Refinement of Nitrogen Removal from Municipal Wastewater Treatment Plants

What is ENR?

- Enhanced Nutrient Removal
- Reduce nutrient discharges from WWTPs
- Use of state-of-the-art microbial technology to break down nitrogen before discharge
- ♦ Next step from BNR

Biological Nutrient Removal Program (BNR Program)

- Implemented in 1983 by the Maryland Department of the Environment (MDE)
- \otimes Included 66 plants of capacity \geq 0.5 MGD
- Plants retrofitted to achieve total nitrogen limits of 8 mg/l
- Soal was 40% reduction of nutrients to Chesapeake Bay (Bay)
- Have exceeded this goal
- Actual reductions from 1985 levels=16.9 million pounds

Purpose of Enhanced Nutrient Removal Study (ENR Study – 2002 – 2004)

- Clear evidence plants could exceed 8 mg/l
- EPA/MDE/Local Governments looking to achieve further nitrogen reductions cost effectively
- Enhancement of BNR Program in compliance with amended 2000 Chesapeake Bay Agreement by further reducing nutrients to the Bay
- ♦ GF/GMB asked to evaluate 20 of the largest WWTPs in MD
- Evaluate alternatives for reducing nitrogen in WWTP effluent
- Develop cost estimate for alternatives
- Extrapolate cost estimate to 66 plants in BNR Program which helped establish newly enacted flush tax

PLANT	EXISTING BNR PROCESS	RATED FLOW (MGD)	
Cambridge	MLE	8.1	
Seneca	MLE	20	
Piscataway	Step Feed	30	
Parkway	Bardenpho (4-Stage)	7.5	
Annapolis	Bardenpho (4-Stage)	13	
Ballenger	A ₂ O		
Marley-Taylor	Schreiber System		
Freedom District	MLE	3.5	
L. Patuxent	Johannesburg	22.5	
Cumberland	Step Feed	15	
Sod Run	A ₂ O Modified	20	
Westminster	MLE/A ₂ O	5	
Hagerstown	Modified Johannesburg	8	
Conococheague	MLE	4.1	
Frederick	A ₂ O	7	
Bowie	VT ²	3.3	
Cox Creek	MLE	15	
Back River	MLE	180	
Salisbury	Submerged (A ₂ O) Trickling Filter	8.5	
Hurlock	Bardenpho (4-Stage)	1.65	

Phase I Approach

- Phase I (2002-2003): Evaluate ways to cost effectively reduce N in plant discharges
- Primary considerations in developing alternatives
 - developed biological models at each facility to estimate nitrogen removal capacity
 - determined tank (reactor) volume requirements for each plant utilizing industry standards and individual plant data
 - site constraints
 - existing plant configuration
 - cost effectiveness of alternatives
- Needed one or two processes that were proven and reliable

Breakdown of BNR Processes in Maryland Phase I Challenge

Biological Nitrogen Removal Nitrogen Cycle

Modified Ludzack-Ettinger (MLE Process)

A₂O Process

Bardenpho Process

- Demonstrated ability to achieve 3 mg/l
- Least costly option
- Requires existing tank modification or additional tankage

Separate-Stage Denitrification Denitrification Filters

- Recommended when existing process nearly achieves complete nitrification
- No cost effective space available for additional reactor volume

Phase I Cost Estimating

- Process Equipment
 - Denitrification filters; Blowers; Pumps; Diffusers
 - Obtained manufacturer cost for several plants
 - Extrapolated equipment costs to other plants
- Other Costs
 - RSMeans estimating tools
- Operation and Maintenance Costs
- Factors applied for disciplines
 - Architectural
 - Civil
 - Mechanical
 - Electrical

STUDY METHODOLOGY TWO PHASES

- ♦ Phase II (2003-2004)
 - Present findings from Phase I to municipalities
 - Request current operational data
 - Discuss planned expansion activities
 - Solicit feed back on report findings
 - Update Phase I data, costs and conclusions

PHASE II FEED BACK

- General acceptance of study recommendations
- One process is not suitable for every plant"
- "Detailed designs need to be performed for every plant"
- "Costs need to be indexed to Engineering News Record (ENR)"
- "Costs for some facilities are too low"
 - |&C
 - Foundation
 - Engineering

Cost Estimates Revisions

- ♦ Moved costs for 2002 Sept. 2004
- Applied 10% to site-limited plants such as Cox Creek and Sod Run
- ♦ Added \$50/ft² for geotechnical at select plants
- Added methanol systems for each plant
- Added methanol control at plants with denite filters
 - Nitrate analyzers and loop controllers
- Added lift pumping stations at plants with denite filters

Case Study

Proposed Alternate for Ballenger Wastewater Treatment Plant

Sufficient volume for 4-Stage Bardenpho Add partition walls

Increase MLSS 2500→ 3500

Adequate clarifier capacity

Adequate pump capacity

Increase IR 200%→ 500%

Add additional IR pumps

Add chemical phosphorus removal

Adequate FeCl₃ System

Estimated Cost for ENR: \$3,800,000

Case Study

Cox Creek Water Reclamation Facility Anne Arundel County 15 mgd

- Existing MLE Process
- Insufficient Reactor Volume Available
- No Space for Additional Tankage
- Solution Denitrification Filter (requires demo of digesters)
- Current TN Discharge: 365,300 lb/yr
- Projected TN Discharge: 136,990 lb/yr
- Reduction of 228,310 lb/yr

Case Study

Cox Creek Water Reclamation Facility Anne Arundel County 15 mgd

ESTIMATED COST FOR REFINEMENT OF NITROGEN REMOVAL AT COX CREEK WATER RECLAMATION FACILITY

Item	Cost
Process Mechanical	\$9,782,000
Electrical	\$2,935,000
Mechanical	\$978,000
Architectural	\$978,000
Site work	\$1,956,000
Subtotal	\$16,629,000
Study, Design and Construction Phase Engineering (15%)	\$2,494,000
Escalation per ENR Cost Index	\$1,164,000
Mobilization	\$1,663,000
Construction Contingency (25%)	\$4,157,000
Total Estimated Cost	\$26,107,000

PLANT	EXISTING (OR CURRENTLY DESIGNED) BNR PROCESS	ENR MODIFICATIONS	POUNDS TN REMOVED WITH ENR MODIFICATIONS (1)	ESTIMATED ENR COST (SEPT. 2004 ENG. NEWS RECORD COST INDEX)	COST PER POUND REMOVED (2)	COST PER GALLON TREATED (3)
Cambridge	Modified Ludzack-Ettinger (MLE)	Reconfiguration to Bardenpho	123,257	\$1,750,000	\$0.96	\$0.22
Seneca	Modified Ludzack-Ettinger	Increase in internal	ost per lb. re	emoved Cos	st per gal. tr	eated
Piscataway	Step Feed	Re				
Parkway	4-Stage Bardenpho	Meth Avg		\$ 5.90	\$	1.38
Annapolis	4-Stage Bardenpho	Ad				
Ballenger	A₂O	Inc Max		\$30.29	\$	4.18
Marley-Taylor	Schreiber System	Addi Min		\$ 0.55	\$	0.21
Freedom	Modified Ludzack-Ettinger	Pro and recontiguration to Bardenpho	ეპ,∠პე	\$3,472,000		\$v.yy
L. Patuxent	lahannashura	Dentarification files	194,523	\$28,000,000		\$1.78
	al Pounds Nitrogen noved with ENR: 5,7	714,000	228,308	\$16,500,000		\$1.10
Sod Run			304,410	\$22,568,000		\$1.13
Westminster	MLE/A ₂ O	cation filters	76,114	\$8,600,000	,	\$1.72
Hagerstown	Modified Johannesburg	ion filters	133,940	\$8,900,000	46	\$1.11
Conococheague	Modified Ludzack-Ettinger		NA	NA	NA	NA
Frederick	A_2O	De 'ters	104,528	\$9,900,000	∮ 6.37	\$1.41
Bowie	VT ² Oxidation Ditch	Denitriti	50,228	\$1,000,000	\$0.55	\$1.75
Cox Creek	Modified Ludzack-Ettinger	Denitrificatio _s	228,308	\$26,107,000	\$7.69	\$1.74
Back River	Modified Ludzack-Ettinger	Denitrification filte.	2,739,690	\$250,850,000	\$6.15	\$1.39
Salisbury	A ₂ O Trickling Filter	NA	333,800	\$30,175,000	\$5.30	\$4.18
Hurlock	4-Stage Bardenpho	Additional reactor volume	50,228	\$6,200,000	\$8.30	\$3.76
TOTAL		5,714,000	AVE.	\$5.90	\$1.38	
NOTES:				MAX. MIN.	\$30.29 \$0.55	\$4.18 \$0.21
mde						

Results

Cost per Gallon of ENR Improvements

ADDITIONAL REACTOR VOLUME REQUIRED

CONCLUSIONS

- Single phase implementation of ENR is most cost effective
- Alternative carbon sources add flexibility
- Independent study required to establish best treatment alternative
- Average costs
 - \$5.90 per pound nitrogen removed
 - \$1.38 per gallon treated
- Closely matches previous BNR costs

Refinement of Nitrogen Removal from Municipal Wastewater Treatment Plants

