCL	126,025	
Manganese		2,600	95% Student's-t UCL	13,271	99% Chebyshev (Mean, Sd) UCL	41,483	95% Adjusted Gamma UCL	15,621	
Vanadium		580	95% Adjusted Gamma UCL	542	95% Adjsuted Gamma UCL	1,008	95% Chebyshev (Mean, Sd) UCL	774	
Benzo[a]pyrene	2.10	22.0	95% KM (Chebyshev) UCL	2.03	95% KM (Chebyshev) UCL	0.97	95% KM (Chebyshev) UCL	1.31	

Bold indicates EPC higher than lowest COPC Screening Level

COPC = Constituent of Potential Concern

Table 17 - Parcel B2Soil Exposure Point Concentrations

					EU3 (51.0 ac	.)		
			Surface Soil El	PCs	Sub-Surface Soil	EPCs	Pooled Soil EF	PCs
Parameter	Cancer COPC Screening Level (mg/kg)	Non-Cancer COPC Screening Level (mg/kg)	EPC Type EU3	EPC EU3 (mg/kg)	EPC Type EU3	EPC EU3 (mg/kg)	EPC Type EU3	EPC EU3 (mg/kg)
Arsenic	3.00	48.0	95% KM (t) UCL	6.55	95% KM (t) UCL	9.61	95% KM (t) UCL	7.62
Chromium VI	6.30	350	95% KM (t) UCL	3.37	Maximum Value	16.9	95% Adjusted Gamma KM-UCL	3.29
Cobalt	1,900	35.0	95% KM (Chebyshev) UCL	10.4	95% GROS Adjusted Gamma UCL	19.5	95% GROS Adjusted Gamma UCL	10.5
Iron		82,000	95% Student's-t UCL	188,724	95% Chebyshev (Mean, Sd) UCL	190,113	95% Chebyshev (Mean, Sd) UCL	191,450
Manganese		2,600	95% Student's-t UCL	25,593	95% Adjusted Gamma UCL	17,268	95% Adjusted Gamma UCL	22,075
Vanadium		580	95% Student's-t UCL	709	95% Chebyshev (Mean, Sd) UCL	1,191	95% Adjusted Gamma UCL	700
Benzo[a]pyrene	2.10	22.0	99% KM (Chebyshev) UCL	0.96	95% KM (Chebyshev) UCL	1.14	99% KM (Chebyshev) UCL	1.18

Bold indicates EPC higher than lowest COPC Screening Level

COPC = Constituent of Potential Concern

Table 18 - Parcel B2 Surface Soils Composite Worker Risk Ratios

			EU1 (25.3 ac.)					Ε	J 2 (46.4 :	ac.)		EU3 (51.0 ac.)				
				Composit	te Worker				Composite Worker				Composite Worker			
				RSLs	Risk Estim	ates			RSLs	Risk Estin	nates		RSLs		Risk Estim	lates
Parameter	Target Organ		Cancer	Non-Cancer	Risk	HQ		Cancer	Non-Cancer	Risk	HQ		Cancer	Non-Cancer	Risk	HQ
		EPC mg/kg					EPC mg/kg					EPC mg/kg				
Arsenic	Cardiovascular; Dermal	6.61	3.00	480	2.2E-06	0.01	7.39	3.00	480	2.5E-06	0.02	6.55	3.00	480	2.2E-06	0.01
Chromium VI	Respiratory	3.00	6.30	3,500	4.8E-07	0.0009	1.28	6.30	3,500	2.0E-07	0.0004	3.37	6.30	3,500	5.3E-07	0.001
Cobalt	Thyroid	9.20	1,900	350	4.8E-09	0.03	6.00	1,900	350	3.2E-09	0.02	10.4	1,900	350	5.5E-09	0.03
Iron	Gastrointestinal	131,312		820,000		0.2	105,692		820,000		0.1	188,724		820,000		0.2
Manganese	Nervous	27,089		26,000		1	13,271		26,000		0.5	25,593		26,000		1
Vanadium	Dermal	1,385		5,800		0.2	542		5,800		0.09	709		5,800		0.1
Benzo[a]pyrene	Developmental	6.90	2.10	220	3.3E-06	0.03	2.03	2.10	220	9.7E-07	0.009	0.96	2.10	220	4.6E-07	0.004
					6E-06	\checkmark				4E-06	\checkmark				3E-06	\checkmark

Bold indicates maximum value

RSLs were obtained from the EPA Regional Screening Levels at https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Thyroid	0
	Gastrointestinal	0
	Nervous	1
	Developmental	0

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Thyroid	0
	Gastrointestinal	0
	Nervous	1
	Developmental	0

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Thyroid	0
	Gastrointestinal	0
	Nervous	1
	Developmental	0

Table 19 - Parcel B2 Sub-Surface Soils Composite Worker Risk Ratios

			EU1 (25.3 ac.)					EU2 (46.4 ac.)				EU3 (51.0 ac.)				
				Composit	te Worker			Composite Worker					Composite Worker			
				RSLs	Risk Estin	nates		RSLs		Risk Estim	ates		RSLs		Risk Estin	nates
Parameter	Target Organ		Cancer	Non-Cancer	Risk	HQ		Cancer	Non-Cancer	Risk	HQ		Cancer	Non-Cancer	Risk	HQ
		EPC mg/kg					EPC mg/kg					EPC mg/kg				
Arsenic	Cardiovascular; Dermal	33.7	3.00	480	1.1E-05	0.07	14.2	3.00	480	4.7E-06	0.03	9.61	3.00	480	3.2E-06	0.02
Chromium VI	Respiratory	1.20	6.30	3,500	1.9E-07	0.0003	8.50	6.30	3,500	1.3E-06	0.002	16.9	6.30	3,500	2.7E-06	0.005
Cobalt	Thyroid	18.3	1,900	350	9.6E-09	0.05	17.6	1,900	350	9.3E-09	0.05	19.5	1,900	350	1.0E-08	0.06
Iron	Gastrointestinal	56,087		820,000		0.07	128,169		820,000		0.2	190,113		820,000		0.2
Manganese	Nervous	7,926		26,000		0.3	41,483		26,000		2	17,268		26,000		0.7
Vanadium	Dermal	136		5,800		0.02	1,008		5,800		0.2	1,191		5,800		0.2
Benzo[a]pyrene	Developmental	0.49	2.10	220	2.3E-07	0.002	0.97	2.10	220	4.6E-07	0.004	1.14	2.10	220	5.4E-07	0.005
					1E-05	\checkmark				7E-06	\checkmark				6E-06	\checkmark

Bold indicates maximum value

RSLs were obtained from the EPA Regional Screening Levels at https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Thyroid	0
	Gastrointestinal	0
	Nervous	0
	Developmental	0

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Thyroid	0
	Gastrointestinal	0
	Nervous	2
	Developmental	0

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Thyroid	0
	Gastrointestinal	0
	Nervous	1
	Developmental	0

Table 20 - Parcel B2Pooled SoilsComposite Worker Risk Ratios

EU1 (25.3 a				ac.)) EU2 (46.4 ac.) EU3 (51.0 ac.							ac.)					
				Composi	te Worker				Composit	te Worker			Composite Worker				
				RSLs	Risk Estim	ates	1		RSLs	Risk Estim	ates			RSLs	Risk Estin	Estimates	
Parameter	Target Organ	1	Cancer	Non-Cancer	Risk	HQ	1	Cancer	Non-Cancer	Risk	HQ		Cancer	Non-Cancer	Risk	HQ	
		EPC mg/kg					EPC mg/kg					EPC mg/kg					
Arsenic	Cardiovascular; Dermal	21.6	3.00	480	7.2E-06	0.05	10.7	3.00	480	3.6E-06	0.02	7.62	3.00	480	2.5E-06	0.02	
Chromium VI	Respiratory	0.77	6.30	3,500	1.2E-07	0.0002	1.58	6.30	3,500	2.5E-07	0.0005	3.29	6.30	3,500	5.2E-07	0.0009	
Cobalt	Thyroid	18.1	1,900	350	9.5E-09	0.05	13.5	1,900	350	7.1E-09	0.04	10.5	1,900	350	5.5E-09	0.03	
Iron	Gastrointestinal	87,378		820,000		0.1	126,025		820,000		0.2	191,450		820,000		0.2	
Manganese	Nervous	17,869		26,000		0.7	15,621		26,000		0.6	22,075		26,000		0.8	
Vanadium	Dermal	887		5,800		0.2	774		5,800		0.1	700		5,800		0.1	
Benzo[a]pyrene	Developmental	3.29	2.10	220	1.6E-06	0.01	1.31	2.10	220	6.2E-07	0.006	1.18	2.10	220	5.6E-07	0.005	
					9E-06	\downarrow				4E-06	\downarrow				4E-06	\checkmark	

RSLs were obtained from the EPA Regional Screening Levels at https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Thyroid	0
	Gastrointestinal	0
	Nervous	1
	Developmental	0

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Thyroid	0
	Gastrointestinal	0
	Nervous	1
	Developmental	0

	Cardiovascular	0
	Dermal	0
	Respiratory	0
Total HI	Thyroid	0
	Gastrointestinal	0
	Nervous	1
	Developmental	0

n n n n n n n n

"

"

"

APPENDIX A

11

- " "

Table 1 - Soil Borings

Source Area/ Description	REC & Finding/ SWMU/ AOC	Figure or Drawing of Reference	RATIONALE	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Soil Samples
Tank (unknown contents)	N/A	Drawing 5133 and Drawing 5134	Investigate potential impacts related to the tank with unknown contents (potential leaks or releases).	2	B2-001 and B2-002	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Former Diesel Fuel UST Area	HREC, Finding 236, AOC Q	DCC Report	C Report tank surface, but soil BTEX concentrations were at or 2 B2-003 and B2-004		Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')	
Slab Hauler Repair Shop	N/A	DCC Report	Investigate potential impacts related to the slab hauler repair shop (potential leaks or releases).	2	B2-005 and B2-006	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
ASTs	REC 15A- 15B, Findings 252, AOC H Drawing 5128		During the Phase I ESA site visit, the Plant Garage (replaced the Mason's Garage) was observed to be conducting refueling and maintenance activities for the vehicles currently operating at the Plant Property. Weaver Boos observed several ASTs, fuel dispensers, and drums. The ASTs appeared to be in fair to good conditions with either secondary containment or of a double-walled construction. However, overfill leaks and staining near the tanks, dispensers and connection piping was observed on the ground surface. These leaks appeared to have occurred over time which may have impacted surface soils, subsurface soils, or groundwater.	2	B2-007 and B2-008	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')

Table 1 - Soil Borings

Source Area/ Description	REC & Finding/ SWMU/ AOC	Figure or Drawing of Reference	RATIONALE	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Soil Samples
Mason's [Plant] Garage Drums	REC 15A - 15B, Finding 253, AOC H, SWMU 197	DCC Report	During the Phase I ESA site visit, the Plant Garage (replaced the Mason's Garage) was observed to be conducting refueling and maintenance activities for the vehicles currently operating at the Plant Property. Weaver Boos observed several ASTs, fuel dispensers, and drums. The drums in this storage area appeared to be in good condition. The DCC Report indicated that these drums were a no further action item.	2	B2-009 and B2-010	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Mason's [Plant] Garage Former USTs and Gas Pumps	REC 15A - 15B, Finding 254, AOC H	DCC Report	According to the Phase I ESA and the DCC Report, USTs previously containing gasoline, diesel fuel, and waste oil products were closed without assessment sampling at the Plant Garage.	5	B2-011 through B2-015	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Possible USTs	REC 15A - 15B, Finding 254, AOC H	UST Closure Report Sketch	According to the Phase I ESA and the DCC Report, USTs previously containing gasoline, diesel fuel, and waste oil products were closed without assessment sampling at the Plant Garage.	2	B2-016 and B2-017	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Sludge and Acid Trailers	N/A	Drawing 5028 and Drawing 5128	Investigate potential impacts related to sludge trailers and acid trailers (potential leaks or releases).	2	B2-018 and B2-019	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Residential Town Tanks (3)	REC 21, Finding 271	REC Location Map	According to the Weaver Boos review of <i>fire insurance</i> <i>maps</i> , at least three buildings located in the Sparrows Point residential town were identified to have boiler rooms. Weaver Boos noted their experience which indicated that boiler rooms are often supplied fuel oil from tanks located within or along the exterior to the building. There is no further information of these tanks currently available regarding their locality (UST or AST), contents, use, removal, or spill/leaks history.	9	B2-020 through B2-028	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')

Table 1 - Soil Borings

Source Area/ Description	REC & Finding/ SWMU/ AOC	Figure or Drawing of Reference	RATIONALE	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Soil Samples
Scrap Processing Facility and Bulk Petroleum Storage	REC 9C, Finding 239	REC Location Map and Drawing 5534	According to FOIA documents provided by Baltimore County, bulk petroleum storage area was located northwest of the town in the former rolling mills area. The extent of how many petroleum products, storage area conditions, or conditions of the storage containers remain unknown. Therefore, a release to the environment may have occurred in this area.		B2-029 through B2-031	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Steelside Electronics Building	N/A	Drawing 5127	Investigate potential impacts related to Steelside Electronics Building (potential leaks or releases).	2	B2-032 and B2-033	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Sub-station (2)	N/A	Drawing 5127 and Drawing 5128	Investigate potential impacts related to sub-stations (potential leaks or releases).	4	B2-034 through B2-037	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Parcel B2 Coverage	N/A	N/A	Investigate potential impacts related to unknown historical activities, and characterize soil and groundwater in areas not previously sampled.	15	B2-038 through B2-052	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Mason's Garage	N/A	Drawing 5128 and UST Closure Report Sketch	MDE Request. USTs previously containing gasoline, diesel fuel, and/or waste oil may have been present at the former Mason's Garage.	3	B2-053 through B2-055	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
			Total	55				

Soil Borings Sampling Density Requirements (from Worksheet 17 - Sampling Design and Rationale)

No Engineered Barrier (71-100 acres): 1 boring per 2.5 acres with no less than 35.

Engineered Barrier (16-40 acres): 1 boring per 3 acres with no less than 7.

No Engineered Barrier (90.1 acres) = **37 borings required, 40 proposed** Engineered Barrier (32.5 acres) = **11 borings required, 15 proposed**

Parking/Roads (30.7 acres) Buildings (1.8 acres) VOC - Volatile Organic Compounds (Target Compound List) SVOCs - Semivolatile Organic Compounds (Target Compound List) Metals - (Target Analyte List plus Hexavalent Chromium and Cyanide) DRO/GRO - Diesel Range Organics/Gasoline Range Organics O&G - Oil and Grease

*VOCs are only collected if the PID reading exceeds 10 ppm bgs - Below Ground Surface

Table 2 - Sub-Slab Soil Gas

Source Area/ Description	REC & Finding/ SWMU/ AOC	Figure or Drawing of Reference	RATIONALE	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Sub-Slab Soil Gas
Railroad Office	N/A	Aerial Images	Investigate potential impacts related to any historical activities which may have occurred within or adjacent to the Railroad Office (potential leaks or releases).	3	B2-056 through B2-058	6 inches below bottom of concrete slab	6 inches below bottom of concrete slab	VOC
Slab Hauler Repair Shop	N/A	•	Investigate potential impacts related to any historical activities which may have occurred within or adjacent to the Slab Hauler Repair Shop (potential leaks or releases).		B2-059 through B2-061	6 inches below bottom of concrete slab	6 inches below bottom of concrete slab	VOC
			Total	6				

Soil Gas Sampling Density Requirements (from Worksheet 17 - Sampling Design and Rationale)

Soil Gas: 1 sample collected per 20,000 ft², with a minimum of 3 per building

Railroad Office $(2,880 \text{ ft}^2) = 3$ samples required, 3 proposed

Slab Hauler Repair Shop $(9,260 \text{ ft}^2) = 3$ samples required, 3 proposed

Table 3 - Supplemental Groundwater Sample	s
---	---

Source Area/ Description	REC & Finding/ SWMU/ AOC	Figure or Drawing of Reference	Condition of Existing Well	Number of Locations	Sample Locations	Boring Depth	Screen Interval	Analytical Parameters: Groundwater Samples†
Plant Garage	REC 15A - 15B	Multiple Sources	N/A	5	B2-007, B2-011, B2-013, B2-014, and B2-015	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, Total Lead, DRO/GRO
Parcel B2 Coverage	N/A	N/A	N/A	1	B2-051	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Dissolved Metals, Total Cyanide, Oil & Grease, DRO/GRO
			Total	6				

† Field measurements include pH, DO, ORP, conductivity, temperature. Dissolved metals analysis includes dissolved hexavalent chromium.

n n n n n n n n n

"

"

"

APPENDIX B

"

- "

ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-001-SB (page 1 of 1)				ngineers nts	Client: EnviroAnalytics GroupDateARM Project No.: 150300M-6-3WeathProject Description: Sparrows Point - Parcel B2Site Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.Drilling Company: Allied Drilling Co.Driller: Rick MillerDrilling Equipment: Geoprobe 7822DT			: 6/2/17 : Sunny, 70s : 568,121.05 : 1,459,143.96	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS	
0—		-	B2-001-SB-1	(0-3.7') G dense, br cohesion	RAVELLY SAND with own with gray, dry to	n SILT, medium dense to moist, no plasticity, no			
-		6.1					SW/GW	,	
-	76	50.9							
		6.5		(3.7-4') A	SPHALT, hard, gray		NA	-	
5-		24.3	B2-001-SB-5	dense, br	RAVELLY SAND witl own with gray, dry th no cohesion	n SILT, medium dense to en moist from 5-6.2' bgs, no	SW/GV		
_		7.5							
		10.6		(6.2-8.2') and grayi	SILT, very firm to hai sh brown, dry, low pla	rd, brown, reddish yellow, asticity, cohesive		-	
	94	6.4					ML		
		0.5		(8.2-10') \$ wet, no pl	SAND, fine to mediun lasticity, no cohesion	n grained, brownish yellow,		Wet at 8.2' bgs	
-		0.3					SW		
10-			1	End of bo	ring		I	1	
otal Br	orehole D	epth: 10'	bas						

	ARM Group Inc Earth Resource Engineers and Consultants Boring ID: B2-002-SB (page 1 of 1)				ARM Representative Checked by Drilling Company Driller Drilling Equipment	: Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	ng (US ft) ng (US ft)	: 568,191.79 : 1,459,178.84
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCI	RIPTION	nscs	REMARKS
0		0.0	B2-002-SB-1	cohesion	RGANIC SILT, soft, b ASPHALT, hard, gray	rown, dry, no plasticity, no , dry, no plasticity, no	OL NA SW/GW	
		0.0		(0.7-0.8') dry, no pla (0.8-2.8') medium d	asticity, no cohesion Non-native GRAVELL	AVEL-sized, loose, gray, Y SAND with trace SILT, n with trace gray, dry to	SW/GW	
	92	0.0		(2.8-4.5')		own, yellowish red, and		Trace shells
-		0.0	B2-002-SB-4.5				ML	
5—		0.0		coarse gr	termittent SAND with ained, medium dense no cohesion	SILT lenses, fine to very , reddish brown, wet, no		Wet at 4.5' bgs Abundant shells
-		-						
-	90	-					SW	
		-						
10		-		(9.5-10') \$	ILT, very firm, gray, m SILTY SAND, medium no cohesion	oist, low plasticity, cohesive dense, gray, wet, no	ML SM	
				End of bo			 	

ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-003-SB (page 1 of 1)				gineers ats	· · ·			er ng (US ft) g (US ft)	: 5/30/17 : Drizzle, 60s : 566,860.17 : 1,459,363.98	
			(page i	011)			 			
Depth (it.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS	
0-				(0-0.5') S. brown, dr	AND with SILT and G y, no plasticity, no co	RAVEL, medium dense, hesion		SM/GW		
_		-	B2-003-SB-1	(0.5-3') N ballast, m	on-native SANDY GF	AVEL, possible cinder ark brown to black, dry, no				
_		0.1						SW/GW		
	78	0.0								
-		0.7		(3-4.1') N and brow	on-native GRAVELLN n, dry, no plasticity, n	SAND, loose, strong brown o cohesion		SW/GW		
-			B2-003-SB-4.5	(4.1-4.7')	CLAY, firm to soft, ye	llowish brown, moist, low		CL		
F		0.0			AND with GRAVEL, r	nedium dense to dense,		01	Wet at 4.7' bgs	
5—		-		yellowish	brown, wet, no plasti	city, no cohesion	;	SW/GW		
-		-				VEL with SILT, loose, browr lasticity, no cohesion	۱			
-	60	4.9						SW-GM		
-		0.0		(8-8.7') S cohesive	ILT, very soft, gray, v	ery moist, low plasticity,		ML		
-				(8.7-9.5') cohesion	SAND, medium dens	e, gray, wet, no plasticity, no	C	SW		
10—		0.0		cohesion		ay, very moist, low plasticity	,	ML		
				End of bo	ring					

	Borin	Eart	M Group th Resource Er and Consulta B2-004-S (page 1	ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ng (US ft) g (US ft)	: 5/30/17 : Cloudy, 60s : 566,761.84 : 1,459,325.35
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0		-	B2-004-SB-1			AVEL, fine to coarse grained plasticity, no cohesion	d,	SW-SM	
-	60	2.2 0.0 5.7	B2-004-SB-5	moist, no	plasticity, no cohesio SAND, fine to mediu	lium dense, dark brown, n m grained, very light gray t, no plasticity, no cohesion		SW/GW	
5—		-		plasticity,	cohesive	vn and brown, moist, low		CL	
-	56	- 0.0		(6.5-9') S no plastic	ILTY GRAVEL with S ity, no cohesion	AND, very pale brown, wet,		GW/SW	Wet at 8' bgs
- 10-		0.0		low plasti	city, cohesive	grayish brown, very moist,		CL	
Total Bo	prehole D erminated		bgs. gs due to water.	End of bo	vring				

	Boring	Eart	M Group th Resource Er and Consulta B2-005-S (page 1	ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Eastine Northir		
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0-		-	B2-005-SB-1	brown, dr (0.2-5') G	y, no plasticity, no co RAVELLY SAND with	ed, loose, light grayish hesion n some SILT, medium dense plasticity, no cohesion		GP	
_		0.0							
_	84	0.0						SW	No water encountered
_		0.3							
5-		4.0	B2-005-SB-5	End of bo	ring				
					ung				
	L prehole De terminated		gs. s due to refusal.				005-SB w		n both B2-005A-SB (6/1/17) and eted due to refusal and utility

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-006-SB (page 1 of 1)			ngineers nts	Project Description: Sparrows Point - Parcel B2Site Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.			er ng (US ft) g (US ft)	: 6/2/17 : Sunny, 70s : 568,235.46 : 1,459,326.61	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS	
0-		-	B2-006-SB-1		NDY SILT with small (/n, dry, no plasticity, r	CLAY lenses and GRAVEL, to cohesion		ML	Light organic matter	
-		0.3		(1-3.5') N grading to	on-native SANDY GR o dark brown, dry, no	AVEL, brown and light brow plasticity, no cohesion	'n			
_	80	2.7						SW/GW		
_		0.4	B2-006-SB-4	(3.5-4.2') brown an	SILTY SAND grading d brown, dry to moist,	to SANDY GRAVEL, strong no plasticity, no cohesion	9	SM-GW		
5-		0.0				RAVEL, medium dense, o plasticity, no cohesion		GW	Wet at 4.2' bgs	
-		-		(6-8.8') S. grained, r cohesion	medium dense, gray, '	lenses, fine to medium wet, no plasticity, no				
_	82	-						SW		
-		-		(8.8-10') \$ cohesive	SILT, soft to firm, gray	/, moist, low plasticity,		ML		
10—			<u> </u>	End of bo	ring					

	ARM Group Inc Earth Resource Engineers and Consultants Boring ID: B2-007-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 6/23/17 : Sunny, 80s : 565,953.27 : 1.461,400.67
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
-0	80	- 19.9 42.8	B2-007-SB-1	loose, bro dry, no pla (2-2.4') C yellowish	wn and dark brown v asticity, no cohesion LAYEY SILT with SA brown and brown, dr	ding to SANDY GRAVEL, vith trace gray and yellow, ND, very firm to hard, y, low plasticity, cohesive	SW/GW	
- 5—		36.3 88.1 107.8	B2-007-SB-6	ànd yéllov trace mois (4-5') SAN brown, ve	vish brown with trace sture, no plasticity, no NDY SILT with trace (ry moist, low plasticit	GRAVEL, soft, dark grayish	ML	Moderate sheen with fuel-like odor from 4-5' bgs
-	96	0.4 0.6		brown, ve	ry moist, low plasticit		CL	
- 10—		12.7 4.0 -	B2-007-SB-10	trace moi	sture, no plasticity, no	cohesion		No water encountered
-	100	-						
- 15— -		-					CL	
-	80	- -						
- 20—		-		End of bo	ring			
Boring t	orehole De erminated eter instal	d at 20' bg	bgs. gs due to maximu	um allowable	depth and			

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-008-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ing (US ft) ng (US ft)	: 6/23/17 : Cloudy, 80s : 565,952.31 : 1,461,349.50
			(page 1	of 1)					
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0-		-	B2-008-SB-1		AND with GRAVEL a asticity, no cohesion	nd trace SILT, loose, brown	,		
-		0.6						SW/GW	
-	78	1.0							
_		0.5		(3.9-7.8')		SAND, dense, light brown			
5-		0.5	B2-008-SB-5	with trace	e yellowish red, moist no cohesion	then wet at 6.5' bgs, no			
-		-						GM	
_		3.8							Wet at 6.5' bgs
-	90	2.6		(7.8-8.2')	SILTY CLAY, hard, li	ght brown with traces of		CL	
-		-		yellowish (8.2-10') AGGREG	red, very moist, low p SILTY GRAVEL with	Dasticity, cohesion SAND and large CONCRET dense, light brown with trac	Ë e	GM	Trace shells Light amount of unknown fibers
10-		75.9							
10-				End of bo	bring				
	orehole De erminated		bgs. gs due to water.						

в	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-009-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	 EnviroAnalytics Group 150300M-6-3 Sparrows Point - Parcel B2 Sparrows Point, MD L. Perrin M. Replogle, E.I.T. Allied Drilling Co. Rick Miller Geoprobe 7822DT 	Date Weather Northing (US ft) Easting (US ft)	: 6/26/17 : Sunny, 80s : 566,053.70 : 1,461,163.04	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS	
0		-	B2-009-SB-1		RAVELLY SAND, me no plasticity, no cohe	dium dense, brown with ligh esion	t SW/GW		
-	80	0.0		dense, da	SILTY SAND with GF ark brown with red and plasticity, no cohesio	RAVEL, medium dense to d trace gray and yellow, n	SM		
-		0.0		dense, pu	Irple and gray, dry, no	DBBLE-sized, medium plasticity, no cohesion	GW		
5		0.0	B2-009-SB-5		ILTY SAND, very fine hite, moist, no plastici	to medium grained, mediun ty, no cohesion	n SM		
-		-		(6-8.1') S. reddish ye	ANDY GRAVEL, mec ellow, moist, no plasti	lium dense, brown with city, no cohesion	SW/GW		
-	60	0.0			LAY, soft, brownish g	ray, very moist, low		-	
-		0.0		plasticity, (9-10') No small size no cohesi	on-native GRAVEL wi ed, loose, dark brown	th SAND and BRICK, very and yellow, wet, no plasticit	, GW/SW	- Wet at 9' bgs	
10				End of bo	ring		 		

	ARM Group Inc Earth Resource Engineers and Consultants Boring ID: B2-010-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		er ng (US ft) g (US ft)	: 6/27/17 : Sunny, 80s : 566,139.78 : 1,461,066.98
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0-		-	B2-010-SB-1	grained, r	ND with GRAVEL and nedium dense, browr asticity, no cohesion	SILT at depth, fine to coars with gray and trace yellow,	e		
-		0.4						SW/GW	
-	84	2.2							
		6.4	B2-010-SB-4	and gray,	dry, no plasticity, no		1	ML	
- 5-		0.7		medium of purple GF	lense, brown with gra	ne to coarse grained, y and trace yellow with y then wet at 7.5' bgs, no			
Ū		-						SW/GW	
		1.7							
-	70	0.0							Wet at 7.5' bgs
-		0.0		brown wit	LTY CLAY, soft, brow h trace reddish yellov cohesive	nish gray grading to grayish v mottling, very moist, low	'	CL	
		0.0							
10—				End of bo	ring				
	orehole De		bgs. gs due to water.						

	ARM Group Inc Earth Resource Engineers and Consultants Boring ID: B2-011-SB (page 1 of 1)			ngineers nts B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ing (US ft) ng (US ft)	: 6/26/17 : Sunny, 80s : 566,017.95 : 1,461,361.10
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-		-	B2-011-SB-1	(0-0.4') A	SPHALT, hard, dark	gray, dry, no plasticity, no		NA	
-				(0.4-6.5')	SAND with GRAVEL lense to loose, brown	to GRAVELLY SAND, and light olive brown, dry,	/		
_		0.0		no plastic	ity, no cohesion	0			
	76	0.0							
-		0.0						SW/GW	
-		0.0							
5-		6.9	B2-011-SB-5						
5-		-							
-		3.4							
-		3.4		(6.5-7') S. light brow	AND, fine to medium n, very moist, no plas	grained, medium dense, ver sticity, no cohesion	y /	SW	Wet at 7' bgs
	80	8.2	B2-011-SB-8	(7-8') SAN brown an	ND with trace GRAVE d dark gray, wet, no p	L, fine to medium grained, plasticity, no cohesion		SW	Light amount of visible NAPL and strong fuel-like odor from 7-9'
_		291.2		(8-10.5') (plasticity,	CLAY, soft, gray, moi cohesive	st, low plasticity to medium			bgs
-								CL	
10—		69.9							
-		-		(10.5-13')	CLAY, very firm to h	ard, light grayish brown and			
-	67	_		reddish y	ellow mottling, dry, lo	w plasticity, cohesive			
-	5.							CL	
				End of bo	ring				
-									
15—									
	orehole De		bgs. gs due to water a	nd niezomo	er installation				
	Cirimated								

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-012-SB (page 1 of 1)			gineers ats	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ng (US ft) g (US ft)	: 6/26/17 : Sunny, 80s : 566,018.91 : 1,461,336.21
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0 - -	84	- 1.3	B2-012-SB-3.5	(0-3.5') A cohesion	SPHALT, hard, dark (gray, dry, no plasticity, no		NA	
- 5—		0.0	B2-012-SB-5	to yellow, plasticity,	dry grading to very n no cohesion	grained, light brown grading noist then wet at 5' bgs, no n grained, medium dense,	g	SW	Wet at 5' bgs
-	100	33.9 0.0 5.2			ish brown, wet, no pla				Black with solvent odor from 5.2-5.4' bgs
-		4.8						SW	
10—				End of bo	ring				
	orehole D erminated		bgs. gs due to water.						

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-013-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		er og (US ft) g (US ft)	: 6/26/17 : Sunny, 80s : 566,033.29 : 1,461,331.43
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0	50 70 86	- - 30.5 161.0 - 4.1 3.0 2.0 - - - - - - - - -	B2-013-SB-1	SAND, m brown, dr (0.7-9') S medium (reddish y no cohes (9-10.7') S medium ((10.7-15')	edium dense, light gr y, no plasticity, no co AND with CLAY and grained, medium dens ellow, dry to moist the ion	some GRAVEL, fine to se to dense, light brown to en wet at 8' bgs, no plasticity ed with some coarse grained , no plasticity	<i>'</i> ,	SW/GW SW-SC	Moderate grading to heavy fuel-like odor from 4.5-10' bgs Wet at 8' bgs Light to trace sheen from 8.5-9.5' bgs
15—			1	End of bo	ring		1		
	prehole D erminated		bgs. gs due to water a	nd piezome	ter installation.				

	ARM Group Inc Earth Resource Engineers and Consultants Boring ID: B2-014-SB (page 1 of 1)			ngineers nts B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 6/23/17 : Sunny, 80s : 566,035.19 : 1,461,384.47
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
0-		_				and black, dry, no plasticity,	NA	
-		-	B2-014-SB-1.5			and trace SILT, medium	sw/gw	
-	90	0.9		(1.5-2.7')		n grained, loose to medium	SW	
-	00	0.0		(2.7-3.1')	SANDY GRAVEL, loo no cohesion	ose, dark brown, dry, no	GW	
-		1.5		(3.1-7.3')	GRAVELLY SAND, f	ine to very coarse grained, plasticity, no cohesion	/	
5-		4.7						
5		-					SW/GW	Wet at 6' bgs
		84.3	B2-014-SB-7					Strong fuel-like odor from 6-7.3' bgs; no visible sheen
	80	26.4		(7.3-11') (cohesive	CLAYEY SILT, soft, g	ray, very moist, low plasticity	/,	
-		1.5					ML	
10-		0.0						
		-						
	33	-		(11-13') C mottling, d	LAY, hard, light gray dry, low plasticity, col	ish brown and reddish yellov nesive	V CL	
		-						
			1	End of bo	ring		I	1
-								
15-								
Total Bo	orehole D	epth: 13'	bgs.					
			gs due to water a	nd piezomet	er installation.			

	ARM Group Inc Earth Resource Engineers and Consultants Boring ID: B2-015-SB (page 1 of 1)			ngineers nts B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ing (US ft) ng (US ft)	: 6/26/17 : Sunny, 80s : 566,074.31 : 1,461,396.64
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION			NSCS	REMARKS
- 0	68	- - 4.2 1.8	B2-015-SB-1	medium c		to very coarse grained, , gray, and white, dry, no		SW/GW	
5		0.0 - 37.8	B2-015-SB-5	dense, br plasticity, (6.3-6.5') yellow, ve (6.5-7') G	own grading to light b no cohesion SANDY SILT, soft, da ry moist, low plasticit RAVELLY SAND, loc	se to medium dense, black	۱ ۱	SM-SW ML SW/GW	Wet at 6.5' bgs Light odor and moderate sheen with trace shells
- - 10	84	78.3 0.0 0.0		(7-9') SIL	CLAY with trace SAN	lasticity, no cohesion gray, low plasticity, cohesive D, very firm to hard, dark ow, low plasticity, cohesive]	CL	
-	67	-		(10.5-13') moist, low	SANDY CLAY, very v plasticity, cohesive	firm, gray and yellowish red	,	CL	
	prehole De erminated		bgs. js due to water a	End of bo					

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-016-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ing (US ft) ng (US ft)	: 6/26/17 : Sunny, 80s : 566,208.87 : 1,461,247.64
		<u> </u>							
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-		-	B2-016-SB-1	medium o	on-native SANDY GF lense, brown with gra i.8' bgs, no plasticity,	RAVEL to GRAVELLY SAND ay and trace yellow, dry then no cohesion),		
_		0.0							
-	80	0.6							
_		0.9						GW/SW	
5-		0.0	B2-016-SB-5						
-		-							
		0.0							
-	80	0.0		low plasti	city, cohesive	m, yellowish brown, moist, very small GRAVEL, medium)	CL	Wet at 7.5' bgs
-		0.0		dense, br	own, wet, no plasticit CLAY, soft, grayish b	rown, very moist, low	⁄	SW/GW	
-		0.0		,,,				CL	
10—		0.0							
				End of bo	rıng				
	orehole De		bgs. gs due to water.						

ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-017-SB (page 1 of 1)					Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 6/26/17 : Sunny, 80s : 566,216.85 : 1,461,312.99
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
0		- 0.0	B2-017-SB-1	cohesion (0.1-2') S medium c	AND with GRAVEL a	, dry, no plasticity, no nd trace BRICK, loose to nt gray and yellow, dry, no	SW/GW	
-	78	0.3			TY SAND, medium de no cohesion	ense, dark brown, dry, no	SM	
- 5-		0.0	B2-017-SB-5	cohesion (4.5-8') G		ed, moist, no plasticity, no ose, dark brown and brown,	SM	
-		-					SW/GW	
-	56	0.0		(8-9.2') G	RAVEL with SAND, r	nedium dense, dark brown,		
-		0.0		brown, ar	d yellowish red, wet,	no plasticity, no cohesion rayish brown, very moist, lo	GW/SW	Wet at 8.5' bgs
10—				End of bo	ring			<u> </u>
	orehole Do erminated	-	bgs. gs due to water.					

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-018-SB (page 1 of 1)			ngineers nts	Project Description: Sparrows Point - Parcel B2Site Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.			er g (US ft) (US ft)	: 6/23/17 : Cloudy, 80s : 565,862.51 : 1,461,339.81	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS	
0-		- 333.3	B2-018-SB-1	(0-2.5') S. medium c no cohesi	lense, very dark gray	ine to medium grained, ish brown, dry, no plasticity,		SW		
-	80	64.2 363.9		medium c	GRAVEL with SAND lense, black with trac ity, no cohesion	, fine to very coarse grained, e yellowish red at depth, dry	,	GW		
5—		368.2	B2-018-SB-5	(4.5-5.5') loose, yel	GRAVEL with SAND lowish red, dry, no pl	, fine to very coarse grained, asticity, no cohesion	,	GW		
_		73.8		grained w	AND with SILT and s rith some coarse grain lasticity, no cohesion	ome GRAVEL, fine to mediu ned, dense, very dark brown	,	SW-SM		
-	86	8.4			TY CLAY, very soft to v plasticity, cohesive	o dense, light brown, very		CL		
- 10-		0.0		light brow cohesion	n, very moist then we	n medium grained, dense, et at 9.8' bgs, no plasticity, n	D	SW	Wet at 9.8' bgs	
otal Bo		epth: 10'	bgs. 3s due to water.	End of bo	ring					

	Boring	Eart	M Group th Resource En and Consultant B2-019-S (page 1	gineers ats	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		er ng (US ft) g (US ft)	: 6/23/17 : Cloudy, 80s : 565,870.10 : 1,461,392.08
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-		-	B2-019-SB-1		RAVELLY SAND, me gray, dry, no plastici	edium dense to loose, brown ty, no cohesion			
-		131.5						SW/GW	
	76	69.5		(2.5-2.6') cohesion	SILT, stiff, yellowish I	brown, dry, no plasticity, no		ML	
		16.7		(2.6-4.6') moist, no	SANDY GRAVEL, log plasticity, no cohesio	ose to medium dense, black, n		SW/GW	
5-		12.7	B2-019-SB-5	(4.6-7.8')	CLAY with trace BRI	CK, soft to stiff, yellowish			
5-		-		brown, m	bist, low plasticity, co				
-		4.0						CL	
-	84	0.0		/					Wet at 7.8′ bgs
-		0.0		no plastic	ity, no cohesion	ense, light grayish brown, we		SW-SC	
		0.0		loose, yel	lowish brown, wet, no	m grained, medium dense to plasticity, no cohesion	'	SW CL	
		0.0		light gray cohesion (9.1-10') (and reddish yellow, v	vellowish brown with trace very moist, low plasticity, ownish gray and reddish	/	CL	
10—			1	vellow, m End of bo	oist, low plasticity, co ring	hesive	/		
	erminated		bgs. gs due to water.						

	ARM Group Inc. Larth Resource Engineers and Consultants Boring ID: B2-020-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	ner ing (US ft) ng (US ft)	: 6/1/17 : Sunny, 70s : 566,270.25 : 1,460,642.29
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	NSCS	REMARKS
0-		-	B2-020-SB-1	(0-1') SIL brown, dr	T, soft grading to very y, low plasticity, cohe	/ firm, dark brown grading to sive	ML	Moderate organic matter
_		-		GRÁVEL	with COBBLES, brow	RAVEL and SILT grading to vn, very pale brown and no plasticity, no cohesion		
	64	0.5						
		0.1	B2-020-SB-4					Wet at 4' bgs
5-		0.1					SW/GW	Wet at 4 bys
-		-						
_		-						
	60	0.1		10 101 0				
-		0.3		(8-10') CL yellowish	AYEY SILT, firm, ligh red, low plasticity, co	nt brownish gray and hesive	ML	
10-		0.3						
				End of bo	ring			
	orehole Do erminated		bgs. gs due to water.					

	Borin	Eart	M Group th Resource Er and Consulta B2-021-S (page 1	ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	ner ng (US ft) ig (US ft)	: 6/1/17 : Sunny, 70s : 566,267.17 : 1,460,618.18
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	USCS	REMARKS
0-		-	B2-021-SB-1	(0-1') SIL ⁻	T, soft, dark brown, d	ry, low plasticity, cohesive	ML	Moderate organic matter
-	78	0.5 15.1		dense, da		RAVEL, medium dense to red, and strong brown, dry icity, no cohesion	GW/SW	
-		27.3 3.9	B2-021-SB-4	bgs, yello		ND, firm then soft from 5-5.5' very moist from 5-5.5' bgs,	CL	
5—		0.0		(5.5-6.1') low plastic	SANDY CLAY, very t city, cohesive	firm, yellowish brown, moist,	 CL	
		0.4			CLAYEY SAND, soft no cohesion	, yellowish brown, wet, no	SC	Wet at 6.1' bgs
-	100	1.6		(7.2-10') (brownish cohesive	CLAY with SAND, firr gray, and reddish ye	n, yellowish brown, light llow, moist, low plasticity,		
-		0.0					CL	
10-		0.0						
				End of bo	ring			

Total Borehole Depth: 10' bgs. Boring terminated at 10' bgs due to water.

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-022-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ng (US ft) g (US ft)	: 6/1/17 : Sunny, 70s : 566,285.78 : 1,460,643.56
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0		- 1.2	B2-022-SB-1		ILT grading to CLAYE sh brown, moist, low	Y SILT, soft, brown grading plasticity, cohesive		ML	
-	72	4.0		dense, da cohesion	ırk brown, moist to ve	RAVEL, medium dense to ry moist, no plasticity, no rading to SANDY GRAVEL		SM/GW	Probable storm water from 2.9-5' bgs
-		0.3	B2-022-SB-4	with COB	BLES, dense, brown,	strong brown, yellowish red no plasticity, no cohesion		SW/GW	
-		-						500,000	
-	64	0.5		(6.8-8.5') brownish no cohesi	gray with trace yellov	with SAND, medium dense, v and red, wet, no plasticity,		GW/SW	Wet at 6.8' bgs Trace wood fragments
-		1.9 1.8				and very light brown with noist, low plasticity, cohesive	9	CL	
10—			1	End of bo	ring				
	orehole De erminated		bgs. gs due to water.						

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-023-SB (page 1 of 1)				Project Description : Sparrows Point - Parcel B2 Site Location : Sparrows Point, MD ARM Representative : L. Perrin Checked by : M. Replogle, E.I.T.			ner ng (US ft) g (US ft)	: 5/31/17 : Sunny, 70s : 566,223.08 : 1,460,166.55	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS	
0-		-	B2-023-SB-1	(0-3.8') N dense, lig	on-native GRAVELLY ht brown and gray, d	SAND, medium dense to ry, no plasticity, no cohesion	I			
-		0.5						SW/GW		
-	70	5.8 30.4	B2-023-SB-4							
-		1.4		(3.8-4.8') plasticity,	SILT, hard, brown an cohesive	d yellowish brown, dry, low		ML		
5—		-		dense, da	SAND with GRAVEL Irk grayish brown, mo no cohesion	, fine to medium grained, ist then wet at 5' bgs, no		SW	Wet at 5' bgs	
_		-		plasticity,	cohesive	t, gray, very moist, low , fine to medium grained,		ML SW		
-	100	-		dense, da plasticity,	rk grayish brown, mo no cohesion SILT, soft to very sof	t, gray, very moist, low	/	ML		
		-			SAND, fine to mediun no cohesion	n grained, gray, wet, no		SW		
10—		-		End of ho	ring			577		
				End of bo	nng					

ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-024-SB (page 1 of 1)				ngineers nts	Client: EnviroAnalytics GroupDateARM Project No.: 150300M-6-3WeatherProject Description: Sparrows Point - Parcel B2Site Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.Drilling Company: Allied Drilling Co.Driller: Rick MillerDrilling Equipment: Geoprobe 7822DT			: 5/31/17 : Sunny, 70s : 566,214.08 : 1,460,099.15	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS	
0-		-	B2-024-SB-1	cohesion (0.2-2.5')		dry, no plasticity, no _Y SAND, brown, dry, no	NA		
-		-					SW/G	N	
_	76	4.3			SLAG, SAND and GF light gray and gray, d	RAVEL-sized, medium dense Iry, no plasticity, no	e SW/G\		
		2.6		brown and	d strong brown, moist	me GRAVEL, soft to firm, , low plasticity, cohesive	ML	Wet at 3.8' bgs	
5-		0.2		(3.8-7') S/ and stron	ANDY GRAVEL, med g brown, wet, no plas	lium dense, reddish yellow ticity, no cohesion			
-		-					GW/S\	w	
_		-		(7.7.0)) (0)		P 1 2 2 2	CL	_	
-	80	-		(7.2-8.1') medium d cohesion	SILTY SAND, very fir lense, dark brownish	medium plasticity, cohesive ne to medium grained, gray, wet, no plasticity, no	SM	_	
-		-		gray with		nedium dense, dark brownis and pale brown, wet, no	ו GW-G	м	
		-							
10—			1	End of bo	ring		I	1	

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-025-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		her ing (US ft) ng (US ft)	: 5/31/17 : Sunny, 70s : 566,241.54 : 1,460,162.91
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0		-	B2-025-SB-1		ANDY GRAVEL, loos y, no plasticity, no col	e to medium dense, gray an hesion	ıd	SW/GW	
-	74	0.3 0.9 0.7	B2-025-SB-4	(1.5-4') Cl cohesion	LAY, hard, reddish ye	ellow, dry, low plasticity,		CL	
-		0.4		plasticity,	no cohesion	grained, brown, wet, no		SW	Wet at 4' bgs
5—		-		cohesion (5-5.7') S/	ANDY SILT, very soft AND, fine to medium no cohesion	grained, brown, wet, no	/	SW	
-		-		<u>v</u> .		very moist, low plasticity,	/	ML	
-	100	-		(6.9-8') S/ plasticity,	AND, fine to medium no cohesion	grained, gray, wet, no		SW	
-		-		(8-8.8') SI cohesive	LT, very soft, gray, v	ery moist, low plasticity,		ML	
-		-		plasticity,	no cohesion	n grained, gray, wet, no very moist, low plasticity,		SW ML	
10—				cohesive (9.7-10') \$	SAND, fine to medium no cohesion	n grained, gray, wet, no	/	SW	
	prehole De erminated		bgs. gs due to water.						

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-026-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 5/26/17 : Sunny and Windy, 60s : 567,675.58 : 1,460,454.06
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
0 — - - -	84	0.5 1.3 3.5 1.1 365.8	B2-026-SB-1 B2-026-SB-5	moist, no (0.6-5') Sl	plasticity, no cohesio	VEL, medium dense, browr n on-native SAND with SILT, t gray, dry, no plasticity, no	, <u>SM/GW</u> GW/SM	
5— - -	100	10.4 46.9 4.0 5.7 4.9	B2-026-SB-10	and grayi	sh brown, dry, low pla	EL, very firm to hard, brown asticity, cohesive ne GRAVEL SLAG, hard, low plasticity, cohesive	CL	
10— - - 15—	96	6.4 3.2 5.7 12.2 3.8		(10-19.2') cohesive		ry moist, medium plasticity,	CL	- No water encountered
	100	- - -		(40.2.20)	CLAY with trace SA			
	orehole D erminated		bgs. gs due to the ma:	End of bo	ellow, moist, medium ring	ND, firm, very pale brown ar plasticity, cohesive	d CL	

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-027-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		er g (US ft) I (US ft)	: 5/26/17 : Cloudy, 50s : 567,315.61 : 1,460,229.17
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		-	B2-027-SB-1	layer from	AG GRAVEL with SIL n 7.4-7.5' bgs, mediur vet at 3.5' bgs, no pla	TY SAND with a soft SILT n dense, brown and gray, sticity, no cohesion			
-		2.7							
-	68	0.0							
_		0.1						GM/SM	Wet at 3.5' bgs
5-		0.0							
-		-							
-		-							
_	70	-		(9 9 4') 8	AND fine to coorce o	reined vellow wat no			
-		-		plasticity, (8.4-9.7')	no cohesion	rained, yellow, wet, no RAVEL-sized, dark gray, ity, no cohesion		SW SW/GW	
10—		-		low plasti	city, cohesion	AVEL, soft, gray, very mois	t,	ML/GW	
				End of bo	ring				
		epth: 10' d at 10' bថ	bgs. gs due to water.						

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-028-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ing (US ft) ng (US ft)	: 6/22/17 : Sunny, 90s : 567,405.79 : 1,460,562.33
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
-0 - - -	86	- 21.7 0.2 5.2	B2-028-SB-1	no plastic (2-2.3') C (2.3-3.5') dense, lig (3.5-3.9')	ity, no cohesion ONCRETE, gray, dry Non-native GRAVELI ht gray and brown, dr	L and SAND, soft, brown, dr , no plasticity, no cohesion LY SAND SLAG, medium ry, no plasticity, no cohesion ck, dry, no plasticity, no	/	ML NA SW/GW NA	
5-	90	95.9 - 0.0 0.0	B2-028-SB-5	dense, da no cohesi (5-6.5') Sl plasticity,	Irk brown, brown, and on ILT, very firm to hard, cohesive SILTY CLAY, soft, ye	on-native SAND, medium I light gray, dry, no plasticity gray and brown, dry, low Ilowish brown, moist, low	/ /	GW/SW ML CL	
- - 10-		0.0 0.0 -	B2-028-SB-10	(7.5-20')		own, light grayish brown, asticity, cohesive			No water encountered
-	30	- - 0.0						CL	
15-	30	-							
20-		- 0.0		End of bo	ring				

	Boring	Eart	M Group th Resource En and Consultant B2-029-S (page 1	gineers ats	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (US Easting (US	-
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	S S C S C	REMARKS
- 0 - -	90	- 0.0 0.0	B2-029-SB-1	SILTY SA	on-native GRAVELLY ND with GRAVEL, m plasticity, no cohesic	Y SAND with SILT grading to edium dense, brown, dry to n	SW-0	ЭМ
- 5-		0.0 0.0		(3.5-5.1') dense, br	GRAVELLY SAND wownish gray, wet, no	ith SILT, medium dense to plasticity, no cohesion	SW-0	GM
-		0.0 0.0		grayish b	SILTY CLAY grading rown from 5-6' bgs th ttling, low plasticity, o	to CLAY, very firm, dry, en reddish yellow and pale cohesive		
-	100	2.1 0.0	B2-029-SB-8				CL	
10		0.0 -	B2-029-SB-10					
-	80	-						
-		-		reddish y	ellow mottling, very m	firm, grayish brown with oist, low plasticity, cohesive		— Wet at 14.6' bgs
15		-		and grayi (15.5-20')	sh brown, wet, no pla	eddish yellow and grayish	sc	
-	84	-		, Si Owil, III	olot to vory molat, iOw	pastory, concerve	so	
-		-						
20-				End of bo	ring		•	
	orehole De erminated		bgs. gs due to water.					

	-	Address of the owner owne	M Grou	gineers	Client ARM Project No. Project Description Site Location ARM Representative	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin	Date Weather	: 5/30/17 : Cloudy, 50s
	Borin	g ID:	B2-030-S		Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Northing (US f Easting (US ft)	
			(page 1	of 1)				
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	NSCS	REMARKS
0-		-	B2-030-SB-1		st from 0-1.3' bgs ther	SILT, medium dense, brown, a dry, no plasticity, no		
-		0.0					SW-GI	Л
_	84	0.2						_
_		0.0		plasticity, (3.5-6') S	cohesive	yellow and brown, dry, low lium dense, dark grayish hesion	ML	_
5-		0.0	B2-030-SB-5				SW/GV	V
_		0.0						
_		0.0		hard, dar and reddi	k gravish brown from	CLAY, firm from 6-7' bgs the 6-7' bgs then pale brown 6-7' bgs then dry, low	n	
_	98	0.0					CL	
		0.0						
		0.0		moist, lov (9.5-10') \$	v plasticity, cohesive	own to strong brown, very	CL SW-S0	Wet at 9.5' bgs
10-			1	End of bo			/	1
	orehole D erminated		bgs. gs due to water.					

	ARM Group Inc Earth Resource Engineers and Consultants Boring ID: B2-031-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ng (US ft) g (US ft)	: 5/30/17 : Cloudy, 60s : 567,396.43 : 1,459,989.33
			(page 1	of 1)					
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0-		0.5	B2-031-SB-1			ne GRAVEL and large metal no plasticity, no cohesion		SW-SM	
-		0.0		medium c	lense to dense, browi	ding to SANDY GRAVEL, n, dark gray, black, and light no plasticity, no cohesion			
	94	7.8						SW/GW	
-		1.3		(3.7-5') Si mottling, d	LT, hard, brownish g dry, low plasticity, coł	ray with some reddish yellov esive	v	ML	
5-		0.0		(5-6.2') S	ANDY SILT. hard. bro	own, dry, no plasticity, no			
		0.1		cohesion		····, •., , ··· p,, ···		ML	
-		13.0	B2-031-SB-7	(6.4-7.5')	BRICK, large, red SILTY SAND with GF rk brown, no plasticit	RAVEL, dry to moist, mediun y, no cohesion	n	NA SM	Trace glass
_	92	0.3		(7.5-8.2') brown, we	SILTY GRAVEL with et, no plasticity, no co	SAND, loose, dark grayish hesion		GM	Wet at 7.5' bgs
		-		(8.2-10') \$ brown, we	SANDY GRAVEL with et, no plasticity, no co	n SILT, medium dense, hesion			
		-						SW/GW	
10-		I	1	End of bo	ring				1

	Borin	Eart	M Group th Resource Er and Consulta B2-032-S (page 1	ngineers nts	Project Description : Sparrows Point - Parcel B2 Site Location : Sparrows Point, MD ARM Representative : L. Perrin Checked by : M. Replogle, E.I.T.		Weath	ng (US ft) g (US ft)	: 5/31/17 : Sunny, 70s : 565,915.30 : 1,459,455.92
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0		0.4	B2-032-SB-1	(0-2') SAN dry then v cohesion	ND with SILT and GR ery moist from 1.2-2'	AVEL, medium dense, brow bgs, no plasticity, no		SW-GM	
-	84	6.1		(2-4.6') S dry, low p	ILTY CLAY with GRA lasticity, cohesive	VEL, hard, reddish yellow,		CL	
- 5-		13.4 0.6	B2-032-SB-4		AND with SILT and G y, no plasticity, no co	RAVEL, medium dense, hesion			
_		-		(6-8') GR	AVEL SLAG, loose, b	prown and gray, wet		SW-GM	
_	60	-		(8-10') G		ling to SAND with GRAVEL,		GW	Wet at 7' bgs Trace wood Copper wires present
-		-		cohesion	lense, brown to dark	brown, wet, no plasticity, no		SW/GW	
10—				End of bo	ring				

	Boring	Eart	M Group th Resource En and Consultan B2-033-S (page 1	gineers ats	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ing (US ft) ng (US ft)	: 5/30/17 : Cloudy, 60s : 565,924.31 : 1,459,516.20
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-		-	B2-033-SB-1	(0-2') SIL moist to c	TY SAND with GRAV Iry, no plasticity, no c	EL, medium dense, brown, ohesion		SM/GW	
_		0.0		GRAVEL	ILTY CLAY with some hard, red and reddis	e GRAVEL and BRICK h yellow, dry, low plasticity,			
-	90	0.0		cohesive				CL	No water encountered
-		0.0	B2-033-SB-5	(4.1-5') S dry, no pl	ILTY SAND with GRA asticity, no cohesion	VEL, medium dense, brown	l,		
5-		0.0		End of bo	ring			SM/GW	
	prehole De erminated		gs. s due to refusal.						

	ARM Group Inc Earth Resource Engineers and Consultants				Client ARM Project No. Project Description Site Location ARM Representative Checked by	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T.	Date Weathe	er g (US ft)	: 5/31/17 : Cloudy, 70s : 565,769.20	
	Borin	g ID:	B2-034-S (page 1		Drilling Company Driller Drilling Equipment	: Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Easting		: 1,459,625.96	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS	
0-		-	B2-034-SB-1	(0-3') CLA cohesive	AY, hard, reddish yell	ow, dry, low plasticity,				
-		0.3						CL		
	80	13.7								
		0.8		(3-4') SIL plasticity,	TY SAND, medium de no cohesion	ense, dark brown, wet, no		SM	Wet at 3.5' bgs	
5-		55.3		(4-7') SAI no plastic	NDY GRAVEL, mediu ity, no cohesion	ım dense, dark brown, wet,				
-		-					c	GW/SW		
-		-		(7-7.5') S	LTY SAND medium	dense, dark brown, wet, no				
-	72	-		plasticity, (7.5-8.2')	no cohesion	edium dense, dark brown,		SM GW/SW		
-		-		(8.5-10') I medium c	Non-native GRAVEL,	ray, very moist, low plasticity fine to coarse grained, n, gray, and red, wet, no	/,	ML GW		
10—				End of bo	ring					
	orehole D									

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-035-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	ner ing (US ft) ig (US ft)	: 5/31/17 : Cloudy, 70s : 565,764.84 : 1,459,593.68
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	USCS	REMARKS
0-		-	B2-035-SB-1	(0-4') CLA firm, yello	AY with some layers o wish brown, dry to m	of CLAY with GRAVEL, very oist, low plasticity, cohesive		
_		0.2					0	
-	82	27.8					CL	
		15.2	B2-035-SB-4					Wet at 4' bgs
5-		0.8		(4-10') SA trace red	NDY GRAVEL, med and yellow, wet, no p	ium dense, dark brown with lasticity, no cohesion		
-		-						
_		-					GW/SW	
_	60	-						
-		-						
10-		-		End of b	ring			
				End of bo	าแญ			
	orehole De erminated		bgs. gs due to water.					

	Boring	Eart	M Group th Resource En and Consultan B2-036-S (page 1	ngineers nts B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ing (US ft) ng (US ft)	: 6/22/17 : Sunny, 70s : 565,911.72 : 1,460,846.11
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-				(0-0.3') A	SHPALT, hard, gray,	dry, no plasticity, no		NA	
		-	B2-036-SB-1	(0.3-1.5') very coars	se grained, medium c	th SLAG GRAVEL, fine to lense, brown and light gray,	/	SW/GW	
		-			asticity, no cohesion				
-				(1.5-2.5') cohesion	SANDY SILI, hard, t	prown, dry, no plasticity, no		ML	
	60	109.6		(2.5-10') 1	Non-native GRAVELL	Y SAND grading to SANDY			
-				yellowish	medium dense, blac red and yellow, dry th ' bgs, no plasticity, no	k and dark brown with trace nen moist from 7.5-7.8' bgs, a cohesion			
		0.3		wet at 7.0	bys, no plasticity, n	Concaton			
- 5-		13.2	B2-036-SB-5						
5-		-							
-									
		-						SW/GW	
-									
	50	7.0							Wet at 7.8' bgs
-									
		1.6							
		0.0							
10-				Endett	ring				
				End of bo	iiig				
	orehole De erminated		bgs. gs due to water.						

	Borin	Eart	M Group th Resource Er and Consultant B2-037-S	ngineers nts	Site Location : Sparrows Point, MD ARM Representative : L. Glumac Checked by : M. Replogle, E.I.T.			er ng (US ft) g (US ft)	: 6/22/17 : Overcast, 70s : 565,874.23 : 1,460,849.84	
			(page 1	of 1)	2					
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS	
0-		-	B2-037-SB-1	(0-0.75') \$ cohesion	SILT, soft, dark browr	n, dry, no plasticity, no		ML	Trace organics	
-		508.8		(0.75-2.5' loose, dai no cohesi	rk brown SILT and gr	, COBBLE-sized SLAG, very ay SLAG, dry, no plasticity,		GW/GM		
	80	668.7		(2.5-3') S cohesion	LAG, COBBLE-sized	, loose, dry, no plasticity, no		GW		
_		576.1		(3-5.5') S	ANDY SILT, fine grain no cohesion	ned sand, loose, dry, no				
5-		628.4	B2-037-SB-5					SW/SM		
-		91.3		(5.5-6.5') plasticity,	SAND, coarse graine no cohesion	ed, loose, tan, wet, no		SP	Wet at 6' bgs	
_		-		(6.5-7.5') brown, we	SAND and GRAVEL, et, no plasticity, no cc	, medium dense, tan to dark hesion		SW/GW		
-	80	-		grained, r	GRAVEL, medium co nedium dense gradin ity, no cohesion	arse grading to coarse g to dense, dark brown, wet	,			
-		-						GW		
10—		-		End of bo	ring					
					////·/					

E	ARM Group Inc Earth Resource Engineers and Consultants Boring ID: B2-038-SB				Client ARM Project No. Project Description Site Location ARM Representative Checked by	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T.	Date Weath North	ner ing (US ft)	: 5/26/17 : Cloudy, Windy, 60s : 566,403.46
	Borin	g ID:	B2-038-S (page 1		Drilling Company : Allied Drilling Co. Eas Driller : Rick Miller Drilling Equipment : Geoprobe 7822DT			ng (US ft)	: 1,459,423.67
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	1	USCS	REMARKS
0-		0.2	B2-038-SB-1		own with gray, dry the	SAND with SILT, medium en wet at 5' bgs, no plasticity	/,		
-		1.9							
-	94	3.8						SW-GM	
_		0.1							
5-		0.0	B2-038-SB-5						Wet at 5' bgs
-		0.5		(5.5-8') S brownish	ILTY CLAY with some gray with reddish yell	e GRAVEL, hard, dark low mottling, low plasticity,			
-		2.1		cohesive				CL	
-	100	0.0		(8-8 5') \$		se, gray, wet, no plasticity, n	0	GP	
-		0.0		cohesion (8.5-11')	SILTY CLAY with son	ne GRAVEL, hard, dark	/	GP	
10-		0.0		cohesive		low mottling, low plasticity,		CL	
-		-		(11-15') (CLAY, firm, gray, mois	st, low plasticity, cohesive			
-	50	-							
-		_						CL	
-		-							
15—				End of bo	pring				

	Borin	Eart	M Group th Resource Er and Consulta B2-039-S (page 1	ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ng (US ft) g (US ft)	: 5/30/17 : Cloudy, 60s : 567,385.63 : 1,459,503.50
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-		-	B2-039-SB-1	(0-5') SIL very mois	TY SAND with GRAV at then moist, no plast	EL, medium dense to dense icity, no cohesion	9,		
		0.0							
-	78	0.0						SM/GW	
-		0.0							
5-		0.0	B2-039-SB-5						
Ū		0.0		(5-6.2') S plasticity,		, brownish yellow, dry, low		CL	
_		0.0		(6.2-8') N wet, no p	on-native SANDY GF lasticity, no cohesion	RAVEL, medium dense, blac		SW/GW	Wet at 6.2' bgs
	94	11.1						310/010	
		0.1		(8-10') No light gray	on-native GRAVEL wi and brownish gray, v	th SAND, medium dense, vet, no plasticity, no cohesio	n	GW	
10-		0.0							
10-				End of bo	ring				
	orehole D		bgs. gs due to water.						

	Borin	Eart	M Group th Resource En and Consultan B2-040-S (page 1	ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (US Easting (US	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
0-		0.4	B2-040-SB-1	(0-0.5') S no cohes		k brown, moist, no plasticity,	ML	_
-		0.3		(0.5-1.8')	SILTY CLAY with so	me GRAVEL, hard, reddish y, low plasticity, cohesive	/ CL	
-	92	13.3		(1.8-2.7')		nedium dense, very dark	SW/G	<u>SW</u>
-		11.4		(2.7-5') S	ILTY CLAY with some	e GRAVEL, hard, reddish y, low plasticity, cohesive	CL	
5—		2.9		(
_		1.8			AYEY SILT with some oist, low plasticity, co	GRAVEL, hard, grayish hesive		
_		17.8	B2-040-SB-7				ML	
_	100	0.7						
_		0.3		(8-13.5') cohesive	SILT, soft, gray, very	moist, low plasticity,		
10—		0.2	B2-040-SB-10					No water encountered
		-					ML	
		-						
	80	-						
		-		(13.5-20')	CLAY, firm to soft, li	ght brownish gray and		-
15-		-		reddish y	ellow mottling, moist,	medium plasticity, cohesive		
10-		-						
		-					CL	
	100	-						
		-						
20		-						
20—				End of bo	ring			
Total Bo	rehole De	epth: 20'	bgs.					
			gs due to maximu	um allowable	e depth.			

	Ş	a definition of the local data	M Group th Resource Er and Consulta	gineers	Client ARM Project No. Project Description Site Location ARM Representative Checked by	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T.	Date Weather Northing (: 6/28/17 : Sunny, 80s : 568,388.44
	Borin	g ID:	B2-041-S (page 1		Drilling Company Driller Drilling Equipment	: Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Easting (L	JS π)	: 1,459,214.13
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0—		-	B2-041-SB-1	(0-3.5') G brown gra no cohesi	ading to brown and da	n SILT, medium dense, light ark brown, dry, no plasticity,			
-		11.3					SM	v/GW	
-	78	1.5							
_		5.4		(3.5-3.9') dense, gr	SLAG GRAVEL with ay, wet, no plasticity,	SAND-sized SLAG, medium no cohesion	· (GW	
5-		0.0	B2-041-SB-5	coarse gr	ained, medium dense	AVEL, medium to very to loose, dark brown them t from 6.4-7' bgs, wet at 7'			
-		-							
-		1.4					S	SW	Wet at 7' bgs
-	72	0.0							
_		0.0							
10-		0.0		(9.7-10') (GRAVELLY SAND, IC	ose, brown and yellow, wet,	SW	V/GW	
10-		_		no plastic End of bo	ity, no cohesion ring				
	Drehole D erminated		bgs. gs due to water.						

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-042-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 6/1/17 : Sunny, 70s : 567,712.13 : 1,459,221.77
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
0-		0.0	B2-042-SB-1	with SILT grayish b	ILTY SAND with som and GRAVEL, mediu rown, dry then moist no cohesion	e GRAVEL grading to SAND um dense, brown grading to from 3.1-3.5' bgs, no)	
-		0.3					SM-GW	
-	92	0.4						
_		0.7		(3.9-4.5')	SANDY SILT. verv fi	rm, reddish brown, dry, no		
-		0.1	B2-042-SB-5	plasticity, (4.5-6.2')	no cohesion	RAVEL-sized, loose, gray	ML	
5—		0.4					SW/GW	
		0.7		dark brow	n to black, wet, no pl	GRAVEL with SILT, dense, asticity, no cohesion ow plasticity, cohesive	SW-GM	
	100	1.0					ML	
		0.5		non-nativ light gray	e GRAVELLY SAND,	VEL-sized grading to medium dense, gray and from 9.2-10' bgs, wet, no	SW/GW	Wet at 8' bgs
		1.1						Sewage-like odor from 9.2-10' bgs
10—			1	End of bo	ring		I	1
	orehole De		bgs. gs due to water.					

	ARM Group Inc. Earth Resource Engineers and Consultants				Client ARM Project No. Project Description Site Location ARM Representative Checked by	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T.	Date Weather Northing (US	: 5/26/17 : Cloudy, 50s 6 ft) : 566,577.40
	Borin	g ID:	B2-043-S		Drilling Company Driller Drilling Equipment	: Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Easting (US	ft) : 1,461,225.30
			(page 1					
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	CS	REMARKS
0-					ILT, soft, brown, very	moist, low plasticity,	ML	_
-		3.4	B2-043-SB-1	cohesive (0.5-1.9') moist to v	SLAG GRAVEL, meo vet, no plasticity, no c	lium dense, brown, very ohesion	SM	Slight odor at 1' bgs
-	94	236.8			SILT grading to CLA y, low plasticity, cohe	YEY SILT, hard, grayish sive	ML	
-		92.0 26.2	B2-043-SB-4	(3.5-5') S dry gradir	ILTY CLAY to CLAY, ng to moist, low plasti	hard to firm, yellowish brow city, cohesive	n, CL	
5—		0.9		plasticity, (5.5-7.5')	cohesive SAND, very fine to co	own, very moist to wet, low	CL	
-		0.0		dense to reddish y	dense, very light brov ellow, wet, no plastici	vn, very pale brown, and ty, no cohesion	sw	I
-	100	1.7		(7.5-10') (reddish y	CLAY, firm grading to ellow mottling, very m	soft, very pale brown with oist, low plasticity, cohesive		_
_		0.0					CL	
10—		0.0						
				End of bo	pring			
		epth: 10'	bas					

	Borin	Eart	M Group th Resource Er and Consultant B2-044-S (page 1	ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 5/31/17 : Sunny, 70s : 565,958.13 : 1,460,028.14
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
- 0	80	- 0.6 10.7 2.1	B2-044-SB-1	(0.5-5.5')	-	no plasticity, no cohesion GRAVEL, medium dense, ity, no cohesion	ML SW-GM	Moderate organics
5	78	0.4 - 5.1 1.1	B2-044-SB-7	medium c cohesion (7.5-11.5)	lense, brown to brow	th some very large GRAVEL nish red, dry, no plasticity, n GRAVEL, medium dense to 7.9' bgs, no plasticity, no	o SW	Gravel has metallic luster Wet at 7.9' bgs
- 10	50	-		(11.5-15') cohesive	SILT, very firm, gray	ish brown, low plasticity,	SW/GW	
- 15—	50	-		End of bc	ring		ML	
	orehole D erminated		bgs. gs due to water.					

	Borin	Eart	M Group th Resource Er and Consultan B2-045-S (page 1	ngineers nts B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 5/31/17 : Sunny, 70s : 566,506.74 : 1,460,549.29
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
0 - - -	80	- 0.4 0.4 0.0 0.0	B2-045-SB-1 B2-045-SB-5	moist, no (1.5-6') C	plasticity, no cohesio	VEL, medium dense, brown n en soft from 4.5-6' bgs, dry s, low plasticity, cohesive	, SM ML	Light organic matter
5— - - 10—	100	0.0 0.0 0.0 0.0 0.0	B2-045-SB-10	moist, no (6.8-11.8	plasticity, no cohesio) CLAY with trace SA	grained, dense, pale brown, n ND, hard, reddish yellow an t at 11.2' bgs, low plasticity,		
- - - 15—	76			reddish y (15-16.3')	ellow, wet, no plastici SAND, fine to mediu	m grained, dense, reddish	, sc	Wet at 15.5' bgs
	90	- - -		End of bo	et, no plasticity, no co	inesion	SW	
	prehole D erminated		bgs. gs due to water.					

	Borin	Eart	M Group th Resource En and Consultant B2-046-S (page 1	gineers ats	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (I Easting (U		: 5/31/17 : Sunny, 70s : 566,956.89 : 1,460,673.93
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		-	B2-046-SB-1		OOD FRAGMENTS,	wet		NA	
-		4.5			ASPHALT, gray, dry	GRAVEL, medium dense,			
		4.5		dark brow	n, non plastic, non co	phesive		//GW	
_	84	16.9		grayish b	rown, moist then very	hen soft at 5-5.8', gray and moist at 5-5.8', low			
		7.8	B2-046-SB-4	plasticity,	cohesive		N	ИL	
		0.1							
5-		0							
-		0		(5.8-15') (CLAY, very firm, pale sh yellow mottling, lov	brown, light grayish brown			
_				and redui	sh yellow motuling, lo	w plasticity, conesive			
_	100	0							
		0							
		0	B2-046-SB-10						
10-		-					0	CL	
-		-							
-									Water in liners from 10-15' bgs
-	70	-							
		-							
15-		-							
15-		-		(15-20') N	lo Recovery				No water encountered
-		-							
-	0	_						CL	
-	v	_							
-		-							
20-		-							
				End of bo	ring				
	orehole D erminated		bgs. gs due to work pl	an.					

	Borin	Eart	M Group th Resource Er and Consulta B2-047-S (page 1	ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ng (US ft) g (US ft)	: 5/26/17 : Cloudy, Windy, 60s : 567,200.62 : 1,461,416.25
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0		0	B2-047-SB-1	cohesive (0.5-1.5')		very moist, low plasticity, GRAVEL, medium dense, astic, non cohesive		ML SW/GW	Light organic matter
-		0				then soft from 4.5-6' bgs, dry s, low plasticity, cohesive	ý	ML	
-	94	6 35.4	B2-047-SB-4	(2.4-5') S cohesive	ILT, hard, greenish gi	ray, moist, low plasticity,		ML	
5—		9.4		(5-6.5') S	ILTY CLAY, soft, very	/ pale brown with reddish			
-		0						CL	Wet at 6.5' bgs
-	100	0		(6.5-8.2') brown, m	Dist, no plasticity, no	m grained, dense, pale cohesion		SW/SM	
_		0		(8.2-9') S cohesive	ILT, very soft, grayish	brown, wet, non plastic, no	n	ML	
-		0		plasticity,	cohesive	reenish gray, moist, low grayish brwon, wet, non		ML	
10-			-	End of bo	on cohesive	grayish brivon, wel, non]		·
		epth: 10' d at 10' bç	bgs. gs due to water.						

	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B2-048-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (I Easting (U		: 5/26/17 : Cloudy, Windy, 60s : 567,765.06 : 1,459,834.85
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0		-	B2-048-SB-1	(0-1.5') G non plasti	RAVEL with SAND, lo	cose, gray and brown, dry,	G	SW	
-		0		(1.5-4') N dense, br	on-native GRAVELLY own, dry, non plastic,	Y SAND with SILT, medium non cohesive			
_	74	0					SW	//GW	
-		0		(4-6') GR	AVEL with SAND and	some SILT at 5.8' bgs, loos	e		
5—		0		to mediur cohesive	n dense, gray and bro	own, dry, non plastic, non		W	
-		0		(6-8.5') C yellow, m	LAY, very firm, light g oist low plasticity, coh	rayish brown and reddish nesive			
-	84	0.6	B2-048-SB-8				C	CL	
-		11.4			SAND, fine to mediun c, non cohesive	n, dense, reddish yellow, we		//GW	Wet at 8.5' bgs
10—		0		End of bo	rina			,	
					·····g				
	orehole D erminated		bgs. gs due to water.						

	Borin	Eart	M Group th Resource Er and Consulta B2-049-S (page 1	ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing Easting (I		: 6/22/17 : Sunny, 90s : 567,526.84 : 1,460,856.55
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
-0 - - -	90	96.3 15.2 20.4 23.6	B2-049-SB-1	non plast (0.7-4.3') GRAVEL dense, br	c, non cohesive SAND, fine to very co grading to GRAVELL	Y SAND with SILT, medium with trace gray, dry then wet		ML ML	
5-	100	12.8 0 0 0	B2-049-SB-4	plastic, no (5-8.6') C	on cohesive	dense, black, dry, non nish gray and reddish yellow nesive	·	ML CL	
- 10- - -	74	0 0 - 0 0 0	B2-049-SB-10	non cohe (9.1-20') 18-20', lig	sive CLAY with trace interr	h yellow, wet, non plastic, mittent SAND, hard to firm a reddish yellow mottling, dry	t	SW	
15-	84	0 - 0 0 0						CL	No water encountered
20-		0		End of bo	ring				

	Borin	Eart	M Group h Resource En and Consultan B2-050-S (page 1	ngineers nts B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT		ner ing (US ft) ng (US ft)	: 6/22/17 : Sunny, 90s : 568,140.53 : 1,460,868.93
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0—		-	B2-050-SB-1	(0-1') ASF	PHALT, hard, gray, dr	y, non plastic, non cohesive		NA	
-		0			NDY GRAVEL, mediu y, non plastic, non co	m dense, light gray and hesive		GW/SW	
-	80	2		cohesive (2.4-7.5')	-	orown, moist, low plasticity, edium dense, trace yellowish non cohesive	⁄	CL	
_		0.3							
5-		0	B2-050-SB-5					GW/SW	
-		-							
-		0.0							
-	66	0.0		medium c		RAVEL, very small to large, gray and dark brown, and hesive		GW	Wet at 7.5' bgs
-		0.0		(8.5-10') \$ cohesive	SILT, soft, dark gray,	very moist, low plasticity,		ML	
10-		0.0		End of bo	ring				
	orehole De erminated		bgs. gs due to water.						

	ARM Group Inc. Larth Resource Engineers and Consultants Boring ID: B2-051-SB (page 1 of 1)			ngineers nts	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing (US Easting (US t	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	SOSU	REMARKS
0-	90	- 0.4 0.4 0.0 0.0	B2-051-SB-1 B2-051-SB-5	(0-5.5') G medium c cohesive	RAVELLY SAND with lense, light gray and	n SILT and SLAG GRAVEL, brown, dry, non plastic, non	SW/G	w
	90	0.0 0.0 0.0 0.0		dense, da cohesive (8-12') SL	ark brown, with trace <u>y</u>	SLAG and BRICK, medium yellow, wet, non plastic, non nedium dense, light gray and hesive	SW/G	Wet at 6' bgs Trace to light tar with solvent odor from 6-6.2' bgs
10-	66	0.0 - -					GW/C	M
	orehole D		bgs. gs due to water a	cohesive End of bo	ring	ery moist, low plasticity,	ML	

	Borin	Eart	M Group th Resource En and Consultan B2-052-S (page 1	gineers ats	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing Easting ((US ft)	: 5/26/17 : Cloudy, 50s : 566,692.17 : 1,459,851.70
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0	80	- 0 0 0 0 0 0 0.5 2.5 0 0	B2-052-SB-1 B2-052-SB-5 B2-052-SB-10	FRAGME cohesive (1.5-2.5') moist (2.5-3.2') FRAGME plastic, no (3.2-5') S. moist, no (5-12') CL reddish yd	SANDY SILT, hard, or SLAG GRAVEL with NTS and GLASS, bro on cohesive ANDY SILT, hard, da n plastic, non cohesiv AY, firm to very firm,	dark grayish brown, dry to SAND and WOOD own, very moist to wet, non rk grayish brown, dry to		W/SW ML W/SW ML	
- - - 15 - - - - 20	70			plasticity, (16.5-19.5 soft, very plasticity, (19.5-20')	5') CLAY with trace S pale brown and redd cohesive	AND and GRAVEL, firm to ish yellow, moist, medium		CL CL W/SW	Wet at 19.5' bgs
	prehole D erminated		bgs. gs due to water.	End of bo		SIVE	/		

	Boring	Eart	M Group th Resource En and Consultant B2-053-S (page 1	gineers ats	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing Easting (I		: 6/27/17 : Cloudy, 80s : 566,428.98 : 1,460,658.92
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0		-	B2-053-SB-1	(0-1.5') G non cohe		se, yellow, dry, non plastic,	SV	N/GW	Light organic matter
-		42.6		(1.5-5.5') plasticity,	SILT and CLAYEY S cohesive	ILT, soft, gray, moist, low			
-	80	8.7							
-		150.3						ML	Fuel type odor, light from 3-5.5' bgs, moderate from 5.5-6.2' bgs
5-		154.4	B2-053-SB-5.5						bys, moderate nom 5.5-6.2 bys
-		241.8		wet, non	plastic, non cohesive	dium dense to dense, gray,	SI	W/SM	Wet at 5.5' bgs
-		876.6				wish brown, reddish yellow low plasticity, cohesive			
-	100	1111							
-		1168							
10-		61.1						CL	
		-							
	100	-							
		-		End of bo	ring				
				-	-				
	orehole Do erminated		bgs. gs due to water a	nd piezome	ter installation.				

	Borin	Eart	M Group h Resource En and Consultant B2-054-S (page 1	ngineers nts B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	Date Weather Northing Easting (: 6/27/17 : Sunny, 80s : 566,435.05 : 1,460,621.19
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		-	B2-054-SB-1	(0-1.5') O cohesive	RGANIC SILT, soft, b	prown, dry, non plastic, non			
-		0					sv	N/GW	
	74	33.2							
-		0.7		(3-6') CLA moist, low	AY, soft to firm, browr v plasticity, cohesive	n grading to reddish yellow,			
5-		123.3	B2-054-SB-5					CL	Very light fuel type odor from
		33.2							4.8-5.3' bgs
_		216.6		(6-6.9') S. gray, wet	AND, medium dense , non plastic, non coh	to dense, light brownish esive		SW	Wet at 6' bgs
-	98	598.8		(6.9-10') (reddish y	CLAY, hard, light brow ellow, dry, low plastic	wn, light brownish gray and ity, cohesive			
		79.6						CL	
		0							
10—				End of bo	ring		I		
		epth: 10' I	bgs. gs due to water.						

	Borin	Eart	M Group th Resource En and Consultar B2-055-S (page 1	ngineers nts B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-6-3 : Sparrows Point - Parcel B2 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Rick Miller : Geoprobe 7822DT	1	ner ng (US ft) ıg (US ft)	: 6/27/17 : Sunny, 80s : 566,459.61 : 1,460,618.17
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0-		-	B2-055-SB-1	non cohe	sive	rowning, dry, non plastic, nedium dense, light brown,		OL	Heavy organic matter
		20.5		dry, non p	plastic, non cohesive	,		SW/GW	
-	74	44.5		(2.5-3.5') dark brow	GRAVELLY SAND. n	nedium dense, brown and on cohesive		SW/GW	
-		187.8		(3.4-5.7') low plasti	SILTY CLAY, firm to city, cohesive	soft, gray to brownish gray,		0	Very strong fuel type odor from 3.5-7.2' bgs
5—		101.0 13.9						CL	
-		961.5	B2-055-SB-6.5	(5.7-7.2') then wet a	SILTY SAND grading at 6.5', non plastic, no	to SAND, very firm, moist on cohesive		SM-SW	Wet at 6.5' bgs
-	96	648.5		(7.2-10') (dry to mo	CLAY, hard, yellowish ist, low plasticity, coh	ı brown with yellowish red, esive			
_		158.4						CL	
10-		82.1		(10-14') N	lo Recovery				
-		-		,	-				
-	0	-							
-		-							
-			1	End of bo	ring				L
15—		epth: 14'	bas						

APPENDIX C

			PID C	ALIBRATION	LOG		
PROJECT NAME:	Area B, Parce	l B2 Phase II			SAMPLER NAME: L	. Perrin, L. Glumac	
PROJECT NUMBE	R: 150300M-	6			DATE: May 2017	PAGE	<u>1</u> of <u>1</u>
	SAMPLER		FRESH		STANDARD		
DATE/TIME	INITIALS	PID SERIAL #	AIR CAL	STANDARD	CONCENTRATION	METER READING	COMMENTS
5/26/2017 8:17	LP	592-907529	0.0	Isobutylene	100 ppm	101.1	-
5/30/2017 7:45	LP	592-907529	0.0	Isobutylene	100 ppm	100.4	-
5/31/2017 7:53	LP	592-907529	0.0	Isobutylene	100 ppm	100.0	-
6/1/2017 8:38	LP	592-907529	0.0	Isobutylene	100 ppm	101.8	-
6/2/2017 13:13	LP	592-907529	0.0	Isobutylene	100 ppm	100.3	-
6/22/2017 8:12	LG	592-901073	0.0	Isobutylene	100 ppm	100.5	-
6/23/2017 8:46	LP	592-901073	2.4	Isobutylene	100 ppm	100.4	-
6/26/2017 8:33	LP	592-901073	0.0	Isobutylene	100 ppm	99.9	-
6/27/2017 8:12	LP	592-901073	0.0	Isobutylene	100 ppm	100.4	-
6/28/2017 8:30	LP	592-901073	0.0	Isobutylene	100 ppm	99.6	-
11/3/2017 9:30	LP	592-919897	0.0	Isobutylene	100 ppm	100.0	-
				Isobutylene	100 ppm		
				Isobutylene	100 ppm		
				Isobutylene	100 ppm		
				Isobutylene	100 ppm		
				Isobutylene	100 ppm		
				Isobutylene	100 ppm		
				Isobutylene	100 ppm		
				Isobutylene	100 ppm		
				Isobutylene	100 ppm		
				Isobutylene	100 ppm		
				Isobutylene	100 ppm		

APPENDIX D

	P	ARM Group Inc. Earth Resource Engineers and Consultants	LOG OF			Roundwat Dint: B2-00	ER SAMPLE 7-PZ
	: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B2 parrows Point, MD roject No.: 150300M-6-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 06/23/2017 : PVC : 2.25" : 7822DT Geop : Rick Miller	probe	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representati	: Allied : : 7.42' TOC : 7.47' TOC ive : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	ΫΤΙΟΝ		η		REMARKS
0		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 3.1' Riser Amount: 3'			-Bentonita		Northing (US ft): 565953.27 Easting (US ft): 1461400.67
- 5		Screen Type: PVC Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010"			— Sand Pa	ck	No LNAPL or DNAPL detected at 48 hours
- - 10-		Filter (sand) Pack: Top: 2' bgs Bottom: 13' bgs Grain Size: WG #2 Bentonite Seal:				Screen	
-		Top: 0 (surface) Bottom: 2' bgs Grain Size: Granular (30/50 r	nesh)				
15 — - - -					-Collapse	d Material	
20-							
TOC: TO	epth: 20' op of PVC vepth to w				r ground surface re mean sea leve	4	

	-	ARM Group Inc. Earth Resource Engineers and Consultants	LOG OF		RY GROUNDWAT ON POINT: B2-01	
	: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B2 parrows Point, MD roject No.: 150300M-6-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 06/26/2017 : PVC : 2.25" : 7822DT Geoprobe : Rick Miller	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representation	: Allied : : 8.90' TOC : 8.42' TOC ve : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	PTION	П		REMARKS
0		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 2.3' Riser Amount: 3' Screen Type: PVC			Bentonite seal 1" PVC Riser	Northing (US ft): 566017.95 Easting (US ft): 1461361.10
5		Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010" Filter (sand) Pack:			Sand Pack 1" PVC Screen	No LNAPL or DNAPL detected at 48 hours
-		Top: 2' bgs Bottom: 13' bgs Grain Size: WG #2				
- 10		Bentonite Seal: Top: 0 (surface) Bottom: 2' bgs Grain Size: Granular (30/50 r	nesh)			
- 15-		End of Boring				
	epth: 13'					
TOC: To	op of PVC			bgs: Below ground amsl: Above mear		

	P	ARM Group Inc. Earth Resource Engineers and Consultants	LOG OF	TEMPORARY GF		
	e: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B2 parrows Point, MD roject No.: 150300M-6-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 06/26/2017 : PVC : 2.25" : 7822DT Geoprobe : Mike Garvine	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representati	: Allied : : 9.36' TOC : 9.20' TOC ve : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	PTION			REMARKS
0-		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 3.0' Riser Amount: 5.5'		Bentonit	e seal	Northing (US ft): 566033.29 Easting (US ft): 1461331.43
- - 5		Screen Type: PVC Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010"			Riser	No LNAPL or DNAPL detected at 48 hours
-		Filter (sand) Pack: Top: 3' bgs Bottom: 15.5' bgs Grain Size: WG #2		— Sand Pa	ack	
10— - - -		Bentonite Seal: Top: 0 (surface) Bottom: 3' bgs Grain Size: Granular (30/50 r	nesh)		Screen	
15—		End of Boring				
Total De	epth: 15.5	-				
TOC: TO	op of PVC epth to w	casing		bgs: Below ground surface amsl: Above mean sea leve		

	-	ARM Group Inc. Earth Resource Engineers and Consultants	LOG OF		RY GROUNDWAT ON POINT: B2-01	
	: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B2 parrows Point, MD roject No.: 150300M-6-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 06/23/2017 : PVC : 2.25" : 7822DT Geoprobe : Rick Miller	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representati	: Allied : : 8.88' TOC : 9.00' TOC ive : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	PTION			REMARKS
- 0		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 3.2' Riser Amount: 3' Screen Type: PVC			– Bentonite seal – 1" PVC Riser	Northing (US ft): 566035.19 Easting (US ft): 1461384.47
5		Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010"			– Sand Pack – 1" PVC Screen	No LNAPL or DNAPL detected at 48 hours
-		Filter (sand) Pack: Top: 2' bgs Bottom: 13' bgs Grain Size: WG #2				
10— - -		Bentonite Seal: Top: 0 (surface) Bottom: 2' bgs Grain Size: Granular (30/50 r	nesh)			
- 15-		End of Boring				
	epth: 13'					
TOC: To	op of PVC			bgs: Below grou amsl: Above me		

	-	ARM Group Inc. Earth Resource Engineers and Consultants	LOG OF	TEMPORAR COLLECTIC	RY GROUNDWAT ON POINT: B2-01	ER SAMPLE 5-PZ
	: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B2 parrows Point, MD roject No.: 150300M-6-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 06/26/2017 : PVC : 2.25" : 7822DT Geoprobe : Rick Miller	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representati	: Allied : : 7.65' TOC : 7.61' TOC ve : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	PTION			REMARKS
- 0		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 2.4' Riser Amount: 3'			Bentonite seal 1" PVC Riser	Northing (US ft): 566074.31 Easting (US ft): 1461396.64
5		Screen Type: PVC Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010"			Sand Pack 1" PVC Screen	No LNAPL or DNAPL detected at 48 hours
-		Filter (sand) Pack: Top: 2' bgs Bottom: 13' bgs Grain Size: WG #2				
10		Bentonite Seal: Top: 0 (surface) Bottom: 2' bgs Grain Size: Granular (30/50 r	nesh)			
- - 15—		End of Boring				
TOC: TO	epth: 13' op of PVC vepth to w			bgs: Below ground amsl: Above mean		

	-	ARM Group Inc. Earth Resource Engineers and Consultants	LOG OF		RY GROUNDWAT ON POINT: B2-05	
Site	: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B2 parrows Point, MD roject No.: 150300M-6-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 06/22/2017 : PVC : 2.25" : 7822DT Geoprobe : Rick Miller	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representati	: Allied : : 8.49' TOC : 8.59' TOC ve : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	PTION			REMARKS
-0-		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 2.6' Riser Amount: 3'			-Bentonite seal -1" PVC Riser	Northing (US ft): 568050.85 Easting (US ft): 1460179.34
5		Screen Type: PVC Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010"			-Sand Pack -1" PVC Screen	No LNAPL or DNAPL detected at 48 hours
-		Filter (sand) Pack: Top: 2' bgs Bottom: 13' bgs Grain Size: WG #2				
10		Bentonite Seal: Top: 0 (surface) Bottom: 2' bgs Grain Size: Granular (30/50 r	nesh)			
- 15—		End of Boring				
TOC: TO	epth: 13' op of PVC vepth to w			bgs: Below grour amsl: Above mea		

APPENDIX E

Temporary Piezometers Parject Name: A gene d for the formation of the f		Low Flow	_	-			10		roup I	
Prezenter Number, 62 - 667 - 62 Prezenter Dameter (ii): - Depth to Product (ii): - Depth to Battor (ii): - Depth to Walt Volume (gal): - Depth to Walt Volume (gal): - Depth to Walt Volume (gal): - Depth to Battor (ii): - (gallons) (feat) (C) Time Purged (feat) (C) (feat) (C) 1000 C C C C C C C C C C C C C C C C C C	Te	mporary	Piezom	eters		- Andrew	Earth Res	ource Eng	ineers and Cons	sultants
Prezenter Number, 62 - 667 - 62 Prezenter Dameter (ii): - Depth to Product (ii): - Depth to Battor (ii): - Depth to Walt Volume (gal): - Depth to Walt Volume (gal): - Depth to Walt Volume (gal): - Depth to Battor (ii): - (gallons) (feat) (C) Time Purged (feat) (C) (feat) (C) 1000 C C C C C C C C C C C C C C C C C C	Project Name:	Area B Pa	riel B2			Project Nun	nber: 150	ROOM		
Presenter Diameter (h): - One Well Volume (gal): - Depth to Vater (ft): - QED Controller Settings: - Depth to Nater (ft): - Length of Time Purged (min) $\frac{1}{4/4}$ Depth to Bottom (ft): - PURCING RECORD Time Purged (min) $\frac{1}{4/4}$ Controller Settings: - DTW Temp PIL Specific (min) $\frac{1}{4/4}$ Other Values (min) $\frac{1}{4/4}$ Time PURCING RECORD Time Value DTW Temp PIL Specific (min) $\frac{1}{4/4}$ DTW Temp PIL Specific (min) $\frac{1}{4/4}$ Turbidity (my) $\frac{1}{1006 or < 5}$ 1525 : 0.31 BID $\frac{1}{2}$ QED Controller Settings: - DUM Turbidity (my) $\frac{1}{1006 or < 5}$ Job $\frac{1}{2}$ QED $\frac{1}{2}$ Control $\frac{1}{2}$ Control $\frac{1}{2}$ Turbidity $\frac{1}{1006 or < 5}$ Turbidity $\frac{1}{12}$ QED $\frac{1}{12}$ QED $\frac{1}{12}$ Control $\frac{1}{12}$ Control $\frac{1}{12}$ DUM Turbidity $\frac{1}{12}$ Control $\frac{1}{12}$	Piezometer Nu:	mber: B2 -0	67 PZ					SUCA 1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Piezometer Dia	umeter (in):	1					:		
Product Thickness (ft): ~ Length of time Purged (min) $\frac{4}{4}$, Depth to Bottom (ft): 16.0 C Time Volume purged (min)						QED Contro	oller Setting	s: —		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth to Water	:(ft): 🦛	8.1	0		Flow Rate (mL/min)	264.0	3	
PURCING RECORD Time Volume Purged (gallow) DTW (feet) Temp (C) pH (s.u) Specific Conductance (ms/m) Dissolved (my/) ORP (my/) Turbidity (my/) Comments 1556 0:31 8.10 ∂C_1 $G_2 G_2$ $D_1 Q_2$ $D_1 Q_2$ $D_1 Q_2$ $U_C c_y h v^{d_1} d_1$ $V_C c_y h v^{d_1} d_1$ 1520 $C_2 Z_2$ $G_1 Q_2 Q_3$ $G_2 Q_2$ $D_1 Q_2 Q_3$ $D_1 Q_2 Q_3$ $V_C c_y h v^{d_1} d_1$ 1530 $Q_1 Q_2 Q_3$ $G_2 Q_1 Q_3 Q_3$ $G_1 Q_1 Q_3 Q_3$ $V_C c_y h v^{d_1} d_1$ $V_C c_y h v^{d_2} d_1$ 1530 $Q_1 Q_1 Q_3 Q_1 Q_1 Q_1 Q_1 Q_1 Q_1 Q_1 Q_1 Q_1 Q_2 Q_2 Q_2 Q_3 Q_3 Q_1 Q_1 H_1 (Q_2 Q_1 Q_1 Q_1 Q_1 Q_1 Q_1 Q_1 Q_1 Q_1 Q_1$	transmission in the local data and the local data a					Length of ti	me Purged (min) 41	5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth to Botton	m (ft): 16.	00							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2. 2. 37. 3	ALC: YES LAND	Sec. Solad	RANGE SHE	PURC		RD			
$\frac{1520}{1530} = 0.42 = 8.40 = 36.3 = 6.04 = 7.095 = 0.58 = 11.1 = 12.50 = 12.42 = 10.0 = 12.42 = 0.58 = 11.1 = 12.50 = 12.42 = 12.50$	Time	Purged			(s.u.)	Conductance (ms/cm)	Oxygen (mg/L)	(mV)	(NTU)	Comments
$\frac{1520}{1530} \bigcirc 0.42 \bigcirc 0.47 \odot 0$								11.4		Very turbid
$ \frac{153.5 \circ 0.43}{1324} (3.17) 34.2 (3.16) 1.111 0.30 726 User Auck (1330) 1.25 (1340) 1.111 0.30 74.5 User Auck (1350) 1.111 0.55 (1340) 1.111 0.30 74.5 User Auck (1530) 1.111 0.55 (1340) 1.111 0.30 74.5 User Auck (1350) 1.111 0.35 1.20 74.5 (1340) 1.111 0.32 1.20 74.5 (1340) 1.111 0.32 1.20 74.5 (1340) 1.111 0.32 1.20 74.5 (1340) 1.111 0.32 1.20 74.5 (1340) 1.111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.11111 0.20 74.5 (1340) 1.111111111 0.20 74.5 (1340) 1.11111111111111111111111111111111111$						1:095	0.58	11.1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								-12.4		/
$ \frac{1540}{1550} \cdot \frac{1.64}{1.540} = \frac{9.37}{9.32} \frac{2.77}{2.7} \cdot \frac{7.338}{1.247} = \frac{1.247}{1.246} \cdot \frac{1.338}{1.247} = \frac{1.247}{1.246} \cdot \frac$										Verturbid.
$ \frac{1545 \cdot 317}{1555 \cdot 348} = \frac{9.22}{270} \frac{370}{644} \frac{644}{1.385} \frac{370}{2.35} = \frac{1644}{370} \frac{1644}{1.385} \frac{1644}{1.385} \frac{1644}{1.385} \frac{1644}{1.385} \frac{1644}{1.385} \frac{1644}{1.385} \frac{1644}{1.385} \frac{1644}{1.385} \frac{1644}{1.385} \frac{1644}{1.484} \frac{1}{1.484} \frac{1}{1.250 \text{ mL Plastic } \text{ None } N \frac{1}{1.250 \text{ mL Plastic } \text{ None } N \frac{1}{1.250 \text{ mL Plastic } \frac{1}$			and the second s	26.6						Very turbid
$\frac{1550}{2.16} \cdot \frac{3.48}{2.14} = 8.56 37.0 6.14 1.385 0.25 -33.5 Vert 4.564 \\ 1.555 \cdot 2.14 8.40 20.44 6.17 1.255 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 8.40 20.44 6.17 1.255 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.27 -34.2 Vert 4.564 \\ 1.555 \cdot 2.14 1.555 0.555 0.555 -34.555 Vert 4.565 \\ 1.555 \cdot 2.14 0.555 0.$				d6.7						Veryturbid,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					1					
$ \frac{1}{1 - 1} =		2.48								Very turbid,
Sample ID Time Collected Parameter/Order Container Perservative Collected? TCL-VOCs 3 - 40 mL VOA HCl \mathcal{I} <t< td=""><td>15551</td><td>2.79</td><td>8.40</td><td>26.4</td><td>Q.17</td><td>1-255</td><td>0.27</td><td>-34.2</td><td></td><td>Very turbid</td></t<>	15551	2.79	8.40	26.4	Q.17	1-255	0.27	-34.2		Very turbid
Sample ID Time Collected Parameter/Order Container Perservative Collected? TCL-VOCs 3 - 40 mL VOA HCl \mathcal{I} <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Sample ID Time Collected Parameter/Order Container Perservative Collected? TCL-VOCs 3 - 40 mL VOA HCl \mathcal{I} <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Sample ID Time Collected Parameter/Order Container Perservative Collected? TCL-VOCs 3 - 40 mL VOA HCl \mathcal{I} <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Field Filtered By: Sampled By: Sampled By: Casing Volume: 1" I.D. = 0.041 gal/ft - 2" I.D. = 0.041 gal/ft - 4" I.D. = 0.053 gal/ft - 6" I.D. = 1.47 gal/ft		Sale will a	10200	MON	ITORIN	G SAMPLE	RECORD	13.520		Les Argent R
$f_{2} = 00^{-1} - f^{-2}$ $f_{2} = 00^{-1} - f^{-2}$ $f_{3} = 0.041 \text{ gal/ft} - 2^{n} \text{ LD.} = 0.041 \text{ gal/ft} - 2^{n} \text{ LD.} = 0.653 \text{ gal/ft} - 6^{n} \text{ LD.} = 1.47 \text{ gal/ft}}$ $\frac{\text{TCL-VOCs}}{\text{TPH-GRO}} = 3 - 40 \text{ mL VOA} + \text{HCl} + \frac{f}{2} + $	Sampl	e ID	Time C	ollected	Param	eter/Order	Conta	iner	Perservative	Collected?
$\frac{\text{TPH-DRO}}{\text{TCL-SVOCs}} = 2 - 1 \text{ L Amber} \text{none} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{NaOH} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{NaOH} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{NaOH} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{NaOH} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MNO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MNO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MNO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MNO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \text{MO3} \cancel{A} = 0$ $\frac{1}{1600} = 1 - 250 \text{ mL Plastic} \cancel{A} = 0$ $\frac{1}{1600} = 1 - $					TCI	L-VOCs			HCl	Ŷ
$\frac{1}{1 - 250 \text{ mL Plastic}} = \frac{1}{1 - 250 \text{ mL Plastic}} $	-				TP	H-GRO	3 - 40 m	L VOA	HC1	ý
$\frac{014 \& Grease}{Very} = \frac{2 - 1 L Amber}{1 - 250 mL Plastic} = \frac{1000}{N}$									none	P
$\frac{1 - 250 \text{ mL Plastic}}{1 - 250 \text{ mL Plastic}} = 1 - 250 \text{ mL $										Ň,
$\frac{1}{1 - 250 \text{ mL Plastic}} = \frac{1}{1 - 250 \text{ mL Plastic}} $										
	.1-	PZ	0.50			A	-		NaOH	\mathcal{N}
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	B2-001	1	(⁶⁰⁰		M (Dis	ercury ssolved)			HNO3	Y
Matrix Spike Duplicate Sampled By: Comments: \sqrt{ln} \sqrt{ln} \sqrt{ln} Comments: \sqrt{ln} \sqrt{ln} \sqrt{ln} Casing Volume: 1" I.D. = 0.041 gal/ft - 2" I.D. = 0.163 gal/ft - 4" I.D. = 0.653 gal/ft - 6" I.D. = 1.47 gal/ft					Chr (Dis	romium ssolved)	1 - 250 ml	L Plastic	None	N
Duplicate Sampled By: BD Comments: \sqrt{ln} \sqrt{ln} \sqrt{ln} \sqrt{ln} <u>Casing Volume:</u> 1" I.D. = 0.041 gal/ft - 2" I.D. = 0.163 gal/ft - 4" I.D. = 0.653 gal/ft - 6" I.D. = 1.47 gal/ft				Ma						
Sampled By: $\sqrt{\ell \alpha} + 0.063$ <u>Casing Volume:</u> 1" I.D. = 0.041 gal/ft - 2" I.D. = 0.163 gal/ft - 4" I.D. = 0.653 gal/ft - 6" I.D. = 1.47 gal/ft									E	
	Sampled E	BB: BB		Commen	ts:	lent turk	bid		F	
		Casing Volu	<u>ume:</u> 1" I.D.	= 0.041 gal/				gal/ft - 6" I.	D. = 1.47 gal/ft	

	ow Flow S nporary F	-	-					cers and Consul	
		_		_	Project Num	ber: 150	300M		
Project Name:					Date: 7/1		50011		
Piezometer Nur		<u>>11-P</u> ∠	· · · · · · · · · · · · · · · · · · ·		One Well Vo				
Piezometer Dia		a.m. 1	2.01		QED Contro				
Depth to Produc			NAPL	_	Flow Rate (r		2621.0	2	
Depth to Water		TOC			Length of tir				
Product Thickn				_	Length of th	ne i urgeu (1111) - V	0	
Depth to Bottor	m (ft): 15	60 T	20	DIIDC	ING RECOR	PD	(N) - Machie		
	1055	an Balance		FUNG	Specific	Dissolved			
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Conductance (ms/cm) ± 3%	Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments
1010	0.31	8.74	35.8	7:49	1.709	0.56	-246.0	90.6	
1015	0.62	8.90	25.7	7.32	18.13	0.26	-311.1	18.1	
1620	0.93	8.80	23.1	7:30	1.921	0.23	-227.0	55	
	1.24	8.80	25.8	7.24	1.921	0.20	-337.0	30.0	
10.30	1.24	8.20	340	7.21	1.953	0.19	- 345.2	2:0	
	1.86	8.80	35:7	7.19	1915	0.18	-348.5	1.9	
1035		8.85	25.7	7.19	1.967	0.11	-341.8	3.7	
1040	2.17	8.85	258	7.18	1.983	0.17	-3501	2.5	
1045	271	8.85	26.0	7.16	2.039	0.17	-35%7	2.0	
10:50 .	dil	0.05	96.0	1.10	2.004	0.17	0	4.4	
						_			
105	A Distances	PH DATE OF THE OP	MON	TOPP	IG SAMPLE	DECODD	S. S	CONTRACTOR OF STREET,	100333548
		Net Man	and the second s	6			ainan	Perservative	Collected?
Samp	ole ID	Time C	Collected	-	neter/Order		ainer		V V
					L-VOCs		L VOA	HCl	_ <u>y</u>
					PH-GRO		nL VOA	HCl	- <u>v</u>
					PH-DRO		Amber	none	_ <u></u>
- 11 - 1	pZ				L-SVOCs & Grease		Amber Amber	none HCl	N N
B2-011-	1			-		and the second sec	nL Plastic	NaOH	N
5			,		al Cyanide	1 - 250 1		114011	
		1055		(D	-Metals & d dercury g issolved) g d Filtered		nL Plastic	HNO3	Y
				Cl (D	exavalent hromium hissolved) d Filtered	1 - 250 r	nL Plastic	None	N
			R	latrix Sp					
			CIV.	Duplica	te				
Sampled	1 By: <u>B</u> B		Comme	and the second se					
					D. = 0.163 gal/ft -	(H + D) () (52 1/ 0 621	ID = 1.47 col/ft	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comments Very turbit Very turbit Very turbit Very turbit Very turbit Very turbit Very turbit Very turbit
Date: $\frac{2}{1/2} / 1^2$ Date: $\frac{2}{1/2} / 1^2$ Preduct (fi): $\bigcirc UAQU / DNAY QED Controller Settings: - Flow Rate (mL/min) \bigcirc AQ Product (fi): \bigcirc UAQU / DNAY QED Controller Settings: - Flow Rate (mL/min) \bigcirc AQ Product Thickness (fi): PURCING RECORD Time Volume(gallons) Days of the Conductance(ms/cm) ORP (mV)(mV) (NTU) Transform RECORD Turbidity(gallons) PURGING RECORD Turbidity(mg/L) turbidity(mV) (NTU) O 753 O F$ O/A 7 O.41 O.41.7 O.41 O.41.7 O.41.0 O.44.7 O.44.7 $	Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil
Intervalue ter (in): 1 One Well Volume (gal): Depth to Product (fi): \bigcirc ($\bigcup UAPL \ DNAP \ DNAP \ QED Controller Settings: Flow Rate (mL/min) \Im = 0 Product Thickness (fi): Flow Rate (mL/min) \Im = 0 Product Thickness (fi): PURGING RECORD Time Purged (gallons) (°C) PURGING RECORD Time Purged (gallons) DTW (feet) Temp (°C) PURGING RECORD Total Target distribution (file): 1 - (C) PURGING RECORD O 753 O File O Dissolved Oxygen (mV) (NTU) (feet) Temp (°C) file 0.55 0.647 0.55 16.9 10.9 11.97 10.38 -45.7 n 0.753 0.647 2.5.7 7.744 0.588 -45.7 n 0.929 -185 \odot 0.924 -187 \odot 0.924 -187 \odot 0.924 -187 \odot 0.924 -245 \cdot 1 0.924 -238 \cdot 1 0.924 -238 \cdot 1 0.924 -238 \circ 1 $	Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil
Depth to Product (ft): \bigcirc (WAPL \bigcirc NAPLQED Controller Settings: -Flow Rate (mL/min) \Im (ft): \bigcirc \Im (WAPL \bigcirc To CFlow Rate (mL/min) \Im (ft): \bigcirc \Im (ft): \bigcirc \bigcirc (ft): \bigcirc	Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil
Superior of the construction of the second	Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil
Length of time Purged (min) 40 Purgut (gallons)PURGING RECORDTimeVolume Purged (gallons)Temp (°C) $\frac{PH}{(s.u.)}$ Specific Conductance (ms/u.)Dissolved (ms/u.)ORP (mV) (NTU)Turbidity (NTU)Torbidity (ms/u.)Turbidity (mV) ± 10%Turbidity (NTU) ± 10%Turbidity (NTU) ± 10%Turbidity (NTU) ± 10% or <5O 753 ' CradionalO 4-41O:441O:51Ide 9O 753 ' CradionalO:441O:441O:51Ide 9O 753 ' CradionalO:441O:441O:51Ide 9O 753 ' CradionalO:441O:441O:51Ide 9O:441O:51Ide 9O:441O:20O:24O:441O:20O:24O:26O:441O:20O:21-IMONITORING SAMPLEMONITORING SAMPLE RECORDO:612O:644O:24O:644O:24-238.0O:612O:644O	Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil
Depth to Bottom (ft): $13.460' TOC PURGING RECORD Time VolumePurged(gallons) DTW(feet) Temp(°C) pH(s.u.)\pm 0.1 SpecificConductance(mg/L)\pm 3\% DissolvedOxygen\pm 0.3 ORP(mV)\pm 10\% or <5 0753 0.32 9.61 94.9 9.52 0.647 0.51 16-9 0758 0.32 9.61 24.9 9.26 0.611 0.38 -45.7 1 0758 0.647 25.5 7.44 0.814 0.29 -185.0 1 0803 0.647 25.5 0.791 0.791 0.724 -1/9.9 1 0813 1.27 9.8% 01.8 7.19 0.644 0.20 -1/9.9 1 0813 1.59 494 24.8 8.79 0.644 0.24 -238.0 1 0823 2.57 9.55 25.4 9.53 0.644 0.24 -238.0 1 0833 2.57 9.55 25.4 9.53 0.644 0.24 -238.0 1 0833 2.57 9.60$	Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil
PURGING RECORD Time Volume Purged (gallons) DTW (feet) Temp (°C) pH (s.u.) ± 0.1 Specific Conductance ± 0.1 ORP (mV) ± 0.3 Turbidity (NTU) $\pm 10\% or < 5$ 0753 0-360.1 24.9 9.52 0-447 0.55 16-9 10% or < 5	Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil
Time Volume Purged (gallons) DTW (feet) Temp (°C) pH (s.u.) ± 0.1 Specific Conductance (ms/cm) $\pm 3\%$ Dissolved Oxygen (mV) ± 0.3 ORP (mV) ± 10 Turbidity (NTU) $\pm 10\% or < 5$ 0 753 0.32 9.61 24.9 9.52 0.647 0.51 16.9 16.9 0 753 0.32 9.61 24.9 9.26 0.647 0.51 16.9 16.9 0 753 0.641 25.1 7.44 0.814 0.29 $-/83.0$ 16.9 0 753 0.641 25.1 7.44 0.814 0.29 $-/83.0$ 16.99 16.99 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 $-/83.0$ 16.99 <	Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil
Time Volume Purged (gallons) DTW (feet) Temp (°C) pH (s.u.) ± 0.1 Conductance (ms/cm) $\pm 3\%$ Oxygen (mg/L) ± 0.3 ORP (mV) $\pm 10\%$ Introduty (NTU) $\pm 10\%$ or <5 0 753 0.32 9.6 24.9 9.52 0.647 0.51 14.97 0 753 0.32 9.6 24.97 9.26 0.647 0.51 14.97 0 759 0.32 9.6 24.97 9.26 0.647 0.38 -45.7 0.38 0.803 0.647 25.5 6.999 0.791 0.24 $-1/830$ 0.932 0808 0.464 25.5 6.999 0.791 0.24 $-1/997$ 0.631 0.923 $-1/997$ 0.647 0.21 $-1/997$ 0.933 0.933 0.23 -2683.1 0.923 0.23 -2683.1 0.923 0.924 -2382.6 0.924 -2382.6 0.924 -2382.6 0.924 -2382.6 0.924 -2382.6 0.924 -2382.6 0.924 -2382.6 0.924 -2382.6 0.924 $-$	Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil Veryturbil
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Verytuski Verytuski Verytuski Verytuski Verytuski Verytuski Verytuski
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Verytuski Verytuski Verytuski Verytuski Verytuski Verytuski Verytuski
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Jery tools Very turbs Very turbs Very turbs Very turbs
1.2.7 9.8.4 34.8 7.32 0.7.21 0.21 -1/9.9 0.8.13 1.2.7 9.8.4 34.8 7.32 0.721 0.21 -1/9.9 0.8.13 1.5.8 44.1 24.8 8.79 0.644 0.20 -245.1 0.2 0.8.23 1.89 9.81 24.7 8.89 0.638 0.23 -268.1 0.9 0.8.23 1.89 9.55 25.4 8.53 5.4444 0.24 -238.5 0.9 0.8.33 2.57 9.55 25.4 8.53 5.4444 0.24 -238.5 0.9 0.8.33 2.57 9.40 24.8 8.444 0.444 0.24 -238.5 0.9 0.8.33 2.57 9.40 24.8 8.444 0.444 0.24 -238.5 0.9 0.8.33 2.57 9.40 24.8 8.444 0.444 0.244 -238.5 0.9 0.8.33 2.57 9.40 24.8 8.444 0.444 0.244 -241.444 0.9 0.8.33 2.57 <td>Very forbod Very forbod Very forbod Very forbod Very forbod</td>	Very forbod Very forbod Very forbod Very forbod Very forbod
20 0 1 2 9 9 9 9 9 9 7 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 2 0 7 3 0 0 7 3 0 0 7 3 0 0 7 3 0 0 7 3 0 0 7 3 0	Veryturbic Veryturbid Veryturbid Veryturbid
08 1.5% 44 24.8 8.74 0.64 0.20 245.7 0 08 1.89 9.81 24.7 8.89 0.638 0.23 -268.1 0 08 2.7 9.55 254 9.53 0.644 0.24 -238.5 0 08 2.57 9.55 254 9.53 0.649 0.24 -238.5 0 08 2.57 9.40 24.8 8.64 0.469 0.24 -238.5 0 08 3.3 2.57 9.40 24.8 8.64 0.469 0.24 -238.5 0 08 3.3 2.57 9.40 24.8 8.64 0.469 0.24 -238.5 0 08 3.3 2.57 9.40 24.8 8.64 0.469 0.24 -238.5 0 08 3.40 0.40 0.40 0.40 0.40 0.40 0.40 08 4.9 0.40 7.8 0.40 1.40 0.40 1.40 10 10 1	Very forbod Very to had Very torbod
0823 1.89 9.81 24.7 8.89 0.638 0.23 -269.1 1 0823 2.7 9.55 25.4 8.53 5.644 0.24 -238.8 1 0833 2.57 9.60 24.8 8.64 0.449 0.24 -238.8 1 0833 2.57 9.60 24.8 8.64 0.449 0.24 -238.8 1 0833 2.57 9.60 24.8 8.64 0.449 0.24 -238.8 1 0833 2.57 9.60 24.8 8.64 0.449 0.24 -238.8 1 0833 2.57 9.60 24.8 8.64 0.449 0.24 -238.8 1 0833 2.57 9.60 24.8 8.64 0.449 0.24 -238.8 1 0833 2.57 9.60 24.8 8.64 0.449 0.24 -238.8 1 0833 2.57 9.60 24.8 8.64 0.449 0.24 -238.8 1 1083 1.50 </td <td>Very turbin</td>	Very turbin
2.57 9.55 2.54 8.53 5.44 0.24 -238.0 1 0.83.3 2.57 9.40 24.8 8.44 0.449 0.24 -238.0 1 0.83.3 2.57 9.40 24.8 8.44 0.449 0.24 -238.0 1 0.83.3 2.57 9.40 24.8 8.44 0.449 0.24 -238.0 1 0.83.3 2.57 9.40 24.8 8.44 0.449 0.24 -238.0 1 0.83.3 2.57 9.40 24.8 8.44 0.449 0.24 -238.0 1 0.83.3 2.57 9.40 24.8 8.44 0.449 0.24 -238.0 1 0.83.3 2.57 9.40 1.40 1 <td>Very turbin</td>	Very turbin
Sample ID Time Collected Parameter/Order Container Perservative TCL-VOCs 3 - 40 mL VOA HCl TPH-GRO 2 - 1 L Amber none TCL-SVOCs 2 - 1 L Amber none Oil & Grease 2 - 1 L Amber HCl	
MONITORING SAMPLE RECORD Sample ID Time Collected Parameter/Order Container Perservative TCL-VOCs 3 - 40 mL VOA HCl TPH-GRO 3 - 40 mL VOA TPH-GRO 3 - 40 mL VOA HCl TPH-DRO 2 - 1 L Amber none Oil & Grease 2 - 1 L Amber	Very tors
Sample IDTime CollectedParameter/OrderContainerPerservativeTCL-VOCs3 - 40 mL VOAHClTPH-GRO3 - 40 mL VOAHClTPH-DRO2 - 1 L AmbernoneTCL-SVOCs2 - 1 L AmbernoneOil & Grease2 - 1 L AmberHCl	
Sample IDTime CollectedParameter/OrderContainerPerservativeTCL-VOCs3 - 40 mL VOAHClTPH-GRO3 - 40 mL VOAHClTPH-DRO2 - 1 L AmbernoneTCL-SVOCs2 - 1 L AmbernoneOil & Grease2 - 1 L AmberHCl	
Sample IDTime CollectedParameter/OrderContainerPerservativeTCL-VOCs3 - 40 mL VOAHClTPH-GRO3 - 40 mL VOAHClTPH-DRO2 - 1 L AmbernoneTCL-SVOCs2 - 1 L AmbernoneOil & Grease2 - 1 L AmberHCl	
Sample ID Time Collected Parameter/Order Container Perservative TCL-VOCs 3 - 40 mL VOA HCl TPH-GRO 3 - 40 mL VOA HCl TPH-DRO 2 - 1 L Amber none TCL-SVOCs 2 - 1 L Amber none Oil & Grease 2 - 1 L Amber HCl	
Sample ID Time Collected Parameter/Order Container Perservative TCL-VOCs 3 - 40 mL VOA HCl TPH-GRO 3 - 40 mL VOA HCl TPH-DRO 2 - 1 L Amber none TCL-SVOCs 2 - 1 L Amber none Oil & Grease 2 - 1 L Amber HCl	
TCL-VOCs3 - 40 mL VOAHClTPH-GRO3 - 40 mL VOAHClTPH-DRO2 - 1 L AmbernoneTCL-SVOCs2 - 1 L AmbernoneOil & Grease2 - 1 L AmberHCl	Collected
TPH-GRO3 - 40 mL VOAHClTPH-DRO2 - 1 L AmbernoneTCL-SVOCs2 - 1 L AmbernoneOil & Grease2 - 1 L AmberHCl	V
TPH-DRO2 - 1 L AmbernoneTCL-SVOCs2- 1 L AmbernoneOil & Grease2 - 1 L AmberHCl	- Ý
TCL-SVOCs2-1 L AmbernoneOil & Grease2-1 L AmberHCl	
Oil & Grease 2 - 1 L Amber HCl	12
P.2 - 013-PZ. Total Cyanide 1 - 250 mL Plastic NaOH	2
Total Cyanide 1 - 250 Int. Plastic NaOH	2
Additional and the set of t	Y
Hexavalent Chromium (Dissolved) Field Filtered 1 - 250 mL Plastic None	N
Matrix Spike	
Duplicate	
Sampled By: BB Comments: Orpand PH is not stabilized. Probe wasn't wo Could not get all Drw	lork ng

	ow Flow S nporary F	-	0					roup In neers and Const					
Project Name: /	Aren R. Pr.	TRI R	7.		Project Num	ber: / 5-22	60 M						
Piezometer Nun	nber: $R_{7} - A_{1}$	-1- P7				7/17	0011						
Piezometer Dia		351			One Well V								
Depth to Produc					QED Contro								
Depth to Water		7			Flow Rate (1		264.0	3					
Product Thickne	(II). <u>0.9</u>	1			Length of time Purged (min) \angle / \land								
Depth to Botton		100			Length of time Furged (mm) 240								
Deptil to Dottoli		00	- A	PURG	RGING RECORD								
				1	Specific	Dissolved							
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Conductance (ms/cm) ± 3%	Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments				
1235	0.31	8.91	26.6	6.22	3.139	0.63	-130.1		Verd turbil				
1240	0.62	8.9	98.8	6.38	2.994	0:39	-115:1	895	<u>)</u>				
1845	0.93	8.91	28.9	6.53	2.843	0.34	-131.4	50.9					
1250	1.24	8.99	24.0	6.54	3,761	0.35	-133.4	48.8					
1255	1.55	8.99	29.4	6.66	2.652	0.30	-135.4	846					
1300	1-86	9.00	29.5	6.70	2.591	0.29	-139.4	80.4					
1305	2.11	9.00	29.6	6.72	a.505-	0.29	-134.8						
1310	2.48	9.00	29.6	6.74		0.26	-142.0	122.6					
13:15	279	9.00	29.6	6.81	2426	0.25	-146.3	1229					
1212	21	1.00	U.L.Y		V Y	U AU							
the second second	No. Royal - Sta		MON	TORIN	G SAMPLE	RECORD	() () () () () () () () () () () () () (State Street Street				
Sampl	еD	Time C	ollected	And I also have been	neter/Order	Conta	ainer	Perservative	Collected?				
Sampi			onceted		L-VOCs	3 - 40 m		HCl	¥				
				L	H-GRO	3 - 40 m		HCl	V				
					H-ORO H-DRO	2 - 1 L		none	2y				
					-SVOCs	2-1L		none	Ń				
					& Grease	2 - 1 L		HCl	N				
		n.			l Cyanide	1 - 250 m	L Plastic	NaOH	N				
B2-014-	fZ	1320		TAL M (Di	-Metals & lercury ssolved) I Filtered	Total 1 1 - 250 m		HNO3	* Y				
				Ch (Di	xavalent romium ssolved) l Filtered	1 - 250 m	L Plastic	None	N				
			М	atrix Spi									
				Duplicate									
Sampled	By: <u>B</u> B		Commen										
	<u>Casing Vol</u>	ume: 1" I.D	. = 0.041 ga	. = 0.163 gal/ft - 4 gal/ft =	4" I.D. = 0.653 (gal)	3 gal/ft - 6" I	.D. = 1.47 gal/ft						

Project Name: A_{fea} & P_{ac} Piezometer Number: $B \ge -0$ Piezometer Diameter (in): / Depth to Product (ft): $-$ Depth to Water (ft): $-$	1 BZ 15-fz			ARM Group Inc. Earth Resource Engineers and Consultants								
Piezometer Number: $\beta_2 \sim 0$ Piezometer Diameter (in): / Depth to Product (ft):	15 -f2			Project Num	nber: 1.5-0	360 M	×1					
Piezometer Diameter (in): / Depth to Product (ft):				Date: 7/17								
Depth to Product (ft):				One Well V								
				QED Contro								
Deptil to Water (It).	22	7.60			<u> </u>							
Product Thickness (ft):	H P	1.60		Flow Rate (mL/min) 264.03 Length of time Purged (min) 46								
	95			Length of th	nie i uigeu (
Deptil to Dottolil (it).	4.5	NOT ENER	PURG	I GING RECORD								
				Specific Dissolved								
Time Volume Time Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Conductance (ms/cm) ± 3%	Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments				
1355 031	7.60	26.2	5.84	2955	0.74	-21.0		verytunbid				
1400 . 0.62	7.60	27.4	5.93	2.859	0.47	- 31.5		Very forb.d				
1405 . 0.93	7.60	28.7	6.19	2.627	0.50	-63.0		Very ford				
1410 1.24	761	28.8	6.40	2.410	0.45	3773	49.7					
1413 153	7.62	28.7	6.47	2315	0.39	-83.4	160.4	7				
1420 . 1.86		28.9	6.56	2.258	0.35	-91.0	87.9					
1425. 2.17	7.63	29.1	6.57	2.248	0.35	-92.4	72.0					
1430, 2,48	7.64	29.5	6.59	2.237	0.33	-94.9	107.6					
14135 2.19	7.65	29.6	6.60		0.32	-94.9	83.9					
	1.65	¥	6.60	OCIO IV	0.56		00.7					
				10								
		MON	ITORIN	G SAMPLE	RECORD	2-1-31/-51	a ar contration a					
Sample ID	Time C		and the second second	eter/Order	Conta	ainer	Perservative	Collected?				
Sample ID			_	L-VOCs	3 - 40 m		HCl	U				
				H-GRO	3 - 40 m		HCl	6				
				H-DRO	2 - 1 L		none	4				
				-SVOCs	2-1L		none	N.				
				& Gr <u>e</u> ase	2 - 1 L		HCl	N,				
				l Cyanide	1 - 250 m		NaOH	N				
				Metals/&	Total 10	28.		. /				
BZ-015-PZ	1440			lercury				¥				
pz on ic	19-0		~~~? `	ssolved)	1 - 250 m	L Plastic	HNO3					
				l Filtered								
			He	xavalent								
				romium				N				
				ssolved)	1 - 250 m	L Plastic	None					
			,	I Filtered								
		Ma	atrix Spil	ke								
Duplicate												
Comments:												
Sampled By: BB Very turbid at start of purge												
Casing Volu	<u>ıme:</u> 1" I.D.	= 0.041 gab		= 0.163 gal/ft - 4 gal/ft =		8 gal/ft - 6" I .	$D_{.} = 1.47 \text{ gal/ft}$	-				

	ow Flow nporary l	-	-		ARM Group Inc. Earth Resource Engineers and Consultants								
Project Name:	Impo RT	mod	RIDW	TTADI	Project Number: 150200N-(e-3								
Piezometer Nun	nber: Ra-	SI-PO	22.11	Nett	Date: $\left(0/23/17\right)$								
Piezometer Dia	Constant of the local division of the local	116			One Well Volume (gal):								
Depth to Produc		NADIA	JAAN JAAN		QED Controller Settings:								
Depth to Water		is the par			Flow Rate (1	mL/min) -4	00-35	o.					
Product Thickne					Length of tim	me Purged (min) 🖌	5					
Depth to Botton	n (ft): 5	.02											
地子子和众物的				PURG	ING RECO	T			1011				
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comment				
14.09	2.0	8.51	19.0	11.36	1.183	0.29	-239.2	14.3					
1414	2.4	8.51	19.1	11.39		0.27	F. CH2-	26.0					
1419.	2.8	8.51	19.3	11.40	1.173	0.24	-240.9	34.0					
1424	3.2	8.51	19.2	11.42	1.177	0.24	-246.6	47.1					
1429													
				h									
	J												
									- 1				
		ALC: NOT ALC	MO	TOPIN	IG SAMPLE	RECORD							
Samp	la ID	Time (and the second second	neter/Order		ainer	Perservative	Collecte				
			Joneored		L-VOCs		nL VOA	HCl	V				
B2-051-	-P2	142	20		PH-GRO		nL VOA	HCl					
Ba		110	29		PH-DRO	2-1L	Amber	none					
				TCI	L-SVOCs	2-1 L	Amber	none					
					& Grease		Amber	HCl					
					al Cyanide	1 - 250 n	nL Plastic	NaOH					
					-Metals &	5							
					Iercury	1 - 250 n	nL Plastic	HNO3					
<i></i>					issolved)								
					d Filtered								
- 1.					exavalent								
					romium	1 - 250 n	nL Plastic	None	1				
				•	issolved) d Filtered				1				
		_		fatrix Sp		I							
	_			Duplicat									
		_	Comme										
Sampled	ву: ЦМС	<u><u>s</u></u>			1			10					
		The subscription of the su											
L.	Casing Vo	<u>olume:</u> 1" I.1	0. = 0.041 gs	al/ft - 2" I.C ft x). = 0.163 gal/ft - gal/ft =	- 4" I.D. = 0.63 (gal)	53 gal/ft - 6" l	I .D. = 1.47 gal/ft					

TABLE 1MULTIPARAMETER CALIBRATION LOG

Project Name150300M-6 Parcel B2 Phase IIWeather70s, RainyCalibrated byLMG and DENSerial Number17E101949

Date 6/23/17

Instrument YSI Pro DDS

Parameters	Morning Calibration	Morning Temperature	End of Day Calibration Check	End of Day Temperature
Specific	Calibration	Temperature	Calibration Check	Temperature
Specific	1 412	77 °F	$1.256^{\text{¥}}$	90 °F
Conductance	1.413	// F	1.250	90 F
Standard #1 (1.413mS/cm)				
Specific				
Conductance				
Standard #2				
pH (7)	7.01			
pH (4)	4.00		3.89	
pH(10)	10.03			
ORP			007.4	
Zobel Solution (240.0 mV)	240.0		235.1	
Dissolved Oxygen 100% water saturated air mg/L				
Dissolved Oxygen Zero				
Dissolved Oxygen Solution	$8.80^{ m F}$		$8.47^{\text{¥}}$	
mg/L				
Barometric Pressure mm Hg	758.95		755.14	
Turbidity #1 (0 NTU)				
Turbidity #2 (1 NTU)				
Turbidity Standard #3 (10 NTU)				

^{*} Specific conductance is outside of the post-calibration acceptance criteria. DO is outside of the calibration and post-calibration acceptance criteria. Values displayed on purge logs may be inaccurate.

TABLE 1MULTIPARAMETER CALIBRATION LOG

Project Name150300M-6 Parcel B2 Phase IIWeather70sCalibrated byBBSerial Number17E101949

Date 7/17/17

Instrument YSI Pro DDS

Parameters	Morning Calibration	Morning Temperature	End of Day Calibration Check	End of Day Temperature
Specific				
Conductance	1.413	78 °F	1.414	76 °F
Standard #1 (1.413mS/cm)				
Specific				
Conductance				
Standard #2				
pH (7)	7.00		7.00	
pH (4)	4.01		4.00	
pH(10)	10.00		10.03	
ORP	240.0		240.1	
Zobel Solution (240.0 mV)	240.0		240.1	
Dissolved Oxygen 100% water saturated air mg/L	$100.6^{\text{¥}}$		$100.3^{\text{¥}}$	
Dissolved Oxygen Zero				
Dissolved Oxygen Solution				
mg/L				
Barometric Pressure mm Hg	762.20		762.20	
Turbidity #1 (0 NTU)				
Turbidity #2 (1 NTU)				
Turbidity Standard #3 (10 NTU)				

[¥]DO was recorded as % water saturated air rather than mg/L.

APPENDIX F

Parcel B2 - IDW Drum Log

Drum ID	Designation	Activity/Phase	Contents	Open Date
836-PPE-5/26/17-B2	Non-haz.	Area B: Parcel B2 Phase II	PPE	5/26/2017
837-Decon Water-5/26/17-B2	Non-haz.	Area B: Parcel B2 Phase II	Water	5/26/2017
838-S-5/26/17-B2	Non-haz.	Area B: Parcel B2 Phase II	Soil	5/26/2017
839-Liners-5/26/17-B2	Non-haz.	Area B: Parcel B2 Phase II	Liners	5/26/2017
840-Soil-5/31/17-B2	Non-haz.	Area B: Parcel B2 Phase II	Soil	5/31/2017
846-Purge Water-6/23/17-B2	Non-haz.	Area B: Parcel B2 Phase II	Water	6/23/2017
847-PPE-6/23/17-B2	Non-haz.	Area B: Parcel B2 Phase II	PPE	6/23/2017
848-Soil-6/23/17-B2	Non-haz.	Area B: Parcel B2 Phase II	Soil	6/23/2017
849-Decon Water-6/23/17-B2	Non-haz.	Area B: Parcel B2 Phase II	Water	6/23/2017
850-Liners-6/27/17-B2	Non-haz.	Area B: Parcel B2 Phase II	Liners	6/27/2017
851-Soil-6/27/17-B2	Non-haz.	Area B: Parcel B2 Phase II	Soil	6/27/2017
896-Tubing/Bentonite-7/28/17-B2	Non-haz.	Area B: Parcel B2 Phase II	Tubing/Bentonite	7/28/2017

CRRGPFKZ'I "

NAPL Gauging Activities Parcel B2 Tradepoint Atlantic Sparrows Point, Maryland

			Well Total	Screen	Riser		6/22/2017			6/23/2017			6/26/2017	
Sample ID	Installation Date	Abandonment Date	Depth (Feet bgs)	Interval (Feet bgs)	Stick-Up (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)
B2-007-PZ	6/23/2017	NA	13	3-13	3.11	NA	NA	NA	-	7.42	-	-	7.47	-
B2-011-PZ	6/26/2017	NA	13	3-13	2.30	NA	NA	NA	NA	NA	NA	-	8.90	-
B2-013-PZ	6/26/2017	NA	15	5-15	3.04	NA	NA	NA	NA	NA	NA	-	9.36	-
B2-014-PZ	6/23/2017	NA	13	3-13	3.21	NA	NA	NA	-	8.88	-	-	9.00	-
B2-015-PZ	6/26/2017	NA	13	3-13	2.40	NA	NA	NA	NA	NA	NA	-	7.65	-
B2-024-PZ	11/3/2017	NA	12	3-12	3.63	NA	NA	NA	NA	NA	NA	NA	NA	NA
B2-051-PZ	6/22/2017	7/10/2017	13	3-13	2.60	-	8.49	-	-	8.51	-	-	8.59	-
B2-053-PZ	6/27/2017	NA	13	3-13	3.30	NA	NA	NA	NA	NA	NA	NA	NA	NA
B2-055-PZ	6/27/2017	NA	14	4-14	3.55	NA	NA	NA	NA	NA	NA	NA	NA	NA

			Well Total	Screen	Disor		6/27/2017		6/28/2017			6/29/2017		
Sample ID	Installation Date	Abandonment Date	Depth (Feet bgs)	Interval (Feet bgs)	Riser Stick-Up (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)		Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)		Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)
B2-007-PZ	6/23/2017	NA	13	3-13	3.11	NM	NM	NM	NM	NM	NM	NM	NM	NM
B2-011-PZ	6/26/2017	NA	13	3-13	2.30	NM	NM	NM	-	8.42	-	NM	NM	NM
B2-013-PZ	6/26/2017	NA	15	5-15	3.04	NM	NM	NM	-	9.20	-	NM	NM	NM
B2-014-PZ	6/23/2017	NA	13	3-13	3.21	NM	NM	NM	NM	NM	NM	NM	NM	NM
B2-015-PZ	6/26/2017	NA	13	3-13	2.40	NM	NM	NM	-	7.61	-	NM	NM	NM
B2-024-PZ	11/3/2017	NA	12	3-12	3.63	NA	NA	NA	NA	NA	NA	NA	NA	NA
B2-051-PZ	6/22/2017	7/10/2017	13	3-13	2.60	NM	NM	NM	NM	NM	NM	NM	NM	NM
B2-053-PZ	6/27/2017	NA	13	3-13	3.30	-	9.07	-	NM	NM	NM	-	6.90	-
B2-055-PZ	6/27/2017	NA	14	4-14	3.55	-	7.13	-	NM	NM	NM	-	7.20	-

NA = Not Applicable

NM = Not Measured

SHADED = NAPL Detection

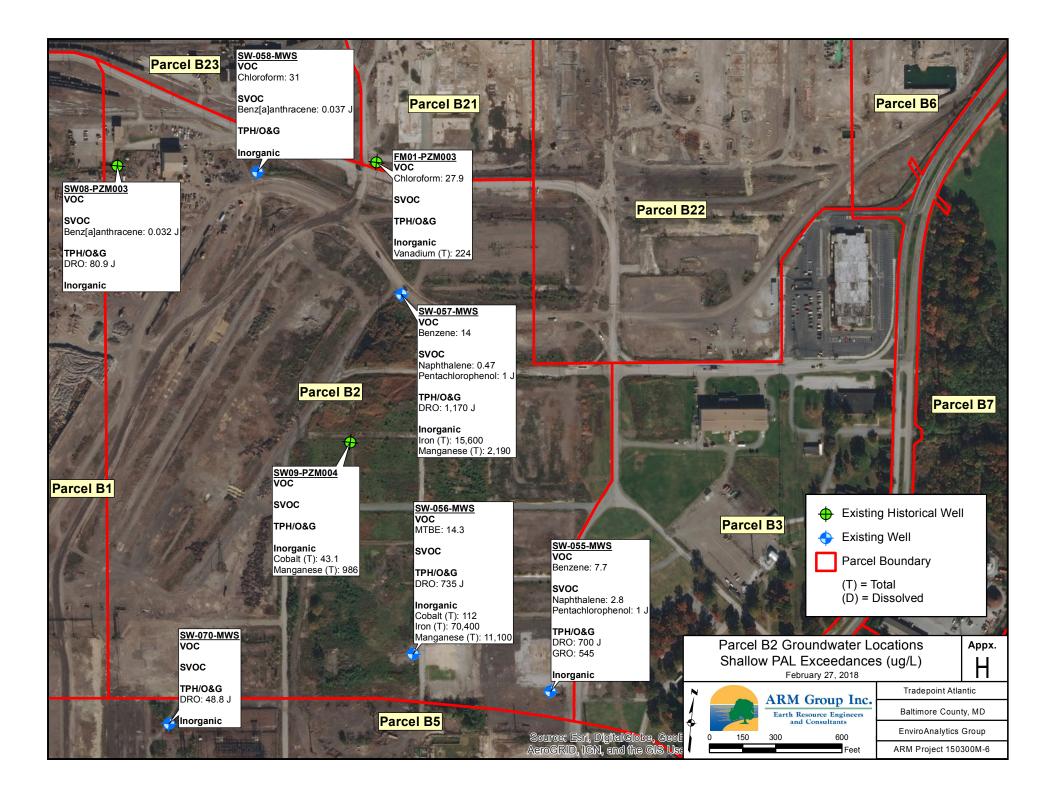
bgs = below ground surface

TOC = Top of Casing

NAPL Gauging Activities Parcel B2 **Tradepoint Atlantic** Sparrows Point, Maryland

			W-11 T-4-1	Screen	D:		7/10/2017			7/17/2017			7/31/2017	
Sample ID	Installation Date	Abandonment Date	Well Total Depth (Feet bgs)	Interval (Feet bgs)	Riser Stick-Up (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)
B2-007-PZ	6/23/2017	NA	13	3-13	3.11	NM	NM	NM	-	8.10	-	NM	NM	NM
B2-011-PZ	6/26/2017	NA	13	3-13	2.30	NM	NM	NM	-	8.47	-	NM	NM	NM
B2-013-PZ	6/26/2017	NA	15	5-15	3.04	NM	NM	NM	-	9.36	-	NM	NM	NM
B2-014-PZ	6/23/2017	NA	13	3-13	3.21	NM	NM	NM	-	8.97	-	NM	NM	NM
B2-015-PZ	6/26/2017	NA	13	3-13	2.40	NM	NM	NM	-	7.60	-	NM	NM	NM
B2-024-PZ	11/3/2017	NA	12	3-12	3.63	NA	NA	NA	NA	NA	NA	NA	NA	NA
B2-051-PZ	6/22/2017	7/10/2017	13	3-13	2.60	Abandoned								
B2-053-PZ	6/27/2017	NA	13	3-13	3.30	NM	NM	NM	NM	NM	NM	-	4.02	-
B2-055-PZ	6/27/2017	NA	14	4-14	3.55	NM	NM	NM	NM	NM	NM	-	4.93	-

			W-11 T-4-1	Screen	Diana		11/3/2017			11/6/2017		12/4/2017		
Sample ID	Installation Date	Abandonment Date	Well Total Depth (Feet bgs)	Interval (Feet	Riser Stick-Up (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)		Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)
B2-007-PZ	6/23/2017	NA	13	3-13	3.11	NM	NM	NM	NM	NM	NM	NM	NM	NM
B2-011-PZ	6/26/2017	NA	13	3-13	2.30	NM	NM	NM	NM	NM	NM	NM	NM	NM
B2-013-PZ	6/26/2017	NA	15	5-15	3.04	NM	NM	NM	NM	NM	NM	NM	NM	NM
B2-014-PZ	6/23/2017	NA	13	3-13	3.21	NM	NM	NM	NM	NM	NM	NM	NM	NM
B2-015-PZ	6/26/2017	NA	13	3-13	2.40	NM	NM	NM	NM	NM	NM	NM	NM	NM
B2-024-PZ	11/3/2017	NA	12	3-12	3.63	-	5.99	-	-	5.69	-	-	6.56	-
B2-051-PZ	6/22/2017	7/10/2017	13	3-13	2.60	Abandoned								
B2-053-PZ	6/27/2017	NA	13	3-13	3.30	NM	NM	NM	NM	NM	NM	NM	NM	NM
B2-055-PZ	6/27/2017	NA	14	4-14	3.55	NM	NM	NM	NM	NM	NM	NM	NM	NM


NA = Not Applicable

NM = Not Measured

SHADED = NAPL Detection

bgs = below ground surface TOC = Top of Casing

APPENDIX H

APPENDIX I

QA/QC Tracking Log

Blank:	Date:	Sample IDay		<u>Trip</u> Blank:	Detai	Sampla IDa	
Diank.	Date.	Sample IDs:			<u>Date:</u>	Sample IDs:	
TB		1) B2-047-SB-1		ТВ		1) B2-023-SB-1	-
ID		2) B2-047-SB-4		ID		2) B2-023-SB-4	-
TB		3) B2-042-SB-1				3) B2-045-SB-1	-
ID		4) B2-042-SB-4			5/31/2017	4) B2-045-SB-5	
		5) B2-052-SB-1				5) B2-045-SB-10	
		6) B2-052-SB-5				6) B2-046-SB-1	
	5/26/2017	7) B2-052-SB-10	Duplicate: B2-042-SB-4			7) B2-046-SB-4	Duplicate: B2-040-SB-7
	5/20/2017	8) B2-027-SB-1	Date: 5/26/2017			8) B2-046-SB-10	Date: 6/1/2017
TD		9) B2-026-SB-1	<u>MS/MSD:</u> B2-038-SB-5	TD		9) B2-040-SB-1	<u>MS/MSD:</u> B2-042-SB-5
TB		10) B2-026-SB-5	Date: 5/26/2017	TB		10) B2-040-SB-7	Date: 6/1/2017
		11) B2-026-SB-10	<u>Field Blank:</u>			11) B2-040-SB-10	<u>Field Blank:</u>
		12) B2-048-SB-1	Date: 5/26/2017			12) B2-021-SB-1	Date: 5/31/2017
		13) B2-048-SB-8	<u>Eq. Blank:</u>	TB		13) B2-021-SB-4	<u>Eq. Blank:</u>
		14) B2-038-SB-1	Date: 5/26/2017		6/1/2017	14) B2-022-SB-1	Date: 5/31/2017
		15) B2-038-SB-5				15) B2-022-SB-4	-
		16) B2-030-SB-1				16) B2-020-SB-1	-
		17) B2-030-SB-5				17) B2-020-SB-4	-
	5/30/2017	18) B2-029-SB-1				18) B2-042-SB-1	-
		19) B2-029-SB-8				19) B2-042-SB-5	-
		20) B2-029-SB-10				20) B2-005-SB-1	
				I I			
		1) B2-031-SB-1				1) B2-006-SB-1	-
TB		2) B2-031-SB-7			6/2/2017	2) B2-006-SB-4	-
		3) B2-004-SB-1				3) B2-001-SB-1	-
		4) B2-004-SB-5		TB		4) B2-001-SB-5	-
	5/30/2017	5) B2-003-SB-1		TB		5) B2-037-SB-1	-
		6) B2-003-SB-4.5		TB		6) B2-037-SB-5	
		7) B2-039-SB-1	Duplicate: B2-003-SB-4.5	TB		7) B2-036-SB-1	Duplicate: B2-001-SB-5
		8) B2-039-SB-5	Date: 5/30/2017	TB		8) B2-036-SB-5	Date: 6/2/2017
		9) B2-033-SB-1	<u>MS/MSD:</u> B2-035-SB-4	TB		9) B2-049-SB-1	<u>MS/MSD:</u> B2-050-SB-5
		10) B2-033-SB-5	Date: 5/31/2017	TB		10) B2-049-SB-4	Date: 6/22/2017
		11) B2-032-SB-1	<u>Field Blank:</u>		6/22/2017	11) B2-049-SB-10	Field Blank:
TB		12) B2-032-SB-4	Date: 5/30/2017	TB		12) B2-028-SB-1	Date: 6/2/2017
		13) B2-035-SB-1	<u>Eq. Blank:</u>	TB		13) B2-028-SB-5	<u>Eq. Blank:</u>
TB		14) B2-035-SB-4	Date: 5/30/2017			14) B2-028-SB-10	Date: 6/2/2017
	5/31/2017	15) B2-034-SB-1				15) B2-050-SB-1	
	5,51/2017	16) B2-044-SB-1				16) B2-050-SB-5	
		17) B2-044-SB-7				17) B2-051-SB-1	
		18) B2-024-SB-1				18) B2-051-SB-5	
		19) B2-025-SB-1		TB	6/23/2017	19) B2-018-SB-1	
		20) B2-025-SB-4		TB	0/23/2017	20) B2-018-SB-5	

Soil samples with a sustained PID reading of 10 ppm or greater were collected for VOCs. VOC samples were placed in a cooler with a trip blank.

QA/QC Tracking Log

<u>Trip</u> <u>Blank:</u>	Date:	Sample I	Ds:				<u>Trip</u> <u>Blank:</u>
TB	·	1) B2-019-5	SB-1				TB
TB		2) B2-019-5	SB-5				
		3) B2-008-5	SB-1				
		4) B2-008-5	SB-5				TB
TB	6/23/2017	5) B2-007-S	SB-1				
TB		6) B2-007-5	SB-5				
		7) B2-007-5	SB-10	Duplicate:	B2-007-SB-5		
		8) B2-014-5	SB-1.5	Date:	6/23/2017		
TB		9) B2-014-9	SB-7	MS/MSD:	B2-015-SB-5		
		10) B2-011-5	SB-1	Date:	6/23/2017		
		11) B2-011-5	SB-5	Field Blank	<u>.</u>		
		12) B2-012-5	SB-3.5	Date:	6/23/2017		
		13) B2-012-5	SB-5	Eq. Blank:			
TB		14) B2-013-5	SB-1	Date:	6/23/2017		
TB	6/26/2017	15) B2-013-5	SB-5				
		16) B2-015-5	SB-1				
		17) B2-015-5	SB-5				
		18) B2-017-5	SB-1				
		19) B2-017-5	SB-5				
		20) B2-016-S	SB-1				
	r					1	1
		1) B2-016-S	SB-5				
	6/26/2017	2) B2-009-5	SB-1				
		3) B2-009-5	SB-5				
		4) B2-010-5	SB-1				
		5) B2-010-5	SB-4				
		6) B2-005-5	SB-1				
		7) B2-005-5	SB-5	Duplicate:	B2-054-SB-5		
		8) B2-002-5	SB-1	Date:	6/27/2017		
		9) B2-002-5	SB-4.5	MS/MSD:	B2-055-SB-6.5		
TB	6/27/2017	10) B2-055-5	SB-1	Date:	6/27/2017		
TB		11) B2-055-5	SB-6.5	Field Blank	<u>:</u>		
TB		12) B2-054-5	SB-1	Date:	6/26/2017		
TB		13) B2-054-5		<u>Eq. Blank:</u>			
TB		14) B2-053-5	SB-1	Date:	6/26/2017		
TB		15) B2-053-5		ļ			
TB		16) B2-041-5	SB-1				
		17) B2-041-5	SB-5	ļ			
		18)		ļ			
		19)		ļ			
		20)					

Date:	Sample IDs:		
6/23/2017	1) B2-051-PZ		
	2) B2-013-PZ		
	3) B2-011-PZ		
7/17/2017	4) B2-014-PZ		
	5) B1-015-PZ		
	6) B2-007-PZ		
	7)	Duplicate:	B2-013-PZ
	8)	Date:	7/17/2017
	9)	<u>MS/MSD:</u>	B2-011-PZ
	10)	Date:	7/17/2017
	11)	Field Blank:	
	12)	Date:	7/17/2017
	13)	<u>Eq. Blank:</u>	
	14)	Date:	
	15)		
	16)		
	17)		
	18)		
	19)		
	20)		
	1) B2-056-SG		
7/27/2017	2) B2-057-SG		
	3) B2-058-SG		

	1) B2-056-SG	
7/27/2017	2) B2-057-SG	
	3) B2-058-SG	
	4) B2-059-SG	
7/28/2017	5) B2-060-SG	
	6) B2-061-SG	
	7)	Duplicate: B2-057-SG
	8)	Date: 7/27/2017
	9)	<u>MS/MSD:</u>
	10)	Date:
	11)	Field Blank:
	12)	Date: 7/27/2017
	13)	<u>Eq. Blank:</u>
	14)	Date:
	15)	
	16)	
	17)	
	18)	
	19)	
	20)	

Soil samples with a sustained PID reading of 10 ppm or greater were collected for VOCs. VOC samples were placed in a cooler with a trip blank.

APPENDIX J

Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
Hexachlorobutadiene	SVOC	Air	ug/m3	3	0	0	3	100.00%
Naphthalene	SVOC	Air	ug/m3	3	0	0	3	100.00%
1,1,1-Trichloroethane	VOC	Air	ug/m3	3	3	0	3	100.00%
1,1,2,2-Tetrachloroethane	VOC	Air	ug/m3	3	0	0	3	100.00%
1,1,2-Trichloro-1,2,2-Trifluoroethane	VOC	Air	ug/m3	3	0	0	3	100.00%
1,1,2-Trichloroethane	VOC	Air	ug/m3	3	0	0	3	100.00%
1,1-Dichloroethane	VOC	Air	ug/m3	3	0	0	3	100.00%
1,1-Dichloroethene	VOC	Air	ug/m3	3	0	0	3	100.00%
1,2,3-Trichlorobenzene	VOC	Air	ug/m3	3	0	0	3	100.00%
1,2,3-Trimethylbenzene	VOC	Air	ug/m3	3	0	0	3	100.00%
1,2,4-Trichlorobenzene	VOC	Air	ug/m3	3	0	0	3	100.00%
	VOC		-	3	3	-	3	
1,2,4-Trimethylbenzene		Air	ug/m3			0		100.00%
1,2-Dibromo-3-chloropropane	VOC	Air	ug/m3	3	0	0	3	100.00%
1,2-Dibromoethane	VOC	Air	ug/m3	3	0	0	3	100.00%
1,2-Dichlorobenzene	VOC	Air	ug/m3	3	0	0	3	100.00%
1,2-Dichloroethane	VOC	Air	ug/m3	3	0	0	3	100.00%
1,2-Dichloroethene (Total)	VOC	Air	ug/m3	3	1	0	3	100.00%
1,2-Dichloropropane	VOC	Air	ug/m3	3	0	0	3	100.00%
1,3,5-Trimethylbenzene	VOC	Air	ug/m3	3	0	0	3	100.00%
1,3-Dichlorobenzene	VOC	Air	ug/m3	3	0	0	3	100.00%
1,4-Dichlorobenzene	VOC	Air	ug/m3	3	1	0	3	100.00%
2-Butanone (MEK)	VOC	Air	ug/m3	3	3	0	3	100.00%
2-Hexanone	VOC	Air	ug/m3	3	0	0	3	100.00%
4-Methyl-2-pentanone (MIBK)	VOC	Air	ug/m3	3	0	0	3	100.00%
Acetone	VOC	Air	ug/m3	3	3	0	3	100.00%
Benzene	VOC	Air	ug/m3	3	0	0	3	100.00%
Bromodichloromethane	VOC	Air	ug/m3	3	1	0	3	100.00%
Bromoform	VOC	Air	ug/m3	3	0	0	3	100.00%
Bromomethane	VOC	Air	ug/m3	3	0	0	3	100.00%
Carbon disulfide	VOC	Air	ug/m3	3	3	0	3	100.00%
Carbon tetrachloride	VOC	Air	ug/m3	3	0	0	3	100.00%
Chlorobenzene	VOC	Air	ug/m3	3	0	0	3	100.00%
Chloroethane	VOC		ug/m3	3	0	0	3	100.00%
Chloroform	VOC	Air	ug/m3	3	3	0	3	100.00%
Chloromethane	VOC	Air	ug/m3	3	0	0	3	100.00%
cis-1,2-Dichloroethene	VOC	Air	ug/m3	3	0	0	3	100.00%
cis-1,3-Dichloropropene	VOC	Air	ug/m3	3	0	0	3	100.00%
Cyclohexane	VOC	Air	ug/m3	3	3	0	3	100.00%
Dibromochloromethane	VOC	Air	ug/m3	3	0	0	3	100.00%
Dichlorodifluoromethane	VOC	Air	ug/m3	3	3	0	3	100.00%
Ethylbenzene	VOC	Air	ug/m3	3	0	0	3	100.00%
Isopropylbenzene	VOC	Air	ug/m3	3	0	0	3	100.00%
Methyl Acetate	VOC	Air	ug/m3	3	0	0	3	100.00%
Methyl tert-butyl ether (MTBE)	VOC	Air	ug/m3	3	0	0	3	100.00%
Methylene Chloride	VOC	Air	ug/m3	3	0	0	3	100.00%
Styrene	VOC	Air	ug/m3	3	0	0	3	100.00%
Tetrachloroethene	VOC		ug/m3	3			3	
		Air	0		1	0		100.00%
Toluene	VOC	Air	ug/m3	3	3	0	3	100.00%
trans-1,2-Dichloroethene	VOC	Air	ug/m3	3	1	0	3	100.00%
trans-1,3-Dichloropropene	VOC	Air	ug/m3	3	0	0	3	100.00%
Trichloroethene	VOC	Air	ug/m3	3	0	0	3	100.00%

	Parameter			Number of		Number of	Number of	
Parameter	Group	Matrix	Unit		Detections	Rejected	Non-rejected	Completeness
	Group			Results		Results	Results	
Trichlorofluoromethane	VOC	Air	ug/m3	3	3	0	3	100.00%
Vinyl chloride	VOC	Air	ug/m3	3	0	0	3	100.00%
Xylenes	VOC	Air	ug/m3	3	3	0	3	100.00%
1,4-Dioxane	VOC/SVOC	Air	ug/m3	3	2	0	3	100.00%
Cyanide	CN	Soil	mg/kg	67	56	0	67	100.00%
Aluminum	Metal	Soil	mg/kg	67	67	0	67	100.00%
Antimony	Metal	Soil	mg/kg	67	1	0	67	100.00%
Arsenic	Metal	Soil	mg/kg	73	65	0	73	100.00%
Barium	Metal	Soil	mg/kg	67	67	0	67	100.00%
Beryllium	Metal	Soil	mg/kg	67	44	0	67	100.00%
Cadmium	Metal	Soil	mg/kg	67	33	0	67	100.00%
Chromium	Metal	Soil	mg/kg	68	68	0	68	100.00%
Chromium VI	Metal	Soil	mg/kg	69	16	0	69	100.00%
Cobalt	Metal	Soil	mg/kg	67	60	0	67	100.00%
Copper	Metal	Soil	mg/kg	67	65	0	67	100.00%
Iron	Metal	Soil	mg/kg	67	67	0	67	100.00%
Lead	Metal	Soil	mg/kg	67	65	0	67	100.00%
Manganese	Metal	Soil	mg/kg	69	69	0	69	100.00%
Mercury	Metal	Soil	mg/kg	67	38	0	67	100.00%
Nickel	Metal	Soil	mg/kg	67	67	0	67	100.00%
Selenium	Metal	Soil	mg/kg	67	3	0	67	100.00%
Silver	Metal	Soil	mg/kg	67	66	0	67	100.00%
Thallium	Metal	Soil	mg/kg	67	0	0	67	100.00%
Vanadium	Metal	Soil	mg/kg	67	67	0	67	100.00%
Zinc	Metal	Soil	mg/kg	67	67	0	67	100.00%
Aroclor 1016	PCB	Soil	mg/kg	34	0	0	34	100.00%
Aroclor 1221	PCB	Soil	mg/kg	34	0	0	34	100.00%
Aroclor 1222	PCB	Soil	mg/kg	34	0	0	34	100.00%
Aroclor 1232	PCB	Soil	mg/kg	34	0	0	34	100.00%
Aroclor 1242	PCB	Soil	mg/kg	34	0	0	34	100.00%
Aroclor 1248 Aroclor 1254	PCB	Soil	mg/kg	34	1	0	34	100.00%
Aroclor 1254	PCB	Soil	mg/kg	34	4	0	34	100.00%
Aroclor 1260	PCB	Soil		34	0	0	34	100.00%
	PCB		mg/kg	34	0	0	34	100.00%
Aroclor 1268	PCB	Soil Soil	mg/kg	34	4	-	34	100.00%
PCBs (total)			mg/kg		13	0	67	
1,1-Biphenyl	SVOC	Soil	mg/kg	67		0	67	100.00%
1,2,4,5-Tetrachlorobenzene	SVOC	Soil	mg/kg	67	1	0		100.00%
2,3,4,6-Tetrachlorophenol	SVOC	Soil	mg/kg	67	0	16	51	76.12%
2,4,5-Trichlorophenol	SVOC	Soil	mg/kg	67	0	15	52	77.61%
2,4,6-Trichlorophenol	SVOC	Soil	mg/kg	67	0	15	52	77.61%
2,4-Dichlorophenol	SVOC	Soil	mg/kg	67	0	15	52	77.61%
2,4-Dimethylphenol	SVOC	Soil	mg/kg	67	8	14	53	79.10%
2,4-Dinitrophenol	SVOC	Soil	mg/kg	67	0	16	51	76.12%
2,4-Dinitrotoluene	SVOC	Soil	mg/kg	67	2	0	67	100.00%
2,6-Dinitrotoluene	SVOC	Soil	mg/kg	67	0	0	67	100.00%
2-Chloronaphthalene	SVOC	Soil	mg/kg	67	3	0	67	100.00%
2-Chlorophenol	SVOC	Soil	mg/kg	67	0	15	52	77.61%
2-Methylnaphthalene	SVOC	Soil	mg/kg	67	63	0	67	100.00%
2-Methylphenol	SVOC	Soil	mg/kg	67	5	15	52	77.61%
2-Nitroaniline	SVOC	Soil	mg/kg	67	0	0	67	100.00%
3&4-Methylphenol(m&p Cresol)	SVOC	Soil	mg/kg	67	6	15	52	77.61%

	-			Number of		Number of	Number of	
Parameter	Parameter	Matrix	Unit		Detections	Rejected	Non-rejected	Completeness
	Group			Results		Results	Results	•
3,3'-Dichlorobenzidine	SVOC	Soil	mg/kg	67	0	0	67	100.00%
4-Chloroaniline	SVOC	Soil	mg/kg	67	1	0	67	100.00%
4-Nitroaniline	SVOC	Soil	mg/kg	67	0	0	67	100.00%
Acenaphthene	SVOC	Soil	mg/kg	67	44	0	67	100.00%
Acenaphthylene	SVOC	Soil	mg/kg	67	51	0	67	100.00%
Acetophenone	SVOC	Soil	mg/kg	67	10	0	67	100.00%
Anthracene	SVOC	Soil	mg/kg	67	59	0	67	100.00%
Benz[a]anthracene	SVOC	Soil	mg/kg	67	61	0	67	100.00%
Benzaldehyde	SVOC	Soil	mg/kg	67	21	23	44	65.67%
Benzo[a]pyrene	SVOC	Soil	mg/kg	67	57	0	67	100.00%
Benzo[b]fluoranthene	SVOC	Soil	mg/kg	67	59	0	67	100.00%
Benzo[g,h,i]perylene	SVOC	Soil	mg/kg	67	59	0	67	100.00%
Benzo[k]fluoranthene	SVOC	Soil	mg/kg	67	59	0	67	100.00%
bis(2-chloroethoxy)methane	SVOC	Soil	mg/kg	67	0	0	67	100.00%
bis(2-Chloroethyl)ether	SVOC	Soil	mg/kg	67	1	0	67	100.00%
bis(2-Chloroisopropyl)ether	SVOC	Soil		67	0	0	67	100.00%
	SVOC	Soil	mg/kg	67	17	0	67	100.00%
bis(2-Ethylhexyl)phthalate	SVOC		mg/kg	67	17	0	67	100.00%
Caprolactam		Soil	mg/kg	67	21		67	
Carbazole	SVOC	Soil	mg/kg		61	0	67	100.00%
Chrysene	SVOC	Soil	mg/kg	67		0		
Dibenz[a,h]anthracene	SVOC	Soil	mg/kg	67	40	0	67	100.00%
Diethylphthalate	SVOC	Soil	mg/kg	67	4	0	67	100.00%
Di-n-butylphthalate	SVOC	Soil	mg/kg	67	5	0	67	100.00%
Di-n-ocytlphthalate	SVOC	Soil	mg/kg	67	4	0	67	100.00%
Fluoranthene	SVOC	Soil	mg/kg	67	63	0	67	100.00%
Fluorene	SVOC	Soil	mg/kg	67	42	0	67	100.00%
Hexachlorobenzene	SVOC	Soil	mg/kg	67	0	0	67	100.00%
Hexachlorobutadiene	SVOC	Soil	mg/kg	67	0	0	67	100.00%
Hexachlorocyclopentadiene	SVOC	Soil	mg/kg	67	0	0	67	100.00%
Hexachloroethane	SVOC	Soil	mg/kg	67	5	0	67	100.00%
Indeno[1,2,3-c,d]pyrene	SVOC	Soil	mg/kg	67	54	0	67	100.00%
Isophorone	SVOC	Soil	mg/kg	67	3	0	67	100.00%
Naphthalene	SVOC		mg/kg	67	39	0	67	100.00%
Nitrobenzene	SVOC	Soil	mg/kg	67	1	0	67	100.00%
N-Nitroso-di-n-propylamine	SVOC	Soil	mg/kg	67	0	0	67	100.00%
N-Nitrosodiphenylamine	SVOC	Soil	mg/kg	67	4	0	67	100.00%
Pentachlorophenol	SVOC	Soil	mg/kg	67	0	17	50	74.63%
Phenanthrene	SVOC	Soil	mg/kg	67	63	0	67	100.00%
Phenol	SVOC	Soil	mg/kg	67	6	15	52	77.61%
Pyrene	SVOC	Soil	mg/kg	67	63	0	67	100.00%
Diesel Range Organics	TPH	Soil	mg/kg	67	63	0	67	100.00%
Gasoline Range Organics	TPH	Soil	mg/kg	67	20	0	67	100.00%
Oil and Grease	TPH	Soil	mg/kg	67	67	0	67	100.00%
1,1,1-Trichloroethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,1,2,2-Tetrachloroethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,1,2-Trichloro-1,2,2-Trifluoroethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,1,2-Trichloroethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,1-Dichloroethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,1-Dichloroethene	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,2,3-Trichlorobenzene	VOC	Soil	mg/kg	23	1	0	23	100.00%
1,2,4-Trichlorobenzene	VOC	Soil	mg/kg	23	1	0	23	100.00%

				NT 1 0				
Demonstern	Parameter	N.T 4	TT:*4	Number of	Detections	Number of		Completence
Parameter	Group	Matrix	Unit	Vandated Results	Detections	Rejected Results	Non-rejected Results	Completeness
	NOG	0.11			0			100.000/
1,2-Dibromo-3-chloropropane	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,2-Dibromoethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,2-Dichlorobenzene	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,2-Dichloroethane	VOC	Soil	mg/kg	23	1	0	23	100.00%
1,2-Dichloroethene (Total)	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,2-Dichloropropane	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,3-Dichlorobenzene	VOC	Soil	mg/kg	23	0	0	23	100.00%
1,4-Dichlorobenzene	VOC	Soil	mg/kg	23	0	0	23	100.00%
2-Butanone (MEK)	VOC	Soil	mg/kg	23	2	0	23	100.00%
2-Hexanone	VOC	Soil	mg/kg	23	0	0	23	100.00%
4-Methyl-2-pentanone (MIBK)	VOC	Soil	mg/kg	23	0	0	23	100.00%
Acetone	VOC	Soil	mg/kg	23	15	0	23	100.00%
Benzene	VOC	Soil	mg/kg	23	2	0	23	100.00%
Bromodichloromethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
Bromoform	VOC	Soil	mg/kg	23	0	0	23	100.00%
Bromomethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
Carbon disulfide	VOC	Soil	mg/kg	23	4	0	23	100.00%
Carbon tetrachloride	VOC	Soil	mg/kg	23	0	0	23	100.00%
Chlorobenzene	VOC	Soil	mg/kg	23	0	0	23	100.00%
Chloroethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
Chloroform	VOC	Soil	mg/kg	23	0	0	23	100.00%
Chloromethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
cis-1,2-Dichloroethene	VOC	Soil	mg/kg	23	0	0	23	100.00%
cis-1,3-Dichloropropene	VOC	Soil	mg/kg	23	0	0	23	100.00%
Cyclohexane	VOC	Soil	mg/kg	23	3	0	23	100.00%
Dibromochloromethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
Dichlorodifluoromethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
Ethylbenzene	VOC	Soil	mg/kg	23	4	0	23	100.00%
Isopropylbenzene	VOC	Soil	mg/kg	23	4	0	23	100.00%
Methyl Acetate	VOC	Soil	mg/kg	23	0	0	23	100.00%
Methyl tert-butyl ether (MTBE)	VOC	Soil	mg/kg	23	0	0	23	100.00%
Methylene Chloride	VOC	Soil	mg/kg	23	0	0	23	100.00%
Styrene	VOC	Soil	mg/kg	23	0	0	23	100.00%
Tetrachloroethene	VOC	Soil	mg/kg	23	0	0	23	100.00%
Toluene	VOC	Soil	mg/kg	23	1	0	23	100.00%
trans-1,2-Dichloroethene	VOC	Soil	mg/kg	23	0	0	23	100.00%
trans-1,3-Dichloropropene	VOC	Soil	mg/kg	23	0	0	23	100.00%
Trichloroethene	VOC	Soil	mg/kg	23	0	0	23	100.00%
Trichlorofluoromethane	VOC	Soil	mg/kg	23	0	0	23	100.00%
Vinyl chloride	VOC	Soil	mg/kg	23	0	0	23	100.00%
Xylenes	VOC	Soil	mg/kg	23	3	0	23	100.00%
1,4-Dioxane	VOC/SVOC	Soil	mg/kg	23	0	23	0	0.00%
Lead	Metal	Water	ug/L	5	4	0	5	100.00%
Diesel Range Organics	TPH	Water	ug/L	5	5	0	5	100.00%
Gasoline Range Organics	TPH	Water	ug/L	5	5	0	5	100.00%
1,1,1-Trichloroethane	VOC	Water	ug/L	5	0	0	5	100.00%
			-			0		100.00%
								100.00%
			Ŭ					
			U U					
			Ū					
1,1,2,2-Tetrachloroethane1,1,2-Trichloro-1,2,2-Trifluoroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethene	VOC VOC VOC VOC VOC	Water Water Water Water	ug/L ug/L ug/L ug/L ug/L	5 5 5 5 5 5	0 0 0 0 0	0 0 0 0 0	5 5 5 5 5 5	

Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Non-rejected Results	
1,2,3-Trichlorobenzene	VOC	Water	ug/L	5	0	0	5	100.00%
1,2,4-Trichlorobenzene	VOC	Water	ug/L	5	0	0	5	100.00%
1,2-Dibromo-3-chloropropane	VOC	Water	ug/L	5	0	0	5	100.00%
1,2-Dibromoethane	VOC	Water	ug/L	5	0	0	5	100.00%
1,2-Dichlorobenzene	VOC	Water	ug/L	5	0	0	5	100.00%
1,2-Dichloroethane	VOC	Water	ug/L	5	0	0	5	100.00%
1,2-Dichloroethene (Total)	VOC	Water	ug/L	5	0	0	5	100.00%
1,2-Dichloropropane	VOC	Water	ug/L	5	0	0	5	100.00%
1,3-Dichlorobenzene	VOC	Water	ug/L	5	0	0	5	100.00%
1,4-Dichlorobenzene	VOC	Water	ug/L	5	0	0	5	100.00%
2-Butanone (MEK)	VOC	Water	ug/L	5	2	0	5	100.00%
2-Hexanone	VOC	Water	ug/L	5	0	0	5	100.00%
4-Methyl-2-pentanone (MIBK)	VOC	Water	ug/L	5	0	0	5	100.00%
Acetone	VOC	Water	ug/L	5	3	0	5	100.00%
Benzene	VOC	Water	ug/L	5	2	0	5	100.00%
Bromodichloromethane	VOC	Water	ug/L	5	0	0	5	100.00%
Bromoform	VOC	Water	ug/L	5	0	0	5	100.00%
Bromomethane	VOC	Water	ug/L	5	0	5	0	0.00%
Carbon disulfide	VOC	Water	ug/L	5	0	0	5	100.00%
Carbon tetrachloride	VOC	Water	ug/L	5	0	0	5	100.00%
Chlorobenzene	VOC	Water	ug/L	5	0	0	5	100.00%
Chloroethane	VOC	Water	ug/L	5	0	0	5	100.00%
Chloroform	VOC	Water	ug/L	5	0	0	5	100.00%
Chloromethane	VOC	Water	ug/L	5	0	0	5	100.00%
cis-1,2-Dichloroethene	VOC	Water	ug/L	5	0	0	5	100.00%
cis-1,3-Dichloropropene	VOC	Water	ug/L	5	0	0	5	100.00%
Cyclohexane	VOC	Water	ug/L	5	2	0	5	100.00%
Dibromochloromethane	VOC	Water	ug/L	5	0	0	5	100.00%
Dichlorodifluoromethane	VOC	Water	ug/L	5	0	0	5	100.00%
Ethylbenzene	VOC	Water	ug/L	5	2	0	5	100.00%
Isopropylbenzene	VOC	Water	ug/L	5	2	0	5	100.00%
Methyl Acetate	VOC	Water	ug/L	5	0	0	5	100.00%
Methyl tert-butyl ether (MTBE)	VOC	Water		5	5	0	5	100.00%
Methylene Chloride	VOC	Water	ug/L	5	0	0	5	100.00%
Styrene	VOC	Water	ug/L	5	0	0	5	100.00%
Tetrachloroethene	VOC	Water	ug/L	5	0	0	5	100.00%
Toluene	VOC	Water	ug/L	5	2	0	5	100.00%
trans-1,2-Dichloroethene	VOC	Water	ug/L	5	0	0	5	100.00%
trans-1,3-Dichloropropene	VOC	Water	ug/L	5	0	0	5	100.00%
Trichloroethene	VOC	Water	ug/L	5	0	0	5	100.00%
Trichlorofluoromethane	VOC	Water	ug/L	5	0	0	5	100.00%
Vinyl chloride	VOC	Water	ug/L	5	0	0	5	100.00%
Xylenes	VOC	Water	ug/L	5	2	0	5	100.00%

Data validation has been completed for a representative 50% of all samples