

Maryland Negative Declaration for Control Techniques Guidelines (CTG) for the Oil and Natural Gas Industry (EPA-453/B-16-001 – October 2016)

June 11, 2020 SIP # 20-07

Prepared for: U.S. Environmental Protection Agency

Prepared by: Maryland Department of the Environment

Maryland Department of the Environment

© Maryland Department of the Environment Air and Radiation Administration 1800 Washington Boulevard, Suite 730 Baltimore, Maryland 21230 Phone 410.537.3255 • Fax 410.537.4223

TABLE OF CONTENTS

- 1. SIP Revision Negative Declaration for Oil and Gas CTG
- 2. Public Hearing Process May 4 June 11
 - a. Public Hearing Notices
 - b. Maryland Department of the Environment Hearing Statement
 - c. Public Hearing Transcript
 - d. Comments / Response to Comments

SECTION 1 - SIP Revision – Negative Declaration for Oil and Gas CTG

Maryland Negative Declaration for Control Techniques Guidelines (CTG) for the Oil and Natural Gas Industry (EPA453/B-16-001) dated October 2016

March 20, 2020

The Maryland Department of the Environment (MDE) has conducted a review of potential sources subject to the requirements of the Oil and Natural Gas Industry CTG, EPA-453/B-16-001. MDE searched Maryland's oil and gas well records and air permit records. MDE also searched EPA greenhouse gas reporting files, and internet SIC code classification.

Possible Maryland Sources

Maryland NG	facilities in t	the Transmission Sector	
Permit No.	County	Company	Year built
24-009-0021	Calvert	Dominion Cove Point LNG	1972/2014
24-021-0707	Frederick	Dominion Myersville Compressor Station	2014
24-023-0881	Garrett	Enbridge Eastern Accident Compressor Station	1965
24-023-0881	Garrett	Enbridge Accident Underground Storage	1965
24-027-0223	Howard	Williams Transco Ellicott City Compressor Station (190)	1951
NA	Baltimore	TransCanada Rutledge Compessor Station	1988

Maryland Wells					
Permit No.	County	Well Type	Common Name	Company	Production
50-GO-0001	GA	Production	Welch #1	Ruthanne Welch	<15 barrels equivelent
51-GO-0132	GA	Production	Dawson #1	Phyllis J. Arnold	<15 barrels equivelent
52-GO-0134	GA	Production	Welch #2	Ruthanne Welch	<15 barrels equivelent
53-GO-0136	GA	Production	Swartzentruber #1	Mike Ross Inc.	<15 barrels equivelent
54-GO-0005	GA	Production	Hamstead #1	Jerome K and Jeffrey A. Moyer	<15 barrels equivelent
54-GO-0006	GA	Production	Arnold #1	Closed	
55-GO-0011	GA	Production	Hamilton #1	Premma Oil & Gas LLC	<15 barrels equivelent
55-GO-0017	GA	Production	Stahl #1	Premma Oil & Gas LLC	<15 barrels equivelent
94-GO-0132	AL	Production	Curry Well #1	Oil & Gas Management, Inc.	<15 barrels equivelent

MDE research found that each of the five Maryland facilities in the natural gas transmission and storage segment do not have a storage tank that meets the definition and applicability with a PTE greater than or equal to 6 tons per year VOC. There are no natural gas or oil

production facilities in Maryland. MDE research concludes that each of the eight Maryland individual well facilities in the production and processing segment do not produce greater than 15 barrel equivalent per well per day of natural gas. MDE research also concludes that these older gas wells in Maryland do not utilize pneumatic pumps or devices subject to the CTG.

CTG Emission Source	Maryland Source Research
Storage Vessels Individual storage vessel with a potential to emit (PTE) greater than or equal to 6 tpy VOC.	No Maryland Sources >/= 6 tpy VOC
Pneumatic Controllers - NG processing plant	No Maryland Sources
Pneumatic Controllers - NG wellhead to pipeline	No Maryland Sources Identified
Pneumatic Pumps - NG processing plant	No Maryland Sources
Pneumatic Pumps - NG wellhead to pipeline	No Maryland Sources Identified
Compressors - NG wellhead to pipeline	No Maryland Sources
Compressors at wellhead	RACT Not Applicable
Equipment Leaks at NG processing plant	No Maryland Sources
Fugitive Emissions - NG processing	No Maryland Sources
Fugitive Emissions - NG wells with GOR > 300	No Maryland Sources
Fugitive Emissions - NG wells with GOR < 300	RACT Not Applicable

Conclusion

Maryland does have sources that operate in the production and processing and transmission and storage segments of the oil and natural gas industry, however, no facility was determined to meet the CTG applicability criteria.

Attachments

- A. Letter/email from Dominion
- B. Letter/email from Enbridge
- C. Letter/email from TransCanada
- D. Letter/email from Williams

www.dominionenergy.com

October 30, 2018

BY U.S. MAIL, RETURN RECEIPT REQUESTED

7016 2070 0001 1101 8232

Brian Hug Program Manager Air Quality Planning Program Air and Radiation Administration Maryland Department of the Environment 1800 Washington Boulevard Baltimore, Maryland 21230

RE: <u>Dominion Energy, Inc. Information Request Response</u> October 5, 2018 MDE Information Request

Dear Mr. Hug:

In response to your October 5, 2018 letter, Dominion Energy, Inc. is providing the following information in regards to tank inventories at the Dominion Energy Cove Point LNG Terminal and the Dominion Energy Myersville Compressor Station:

- 1) A complete tank inventory, including tank contents and size;
- 2) Applicability of each tank to the October 2016 Environmental Protection Agency's (EPA's) finalized Control Techniques Guidelines (CTG) for the Oil and Natural Gas Industry (EPA-453/B-16-001), Section 4.1 APPLICABILITY;
- 3) Estimated maximum annual emissions of Volatile Organic Carbons (VOCs) over the past five (5) years for CTG applicable tanks;
- 4) E&P TANKS program, version 2.0 calculation reports, where applicable; and
- 5) Control devices and vapor recovery units (VRU) associated with each tank applicable to the CTG.

If you have any questions, please contact Joseph Pietro at (804) 273-4175 or via email at Joseph.J.Pietro@dominionenergy.com.

Sincerely.

Richard B. Gangle

Director, Environmental Services

Enclosures (4)

cc: John Artes, MDE (john.artes@maryland.gov)

Duane King, MDE (duane.king@maryland.gov)

Randy Mosier, MDE (<u>randy.mosier@maryland.gov</u>)

Frank Courtright, MDE (<u>frank.courtright@maryland.gov</u>)

Joshua Shodeinde, MDE (joshua.shodeinde@maryland.gov)

Christopher Cripps, EPA Region 3 (cripps.christopher@epa.gov)

Location	Tank Size (Gallons)	Tank Contents	Control Device	VRU	VOC ² (tons/year)	Applicable to CTG ³
Dominion Energy Cove Point LNG Terminal	909	Diesel Fuel		- 10		No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	1,000	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	460	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	550	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	200	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	200	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	2,000	Lube Oil				No, Engine Lube Oil
Dominion Energy Cove Point LNG Terminal	4,000	Lube Oil				No, Engine Lube Oil
Dominion Energy Cove Point LNG Terminal	1,000	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	1,000	Gasoline				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	500	Used Lube Oil				No, Engine Lube Oil
Dominion Energy Cove Point LNG Terminal	550	Used Lube Oil				No, Engine Lube Oil
Dominion Energy Cove Point LNG Terminal	200	NGL ⁴ Tank	No, vents to atmosphere	No	04	Yes, Produced NGL
Dominion Energy Cove Point LNG Terminal	550	Used Oil				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	9,463	Oily Wastewater				No, Stormwater, A/C Water
Dominion Energy Cove Point LNG Terminal	200	Oily Wastewater				No, A/C water
Dominion Energy Cove Point LNG Terminal	2,100	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	460	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	460	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	460	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	460	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	460	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	740	Oily Wastewater	Yes, Flare	No	0.000	Yes, Produced Water
Dominion Energy Cove Point LNG Terminal	330	Oily Wastewater				No, A/C water
Dominion Energy Cove Point LNG Terminal	115	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	115	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	115	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	115	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	115	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	115	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	106	Diesel Fuel				No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	39,654	Contaminated DGA ⁶	No, vents to atmosphere	No	0	Yes, Condensate Present
Dominion Energy Cove Point LNG Terminal	38,152	Hydrocarbons	Yes, Closed Loop to Flare	No	0.020	Yes, Condensate
Dominion Energy Cove Point LNG Terminal	38,152	Hydrocarbons	Yes, Closed Loop to Flare	No	20	Yes, Condensate ⁷
Dominion Energy Cove Point LNG Terminal	102,448	Propane				No, Operates > 29.7 psi
Dominion Energy Cove Point LNG Terminal	102,448	Propane				No, Operates > 29.7 psi
Dominion Energy Cove Point LNG Terminal	102,448	Propane				No, Operates > 29.7 psi
Dominion Energy Cove Point LNG Terminal	102,448	Propane				No, Operates > 29.7 psi
Dominion Energy Cove Point LNG Terminal	5,538	Propane				No, Consumable Product
Dominion Energy Cove Point LNG Terminal	34,040	Ethane				No, Non-VOC
Dominion Energy Cove Point LNG Terminal	34,040	Ethane				No, Non-VOC
Dominion Energy Cove Point LNG Terminal	1,850	Propane				No. Fuel Tank

Dominion Energy Cove Point LNG Terminal and Myersville Compressor Station Tank List and Control Technical Guidelines Applicability (EPA-453/B-16-001)

8
9
7
2
55
7
9
=
≝
<u>:</u>
<u>.</u>
힑
¥
S
.⊑
읭
<u>;</u>
2
<u>.</u>
무
ec
듸
잂
悥
ŭ
p
t a
.is
¥
ā
_
ta
S
S
ě
읨
9
Ě
S
Š
Ś
b
ā
a
Έ
ē.
5
ž
프
<u></u>
٩
8
ŭ
8
je
딥
ion Energy Cove Point L
Ē
Domin
۵

Dominion Energy Cove Point LNG Terminal	1,000	Propane			No, Fuel Tank
Dominion Energy Cove Point LNG Terminal	220	NI-712			No, Consumable Product
Dominion Energy Cove Point LNG Terminal	12,000	Aqueous Ammonia			No, Non-VOC
Dominion Energy Cove Point LNG Terminal	18,000	Aqueous Ammonia			No, Non-VOC
Dominion Energy Cove Point LNG Terminal	40,000	Aqueous Ammonia			No, Non-VOC
Dominion Energy Cove Point LNG Terminal	800	Aqueous Ammonia			No, Non-VOC
Dominion Energy Cove Point LNG Terminal	15,750,000	LNG			No, Final Product
Dominion Energy Cove Point LNG Terminal	15,750,000	FING			No, Final Product
Dominion Energy Cove Point LNG Terminal	15,750,000	LNG			No, Final Product
Dominion Energy Cove Point LNG Terminal	35,700,000	FING			No, Final Product
Dominion Energy Cove Point LNG Terminal	42,000,000	LNG			No, Final Product
Dominion Energy Cove Point LNG Terminal	42,000,000	FING			No, Final Product
Dominion Energy Cove Point LNG Terminal	1,000	Isopentane			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	1,000	Isopentane			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	1,000	Isopentane			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	8,800	50/50 Glycol/Water			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	2,000	50/50 Glycol/Water			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	10,000	50/50 Glycol/Water			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	1,000	Isobutane			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	10,000	Sodium Hydroxide			No, Consumable Product
Dominion Energy Cove Point LNG Terminal	264	50/50 Glycol/Water			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	49	50/50 Glycol/Water			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	49	50/50 Glycol/Water			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	49	50/50 Glycol/Water			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	56,395	DGA			No, Consumable Product
Dominion Energy Cove Point LNG Terminal	49	50/50 Glycol/Water			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	49	50/50 Glycol/Water			No, Used for Heat Transfer
Dominion Energy Cove Point LNG Terminal	49	50/50 Glycol/Water			No, Used for Heat Transfer
Dominion Energy Myserville Station	1,000	Pipeline Fluids	No, vents to atmosphere	No 0.000 ⁸	0.000 ⁸ Yes, Condensate
Dominion Energy Myserville Station	2,500	Wastewater			No, Floor Drains
Dominion Energy Myserville Station	13,000	Aqueous Ammonia			No, Non-VOC

¹Vapor Recovery Unit

Volatile Organic Carbon Fugitive Emissions, calculated using the American Petroleum Institute's (API's) E&P TANKS program, version 2.0, unless otherwise noted. Maximum annual emissions from the past 5 years of operation.

³Applicable to EPA-453/B-16-001 per Section 4.1 Applicability, may have additional justifications for non-applicabilility than those listed.

⁴This tank is designed for Natural Gas Liquids (NGL) and has not received any fluids since it was installed, Pre-2014.

⁵These tanks were first operated in 2018. YTD 2018 (October 15, 2018) throughput was used for this calcualtion. See attached E&P Tank reports.

⁶This tank contains contaminated diglycolamine (DGA) and was first operated in 2018. Only trace amounts of condensate has been observed in this tank YTD 2018 (October 15, 2018).

 $^{^7}$ This tank was first operated in 2018, and is currently filled with a consumable product.

⁸This tank has not required the removal of fluids since its installation in 2015. Annual emissions are calculated esitmating 50 gallons of throughput per year. See attached E&P Tank report.

Cove Point 740 gallon produced water tank 10-2018

```
************************************
     Project Setup Information
**************************
Project File
                       : Cove Point 740 gallon produced water tank 10-2018
Flowsheet Selection : Oil Tank with Separator
Calculation Method
                       : RVP Distillation
Control Efficiency : 99.0%
Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
Filed Name
                        : Cove Point 740 gallon produced water tank 10-2018
Date
                        : 2015.10.22
*************************
     Data Input
****************
Separator Pressure
                       : 21.00[psig]
Separator Temperature
                       : 88.00[F]
                       : 14.70[psia]
: 70.00[F]
: 0.8496
: 294.70
Ambient Pressure
Ambient Temperature
C10+ SG
C10+ MW
-- Low Pressure Oil
  No.
         Component
                             mo1 %
                             0.0000
   1
         H2S
   2
         02
                             0.0000
   3
         C02
                             0.0050
   4
         N2
                             0.0150
   5
         c1
                             0.9500
   6
         C2
                             0.7810
   7
         C3
                             0.9740
   8
         i-C4
                             0.3100
   9
         n-C4
                             0.8550
   10
         i-C5
                             0.6900
   11
         n-c5
                             0.9510
                             2.0730
   12
         C6
                            8.2611
11.3561
   13
         C7
  14
         C8
         C9
  15
                             7.4811
  16
         C10 +
                            60.3797
   17
         Benzene
                             0.1830
  18
         Toluene
                             0.4570
  19
         E-Benzene
                             0.4570
  20
         Xylenes
                             1.4610
  21
         n-c6
                             2.3600
  22
         224Trimethylp
                             0.0000
-- Sales Oil
Production Rate : 0[bb1/day]
Days of Annual Operation : 365 [days/year]
API Gravity : 40.88
```

Page 1

		po.u.]				
******* *****	******	******	******	******	*****	******
* Calculation	Results					
******	*******	*********	******	******	******	*******
Emission Summar	y 					
	Uncontrolled [ton/yr]	Uncontrolled	Cont	hollad	Controlla	ed «P TANK
VOCs, C2+ VOCs, C3+						
Uncontrolled Recov	ery Info.					
Vapor HC Vapor GOR	0.0000 x1E-3 0.0000 x1E-3 0.00	[MSCFD] [MSCFD] [SCF/bbl]				
Emission Compos						
No Component 1 H2S 2 O2 3 CO2 4 N2 5 C1 6 C2 7 C3 8 i-C4 9 n-C4 10 i-C5 11 n-C5 12 C6 13 C7 14 C8 15 C9 16 C10+ 17 Benzene 18 Toluene 19 E-Benzene 20 Xylenes 21 n-C6 22 224Trimethylp Total	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Uncontrolled [1b/hr] 0.000	0.00 0.00 0.00		0.000 0.000 0.000	d
Stream Data						_
No. Component Total Emissions	MW				Flash Gas	
mol % 1 H2S 0.0000	34.80		1 % 0000	mol % 0.0000	mol % 0.0000	mol % 0.0000
		Dage 2				

		. 740	7.7				
2 02 0.0000	Cove P	32.00	0.0000	luced water 0.0000	tank 10-2 0.0000	018 0.0000	0.0000
3 CO2 0.1787		44.01	0.0050	0.0030	0.0000	0.1939	0.1698
0.1787 4 N2 0.5362		28.01	0.0150	0.0021	0.0000	1.2551	0.1176
5 C1 33.9561		16.04	0.9500	0.3212	0.0000	61.4002	17.9794
6 C2		30.07	0.7810	0.5743	0.0027	20.6571	31.9946
27.8230 7 C3		44.10	0.9740	0.8860	0.1968	9.4309	38.7706
27.9750 8 i-C4		58.12	0.3100	0.3004	0.2511	1.2331	3.0109
2.3568 9 n-C4		58.12	0.8550	0.8386	0.7757	2.4320	4.2956
3.6099 10 i-c5		72.15	0.6900	0.6895	0.6867	0.7423	0.8389
0.8034 11 n-C5		72.15	0.9510	0.9530	0.9551	0.7634	0.8322
0.8069 12 C6		86.16	2.0730	2.0897	2.1189	0.4652	0.4866
0.4787 13 C7		100.20	8.2611	8.3407	8.4807	0.6123	0.6423
0.6312 14 C8		114.23	11.3561	11.4715			0.0423
0.2731 15 C9					11.6751	0.2632	
0.0644		128.28	7.4811	7.5583	7.6946	0.0594	0.0674
16 C10+ 0.0000		294.70	60.3797	61.0077	62.1176	0.0000	0.0000
17 Benzene 0.0318		78.11	0.1830	0.1846	0.1874	0.0309	0.0323
18 Toluene 0.0222		92.13	0.4570	0.4615	0.4695	0.0215	0.0226
19 E-Benzene 0.0073		106.17	0.4570	0.4617	0.4699	0.0070	0.0075
20 Xylenes		106.17	1.4610	1.4760	1.5025	0.0194	0.0207
0.0202 21 n-C6		86.18	2.3600	2.3802	2.4157	0.4132	0.4323
0.4253 22 224Trimethylp)	114.24	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000							
MW			217.00	218.99	222.30	25.65	37.03
32.85 Stream Mole R	Ratio		1.0000	0.9897	0.9720	0.0103	0.0177
0.0280 Heating Value	2	[BTU/SCF]				1500.55	2132.37
1899.89 Gas Gravity		[Gas/Air]				0.89	1.28
1.13 Bubble Pt. @	100F	[psia]	40.47	17.83	2.13		
RVP @ 100F		[psia]	7.41	5.03	1.84		
Spec. Gravity	@ 100F		0.709	0.710	0.711		
Page 2						F&	P TANK

Cove Point 38152 gallon condensate tank 10-2018

```
Project Setup Information
*************************
*****
Project File
                      : Cove Point 38152 gallon condensate tank 10-2018
Flowsheet Selection
                     : Oil Tank with Separator
Calculation Method
                      : RVP Distillation
Control Efficiency
                      : 99.0%
Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
Filed Name
                      : Cove Point 38152 gallon condensate tank 10-2018
Date
                      : 2015.10.22
*********************
    Data Input
*********************
Separator Pressure
                      : 21.00[psiq]
Separator Temperature
                      : 88.00[F]
Ambient Pressure
                      : 14.70[psia]
                      : 70.00[F]
Ambient Temperature
                      : 0.8496
C10+ SG
C10+MW
                     : 294.70
-- Low Pressure Oil
  No.
        Component
                           mo1 %
                           0.0000
  1
        H2S
  2
        02
                           0.0000
  3
        CO2
                           0.0050
  4
        N2
                           0.0150
  5
        C1
                           0.9500
  6
7
        C2
                           0.7810
                           0.9740
        C3
  8
        i-C4
                           0.3100
  9
        n-C4
                           0.8550
  10
        i-C5
                           0.6900
  11
        n-C5
                           0.9510
  12
        C6
                           2.0730
  13
        C7
                           8.2611
  14
        C8
                          11.3561
                          7.4811
60.3797
  15
        C9
  16
        C10+
  17
        Benzene
                           0.1830
  18
        Toluene
                           0.4570
  19
        E-Benzene
                           0.4570
  20
        Xylenes
                           1.4610
  21
        n-c6
                           2.3600
  22
        224Trimethylp
                           0.0000
-- Sales Oil
Production Rate : 17.5[bbl/day]
Days of Annual Operation : 365 [days/year]
API Gravity : 40.88
```

Page 1

Cove Point 38152 gallon condensate tank 10-2018 Reid Vapor Pressure : 1.84[psia] *********************** Calculation Results ********************** -- Emission Summary Item Uncontrolled Uncontrolled Controlled Controlled [ton/yr] [1b/hr] [ton/yr] [lb/hr] Total HAPs Ō.050 0.011 0.001 0.000 Total HC 3.543 0.809 0.035 0.008 Page 1---------- E&P TANK VOCs, C2+ VOCs, C3+

 2.951
 0.674
 0.030

 2.042
 0.466
 0.020

 0.007 0.005 Uncontrolled Recovery Info. 225.5600 x1E-3 [MSCFD] 223.9500 x1E-3 [MSCFD] 12.91 [SCF/bb Vapor HC Vapor **GOR** [SCF/bbl] -- Emission Composition

No	Component	Uncontrolled	Uncontrolled	Controlled	Controlled
		[ton/yr]	[lb/hr]	[ton/yr]	[1b/hr]
1	H2S	0.000	0.000	0.000	0.000
2	02	0.000	0.000	0.000	0.000
3	CO2	0.009	0.002	0.009	0.002
4	N2	0.016	0.004	0.016	0.004
5	C1	0.592	0.135	0.006	0.001
6	C2	0.909	0.208	0.009	0.002
7	C3	1.340	0.306	0.013	0.003
8	i-C4	0.149	0.034	0.001	0.000
9	n-C4	0.228	0.052	0.002	0.001
10	i-C5	0.063	0.014	0.001	0.000
11	n-C5	0.063	0.014	0.001	0.000
12	C6	0.044	0.010	0.000	0.000
13	C7	0.067	0.015	0.001	0.000
14	C8	0.033	0.008	0.000	0.000
15	C9	0.009	0.002	0.000	0.000
16	C10+	0.000	0.000	0.000	0.000
17	Benzene	0.003	0.001	0.000	0.000
18	Toluene	0.002	0.000	0.000	0.000
19	E-Benzene	0.001	0.000	0.000	0.000
20	Xylenes	0.002	0.000	0.000	0.000
21	n-C6	0.040	0.009	0.000	0.000
22	224Trimethylp	0.000	0.000	0.000	0.000
	Total	3.570	0.815	0.036	0.008

-- Stream Data

No. Component Total Emissions	MW	LP Oil	Flash Oil	Sale Oil	Flash Gas	- W&S Gas
mol %		mol %	mol %	mol %	mol %	mol %
1 H2S 0.0000	34.80	0.0000	0.0000	0.0000	0.0000	0.0000

2 02 0.0000	Cove Point 38 32.00	152 gallon 0.0000	condensate 0.0000	tank 10-20 0.0000	0.0000	0.0000
3 CO2	44.01	0.0050	0.0030	0.0000	0.1939	0.1698
0.1787 4 N2	28.01	0.0150	0.0021	0.0000	1.2551	0.1176
0.5362 5 C1	16.04	0.9500	0.3212	0.0000	61.4002	17.9794
33.9561 6 C2	30.07	0.7810	0.5743	0.0027	20.6571	31.9946
27.8230 7 C3	44.10	0.9740	0.8860	0.1968	9.4309	38.7706
27.9750 8 i-C4	58.12	0.3100	0.3004	0.2511	1.2331	3.0109
2.3568 9 n-C4	58.12	0.8550	0.8386	0.7757	2.4320	4.2956
3.6099 10 i-C5	72.15	0.6900	0.6895	0.6867	0.7423	0.8389
0.8034 11 n-C5	72.15	0.9510	0.9530	0.9551	0.7634	0.8322
0.8069 12 C6	86.16	2.0730	2.0897	2.1189	0.4652	0.4866
0.4787 13 C7	100.20	8.2611	8.3407	8.4807	0.6123	0.6423
0.6312 14 C8	114.23	11.3561	11.4715	11.6751	0.2632	0.2788
0.2731 15 c9	128.28	7.4811	7.5583	7.6946	0.0594	0.0674
0.0644 16 C10+	294.70	60.3797	61.0077	62.1176	0.0000	0.0000
0.0000 17 Benzene	78.11	0.1830	0.1846	0.1874	0.0309	0.0323
0.0318 18 Toluene	92.13	0.4570	0.4615	0.4695	0.0215	0.0226
0.0222 19 E-Benzene	106.17	0.4570	0.4617	0.4699	0.0070	0.0075
0.0073 20 Xylenes	106.17	1.4610	1.4760	1.5025	0.0194	0.0207
0.0202 21 n-C6	86.18	2.3600	2.3802	2.4157	0.4132	0.4323
0.4253 22 224Trimethylp	114.24	0.0000	0.0000	0.0000	0.0000	0.4323
0.0000	111121	0.0000	0.0000	0.0000	0.0000	0.0000
MW		217.00	218.99	222.30	25.65	37.03
32.85 Stream Mole Ra	tio	1.0000	0.9897	0.9720	0.0103	
0.0280 Heating Value	[BTU/SC	F]			1500.55	
1899.89 Gas Gravity	[Gas/Ai	r]			0.89	
1.13 Bubble Pt. @ 10	00F [psia]	40.47	17.83	2.13		
RVP @ 100F						
Spec. Gravity (
Page 2					F&	P TANK

Myersville 1000 gallon produced fluids tank 10-2018

```
*************************
*****
     Project Setup Information
********************
*****
Project File
                      : Myersville 1000 gallon produced fluids tank 10-2018
Flowsheet Selection
                     : Oil Tank with Separator
                     : RVP Distillation
Calculation Method
Control Efficiency
                     : 100.0%
Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
Filed Name
                      : Myersville 1000 gallon produced fluids tank 10-2018
Date
                      : 2015.10.22
*************************
*****
    Data Input
***********************
Separator Pressure
                     : 21.00[psig]
Separator Temperature
                      : 88.00[F]
Ambient Pressure
                      : 14.70[psia]
                     : 70.00[F]
Ambient Temperature
                     : 0.8496
C10+SG
C10+ MW
                     : 294.70
-- Low Pressure Oil
                           mo1 %
  NO.
        Component
                           0.0000
        H2S
  1
  2
        02
                           0.0000
  3
        CO2
                           0.0050
  4
        N2
                           0.0150
  5
        C1
                           0.9500
  6
        C2
                           0.7810
                           0.9740
  7
        C3
  8
        i-C4
                           0.3100
  9
        n-C4
                           0.8550
  10
        i-C5
                           0.6900
  11
        n-c5
                           0.9510
  12
        C6
                           2.0730
  13
        C7
                           8.2611
  14
        C8
                          11.3561
                           7.4811
  15
        C9
  16
        C10+
                          60.3797
  17
        Benzene
                           0.1830
  18
        Toluene
                           0.4570
  19
                           0.4570
        E-Benzene
  20
        Xylenes
                           1.4610
  21
        n-c6
                           2.3600
  22
        224Trimethylp
                           0.0000
-- Sales Oil
Production Rate : 0[bb]/day]
Days of Annual Operation : 365 [days/year]
APT Gravity : 40.88
```

Page 1

0.0000

0.0000

0.0000

0.0000

0.0000

34.80

mol % 1 H2S

0.0000

2 02	Myersvil	lle 1000 ga 32.00	allon prod 0.0000	uced fluid 0.0000	s tank 10- 0.0000	2018 0.0000	0.0000
0.0000 3 CO2		44.01	0.0050	0.0030	0.0000	0.1939	0.1698
0.1787 4 N2		28.01	0.0150	0.0021	0.0000	1.2551	0.1176
0.5362 5 C1		16.04	0.9500	0.3212	0.0000	61.4002	17.9794
33.9561 6 C2		30.07	0.7810	0.5743	0.0027	20.6571	31.9946
27.8230 7 C3		44.10	0.9740	0.8860	0.1968	9.4309	38.7706
27.9750 8 i-C4		58.12	0.3100	0.3004	0.2511	1.2331	3.0109
2.3568 9 n-C4		58.12	0.8550	0.8386	0.7757	2.4320	4.2956
3.6099 10 i-C5		72.15	0.6900	0.6895	0.6867	0.7423	0.8389
0.8034 11 n-C5		72.15	0.9510	0.9530	0.9551	0.7634	0.8322
0.8069 12 C6		86.16	2.0730	2.0897	2.1189	0.4652	0.4866
0.4787 13 C7		100.20	8.2611	8.3407	8.4807	0.6123	0.6423
0.6312 14 C8		114.23	11.3561	11.4715	11.6751	0.2632	0.2788
0.2731 15 C9		128.28	7.4811	7.5583	7.6946	0.0594	0.0674
0.0644 16 C10+		294.70	60.3797	61.0077	62.1176	0.0000	0.0000
0.0000 17 Benzene		78.11	0.1830	0.1846	0.1874	0.0309	0.0323
0.0318 18 Toluene		92.13	0.4570	0.4615	0.4695	0.0215	0.0226
0.0222 19 E-Benzene		106.17	0.4570	0.4617	0.4699	0.0070	0.0075
0.0073 20 Xylenes		106.17	1.4610	1.4760	1.5025	0.0194	0.0207
0.0202 21 n-C6		86.18	2.3600	2.3802	2.4157	0.4132	0.4323
0.4253 22 224Trimethyl	p	114.24	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000					0.0000	0.0000	010000
MW			217.00	218.99	222.30	25.65	37.03
32.85 Stream Mole	Ratio		1.0000	0.9897	0.9720	0.0103	0.0177
0.0280 Heating Valu	e	[BTU/SCF]				1500.55	2132.37
1899.89 Gas Gravity		[Gas/Air]				0.89	1.28
1.13 Bubble Pt. @	100F	[psia]	40.47	17.83	2.13		
RVP @ 100F		[psia]	7.41	5.03	1.84		
Spec. Gravit	y @ 100F		0.709	0.710	0.711		
Page 2						E&	P TANK

Received ARA
11/20/2018

Enbridge 5400 Westheimer Court Houston, Texas 77056

November 15, 2018

Mr. Brian Hug Program Manager, Air Quality Planning Program Air and Radiation Administration Maryland Department of the Environment 1800 Washington Boulevard Baltimore, MD, 21230

RE: Response to Accident Storage Reservoir and Compressor Station Storage Tank Information Request

Dear Mr. Hug:

Texas Eastern Transmission, LP (Texas Eastern) is providing facility information in response to your recent request in order to support your efforts to revise the State Implementation Plan (SIP) to include for nonattainment area's current EPA required "reasonably available control measures" (RACM), including "reasonably available control technology" (RACT), for sources of emissions contributing to ozone formation.

Specifically your request was to" provide a list of all tanks at the Accident Maryland storage and compression site including the tank contents and size, a calculation that shows the VOC fugitive emissions per year, and whether or not the tank has a control device or vapor recovery unit (VRU)."

Texas Eastern transports natural gas via underground pipelines from the Gulf Coast region of the United States to the Northeast and mid-Atlantic United States. The gas must be compressed at several compressor stations along the pipeline to ensure efficient transportation and delivery to customers at serviceable pressures. Texas Eastern owns and operates a natural gas compressor station (Accident Compressor Station) and Storage Reservoir located in Accident, Garrett County, Maryland. Texas Eastern operates the existing compressor station under Title V Operating Permit Number 24-023-00081 (effective November 1, 2017), issued by the Maryland Department of the Environment (MDE).

As part of the 2015 Title V renewal application a review was made of the applicability of federal and state air quality regulations to the emission units at the Accident Compressor Station. A review was specifically made of 40 CFR Part 60, Subpart 0000 – Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution. There are no tanks at the facility that are applicable for EPA's RACT recommendations since all tanks storing applicable contents do not have a potential to emit greater than or equal to 6 tons per year VOCs. As noted in the renewal application;

"NSPS Subpart 0000 applies to owners and operators of several types of facilities related to the production, transmission, or storage of crude oil or natural gas that commenced construction, modification or reconstruction after August 23, 2011. The only unit at the Accident Compressor Station that was constructed, modified or reconstructed after this compliance date is the 24,300 gallon wastewater/methanol AST that was installed in 2013. However, this tank does not meet the definition of

any of the affected facilities subject to the rule. Therefore, no units at the site are subject to NSPS Subpart 0000."

Below is a table summarizing the requested information for the Accident Facility Storage Tanks. As noted in your request letter the EPA's Techniques Guidelines (CTG, October 2016) for the Oil and Natural Gas Industry Control apply only to tanks whose contents include an accumulation of crude oil, condensate, intermediate hydrocarbon liquids, or produced water...". Tanks that are exempt because they do not store those materials are noted in the table below.

Summary of Accident, Maryland Facility Storage Tanks Potentially Subject to EPA Oil and Gas Industry CTG

Tank Emissions Unit	Storage Content Description	Size (gallons)	Control Device	Comment
TK-02A and TK-02B	Pipeline Liquids	12,600 each	N	Attachment 1
Tanks ACC3A-3F	Waste methanol/water	8,450 each	N	Attachment 2
Wastewater/Methanol Tank	Wastewater/methanol	24,340	N	Attachment 3

Summary of Accident, Maryland Facility Storage Tanks Exempt from EPA Oil and Gas Industry CTG

7 27 27 3				
Tank Emissions Unit	Storage Content Description	Size (gallons)	Control Device	Comment
Tank ACC1	Used Oil	2,940	N	Contents exempt by CTG applicability definitions
Tanks ACC4A & 4B	Pipeline liquids	1,500 each	Y- Carbon Canisters	Attachment 4 - No longer in service piping disconnected
Tank ACC5	Scrubber Oil	345	N	Contents exempt by CTG applicability definitions
Tank ACC6	Cylinder Oil	700	N	Contents exempt by CTG applicability definitions
Tanks ACC7A & 7B	Lube Oil	3,000 each	N	Contents exempt by CTG applicability definitions
Tank ACC9	Ambitrol	4,200 - UST	N	CTG exempt because an underground storage tank and content does not meet applicability

THE STATE OF THE S		TO SECULIA	19/19/19	definition
Tanks ACCI-MeOH01 -	Methanol	10,000	N	Makeup methanol
MeOH01	Methanol	each	IV.	storage, contents exempt by CTG applicability definitions
Undesignated Tank (2007)	Methanol	10,000	N	Contents exempt by CTG applicability definitions
Undesignated Tank	Methanol	900	N	Attachment 5
(2007) (6)				Contents exempt by CTG applicability definitions
Tank DEF-1	Defoamer tank (process tank)	500	N	Contents exempt by CTG applicability definitions
Tank AC-1	Condensate from air compressor (process tank)	500	N	Contents exempt by CTG applicability definitions
Tank Jenkins #1	Field Methanol Pump Tank	900	N	Contents exempt by CTG applicability definitions
Tank McCullough#4	Field Methanol Pump Tank	900	N	Contents exempt by CTG applicability definitions
Tank Black & Frazee#1	Field MNethanol Pump Tank	1,000	N	Contents exempt by CTG applicability definitions
Tank Black & Frazee#2	Field Methanol Pump Tank	900	N	Contents exempt by CTG applicability definitions
Tank Rexrode #3	Field Methanol Pump Tank	900	N	Contents exempt by CTG applicability definitions
Tank Knox #1	Field Methanol Pump Tank	1,000	N	Contents exempt by CTG applicability definitions
Tank Fratz #1	Field Methanol Pump Tank	900	N	Contents exempt by CTG applicability definitions
Tank B-B1	Field Methanol Pump Tank	900	N	Contents exempt by CTG applicability definitions
Tank End of C-Line	Field Methanol Pump Tank	900	N	Contents exempt by CTG applicability definitions
Tank Kelso #1	Field Methanol Pump Tank	1,000	N	Contents exempt by CTG applicability definitions
Tank George #3	Field Methanol Pump Tank	1,000	N	Contents exempt by CTG applicability definitions
Tank End of B1-Line	Field Methanol Pump Tank	1,000	N	Contents exempt by CTG applicability definitions

If there are any questions concerning this information, please do not hesitate to contact me at (713) 627-4063 or Barry Goodrich at (713) 627-4484.

Sincerely,

TEXAS EASTERN TRANSMISSION, LP

ohn Bins, P.E.

Senior Engineer, Air Compliance

Attachments

cc:

Barry Goodrich - Enbridge Rohan Bakane - Enbridge

Attachment 1

TK-02A and TK-02B PTE Emission Calculations from 2015 Title V Renewal Application

Summary of Potential to Emit Accident Significant Emission Units

							Compressor S	tation					F 7 F F		e Field	
	92101	92102	92135	921SBH05	naventure.	03111771101	921WBH02		921WB1f04	776 60 A 600	Dr. TI	Facility Gas	Facility Pipeline	Storage Field Gas	Storage Field	Combined
Source					921SBH06	921WBH01		921WBH03		TK-02A:02B	PL-TL.	Releases	Component Fugitives	Releases	Pipeline Component	Total
NO _X	70.42 tpy	70.42 tpy	2.64 tps	1.29 tpy	1.29 tpy	6.44 tpy	5 15 tps	5.15 tpy	6.44 tpy							169.24 tpy
co	26.71 tpy	26.71 tpy	4.32 tpy	1.08 tpy	1.08 tpy	5.41 tpy	4.33 tpy		5.41 tpy					l		79.381 tpy
SO ₂	0.09 tpy	0.09 tpy	6.83E-04 tpy	0.01 tpy	0.01 tpy	0.04 tpy	0.03 tpy	0.03 tpy	0.04 tpy							0.3364 tpy
PM ₁₀	7.44 tpy	7.44 tpy	0.02 tpy	0.10 tpy	0.10 tpy	0.49 tpy	0.39 tpy	0.39 tpy	0.49 tps					1		16.860 tpy
TOC (Total)	358.51 tpy	358.51 tpy	0.42 tpy	0.14 tpy	0.14 tpy	0.71 tpy	0.57 tpy	0.57 tpy	0.71 tps			3,689.3 tps	131.85 tps	8,425 tpv	124.45 tpv	13,090 tpy
Methane	322.69 tpy	322.69 tpy	0.27 tpy	0.03 tpy	0.03 tpv	0.15 tpy	0.12 tpy	0.12 tpv	0.15 tpy			3,330.1 tpy	110.68 tpy	7,604 tpy	106.97 tpy	11,799 tpy
Ethane	15.46 tpy	15.46 tpy	0.08 tpy	0.04 tpy	0.04 tpv	0.20 tpv	0 16 tpy	0.16 tpy	0.20 tps			324.50 tpy	10.785 tpy	741.0 tpy	10.424 tpy	1,118.5 tpy
VOC (Total)	20.56 tpy	20.56 tpy	0.03 tpy	0.07 tpy	0.07 tpy	0.35 tpy	0.28 tpy	0.28 tpy	0.35 tpy	4.83 tpy	1.38 tpy	74.98 tps	LL 150 1pv	132,10 tpy	7,7951 tpy	274.82 tpy
CO ₂	17,976.73 tpy	17,976.73 tpy	135.54 tpy	1,533 86 tpy	1,533.86 tpy	7,669.29 tpy	6,135.43 tpy	6.135.43 tpy	7,669.29 tpy			52.86 tpy	1.7568 tpy	120.70 tpy	1.6980 tpy	66,943 tpy
N _: O	0.03 tpy	0.03 tpy	2.55E-04 tpy	2.89E-03 tpy	2.89E-03 tpy	0.01 tpy	0.01 tps	0.01 tpy	0.01 tps							0.1258 tpy
COge	26,053.96 tpv	26,053 96 tpv	142.29 tpv	1,535.46 tpv	1,535.46 tpv	7,677.30 tpv	6,141.84 tm	6.141.84 tpv	7,677.30 tps			83,306 tpv	2,768.8 1pv	190,233 tpv	2,676.0 tps	361,943 tpy
HAP (Total)	9.92 tov	9.92 Ipv	0.04 Ipv	0.02 tov	0.02 tov	0.12 tpv	0.10 tes	0.10 tpv	0 12 tps	0.07 tpv	0.02 tos	4.6356 tps	1.3428 tps	3.7319 tpv	0.9500 tpv	31,109 tpv
Acetaldehyde	1.04 tpv	1.04 tpv	3.24E-03 tps		-											2.0755 tpy
Acrolein	1.30 tpv	1.30 tpy	3.05E-03 tps												1	2.6001 tpy
Benzene	0.30 tpy	0.30 tpy	1.83E-03 tpy	2.71E-05 tpy	2.71E-05 tpy	1.35E-04 tpy	1.08E-04 tps	1.08E-04 tpy	1.35E-04 tps	0.02 tpy	0.01 tpy	0.5668 tpy	0.1256 tpv	0.4177 tpv	0.0948 tps	1.8389 tpy
Butadiene (1,3-)	0.14 tpy	0.14 tpy	7 70E-04 tps											·		0.2818 tpy
Carbon Tetrachloride	0.01 tpy	0.01 tpy	2.06E-05 tpy											1		0.0270 tpy
Chlorobenzene	0.01 tpy	0.01 tpy	1.50E-05 tpy											1		0.0198 tpy
Chloroethane																0.0000 tpy
Chloroform	0.01 tpy		1.59E-05 tpy													0.0210 tpy
Dichloroethane (1.2-)	0.01 tpy		1.31E-05 tpy													0.0188 tpy
Dichloropropane (1,2-)	0.01 tpy		1.51E-05 tpy													0.0199 tpy
Dichloropropene (1,3-)	0.01 tpv		1.47E-05 tps							l						0.0195 tpy
Ethylbenzene	0.02 tpy		2.88E-05 tps									0 1230 tpv	0.0436 tpy	0.2809 tpy	0.0333 tpy	0.5179 tpy
Ethylene Dibromide	0.01 tps:		2.47E-05 tpv													0.0252 tpy
Formaldehyde	6.14 tpv	6.14 tpy	0.02 tps	9.66E-04 tps			3.861-03 tpv							<u></u>		12.327 tpy
Hexane (n-)	0.08 tpy	0.08 tpy		0.02 tpy	0.02 tpy	0.12 tpy	0.09 tps	0.09 tpy	0:12 tps	0.04 tpy	0.01 tps	3 7795 tps	0.1647 tpy	2 1400 tpy	0.1280 tpy	6.886 tpy
Methanol	0.39 tps:		3.55E-03 tps													0.7762 tpy
Methylene Chloride	0.03 tpy		4 78E-05 tps													0.0655 tpy
Methylnaphthalene (2-)	0.00 tpy	0.00 tpy		Dark or	20/1/0/	101001	214 01	1111111	2010.04	 						0.0073 tpy
Naphthalene	0.02 tps		1.13E-04 tps	7.86E-06 tpv	7.86E-06 tpy	3.93E-05 tpy	3.14E-05 tpy	3.14E-05 tpy	3.93E-05 tpy							0.0354 tpy
PAH	0.02 tpy		1.64E-04 tpy													0.0461 tpy
Phenol Propylene Oxide	0.01 tpy	0.01 tpy						 		 						0.0144 tpy
Styrene Oxide	0.01 tpv	0.01 *	1.38E-05 tov					-	-		_		 			0.0000 tpy 0.0244 tpy
Tetrachloroethane (1,1,2,2-)	0.01 tpy		2 94E-05 tpv		 	-		 	·				-			0.0244 tpy 0.0295 tpy
Toluene	0.01 tpy		6.48E-04 tpv	4.38E-05 tpv	1 381:05	2 19E-04 tpv	1.75E-01	1.75E-04 tpv	2 19E-04 tps	0.01 :	2 35E-03 tpv	0.5568 tps	0,3794 tps	0.4708 tpv	0.2838 tpv	0.0295 tpy 1.9600 tpy
Trichloroethane (1,1,2-)	0.13 tps		1.78E-05 tpv	4.30E-03 1pg	4.30E-03 tpy	7 12E-00 th	1 12E-or thy	1.735.404 tpy	2 191:404 lps	0.01 tpy	2 225.403 tpy	0.3308 tps	0.5144 fb/	0.4708 tpy	0.2036 tpy	0.0235 tpy
Trimethylpentane (2,2,4-)	0.14 tpv	0.14 tov	1-70L-05 lpv		 					1		0.0548 tm	0.0024 tps	0.0310 tps	0.0018 tps	0.0235 tpy
Vinyl Chloride	0.14 tpy		8.34E-06 tov		—			-	t e	 		0.0348 tps	0.0024 tpy	0.0510 tps	0.0018 (0)	0.0110 tpy
Xvienes	0.05 tpv		2 26E-04 tpy	-	-			-	-	0.00 tov	5.67E-04 tov	0.8400 tps	0.5458 tps	0.9295 tps	0.4090 tos	2.8170 tpy
24,11116.	0.05 457	0.05 (p)	= = = = o + ipy							3.00 tpj	3.5.2 OF 49	3.0400 tpj	υ.5450 φ,	1 0:3233 thi	3.4090 (5)	2.5170 tp;

Texas Eastern Transmission, I. P. Accident Compressor Station

Title V Permit Renewal Application Revised December 2016

TABLE A-1 Potential to Emit Basis After Permitting Activity

	Emi	ission Source		D I C				Operational	Limits			Data
1D	FIN	EPN	Description	Rated Capacity	Short-Term	Material Flow	Short-Terr	n Capacity	Annual N	faterial Flow	Annual Utilization	Sources
	ACCI GR CS	ACCIGRES	Gas Release Events	Compressor Station - Natural Gas	Natural Gas	32,816,000 sefh			Natural Gas	160,234,000 scf vr	Runtime NA	TABLE C-1
ACCI GR	ACCI GR SF	ACCI GR SF			Natural Gas	18,581,000 scfh			Natural Gas	365,900,000 sci'yr		TABLE C-2
	ACCI PC NG	ACCI PC NG	Piping Components	Compressor Station - Natural Gas	Valves, 1,621, Connec	tors: 25,496; Flanges: 1.	358: Open-Ended L	ines O. Pump Seals	3; Other (blowdown valve	es, relief valves, and comp	ressor seals): 0	TABLE B-1a
	ACCI PC PL	ACCI PC PL	Piping Components	Compressor Station - Pipeline Lie	Valves: 72; Connector	s: 431; Flanges: 132. Op	en-Ended Lines 0,	Pump Seals: 2: Other	(blowdown valves, relief	valves, and compressor s	cals) 0	TABLE B-1b
ACCIPC CS	ACCI PC ME	ACCI PC MF	Piping Components						r (blowdown valves, relie			TABLE B-1c
	ACCI PC OIL	ACCI PC OIL	Piping Components	Compressor Station - Oil	Valves 666; Connecto	rs 7,290; Flanges 242.	Open-Ended Lines:	0, Pump Seals 7, Ot	her (blowdown valves, re	lief valves, and compresso	or seals) 0	TABLE B-1d
	ACCI PC EC	ACCI PC EC	Piping Components						lowdown valves, relief va			TABLE B-1e
valuation and a	ACCI PC NG	ACCI PC NG	Piping Components	Storage Facility - Natural Gas	Valves 2,202 Connec	tors 10,252; Flanges 1	379. Open-Ended L	ines O, Pump Seals	0, Other (blowdown valve	es, relief valves, and comp	ressor seals 0	TABLE B-2a
ACCI PC SF	ACCI PC PL	ACCI PC PL		Storage Facility - Methanol	Valves: 77: Connector	s 1.502, Flanges 11, O	en-Ended Lines 0:	Pump Seals 10; Oth	er (blowdown valves, reli	of valves, and compressor	scals): 0	TABLE B-2b

Texas Fastern Transmission, LP Accident Compressor Station

TABLE A-1 Potential to Emit Emissions After Permitting Activity

	Emiss	ion Source	•	0.10					Potential to Emi	t (tpy-)				Data
ID	FIN	EPN	Description	Rated Capacity	CO24	VOC (Total)	HAP (Total)	Benzene	Ethylbenzene '	Hexane (n-)	Toluene	Trimethy Ipentane (2,2,4-	Xylenes	Sources
ACCI GR	ACCI GR CS	ACCL GR CS	Gas Release Events	Compressor Station - Natural Gas	83,306	74.98	4 6356	0.5668	0.1230	3.7795	0.5568	0.0548	0.8400	TABLE C-1
ACCI OK	ACCI GR SF	ACCI GR SF	Gas Release Events	Storage Field - Natural Gas	190,233	132.10	3 7319	0.4177	0.2809	2.1400	0.1708	0.0310	0 9295	TABLE C-2
	ACCI PC NG	ACCI PC NG	Piping Components	Compressor Station - Natural Gas	2,768 8	1.9227	0.0543	0.0061	0.0041	0.0243	0.0069	0.0002	0.0135	TABLE B-1a
	ACCI PC PL	ACCI PC PL	Piping Components	Compressor Station - Pipeline Liquids		2 8891	0.4368	0.0433	0.0143	0.0509	0.1349	0.0008	0.1927	TABLE B-1b
ACCI PC CS	ACCI PC ME	ACCI PC ME	Piping Components	Compressor Station - Methanol		5.0910	0.7696	0.0762	0.0252	0.0896	0.2377	0.0014	0 3396	TABLE B-1c
	ACCI PC OIL	ACCI PC OIL	Piping Components	Compressor Station - Oil		1.1654								TABLE B-1d
	ACCI PC EC	ACCI PC EC	Piping Components	Compressor Station - Coolant		0.0821	0.0821							TABLE B-1e
ACCI PC SF	ACCI PC NG	ACCI PC NG	Piping Components	Storage Facility - Natural Gas	2,676.0	1 8583	0.0525	0.0059	0.0040	0.0234	0.0066	0.0002	0.0131	TABLE B-2a
ACCITE 31	ACCI PC PL	ACCI PC PL	Piping Components	Storage Facility - Methanol		5 9368	0.8975	0.0889	0.0294	0.1045	0.2771	0.0016	0.3960	TABLE B-2b
		TO	TAL		278,984	226.03	10.660	1.2049	0.4809	6.2122	1.6907	0.0900	2.724	Minor/Major

Texas Eastern Transmission, LP Accident Compressor Station

TABLE B-1a Piping Components Hourly and Annual Emission Estimates

Source				ACCI-PC-NG		
Service				Gas		
			Co	mpressor Station - N	atural Gas	
Minimum hours when	component purged with inert	gas	0 hrs/yr			
Component	Valves	Count	1,621 components			
		Emission Factor	4,50E-03 kg/hr/component			
	Connectors	Count	25,496 components			
		Emission Factor	2.00E-04 kg/hr/component			
	Flanges	Count	1,358 components]		
		Emission Factor	3.90E-04 kg/hr/component	- ×		
	Open-Ended Lines	Count	0 components			
	Pump Seals Count Emission Factor		2.00E-03 kg/hr/component	Ì		
			3 components			
			2.40E-03 kg/hr/component			
	Other	Count	0 components	Emissions		
		Emission Factor	8.80E-03 kg/hr/component	Avg. Hourly	Max. Annual	Max. Hourly
Speciation	CO _{2-e}		2217.57% by weight	632,1501 lb/hr	2,768.8176 tpy	688.4756 lb/hr
7.7	CO ₂		1.41% by weight	0.4011 lb/hr	1:7568 tpy	1.8131 lb/hr
	TOC (Total)		98.21% by weight	27.9951 lb/hr	122,6187 tpy	28.4045 lb/hr
	Methane		88.647% by weight	25.2700 lb/hr	110,6824 tpy	27.4665 lb/hr
	Ethane		8.638% by weight	2,4624 lb/hr	10.7854 tpy	7.1273 lb/hr
	VOC (Total)		1.540% by weight	0.4390 lb/hr	1,9227 tpy	2.6533 lb/hr
	VOC (non-HAP)					
	HAP (Total)		0.044% by weight	0.0124 lb/hr	0.0543 tpy	0.1640 lb/hr
	Benzene		0.005% by weight	1.39E-03 lb/hr	6.08E-03 tpy	2.01E-02 lb/hr
	Ethylbenzene		0.003% by weight	9,34E-04 lb/hr	4.09E-03 tpy	3.50E-03 lb/hr
	Hexane (n-)		0.019% by weight	5.54E-03 lb/hr	2.43E-02 tpy	1.34E-01 lb/hr
	Methanol					
	Naphthalene					
	Toluene		0.005% by weight	1.56E-03 lb/hr	6.85E-03 tpy	1.97E-02 lb/hr
	Trimethylpenta	ne (2,2,4-)	0.000% by weight	5.09E-05 lb/hr	2.23E-04 tpy	1.94E-03 lb/hr
	Xylenes		0.011% by weight	3.09E-03 lb/hr	1.35E-02 tpy	2.97E-02 lb/hr

NOTES

1. Emission factors obtained from Table 2-4 (Oil & Gas Production Operations) of Protocol for Equipment Leak Emission Estimates (EPA 453/R-95-017). The average SOCMI w/o ethylene emission factor is used for pumps in heavy oil service (Table 2-1) since an emission factor isn't provided in Table 2-4.

The component type "Other" includes blowdown valves, relief valves, and compressor seals,

Maximum hourly emissions are based on the worst-case short-term weight percents even though the values are NOT presented

^{2.} Piping component counts at Accident compressor station.

^{4.} Weight percents based on gas analysis used to estimate gas release annual emissions (TABLE C-1).

TABLE B-1b **Piping Components** Hourly and Annual Emission Estimates Source ACCI-PC-PL Service Light Oil Compressor Station - Pipeline Liquids Minimum hours when component purged with inert gas 0 hrs/yr Component Valves Count 72 components **Emission Factor** 2.50E-03 kg/hr/component Connectors Count 431 components **Emission Factor** 2.10E-04 kg/hr/component Flanges 132 components Count Emission Factor 1.10E-04 kg/hr/component Open-Ended Lines Count 0 components Emission Factor 1.40E-03 kg/hr/component Pump Seals Count 2 components Emission Factor 1,30E-02 kg/hr/component Other Count 0 components Emissions **Emission Factor** 7.50E-03 kg/hr/component Avg. Hourly Max. Annual Max. Hourly Speciation CO_{2-e} CO₂ 2.8891 tpy ΓΟC (Total) 96.20% by weight 0.6596 lb/hr 0.7915 lb/hr Methane Ethane 2,8891 tpy 0.6596 lb/hr 96.20% by weight 0.7915 lb/hr VOC (Total) VOC (non-HAP) HAP (Total) 14.54% by weight 0.0997 lb/hr 0.4368 tpy 0.1197 lb/hr Benzene 1.44% by weight 9.88E-03 lb/hr 4.33E-02 tpy 1.19E-02 lb/hr 0.48% by weight 1.43E-02 tpy Ethylbenzene 3.26E-03 lb/hr 3.92E-03 lb/hr Hexane (n-) 1.69% by weight 5.09E-02 tpy 1.16E-02 lb/hr 1.39E-02 lb/hr Methanol Naphthalene 4.49% by weight 3.08E-02 lb/hr 1.35E-01 tpy Toluene 3.69E-02 lb/hr Trimethylpentane (2,2,4-) 0.03% by weight 1.77E-04 lb/hr 7.75E-04 tpy 2.12E-04 lb/hr Xylenes 6.42% by weight 4.40E-02 lb/hr 1.93E-01 tpy 5.28E-02 lb/hr NOTES

The average SOCMI w/o ethylene emission factor is used for pumps in heavy oil service (Table 2-1) since an emission factor isn't provided in Table 2-4.

- 3. The component type "Other" includes blowdown valves, relief valves, and compressor seals.
- 4. Weight percents based on composition estimate (TABLE D-0).
- 5. Maximum hourly emissions are based on 120% of the hourly emissions estimated in an effort to be conservative

Texas Eastern Transmission, LP Accident Compressor Station

^{1.} Emission factors obtained from Table 2-4 (Oil & Gas Production Operations) of Protocol for Equipment Leak Emission Estimates (EPA 453/R-95-017).

^{2.} Piping component counts at Accident compressor station.

TABLE B-1c Piping Components Hourly and Annual Emission Estimates

Source				ACCI-PC-PL		
Service				Light Oil		
		l	C	ompressor Station - N	lethanol	
Minimum hours when o	component purged with inert	gas	0 hrs/yr		E 0 1 1 1 1	
Component	Valves	Count	135 components			
		Emission Factor	2,50E-03 kg/hr/component			
	Connectors	Count	748 components			
	_	Emission Factor	2.10E-04 kg/hr/component			
	Flanges	Count	250 components			
	1	Emission Factor	1.10E-04 kg/hr/component			
	Open-Ended Lines	Count	0 components			
		Emission Factor	1.40E-03 kg/hr/component			
	Pump Seals	Count	2 components			
		Emission Factor	1.30E-02 kg/hr/component	4		
	Other Count		0 components		Emissions	
		Emission Factor	7.50E-03 kg/hr/component	Avg. Hourly	Max. Annual	Max. Hourly
Speciation	CO _{2-e}		-			
	CO ₂					
	TOC (Total)		96.20% by weight	1,1623 lb/hr	5.0910 tpy	1.3948 lb/hr
	Methane		,			
	Ethane					
	VOC (Total)		96.20% by weight	1.1623 lb/hr	5,0910 tpy	1.3948 lb/hr
i	VOC (non-HAP)		,			
	HAP (Total)		14.54% by weight	0.1757 lb/hr	0.7696 tpy	0.2109 lb/hr
1	Benzene		1.44% by weight	1.74E-02 lb/hr	7.62E-02 tpy	2.09E-02 lb/hr
	Ethylbenzene		0.48% by weight	5.75E-03 lb/hr	2.52E-02 tpy	6.90E-03 lb/hr
	Hexane (n-)		1.69% by weight	2,05E-02 lb/hr	8.96E-02 tpy	2.46E-02 lb/hr
	Methanol		*-			
	Naphthalene					
l	Toluene		4.49% by weight	5.43E-02 lb/hr	2.38E-01 tpy	6.51E-02 lb/hr
	Trimethylpenta	ne (2,2,4-)	0.03% by weight	3.12E-04 lb/hr	1.37E-03 tpy	3.74E-04 lb/hr
l .			6.42% by weight	7.75E-02 lb/hr	3.40E-01 tpy	9.30E-02 lb/hr

NOTES

1. Emission factors obtained from Table 2-4 (Oil & Gas Production Operations) of Protocol for Equipment Leak Emission Estimates (EPA 453/R-95-017).

The average SOCMI w/o ethylene emission factor is used for pumps in heavy oil service (Table 2-1) since an emission factor isn't provided in Table 2-4.

2. Piping component counts at Accident compressor station.

The component type "Other" includes blowdown valves, relief valves, and compressor seals.

Weight percents based on composition estimate (TABLE D-0).

Maximum hourly emissions are based on 120% of the hourly emissions estimated in an effort to be conservative.

Texas Eastern Transmission, LP Accident Compressor Station

		Hourly a	TABLE B-1d Piping Components nd Annual Emission Estimates			
Source				ACCI-PC-OIL		
Service		L		Heavy Oil		
				Compressor Station	- Oil	
Minimum hours when	n component purged with inert		0 hrs/yr			
Component	Valves	Count	666 components			
		Emission Factor	8.40E-06 kg/hr/component	March .		
	Connectors	Count	7,290 components			
		Emission Factor	7.50E-06 kg/hr/component	The same		
	Flanges	Count	242 components			
		Emission Factor	3.90E-07 kg/hr/component	100		
	Open-Ended Lines	Count	0 components			
		Emission Factor	1.40E-04 kg/hr/component			
	Pump Seals	Count	7 components			
		Emission Factor	8.62E-03 kg/hr/component	CHAPTER TO THE	1 10 1	
	Other	Count	0 components		Emissions	
	ŀ	Emission Factor	3.20E-05 kg/hr/component	Avg. Hourly	Max. Annual	Max. Hourly
Speciation	CO _{2-e}					
	CO,	i				
	TOC (Total)		100.00% by weight	0.2661 lb/hr	1,1654 tpy	0.3193 lb/h
	Methane		Toologie of Weight	0.2001 10/11	1,,1054 193	0,5175 10/1
	Ethane					
	VOC (Total)		100.00% by weight	0.2661 lb/hr	1.1654 tpy	0.3193 lb/h
	VOC (non-HAP)		rooto of neight	0.2001 10/11	1,105 (1)	0.5175 16/1
	HAP (Total)			-		
	Benzene					
	Ethylbenzene					
	Hexane (n-)				-	
	Methanol	1			_	
	Naphthalene					
	Toluene	1				
	Trimethylpenta	ne (2.2.4-)				
	Xylenes	· /-9 · /				

1. Emission factors obtained from Table 2-4 (Oil & Gas Production Operations) of Protocol for Equipment Leak Emission Estimates (EPA 453/R-95-017). The emission factor for pumps in heavy oil service is obtained from Table 2-1.

Piping component counts at Accident compressor station.

The component type "Other" includes blowdown valves, relief valves, and compressor seals.

Weight percents based listed on MSDS.

- 5. Maximum hourly emissions are based on 120% of the hourly emissions estimated in an effort to be conservative

Texas Eastern Transmission, LP Accident Compressor Station

TABLE B-1e Piping Components Hourly and Annual Emission Estimates ACCI-PC-EC Source Water/Oil Compressor Station - Coolant Minimum hours when component purged with inert gas 0 hrs/yr 50 components Component Valves Count 9.80E-05 kg/hr/component **Emission Factor** Connectors Count 83 components **Emission Factor** 1,10E-04 kg/hr/component Flanges 49 components Count **Emission Factor** 2.90E-06 kg/hr/component Open-Ended Lines 0 components Count Emission Factor 2.50E-04 kg/hr/component Pump Seals 0 components Count 2.40E-05 kg/hr/component Emission Factor Emissions Other Count 0 components Emission Factor 1.40E-02 kg/hr/component Avg. Hourly Max. Annual Max. Hourly Speciation CO_{2-c} CO₂ 0.0821 tpy 60.00% by weight 0.0187 lb/hr 0.0225 lb/hr TOC (Total) Methane Ethane VOC (Total) 60.00% by weight 0.0187 lb/hr 0.0821 tpy 0.0225 lb/hr VOC (non-HAP) HAP (Total) 0.0187 lb/hr 0.0225 lb/hr 60.00% by weight 0.0821 tpy Benzene Ethylbenzene Hexane (n-) Methanol Naphthalene Toluene Trimethylpentane (2,2,4-) Xylenes

1. Emission factors obtained from Table 2-4 (Oil & Gas Production Operations) of Protocol for Equipment Leak Emission Estimates (EPA 453/R-95-017). The average SOCMI w/o ethylene emission factor is used for pumps in heavy oil service (Table 2-1) since an emission factor isn't provided in Table 2-4.

NOTES

- 2. Piping component counts at Accident compressor station.
- 3. The component type "Other" includes blowdown valves, relief valves, and compressor seals.
- Weight percents based listed on MSDS.
- 5. Maximum hourly emissions are based on 120% of the hourly emissions estimated in an effort to be conservative

Texas Eastern Transmission, LP Accident Compressor Station

		Hourly a	TABLE B-2a Piping Components and Annual Emission Estimates			
Source			-	ACCI-PC-NG		
Service				Gas		
			S	torage Facility - Nati	ural Gas	
Minimum hours when	n component purged with inert	gas	0 hrs/yr		NAME OF THE PROPERTY OF	
Component	Valves	Count	2,202 components			
		Emission Factor	4.50E-03 kg/hr/component			
	Connectors	Count	10,252 components			
		Emission Factor	2.00E-04 kg/hr/component			
	Flanges	Count	1,379 components	100		
	-	Emission Factor	3.90E-04 kg/hr/component			
	Open-Ended Lines	Count	0 components			
	1	Emission Factor	2.00E-03 kg/hr/component			
	Pump Seals	Count	0 components	444211		
		Emission Factor	2.40E-03 kg/hr/component	Mar the Lie		
	Other	Count	0 components		Emissions	
	1	Emission Factor	8.80E-03 kg/hr/component	Avg. Hourly	Max. Annual	Max. Hourly
Speciation	CO _{2-e}		2217.57% by weight	610,9664 lb/hr	2,676.0328 tpy	665.4044 lb/hr
	CO ₂		1.41% by weight	0.3877 lb/hr	1.6980 tpy	1.7523 lb/hr
	TOC (Total)		98.21% by weight	27.0570 lb/hr	118.5096 tpy	27.4527 lb/hr
	Methane		88.647% by weight	24.4231 lb/hr	106.9734 tpy	26,5461 lb/hr
	Ethane		8.638% by weight	2.3799 lb/hr	10.4240 tpy	6.8884 lb/hi
	VOC (Total)		1.540% by weight	0.4243 lb/hr	1.8583 tpy	2.5644 lb/hi
	VOC (non-HAP)					
	HAP (Total)		0.044% by weight	0.0120 lb/hr	0.0525 tpy	0.1585 lb/hr
	Benzene		0.005% by weight	1.34E-03 lb/hr	5.88E-03 tpy	1.94E-02 lb/hr
	Ethylbenzene		0.003% by weight	9.02E-04 lb/hr	3.95E-03 tpy	3.38E-03 lb/hr
	Hexane (n-)		0.019% by weight	5.35E-03 lb/hr	2.34E-02 tpy	1.29E-01 lb/hr
	Methanol				<u> </u>	
	Naphthalene			,		
	Toluene		0.005% by weight	1.51E-03 lb/hr	6.62E-03 tpy	1.90E-02 lb/hr
	Trimethylpenta	ne (2,2,4-)	0.000% by weight	4.92E-05 lb/hr	2.16E-04 tpy	1.87E-03 lb/hr
	Xylenes		0.011% by weight	2.99E-03 lb/hr	1.31E-02 tpy	2.87E-02 lb/hr

NOTES

1. Emission factors obtained from Table 2-4 (Oil & Gas Production Operations) of Protocol for Equipment Leak Emission Estimates (EPA 453/R-95-017). The average SOCMI w/o ethylene emission factor is used for pumps in heavy oil service (Table 2-1) since an emission factor isn't provided in Table 2-4.

2. Piping component counts at Accident Storage Field.

3. The component type "Other" includes blowdown valves, relief valves, and compressor seals.

Maximum hourly emissions are based on the worst-case short-term weight percents even though the values are NOT presenter

Texas Eastern Transmission, LP Accident Compressor Station

Weight percents based on gas analysis used to estimate gas release annual emissions (TABLE C-2).

TABLE B-2b **Piping Components** Hourly and Annual Emission Estimates

Source				ACCI-PC-PL		
Service				Light Oil		
		1		Storage Facility - Me	thanol	
Minimum hours wher	n component purged with inert	gas	0 hrs/yr		1 p 3 1 1 1 1 1 1 1	
Component	Valves	Count	77 components			
•		Emission Factor	2.50E-03 kg/hr/component			
	Connectors	Count	1,502 components			
		Emission Factor	2.10E-04 kg/hr/component	3 5 15		
	Flanges	Count	11 components			
	1	Emission Factor	1.10E-04 kg/hr/component			
	Open-Ended Lines	Count	0 components			
		Emission Factor	1.40E-03 kg/hr/component			
	Pump Seals	Count	10 components			
		Emission Factor	1.30E-02 kg/hr/component			
Other		Count	0 components	Emissions		
		Emission Factor	7.50E-03 kg/hr/component	Avg. Hourly	Max. Annual	Max. Hourly
Speciation	CO _{2-e}					
	CO ₂			i i		
	TOC (Total)		96.20% by weight	1.3554 lb/hr	5.9368 tpy	1.6265 lb/hr
	Methane					
	Ethane	ĺ	-			
	VOC (Total)		96.20% by weight	1.3554 lb/hr	5,9368 tpy	1.6265 lb/hr
	VOC (non-HAP)					
	HAP (Total)		14.54% by weight	0.2049 lb/hr	0.8975 tpy	0.2459 lb/hr
	Benzene		1.44% by weight	2.03E-02 lb/hr	8.89E-02 tpy	2.44E-02 lb/hi
	Ethylbenzene	Ţ.	0.48% by weight	6,71E-03 lb/hr	2.94E-02 tpy	8.05E-03 lb/hi
	Hexane (n-)		1.69% by weight	2.39E-02 lb/hr	1.05E-01 tpy	2.86E-02 lb/hi
	Methanol		·			
	Naphthalene					
	Toluene		4.49% by weight	6.33E-02 lb/hr	2.77E-01 tpy	7,59E-02 lb/hr
	Trimethylpentar	ne (2,2,4-)	0.03% by weight	3.64E-04 lb/hr	1.59E-03 tpy	4.37E-04 lb/hr
	Xylenes		6.42% by weight	9.04E-02 lb/hr	3.96E-01 tpy	1.08E-01 lb/hr

NOTES

1. Emission factors obtained from Table 2-4 (Oil & Gas Production Operations) of Protocol for Equipment Leak Emission Estimates (EPA 453/R-95-017).

The average SOCMI w/o ethylene emission factor is used for pumps in heavy oil service (Table 2-1) since an emission factor isn't provided in Table 2-4.

- 2. Piping component counts at Accident Storage Field.
 3. The component type "Other" includes blowdown valves, relief valves, and compressor seals.
 4. Weight percents based on composition estimate (TABLE D-0).
 5. Maximum hourly emissions are based on 120% of the hourly emissions estimated in an effort to be conservative.

Texas Eastern Transmission, LP Accident Compressor Station

TABLE C-1 Gas Releases

Hourly and Annual Emission Estimates

(Gas Releases from Miscellaneous Vents w/ Minor Contributions from MS	(Gas Releases	from	Miscellaneous	Vents w/ Minor	Contributions from MS
---	---------------	------	---------------	----------------	-----------------------

Category	Compressor Station Operations											
Source		ACCI-GR-ST		SE COLLEGEN BURG								
	Avg. Hourly	Max. Annual	Max Hourly		ALTERNATION AND THE RES	CONTRACTOR OF LUCE						
Gas Release	18,292 scfh	160,234,000 scf/yr	32,816,000 scfh									
	858 lb/hr	7,513,296 lb/yr	1,611,134 lb/hr									
NO _X		Extension and			All the All the same	1 Estate municipal						
CO	Military was a few and the				and the second							
SO ₂	RISA WOODS 10 ZAM			E HISTORIA IN	What is the State of Miles	The state was a						
PM _{10 2 5}	gilleniens enver											
CO ₂₋₆	19,020 lb/hr	83,306 tpy	38,911,442 lb/hr									
CO ₂	12.068 lb/hr		102,474 lb/hr		AMERICAN ACTOR ACTOR							
	12,068 IB/NF	52.86 tpy	102,474 lb/nr		A SHOULD WELL THE							
N ₂ O	PA-SEE SECTION OF											
TOC (Total)	842.3 lb/hr	3,689.3 tpy	1,605,375 lb/hr									
Methane	760.3 lb/hr	3,330.1 tpy	1,552,359 lb/hr									
Ethane	74.09 lb/hr	324.50 tpy	402,820 lb/hr	ALL MARKET MANY ST								
VOC (Total)	17,119 lb/hr	74.98 tpy	149,962 lb/hr			B. Millia Billia						
VOC (non-HAP)	16 061 lb/hr	70.35 tpy	140,690,5835 lb/hr		Access nearly than							
HAP (Total)	1.0583 lb/hr	4,6356 tpy	9,271.1328 lb/hr	EULES EL STANFO	Mile De la Mala de la							
Acetaldehyde						TO THE CLASS OF						
Acrolein				Alle Town Street								
Benzene	0.1294 lb/hr	0.5668 tpy	1,133,7 lb/hr	Salt Salt	WELLEY WASHING							
Biphenyl												
Butadiene (1,3-)	[Samuel Williams								
Carbon Tetrachloride					ASSESSED TO THE PARTY							
Chlorobenzene												
Chloroform						The Party State of the State of						
Dichloropropene (1,3-)												
Ethylbenzene	0.0281 lb/hr	0,1230 tpy	197.65 lb/hr	Section of the second								
Ethylene Dibromide	1	"			Shart make the said of							
Formaldehyde												
Hexane (n-)	0,8629 lb/hr	3,7795 tpy	7,559 lb/hr		Ship of the state							
Methanol				THE PERSONS	STREET,							
Methylene Chloride				Conscious and and		let//en leantés						
Methylnaphthalene (2-)					one or parator en	and the second second						
Naphthalene					BENEFIT OF STREET	CHARLES AND ARE						
PAH				N. S. P. C. S. C.	SMESON STATE OF THE STATE OF TH	II BAYAS AYA I BUILDANS						
Phenol				STEED BUILDINGS CHILD		1 And Statement Court						
Propylene Oxide				STATE OF THE PARTY OF	ISE SEEDING	STATE OF PERSONS ASSESSED.						
Styrene				THE RESERVOIS								
Tetrachloroethane (1,1,2,2-)				UNINTER STREET	Response to the second							
Toluene	0.1271 lb/hr	0,5568 tpy	1,113.5 lb/hr		STATE OF THE PARTY OF	A SECULE OF BUILDING						
Trichloroethane (1,1,2-)		.,		TO SECULIAR MANAGEMENT								
Trimethylpentane (2,2,4-)	0,0125 lb/hr	0.0548 tpy	109.55 lb/hr		ALCOHOL: N							
Vinyl Chloride												
Xylenes	0.1918 lb/hr	0.8400 tpy	1,680.0 lb/hr									

1. Historical gas release data extracted from gas loss database (01/1998 through 07/2004).

	Average	Average Plus	<u>Maximum</u>	Maximum/Average+	Average+/Average
Density (GC)	0.0469 lb/scf	0.0469 lb/scf	0.0491 lb/scf	105%	100%
Density (Lab)	0.0444 lb/scf	0.0445 lb/scf	0.0521 lb/scf	117%	100%
Density (Use)		0.0469 lb/scf	0.0491 lb/scf		

3. Extended analyses (Lab) are used to estimate pollutant emissions: 364 samples collected in CT, IN, KY, LA, MD, ME, MO, MS, NJ, NY, OH, PA, RI, TN, TX and VA between 2011 and 2016. Maximum (i.e., short-term) = Max(ALL)

Average Plus (i.e., long-term) = Average(ALL) + CONFIDENCE NORM(100% - 99%, STDEV.S(ALL), COUNT(ALL)).

	Average	Average Plus	Maximum	Maximum/Average+	Average+/Average
VOC (GC)	1.87% wt%	2.00% wt%	7.19% wt%	360%	107%
VOC (Lab)	1.44% wt%	1.54% wt%	9.31% wt%	604%	107%
VOC (Use):		1.54% wt%	9.31% wt%		

TABLE C-2 Gas Releases Hourly and Annual Emission Estimates

Category			Storage Field	Operations								
Source	ACCI-GR-PL											
				Avg. Hourly	Max, Annual	Max. Hourly						
Gas Release				41,769 scfh	365,900,000 scf/yr	18,581,000 scfh						
				1,959 lb/hr	17,156,876 lb/yr	912,253 lb/hr						
NO _X	TO CHARLEST AND THE		La Supply Transaction of	MOTERAL PROPERTY.	ALCOHOLD CONTROL OF THE PARTY O							
CO	THE HALLEST STATE	I NOS	Alexandra de la companya del companya de la companya del companya de la companya			LIVELET HERVINDEN HERVINDE						
SO ₂	for the book of the same	I COMPANY OF THE PARTY OF THE P	with a first think the		NOT DECEMBER 19	2 2 1 2 1 1 1 1 1 1						
	Harris and the second				DESCRIPTION OF THE PARTY OF THE							
PM ₁₀₂₅		4 Cerum Activities (Market	eronan janapanan r	Extracte the Shorts	ALTERNATION TO CO.	A MAIN CHILDRE						
CO ₂₊			THE SOURS OF THE SEC	43,432 lb/hr	190,233 tpy	22,032,347 lb/hr						
CO2				27.5579 lb/hr	120,7036 tpy	58,022,4258 lb/hr						
N ₂ O	The same of the last	the state of the s	Auditory Services	HERNAM WAS BOTH VICE	Contract of the Contract of th							
TOC (Total)	DUAYS THE RESIDENCE WITH	PC ACTOR SERVICES	Control of the Control	1,923 lb/hr	8,425 tpy	908,992 lb/hr						
Methane	VIII ON THE STATE OF THE STATE	I SANGKAMAH MANASASASA	CONTRACTOR OF THE PARTY.	1,736 lb/hr	7,604 tpy	878,973 lb/hr						
Ethane	THE RESIDENCE OF THE PARTY OF T		International States	169 lb/hr	741 tpy	228,084 lb/hr						
VOC (Total)	A SECTION AND A SECTION ASSECTION AS	E DESCRIPTION OF THE PROPERTY	TO THE PERSON	30,1601 lb/hr	132 1013 tpy	84,910.9779 lb/hr						
VOC (non-HAP)	TENSPHONE CONTROL OF YOR		DESCRIPTION OF THE	29.3081 lb/hr	128.3694 tpy	79,661 4984 lb/hr						
HAP (Total)	\$20.00 M. WOLKS MINES	A REPORT OF STREET		0.8520 lb/hr	3,7319 tpy	5,249.4795 lb/hr						
Acetaldehyde	(STEELED DESCRIPTION	al She white	demucos realizados			.,						
Acrolein	MARSHAMSCHILLS	3541392000-020000000000000000000000000000000	SHOW SHOW IN SHORE AND									
Benzene	CHARLEST AND A STATE OF THE STA	Committee of the Commit	HATER AND PROPERTY OF THE PARTY	0.0954 lb/hr	0,4177 tpy	641.9046 lb/hr						
Biphenyl	parametridus(subs-Ade				9,1,1.1.47							
Butadiene (1,3-)	SUR: SHIPS HE DOWNER	I DESCRIPTION OF STREET										
Carbon Tetrachloride	0.0000000000000000000000000000000000000	THE RESERVE OF THE PARTY OF THE	DIRECTOR COLUMN									
Chlorobenzene	FUNCTION OF THE PARTY OF THE PA	A STATE OF THE PROPERTY OF THE	SECURIOR VILLAGORIO									
Chloroform	Application of the second second	white and the leading to the leading of	SECTION SECTION									
Dichloropropene (1,3-)	2013 AURILL LANGUAGE CAN											
Ethylbenzene		Experience of the control of	Action and Action in the Lot	0.0641 lb/hr	0.2809 tpy	111.9127 lb/hr						
Ethylene Dibromide			Carl Carlot Carlo Constant	0,0041 10/11	0.2007 tpy	111,7127 10/11						
Formaldehyde	1/0/2007/01/01/01/05	A STATE OF THE PROPERTY OF THE										
Hexane (n-)	24524114 1104 1410411		SHOULD SEE STATE OF SEC.	0,4886 lb/hr	2 1400 tpy	4,280,0209 lb/hr						
Methanol				0,4000 10/111	211100 (2)	1,200,0209 10/11						
Methylene Chloride		a the control of the control of the										
Methylene Chloride Methylnaphthalene (2-)		ALCOHOL CONTRACTOR CONTRACTOR	CONTRACTOR OF THE PARTY OF THE									
Naphthalene	MATERIAL PROPERTY AND ADDRESS OF THE PARTY AND		Committee Committee Colors									
PAH	U 42 3 10 10 10 10 10 10 10 10 10 10 10 10 10											
Phenol	Samuel and American Company	A THE RESIDENCE OF THE PROPERTY OF THE PARTY										
Propylene Oxide	\$100 mm mm max at 150 mm											
Styrene		III III NAASSEEN NIILLAN OO SUURE	STREET, STREET									
Tetrachloroethane (1,1,2,2-)	SHA COMBRUTA TANKS	A STATE OF THE PARTY OF THE PAR										
	Debt Professional Section 5.	TOTAL CONTROL OF THE STATE OF T	Works Company of the Company	0.1075 lb/hr	0.4708 tpy	630.5088 lb/hr						
Toluene Trichloroethane (1,1,2-)	SECTION OF THE PARTY OF T			0.1073 10/11	0.4700 tpy	030.3000 IB/RE						
	the second second second second	of The Atlanta Control of the Atlanta		0.0071 lb/hr	0.0310 tpy	62.0289 lb/hr						
Trimethylpentane (2,2,4-) Vinyl Chloride	The second secon		Secretaria de la constanta de	0.0071 10/01	0.0310 tpy	02,0269 10/01						
Xylenes	The state of the control of the state of the		MANUACIA DA PARA PARA PARA PARA PARA PARA PARA	0.2122 lb/hr	0.9295 tpy	951 2578 lb/hr						
Aylenes	CONTROL ROLL INCOME	Mark Mark Mark Mark Mark Mark Mark Mark	Members I to Perform Agency	0.2122 10/11	0.9293 tpy	931,2376 10/111						
Historical gas release data extracted from Gas chromatograph data (GC) are used to		s 32 GC data sites collecte	d between 2008 and 2015									
	Density (GC)	Average 0.0469 lb/sef	Average Plus 0.0469 lb/scf	Maximum 0.0491 lb/scf	Maximum/Average+ 105%	Average+/Average 100%						
	Density (Lab)	0.0444 lb/scf	0.0445 lb/scf	0.0521 lb/scf	117%	100%						
	Density (Use)		0.0469 lb/scf	0.0491 lb/scf								
 Extended analyses (Lab) are used to estim Maximum (i.e., short-term) = Max(ALL) 	ate pollutant emissions 364 sa			1S, NJ, NY, OH, PA, R	I, TN, TX and VA betwee	n 2011 and 2016						
Average Plus (i.e., long-term) = Average	ALL) + CONFIDENCE NOR											
		Average	Average Plus	Maximum	Maximum/Average+	Average+/Average						
	VOC (GC)	1.87% wt%	2.00% wt%	7.19% wt%	360%	107%						
	VOC (Lab)	1.44% wt%	1.54% wt%	9.31% wt%	604%	107%						
	VOC (Use)	10 130 130	1.54% wt%	9.31% wt%								

TABLE D-0 Volatile Organic Liquid Storage Tanks Vapor Physical Property and Composition Estimates Raoult's Law

Component			MW	<u> </u>	mponent Dat	a Yaws Vapor P	nacuna CAc	riante			1,11	P Datum	Liquid		Vapor	
Name	Tuna	HAP		Ā	В	raws vapor P	D D	E E	т	т	T	1000	mol%	Wt%	(mol/moly)	W1%
(i)	Type	паг	(lb/mol) _i M _i	2	ь	·	ь	L	T _{Min} (°F)	T _{Max} (°F)	(°F)	P _i (psia)	(mol/mol _L)	(lb/lb _L) f _{m-i}	(moitmost)	(lb _i /lb _V)
Nitrogen			28.013	3,7362	2.6465E+02	-6.7880E+00	0.0000E+00	0.0000E+00	-345.75	-232.60	68.00	(para)	0.000%	0.000%	0.000%	0.000%
	GHG		44.010	35.0169	-1.5119E+03	-1.1334E+01	9.3368E-03	1.7136E-09	-68.80	87.80	68.00	833,1743	0.000%	0.000%	0.000%	0.000%
	GHG		16.042	14,6667	-5.7097E+02	-3.3373E+00	W. C. C. C. C. C.	1.3096E-05	-295.60		68.00	7,889,8148	0.000%	0.000%	0.000%	0.000%
Ethane	WOC		30.069	20.6973	-1.1341E+03	-5.2514E+00	-9.8774E-11	6.7329E-06	-297.40	89.60	68.00	546.5426 121.5870	0.000%	0.000%	0.000%	0.000%
Propane Butane (i-)	VOC		44.096 58.122	21.4469 31.2541	-1.4627E+03 -1.9532E+03	-5.2610E+00 -8.8060E+00	3 2820E-11 8 9246E-11	3.7349E-06 5.7501E-06	-306.40 -254.20	206.60 275.00	68.00	44.2751	0.000%	0.000%	0.000%	0.000%
Butane (n-)	VOC		58.122		-1.9049E+03	-7.1805E+00	-6.6845E-11	4.2190E-06	-216.40	305.60		30.1688	0.000%	0.000%	0.000%	0.000%
	VOC		72.149	29,2963		-7.8830E+00	-4.6512E-11	3.8997E-06	-256.00	368.60		11.1082	2.544%	1.430%	27.049%	22.613%
	VOC		72.149		-2.4227E+03	-9.2354E+00	9.0199E-11	4.1050E-06	-202.00	386.60	68.00	8.1938	1.859%	1.045%	14.586%	12.194%
	VOC		86.175 86.175	33.1285 33.6319	-2.4527E+03 -2.5524E+03	-9.2016E+00 -9.3142E+00	-4.7077E-10 1.4759E-10	4.1755E-06 3.9140E-06	-146 20 -223 60	420.80 500.00	68.00 68.00	5,0720 3,6998	0.227%	0.152%	1.100% 0.000%	0.000%
Cyclopentane	voc		70.133	29.1547	-2.3512E+03	-7.6965E+00		3.1250E-06	-137.20	462.20	68.00	5.0181	0.000%	0.000%	0.000%	0.000%
Methylpentane (2-)	VOC		86,175	30.7477		-8.2295E+00		3.2402E-06	-243 40	437.00	68.00	3,3041	1.586%	1.065%	5,017%	5.010%
Methylpentane (3-)	VOC		86,175		-2.6773E+03	-9.8546E+00		4.0277E-06	-261.40	447.80		2.9617	1.188%	0.797%	3.367%	3.362%
	VOC	X	86.175 100.202	69.7378	-3.6278E+03 -2.1682E+03	-2.3927E+01 2.6936E+00	1.2810E-02 -1.5525E-02	-1.6844E-16 1.0917E-05	-139.00 -191.20	453 20 478 40	68,00	2.3626 1.6191	2.522% 0.430%	0.335%	5.705% 0.666%	5.697% 0,773%
Methylcyclopentane	VOC		84,159	32,4766	-2.6434E+03	-8.7933E+00		3.2158E-06	-223 60	500.00	68.00	2 1257	1.567%	1.027%	3.189%	3,109%
Dimethylpentane (2,4-)	VOC		100.202	35.9436		-9.9938E+00	8.0693E-11	3.6419E-06	-182,20	476.60	68.00	1,5074	0.177%	0.138%	0.255%	0.296%
Trimethylbutane (2,2,3-)	voc		100,202	32.3633	-2.6614E+03	-8.7743E+00		3.2006E-06	-11.20	496.40		1,5789	0.000%	0.000%	0,000%	0.000%
Benzene	VOC	X	78.112 100 202	31.7718 30.2570		-8.4443E+00		2.7187E-06	42,80 -209,20	552.20		1,4495	2.367%	1.440%	3.284%	2.973%
	VOC		84.159	48 5529	-2.6313E+03 -3.0874E+03	-7 9839E+00 -1.5521E+01	4.6848E-13 7.3830E-03	2,7170E-06 6.3563E-12	44,60	505.40 537.80	68.00 68.00	1.2681	0.305% 1.528%	0.238%	0.371% 2.211%	0.430% 2.156%
Methylhexane (2-)	VOC		100,202	54,1075	-3.3785E+03	-1.7547E+01	8 2594E-03	-3.4967E-14	-180.40	494.60	68.00	0.9987	3,167%	2.472%	3.028%	3,516%
	voc		100,202		-2,9050E+03	-1,2012E+01	5.1334E-03	-2.3807E-14	-171,40	507.20		1.0467	0.000%	0.000%	0,000%	0.000%
Dimethylcyclopentane (1,1-)	VOC		98,186		-3.4151E+03 -2.9310E+03	-1.9294E+01	9.6704E-03 -5.2026E-11	-2.4361E-15	-94 00	525.20		0.0201	0.833%	0.637%	0.927%	1.054%
Methylhexane (3-) Dimethylcyclopentane (1,t-3-)	VOC		100.202 98.186	35.2535 53.1912	-2.9310E+03	-9.6667E+00 -1.7277E+01	-5.2026E-11 8.3107E-03	3.2107E-06 5.0896E-14	-182 20 -209 20	503.60 536.00	68.00 68.00	0.9291	3.287% 0.225%	2.566% 0.172%	2.924% 0.211%	3,394% 0,240%
	voc		98,186	35.4255	-2.7286E+03	-1.0444E+01	4.6608E-03	1.7565E-14	-209 20	532.40		1.0075	0.368%	0.281%	0.354%	0.403%
Ethylpentane (3-)	VOC		100,202	8,5463	-2,2979E+03	1,5503E+00		8 2670E-06	-180.40	514.40	68.00	0.8755	0.040%	0.031%	0,034%	0.039%
Dimethylcyclopentane (1,t-2-)	VOC		98,186	36,8109		-1.0275E+01	-4.6212E-12	3,6730E-06	-178,60	536.00	68,00	0.9713	0.307%	0.235%	0.285%	0.325%
Trimethylpentane (2,2,4-) Heptane (n-)	VOC	X	114,229	50.3422 65.0257	-3.2789E+03	-1,6111E+01 -2,1684E+01	7.4260E-03 1.0387E-02	-9.1804E-14 1.0206E-14	-160,60 -130,00	519 80 512 60	68.00 68.00	0,7453 0,6808	0.029% 5.170%	0.026% 4.036%	0,021% 3,370%	0.027%
	VOC		98 186	38.0955		-1.0684E+01	-5.1766E-11	3.5282E-06	-194.80	570.20	68.00	0.6925	4.647%	3.555%	3.081%	3.505%
Trimethylcyclopentane (1,1,3-)	VOC		112.213		-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130	0.317%	0.277%	0.004%	0.005%
Dimethylhexane (2,2-)	VOC		114,229		-3.1841E+03	-1.0857E+01	1.9275E-12	3,4797E-06	-185.80	530 60		0.5066	0.134%	0.119%	0.065%	0.086%
Dimethyleyclopentane (1,c-2-) Dimethylhexane (2,5-)	VOC		98.186 114.229	36,3623 40,0260	-3,0025E+03 -3,2647E+03	-1.0070E+01 -1.1282E+01	-1_0435E-09 -6_5408E-10	3,3726E-06 3,6200E-06	-65,20 -131,80	557.60 530.60		0.7110	1.194% 0.000%	0.913%	0.813%	0.924%
	VOC		114.229		-3.6225E+03	-1.8225E+01	8.1864E-03	8.7232E-12	30.20	537.80		0.4499	0.201%	0.179%	0.087%	0.115%
	VOC		98,186	36,3631	-3.0448E+03	-1.0038E+01	3.5007E-11	3 2347E-06	-216.40	566 60	68.00	0.5963	0.653%	0.500%	0.373%	0.424%
Trimethylpentane (2,2,3-)	VOC		114.229		-3.0569E+03	-9.8896E+00		3.1060E-06	-169.60	555.80	68.00	0.4788	0.039%	0.035%	0.018%	0.024%
Trimethylcyclopentane (1,t-2,c-4-) Dimethylhexane (3,3-)	VOC		112.213 114.229		-2.9801E+03 -3.1736E+03	2.7007E-01 -1.0617E+01	-6.7946E-03 6.3090E-11	3.5409E-06 3.3817E-06	-63.40 -194.80	734.00 552.20	68.00 68.00	0.0130 0.4250	0.000%	0.000%	0.000%	0.000%
	VOC		112.213		-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734 00		0.4230	0.000%	0.000%	0.000%	0.000%
	VOC		114.229		-3.0232E+03	-9.2267E+00		2.7828E-06	-164,20	559.40		0.4029	0.000%	0.000%	0.000%	0.000%
Dimethylhexane (2,3-)	VOC	- 1	114,229	57,3778	-3.7143E+03	-1 8599E+01	8 2907E-03	-2.8441E-12	30,20	554.00		0.3451	0.000%	0.000%	0.000%	0.000%
Toluene Trimethylcyclopentane (1,1,2-)	VOC	X	92.138 112.213	34.0775	-3.0379E+03 -2.9801E+03	-9.1635E+00 2.7007E-01	1.0289E-11 -6.7946E-03	2.7035E-06 3.5409E-06	-139,00 -63,40	606.20 734.00	68.00 68.00	0.4219 0.0130	6.256% 0.522%	4.491% 0.457%	2.527% 0.006%	0.008%
Dimethylhexane (3,4-)	VOC		114,229	38.6119	-3.2685E+03	-1.0752E+01	3.6386E-09	3.2771E-06	30.20	564.80		0.3186	4.934%	4.391%	1.505%	1.992%
Methylheptane (2-)	VOC		114,229	37.6930	-3.2611E+03	-1.0391E+01	-1.0524E-12	3.0560E-06	-164.20	548.60	68 00	0.3028	0.000%	0.000%	0.000%	0.000%
	VOC		114.229	40.2080	-3.3661E+03	-1.1279E+01	-8.7855E-11	3,4055E-06	-185,80	552.20	68.00	0,3001	4.077%	3.628%	1.171%	1.550%
Dimethylhexane (3,4-) Methylheptane (3-)	VOC		114.229 114.229	38.6119 52.8828	-3.2685E+03 -3.6231E+03	-1.0752E+01 -1.6804E+01	3 6386E-09 7.1828E-03	3 2771E-06 7 4077E-14	30 20 -184 00	564.80 555.80	68.00 68.00	0.3186 0.2869	0.000% 0.586%	0.000%	0.000%	0.000%
Ethylhexane (3-)	VOC		114.229	40.2079	-3.3651E+03	-1.1285E+01	-5.4180E-09	3.4199E-06	30.20	557.60	68,00	0.2931	0.386%	0.139%	0.044%	0.058%
Trimethylcyclopentane (1,c-2,t-4-)	VOC		112,213	11,0144	-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63,40	734.00	68,00	0.0130	0.039%	0.034%	0.000%	0.001%
Dimethylcyclohexane (1,c-3-)	VOC		112.213	32,4775	-3.0067E+03	-8.5896E+00		2.1739E-06	-103 00	604.40	68.00	0.3176	0.239%	0.209%	0.073%	0.095%
Trimethylcyclopentane (1,c-2,t-3-) Dimethylcyclohexane (1,t-4-)	VOC		112.213	11.0144 32.5731	-2.9801E+03 -2.9872E+03	2,7007E-01 -8,6494E+00	-6.7946E-03 -2.1355E-09	3.5409E-06 2.2946E-06	-63.40 -34.60	734.00 602.60	68.00 68.00	0.0130	0.239%	0.209%	0.003%	0.004%
Trimethylhexane (2,2,5-)	VOC		128.255		-2.6422E+03		-1.5376E-02	9.7931E-06	-158.80			0.2426	0.000%	0.000%	0.000%	0.000%
Dimethylcyclohexane (1,1-)	VOC		112.213		-3.0084E+03				-27.40					0.000%	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-3-)	VOC		112.213		-2.9801E+03		-6.7946E-03		-63,40			0.0130	0.000%	0.000%	0.000%	0.000%
Ethylcyclopentane (1-methyl-c-3-) Ethylcyclopentane (1-methyl-t-2-)	VOC		112.213 112.213		-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06 3.5409E-06	-63,40 -63,40	734.00 734.00		0.0130	0.000%	0.000%	0.000%	0.000%
Trimethylhexane (2,2,4-)	voc		128.255		-2 4527E+03	-9 2016E+00	-4.7077E-10	4.1755E-06	-146.20				0.000%	0.000%	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-1-)	VOC		112.213	11.0144	-2.9801E+03		-6.7946E-03		-63.40	734.00	68.00	0.0130	0.000%	0.000%	0.000%	0.000%
	VOC		98.186		-3.6109E+03	-1.7331E+01		1.7553E-12	17,60			0.3185	0.000%	0.000%	0.000%	0.000%
Octane (n-) Trimethylhexane (2.4.4-)	VOC		114 229 128 255		-3.0114E+03 -2.4527E+03	-7.2653E+00 -9.2016E+00			-70,60 -146,20	564.80 420.80		0.2040 5.0720	6.155% 0.269%	5.477% 0.269%	1.202%	1.591%
Tetramethylpentane (2,2,4,4-)	VOC		128.255		-2.2442E+03	7.0671E+00		1.1435E-05	-86.80	568.40		0.2957	0.000%	0.000%	0.000%	0.000%
Dimethylcyclohexane (1,t-3-)	VOC		112,213	32,4384	-3 0550E+03	-8.5372E+00	2 2892E-10	2 0099E-06	-130,00	617.00	68.00	0.2590	0.075%	0.066%	0.019%	0.024%
Dimethylcyclohexane (1,c-4-)	VOC		112 213		-3.0253E+03	-8.3613E+00		1.9673E-06	-124.60			0.2640	0.075%	0.066%	0.019%	0.025%
Trimethylcyclopentane (1,c-2,c-3-) Propylcyclopentane (i-)	VOC		112.213		-2.9801E+03 -2.9801E+03		-6.7946E-03		-63.40 -63.40	734.00 734.00		0.0130	0.075%	0.066%	0.001%	0.001%
Trimethylhexane (2,3,5-)	VOC		128.255		-2.4527E+03	-9.2016E+00			-146.20	420.80		5.0720	0.009%	0.009%	0.000%	0.061%
Dimethylheptane (2,2-)	VOC		128.255	33.1285	-2.4527E+03	-9.2016E+00	-4.7077E-10	4.1755E-06	-146.20	420.80	68.00	5.0720	0.000%	0.000%	0.000%	0.000%
Dimethylheptane (2,4-)	VOC		128.255		-2 4527E+03	-9 2016E+00			-146.20			5.0720	0.224%	0.224%	1.088%	1.617%
Methylcyclopentane (1-ethyl-c-2-)	VOC		112.213 128.255		-2.9801E+03 -2.4527E+03	2.7007E-01 -9.2016E+00	-6.7946E-03	3.5409E-06 4.1755E-06	-63.40 -146.20			0.0130 5.0720	0.257%	0.224%	0.003%	0.004%
Trimethylhexane (2.2.3.)		ı	1 140 433	33,1203												
Trimethylhexane (2,2,3-) Dimethylevelohexane (1,c-2-)	VOC		112.213	32.1635	-3.0728E+03	-8.4344E+00	6,8943E-10	1.9558E-06	-58.00	631.40	68.00	0.2121	0.723%l	0.632%	0.147%	0.191%
Dimethyleyclohexane (1,c-2-) Dimethylheptane (2,6-)	VOC VOC		128 255	33,1285	-2.4527E+03	-9.2016E+00	-4,7077E-10	4.1755E-06	-146,20	420.80	68.00	0 2121 5 0720	0.723% 0.159%	0.632% 0.159%	0.147% 0.771%	1.146%
Dimethylcyclohexane (1,c-2-)	VOC			33,1285 33,9220		-9.2016E+00 -8.9914E+00	-4,7077E-10	4.1755E-06 2.0684E-06		420.80 626.00	68.00 68.00	5.0720 0.1793				1.146% 0.000%

TABLE D-0 Volatile Organic Liquid Storage Tanks Vapor Physical Property and Composition Estimates Raoult's Law

				C	omponent Dat	а							Liquid	Data	Vapor	
Component			MW			Yaws Vapor P	ressure Coeffi	cients			VP	Datum	mol%	w1%	Y _i	wt%;
Name	Type	HAP	(lb/mol) _i	A	В	С	D	Е	T _{Min}	T _{Max}	т	P _i	(mol _i /mol _L)	(lb_i/lb_L)	(mol/mol _v)	(lb _i /lb _V)
(i)			M _i						(°F)	(°F)	(°F)	(psia)	$f_{\rm el}$	f _{m-i}		
Dimethylheptane (2,5-)	VOC		128.255	33.1285	-2.4527E+03	-9.2016E+00	-4.7077E-10	4.1755E-06	-146.20	420.80		5.0720	0.095%	0,095%	0.461%	0.686%
Dimethylheptane (3,5-)	VOC		128.255	33.1285	-2.4527E+03	-9.2016E+00	-4.7077E-10	4.1755E-06	-146.20	420.80	68.00	5.0720	0.095%	0.095%	0.461%	0.6869
Trimethylcyclohexane (1,1,3-)	VOC		126.239	11.0144	-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130	0.109%	0.107%	0.001%	0.0029
Trimethylhexane (2,3,3-)	VOC		128.255	33.1285	-2.4527E+03	-9.2016E+00	-4.7077E-10	4.1755E-06	-146.20	420.80	68.00	5.0720	0.054%	0.054%	0.262%	0.389%
Dimethylheptane (3,3-)	VOC		128.255	33.1285	-2.4527E+03	-9.2016E+00	-4.7077E-10	4.1755E-06	-146.20	420.80	68.00	5.0720	0.054%	0.054%	0.262%	0.389%
Trimethyleyclohexane (1,1,4-)	VOC		126.239	11.0144	-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130	0.000%	0.000%	0.000%	0,000%
Tetramethylpentane (2,2,3,3-)	VOC		128.255	35.4216	-3.2760E+03	-9.5678E+00	9.0298E-10	2.4355E-06	14.00	640.40	68.00	0.1369	0.370%	0.370%	0.049%	0.072%
Ethylbenzene	VOC	X	106,165	36.1998	-3.3402E+03	-9.7970E+00	-1.1467E-11	2.5758E-06	-139.00	651.20	68.00	0.1388	0.576%	0.476%	0.076%	0.0949
Trimethylhexane (2,3,4-)	VOC		128.255	33.1285	-2.4527E+03	-9.2016E+00	-4.7077E-10	4.1755E-06	-146,20	420.80	68.00	5.0720	0.010%	0.010%	0.048%	0.072%
Trimethylevelohexane (1,t-2,t-4-)	VOC		126.239	11.0144	-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130	0.000%	0.000%	0.000%	0.000%
Dimethylheptane (2,3-)	VOC		128.255	33.1285	-2.4527E+03	-9.2016E+00	-4.7077E-10	4.1755E-06	-146.20	420.80	68.00	5,0720	0.000%	0.000%	0.000%	0.000%
Trimethyleyclohexane (1,c-3,t-5-)	VOC		126,239	11.0144	-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130	0.000%	0.000%	0.000%	0,000%
Xylene (m-)	VOC	Х	106,165	34.6803	-3.2981E+03	-9.2570E+00	-4.3563E-10	-2.4103E-06	-54.40	649.40	68.00	0.0468	3.491%	2.887%	0.156%	0.192%
Xylene (p-)	VOC	X	106.165	60.0531	-4.0159E+03	-1.9441E+01	8.2881E-03	-2.3647E-12	55.40	649.40	68.00	0.1277	3.491%	2.887%	0.427%	0.525%
Dimethylheptane (3,4-)	VOC		128.255	33.1285	-2.4527E+03	-9.2016E+00	-4.7077E-10	4.1755E-06	-146,20	420.80	68.00	5.0720	0.130%	0.130%	0.633%	0.9419
Methyloctane (2-)	VOC		128.255	6.0191	-2.8579E+03	3.4068E+00	-1.6572E-02	9.8047E-06	-112.00	597.20		1880.0	1.109%	1.108%	0.093%	0.139%
Methyloctane (4-)	VOC		128.255	11.2012	-2.9467E+03	1.2133E+00	-1.4423E-02	9.1770E-06	-171.40	599.00	68.00	0.0974	1.109%	1.108%	0.103%	0.1549
Dimethylheptane (3,4-)	VOC		128.255	33.1285	-2.4527E+03	-9.2016E+00	-4.7077E-10	4.1755E-06	-146.20	420.80	68.00	5,0720	0.000%	0.000%	0.000%	0.000%
Methyloctane (3-)	VOC		128.255	9.8147	-2.9609E+03	1.9061E+00	-1.5675E-02	9.7961E-06	-160.60	602.60	68.00	0.0889	0.000%	0.000%	0.000%	0.000%
Butylevelopentane (i-)	VOC		126.239	11.0144	-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130		0.000%	0.000%	0.000%
Trimethylcyclohexane (1,t-2,c-3-)	VOC		126,239	11.0144	-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130	0.328%	0.322%	0.004%	0.0069
Trimethylevelohexane (1,t-2,c-4-)	VOC		126.239	11.0144	-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130	0.328%	0.322%	0.004%	0.006%
Xylene (o-)	VOC	X	106.165	37.2413	-3.4573E+03	-1.0126E+01	9.0676E-11	2.6123E-06	-13.00	674.60	68.00	0.0946	0.776%	0,641%	0.070%	0.0869
Trimethylcyclohexane (1,1,2-)	VOC		126.239	11,0144	-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130	0.000%	0.000%	0.000%	0.000%
Trimethylevelohexane (1,c-2,t-4-)	VOC		126,239	11.0144	-2.9801E+03	2.7007E-01	-6.7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130	0.284%	0.279%	0.004%	0.0059
Trimethylcyclohexane (1,c-2,c-4-)	VOC		126.239	11.0144	-2.980 E+03	2.7007E-01	-6,7946E-03	3.5409E-06	-63.40	734.00	68.00	0.0130	0.000%	0.000%	0.000%	0.000%
Nonane (n-)	VOC		128.255	8,8817	-2.8042E+03	1.5262E+00	-1.0464E-02	5.7972E-06	-63.40	613.40	68.00	0.0627	4.089%	4.086%	0.245%	0.365%
Unknowns	VOC		263.361	116.5157	-8.0140E+03	-3.8799E+01	1.3398E-02	-4.4444E-13	50.00	813.20	68.00	0.0000	15.292%	31.375%	0.001%	0.0029
Residual Liquid		128.362	lb/lb-mol		68,00		1.0446	psia		lb/lb-mo			96.197%	96.197%	96.197%	96.1979
TOC (Total)	P	128,362	lb/lb-mol	*	68.00	°F	1.0446	psia	86.303	lb/lb-mo	ıl		96.197%	96.197%	96,197%	96.1979
VOC (Total)	Liquid	128.362	lb/lb-mol	Vapor	68.00	°F	1.0446	psia	86.303	lb/lb-mo	1		96.197%	96.197%	96.197%	96.1979
HAP (Total)	- 3	95.690	lb/lb-mol	>	68.00	°F	0.6569	psia	86.481	lb/lb-mo	ol		19.507%	14.542%	12.267%	12.2929
Xylenes		106.165	lb/lb-mol		68,00	°F	0.0880	psia	106,165	lb/lb-mo			7.757%	6.416%	0.653%	0.8049

Liquid composition of residual liquid based on SPL flash analysis (see TABLE E-0b(iii)).
 Vapor pressure data for unknowns based on:
 Pentadecane (n-)

TABLE E-0a(i) Flash Analysis Summary of Laboratory Analysis

	FEED Pressurized		VAPOR Flash Gas	LIQUID Residual Liquid
Pressure	575.000 psi		0.034 psig	0.034 psig
	589.696 psi		14.730 psia	14.730 psia
Temperature	72 °F		60 °F	60 °F
API Gravity at 60°F	73.960 n.d	THE STREET SE	788.526 n.d.	61.227 n.d.
Specific Gravity at 60°F	0.6887 n.d	l. (water)	0.1538 n.d. (water)	0.7342 n.d. (water)
	3.3880 n.d	l. (air)	0.9301 n.d. (air)	4.4320 n.d. (air)
Molecular Weight	98.125 lb/	lb-mol	26.938 lb/lb-mol	128.362 lb/lb-mol
Density at 60°F and 14.730 psia	5.747 lb/	gal	1.283 lb/gal	6.126 lb/gal
	0.2593 lb/	ft³	0.0712 lb/ft ³	0.3392 lb/ft ³
	22.1622 ft ³ /	/gal	18.0282 ft ³ /gal	18.0610 ft ³ /gal
	930.8120 ft ³ /	/bbl	757.1853 ft³/bbl	758.5600 ft ³ /bbl
	378.4123 ft ³ /	/lb-mol	378.4123 ft ³ /lb-mol	378.4123 ft ³ /lb-mol
	17.0747 gal	l/lb-mol	20.9900 gal/lb-mol	20.9520 gal/lb-mol
	2.4598 lb-	mol/bbl	2.0010 lb-mol/bbl	2.0046 lb-mol/bbl
Density at 68°F and 14.696 psia	947.3299 scf	l/bbl	770.6220 scf/bbl	772.0211 scf/bbl
	385.1275 scf	f/lb-mol	385.1275 scf/lb-mol	385.1275 scf/lb-mol
	2.4598 lb-	mol/bbl	2.0010 lb-mol/bbl	2.0046 lb-mol/bbl
Vapor to Liquid Mole Ratio (V/L)		LINE	0.4249 n.d. (lb-mol-	VAPOR/lb-mol _{LIOUID})
Mole Balance	1.0000 bb		0.3666 bbl	0.8612 bbl
	2.4598 lb-	mol	0.7335 lb-mol	1.7263 lb-mol
	947.3299 scf		282.4903 scf	664.8396 scf
Flash Factor (FF)	MANAGE AND STREET		328.0318 scf _{VAPOR} /bbl	LIQUID
		NOTES		
1. Sample Data:	Location: Date:	Atlanta, 04/15/0	9	
2. Reference Conditions:	Time:	Not Recor		andard
2. Reference Conditions.	T =		THE COURT CAN DESIGN	andard 58 °F
	P =	60 °F 14.730 psi		06 psia
	Water	8.344 lb/	The state of the s	8 lb/gal
	Air	0.0765 lb/		2 lb/ft ³
3. $V + L = F => F = (1 + V/L)L$ {Ov			0.073	2 10/1t

PTE Estimates: TV Renewal Project

Revised: December 2016

TABLE E-0a(ii) Flash Analysis Extrapolation of Specie Mole Percentages

							Input	id Dump Flash I	Out	put
The second second				11	7	Liquid	Scaled	Calculated	Vapor	Liquid
	Component					Z _i		Z _i	y _i	X _i
Name (i)	GC Postition	SPL Class	Formula	Туре	HAP	(mol _{i.F} /mol _F)		(mol₊;/mol;)	(mol _{+√} /mol _√)	$(\text{mol}_{i-1}/\text{mol}_{L})$
Vitrogen	1		N2			0.034%	0.034%	0.030%	0.101%	0.000
Carbon Dioxide	3		CO2	GHG		0.968%	0.968%	0.970%	3.163%	0.038
Methane	2		C01H04	GHG		20,922%	20.922%	20.921%	69.445%	0.303
thane	4		C02H06		\longrightarrow	3.391%	3.391%	3.390%	10.467%	0.383
Propane	5		C03H08	VOC		2.183%	2 183%	2 180%	5.339%	0.838
Butane (i-)	6		C04H10	VOC	-	1.232%	1.232%	1.230%	2.126% 2.495%	1.391
Butane (n-) Pentane (i-)	8		C04H10	VOC	\dashv	2.354%	2.354%	2.350%	1.895%	2.543
Pentane (n-)	1 9		C05H12	VOC		1.622%	1.622%	1.620%	1.056%	1.859
Dimethylbutane (2,2-)	1 .	Hexanes	C06H14	VOC		0.174%	0.174%	0.174%	0.050%	0.22
Dimethylbutane (2,3-)		Hexanes	C06H14	VOC		0,000%	0.000%	0.000%	0.000%	0.000
Cyclopentane	12	Hexanes	C05H10	VOC		0.000%	0.000%	0.000%	0.000%	0.000
dethylpentane (2-)	13		C06H14	VOC		1.218%	1,218%	1.218%	0.352%	1.580
Methylpentane (3-)	14		C06H14	VOC		0.912%	0.912%	0.912%	0.264%	1.18
lexane (n-)		Hexanes	C06H14	VOC	Х	1.937%	1.937%	1.937%	0.561%	2,522
Dimethylpentane (2,2-)		Heptanes	C07H16	VOC		0.311%	0.311%	0.311%	0.032%	0.430
Methylcyclopentane		Heptanes Heptanes	C06H12 C07H16	VOC		0.128%	1.134% 0.128%	0.128%	0.013%	0.17
Dimethylpentane (2,4-) Trimethylbutane (2,2,3-)		Heptanes	C07H16	VOC	-	0.128%	0.128%	0.000%	0.013%	0.000
Benzene		Heptanes	C06H06	VOC	х	1.713%	1.713%	1.713%	0.175%	2.36
Dimethylpentane (3,3-)		Heptanes	C07H16	VOC		0.221%	0.221%	0.221%	0.023%	0.30
Cyclohexane		Heptanes	C06H12	VOC	-	1.106%	1.106%	1.106%	0.113%	1.52
Methylhexane (2-)		Heptanes	C07H16	VOC		2.292%	2.292%	2.292%	0.235%	3,16
Dimethylpentane (2,3-)	24	Heptanes	C07H16	VOC		0.000%	0.000%	0.000%	0,000%	0.00
Dimethylcyclopentane (1,1-)		Heptanes	C07H14	VOC		0.603%	0.603%	0.603%	0.062%	0.833
Methylhexane (3-)		Heptanes	C07H16	voc		2.379%	2.379%	2.379%	0.244%	3,286
Dimethylcyclopentane (1,t-3-)		Heptanes	C07H14	VOC	\Box	0.163%	0.163%	0.163%	0.017%	0.22
Dimethylcyclopentane (1,c-3-)		Heptanes	C07H14	VOC		0.266%	0.266%	0.266%	0.027%	0.36
Ethylpentane (3-)		Heptanes	C07H16	VOC	\dashv	0.029%	0.029%	0.029%	0.003% 0.023%	0.040
Dimethylcyclopentane (1,t-2-)		Heptanes Heptanes	C07H14 C08H18	VOC	Х	0.021%	0.222%	0.021%	0.002%	0.029
rimethylpentane (2,2,4-) Ieptane (n-)	32		C07H16	VOC		3.742%	3 742%	3.742%	0.383%	5,169
Methylcyclohexane		Octanes	C07H14	VOC		3.301%	3.301%	3.301%	0.136%	4.640
rimethylcyclopentane (1,1,3-)		Octanes	C08H16	VOC		0.225%	0.225%	0.225%	0.009%	0.31
Dimethylhexane (2,2-)	35	Octanes	C08H18	VOC		0.095%	0.095%	0.095%	0.004%	0.134
Dimethylcyclopentane (1,c-2-)	36		C07H14	voc		0.848%	0.848%	0.848%	0.035%	1.193
Dimethylhexane (2,5-)	37		C08H18	VOC		0.000%	0.000%	0.000%	0.000%	0,000
Dimethylhexane (2,4-)		Octanes	C08H18	VOC		0.143%	0.143%	0.143%	0,006%	0.20
Ethylcyclopentane	39		C07H14	VOC		0.464%	0.464%	0.464%	0.019%	0,653
rimethylpentane (2,2,3-)		Octanes	C08H18	VOC	\Box	0.028%	0.028%	0.028%	0.001%	0.039
rimethylcyclopentane (1,t-2,c-4-)	41	Octanes	C08H16	VOC		0.000%	0.000%	0.000%	0.000%	0.000
Dimethylhexane (3,3-)	42		C08H18	VOC		0.000%	0,000%	0.000%	0,000%	0.000
Immethylcyclopentane (1,t-2,c-3-) Immethylpentane (2,3,4-)	43	Octanes	C08H16	VOC		0.000%	0.000%	0.000%	0.000%	0.000
Dimethylhexane (2,3-)		Octanes	C08H18	VOC		0.000%	0.000%	0.000%	0.000%	0.000
Toluene		Octanes	C07H08	VOC	Х	4.444%	4.444%	4.444%	0.183%	6,25
rimethylcyclopentane (1,1,2-)		Octanes	C08H16	VOC		0.371%	0.371%	0.371%	0.015%	0,52
Dimethylhexane (3,4-)		Octanes	C08H18	VOC		3.505%	3,505%	3.505%	0.144%	4,93
Methylheptane (2-)		Octanes	C08H18	VOC		0.000%	0.000%	0.000%	0.000%	0.00
Methylheptane (4-)		Octanes	C08H18	VOC		2.896%	2.896%	2.896%	0.119%	4.076
Dimethylhexane (3,4-)		Octanes	C08H18	VOC		0.000%	0,000%	0.000%	0.000%	0,000
Methylheptane (3-)		Octanes	C08H18	VOC	$oxed{oxed}$	0.416%	0.416%	0.416%	0.017%	0.58
thylhexane (3-)	53		C08H18	VOC	$oldsymbol{\sqcup}$	0.111%	0.111%	0.111%	0.005%	0.15
Frimethylcyclopentane (1,c-2,t-4-)		Octanes	C08H16	VOC	$\vdash \vdash$	0.028%	0.028%	0.028%	0.001%	0.03
Dimethylcyclohexane (1,c-3-) Frimethylcyclopentane (1,c-2,t-3-)		Octanes	C08H16	VOC	\vdash	0.170%	0.170%	0.170% 0.170%	0.007%	0,23
rimethylcyclopentane (1,c-2,t-3-) Dimethylcyclohexane (1,t-4-)		Octanes Octanes	C08H16	VOC	$\vdash \vdash \vdash$	0.170%	0.170%	0.170%	0.000%	0.00
Frimethylhexane (2,2,5-)		Octanes	C09H20	VOC		0.000%	0.000%	0.000%	0.000%	0.000
Dimethylcyclohexane (1,1-)		Octanes	C08H16	voc	$\vdash \vdash$	0.000%	0.000%	0.000%	0.000%	0.00
thylcyclopentane (1-methyl-t-3-)		Octanes	C08H16	VOC	\vdash	0.000%	0.000%	0.000%	0.000%	0.00
thylcyclopentane (1-methyl-c-3-)		Octanes	C08H16	voc	\Box	0.000%	0.000%	0.000%	0.000%	0.00
thylcyclopentane (1-methyl-t-2-)	62		C08H16	VOC		0.000%	0.000%	0.000%	0.000%	0.00
rimethylhexane (2,2,4-)	63	Octanes	C09H20	VOC		0.000%	0.000%	0.000%	0.000%	0.00
thylcyclopentane (1-methyl-t-1-)		Octanes	C08H16	VOC		0.000%	0.000%	0.000%	0.000%	0.00
ycloheptane		Octanes	C07H14	VOC	$oxed{oxed}$	0.000%	0.000%	0.000%	0.000%	0.00
Octane (n-)		Octanes	C08H18	VOC	oxdot	4.372%	4.372%	4,372%	0.180%	6 15
Frimethylhexane (2,4,4-)		Nonanes	C09H20	VOC	oxdot	0.190%	0.190%	0,190%	0.003%	0.26
Tetramethylpentane (2,2,4,4-)		Nonanes	C09H20	VOC	$\vdash \vdash$	0.000%	0.000%	0.000%	0.000%	0.00
Dimethylcyclohexane (1,t-3-)		Nonanes	C08H16	VOC	\vdash	0.053%	0.053%	0.053%	0.001%	0.07
Dimethylcyclohexane (1,c-4-)		Nonanes Nonanes	C08H16	voc	\vdash	0.053%	0.053%	0.053%	0.001%	0.07
Frimethylcyclopentane (1,c-2,c-3-) Propylcyclopentane (i-)		Nonanes	C08H16	VOC	\vdash	0.348%	0.033%	0.033%	0.001%	0.49
Propyrcyclopentane (1-) Trimethylhexane (2,3,5-)		Nonanes	C09H20	VOC	\vdash	0.006%	0.006%	0.006%	0.000%	0.49
Dimethylheptane (2,2-)		Nonanes	C09H20	voc	\vdash	0.000%	0.000%	0.000%	0.000%	0.00
Dimethylheptane (2,4-)		Nonanes	C09H20	VOC	\vdash	0.158%	0.158%	0.158%	0.003%	0.22
Methylcyclopentane (1-ethyl-c-2-)		Nonanes	C08H16	voc		0.181%	0.131%	0.181%	0.003%	0.25
Frimethylhexane (2,2,3-)		Nonanes	C09H20	voc		0.000%	0.000%	0.000%	0.000%	0,00

TABLE E-0a(ii) Flash Analysis Extrapolation of Specie Mole Percentages

					STATE OF		Input	id Dump Flash	Out	but
				400	左征	Liquid	Scaled	Calculated	Vapor	Liquid
	Component					Z _i		Zi	y _i	X,
Name	GC	SPL	Formula	Type	HAP	(mol _{i.F} /mol _F)		$(\text{mol}_{i,F}/\text{mol}_F)$	$(\text{mol}_{V}/\text{mol}_{V})$	$(\text{mol}_{\text{r-l}}/\text{mol}_{\text{L}})$
(i)	Postition	Class	Don't to	11100		0.51004	0.5100/	0.5100/	0.000/	
Dimethylcyclohexane (1,c-2-) Dimethylheptane (2,6-)	79	Nonanes Nonanes	C08H16 C09H20	VOC	\vdash	0.510% 0.112%	0.510% 0.112%	0.510% 0.112%	0.009%	0.723%
Propylcyclopentane (n-)	80		C08H16	VOC	\vdash	0.000%	0.000%	0.000%	0.002%	0.000%
Trimethylcyclohexane (1,c-3,c-5-)	81	Nonanes	C09H18	VOC		0.000%	0.000%	0.000%	0.000%	0.000%
Ethylcyclohexane	82	Nonanes	C08H16	VOC		1.365%	1.365%	1.365%	0.023%	1.935%
Dimethylheptane (2,5-)	83	Nonanes	C09H20	VOC		0.067%	0.067%	0.067%	0.001%	0.095%
Dimethylheptane (3,5-)	84		C09H20	VOC		0.067%	0.067%	0.067%	0.001%	0.095%
Trimethylcyclohexane (1,1,3-)	85	Nonanes	C09H18	VOC		0.077%	0.077%	0.077%	0.001%	0.109%
Trimethylhexane (2,3,3-)	86		C09H20	VOC	\blacksquare	0.038%	0.038%	0.038%	0.001%	0.054%
Dimethylheptane (3,3-) Trimethylcyclohexane (1,1,4-)	88	Nonanes Nonanes	C09H20 C09H18	VOC	\vdash	0.038%	0.038%	0.038%	0.001%	0.054%
Tetramethylpentane (2,2,3,3-)	89	Nonanes	C09H20	VOC	\vdash	0.261%	0.261%	0.261%	0.004%	0.370%
Ethylbenzene	90		C08H10	VOC	Х	0,406%	0.406%	0.406%	0.007%	0.576%
Trimethylhexane (2,3,4-)	91	Nonanes	C09H20	VOC		0.007%	0.007%	0.007%	0.000%	0.010%
Trimethylcyclohexane (1,t-2,t-4-)	92	Nonanes	C09H18	VOC		0.000%	0.000%	0.000%	0.000%	0.000%
Dimethylheptane (2,3-)	93	Nonanes	C09H20	VOC		0.000%	0.000%	0.000%	0.000%	0.000%
Trimethylcyclohexane (1,c-3,t-5-)	94	Nonanes	C09H18	VOC		0.000%	0.000%	0.000%	0.000%	0.000%
Xylene (m-)	95	Nonanes	C08H10	VOC	X	2.462%	2.462%	2.462%	0.042%	3.490%
Xylene (p-)	96	Nonanes	C08H10	VOC	X	2.462%	2.462%	2.462%	0.042%	3.490%
Dimethylheptane (3,4-) Methyloctane (2-)	97 98	Nonanes	C09H20 C09H20	VOC	ш	0.092%	0.092%	0.092% 0.782%	0.002%	0.130%
Methyloctane (2-) Methyloctane (4-)	98	Nonanes Nonanes	C09H20	VOC	$\vdash\vdash$	0.782%	0.782%	0.782%	0.013%	1.109%
Dimethylheptane (3,4-)	100		C09H20	VOC	\vdash	0.000%	0.782%	0.782%	0.000%	0.000%
Methyloctane (3-)	101	Nonanes	C09H20	VOC	\Box	0,000%	0,000%	0.000%	0.000%	0.000%
Butylcyclopentane (i-)	102	Nonanes	C09H18	VOC		0.000%	0.000%	0.000%	0.000%	0.000%
Trimethylcyclohexane (1,t-2,c-3-)	103	Nonanes	C09H18	VOC		0.231%	0.231%	0.231%	0.004%	0.327%
Trimethylcyclohexane (1,t-2,c-4-)	104	Nonanes	C09H18	VOC		0.231%	0.231%	0.231%	0.004%	0.327%
Xylene (o-)	105	Nonanes	C08H10	VOC	X	0.547%	0.547%	0.547%	0.009%	0.775%
Trimethylcyclohexane (1,1,2-)	106		C09H18	VOC	ш	0.000%	0.000%	0.000%	0.000%	0.000%
Trimethylcyclohexane (1,c-2,t-4-)	107	Nonanes	C09H18	VOC	ш	0.200%	0.200%	0.200%	0.003%	0.284%
Trimethylcyclohexane (1,c-2,c-4-) Nonane (n-)	108	Nonanes Nonanes	C09H18 C09H20	VOC	Н	0.000%	0.000% 2.884%	0.000% 2.884%	0.000%	0.000% 4.088%
Unknowns		Decanes+	C10+	VOC	-	10.753%	10,753%	10.753%	0.030%	15.288%
TOTAL	110	Decanes.	C10.	100	even/hi	100.001%	100.000%	99.984%	100.001%	99.976%
TOC (Total)	Security of	134	CLUCY		1100	98.999%	98.998%	98.984%	96.737%	99.938%
VOC (Total)	A15 119:01	ne de ent	Hauter		TAY/C	74.686%	74.685%	74.673%	16.825%	99.252%
Hexanes	11/2	e china	W. T. C.	100	\$ 9	4.241%	4.240%	4.241%	1.227%	5.521%
Heptanes	TESTICAL CONTRACT	7/30	that one of	7,0	1500	14.330%	14.310%	14.330%	1.468%	19.795%
Octanes	and anyon	والمالية	Mary and property		35364	21.587%	21.610%	21.587%	0 888%	30.382%
Nonanes	277 AL	THE TOTAL	SHEET TO		12111	14.663%	14.660%	14.663%	0.252%	20.786%
Decanes+	100	1000	WATER YOR		1000	10.753%	10.770%	10.753%	0.079%	15.288%
HAP (Total) Xylenes	SCI / CON GROOT	A TEMP	M NAVAYAR III		1112	1.209%	13.992%	13,992%	1.022% 0.021%	19.503% 1.714%
Ayrenes	in and a place of	er den er	a Aserbia	Links	NOTE	1.00	1.20770	1.20776	0,02176	1,71476
1. Sample Data:						Location		Atlan	a, TX	
						Date		04/1		
						Time:		Not Re	corded	
2. $v_i + l_i = f_i$; $y_i = v_i/V$; $x_i = l_i/L$; $z_i = f_i/F$	$=> y_i V + x_i L$	$= z_i F => y_i ($	$V/L)L + x_iL$	= z _i (1 +	V/L)L=	$> z_i = [y_i(V/L) + x_i]$]/[1 + (V/L)] {M	lole Balance}.		
3.					V/L =	0.4249		I + V/L =	1.4249	
4. z, is refined to the same number if sign	nificant digits	s as yand x _i	using the con	nponent	mole ba	lance and laborator	ry results for V/L			
5 z, is scale using the hydrocarbon (e.g.,	, hexanes+) z	percentage	in the flash a	malysis	results,	with the exception of	of HAP species			
6. [y, x,] mole percent for species of hy	drocarbons is	estimated	using scaled l			t results for zand [y	; x JHC for the hy	drocarbon		
(assumes v/l, is same for all hydrocarbo	on species)			(v	/I) _{hexanos}	=	0.2219			
y _{becanes} =	1.227%					Xhexanes =	5.520%	Z _{heomes} =	4.240%	
			,	, = z _i (y	Z) Decemen	m .	0.2894			
				$z_i = z_i(x)$		-	1.3019			
					1)heptanes	w 1	0.0740	•		
Yheptanes ≡	1.466%			(4)	- /neplanes	X _{heptanes} =	19.767%		14.310%	
Theptanes	1.40078			= -//	3)	Theplanes	0.1024	Z _{heptanea} ==	14.31076	
				$z = z_i(y)$				-		
			х х	= z _i (x/		= 1	1.3814	4		
-				(1	//) _{octanes}	- 1	0.0292	5556		
y _{octones} =	0.889%				, .	X _{octanes} =	30.414%	Z _{octance} ^m	21.610%	
				$y_i = z_i(y)$		= 3	0.0411			
				$x_i = z_i(x_i)$		= 4	1.4074	Z,		
				(v	(I) _{nonsnes}	= 1	0.0121			
y _{nonancs} =	0.252%					X _{nonance} =	20.782%	Z _{bonanes} =	14.660%	
			3	$r_i = z_i(y/y)$	z) _{nonancs}	=)	0.0172	z,		
			×	$z_i = z_i(x)$	z) _{nonancs}	-6	1.4176	z,		
					l) _{decanes} +	= 1	0.0051			
y _{decamen} =	0.079%					X _{decanes} =	15.313%	Z _{do ance} =	10.770%	
	-			_ , ,	-1					
			V.	= 2.(V/2	Margaret	=	0.0073	4		
				$= z_1(y/z)$ $= z_1(x/z)$		=	0.0073 1.4218			

TABLE E-0b(i) Flash Analysis Estimation of Specie Weight Percentages Pressurized Liquid

Component			Molecular	Density	Mole	Weight
Name	Туре	HAP	Weight	(lb/scf),	Percent	Percent
(i)			(lb/mol) _i		(mol _i /mol _T)	(lb_i/lb_T)
Nitrogen			28.013	0.0727	0.030%	0.009%
Carbon Dioxide	GHG		44.010	0.1143	0.970%	0.435%
Methane	GHG		16.042	0.0417	20.924%	3.421%
Ethane			30.069	0.0781	3.391%	1.039%
Propane	VOC		44.096	0.1145	2.181%	0.980%
Butane (i-)	VOC		58.122	0.1509	1.230%	0.729%
Butane (n-)	VOC		58.122	0.1509	1.720%	1.019%
Pentane (i-)	VOC		72.149	0.1873	2.350%	1.728%
Pentane (n-)	VOC		72.149	0.1873	1.620%	1.191%
Dimethylbutane (2,2-)	VOC		86.175	0.2238	0.174%	0.153%
Dimethylbutane (2,3-)	VOC		86.175	0.2238	0.000%	0.000%
Cyclopentane	VOC		70.133	0.1821	0.000%	0.000%
Methylpentane (2-)	VOC		86.175	0.2238	1.218%	1.070%
Methylpentane (3-)	VOC		86.175	0.2238	0.912%	0.801%
Hexane (n-)	VOC	X	86.175	0.2238	1.937%	1.701%
Dimethylpentane (2,2-)	VOC		100.202	0.2602	0.311%	0.318%
Methylcyclopentane	VOC		84.159	0.2185	1.134%	0.973%
Dimethylpentane (2,4-)	VOC		100.202	0.2602	0.128%	0.131%
Trimethylbutane (2,2,3-)	VOC		100.202	0.2602	0.000%	0.000%
Benzene	VOC	X	78.112	0.2028	1.713%	1.364%
Dimethylpentane (3,3-)	VOC		100.202	0.2602	0.221%	0.226%
Cyclohexane	VOC		84.159	0.2185	1.106%	0.949%
Methylhexane (2-)	VOC		100.202	0.2602	2.292%	2.341%
Dimethylpentane (2,3-)	VOC		100.202	0.2602	0.000%	0.000%
Dimethylcyclopentane (1,1-)	VOC		98.186	0.2549	0.603%	0.603%
Methylhexane (3-)	VOC		100.202	0.2602	2.379%	2.430%
Dimethylcyclopentane (1,t-3-)	VOC		98.186	0.2549	0.163%	0.163%
Dimethylcyclopentane (1,c-3-)	VOC		98.186	0.2549	0.266%	0.266%
Ethylpentane (3-)	VOC		100.202	0.2602	0.029%	0.030%
Dimethylcyclopentane (1,t-2-)	VOC		98.186	0.2549	0.222%	0.222%
Trimethylpentane (2,2,4-)	VOC	X	114.229	0.2966	0.021%	0.024%
Heptane (n-)	VOC		100.202	0.2602	3.743%	3.822%
Methylcyclohexane	VOC		98.186	0.2549		3.304%
Trimethylcyclopentane (1,1,3-)	VOC		112.213	0.2914		0.257%
Dimethylhexane (2,2-)	VOC		114.229	0.2966		0.111%
Dimethylcyclopentane (1,c-2-)	VOC		98.186	0.2549		0.849%
Dimethylhexane (2,5-)	VOC		114.229	0.2966		0.000%
Dimethylhexane (2,4-)	VOC		114.229	0.2966		0.166%
Ethylcyclopentane	VOC		98.186	0.2549		0.464%
Trimethylpentane (2,2,3-)	VOC		114.229	0.2966		0.033%
Trimethylcyclopentane (1,t-2,c-4-)	VOC		112.213	0.2914		0.000%
Dimethylhexane (3,3-)	VOC		114.229	0.2966		0.000%
Trimethylcyclopentane (1,t-2,c-3-)	VOC		112.213	0.2914		0.000%
Trimethylpentane (2,3,4-)	VOC		114.229	0.2966	0.000%	0.000%

Texas Eastern Transmission, LP Accident Compressor Station

PTE Estimates: TV Renewal Project Revised: December 2016

TABLE E-0b(i) Flash Analysis Estimation of Specie Weight Percentages Pressurized Liquid

Component			Molecular	Density	Mole	Weight
Name	Туре	HAP	Weight	(lb/scf)	Percent	Percent
(i)			(lb/mol) _i		(mol _i /mol _T)	(lb_{I}/lb_{T})
Dimethylhexane (2,3-)	VOC		114.229	0.2966	0.000%	0.000%
Toluene	VOC	Х	92.138	0.2392	4.445%	4.174%
Trimethylcyclopentane (1,1,2-)	VOC		112.213	0.2914	0.371%	0.424%
Dimethylhexane (3,4-)	VOC		114.229	0.2966	3.506%	4.081%
Methylheptane (2-)	VOC		114.229	0.2966	0.000%	0.000%
Methylheptane (4-)	VOC		114.229	0.2966	2.896%	3.372%
Dimethylhexane (3,4-)	VOC		114.229	0.2966	0.000%	0.000%
Methylheptane (3-)	VOC		114.229	0.2966	0.416%	0.484%
Ethylhexane (3-)	VOC		114.229	0.2966	0.111%	0.129%
Trimethylcyclopentane (1,c-2,t-4-)	VOC		112.213	0.2914	0.028%	0.032%
Dimethylcyclohexane (1,c-3-)	VOC		112.213	0.2914	0.170%	0.194%
Trimethylcyclopentane (1,c-2,t-3-)	VOC		112.213	0.2914	0.170%	0.194%
Dimethylcyclohexane (1,t-4-)	VOC		112.213	0.2914	0.000%	0.000%
Trimethylhexane (2,2,5-)	VOC		128.255	0.3330	0.000%	0.000%
Dimethylcyclohexane (1,1-)	VOC		112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-3-)	VOC		112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-c-3-)	VOC		112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-2-)	VOC		112.213	0.2914	0.000%	0.000%
Trimethylhexane (2,2,4-)	VOC		128.255	0.3330	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-1-)	VOC		112.213	0.2914	0.000%	0.000%
Cycloheptane	VOC		98.186	0.2549	0.000%	0.000%
Octane (n-)	VOC		114.229	0.2966	4.373%	5.090%
Trimethylhexane (2,4,4-)	VOC		128.255	0.3330	0.190%	0.248%
Tetramethylpentane (2,2,4,4-)	VOC		128.255	0.3330	0.000%	0.000%
Dimethylcyclohexane (1,t-3-)	VOC		112.213	0.2914	0.053%	0.061%
Dimethylcyclohexane (1,c-4-)	VOC		112.213	0.2914	0.053%	0.061%
Trimethylcyclopentane (1,c-2,c-3-)	VOC		112.213	0.2914	0.053%	0.061%
Propylcyclopentane (i-)	VOC		112.213	0.2914	0.348%	0.398%
Trimethylhexane (2,3,5-)	VOC		128.255	0.3330	0.006%	0.008%
Dimethylheptane (2,2-)	VOC		128.255	0.3330	0.000%	0.000%
Dimethylheptane (2,4-)	VOC		128.255	0.3330	0.158%	0.207%
Methylcyclopentane (1-ethyl-c-2-)	VOC		112.213	0.2914	0.181%	0.207%
Trimethylhexane (2,2,3-)	VOC		128.255	0.3330	0.000%	0.000%
Dimethylcyclohexane (1,c-2-)	VOC		112.213	0.2914	0.510%	0.583%
Dimethylheptane (2,6-)	VOC		128.255	0.3330	0.112%	0.146%
Propylcyclopentane (n-)	VOC		112.213	0.2914	0.000%	0.000%
Trimethylcyclohexane (1,c-3,c-5-)	VOC		126.239	0.3278	0.000%	0.000%
Ethylcyclohexane	VOC		112.213	0.2914	1.365%	1.561%
Dimethylheptane (2,5-)	VOC		128.255	0.3330	0.067%	0.088%
Dimethylheptane (3,5-)	VOC		128.255	0.3330	0.067%	0.088%
Trimethylcyclohexane (1,1,3-)	VOC		126.239	0.3278	0.077%	0.099%
Trimethylhexane (2,3,3-)	VOC		128.255	0.3330	0.038%	0.050%
Dimethylheptane (3,3-)	VOC		128.255	0.3330	0.038%	0.050%
Trimethylcyclohexane (1,1,4-)	VOC		126.239	0.3278	0.000%	0.000%

Texas Eastern Transmission, LP Accident Compressor Station

PTE Estimates: TV Renewal Project Revised: December 2016

TABLE E-0b(i) Flash Analysis Estimation of Specie Weight Percentages Pressurized Liquid

Component			Molecular	Density	Mole	Weight
Name	Туре	HAP	Weight	(lb/scf) _i	Percent	Percent
(i)			(lb/mol) _i		(mol _i /mol _T)	(lb_i/lb_T)
Tetramethylpentane (2,2,3,3-)	VOC		128.255	0.3330	0.261%	0.341%
Ethylbenzene	VOC	X	106.165	0.2757	0.406%	0.439%
Trimethylhexane (2,3,4-)	VOC		128.255	0.3330	0.007%	0.009%
Trimethylcyclohexane (1,t-2,t-4-)	VOC		126.239	0.3278	0.000%	0.000%
Dimethylheptane (2,3-)	VOC		128.255	0.3330	0.000%	0.000%
Trimethylcyclohexane (1,c-3,t-5-)	VOC		126.239	0.3278	0.000%	0.000%
Xylene (m-)	VOC	X	106.165	0.2757	2.462%	2.664%
Xylene (p-)	VOC	X	106.165	0.2757	2.462%	2.664%
Dimethylheptane (3,4-)	VOC		128.255	0.3330	0.092%	0.120%
Methyloctane (2-)	VOC		128.255	0.3330	0.782%	1.022%
Methyloctane (4-)	VOC		128.255	0.3330	0.782%	1.022%
Dimethylheptane (3,4-)	VOC		128.255	0.3330	0.000%	0.000%
Methyloctane (3-)	VOC		128.255	0.3330	0.000%	0.000%
Butylcyclopentane (i-)	VOC		126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,t-2,c-3-)	VOC		126.239	0.3278	0.231%	0.297%
Trimethylcyclohexane (1,t-2,c-4-)	VOC		126.239	0.3278	0.231%	0.297%
Xylene (o-)	VOC	Х	106.165	0.2757	0.547%	0.592%
Trimethylcyclohexane (1,1,2-)	VOC		126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,c-2,t-4-)	VOC		126.239	0.3278	0.200%	0.257%
Trimethylcyclohexane (1,c-2,c-4-)	VOC		126.239	0.3278	0.000%	0.000%
Nonane (n-)	VOC		128.255	0.3330	2.884%	3.770%
Unknowns	VOC		283.704	0.7366	10.755%	31.094%
Pressurized Liquid			98.125	0.2548	100.000%	100.000%
TOC (Total)			98.677	0.2562	99.000%	99.556%
VOC (Total)			124.943	0.3244	74.685%	95.096%
HAP (Total)	17 13		92.449	0.2400	7.356%	6.931%
Xylenes			106.165	0.2757	5.472%	5.920%

^{1.} Normalized mole percentages from TABLE E-0a(ii) to make total 100.000%.

MW = 98.125 lb/lb-mol

PTE Estimates: TV Renewal Project

Revised: December 2016

^{2.} Determined molecular weight of unknowns via iteration to match TABLE E-0a(i).

TABLE E-0b(ii) Flash Analysis Estimation of Specie Weight Percentages Flash Gas

Component			Molecular	Density	Mole	Weight
Name	Туре	HAP	Weight	(lb/scf) _i	Percent	Percent
(i)	;		(lb/mol) _i		(mol _i /mol _T)	(lb_i/lb_T)
Nitrogen			28.013	0.0727	0.101%	0.103%
Carbon Dioxide	GHG		44.010	0.1143	3.201%	5.146%
Methane	GHG		16.042	0.0417	69.747%	40.873%
Ethane			30.069	0.0781	10.850%	11.917%
Propane	VOC		44.096	0.1145	6.177%	9.950%
Butane (i-)	VOC		58.122	0.1509	2.975%	6.317%
Butane (n-)	VOC		58.122	0.1509	3.886%	8.251%
Pentane (i-)	VOC		72.149	0.1873	1.895%	4.994%
Pentane (n-)	VOC		72.149	0.1873	1.056%	2.783%
Dimethylbutane (2,2-)	VOC		86.175	0.2238	0.050%	0.159%
Dimethylbutane (2,3-)	VOC		86.175	0.2238	0.000%	0.000%
Cyclopentane	VOC		70.133	0.1821	0.000%	0.000%
Methylpentane (2-)	VOC		86.175	0.2238	0.352%	1.110%
Methylpentane (3-)	VOC		86.175	0.2238	0.264%	0.831%
Hexane (n-)	VOC	X	86.175	0.2238	0.561%	1.765%
Dimethylpentane (2,2-)	VOC		100.202	0.2602	0.032%	0.117%
Methylcyclopentane	VOC		84.159	0.2185	0.116%	0.357%
Dimethylpentane (2,4-)	VOC		100.202	0.2602	0.013%	0.048%
Trimethylbutane (2,2,3-)	VOC		100.202	0.2602	0.000%	0.000%
Benzene	VOC	X	78.112	0.2028	0.175%	0.501%
Dimethylpentane (3,3-)	VOC		100.202	0.2602	0.023%	0.083%
Cyclohexane	VOC		84.159	0.2185	0.113%	0.348%
Methylhexane (2-)	VOC		100.202	0.2602	0.235%	0.859%
Dimethylpentane (2,3-)	VOC		100.202	0.2602	0.000%	0.000%
Dimethylcyclopentane (1,1-)	VOC		98.186	0.2549	0.062%	0.222%
Methylhexane (3-)	VOC		100.202	0.2602	0.244%	0.892%
Dimethylcyclopentane (1,t-3-)	VOC		98.186	0.2549	0.017%	0.060%
Dimethylcyclopentane (1,c-3-)	VOC		98.186	0.2549	0.027%	0.098%
Ethylpentane (3-)	VOC		100.202	0.2602	0.003%	0.011%
Dimethylcyclopentane (1,t-2-)	VOC		98.186	0.2549	0.023%	0.082%
Trimethylpentane (2,2,4-)	VOC	X	114.229	0.2966	0.002%	0.009%
Heptane (n-)	VOC		100.202	0.2602	0.383%	1.403%
Methylcyclohexane	VOC		98.186	0.2549	0.136%	0.487%
Trimethylcyclopentane (1,1,3-)	VOC		112.213	0.2914	0.009%	0.038%
Dimethylhexane (2,2-)	VOC		114.229	0.2966	0.004%	0.016%
Dimethylcyclopentane (1,c-2-)	VOC		98.186	0.2549	0.035%	0.125%
Dimethylhexane (2,5-)	VOC		114.229	0.2966	0.000%	0.000%
Dimethylhexane (2,4-)	VOC		114.229	0.2966	0.006%	0.025%
Ethylcyclopentane	VOC		98.186	0.2549	0.019%	0.068%
Trimethylpentane (2,2,3-)	VOC		114.229	0.2966	0.001%	0.005%
Trimethylcyclopentane (1,t-2,c-4-)	VOC		112.213	0.2914	0.000%	0.000%
Dimethylhexane (3,3-)	VOC		114.229	0.2966	0.000%	0.000%
Trimethylcyclopentane (1,t-2,c-3-)	VOC		112.213	0.2914	0.000%	0.000%
Trimethylpentane (2,3,4-)	VOC		114.229	0.2966	0.000%	0.000%

Texas Eastern Transmission, LP Accident Compressor Station

PTE Estimates: TV Renewal Project Revised: December 2016

TABLE E-0b(ii) Flash Analysis Estimation of Specie Weight Percentages Flash Gas

Component			Molecular	Density	Mole	Weight
Name	Туре	HAP	Weight	(lb/scf)	Percent	Percent
(i)			(lb/mol) _i		(mol_i/mol_T)	(lb_i/lb_T)
Dimethylhexane (2,3-)	VOC		114.229	0.2966	0.000%	0.000%
Toluene	VOC	X	92.138	0.2392	0.183%	0.615%
Trimethylcyclopentane (1,1,2-)	VOC		112.213	0.2914	0.015%	0.063%
Dimethylhexane (3,4-)	VOC		114.229	0.2966	0.144%	0.602%
Methylheptane (2-)	VOC		114.229	0.2966	0.000%	0.000%
Methylheptane (4-)	VOC		114.229	0.2966	0.119%	0.497%
Dimethylhexane (3,4-)	VOC		114.229	0.2966	0.000%	0.000%
Methylheptane (3-)	VOC		114.229	0.2966	0.017%	0.071%
Ethylhexane (3-)	VOC		114.229	0.2966	0.005%	0.019%
Trimethylcyclopentane (1,c-2,t-4-)	VOC		112.213	0.2914	0.001%	0.005%
Dimethylcyclohexane (1,c-3-)	VOC		112.213	0.2914	0.007%	0.029%
Trimethylcyclopentane (1,c-2,t-3-)	VOC		112.213	0.2914	0.007%	0.029%
Dimethylcyclohexane (1,t-4-)	VOC		112.213	0.2914	0.000%	0.000%
Trimethylhexane (2,2,5-)	VOC		128.255	0.3330	0.000%	0.000%
Dimethylcyclohexane (1,1-)	VOC		112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-3-)	VOC		112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-c-3-)	VOC		112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-2-)	VOC		112.213	0.2914	0.000%	0.000%
Trimethylhexane (2,2,4-)	VOC		128.255	0.3330	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-1-)	VOC		112.213	0.2914	0.000%	0.000%
Cycloheptane	VOC		98.186	0.2549	0.000%	0.000%
Octane (n-)	VOC		114.229	0.2966	0.180%	0.750%
Trimethylhexane (2,4,4-)	VOC		128.255	0.3330	0.003%	0.015%
Tetramethylpentane (2,2,4,4-)	VOC		128.255	0.3330	0.000%	0.000%
Dimethylcyclohexane (1,t-3-)	VOC		112.213	0.2914	0.001%	0.004%
Dimethylcyclohexane (1,c-4-)	VOC		112.213	0.2914	0.001%	0.004%
Trimethylcyclopentane (1,c-2,c-3-)	VOC		112.213	0.2914	0.001%	0.004%
Propylcyclopentane (i-)	VOC		112.213	0.2914		0.025%
Trimethylhexane (2,3,5-)	VOC		128.255	0.3330		0.000%
Dimethylheptane (2,2-)	VOC		128.255	0.3330		0.000%
Dimethylheptane (2,4-)	VOC		128.255	0.3330		0.013%
Methylcyclopentane (1-ethyl-c-2-)	VOC		112.213	0.2914	0.003%	0.013%
Trimethylhexane (2,2,3-)	VOC		128.255			
Dimethylcyclohexane (1,c-2-)	VOC		112.213	0.2914		
Dimethylheptane (2,6-)	VOC		128.255	0.3330		
Propylcyclopentane (n-)	VOC		112.213	0.2914		0.000%
Trimethylcyclohexane (1,c-3,c-5-)	VOC		126.239	0.3278		
Ethylcyclohexane	VOC		112.213	0.2914		
Dimethylheptane (2,5-)	VOC		128.255	0.3330		
Dimethylheptane (3,5-)	VOC		128.255	0.3330		
Trimethylcyclohexane (1,1,3-)	VOC		126.239			
Trimethylhexane (2,3,3-)	VOC		128.255	0.3330		
Dimethylheptane (3,3-)	VOC		128.255			<u> </u>
Trimethylcyclohexane (1,1,4-)	VOC		126.239	0.3278	0.000%	0.000%

Texas Eastern Transmission, LP Accident Compressor Station

PTE Estimates: TV Renewal Project Revised: December 2016

TABLE E-0b(ii) Flash Analysis Estimation of Specie Weight Percentages Flash Gas

Component			Molecular	Density	Mole	Weight
Name	Туре	HAP	Weight	(lb/scf),	Percent	Percent
(i)			(lb/mol) _i		(mol/mol _T)	(lb_i/lb_T)
Tetramethylpentane (2,2,3,3-)	VOC		128.255	0.3330	0.004%	0.021%
Ethylbenzene	VOC	X	106.165	0.2757	0.007%	0.027%
Trimethylhexane (2,3,4-)	VOC		128.255	0.3330	0.000%	0.001%
Trimethylcyclohexane (1,t-2,t-4-)	VOC		126.239	0.3278	0.000%	0.000%
Dimethylheptane (2,3-)	VOC		128.255	0.3330	0.000%	0.000%
Trimethylcyclohexane (1,c-3,t-5-)	VOC		126.239	0.3278	0.000%	0.000%
Xylene (m-)	VOC	X	106.165	0.2757	0.042%	0.164%
Xylene (p-)	VOC	X	106.165	0.2757	0.042%	0.164%
Dimethylheptane (3,4-)	VOC		128.255	0.3330	0.002%	0.007%
Methyloctane (2-)	VOC		128.255	0.3330	0.013%	0.063%
Methyloctane (4-)	VOC		128.255	0.3330	0.013%	0.063%
Dimethylheptane (3,4-)	VOC		128.255	0.3330	0.000%	0.000%
Methyloctane (3-)	VOC		128.255	0.3330	0.000%	0.000%
Butylcyclopentane (i-)	VOC		126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,t-2,c-3-)	VOC		126.239	0.3278	0.004%	0.018%
Trimethylcyclohexane (1,t-2,c-4-)	VOC	П	126.239	0.3278	0.004%	0.018%
Xylene (o-)	VOC	X	106.165	0.2757	0.009%	0.036%
Trimethylcyclohexane (1,1,2-)	VOC		126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,c-2,t-4-)	VOC		126.239	0.3278	0.003%	0.016%
Trimethylcyclohexane (1,c-2,c-4-)	VOC	П	126.239	0.3278	0.000%	0.000%
Nonane (n-)	VOC	П	128.255	0.3330	0.050%	0.232%
Unknowns	VOC	П	0.000	0.0000	0.079%	0.000%
Flash Gas	A STATE OF THE STATE OF	A CONTRACTOR	27.376	0.0711	103.803%	103.803%
TOC (Total)	7 1 7 1 1	S. S. S.	26.845	0.0697	100.501%	98.554%
VOC (Total)	and the second	e de .	62.943	0.1634	19.904%	45.764%
HAP (Total)		The said in	88.115	0.2288	0.762%	2.452%
Xylenes	考点体表示	ارد در الله الله الله الله الله الله الله الل	106.165	0.2757	0.094%	0.365%

^{1.} Normalized mole percentages from TABLE E-0a(ii) to make total 100.000%.

MW = 26.938 lb/lb-mol

PTE Estimates: TV Renewal Project

Revised: December 2016

^{2.} Determined molecular weight of unknowns via iteration to match TABLE E-0a(i), unless value negative.

TABLE E-0b(iii) Flash Analysis Estimation of Specie Weight Percentages Residual Liquid

Component			Molecular	Density	Mole	Weight
Name	Туре	HAP	Weight	(lb/scf)	Percent	Percent
(i)			(lb/mol) _i		(mol _i /mol _T)	(lb/lb_T)
Nitrogen			28.013	0.0727	0.000%	0.000%
Carbon Dioxide	GHG		44.010	0.1143	0.000%	0.000%
Methane	GHG		16.042	0.0417	0.000%	0.000%
Ethane			30.069	0.0781	0.000%	0.000%
Propane	VOC		44.096	0.1145	0.000%	0.000%
Butane (i-)	VOC		58.122	0.1509	0.000%	0.000%
Butane (n-)	VOC		58.122	0.1509	0.000%	0.000%
Pentane (i-)	VOC		72.149	0.1873	2.544%	1.430%
Pentane (n-)	VOC		72.149	0.1873	1.859%	1.045%
Dimethylbutane (2,2-)	VOC		86.175	0.2238	0.227%	0.152%
Dimethylbutane (2,3-)	VOC		86.175	0.2238	0.000%	0.000%
Cyclopentane	VOC		70.133	0.1821	0.000%	0.000%
Methylpentane (2-)	VOC		86.175	0.2238	1.586%	1.065%
Methylpentane (3-)	VOC		86.175	0.2238	1.188%	0.797%
Hexane (n-)	VOC	X	86.175	0.2238	2.522%	1.693%
Dimethylpentane (2,2-)	VOC		100.202	0.2602	0.430%	0.335%
Methylcyclopentane	VOC		84.159	0.2185	1.567%	1.027%
Dimethylpentane (2,4-)	VOC		100.202	0.2602	0.177%	0.138%
Trimethylbutane (2,2,3-)	VOC		100.202	0.2602	0.000%	0.000%
Benzene	VOC	X	78.112	0.2028	2.367%	1.440%
Dimethylpentane (3,3-)	VOC		100.202	0.2602	0.305%	0.238%
Cyclohexane	VOC		84.159	0.2185	1.528%	1.002%
Methylhexane (2-)	VOC		100.202	0.2602	3.167%	2.472%
Dimethylpentane (2,3-)	VOC		100.202	0.2602	0.000%	0.000%
Dimethylcyclopentane (1,1-)	VOC		98.186	0.2549	0.833%	0.637%
Methylhexane (3-)	VOC		100.202	0.2602	3.287%	2.566%
Dimethylcyclopentane (1,t-3-)	VOC		98.186	0.2549	0.225%	0.172%
Dimethylcyclopentane (1,c-3-)	VOC		98.186	0.2549	0.368%	0.281%
Ethylpentane (3-)	VOC		100.202	0.2602	0.040%	0.031%
Dimethylcyclopentane (1,t-2-)	VOC		98.186	0.2549	0.307%	0.235%
Trimethylpentane (2,2,4-)	VOC	X	114.229	0.2966	0.029%	0.026%
Heptane (n-)	VOC		100.202	0.2602	5.170%	4.036%
Methylcyclohexane	VOC		98.186	0.2549		3.555%
Trimethylcyclopentane (1,1,3-)	VOC		112.213	0.2914		0.277%
Dimethylhexane (2,2-)	VOC		114.229	0.2966	0.134%	0.119%
Dimethylcyclopentane (1,c-2-)	VOC		98.186	0.2549	1.194%	0.913%
Dimethylhexane (2,5-)	VOC		114.229	0.2966	0.000%	0.000%
Dimethylhexane (2,4-)	VOC		114.229	0.2966	0.201%	0.179%
Ethylcyclopentane	VOC		98.186	0.2549	0.653%	0.500%
Trimethylpentane (2,2,3-)	VOC		114.229	0.2966	0.039%	0.035%
Trimethylcyclopentane (1,t-2,c-4-)	VOC		112.213	0.2914	0.000%	0.000%
Dimethylhexane (3,3-)	VOC		114.229	0.2966	0.000%	0.000%
Trimethylcyclopentane (1,t-2,c-3-)	VOC	\coprod	112.213	0.2914	0.000%	0.000%
Trimethylpentane (2,3,4-)	VOC		114.229	0.2966	0.000%	0.000%

Texas Eastern Transmission, LP Accident Compressor Station

PTE Estimates: TV Renewal Project Revised: December 2016

TABLE E-0b(iii) Flash Analysis Estimation of Specie Weight Percentages Residual Liquid

Component			Molecular	Density	Mole	Weight
Name	Type	HAP	Weight	(lb/scf) _i	Percent	Percent
(i)			(lb/mol) _i	*48"	(mol_i/mol_T)	(lb_i/lb_T)
Dimethylhexane (2,3-)	VOC		114.229	0.2966	0.000%	0.000%
Toluene	VOC	X	92.138	0.2392	6.256%	4.491%
Trimethylcyclopentane (1,1,2-)	VOC		112.213	0.2914	0.522%	0.457%
Dimethylhexane (3,4-)	VOC		114.229	0.2966	4.934%	4.391%
Methylheptane (2-)	VOC		114.229	0.2966	0.000%	0.000%
Methylheptane (4-)	VOC		114.229	0.2966	4.077%	3.628%
Dimethylhexane (3,4-)	VOC		114.229	0.2966	0.000%	0.000%
Methylheptane (3-)	VOC		114.229	0.2966	0.586%	0.521%
Ethylhexane (3-)	VOC		114.229	0.2966	0.156%	0.139%
Trimethylcyclopentane (1,c-2,t-4-)	VOC		112.213	0.2914	0.039%	0.034%
Dimethylcyclohexane (1,c-3-)	VOC		112.213	0.2914	0.239%	0.209%
Trimethylcyclopentane (1,c-2,t-3-)	VOC	l. I	112.213	0.2914	0.239%	0.209%
Dimethylcyclohexane (1,t-4-)	VOC		112.213	0.2914	0.000%	0.000%
Trimethylhexane (2,2,5-)	VOC		128.255	0.3330	0.000%	0.000%
Dimethylcyclohexane (1,1-)	VOC		112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-3-)	VOC		112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-c-3-)	VOC		112.213	0.2914	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-2-)	VOC		112.213	0.2914	0.000%	0.000%
Trimethylhexane (2,2,4-)	VOC		128.255	0.3330	0.000%	0.000%
Ethylcyclopentane (1-methyl-t-1-)	VOC		112.213	0.2914	0.000%	0.000%
Cycloheptane	VOC		98.186	0.2549	0.000%	0.000%
Octane (n-)	VOC		114.229	0.2966	6.155%	5.477%
Trimethylhexane (2,4,4-)	VOC		128.255	0.3330	0.269%	0.269%
Tetramethylpentane (2,2,4,4-)	VOC		128.255	0.3330	0.000%	0.000%
Dimethylcyclohexane (1,t-3-)	VOC		112.213	0.2914	0.075%	0.066%
Dimethylcyclohexane (1,c-4-)	VOC		112.213	0.2914	0.075%	0.066%
Trimethylcyclopentane (1,c-2,c-3-)	VOC		112.213	0.2914	0.075%	0.066%
Propylcyclopentane (i-)	VOC		112.213	0.2914	0.493%	0.431%
Trimethylhexane (2,3,5-)	VOC		128.255	0.3330	0.009%	0.009%
Dimethylheptane (2,2-)	VOC		128.255	0.3330	0.000%	0.000%
Dimethylheptane (2,4-)	VOC		128.255	0.3330	0.224%	0.224%
Methylcyclopentane (1-ethyl-c-2-)	VOC		112.213	0.2914	0.257%	0.224%
Trimethylhexane (2,2,3-)	VOC		128.255	0.3330	0.000%	0.000%
Dimethylcyclohexane (1,c-2-)	VOC		112.213	0.2914	0.723%	0.632%
Dimethylheptane (2,6-)	VOC		128.255	0.3330	0.159%	0.159%
Propylcyclopentane (n-)	VOC		112.213	0.2914	0.000%	0.000%
Trimethylcyclohexane (1,c-3,c-5-)	VOC		126.239	0.3278	0.000%	0.000%
Ethylcyclohexane	VOC		112.213	0.2914	1.935%	1.692%
Dimethylheptane (2,5-)	VOC	\sqcup	128.255	0.3330	0.095%	0.095%
Dimethylheptane (3,5-)	VOC	$oxed{oxed}$	128.255	0.3330	0.095%	0.095%
Trimethylcyclohexane (1,1,3-)	VOC	oxdot	126.239	0.3278	0.109%	0.107%
Trimethylhexane (2,3,3-)	VOC		128.255	0.3330	0.054%	0.054%
Dimethylheptane (3,3-)	VOC		128.255	0.3330	0.054%	0.054%
Trimethylcyclohexane (1,1,4-)	VOC	<u> </u>	126.239	0.3278	0.000%	0.000%

Texas Eastern Transmission, LP Accident Compressor Station

PTE Estimates: TV Renewal Project Revised: December 2016

TABLE E-0b(iii) Flash Analysis Estimation of Specie Weight Percentages Residual Liquid

Component			Molecular	Density	Mole	Weight
Name	Туре	HAP	Weight	(lb/scf) _i	Percent	Percent
(i)			(lb/mol) _i		(mol/mol _T)	(lb_I/lb_T)
Tetramethylpentane (2,2,3,3-)	VOC	15	128.255	0.3330	0.370%	0.370%
Ethylbenzene	VOC	X	106.165	0.2757	0.576%	0.476%
Trimethylhexane (2,3,4-)	VOC		128.255	0.3330	0.010%	0.010%
Trimethylcyclohexane (1,t-2,t-4-)	VOC		126.239	0.3278	0.000%	0.000%
Dimethylheptane (2,3-)	VOC		128.255	0.3330	0.000%	0.000%
Trimethylcyclohexane (1,c-3,t-5-)	VOC		126.239	0.3278	0.000%	0.000%
Xylene (m-)	VOC	X	106.165	0.2757	3.491%	2.887%
Xylene (p-)	VOC	Х	106.165	0.2757	3.491%	2.887%
Dimethylheptane (3,4-)	VOC		128.255	0.3330	0.130%	0.130%
Methyloctane (2-)	VOC		128.255	0.3330	1.109%	1.108%
Methyloctane (4-)	VOC		128.255	0.3330	1.109%	1.108%
Dimethylheptane (3,4-)	VOC		128.255	0.3330	0.000%	0.000%
Methyloctane (3-)	VOC		128.255	0.3330	0.000%	0.000%
Butylcyclopentane (i-)	VOC		126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,t-2,c-3-)	VOC		126.239	0.3278	0.328%	0.322%
Trimethylcyclohexane (1,t-2,c-4-)	VOC		126.239	0.3278	0.328%	0.322%
Xylene (o-)	VOC	X	106.165	0.2757	0.776%	0.641%
Trimethylcyclohexane (1,1,2-)	VOC		126.239	0.3278	0.000%	0.000%
Trimethylcyclohexane (1,c-2,t-4-)	VOC		126.239	0.3278	0.284%	0.279%
Trimethylcyclohexane (1,c-2,c-4-)	VOC		126.239	0.3278	0.000%	0.000%
Nonane (n-)	VOC		128.255	0.3330	4.089%	4.086%
Unknowns	VOC		263.361	0.6838	15.292%	31.375%
Residual Liquid			128.362	0.3333	96.197%	96.197%
TOC (Total)			128.362	0.3333	96.197%	96.197%
VOC (Total)			128.362	0.3333	96.197%	96.197%
HAP (Total)			92.587	0.2404	10.159%	7.327%
Xylenes	A NO.	7 19 - 80	106.165	0.2757	7.757%	6.416%

^{1.} Normalized mole percentages from TABLE E-0a(ii) to make total 100.000%.

MW = 128.362 lb/lb-mol

PTE Estimates: TV Renewal Project

Revised: December 2016

^{2.} Determined molecular weight of unknowns via iteration to match TABLE E-0a(i).

TABLE B-2 Volatile Organic Liquids Storage Tanks Maximum Hourly and Annual Emission Estimates

				1	-	
Source			TK04A or TK04B			
Service			Pipeline Liquids			
Molecular Weight	Liquid	M_{L}	92.00 lb/lb-mol			
. <u></u>	Vapor	M_V	62.00 lb/lb-mol			
Vapor Pressure	Monthly (Max.)	P _{max}	10.7470 psia			
	Annual (Avg.)	P_{avg}	6.8405 psia			
Capacity		V	1,500 gal			
Maximum Pumping	Rate	Q _{pump}	150 gal/min			
		$Q_{m-h} = \min(V, Q_{pump})$	1,500 gal/hr			
Annual Throughput		N	16.00 turnover/yr			
		$Q_{m-a} = Q_a/(12 \text{ months/year})$	2,000 gal/month			
		$Q_a = V(N)$	24,000 gal/yr			
Standing Losses	Monthly (Max.)		July			
		HRS _{m-m}	744 hrs/month			
		SL _{m-m}	185.91 lbs/month			
		$SL_{m-h} = SL_{m-m}/HRS_{m-m}$	0.2499 lb/hr			
	Annual (Avg.)	SL _a	1,103.98 lb/yr			
		$SL_{a-a} = SL_a/(8760 \text{ hours/year})$	0.1260 lb/hr			
Working Losses	Monthly (Max)	WL _{m-m}	25.41 lbs/month			
		$WL_{m-h} = WL_{m-m}/Q_{m-a}$	0.0127 lb/gal		Emissions	
7,	Annual (Avg.)	WL _a	242.35 lb/yr	lb/	hr	tpy
		$WL_{a-a} = WL_a/Q_a$	0.0101 lb/gal	_ (Max)	(Avg)	(Annual)
Total Losses	VOC (Total)		100.00% by weight	19.3069 lb/hr	0.1537 lb/hr	0.6732 tpy
	Benzene		0.44% by weight	0.0850 lb/hr	0.0007 lb/hr	0.0030 tpy
	Hexane (n-)		0.93% by weight	0.1789 lb/hr	0.0014 lb/hr	0.0062 tpy
	Methanol					
	Toluene		0.17% by weight	0.0331 lb/hr	0.0003 lb/hr	0.0012 tpy
	Xylenes		0.04% by weight	0.0080 lb/hr	0.0001 lb/hr	0.0003 tpy
		NOTI	ES THE RESERVE TO THE			

- 1. USEPA TANKS 4.09b (data from output file is listed in bold).
- 2. Emissions are estimated as follows:
 - a. Hourly = wt%($SL_{m-h} + Q_{m-h}WL_{m-h}$)
 - b. Annual = $wt\%(SL_a + WL_a)/(2000 \text{ lb/ton})$
- 3. In an effort to be conservative, the physical properties of gasoline (RVP 13) are used to estimate emissions.

Attachment 2

Tanks ACC3A-3F Example Tank PTE Emission

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	ACCI-TK-WWME01 Accident Maryland Texas Eastern Transmission, L.P Vertical Fixed Roof Tank Wastewater w/ Methanol
Tank Dimensions	
Shell Height (ft)	15.00
Diameter (ft):	10.00
Liquid Height (ft):	15.00
Avg. Liquid Height (ft):	7.50
Volume (gallons):	8,800.00
Turnovers:	12.00
Net Throughput(gal/yr):	105,600.00
Is Tank Heated (y/n)	N
Paint Characteristics	
Shell Color/Shade:	Gray/Light
Shell Condition	Good
Roof Color/Shade:	Gray/Light
Roof Condition:	Good
Roof Characteristics	
Type:	Dome
Height (ft)	1.34
Radius (ft) (Dome Roof)	10.00
Breather Vent Settings	
Vacuum Settings (psig)	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

ACCI-TK-WWME01 - Vertical Fixed Roof Tank Accident, Maryland

			Liquid Si perature (de		Liquid Bulk Temp	Bulk		ssure (psia)		Liquid Mass	Vapor Mass	Mol	Basis for Vapor Pressure
Mixture/Component	Month	Avg	Min	Max	(deg F)	Avg	Min.	Min Max		Fract	Fract	Weight	Calculations
Methyl alcohol	Jan	43 26	38 44	48 09	52 55	0.8338	0,7063	0.9806	32 0400			32 04	Option 2 A=7 897, B=1474 08, C=229 13
Methyl alcohol	Feb	45.40	39 41	51.39	52.55	0.8963	0.7304	1.0937	32 0400			32 04	Option 2 A=7 897 B=1474 08 C=229 13
Methyl alcohol	Mat	51.53	43.85	59.21	52 55	1.0987	0.8505	1.4066	32 0400			32 04	Option 2 A=7.897, B=1474.08, C=229.13
Methyl alcohol	Apr	57,42	48.06	66.78	52 55	1.3290	0.9799	1.7797	32 0400			32 04	Option 2 A=7.897, B=1474.08, C=229.13
Methyl alcohol	May	63.01	52 45	73.57	52.55	1.5846	1.1324	2 1830	32 0 4 0 0			32 04	Option 2 A=7 897, B=1474 08, C=229 13
Methyl alcohol	Jun	67.50	56 28	78.73	52 55	1 8192	1.2813	2 5391	32 0 4 0 0			32 04	Opton 2 A=7.897, B=1474.08, C=229.13
Methyl alcohol	Jul	69.18	58 29	80 07	52 55	1.9140	1.3660	2.6395	32.0400			32 04	Option 2. A=7.897, B=1474.08, C=229 13
Methyl alcohol	Aug	67.54	57.55	77.53	52 55	1 8214	1.3343	2 4528	32 0400			32 04	Option 2, A=7 897, B=1474 08, C=229 13
Methyl alcohol	Sep	63 23	54.45	72 01	52.55	1 5952	1.2080	2 0840	32 0400			32 04	Option 2 A=7 897, B=1474 08, C=229 13
Methyl alcohol	Oct	56 57	49.31	63.84	52.55	1 2935	1.0214	1 6256	32 0 400			32 04	Option 2 A=7 897, B=1474 08, C=229 13
Methyl alcohol	Nov	50 49	45.37	55 62	52.55	1.0620	0.8952	1 2547	32 0 400			32 04	Option 2 A=7 897, B=1474 08, C=229 13
Methyl alcohol	Dec	45 19	40.95	49.43	52 55	0.8900	0.7702	1.0255	32 0 400			32 04	Option 2 A=7 897, B=1474 08, C=229 13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

ACCI-TK-WWME01 - Vertical Fixed Roof Tank Accident, Maryland

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Standing Losses (lb):	3.9481	4,8353	8.5073	12 2303	17.0940	20,2849	21.4008	18.5997	13.7451	9.4297	5.1834	3.6625
Vapor Space Volume (cu ft):	642.9301	642 9301	642 9301	642 9301	642 9301	642 9301	642.9301	642 9301	642 9301	642 9301	642 9301	642 9301
Vapor Density (lb/cu ft)	0.0049	0.0053	0.0064	0.0077	0.0091	0.0103	0.0108	0.0103	0.0091	0.0075	0.0062	0.0053
Vapor Space Expansion Factor	0.0545	0.0704	0.0982	0.1303	0.1599	0.1826	0.1819	0.1620	0.1324	0.0987	0.0632	0.0484
Vented Vapor Saturation Factor	0.7344	0.7200	0.6772	0.6343	0 5926	0.5589	0.5463	0.5586	0 5910	0.6405	0 6846	0.7214
TOMOG TOPOT OCIONACION TOTOL	0.7044	0.7200	0.0772	0.0040	0.5020	0.0000	0.0400	0.0000	0 3310	0.0403	0 0040	0.7214
Tank Vapor Space Volume												
Vapor Space Volume (cu ft)	642.9301	642.9301	642 9301	642 9301	642 9301	642.9301	642,9301	642 9301	642 9301	642 9301	642 9301	642 9301
Tank Diameter (ft):	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10 0000	10.0000
Vapor Space Outage (ft)	8.1860	8 1860	8.1860	8.1860	8_1860	8.1860	8.1860	8.1860	8.1860	8.1860	8.1860	8,1860
Tank Shell Height (ft).	15.0000	15,0000	15 0000	15.0000	15.0000	15,0000	15.0000	15.0000	15 0000	15.0000	15.0000	15.0000
Average Liquid Height (ft)	7.5000	7.5000	7 5000	7 5000	7.5000	7.5000	7,5000	7.5000	7.5000	7.5000	7.5000	7.5000
Roof Outage (ft):	0.6860	0.6860	0 6860	0.6860	0 6860	0.6860	0.6860	0.6860	0.6860	0.6860	0 6860	0.6860
Roof Outage (Dome Roof)												
Roof Outage (ft):	0.6860	0.6860	0 6860	0.6860	0.6860	0.6860	0.6860	0.6860	0.6860	0.6860	0.6860	0.6860
Dome Radius (ft):	10.0000	10.0000	10 0000	10.0000	10.0000	10.0000	10.0000	10.0000	10 0000	10.0000	10 0000	10.0000
Shell Radius (ft):	5.0000	5.0000	5.0000	5.0000	5,0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000
Vapor Density												
Vapor Density (lb/cu ft)	0.0049	0.0053	0.0064	0.0077	0.0091	0.0103	0.0108	0.0103	0 0091	0.0075	0 0062	0.0053
Vapor Molecular Weight (lb/lb-mole)	32.0400	32.0400	32 0400	32 0400	32 0400	32.0400	32.0400	32.0400	32 0400	32 0400	32 0400	32.0400
Vapor Pressure at Daily Average Liquid	32.0400	32.0400	32 0400	32 0400	32 0400	32.0400	32.0400	32.0400	32 0400	32 0400	32 0400	32 0400
Surface Temperature (psia)	0.8338	0.8963	1.0987	1.3290	1.5846	1.8192	1.9140	1.8214	1.5952	1.2935	1.0620	0.8900
Daily Avg Liquid Surface Temp (deg R)	502.9348	505 0702	511,2000	517.0926	522 6819	527.1711	528.8458	527.2106	522 8977	516,2446	510 1639	504 8614
Daily Average Ambient Temp (deg. R)	26.1000	28.6000	39 4000	49 5500	59 5000	67 9000	72 1000	70.5000	63 9000			
	20.1000	28.0000	39 4000	49 5500	59 5000	01, 9000	/2 1000	70.5000	63 9000	52.4000	42 2500	31 5000
Ideal Gas Constant R	40.704	40.704	40.704	40.704	40.704	40.704	40 704	40.704	40.704		40.704	
(psia cuft / (lb-mol-deg R)).	10 731	10 731	10 731	10.731	10,731	10,731	10,731	10,731	10.731	10,731	10,731	10 731
Liquid Bulk Temperature (deg. R):	512.2183	512.2183	512 2183	512 2183	512 2183	512.2183	512 2183	512 2183	512 2183	512 2183	512 2183	512 2183
Tank Paint Solar Absorptance (Shell)	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400
Tank Paint Solar Absorptance (Roof)	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400	0.5400
Daily Total Solar Insulation												
Factor (Btu/sqft day):	551.7325	794.4441	1,117.4249	1,451.8275	1,735.7842	1,921,7044	1,881.0938	1,662.8121	1,332 5340	959.1072	580.6041	446.3989
Vapor Space Expansion Factor												
Vapor Space Expansion Factor	0.0545	0.0704	0.0982	0.1303	0.1599	0.1826	0.1819	0.1620	0.1324	0.0987	0.0632	0.0484
Daily Vapor Temperature Range (deg. R)	19 2862	23,9640	30.7195	37,4316	42,2291	44.8962	43.5621	39.9737	35.1239	29.0457	20.5147	16.9736
Daily Vapor Pressure Range (psia)	0.2744	0.3633	0.5561	0.7997	1.0506	1.2578	1.2734	1.1184	0.8760	0.6042	0.3594	0.2553
Breather Vent Press. Setting Range(psia)	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600
Vapor Pressure at Daily Average Liquid	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Surface Temperature (psia):	0.8338	0.8963	1.0987	1.3290	1.5846	1.8192	1,9140	1.8214	1.5952	1.2935	1.0620	0.8900
Vapor Pressure at Daily Minimum Liquid	0.6336	0.0303	1.0307	1.3290	1.3040	10192	1.9140	1.0214	1 2922	1.2933	1.0020	0.0900
Surface Temperature (psia)	0 7063	0.7304	0.8505	0.9799	1,1324	1 2813	1,3660	1 3343	1.2080	1.0214	0.8952	0.7702
Vapor Pressure at Daily Maximum Liquid	0.7003	0.7304	0.0303	0.9789	1 1324	1 2013	1,3000	1 3343	1 2000	1 0214	0.0932	0 7702
	0.9806	1.0937	1.4066	1.7797	2.1830	2.5391	0.0000	0.4500	0.0010	4 0050		
Surface Temperature (psia):	502.9348	505.0702		517.0926	522.6819	527,1711	2 6395	2.4528	2.0840	1.6256	1.2547	1.0255
Daily Avg Liquid Surface Temp (deg R)			511.2000				528.8458	527.2106	522 8977	516.2446	510 1639	504.8614
Daily Min. Liquid Surface Temp (deg R)	498 1132	499.0792	503.5201	507,7347	512.1247	515 9470	517.9553	517.2172	514.1167	508.9832	505.0352	500.6180
Daily Max. Liquid Surface Temp. (deg R)	507.7563	511 0612	518.8799	526.4505	533.2392	538.3951	539.7363	537.2041	531.6786	523.5060	515 2926	509 1048
Daily Ambient Temp Range (deg R)	15.2000	16.6000	19.2000	21,5000	22 2000	22.0000	21.0000	20.6000	20.8000	20.2000	16.3000	14.2000
Vented Vapor Saturation Factor												
Vented Vapor Saturation Factor	0.7344	0.7200	0.6772	0.6343	0.5926	0.5589	0.5463	0.5586	0.5910	0.6405	0.6846	0.7214
Vapor Pressure at Daily Average Liquid	0,044	0.1 2,00	0.0172	0.0040	0.0320	0.0009	0.5-03	0.3300	0.3310	0.0403	0.0040	01214
Surface Temperature (psia):	0.8338	0.8963	1.0987	1.3290	1.5846	1.8192	1.9140	1.8214	1.5952	1.2935	1.0620	0.8900
Vapor Space Outage (ft)	8.1860	8.1860	8.1860	8.1860	8.1860	8 1860	8.1860	8.1860	8.1860	8 1860	8 1860	8.1860
rapor opace outage (iii)	0 1000	0.1000	0.1000	0.1000	0.1000	0 1000	0.1000	0.1000	0.1000	0.1000	0 1000	0 1000
Working Losses (Ib):	5.5973	6.0170	7.3756	8.9220	10.6376	12.2126	12.8492	12 2274	10.7091	8.6837	7.1290	5.9748
	0,00.0			3.0000	. 5.44.4					2.0007		3.01 40

TANKS 4.0 Report

Vapor Molecular Weight (Ib/lb-mole)	32 0400	32.0400	32 0400	32 0400	32 0400	32 0400	32 0400	32.0400	32 0400	32 0400	32 0400	32,0400
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):	0.8338	0.8963	1.0987	1.3290	1,5846	1.8192	1,9140	1.8214	1.5952	1 2935	1 0620	0.8900
Net Throughput (gal/mo)	8,800,0000	8,800.0000	8,800 0000	8,800,0000	8,800,0000	8,800 0000	8,800,0000	8,800.0000	8 800 0000	8,800,0000	8,800,0000	8,800.0000
Annual Turnovers	12 0000	12,0000	12 0000	12 0000	12,0000	12 0000	12 0000	12.0000	12 0000	12 0000	12 0000	12 0000
Turnover Factor	1.0000	1.0000	1.0000	1,0000	1,0000	1 0000	1,0000	1,0000	1 0000	1.0000	1 0000	1.0000
Maximum Liquid Volume (gal)	8,800,0000	8,800.0000	8,800,0000	8,800.0000	8,800,0000	8,800,0000	8,800,0000	8,800,0000	8,800.0000	8,800,0000	8,800,0000	8,800 0000
Maximum Liquid Height (ft)	15 0000	15.0000	15.0000	15.0000	15,0000	15.0000	15.0000	15.0000	15.0000	15,0000	15 0000	15 0000
Tank Diameter (ft):	10.0000	10.0000	10 0000	10.0000	10.0000	10 0000	10 0000	10.0000	10.0000	10.0000	10 0000	10.0000
Working Loss Product Factor	1,0000	1.0000	1,0000	1,0000	1.0000	1,0000	1.0000	1,0000	1.0000	1.0000	1 0000	1.0000
Total Losses (tb)	9.5454	10.8523	15 8830	21.1523	27,7316	32.4976	34 2499	30.8270	24.4542	18.1134	12 3124	9.6373

TANKS 4.0 Report Page 5 of 7

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

ACCI-TK-WWME01 - Vertical Fixed Roof Tank Accident, Maryland

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Methyl alcohol	108.34		247.26

TANKS 4.0 Report Page 7 of 7

TABLE F-0 Volatile Organic Liquid Storage Tanks Vapor Physical Property and Composition Estimates Raoult's Law

•				C	omponent Dat	la							Liquid	Data	Vapor	Data
Component			MW			Yaws Vapor P	ressure Coeffi	cients			VP	Datum	mol%	wt%	Уi	wt%,
Name	Type	HAP	(lb/mol),	Α	В	С	D	E	T _{Min}	T _{Max}	Т	P _i	(mol/mol)	(lb/lb ₁)	(mol/mol _v)	(lb/lb _V)
(i)			M _t						(°F)	(°F)	(°F)	(psia)	f _{v-i}	f _{m-l}		
Water and the land of the land	Wask	WENNER	18.015	4.6543	1.4353E+03	-6.4848E+01	THE REPORT OF	*INFESTELSIII	1.04	212.00	56.69	0.2238	99.947%	99.789%	99.775%	99.1839
Methanol	VOC	X	32.042			-1.3988E+01				464.00	56.69	1.3103	0.011%	0.019%	0.064%	0.113%
Benzene	VOC	X	78.112	31.7718	-2.7254E+03	-8.4443E+00	-5.3534E-09	2.7187E-06	42.80	552.20	56.69	1.0642	0.031%	0.135%	0.148%	0.638%
Toluene	VOC	X	92.138	34.0775	-3.0379E+03	-9.1635E+00	1.0289E-11	2.7035E-06	-139.00	606.20	56.69	0.2982	0.009%	0.047%	0.012%	0.062%
Ethylbenzene	VOC	X	106.165	36.1998	-3.3402E+03	-9.7970E+00	-1.1467E-11	2.5758E-06	-139.00	651.20	56.69	0.0945	0.000%	0.001%	0.000%	0.000%
Xylene (m-)	VOC	X	106.165	34.6803	-3.2981E+03	-9.2570E+00	-4.3563E-10	-2.4103E-06	-54.40	649.40	56.69	0.0331	0.000%	0.000%	0.000%	0.000%
Xylene (p-)	VOC	X	106.165	60.0531	-4.0159E+03	-1.9441E+01	8.2881E-03	-2.3647E-12	55.40	649.40	56.69	0.0865	0.001%	0.007%	0.000%	0.003%
Xylene (o-)	VOC	X	106.165	37.2413	-3.4573E+03	-1.0126E+01	9.0676E-11	2.6123E-06	-13.00	674.60	56.69	0.0635	0.000%	0.000%	0.000%	0.000%
Trimethylbenzene (1,2,4-)	VOC		120.192	2.1667	+2.6318E+03	4.0350E+00	-1.1776E-02	6.0956E-06	-47.20	708.80	56.69	0.0208	0.000%	0.001%	0.000%	0.000%
Wastewater	THE R	18.044	lb/lb-mol		56.69	°F	0.2242	psia	18.123	lb/lb-mol		Manufacture (Co.)	100.000%	100.000%	100.000%	100.000%
TOC (Total)	Ę.	71.955	lb/lb-mol	7	56.69	°F	0.9517	psia	65.887	lb/lb-mol			0.053%	0.211%	0.225%	0.817%
VOC (Total)	흥	71.955	lb/lb-mol	ap	56.69	°F	0.9517	psia	65.887	lb/lb-mol		2.27	0.053%	0.211%	0.225%	0.817%
HAP (Total)] = [71.809	lb/lb-mol	>	56.69	°F	0.9546	psia	65.883	lb/lb-mol			0.053%	0.210%	0.225%	0.817%
Xylenes	(40)	106.165	lb/lb-mol		56.69	°F	0.0865	psia	106.165	lb/lb-mo			0.001%	0.007%	0.000%	0.003%
		The state of		W70-			NOTES									
 Liquid composition of wastewater ba 	sed on A	ccutest I	aboratories a	nalysis of sa	mple collected	on 08/29/201	1.									

Texas Eastern Transmission, LP Accident Compressor Station PTE Estimates: Site Data Project Prepared: November 2018

TABLE F-0 Volatile Organic Liquid Storage Tanks Vapor Physical Property and Composition Estimates Raoult's Law

				C	omponent Dat	a							Liquid	Data	Vapor	Data
Component			MW			Yaws Vapor P	ressure Coeffi	cients			VP	Datum	mol%	wt%	y,	wt%
Name	Type	HAP	(lb/mol),	Α	В	С	D	E	T_{Min}	T_{Max}	T	P _i	(mol/mol _L)	(lb/lb_L)	(mol/mol _v)	(lb/lb _V)
(i)			M _t						(°F)	(°F)	(°F)	(psia)	f_{vd}	f _{m-l}		
Vater	(7)(3)=	Short	18.015	4.6543	1.4353E+03	-6.4848E+01	THAT TO N	- C/ 20 Tel	1.04	212.00	80.07	0.5099	99.947%	99.789%	99.811%	99.3199
Methanol	VOC	Х	32.042	45.6171	-3.2447E+03	-1.3988E+01	6.6365E-03	-1.0507E-13	-144.40	464.00	80.07	2.6592	0.011%	0.019%	0.057%	0.1009
Benzene	VOC	X	78.112	31.7718	-2.7254E+03	-8.4443E+00	-5.3534E-09	2.7187E-06	42.80	552.20	80.07	1.9820	0.031%	0.135%	0.121%	0.5239
Toluene	VOC	X	92.138	34.0775	-3.0379E+03	-9.1635E+00	1.0289E-11	2.7035E-06	-139.00	606.20	80.07	0.5995	0.009%	0.047%	0.011%	0.0559
Ethylbenzene	VOC	X	106.165	36.1998	-3.3402E+03	-9.7970E+00	-1.1467E-11	2.5758E-06	-139.00	651.20	80.07	0.2048	0.000%	0.001%	0.000%	0.0009
(ylene (m-)	VOC	Х	106.165	34.6803	-3.2981E+03	-9.2570E+00	-4.3563E-10	-2.4103E-06	-54.40	649.40	80.07	0.0663	0.000%	0.000%	0.000%	0.0009
Kylene (p-)	VOC	Х	106.165	60.0531	-4.0159E+03	-1.9441E+01	8.2881E-03	-2.3647E-12	_55.40	649.40	80.07	0.1894	0.001%	0.007%	0.000%	0.0039
Xylene (o-)	VOC	Х	106.165	37.2413	-3.4573E+03	-1.0126E+01	9.0676E-11	2.6123E-06	-13.00	674.60	80.07	0.1414	0.000%	0.000%	0.000%	0.0009
Trimethylbenzene (1,2,4-)	VOC		120.192	2.1667	-2.6318E+03	4.0350E+00	-1.1776E-02	6.0956E-06	-47.20	708.80	80.07	0.0486	0.000%	0.001%	0.000%	0.0009
Wastewater	100000	18.044	lb/lb-mol	No.	80.07	°F	0.5106	psia	18.105	lb/lb-mol		Table State of the last of the	100.000%	100.000%	100.000%	100.0009
FOC (Total)	pid	71.955	lb/lb-mol	ų.	80.07	°F	1.8261	psia	65.180	lb/lb-mol	1	THE REAL PROPERTY.	0.053%	0.211%	0.189%	0.6819
/OC (Total)	를 '를	71.955	lb/lb-mol	apor	80.07	°F	1.8261	psia	65.180	lb/lb-mol	1		0.053%	0.211%	0.189%	0.6819
IAP (Total)	7 3	71.809	lb/lb-mol	>	80.07	°F	1.8315	psia	65.175	lb/lb-mol	1		0.053%	0.210%	0.189%	0.6819
Cylenes		106.165	lb/lb-mol	EMIL	80.07	°F	0.1894	psia	106.165	lb/lb-mol			0.001%	0.007%	0.000%	0.0039
	100	Hall		111111111111111111111111111111111111111			NOTES									
. Liquid composition of wastewater ba	ased on A	Accutest I	aboratories a	nalysis of sa	imple collected	on 08/29/201	l.									

Texas Eastern Transmission, LP Accident Compressor Station PTE Estimates: Site Data Project Prepared: November 2018

TABLE F-1A Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source	ACCI-TK-WWME01							
Service	Wastewater w/ Methanol							
Capacity		8,800				8,800 į		
Temperature of Stored Liquid		56.69				80.07		
Vapor Pressure		1.3448				2.6395		
Pumping Rate		135 gal/min				135 gal/min		
Throughput	l.		turnover/yr					
		70,400	gal/yr			1,760 ;		
Standing Losses						July		
	l.					744 1	hrs/month	
	l.					21.4008		
		138.9211 lb/yr				0.0288 1		
Working Losses		1.03E-03 lb/gal		English Production		1.46E-03		
		72.2236	lb/yr	Average	Maximum	2.5698 1	lb/hr	Maximum
	Stand			1.9416 lb/hr	8.5043 tpy			4.2212 lb/
Wastewater	Work	12243.39%	by weight	1.0094 lb/hr	4.4213 tpy	14675.07% by weight		377.1243 lb/
	Total	1 ' ' '		2.9511 lb/hr	12.9256 tpy			381.3455 lb/
CO _{2-e}								
CO ₂								
TOC (Total)		100.00%	by weight	0.0241 lb/hr	0.1056 tpy	100.00% 1	by weight	2.5986 lb/
Methane					-			
Ethane								
VOC (Total)		100.00%	by weight	0.0241 lb/hr	0.1056 tpy	100.00% 1	by weight	2.5986 lb/
HAP (Total)		99.99%	by weight	0.0241 lb/hr	0.1056 tpy	99.99% 1	by weight	2.5982 lb/
Benzene		78.1563%		0.0188 lb/hr	0.0825 tpy	76.6854% 1		1.9927 lb/
Ethylbenzene		0.0490%	by weight	0.0000 lb/hr	0.0001 tpy	0.0559% 1		0.0015 lb/
Hexane (n-)			, ,		- 1		, ,	
Methanol		13.7904%	by weight	0.0033 lb/hr	0.0146 tpy	14.7446% 1	by weight	0.3832 lb/
Naphthalene			, ,		1			
Toluene		7.6409%	by weight	0.0018 lb/hr	0.0081 tpy	8.0940% 1	by weight	0.2103 lb/
Trimethylpentane (2,2,4-)			-,	***************************************	,		-,	
Xylenes		0.3514%	by weight	0.0001 lb/hr	0.0004 tpy	0.4054% 1	by weight	0.0105 lb/
William Institute and the Control	NEW TOWN			NOTES				THE STATE OF THE S
1. Tank Characteristics:				TANKS 4.09d				
Orientation		Vertical Fixed	l Roof Tank		Above Ground?	Yes	;	
Height/Length		15.00		Shell/Roof Color		Gray/Light		or less solar
Diameter	10.00 ft			Shell Condition		, ,		absorptance
Capacity (estimated)	8,813 gal		Vacuum Setting		-0.03 psig		1	
Capacity (nominal)	8,800 gal		Pressure Setting		0.03 psig			
2. Stored Liquid Characteristics:		0,000	8			0.00	F8	
Basis		USEPA TANK	S 4.09d	MET Station:	Pittsburgh, Pennsylva	nia		
Material		Methyl alcohol			OC vapor pressure (se			
Liquid Molecular Weight			lb/lb-mol	Vapor Molecular We		32.04		
Monthly Data	Days	Vapor P		Liquid Surfac		TANKS		TANKS
	","	avg	max	avg	max	standing	working	Flow
January	31	0.8338	0.9806			3.9481	5.5973	
February	28	0.8963	1.0937	45.40		4.8353	6.0170	
March	31	1.0987	1.4066	51.53	59.21	8.5073	7.3756	
April	30	1.3290	1.7797	57.42	66.78	12.2303	8.9220	
May	31	1.5846	2.1830		73.57	17.0940	10.6376	
June	30	1.8192	2.5391	67.50		20.2849	12.2126	
July	31	1.9140	2.6395	69.18		21.4008	12.8492	
August	31	1.8214	2.4528	67.54		18.5997	12.2274	
September	30	1.5952	2.0840		72.01	13.7451	10.7091	
October	31	1.2935	1.6256	56.57	63.84	9.4297	8.6837	
November	30	1.0620	1.2547	50.49		5.1834	7.1290	
December	31	0.8900	1.0255	45.19		3.6625	5.9748	
ALL	365	1.3448	2.6395			138.9211	108.3354	
3. Emission Estimate Basis:		USEPA TANK			CEO RG-166/01	130.7411	100.3334	103,000
13 Emission Estimate Rasis								

PTE Estimates: Site Data Project Prepared: November 2018

TABLE F-1B Volatile Organic Liquids Loading (Tanker Trucks) Hourly and Annual Emission Estimates

Source	ACCI-TL-WWME							
Supply Vessel	ACCI-TK-WWME01 thru ACCI-TK-WWME06 Wastewater w/ Methanol							
	52,800 gal			52,800 gal	THE USER			
Tanker Truck Service	Vapor Balance			Vapor Balance				
Loading Method	Submerged			Submerged				
Saturation Factor	1.00 n.d.			1.00 n.d.				
Vapor Molecular Weight	32.04 lb/lb-mol			32.04 lb/lb-mol				
Bulk Liquid Temperature	56.69 °F			80.07 °F				
•	516.69 R			540.07 R				
Vapor Pressure	1.3448 psia			2.6395 psia				
Loading Loss Factor	1.0391 lb/kgal			1.9511 lb/kgal				
Pumping Rate				150 gpm				
Throughput	8.00 turnover/yr							
· ·	422,400 gal/yr			9,000 gal/hr				
Loading Losses	438.8982 lb/yr	Average	Maximum	17.5598 lb/hr	Maximum			
Wastewater	12243.39% by weight	6.1342 lb/hr	26,8680 tpy	14675.07% by weight	2576,9130 lb/hr			
CO _{2-c}								
CO ₂								
TOC (Total)	100.00% by weight	0.0501 lb/hr	0.2194 tpy	100.00% by weight	17.5598 lb/hr			
Methane								
Ethane								
VOC (Total)	100.00% by weight	0.0501 lb/hr	0.2194 tpy	100.00% by weight	17.5598 lb/hr			
HAP (Total)	99.99% by weight	0.0501 lb/hr	0.2194 tpy	99.99% by weight	17.5572 lb/hr			
Benzene	78.1563% by weight	3.92E-02 lb/hr	1.72E-01 tpy	76.6854% by weight	1.35E+01 lb/hr			
Ethylbenzene	0.0490% by weight	2.45E-05 lb/hr	1.07E-04 tpy	0.0559% by weight	9.82E-03 lb/hr			
Hexane (n-)								
Methanol	13.7904% by weight	6.91E-03 lb/hr	3.03E-02 tpy	14.7446% by weight	2.59E+00 lb/hr			
Naphthalene								
Toluene	7.6409% by weight	3,83E-03 lb/hr	1.68E-02 tpy	8.0940% by weight	1.42E+00 lb/hr			
Trimethylpentane (2,2,4-)								
Xylenes	0.3514% by weight	1.76E-04 lb/hr	7.71E-04 tpy	0.4054% by weight	7.12E-02 lb/hr			

^{1.} Emissions calculated using methods provided in USEPA, AP-42 Section 5.2 dated 1/95.

PTE Estimates: Site Data Project

Prepared: November 2018

 $L_L = 12.46[(S)M_VP/T]$

^{2.} Physical property, throughput and speciation data based data from supply vessel emission calculation spreadsheet.

Attachment 3

24,340 gallon Wastewater/Methanol Storage Tank PTE Emission November 16, 2011Request for Determination – NSPS Kb Applicability

tile: 16/MD/Hecident/1/2/Kmit/1/201

5320 Spectrum Drive | Suite A | Frederick, MD 21703 | P(240) 379-7490 | F(240) 379-7491

trinityconsultants.com

November 16, 2011

Mr. William Paul Chief, Combustion & Metallurgical Division Air Quality Permits Program Maryland Department of the Environment 1800 Washington Boulevard Baltimore, Maryland 21230

RE: Request for Determination - NSPS Kb Applicability

Dear Mr. Paul:

Texas Eastern Transmission L.P. (Texas Eastern) is submitting this letter and its attachments following the discussion with the Maryland Department of the Environment (MDE) at the meeting on November 8, 2011. As described during the meeting, in September 2010 Texas Eastern installed a storage tank with a capacity of 60,000 gallons at the Accident Compressor Station, located in Accident, Maryland, to store the wastewater produced during withdrawal activities from the natural gas storage field wellheads, prior to shipping the wastewater offsite via trucks.

BACKGROUND

Texas Eastern evaluated the new storage tank process during preparation of the Title V renewal application. During this review, it was identified that as a result of the Accident Compressor Station's injection of methanol into the wellheads, which is used as necessary to prevent hydrate formation, the wastewater stored in this tank can include methanol at up to 15 percent by volume. As such, the tank has the potential to emit volatile organic compounds (VOC) such as methanol, but did not receive a Permit to Construct (PTC) or determination that it was exempt from the requirement to obtain a PTC. At this point, the tank was immediately disconnected from service and Texas Eastern revised the semi-annual Title V deviation report to inform the Compliance Department at the MDE about the installation of the tank.

REGULATORY ANALYSIS OF THE WASTEWATER STORAGE TANK

In accordance with Code of Maryland Regulations (COMAR) 26.11.02.09.A(6), a PTC is required for all sources, unless exempted under COMAR 26.11.02.10, of which the wastewater storage tank could potentially qualify for the following two exemptions: Q or X. The following assesses each exemption in more detail.

COMAR 26.11.02.10.0 for containers, reservoirs, or tanks used exclusively for:

- (1) Dipping operations for coating objects with oils, waxes, or greases, where no VOC is used;
- (2) Dipping operations for applying coatings of natural or synthetic resins which contain no VOC;
- (3) Storage of butane, propane or liquefied petroleum, or natural gas;
- (4) Storage of lubricating oils;
- (5) Unheated storage of VOC with an initial boiling point of 300°F (149°C) or greater;
- (6) Storage of Numbers 1, 2, 4, 5, and 6 fuel oil and aviation jet engine fuel;
- (7) Storage of motor vehicle gasoline, having an individual tank capacity of 2,000 gallons or less;

(8) The storage of VOC normally used as solvents, diluents, thinners, inks, colorants, paints, lacquers, enamels, varnishes, liquid resins, or other surface coatings and having a capacity of 2,000 gallons (7.6 cubic meters) or less;

This categorical exemption does not specifically exempt wastewater storage under (1) through (4), or (6) through (8), and because methanol has an approximate boiling point of 65°F, the tank may not meet (5) either. Although the tank does not appear to meet the categorical exemption under Q it will still be exempt from the requirement to obtain a PTC if it meets the general exemption under X, as follows:

COMAR 26.11.02.10.X for other installations if:

- (1) The proposed installation is not subject to any source-specific State or federal limitation or emissions standard, including any mass emissions rate limitation, pollutant concentration limitation, material formulation standard, equipment performance standard, or work practice standard;
- (2) The emissions contain not more than 1 pound per day of a Class I toxic air pollutant, as defined in COMAR 26.11.15.01B(4); and
- (3) The pre-control potential-to-emit from the proposed installation, combined with any potential increase in emissions from other installations that could be caused by the proposed installation, is less than 1 ton per calendar year for:
- (a) Volatile organic compounds;
- (b) Each pollutant for which there is a federal ambient air quality standard; and
- (c) Each Class II toxic air pollutant, as defined in COMAR 26.11.15.01B(5).

In order to address the requirements of (1) above, there are no source-specific emission standards within the Maryland State Implementation Plan (SIP) that are applicable to the wastewater storage tank. Federal New Source Performance Standards (NSPS), incorporated into Maryland's SIP by reference, includes source-specific requirements for volatile organic liquid storage vessels for which construction, reconstruction or modification commences after July 23, 1984 (NSPS Subpart Kb).¹ NSPS Subpart Kb is applicable to tanks with a design capacity greater than or equal to 151 m³ (~39,890 gallons) storing liquid with a maximum true vapor pressure of 3.5 kilopascals (kPa) or greater, or tanks with a design capacity greater than or equal to 75 m³ (~19,813 gallons) but less than 151 m³ storing liquid with a maximum true vapor pressure of 15.0 kPa or greater.

As originally installed, the wastewater storage tank has a capacity of 60,000 gallons. Based on the analysis of a wastewater sample, the partial pressure of VOC in the wastewater is approximately 4.9 kPa (See Attachment 1 for the results of the analysis). This analysis suggests the 60,000 gallon wastewater tank is subject to the monitoring requirements of NSPS Subpart Kb, 40 CFR §60.116b, but is not subject to the control requirements of 40 CFR §60.112b, which are only triggered for tanks with a design capacity greater than or equal to 151 m³ storing liquids with a maximum true vapor pressure equal to or greater than 5.2 kPa.

It is acknowledged that this assessment is based on a single sample and analysis of the wastewater, and that fluctuations in the methanol content (or other VOC constituents) of the wastewater could result in an increase in the maximum true vapor pressure of the stored liquid. In order to avoid triggering the control requirements of NSPS Subpart Kb in the future, Texas Eastern is proposing to re-design the tank to include a partition and to render only half of the existing tank as functional liquid storage. Texas Eastern has attached the engineering drawing for the proposed redesigning of the tank in Attachment 2. This new tank design was provided to Texas Eastern by Highland Tank which was the designer of the original wastewater storage tank. The attached drawing clearly shows that half the tank will be completely abandoned and there will be no interconnection between the two parts. Since the two parts of the tank will be totally independent, Texas Eastern believes that after re-designing the tank, the operational part will be exempt from the requirements of NSPS Subpart Kb. This determination is supported by the EPA's Applicability Determination Index (ADI) memorandum number 9700064, which is attached to this letter. Please also

¹ COMAR 26.11.13.02

Mr. Paul - Page 3 November 16, 2011

note that the EPA defines the design capacity of a tank for NSPS Kb purposes in two ADI memorandums, numbers 9800006 and 9800034, as the volume determined by the internal dimensions of a tank, rather than by the nominal capacity of the tank or the height of the stored liquid. The EPA clearly states that the owner/operator must rely on the "design capacity" and not the nominal capacity and requires the volume to be calculated as "top of the shell multiplied by the internal dimensions" which "should give a more accurate design capacity". According to the EPA, "This is reinforced by Webster's definition of nominal which is 'in name only, not in fact'". Please find these referenced memorandums in Attachment 3 to this letter.

As such, the proposed re-design of the wastewater storage tank to a 30,000 gallon tank storing a liquid with a maximum true vapor pressure less than 15.0 kPa will exempt the tank from NSPS Subpart Kb. As well, the re-designed wastewater storage tank will also meet the exemption from a PTC under COMAR 26.11.02.10.X if the emissions from the tank remain below the respective thresholds in subsections (2) through (3), as discussed in the following section.

WASTEWATER STORAGE TANK EMISSIONS

Texas Eastern has calculated potential emissions from the proposed re-designed 30,000 gallon tank and these emissions are well below the 1 ton per year threshold for Class II pollutants and volatile organic compounds (VOC), and 1 pound per day threshold for Class I pollutants. Please note that the majority of the VOC emissions are attributed to the addition of methanol to the tank and other VOC components are minuscule. Due to the nature of the wastewater stored in the wastewater tank, emissions of other pollutants with a federal ambient air quality standard are not expected from the wastewater tank. These calculations are conducted based on a maximum throughput assumption of 200,000 gallons of wastewater per year. Since the highest throughput ever experienced by the Accident Compressor Station was 175,000 gallons in 2009, Texas Eastern believes that basing the potential to emit from the re-designed tank on a maximum throughput of 200,000 gallons per year is an appropriate and conservative approach. As a result of the minor potential emissions and because it will not be subject to any source-specific State or Federal limitation or emissions standard, the re-designed 30,000 gallon wastewater storage tank will be exempt from the requirement to obtain a construction permit per the exemption delineated in COMAR 26.11.02.10.X.

Two separate supporting calculations are attached to this letter (see Attachments 4 and 5 to this letter). The first set of calculations is performed based on the actual properties of the wastewater as determined by a sample and analysis, and the second set is performed under a hypothetical assumption that the tank stores pure methanol, solely to demonstrate the insignificance of the tank. Both sets of calculations are performed using EPA Tanks 4.09d. EPA Tanks 4.0.9d database was used to determine the physical and chemical properties of the volatile components in wastewater. However, a few additional chemicals were added to this database based on the wastewater sample analysis.

CONCLUSION

Based on the discussion above, Texas Eastern believes that a permanent reduction in the size of the tank exempts the tank from NSPS Subpart Kb per 40 CFR 60.110b(b). Additionally, since emissions from the tank are below the thresholds of 1 tons per year of Class II pollutants and 1 pound per day of Class I pollutant, and the tank is not subject to any federal or state regulations, the re-designed tank at the Accident Compressor Station will not be subject to construction permitting in accordance with COMAR 26.11.02.10.X. Texas Eastern seeks the MDE's written concurrence with this determination and will appreciate an expeditious review of this letter. Should you have any questions on this letter, please do not hesitate to contact me at 407-514-2632.

Mr. Paul - Page 4 November 16, 2011

Sincerely,

Michael Ballenger, P.E.

Wil Hally

Manager of Consulting Services

Attachments

Analysis Results of the Wastewater Sample

Tank Size Reduction Sketch

Applicability Determination Index Number 9700046, 9800006, and 9800034

Emission Calculations Using the Wastewater Sample Analysis

Emission Calculations Assuming Pure Methanol Stored

cc:

Mr. Sabino Gomez, Spectra Energy

Mr. Sean Cramer, Spectra Energy (Harrisburg)

Ms. Fariha Mehdizadeh, Spectra Energy

Mr. Jonathan Crooks, Maryland Department of the Environment

ATTACHMENT 5

Emission Calculations Assuming Pure Methanol Stored

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification
User Identification:
City:
State:
Company.
Type of Tank:
Description.

30,000 gal - Pure Methanol Accident Maryland Spectra Energy Horizontal Tank 30,000 gallon waste water and methanol tank

Tank Dimensions
Shell Length (ft):
Diameter (ft):
Volume (gallons):
Tumovers
Net Throughput(gallyr):
Is Tank Heated (y/n):
Is Tank Underground (y/n):

30.30 13.00 30,000.00 6.67 200,000.00

Paint Characteristics Shell Color/Shade: Shell Condition

Gray/Medium Good

Breather Vent Settings Vacuum Settings (psig) Pressure Settings (psig)

Meterological Data used in Emissions Calculations. Plttsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

30,000 gal - Pure Methanol - Horizontal Tank Accident, Maryland

			sily Liquid S operature (d	eg F)	Liquid Bulk Temp	Vapo	or Pressure		Vapor Mol.	Liquid Mass	Vapor Mass	Mol	Basis for Vapor Pressure
Mixture/Component	Month	Avg	Min	Max	(deg F)	Avg	Min.	Max	Weight.	Fract	Fract.	Weight	Calculations
Methyl alcohol	All	58 50	49.32	67-67	53.39	1.3751	1.0217	1.8285	32 0400			32.04	Option 2: A=7 897, B=1474.08, C=229 13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

30,000 gal - Pure Methanol - Horizontal Tank Accident, Maryland

Annual Emission Calcaulations	
Standing Losses (ib)	650 8328
Vapor Space Volume (cu ft)	2,561,6486
Vapor Density (lb/cu ft):	0 0079
Vapor Space Expansion Factor	0 1295
Vented Vapor Saturation Factor	0.6785
Tank Vapor Space Volume	
Vapor Space Volume (cu ft)	2,561,6486
Tank Drameter (ft)	13 0000
Effective Diameter (ft)	22 4005
Vapor Space Outage (ft)	6 500
Tank Shell Length (ft)	30 300
Vapor Density	
Vapor Density (lb/cu ft)	0 0079
Vapor Molecular Weight (Ib/lb-mole)	32 0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia)	1.375
Daily Avg Liquid Surface Temp. (deg R)	518.165
Daily Average Ambient Temp (deg F)	50 3083
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)).	10.73
Liquid Bulk Temperature (deg. R)	513.0583
Tank Paint Solar Absorptance (Shell):	0 6800
Daily Total Solar Insulation	
Factor (Btu/sqft day)	1,202 9556
Vapor Space Expansion Factor	
Vapor Space Expansion Factor	0 129
Daily Vapor Temperature Range (deg. R)	36.692
Oaily Vapor Pressure Range (psia)	0.806
Breather Vent Press Setting Range(psia)	0.060
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia)	1.375
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia)	1.021
Vapor Pressure at Daily Max mum Liquid	
Surface Temperature (psia)	1 828
Daily Avg Liquid Surface Temp. (deg R)	518 165
Daily Min Liquid Surface Temp (deg R)	508 992
Daily Max Liquid Surface Temp (deg R)	527 338
Daily Ambient Temp. Range (deg. R)	19 150
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor	0.678
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia)	1.375
Vapor Space Outage (ft)	6.500
Working Losses (lb)	209.808
Vapor Molecular Weight (b/b-mole)	32.040
Vapor Pressure at Daily Average Liquid	32.040
	1.375
Surface Temperature (psia): Annual Net Throughput (galfyr.)	200.000.000
Annual Turnovers	8.666
	1.000
Turnover Factor Tank Diameter (ft):	13.000
	13.000
Working Loss Product Factor	1,000

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

30,000 gal - Pure Methanol - Horizontal Tank Accident, Maryland

	Losses(lbs)	sa(IDS)	
Components	Working Loss		Total Emissions
Methyl alcohol	209.81	650.83	860.64

Attachment 4

Tanks ACC4A & 4B Pipeline Liquids PTE Emission Calculations from April 18, 2000 Initial Registration Application

Texas Eastern Transmission Corporation Algonquin Gas Transmission Company Duke Energy Companies 5400 Westheimer Court P.O. Box 1642 Houston, TX 77251-1642

April 18, 2000

Mr. Frank Courtwright
Program Manager
Air Quality Compliance Program
Air & Radiation Management Administration
Maryland Department of the Environment (MDE)
2500 Broening Highway
Baltimore, MD 21224

RE: INITIAL REGISTRATION APPLICATION

TWO (2) PIPELINE LIQUIDS STORAGE TANKS

ACCIDENT COMPRESSOR STATION

Dear Mr. Courtwright,

Texas Eastern Transmission Corporation (Texas Eastern) is submitting applications for initial registration of two (2) pipeline liquids storage tanks located at the Accident Compressor Station in Accident, Maryland. These tanks were installed between 1965 and 1971. Since the tanks were installed, there have been no modifications to the tanks or modifications that affect operation of the tanks, which may have resulted in an increase in air emissions.

Texas Eastern cannot locate any records that initial registration applications for these tanks have been previously submitted. As such, initial registration applications are being submitted at this time. Attached you will find completed and signed Form AMA-5's (Application for Processing/Manufacturing Equipment) for each of the two tanks submitted in triplicate. The USEPA TANKS 4.0 printouts and emission calculation spreadsheets are also attached.

Should you have any questions regarding the initial registration applications, please contact me at (713) 627-5210.

Sincerely,

David A. Felcman

Manager,

Environmental Compliance

DAF/opm Attachments

OPM12744.00

STATE OF MARYLAND **DEPARTMENT OF THE ENVIRONMENT**

Air and Radiation Management Administration

2500 Broening Highway Baltimore, Maryland 21224

		Registration Update
APPI	LICATION FOR PROCESSING/MANUFACTURING EQUIPMENT	Initial Registration 🖾
	Processing the second	Julia I
	Texas Eastern Transmission Corporation	
N	AILING ADDRESS/STREET	
	P. O. Box 1642	
	CITY STATE ZIP	
	Houston, TX 77251-1642	
	TELEPHONE NUMBER	
	(713) 627–5210	
	SIGNATURE PRINT NAME AND TITLE	DATE
	David A. Felcman; Mgr. Env. Compli	
18	B EQUIPHENT LOCATION AND TELEPHONE NUMBER (IF DIFFERENT FROM ABOVE)	
	Accident-Friendsville Road STREET #, STREET NAME	
	Accident, MD 21520	301,746-8137
		ELEPHONE
-	PREMISES NAME (IF DIFFERENT FROM ABOVE)	
3	STATUS New New Construction Begun Construction Completed STATUS MONTH/YEAR MONTH/YEAR	Existing Initial Operation MONTH/YEAR
	A. NEW EQUIPMENT B. MODIFICATION TO EXISTING EQUIPMENT C. EXISTING EQUIPMENT 15 16-19 20-23	20-23
4	DESCRIBE THIS EQUIPMENT: MAKE, MODEL, FEATURES, MANUFACTURER; INCLUDE MAXIMUM HOURLY INPUT	FRATE, ETC.
	12,600-Gallon Pipeline Liquids Storage Tank (TK-02A)	
5	WORKMEN'S COMPENSATION COVERAGE EXPIRATION DATE	/00
	- COMPANY Hartford Casualty Company BINDER/POLICY NUMBER Pol	icy #37 WN D52066
6	A. NUMBER OF PIECES OF IDENTICAL EQUIPMENT UNITS TO BE REGISTERED/PERMITTED AT THIS TIME1	
	B. NUMBER OF STACKS/EMISSION POINTS ASSOCIATED WITH THIS EQUIPMENT 1	
7	PERSON INSTALLING THIS EQUIPMENT (IF DIFFERENT FROM (1) ABOVE)	
	NAMETITLE	
	COMPANY	
	MAILING ADDRESS/STREET	
	CITY, TOWN	()

D. O. O.

Permit to Construct

8 MAJOR ACTIVITY, PRODUCT OR SERVICE OF COMPANY AT THIS LOCATION
Natural gas transmission (SIC Code: 4922)
, and the second
9 CONTROL DEVICES ASSOCIATED WITH THIS EQUIPMENT NOWE
X_
24-0 SIMPLE/MULTIPLE SPRAY/ADSORB VENTURI CARRON FLECTBOSTATIC
STARLE FROM THE SPRAY ADSORB VENTURI CARBON ELECTROSTATIC THERMAL/CATALYTIC DRY CYCLONE TOWER SCRUBBER ADSORBER PRECIPITATOR BAGHOUSE AFTERBURNER SCRUBBER
24-1 24-2 24-3 24-4 24-5 24-6 24-7 24-8
OTHER
DESCRIBE
24-9
10 ANNUAL FUEL CONSUMPTION FOR THIS EQUIPMENT
OIL - 1000 GALLONS SULFUR % GRADE NATURAL GAS - 1000 Ex 3
C C C C C C C C C C C C C C C C C C C
26-31 32-33 34 35-41 42-45 E
COAL - TONS SULFUR % ASH % WOOD - TONS MOISTURE %
46-52 53-55 56-58 59-63 64-65
Other Fuels Annual Amount Consumed Other Fuel Annual Amount Consumed
(Specify Type) 66-1 (Specify Type) (Specify Type) 66-2 (Specify Units)
1 = Coke 2 = COG 3 = BFG 4 = Other
11 OPERATING SCHEDULE [for this equipment] CONTINUOUS BATCH HOURS BATCH HOURS
CONTINUOUS BATCH HOURS BATCH HOURS DAYS OPERATION PROCESS PER BATCH PER WEEK PER DAY PER WEEK PER YEAR
X 2 4 7 3 6 5
67-1 67-2 68-69 70-71 72 73-75
SEASONAL VARIATION IN OPERATION:
NO VARIATION WINTER PERCENT SPRING DEDCENT
X SPRING PERCENT SUMMER PERCENT FALL PERCENT (TOTAL SEASONS = 100%)
76 77-78 79-80 81-82 83-84
12 EQUIVALENT STACK INFORMATION - IS EXHAUST THROUGH DOORS, WINDOWS, ETC., ONLY?
N Y OR N
HEIGHT ABOVE INSIDE DIAMETER EXIT EXIT GROUND (FT) AT TOP (INCHES) TEMPERATURE (°F) VELOCITY (57,050)
GROUND (FT) AT TOP (INCHES) TEMPERATURE (°F) VELOCITY (FT/SEC) IF NOT, THEN → 5
86-88 89-91 92-95 96-98

NOTE: Storage tanks are typically assigned the following exit values: D=0.001 m, T=ambient temperature, and V=0.001 m/sec.

NOTE: ATTACH A BLOCK DIAGRAM OF PROCE EQUIPMENT, INCLUDING CONTROL DE	SS/PROCESS LINE, INDICATING NI VICES AND EMISSION POINTS.	EW EQUIPMENT AS R	EPORTED ON TH	IIS FORM AND ALL	EXISTING
13 INPUT MATERIALS [for this equipments any OF THIS DATA TO BE CONSIDER	t polyd	·			
NAME	CAS NUMBER (if applicable)	PER HOUR *	<u>INPUT</u> UNITS	PER YEAR	UNITS
1. <u>Pipeline Liquids</u>		23		200,000	Gals.
2					
3					
4					
5					
5					
•					
3					
OTAL					
14 OUTPUT MATERIALS (for this equipmen PROCESS/PRODUCT STREAM	t]				
NAME	CAS NUMBER	PER	OUTPUT	RATE PER	
Pinoline Identia	(if applicable)	HOUR *	UNITS	YEAR	UNITS
Tiperine Liquids		23	Gals.	200,000	Gals.
	·				
ITAL					
5 WASTE STREAMS - SOLID AND LIQUID					
NAME	CAS NUMBER	PER	OUTPUT A	RATE PER	
n-y-ric	(if applicable)	HOUR	UNITS	YEAR	UNITS
	_				
			·		

^{*} Hourly fill/withdrawal rates are average hourly rates. See attached spreadsheet for maximum hourly rates.

16 TOTAL STACK EMISSIONS (FOR THIS EQUI	PMENT ONLY) IN POUNDS PER OPERATING DAY	
PARTICULATE MATTER	OXIDES OF SULFUR	OXIDES OF NITROGEN
	13.50	
99-104	105-110	111-116
CARBON MONOXIDE	VOLATILE ORGANIC COMPOUNDS	PH-10
	7 . 0 2 1 0 *	7
117-122	123-128	129-134
17 TOTAL FUGITIVE EMISSIONS (FOR THIS E	QUIPMENT ONLY) IN POUNDS PER OPERATING (DAY
PARTICULATE MATTER	DXIDES OF SULFUR	OXIDES OF NITROGEN
135-139	140-144	145-149
CARBON MONOXIDE	VOLATILE ORGANIC COMPOUNDS	PH-10
150-154		
130-134	155-159	160-164
METHOD USED TO DETERMINE EMISSIONS (1	= ESTIMATE 2 = EMISSION FACTOR 3 = S	TACK TEST 4 = OTHER)
TSP	SOX NOX CO VOC	PH10
165	166 167 168 169	170
	AIQ MANAGEMENT LING ONLY	
	AIR MANAGEMENT USE ONLY	
18 DATE REC'D. LOCAL DATE REC'D. S		RISDICTION
·	TATE RETURN TO LOCAL JUI	
	TATE RETURN TO LOCAL JUI	RISDICTION BY
REVIEWED BY LOCAL JURISDICTION	TATE RETURN TO LOCAL JUI DATE REVIEWED BY STATE	BY
	TATE RETURN TO LOCAL JUI DATE REVIEWED BY STATE	
REVIEWED BY LOCAL JURISDICTION DATE	TATE RETURN TO LOCAL JUI DATE REVIEWED BY STATE DATE DATE	BY
REVIEWED BY LOCAL JURISDICTION DATE	TATE RETURN TO LOCAL JUI DATE REVIEWED BY STATE DATE DATE	BY
REVIEWED BY LOCAL JURISDICTION DATE	TATE RETURN TO LOCAL JUI DATE	CODE
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUI DATE REVIEWED BY STATE DATE PMENT CODE SCC	BY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUI DATE REVIEWED BY STATE DATE PMENT CODE SCC	BY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUI DATE	BYBY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUI DATE REVIEWED BY STATE DATE PMENT CODE SCC 75-177 178 MAXIMUM DESIGN HOURLY RATE	BY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUI DATE REVIEWED BY STATE DATE PMENT CODE SCC 75-177 178 MAXIMUM DESIGN HOURLY RATE 193-199	BY
REVIEWED BY LOCAL JURISDICTION DATE	TATE RETURN TO LOCAL JUI DATE	BY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUI DATE REVIEWED BY STATE DATE PMENT CODE SCC 75-177 178 MAXIMUM DESIGN HOURLY RATE	BY
REVIEWED BY LOCAL JURISDICTION DATE	TATE RETURN TO LOCAL JUI DATE	BY
REVIEWED BY LOCAL JURISDICTION DATE	TATE RETURN TO LOCAL JUI DATE	BY

^{*} Daily VOC emissions are average daily emissions, not maximum daily emissions.

STATE OF MARYLAND **DEPARTMENT OF THE ENVIRONMENT**

Air and Radiation Management Administration

2500 Broening Highway Baltimore, Maryland 21224

	Permit to Construct
	Registration Update
APPLICATION FOR PROCESSING/MANUFACTURING EQUIPMENT	Initial Registration 🛭
1A OWNER OF EQUIPMENT /COMPANY NAME	ACONOMINATE CLESHIC MICCO
Texas Eastern Transmission Corporation	Security Vertice
MAILING ADDRESS/STREET	
P. O. Box 1642	
CITY STATE ZIP	A ST CHANGE OF THE STATE OF THE
Houston, TX 77251-1642	
TELEPHONE NUMBER	
(713 627–5210	CONTRACTOR ON
SIGNATURE PRINT NAME AND TITLE	DATE
Land A. Felcman; Mg	gr. Env. Compliance
18 EQUIPMENT LOCATION AND TELEPHONE NUMBER (IF DIFFERENT FROM ABOVE)	
Accident-Friendsville Road STREET #, STREET NAME	
Accident, MD 21520 CITY, TOWN STATE ZIP	(301)746-8137
CITY, TOWN STATE ZIP PREMISES NAME (IF DIFFERENT FROM ABOVE)	TELEPHONE
3 STATUS New	New Existing
	enstruction Completed Initial Operation
A. NEW EQUIPMENT	MONTH/YEAR MONTH/YEAR
EXISTING EQUIPMENT C. EXISTING EQUIPMENT 15 16-19	20-23 20-23
C. Existing Equipment 17 10-17	20-23 20-23
4 DESCRIBE THIS EQUIPMENT: MAKE, MODEL, FEATURES, MANUFACTURER; INCLUDE N	
12,600-Gallon Pipeline Liquids Storage Tank (TK-02B	3)
5 WORKHEN'S COMPENSATION COVERAGE EXPIRA	ATTON DATE7/1/00
- COMPANY Hartford Casualty Company BINDER	R/POLICY NUMBER Policy #37 WN D52066
6 A. NUMBER OF PIECES OF IDENTICAL EQUIPMENT UNITS TO BE REGISTERED/PERMITTED	·
B. NUMBER OF STACKS/EMISSION POINTS ASSOCIATED WITH THIS EQUIPMENT $\underline{}$	· · · · · · · · · · · · · · · · · · ·
7 PERSON INSTALLING THIS EQUIPMENT (IF DIFFERENT FROM (1) ABOVE)	
NAMETITLE	
COMPANY	
MAILING ADDRESS/STREET	
CITY, TOWNSTATE	

8 MAJOR ACTIVITY, PRODUCT OR SERVICE OF COMPANY AT THIS LOCATION
Natural gas transmission (SIC Code: 4922)
(1522)
9 CONTROL DEVICES ASSOCIATED WITH THIS EQUIPMENT NONE
X
24-0
SIMPLE/MULTIPLE SPRAY/ADSORB VENTURI CARBON ELECTROSTATIC THERMAL/CATALYTIC DRY
CYCLONE TOWER SCRUBBER ADSORBER PRECIPITATOR BAGHOUSE AFTERBURNER SCRUBBER
24-1 24-2 24-3 24-4 24-5 24-5
24-7 24-8 24-7 24-8 OTHER
DESCRIBE 24-9
10 ANNUAL FUEL CONSUMPTION FOR THIS EQUIPMENT
OIL - 1000 GALLONS SULFUR % GRADE NATURAL GAS - 1000 FT LP GAS - 100 GALLONS GRADE B
IN SING TOO BACCOMS GRADE B
26-31 32-33 34 35-41 42-45 E
COAL - TONS SULFUR % ASH % WOOD - TONS MOISTURE %
AVISIORE A
46-52 53-55 56-58 59-63 64-65
Other Fuels Annual Amount Consumed Other Fuel Annual Amount Consumed
(Specify Type) 66-1 (Specify Type) (Specify Type) 66-2 (Specify Units)
1 = Coke 2 = COG 3 = BFG 4 = Other
11 OPERATING SCHEDULE [for this equipment]
CONTINUOUS BATCH HOURS BATCH HOURS DAYS OPERATION PROCESS PER RATCH DEP DEED DAYS OPERATION PROCESS PER RATCH DEP DEED DAYS
PER MEEK PER DAY PER WEEK PER YEAR
X 2 4 7 3 6 5 67-1 67-2 68-69 70-71 70
67-1 67-2 68-69 70-71 72 73-75
SEASONAL VARIATION IN OPERATION:
NO VARIATION WINTER PERCENT SPRING PERCENT SUMMER PERCENT FALL PERCENT (TOTAL SEASONS = 100%)
X
76 77-78 79-80 81-82 83-84
12 EQUIVALENT STACK INFORMATION - IS EXHAUST THROUGH DOORS, WINDOWS, ETC., ONLY?
N Y OR N
85
HEIGHT ABOVE INSIDE DIAMETER EXIT GROUND (FT) AT TOP (INCHES) TEMPERATURE (°F) VELOCITY (FT/SEC)
IF NOT, THEN - 5
86-88 89-91 92-95 96-98

NOTE: Storage tanks are typically assigned the following exit values: D=0.001 m, T=ambient temperature, and V=0.001 m/sec.

NOTE: ATTACH A BLOCK DIAGRAM OF PROCE EQUIPMENT, INCLUDING CONTROL DE	SS/PROCESS LINE, INDICATING NEW VICES AND EMISSION POINTS.	EQUIPMENT AS R	EPORTED ON TH	IS FORM AND ALL	EXISTING
13 INPUT MATERIALS [for this equipment IS ANY OF THIS DATA TO BE CONSIDER	t anlyt				
NAME	CAS NUMBER (if applicable)	PER HOUR *	INPUT	PER	
4 Dinolina Idanii		23	UNITS	YEAR	UNITS
2			Gals.	200,000	<u>Gals.</u>
3					
4					
5					
6					
7					
8					
_					
TOTAL					
14 OUTPUT MATERIALS (for this equipmen PROCESS/PRODUCT STREAM	ıtı				
NAME	CAS NUMBER (if applicable)	PER HOUR *	<u>OUTPUT</u>	RATE PER YEAR	UNITS
1. Pipeline Liquids		23	Gals.	200,000	Gals.
2					
,					
4					
5					
5					
7					
3					
)					
TOTAL					
15 WASTE STREAMS - SOLID AND LIQUID					
SOLIO AND ETEGID	CAS NUMBER		OUTPUT		
NAME	(if applicable)	PER HOUR	UNITS	PER YEAR	UNITS
•				<u> </u>	
			 .		
•					
•					
•					
					• 1901
3					

^{*} Hourly fill/withdrawal rates are average hourly rates. See attached spreadsheet for maximum hourly rates.

16 TOTAL STACK EMISSIONS (FOR THIS EQUI	PMENT ONLY) IN POUNDS PER OPERATING DAY	
PARTICULATE MATTER	OXIDES OF SULFUR	OXIDES OF HITROGEN
99-104	105-110	111-116
CARBON MONOXIDE	VOLATILE ORGANIC COMPOUNDS	
	7 . 0 2 1 0 *	PH-10
117-122	123-128	
17 TOTAL FUGITIVE EMISSIONS (FOR THIS E		129-134
PARTICULATE MATTER	OXIDES OF SULFUR	
		OXIDES OF NITROGEN
135-139	140-144	145-149
CARBON MONOXIDE	VOLATILE ORGANIC COMPOUNDS	PH-10
150-154	155-159	160-164
NETUCA LICEA TO ATTENUA		
	1 = ESTIMATE 2 = EMISSION FACTOR 3 = ST	ACK TEST 4 = OTHER)
TSP [** ··*]	SOX NOX CO VOC	PM10
165	166 167 168 169	170
	AIR MANAGEMENT USE ONLY	
	AIR MANAGEMENT USE ONLY	
18 DATE REC'D. LOCAL DATE REC'D. S		ISDICTION
	STATE RETURN TO LOCAL JUR	
	STATE RETURN TO LOCAL JUR	ISDICTION
REVIEWED BY LOCAL JURISDICTION	REVIEWED BY STATE	8Y
	REVIEWED BY STATE	
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUR DATE REVIEWED BY STATE DATE	BY
REVIEWED BY LOCAL JURISDICTION DATE	REVIEWED BY STATE	BY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUR DATE REVIEWED BY STATE DATE PMENT CODE SCC.	BY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUR DATE REVIEWED BY STATE DATE PHENT CODE SCC 1 75-177 178	BYBY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUR DATE REVIEWED BY STATE DATE PMENT CODE SCC 0 75-177 178	BYBY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUR DATE REVIEWED BY STATE DATE PMENT CODE 75-177 178 MAXIMUM DESIGN HOURLY RATE	BYBY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUR DATE REVIEWED BY STATE DATE PMENT CODE SCC II 75-177 178 MAXIMUM DESIGN HOURLY RATE	BYBY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUR DATE REVIEWED BY STATE DATE PMENT CODE SCC 10 75-177 178 MAXIMUM DESIGN HOURLY RATE 193-199	BYBY
REVIEWED BY LOCAL JURISDICTION DATE	RETURN TO LOCAL JUR DATE REVIEWED BY STATE DATE PMENT CODE SCC 10 75-177 178 MAXIMUM DESIGN HOURLY RATE 193-199	BYBY
REVIEWED BY LOCAL JURISDICTION DATE	PMENT CODE SCC 175-177 178 MAXIMUM DESIGN HOURLY RATE 193-199 CODE REGULATION CODE	BY
REVIEWED BY LOCAL JURISDICTION DATE	PMENT CODE SCC 175-177 178 MAXIMUM DESIGN HOURLY RATE 193-199 CODE REGULATION CODE	BYBY

^{*} Daily VOC emissions are average daily emissions, not maximum daily emissions.

Texas Eastern Transmission Corporation Accident Compressor Station Condensate Storage Tank Losses Maximum Hourly and Annual Emissions

		TK-02A			
Equipment ID					
Installation Date	1965	1971			
Material		Condensate	Condensate		
Tank Capacity	gal	12,600			
Maximum Fill/Withdrawal Rate	gal/hr	5,500	5,500		
Average Fill/Withdrawal Rate	gal/hr	23	23		
Annual Throughput	gal/yr	200,000	200,000		
Breathing Loss Emission Factor	lbs/hr	0.14362	0.14362		
Working Loss Emission Factor	lbs/gal	0.00652	0.00652		
VOC (including speciated VOC)	lb/hr (max.)	36.0178	36.0178		
	lb/day (avg.)	7.0210	7.0210		
	tpy	1.2813	1.2813		
Benzene	vapor wt%	1.82%	1.82%		
HAP, Class I TAP	lb/hr (max.)	0.6547	0.6547		
	lb/day (avg.)	0.1276	0.1276		
	tpy	0.0233	0.0233		
Ethylbenzene	vapor wt%	0.01%	0.01%		
HAP, Class II TAP	lb/hr (max.)	0.0031	0.0031		
	lb/day (avg.)	0.0006	0.0006		
	tpy	0.0001	0.0001		
Hexane, n-	vapor wt%	5.01%	5.01%		
HAP, Class II TAP	lb/hr (max.)	1.8030	1.8030		
	lb/day (avg.)	0.3515	0.3515		
	tpy	0.0641	0.0641		
Toluene	vapor wt%	0.25%	0.25%		
HAP, Class II TAP	lb/hr (max.)	0.0902	0.0902		
	lb/day (avg.)	0.0176	0.0176		
	tpy	0.0032	0.0032		
Xylene	vapor wt%	0.03%	0.03%		
HAP, Class II TAP	lb/hr (max.)	0.0092	0.0092		
	lb/day (avg.)	0.0018	0.0018		
	tpy	0.0003	0.0003		
Basis of E	mission Estimates				
1 Physical properties of condensate base	d on worst sons alwain				

- 1. Physical properties of condensate based on worst-case physical properties determined from gas chromatography of two samples in 1988.
- 2. Emissions estimated using TANKS 4.0.
- 3. Vapor weight percent of VOC species from TANKS 4.0 run.
- 4. Maximum hourly emissions based on maximum truck capacity.
- 5. Average daily emissions are the daily average of the annual emissions (365 days/yr).

Tank Identification and Physical Characteristics **Emissions Report - Detail Format TANKS 4.0**

TK-02A (Accident)
Texas Eastern Transmission Co.

TK-02A (Accident) User Identification: City: State:

dentification

Maryland Accident

Texas Eastern Transmission Co. Vertical Fixed Roof Tank

Company:

12,500-gal Pipeline Liquids Tanks Type of Tank: Description:

15.00 12.00 15.00 7.00 12.690.44 16.00 203,047.11 Avg. Liquid Height (ft): Volume (gallons): Liquid Height (ft): **Tank Dimensions** Shell Height (ft): Diameter (ft): Turnovers:

Aluminum/Diffuse Good z Net Throughput (gal/yr): Is Tank Heated (y/n): Paint Characteristics Shell Color/Shade: Shell Condition:

Aluminum/Diffuse Good Roof Color/Shade: Roof Condition:

1.61 Dome Height (ft): Radius (ft) (Dome Roof): Roof Characteristics

-0.03 Pressure Settings (psig): Breather Vent Settings Vacuum Settings (psig):

Meteorological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0 Emissions Report - Detail Format Liquid Contents of Storage Tank

TK-02A (Accident) Texas Eastern Transmission Co.

	the special section and the special section is												
Mixture/Component	Month	Daily Tempe Ava	Daily Liquid Surf. Temperatures (deg F)	Max	Liquid Bulk Temp	Vapor P Avo	Vapor Pressures (psia)	, eM	Vapor	Liquid	Vapor	Mol	Basis for Vapor Pressure
		h			6.600	7		MOW	n Georgia	Fract	raci.	weight	Calculations
Pipeline Liquids (Accident)	All	57.47	48.97	65.97	52.91	4,4746	3,7701	5.2814	61,2230				Online 4: BWP=9 1623 ASTM Closes
Benzene						1,0882	0.8530	1.3748	78.1100	0.0503	0.0182	78.11	Option 2: A=6 905 B=1211 033 C=220 79
Cyclohexane						1.1306	0.8914	1.4207	84.1600	0.0442	0.0166		Option 2: 4-6 841 8-1201 63 C-222 66
Ethylhanzana						00000				1	20.00		Opinion 2. A-0.04 1, D-1201 33, C-222 03
- Indiana de la companya de la compa						5660.0	0.0737	0.1332	106.1700	0.0025	0.0001		Option 2: A=6.975. B=1424.255. C=213.21
Hexane (-n)						1,7907	1.4252	2.2300	86.1700	0.0842	0.0501		Ophon 2: A=6 876 B=1171 17 C=224 41
Toluene						0.3049	0.2320	0.3965	92,1300	0 0 2 4 7	0.005		Option 2: A=6.664 B=1244 B C=210 48
Unidentified Components						5.4431	5.3490	5 3492	59 6580	0.7842	0.000		Children 24 04 1344 0 C-21340
Xylene (-m)						0.0826	0.0607	0.1111	106.1700	0.0075	00000	106 17	Option 2: A=7 000 0=1462 366 C=216 11
Xylene (-o)						0.0648	0.0473	0.0878	106,1700	0.0024	0 0001	106 17	Option 2: A=6 008 B=1474 679 C=213 69
													CONTRACTOR OF 121 21 21 21 21 22 22

TK-02A (Accident) Texas Eastern Transmission Co.

	1,258 1405	997,8859	0.0494	0.2164	0.3234
Annual Emission Calculations	Standing Losses (Ib)	Vapor Space Volume (cu ft):	Vapor Density (lb/cu ft):	Vapor Space Expansion Factor:	Venled Vapor Saturation Factor.

997, 8859 0,0494 0,2164 0,3234	997.8859 12.0000 8.83232 15.0000 7.0000 0.8232	0,8232 12,0000 6,0000	0.0494 61,2230 4,4746 517,1363 90,3083 10,731 10,731 512,5783 0,6000 0,6000 0,1202,9556 1,202,9556 1,202,9556 1,202,9556 1,203,9977 1,5113 0,0600 4,4746 3,7701 5,2814 5,17,1363 508,6389 525,6588	0.3234 4,4746 8.8232
Vapor Space Volume (cu ft): Vapor Density (b/cu ft): Vapor Space Expanson Factor: Venled Vapor Squiration Factor:	Tank Vapor Space Volume Vapor Space Volume (cu ft): Tank Dameter (ft): Vapor Space Outage (ft): Tank Shell Height (ft): Average Liquid Height (ft): Roof Outage (ft):	Roof Outage (Dome Roof) Roof Outage (ft): Dome Radius (ft): Shell Radius (ft):	Vapor Density Vapor Density (blocu ft) Vapor Density (blocu ft) Vapor Pressure at Daily Average Liquid Sufface Temperature (psia) Daily Average Ambrent Temp. (deg. R). Daily Average Ambrent Temp. (deg. R). Ideal Gas Constant R (psia cutt', (b-mol-deg. R). Tank Panti Solar Absorptance (Shell) Tank Panti Solar Absorptance (Shell) Tank Panti Solar Absorptance (Shell) Tank Panti Solar Density (Geg. R). Daily Total Solar Insulation Factor (Blu/sqft day) Vapor Space Expansion Factor Vapor Space Expansion Factor Daily Vapor Pressure Range (tosa) Breather Vent Press. Setting Range(tosa) Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia) Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia) Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia) Vapor Pressure at Daily Maximum Surface Temperature (psia)	Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vapor Pressure at Daily Average Liquid Surface Temperature (psia) Vapor Space Quiage (1)

04/13/2000 4:19:53 PM

TANKS 4.0 Emissions Report - Detail Format Detail Calculations (AP-42)

Vertical Fixed Roof Tank Accident, Maryland

400

TK-02A (Accident) Texas Eastern Transmission Co.

Emissions Report - Detail Format Detail Calculations (AP-42)- (Continued) TANKS 4.0

Vertical Fixed Roof Tank Accident, Maryland

Working Losses (lb)	1,324,3876
Vapor Molecular Weight (Ib/Ib-mole)	61,2230
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4,4746
Annual Net Throughput (gal/yr.):	203,047,1095
Number of Turnovers:	16,0000
Turnover Factor:	1,0000
Maximum Liquid Volume (cuft):	12,690,4443
Maximum Liquid Height (ft):	15,0000
Tank Diameter (ft):	12,0000
Working Loss Product Factor	1 0000
Total Losses (lb)	2,582,5281

TK-02A (Accident)
Texas Eastern Transmission Co.

TANKS 4.0 Emissions Report - Detail Format Individual Tank Emission Totals

Annual Emissions Report

e A superi e to-de totam in distributera anna extensa e que es a superior de servicio de la companio del la companio de la companio del la companio de la companio del la companio de la companio de la companio de la companio de la companio del la companio del la	end for a second contract of the statement of the second second second second second contract of the second	Losses(lbs)	The second secon
Components	Working Loss		
Pipeline Liquids (Accident)	1,324.39		
Benzene	24.07		
Hexane (-n)	66.30		
Toluene	3.32		
Xylene (-m)	0.27		
Xylene (-o)	0.07	90.0	0.03
Cyclohexane	21.99		
Ethylbenzene	0.11		
Unidentified Components	1,208.26	1,147.82	

	· ·		
	18		1 0 10
			10
10			

Attachment 5

Example PTE Emission Calculations from Applications for Exempt 10,000 gallon and 900 gallon Field Methanol Storage Tanks from August 15, 2007 "Installation of Methanol Storage Tanks at Texas Eastern Transmisssion, LP's Accident Compression Station and Storage Field"

5320 Spectrum Drive, Suite C, Frederick, MD 21703 U.S.A. **(240)** 379-7490 **Fax (240)** 379-7491

August 15, 2007

Ms. Karen Irons Air Quality Permits Program Maryland Department of the Environment 1800 Washington Boulevard Baltimore, MD 21230

RE: Installation of Methanol Storage Tanks at Texas Eastern Transmission, LP's Accident Compression Station and Storage Field

Dear Ms. Irons:

Texas Eastern Transmission, LP (TET) operates a natural gas transmission station and adjacent storage field in Accident, Garrett County, Maryland under Title V Operating Permit No. 24-023-00081. TET is planning on installing methanol storage tanks to facilitate operations at the Accident station. It is not expected for this project to be subject to a Permit to Construct, nor will it trigger any new regulatory requirements that are not already included in the existing Title V operating permit.

Currently, the facility uses pressurized bottles of methanol at each of the various well-head sites located at the station. The usage rate of methanol at the well-head sites is such that each bottle is refilled approximately every 20-30 days. During winter months, excessive snowfall at the station often makes well-head sites difficult to access, making the task of refilling these bottles labor and equipment intensive for the facility. As such, the facility is proposing to reduce the operating burden of frequently refilling these bottles (particularly during winter months) by storing larger quantities of methanol at the facility, some well sites, and strategic gathering pipeline locations in the storage field. Having the injection skids and atmospheric tanks in lieu of the bottles will also eliminate the methanol gas loss due to bottle blowdowns that occur every time the bottles are refilled.

The facility is proposing to construct one (1) 10,000 gallon and six (6) 900 gallon methanol storage tanks, along with relocating an existing injection pump skid and installing additional skids for the 900 gallon storage tanks. This project will reduce the frequency with which facility personnel will need to access well-head sites to refill methanol necessary for the natural gas transmission process. The project will not result in any increases to facility throughput or production rates.

Emissions from these proposed tanks were calculated to assess the applicability of a Permit to Construct. Emissions calculations were based on output from EPA's TANKS 4.09D software. As can be seen from the attached spreadsheets and the TANKS output, the total potential emissions of methanol from these new tanks is less than one (1) ton per year.

Ms. Karen Irons – Page 2 August 15, 2007

According to COMAR 26.11.02.10, exemptions to Permits to Construct include those modifications that are not subject to any source-specific State or Federal emission standards and the expected uncontrolled emissions are less than (one) 1 ton per calendar year of each pollutant for which there is a federal ambient air quality standard or which is a Class II toxic air pollutant as defined in COMAR 26.11.15.01B(5).

There are no source-specific emission standards within the Maryland State Implementation Plan (SIP) that are applicable to the proposed methanol storage tanks. Federal New Source Performance Standards (NSPS), incorporated into Maryland's SIP by reference, includes source-specific requirements for volatile organic liquid storage vessels for which construction, reconstruction or modification commences after July 23, 1984 (NSPS Subpart Kb). While the methanol tanks are included by this source-category, each tank is less than the regulatory threshold of 75 cubic meters, or approximately 19,800 gallons. As well, the total potential emissions from all tanks is less than one (1) ton per year of methanol, the only pollutant directly emitted from this installation.

As such, the installation of the methanol storage tanks at the Accident station is exempt from a Permit to Construct. This letter serves as notification of these tanks as additional insignificant sources at the facility.

Should you have any questions regarding the enclosed information, please contact us at (240) 379-7490.

Sincerely,

TRINITY CONSULTANTS

mins By

Michael Ballenger Senior Consultant

Enclosure

cc: Mr. Owen McManus, Spectra Energy Gas Transmission

¹ COMAR 26.11.13.02

Attachment A – Emissions Calculation Spreadsheets and TANKS Output

TABLE A-1 Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses Summary of Emissions

Methodology					AP-42				
Source		921-FT01:06			921-FT07			TOTAL	
	Average	Maximum	Maximum	Average	Maximum	Maximum	Average	Maximum	Maximum
TOC (Total)	0.0047 lb/hr	1.6670 lb/hr	0.0206 tpy	0.0307 lb/hr	16.4846 lb/hr	0.1345 tpy	0.0590 lb/hr	26.4867 lb/hr	0.2584 tpy
Methane									
Ethane									
VOC (Total)	0.0047 lb/hr	1.6670 lb/hr	0.0206 tpy	0.0307 lb/hr	16.4846 lb/hr	0.1345 tpy	0.0590 lb/hr	26.4867 lb/hr	0.2584 tpy
HAP (Total)	0.0047 lb/hr	1.6670 lb/hr	0.0206 tpy	0.0307 lb/hr	16.4846 lb/hr	0.1345 tpy	0.0590 lb/hr	26.4867 lb/hr	0.2584 tpy
Benzene									
Ethylbenzene									
Hexane (n-)									
Methanol	4.71E-03 lb/hr	1.67E+00 lb/hr	2.06E-02 tpy	3.07E-02 lb/hr	1.65E+01 lb/hr	1.35E-01 tpy	5.90E-02 lb/hr	2.65E+01 lb/hr	2.58E-01 tpy
Naphthalene									
Toluene									
Trimethylpentane (2,2,4-)									
Xylenes									

Texas Eastern Transmission, L.P. Accident Compressor Station PTE Estimates Prepared: August 2007

TABLE A-2 Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source					921-FT01:06			
Service					Methanol Storage Tank			
Capacity		950 g	al			950	oal	WHITE TAKETOO
Temperature of Stored Liquid		62.62				86.92		
Vapor Pressure		1.6176 p				3.2067		
	-		al/min					
Pumping Rate						130	gal/min	
Throughput	- ⊢		ırnover/yr				. 14	THE REST OF
		13,300 g	al/yr				gal/hr	
Standing Losses	L					July		
	L					744	hrs/month	
	Г					3.8984	lbs/month	
		24.8741 1	/уг		TO LEGICAL STATE	0.0052	lb/hr	
Working Losses		1.23E-03 II				1.75E-03	lb/gal	
	 	16.4121 II		Ачегаде	Maximum	1.6618		Maximum
	Stond	10.4121 10	// y i	0.0028 lb/hr		1.0010	10/111	
talita	Stand	100.000// 1			0.0124 tpy	100 000/		0.0052 lb
Liquid	Work	100.00% в	y weight	0.0019 lb/hr	0.0082 tpy	100.00%	by weight	1:6618 lb
	Total			0.0047 lb/hr	0.0206 tpy			1.6670 lb
ГОС (Total)		100.00% b	y weight	0.0047 lb/hr	0.0206 tpy	100.00%	by weight	1.6670 lb
Methane								
Ethane								
VOC (Total)		100.00% b	y weight	0.0047 lb/hr	0.0206 tpy	100.00%	by weight	1.6670 lb
HAP (Total)		100.00% b		0.0047 lb/hr	0.0206 tpy	100.00%		1.6670 lb
Benzene			,		,		-,	1.00.0 10
Ethylbenzene								
<u> </u>								
Hexane (n-)		100 00000// 1		4 51 5 00 11 11	2.065.02	100 00000/		. (55 00 11
Methanol		100.0000% b	y weight	4.71E-03 lb/hr	2.06E-02 tpy	100.0000%	by weight	1.67E+00 lb
Naphthalene								
Toluene								
Trimethylpentane (2,2,4-)								
Xylenes								
				NOTES			CL COLLINS I	A DECEMBER OF
. Tank Characteristics:				TANKS 4.09d				
		Vertical Fixed I	Roof Tank		Above Ground?	Vec	2	
Orientation		Vertical Fixed			Above Ground?	Yes		lar lace color
Height/Length		6.25 ft			Shell/Roof Color	Aluminum	/Diffuse	or less solar
Height/Length Diameter		6.25 ft 5.08 ft			Shell/Roof Color Shell Condition	Aluminum. Goo	/Diffuse d	or less solar absorptance
Height/Length Diameter Capacity (estimated)		6.25 ft 5.08 ft 947 g	al		Shell/Roof Color Shell Condition Vacuum Setting	Aluminum Goo -0.03	/Diffuse d psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal)		6.25 ft 5.08 ft	al		Shell/Roof Color Shell Condition	Aluminum. Goo	/Diffuse d psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics:		6.25 fi 5.08 fi 947 g 950 g	al al		Shell/Roof Color Shell Condition Vacuum Setting	Aluminum Goo -0.03	/Diffuse d psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal)	Ţ	6.25 ft 5.08 ft 947 g	al al		Shell/Roof Color Shell Condition Vacuum Setting	Aluminum Goo -0.03	/Diffuse d psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics:		6.25 fi 5.08 fi 947 g 950 g	al al 4.09d		Shell/Roof Color Shell Condition Vacuum Setting	Aluminum Goo -0.03	/Diffuse d psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material		6.25 ft 5.08 ft 947 g 950 g USEPA TANKS	al al 4.09d		Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting	Aluminum. Goo -0.03 0.03	/Diffuse d psig psig	
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight	N	6.25 ft 5.08 ft 947 g 950 g USEPA TANKS Methyl alcohol 32.04 lt	al al 4.09d b/lb-mol	Product stored Vapor Molecular We	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting	Aluminum. Goo -0.03 0.03	/Diffuse d psig psig	absorptance
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material		6.25 ft 5.08 ft 947 g 950 g USEPA TANKS Methyl alcohol 32.04 lt Vapor Pre	al al 4.09d b/lb-mol ssure	Product stored Vapor Molecular We Liquid Surfac	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting	Aluminum. Goo -0.03 0.03 32.04	/Diffuse d psig psig bilb-mol Output	absorptance TANKS
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data	Days	6.25 ft 5.08 ft 947 g 950 g JSEPA TANKS Methyl alcohol 32.04 ll Vapor Pre avg	al al 4.09d b/lb-mol ssure max	Product stored Vapor Molecular We Liquid Surfac avg	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting	Aluminum. Goo -0.03 0.03 32.04 TANKS G standing	/Diffuse d psig psig lb/lb-mol Output working	absorptance TANKS Flow
Height/Length Diameter Capacity (estimated) Capacity (nominal) Control Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January	Days	6.25 ft 5.08 ft 947 g 950 g JSEPA TANKS Methyl alcohol 32.04 ll Vapor Pre avg 1.0248	al 4.09d b/lb-mol ssure max 1.2378	Product stored Vapor Molecular We Liquid Surfac avg 49.41	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20	Aluminum. Goo -0.03 0.03 32.04 TANKS 0 standing 0.7155	/Diffuse d psig psig lb/lb-mol Output working 0.7427	TANKS Flow 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February	Days	6.25 ft 5.08 ft 947 g 950 g USEPA TANKS Methyl alcohol 32.04 lt Vapor Pre avg 1.0248 1.1129	al al 4.09d b/lb-mol ssure max 1.2378 1.3947	Product stored Vapor Molecular We Liquid Surface avg 49.41 51.92	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94	Aluminum. Goo -0.03 0.03 32.04 TANKS 0 standing 0.7155 0.8711	/Diffuse d psig psig lb/lb-mol Output working 0.7427 0.8065	TANKS Flow 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Control Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March	Days	6.25 ff 5.08 ff 947 g 950 g USEPA TANKS Methyl alcohol 32.04 ll Vapor Pre avg 1.0248 1.1129 1.3334	4.09d b/lb-mol ssure max 1.2378 1.3947 1.7528	Product stored Vapor Molecular We Liquid Surfac avg 49.41 51.92 57.53	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94 66.28	32.04 TANKS 0 standing 0.7155 0.8711 1.4988	/Diffuse d psig psig lb/lb-mol Output working 0.7427 0.8065 0.9664	TANKS Flow 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February	Days 31 28 31 30	6.25 ft 5.08 ft 947 g 950 g USEPA TANKS Methyl alcohol 32.04 lt Vapor Pre avg 1.0248 1.1129	al al 4.09d b/lb-mol ssure max 1.2378 1.3947	Product stored Vapor Molecular We Liquid Surface avg 49.41 51.92 57.53 63.17	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94	32.04 TANKS 0 standing 0.7155 0.8711 1.4988 2.1512	/Diffuse d psig psig lb/lb-mol Output working 0.7427 0.8065 0.9664 1.1541	TANKS Flow 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Control Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March	Days	6.25 ff 5.08 ff 947 g 950 g USEPA TANKS Methyl alcohol 32.04 ll Vapor Pre avg 1.0248 1.1129 1.3334	4.09d b/lb-mol ssure max 1.2378 1.3947 1.7528	Product stored Vapor Molecular We Liquid Surfac avg 49.41 51.92 57.53	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94 66.28	32.04 TANKS 0 standing 0.7155 0.8711 1.4988	/Diffuse d psig psig lb/lb-mol Output working 0.7427 0.8065 0.9664	TANKS Flow 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April	Days 31 28 31 30	6.25 ff 5.08 ff 947 g 950 g USEPA TANKS Methyl alcohol 32.04 ll Vapor Pre avg 1.0248 1.1129 1.3334 1.5925	4.09d 5/lb-mol ssure max 1.2378 1.3947 1.7528 2.1867	Product stored Vapor Molecular We Liquid Surface avg 49.41 51.92 57.53 63.17	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94 66.28 73.63	Aluminum. Goo -0.03 0.03 32.04 TANKS 0 standing 0.7155 0.8711 1.4988 2.1512 2.9663	/Diffuse d psig psig lb/lb-mol Output working 0.7427 0.8065 0.9664 1.1541 1.3647	TANKS Flow 950 950 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June	Days 31 28 31 30 31 30	6.25 ft 5.08 ft 947 g 950 g JSEPA TANKS Methyl alcohol 32.04 lt Vapor Pre avg 1.0248 1.1129 1.3334 1.5925 1.8830 2.1772	al al 4.09d b/lb-mol ssure max 1.2378 1.7528 2.1867 2.6343 3.0854	Product stored Vapor Molecular We Liquid Surface avg 49.41 51.92 57.53 63.17 68.64 73.48	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94 66.28 73.63 80.00 85.55	32.04 TANKS (standing 0.7155 0.8711 1.4988 2.1512 2.9663 3.6551	/Diffuse d psig psig	TANKS Flow 950 950 950 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July	Days 31 28 31 30 31 30 31	6.25 ft 5.08 ft 947 g 950 g USEPA TANKS Methyl alcohol 32.04 lt Vapor Pre avg 1.0248 1.1129 1.3334 1.5925 1.8830 2.1772 2.2930	al al 4.09d b/lb-mol ssure max 1.2378 1.7528 2.1867 2.6343 3.0854 3.2067	Product stored Vapor Molecular We Liquid Surface avg 49.41 51.92 57.53 63.17 68.64 73.48 75.23	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94 66.28 73.63 80.00 85.55 86.92	Aluminum. Goo -0.03 0.03 0.03 TANKS G standing 0.7155 0.8711 1.4988 2.1512 2.9663 3.6551 3.8984	/Diffuse d psig psig	TANKS Flow 950 950 950 950 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacit	Days 31 28 31 30 31 30 31 31	6.25 ft 5.08 ft 947 g 950 g USEPA TANKS Methyl alcohol 32.04 lt Vapor Pre avg 1.0248 1.1129 1.3334 1.5925 1.8830 2.1772 2.2930 2.1816	al al 4.09d b/lb-mol ssure max 1.2378 1.3947 2.6343 3.0854 3.2067 2.9687	Product stored Vapor Molecular We Liquid Surface avg 49.41 51.92 57.53 63.17 68.64 73.48 75.23 73.55	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94 66.28 73.63 80.00 85.55 86.92 84.18	Aluminum. Goo -0.03 0.03 32.04 TANKS G standing 0.7155 0.8711 1.4988 2.1512 2.9663 3.6551 3.8984 3.3207	/Diffuse d psig psig	TANKS Flow 950 950 950 950 950 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacit	Days 31 28 31 30 31 31 31 30	6.25 ft 5.08 ft 947 g 950 g USEPA TANKS Methyl alcohol 32.04 lt Vapor Pre avg 1.0248 1.1129 1.3334 1.5925 1.8830 2.1772 2.2930 2.1816 1.9043	al al 4.09d 4.09d 5/lb-mol 5ssure max 1.2378 1.7528 2.1867 2.6343 3.0854 3.2067 2.9687 2.5196	Product stored Vapor Molecular We Liquid Surface avg 49.41 51.92 57.53 63.17 68.64 73.48 75.23 73.55 69.01	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94 66.28 73.63 80.00 85.55 86.92 84.18 78.46	Aluminum. Goo -0.03 0.03 0.03 32.04 TANKS G standing 0.7155 0.8711 1.4988 2.1512 2.9663 3.6551 3.8984 3.3207 2.4037	/Diffuse d psig psig	TANKS Flow 950 950 950 950 950 950 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacit	Days	6.25 ft 5.08 ft 947 g 950 g USEPA TANKS Methyl alcohol 32.04 lt Vapor Pre avg 1.0248 1.1129 1.3334 1.5925 1.8830 2.1772 2.2930 2.1816 1.9043 1.5941	al al 4.09d 5/lb-mol 5sure max 1.2378 1.3947 1.7528 2.1867 2.6343 3.0854 3.2067 2.9687 2.5196 1.9881	Product stored Vapor Molecular We Liquid Surface avg 49.41 51.92 57.53 63.17 68.64 73.48 75.23 73.55 69.01 62.18	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting Pressure Setting Sight Temperature max 55.20 58.94 66.28 73.63 80.00 85.55 86.92 84.18 78.46 70.44	Aluminum. Goo -0.03 0.03 0.03 32.04 TANKS G standing 0.7155 0.8711 1.4988 2.1512 2.9663 3.6551 3.8984 3.3207 2.4037 1.6752	/Diffuse d psig psig	TANKS Flow 950 950 950 950 950 950 950 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacit	Days	6.25 ft 5.08 ft 947 g 950 g USEPA TANKS Methyl alcohol 32.04 lt Vapor Pre avg 1.0248 1.1129 1.3334 1.5925 1.8830 2.1772 2.2930 2.1816 1.9043 1.5441 1.2804	al al al 4.09d 5/lb-mol 5sure max 1.2378 1.3947 1.7528 2.1867 2.6343 3.0854 3.2067 2.9687 2.5196 1.9881 1.5704	Product stored Vapor Molecular We Liquid Surfac avg 49.41 51.92 57.53 63.17 68.64 73.48 75.23 73.55 69.01 62.18 56.26	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94 66.28 73.63 80.00 85.55 86.92 84.18 78.46 70.44 62.72	Aluminum. Goo -0.03 0.03 0.03 32.04 TANKS 0 standing 0.7155 0.8711 1.4988 2.1512 2.9663 3.6551 3.8984 3.3207 2.4037 1.6752 1.0064	/Diffuse d psig psig Ib/Ib-mol Output working 0.7427 0.8065 0.9664 1.1541 1.3647 1.5779 1.6618 1.5810 1.3801 1.1190 0.9279	TANKS Flow 950 950 950 950 950 950 950 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) Capacit	Days	6.25 ft 5.08 ft 947 g 950 g 950 g USEPA TANKS Methyl alcohol 32.04 lt Vapor Pre avg 1.0248 1.1129 1.3334 1.5925 1.8830 2.1772 2.2930 2.1816 1.9043 1.5441 1.2804 1.0840	al al al 4.09d 4.09d 5/lb-mol 5sure max 1.2378 1.3947 1.7528 2.1867 2.6343 3.0854 3.2067 2.9687 2.5196 1.9881 1.5704 1.2922	Product stored Vapor Molecular We Liquid Surfac avg 49.41 51.92 57.53 63.17 68.64 73.48 75.23 73.55 69.01 62.18 56.26 51.12	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting Fight Temperature Temper	Aluminum. Goo -0.03 0.03 0.03 32.04 TANKS 0 standing 0.7155 0.8711 1.4988 2.1512 2.9663 3.6551 3.8984 3.3207 2.4037 1.6752 1.0064 0.7117	/Diffuse d psig psig	TANKS Flow 950 950 950 950 950 950 950 950 950 950
Height/Length Diameter Capacity (estimated) Capacity (nominal) 2. Stored Liquid Characteristics: Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August September October November	Days	6.25 ft 5.08 ft 947 g 950 g USEPA TANKS Methyl alcohol 32.04 lt Vapor Pre avg 1.0248 1.1129 1.3334 1.5925 1.8830 2.1772 2.2930 2.1816 1.9043 1.5441 1.2804	al al al 4.09d 5/lb-mol 5sure max 1.2378 1.3947 1.7528 2.1867 2.6343 3.0854 3.2067 2.9687 2.5196 1.9881 1.5704	Product stored Vapor Molecular We Liquid Surfac avg 49.41 51.92 57.53 63.17 68.64 73.48 75.23 73.55 69.01 62.18 56.26	Shell/Roof Color Shell Condition Vacuum Setting Pressure Setting sight e Temperature max 55.20 58.94 66.28 73.63 80.00 85.55 86.92 84.18 78.46 70.44 62.72	Aluminum. Goo -0.03 0.03 0.03 32.04 TANKS 0 standing 0.7155 0.8711 1.4988 2.1512 2.9663 3.6551 3.8984 3.3207 2.4037 1.6752 1.0064	/Diffuse d psig psig Ib/Ib-mol Output working 0.7427 0.8065 0.9664 1.1541 1.3647 1.5779 1.6618 1.5810 1.3801 1.1190 0.9279	TANKS Flow 950 950 950 950 950 950 950 950 950 950

TABLE A-3 Volatile Organic Liquids Storage Tanks Hourly and Annual Emission Estimates Standing & Working Losses

Source				•	921-FT07			
Service	-			λ	Methanol Storage Tank			
Capacity		11,400	gal	ALCOHOLD AND ADDRESS.	rictianor Storage Talli	11,400	gal	The said Street and St.
Temperature of Stored Liquid		63.70				89.47		distribution of
Vapor Pressure		1,6756				3.4419		
Pumping Rate			gal/min				gal/min	BUT THE TOTAL
Throughput	$\overline{}$		turnover/yr			130	garmin	
1 moughput		34,200				9,000	gal/hr	
Standing Losses		34,200	garyr			Jul		
Standing 203503	ŀ						hrs/month	
	ŀ						lbs/month	
	ł	225 2702	Ha farm					
Working Losses		225.3793				0,0453		
Working Losses	ŀ	1.28E-03			NA C	1.83E-03		The same of the sa
		43,7164	lo/yr	Average	Maximum	16.4393	lb/hr	Maximum
70.74	Stand	100 000	8.8	0.0257 lb/hr	0,1127 tpy	78ba 8ac		0.0453 lb/
Liquid	Work	100,00%	by weight	0.0050 lb/hr	0.0219 tpy	100.00%	by weight	16.4393 lb/
	Total			0.0307 lb/hr	0.1345 tpy			16.4846 lb/
FOC (Total)		100.00%	by weight	0.0307 lb/hr	0.1345 tpy	100.00%	by weight	16,4846 lb/
Methane								
Ethane								
VOC (Total)		100.00%		0.0307 lb/hr	0.1345 tpy	100.00%		16.4846 lb/
-IAP (Total)		100.00%	by weight	0.0307 lb/hr	0.1345 tpy	100.00%	by weight	16,4846 lb/
Benzene								
Ethylbenzene								
Hexane (n-)								
Methanol		100.0000%	by weight	3.07E-02 lb/hr	1,35E-01 tpy	100.0000%	by weight	1.65E+01 lb/
Naphthalene			· · · · ·		- '			1
Toluene								
Trimethylpentane (2,2,4-)								
Xylenes								
		TO I BUILDING	A STATE OF THE PARTY	NOTES		Circuism s		
Tank Characteristics:				TANKS 4.09d				
Orientation		Vertical Fixed	Roof Tank		Above Ground?	Yes	:	
Height/Length		19.42			Shell/Roof Color	Gray/Me		or less solar
Diameter		10.00			Shell Condition	Goo		absorptance
Capacity (estimated)		11,408			Vacuum Setting	-0.03		lacoo.p.aoo
Capacity (nominal)		11,400	-		Pressure Setting	0.03		
Stored Liquid Characteristics:		.,,,,,,,,,	P		1 ressure betting	0.03		
		IOPPA TANKE	1 004					
The second secon	1	INFPA LANKS						
Basis		USEPA TANKS		Product stored				
Basis Material		Methyl alcohol		Product stored	iaht .	22.04	h/lh mol	1
Basis Material Liquid Molecular Weight	1	Methyl alcohol 32.04	lb/lb-mol	Vapor Molecular We			lb/lb-mol	TANKE
Basis Material		Methyl alcohol 32.04 l Vapor Pro	lb/lb-mol essure	Vapor Molecular We Liquid Surface	e Temperature	TANKS	Dutput	TANKS
Basis Material Liquid Molecular Weight Monthly Data	Days	Methyl alcohol 32.04 Vapor Pro avg	lb/lb-mol essure max	Vapor Molecular We Liquid Surface avg	Temperature max	TANKS (Output working	Flow
Basis Material Liquid Molecular Weight Monthly Data	Days 31	Methyl alcohol 32.04 Vapor Proavg 1.0482	lb/lb-mol essure max 1.2803	Vapor Molecular We Liquid Surface avg 50.10	e Temperature max 56.25	TANKS (standing 7.1425	Output working 9.1160	Flow 11,400
Basis Material Liquid Molecular Weight Monthly Data January February	Days 31 28	Methyl alcohol 32.04 Vapor Pro avg 1.0482 1.1439	max 1.2803 1.4555	Vapor Molecular We Liquid Surface avg 50.10 52.77	max 56,25 60,29	TANKS 0 standing 7.1425 8.6594	Output working 9.1160 9.9481	Flow 11,400 11,400
Basis Material Liquid Molecular Weight Monthly Data January February March	Days 31 28 31	Methyl alcohol 32.04 Vapor Pro avg 1.0482 1.1439 1.3786	b/lb-mol essure max 1.2803 1.4555 1.8482	Vapor Molecular We Liquid Surface avg 50.10 52.77 58.57	max 56.25 60.29 68.02	TANKS (standing 7.1425 8.6594 14,4846	Output working 9.1160 9.9481 11.9889	Flow 11,400 11,400 11,400
Basis Material Liquid Molecular Weight Monthly Data January February March April	Days	Methyl alcohol 32.04 Vapor Pro avg 1.0482 1.1439 1.3786 1.6554	b/lb-mol essure max 1.2803 1.4555 1.8482 2.3280	Vapor Molecular We Liquid Surface avg 50.10 52.77 58.57 64.42	max 56.25 60.29 68.02 75.75	TANKS 0 standing 7.1425 8.6594 14,4846 20.1344	Output working 9.1160 9.9481 11.9889 14.3961	Flow 11,400 11,400 11,400 11,400
Basis Material Liquid Molecular Weight Monthly Data January February March April May	Days 31 28 31 30 31	Methyl alcohol 32.04 Vapor Pri avg 1.0482 1.1439 1.3786 1.6554 1.9640	max 1.2803 1.4555 1.8482 2.3280 2.8211	Vapor Molecular We Liquid Surface avg 50.10 52.77 58.57 64.42 70.03	max 56.25 60.29 68.02 75.75 82.39	TANKS 0 standing 7.1425 8.6594 14.4846 20.1344 26.8465	Output working 9.1160 9.9481 11.9889 14.3961 17.0798	Flow 11,400 11,400 11,400 11,400 11,400
Basis Material Liquid Molecular Weight Monthly Data January February March April May June	Days 31 28 31 30 31 30	Methyl alcohol 32.04 Vapor Pri avg 1.0482 1.1439 1.3786 1.6554 1.9640 2.2763	max 1.2803 1.4555 1.8482 2.3280 2.8211 3.3183	Vapor Molecular We Liquid Surface avg 50.10 52.77 58.57 64.42 70.03 74.98	max 56.25 60.29 68.02 75.75 82.39 88.15	TANKS 0 standing 7.1425 8.6594 14.4846 20.1344 26.8465 32.0537	Output working 9.1160 9.9481 11.9889 14.3961 17.0798 19.7956	Flow 11,400 11,400 11,400 11,400 11,400
Basis Material Liquid Molecular Weight Monthly Data January February March April May June July	Days 31 28 31 30 31 30 31	Methyl alcohol 32.04 Vapor Pro avg 1.0482 1.1439 1.3786 1.6554 1.9640 2.2763 2.3944	max 1.2803 1.4555 1.8482 2.3280 2.8211 3.3183 3.4419	Vapor Molecular We Liquid Surface avg 50.10 52.77 58.57 64.42 70.03 74.98 76.71	max 56.25 60.29 68.02 75.75 82.39 88.15	TANKS 0 standing 7.1425 8.6594 14.4846 20.1344 26.8465 32.0537 33.7142	Dutput working 9.1160 9.9481 11.9889 14.3961 17.0798 19.7956 20.8231	Flow 11,400 11,400 11,400 11,400 11,400 11,400
Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August	Days 31 28 31 30 31 30 31 30 31	Methyl alcohol 32.04 Vapor Pri avg 1.0482 1.1439 1.3786 1.6554 1.9640 2.2763 2.3944 2.2695	max 1.2803 1.4555 1.8482 2.3280 2.8211 3.3183 3.4419 3.1656	Vapor Molecular We Liquid Surface avg 50.10 52.77 58.57 64.42 70.03 74.98 76.71 74.88	E Temperature max 56.25 60.29 68.02 75.75 82.39 88.15 89.47 86.46	TANKS 0 standing 7.1425 8.6594 14.4846 20.1344 26.8465 32.0537 33.7142 28.9094	Dutput Working 9.1160 9.9481 11.9889 14.3961 17.0798 19.7956 20.8231 19.7365	Flow 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400
Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August September	Days 31 28 31 30 31 30 31 30 31 30	Methyl alcohol 32.04 Vapor Pri avg 1.0482 1.1439 1.3786 1.6554 1.9640 2.2763 2.3944 2.2695 1.9713	max 1.2803 1.4555 1.8482 2.3280 2.8211 3.3183 3.4419 3.1656 2.6636	Vapor Molecular We Liquid Surface avg 50.10 52.77 58.57 64.42 70.03 74.98 76.71 74.88 70.15	E Temperature max 56.25 60.29 68.02 75.75 82.39 88.15 89.47 86.46 80.38	TANKS 0 standing 7.1425 8.6594 14.4846 20.1344 26.8465 32.0537 33.7142 28.9094 21.4275	Dutput Working 9.1160 9.9481 11.9889 14.3961 17.0798 19.7956 20.8231 19.7365 17.1436	Flow 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400
Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August September October	Days 31 28 31 30 31 31 30 31 31 30 31	Methyl alcohol 32.04 Vapor Pro avg 1.0482 1.1439 1.3786 1.6554 1.9640 2.2763 2.3944 2.2695 1.9713 1.5895	max 1.2803 1.4555 1.8482 2.3280 2.8211 3.3183 3.4419 3.1656 2.6636 2.0806	Vapor Molecular We Liquid Surface avg 50.10 52.77 58.57 64.42 70.03 74.98 76.71 74.88 70.15 63.11	e Temperature max 56.25 60.29 68.02 75.75 82.39 88.15 89.47 86.46 80.38 71.95	TANKS 0 standing 7.1425 8.6594 14.4846 20.1344 26.8465 32.0537 33.7142 28.9094 21.4275 15.4721	Dutput working 9.1160 9.9481 11.9889 14.3961 17.0798 19.7956 20.8231 19.7365 17.1436 13.8229	Flow 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400
Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August September October November	Days 31 28 31 30 31 30 31 30 31 30	Methyl alcohol 32.04 Vapor Pro avg 1.0482 1.1439 1.3786 1.6554 1.9640 2.2763 2.3944 2.2695 1.9713 1.5895 1.3101	max 1.2803 1.4555 1.8482 2.3280 2.8211 3.3183 3.4419 3.1656 2.6636 2.0806 1.6256	Vapor Molecular We Liquid Surface avg 50.10 52.77 58.57 64.42 70.03 74.98 76.71 74.88 70.15 63.11 56.97	e Temperature max 56.25 60.29 68.02 75.75 82.39 88.15 89.47 86.46 80.38 71.95 63.84	TANKS 0 standing 7.1425 8.6594 14.4846 20.1344 26.8465 32.0537 33.7142 28.9094 21.4275 15.4721 9.5623	Dutput Working 9.1160 9.9481 11.9889 14.3961 17.0798 19.7956 20.8231 19.7365 17.1436 13.8229 11.3930	Flow 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400
Basis Material Liquid Molecular Weight Monthly Data January February March April May June July August September October	Days 31 28 31 30 31 31 30 31 31 30 31	Methyl alcohol 32.04 Vapor Pro avg 1.0482 1.1439 1.3786 1.6554 1.9640 2.2763 2.3944 2.2695 1.9713 1.5895	max 1.2803 1.4555 1.8482 2.3280 2.8211 3.3183 3.4419 3.1656 2.6636 2.0806	Vapor Molecular We Liquid Surface avg 50.10 52.77 58.57 64.42 70.03 74.98 76.71 74.88 70.15 63.11	e Temperature max 56.25 60.29 68.02 75.75 82.39 88.15 89.47 86.46 80.38 71.95	TANKS 0 standing 7.1425 8.6594 14.4846 20.1344 26.8465 32.0537 33.7142 28.9094 21.4275 15.4721	Dutput working 9.1160 9.9481 11.9889 14.3961 17.0798 19.7956 20.8231 19.7365 17.1436 13.8229	Flow 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400 11,400

Identification

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

User Identification:	921-FT01:06 Accident
City: State:	Maryland
Company:	Texas Eastern Transmission, L.P
Type of Tank	Vertical Fixed Roof Tank
Description:	Methanol Storage Tank
Description.	Wetterlor Glorage Tank
Tank Dimensions	
Shell Height (ft)	6.25
Diameter (ft):	5.08
Liquid Height (ft):	6.25
Avg. Liquid Height (ft):	3,13
Volume (gallons):	950.00
Tumovers:	12.00
Net Throughput(gal/yr):	11,400.00
Is Tank Heated (y/n):	N
Paint Characteristics	
Shell Color/Shade:	Aluminum/Diffuse
Shell Condition	Good
Roof Color/Shade:	Aluminum/Diffuse
Roof Condition:	Good
Roof Characteristics	
Type:	Cone
Height (ft)	0.16
Slope (ft/ft) (Cone Roof)	0.06
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Baltimore, Maryland (Avg Atmospheric Pressure = 14.67 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

921-FT01:06 - Vertical Fixed Roof Tank Accident, Maryland

			ity Liquid Seperature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Moi	Liquid Mass	Vapor Mass	Mol	Basis for Vapor Pressure
Axture/Component	Month	Avg	Min	Max	(deg F)	Avg	Min	Max	Weight	Fract	Fract	Weight	Calculations
Aethyl alcohol	Jan	49.41	43 63	55 20	57 69	1.0248	0.8441	1 2378	32 0400			32 04	Option 2 A=7 897 B=1474 08 C=229 13
dethyl alcohol	Feb	51.92	44 90	58 94	57.69	1.1129	0 8814	1 3947	32 0400			32 04	Option 2 A=7 897, B=1474 08, C=229 13
lethyl alcohol	Mar	57,53	48.77	66 28	57.69	1.3334	1 0032	1 7528	32 0400			32.04	Option 2 A=7 897, B=1474 08, C=229 13
lethyl alcohol	Apr	63.17	52.72	73.63	57.69	1.5925	1.1421	2 1867	32,0400			32 04	Option 2 A=7 897, B=1474 08, C=229 13
lethyl alcohol	May	68 64	57.27	80 00	57 69	1.8830	1 3228	2 6343	32 0400			32 04	Option 2 A=7 897, B=1474 08, C=229 13
Aethyl alcohol	Jun	73.48	61.41	85.55	57.69	2 1772	1 5074	3 0854	32 04 00			32 04	Option 2 A=7 897 B=1474 08 C=229 13
Aethyl alcohol	Jul	75.23	63 54	86 92	57 69	2 2930	16110	3 2067	32 04 00			32 04	Option 2 A=7 897 B=1474 08 C=229 13
tethyl alcohol	Aug	73 55	62 91	84 18	57 69	2 1816	1,5797	2 9687	32 04 00			32.04	Option 2, A=7 897, B=1474 08, C=229 13
Aethyl alcohol	Sep	69 01	59.56	78.46	57 69	1.9043	1.4220	2 5 1 9 6	32 04 00			32.04	Option 2 A=7 897, B=1474 08, C=229 13
Rethyl alcohol	Oct	62.18	53.92	70 44	57 69	1.5441	1,1877	1 9881	32 04 00			32 04	Option 2 A=7 897 B=1474 08 C=229 13
Aethyl alcohol	Nov	56.26	49.79	62 72	57.69	1 2804	1 0375	1 5704	32 04 00			32.04	Option 2. A=7 897, B=1474 08, C=229 13
Aethyl alcohol	Dec	51.12	45.70	56 54	57.69	1.0840	0 9053	1 2922	32 04 00			32 04	Option 2 A=7 897, B=1474 08, C=229 13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

921-FT01:06 - Vertical Fixed Roof Tank Accident, Maryland

Month	January	February	March	InqA	May	June	July	August	September	October	November	Decembe
Standing Losses (Ib):	0.7155	0 8711	1 4988	2,1512	2 9663	3.6551	3 8984	3,3207	2 4037	1 6752	1.0064	0 711
Vapor Space Volume (cu ft):	64.4106	64 4106	64.4106	64 4106	64.4106	64,4106	64 4106	64.4106	64.4106	64.4106	64 4106	64 410
Vapor Density (lb/cu ft):	0.0060	0.0065	0 0077	0.0091	0.0106	0.0122	0.0128	0.0122	0.0108	0.0088	0 0074	0 006
Vapor Space Expansion Factor	0.0699	0.0883	0.1194	0.1553	0.1839	0.2120	0 2115	0.1862	0.1528	0.1197	0 0855	0.066
Vented Vapor Saturation Factor	0 8528	0 8421	0 8166	0.7885	0.7592	0.7317	0.7214	0.7313	0.7572	0.7936	0 8226	0 845
Tank Vapor Space Volume												
Vapor Space Volume (cu ft):	64 4106	64.4106	64,4106	64_4106	64,4106	64.4106	64_4106	64,4106	64,4106	64,4106	64,4106	64,410
Tank Diameter (ft):	5 0800	5 0800	5 0800	5 0800	5.0800	5.0800	5.0800	5.0800	5.0800	5 0800	5 0800	5.080
Vapor Space Outage (ft):	3_1779	3 1779	3 1779	3 1779	3,1779	3 1779	3 1779	3 1779	3 1779	3.1779	3 1779	3 177
Tank Shell Height (ft):	6 2500	6.2500	6 2500	6.2500	6.2500	6.2500	6 2500	6.2500	6.2500	6 2500	6 2500	6 250
Average Liquid Height (ft)	3 1250	3 1250	3 1250	3 1250	3.1250	3,1250	3,1250	3 1250	3 1250	3,1250	3 1250	3 125
Roof Outage (ft):	0.0529	0.0529	0 0529	0 0529	0 0529	0.0529	0 0529	0 0529	0.0529	0.0529	0 0529	0 052
Roof Outage (Cone Roof)												
Roof Outage (ft):	0.0529	0 0529	0.0529	0.0529	0.0529	0 0529	0 0529	0.0529	0 0529	0.0529	0.0529	0.052
Roof Height (ft):	0,1587	0 1587	0.1587	0 1587	0.1587	0.1587	0.1587	0.1587	0.1587	0.1587	0.1587	0.158
Roof Slope (ft/ft).	0 0625	0.0625	0.0625	0.0625	0.0625	0.0625	0 0625	0.0625	0.0625	0.0825	0.0625	0.062
Shell Radius (ft):	2 5400	2 5400	2.5400	2 5400	2 5400	2 5400	2,5400	2 5400	2 5400	2 5400	2 5400	2 540
Vapor Density												
Vapor Density (lb/cu ft):	0 0060	0 0065	0.0077	0.0091	0 0 1 0 6	0 0122	0.0128	0.0122	0.0108	0.0088	0 0074	0.006
Vapor Molecular Weight (lb/lb-mole)	32 0400	32 0400	32.0400	32 0400	32 0400	32 0400	32 0400	32.0400	32 0400	32 0400	32 0400	32 040
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):	1,0248	1.1129	1.3334	1,5925	1.8830	2.1772	2.2930	2.1816	1,9043	1,5441	1 2804	1.084
Daily Avg Liquid Surface Temp (deg R)	509 0845	511 5926	517 1965	522 8414 53 4000	528 3061	533 1493 72 5000	534 9037 77 0000	533 2175	528.6769	521 8493	515,9251	510.789
Daily Average Ambient Temp. (deg. F). Ideal Gas Constant R	31,8000	34,8000	44.0500	53 4000	63 4000	72 3000	77,0000	75,5500	68.4500	56 6000	46 8000	36,700
(psia cuft / (lb-mot-deg R))	10.731	10.731	10.731	10,731	10.731	10.731	10 731	10.731	10.731	10,731	10,731	10.73
Liquid Bulk Temperature (deg R)	517 3575	517 3575	517,3575	517 3575	517.3575	517 3575	517.3575	517 3575	517 3575	517 3575	517 3575	517 357
Tank Paint Solar Absorptance (Shell)	0.6000	0 6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.600
Tank Paint Solar Absorptance (Roof)	0.6000	0.6000	0 6000	0.6000	0,6000	0 6000	0 6000	0.6000	0.6000	0 6000	0.6000	0.600
Daily Total Solar Insulation												
Factor (Btu/sqft day):	657 7007	908 3440	1,231,9594	1,554 9403	1,779,5674	1,956 6041	1,909 0136	1,687,8764	1,389.0081	1,048.5774	708.4639	562 519
Vapor Space Expansion Factor												
Vapor Space Expansion Factor	0.0699	0.0883	0 1194	0.1553	0.1839	0.2120	0.2115	0.1862	0.1528	0.1197	0.0855	0.066
Daily Vapor Temperature Range (deg. R):	23 1454	28 0762	35 0249	41.8190	45.4487	48 2789	46 7594	42.5403	37.8073	33 0241	25.8702	21 690
Oaily Vapor Pressure Range (psia)	0.3936	0.5133	0.7496	1.0446	1 3115	1 5780	1,5957	1.3890	1.0976	0.8003	0.5329	0.386
Breather Vent Press. Setting Range(psia):	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0 0600	0.0800	0.060
Vapor Pressure at Daily Average Liquid				4 5005	4.000	0.4770						
Surface Temperature (psia)	1.0248	1 1129	1,3334	1.5925	1.8830	2 1772	2.2930	2 1816	1.9043	1.5441	1 2804	1 084
Vapor Pressure at Daily Minimum Liquid	0.8441	0 8814	1.0032	1.1421	1.3228	1.5074	1.6110	1.5797	1 4220	4 4 9 7 7	4.0275	0.005
Surface Temperature (psia) Vapor Pressure at Daily Maximum Liquid	0,0441	0.0014	1,0032	1.1421	1 3220	1,3074	10110	1 2/9/	1.4220	1.1877	1.0375	0 905
Surface Temperature (psia)	1.2378	1.3947	1.7528	2 1867	2 6343	3 0854	3.2067	2 9687	2 5196	1.9881	1.5704	1 292
Daily Avg. Liquid Surface Temp. (deg R)	509 0845	511 5926	517.1965	522 8414	528 3061	533 1493	534 9037	533 2175	528 6769	521.8493	515 9251	510.789
Daily Min. Liquid Surface Temp. (deg R)	503 2982	504 5735	508.4403	512 3867	516.9440	521 0796	523 2139	522 5825	519 2251	513.5932	509 4576	505 366
Daily Max Liquid Surface Temp (deg R)	514.8708	518 6116	525 9527	533 2962	539.6683	545 2190	546 5936	543 8526	538 1287	530.1053	522 3927	516.211
Daily Ambient Temp. Range (deg R)	16 8000	17 8000	19 9000	21 8000	21 6000	21.4000	20 4000	19 7000	20 1000	21 4000	19 4000	17 000
Vented Vapor Saturation Factor												
Vented Vapor Saturation Factor	0.8528	0 8421	0 8166	0.7885	0 7592	0.7317	0.7214	0.7313	0.7572	0.7936	0.8226	0.845
Vapor Pressure at Daily Average Liquid	0 0320	0 0 42 1	0 0 100	0.000	0,002	0,017	0,214	0.7513	0.012	0,700	0.0220	0.04.
Surface Temperature (psia)	1.0248	1_1129	1.3334	1.5925	1.8830	2.1772	2 2930	2.1816	1.9043	1.5441	1.2804	1.08
Vapor Space Outage (ft)	3 1779	3 1779	3 1779	3 1779	3 1779	3 1779	3 1779	3 1779	3 1779	3 1779	3 1779	3 17
Vorking Losses (lb):	0.7427	0.8065	0.9664	1.1541	1.3647	1.5779	1.6618	1.5810	1.3801	1.1190	0.9279	0.78
Vapor Molecular Weight (lb/lb-mole).	32 0400	32 0400	32 0400	32 0400	32 0400	32.0400	32 0400	32 0400	32 0400	32.0400	32 0400	32 04
Vapor Pressure at Daily Average Liquid					1000		5.9%	- 100				

8/14/2007

TANKS 4.0 Report Page 4 of 11

1 0248	1.1129	1.3334	1 5925	1.8830	2,1772	2 2930	2 1816	1,9043	1,5441	1.2804	1,0840
950,0000	950 0000	950 0000	950 0000	950 0000	950 0000	950,0000	950 0000	950 0000	950,0000	950 0000	950 0000
12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1 0000	1.0000	1.0000	1.0000	1.0000
950 0000	950 0000	950 0000	950,0000	950 0000	950 0000	950 0000	950 0000	950 0000	950 0000	950 0000	950,0000
6 2500	6 2500	6 2500	6.2500	6 2500	6 2500	6.2500	6 2500	6 2500	6 2500	6 2500	6.2500
5.0800	5 0800	5 0800	5 0800	5 0800	5 0800	5.0800	5 0800	5 0800	5 0800	5 0800	5.0800
1 0000	1.0000	1.0000	1 0000	1 0000	1.0000	1.0000	1 0000	1.0000	1 0000	1 0000	1 0000
1.4500	1 6776	2.4652	2 2052	4 2210	5 2220	6 6602	40017	2 7877	2.7042	1.0343	1 4972
	950 0000 12 0000 1 0000 950 0000 6 2500 5 0800 1 0000	950 0000 950 0000 12 0000 12 0000 1 0000 1 0000 950 0000 950 0000 6 2500 6 2500 5 0800 5 0800 1 0000	950 0000 950 0000 950 0000 12 0000 12 0000 12 0000 12 0000 12 0000 10 0000 10 0000 950 0000 950 0000 950 0000 6 2500 6 2500 6 2500 6 2500 6 2500 10 00	950 0000 950 0000 950 0000 950 0000 950 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 10 0000 10 0000 10 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 10	950 0000 950 0000 950 0000 950 0000 950 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 10 0000 10 0000 10 0000 950 0000 950 0000 950 0000 950 0000 950 0000 6 250	950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 10 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 12	950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 12 0000 10 0000 950 0000 10 000	950 0000 950	950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 10000 1 0000	950 0000 950	950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000 950 0000 950 0000 950 0000 950 0000 950 0000 950 0000 950 00000

TANKS 4.0 Report

Page 5 of 11

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

921-FT01:06 - Vertical Fixed Roof Tank Accident, Maryland

	Losses(ibs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Methyl alcohol	14.07	24.87	38.94				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	921-FT07 Accident Maryland Texas Eastern Transmission, L.P Vertical Fixed Roof Tank Methanol Storage Tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft): Avg. Liquid Height (ft): Volume (gallons): Turnovers Net Throughput(gallyr): Is Tank Heated (y/n):	19.42 10.00 19.42 9.71 11,400.00 12.00 136,800.00
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Good Gray/Medium Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.31 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Baltimore, Maryland (Avg Atmospheric Pressure = 14.67 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

921-FT07 - Vertical Fixed Roof Tank Accident, Maryland

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol	Liquid Mass	Vapor Mass	Mol	Basis for Vapor Pressure
fixture/Component	Month	Avg	Min.	Max	(deg F)	Avg	Min.	Max	Weight	Fract	Frect.	Weight	Calculations
lethyl alcohol	Jan	50.10	43,94	56,25	58 17	1.0482	0.8533	1 2803	32 0400			32.04	Option 2 A=7 897, B=1474 08, C=229 13
fethyl alcohol	Feb	52 77	45 24	60 29	58 17	1 1439	0.8914	1 4555	32 0400			32 04	Option 2 A=7 897 B=1474 08 C=229 13
ethyl alcohol	Mar	58 57	49.13	68.02	58.17	1.3786	1,0151	1.8482	32 0400			32.04	Option 2 A=7.897, B=1474.08, C=229.13
lethyl alcohol	Apr	64.42	53 10	75 75	58.17	1.6554	1.1563	2 3280	32 0400			32.04	Option 2 A=7.897 B=1474.08 C=229.13
lethyl alcohol	May	70.03	57.67	82 39	58 17	1,9640	1.3396	2 8211	32 0400			32 04	Option 2 A=7 897, B=1474 08 C=229 13
lethyl alcohol	Jun	74.98	61.82	88 15	58.17	2.2763	1.5268	3.3183	32 0400			32.04	Option 2 A=7.897, B=1474 08, C=229 13
lethyl alcohol	Jul	76.71	63 95	89 47	58 17	2 3944	1.6314	3.4419	32 0400			32 04	Option 2: A=7 897, B=1474 08, C=229 13
lethyl alcohol	Aug	74.88	63 30	86 46	58 17	2.2695	1,5990	3 1656	32 0400			32.04	Option 2 A=7.897, B=1474.08, C=229.13
fethyl alcohol	Sep	70.15	59 92	80 38	58 17	1,9713	1.4387	2 6636	32 0400			32 04	Option 2 A=7 897, B=1474 08, C=229 13
ethyl alcohol	Oct	63 11	54.27	71.95	58 17	1 5895	1 2010	2 0806	32 0400			32 04	Option 2: A=7.897, B=1474.08, C=229.13
fethyl alcohol	Nov	56 97	50.11	63.84	58 17	1.3101	1.0485	1.6258	32 0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13
fethyl alcohol	Dec	51.74	46.01	57.48	58 17	1 1064	0 9148	1.3315	32 0400			32 04	Option 2 A=7 897, B=1474 08, C=229 13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

921-FT07 - Vertical Fixed Roof Tank Accident, Maryland

Month	January	February	March	April	May	June	July	August	September	October	November	Decembe
Standing Losses (lb)	7.1425	8 6594	14 4846	20.1344	26.8465	32 0537	33,7142	28 9094	21.4275	15.4721	9.5623	6 972
Vapor Space Volume (cu ft)	770.8028	770 8028	770 8028	770 8028	770 8028	770 8028	770 8028	770 8028	770 8028	770 8028	770 8028	770 802
Vapor Density (lb/cu ft)	0.0061	0 0067	0 0079	0 0094	0.0111	0.0127	0 0133	0 0127	0.0111	0 0091	0.0076	0.0065
Vapor Space Expansion Factor	0 0752	0.0960	0.1311	0 1718	0.2052	0.2382	0.2377	0 2081	0 1689	0.1303	0 09 18	0.0712
Vented Vapor Saturation Factor	0 6471	0 6270	0 5824	0 5373	0 4947	0.4579	0 4453	0 4586	0 4937	0 5474	0 5947	0.6347
Tank Vapor Space Volume												
Vapor Space Volume (cu ft)	770 8028	770 8028	770.8028	770 8028	770 8028	770 8028	770 8028	770 8028	770 8028	770 8028	770 8028	770 8028
Tank Diameter (ft)	10 0000	10 0000	10 0000	10 0000	10 0000	10.0000	10 0000	10 0000	10 0000	10 0000	10 0000	10 0000
Vapor Space Outage (ft)	9 8142 19 4200	9 8142	9 8142 19 4200	9 8142	9 8142 19 4200	9 8142	9 81 42 19 4200	9 8142				
Tank Shell Height (ft)	9 7 100	9 7 1 0 0	9.7100	9.7100	9.7100	9 7 100	9.7100	9 7 1 0 0	9.7100	9.7100	9 7 100	9 7100
Average Liquid Height (ft) Roof Outage (ft)	0 1042	0 1042	0 1042	0 1042	0 1042	0 1042	0.1042	0 1042	0 1042	0.1042	0 1042	0 1042
Roof Outage (Cone Roof)												
Roof Outage (ft):	0 1042	0 1042	0 1042	0.1042	0.1042	0 1042	0.1042	0.1042	0.1042	0.1042	0 1042	0 1042
Roof Height (ft)	0 3125	0 3125	0.3125	0 3125	0.3125	0 3125	0 3125	0 3125	0 3125	0.3125	0 3125	0.3125
Roof Slope (ft/ft)	0 0625	0.0625	0 0625	0.0625	0 0625	0 0625	0.0625	0.0625	0.0625	0.0625	0 0625	0.0625
Shell Radius (ft):	5 0000	5 0000	5 0000	5 0000	5 0000	5 0000	5.0000	5 0000	5 0000	5 0000	5 0000	5 0000
Vapor Density												
Vapor Density (lb/cu ft)	0 0061	0.0067	0.0079	0.0094	0.0111	0.0127	0.0133	0.0127	0 0111	0.0091	0 0076	0.0065
Vapor Molecular Weight (lb/lb-mole)	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400
Vapor Pressure at Daily Average Liquid												
Surface Temperature (ps/a)	1 0482	1.1439	1 3786	1.6554	1.9640	2 2763	2.3944	2 2695	1.9713	1 5895	1 3101	1.1064
Daily Avg Liquid Surface Temp (deg R)	509.7690	512 4354	518 2439	524.0929	529 6996	534.6547	536,3790	534 5531	529 8236	522 7808	516 6417	511,4137
Oaily Average Ambient Temp (deg. F) Ideal Gas Constant R	31,8000	34 8000	44 0500	53,4000	63_4000	72 5000	77 0000	75 5500	68 4500	56 6000	46 8000	36 7000
(psia cuft / (lb-mol-deg R))	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10 731	10.731	10 731	10 731
Liquid Bulk Temperature (deg R)	517.8375	517 8375	517.8375	517.8375	517.8375	517.8375	517.8375	517.8375	517.8375	517.8375	517.8375	517.8375
Tank Paint Solar Absorptance (Shell):	0 6800	0 6800	0 6800	0.6800	0.6800	0.6800	0 6800	0 6800	0.6800	0 6800	0 6800	0 6800
Tank Paint Solar Absorptance (Roof)	0 6800	0 6800	0.6800	0 6800	0.6800	0.6800	0.6800	0 6800	0.6800	0 6800	0 6800	0 6800
Daily Total Solar Insulation												
Factor (Btu/sqft day)	657 7007	908 3440	1,231 9594	1,554 9403	1,779,5674	1,956 6041	1,909 0136	1,687,8764	1,389 0081	1,048 5774	708 4639	562 5197
Vapor Space Expansion Factor												
Vapor Space Expansion Factor	0.0752	0.0960	0.1311	0 1718	0.2052	0 2382	0 2377	0 2081	0 1689	0.1303	0.0918	0 0712
Daily Vapor Temperature Range (deg. R):	24 6186	30 1109	37 7845	45 3021	49 4350	52 6617	51 0356	46 3212	40 9187	35 3729	27 4572	22 9504
Daily Vapor Pressure Range (psia)	0.4271	0.5641	0.8330	1 1716	1,4815	1.7915	1.8105	1.5666	1.2250	0.8796	0.5771	0.4168
Breather Vent Press, Setting Range(psia)	0 0600	0 0600	0.0600	0 0600	0.0600	0 0600	0 0600	0 0600	0.0600	0 0600	0 0600	0.0600
Vapor Pressure at Daily Average Liquid	1.0482	1 1439	1.3786	1.6554	1.9640	2 2763	2 3944	2 2695	1.9713	1.5895	1 3101	1.1064
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	1.0402	11439	1.3700	1.0334	1.9040	2 2103	2,3344	2 2093	1 37 13	1 3093	1 3101	1,1004
Surface Temperature (psia)	0.8533	0 8914	1.0151	1.1563	1.3396	1.5268	1.6314	1.5990	1 4387	1 2010	1.0485	0 9148
Vapor Pressure at Daily Maximum Liquid			47.			72						
Surface Temperature (psia):	1.2803	1.4555	1.8482	2 3280	2 8211	3 3 1 8 3	3.4419	3 1656	2 6636	2.0806	1 6256	1.3315
Daily Avg Liquid Surface Temp (deg R)	509 7690	512 4354	518 2439	524 0929	529 6996	534 6547	536,3790	534 5531	529 8236	522,7808	516 6417	511,4137
Daily Min. Liquid Surface Temp. (deg R)	503 6143	504 9077	508 7978	512 7674	517 3409	521,4892	523.6201	522 9728	519 5939	513 9375	509 7774	505 6761
Daily Max. Liquid Surface Temp. (deg R):	515 9236	519 9631	527,6900	535.4185	542 0584	547.8201	549,1379	546 1334	540 0532	531 6240	523 5060	517 1512
Daily Ambient Temp Range (deg R)	16 8000	17 8000	19 9000	21 8000	21 6000	21,4000	20,4000	19 7000	20 1000	21 4000	19 4000	17,0000
Vented Vapor Saturation Factor												
Vented Vapor Saturation Factor	0.6471	0 6270	0 5824	0 5373	0.4947	0 4579	0 4453	0 4586	0.4937	0.5474	0.5947	0 6347
Vapor Pressure at Daily Average Liquid									4.87			
Surface Temperature (psia)	1 0482	1.1439	1.3786	1,6554	1 9640	2 2763	2 3944	2 2695	1,9713	1 5895	1.3101	1,1064
Vapor Space Outage (ft)	9.8142	98142	9 8142	9 8142	9.8142	9.8142	9.8142	9.8142	9.8142	98142	9 8142	9 8142
Working Losses (lb)	9.1160	9,9481	11.9889	14 3961	17 0798	19 7956	20.8231	19 7365	17 1436	13,8229	11 3930	9 6218
Vapor Molecular Weight (ibilib-mole)	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400	32 0400
Vapor Pressure at Daily Average Liquid												

file://C:\Program Files\Tanks409d\summarydisplay.htm

TANKS 4.0 Report Page 9 of 11

Surface Temperature (psia):	1.0482	1,1439	1.3786	1.6554	1.9640	2 2763	2 3944	2 2695	1.9713	1.5895	1,3101	1.1064
Net Throughput (gal/mo.)	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000
Annual Turnovers	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12 0000	12,0000	12 0000
Turnover Factor	1.0000	1.0000	1.0000	1.0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Maximum Liquid Volume (gal)	11,400,0000	11,400,0000	11,400 0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400,0000	11,400.0000	11,400,0000	11,400,0000
Maximum Liquid Height (ft)	19.4200	19 4200	19.4200	19.4200	19.4200	19 4200	19.4200	19 4200	19 4200	19 4200	19.4200	19.4200
Tank Diameter (ft):	10,0000	10,0000	10 0000	10 0000	10.0000	10 0000	10.0000	10.0000	10 0000	10.0000	10.0000	10.0000
Working Loss Product Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1 0000	1.0000
Total Losses (Ib)	16.2585	18 8075	26 4735	34 5306	43 9263	51 8494	54 5373	48 6458	38 5711	29 2051	20.9554	16 5043

Page 10 of 11

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

921-FT07 - Vertical Fixed Roof Tank Accident, Maryland

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Methyl alcohol	174.87	225 38	400.24

TANKS 4.0 Report

Page 11 of 11

TANKS 4.0.9d Emissions Report - Detail Format Total Emissions Summaries - All Tanks in Report

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

Losses (lbs				Tank Identification
38.9	Accident, Maryland	Vertical Fixed Roof Tank	Texas Eastern Transmission, L.P.	921-FT01:06
400 2	Accident, Maryland	Vertical Fixed Roof Tank	Texas Eastern Transmission, L.P.	921-FT07
439.1			ks:	Total Emissions for all Ta

Columbia Pipeline Group

700 Louisiana Street, 700, Houston, Texas, USA 77002 Tel: 832.320.5895 Cell: 832.954.4875 mili_patel@transcanada.com

Via Email brian.hug@maryland.gov

October 29, 2018

Brian Hug Program Manager, Air Quality Planning Program, Air and Radiation 1800 Washington Boulevard Baltimore, MD 21230

Re: EPA Oil & Natural Gas Control Techniques Guidelines (CTG)

Rutledge Compressor Station

Tank Emissions

Dear Mr. Mosier:

TransCanada's Columbia Pipeline Group operates the Rutledge Compressor Station in Fallston, Maryland. The site has two (2) 1,000-gallon Pipeline Liquids Tanks. Attached are VOC fugitive emissions calculations for the tanks. Both tanks are below 6 tons per year VOC and therefore, not subject to the EPA Oil & Natural Gas Industry CTG. The tanks are not equipped with a control device or vapor recovery unit.

Should you have any questions or require additional information, you may contact me at (832) 320-5895 or mili patel@transcanada.com.

Sincerely,

Mili R. Patel

Senior Environmental Engineer

cc: via email with attachments

Randy Mosier, Division Chief, Air Regulations Division
Frank Courtright, Program Manager, Air Quality Compliance Program
John Artes, Regulatory & Compliance Engineer, Air Quality Compliance Program
Joshua Shodeinde, Regulatory & Compliance Engineer, Regulations Division
Christopher Cripps, EPA Region 3

1,000 gal Horizontal Fixed Roof Pipeline Liquids Tank

Source ID:

A01, A02

		Emissions	(Per Tank)		
Month	Pollutant	lb/yr	tons		
January	VOC	0.76	3.82E-04		
February	voc	0.75	3.75E-04		
March	voc	0.90	4.51E-04		
April	VOC	0.95	4.77E-04		
May	VOC	1.00	5.00E-04		
June	voc	0.98	4.91E-04		
July	voc	0.99	4.94E-04		
August	VOC	0.94	4.72E-04		
September	voc	0.89	4.43E-04		
October	VOC	0.90	4.51E-04		
November	voc	0.80	3.98E-04		
December	voc	0.75	3.74E-04		
Total	VOC	10.61	5.31E-03		

Tank Information:		
Tank Length (feet)		11.0
Tank Diameter (feet)		4.0
Number of Turnovers per year per tank		1.5
Type of Tank:		Horizontal Fixed Roof
Deck Characteristics	Tank Construction:	Welded
Location	Nearest City:	Baltimore, MD
Tank Solar absorptance (α):	Table 7.1-6	0.17

Material Information (Per 1	Fank):	
Material		Pipeline Liquids
Throughput	Number of Turnovers:	1.5
	Annual Throughput (gal/yr):	1,500
	January Throughput (gal/month):	125
	February Throughput (gal/month):	125
	March Throughput (gal/month):	125
	April Throughput (gal/month):	125
	May Throughput (gal/month):	125
	June Throughput (gal/month):	125
	July Throughput (gal/month):	125
	August Throughput (gal/month):	125
	September Throughput (gal/month):	125
	October Throughput (gal/month):	125
	November Throughput (gal/month):	125
	December Throughput (gal/month):	125

Compound	Molecular Weight (lb/lb-mol)
Benzene	78.11
Ethylbenzene	106.17
Heptane	100.2
Nonane	128.26
Toluene	92.13
Xylene	106.17

Other Information:		
Constants	"F to "R conversion:	459.67
mmHg to psia conversion (psia/mmHg):		0.019337
	AP-42 Defined Material (from	Table 7.1-3, 7.1-5):
VP Calculation Method:		Linear Interpolation
Vapor Molecular Weight (lb/lb-mole):		94.59
Daily Total Solar Insolation Factor (I), (Btu/(ft² day)):	1284
Ideal Gas Constant, (psia ft3/lb-mole °R):		10.73

1,000 gal Horizontal Fixed Roof Pipeline Liquids Tank

Meteorological Data
The daily maximum ambient temperature (TAX), daily minimum ambient temperature (TAN), and daily total solar insolation factor (I) for each month for the specified city were taken from the proposed revisions to AP-42 Chapter 7, Table 7.1-7

City:	Baltimore, MD
Annual Average Atmospheric Pressure (psia):	14.68
Annual Average Wind Speed (mph):	8.7

	Daily Maximum Ambient Temperature	Daily Minimum Ambient Temperature	Daily Total Solar Insolation Factor
	T _{AX}	T _{AN}	1,
Month	(°F)	(°F)	(Btu/ft ² d)
Jan.	40.3	23.4	666
Feb.	43.7	25.9	919
Mar.	54.0	34.2	1236
Apr.	64.2	42.4	1554
May	74.1	52.5	1775
June	83.1	61.9	1966
July	87.3	66.7	1902
Aug.	85.5	65.7	1680
Sept.	78.4	58.5	1395
Oct.	67.3	45.9	1046
Nov.	56.5	37.0	698
Dec.	45.1	28.2	571

Calculated Tank Temperature Data

The daily average ambient temperature (T_{AA}) and bulk liquid temperature (T_B) were calculated for each month using equations from AP-42, Chapter 7, dated 11/06. If product is not at ambient temperature, then the bulk temperature is set equal to the user entered temperature information above.

$T_{AA} = \left(\frac{T_{AX} + T_{AN}}{2}\right)$
$T_B = T_{AA} + 6\alpha - 1$

Equation 1-27	
Equation 4.20	

where:	
T _{AA} =	daily average ambient temperature, °R
T _B =	liquid bulk temperature, °R
T _{AX} =	daily maximum ambient temperature, °R
T _{AN} =	daily minimum ambient temperature, °R
α=	tank paint solar absorptance, dimensionless

		Daily Maximum Ambient Temperature T _{AX}	Daily Minimum Ambient Temperature	Daily Average Am	bient Temperature	Liquid Bulk To	emperature
Month	Days	°R	°R	°R	°F	°R	°F
Jan.	31	499.97	483.07	491.52	31.85	491.54	31.87
Feb.	28	503.37	485.57	494.47	34.80	494.49	34.82
Mar.	31	513.67	493.87	503.77	44.10	503.79	44.12
Apr.	30	523.87	502.07	512.97	53.30	512.99	53.32
May	31	533.77	512.17	522.97	63.30	522.99	63.32
June	30	542.77	521.57	532.17	72.50	532.19	72.52
July	31	546.97	526.37	536.67	77.00	536.69	77.02
Aug.	31	545.17	525.37	535.27	75.60	535.29	75.62
Sept.	30	538.07	518.17	528.12	68.45	528.14	68.47
Oct.	31	526.97	505.57	516.27	56.60	516.29	56.62
Nov.	30	516.17	496.67	506.42	46.75	506.44	46.77
Dec	31	504 77	487 87	496.32	36 65	496.34	36 67

Total Losses from Fixed Roof Tanks	
$L_{T=}L_{S}+L_{W}$	Equation 1-1

L_T = total loss, lb L_S = standing storage losses, lb

L_W = working losses, lb

	Total Losses, L _T	
January	0.76	lb/month
February	0.75	lb/month
March	0.90	lb/month
April	0.95	lb/month
May	1.00	lb/month
June	0.98	lb/month
July	0.99	lb/month
August	0.94	lb/month
September	0.89	lb/month
October	0.90	lb/month
November	0.80	lb/month
December	0.75	lb/month
Annual Total	10.61	lb/yr

1,000 gal Horizontal Fixed Roof Pipeline Liquids Tank

Source ID:

Standing Storage Loss

Equation 1-2 $L_S = E_M V_V W_V K_E K_S$

where:

L_S = standing storage loss, lb/month

V_V = vapor space volume, ft^a

W_V = stock vapor density, lb/ft^a

K_E = vapor space expansion factor, dimensionless

K_S = vented vapor saturation factor, dimensionless E_M = the number of daily events in month, (month)⁻¹

Standing Storage Loss, L _S			
January	0.65	lb/month	
February	0.64	lb/month	
March	0.79	lb/month	
April	0.84	lb/month	
May	0.88	lb/month	
June	0.86	lb/month	
July	0.86	lb/month	
August	0.82	lb/month	
September	0.77	lb/month	
October	0.78	lb/month	
November	0.68	lb/month	
December	0.64	lb/month	

Tank Vapor Space Volume

 $V_V = \left(\frac{\pi}{4} D_E^2\right) H_{VO}$

Equation 1-3*

where:

V_V = vapor space volume, ft³

D_E = effective tank diameter, ft H_{VO} = vapor space outage, ft

*D_E used instead of D for horizontal fixed roof tanks (7.1-14)

D _E =	7.48	ft
H _{VO} =	1.57	ft

V_V =

Vapor Space Outage

 $H_{VO} = \frac{H_E}{2}$ * For horizontal tanks (7.1-11; 7.1-14)

where:

H_E = effective height, ft

H_{VO} = vapor space outage, ft

Effective Height

Equation 1-14 $H_E = \frac{\pi}{4} D$

1.57 H_{VO} = 3.14

69.12

D = tank diameter, ft

Effective Tank Diameter

Equation 1-13 $D_E = \sqrt{\frac{LD}{\frac{\pi}{4}}}$

where:

D_E = tank diameter, ft

L = length of the horizontal tank, ft
D = diameter of a vertical cross-section of the horizontal tank, ft

where:

Vapor Space Expansion Factor

$V = \Delta T_V + \Delta P_V - \Delta P_B$	Equation 1-7*
$K_{E=} \frac{\Delta T_V}{T_{LA}} + \frac{\Delta P_V - \Delta P_B}{P_A - P_{VA}} > 0$	*∆ P _B =0 when roof tank is bolted or riveted

where:

K_E = vapor space expansion factor, dimensionless

ΔT_V = daily vapor temperature range, °R

ΔP_V = daily vapor pressure range, psi

ΔP_B = breather vent pressure setting range, psi T_{LA} = daily average liquid surface temperature, °R

P_A = atmospheric pressure, psia

P_{VA} = vapor pressure at daily average liquid surface temperature, psia

Vapor Space Expansion Factor, K _E			
January	0.04		
February	0.05		
March	0.05		
April	0.06		
May	0.06		
June	0.06		
July	0.06		
August	0.06		
September	0.05		
October	0.05		
November	0.05		
December	0.04		

D _E =	7.48	ft
L=	11.00	ft

1,000 gal Horizontal Fixed Roof Pipeline Liquids Tank

Source ID:

Daily Vapor Temperature Range

 $\Delta T_{V=} 0.72 \Delta T_A + 0.028 \alpha I$

Equation 1-8

where:

ΔT_V = daily vapor temperature range, °R

ΔT_A = daily ambient temperature range, °R α = tank paint solar absorptance, dimensionless I = daily total solar insolation factor, Btu/ft² d

Daily Vapor Temperature Range, ΔT _V (°R)		
January	15.34	
February	17.19	
March	20.14	
April	23.09	
May	24.00	
June	24.62	
July	23.89	
August	22.25	
September	20.97	
October	20.39	
November	17.36	
December	14.89	

Daily Ambient Temperature Range

$\Delta T_{\star} = T_{\star v} - T_{\star v}$	Equation 1-1

where:

ΔT_A = daily ambient temperature range, °R

T_{AX} = daily maximum ambient temperature, °R

T_{AN} = daily minimum ambient temperature, °R

Daily Ambient Temperature Range, ∆T _A (°R)		
January	16.90	
February	17.80	
March	19.80	
April	21.80	
May	21.60	
June	21.20	
July	20.60	
August	19.80	
September	19.90	
October	21.40	
November	19.50	
December	16.90	

Daily Vapor Pressure Range

$\Delta P_V = P_{VV} - P_{VN}$	Equation 1-9

where:

ΔP_V = daily vapor pressure range, psi

P_{VX} = vapor pressure at daily maximum liquid surface temperature, psia

P_{VN} = vapor pressure at daily minimum liquid surface temperature, psia

$T_{LX} = T_{LA} + 0.25 \Delta T_V$	Figur
LX LA · · · · · · · · ·	
$T_{LN} = T_{LA} - 0.25 \Delta T_V$	

where:

T_{LX} = daily maximum liquid surface temperature, °R

T_{LA} = daily average liquid surface temperature, °R

ΔT_V = daily vapor temperature range, °R

T_{LN} = daily minimum liquid surface temperature, °R

	ΔP _V (psi)	P _{VX} (psia)	P _{VN} (psia)
January	0.1854	0.4996	0.3142
February	0.1873	0.5034	0.3161
March	0.1921	0.5139	0.3218
April	0.1968	0.5243	0.3275
May	0.2009	0.5349	0.3340
June	0.2046	0.5446	0.3400
July	0.2059	0.5489	0.3430
August	0.2046	0.5467	0.3421
September	0.2013	0.5388	0.3375
October	0.1966	0.5263	0.3297
November	0.1916	0.5151	0.3235
December	0.1869	0.5042	0.3173

True Vapor Pressure of Organic Liquids

log B = A (B)	Equation 1-25*
$\log P_{VA} = A - (\frac{L}{T_{LA} + C})$	

where:

A = constant in vapor pressure equation (Table 7.1-5)
B = constant in vapor pressure equation (Table 7.1-5), °C
C = constant in vapor pressure equation (Table 7.1-5), °C

T_{LA} = daily average liquid surface temperature, °C*

P_{VA} = vapor pressure at average liquid surface temperature, mm Hg

*Note that temperature is in °C instead of °R, and that vapor pressure is in mm Hg instead of psia

	P _{VA} (psia)
January	0.3977
February	0.4004
March	0.4082
April	0.4160
May	0.4243
June	0.4320
July	0.4355
August	0.4342
September	0.4281
October	0.4181
November	0.4098
December	0.4015

1,000 gal Horizontal Fixed Roof Pipeline Liquids Tank

Vented Vapor Saturation Factor

v _ 1	Equation 1-20
$\Lambda_S = \frac{1+0.053P_{VA}H_{VO}}{1+0.053P_{VA}H_{VO}}$	

where:

K_S = vented vapor saturation factor, dimensionless

P_{VA} = vapor pressure at daily average liquid surface temperature, psia

H_{VO} = vapor space outage, ft

0.053 = constant, (psia-ft)⁻¹

Vented Vapor Saturation Factor, K _S		
January	0.97	
February	0.97	
March	0.97	
April	0.97	
May	0.97	
June	0.97	
July	0.97	
August	0.97	
September	0.97	
October	0.97	
November	0.97	
December	0.97	

Stock Vapor Density

$M_V P_{VA}$	Equation 1-21
$W_V = {RT_{LA}}$	

W_V = vapor density, lb/ft^s

 W_1 = vapor localisty.uim W_2 = vapor localisty.librilbrinole W_2 = vapor localisty librilbrinole W_3 = W_4 = vapor pressure at daily average liquid surface temperature, psia W_4 = valor localisty average liquid surface temperature, W_4 = valor W_4 =

Stock Vapor	Density, W _V (lb/ft ³)
January	0.007119
February	0.007120
March	0.007119
April	0.007119
May	0.007119
June	0.007120
July	0.007119
August	0.007120
September	0.007120
October	0.007119
November	0.007120

Daily Average Liquid Surface Temperature

$T_{r,s} = 0.44T_{s,s} + 0.56T_{r,s} + 0.0079 \alpha$	Equation 1-26

where:

T_{LA} = daily average liquid surface temperature, °R

T_{AA} = daily average ambient temperature, °R

T_B = liquid bulk temperature, °R

α = tank paint solar absorptance, dimensionless I = daily total solar insolation factor, Btu/ft² d

Daily Average Liquid Surface Temperature, T _{LA} (°R)	
January	492.43
February	495.72
March	505.44
April	515.07
May	525.37
June	534.82
July	539.24
August	537.54
September	530.00
October	517.69
November	507.37
December	497.10

1,000 gal Horizontal Fixed Roof Pipeline Liquids Tank

Source ID:

Daily Average Ambient Temperature

$T = (T_{AX} + T_{AN})$	Equation 1-27
$I_{AA} = \left(\frac{\dots}{2}\right)$	

T _{AA} = daily average ambient temperature, °R
T _{AX} = daily maximum ambient temperature, °R
T _{AN} = daily minimum ambient temperature °R

Daily Average Ambient Temperature, T _{AA} (°R)	
January	491.52
February	494.47
March	503.77
April	512.97
May	522.97
June	532.17
July	536.67
August	535.27
September	528.12
October	516.27
November	506.42
December	496.32

Liquid Bulk Temperature

$T_B = T_{AA} + 6\alpha - 1$	Equation 1-28
- B - AA	

where:

T _B = liquid bulk temperature, °R
T _{AA} = daily average ambient temperature, °R
α = tank paint solar absorptance, dimensionless
a = tank paint solar absorptance, dimensionless

Liquid Bulk Temperature, T _B (°R)	
January	491.54
February	494.49
March	503.79
April	512.99
May	522.99
June	532.19
July	536.69
August	535.29
September	528.14
October	516.29
November	506.44
December	106.31

Working Loss

$L_W = 0.0010 \ M_V \ P_{VA} \ Q \ K_N \ K_P$	Equation 1-29

L_W = working loss, lb

M_V = vapor molecular weight, lb/lb-mole

 P_{VA} = vapor pressure at daily average liquid surface temperature, psia Q = annual net throughput (tank capacity [bbi] times annual turnover rate), bbl K_N = working loss turnover (saturation) factor, dimensionless*

N_N = working loss uniform (saturation) radical, unimarisonness (7.1-18) **
**umowers >38 = (180 + N)|6N here N = # of turnoverslyr, dimensionless (7.1-18) **
**umowers >38 = 1 (7.1-18) **
In for voking loss product factor for fixed roof tanks, dimensionless

**I for vokalie organic liquids, 0.75 for crude oils (7.1-19)
N = number of turnovers per year, dimensionless

 $N = \frac{5.614Q}{V_{LX}}$

$V_{} = \frac{\pi}{2} D^2 H_{}$	Equation 1-31

where:

$$\begin{split} &V_{LX}= \text{ tank maximum liquid volume, ft}^3\\ &D= \text{ diameter, ft}\\ &H_{LX}= \text{maximum liquid height, ft}^*\\ &\text{*Length for horizontal tank} \end{split}$$

Working Loss, L _W (lb)	
January	0.11
February	0.11
March	0.11
April	0.12
May	0.12
June	0.12
July	0.12
August	0.12
September	0.12
October	0.12
November	0.12
December	0.11

Q =	35.72	bbl/yr
N =	1	
$V_{I,X} =$	138	ft³
D =	4.0	ft
H. v. =	11	ft

Larry Hogan, Governor Boyd K. Rutherford, Lt. Governor

Ben Grumbles, Secretary Horacio Tablada, Deputy Secretary

October 5, 2018

Mili Patel
USGO Environmental – Air Permitting & Compliance
700 Louisiana Street, Suite 14104E
Houston, TX 77002-2700
Telephone 832.320.5895
Mili_Patel@transcanada.com

Dear Ms. Mili Patel:

The Environmental Protection Agency (EPA) finalized Control Techniques Guidelines (CTG) for the Oil and Natural Gas Industry (EPA-453/B-16-001) in October 2016. The Federal Clean Air Act (CAA) specifies that State Implementation Plans (SIPs) for nonattainment areas must include "reasonably available control measures" (RACM), including "reasonably available control technology" (RACT), for sources of emissions contributing to ozone formation. The EPA Oil and Natural Gas Industry CTG provides the State guidelines to address volatile organic compounds (VOC) emissions reductions.

The Maryland Department of the Environment (MDE) is conducting a review of potential sources subject to the requirements of the Oil and Natural Gas Industry CTG noted. MDE is reaching out to facilities with-in the oil and gas industry of the State. MDE is requesting a review of each Maryland facility to determine if the facility has a storage vessel that meets the definition and applicability of the CTG. For reference, the CTG Section 4.1 APPLICABILITY states "For purposes of this CTG, the emissions and emission controls discussed herein would apply to a tank or other vessel in the oil and natural gas industry that contains an accumulation of crude oil, condensate, intermediate hydrocarbon liquids, or produced water, and that is constructed primarily of non-earthen materials (such as wood, concrete, steel, fiberglass, or plastic) that provide structural support." EPA's applicability for RACT recommendations are for individual storage vessels with a potential to emit greater than or equal to 6 tons per year VOC.

Please provide a list of all tanks at the Transcanada Rutledge Maryland compression station site including the tank contents and size, a calculation that shows the VOC fugitive emissions in tons per year, and whether or not the tank has a control device or vapor recovery unit (VRU). The calculations provided should follow the CTG guidance

Oil and Gas CTG Page 2

under Section 4.0 STORAGE VESSELS or an equivalent emissions evaluation process such as the "Upstream Oil and Gas Storage Tanks Project Flash Emissions Models Evaluation" by Texas Commission on Environmental Quality, 2009. The information provided will assist MDE in the determination of applicability with-in the State. MDE would like to receive this information by November 1, 2018.

Your assistance with this survey is appreciated. Please contact myself or Mr. John Artes at 410-537-4232 if you have need for any further information.

Sincerely,

Brian Hug, Program Manager, Air Quality Planning Program, Air and Radiation Administration

Attachment

cc: Randy Mosier, Division Chief, Air Regulations Division
Frank Courtright, Program Manager, Air Quality Compliance Program
John Artes, Regulatory & Compliance Engineer, Air Quality Compliance Program
Joshua Shodeinde, Regulatory & Compliance Engineer, Regulations Division
Christopher Cripps, EPA Region 3

Carolyn A Jones -MDE- <carolyna.jones@maryland.gov>

Re: Oil and Gas CTG

1 message

Randy Mosier -MDE- <randy.mosier@maryland.gov>

Tue, Jan 21, 2020 at 8:29 AM

To: Carolyn A Jones -MDE- <carolyna.jones@maryland.gov>

Cc: John Artes -MDE- <john.artes@maryland.gov>, Joshua Shodeinde -MDE- <joshua.shodeinde@maryland.gov>

Williams response was just an email...

----- Forwarded message ------

From: Lutz, Richard < Richard.C.Lutz@williams.com>

Date: Tue, May 7, 2019 at 7:24 AM

Subject: RE: [EXTERNAL] Re: Oil and Natural Gas CTG Letter To: Joshua Shodeinde -MDE- <joshua.shodeinde@maryland.gov>

Cc: Rich, Tim O <Tim.O.Rich@williams.com>, Chenaux, Nathan <Nathan.Chenaux@williams.com>, Chapa, Cecilia

<Cecilia.Chapa@williams.com>

Joshua,

Thank you for forwarding the Oil and Natural Gas CTG Letter. I apologize for the delay in our response as Cecilia Chapa is on extended medical leave. There are four storage tanks at the facility that contain natural gas condensate. Transco typically utilizes TANKS 4.0.9d to evaluate tank emissions. The results of the TANKS runs are summarized in the table below:

Tank Contents	Volume (gallons)	VOC (tons/year)
Natural Gas Condensate	10,022	0.35
Natural Gas Condensate	8,820	0.24
Natural Gas Condensate	800 (portable tank)	0.03
Natural Gas Condensate	85	0.04

None of the tanks are equipped with a control device or vapor recovery unit. None of the tanks have a potential to emit greater than or equal to 6 tons per year VOC.

I can send you a more formal written response but wanted to provide you with this information as quickly as possible.

Please let me know if you require additional information.

Respectfully,

Rich Lutz

Environmental Specialist

Williams

Atlantic – Gulf Operating Area

345 Greenbrier Drive

Charlottesville, VA 22901

Randy E. Mosier

Chief
Air Quality Regulations Division
Maryland Department of the Environment
1800 Washington Boulevard
Baltimore, Maryland 21230
randy.mosier@maryland.gov
(410) 537-4488 (O)

Website | Facebook | Twitter

SECTION 2a - Public Hearing Notices

General Notices

Notice of ADA Compliance

The State of Maryland is committed to ensuring that individuals with disabilities are able to fully participate in public meetings. Anyone planning to attend a meeting announced below who wishes to receive auxiliary aids, services, or accommodations is invited to contact the agency representative at least 48 hours in advance, at the telephone number listed in the notice or through Maryland Relay.

COMPTROLLER OF THE TREASURY/ADMINISTRATION AND FINANCE

Subject: Announcement

Add'l. Info: Pursuant to State Finance and Procurement Article, §8-128, Annotated Code of Maryland, which provides that, if within 2 years after the date of an authorization of State debt no part of the project or program for which the enabling act authorized the State debt is under contract and the Board of Public Works has not committed money for any part of the project or program, the authorization terminates unless:

(1) The enabling act provides otherwise; or

(2) In an emergency, the Board unanimously grants a temporary exception for a period of 1 year.

Therefore, with Board of Public Works approval of items, #11B MDE Secretary's Agenda Item, dated June 19, 2019, we submit for publication the following cancellation of bond authorization in accordance with the above-referenced articles:

Chesapeake Bay Water Quality Biological Nutrient Removal Program:

Ch. 424, Acts of 2013; \$59,798; authorized the funds to provide no more than \$29,200,000 in grants and projects to remove nutrients at publicly owned sewage treatment works.

Contact: Re Rentuma (410) 260-7909 [20-11-15]

STATE COLLECTION AGENCY LICENSING BOARD

Subject: Public Meeting

Date and Time: June 8, 2020, 2 — 3 p.m. **Place**: Via videoconference; see details below

Add'l. Info: In response to Governor Hogan's Executive Order Number 20-03-30-01 (Stay-at-Home Order) and other applicable emergency orders, this meeting will be held via videoconference. Directions for access will be provided on the State Collection Agency Licensing Board website, http://www.labor.maryland.gov/finance/col lagboard.shtml, prior to the meeting.

Contact: Devki Dave (410) 230-6019

[20-11-20]

MARYLAND CORRECTIONAL ENTERPRISES CUSTOMER COUNCIL MEETING

Subject: Public Meeting

Dates and Times: May 27, 2020, 11:30 a.m. — 12 p.m.; July 28, 2020: 9:30 — 10:30 a.m.; October 27, 2020: 9:30 — 10:30 a.m.

Place: Via conference call; see details below

Add'l. Info: MCE Customer Council Meetings will be held via conference call during the COVID-19 crisis. Further meeting announcements will be made available on our website: www.mce.md.gov.

Contact: Ashley Lohr (410) 540-5405

[20-11-11]

MARYLAND CORRECTIONAL ENTERPRISES MANAGEMENT COUNCIL MEETING

Subject: Public Meeting

Dates and Times: June 9, 2020, 9 a.m. — 11 a.m.; September 8, 2020: 9:00 — 11:00 a.m.; December 8, 2020: 9:00 — 11:00 a.m.

Place: Via conference call; see details below

Add'l. Info: MCE Management Council Meetings will be held via conference call during the COVID-19 crisis. Further meeting announcements will be made available on our website: www.mce.md.gov.

Contact: Ashley Lohr (410) 540-5405 [20-11-12]

EMERGENCY MEDICAL SERVICES ADVISORY COUNCIL

Subject: Public Meeting

Date and Time: June 4, 2020, 1 — 3 p.m. **Place:** 653 W. Pratt St., Ste. 212, Baltimore, MD

Add'l. Info: The State Emergency Medical Services Advisory Council (SEMSAC) meets regularly the 1st Thursday of each month.

Contact: E. Fremont Magee (410) 706-8531

[20-11-04]

EMERGENCY MEDICAL SERVICES BOARD

Subject: Public Meeting

Date and Time: June 9, 2020, 9 a.m. — 11

p.m

Place: 653 W. Pratt St., Ste. 212,

Baltimore, MD

Add'l. Info: The State Emergency Medical Services Board (EMS Board) meets regularly on the 2nd Tuesday of each month. Part of the meeting may include a closed session.

Contact: E. Fremont Magee (410) 706-8531

[20-11-03]

DEPARTMENT OF THE ENVIRONMENT/AIR AND RADIATION ADMINISTRATION

Subject: Public Hearing on Air Quality Plans

Date and Time: June 4, 2020, 10 — 10:30 a m

Place: Join the virtual hearing at: https://global.gotomeeting.com/join/37459 0157 Or, dial in using your phone: 1 877 309 2073 (Toll Free). Access Code: 374-590-157, MD

Add'l. Info: The Maryland Department of the Environment (MDE) gives notice of a virtual public hearing concerning the Oil and Gas CTG Negative Declaration.

A virtual public hearing will be held on: Thursday, June 4, 2020 — Virtual Hearing — 10 a.m.

Due to the ongoing COVID-19 pandemic, all public hearings are being held virtually in accordance with Maryland Executive Orders 20-03-19-01 and 20-03-30-01, which restrict public gatherings and enact a stay-at-home-order, respectively.

The State of Maryland is adopting a negative declaration documenting that the State has no facilities subject to the requirements of the Oil and Natural Gas Industry CTG, EPA-453/B-16001 to address volatile organic compounds (VOC) emissions reductions.

The public hearing will be held on Thursday, June 4, 2020, at 10 a.m. Information regarding the virtual hearing can be found below and on the MDE Air Quality Planning page at:

https://mde.maryland.gov/programs/Air/ AirQualityPlanning/Pages/index.aspx Join the hearing at:

https://global.gotomeeting.com/join/374 590157. Or, dial in using your phone: 1-877-309-2073 (Toll Free). Access Code: 374-590-157

Comments may be sent to Lisa Nissley, Maryland Department of the Environment, Air and Radiation Administration, 1800 Washington Boulevard, Suite 730, Baltimore, MD 21230, or emailed to lisa.nissley@maryland.gov. Comments must be received by 5 p.m. on Thursday, June 11, 2020, or be submitted verbally during the hearing.

The proposed plan document is available on the MDE website at:

http://mde.maryland.gov/programs/Air/AirQualityPlanning/Pages/index.aspx

The public hearing will be held as required by federal law (Clean Air Act at 42 U.S.C. 7410 (a) and 40 CFR 51.102).

After consideration of comments received, the plan will be finalized and submitted to the United States Environmental Protection Agency (EPA) for approval.

TTY users should contact the Department through the Maryland Relay Service at 1-800-735-2258.

For more information, contact Lisa Nissley via email at lisa.nissley@maryland.gov.

Contact: Lisa Nissley (410) 537-3812

[20-11-13]

MARYLAND DEPARTMENT OF HEALTH/OFFICE OF HEALTH SERVICES

Subject: 1915(b)(4) Waiver Renewal Fee for Services Selective Contracting for Mental Health Targeted Case Management: Care Coordination for Adults and Mental Health Targeted Case Management: Care Coordination for Children and Youth — Request for Public Comment

Add'l. Info: The Maryland Department of Health (MDH) is renewing it's 1915(b)(4) waiver for fee for service (FSS) selective contracting for two mental health targeted case management (TCM) programs titled: Mental Health TCM: Care Coordination for Adults and Mental Health TCM: Care Coordination for Children and Youth. Under the 1915(b)(4) of the Social Security Act, Maryland has waived the freedom of choice of providers for TCM services. Selective contracting for TCM providers is completed Statewide by the Local Behavioral Health Authorities (LBHAs) acting as designees for MDH. The LBHAs select TCM providers for their jurisdictions

through a competitive procurement process which results in contracts with one or more service providers based on the individual characteristics and needs of each jurisdiction.

The waiver renewal is requested for a period of 5 years beginning October 1, 2019, and ending September 30, 2024. Approval of this waiver renewal will have an impact on the Intensive Services for Children and Youth, 1915(i) state plan amendment by expanding eligibility to individuals who would be eligible for home and community-based services under one of the State's existing 1915(c) waivers and whose income does not exceed 300% of the supplemental security income (SSI) benefit rate.

The full draft waiver renewal and independent assessment can be found on the MDH website using the following link:

https://mmcp.health.maryland.gov/Pages/1915(i)-Intensive-Behavioral-Health-Services-for-Children,-Youth-and-Families.aspx.

Written comments may be sent to Rebecca Raggio, Medicaid Behavioral Health, MDH, 201 W. Preston St.,2nd floor, Baltimore, MD 21201, or fax to (410) 333-5425, or call (410) 767-1687, or email Rebecca.Raggio@maryland.gov or mdh.mabehavioralhealth@maryland.gov from May 22, 2020 to June 22, 2020.

Contact: Katia Fortune (410) 767-4267 [20-11-19]

MARYLAND STATE LOTTERY AND GAMING CONTROL COMMISSION

Subject: Public Meeting

Date and Time: May 28, 2020, 10 a.m. — 12 p.m.

Place: t/b/d — See Additional Information, Baltimore, MD

Add'l. Info: Due to COVID-19, please check the Lottery Agency website closer to meeting date for information about whether the meeting will be held by audio conference or in person.

Contact: Kathy Lingo (410) 230-3135 [20-11-07]

MARYLAND HEALTH CARE COMMISSION

Subject: Public Meeting

Date and Time: June 18, 2020, 1 — 4 p.m. **Place:** 4160 Patterson Ave., Rm. 100,

Baltimore, MD

Contact: Valerie Wooding (410) 764-3570 [20-11-01]

MARYLAND HEALTH CARE COMMISSION

Subject: Receipt of Application

Add'l. Info: On May 6, 2020, the Maryland Health Care Commission (MHCC) received a Certificate of Need application submitted by:

CMDS Residential, Inc. — Matter No. 20-24-2441

CMDS Residential is a private, forprofit, 104-bed long-term care residential facility that provides inpatient substance abuse treatment for patients who meet the 3.1, 3.3, and 3.5. Proposes to establish a new Track Two Intermediate Care Facility in Baltimore City, by converting 59 existing beds from level 3.1 to levels 3.7 and 3.7WM (30 beds for level 3.7 and 29 beds for level 3.7WM).

The MHCC shall review the applications under, Health-General Article, §19-101 et. seq., Annotated Code of Maryland, and COMAR 10.24.01.

Any affected person may make a written request to the Commission to receive copies of relevant notices concerning the application. All further notices of proceedings on the application will be sent only to affected persons who have registered as interested parties.

Please refer to the Matter No. listed above in any correspondence on the application. A copy of the application is available, for review, in the office of the MHCC, during regular business hours by appointment, or on the Commission's website at www.mhcc.maryland.gov.

All correspondence should be addressed to Paul Parker, Deputy Director, Center for Health Care Facilities Planning and Development, MHCC, 4160 Patterson Ave., Baltimore, MD 21215.

Contact: Ruby Potter (410) 764-3276

[20-11-16]

STATE ADVISORY COUNCIL ON QUALITY CARE AT THE END OF LIFE

Subject: Public Meeting

Date and Time: June 11, 2020, 10 a.m. — 12 p.m.

Place: Via videoconference; see details below

Add'l. Info: Videoconference Information: meet.google.com/ehd-mizv-wuo — Join by Phone +1 651-571-1596; PIN: 107 050 422 The public is welcome.

Contact: Paul Ballard (410) 382-1536

[20-11-18]

Lisa Nissley -MDE- sa.nissley@maryland.gov>

MDE- Virtual Hearing Notice - Oil and Gas CTG Negative Declaration

12 messages

Lisa Nissley -MDE- lisa.nissley@maryland.gov>

Mon, May 4, 2020 at 3:55 PM

To: Lisa Nissley -MDE- lisa.nissley@maryland.gov>

Bcc: kramamurth@pa.gov, Angelo Bianca -MDE- <angelo.bianca@maryland.gov>, Brian Hug -MDE-<bri>hug@maryland.gov>, DLAllCountyEnvironmentalHealthDirectors MDE@maryland.gov, DLAIlCountyHealthOfficers MDE@maryland.gov, mgdowd@deq.virginia.gov, Randy Mosier -MDE-<Randy.Mosier@maryland.gov>, spielberger.susan@epa.gov, Tad Aburn <george.aburn@maryland.gov>, Cristina Fernandez <Fernandez.Cristina@epa.gov>, david.fees@state.de.us, Roger Thunell -MDE- <roger.thunell@maryland.gov>,

Carolyn A Jones -MDE- <carolyna.jones@maryland.gov>, talley.david@epa.gov, laura.m.crowder@wv.gov,

rama.tangirala@dc.gov

Attached for your information and shown in the message below is the notice of an upcoming virtual hearing on Thursday, June 4th, 2020 at 10:00 am, regarding a Maryland Department of the Environment State Implementation Plan (SIP) for air quality.

Thank you,

Lisa Nissley

Notice of Virtual Public Hearing on Air Quality Plan

The Maryland Department of the Environment (MDE) gives notice of a virtual public hearing concerning the Oil and Gas CTG Negative Declaration.

A virtual public hearing will be held on:

Thursday, June 4, 2020 – Virtual Hearing – 10:00 a.m.

Due to the ongoing COVID-19 pandemic, all public hearings are being held virtually in accordance with Maryland Executive Orders 20-03-19-01 and 20-03-30-01, which restrict public gatherings and enact a stay-at-home-order, respectively.

The public hearing will be held on Thursday, June 4, 2020 at 10:00 a.m. Information regarding the virtual hearing can be found below and on the MDE Air Quality Planning page at: https://mde.maryland.gov/ programs/Air/AirQualityPlanning/Pages/index.aspx

Join the hearing at:https://global.gotomeeting.com/join/374590157

Or, dial in using your phone: 1 877 309 2073 (Toll Free)

Access Code: 374-590-157

Comments may be sent to Lisa Nissley, Maryland Department of the Environment, Air and Radiation Administration, 1800 Washington Boulevard, Suite 730, Baltimore, MD, 21230 or emailed to lisa.nissley@maryland.gov. Comments must be received by 5:00 p.m. on Thursday, June 11, 2020 or be submitted verbally during the hearing.

The proposed plan document is available on the MDE website at: http://mde.maryland.gov/programs/Air/ AirQualityPlanning/Pages/index.aspx

The public hearing will be held as required by federal law (Clean Air Act at 42 U.S.C. 7410 (a) and 40 CFR 51.102).

After consideration of comments received, the plan will be finalized and submitted to the United States Environmental Protection Agency (EPA) for approval.

TTY users should contact the Department through the Maryland Relay Service at 1-(800) 735-2258. For more information, contact Lisa Nissley via email at lisa.nissley@maryland.gov.

Hearing Date June 4, 2020 10:00 a.m.

Hearing Location Virtual Hearing

Connection Information https://global.gotomeeting.com/join/374590157

Or, dial in using your phone: 1 877 309 2073 (Toll Free)

Access Code: 374-590-15

Deadline for Comments June 11, 2020, 5:00 p.m.

Comments may be mailed or emailed to the addresses listed below or submitted verbally during the hearing.

Proposed Documents SIP Document (insert link)

Objective of SIP Revision The State of Maryland is adopting a negative declaration documenting that the state has no facilities subject to the requirements of the Oil and Natural Gas Industry CTG, EPA-453/B-16001 to address volatile organic compounds (VOC) emissions reductions.

Contact Lisa Nissley

Mail Maryland Department of the Environment

1800 Washington Boulevard, Suite 730

Baltimore, MD 21230-1720

Email lisa.nissley@maryland.gov

TTY Through Maryland Relay Service 7-1-1 or 1-(800) 735-2258

This SIP Revision will be submitted to the U.S. Environmental Protection Agency for approval after consideration of comments.

Lisa Nissley Maryland Department of the Environment 1800 Washington Blvd Baltimore, MD 21230 Baltimore: (410) 537-3812

Carolyn A Jones -MDE- <carolyna.jones@maryland.gov> To: Lisa Nissley -MDE- lisa.nissley@maryland.gov>

Mon, May 4, 2020 at 3:58 PM

received, looks good

Carolyn A. Jones, P.E. Regulatory and Compliance Senior Engineer

Carolyn A Jones -MDE- <carolyna.jones@maryland.gov>

Fwd: MDE- Virtual Hearing Notice - Oil and Gas CTG Negative Declaration

1 message

Carolyn A Jones -MDE- <carolyna.jones@maryland.gov>

Fri, May 22, 2020 at 10:00 AM

To: Joe Pietro <Joseph.J.Pietro@dominionenergy.com>, Mili Patel <mili patel@transcanada.com>,

Michael.Hahn@williams.com, "Goodrich, Barry" <Barry.Goodrich@enbridge.com>

Cc: Brian Hug -MDE- <bri> -MDE- <bri> -MDE- <bri> -MDE- <bri> -MDE-
 -MDE <joshua.shodeinde@maryland.gov>, Lisa Nissley -MDE- <lisa.nissley@maryland.gov>

Hello - We at MDE would like to inform you about an upcoming virtual public hearing on June 4th. The subject is Maryland's proposal for a negative declaration pertaining to the EPA's Oil and Gas Control Technique Guidelines. Your company provided information that was used to assess possible affected sources in Maryland, and no facility was determined to meet the CTG applicability criteria.

The State Implementation Plan (SIP) document is attached for your review. This is the final step as Maryland prepares to send EPA the required SIP. No action is required on your part. If you have any questions or concerns please contact me.

Thank you. Carolyn Jones, Carolyn A. Jones @maryland.gov

On Mon, May 4, 2020 at 3:56 PM Lisa Nissley -MDE- < lisa.nissley@maryland.gov> wrote:

Attached for your information and shown in the message below is the notice of an upcoming virtual hearing on Thursday, June 4th, 2020 at 10:00 am, regarding a Maryland Department of the Environment State Implementation Plan (SIP) for air quality.

Thank you,

Lisa Nissley

Notice of Virtual Public Hearing on Air Quality Plan

The Maryland Department of the Environment (MDE) gives notice of a virtual public hearing concerning the Oil and Gas CTG Negative Declaration.

A virtual public hearing will be held on:

Thursday, June 4, 2020 – Virtual Hearing – 10:00 a.m.

Due to the ongoing COVID-19 pandemic, all public hearings are being held virtually in accordance with Maryland Executive Orders 20-03-19-01 and 20-03-30-01, which restrict public gatherings and enact a stay-at-home-order, respectively.

The public hearing will be held on Thursday, June 4, 2020 at 10:00 a.m. Information regarding the virtual hearing can be found below and on the MDE Air Quality Planning page at: https://mde.maryland.gov/ programs/Air/AirQualityPlanning/Pages/index.aspx

Join the hearing at:https://global.gotomeeting.com/join/374590157

Or, dial in using your phone: 1 877 309 2073 (Toll Free)

Access Code: 374-590-157

Comments may be sent to Lisa Nissley, Maryland Department of the Environment, Air and Radiation Administration, 1800 Washington Boulevard, Suite 730, Baltimore, MD, 21230 or emailed to

lisa.nissley@maryland.gov. Comments must be received by 5:00 p.m. on Thursday, June 11, 2020 or be submitted verbally during the hearing.

The proposed plan document is available on the MDE website at: http://mde.maryland.gov/programs/Air/ AirQualityPlanning/Pages/index.aspx

The public hearing will be held as required by federal law (Clean Air Act at 42 U.S.C. 7410 (a) and 40 CFR 51.102).

After consideration of comments received, the plan will be finalized and submitted to the United States Environmental Protection Agency (EPA) for approval.

TTY users should contact the Department through the Maryland Relay Service at 1-(800) 735-2258. For more information, contact Lisa Nissley via email at lisa.nissley@maryland.gov.

June 4, 2020 10:00 a.m. **Hearing Date**

Hearing Location Virtual Hearing

Connection Information https://global.gotomeeting.com/join/374590157

Or, dial in using your phone: 1 877 309 2073 (Toll Free)

Access Code: 374-590-15

Deadline for Comments June 11, 2020, 5:00 p.m.

Comments may be mailed or emailed to the addresses listed below or submitted verbally during the hearing.

Proposed Documents SIP Document (insert link)

Objective of SIP Revision The State of Maryland is adopting a negative declaration documenting that the state has no facilities subject to the requirements of the Oil and Natural Gas Industry CTG, EPA-453/B-16001 to address volatile organic compounds (VOC) emissions reductions.

Contact Lisa Nissley

Mail Maryland Department of the Environment

1800 Washington Boulevard, Suite 730

Baltimore, MD 21230-1720

Email lisa.nissley@maryland.gov

TTY Through Maryland Relay Service 7-1-1 or 1-(800) 735-2258

This SIP Revision will be submitted to the U.S. Environmental Protection Agency for approval after consideration of comments.

Lisa Nissley Maryland Department of the Environment 1800 Washington Blvd Baltimore, MD 21230 Baltimore: (410) 537-3812

Click here to complete a three question customer experience survey.

2 attachments

MD Reg Hearing Notice Oil and Gas CTG 05222020.pdf

MDE_Oil_GasCTGNegDec_SIP20-07_DRAFT.pdf
13197K

Larry Hogan Governor

Boyd Rutherford Lieutenant Governor

Ben Grumbles Secretary

June 12, 2020

CERTIFICATION OF PUBLICATION

This is to certify that the "Oil and Gas CTG Negative Declaration." hearing was published on MDE's web site May 4, 2020 and will be kept online through June 11, 2020.

The notice in full with links to supporting documents may be found in the following web address:

https://mde.maryland.gov/programs/Air/AirQualityPlanning/Pages/index.aspx

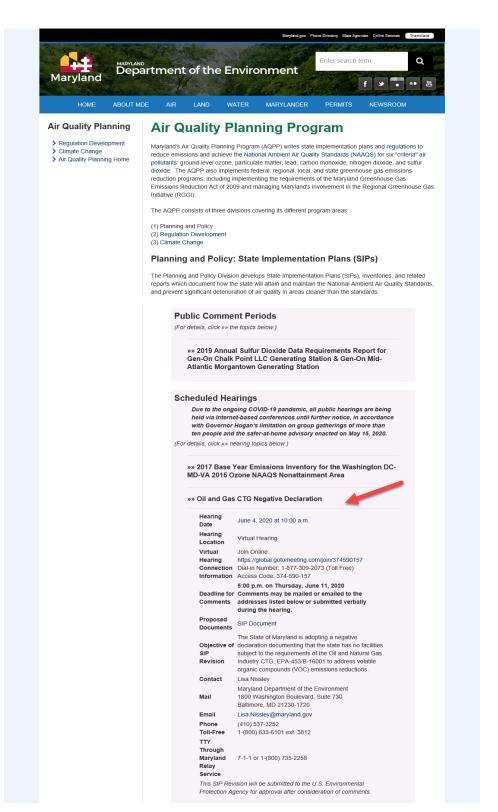
Web publication of the notice was at the request of Carolyn Jones, Regulatory and Compliance Senior Engineer of the Air and Radiation Administration (ARA) of MDE.

By:

JOE HERB MDE Webmaster

Joseph E. Hert gr.

Attachment:


Copy of web page as published.

Larry Hogan Governor

Boyd Rutherford Lieutenant Governor

Ben Grumbles Secretary

SECTION 2b - MDE Hearing Statement

Hearing Statement

Statement of the Air and Radiation Administration

Maryland Department of the Environment

Oil and Gas CTG Negative Declaration June 4, 2020

Good morning. My name is Carolyn Jones. I am a Regulatory and Compliance Engineer in the Regulations

Division, Planning Program of the Air & Radiation Administration, Maryland Department of the

Environment.

This virtual public hearing is related to the state implementation plan (SIP) entitled Negative Declaration for Control Techniques Guidelines (CTG) for the Oil and Natural Gas Industry, EPA document 453/B-16-001 dated October 2016.

Due to the ongoing COVID-19 pandemic, all public hearings are being held virtually in accordance with Maryland Executive Orders 20-03-19-01¹ and 20-03-30-01², which restrict public gatherings and enact a stay-at-home-order, respectively.

This public hearing is being held pursuant to federal law found at 42 U. S. C. Section 7410(a) and 40 CFR Part 51.102. It is also being held in conformance with the State Administrative Procedure Act, under the State Government Article, beginning at Section 10-101.

Notice of a public hearing for this plan was posted on the Maryland Department of the Environment's website

¹ https://governor.maryland.gov/wp-content/uploads/2020/03/Proclamation-COVID-19.pdf

² https://governor.maryland.gov/wp-content/uploads/2020/03/Gatherings-FOURTH-AMENDED-3.30.20.pdf

on May 4, 2020. The notice also appeared in the *Maryland Register*, Volume 47, Issue 11, dated May 22, 2020. The comment period for this proposed document began on May 4, 2020 and will remain open until 5 p.m. on June 11, 2020.

Copies of the proposed SIP and supporting documents are submitted at this time into the hearing record.

Access to the proposed negative declaration SIP document was made available by request or via the website of the Maryland Department of the Environment. The purpose of this hearing is to provide the public with an opportunity to formally comment on the proposed document.

Summary

The State of Maryland is submitting a negative declaration documenting that the state has no facilities subject to the requirements of the Oil and Natural Gas Industry CTG and EPA document 453/B-16001 to address volatile organic compounds (VOC) emissions reductions. The Federal Clean Air Act (CAA) specifies that State Implementation Plans (SIPs) for nonattainment areas must include "reasonably available control measures" (RACM), including "reasonably available control technology" (RACT), for sources of emissions contributing to ozone formation. As an alternative to adopting a RACT rule, a state may adopt a negative declaration documenting that it has no facilities to which the CTG is applicable. This action will be submitted to the U.S. Environmental Protection Agency (EPA) for approval as part of Maryland's SIP.

CONSIDERATION OF COMMENTS

The Department will consider all pertinent comments, and revise the proposed plan if necessary, before making a final decision to adopt the plan and submit it to the EPA for approval as part of Maryland's SIP.

SECTION 2c - Public Hearing Transcript

1	MARYLAND DEPARTMENT OF THE ENVIRONMENT
2	AIR AND RADIATION ADMINISTRATION
3	
4	
5	PUBLIC HEARING
6	THE STATE IMPLEMENTATION PLAN FOR THE NEGATIVE
7	DECLARATION FOR CONTROL TECHIQUES GUIDELINES
8	(CTG) FOR THE OIL AND NATURAL GAS INDUSTRY
9	EPA DOCUMENT 453/B-16-001 DATED OCTOBER 2016
10	
11	
12	
13	The virtual hearing in the above matter
14	commenced on Thursday, June 4, 2020, at the MDE
15	Headquarters, Montgomery Park, 1800 Washington
16	Boulevard, Baltimore, Maryland.
17	
18	BEFORE: Lisa Nissley, Hearing Officer
19	
20	
21	Reported by: Karen Willoughby, CER

Τ	
2	APPEARANCES
3	
4	ON BEHALF OF THE MARYLAND DEPARTMENT OF THE
5	ENVIRONMENT:
6	
7	LISA NISSLEY
8	Communications Specialist
9	Air and Radiation Administration
10	Maryland Department of the Environment
11	1800 Washington Boulevard
12	Baltimore, Maryland 21230
13	
14	CAROLYN JONES
15	Senior Regulatory and Compliance Engineer
16	Air Quality Regulations Division
17	Air and Radiation Administration
18	Maryland Department of the Environment
19	1800 Washington Boulevard
20	Baltimore, Maryland 21230
21	

Τ	ATTENDEES
2	
3	Mili Patel, TC Energy
4	Randy Mosier, MDE
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

1	Agenda Item:
2	Opening Remarks, Lisa Nissley, MDE
3	Hearing Statement, Carolyn Jones, MDF
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

1	PROCEEDINGS
2	
3	(10:00 a.m.)
4	LISA NISSLEY: If the court reporter
5	would turn on the equipment, we will begin. On
6	behalf of the Department of the Environment and
7	the Air and Radiation Administration, I would
8	like to welcome you to this public hearing. My
9	name is Lisa Nissley, and I am a Communications
10	Specialist in the Air and Radiation
11	Administration. I will serve as hearing officer
12	for today's hearing. This hearing is being
13	recorded as well as transcribed.
14	This hearing concerns the State
15	Implementation Plan for the Negative Declaration
16	for Control Techniques Guidelines (CTG) for the
17	Oil and Natural Gas Industry, EPA document
18	453/B-16-001 dated October 2016.
19	Please note that MDE is not using the
20	webinar chat feature during this hearing. We
21	will read the hearing statement at 10:10 a.m. I

- Statement of the Air and Radiation Administration MDE Oil and Gas CTG Negative Declaration
 - 1 will now check to see if we have any
 - 2 participants for this hearing. I will unmute
 - 3 the line. Please state and spell your name and
 - 4 indicate if you would like to make a statement.
 - 5 (Unmuted.) (No response.)
 - 6 LISA NISSLEY: Hello again. Could I
 - 7 ask the court reporter to confirm that the
 - 8 equipment is unmuted?
 - 9 THE REPORTER: Hi, Lisa. This is
 - 10 Karen. Yes, we are still on the record.
 - 11 LISA NISSLEY: Okay, great.
 - 12 (Unmuted.)
 - 13 LISA NISSLEY: This is Lisa Nissley
 - 14 with MDE. Are there any members of the public
 - on the line who have not previously announced
 - 16 themselves?
 - 17 (Unmuted.)
 - 18 LISA NISSLEY: I do see someone labeled
 - 19 Mili, M-I-L-I, if you could introduce yourself
 - 20 for the record.
 - 21 MILI PATEL: My apologies. I was

- 1 having audio issues. This is Mili Patel with TC
- 2 Energy. No statement.
- 3 LISA NISSLEY: Thank you.
- 4 Okay. I am going to read the hearing
- 5 statement in about two more minutes. We will
- 6 wait to see if anyone else joins before then.
- 7 Thank you.
- 8 (Muted.)
- 9 LISA NISSLEY: Let the record show that
- 10 the time is 10:10 a.m. on June 4th, 2020. This
- 11 hearing was scheduled for a 10:00 a.m. start
- 12 time. We will now proceed with the public
- 13 hearing concerning the State Implementation Plan
- 14 for the Negative Declaration for Control
- 15 Techniques Guidelines (CTG) for the Oil and
- 16 Natural Gas Industry.
- 17 My name is Lisa Nissley and I am a
- 18 Communications Specialist in the Air and
- 19 Radiation Administration. I will serve as
- 20 hearing officer for today's hearing.
- 21 The purpose of this hearing is to give

- 1 the public the opportunity to comment on this
- 2 state implementation plan. The State of
- 3 Maryland is adopting a negative declaration
- 4 documenting that the state has no facilities
- 5 subject to the requirements of the Oil and
- 6 Natural Gas Industry CTG, EPA-453/B-16001 to
- 7 address volatile organic compounds (VOC)
- 8 emissions reductions. Notice of a public
- 9 hearing for this plan appeared as follows:
- 10 (1) on the Maryland Department of the
- 11 Environment's website, "Air Quality Planning
- 12 Program" page on May 4, 2020.
- 13 (2) in the Maryland Register, Volume
- 14 47, Issue 1, Friday, May 22, 2020.
- The public comment period began on May
- 16 4, 2020 for receipt of all comments to the plan.
- 17 Written comments for this proposal must be
- 18 received by 5:00 p.m. on Thursday, June 11,
- 19 2020. Comments may be sent to Lisa Nissley,
- 20 Maryland Department of the Environment, Air and
- 21 Radiation Administration, 1800 Washington

- 1 Boulevard, Suite 730, Baltimore, Maryland, 21230
- 2 or emailed to lisa.nissley@maryland.gov.
- 3 The hearing will proceed in the
- 4 following order. First, I will introduce
- 5 Ms. Carolyn Jones, the representative of the Air
- 6 and Radiation Administration, who will make a
- 7 statement. After Ms. Jones reads the hearing
- 8 statement, I will call upon members of the
- 9 public who have indicated that they would like
- 10 to make a statement.
- 11 A summary of all comments received will
- 12 be answered in writing and published with the
- 13 final SIP document.
- I will now call on Ms. Carolyn Jones.
- 15 CAROLYN JONES: Good morning. My name
- 16 is Carolyn Jones. I am a Regulatory and
- 17 Compliance Engineer in the Regulations Division,
- 18 Planning Program, of the Air and Radiation
- 19 Administration, Maryland Department of the
- 20 Environment. This virtual public hearing is
- 21 related to the state implementation plan (SIP)

- 1 entitled "Negative Declaration for Control
- 2 Techniques Guideline (CTG) for the Oil and
- 3 Natural Gas Industry, EPA Document 453/B-16-001,
- 4 dated October 2016."
- 5 Due to the ongoing COVID-19 pandemic,
- 6 all public hearings are being held virtually in
- 7 accordance with Maryland Executive Orders
- 8 20-30-19-01 and 20-03-30-01, which restrict
- 9 public gatherings and enact a stay-at-home-
- 10 order, respectively.
- 11 This public hearing is being held
- 12 pursuant to federal law found at 42 U.S.C.
- 13 Section 7410(a) and 40 CFR Part 51.102. It is
- 14 also being held in conformance with the State
- 15 Administrative Procedure Act, under the State
- 16 Government Article, beginning at Section 10-101.
- 17 Notice of a public hearing for this
- 18 plan was posted on the Maryland Department of
- 19 the Environment's website on May 4, 2020. The
- 20 notice also appeared in the Maryland Register,
- 21 Volume 47, Issue 11, dated May 22, 2020. The

- 1 comment period for this proposed document began
- on May 4, 2020 and will remain open until 5 p.m.
- 3 on June 11, 2020.
- 4 Copies of the proposed SIP and
- 5 supporting documents are submitted at this time
- 6 into the hearing record. Access to the proposed
- 7 negative declaration SIP document was made
- 8 available by request or via the website of the
- 9 Maryland Department of the Environment. The
- 10 purpose of this hearing is to provide the public
- 11 with an opportunity to formally comment on the
- 12 proposed document.
- 13 Summary:
- 14 The State of Maryland is submitting a
- 15 negative declaration documenting that the state
- 16 has no facilities subject to the requirements of
- 17 the Oil and Natural Gas Industry CTG and EPA
- document 453/B-16001 to address VOC emissions
- 19 reductions. The Federal Clean Air Act (CAA)
- 20 specifies that State Implementation Plans (SIPs)
- 21 for nonattainment areas must include "reasonably

- 1 available control measures" (RACM), including
- 2 "reasonably available control technology"
- 3 (RACT), for sources of emissions contributing to
- 4 ozone formation. As an alternative to adopting
- 5 a RACT rule, a state may adopt a negative
- 6 declaration documenting that it has no
- 7 facilities to which the CTG is applicable. This
- 8 action will be submitted to the U.S.
- 9 Environmental Protection Agency (EPA) for
- 10 approval as part of Maryland's SIP.
- 11 The Department will consider all
- 12 pertinent comments and revise the proposed plan
- 13 if necessary, before making a final decision to
- 14 adopt the plan and submit it to the EPA for
- 15 approval as part of Maryland's SIP.
- 16 That's the end of my statement. Thank
- 17 you.
- 18 LISA NISSLEY: There are no persons in
- 19 the audience wishing to make any statements on
- 20 the record, so we request that the court
- 21 reporter please enter the hearing statement into

```
the record at this time.
 2
              It is now 10:17 a.m., and this will
 3
     conclude the public hearing for State
 4
     Implementation Plan for the Negative Declaration
 5
     for Control Technique Guidelines (CTG) for the
 6
     Oil and Natural Gas Industry.
 7
              Thank you.
              (Whereupon, at 10:17 a.m., the hearing
 8
 9
     was adjourned.)
10
11
12
13
14
15
16
17
18
19
20
21
```

1	CERTIFICATE OF REPORTER
2	
3	
4	I, Karen Willoughby, do hereby certify
5	that the foregoing proceedings were recorded by
6	me and reduced to typewriting under my
7	supervision; that I am neither counsel for,
8	related to, nor employed by any of the parties
9	to the action in which these proceedings were
10	transcribed; and further, that I am not a
11	relative or employee of any attorney or counsel
12	employed by the parties hereto, nor financially
13	or otherwise interested in the outcome of the
14	action.
15	
16	
17	
18	
19	s/Karen Willoughby
20	KAREN WILLOUGHBY, CER
21	

Public Hearing

SECTION 2d - Comments / Response to Comments

DEPARTMENT OF THE ENVIRONMENT AIR AND RADIATION ADMINISTRATION

RESPONSE TO COMMENTS

for the

PUBLIC HEARING held on June 4, 2020 in BALTIMORE, MD related to

Maryland's negative declaration for the Environmental Protection Agency's (EPA) Oil and Natural Gas Industry CTG, EPA-453/B-16001

<u>Purpose of Hearing</u>: The purpose of the public hearing was to allow for public comment on the Maryland Department of the Environment's (the Department or MDE) adopting a negative declaration documenting that the State has no facilities subject to the requirements of the Oil and Natural Gas Industry CTG, EPA-453/B-16001 to address volatile organic compounds (VOC) emissions reductions.

<u>Date and Location</u>: The virtual public hearing was held on June 4, 2020 at 10 a.m. utilizing GoToMeeting. The comment period was extended to June 11, 2020.

Attendance: 1 attendee. Ms. Mili Patel.

<u>Statement</u>: The Department's statement was read by Carolyn Jones, Senior Regulatory and Compliance Engineer of the Regulations Development Division of the Air and Radiation Administration, Department of the Environment.

<u>Comments and Responses</u>: There were no comments received.