






High marsh zone in MD declines >33% by 2050 - converts to low marsh

SLAMM underestimates marsh erosion



"Upper limit of likely range" SLR scenario, 2010-2100 = +1.23 meters (TNC, 2021).



## Marsh restoration methods – need scaling up rapidly!

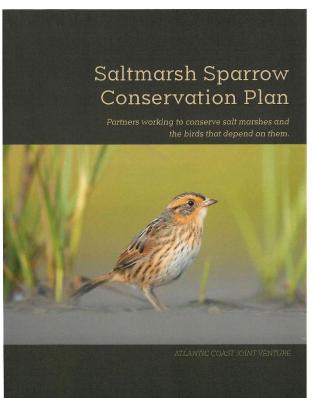
 Marsh high enough to drain: runnels (small hand-dug channels). Cost: \$1000/acre



Runneling project: Coastal Bays (2023)

2. Marsh too low to drain:

Add sediment to raise the marsh surface.


Cost: >\$20,000/acre



Sediment enhancement: Blackwater NWR (2016)

### Atlantic Coast Joint Venture Saltmarsh Sparrow Conservation Plan

Saltmarsh Sparrow: A conservation umbrella for the entire high marsh ecosystem



- SALS nests only in high marsh, the most vulnerable marsh zone to SLR.
  - Extinction possible by mid 21<sup>st</sup>
     Century, due to SLR and marsh loss.

| 1000.    |                         |                        |                                    |  |
|----------|-------------------------|------------------------|------------------------------------|--|
| State    | % of<br>global<br>pop'n | Pop'n goal<br>(indivs) | Minimum<br>habitat goal<br>(acres) |  |
| Delaware | 6.8%                    | 1,711                  | 2,838 ac                           |  |
| Maryland | 25.2%                   | 6,302                  | 24,783 ac                          |  |
| Virginia | 7%                      | 1,753                  | 13,517 ac                          |  |





## Marshes for Tomorrow: A project of the DRCN

Goal: Create an implementation plan for tidal marsh restoration on a landscape scale in Maryland.

#### Objective 1

#### **Marsh prioritization**

Identify at least 25,000 acres of tidal marsh to be maintained long term to conserve the high marsh ecosystem and Saltmarsh Sparrow in Maryland in the face of sea level rise.

#### Objective 2

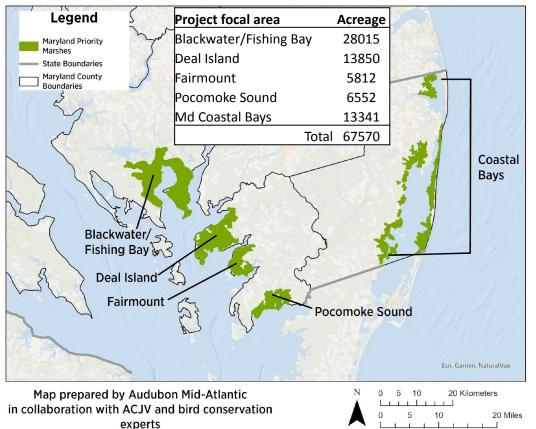
#### **Restoration strategy**

Determine a schedule of restoration projects to maintain this acreage as high marsh over the long term.

#### **Objective 3**

#### **Community input**

Create conceptual
conservation strategies at
the local/county level,
which have the broad
approval of local
communities




NFWF: \$416,000



## MfT project focal areas

## Maryland Priority Marshes for Saltmarsh Sparrow





### Thank you to our **Partners** and **Funders**







Funding provided by:

USFWS Partners for Fish & Wildlife Program (via Chesapeake Bay Field Office)

NFWF National Coastal Resilience Fund





















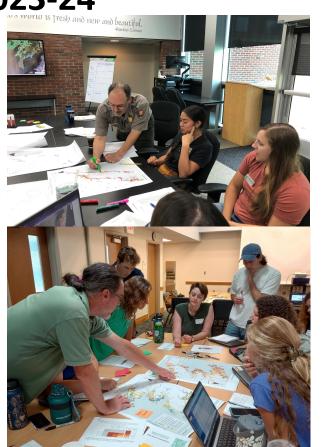












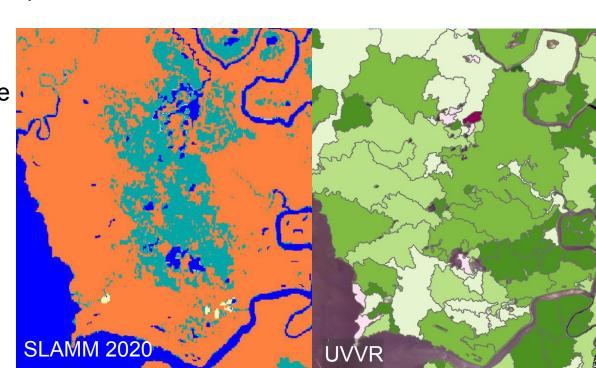


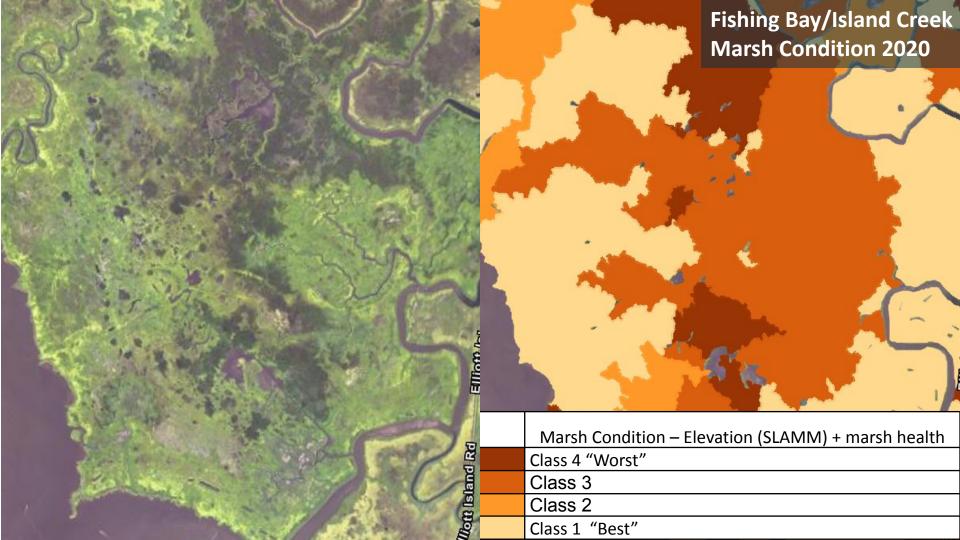



**Marshes for Tomorrow Process 2023-24** 

| Working Group             | Role                                                     |  |
|---------------------------|----------------------------------------------------------|--|
| Project Advisory<br>Team  | Steer & advise project                                   |  |
| Core Analysis<br>Team     | Create, review, spatial models                           |  |
| Technical<br>Workshops    | Create draft marsh prioritizations                       |  |
| Community Engagement Team | Marsh use survey, community meetings                     |  |
| Focus Groups              | Finalize Priority Marsh Areas and restoration strategies |  |





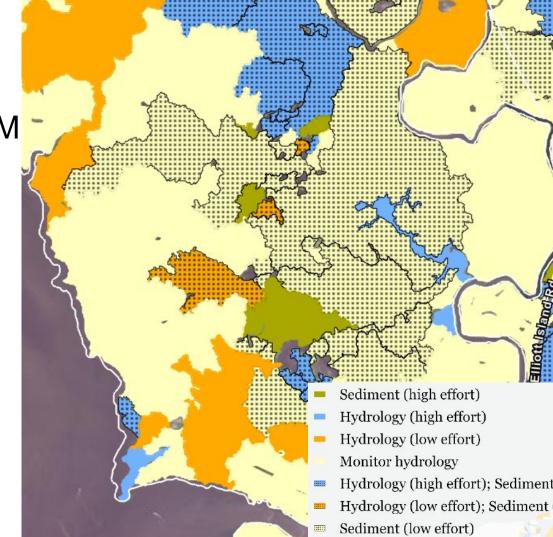




## **Marsh Condition Model**

Includes marsh health (**UVVR**) and future resilience to SLR (elevation, from **SLAMM**).

- Analysis Conducted for all Marsh Units in the Chesapeake and Coastal Bays
- Marsh Unit small scale drainage systems within a Marsh
- <u>USGS Coastal Wetland</u> <u>Synthesis</u>
- Landscape Scale Approach

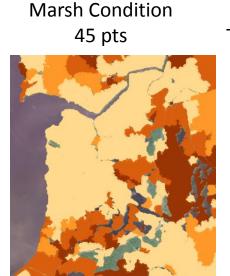


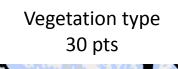


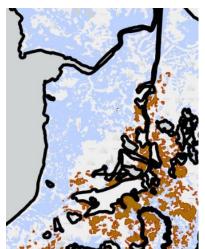

## Restoration Decision Model

Based on UVVR and SLAMM

Designated outcomes for


- Hydrological repair (runnels, other)
- Sediment placement




## Marsh Prioritization Model

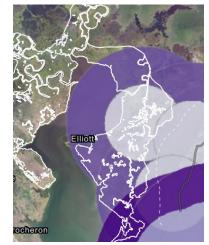
Top-ranked criteria were weighted and combined into single prioritization model







Migration corridors 12.5 pts




Dredging buffers and navigation channels

12.5 pts

Total

10tal 100 pts



# Marsh Prioritization - additional criteria (visual overlays)

| Marsh Prioritization criteria                              | Data Layer                                                 | Included as               |
|------------------------------------------------------------|------------------------------------------------------------|---------------------------|
| Land ownership                                             | Land ownership                                             | Visual overlay map        |
| Saltmarsh Sparrow abundance                                | SHARP abundance 2021-2022                                  | Visual overlay map        |
| infrastructure                                             | Community identified features and community infrastructure | Visual overlay map        |
| Landowners enthusiastic about restoration; conserved lands | Protected lands                                            | Visual overlay map        |
| Large contiguous marsh blocks                              | No specific data layer                                     | Visual assessment of maps |





## Marshes for Tomorrow Plan products

- L. Map of Priority Marsh Areas (approx. 29,000 acres)
- Spatially explicit restoration recommendations.
- 3. Estimated acreages for each restoration practice.
- Priority sequencing within Priority Marsh Areas
- 5. For landscape-scale planning need to complete site-level assessment for project plans.



## Marshes for Tomorrow GIS Experience Builder

https://experience.arcgis.com/experience/0d1703e972c849bf88acd6cd7026b50c/page/Marshes-for-Tomorrow/

Audubon

Marshes for Tomorrow

Marsh Condition

Restoration Model

Prioritization Model

Sources

#### Marshes for Tomorrow

A Strategic Plan for the Restoration and Resiliency of Maryland's Tidal Marshes



#### What does the future hold?

- 1. Extensive high marsh (historically 80% of tidal marshes) will be effectively gone by 2070.
- 2. Upslope marsh migration can only replace a small fraction of high marsh lost to SLR.
- 3. We cannot save all, or even most, of today's marsh, due to high restoration costs.
- 4. If we act soon with low-tech/low-cost hydrological restoration (runnels, remove tidal restrictions) we can "buy time" and reduce long-term costs.
- 5. Sediment placement is much more expensive, and will be needed later. Will require novel sources of material and new permitting.



## Marshes for Tomorrow -**Implementation**

- First project in permitting (runneling at Irish Grove Sanctuary, Somerset County, MD)
- Integrate MfT with MD State Wetlands Adaptation Strategy (2025)
- Apply MfT spatial models to Chesapeake Bay Trust's Tidal Wetlands Strategic Plan (EPA Wetlands Capacity Building)







### **Next Steps - implementation**

- <u>December</u>: Partner review of full MfT draft report.
- <u>Winter 2025</u>: Meet private landowners to set up additional restoration projects
- <u>Summer 2025</u>: Collect baseline data on Irish Grove project.
- <u>2025</u>.....: Implement restoration projects on public and private lands.