

AMBIENT AIR MONITORING NETWORK PLAN FOR CALENDAR YEAR 2012

Prepared for: U.S. Environmental Protection Agency

Prepared by:
Ambient Air Monitoring Program
Air and Radiation Administration Management
Maryland Department of the Environment

May 23, 2011

This page is intentionally blank.

TABLE OF CONTENTS

<u>Secti</u>	<u>on</u>		Page
1.	INTI	RODUCTION	7
2.	REQ	UIREMENTS FOR MONITORING NETWORK DESCRIPTIONS	9
2	3 f A T	NVI AND AID MONITORING NETWORK	0
3.	3.1	RYLAND AIR MONITORING NETWORK General Information	
4.	SPE	CIFIC POLLUTANT NETWORK DESCRIPTIONS AND REQUIREMENTS	22
	4.1	Carbon Monoxide (CO) – General Description and Sampling Method	
		4.1.1 Monitoring Requirements	
		4.1.2 Sources	23
		4.1.3 Changes Planned for 2011-2012	23
	4.2	Lead (Pb) – General Description and Sampling Method	
		4.2.1 Monitoring Requirements	
		4.2.2 Sources	24
		4.2.3 Changes Planned for 2011-2012	24
	4.3	Nitrogen Dioxide (NO ₂) – General Description and Sampling Method	24
		4.3.1 Monitoring Requirements	25
		4.3.2 Sources	25
		4.3.3 Changes Planned for 2011-2012	25
	4.4	Ozone (O ₃) – General Description and Sampling Method	
		4.4.1 Monitoring Requirements	
		4.4.2 Sources	26
		4.4.3 Changes Planned for 2011-2012	26
	4.5	PM ₁₀ – General Description and Sampling Method	
		4.5.1 Monitoring Requirements	
		4.5.2 Sources	27
		4.5.3 Changes Planned for 2011-2012	27
	4.6	Fine Particulate Matter (PM _{2.5}) – General Description and Sampling Method	27
		4.6.1 Monitoring Requirements	
		4.6.2 Sources	28
		4.6.3 Changes Planned for 2011-2012	28
	4.7	Sulfur Dioxide (SO ₂) – General Description and Sampling Method	28
		4.7.1 Monitoring Requirements	
		4.7.2 Sources	
		4.7.3 Changes Planned for 2011-2012	29
	4.8	PAMS (Photochemical Assessment Monitoring Stations) – General Description	l
		and Sampling Method	
		4.8.1 Monitoring Requirements	30
		4.8.2 Monitoring Locations	
		4.8.3 Sources	
		4.8.4 Changes Planned for 2011-2012	31
	4.9	Air Toxics – General Description and Sampling Method	

4.9.1 Monitoring Requirements	31
4.9.2 Monitoring Locations	31
4.9.3 Sources	31
4.9.4 Changes Planned for 2011-2012	31
4.10 NCore – General Description and Sampling Method	32
4.10.1 Monitoring Requirements	33
4.10.2 Monitoring Locations	
4.10.3 Sources	33
4.10.4 Changes Planned for 2011-2012	33
4.11 The Rural Aerosol Intensive Network – General Description	
4.11.1 Monitoring Requirements	
4.11.2 Monitoring Locations	
4.11.3 Sources	
4.11.4 Changes Planned for 2011-2012	
APPENDIX A – TOPOGRAPHIC AND AERIAL MAPS	

ACRONYMS AND DEFINITIONS

AQS Air Quality System.

AQS ID 9-digit site identification number in AQS database.
ARMA MDE's Air and Radiation Management Administration

BAM/BAMM Beta Attenuation [Mass] Monitor typically used for measuring continuous

particulate matter.

CAA Clean Air Act

CAAA Clean Air Act Amendments
CBSA Core Based Statistical Area
CFR Code of Federal Regulations
CSA Combined Statistical Area
CSN Chemical Speciation Network

CO Carbon Monoxide

EGU Electrical Generating Unit

FEM Federal Equivalent Method typically used by local and state agency to measure

particulate matter and determine NAAQS attainment status.

FID Flame Ionization Detector

FRM Federal Reference Method typically used by local and state agency to measure

particulate matter and determine NAAQS attainment status.

GC Gas Chromatograph HAPS Hazardous Air Pollutants

IMPROVE Interagency Monitoring of Protected Visual Environments

IR Infrared (radiation)

MDE Maryland Department of the Environment

MSA Metropolitan Statistical Area typically used by the EPA to study air quality trends

in major metropolitan areas across the U.S.

NAA Non-attainment Area

NAAQS National Ambient Air Quality Standards used for determining attainment status.

NCore National Core multi-pollutant monitoring stations
NESCAUM Northeast States for Coordinated Air Use Management

nm Nanometer, an SI unit for measuring length; 1 nm equals 10⁻⁹ meter.

NO Nitrogen Oxide NO₂ Nitrogen Dioxide

NO_x Oxides of Nitrogen (ozone precursor)

NO_v Total Reactive Nitrogen Species (ozone precursor)

 O_3 Ozone

OC/EC Organic Carbon/Elemental Carbon

PAMS Photochemical Assessment Monitoring Station

Pb Lead

PM_{2.5} Particulate matter with an equivalent diameter less then or equal to 2.5 μ m. PM₁₀ Particulate matter with an equivalent diameter less then or equal to 10 μ m.

PMcoarse Particulate matter with an equivalent diameter less then or equal to 10 µm minus

Particulate matter with an equivalent diameter less then or equal to 2.5 μm.

QA Quality Assurance

RAIN Rural Aerosol Intensive Network

SIP State Implementation Plan

SLAMS State or Local Air Monitoring Stations

SO₂ Sulfur Dioxide

STN PM_{2.5} Speciation Trends Network

TEOM Tapered Element Oscillating Microbalance

μm Micrometer (10⁻⁶ meter)

US EPA United States Environmental Protection Agency

UV Ultraviolet

VOCs Volatile Organic Compounds

1. INTRODUCTION

In 1970, Congress passed the Clean Air Act (CAA) that authorized the Environmental Protection Agency (EPA) to establish National Ambient Air Quality Standards (NAAQS) for pollutants shown to threaten human health and welfare. Primary standards were set according to criteria designed to protect public health, including an adequate margin of safety to protect sensitive populations such as children and asthmatics. Secondary standards were set according to criteria designed to protect public welfare (decreased visibility, damage to crops, vegetation, and buildings, etc.). As part of the CAA, both local and state agencies are required to maintain and operate ambient air quality monitoring networks.

The six pollutants that currently have NAAQS are: ozone (O_3) , carbon monoxide (CO), sulfur dioxide (SO_2) , nitrogen dioxide (NO_2) , particulate matter $(PM_{2.5} \text{ and } PM_{10})$, and lead (Pb). They are commonly called the "criteria" pollutants. When air quality does not meet the NAAQS for one of the criteria pollutants, the area is said to be in "non-attainment" with the NAAQS for that pollutant. Currently, Maryland is designated as non-attainment for both ground-level ozone and particulate matter, but the Maryland Department of the Environment (MDE) will be requesting that EPA redesignate the particulate matter non-attainment area to attainment. Maps of non-attainment areas are shown in **Figure 1-1** and **Figure 1-2**. Counties outside of Maryland are included as they are part of the non-attainment area (NAA); however, this document will address only monitors in Maryland.

The EPA ozone precursor revisions to the air monitoring regulations (40 CFR Part 58) required by Title 1, Section 182 of the 1990 Clean Air Act Amendments (CAAA) were promulgated on February 12, 1993. The CAAA requires that the States incorporate enhanced monitoring for ozone, speciated volatile organic compounds (VOCs), oxides of nitrogen (NO_x), carbonyls, and meteorological parameters into their State Implementation Plan (SIP). The Part 58 regulations refer to these enhanced monitoring stations as photochemical assessment monitoring stations (PAMS). There is no ambient standard for any of the VOCs.

Section 112 of the 1990 CAAA identified 188 toxics. As part of the monitoring effort for toxics, MDE is operating an Air Toxic Network and provides analytical support for sampling sites in EPA Region 3.

As part of the CAA, states are required to submit an annual network plan to the U.S. EPA for review and approval. Since 2007, EPA has required State and Local Air Pollution Control Agencies to make this plan available for public inspection at least thirty days prior to formal submission to EPA. Refer to the Requirements for Monitoring Network Descriptions section for details.

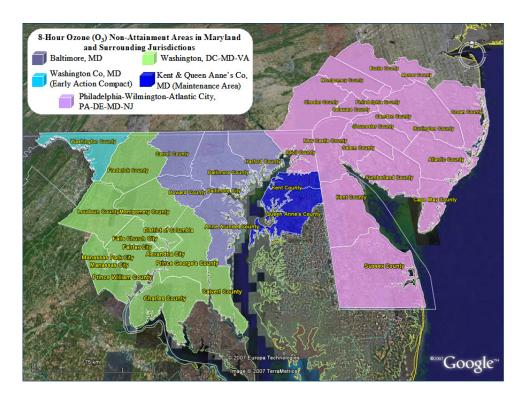


Figure 1-1. Map depicting non-attainment areas for 8-hour ozone in Maryland and surrounding jurisdictions that are part of the NAA.

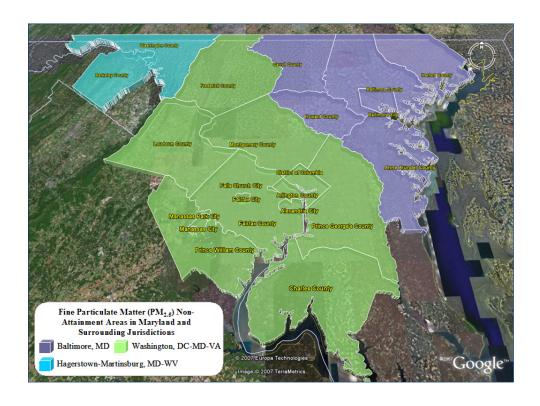


Figure 1-2. Map depicting non-attainment areas for fine particulate matter $(PM_{2.5})$ in Maryland and surrounding jurisdictions that are part of the NAA.

2. REQUIREMENTS FOR MONITORING NETWORK DESCRIPTIONS

In October 2006, the U.S. EPA issued final regulations concerning state and local agency ambient air monitoring networks. These regulations require an annual monitoring network plan including the information described below.

The annual monitoring network plan as described in §58.10 must contain the following information for existing and proposed site(s):

- The Air Quality System (AQS) site identification number.
- The location, including street address and geographical coordinates.
- The sampling and analysis method(s) for each measured parameter.
- The operating schedules for each monitor.
- Any proposals to remove or move a monitoring station within a period of 18 months following plan submittal.
- The monitoring objective and spatial representative scale for each monitor.
- The identification of suitable and non-suitable for comparison against the annual PM_{2.5} NAAQS as described in §58.30.
- The Metropolitan Statistical Area (MSA), Core Based Statistical Area (CBSA), Combined Statistical Area (CSA) or other area represented by the monitor.

3. MARYLAND AIR MONITORING NETWORK

Maryland currently operates 26 air monitoring sites around the state and measures ground-level concentrations of criteria pollutants, air toxics, meteorology, and other research-oriented measurements. Although monitoring takes place statewide, most of the stations are concentrated in the urban/industrial areas, which have the highest population and number of pollutant sources. This network is maintained and operated by the Ambient Air Monitoring Program (the Program), Air and Radiation Management Administration, Maryland Department of the Environment. A comprehensive air monitoring network map is shown in Fig 3-1. Additional topographic and aerial maps are provided in **Appendix A**.

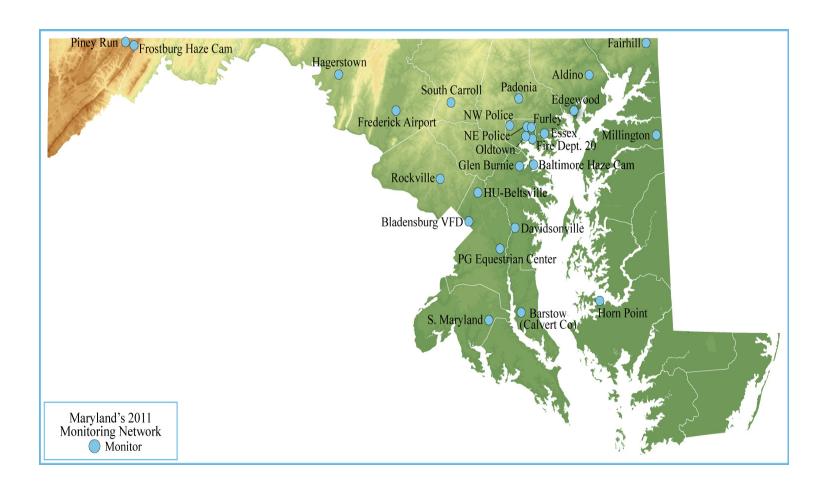


Figure 3-1 Maryland's air monitoring network map

Note: Piney Run also marks the Frostburg Improve site which is just a few meters away.

Note: Frostburg Haze Cam is located at Eastern Garrett Co. Vol. Fire Department.

3.1 General Information

The following tables include information required as part of the monitoring network description. General information (e.g. site name, AQS identification number, latitude, longitude, etc.) can be found in **Table 3-1**. Specific information related to each parameter measured at air monitoring sites is given in **Table 3-2a**, b. Monitoring method descriptions can be found in **Table 3-3**. Lastly, parameters measured as part of the air toxics, PAMS, IMPROVE, and speciated PM_{2.5} mass are listed in **Table 3-4**.

Table 3-1 General information for current Maryland ambient air monitoring sites.

SITE NAME, AQS ID	STREET ADDRESS	CITY, COUNTY	ZIP CODE	LATITUDE, LONGITUDE	LOCATION SETTING	NEAREST ROAD	TRAFFIC COUNT	TRAFFIC COUNT YEAR	DISTANCE FROM NEAREST RD. (M)	CORE BASED STATISTICAL AREA (CBSA)
Aldino, 240259001	3560 Aldino Road	Aldino, Harford	21028	39.563333, -76.203889	Suburban	Aldino Rd.	1150	2008	14	Baltimore-Towson
Baltimore Haze Cam @ Brandon Shores	Brandon Shores Power Plant 1000 Brandon Shores Dr.	Anne Arundel	21226	39.181511, -76.537544	Suburban	-	-	-	-	NA
Bladensburg VFD, 240330025	Bladensburg Volunteer Fire Department, 4213 Edmonston Road	Bladensburg, Prince George's	20710	38.941697, -76.933698	Suburban	Edmonston Road	-	-	155	DC-Arlington- Alexandria
Calvert Co, 240090011	350 Stafford Road	Barstow, Calvert	20678	38.536722, -76.617194	Rural	Stafford Road	-	-	53	DC-Arlington- Alexandria
Davidsonville, 240030014	Davidsonville Recreation Center, 3801 Queen Anne Bridge Road	Davidsonville, Anne Arundel	21035	38.902500, -76.653056	Rural	Queen Anne Bridge Road	-	-	151	Baltimore-Towson
Edgewood, 240251001	Edgewood Chemical Biological Center (APG), Waehli Road	Edgewood, Harford	21010	39.410000, -76.296667	Rural	Waehli Road	-	-	16	Baltimore-Towson
Essex, 240053001	600 Dorsey Avenue	Essex, Baltimore	21221	39.310833, -76.474444	Suburban	Franklin Avenue	200	1993	5	Baltimore-Towson
Fairhill, 240150003	4600 Telegraph Road	Fairhill, Cecil	21921	39.701111, -75.860000	Rural	Telegraph Road (Route 273)	8381	2008	26	Wilmington, DE-MD- NJ
Fire Dept 20*, 245100008	Baltimore City Fire Department, 5714 Eastern Avenue	Baltimore City	21224	39.287680, -76.547616	Suburban	Eastern Avenue (Route 150)	21901	2008	45	Baltimore-Towson
Frederick Airport, 240210037	Frederick County Airport, 180 E Airport Drive	Frederick, Frederick	21701	39.408056, -77.375833	Suburban	Disposal Plan Road	5	1998	9	DC-Arlington- Alexandria
Frostburg HazeCam	Eastern Garrett Co. Vol. Fire Dept. 401 Finzel Road	Finzel, Garrett	21532	-	Rural	-	-	-	-	NA

SITE NAME, AQS ID	STREET ADDRESS	CITY, COUNTY	ZIP CODE	LATITUDE, LONGITUDE	LOCATION SETTING	NEAREST ROAD	TRAFFIC COUNT	TRAFFIC COUNT YEAR	DISTANCE FROM NEAREST RD. (M)	CORE BASED STATISTICAL AREA (CBSA)
Frostburg Improve 240239000	Frostburg Reservoir Finzel, Garrett 21532 39.705896, Rural Piney Run Road -		-	-	1141	NA				
Furley, 245100054	Furley E.S. Recreational Center, 4633 Furley Avenue	Baltimore City	21206	39.328890, -76.552500	Urban and City Center	Furley Ave.	-	-	38	Baltimore-Towson
Glen Burnie, 240031003	Anne Arundel Co Public Works BLDG, 7409 Baltimore Annapolis Blvd	Glen Burnie, Anne Arundel	21061	39.169533, -76.627933	Suburban	Baltimore Annapolis Blvd (Route 648).	16801	2008	98	Baltimore-Towson
Hagerstown, 240430009	18530 Roxbury Road	Hagerstown, Washington	21740	39.565556, -77.721944	Rural	Roxbury Road	50	1993	49	Hagerstown- Martinsburg
HU-Beltsville, 240330030	Howard University's Beltsville Laboratory, 12003 Old Baltimore Pike	Beltsville, Prince George's	20705	39.055277, -76.878333	Suburban	Muirkirk Road	-	-	409	D.C., Arlington, Alexandria
Millington, 240290002	Millington Wildlife Management Area, Massey-Maryland Line Road (Route 330)	Massey, Kent	21650	39.305000, -75.797333	Rural	Maryland Line Road (Route 330)	1392	2008	121	NA
NE Police, 245100006	Northeast Police Station, 1900 Argonne Drive	Baltimore City	21218	39.340556, -76.582222	Suburban	Argonne Drive	-	-	49	Baltimore-Towson
NW Police, 245100007	Northwest Police Station, 5271 Reisterstown Road	Baltimore City	21215	39.344444, -76.685278	Suburban	Reisterstown Road	16261	2008	26	Baltimore-Towson
Oldtown, 245100040	Oldtown Fire Station, 1100 Hillen Street	Baltimore City	21202	39.298056, -76.604722	Urban and City Center	Hillen Street	15300	1990	23	Baltimore-Towson
Padonia, 240051007	Padonia Elementary School, 9834 Greenside Drive	Cockeysville, Baltimore	21030	39.460833, -76.631111	Suburban	Greenside Drive	-	-	93	Baltimore-Towson
PG Equestrian Center, 240338003	PG County Equestrian Center, 14900 Pennsylvania Ave.	Greater Upper Marlboro, Prince George's	20772	38.811940, -76.744170	Rural	Pennsylvani a Avenue	46651	2008	191	D.C., Arlington, Alexandria
Piney Run, 240230002			21532	39.705916, -79.012028	Rural	Piney Run Road	-	-	1141	NA

	SITE NAME, AQS ID	STREET ADDRESS	STREET ADDRESS CITY, COUNTY		LATITUDE, LONGITUDE	LOCATION SETTING	NEAREST ROAD	TRAFFIC COUNT	TRAFFIC COUNT YEAR	I KRONI	CORE BASED STATISTICAL AREA (CBSA)
	Rockville, 240313001	Lathrop E. Smith Environmental Education Center, 5110 Meadowside Lane	Rockville, Montgomery	20855	39.114444, -77.106944	Rural	Meadowside Lane	-	-	77	DC-Arlington- Alexandria
	South Carroll, 240130001	1300 W. Old Liberty Road	Winfield, Carroll	21784	39.444167, -77.041667	Rural	Liberty Road (Route 26)	10962	2008	248	Baltimore-Towson
5	Southern Maryland, 240170010	Oaks Road	Hughesville, Charles	20622	38.504167, -76.811944	Rural	Oaks Road	-	-	723	DC-Arlington- Alexandria

^{*} Fire Dept 20 was called S.E. Police Station in previous reports. It was relocated from the S.E. Police Station site to the fire department next door

Table 3-2a. Parameter information for current Maryland ambient air monitoring sites

SITE NAME, AQS ID	PARAMETER	START DATE	METHOD CODE	PROBE HEIGHT (M)	REPRESENTATIVE SCALE	MONITORING OBJECTIVE	ТҮРЕ	SAMPLE SCHEDULE
Aldino, 240259001	Ozone	4/20/1990	047	6	Urban	Maximum Ozone concentration	SLAMS	Every hour
Baltimore Haze Cam @ Brandon Shores	Visibility	4/1/2007	NA	NA	NA	Public Notification	NA	NA
Bladensburg VFD, 240330025	PM _{2.5}	1/1/2007	118	4	Neighborhood	Population Exposure	SLAMS	Every 3 days
Calvert Co., 240090011	Ozone	4/1/2005	047	4	Urban	Population Exposure	SLAMS	Every hour
Davidsonville, 240030014	Ozone	6/6/1980	047	4	Urban	Population Exposure	SLAMS	Every hour
Edgewood,	Ozone	3/10/1980	047	3.8	Urban	Highest Concentration	SLAMS	Every hour
240251001	PM _{2.5}	1/1/1999	120	2.1	Neighborhood	Population Exposure	SLAMS	Every 3 days
Essex, 240053001	Air toxics	1/1/1993	150	4.0	Neighborhood	Population Exposure	Toxics	Every 6 days
	Carbon Monoxide	4/1/1967	054	4.6	Middle	Highest Concentration	SLAMS	Every hour
	Nitric Oxide	1/1/1993	074	4.6	Neighborhood	Maximum Precursor Emissions Impact	SLAMS	Every hour
	Nitrogen Dioxide	1/1/1972	074	4.6	Neighborhood	Maximum Precursor Emissions Impact	SLAMS	Every hour
	Oxides of Nitrogen	1/1/1980	074	4.6	Neighborhood	Maximum Precursor Emissions Impact	SLAMS	Every hour
	Ozone	1/1/1972	047	4.6	Neighborhood	Population Exposure	SLAMS	Every hour
	Type 2 PAMS: VOCs	6/1/1996	128/126/102	4.0	Neighborhood	Maximum Precursor Emissions Impact	PAMS	Every hour, Every 6 days
	PM ₁₀ Continuous	4/1/1967	122	4.5	Neighborhood	Population Exposure	SLAMS	Every hour
	PM _{2.5} Chemical	10/1/2000		5	Neighborhood	Population	STN	Every 3 days

SITE NAME, AQS ID	PARAMETER	START DATE	METHOD CODE	PROBE HEIGHT (M)	REPRESENTATIVE SCALE	MONITORING OBJECTIVE	ТҮРЕ	SAMPLE SCHEDULE
	Speciation		810			Exposure		
	PM _{2.5}	1/1/1999	120	4.7	Neighborhood	Population Exposure	SLAMS	Every 3 days
	Sulfur Dioxide	1/1/1972	060	5	Neighborhood	Highest Concentration	SLAMS	Every hour
	Ozone	1/1/1992	047	4	Urban	Regional Transport	SLAMS	Every hour
Fairhill 240150003	PM _{2.5}	1/1/1999	120	3.7	Regional	Regional Background	SLAMS	Every 3 days
240130003	PM _{2.5} Continuous	6/28/2006	170	3.7	Regional	Regional Background	SLAMS	Every hour
Fire Dept 20, 245100008	PM ₁₀ total 0-10 μm	3/10/2004	131	13	Neighborhood	Population Exposure	SLAMS	Every 6 days
	PM _{2.5}	6/20/2001	120	13	Middle	Source Oriented	SLAMS	Every day
Frederick Airport, 240210037	Ozone	7/9/1998	047	3.4	Urban	Population Exposure	SLAMS	Every hour
Frostburg Improve 240239000	IMPROVE Parameters	3/1/2004	NA	4	Regional	Regional Transport	Improve	Every 3 days
Frostburg HazeCam	Visibility	10/1/2005	-	NA	NA	Public Notification	-	NA
Furley, 245100054	Ozone	8/20/2006	047	10	Neighborhood	Population Exposure	SLAMS	Every hour
Glen Burnie,	PM_{10}	4/11/90	122	2.7	Neighborhood	Population Exposure	SLAMS	Every 6 days
240031003	PM _{2.5}	1/1/1999	118	2.2	Neighborhood	Population Exposure	SLAMS	Every day
	PM _{2.5} Continuous	5/1/2005	731	4	Urban	Highest Concentration	SPM	Every hour
Hagerstown, 240430009	Ozone	4/1/1999	047	3.6	Urban	Population Exposure Highest Concentration	SLAMS	Every hour
	PM _{2.5}	4/1/1999	120	2	Neighborhood	Highest Concentration	SLAMS	Every 3 days
HU-Beltsville, 2400330030	Air toxics	5/10//2006	150	4	Neighborhood	Population Exposure	Toxics	Every 6 days
	<u>Lead</u>	12/12/2011	TBD	2	Neighborhood	Population Exposure	NCore	Every 3 days
	Nitric Oxide and Reactive Oxides of Nitrogen	5/28/2008	075	4	Urban	General / Background	NCore	Every hour
	Ozone	5/1/2005	047	4	Urban	Highest	NCore	Every hour

SITE NAME, AQS ID	PARAMETER	START DATE	METHOD CODE	PROBE HEIGHT (M)	REPRESENTATIVE SCALE	MONITORING OBJECTIVE	ТҮРЕ	SAMPLE SCHEDULE
						Concentration Population Exposure		
	Type 3 PAMS: VOCs	5/10/2005	126	4	Urban	Upwind Background	Unofficial PAMS	Every 6 days, every 3 hours
	PM _{2.5}	7/10/2004	118	2	Urban	Population Exposure	NCore	Every 3 days
	PM _{2.5} Continuous	9/1/2005	170	2	Urban	Population Exposure	SLAMS	Every hour
	PMcoarse	1/1/2011	176	2	Neighborhood	Population Exposure	NCore	Every 3 days
	PM _{2.5} Chemical Speciation	12/5/2004	810	2	Urban	Population Exposure	NCore	Every 6 days
	PM2.5 Elemental & Organic Carbon	2005	NA	4	Urban	General / Background	NA	Every 2 hours
	Sulfate (PM _{2.5})	8/29/2005	NA	4	Urban	General / Background	NCore	Every hour
	Trace Carbon Monoxide	12/20/2006	554	4	Urban	General / Background	NCore	Every hour
	Trace Sulfur Dioxide	9/29/2006	560	4	Urban	General / Background	NCore	Every hour
Millington,	Ozone	6/19/1989	047	4	Urban	Population Exposure	SLAMS	Every hour
240290002	PM _{2.5} Continuous	1/24/08	731	2	Neighborhood	Forecasting	SPM	Every hour
NE Police,	Air toxics	1/1/1992	150	4	Neighborhood	Population Exposure	Toxics	Every 6 days
245100006	PM _{2.5}	1/1/1999	120	8.8	Neighborhood	Population Exposure	SLAMS	Every day
NW Police, 245100007	PM _{2.5}	1/1/1999	120	9.7	Neighborhood	Population Exposure	SLAMS	Every 3 days
Oldtown, 245100040	Air Toxics	1/1/1991	150	4	Middle	Population Exposure	Toxics	Every 6 days
	Carbon Monoxide	1/1/1982	054	4.2	Middle	Highest Concentration	SLAMS	Every hour
	Light Scatter	9/2004	NA	4	NA	NA	NA	Every hour
	Nitric Oxide, Nitrogen Dioxide, and Oxides of Nitrogen	1/1/1982	074	4.2	Middle	Highest Concentration	SLAMS	Every hour
	PM _{2.5} Continuous	4/1/2002	170	4.5	Middle	Highest Concentration	SLAMS	Every hour

SITE NAME, AQS ID	PARAMETER	START DATE	METHOD CODE	PROBE HEIGHT (M)	REPRESENTATIVE SCALE	MONITORING OBJECTIVE	ТҮРЕ	SAMPLE SCHEDULE
	PM _{2.5}	1/1/1999	120	4.9	Middle	Highest Concentration	SLAMS	Every day
Padonia,	Ozone	1/1/1979	047	3.8	Neighborhood	Population Exposure	SLAMS	Every hour
240051007	PM _{2.5}	1/1/1999	120	4.7	Neighborhood	Population Exposure	SLAMS	Every hour
PG Equestrian Center,	Ozone	4/1/2002	047	4.4	Urban	Population Exposure	SLAMS	Every hour
240338003	PM _{2.5}	5/1/2002	120	4.8	Neighborhood	Population Exposure	SLAMS	Every 3 days
	Light Scatter	9/2004	NA	4	NA	NA	NA	Every hour
	Nitric Oxide, and Reactive Oxides of Nitrogen	5/1/2004	075	4	Regional	Regional Transport	NCore	Every hour
	Trace Carbon Monoxide	6/1/2004	554	4	Regional	Regional Transport	NCore	Every hour
	Ozone	4/1/2004	047	4	Regional	Regional transport	NCore	Every hour
	PM _{2.5} Continuous	7/1/2004	731	4	Regional	Regional transport	NCore	Every hour
Piney Run, 240230002	PMcoarse	1/1/2011	TBD	2	Urban	General/ Background	NCore	Every 3 days
	PM2.5 Chemical Speciation (IMPROVE)	2005	NA	4	Regional	Regional Transport	Improve	Every 3 days
	PM2.5 Elemental & Organic Carbon	7/2004	NA	4	Regional	Regional Transport	NA	Every 2 hours
	Trace SO2	1/1/2007	560	4	Regional	Regional Transport	NCore	Every hour
	Sulfate (PM2.5)	7/1/2004	NA	4	Regional	Regional Transport	NCore	Every hour
	Ozone	1/1/1980	047	4	Urban	Population Exposure	SLAMS	Every hour
Rockville, 240313001	PM2.5 Continuous	8/22/08	170	4	Neighborhood	Population Exposure	SLAMS	Every hour
	PM _{2.5}	1/1/1999		4.9	Neighborhood	Population Exposure	SLAMS	Every 3 days
South Carroll, 240130001	Ozone	7/14/1983	047	4	Urban	Population Exposure	SLAMS	Every hour

SITE NAME, AQS ID	PARAMETER	START DATE	METHOD CODE	PROBE HEIGHT (M)	REPRESENTATIVE SCALE	MONITORING OBJECTIVE	ТҮРЕ	SAMPLE SCHEDULE
Southern Maryland, 240170010	Ozone	10/2/1984	047	4	Regional	General / Background	SLAMS	Every hour

Note: Based on the air monitoring regulations CFR 40 part 58 7.30 (a) (1), data collected by the $PM_{2.5}$ monitor located at Oldtown is representative at the middle scale and will not be compared to the annual $PM_{2.5}$ NAAQS of 15 $\mu g/m^3$. Ambient air monitoring sites operate year-round except ozone where noted; Ozone final monitoring rule announced August, 2011 would change the season to March through October. Following an EPA directive, nitrogen dioxide (NO₂) measured by method codes 574 and 591 is no longer being reported. This change is limited to the nitrogen oxides analyzers located at HU-Beltsville and Piney Run.

Table 3-2b Parameter counts by site (cross-reference to Table 3-2a)

Site Name	Air Toxics	00	Lead	Light scatter	ON	NO ₂	NOx	NO _Y	ဝိ	PAMS VOC's	PM _{2.5} Filter Based	PM _{2.5} Elemental & Organic Carbon	PM _{2.5} (continuous)	PM ₁₀ Filter Based	PM ₁₀ (continuous)	PM coarse	Speciated PM _{2.5}	SO ₂	Sulfate (PM2.5)	Trace CO	Trace SO ₂	TOTALS
Aldino					1			1	1													3
Bladensburg											1											1
Calvert Co.									1													1
Davidsonville									1													1
Edgewood									1		1											2
Essex	1	1			1	1	1		1	1	1						1	1				10
Fairhill									1				1									2
Frederick Airport									1													1
Fire Dept 20											1			1								2
Furley									1													1
Glen Burnie											1			2								3
Hagerstown									1				1									2
HU-Beltsville	1	1	1		1		1	1	1	1	2	1	1	2		2	1	1	1	1	1	21
Millington									1				1									2
NE Police	1										1											2
NW Police											1											1
Oldtown	1	1		1	1	1	1				1	1	1									9
Padonia									1		2											3
PG Equestrian Center									1		2											3
Piney Run		1		1	1			1	1			1	1		1	1		1	1	1	1	13
Rockville									1				1									2
South Carroll									1													1
Southern Maryland									1													1
TOTALS	4	4	1	2	5	2	3	3	17	2	14	3	7	5	1	3	2	3	2	2	2	87

Note the above table does not include RAIN, Visibility, or IMPROVE monitors; see Table 3-2a and Section 4 for details about those monitors

Table 3-3. Monitoring methods and associated AQS codes used in the Maryland ambient air monitoring network.

PARAMETER	METHOD CODE	SAMPLE ANALYSIS DESCRIPTION
Air Toxics*	113	Capillary GC ITD Mass Spectrometer
Carbon Monoxide	054	Nondispersive Infrared Photometry
Carbon Monoxide, Trace	554,593	Nondispersive Infrared Photometry
Lead	TBD	TBD
Light Scatter	NA	Open-Air Integrating Nephelometer
Nitric Oxide and Nitrogen Dioxide	074	Chemiluminescence
Nitric Oxide, and Reactive Oxides Of	574,591	TECO 42S Chemiluminescence for Low Level Measurements

PARAMETER	METHOD CODE	SAMPLE ANALYSIS DESCRIPTION
Nitrogen		
Oxides Of Nitrogen	074	Chemiluminescence
PAMS VOCs*	128	Gas Chromatograph with Flame; GC FID
PAMS VOCs*	126	Cryogenic Pre-concentration Trap GC/FID
Ozone	047,091	Ultra Violet Photometry
PM ₁₀ Total 0-10 μm	132	Gravimetric, Andersen RAAS 10-300
PM ₁₀ Continuous	731	Beta Attenuation
$PM_{2.5}$	120	Gravimetric, Andersen RAAS 2.5-300
$PM_{2.5}$	118	Gravimetric, Partisol Plus 2025
PM _{2.5} Species* Constituents: Trace Elements	811	Energy Dispersive XRF using Teflon Filter
PM10-PM2.5(PM coarse)	176	Gravimetric, Partisol Plus 2025
PM _{2.5} Species* Constituents: Ions	812	Ion Chromatography using Nylon Filter
PM _{2.5} Species* Constituents: Organics	813	Using Quartz Filter - Thermo-Optical Transmittance
PM _{2.5} Continuous	731	Beta Attenuation
PM _{2.5} Speciation Mass	810	Gravimetric, Met One SASS using Teflon
PM _{2.5} - Elemental and Organic Carbon	NA	OCEC, Self-contained Non-dispersive Infrared (NDIR) Detector System.
IMPROVE Parameters*	NA	4 Module, Improve Protocol analysis
Sulfur Dioxide	060	Pulsed Fluorescence
Sulfur Dioxide, trace	560,600	Pulsed Fluorescence
Sulfate-PM _{2.5}	NA	Pulsed Fluorescent with High Efficiency SO ₄ to SO ₂ Converter
Visibility	NA	Camera

^{*}See Table 3-4 for constituents belonging to these groups

Table 3-4 Constituent compounds and species measured in Maryland.

CONSTITUENT GROUP	COMPOUNDS IN THE CONSTITUENT GROUP
Air Toxics	Dichlorodifluoromethane, Chloromethane, 1,2-Dichloro-1,1,2,2,tetrafluoroleth, Chloroethene, 1,3-Butadiene, Bromomethane, Chloroethane, Trichlorofluoromethane, Acrolein, Acetone, 1,1-Dichloroethene, Methylene Chloride, Carbon disulfide, Isopropyl Alcohol, 1,1,2-Trichloro-1,2,2-trifluoroethane, Trans-1,2-Dichloroethene, 1,1-Dichloroethane, 2-methoxy-2-methyl-Propane, Methyl ethyl Ketone (2-butanone), Cis-1,2-Dichloroethene, Hexane, Chloroform, Ethyl Acetate, Tetrahydrofuran, 1,2-Dichloroethane, 1,1,1-Trichloroethane, Benzene, Carbon tetrachloride, Cyclohexane, 1,2-Dichloropropane, Bromodichloromethane, Trichloroethylene, Heptane, Cis-1,3-Dichloro-1-Propene, Methyl Isobutyl Ketone, Trans-1,3-Dichloro-1-Propene, 1,1,2-Trichloroethane, Toluene, Dibrochloromethane, Methyl butyl Ketone, (2-Hexanone), 1,2-Dibromoethane, Tetrachloroethylene, Chlorobenzene, Ethyl benzene, m & p- Xylene, Bromoform (Tribromomethane), Styrene, 1,1,2,2-Tetrachloroethane, o-Xylene, 1-Ethyl-4-Methylbenzene, 1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene, Benzyl Chloride, 1,3-dichlorobenzene, 1,4-Dichlorobenzene, 1,2-Dichlorobenzene, 1,2,4-Trichlorobenzene, and Hexachloro-1,3-Butadiene
IMPROVE Parameters	Aerosol light extinction, Aerosol light scattering, Air temperature, Aluminum, Ammonium ion, Ammonium Nitrate, Ammonium sulfate, Arsenic, Bromine, Calcium, Chloride, Chlorine Chromium, Copper, Elemental carbon, Humidity, Hydrogen, Iron, Lead, Magnesium, Manganese, Molybdenum, Nickel, Nitrate, Nitrite, Organic carbon, Phosphorus, PM10, PM2.5, Potassium, Relative

CONSTITUENT GROUP	COMPOUNDS IN THE CONSTITUENT GROUP
	Humidity, Rubidium, Selenium, Silicon, Sodium, Strontium, Sulfate, Sulfur Dioxide, Sulfur, Titanium, Vanadium, Zinc, and Zirconium
PAMS VOCs	Acetone, Ethane, Acetylene, Propane, 2,2-dimethylbutane, Benzene, i-Butane, n-Butane, i-Pentane, n-Pentane, 2,2,4-trimethylpentane, i-Propylbenzene, n-hexane, 2-methylpentane, 2,3-dimethylbutane, Cyclopentane, Ethylbenzene, n-Propylbenzene, 3-methylpentane, Toluene, Styrene, n-Heptane, 2-methylhexane, 2,4-dimethylpentane, 2,3,4-trimethylpentane, o-Xylene, 3-methylhexane, 2,3-dimethylpentane, Formaldehyde, n-Octane, 2-methylheptane, Cyclohexane, 3-methylheptane, n-Nonane, m&p-Xylenes, Methylcyclohexane, Methylcyclopentane, n-Decane, n-Undecane, Acetaldehyde, 1,2,3-Trimethylbenzene, 1,2,4-Trimethylbenzene, 3-methyl-1-butene, 1-Butene, Propene, 1-Pentene, 1,3,5-Trimethylbenzene, 2-methyl-1-pentene, 2-methyl-2-butene, c-2-hexene, c-2-pentene, Cyclopentene, 4-methyl-1-pentene, t-2-hexene, t-2-Butene, t-2-pentene, Isoprene
RAIN	Sulfate, EC/OC, light scattering, trace SO2, trace CO, ozone, continuous PM2.5, surface meteorology, visual scene images - Haze Cam, IMPROVE parameters
Speciated PM _{2.5} Mass	Aluminum, Ammonium, antimony, Arsenic, Barium, Bromine, Cadmium, Calcium, Carbonate carbon, Cerium, Cesium, Chlorine, Chromium, Cobalt, Copper, Elemental carbon, Europium, Gallium, Gold, Hafnium, Indium, Iridium, Iron, Lanthanum, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Niobium, Nitrate, OCX, OCX2, Organic carbon, Phosphorus, Pk1_OC, Pk2_OC, Pk3_OC, Pk4_OC, Potassium, PyrolC, Rubidium, Samarium, Scandium, Selenium, Silicon, Silver, Sodium, Strontium, Sulfate, Sulfur, Tantalum, Terbium, Tin, Titanium, Total carbon, Vanadium, Wolfram, Yttrium, Zinc, and Zirconium

4. SPECIFIC POLLUTANT NETWORK DESCRIPTIONS AND REQUIREMENTS

EPA Ambient Air Monitoring requirements for some pollutants are based on CBSA population counts. Some Maryland CBSA's include parts of surrounding jurisdictions, Table 4-1. *CFR 40, TABLE D–5 OF APPENDIX D TO PART 58*, requires that population be based on the latest available census figures. Population counts used for this year's report are 2008 estimates sourced from AQS.

Table 4-1. Population by CBSA for those CBSA's which contain one or more Maryland counties (Source: AQS, updated in 2008)

CBSA Name	CBSA	States Included in the CBSA						
CDSA Name	Population	DE	DC	MD	PA	VA	WV	
Baltimore-Towson, MD	2,552,994			V				
Cambridge, MD	30,674			$\sqrt{}$				
Cumberland, MD-WV	102,008			V				
Easton, MD	33,812			V				
Hagerstown-Martinsburg, MD-WV	222,771			V			$\sqrt{}$	
Lexington Park, MD	86,211							
Ocean Pines, MD	46,543			V				
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD	5,687,147	$\sqrt{}$		√	√			
Salisbury, MD	109,391			V				

Washington-Arlington-Alexandria,	4.796.183		J		
DC-VA-MD-WV	1,770,103	•	'	,	,

4.1 Carbon Monoxide (CO) – General Description and Sampling Method

Carbon monoxide (CO) is measured by infrared absorption photometry. Air is drawn continuously through a sample cell where infrared light passes through it. Carbon monoxide molecules in the air absorb part of the infrared light, reducing the intensity of the light reaching a light sensor. The light is converted into an electrical signal related to the concentration of carbon monoxide in the sample cell.

4.1.1 Monitoring Requirements

There is no minimum requirement for the number of CO monitoring sites. Operation of the existing CO sites in Maryland is required until the Program requests discontinuation of a site in the Annual Network Plan and the EPA Regional Administrator approves the request. Where CO monitoring is ongoing, at least one site must be a maximum concentration site for that area under investigation.

4.1.2 Sources

CO is formed when carbon in fuel is not completely burned. The EPA estimates that approximately 60% of all CO emissions are from motor vehicle exhaust. Other sources include incinerators, wood stoves, furnaces, and some industrial processes. Concentrations are highest along heavily traveled highways, and decrease significantly the further away the monitor is from traffic. Therefore, CO monitors are usually located close to roadways or in urban areas.

4.1.3 Changes Planned for 2011-2012

No changes planned.

4.2 Lead (Pb) – General Description and Sampling Method

On October 15, 2008 EPA substantially strengthened the national ambient air quality standards (NAAQS) for lead (see 73 FR 66934). EPA revised the level of the primary (health-based) standard from 1.5 μ g/m³ to 0.15 μ g/m³, measured as total suspended particles (TSP, but PM₁₀ will be allowed at NCore sites) and revised the secondary (welfare-based) standard to be identical in all respects to the primary standard. On December 30, 2009, EPA proposed revisions to the lead monitoring requirements pertaining to where State and local monitoring agencies would be required to conduct lead monitoring. The final rule became effective on January 26, 2011.

4.2.1 Monitoring Requirements

Table 4-2 Shows Monitoring Required due to Revisions to Pb ambient air monitoring regulations

Requirement	Appendix to Part 58	Required	Comments
One source-oriented SLAMS site located to measure the maximum Pb concentration resulting from each non-airport Pb source which emits 0.50 or more tons per year	4.5(a)	0	The Program modeled the .57tpy GenOn Energy in Charles County and found it below the threshold and will be submitting a wavier for it.
One source-oriented SLAMS site located to measure the maximum Pb concentration resulting from airport which emits 1.0 or more tons per year	4.5(a)	0	The Program, in conjunction with EPA Region III, found no Pb sources satisfying this requirement in the 2007 emissions inventory
Non-source oriented Pb monitoring at each required NCore site in a CBSA having a population of 500,000 or more.	4.5(b)	1	

4.2.2 Sources

Lead (Pb) is a metal found naturally in the environment as well as in manufactured products. The major sources of lead emissions have historically been motor vehicles (such as cars and trucks) and industrial sources. As a result of EPA's regulatory efforts to remove lead from gasoline, emissions of lead from the transportation sector dramatically declined by 95 percent between 1980 and 1999, and levels of lead in the air decreased by 94 percent between 1980 and 1999. Today, the highest levels of lead in air are usually found near lead smelters. Other stationary sources are waste incinerators, utilities, lead-acid battery manufacturers and general aviation airports. Soil can pick up lead from exterior paint, or other sources such as past use of leaded gas in cars.

4.2.3 Changes Planned for 2011-2012

To satisfy EPA's requirements for lead monitoring at NCore sites, the Program will deploy a low volume, PM₁₀, lead monitor at the HU-Beltsville site by December 12, 2011.

4.3 Nitrogen Dioxide (NO₂) – General Description and Sampling Method

Nitrogen dioxide (NO_2) is measured indirectly. First, nitrogen oxide (NO_3) is measured using the chemiluminescence reaction of nitric oxide (NO_3) with ozone (NO_3). Air is drawn into a reaction chamber where it is mixed with a high concentration of ozone from an internal ozone generator. Any NO_3 in the air reacts with the ozone to produce NO_2 . Light emitted from this reaction is detected with a photomultiplier tube and converted to an electrical signal proportional to the NO_3 concentration. Next, total nitrogen oxides (NO_3) are measured by passing the air through a converter where any NO_2 in the air is reduced to NO_3 before the air is passed to the

reaction chamber. By alternately passing the air directly to the reaction chamber, and through the converter before the reaction chamber, the analyzer alternately measures NO and NO_x . The NO_2 concentration is equal to the difference between NO_x and NO.

4.3.1 Monitoring Requirements

There is no minimum requirement for the number of NO₂ monitoring sites. Operation of the existing NO₂ sites in Maryland is required until the Program requests discontinuation of a site in the Annual Network Plan and the EPA Regional Administrator approves the request. At least one NO₂ monitor must be located to measure regional maximum concentration within the geographic area that it represents.

4.3.2 Sources

Oxides of nitrogen are produced during high-temperature burning of fuels. Sources of NO_x include motor vehicles and stationary sources that burn fossil fuels such as power plants and industrial boilers.

4.3.3 Changes Planned for 2011-2012

No changes planned.

4.4 Ozone (O₃) – General Description and Sampling Method

Ozone (O_3) is measured by ultraviolet absorption photometry. Air is drawn continuously through a sample cell where ultraviolet light passes through it. O_3 molecules in the air absorb part of the ultraviolet light, reducing the intensity of the light reaching a light sensor. The light is converted into an electrical signal related to the concentration of O_3 in the sample cell.

4.4.1 Monitoring Requirements

Within an O₃ network, at least one O₃ site for each MSA, or CSA if multiple MSAs are involved, must be designed to record the maximum concentration for that particular metropolitan area. More than one maximum concentration site may be necessary in some areas. The appropriate spatial scales for O₃ sites are neighborhood, urban, and regional. Since O₃ requires appreciable formation time, the mixing of reactants and products occurs over large volumes of air, and this reduces the importance of monitoring small-scale spatial variability. The appropriate spatial scales for O₃ sites are neighborhood, urban, and regional.

The prospective maximum concentration monitor site should be selected in a direction from the city that is most likely to observe the highest O_3 concentrations, more specifically, downwind during periods of photochemical activity. Since O_3 levels decrease significantly in the colder parts of the year in many areas, O_3 is required to be monitored only during the "ozone"

season" as designated in the 40 CFR Part 58 Appendix D, which in Maryland is April 1 through October 31

4.4.2 Sources

Ozone is not emitted directly from a pollution source but is formed in the lower atmosphere by the reaction of nitrogen oxides (NO_x) and volatile organic compounds (VOCs) in the presence of sunlight and warm temperatures. Sources of nitrogen oxides include automobiles, power plants and other combustion activities. VOCs can come from automobiles, gasoline vapors, and a variety of large and small commercial and industrial sources that use chemical solvents, paint thinners, and other chemical compounds. NO_x and VOC's or "precursors of ozone" can travel for many miles before chemical reactions in the atmosphere form O_3 .

4.4.3 Changes Planned for 2011-2012

The Program has begun to install a new monitoring site at University of Maryland Center for Environmental and Estuarine Studies near Cambridge on Maryland's Eastern Shore. Monitoring is expected to begin in late 2011 pending availability of resources.

4.5 PM₁₀ – General Description and Sampling Method

The Program uses both manual gravimetric and automated monitors to measure PM_{10} mass concentrations in the Maryland network. The PM_{10} Beta Attenuation Monitor (BAM) automatically measures and records dust concentrations with built-in data logging. It uses the principal of beta ray attenuation to provide a simple determination of mass concentration. An external pump pulls a measured amount of air through a filter tape for a one hour period. The filter tape, impregnated with ambient dust, is placed between the source and the detector thereby causing the attenuation of the measured beta-particle signal. The degree of attenuation of the beta-particle signal is used to determine the mass concentration of particulate matter on the filter tape and hence the hourly volumetric concentration of particulate matter in the ambient air.

Gravimetric samplers draw air through a specially designed inlet that excludes particles larger than 10 microns in diameter for a period of 24 hours. The particles are collected on a Teflon filter that is weighed to determine the particulate mass. These samplers report the air volume measured during the sampling period allowing the concentration (mass/volume) to be calculated.

4.5.1 Monitoring Requirements

Maryland must operate the minimum of two PM₁₀ SLAMS monitoring sites as listed in 40 CFR Part 58 Appendix D Table D-4.

4.5.2 Sources

Major sources of PM_{10} include steel mills, power plants, motor vehicles, industrial plants, unpaved roads, and agricultural tilling. The wide variety of PM_{10} sources means that the chemical and physical composition of coarse particles is highly variable.

4.5.3 Changes Planned for 2011-2012

No changes planned.

4.6 Fine Particulate Matter (PM_{2.5}) – General Description and Sampling Method

The Program also uses both manual gravimetric and automated monitors, BAM's, to measure PM_{2.5} mass concentrations in Maryland. A filter attached to the inlets of these monitors excludes particles having diameters greater than 2.5 microns. Otherwise, the monitors work as described for PM₁₀ gravimetric and automated monitoring, section 4.5. Some of the gravimetric monitors are specially equipped to collect PM_{2.5} samples which are later analyzed into concentrations of the samples' chemical constituents or species, see Table 3-4 for list of speciated PM_{2.5} mass.

The Program uses MetOne Super SAAS samplers and IMPROVE samplers for the collection of samples for the chemical speciation of $PM_{2.5}$. The samplers collect 3 to 4 filter samples simultaneously every third or sixth day for a period of 24 hours. These samples are then sent to an EPA contract laboratory for chemical analyses. There are over 50 species consisting of ions, metals and carbon species quantified by the analyses (see Table 3-4).

4.6.1 Monitoring Requirements

Maryland must operate at least the minimum number of required PM_{2.5} sites listed in 40 CFR Part 58 Appendix D Table D-5. These required monitoring stations or sites must be located to represent community-wide air quality. In addition, the following specific criteria also apply:

- At least one monitoring station is to be sited in a population-oriented area of expected maximum concentration.
- For areas with more than one required station, a monitoring station is to be located in an area of poor air quality.
- Each state shall install and operate at least one PM_{2.5} site to monitor for regional background and at least one PM_{2.5} site to monitor regional transport.

Maryland is also required to operate continuous fine particulate analyzers at three monitoring sites, and one of those sites must be collocated for quality assurance purposes.

In addition, chemical speciation is encouraged at sites where the chemically resolved data would be useful in developing the State Implementation Plan (SIP) and supporting health effects related studies.

Please note that data collected by the $PM_{2.5}$ monitors located at Oldtown and Fire Dept 20 is representative of the middle scale and will not be compared to the annual $PM_{2.5}$ NAAQS of 15 $\mu g/m^3$.

4.6.2 Sources

PM_{2.5} pollution is emitted from combustion activities (such as industrial and residential fuel burning and motor vehicles). PM_{2.5} can also form in the atmosphere from precursor compounds through various physical and chemical processes.

4.6.3 Changes Planned for 2011-2012

- MDE's remaining, six Andersen RAAS FRM's will be replaced by thermo Fisher 2025 FRM samplers by the end of 2011.
- MDE proposes to terminate PM_{2.5} sampling at the Bladensburg VFD (240330025) site in PG County and at the NE Police (245100006) site in Baltimore City pending approval by EPA Region III. The Program reported these sites to be redundant in its 5 -Year Network Assessment.

4.7 Sulfur Dioxide (SO₂) – General Description and Sampling Method

Sulfur dioxide (SO_2) is measured with a fluorescence analyzer. Air is drawn through a sample cell where it is subjected to high intensity ultraviolet light. This causes the sulfur dioxide molecules in the air to fluoresce and release light. The fluorescence is detected with a photo multiplier tube and converted to an electrical signal proportional to the SO_2 concentration.

4.7.1 Monitoring Requirements

On June 22, 2010 EPA published final rules revising SO₂ monitoring networks. The rule requires monitoring organizations to submit a plan for establishing SO₂ monitoring sites in accordance with these requirements by July 1, 2011. Table 4-3 shows monitoring required in all Maryland CBSA's due to revisions to the SO₂ ambient air monitoring regulations.

Table 4-3. Monitoring Required by Revisions to SO₂ Ambient Air Monitoring Regulations for all Maryland CBSA's

Requirement	Appendi	CBSA	Required	Comments
	x to	affected		
	Part 58			
Monitors based on population in	4.4.2	Baltimore-	2	Only one additional monitor required in Maryland
each CBSA weighted by a SO ₂		Towson, MD		
emissions index		PA-NJ-DE-	2	No additional monitors required in Maryland
		MD		-
		DC-VA-MD-	3	No additional monitors required in Maryland
		WV		
Regional Administrator Required	4.4.3		0	EPA Region III has not informed the Program of
Monitoring				any administrator required monitoring
NCore Monitoring	4.4.5		2	Already satisfied at both NCore sites

4.7.2 Sources

The main sources of SO_2 are combustion of coal and oil (mostly from electrical generating units (EGUs), refineries, smelters, and industrial boilers). Nationally, two-thirds of all sulfur dioxide emissions are from EGUs. Coal operated EGUs account for 95% of these emissions.

4.7.3 Changes Planned for 2011-2012

- The Program will operate one additional SO₂ monitor in the Baltimore-Towson CBSA by January 1, 2013 to satisfy that CBSA's monitoring requirement to have two monitors. It is tentatively proposed to locate this monitor at the existing Padonia site. The proposed spatial scale is neighborhood and the monitoring objective is population exposure. MDE will re-examine the PWEI with updated emission inventory information taking into account SO₂ emissions reductions realized through the implementation of the Maryland Healthy Air Act prior to installation of this monitor.
- The Program proposes to change the SO₂ monitoring objective at the Essex site to highest concentration pending approval from EPA Region III. This change is based on analysis reported in MDE's 5 -Year Network Assessment.

4.8 PAMS (Photochemical Assessment Monitoring Stations) – General Description and Sampling Method

The purpose of the PAMS program is to provide an air quality database that will assist in evaluating and modifying control strategies for attaining the ozone NAAQS. The selection of parameters to be measured at a PAMS site varies with the site's ozone nonattainment designation (moderate, serious, severe or extreme) and whether the site is upwind or downwind of ozone

precursor source areas. The parameters are O₃, NO, NO_x, NO₂, NO_y and speciated volatile organic compounds (VOCs).

Methods used to sample and analyze VOCs and NO_y follows (NO/NO_x and O_3 have already been described in Sections 4.3 and 4.4, respectively):

Ambient air is collected in eight 3-hour canister samples every 3rd (June – August) day using a XonTech Model 910A Canister Sampler with a Model 912 multicanister sampling adapter. The canisters are returned to the laboratory for analysis on an EnTech/Agilent GC/FID system.

Ambient air is collected in 24-hour canister samples every sixth day using a XonTech Model 910A Canister Sampler. The canisters are returned to the laboratory for analysis on an EnTech/Agilent GC/FID system. These are the same canister samples listed in section 4.9 below but analyzed for the PAMS list of compounds.

Ambient air is collected and analyzed on-site every hour (June – August) using a Perkin Elmer VOC Air Analyzer with dual flame ionization detectors.

Ambient air is sampled hourly for NO_y using a TECO, Model 42C low level oxides of nitrogen analyzer.

4.8.1 Monitoring Requirements

Maryland must operate at least the minimum PAMS monitoring network listed in 40 CFR Part 58 Appendix D Table D-6. PAMS sites sample during the months of June, July, and August. The following specific criteria apply:

At least one site is established to monitor the magnitude and type of precursor emissions in the area where maximum precursor emissions are expected.

At least one site is established to characterize upwind background and transport O₃ and its precursor concentrations entering the area.

At least one NO_y site per area is established to monitor maximum O₃ concentrations occurring downwind from the area of maximum precursor emissions.

4.8.2 Monitoring Locations

There are three monitors that are part of the PAMS network. The Type 1 is located at HU-Beltsville, Prince George's County; the Type 2 is located at Essex, Baltimore County; and the Type 3 is located at Aldino, Harford County. Refer back to Table 3-2a for parameter information and monitoring objective at each monitoring site. For a map of monitoring locations in Maryland refer to Appendix A.

4.8.3 Sources

PAMS VOC's can come from automobiles, gasoline vapors, and a vast variety of large and small commercial, and industrial sources that use chemical solvents, paint thinners and other chemical compounds.

4.8.4 Changes Planned for 2011-2012

No changes are planned.

4.9 Air Toxics – General Description and Sampling Method

Air toxics, or hazardous air pollutants (HAPS), are those pollutants which are known or suspected to cause cancer or other serious health effects, such as reproductive or birth defects, or adverse environmental effects. The Program's air toxics network measures the toxic VOCs listed in Table 3-4. Air toxics samples are collected for 24 hours in canisters with a XonTech model 910A canister sampler on an every sixth day schedule. The canisters are returned to the laboratory for analysis on an Entech/Agilent gas chromatograph mass spectrometer system.

4.9.1 Monitoring Requirements

As part of the EPA Region III Cooperative Toxic Monitoring Program, Maryland operates four air toxic monitoring stations to assess general urban levels. Toxics are sampled every sixth day year-round.

4.9.2 Monitoring Locations

There are four monitors measuring air toxics in Maryland: Essex, Baltimore County, NE Police and Oldtown, Baltimore City, and HU-Beltsville, Prince George's County. Refer back to Table 3-2a for parameter information and monitoring objective at each monitoring site. For a map of monitoring locations in Maryland refer to Figure 3-1.

4.9.3 Sources

Toxics can come from automobiles, gasoline vapors, and a large variety of large and small commercial and industrial sources that use chemical solvents, paint thinners and other chemical compounds.

4.9.4 Changes Planned for 2011-2012

The Program proposes to end monitoring of Air Toxic compounds at the NE Police site in Baltimore City pending the approval of EPA Region III.

4.10 NCore – General Description and Sampling Method

On October 30, 2009 EPA's Office of Air Quality Planning and Standards (OAQPS) formally approved The Program's request that both the HU-Beltsville and Piney Run monitoring stations to be designated NCore sites.

NCore, or National Core multi-pollutant monitoring stations, is a new National monitoring network required in the October 17, 2006 revisions to the Air Monitoring Regulations (40CFR, Part 58). NCore sites are required to measure, at a minimum, $PM_{2.5}$ particle mass using continuous and integrated/filter-based samplers, speciated $PM_{2.5}$, $PM_{10-2.5}$ particle mass, speciated $PM_{10-2.5}$, O_3 , SO_2 , CO, NO/NO_y , wind speed, wind direction, relative humidity, and ambient temperature.

Sampling methods for $PM_{2.5}$, speciated $PM_{2.5}$, O_3 , SO_2 , NO/NO_y are described under the individual pollutant sections throughout this document. Trace level measurement of CO and SO_2 is performed at NCore sites. $PM_{10-2.5}$, or PMCoarse is determined by the difference between collocated PM_{10} and $PM_{2.5}$ FRM samplers. There is no generally accepted method to perform $PM_{10-2.5}$ chemical speciation at this time.

The meteorological parameters are measured as follows:

- The Vaisala WXT520 PTU module contains separate sensors for pressure, temperature and humidity measurement. The measurement principle of the pressure, temperature and humidity sensors is based on an advanced RC oscillator and two reference capacitors against which the capacitance of the sensors is continuously measured. The microprocessor of the transmitter performs compensation for the temperature dependency of the pressure and humidity sensors.
- The Vaisala WXT520 uses RAINCAP Sensor 2- technology in precipitation measurement. The precipitation sensor comprises of a steel cover and a piezoelectrical sensor mounted on the bottom surface of the cover. The precipitation sensor detects the impact of individual raindrops. Hence, the signal of each drop can be converted directly to accumulated rainfall. An advanced noise filtering technique is used to filter out signals originating from other sources and not raindrops.
- The Vaisala WXT520 uses WINDCAP sensor technology in wind measurement. The wind sensor has an array of three equally spaced ultrasonic transducers on a horizontal plane. Wind speed and wind directions are determined by measuring the time it takes the ultrasound to travel from each transducer to the other two. The wind sensor measures the transit time (in both directions) along the three paths established by the array of transducers. This transit time depends on the wind speed along the ultrasonic path. For zero wind speed, both the forward and reverse transit times are the same. With wind along the sound path, the up-wind direction transit time increases and the down-wind transit time decreases.

The Program operates other meteorological parameters not required by the NCore network, and they are measured as follows:

- MetOne's Model 092 instrument is used to measure barometric pressure. The instrument directly senses the weight of the air column or the atmospheric pressure.
- The Climatronics's P/N 102342 Pyranometer is used to measure solar radiation. The detector element is a circular wirebound multi-junction thermopile. This thermopile sensor absorbs solar radiation and converts it to heat. The heat flows through the sensor to the pyranometer housing and generates a voltages output signal that is proportional to the solar radiation.

4.10.1 Monitoring Requirements

Each State is required to operate one NCore site that must be physically established by January 1, 2011. Urban NCore stations are to be located at the urban or neighborhood scale to provide representative concentrations of exposure expected throughout the metropolitan area. Rural NCore stations are to be located to the maximum extent practicable at a regional or larger scale away from any large local emission source so that they represent ambient concentrations over an extensive area.

4.10.2 Monitoring Locations

The Program has been operating pilot NCore sites at HU-Beltsville since 2005 and Piney Run since 2004. The Beltsville site is considered an Urban NCore site and Piney Run, a Rural NCore site. Refer to Table 3-2a for parameter information and monitoring objective at each site. For a map of monitoring locations in Maryland, refer to Figure 3-1.

4.10.3 Sources

Sources have already been addressed under the individual pollutant sections throughout this document.

4.10.4 Changes Planned for 2011-2012

Operation of a lead monitor as described in section 4.2.3.

4.11 The Rural Aerosol Intensive Network – General Description

The Rural Aerosol Intensive Network (RAIN) is a small network of three monitoring sites coordinated by NESCAUM that supports the regional haze rule by determining relative contributions of source regions to visibility. RAIN monitors accomplish this by providing

detailed characterization of transported pollution with both a visibility¹ and fine particle focus. The Program participates in this network.

4.11.1 Monitoring Requirements

See table 3-4 for a list of RAIN parameters.

4.11.2 Monitoring Locations

Frostburg – (Piney Run), Maryland, Mohawk Mt., Connecticut, and Acadia NP, Maine

4.11.3 Sources

Airborne fine particles consisting of sulfate, nitrate, and organic-carbon impair visibility. Sulfate forms from sulfur dioxide released by fuel burning sources such as power plants. Nitrate sources include highway and off-road vehicles, construction equipment. Organic-carbon sources also include on and off-road vehicles and also wildfires. Some of these pollutants are released locally, but some are transported hundreds of miles into the region.

4.11.4 Changes Planned for 2011-2012

No changes Planned

C

¹ MDE operates other sites having monitors that measure visibility, sulfate, OC/EC and light scatter, see Tables 3-1 and 3-2a for details.

APPENDIX A- TOPOGRAPHIC AND AERIAL MAPS

This section contains topographic and aerial maps for air monitoring stations in Maryland. Detailed information regarding each monitoring station (e.g. coordinates, parameters, method codes, etc.) can be found in Table 3-2a, Table 3-2b, Table 3-3, and Table 3-4.

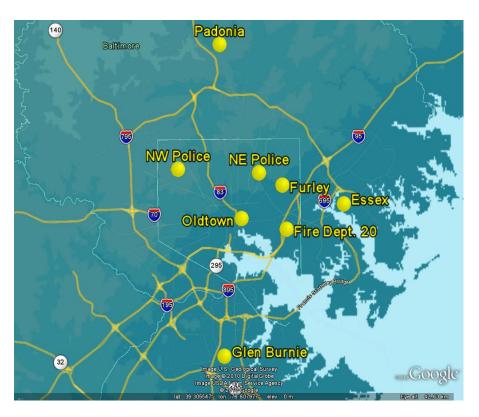


Figure A 1. Topographic map of air monitoring sites in Baltimore, MD.

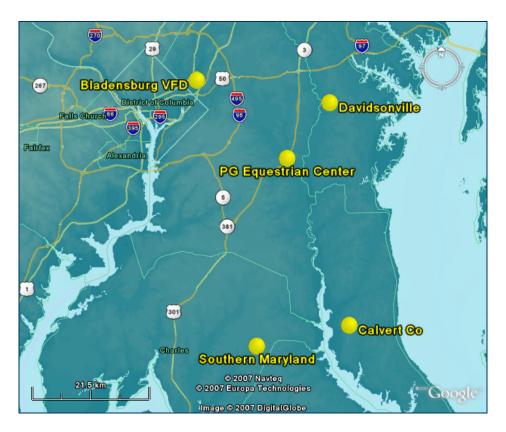


Figure A 2. Topographic map of air monitoring sites in Southern Maryland counties.

Figure A 3. Topographic map of air monitoring sites in Western Maryland counties.



Figure A 4. Topographic map of air monitoring sites in Carroll and Frederick counties.

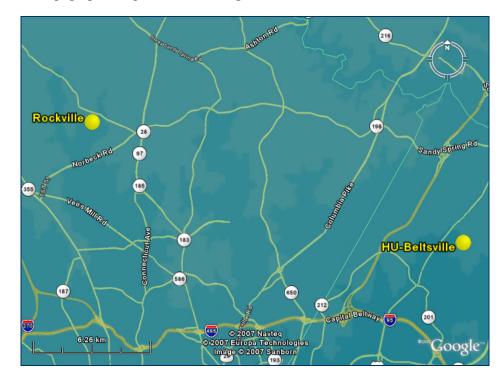


Figure A 5. Topographic map of air monitoring sites to the north of Washington, DC.

Figure A 6. Topographic map of air monitoring sites located in Northeastern counties and the Eastern Shore.

Figure A 7. Aerial map of Aldino air monitoring site in Harford County, MD.

Figure A 8 Aerial map of Haze Cam site at Brandon Shores

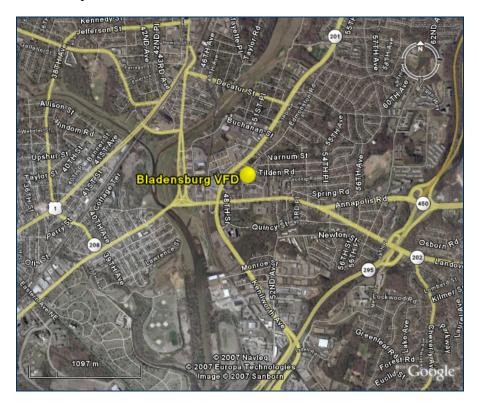


Figure A 9. Aerial map of Bladensburg VFD air monitoring site in Prince George's County, MD.

Figure A 10. Aerial map of Calvert Co air monitoring site in Calvert County, MD

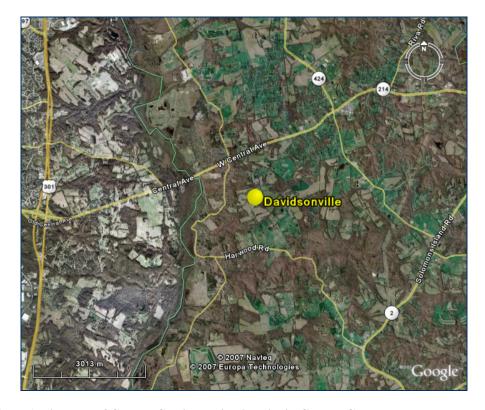


Figure A 11. Aerial map of Calvert Co air monitoring site in Calvert County, MD

Figure A 12. Aerial map of Edgewood air monitoring site in Harford County, MD.

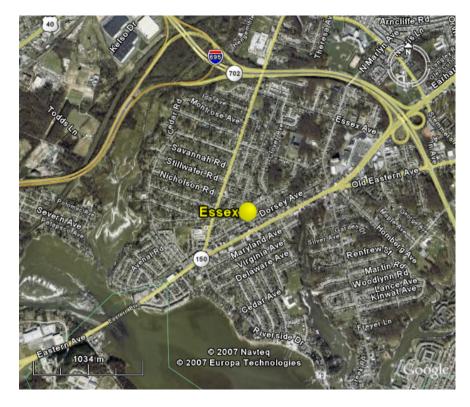


Figure A 13. Aerial Map of the Essex air monitoring site in Baltimore County, MD

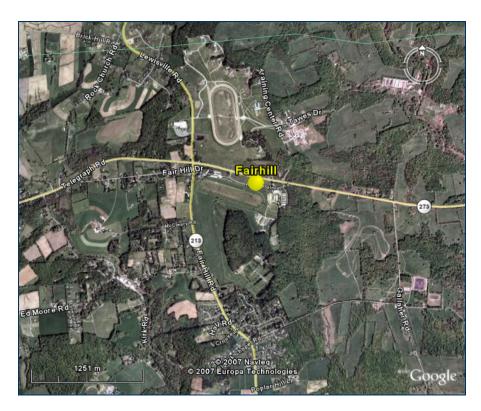


Figure A 14. Aerial map of Fairhill air monitoring site in Cecil County, MD.

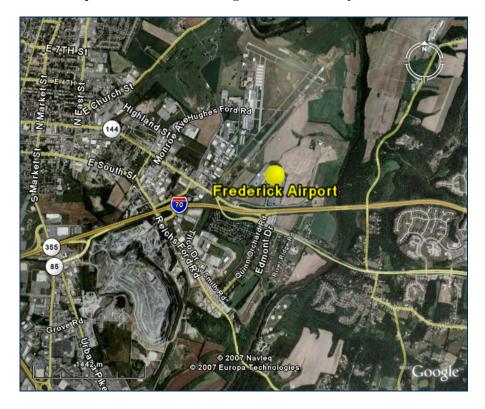


Figure A 15. Aerial map of Frederick Airport air monitoring site in Frederick County, MD.

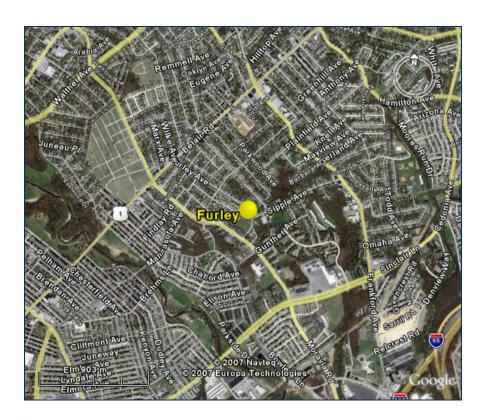


Figure A 16. Aerial map of Furley air monitoring site in Baltimore City, MD.

Figure A 17 Aerial map of Frostburg Haze Cam site

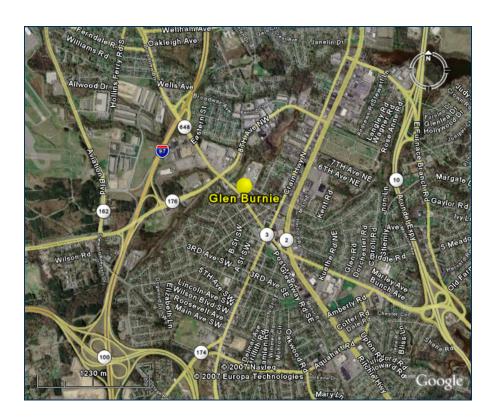


Figure A 18. Aerial map of Glen Burnie air monitoring site in Anne Arundel County, MD.

Figure A 19. Aerial map of Hagerstown air monitoring site in Washington County, MD.

Table A-20 Aerial map of the future Horn Point air monitoring site in Dorchester County, MD

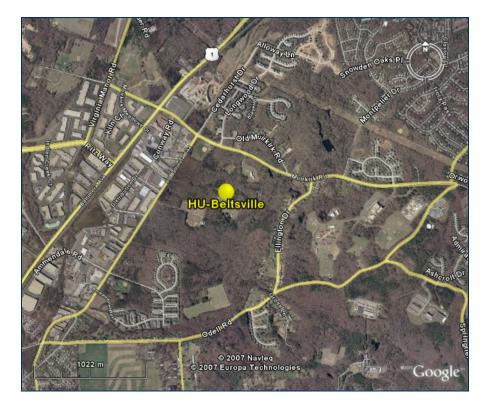


Figure A 20. Aerial map of HU-Beltsville air monitoring site in Prince George's County, MD.

Figure A 21. Aerial map of Millington air monitoring site in Kent County, MD.



Figure A 22. Aerial map of NE Police air monitoring site in Baltimore City, MD.

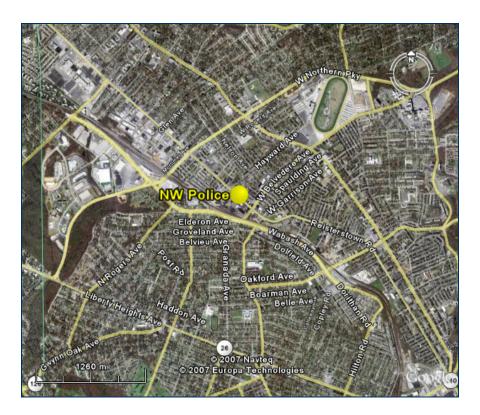


Figure A 23. Aerial map of NW Police air monitoring site in Baltimore City, MD.

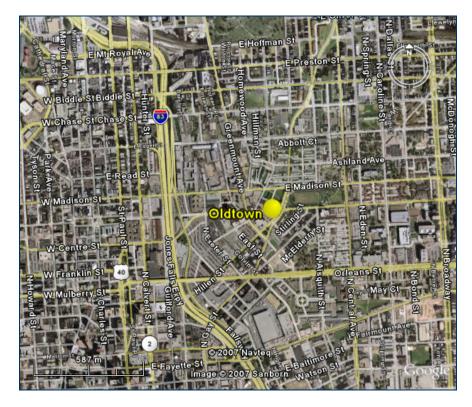


Figure A 24. Aerial map of Oldtown air monitoring site in Baltimore City, MD.

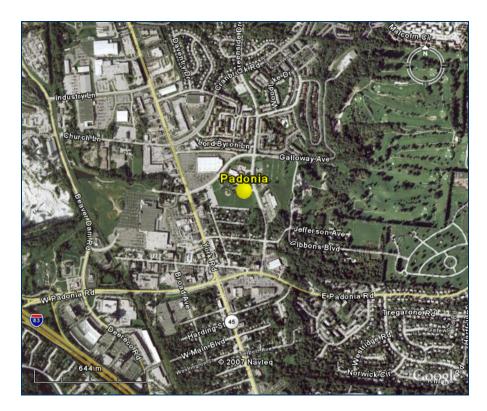


Figure A 25. Aerial map of Padonia air monitoring site in Baltimore County, MD.

Figure A 26 Aerial map of PG Equestrian Center air monitoring site in Prince George's County, MD.

Figure A 27. Aerial map of Piney Run air monitoring site in Garrett County, MD.

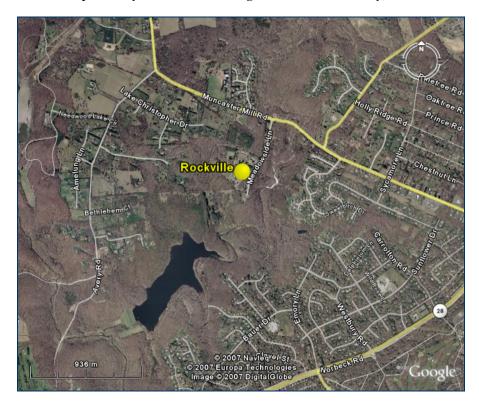


Figure A 28. Aerial map of Rockville air monitoring site in Montgomery County, MD.

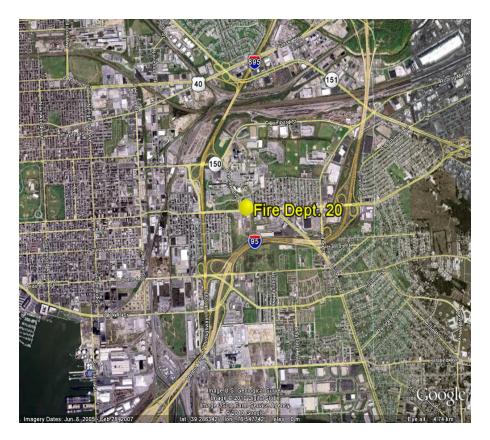


Figure A 29. Aerial map of Fire Dept. 20 air monitoring site in Baltimore City, MD.

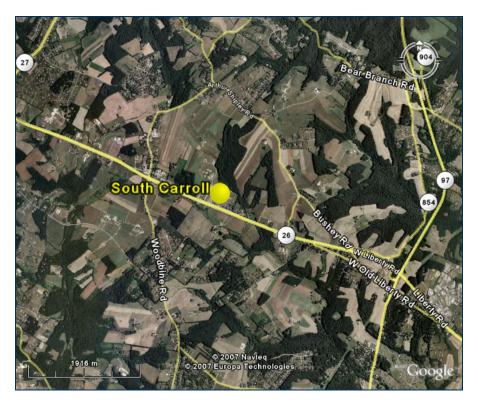


Figure A 30. Aerial map of South Carroll air monitoring site in Carroll County, MD.

Figure A 31. Aerial map of Southern Maryland air monitoring site in Charles County, MD.