Coke Point and Greys Landfills Semi-Annual Groundwater Monitoring Report Spring 2018 # Prepared for: TradePoint Atlantic and Sparrows Point LLC 1600 Sparrows Point Boulevard Sparrows Point Maryland 21219 September 2018 # Coke Point and Greys Landfills Semi-Annual Groundwater Monitoring Report Spring 2018 ### **Table of Contents** | 1.0 | Introduction | | |-----|--|---| | 2.0 | Site and Monitoring Network Description | | | 3.0 | Groundwater Monitoring Procedures | | | | 3.1 Coke Point Landfill | | | | 3.2 Greys Landfill | | | | 3.3 Groundwater Sampling Procedures | | | 4.0 | Groundwater Data Evaluation | | | | 4.1 Coke Point Landfill | | | | 4.1.1 Groundwater Elevation and Contours | | | | 4.1.2 Groundwater Quality Evaluation | | | | 4.2 Greys Landfill | | | | 4.2.1 Groundwater Elevation and Contours | | | | 4.2.2 Groundwater Quality Evaluation | | | 5.0 | Historical Trends and Analysis 11 | 1 | | | 5.1 Coke Point Landfill | 1 | | | 5.2 Greys Landfill | 1 | | 6.0 | Recommendations 18 | | #### List of Figures - 1. Site Location Map - 2. Coke Point Landfill Monitoring Well Locations - 3. Greys Landfill Monitoring Well Locations - 4. Coke Point Landfill Groundwater Contour Map Shallow Zone - 5. Coke Point Landfill Groundwater Contour Map Intermediate Zone - 6. Coke Point Landfill Notable VOC and SVOC Detections Shallow Zone - 7. Coke Point Landfill Notable VOC and SVOC Detections Intermediate Zone - 8. Coke Point Landfill Notable Indicator Metals Detections Shallow Zone - 9. Coke Point Landfill Notable Indicator Metals Detections Intermediate Zone - 10. Greys Landfill Groundwater Contour Map Shallow Zone - 11. Grevs Landfill Groundwater Contour Map Intermediate Zone - 12. Greys Landfill Notable VOC and SVOC Detections Shallow Zone - 13. Grevs Landfill Notable VOC and SVOC Detections Intermediate Zone - 14. Greys Landfill Notable Indicator Metals Detections Shallow Zone - 15. Greys Landfill Notable Indicator Metals Detections Intermediate Zone #### List of Tables - 1. Coke Point Landfill Monitoring Well Construction Summary - 2. Greys Landfill Monitoring Well Construction Summary - 3. Coke Point Landfill Monitoring Well Groundwater Elevations - 4. Greys Landfill Monitoring Well Groundwater Elevations #### List of Appendices - A. Coke Point Landfill Monitoring Well Data Summary Tables: Volatile Organic Compounds - B. Coke Point Landfill Monitoring Well Data Summary Tables: Inorganics - C. Coke Point Landfill Monitoring Well Data Summary Tables: Semi-Volatile Organic Compounds - D. Greys Landfill Monitoring Well Data Summary Tables: Volatile Organic Compounds - E. Greys Landfill Monitoring Well Data Summary Tables: Inorganics - F. Greys Landfill Monitoring Well Data Summary Tables: Semi-Volatile Organic Compounds #### 1.0 Introduction This report presents the activities and findings of the 1st semi-annual (Spring) 2018 groundwater monitoring event for the Coke Point and Greys Landfills at the Sparrows Point facility. Groundwater data and analyses are included to fulfill the applicable ongoing groundwater compliance monitoring requirements for the landfills as outlined in the Coke Point and Greys Landfill Sampling Plan letter received from the Maryland Department of the Environment (MDE) on December 3, 2012. The following data collection activities occurred for the Spring 2018 monitoring event: - water level measurements in groundwater monitoring wells; - sampling of groundwater monitoring wells; and - Laboratory analysis of monitoring well samples. Results of the above investigations are described and presented in this report. This report: - Provides field data sheets and laboratory reports documenting groundwater sample collection; - Presents the water level data collected; - Provides laboratory reports for sample analyses; - Tabulates laboratory analytical data in time-series format; - Discusses the water quality results; - Includes location maps for the landfills with monitoring well locations posted; - Includes groundwater contour maps for the shallow zone and intermediate groundwater zones at the landfills; and - Includes other figures depicting analytical results for this sampling event. # 2.0 Site and Monitoring Network Description Coke Point Landfill occupies land on the southern edge of the Sparrows Point property located in southeastern Baltimore County (**Figure 1**). Coke Point Landfill was used for disposal of non-hazardous industrial waste generated on-site during steel production. Recent activities include recycling efforts to recover iron bearing materials from the landfill. Greys Landfill occupies approximately 40 acres on the north side of the Sparrows Point property, between I-695 and the Peninsula Expressway (**Figure 1**). Greys Landfill has been used for the disposal of industrial waste generated on-site during steel production and is currently being utilized for ongoing non-hazardous waste disposal associated with the continuing operation of the wastewater treatment facility and demolition activities. Monitoring well location maps are included for Coke Point and Greys Landfills (**Figures 2** and **3** respectively). Groundwater at the landfill sites is monitored via a series of monitoring wells which are typically arranged in pairs (or clusters) consisting of one shallow well and one or more intermediate wells. A summary of monitoring well construction details is presented in **Table 1**. Shallow wells have been installed with well screens situated to monitor the unconfined shallow groundwater zone. These are considered water table wells. The vertical sections of well screen in the shallow monitoring wells typically span across mean sea level (also referred to as elevation 0 above mean sea level, or AMSL). Intermediate wells have been installed with well screens in native sand layers. Top-of-screen elevations range from -10 to -60 feet below ground surface (bgs) in depth. Intermediate wells with deeper screens are generally located near the southern edge of Coke Point Landfill. Between the shallow and the intermediate well screens, there are generally one or more layers of low permeability materials that tend to inhibit vertical groundwater movement. # 3.0 Groundwater Monitoring Procedures #### 3.1 Coke Point Landfill In May 2018, samples were collected from 24 wells at Coke Point Landfill for the Spring 2018 monitoring event. The locations of the monitoring wells are shown on **Figure 2**. Analytical parameters for the groundwater samples were specified in the December 3, 2012 MDE letter. They include Table I (volatile organic compounds, or VOCs) and Table II (elements and indicator) parameters. In addition, samples from all 24 groundwater monitoring wells were analyzed for semi-volatile organic compounds (SVOCs). The wells were analyzed based on notable detections of SVOCs from review of historical data at the landfill. Laboratory analyses were performed by PACE Analytical Services using EPA methods. Data summary tables presenting the monitoring well groundwater analytical results in time-series format are included in **Appendix A** (Table I VOCs), **Appendix B** (Table II Elements and Indicator Parameters), and **Appendix C** (SVOCs). #### 3.2 **Greys Landfill** In May 2018, 32 wells were sampled at Greys Landfill for the Spring 2018 monitoring event. The locations of the monitoring wells are shown on **Figure 3**. A summary of the monitoring well construction details is presented in **Table 2**. Analytical parameters for groundwater samples were specified in the December 3, 2012 MDE letter and included Table I (VOCs) and Table II (elements and indicator) parameters. In addition, all 32 groundwater monitoring wells were analyzed for SVOCs. The wells were analyzed based on notable detections of SVOCs from review of historical data at the landfill. Analyses were performed by Pace Laboratories, Inc. using EPA methods. Data summary tables presenting monitoring well groundwater analytical results in timeseries format are presented in **Appendix D** (Table I VOCs), **Appendix E** (Table II Elements and Indicator Parameters), and **Appendix F** (SVOCs). #### 3.3 Groundwater Sampling Procedures Groundwater levels were measured and recorded prior to sampling a monitoring well. Water levels were measured to the nearest 0.01-foot with an electronic tape. Water levels were referenced to the top of the inner casing of the wells. Data for groundwater levels as collected during the Spring 2018 monitoring event are tabulated and compared to previous data in **Table 3** for Coke Point Landfill and **Table 4** for Greys Landfill. Groundwater samples were collected using a low-flow sampling methods. EnviroAnalyticsGroup, LLC (EAG) personnel utilized an electrical submersible pump with dedicated disposable tubing to purge each monitoring wells. Purging continued until field water quality parameters pH, temperature, dissolved oxygen, specific conductance, salinity, total dissolved solids (TDS), and oxidation-reduction potential (ORP) were stable. These water quality parameters were monitored during purging using a YSI meter and flow-through cell. A measurement for each field water quality parameter was recorded every five minutes. After three consecutive measurements indicated stability (defined as variance between consecutive measurements of less than ten percent for all parameters) the sample was collected. Groundwater samples were collected in laboratory-provided bottle ware and were properly labeled. Care was taken to control flow rates so as to not over-flow sample bottles containing a preservative. A chain of custody form was completed indicating sample number, date, time, and the analyses required. Samples were stored on ice in a cooler and shipped to PACE Analytical Services, Inc. for analysis. Laboratory Certificates of Analysis and Chain of Custody forms can be provided upon request of the Department. #### 4.0 Groundwater Data Evaluation Depth to water
measurements and groundwater monitoring well survey data were used to calculate groundwater elevations and develop groundwater contour maps for the landfills. One groundwater contour map was developed for the shallow groundwater zone and a second map was developed for the intermediate groundwater zone for each landfill. Analytical data from groundwater samples have been tabulated and evaluated with respect to detections of organic and inorganic compounds. An interpretive discussion of the findings is provided in the following sections. #### 4.1 Coke Point Landfill #### 4.1.1 Groundwater Elevations and Contours Groundwater elevations for the Coke Point Landfill monitoring wells collected during the Spring 2018 monitoring event are presented in **Table 3**. These measurements are also shown on groundwater contour maps for the shallow groundwater zone (**Figure 4**) and the intermediate groundwater zone (**Figure 5**). Vertical survey data are referenced to the NAVD 1988 datum. Groundwater elevations indicate the potentiometric surface in the shallow zone has a mounded area at the north side of the landfill centered on well CP02-PZM007. This well is located furthest inland and typically has the highest groundwater elevation. Groundwater measurements usually indicate that groundwater flows away from this well to the south and southwest toward the shoreline. However, during the Spring 2018 event, groundwater was highest along the northeast edge of the landfill at well CP08-PZM008 (groundwater elevation of 8.24 feet AMSL). This is an anomalously high groundwater level for this well. Excluding CP08-PZM008 and CP02-PZM007, groundwater elevations in shallow zone monitoring wells ranged from 0.87 to 2.3 feet AMSL. Groundwater elevations indicate the potentiometric surface in the intermediate zone is generally relatively flat, with two exceptions. The groundwater level measured in well CP16-PZM035 (8.71 feet AMSL) was anomalously high and therefore not included when generating the groundwater elevation contours shown on **Figure 5**. The other exception is the groundwater level in well CP05-PZM028, measured to be -2.79 feet AMSL. This well continues to exhibit an anomalously low groundwater elevation compared to other intermediate zone wells. This well is screened slightly lower in the intermediate zone than the other intermediate well in the well cluster, CP05-PZM019. The groundwater elevation for CP05-PZM028 was not included when generating the groundwater elevation contours shown on Figure 5. Excluding wells CP05-PZM028 and CP16- PZM035, groundwater elevations in the intermediate zone wells ranged from 0 to 1.4 feet AMSL. #### 4.1.2 Groundwater Quality Evaluation #### **VOCs** VOC concentrations for Coke Point Landfill are presented in **Appendix A** and displayed on **Figure 6** (shallow zone) and **Figure 7** (intermediate zone). Concentration values displayed on **Figures 6 and 7** only include the maximum concentration of all VOC detected at a given location for the Spring 2018 monitoring event. VOC results for the shallow groundwater monitoring wells at Coke Point Landfill are shown on **Figure 6**. Benzene, acetone and toluene were the most commonly identified VOCs. The highest VOC concentration detected in the shallow zone monitoring wells was 15,800 micrograms per liter (μ g/L) of benzene at well CP08-PZM008. Historical data indicate that benzene values for this monitoring well have ranged between 15,000 μ g/L and 25,800 μ g/L from 2011 to present. Benzene values in other wells were much lower, with the next highest concentration being 2,760 μ g/L at well CP19-PZM008. The most impacted well in the shallow zone—CP08-PZM008—is located on the east side of the landfill. The closest shoreline is approximately 1,200 feet to the south of the monitoring well. Groundwater likely flows along a slight gradient to the south towards the shoreline. Five wells (CP19-PZM008, CP16-PZM008, CP18-PZM009, CP20-PZM011, CP21-PZM004) screened in the shallow zone were added to the network in the Spring 2015 monitoring event. Each of these wells is located in the surrounding area of CP08-PZM008 as shown on **Figure 6**. The table below compares the benzene levels in groundwater at the newly added wells to the benzene levels at CP08-PZM008. | WELL | LOCATION TO CP08-PZM008 | BENZENE μg/L | |-------------|---------------------------------|--------------| | CP08-PZM008 | | 15,800 | | CP19-PZM008 | Southwest of CP08 | 2,760 | | CP16-PZM008 | South of CP08 against shoreline | 62.1 | | CP18-PZM009 | South of CP08 | 943 | | CP20-PZM011 | East of CP08 | 97.1 | | CP21-PZM004 | North of CP08 | 1.7 | Based on the data shown in this table, the nature and extent of benzene identified at CP08-PZM008 has been defined and is confined to the vicinity of CP08-PZM008. VOC results for the intermediate zone groundwater monitoring wells at Coke Point Landfill are shown on **Figure 7**. Groundwater VOC concentrations are lower in the intermediate zone than in the shallow zone, with the highest VOC concentration being 121 μ g/L of benzene detected at well CP16-PZM035. Historical data indicate that benzene values for this monitoring well have been relatively stable since April 2011, ranging from 290 μ g/L to 121 μ g/L. All other intermediate monitoring wells have maximum VOC concentrations less than 80 μ g/L. #### **SVOCs** SVOC results for Coke Point Landfill are presented in **Appendix B**. SVOCs are not listed as part of the Table I and Table II requirements outlined in the December 3, 2012 letter; however, monitoring wells were analyzed for SVOCs based on recommendations from a previous groundwater compliance report for Coke Point Landfill published in 2011. In the Spring 2018 monitoring event, 24 groundwater monitoring wells were sampled and analyzed for SVOCs. SVOC results for the Coke Point Landfill are displayed on **Figure 6** (shallow zone) and **Figure 7** (intermediate zone). SVOCs were detected in all of the groundwater monitoring wells that were sampled. Shallow wells generally had higher SVOC concentrations than intermediate wells. The highest SVOC concentration detected was 341 μ g/L of naphthalene at well CP08-PZM008, which is located in the shallow zone. This is much less than the highest detection of naphthalene ever reported in CP08-PZM008 (6,320 μ g/L in the Fall 2016 monitoring event) since first being sampled in 2011. The highest SVOC concentration detected in the intermediate groundwater zone was 51.5 μ g/L of naphthalene located at CP16-PZM035. This well has a range of 18.7 μ g/L to 189 μ g/L of naphthalene since 2011. #### **Inorganics** Inorganic compound data for Coke Point Landfill are presented in **Appendix C**. Concentrations of arsenic, chromium and lead for each well are displayed on **Figure 8** (shallow zone) and **Figure 9** (intermediate zone). These metals were selected to act as representative indicators of impacts to groundwater. The concentrations shown on **Figure 8** for the shallow groundwater zone indicate that all three indicator metals were below 0.05 milligrams per liter (mg/L) for all monitoring wells. The highest concentration for each of the indicator metals in the shallow zone was 0.0384 mg/L of arsenic at CP02-PZM007, 0.0457 mg/L of chromium at CP20-PZM011, and 0.008 mg/L of lead at CP09-PZM010. Concentrations of the three representative metals in the intermediate groundwater wells at Coke Point Landfill are shown on **Figure 9**. The concentrations were significantly lower than in the shallow zone. The highest concentration for each of the indicator metals in the intermediate zone was 0.0114 mg/L of arsenic at CP12-PZM052, 0.0047 mg/L of chromium at CP05-PZM028, and 0.0023 mg/L of lead at CP15-PZM042. These results confirm limited impacts to intermediate groundwater from site activities and provide evidence for the lack of vertical groundwater migration (migration between the shallow and intermediate zones). #### 4.2. Greys Landfill #### 4.2.1 Groundwater Elevations and Contours Groundwater elevations for the Greys Landfill monitoring wells collected during the Spring 2018 monitoring event and are presented in **Table 4**. These data were developed into groundwater contour maps for the shallow groundwater zone (**Figure 10**) and the intermediate groundwater zone (**Figure 11**). Vertical survey data are referenced to the NAVD 1988 datum. **Figure 10** shows representative groundwater levels and groundwater contours for the shallow zone monitoring wells. Groundwater elevations indicate the potentiometric surface in the shallow zone is highest at the southern edge of the landfill at well GL-13 (+1) (groundwater elevation of 13.46 feet AMSL). The potentiometric surface indicates that groundwater flows to the northwest. Groundwater elevations in shallow zone monitoring wells ranged from 0.88 to 13.46 feet AMSL. Groundwater elevations for the intermediate wells are shown on **Figure 11**. The highest groundwater elevation in the intermediate zone was measured at well GL-09 (-20) (groundwater elevation of 6.16 feet AMSL). Excluding GL-09 (-20) and well GL-03 (-16) (groundwater elevation of 4.28 feet AMSL), groundwater elevations for the intermediate wells ranged from 0.22 to 1.12 feet AMSL. The elevations measured for this monitoring event indicate an east-to-west flow gradient near the eastern edge of the landfill, but a relatively flat potentiometric surface near the central and western portions of the landfill. #### 4.2.2 Groundwater Quality Evaluation #### **VOCs** VOC results for Greys Landfill monitoring wells are presented in **Appendix D** and are also shown on **Figure 12** (shallow zone) and **Figure 13** (intermediate zone). Concentrations displayed on **Figures 12 and 13** only include the maximum VOC or SVOC concentration detected at a given well during the Spring 2018 monitoring event. During this monitoring event, well GL-17 (-1) located on
the north side of the landfill exhibits the highest concentrations of VOCs. This well had a benzene concentration of 6,070 μ g/L. The benzene concentration in this well has generally been decreasing over the last six monitoring events. Groundwater in this area is flowing to the west/northwest. It is evident from the concentrations displayed on Figure 12 that VOC impact is significantly attenuated with distance from the landfill in the shallow zone. There is a significant decrease in VOC concentrations from well GL-17 (-1) to wells GL-02 (-5) and TS-01 (-7), moving towards Bear Creek. Benzene was detected at a concentration of 12 μ g/L in well TS-01 (-7) and was not detected in well GL-02 (-5). It is also evident from concentrations displayed on Figure 12 that there is minimal VOC impact in the shallow zone south of the landfill or west of the landfill, adjacent to Bear Creek. VOC results are shown for the intermediate groundwater monitoring wells at Greys Landfill on **Figure 13**. For the intermediate zone, VOC concentrations are typically significantly lower than in the shallow zone. In well GL-14 (-33), concentrations of benzene have greatly fluctuated from December 2014 to the recent Spring 2018 monitoring event. The lowest concentration of benzene in this well during this time frame was during the Spring 2018 monitoring event when it was not detected, whereas the highest concentration was 2,470 μ g/L detected during the Fall 2015 monitoring event. This intermediate well will continue to be monitored closely for increases or decreases in VOC concentrations during future sampling events. #### **SVOCs** SVOC results for Greys Landfill are presented in **Appendix E**. SVOCs are not listed as part of the Table I and Table II requirements outlined in the December 3, 2012 letter; however, monitoring wells were analyzed for SVOCs based on recommendations from a previous groundwater compliance report for Greys Landfill published in 2011. SVOC results for Greys Landfill are displayed on **Figure 12** (shallow zone) and **Figure 13** (intermediate zone). SVOCs were detected in 12 shallow groundwater monitoring wells. The data indicate the wells most impacted by SVOCs are GL-18 (-3), GL-08 (-3), GL-17 (-1), and GL-09(-2). These wells are located in the shallow zone on the north and northeast sides of the landfill. The highest SVOC concentrations in the shallow zone were detected at wells GL-18 (-3) and GL-08(-3) with naphthalene concentrations of 5,770 μ g/L and 1,890 μ g/L, respectively. Naphthalene concentrations for GL-18 (-3) and GL-08(-3) have significantly fluctuated over the past four years. SVOCs were detected in 12 out of 15 intermediate groundwater monitoring wells. The highest SVOC concentration in the intermediate zone was at well GL-03 (-16), where 2-Chloronaphthalene was detected at a concentration of 9 μ g/L. Based on review of historical SVOC data, there have been minimal SVOC detections in intermediate zone wells since 2010. #### **Inorganics** Inorganic compound data for Greys Landfill are presented in **Appendix F**. Individual results for arsenic, chromium and lead are displayed on **Figure 14** (shallow zone) and **Figure 15** (intermediate zone). These metals were selected to act as representative indicators of impacts to groundwater. Review of the representative metal data shown on **Figure 14** indicates that in the shallow wells, all detections of indicator metals were below 0.2 mg/L. The highest concentration for each indicator metal in the shallow zone was: 0.0208 mg/L of arsenic at GL-09 (-2), 0.14 mg/L of chromium at GL-15 (-6), and 0.038 mg/L of lead at GL-02 (-5). Concentrations of the three representative metals in the intermediate groundwater zone wells are shown on **Figure 15**. The highest concentration for each indicator metals was 0.0132 mg/L of arsenic at GL-09 (-20), 0.0049 mg/L of chromium at GL-15 (-36), and 0.0019 mg/L of lead at GL-05 (-25). Generally, concentrations of indicator metals were lower in the intermediate zone than the shallow zone. ### 5.0 Historical Trends and Analysis The following sections provide a discussion and analysis of general historical trends in the data by comparing data collected and reported by previous owners of the landfills to the Spring 2018 data. Analysis, such as intra-well statistical methods, will be completed in the future when additional data have been collected to provide sufficient input for a statistically valid data set. #### 5.1 Coke Point Landfill Concentrations of VOCs in shallow groundwater monitoring data have remained fairly consistent over recent years. Well CP08-PZM008 located on the east side of the landfill, has exhibited stable benzene concentrations from May 2016 up through the Fall 2017 event. The Spring 2018 sampling event exhibited a decreased benzene concentration in this well. Wells surrounding CP08-PZM008 (CP16-PZM008, CP18-PZM009, CP19-PZM008, and CP21-PZM004) generally exhibited stable benzene concentrations as well. Although groundwater at these well locations is impacted with VOCs, the concentrations are less than that of CP08-PZM008. Intermediate zone well CP16-PZM035 has exhibited a trend of stable or decreasing VOCs over the past five years. Benzene concentrations have ranged from 281 μ g/L in December 2014 to 121 μ g/L in May 2018. Most other intermediate wells at Coke Point Landfill have had no detectable levels of benzene. Trends in benzene concentrations will continue to be monitored during future sampling events. Acetone was not detected in well CP15-PZM042 from April 2011 to December 2015. During the November 2016 monitoring event, acetone was detected in this well at a concentration of 227 μ g/L. Since that time, concentrations have notably fluctuated. The concentration of acetone in this well was 79 μ g/L during the Spring 2018 monitoring event. Acetone will continue to be monitored for increases or decreases in CP15-PZM042 during future sampling events. There were no other notable trends (either increasing or decreasing) for the SVOCs or inorganic compounds in both the shallow and intermediate zone at Coke Point Landfill. #### 5.2 Greys Landfill Concentrations observed for Greys Landfill groundwater monitoring of VOCs and SVOCs in both the shallow and intermediate zones are generally consistent with historical values and trends, with a few exceptions. In shallow well GL-08 (-3), a number of VOCs were detected for the first time during the October 2013 sampling event. Concentrations of these parameters have generally been decreasing since the May 2015 monitoring event. In well GL-09 (-2), concentrations of acetone and 2-butanone continue to exhibit notable fluctuations from event to event. The concentration of benzene in intermediate zone well GL-14 (-33) has notably fluctuated over the past five years. Otherwise, SVOC and VOC concentrations in the intermediate zone wells are relatively low and have shown minor changes over the past five years. Results for inorganics in the groundwater at Grey's Landfill for the Spring 2018 monitoring event remain within historical concentration ranges. In the shallow zone, no significant increases or decreases were noted. Intermediate well concentrations remained fairly consistent with historical trends. ## 6.0 Recommendations The groundwater monitoring program for both Coke Point and Greys Landfills is adequate as currently implemented. Groundwater wells are adequately located to monitor impacts to both shallow and intermediate groundwater zones around both landfills. Semi-annual groundwater monitoring events will continue to be performed to sample and analyze groundwater from these land disposal units. Table 1 Coke Point Landfill Monitoring Well Construction Summary | Well ID | Monitoring Zone | Northing (ft) | Easting (ft) | Top of
PVC
Elevation
(ft amsl) | Installation
Date | Protective Cover Type | Well Total
Depth (ft) | Riser
Length (ft) | Screen
Length | Filter Pack
Interval (ft) | Seal Interval
(ft) | Grout
Interval (ft) | Diameter (in) | |-------------|-----------------|---------------|--------------|---|----------------------|-----------------------|--------------------------|----------------------|------------------|------------------------------|-----------------------|------------------------|---------------| | CP02-PZM007 | Shallow | 560865.99 | 1456414.08 | 27.12 | 11/14/2001 | Steel Riser Stick-up | 31.6 | 21.6 | 10 | 19.7-32 | 17.7-19.7 | 0-17.7 | 2 | | CP02-PZM026 | Intermediate | 560881.50 | 1456402.74 | 27.31 | 11/8/2001 | Steel Riser Stick-up | 50 | 45 | 5 | 43-55 | 41-43 | 0-41 | 2 | | CP05-PZM008 | Shallow | 560044.51 | 1454932.30 | 9.75 | 10/12/2000 | Steel Riser Stick-up | 15 | 5 | 10 | 3-15 | 2-3 | 0-2 | 2 | | CP05-PZM019 | Intermediate | 560034.23 | 1454939.13 | 10.48 | 10/16/2000 | Steel Riser Stick-up | 26 | 21 | 5 | 19-26 | 18-19 | 0-18 | 2 | | CP05-PZM028 | Intermediate | 560050.93 | 1454920.88 | 7.07 | 10/17/2000 | Flush Mount | 35 | 32 | 3 | 32-35 | 31-32 | 0.5-31 | 2 | | CP07-PZM006 | Shallow | 560493.41 | 1456130.90 | 14 | 10/12/2000 | Steel Riser Stick-up | 17 | 7 | 10 | 5-17 | 4-5 | 0-4 | 2 | | CP08-PZM008 | Shallow | 560456.82 | 1456698.42 | 24.64 | 11/12/2001 | Steel Riser Stick-up | 30 | 20 | 10 | 18-30 | 16-18 | 0-16 | 2 | | CP08-PZM034 | Intermediate | 560464.90 | 1456697.46 | 25.47 | 11/9/2001 | Steel Riser Stick-up | 57 | 52 | 5 | 50-57 | 48-50 | 0-48 | 2 | | CP09-PZM010 | Shallow | 559500.55 | 1455329.32 | 7.63 | 10/30/2001 | Steel Riser Stick-up | 15 | 5 | 10 | 4-15 | 2-4 | 0-2 | 2 | | CP09-PZM047 | Intermediate | 559502.14 | 1455331.19 | 7.39 | 10/31/2001 | Steel Riser Stick-up | 52 | 47 | 5 | 45-52 | 43-45 | 0-43 | 2 | | CP10-PZM008 | Shallow | 559659.30 | 1455865.00 | 36.16 | 11/5/2001 | Steel Riser Stick-up | 41 | 31 | 10 | 29-41 | 27-29 | 0-27 | 2 | | CP11-PZM010 | Shallow | 559357.46 | 1456177.23 | 8.43 |
10/30/2001 | Steel Riser Stick-up | 15 | 5 | 10 | 4-15 | 2-4 | 0-2 | 2 | | CP12-PZM012 | Shallow | 559903.58 | 1456306.57 | 5.35 | 11/5/2001 | Steel Riser Stick-up | 15 | 5 | 10 | 4-15 | 2-4 | 0-2 | 2 | | CP12-PZM052 | Intermediate | 559905.18 | 1456313.75 | 4.71 | 11/2/2001 | Steel Riser Stick-up | 54 | 49 | 5 | 47-54 | 45-47 | 0-45 | 2 | | CP14-PZM009 | Shallow | 559826.42 | 1457257.14 | 13.06 | 11/12/2001 | Steel Riser Stick-up | 19 | 9 | 10 | 7-19 | 5-7 | 0-5 | 2 | | CP14-PZM062 | Intermediate | 559816.39 | 1457250.14 | 13.67 | 11/6/2001 | Steel Riser Stick-up | 73 | 68 | 5 | 66-73 | 64-66 | 0-64 | 2 | | CP15-PZM020 | Shallow | 559446.96 | 1455789.36 | 7.08 | | | 27 | | | | | | 2 | | CP15-PZM042 | Intermediate | 559446.05 | 1455792.82 | 7.98 | | | 51 | | | | | | 2 | | CP16-PZM035 | Intermediate | 559874.19 | 1456808.80 | 20.01 | | | 55 | | | | | | 2 | | CP16-PZM008 | Shallow | 559874.69 | 1456782.83 | 18.52 | 3/16/2015 | Steel Riser Stick-up | 25 | 3 | 20 | 3.5-25 | 0.5-3.5 | 0 | 2 | | CP18-PZM009 | Shallow | 560179.47 | 1456746.26 | 20.79 | 3/17/2015 | Steel Riser Stick-up | 29.8 | 2.55 | 20 | 5-28 | 1-5 | 0.5-1 | 2 | | CP19-PZM008 | Shallow | 560297.30 | 1456461.66 | 22.55 | 3/17/2015 | Steel Riser Stick-up | 30.1 | 2.7 | 20 | 5-27 | 1.5-5 | 0 | 2 | | CP20-PZM011 | Shallow | 560467.73 | 1457004.72 | 14.34 | 3/17/2015 | Steel Riser Stick-up | 25.7 | 3 | 20 | 5-25 | 1-3 | 0 | 2 | | CP21-PZM004 | Shallow | 560847.25 | 1456709.07 | 15.08 | 3/17/2015 | Steel Riser Stick-up | 19.4 | 3 | 10 | 5-17 | 1-5 | 0 | 2 | Table 2 Greys Landfill Monitoring Well Construction Summary | Well ID | Monitoring Zone | Northing (ft) | Easting (ft) | Top of
PVC
Elevation
(ft amsl) | Installation
Date | Protective Cover Type | Well Total
Depth (ft) | Riser
Length (ft) | Screen
Length | Filter Pack
Interval (ft) | Seal Interval
(ft) | Grout
Interval (ft) | Diameter (in) | |-------------|-----------------|---------------|--------------|---|----------------------|-----------------------|--------------------------|----------------------|------------------|------------------------------|-----------------------|------------------------|---------------| | GL-02 (-29) | Intermediate | 574604.07 | 1457625.79 | 23.203 | 6/10/2008 | Steel Riser Stick-up | 50 | 40 | 10 | 38-50 | 36-38 | 0-36 | 2 | | GL-02 (-5) | Shallow | 574605.59 | 1457638.04 | 23.171 | 6/11/2008 | Steel Riser Stick-up | 26 | 16 | 10 | 14-26 | 12-14 | 0-12 | 2 | | GL-03 (-16) | Intermediate | 574549.21 | 1459228.38 | 17.298 | 3/11/1986 | Steel Riser Stick-up | 30.7 | 20.7 | 10 | 18.5-30.7 | 2-18.5 | 0-2 | 2 | | GL-03 (-3) | Shallow | 574558.30 | 1459231.80 | 17.195 | 3/11/1986 | Steel Riser Stick-up | 17 | 7 | 10 | 6-17 | 1-6 | 0-1 | 2 | | GL-05 (-25) | Intermediate | 574099.56 | 1457238.01 | 25.189 | 6/17/2008 | Steel Riser Stick-up | 47.5 | 37.5 | 10 | 35-47.5 | 32-35 | 0-32 | 2 | | GL-05 (-7) | Shallow | 574100.60 | 1457230.98 | 25.892 | 6/18/2008 | Steel Riser Stick-up | 30 | 20 | 10 | 18-30 | 16-18 | 0-16 | 2 | | GL-08 (-36) | Intermediate | 573921.22 | 1459188.29 | 16.648 | 6/26/2008 | Steel Riser Stick-up | 50 | 40 | 10 | 38-50 | 36-38 | 0-36 | 2 | | GL-08 (-3) | Shallow | 573928.23 | 1459187.29 | 17.006 | 6/23/2008 | Steel Riser Stick-up | 17 | 7 | 10 | 6-17 | 4-6 | 0-4 | 2 | | GL-09 (-20) | Intermediate | 573420.01 | 1459792.62 | 16.14 | 3/10/1986 | Steel Riser Stick-up | 33.2 | 23.2 | 10 | 21-33.2 | 2-21 | 0-2 | 2 | | GL-09 (-2) | Shallow | 573429.29 | 1459786.10 | 16.363 | 3/11/1986 | Steel Riser Stick-up | 15.8 | 5.8 | 10 | 5-15.8 | 2-5 | 0-2 | 2 | | GL-10 (-31) | Intermediate | 573073.18 | 1458148.99 | 21.433 | 6/24/2008 | Steel Riser Stick-up | 50 | 40 | 10 | 38-50 | 36-38 | 0-36 | 2 | | GL-10 (-1) | Shallow | 573073.11 | 1458140.87 | 21.523 | 6/24/2008 | Steel Riser Stick-up | 20 | 10 | 10 | 8-20 | 6-8 | 0-6 | 2 | | GL-11 (-33) | Intermediate | 573092.85 | 1458679.87 | 21.982 | 6/27/2008 | Steel Riser Stick-up | 52 | 42 | 10 | 40-52 | 38-40 | 0-38 | 2 | | GL-11 (-1) | Shallow | 573090.51 | 1458672.32 | 21.348 | 6/27/2008 | Steel Riser Stick-up | 20 | 10 | 10 | 8-20 | 6-8 | 0-6 | 2 | | GL-12 (-17) | Intermediate | 573171.38 | 1456994.13 | 12.809 | 3/5/1986 | Steel Riser Stick-up | 27 | 17 | 10 | 13.5-27 | 2-13.5 | 0-2 | 2 | | GL-12 (-3) | Shallow | 573162.04 | 1456993.72 | 13.32 | 3/6/1986 | Steel Riser Stick-up | 14 | 4 | 10 | 4-14 | 2-4 | 0-2 | 2 | | GL-13 (-26) | Intermediate | 573091.77 | 1457439.07 | 18.479 | 6/26/2008 | Steel Riser Stick-up | 42 | 32 | 10 | 30-42 | 28-30 | 0-28 | 2 | | GL-13 (+1) | Shallow | 573093.28 | 1457430.66 | 18.526 | 6/26/2008 | Steel Riser Stick-up | 15 | 5 | 10 | 3.5-15 | 2-3.5 | 0-2 | 2 | | GL-14 (-33) | Intermediate | 573134.99 | 1457797.97 | 19.71 | 6/25/2008 | Steel Riser Stick-up | 50 | 40 | 10 | 38-50 | 36-38 | 0-36 | 2 | | GL-14 (+1) | Shallow | 573136.93 | 1457787.50 | 19.859 | 6/25/2008 | Steel Riser Stick-up | 16 | 6 | 10 | 5-16 | 4-5 | 0-4 | 2 | | GL-15 (-36) | Intermediate | 573888.92 | 1457129.80 | 16.341 | 6/3/2008 | Steel Riser Stick-up | 50 | 40 | 10 | 38-50 | 36-38 | 0-36 | 2 | | GL-15 (-6) | Shallow | 573879.11 | 1457123.11 | 15.792 | 6/4/2008 | Steel Riser Stick-up | 20 | 10 | 10 | 8-20 | 6-8 | 0-6 | 2 | | GL-16 (-32) | Intermediate | 574336.78 | 1457396.54 | 20.669 | 6/16/2008 | Steel Riser Stick-up | 50 | 40 | 10 | 37-50 | 35-37 | 0-35 | 2 | | GL-16 (-6) | Shallow | 574344.59 | 1457402.16 | 20.921 | 6/16/2008 | Steel Riser Stick-up | 24 | 14 | 10 | 12-24 | 9-12 | 0-9 | 2 | | GL-17 (-31) | Intermediate | 574464.39 | 1458189.31 | 21.175 | 6/19/2008 | Steel Riser Stick-up | 50 | 40 | 10 | 38-50 | 35.5-38 | 0-35.5 | 2 | | GL-17 (-1) | Shallow | 574466.97 | 1458178.04 | 21.188 | 6/20/2008 | Steel Riser Stick-up | 19.5 | 9.5 | 10 | 7.5-19.5 | 5-7.5 | 0-5 | 2 | | GL-18 (-33) | Intermediate | 574265.76 | 1458884.84 | 19.696 | 6/20/2008 | Steel Riser Stick-up | 50 | 40 | 10 | 37-50 | 34.5-37 | 0-34.5 | 2 | | GL-18 (-3) | Shallow | 574261.56 | 1458893.68 | 19.486 | 6/23/2008 | Steel Riser Stick-up | 20 | 10 | 10 | 8-20 | 6-8 | 0-6 | 2 | | GL-19 | Shallow | 574820.85 | 1458080.65 | 34.14 | 12/11/2002 | Steel Riser Stick-up | 21.5 | 11.5 | 10 | 9.5-22.5 | 2-9.5 | 0-2 | 2 | | GL-20 (-5) | Shallow | 574724.27 | 1458643.59 | 19.419 | 12/10/2002 | Steel Riser Stick-up | 22 | 12 | 10 | 10-22 | 2-10 | 0-2 | 2 | | GL-20 (-36) | Intermediate | 574754.20 | 1458609.28 | 20.97 | 7/13/2011 | Steel Riser Stick-up | 55 | 45 | 10 | 42-55 | 40-42 | 0-40 | 2 | | TS-01 (-7) | Shallow | 575042.59 | 1457737.79 | 20.048 | 8/2/2000 | Steel Riser Stick-up | 25 | 15 | 10 | 13-25 | 3-13 | 0-3 | 2 | Table 3 - Coke Point Landfill Historical Groundwater Elevations, ft (AMSL) | Well Designation | Sep - 2013 | Mar - 2014 | Dec -2014 | May -2015 | Dec -2015 | May -2016 | Nov -2016 | May -2017 | Oct - 2017 | May -2018 | |------------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------| | CP02-PZM007 | 0.59 | 0.23 | 2.99 | 5.13 | 5.13 | 5.36 | 5.22 | 5.46 | 5.46 | 6.72 | | CP02-PZM026 | 0.37 | -0.13 | 7.28 | 0.21 | 0.21 | 0.53 | 0.42 | 0.46 | 0.51 | 1.4 | | CP05-PZM008 | 0.02 | NM | NM | -0.49 | -0.4 | -0.16 | -0.25 | NM | | NM | | CP05-PZM019 | 0.03 | -0.72 | 0.1 | 0.18 | 0.28 | 0.47 | 0.36 | 0.68 | 0.71 | 0.88 | | CP05-PZM028 | NM | -1.73 | -1.04 | -0.73 | | | | -2.68 | -3.15 | -2.79 | | CP07-PZM006 | 0.46 | -0.24 | 0.12 | 0.24 | 0.24 | 0.53 | 0.5 | 0.53 | 0.28 | 1.51 | | CP08-PZM008 | 0.25 | -0.11 | -0.22 | 0.24 | 0.24 | 0.47 | 0.28 | 0.44 | 0.28 | 8.24 | | CP08-PZM034 | -0.19 | -0.63 | -0.42 | -0.47 | -0.47 | -0.14 | -0.07 | -1.26 | -1.11 | 0.27 | | CP09-PZM010 | 0.38 | -1.02 | 0.34 | 0.53 | 0.78 | 0.79 | 0.76 | 0.63 | 0.32 | 1.24 | | CP09-PZM047 | 0.21 | -1.06 | 0.29 | 0.55 | 0.97 | 0.67 | 0.93 | 0.94 | 0.39 | 0.89 | | CP10-PZM008 | 0.48 | -0.13 | 1.51 | 0.33 | 0.33 | 0.48 | 0.72 | 0.64 | 0.24 | 1 | | CP11-PZM010 | 0.23 | -1.37 | -0.09 | 0.28 | -0.19 | 0.46 | 0.46 | 0.47 | 0.01 | 1.02 | | CP12-PZM012 | 0.27 | -0.2 | -0.05 | 0.65 | -0.33 | 0.54 | 0.53 | 0.42 | -0.07 | 1 | | CP12-PZM052 | 0.06 | -0.19 | -0.49 | -0.34 | -0.27 | 0.35 | 0.26 | 0.12 | -0.18 | 0 | | CP14-PZM009 | 0.29 | -1.19 | -0.09 | 0.22 | -0.35 | 0.28 | 0.51 | -0.68 | 0.25 | | | Well Designation | Sep - 2013 | Mar - 2014 | Dec -2014 | May -2015 | Dec -2015 | May -2016 | Nov -2016 | May -2017 | Oct - 2017 | May -2018 | |------------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------| | CP14-PZM062 | 0.05 | -1.03 | -0.07 | 0.12 | -0.61 | 0.39 | -0.14 | -1.05 | -0.56 | 0.56 | | CP15-PZM020 | 0.25 | -0.65 | -0.09 | 0.29 | -0.29 | 0.3 | 0.53 | 0.48 | 0.27 | 0.87 | | CP15-PZM042 | 0.44 | -1.82 | 0.03 | 0.46 | -0.13 | 0.15 | 0.63 | 0.45 | 0.32 | 0.96 | | CP16-PZM008 | | | | 0.17 | -1.12 | 0.46 | -0.39 | -0.35 | -1.69 | 0.99 | | CP16-PZM035 | 0.1 | 0.21 | -0.89 | -0.04 | -0.69 | 0.2 | 0.21 | 0.07 | -0.19 | 8.71 | | CP18-PZM009 | | | | 0.27 | 0.24 | 0.54 | 0.47 | 0.61 | 0.2 | 1.29 | | CP19-PZM008 | | | | 0.32 | 0.32 | 0.55 | 0.47 | 0.72 | 0.59 | 1.35 | | CP20-PZM011 | | | | 0.43 | 0.48 | 0.56 | 0.57 | 0.68 | 0.79 | 1.99 | | CP21-PZM004 | | | | 1.2 | 1.17 | 1.34 | 1.18 | 1.37 | 0.97 | 2.3 | ## Table 4 - Greys Landfill Historical Groundwater Elevations, ft (AMSL) | Well Designation | Sep - 2013 | Mar - 2014 | Dec -2014 | May -2015 | Nov -2015 | May - 2016 | Nov -2016 | May -2017 | Dec - 2017 | May -2018 | |------------------|------------|------------|-----------|-----------|-----------|------------|-----------|-----------|------------|-----------| | GL-02 (-29) | 0.6 | -0.46 | 1.26 | 0.05 | 0.75 | 0.97 | -0.1 | 0.86 | 0.18 | 0.85 | | GL-02 (-5) | NM | NM | 2.07 | 2.06 | 2.47 | 3.82 | 2.54 | NM | -1.32 | 2.15 | | GL-03 (-16) | 1.3 | 4.27 | 4.78 | 4.28 | 4.23 | 4.4 | 4.67 | 1.65 | 1.98 | 4.28 | | GL-03 (-3) | 3.67 | 10.86 | 11.68 | 10.54 | 10.76 | 12.07 | 9.72 | 10.92 | 9.8
 10.18 | | GL-05 (-25) | 0.54 | 0.59 | 0.39 | 0.08 | 0.86 | 0.65 | 0.07 | 0.82 | 0.55 | 0.39 | | GL-05 (-7) | 1.91 | 3.69 | 3.11 | 3.39 | 2.72 | 3.56 | 1.91 | 2.9 | 2.47 | 3.64 | | GL-08 (-3) | 0.92 | 12.45 | 12.99 | 12.71 | 12.57 | 13.32 | 12.26 | 12.83 | 12.75 | 11.34 | | GL-08 (-36) | 10.03 | 0.29 | 0.8 | 0.65 | 0.31 | 1.06 | 0.78 | 1.01 | 0.67 | 0.72 | | GL-09 (-2) | 13.26 | 11.86 | 11.89 | 12.37 | 12.52 | 12.71 | 12.77 | 7.71 | 8.67 | 11.57 | | GL-09 (-20) | 5.24 | 6.24 | 5.84 | 6.1 | 5.79 | 6.34 | 5.72 | 5.56 | 4.73 | 6.16 | | GL-10 (-1) | 9.51 | 13.09 | 10.03 | 12.35 | 10.25 | 13.28 | 9.88 | 9.71 | 10.66 | 13.07 | | GL-10 (-31) | 0.43 | 0.35 | 0.39 | NM | 0.41 | 1.29 | 0.71 | 0.34 | 0.98 | 0.87 | | GL-11 (-1) | 11.32 | 13 | 11.77 | 12.34 | 11.61 | 13.31 | 11.06 | 10.2 | 11.35 | 12.02 | | GL-11 (-33) | 0.88 | 0.65 | 1.48 | 1.92 | 0.35 | 1.27 | 0.75 | -1.67 | 1.25 | 1.12 | | GL-12 (-17) | 0.53 | 0.13 | 0.3 | 0.4 | 0.17 | 1.01 | 0.24 | 0.84 | 0.93 | 0.33 | | GL-12 (-3) | 2.73 | 5.65 | 4.79 | 5.02 | 4.33 | 5.81 | 3.32 | 5.25 | 4.53 | 5.24 | | GL-13 (+1) | 6.07 | 13.73 | 13.59 | 12.38 | 11.94 | 14.12 | 6.02 | 11.13 | 12.37 | 13.46 | | GL-13 (-26) | 0.44 | 0.24 | 0.47 | 0.46 | 0.14 | 0.98 | 0.26 | 0.85 | 0.68 | 0.37 | | Well Designation | Sep - 2013 | Mar - 2014 | Dec -2014 | May -2015 | Nov -2015 | May - 2016 | Nov -2016 | May -2017 | Dec - 2017 | May -2018 | |------------------|------------|------------|-----------|-----------|-----------|------------|-----------|-----------|------------|-----------| | GL-14 (+1) | 10.74 | 13.98 | 13.06 | 12.64 | 11.75 | 14.91 | 11.52 | 14.03 | 12.82 | 12.92 | | GL-14 (-33) | 0.46 | 0.27 | 0.26 | 0.46 | 0.08 | 0.99 | 0.29 | 0.89 | 0.65 | 0.22 | | GL-15 (-36) | 0.85 | -0.94 | 0.89 | 0.54 | -6.01 | 0.62 | 0.59 | 0.92 | 0.53 | 0.77 | | GL-15 (-6) | 2.16 | 6.44 | 4.49 | 5.77 | 3.44 | 5.93 | 3.39 | 5.47 | 3.72 | 6.02 | | GL-16 (-32) | 0.49 | 0.58 | 0.3 | 0.05 | 0.85 | 0.93 | -0.1 | 0.64 | 0.44 | 0.43 | | GL-16 (-6) | 4.28 | 5.31 | 5.43 | 5.79 | 5.12 | 5.78 | 4.18 | 5.21 | 3.54 | 5.59 | | GL-17 (-1) | 6.75 | 7.66 | 7.93 | 7.57 | 7.1 | 7.76 | 7 | 7.02 | 6.43 | 7.38 | | GL-17 (-31) | 0.2 | -0.35 | 0.18 | 0.22 | 0.29 | 0.64 | 0.61 | 0.15 | -0.18 | 0.47 | | GL-18 (-3) | 9.72 | 11.59 | 12.84 | 11.85 | 11.64 | 12.64 | 11.45 | 12.17 | 11.88 | 10.77 | | GL-18 (-33) | 0.31 | -0.15 | 0.73 | 0.39 | -0.02 | 0.73 | 0.56 | 0.6 | 0.09 | 0.48 | | GL-19 | 1.39 | 3.29 | 5.24 | NM | 3.17 | 5.58 | 3.72 | 5.24 | 3.8 | 3.15 | | GL-20 (-36) | | | | | | | | 0.74 | 0 | 0.68 | | GL-20 (-5) | 7.03 | -0.2 | NM | 7.37 | NM | NM | NM | -2.35 | 6.5 | 6.4 | | TS-01 (-7) | 0.75 | 1.03 | 1.25 | 1.07 | 0.98 | 1.31 | 0.91 | 1.15 | 0.94 | 0.88 | | | | | | | | | | | | | ## APPENDIX A Coke Point Landfill Historical VOC Concentrations ## Coke Point Landfill Historical VOCs Shallow Monitoring Zone | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP02 | 2-PZM007 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND | 2-Hexanone | ND | 4-Methyl-2-pentanone | ND | Acetone | ND | ND | ND | ND | ND | 5.1 M1R1 | ND | ND | ND | ND | 6.7 J | 7 J | | Acrylonitrile | ND | Benzene | ND 0.59 J | ND | ND | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | cis-1,2-Dichloroethene | ND | ND | ND | ND | ND | ND | 0.26 J | ND | ND | ND | ND | ND | | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | ND 0.27 J | ND | ND | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP0 | 5-PZM008 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,1,1-Trichloroethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,1,2,2-Tetrachloroethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,1,2-Trichloroethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,1-Dichloroethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,1-Dichloroethene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,2,3-Trichloropropane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,2-Dibromo-3-chloropropane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,2-Dibromoethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,2-Dichlorobenzene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,2-Dichloroethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,2-Dichloropropane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,4-Dichlorobenzene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 2-Butanone | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 2-Hexanone | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 4-Methyl-2-pentanone | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Acetone | 33 | 32.3 | 33.5 | NS | NS | 24.7 | 21.8 | 20.9 | 21.2 | 51.8 | NS | 48.7 | | Acrylonitrile | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Benzene | 33 | 11.8 | 2.8 | NS | NS | 19.7 | 22.7 | 25.3 | 27.4 | 9.4 | NS | 2.2 | | Bromochloromethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Bromodichloromethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Bromoform | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Bromomethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Carbon Disulfide | ND | 2.9 | 1.8 | NS | NS | ND | 1.8 | ND | 5.3 | 1.9 | NS | ND | | Carbon Tetrachloride | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Chlorobenzene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Chloroethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Chloroform | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | 1.6 B | | cis-1,2-Dichloroethene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | cis-1,3-Dichloropropene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Dibromochloromethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Dibromomethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Ethylbenzene | 1 | ND | ND | NS | NS | ND | 1.1 | 1 | 1.4 | ND | NS | 0.35 J | | Iodomethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Methyl tertiary-butyl ether | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Methylene Chloride | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Styrene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Tetrachloroethene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Toluene | 7.6 | 3.1 | ND | NS | NS | 4.7 | 5.3 | 5.9 | 6.2 | 2.6 | NS | 0.98 J | | trans-1,2-Dichloroethene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | trans-1,3-Dichloropropene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | trans-1,4-Dichloro-2-butene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Trichloroethene | ND | ND | ND | NS | NS | ND | ND | 0.92 J | ND | ND | NS | ND | | Trichlorofluoromethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Vinyl Acetate | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Vinyl Chloride | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Xylenes | 7.6 | 4.2 | ND | NS | NS | 5.8 | 7.1 | 7.4 | 8.3 | 4 | NS | 1.1 J | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | СРО | 7-PZM006 | | ug/L | | | | | | | | | |
1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1.9 | 1.9 | 2.9 | 2.1 | 1.8 | 1.7 | 1.7 | 1.7 | 2 | 1.4 | ND | | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | ND | ND | 2.5 | 3.1 | 2.4 | 1.1 1c | 0.69 J1c | 2.7 | 2.2 | 2.1 | 1.6 | | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND | 2-Hexanone | ND | 4-Methyl-2-pentanone | ND 1.8 J | 1.4 J | | Acetone | ND | ND | 7.8 | ND | 12.8 | 15.4 | ND | ND | ND | ND | 9.9 J | 10.7 | | Acrylonitrile | ND | Benzene | 1,000 | 547 | 738 | 612 | 669 | 541 | 553 | 484 | 555 | 521 | 439 | 746 | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND 0.53 J | ND | 1 | | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | 2.9 | 4.1 | 4.8 | 5.4 | 3.8 | 3.7 | 3.6 | 4 | 3.1 | 3.3 | 2.9 | | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND 0.48 J | ND | 0.42 J | 0.54 J | 0.64 J | | Tetrachloroethene | ND | Toluene | 140 | 58.7 | 89.7 | 97.5 | 104 | 77.2 | 73.6 | 70.9 | 82.7 | 70.1 | 63.7 | 64.2 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 56 | 28.8 | 42.4 | 50 | 56.4 | 39.8 | 38.1 | 39.2 | 42.7 | 33.9 | 35 | 27.6 | | Location ID: | CPOS | | | | | | | | | | | | |----------------------------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Location ID: | Ci oc | 8-PZM008 | | ug/L | | | | | | | | | | .,1,1,2-Tetrachloroethane | ND | .,1,1-Trichloroethane | ND | .,1,2,2-Tetrachloroethane | ND | ,1,2-Trichloroethane | ND | ,1-Dichloroethane | ND | ,1-Dichloroethene | ND | .,2,3-Trichloropropane | ND | ,2-Dibromo-3-chloropropane | ND | .,2-Dibromoethane | ND | .,2-Dichlorobenzene | ND | .,2-Dichloroethane | ND | .,2-Dichloropropane | ND | .,4-Dichlorobenzene | ND | -Butanone | ND | -Hexanone | ND | -Methyl-2-pentanone | ND 0.48 J | 1.2 J | | acetone | ND | ND | ND | ND | ND | 6.8 | ND | ND | ND | ND | 10.4 | 14.4 | | Acrylonitrile | ND | Benzene | 22,000 | 23,900 | 25,800 | 24,400 | 24,100 | 25,200 | 25,600 | 21,600 | 22,600 | 21,900 | 21,600 | 15,800 | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | romomethane | ND 1.5 | | Carbon Disulfide | ND | 1.1 | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | ND | ND | ND | ND | ND | 0.53 J | ND | 0.38 J | ND | 0.34 J | 0.25 J | | Chloroethane | ND | Chloroform | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | 1.6 | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | 120 | 96.5 | 108 | 106 | 120 | 99 | 111 | 86.9 | 83.9 | 73.1 | 61.1 | 45.5 | | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | 7,800 | 5,860 | 6,580 | 6,730 | 6,430 | 6,320 | 6,520 | 5,140 | 5,700 | 4,880 | 4,440 | 3,530 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 3,300 | 2,760 | 3,360 | 3,220 | 3,220 | 3,160 | 3,420 | 2,340 | 3,210 | 1,960 | 1,760 | 1,330 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP09 | 9-PZM010 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND | 5.5 | ND | 7.2 | ND | ND | ND | ND | ND | ND | 1.8 J | ND | | 2-Hexanone | ND | 4-Methyl-2-pentanone | ND 1.3 J | ND | | Acetone | ND | 44.1 | ND | 83.7 | 10.9 | 10.5 | 23.7 | ND | 40.3 | 18.2 | 24.9 | 13.3 | | Acrylonitrile | ND | Benzene | ND | 5.6 | ND | 1.8 | 2.9 | ND | ND | ND | 2.9 | ND | 0.88 J | ND | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND 0.6 J | ND | ND | ND | | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | ND | 2 | ND | ND | ND | ND | ND | ND | 1.1 | ND | 0.33 J | ND | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND 0.66 J | ND | ND | ND | ND | | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND 1.9 J | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP10 | D-PZM008 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,1,1-Trichloroethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,1,2,2-Tetrachloroethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,1,2-Trichloroethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,1-Dichloroethane | ND | ND | ND | ND | ND | NS | 0.35 J | NS | NS | NS | ND | ND | | 1,1-Dichloroethene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,2,3-Trichloropropane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,2-Dibromo-3-chloropropane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,2-Dibromoethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,2-Dichlorobenzene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,2-Dichloroethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,2-Dichloropropane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 1,4-Dichlorobenzene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | 2-Butanone | ND | 33 | 31.9 | 37.8 | 14.7 | NS | 26.2 | NS | NS | NS | 31.2 | 26.3 | | 2-Hexanone | ND | ND | 10.1 | ND | ND | NS | ND | NS | NS | NS | 1.8 J | 2 J | | 4-Methyl-2-pentanone | ND | 6.5 | 6.4 | 7.1 | 5.8 | NS | 6.7 J | NS | NS | NS | 6 J | 6.2 J | | Acetone | ND | 354 | 344 | 362 | 282 | NS | 248 | NS | NS | NS | 274 | 263 | | Acrylonitrile | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Benzene | 13 | 12.1 | 11.3 | 10.6 | 11 | NS | 9.9 | NS | NS | NS | 9 | 8.4 | | Bromochloromethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Bromodichloromethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Bromoform | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Bromomethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Carbon Disulfide | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Carbon Tetrachloride | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Chlorobenzene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | 0.19 J | ND | | Chloroethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Chloroform | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | ND | ND | 3.1 | ND | NS | ND | NS | NS | NS | ND | ND | | cis-1,2-Dichloroethene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | cis-1,3-Dichloropropene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | |
Dibromochloromethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Dibromomethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Ethylbenzene | ND | ND | 1.3 | 1.3 | 1.4 | NS | 1.1 | NS | NS | NS | 1.3 | 1.1 | | Iodomethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Methyl tertiary-butyl ether | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Methylene Chloride | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Styrene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | 0.96 J | ND | | Tetrachloroethene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Toluene | ND | 6.7 | 7.5 | 7.1 | 7.7 | NS | 6.1 | NS | NS | NS | 6 | 5.4 | | trans-1,2-Dichloroethene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | trans-1,3-Dichloropropene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | trans-1,4-Dichloro-2-butene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Trichloroethene | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Trichlorofluoromethane | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Vinyl Acetate | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Vinyl Chloride | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Xylenes | ND | 8.1 | 9.4 | 9.6 | 9.7 | NS | 7.3 | NS | NS | NS | 7.9 | 6.8 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP1 | 1-PZM010 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND | 5.9 | 5.7 | 6.1 | ND | ND | 6.4 J | ND | 5.5 J | ND | 6.7 J | 5.2 J | | 2-Hexanone | ND 0.51 J | ND | | 4-Methyl-2-pentanone | ND 1.9 J | 1.8 J | | Acetone | ND | 76.2 | 90.4 | 102 | 77.4 | 66.7 | 85.9 | 71.6 | 97.1 | 155 | 105 | 101 | | Acrylonitrile | ND | Benzene | 6.6 | 15 | 19.7 | 14.3 | 14.9 | 15 | 14.5 | 16.5 | 11.6 | 8.6 | 14.1 | 14 | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND 0.56 J | ND | ND | | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | ND | ND | 1.1 | ND | ND | 1.1 | 0.84 J | 0.86 J | ND | 0.81 J | 0.58 J | | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | ND | 3.4 | 4.4 | 4 | 3.9 | 3.5 | 3.6 | 4 | 3.1 | 2.4 | 3.6 | 3.4 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND 0.37 J | ND | ND | ND | ND | | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | 8.7 | 10.7 | 12 | 10.9 | 9.1 | 10.1 | 9.5 | 7.9 | 6 | 7.1 | 5.9 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP12 | 2-PZM012 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND | ND | ND | 5.8 | ND | ND | ND | ND | ND | ND | 1.7 J | 3.2 J | | 2-Hexanone | ND | 4-Methyl-2-pentanone | ND 1.1 J | | Acetone | ND | ND | ND | 73.5 | ND | 55 | 10.1 | ND | 9.6 J | 26.9 | 15.6 | 39.8 | | Acrylonitrile | ND | Benzene | 42 | 16.5 | 39.5 | 252 | 72.3 | 201 | 56.3 | 11 | 64.1 | 21.4 | 55.7 | 108 | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | ND | ND | 3.1 | 1.1 | 2.2 | 1.2 | 0.55 J | 1 | ND | 1 | 1.4 | | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND 0.36 J | 0.57 J | | Tetrachloroethene | ND | Toluene | 3 | 1.9 | 2.8 | 47.2 | 12.2 | 36.5 | 10.8 | 2.9 | 10.8 | 3.8 | 9.6 | 22.8 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 7.1 | 3.6 | 7.5 | 53 | 18.7 | 40.2 | 17.3 | 6.5 | 16.7 | 8.1 | 16.6 | 23.3 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP1 | 4-PZM009 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND 1.6 | | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND 2.7 J | 2.4 J | | 2-Hexanone | ND 0.32 J | ND | | 4-Methyl-2-pentanone | ND 0.41 J | ND | | Acetone | ND | 39.8 | 36.1 | 36.9 | 25.9 | 23.5 | 16 | 15.1 | 18.9 | 36.5 IL | 22.6 | 27.3 | | Acrylonitrile | ND | Benzene | 50 | 59.8 | 70.1 | 92.6 | 129 | 101 | 128 | 97.4 | 97.6 | 89.9 | 102 | 71.9 | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | ND | ND | ND | ND | ND | 0.96 J | 1.1 | 0.82 J | 0.87 J | 0.84 J | 0.51 J | | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | ND | 3.8 | 4.2 | 5.7 | 7.8 | 5.9 | 7.3 | 6.5 | 6.1 | 6.2 | 7 | 4.9 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | 3.5 | 4 | 5.2 | 6.7 | 5.4 | 6.4 | 7 | 5.6 | 5.2 | 5.9 | 3.7 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP15 | 5-PZM020 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | ND | ND | ND | ND | ND | 0.3 J | 0.22 J | ND | ND | ND | ND | | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND | 10.1 | 7.2 | 10.7 | ND | 6.4 | 81 | 6.3 J | 10.3 | 8.7 JL1 | 10.2 | 5.6 J | | 2-Hexanone | ND 0.78 J | ND | | 4-Methyl-2-pentanone | ND 3.7 J | 3.2 J | | Acetone | ND | 128 | 188 | 188 | 111 | 142 | 152 | 140 | 157 | 292 | 213 | 208 | | Acrylonitrile | ND | Benzene | 21 | 18.5 | 11.9 | 14.6 | 23.5 | 10.7 | 12 | 9.5 | 16 | 8.6 | 8.5 | 3.8 | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 |
11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | 1.6 | 1.1 | 1.5 | 2.1 | 1 | 1.3 | 1.2 | 1.4 | ND | 0.9 J | 0.48 J | | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | ND | ND | ND | ND | ND | 0.42 J | ND | ND | ND | ND | ND | | Tetrachloroethene | ND | Toluene | ND | 7.1 | 3.3 | 4.5 | 8.8 | 3.7 | 4 | 3.8 | 8.4 | 3.8 | 2.9 | 1.5 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND 0.6 J | ND | ND | ND | ND | | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | 11.5 | 6.7 | 10 | 15.5 | 7.4 | 8.4 | 8.9 | 11.2 | 5.7 | 5.6 | 2.9 J | | Location ID: 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichloropropane 1,4-Dichloropropane 1,4-Dichloropropane 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Acrylonitrile | NS N | NS N | NS N | NS | NS | ND |--|--|--|--|--|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------|----------------------------------| | 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 2-Dichloropropane 1,4-Dichloropropane 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | NS | NS | NS | NS | NS | ND ND ND ND ND ND ND ND ND | ND ND ND ND ND ND ND ND ND | ND ND ND ND ND ND ND ND ND | ND | ND ND ND ND ND ND ND | ND ND ND ND ND ND | ND
ND
ND
ND
ND | | 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | NS | NS | NS NS NS NS NS NS NS NS | NS NS NS NS NS NS NS NS | NS NS NS NS NS NS NS NS | ND ND ND ND ND ND ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | | 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | NS NS NS NS NS NS NS NS | NS NS NS NS NS NS NS NS | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | | 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | NS NS NS NS NS NS | NS NS NS NS NS NS NS | NS
NS
NS
NS | NS NS NS NS NS | NS
NS
NS
NS | ND
ND
ND | 1,1-Dichloroethene 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | NS NS NS NS NS | NS
NS
NS
NS | NS
NS
NS | NS
NS
NS | NS
NS
NS | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND | ND
ND | ND
ND | | 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | NS
NS
NS | NS
NS
NS | NS
NS
NS | NS
NS
NS | NS
NS
NS | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | | 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | NS
NS
NS | NS
NS
NS | NS
NS | NS
NS | NS
NS | ND | ND | ND | ND | | | | | 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | NS
NS | NS
NS | NS | NS | NS | | | | | ND | ND | ND | | 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | NS | NS | | | | ND | ND | | | | | | | 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | | | NS | NS | | | ND | ND | ND | ND | ND | ND | | 1,2-Dichloropropane 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone | NS | NS | | | NS | ND | 1,4-Dichlorobenzene
2-Butanone
2-Hexanone
4-Methyl-2-pentanone
Acetone | | | NS | NS | NS | ND | 2-Butanone
2-Hexanone
4-Methyl-2-pentanone
Acetone | NS | NS | NS | NS | NS | ND | 2-Hexanone
4-Methyl-2-pentanone
Acetone | NS | NS | NS | NS | NS | ND | 4-Methyl-2-pentanone
Acetone | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 3.3 J | ND | | Acetone | NS | NS | NS | NS | NS | ND | | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.6 J | ND | | Acrylonitrila | NS | NS | NS | NS | NS | 47 | 38 | 26.5 IS | 42 | 115 | 52.7 | 70.3 | | Actylotherie | NS | NS | NS | NS | NS | ND | Benzene | NS | NS | NS | NS | NS | 85.8 | 107 | 95.2 IS | 98.8 | 69.9 | 83.2 | 62.1 | | Bromochloromethane | NS | NS | NS | NS | NS | ND | Bromodichloromethane | NS | NS | NS | NS | NS | ND | Bromoform | NS | NS | NS | NS | NS | ND | Bromomethane | NS | NS | NS | NS | NS | ND | Carbon Disulfide | NS | NS | NS | NS | NS | 3.8 | 4.9 | 3.9 IS | 2.6 | 2.5 | 1.1 | ND | | Carbon Tetrachloride | NS | NS | NS | NS | NS | ND | Chlorobenzene | NS | NS | NS | NS | NS | ND | Chloroethane | NS | NS | NS | NS | NS | ND | Chloroform | NS | NS | NS | NS | NS | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | NS | NS | NS | NS | NS | ND | cis-1,2-Dichloroethene | NS | NS | NS | NS | NS | ND | cis-1,3-Dichloropropene | NS | NS | NS | NS | NS | ND | Dibromochloromethane | NS | NS | NS | NS | NS | ND | Dibromomethane | NS | NS | NS | NS | NS | ND | Ethylbenzene | NS | NS | NS | NS | NS | ND | 0.67 J | 0.87 J | 0.44 J | ND | 0.46 J | 0.34 J | | Iodomethane | NS | NS | NS | NS | NS | ND | Methyl tertiary-butyl ether | NS | NS | NS | NS | NS | ND | Methylene Chloride | NS | NS | NS | NS | NS | ND | Styrene | NS | NS | NS | NS | NS | ND | Tetrachloroethene | NS | NS | NS | NS | NS | ND | Toluene | NS | NS | NS | NS | NS | 6.8 | 9.3 | 7.3 | 8.1 | 5.3 | 6.7 | 5.3 | | trans-1,2-Dichloroethene | NS | NS | NS | NS | NS | ND | trans-1,3-Dichloropropene | NS | NS | NS | NS | NS | ND | trans-1,4-Dichloro-2-butene | NS | NS | NS | NS | NS | ND | Trichloroethene | NS | NS | NS | NS | NS | ND | Trichlorofluoromethane | NS | NS | NS | NS | NS | ND | Vinyl Acetate | NS | NS | NS | NS | NS | ND | Vinyl Chloride | NS | NS | NS | NS | NS | ND | Xylenes | NS | NS | NS | NS | NS | 3.8 | 5.8 | 7.6 | 5.3 | 3 J | 4.3 | 3 J | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP18 | 3-PZM009 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | NS | NS | NS | NS | NS | ND | 1,1,1-Trichloroethane | NS | NS | NS | NS | NS | ND | 1,1,2,2-Tetrachloroethane | NS | NS | NS | NS | NS | ND | 1,1,2-Trichloroethane | NS | NS | NS | NS | NS | ND | 1,1-Dichloroethane | NS | NS | NS | NS | NS | ND | 1,1-Dichloroethene | NS | NS | NS | NS | NS | ND | 1,2,3-Trichloropropane | NS | NS | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | NS | NS | NS | NS | NS | ND | 1,2-Dibromoethane | NS | NS | NS | NS | NS | ND | 1,2-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 1,2-Dichloroethane | NS | NS | NS | NS | NS | ND | 1,2-Dichloropropane | NS | NS | NS | NS | NS | ND | 1,4-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 2-Butanone | NS | NS | NS | NS | NS | ND | 2-Hexanone | NS | NS | NS | NS | NS | ND | 4-Methyl-2-pentanone | NS | NS | NS | NS | NS | ND | Acetone | NS | NS | NS | NS | NS | 28.5 | ND | ND | ND | ND | 7.6 J | 13.9 | | Acrylonitrile | NS | NS | NS | NS | NS | ND | Benzene | NS | NS | NS | NS | NS | 1,120 | 510 | 1,040 | 500 | 1,020 | 468 | 943 | | Bromochloromethane | NS | NS | NS | NS | NS | ND | Bromodichloromethane | NS | NS | NS | NS |
NS | ND | Bromoform | NS | NS | NS | NS | NS | ND | Bromomethane | NS | NS | NS | NS | NS | ND | Carbon Disulfide | NS | NS | NS | NS | NS | ND | Carbon Tetrachloride | NS | NS | NS | NS | NS | ND | Chlorobenzene | NS | NS | NS | NS | NS | ND | Chloroethane | NS | NS | NS | NS | NS | ND | Chloroform | NS | NS | NS | NS | NS | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | NS | NS | NS | NS | NS | ND | cis-1,2-Dichloroethene | NS | NS | NS | NS | NS | ND | cis-1,3-Dichloropropene | NS | NS | NS | NS | NS | ND | Dibromochloromethane | NS | NS | NS | NS | NS | ND | Dibromomethane | NS | NS | NS | NS | NS | ND | Ethylbenzene | NS | NS | NS | NS | NS | 7.9 | 4.3 | 6.7 | 4.7 | 5.7 | 4 | 4.9 | | Iodomethane | NS | NS | NS | NS | NS | ND | 7.4 JB | ND | ND | ND | ND | ND | | Methyl tertiary-butyl ether | NS | NS | NS | NS | NS | ND | Methylene Chloride | NS | NS | NS | NS | NS | ND | Styrene | NS | NS | NS | NS | NS | ND | 0.3 J | 0.6 J | ND | ND | 0.39 J | ND | | Tetrachloroethene | NS | NS | NS | NS | NS | ND | Toluene | NS | NS | NS | NS | NS | 128 | 59.5 | 118 | 63.7 | 104 | 61.5 | 117 | | trans-1,2-Dichloroethene | NS | NS | NS | NS | NS | ND | trans-1,3-Dichloropropene | NS | NS | NS | NS | NS | ND | trans-1,4-Dichloro-2-butene | NS | NS | NS | NS | NS | ND | Trichloroethene | NS | NS | NS | NS | NS | ND | Trichlorofluoromethane | NS | NS | NS | NS | NS | ND | Vinyl Acetate | NS | NS | NS | NS | NS | ND | Vinyl Chloride | NS | NS | NS | NS | NS | ND | Xylenes | NS | NS | NS | NS | NS | 76 | 40.3 | 66.7 | 44.1 | 53.4 | 37.8 | 48.2 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP19 | 9-PZM008 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | NS | NS | NS | NS | NS | ND | 1,1,1-Trichloroethane | NS | NS | NS | NS | NS | ND | 1,1,2,2-Tetrachloroethane | NS | NS | NS | NS | NS | ND | 1,1,2-Trichloroethane | NS | NS | NS | NS | NS | ND | 1,1-Dichloroethane | NS | NS | NS | NS | NS | 2 | ND | 7.6 | 1.1 | 1.3 | ND | ND | | 1,1-Dichloroethene | NS | NS | NS | NS | NS | ND | 1,2,3-Trichloropropane | NS | NS | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | NS | NS | NS | NS | NS | ND | 1,2-Dibromoethane | NS | NS | NS | NS | NS | ND | 1,2-Dichlorobenzene | NS | NS | NS | NS | NS | 2.9 | ND | 0.52 J1c | 1.6 | 1.5 | 1.4 | 0.32 J1c | | 1,2-Dichloroethane | NS | NS | NS | NS | NS | ND | ND | 163 | ND | ND | ND | ND | | 1,2-Dichloropropane | NS | NS | NS | NS | NS | ND | 1,4-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 2-Butanone | NS | NS | NS | NS | NS | ND | ND | 7.5 J | ND | ND | 2.1 J | ND | | 2-Hexanone | NS | NS | NS | NS | NS | ND | 4-Methyl-2-pentanone | NS | NS | NS | NS | NS | ND | Acetone | NS | NS | NS | NS | NS | 11.3 | 9.7 J | 38.8 | 16.3 | ND | 23.1 | 29.7 | | Acrylonitrile | NS | NS | NS | NS | NS | ND | Benzene | NS | NS | NS | NS | NS | 4,180 | 3,400 | 3,400 | 2,630 | 2,700 | 2,310 | 2,760 | | Bromochloromethane | NS | NS | NS | NS | NS | ND | Bromodichloromethane | NS | NS | NS | NS | NS | ND | Bromoform | NS | NS | NS | NS | NS | ND | Bromomethane | NS | NS | NS | NS | NS | ND | Carbon Disulfide | NS | NS | NS | NS | NS | ND | Carbon Tetrachloride | NS | NS | NS | NS | NS | ND | Chlorobenzene | NS | NS | NS | NS | NS | ND | Chloroethane | NS | NS | NS | NS | NS | ND | Chloroform | NS | NS | NS | NS | NS | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | NS | NS | NS | NS | NS | ND | cis-1,2-Dichloroethene | NS | NS | NS | NS | NS | ND | cis-1,3-Dichloropropene | NS | NS | NS | NS | NS | ND | Dibromochloromethane | NS | NS | NS | NS | NS | ND | Dibromomethane | NS | NS | NS | NS | NS | ND | Ethylbenzene | NS | NS | NS | NS | NS | 21.4 | 21.4 | 22.6 | 15 | 14.8 | 14.4 | 11.7 | | Iodomethane | NS | NS | NS | NS | NS | ND | Methyl tertiary-butyl ether | NS | NS | NS | NS | NS | ND | Methylene Chloride | NS | NS | NS | NS | NS | ND | Styrene | NS | NS | NS | NS | NS | ND | 5.1 | 5.7 | 3.3 | 3.1 | 2.9 | 2.5 | | Tetrachloroethene | NS | NS | NS | NS | NS | ND | Toluene | NS | NS | NS | NS | NS | 617 | 471 | 334 | 345 | 374 | 323 | 357 | | trans-1,2-Dichloroethene | NS | NS | NS | NS | NS | ND | trans-1,3-Dichloropropene | NS | NS | NS | NS | NS | ND | trans-1,4-Dichloro-2-butene | NS | NS | NS | NS | NS | ND | Trichloroethene | NS | NS | NS | NS | NS | ND | Trichlorofluoromethane | NS | NS | NS | NS | NS | ND | Vinyl Acetate | NS | NS | NS | NS | NS | ND | Vinyl Chloride | NS | NS | NS | NS | NS | ND | Xylenes | NS | NS | NS | NS | NS | 284 | 261 | 275 | 173 | 172 | 163 | 133 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP20 | 0-PZM011 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | NS | NS | NS | NS | NS | ND | 1,1,1-Trichloroethane | NS | NS | NS | NS | NS | ND | 1,1,2,2-Tetrachloroethane | NS | NS | NS | NS | NS | ND | 1,1,2-Trichloroethane | NS | NS | NS | NS | NS | ND | 1,1-Dichloroethane | NS | NS | NS | NS | NS | ND | 1,1-Dichloroethene | NS | NS | NS | NS | NS | ND | 1,2,3-Trichloropropane | NS | NS | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | NS | NS | NS | NS | NS | ND | 1,2-Dibromoethane | NS | NS | NS | NS | NS | ND | 1,2-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 1,2-Dichloroethane | NS | NS | NS | NS | NS | ND | 1,2-Dichloropropane | NS | NS | NS | NS | NS | ND | 1,4-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 2-Butanone | NS | NS | NS | NS | NS | ND | 2-Hexanone | NS | NS | NS | NS | NS | ND | 4-Methyl-2-pentanone | NS | NS | NS | NS | NS | ND | Acetone | NS | NS | NS | NS | NS | 50.4 | ND | ND | ND | ND | 5.7 J | 7.2 J | | Acrylonitrile | NS | NS | NS | NS | NS | ND | Benzene | NS | NS | NS | NS | NS | 40.4 | 129 | 29.6 | 302 | 224 | 357 | 97.1 | | Bromochloromethane | NS | NS | NS | NS | NS | ND | Bromodichloromethane | NS | NS | NS | NS | NS | ND | Bromoform | NS | NS | NS | NS | NS | ND | Bromomethane | NS | NS | NS | NS | NS | ND | Carbon Disulfide | NS | NS | NS | NS | NS | ND | Carbon Tetrachloride | NS | NS | NS | NS | NS | ND | Chlorobenzene | NS | NS | NS | NS | NS | ND | Chloroethane | NS | NS | NS | NS | NS | ND | Chloroform | NS | NS | NS | NS | NS | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | NS | NS | NS | NS | NS | ND | cis-1,2-Dichloroethene | NS | NS | NS | NS | NS | ND | cis-1,3-Dichloropropene | NS | NS | NS | NS | NS | ND | Dibromochloromethane | NS | NS | NS | NS | NS | ND | Dibromomethane | NS | NS | NS | NS | NS | ND | Ethylbenzene | NS | NS | NS | NS | NS | ND | 0.9 J | 0.47 J | 1.3 | 1.3 | 1.4 | 0.83 J | | Iodomethane | NS | NS | NS | NS | NS | ND | Methyl tertiary-butyl ether | NS | NS | NS | NS | NS | ND | Methylene Chloride | NS | NS | NS | NS | NS | ND | Styrene | NS | NS | NS | NS | NS | ND | ND | ND | ND | 0.55 J | ND | ND | | Tetrachloroethene | NS | NS | NS | NS | NS | ND | Toluene | NS | NS | NS | NS | NS | 1.5 | 2 | 1.3 | 3.1 | 3.4 | 4.8 | 2.5 | | trans-1,2-Dichloroethene | NS | NS | NS | NS | NS | ND | trans-1,3-Dichloropropene | NS | NS | NS | NS | NS | ND | trans-1,4-Dichloro-2-butene | NS | NS | NS | NS | NS | ND | Trichloroethene | NS | NS | NS | NS | NS | ND | Trichlorofluoromethane | NS | NS | NS | NS | NS | ND | Vinyl Acetate | NS | NS | NS | NS | NS | ND | Vinyl Chloride | NS | NS | NS | NS | NS | ND | Xylenes | NS | NS | NS | NS | NS | 6 | 8.8 | 5.6 | 10.4 | 9.9 | 7.9 | 6.5 | | Location ID: | CP21 | 1-PZM004 | | . // | | | | | | | | | |-----------------------------|------|----------|----|------|----|-----|-----|-----|-----|---------|-----|-------| | | NS | | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | | NS | NS | NS | NS | ND | 1,1,1-Trichloroethane | NS | NS | NS | NS | NS | ND | 1,1,2,2-Tetrachloroethane | NS | NS | NS | NS | NS | ND | 1,1,2-Trichloroethane | NS | NS | NS | NS | NS | ND | 1,1-Dichloroethane | NS | NS | NS | NS | NS | ND | 1,1-Dichloroethene | NS | NS | NS | NS | NS | ND | 1,2,3-Trichloropropane | NS | NS | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | NS | NS | NS | NS | NS | ND | 1,2-Dibromoethane | NS | NS | NS | NS | NS | ND | 1,2-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 1,2-Dichloroethane | NS | NS | NS | NS | NS | ND | 1,2-Dichloropropane | NS | NS | NS | NS | NS | ND | 1,4-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 2-Butanone | NS | NS | NS | NS | NS | ND | 2-Hexanone | NS | NS | NS | NS | NS | ND | 4-Methyl-2-pentanone | NS | NS | NS | NS | NS | ND | Acetone | NS | NS | NS | NS | NS | ND | ND | ND | ND | 31.7 IL | 7 J | 5.4 J | | Acrylonitrile | NS | NS | NS | NS | NS | ND | Benzene | NS | NS | NS | NS | NS | 4.8 | 7.6 | 2.5 | 4.3 | 1.8 | 7 | 1.7 | | Bromochloromethane | NS | NS | NS | NS | NS
 ND | Bromodichloromethane | NS | NS | NS | NS | NS | ND | Bromoform | NS | NS | NS | NS | NS | ND | Bromomethane | NS | NS | NS | NS | NS | ND | Carbon Disulfide | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 4.1 | ND | | Carbon Tetrachloride | NS | NS | NS | NS | NS | ND | Chlorobenzene | NS | NS | NS | NS | NS | ND | Chloroethane | NS | NS | NS | NS | NS | ND | Chloroform | NS | NS | NS | NS | NS | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | NS | NS | NS | NS | NS | ND | cis-1,2-Dichloroethene | NS | NS | NS | NS | NS | ND | cis-1,3-Dichloropropene | NS | NS | NS | NS | NS | ND | Dibromochloromethane | NS | NS | NS | NS | NS | ND | Dibromomethane | NS | NS | NS | NS | NS | ND | Ethylbenzene | NS | NS | NS | NS | NS | ND | odomethane | NS | NS | NS | NS | NS | ND | Methyl tertiary-butyl ether | NS | NS | NS | NS | NS | ND | Methylene Chloride | NS | NS | NS | NS | NS | ND | Styrene | NS | NS | NS | NS | NS | ND | Tetrachloroethene | NS | NS | NS | NS | NS | ND | Toluene | NS | NS | NS | NS | NS | ND | ND | 0.31 J | 0.35 J | 0.34 J | 0.45 J | ND | | rans-1,2-Dichloroethene | NS | NS | NS | NS | NS | ND | rans-1,3-Dichloropropene | NS | NS | NS | NS | NS | ND | rans-1,4-Dichloro-2-butene | NS | NS | NS | NS | NS | ND | Trichloroethene | NS | NS | NS | NS | NS | ND | Trichlorofluoromethane | NS | NS | NS | NS | NS | ND | /inyl Acetate | NS | NS | NS | NS | NS | ND | /inyl Chloride | NS | NS | NS | NS | NS | ND | Kylenes | NS | NS | NS | NS | NS | ND ## Coke Point Landfill Historical VOCs Intermediate Monitoring Zone | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP02 | ?-PZM026 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND | 2-Hexanone | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 24.8 IL | 8 J | 9 J | | Acrylonitrile | ND | Benzene | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND 1 B | | cis-1,2-Dichloroethene | ND | ND | ND | ND | ND | ND | 0.68 J | ND | ND | ND | ND | ND | | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | ND 0.22 J | ND | ND | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Location ID: 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane | ND N | ND N | ND ND ND ND ND ND ND ND | ND ND ND ND ND ND ND ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | |---|--|--|-------------------------|-------------------------|----------------------|----------------------|----------------|----------------|----------------|----------------|----------------|----------------| | 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane | ND | ND ND ND ND ND ND | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | | 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane | ND ND ND ND ND ND ND | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | | | 1,1,2-Trichloroethane
1,1-Dichloroethane | ND
ND
ND
ND | ND
ND
ND | ND
ND
ND | ND
ND | ND
ND | ND | ND | | | | | ND | | 1,1-Dichloroethane | ND
ND
ND | ND
ND
ND | ND
ND | ND | ND | | | ND | ND | ND | | | | • | ND
ND
ND | ND
ND | ND | | | ND | | | | | ND | ND | | 1,1-Dichloroethene | ND
ND | ND | | ND | ND | | ND | ND | ND | ND | ND | ND | | | ND | | ND | | ND | 1,2,3-Trichloropropane | | MD | | ND | 1,2-Dibromo-3-chloropropane | ND | IVD | ND | 1,2-Dibromoethane | IND | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND 4.6 J | 2.5 J | | 2-Hexanone | ND 0.42 J | ND | | 4-Methyl-2-pentanone | ND 0.73 J | ND | | Acetone | ND | 22.1 | 32.3 | 41.9 | 32.5 | 23 | 35.4 | 22.5 | 27.8 | 41.7 | 34.2 | 30.4 | | Acrylonitrile | ND | Benzene | 6.4 | 37.9 | 33.8 | 41.2 | 49 | 35.8 | 38.4 | 42.5 | 38.6 | 44 | 41.9 | 7.8 | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | 3 | ND | ND | ND | ND | ND | 0.72 J | ND | 1.9 | ND | ND | | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | ND | ND | 1.4 | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | ND | 1.5 | 1.9 | 1.6 | 1.3 | 1.4 | 1.4 | 1.2 | 0.98 J | 0.96 J | 0.34 J | | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | ND | 8.8 | 8 | 10.4 | 12.2 | 8.6 | 9.7 | 9.4 | 9.8 | 11.8 | 9.7 | 1.8 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND 1.7 | ND | ND | ND | ND | | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | 7.7 | 10.2 | 12.7 | 12.3 | 9.1 | 10.1 | 10.2 | 8.8 | 8.1 | 6.5 | 1.8 J | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP05 | 5-PZM028 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,1,1-Trichloroethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,1,2,2-Tetrachloroethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,1,2-Trichloroethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,1-Dichloroethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,1-Dichloroethene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,2,3-Trichloropropane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,2-Dibromo-3-chloropropane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,2-Dibromoethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,2-Dichlorobenzene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,2-Dichloroethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,2-Dichloropropane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,4-Dichlorobenzene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 2-Butanone | NS | ND | ND | 5.6 | ND | NS | NS | NS | NS | ND | 3.1 J | ND | | 2-Hexanone | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | 0.37 J | ND | | 4-Methyl-2-pentanone | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | 0.81 J | ND | | Acetone | NS | ND | 5.7 | 34.4 | 35.1 | NS | NS | NS | NS | 32.7 | 20.1 | 32.5 | | Acrylonitrile | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Benzene | NS | ND | 77.5 | 33.3 | 36.3 | NS | NS | NS | NS | 26.2 | 33.2 | 2.2 | | Bromochloromethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Bromodichloromethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Bromoform | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Bromomethane | NS | 5 | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Carbon Disulfide | NS | ND | ND | ND | 1.3 | NS | NS | NS | NS | ND | ND | ND | | Carbon Tetrachloride | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Chlorobenzene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Chloroethane | NS | ND | ND | ND |
ND | NS | NS | NS | NS | ND | ND | ND | | Chloroform | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | NS | 1.3 | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | cis-1,2-Dichloroethene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | cis-1,3-Dichloropropene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Dibromochloromethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Dibromomethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Ethylbenzene | NS | ND | 1.5 | 1 | ND | NS | NS | NS | NS | 1.4 | 0.63 J | ND | | Iodomethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Methyl tertiary-butyl ether | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Methylene Chloride | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Styrene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Tetrachloroethene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Toluene | NS | ND | 17.9 | 7.2 | 7.2 | NS | NS | NS | NS | 6.7 | 6.1 | 0.84 J | | trans-1,2-Dichloroethene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | trans-1,3-Dichloropropene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | trans-1,4-Dichloro-2-butene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Trichloroethene | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Trichlorofluoromethane | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Vinyl Acetate | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Vinyl Chloride | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Xylenes | NS | ND | 11.6 | 7.6 | 7.4 | NS | NS | NS | NS | 8.2 | 5.1 | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP08 | 8-PZM034 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND | 2-Hexanone | ND | 4-Methyl-2-pentanone | ND | Acetone | ND | ND | ND | ND | ND | ND | 20 | ND | ND | ND | 8.1 J | 17.9 | | Acrylonitrile | ND | Benzene | ND | ND | 2.6 | ND | 3.6 | 1.3 | 5.1 | ND | ND | ND | ND | ND | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | cis-1,2-Dichloroethene | ND | ND | ND | ND | ND | ND | 0.85 J | ND | ND | ND | ND | ND | | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | ND | ND | ND | ND | 1.4 | ND | 2.2 | ND | ND | ND | ND | ND | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | ND | ND | ND | 3.4 | ND | ND | 1.2 J | 2 J | 1.2 J | ND | 12.4 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP09 | 9-PZM047 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND | 2-Hexanone | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 30 | 4.3 J | 7.7 J | | Acrylonitrile | ND | Benzene | 1.1 | ND | ND | ND | 1.2 | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND 3.6 | | Carbon Disulfide | ND 1.3 | ND | ND | | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND 0.67 J | ND | ND | ND | ND | | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | 1.1,1.2-Tetrachloroethane | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |--|-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | 1.1.1-Trickloroethane | Location ID: | CP12 | 2-PZM052 | | ug/L | | | | | | | | | | 1,1,2,3-Tetrachioroethane | 1,1,1,2-Tetrachloroethane | ND | 1,12-Trichloroethane | 1,1,1-Trichloroethane | ND | 1.1-bichloroethane | 1,1,2,2-Tetrachloroethane | ND | 1,1-Dickloroethene ND | 1,1,2-Trichloroethane | ND | 1,2,3-Trichioropropane ND ND< | 1,1-Dichloroethane | ND | 1.2-bitromor-3-chloropropane ND < | 1,1-Dichloroethene | ND | 1,2-bitromoethane ND | 1,2,3-Trichloropropane | ND | 1.2-Dicklorobenzene ND <td>1,2-Dibromo-3-chloropropane</td> <td>ND</td> | 1,2-Dibromo-3-chloropropane | ND | 1.2-Dichloroethane ND | 1,2-Dibromoethane | ND | 1,2-Dichloropropane ND <td>1,2-Dichlorobenzene</td> <td>ND</td> | 1,2-Dichlorobenzene | ND | 1,4-Dichlorobenzene ND <td>1,2-Dichloroethane</td> <td>ND</td> | 1,2-Dichloroethane | ND | 2-Butanone ND | 1,2-Dichloropropane | ND | A-Hexanone ND | 1,4-Dichlorobenzene | ND | 4-Methyl-2-pentanone ND <td>2-Butanone</td> <td>ND</td> | 2-Butanone | ND | Acetone ND | 2-Hexanone | ND | Acrylonitrile ND | 4-Methyl-2-pentanone | ND | Benzene ND | Acetone | ND 40.4 ML | 4.3 J | 5.1 J | | Bromochloromethane ND ND ND ND ND ND ND ND ND Bromodichloromethane ND Bromoform ND <td>Acrylonitrile</td> <td>ND</td> | Acrylonitrile | ND | Bromodichloromethane ND | Benzene | ND | BromoformNDNDNDNDNDNDNDNDNDBromomethaneNDNDNDNDNDNDNDNDNDCarbon DisulfideNDNDNDNDNDNDNDNDNDNDNDNDCarbon TetrachlorideNDNDNDNDNDNDNDNDNDNDNDNDNDNDChlorobenzeneNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDChloroethaneNDNDNDNDNDNDNDNDNDNDNDNDND | Bromochloromethane | ND | Bromomethane ND | Bromodichloromethane | ND | Carbon DisulfideNDNDNDNDNDNDNDNDNDCarbon TetrachlorideNDNDNDNDNDNDNDNDNDChlorobenzeneNDNDNDNDNDNDNDNDNDNDNDChloroethaneNDNDNDNDNDNDNDNDNDND | Bromoform | ND | Carbon Tetrachloride ND | Bromomethane | ND 1.2 | | Chlorobenzene ND | Carbon Disulfide | ND | Chloroethane ND | Carbon Tetrachloride | ND | | Chlorobenzene | ND | Chloroform ND | Chloroethane | ND | עון עון שא שא שא שא שא שא
איז בארוטוווו | Chloroform | ND | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------|--|---|--|---|--|---|--|--|--|--
--| | ND 2.8 B | | ND | ND | ND | ND | ND 0.66 J | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND 0.38 J | ND | ND | ND | ND | | ND | ND | ND | ND 0.37 J | ND | ND | ND | ND | | ND | ND | ND | ND 4.2 | ND | ND | ND | ND | | | ND N | ND | ND | ND | ND | ND | ND ND< | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP1 | 4-PZM062 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND | 2-Hexanone | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 2.9 J | 7.2 J | | Acrylonitrile | ND | Benzene | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND 0.99 J | | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND 2 | | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | Iodomethane | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | ND 0.43 J | ND | ND | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP15 | 5-PZM042 | | ug/L | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,2,3-Trichloropropane | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,4-Dichlorobenzene | ND | 2-Butanone | ND 6.7 J | ND | ND | ND | | 2-Hexanone | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 7.1 J | 227 | 23.3 | 4.2 J | 79 | | Acrylonitrile | ND | Benzene | ND 2.1 | ND | ND | ND | | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND 0.64 J | ND | ND | ND | | Carbon Disulfide | ND | ND | 3.7 | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------|--|---|--|---
---|---
--|--|--|--|--| | ND 0.75 J | ND | ND | 0.46 J | | ND | ND | ND | ND 3.1 | ND | ND | ND | ND | | ND | ND | ND | ND | | ND N | ND | ND | ND ND< | ND <td>ND ND ND</td> <td>ND ND ND<</td> | ND | ND ND< | | 1,1,1-Trichloroethane | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---|-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | 1.1.1-Trichloroethane | Location ID: | CP16 | 6-PZM035 | | ug/L | | | | | | | | | | 1,1,2,2-Tertachioroethane ND | 1,1,1,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane ND </td <td>1,1,1-Trichloroethane</td> <td>ND</td> | 1,1,1-Trichloroethane | ND | 1,1-Dickloroethane ND | 1,1,2,2-Tetrachloroethane | ND | 1,1-Dichloroethene ND | 1,1,2-Trichloroethane | ND | 1,2,3-Trichloropropane ND ND< | 1,1-Dichloroethane | ND | 1,2-bitromo-3-chloropropane ND <t< td=""><td>1,1-Dichloroethene</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<> | 1,1-Dichloroethene | ND | 1,2-Difformethane ND | 1,2,3-Trichloropropane | ND | 1,2-Dichlorobenzene ND <td>1,2-Dibromo-3-chloropropane</td> <td>ND</td> | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dichloroethane ND | 1,2-Dibromoethane | ND | 1,2-Dichloropropane ND <td>1,2-Dichlorobenzene</td> <td>ND</td> | 1,2-Dichlorobenzene | ND | 1,4-Dichlorobenzene ND <td>1,2-Dichloroethane</td> <td>ND</td> | 1,2-Dichloroethane | ND | 2-Butanone ND 5.8 ND 6.2 ND ND ND ND 6.4J ND 5.7J 2-Hexanone ND 0.44J 1.0 4-Methyl-2-pentanone ND N | 1,2-Dichloropropane | ND | 2-Hexanone ND ND ND ND ND ND ND ND ND NA 0.44 J 1 4-Methyl-2-pentanone ND | 1,4-Dichlorobenzene | ND | 4-Methyl-2-pentanone ND <td>2-Butanone</td> <td>ND</td> <td>5.8</td> <td>ND</td> <td>6.2</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>6.4 J</td> <td>ND</td> <td>5.7 J</td> <td>5 J</td> | 2-Butanone | ND | 5.8 | ND | 6.2 | ND | ND | ND | ND | 6.4 J | ND | 5.7 J | 5 J | | Acetone ND 27.8 30.2 35.6 32.2 24.9 32.2 29.2 42.9 69.4 46.5 4 Acrylonitrile ND | 2-Hexanone | ND 0.44 J | ND | | Acrylonitrile ND | 4-Methyl-2-pentanone | ND 1 J | ND | | Benzene 230 229 253 258 281 263 263 264 196 220 228 1 Bromochloromethane ND | Acetone | ND | 27.8 | 30.2 | 35.6 | 32.2 | 24.9 | 32.2 | 29.2 | 42.9 | 69.4 | 46.5 | 46.9 | | Bromochloromethane ND | Acrylonitrile | ND | Bromodichloromethane ND | Benzene | 230 | 229 | 253 | 258 | 281 | 263 | 263 | 264 | 196 | 220 | 228 | 121 | | Bromoform ND | Bromochloromethane | ND | Bromomethane ND | Bromodichloromethane | ND | Carbon DisulfideNDNDNDNDNDNDNDNDNDNDNDCarbon TetrachlorideND <t<
td=""><td>Bromoform</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<> | Bromoform | ND | Carbon Tetrachloride ND | Bromomethane | ND | Chlorobenzene ND | Carbon Disulfide | ND 2.3 | ND | ND | | Chloroethane ND | Carbon Tetrachloride | ND | | Chlorobenzene | ND | Chloroform ND | Chloroethane | ND | | Chloroform | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Chloromethane | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Ethylbenzene | ND | ND | 1 | 1.4 | 1.7 | 1.3 | 1.4 | 1.2 | 0.91 J | 0.97 J | 1.1 | 0.53 J | | Iodomethane | ND | ND | ND | ND | ND | ND | 7.3 JB | ND | ND | ND | ND | ND | | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | Styrene | ND | Tetrachloroethene | ND | Toluene | 15 | 14.6 | 16.7 | 18.8 | 21 | 18.1 | 18.6 | 17 | 13.9 | 15.3 | 16.7 | 8.1 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | 7.6 | 10.2 | 11.9 | 14.2 | 10.9 | 12.3 | 10.8 | 8.5 | 8.2 | 9.5 | 4.2 | ## APPENDIX B Coke Point Landfill Historical Inorganic Concentrations ## Coke Point Landfill Historical Inorganics Shallow Monitoring Zone | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|----------|-----------|--------------|-----------|------------|------------|----------| | Location ID: | CP02 | ?-PZM007 | | mg/L | | | | | | | | | | Alkalinity | 46 | 42 | 58 | 48 | 52 | 30 | 46 | 40 | 40 | 34 | 46 | 50 | | Ammonia (N) | 3.7 | 2.1 | 1.5 | 0.7 | 0.75 | 0.82 | 0.96 | 1.3 | 1.2 | 1.9 | 0.62 | 0.58 | | Chemical Oxygen Demand | 17 | 26.9 | 71.5 | ND | ND | ND | 14.1 J | 13.2 J | 6.2 J | 22.2 J | ND | 12.2 J | | Chloride | 64 | 76 | 29.1 | 19 | 23.3 | 3.7 | 24.2 | 27.1 | 20.8 | 26.6 | 21.2 | 15.9 | | Hardness | 1,500 | 1,280 | 1,150 | 780 | 837 | 828 | NS | 1,270 | 966 | 1,250 | 919 | 583 | | Nitrate | ND | ND | ND | ND | NS | ND | 0.027 H1 | ND | ND | ND | 0.0093 J2c | 0.16 5c | | Nitrite | ND | ND | ND | 0.83 | NS | 0.079 | ND | ND | ND | ND | 0.78 | 2.1 | | Nitrogen, Nitrate-Nitrite | ND | NS | ND | 0.83 | 0.42 | ND | 0.055 J | ND | NS | ND | 0.79 | 2.3 | | рН | 8.37 | 7.6 H6 | 8.2 H6 | 8 H6 | NS | 8.4 H3H6 | 8.3 H6H1 | 8.6 H6 | NS | NS | NS | NS | | Specific Conductance | 2.7 | 2,740 | 2,500 | NS 1,330 | | Sulfate | 2,000 B | 1,460 | 1,400 | 945 | 1,230 | 895 | 1,050 | 1,310 B | 1,210 | 1,380 | 896 | 688 | | Total Antimony | 0.00067 J | ND | ND | ND | ND | ND | 0.0003 J | 0.00032 JD3B | 0.00018 J | 0.00035 JB | 0.00041 J | 0.00057 | | Total Arsenic | 0.019 | 0.022 | 0.0266 | 0.0317 | 0.0294 | 0.0285 | 0.0301 | 0.0252 | 0.0264 | 0.0238 | 0.0273 | 0.0384 | | Total Barium | 0.023 | ND | 0.0198 | 0.0154 | 0.0152 | 0.0152 | 0.018 | 0.0224 | 0.0169 | 0.0245 | 0.0171 | 0.0131 | | Total Beryllium | ND NS | ND | ND | ND | ND | | Total Cadmium | 0.00029 J | ND 0.000092 | ND | | Total Calcium | 550 | 499 | 448 M1 | 395 M6 | 314 M6 | 314 | 447 | 481 | 367 | 475 M1 | 347 M6 | 219 | | Total Chromium | 0.00094 J | ND | 0.00083 | 0.0012 | 0.0023 | 0.0046 | 0.0013 | 0.0011 JD3 | 0.00023 J | 0.0011 | 0.0032 | 0.0238 | | Total Cobalt | 0.0046 J | ND | 0.0056 | 0.0045 | 0.003 | 0.0046 | 0.0039 | 0.0039 | 0.0028 | 0.0042 | 0.0023 | 0.0026 | | Total Copper | 0.021 | ND | 0.0061 | 0.0091 | 0.0087 | 0.0432 | 0.0099 | 0.0143 | 0.0047 | 0.013 | 0.0113 | 0.0172 | | Total Dissolved Solids | 2,600 | 2,210 | 2,140 | 1,860 | NS 1,190 | | Total Iron | 0.4 | ND | 0.0863 | 0.277 | ND | 0.317 | 0.185 | 0.101 J | 0.0702 | 0.112 | 0.0469 J | 0.0953 | | Total Lead | 0.0076 | ND | 0.00072 | 0.001 | 0.00053 | 0.01 | 0.0018 | 0.0035 | 0.00033 | 0.0034 | 0.0013 | 0.0067 | | Total Magnesium | 28 | 20.1 | 17.1 | 13.3 M6 | 13.2 | 10.4 | 12.4 | 15.9 | 12 | 15.3 | 12.5 M6 | 8.54 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------|-----------|----------|-----------|----------|-----------|----------|------------|--------------|-------------|-------------|------------|------------| | Total Manganese | 2.2 | 0.97 | 1.11 M1 | 1.17 M6 | 0.666 | 0.708 | 0.918 | 0.876 | 0.845 | 0.953 M1 | 0.296 | 0.434 | | Total Mercury | ND | ND | ND | ND | ND | ND | 0.00003 JB | ND | ND | ND | ND | ND | | Total Nickel | 0.018 | ND | 0.0021 | 0.0011 | 0.0017 | 0.0015 | 0.0011 | 0.00079 JD3 | 0.00053 | ND | 0.0011 | 0.00089 | | Total Potassium | 38 | 51.1 | 48.4 M1 | 43.9 M6 | 45.3 M1 | 38.9 | 44.1 | 45.1 | 38.4 | 42.2 M1 | 60.1 M6 | 45.4 | | Total Selenium | 0.0067 | ND | 0.103 | 0.139 | 0.301 M1 | 0.0513 | 0.0348 | 0.021 | 0.0161 | 0.0233 | 0.855 | 0.804 | | Total Silver | ND NS | 0.000074 J | 0.00011 JB | ND | 0.00087 | | Total Sodium | 140 | 118 | 97.4 M1 | 70.4 M6 | 65.8 M1 | 49.5 | 62.4 | 67.4 | 54.5 | 65.9 | 70.5 M6 | 42.7 | | Total Thallium | 0.00037 J | ND | ND | ND | ND | ND | ND | 0.00004 JD3B | 0.000013 JB | 0.000014 JB | 0.000082 J | 0.000028 J | | Total Vanadium | 0.0054 | ND | 0.0345 | 0.03 | 0.0533 | 0.0495 | 0.0461 | 0.0395 | 0.0294 | 0.032 | 0.0562 | 0.127 | | Total Zinc | 0.0066 | ND | 0.0078 | ND | 0.007 | ND | 0.0026 J | ND | 0.001 JB | 0.0036 J | 0.0232 | 0.0037 J | | Turbidity | 3 | 0.26 | 0.41 | 0.62 | NS | 4.4 H1 | 1.2 H1 | 1.1 | 0.24 | 1.8 | 0.61 | 2.2 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|-----------|----------|-----------|-----------|------------|------------|-------------|------------|-----------|-----------| | Location ID: | CP05 | -PZM008 | | mg/L | | | | | | | | | | Alkalinity | 1,900 | 1,300 | 1,600 | NS | NS | 1,690 M1 | 40 | 1,570 | 1,590 | 398 | NS | 35 | | Ammonia (N) | 9.6 | 6.2 | 6.5 | NS | NS | 6.6 | 7.4 | 7.2 | 6.4 M1 | 6.8 | NS | 6.7 | | Chemical Oxygen Demand | 25 | 70.4 | 64.9 | NS | NS | 358 M1 | 63.1 | 72.9 | 59.8 | 58.7 | NS | 42.3 | | Chloride | 1,300 | 650 | 409 | NS | NS | 526 | 564 | 452 B | 621 BM6 | 482 | NS | 340 | | Hardness | 1,900 | 1,560 | 1,500 | NS | NS | 1,550 | NS | 1,640 | 1,620 | 1,400 | NS | 1,630 | | Nitrate | 0.042 | 0.18 | 0.47 | NS | NS | 0.14 H3 | NS | 0.2 | 0.11 | 0.0032 J | NS | 0.83 5c | | Nitrite | ND | ND | ND | NS | NS | ND | NS | ND | ND | 0.076 J | NS | ND | | Nitrogen, Nitrate-Nitrite | 0.05 | NS | 0.12 | NS | NS | 0.11 | 0.066 J | 0.073 J | NS | 0.079 J | NS | 0.31 | | рН | 12.6 | 12.5 H6 | 12.3 H6 | NS | NS | 12.4 H3H6 | 12.4 H6H1 | 12.5 H6H1 | NS | NS | NS | NS | | Specific Conductance | 9.9 | 8,750 | 8,190 | NS 7,720 | | Sulfate | 16 B | 82 | 78.3 | NS | NS | 43.6 | 39 B | 25.6 | 23.4 | 62.5 | NS | 61.2 JD3 | | Total Antimony | 0.0014 J | ND | ND | NS | NS | ND | ND | 0.000097 J | 0.00018 J | 0.0001 J | NS | 0.00012 J | | Total Arsenic | 0.0051 | ND | 0.0012 | NS | NS | 0.0012 | 0.0012 | 0.0015 | 0.0012 | 0.0011 | NS | 0.0011 | | Total Barium | 0.92 | 0.6 | 0.794 | NS | NS | 0.727 | 0.702 | 0.76 | 0.876 M1 | 0.655 | NS | 0.653 | | Total Beryllium | ND | ND | ND | NS | NS | ND | ND | NS | ND | ND | NS | ND | | Total Cadmium | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Total Calcium | 750 | 625 | 620 | NS | NS | 627 | 572 | 656 | 650 M1 | 560 M1 | NS | 652 | | Total Chromium | 0.0024 | ND | 0.00066 | NS | NS | 0.002 | 0.0051 | 0.0071 | 0.0008 | 0.00046 J | NS | 0.0012 | | Total Cobalt | 0.0014 J | ND | ND | NS | NS | ND | 0.00026 J | 0.000098 J | 0.000046 J | 0.000069 J | NS | ND | | Total Copper | 0.0084 | ND | ND | NS | NS | ND | 0.0005 JB | ND | ND | ND | NS | 0.0013 | | Total Dissolved Solids | 3,300 | 2,140 | 2,160 | NS 3,090 4c | | Total Iron | 0.16 J | ND | ND | NS | NS | 0.253 | 0.0987 | 0.0774 | 0.036 J | 0.102 | NS | 0.0306 J | | Total Lead | 0.0003 J | ND | 0.00028 | NS | NS | 0.0001 | 0.000097 J | 0.00055 | 0.000072 JB | 0.0001 | NS | 0.0012 | | Total Magnesium | 0.32 J | ND | 0.149 | NS | NS | 0.182 | 0.0743 | 0.0678 | 0.0109 B | 0.0392 | NS | 0.0329 | | Total Manganese | 0.041 | ND | 0.0037 | NS | NS | 0.0372 | 0.0142 | 0.0101 | 0.0025 | NS | NS | 0.0007 | | Total Mercury | ND | ND | ND | NS | NS | ND | ND | ND | 0.0001 JB | ND | NS | ND | | Total Nickel | 0.043 | 0.0055 | 0.0091 | NS | NS | 0.0075 | 0.0074 | 0.0087 | 0.0085 | 0.0057 | NS | 0.005 | | Total Potassium | 88 | 57 | 72.8 | NS | NS | 81.4 | 78.8 | 87.8 | 83.4 M1 | 72.1 M1 | NS | 73.8 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|-----------|-----------|-----------|----------|-----------|----------|-----------|------------|-------------|-----------|-----------|----------| | Total Selenium | 0.02 | ND | 0.00064 | NS | NS | 0.00084 | 0.00065 | 0.00081 | 0.0007 M1 | 0.0011 M1 | NS | 0.0013 | | Total Silver | ND | 0.0038 D3 | ND | NS | NS | ND | ND | NS | ND | ND | NS | ND | | Total Sodium | 600 | 184 | 321 | NS | NS | 311 | 237 | 370 | 401 M1 | 363 M1 | NS | 226 | | Total Thallium | 0.00034 J | ND | ND | NS | NS | ND | ND | 0.000019 J | 0.000018 JB | ND | NS | ND | | Total Vanadium | ND | 0.003 | 0.0022 | NS | NS | 0.0045 | 0.0037 | 0.0047 | 0.0021 | 0.0024 | NS | 0.0027 | | Total Zinc | 0.0032 J | ND | 0.0128 | NS | NS | ND | 0.0059 | 0.002 J | 0.0031 J | 0.0032 J | NS | 0.0013 J | | Turbidity | 4 | 0.27 | 0.47 | NS | NS | 2.6 H3 | 2.2 H1 |
2.4 | 0.73 | 1.8 | NS | 1.9 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|-----------|-----------|-------------|-------------|-----------|------------|------------| | Location ID: | CP07 | -PZM006 | | mg/L | | | | | | | | | | Alkalinity | 180 | 400 | 300 | 56 | 368 | 350 | 340 | 330 M1 | 360 | 328 | 310 | 300 | | Ammonia (N) | 16 | 23.4 | 14.5 | 13.4 | 15 | 13 | 12.8 | 2.5 | 11.7 | 11.6 | 10.4 | 10.6 | | Chemical Oxygen Demand | 38 | 50.8 | 62.7 | 42.5 | 71.5 | 63.4 | 56.7 | 61.8 | 46.4 | 48.6 | 33.7 | 48.8 | | Chloride | 180 | 208 | 146 | 141 | 150 | 131 | 128 | 117 | 131 | 120 | 100 | 98.2 | | Hardness | 320 | 300 | 332 | 284 | 335 | 353 | NS | 335 | 347 | 343 | 373 | 345 | | Nitrate | 0.05 | 0.21 | 0.081 | 0.092 H3 | NS | 0.012 H1 | 0.22 | 0.017 B | 0.0025 J | 0.013 | 0.014 3c | 0.0091 J5c | | Nitrite | ND | 0.36 | 0.31 | ND | NS | 0.13 | 0.25 | 0.094 J | ND | 0.4 | 0.32 | ND | | Nitrogen, Nitrate-Nitrite | 0.077 | NS | 0.39 | ND | 0.55 | 0.14 | NS | 0.11 | NS | 0.42 | 0.33 | ND | | рН | 10.3 | 7.4 H6 | 11.5 H6 | 11.3 H6 | NS | 11.7 H3H6 | 11.8 H6H1 | 11.9 H6 | NS | NS | NS | NS | | Specific Conductance | 1,300 | 2,900 | 2,500 | NS 2,020 | | Sulfate | 400 | 345 | 291 | 292 | 272 | 275 | 264 B | 282 | 311 | 296 | 286 | 276 | | Total Antimony | 0.0007 J | ND | ND | ND | ND | ND | 0.00015 J | ND | 0.0001 J | 0.00011 J | ND | 0.00013 J | | Total Arsenic | 0.0048 | 0.0045 | 0.0062 | 0.0057 | 0.0077 | 0.0077 | 0.008 | 0.0084 | 0.0084 | 0.0072 | 0.0078 | 0.0079 | | Total Barium | 0.018 | 0.09 | 0.0778 | 0.0819 | 0.0529 | 0.045 | 0.0446 | 0.0402 | 0.0416 | 0.0413 | 0.0393 | 0.0378 | | Total Beryllium | 0.00042 J | ND | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Total Cadmium | 0.00031 J | ND 0.000038 J | 0.00014 | 0.000074 J | ND | | Total Calcium | 130 | 135 M6 | 142 | 126 | 134 | 141 | 123 | 134 | 139 | 137 | 149 | 138 | | Total Chromium | ND | ND | 0.00052 | 0.0011 | 0.00099 | 0.0028 | 0.0011 | ND | 0.00041 J | 0.0016 | 0.00072 | 0.00073 | | Total Cobalt | 0.00055 J | ND | ND | ND | ND | ND | 0.00018 J | 0.00018 JD3 | 0.0002 J | 0.00021 J | 0.00019 J | 0.0002 J | | Total Copper | 0.0015 | ND | 0.00062 | ND | ND | 0.0026 | 0.00074 J | ND | ND | ND | 0.00033 J | 0.00071 J | | Total Dissolved Solids | 1,100 | 909 | 1,060 | 1,160 | NS 904 | | Total Iron | ND | ND | ND | ND | ND | 0.286 | 0.0397 J | ND | 0.0223 J | 0.0312 J | 0.0264 J | 0.0249 J | | Total Lead | 0.00026 J | ND | ND | 0.00014 | 0.00011 | 0.0043 | 0.00014 | ND | 0.000083 JB | 0.0001 | 0.00012 B | 0.00014 | | Total Magnesium | 0.15 J | 0.087 | 0.0819 | 0.0533 | 0.0496 | 0.425 | 0.0539 | 0.0373 JD3 | 0.0213 | 0.0846 | NS | 0.116 | | Total Manganese | 0.001 | ND | ND | 0.002 | 0.0011 | 0.0466 | 0.0029 | 0.0014 JD3 | 0.0019 | 0.0018 | 0.0025 | 0.004 | | Total Mercury | ND | Total Nickel | 0.012 | 0.0065 | 0.0074 | 0.0065 | 0.008 | 0.0073 | 0.0079 | 0.0063 | 0.0052 | 0.0041 | 0.0056 | 0.005 | | Total Potassium | 82 | 78.3 M6 | 92.2 | 93 | 85.4 | 83.6 | 85.1 | 88.1 | 87 | 84 | 89.8 | 78.9 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|-------------|-----------|----------|-----------|----------| | Total Selenium | 0.0029 J | ND | 0.00081 | 0.001 | NS | 0.0012 | 0.00092 | 0.00089 JD3 | 0.00056 | 0.00098 | 0.0011 | 0.00091 | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 170 | 152 M6 | 169 | 151 | 135 | 141 | 150 | 136 | 131 | 116 | 126 | 113 | | Total Thallium | ND | Total Vanadium | 0.46 | 0.15 | 0.1 | 0.0927 | 0.0611 | 0.0494 | 0.0626 | 0.0432 | 0.0252 | 0.0544 | 0.0558 | 0.044 | | Total Zinc | 0.0017 J | ND | 0.0053 | ND | ND | ND | ND | 0.0049 JD3 | 0.0025 JB | 0.0029 J | 0.0033 JB | 0.0018 J | | Turbidity | 0.29 | 0.25 | 0.28 | 0.3 H3 | NS | 1.5 H1 | 3 | 0.66 | 0.43 | 0.43 | 0.22 | 2 | | | | | | | | | | , , | , , | , , | | 5/1/2018 | |---------------------------|-----------|---------|----------|---------|---------|-----------|------------|------------|------------|------------|------------|----------| | Location ID: | CP08 | -PZM008 | | mg/L | | | | | | | | | | lkalinity | 370 | 600 | 400 | 72 | 372 | 420 | 368 | 390 | 360 | 374 | 350 | 20 | | Ammonia (N) | 6.8 | 7 | 7.2 | 6.8 | 7.5 | 7.2 | 7.6 | 8 | 7.2 | 7.8 | 7.5 | 7 | | Chemical Oxygen Demand | 120 | 133 | 146 | 119 | 208 | 136 | 133 | 135 | 142 | 130 | 126 | 118 | | Chloride | 56 | 85.5 | 50.8 | 49.3 | 51.1 | 54.6 | 52.5 | 49.8 | 51.3 | 69.3 | 50.9 | 48.1 | | Hardness | 840 | 940 | 911 | 897 | 909 | 928 | NS | 878 | 824 | 816 | 864 | 789 | | litrate | 0.0081 J | ND | 0.014 | 0.073 | 0.029 | 0.01 H1 | 0.0059 JH1 | 0.003 JM1 | 0.0039 J | ND | 0.016 2c | 0.15 20 | | litrite | ND | 0.19 | ND | ND | ND | ND | 0.36 | ND | ND | ND | ND | ND | | litrogen, Nitrate-Nitrite | ND | NS | ND | ND | NS | ND | ND | ND | NS | ND | ND | 0.073 J | | H | 11.8 | 11.9 H6 | 11.7 H6 | 11.5 H6 | NS | 11.8 H3H6 | 11.7 H6H1 | 11.8 H6H1 | NS | NS | NS | NS | | pecific Conductance | 2.1 | 3,050 | 3,050 | NS 2,570 | | ulfate | 590 B | 721 | 683 | 797 | 713 | 706 | 656 B | 694 | 648 | 637 | 609 | 558 | | otal Antimony | ND | ND | 0.00065 | ND | ND | ND | ND | ND | 0.00005 J | 0.00004 J | ND | ND | | otal Arsenic | 0.00076 J | ND | 0.001 | 0.00088 | 0.001 | 0.001 | 0.00092 | 0.0007 JD3 | 0.001 | 0.00096 | 0.00095 | 0.00093 | | otal Barium | 0.067 | 0.061 | 0.0537 | 0.0634 | 0.0589 | 0.0554 | 0.062 | 0.0611 | 0.0585 | 0.0602 | 0.0591 | 0.0629 | | otal Beryllium | 0.00042 J | ND | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | | otal Cadmium | 0.00024 J | ND | 0.000082 | ND 0.000036 J | ND | | otal Calcium | 340 | 389 | 371 | 359 | 364 | 376 | 353 | 352 | 330 M6 | 327 M1 | 346 | 316 | | otal Chromium | 0.0013 J | ND | 0.0015 | 0.0023 | 0.00062 | 0.0014 | 0.0021 | ND | 0.00086 | 0.00053 | 0.00054 | 0.0013 | | otal Cobalt | 0.00065 J | ND | ND | ND | ND | ND | 0.00019 J | ND | 0.000043 J | 0.000053 J | ND | ND | | otal Copper | 0.0023 | ND | 0.00079 | ND | ND | ND | 0.0014 | ND | ND | ND | ND | 0.00027 | | otal Dissolved Solids | 1,300 | 1,490 | 1,450 | 1,360 | NS 1,170 | | otal Iron | ND | ND | 0.166 | 0.0811 | 0.0576 | 0.292 | 0.0869 | ND | 0.0522 | 0.0411 J | 0.078 | 0.0755 | | otal Lead | ND | ND | 0.0005 | 0.00013 | ND | 0.00032 | 0.00028 | ND | 0.0002 | 0.00012 | 0.00037 | 0.0002 | | otal Magnesium | ND | 0.07 | 0.292 | 0.0592 | 0.031 | 0.136 | 0.0752 | 0.0479 JD3 | 0.056 | 0.0365 | 0.0787 | 0.0772 | | otal Manganese | 0.0048 | ND | 0.0367 | 0.0153 | 0.0071 | 0.046 | 0.0176 | 0.0052 | 0.0121 | 0.0069 | 0.0102 | 0.0124 | | otal Mercury | ND | ND | ND | ND | ND | ND | 0.00003 JB | ND | ND | ND | ND | ND | | otal Nickel | 0.019 | ND | 0.0025 | 0.0024 | 0.0012 | 0.002 | 0.0021 | 0.0015 JD3 | 0.0013 | 0.0012 | 0.0017 | 0.0017 | | otal Potassium | 66 | 57 | 57.8 | 58.6 | 57.6 | 61.1 | 61.8 | 61 | 57 M6 | 60.2 M1 | 64.4 | 63.4 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-------------|-------------|-----------|-----------| | Total Selenium | 0.0014 J | ND | ND | ND | ND | ND | 0.00031 J | ND | 0.00024 JM6 | 0.00025 JM1 | 0.00036 J | 0.00042 J | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 77 | 53 | 52.7 | 52.7 | 49.6 | 56.6 | 54 | 54 | 51.2 M6 | 54.7 M1 | 58.2 | 53.2 | | Total Thallium | ND | Total Vanadium | 0.027 | ND | 0.0259 | 0.0207 | 0.022 | 0.0229 | 0.0225 | 0.0252 | 0.0251 | 0.0256 | 0.0308 | 0.0318 | | Total Zinc | 0.002 J | ND | 0.011 | ND | ND | ND | ND | ND | 0.0037 JB | 0.0022 J | 0.004 JB | 0.0017 J | | Turbidity | 0.39 | 0.24 | 5.1 | 0.61 | NS | 4.6 H1 | 1.5 H1 | 0.48 | 3.2 | 1.6 | 1.3 | 2.8 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|-----------|-------------|-------------|-------------|------------|-----------|----------| | Location ID: | CP09 | -PZM010 | | mg/L | | | | | | | | | | Alkalinity | 520 | 500 | 700 | 166 | 400 | 440 | 474 | 520 | 560 | 78 | 310 | 10 | | Ammonia (N) | 0.23 | 8 | 0.11 | 14.1 | 1.7 | 1.4 | 1.5 | 1.1 | 4.8 | 0.71 | 3.6 | 1.2 | | Chemical Oxygen Demand | ND | 157 | 234 | 121 | 172 | 127 | 305 | 115 | 113 | 54.7 | 162 | 40.2 | | Chloride | 3,000 | 4,670 | 3,860 | 2,060 | 4,520 | 2,230 | 5,420 | 1,040 B | 5,690 | 1,970 | 4,580 | 1,150 | | Hardness | 1,300 | 1,730 | 1,560 | 1,480 | 1,770 | 1,240 | NS | 1,570 | 2,150 | 881 | 1,630 | 1,080 | | Nitrate | 0.25 | 0.49 | 0.55 | 0.39 H3 | 0.58 H11c | 0.27 H1 | 0.58 | 0.22 | 0.75 | 0.2 | 1 | 0.2 3c | | Nitrite | 1.8 | 0.18 | 1.9 | ND | 0.82 | ND | 0.58 | 0.59 | 1.6 | 0.44 | 0.81 | 0.24 | | Nitrogen, Nitrate-Nitrite | 2.1 | NS | 2 | 0.051 | NS | 0.6 | NS | 0.8 | NS | 0.64 | 1.8 | 0.44 | | рН | 11.9 | 12.2 H6 | 11.6 H6 | 11.9 H6 | NS | 11.8 H3H6 | 11.7 H6H1 | 12 H6H1 | NS | NS | NS | NS | | Specific Conductance | 10 | 14,300 | 15,600 | NS 5,600 | | Sulfate | 380 | 471 | 594 | 295 | 574 | 358 | 664 | 416 | 715 | 327 | 559 | 268 | | Total Antimony | ND 0.00015 J | 0.00017 J | ND | ND | | Total Arsenic | 0.0096 | ND | 0.0011 | 0.001 | ND | ND | 0.00088 JD3 | 0.00078 JD3 | 0.00063 | ND | 0.00051 | 0.00052 | | Total Barium | 0.085 | 0.13 | 0.0976 | 0.0826 | 0.112 | 0.0672 | 0.114 | 0.0674 | 0.154 | 0.0517 | 0.115 | 0.0438 | | Total Beryllium | 0.00042 J | ND | ND | ND | ND | ND | ND | NS | ND | 0.000036 J | ND | ND | | Total Cadmium | ND | Total Calcium | 520 | 697 | 653 | 593 | 742 | 534 | 793 | 627 | 859 | 347 | 647 | 423
| | Total Chromium | 0.075 | 0.017 | 0.0665 | 0.0262 | 0.0559 | 0.0374 | 0.0671 | 0.0546 | 0.0515 | 0.0399 | 0.0531 | 0.033 | | Total Cobalt | 0.001 J | ND 0.000097 J | 0.000062 J | ND | ND | | Total Copper | 0.0024 | 0.0057 | 0.0012 | 0.0033 | ND | 0.002 | 0.005 | ND | 0.00094 J | 0.0012 | 0.0011 | 0.001 | | Total Dissolved Solids | 6,200 | 6,350 | 8,570 | 5,070 | NS 2,960 20 | | Total Iron | ND 0.054 | 0.03 J | 0.0194 | | Total Lead | 0.007 | 0.031 | 0.003 | 0.0126 | 0.0032 | 0.0062 | 0.0068 | 0.0049 | 0.0041 | 0.0067 | 0.0041 | 0.008 | | Total Magnesium | 0.27 J | 22.3 | 0.208 | 5.65 | 0.66 | 1.25 | 5.8 | 0.645 | 0.586 | 3.42 | 4.42 | 6.47 | | Total Manganese | 0.00064 J | 0.007 | ND | 0.0052 | ND | 0.0017 | 0.0104 | 0.0019 JD3 | 0.0011 | 0.0044 | 0.002 | 0.0025 | | Total Mercury | ND 0.000082 JB | ND | ND | ND | | Total Nickel | 0.029 | 0.0067 | 0.0015 | 0.0032 | ND | 0.0013 | 0.0026 | 0.0011 JD3 | 0.0024 | 0.0004 J | 0.0016 B | 0.0022 | | Total Potassium | 66 | 87.1 | 89.9 | 63.4 | 104 | 69.4 | 121 | 78.3 | 124 | 49.6 | 116 | 34.8 | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-------------|-----------|-----------|-----------| | Total Selenium | 0.044 | ND | 0.00064 | 0.00055 | ND | ND | ND | ND | 0.0006 | 0.00034 J | 0.00048 J | 0.00043 J | | Total Silver | ND NS | 0.000012 J | ND | ND | ND | | Total Sodium | 1,700 | 1,910 | 2,500 | 1,100 | 2,680 | 1,300 | 3,190 | 1,700 | 3,680 | 1,050 | 2,360 | 559 | | Total Thallium | ND 0.000017 JB | ND | ND | ND | | Total Vanadium | 0.0014 J | 0.02 | 0.0159 | 0.0096 | 0.0139 | 0.0099 | 0.011 | 0.0095 | 0.0131 | 0.0121 | 0.0128 | 0.0097 | | Total Zinc | 0.0013 J | ND | 0.0063 | 0.0056 | ND | ND | ND | ND | 0.0019 J | 0.0039 J | 0.0017 J | 0.0025 J | | Turbidity | 0.14 | 8.6 | 0.46 | 0.95 H3 | NS | 0.79 H1 | 15 | 1.2 | 2.7 | 7.6 | 13.7 | 17.6 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|------------|-----------| | Location ID: | CP10 |)-PZM008 | | mg/L | | | | | | | | | | Alkalinity | 2,000 | 1,700 | 2,500 | 476 | 2,120 | NS | 70 | NS | NS | NS | 2,230 | 650 | | Ammonia (N) | 11 | 42 | 29 | 27.6 | 22.5 | NS | 19.8 | NS | NS | NS | 26.7 | 23.6 | | Chemical Oxygen Demand | 6 J | 155 | 150 | 121 | 133 | NS | 114 | NS | NS | NS | 111 | 126 | | Chloride | 510 | 775 | 388 | 388 | 390 | NS | 361 B | NS | NS | NS | 283 | 325 | | Hardness | 2,000 | 1,890 | 1,780 | 1,870 | 1,730 | NS | NS | NS | NS | NS | 1,970 | 1,820 | | Nitrate | 0.93 | 2.5 | 2.1 | 1.9 H3 | NS | NS | 1.8 M6 | NS | NS | NS | 1.3 3c | 1.3 2c | | Nitrite | ND | ND | 0.55 | ND | NS | NS | ND | NS | NS | NS | ND | ND | | Nitrogen, Nitrate-Nitrite | 0.57 | NS | 0.76 | 0.44 | 0.42 | NS | NS | NS | NS | NS | 0.2 | 0.22 | | рН | 9.3 | 12.6 H6 | 12.4 H6 | 12.3 H6 | NS | NS | 12.4 H6H1 | NS | NS | NS | NS | NS | | Specific Conductance | 700 | 12,200 | 11,800 | NS 9,350 | | Sulfate | 28 B | 67.6 | 76.3 | 48.1 | 65.8 | NS | 67.3 B | NS | NS | NS | 42.4 | 81 JD3 | | Total Antimony | 0.00062 J | ND | 0.0013 | 0.00058 | ND | NS | 0.00017 J | NS | NS | NS | ND | 0.00035 J | | Total Arsenic | 0.0019 J | ND | 0.0038 | 0.0031 | 0.0032 | NS | 0.0027 | NS | NS | NS | 0.0031 | 0.0031 | | Total Barium | 1 | 0.88 | 0.908 M1 | 0.74 | 0.721 | NS | 0.759 | NS | NS | NS | 0.658 M6 | 0.623 | | Total Beryllium | 0.00042 J | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Total Cadmium | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | 0.000085 | | Total Calcium | 790 | 756 | 718 M1 | 747 | 797 | NS | 736 | NS | NS | NS | 790 M6 | 729 | | Total Chromium | 0.0095 | ND | 0.0138 | 0.0032 | 0.0076 | NS | 0.0101 | NS | NS | NS | 0.0039 | 0.0161 | | Total Cobalt | 0.0016 J | ND | 0.00055 | ND | ND | NS | 0.00027 J | NS | NS | NS | ND | 0.00033 J | | Total Copper | 0.0025 | ND | 0.0048 | 0.0022 | 0.0043 | NS | 0.0092 | NS | NS | NS | 0.0037 JD3 | 0.0063 | | Total Dissolved Solids | 2,300 | 2,960 | 3,070 | 3,300 | NS 3,490 4c | | Total Iron | ND | 0.43 | 1.41 | 0.605 | 0.654 | NS | 0.431 | NS | NS | NS | 0.812 | 1.68 | | Total Lead | 0.0013 | ND | 0.006 | 0.0031 | 0.0049 | NS | 0.005 | NS | NS | NS | 0.0037 | 0.0056 | | Total Magnesium | 0.26 J | 0.089 | 1.12 | 0.233 | 0.976 | NS | 0.115 | NS | NS | NS | NS | 0.971 | | Total Manganese | 0.00078 J | ND | 0.153 | 0.0262 | 0.029 | NS | 0.0203 | NS | NS | NS | 0.0621 | 0.17 | | Total Mercury | ND | 0.0003 | 0.00029 | 0.00022 | 0.0002 | NS | 0.00009 J | NS | NS | NS | 0.00014 J | 0.00017 J | | Total Nickel | 0.051 | ND | 0.0152 | 0.0126 | 0.012 | NS | 0.0109 | NS | NS | NS | 0.0141 | 0.0129 | | Total Potassium | 81 | 202 | 199 M1 | 173 | 215 | NS | 187 | NS | NS | NS | 191 M6 | 182 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|----------| | Total Selenium | 0.0084 | ND | 0.0017 | 0.002 | NS | NS | 0.002 | NS | NS | NS | 0.0024 JD3 | 0.0022 | | Total Silver | ND | ND | 0.00054 M1 | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Total Sodium | 270 | 336 | 357 M1 | 322 | 385 | NS | 310 | NS | NS | NS | 332 M6 | 295 | | Total Thallium | ND | ND | ND | ND | ND | NS | ND | NS | NS | NS | ND | ND | | Total Vanadium | ND | ND | 0.0059 | 0.001 | 0.0017 | NS | 0.00098 J | NS | NS | NS | 0.0014 JD3 | 0.0065 | | Total Zinc | 0.0012 J | ND | 0.0327 | 0.0059 | 0.01 | NS | 0.0099 | NS | NS | NS | 0.0099 JB | 0.0248 | | Turbidity | 0.24 | 1.6 | 7.4 | 2.8 | NS | NS | 2.5 | NS | NS | NS | 12.9 | 19.5 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|----------| | Location ID: | CP11 | -PZM010 | | mg/L | | | | | | | | | | Alkalinity | 1,800 | 1,800 | 2,100 | 426 | 1,970 | 2,140 | 40 | 2,450 | 2,100 | 518 | 2,100 | 50 | | Ammonia (N) | 8.6 | 18.2 | 11 | 10.2 | 10.8 | 10.9 | 11.6 | 12.6 | 12.4 | 12.4 | 5.4 | 12.4 | | Chemical Oxygen Demand | 6.6 J | 46.4 | 54 | 27.2 | ND | 44.2 | 39.7 | 46.4 | 46.4 | 46.5 | 33.7 | 44.5 | | Chloride | 860 | 572 | 369 | 239 | 265 | 224 | 239 | 331 | 305 B | 382 | 5,940 | 478 | | Hardness | 2,000 | 1,940 | 2,000 | 2,020 | 1,830 | 2,000 | NS | 2,180 | 1,900 | 1,600 | 2,030 | 1,960 | | Nitrate | 1.3 | 0.43 | 0.34 | 0.3 H3 | 0.42 | 0.27 M1 | 0.26 M1 | 0.25 | 0.35 | 0.24 | 0.26 3c | 0.24 3c | | Nitrite | 0.21 | ND | Nitrogen, Nitrate-Nitrite | 1.5 | NS | ND | 0.087 | NS | 0.11 | NS | 0.14 | NS | 0.27 | 0.11 | 0.13 | | рН | 12.2 | 12.7 H6 | 12.3 H6 | 12.2 H6 | NS | 12.7 H3H6 | 12.5 H6H1 | 12.1 H6H1 | NS | NS | NS | NS | | Specific Conductance | 8.2 | 11,100 | 10,800 | NS | NS | NS | 8,530 | NS | NS | NS | NS | 9,450 | | Sulfate | 35 B | 29.6 | 39.1 | 13.1 | 13.5 | 11.9 | NS | 19 | 24.7 B | 13.1 | 17.8 | ND | | Total Antimony | ND 0.000066 J | 0.000086 J | 0.00014 J | ND | ND | | Total Arsenic | 0.0018 J | ND | 0.002 | 0.0018 | 0.0021 | 0.0022 | 0.0023 | 0.0029 | 0.0022 | 0.002 B | 0.002 | 0.0018 | | Total Barium | 1 | 0.94 | 1.06 | 0.862 M6 | 0.928 | 0.912 | 0.946 M1 | 0.982 | 0.998 | 0.845 | 0.973 | 0.822 | | Total Beryllium | 0.00042 J | ND | Total Cadmium | ND | Total Calcium | 780 | 778 | 799 | 809 | 732 | 800 M1 | 754 M1 | 874 | 762 | 641 | 812 | 786 | | Total Chromium | 0.011 | ND | 0.0012 | ND | 0.0041 | 0.0033 | 0.0019 | 0.0014 | 0.0018 | 0.0069 | 0.0045 | 0.0037 | | Total Cobalt | 0.0022 J | ND | ND | ND | ND | ND | ND | 0.00012 J | 0.000094 J | 0.00012 J | ND | ND | | Total Copper | 0.0027 | ND | 0.00088 | 0.0015 | 0.0012 | ND | 0.0115 | ND | 0.00044 J | 0.002 | 0.00073 J | 0.0011 | | Total Dissolved Solids | 3,500 | 2,600 | 2,560 | 2,560 | NS 3,260 2c | | Total Iron | 0.2 J | ND | 0.0873 | ND | 0.0997 | 0.108 | 0.0619 | 0.0835 | 0.0714 | 0.142 | 0.124 | 0.118 | | Total Lead | 0.0018 | ND | 0.00013 | 0.00094 | 0.0011 | 0.00047 | 0.00029 | 0.00015 B | 0.00022 B | 0.0017 | 0.00063 | 0.00079 | | Total Magnesium | 0.17 J | 0.13 | 0.0718 | 0.278 | 0.0807 | 0.0406 | 0.0126 | 0.0405 | 0.0155 B | 0.0442 | NS | 0.0738 | | Total Manganese | 0.00094 J | ND | 0.0015 | 0.0343 | 0.0062 | 0.0114 | 0.0017 B | 0.0019 | 0.0018 | 0.0107 | 0.0067 | 0.0102 | | Total Mercury | ND 0.0001 JB | 0.000035 J | ND | ND | | Total Nickel | 0.052 | 0.0086 | 0.0095 | 0.0068 | 0.0068 | 0.0059 | 0.0071 | 0.0088 | 0.0069 | 0.006 | 0.0076 | 0.0073 | | Total Potassium | 80 | 78.2 | 81.2 | 76.9 M6 | 83 | 81.4 | 91.6 M1 | 107 | 107 | 86.3 | 98.3 | 92.5 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|-------------|-----------|----------|-----------|-----------| | Total Selenium | 0.0093 | ND | 0.00084 | 0.0006 | 0.001 | 0.00092 | 0.00089 | 0.0011 | 0.0009 | 0.0013 | 0.0012 | 0.0009 | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 270 | 242 | 266 | 149 M6 | 194 | 144 | 175 M1 | 316 | 264 | 344 | 377 | 308 | | Total Thallium | ND 0.000015 JB | ND | ND | ND | ND | | Total Vanadium | ND | ND | 0.00069 | ND | ND | 0.0013 | ND | 0.00045 J | 0.00042 J | 0.0012 B | 0.00063 J | 0.00085 J | | Total Zinc | 0.0017 J | ND | ND | ND | ND | ND | 0.0265 | 0.0066 | 0.0017 J | 0.0045 J | 0.0019 JB | 0.0036 J | | Turbidity
| 0.09 J | 0.28 | 2.5 | 0.76 H3 | NS | 0.94 | 0.96 | 0.98 | 1.3 | 2.6 | 1.1 | 2.8 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|-----------|-----------|------------|---------------|------------|-------------|----------| | Location ID: | CP12 | -PZM012 | | mg/L | | | | | | | | | | Alkalinity | 280 | 128 | 500 | 234 | 554 | 1,670 | 20 | 480 | 870 | 96 | 770 | 20 ML | | Ammonia (N) | 2.6 | 2.4 | 2.3 | 8 | 3.9 | 7 | 2.9 | 0.58 | 3.2 | 0.89 | 2.7 | 4.7 | | Chemical Oxygen Demand | ND | 201 | 126 | 40.3 | 159 | 50.6 | 220 | 128 | 71 | 62.8 | 145 ML | 63.9 | | Chloride | 1,700 | 4,670 | 2,700 | 605 | 3,340 | 475 M6 | 3,690 | 3,220 | 3,530 B | 2,290 | 1,030 MHML2 | 841 | | Hardness | 720 | 1,140 | 972 | 1,300 | 1,470 | 1,500 | NS | 1,190 | 1,500 | 820 | 1,640 | 1,450 | | Nitrate | 0.63 | 0.52 | 0.7 | ND | NS | ND | 0.47 | 0.57 | 0.33 | 0.2 | 0.44 3c | ND | | Nitrite | ND | 0.062 | 0.67 | ND | NS | ND | ND | 0.19 | 0.17 | ND | ND | ND | | Nitrogen, Nitrate-Nitrite | 0.51 | NS | 0.74 | ND | 0.065 | ND | NS | 0.76 | NS | 0.24 | 0.38 | ND | | pH | 7.83 | 11.4 H6 | 11.7 H6 | 12 H6 | NS | 12.4 H3H6 | 12 H6H1 | 11.5 H6H1 | NS | NS | NS | NS | | Specific Conductance | 9.4 | 12,700 | 11,400 | NS 8,280 | | Sulfate | 250 B | 463 | 389 | 106 | 435 | 112 | 444 B | 386 | 484 B | 288 | 531 | 209 | | Total Antimony | 0.00056 J | ND 0.00014 J | ND | ND | | Total Arsenic | 0.0067 | ND | 0.00086 | 0.00097 | 0.00077 | 0.0012 | 0.00084 | 0.0007 J | 0.00074 JD3 | ND | 0.00062 | 0.0005 | | Total Barium | 0.075 | 0.092 | 0.106 | 0.14 | 0.131 | 0.159 | 0.203 | 0.136 | 0.186 | 0.096 | 0.175 | 0.0939 | | Total Beryllium | 0.00042 J | ND | Total Cadmium | ND | Total Calcium | 290 | 484 | 395 | 519 | 616 | 601 | 562 | 475 | 598 M6 | 327 | 654 | 577 M | | Total Chromium | 0.0026 | ND | 0.00074 | 0.0027 | 0.0011 | 0.0013 | 0.0048 | 0.0012 J | ND | 0.00094 B | 0.00034 J | ND | | Total Cobalt | 0.00064 J | ND | ND | ND | ND | ND | 0.00047 J | 0.00014 J | 0.00018 JD3 | ND | ND | ND | | Total Copper | 0.0014 | ND | 0.00082 | ND | ND | ND | 0.0021 | ND | ND | ND | 0.00022 J | ND | | Total Dissolved Solids | 3,300 | 5,960 | 5,710 | 2,790 | NS 4,410 2 | | Total Iron | ND | ND | ND | 0.0954 | 0.0625 | 0.081 | 0.418 | ND | ND | 0.0634 | 0.0742 | ND | | Total Lead | ND | ND | 0.00019 | 0.00026 | ND | 0.00015 | 0.0013 | 0.00027 JB |).000065 JD3E | 0.00014 | 0.000094 JB | 0.00006 | | Total Magnesium | 1.3 | 7.78 | 0.0974 | 2.65 | 0.525 | 1.53 | 3.67 | 0.947 | 1.86 | 1.18 | NS | 1.59 | | Total Manganese | 0.0012 | ND | 0.0015 | 0.0083 | 0.0052 | 0.0071 | 0.0554 | 0.0073 | 0.0031 | 0.0054 | 0.0027 | ND | | Total Mercury | ND | Total Nickel | 0.018 | ND | 0.0031 | 0.0041 | 0.0032 | 0.0042 | 0.0055 | 0.002 J | 0.0035 | 0.0016 JD3 | 0.0038 | 0.0024 | | Total Potassium | 56 | 68.7 | 79.8 | 64.2 | 121 | 70.1 | 103 | 97.8 | 112 M6 | 68.6 | 112 | 72.1 M | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-------------|-----------|-----------|-----------| | Total Selenium | 0.028 | ND | ND | ND | NS | ND | 0.00065 | ND | ND | ND | ND | 0.00037 J | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 990 | 2,010 | 1,700 | 281 | 2,000 | 330 | 1,990 | 1,840 | 2,230 M6 | 1,290 | 2,590 | 800 M6 | | Total Thallium | ND | Total Vanadium | ND | ND | 0.0051 | 0.0013 | NS | 0.002 | 0.0061 | 0.0066 | 0.0044 JD3 | 0.0041 | 0.0048 | ND | | Total Zinc | 0.0016 J | ND | 0.0334 | ND | ND | ND | 0.006 | ND | 0.0068 JD3B | 0.005 JD3 | 0.0029 JB | 0.0019 J | | Turbidity | 4 | 10.6 | 0.76 | 0.54 | NS | 3.6 H1 | 7 | 0.9 | 17.7 | 4.3 | 2.4 | 6.3 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|-----------|------------|-------------|--------------|------------|------------|-----------| | Location ID: | CP14 | -PZM009 | | mg/L | | | | | | | | | | Alkalinity | 2,400 | 1,700 | 2,200 | 434 | 2,230 | 2,240 | 60 | 2,200 | 2,250 | 530 | 2,110 | 55 | | Ammonia (N) | 6.2 | 5.3 | 5.6 | 6.1 | 6.3 | 5.9 | 5.7 | 5.3 | 5.4 | 6 | 5.7 | 5.6 | | Chemical Oxygen Demand | 16 | 31.2 | 25.5 | ND | ND | 44.2 | 33.3 | 30.9 | 15.1 JM1 | 30.3 | 33.7 | 25.1 | | Chloride | 91 | 98.2 | 86.8 | 92 | 97 | 95.8 | 84.1 | 75.5 | 74.2 | 81.8 | 89.3 | 83.6 J | | Hardness | 2,200 | 2,060 | 1,930 | 2,040 | 1,970 | 2,190 | NS | 2,120 | 2,040 | 2,010 | 2,010 | 2,280 | | Nitrate | 0.054 | 0.026 | 0.029 | 0.021 H3 | 0.063 | 0.055 H1 | 0.066 | 0.059 | 0.077 | 0.014 | 0.054 | 0.046 2c | | Nitrite | ND | Nitrogen, Nitrate-Nitrite | 0.069 | NS | ND | ND | NS | ND | NS | ND | NS | ND | ND | ND | | рН | 7.35 | 12.7 H6 | 12.3 H6 | 12.2 H6 | NS | 12.6 H3H6 | 12.5 H6H1 | 12.5 H6H1 | NS | NS | NS | NS | | Specific Conductance | 7.4 | 10,600 | 9,940 | NS 8,240 | | Sulfate | 98 B | 156 | 137 | 101 | 131 | 143 | 145 B | 136 | 121 | 144 | 154 | 161 | | Total Antimony | ND | ND | ND | ND | ND | ND | 0.00023 J | ND | ND | 0.00017 J | ND | ND | | Total Arsenic | ND | ND | 0.0015 | 0.0013 | 0.0014 | 0.0015 | 0.0041 | 0.00098 JD3 | 0.0015 JD3 | 0.0011 | 0.0013 | 0.0012 | | Total Barium | 0.23 | 0.23 | 0.228 | 0.213 | 0.235 | 0.208 | 0.0571 | 0.207 | 0.209 | 0.216 | 0.213 | 0.193 | | Total Beryllium | 0.00042 J | ND | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Total Cadmium | 0.00023 J | ND | ND | ND | ND | ND | 0.000037 J | ND | ND | ND | ND | ND | | Total Calcium | 890 | 900 | 814 | 818 | 837 | 877 | 48.7 | 850 | 818 | 804 | 806 | 912 | | Total Chromium | 0.0014 J | ND | 0.00059 | ND | 0.0013 | 0.0024 | 0.0061 | ND | 0.0017 JD3 | 0.0012 | 0.00061 | 0.0022 | | Total Cobalt | 0.0019 J | ND | ND | ND | ND | ND | 0.00026 J | ND | ND | 0.000055 J | ND | ND | | Total Copper | 0.0021 | ND | 0.00064 | ND | ND | 0.0013 | 0.0027 | ND | ND | ND | ND | 0.00028 J | | Total Dissolved Solids | 3,200 | 2,210 | 2,250 | 2,670 | NS 2,750 1c | | Total Iron | ND | ND | ND | ND | ND | 0.245 | 3.45 | ND | 0.172 JD3 | 0.137 | 0.0569 | 0.292 | | Total Lead | ND | ND | 0.0001 | 0.00016 | 0.00012 | 0.00032 | 0.00035 | ND | 0.00014 JD3B | 0.00009 J | 0.000051 J | 0.00026 | | Total Magnesium | ND | 0.19 | 0.0892 | 0.285 2c | 0.153 | 0.916 | 91 | 0.0345 J | 0.186 | 0.113 | 0.0578 | 0.376 | | Total Manganese | 0.0033 | 0.028 | 0.0029 | 0.021 2c | 0.0026 | 0.037 | 0.678 | 0.0031 D3 | 0.0384 | 0.0262 | 0.0092 | 0.0629 | | Total Mercury | ND | Total Nickel | 0.058 | 0.0043 | 0.0049 | 0.0032 | 0.0035 | 0.0034 | 0.0035 | 0.0027 | 0.0028 | 0.0018 | 0.0021 | 0.0029 | | Total Potassium | 43 | 59.6 | 67 | 71 | 77.1 | 70.2 | 54.7 | 68 | 65.2 | 65.6 | 64.7 | 63.8 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|-------------|--------------|----------|-----------|----------| | Total Selenium | 0.0028 J | ND | 0.00054 | ND | ND | 0.00063 | ND | ND | ND | 0.00068 | 0.00045 J | 0.00053 | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 95 | 92.4 | 91.9 | 91.2 | 95.9 | 83.9 | 874 | 71.4 | 70.8 | 70.9 | 70.2 | 68.6 | | Total Thallium | ND 0.00004 JD3B | ND | ND | ND | | Total Vanadium | ND | 0.0015 | 0.00045 | ND | ND | 0.0019 | 0.0051 | 0.00044 JD3 | 0.0023 JD3 | 0.0013 | 0.00072 J | 0.0029 | | Total Zinc | ND | ND | 0.007 | ND | ND | ND | 0.0057 | ND | ND | 0.0028 J | 0.0012 J | 0.0042 J | | Turbidity | 0.43 | 0.24 | 0.42 | 0.23 H3 | NS | 4.1 | 2 | 1.3 | 4.2 | 1.6 | 1.9 | 5 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------| | Location ID: | CP15 | -PZM020 | | mg/L | | | | | | | | | | Alkalinity | 2,000 | 1,500 | 2,100 | 454 | 2,180 | 2,200 | 65 | 2,480 | 1,930 | 472 | 2,040 | 60 | | Ammonia (N) | 25 | 39.9 | 18.5 | 16.8 | 16.5 | 13.6 | 13.9 | 14.5 | 18.5 | 17.7 | 16.6 | 15.7 | | Chemical Oxygen Demand | 37 | 87.7 | 69.3 | 64.3 | 39.4 | 61.3 | 67.4 | 57.4 | 71 | 75 | 72.3 | 48.8 | | Chloride | 420 | 1,240 | 466 | 390 | 514 | 310 | 324 B | 305 | 608 B | 362 | 272 | 128 J | | Hardness | 1,900 | 1,780 | 1,780 | 1,760 | 1,640 | 1,990 | NS | 2,110 | 1,680 | 1,490 | 1,620 | 1,620 | | Nitrate | 0.59 | 0.31 | 0.36 | 0.25 H3 | 0.18 | 0.6 H1 | 0.35 | 0.68 | 0.15 | 0.56 | 0.61 | 0.81 3c | | Nitrite | ND | ND | ND | 574 | ND | 0.14 | ND | ND | ND | ND | ND | ND | | Nitrogen, Nitrate-Nitrite | 0.34 | NS | 0.17 | 574 | NS | 0.2 | NS | 0.3 | NS | 0.27 | 0.21 | 0.36 | | рН | 12.1 | 12.8 H6 | 12.3 H6 | 12.2 H6 | NS | 12.5 H3H6 | 12.6 H6H1 | 12 H6H1 | NS | NS | NS | NS | | Specific Conductance | 8,700 | 11,400 | 10,200 | NS 8,790 | | Sulfate | 8.1 | 25 | 17.6 | 18.3 | 70.7 | 11.7 | 16.2 BM1 | 19.8 | 39.1 | 10.5 | 10.8 | ND | | Total Antimony | 0.00086 J | ND | ND | ND | ND | ND | ND | 0.00014 J | 0.00012 J | 0.00022 J | 0.00016 J | ND | | Total Arsenic | 0.0027 | 0.0026 | 0.0026 | 0.0023 | 0.003 | 0.0026 | 0.0012 | 0.0032 | 0.0024 | 0.0023 B | 0.0026 | 0.0019 | | Total Barium | 1.3 | 1.3 | 1.18 | 1.05 | 1.18 | 1.08 | 0.192 | 1.2 M1 | 1.24 | 1.06 | 1.15 | 0.89 | | Total Beryllium | 0.00043 J | ND | Total Cadmium | 0.00024 J | ND | ND | ND | ND | ND | ND | 0.000041 J | ND | ND | ND | ND | | Total Calcium | 740 | 713 | 712 | 763 | 654 | 798 | 776 | 844 M1 | 674 | 598 | 650 | 647 | | Total Chromium | 0.014 | 0.0029 | 0.0429 | 0.0101
| 0.0568 | 0.0144 | 0.0016 | 0.029 | 0.0141 | 0.018 | 0.0141 | 0.037 | | Total Cobalt | 0.0019 J | ND | ND | ND | ND | ND | ND | 0.00019 J | 0.000075 J | 0.0001 J | ND | ND | | Total Copper | 0.0025 | ND | 0.0088 | 0.0059 | 0.0459 | 0.0106 | 0.0016 | 0.0028 | 0.0138 | 0.0023 | 0.0042 | 0.0049 | | Total Dissolved Solids | 2,600 | 2,710 | 2,700 | 2,510 | NS 3,330 2c | | Total Iron | ND | ND | 0.0703 | 0.0651 | 0.123 | 0.0659 | 0.113 | 0.022 J | 0.059 | 0.0232 J | 0.0306 J | 0.0158 J | | Total Lead | 0.001 | 0.0041 | 0.0062 | 0.011 | 0.0535 | 0.0093 | 0.0001 | 0.0121 | 0.015 | 0.0028 | 0.0029 | 0.0053 | | Total Magnesium | ND | 0.038 | 0.14 | 0.234 | 1.47 | 0.369 | 0.094 | 0.057 | 0.184 | 0.0313 | 0.0905 | 0.0744 | | Total Manganese | 0.0013 | ND | 0.0084 | 0.0046 | 0.0173 | 0.0062 | 0.0205 | 0.0012 | 0.0072 | 0.0014 | 0.0023 | 0.00095 B | | Total Mercury | ND 0.00013 JB | 0.000035 J | ND | ND | | Total Nickel | 0.062 | 0.013 | 0.0093 | 0.0079 | 0.0118 | 0.0077 | 0.0021 | 0.0089 | 0.0105 | 0.0064 | 0.0069 | 0.0048 | | Total Potassium | 140 | 131 | 131 | 122 | 122 | 123 | 61.8 | 149 M1 | 126 | 127 | 144 | 123 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|-------------|-----------|------------|-----------|----------| | Total Selenium | 0.01 | ND | 0.0011 | 0.00094 | 0.00097 | 0.001 | 0.00032 J | 0.0014 | 0.00094 | 0.0012 | 0.0011 | 0.0013 | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 300 | 367 | 232 | 209 | 349 | 234 | 65.3 | 284 M1 | 178 | 294 | 226 | 184 | | Total Thallium | ND | ND | ND | ND | 0.00011 | ND | ND | 0.000059 JB | ND | ND | ND | ND | | Total Vanadium | ND | ND | 0.00097 | ND | 0.0016 | ND | 0.0014 | 0.00052 J | 0.00076 J | 0.00043 JB | 0.0004 J | ND | | Total Zinc | ND | ND | 0.008 | ND | 0.0068 | ND | 0.0041 J | 0.0032 J | 0.0042 J | 0.0021 J | 0.0043 J | 0.003 J | | Turbidity | 0.08 J | 0.19 | 1.3 | 1.8 H3 | NS | 0.94 H1 | 14 | 1.6 | 2.4 | 1.9 | 1.6 | 1.7 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|-----------|----------|-----------|-----------|-----------|-------------|-----------|------------|-----------|----------| | Location ID: | CP16 | -PZM008 | | mg/L | | | | | | | | | | Alkalinity | NS | NS | NS | NS | NS | 2,160 | 70 | 2,120 | 2,300 | 512 | 2,060 | 70 | | Ammonia (N) | NS | NS | NS | NS | NS | 6.5 | 6.1 | 6.1 | 5.9 | 5.7 | 5.5 | 5.7 | | Chemical Oxygen Demand | NS | NS | NS | NS | NS | 46.3 | 95 | 35.3 | 68.8 | 42.5 | 27.2 | 33.7 | | Chloride | NS | NS | NS | NS | NS | 56.5 | 72 B | 68.5 | 239 | 96.3 | 73.9 | 293 | | Hardness | NS | NS | NS | NS | NS | 1,990 | NS | 2,420 | 1,870 | 1,600 | 2,100 | 1,970 | | Nitrate | NS | NS | NS | NS | NS | 0.074 H1 | 0.15 | 0.07 | 0.069 | 0.042 | 0.056 3c | 0.06 5c | | Nitrite | NS | NS | NS | NS | NS | 0.19 | ND | ND | ND | ND | ND | ND | | Nitrogen, Nitrate-Nitrite | NS | NS | NS | NS | NS | 0.26 | NS | 0.019 J | NS | 0.045 J | ND | 0.039 J | | рН | NS | NS | NS | NS | NS | 12.6 H3H6 | 12.6 H6H1 | 12.1 H6H1 | NS | NS | NS | NS | | Specific Conductance | NS 8,560 | | Sulfate | NS | NS | NS | NS | NS | 34.8 | 62.6 | 51.7 B | 69.2 | 32 | 40.5 | 50 | | Total Antimony | NS | NS | NS | NS | NS | ND | ND | 0.000062 J | ND | 0.000098 J | ND | ND | | Total Arsenic | NS | NS | NS | NS | NS | 0.0012 | 0.00093 | 0.0013 | 0.00075 J | 0.0016 B | 0.00085 | 0.0012 | | Total Barium | NS | NS | NS | NS | NS | 2.1 | 1.95 | 1.56 | 1.59 | 1.42 | 1.37 | 1.21 | | Total Beryllium | NS | NS | NS | NS | NS | ND | Total Cadmium | NS | NS | NS | NS | NS | ND | Total Calcium | NS | NS | NS | NS | NS | 794 | 698 | 971 | 749 | 641 | 840 | 790 | | Total Chromium | NS | NS | NS | NS | NS | 0.0051 | 0.0032 | 0.00028 J | ND | 0.00052 B | 0.0004 J | 0.00032 | | Total Cobalt | NS | NS | NS | NS | NS | ND | 0.00013 J | 0.00006 J | ND | 0.000033 J | ND | ND | | Total Copper | NS | NS | NS | NS | NS | 0.0039 | 0.0031 | ND | ND | ND | ND | ND | | Total Dissolved Solids | NS 3,410 30 | | Total Iron | NS | NS | NS | NS | NS | 0.737 | 0.214 | 0.0233 J | ND | 0.0226 J | 0.0272 J | 0.0262 J | | Total Lead | NS | NS | NS | NS | NS | 0.0019 | 0.00048 | 0.000037 JB | 0.0001 JB | 0.000027 J | 0.00012 B | 0.000061 | | Total Magnesium | NS | NS | NS | NS | NS | 1.16 | 0.267 | 0.0475 | ND | 0.0239 | NS | 0.0243 | | Total Manganese | NS | NS | NS | NS | NS | 0.135 | 0.0415 | 0.0035 | 0.0032 | 0.0047 | 0.0041 | 0.0037 | | Total Mercury | NS | NS | NS | NS | NS | ND | Total Nickel | NS | NS | NS | NS | NS | 0.0027 | 0.0026 | 0.0031 | 0.0029 | 0.0019 | 0.003 | 0.0019 | | Total Potassium | NS | NS | NS | NS | NS | 134 | 87.8 | 87.2 | 49.4 | 62.2 | 68 | 59.9 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|-----------|-------------|-----------|-----------|-----------| | Total Selenium | NS | NS | NS | NS | NS | 0.00069 | ND | 0.00043 J | ND | 0.00031 J | 0.00033 J | 0.00036 J | | Total Silver | NS | NS | NS | NS | NS | ND | ND | NS | ND | ND | ND | ND | | Total Sodium | NS | NS | NS | NS | NS | 96.4 | 66.5 | 84.7 | 65.3 | 62.4 | 69.9 | 61.5 | | Total Thallium | NS | NS | NS | NS | NS | ND | ND | ND | 0.000055 JB | ND | ND | ND | | Total Vanadium | NS | NS | NS | NS | NS | 0.0057 | 0.0021 | 0.0005 J | 0.00078 J | 0.0014 B | 0.00035 J | 0.0003 J | | Total Zinc | NS | NS | NS | NS | NS | ND | 0.0102 | 0.0024 J | 0.0043 JB | 0.0027 J | 0.0027 JB | 0.002 J | | Turbidity | NS | NS | NS | NS | NS | 10.1 | 2.5 | 0.32 | 0.7 | 0.71 | 0.47 | 1.6 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|-----------|----------|-----------|-----------|-----------|--------------|-------------|-----------|-------------|----------| | Location ID: | CP18 | 8-PZM009 | | mg/L | | | | | | | | | | Alkalinity | NS | NS | NS | NS | NS | 690 | 15 | 740 | 640 | 692 | 600 | 20 | | Ammonia (N) | NS | NS | NS | NS | NS | 5.8 | 5 | 6.2 | 4.4 | 6 | 4.8 | 5.3 | | Chemical Oxygen Demand | NS | NS | NS | NS | NS | 44.2 | 35.4 | 37.5 | 21.8 J | 40.4 | 12.2 J | 31.5 | | Chloride | NS | NS | NS | NS | NS | 66.2 | 61.7 B | 57.2 | 60.8 | 60.3 | 52.7 | 56.2 | | Hardness | NS | NS | NS | NS | NS | 1,340 | NS | 153 | 1,020 | 995 | 1,040 | 1,180 | | Nitrate | NS | NS | NS | NS | NS | 0.23 | 0.16 | 0.17 | 0.099 | 0.027 | 0.054 2c | 0.077 20 | | Nitrite | NS | NS | NS | NS | NS | ND | Nitrogen, Nitrate-Nitrite | NS | NS | NS | NS | NS | ND | NS | 0.046 J | NS | ND | ND | 0.037 J | | рН | NS | NS | NS | NS | NS | 12.2 H3H6 | 12.3 H6H1 | 12.2 H6 | NS | NS | NS | NS | | Specific Conductance | NS 3,630 | | Sulfate | NS | NS | NS | NS | NS | 757 | 479 B | 608 | 1,160 | 606 | 539 | 733 | | Total Antimony | NS | NS | NS | NS | NS | ND | 0.00017 J | 0.00018 JD3E | 3 0.00013 J | 0.0003 JB | ND | 0.00012 | | Total Arsenic | NS | NS | NS | NS | NS | 0.0018 | 0.0014 | 0.0011 JD3 | 0.0012 | 0.0015 | 0.0011 | 0.0013 | | Total Barium | NS | NS | NS | NS | NS | 0.0521 | 0.0429 | 0.0512 | 0.0449 | 0.0435 | 0.0401 | 0.0411 | | Total Beryllium | NS | NS | NS | NS | NS | ND | ND | NS | ND | ND | ND | ND | | Total Cadmium | NS | NS | NS | NS | NS | ND | Total Calcium | NS | NS | NS | NS | NS | 536 | 395 | 61.2 | 409 | 398 | 418 | 474 | | Total Chromium | NS | NS | NS | NS | NS | 0.0121 | 0.0164 | 0.0013 JD3 | 0.00054 | 0.0008 | 0.00039 J | 0.00023 | | Total Cobalt | NS | NS | NS | NS | NS | 0.0021 | 0.0025 | 0.00026 JD3 | 0.00023 J | 0.00028 J | 0.00018 J | 0.0002 | | Total Copper | NS | NS | NS | NS | NS | 0.002 | 0.003 | ND | ND | ND | ND | ND | | Total Dissolved Solids | NS 1,420 | | Total Iron | NS | NS | NS | NS | NS | 1.81 | 2.02 | 0.278 | 0.142 | 0.16 | 0.133 | 0.116 | | Total Lead | NS | NS | NS | NS | NS | 0.0019 | 0.0022 | 0.0001 JD3 | 0.0001 B | 0.00016 | 0.000083 JB | 0.000034 | | Total Magnesium | NS | NS | NS | NS | NS | 1.72 | 1.7 | 0.146 | 0.0911 | 0.084 | 0.0939 | 0.0347 | | Total Manganese | NS | NS | NS | NS | NS | 0.346 | 0.369 | 0.0258 | 0.0139 | 0.0159 | 0.0129 | 0.0031 | | Total Mercury | NS | NS | NS | NS | NS | ND | Total Nickel | NS | NS | NS | NS | NS | 0.0019 | 0.0037 | 0.0014 JD3 | 0.00093 | 0.001 | 0.0013 | 0.0015 | | Total Potassium | NS | NS | NS | NS | NS | 57.7 | 51.8 | 59.2 | 53.6 | 57.9 | 57.8 | 61.8 | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|-----------| | Total Selenium | NS | NS | NS | NS | NS | 0.00051 | 0.00024 J | ND | 0.0003 J | 0.00043 J | 0.00035 J | 0.00038 J | | Total Silver | NS | NS | NS | NS | NS | ND | ND | NS | ND | ND | ND | ND | | Total Sodium | NS | NS | NS | NS | NS | 67.4 | 47.8 | 66.2 | 53.5 | 68 | 53.7 | 72.6 | | Total Thallium | NS | NS | NS | NS | NS | ND | Total Vanadium | NS | NS | NS | NS | NS | 0.0491 | 0.0534 | 0.0136 | 0.0108 | 0.0118 | 0.0099 | 0.0103 | | Total Zinc | NS | NS | NS | NS | NS | 0.0064 | 0.0083 | ND | 0.003 JB | 0.0017 J | 0.0016 JB | 0.00093 J | | Turbidity | NS | NS | NS | NS | NS | 19.2 | 35.3 | 2.4 | 1.7 | 3.5 | 1 | 1.1 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|-----------|----------|-----------|-----------|------------|-------------
------------|------------|------------|----------| | Location ID: | CP19 | -PZM008 | | mg/L | | | | | | | | | | Alkalinity | NS | NS | NS | NS | NS | 1,040 | 40 M1 | 900 | 960 | 900 | 980 | 25 | | Ammonia (N) | NS | NS | NS | NS | NS | 10.2 | 9.9 | 11.6 | 8.4 | 10.9 | 8.3 | 9.6 | | Chemical Oxygen Demand | NS | NS | NS | NS | NS | 71.9 | 65.2 | 64 | 50.9 | 62.8 | 48.7 | 59.5 | | Chloride | NS | NS | NS | NS | NS | 88.2 | 91.2 | 85.2 | 83 | 105 | 72 | 73.1 | | Hardness | NS | NS | NS | NS | NS | 1,340 | NS | 1,090 | 1,190 | 967 | 1,220 | 1,080 | | Nitrate | NS | NS | NS | NS | NS | 0.24 | 0.13 H1 | 0.089 | 0.072 | 0.044 | 0.18 2c | 0.19 2c | | Nitrite | NS | NS | NS | NS | NS | ND | Nitrogen, Nitrate-Nitrite | NS | NS | NS | NS | NS | 0.13 | 0.071 J | 0.037 J | NS | ND | 0.056 J | 0.08 J | | рН | NS | NS | NS | NS | NS | 12.4 H3H6 | 12.2 H6H1 | 12.2 H6 | NS | NS | NS | NS | | Specific Conductance | NS 4,350 | | Sulfate | NS | NS | NS | NS | NS | 453 | 461 B | 510 | 429 | 447 | 409 | 485 | | Total Antimony | NS | NS | NS | NS | NS | ND | ND | ND | 0.000042 J | 0.00019 JB | ND | ND | | Total Arsenic | NS | NS | NS | NS | NS | 0.0016 | 0.0014 | 0.0011 JD3 | 0.0013 | 0.0014 | 0.0011 | 0.0012 | | Total Barium | NS | NS | NS | NS | NS | 0.0965 | 0.0858 | 0.071 | 0.0867 | 0.0694 | 0.0849 | 0.0691 | | Total Beryllium | NS | NS | NS | NS | NS | ND | ND | NS | ND | ND | ND | ND | | Total Cadmium | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.000028 J | ND | | Total Calcium | NS | NS | NS | NS | NS | 535 | 461 | 437 | 475 | 387 | 490 | 431 | | Total Chromium | NS | NS | NS | NS | NS | 0.0119 | 0.004 | 0.00099 JD3 | 0.0005 | 0.0011 | 0.0011 | 0.0021 | | Total Cobalt | NS | NS | NS | NS | NS | 0.0012 | 0.0012 | 0.00034 JD3 | 0.00023 J | 0.00062 | 0.00038 J | 0.00092 | | Total Copper | NS | NS | NS | NS | NS | 0.002 | 0.0015 | ND | 0.00062 J | 0.0011 | 0.0012 | 0.0013 | | Total Dissolved Solids | NS 1,990 40 | | Total Iron | NS | NS | NS | NS | NS | 1.64 | 0.394 | ND | 0.0382 J | 0.132 | 0.0829 | 0.259 | | Total Lead | NS | NS | NS | NS | NS | 0.001 | 0.00076 | 0.00052 | 0.00021 | 0.0004 | 0.00076 | 0.00076 | | Total Magnesium | NS | NS | NS | NS | NS | 1.07 | 0.604 | 0.111 | 0.053 | 0.232 | 0.146 | 0.426 | | Total Manganese | NS | NS | NS | NS | NS | 0.357 | 0.0915 | 0.0132 | 0.0067 | 0.0321 | 0.0161 | 0.0608 | | Total Mercury | NS | NS | NS | NS | NS | ND | 0.00003 JB | ND | ND | ND | ND | ND | | Total Nickel | NS | NS | NS | NS | NS | 0.0031 | 0.0028 | 0.0021 JD3 | 0.0019 | 0.0016 | 0.0021 | 0.002 | | Total Potassium | NS | NS | NS | NS | NS | 76.6 | 73.4 | 78.6 | 72.4 | 75.5 | 77 | 74.9 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-------------|-------------|-----------|-----------| | Total Selenium | NS | NS | NS | NS | NS | ND | 0.00027 J | ND | 0.00034 J | 0.00035 J | 0.00058 | 0.00032 J | | Total Silver | NS | NS | NS | NS | NS | ND | ND | NS | ND | 0.000013 JB | ND | ND | | Total Sodium | NS | NS | NS | NS | NS | 99 | 92.2 | 108 | 84.7 | 92 | 83.6 | 91.2 | | Total Thallium | NS | NS | NS | NS | NS | ND | ND | ND | 0.000008 JB | 0.000022 JB | ND | ND | | Total Vanadium | NS | NS | NS | NS | NS | 0.0313 | 0.0136 | 0.0086 | 0.0068 | 0.0103 | 0.007 | 0.0126 | | Total Zinc | NS | NS | NS | NS | NS | 0.0051 | 0.0027 J | ND | 0.0021 JB | 0.0029 J | 0.0109 B | 0.0034 J | | Turbidity | NS | NS | NS | NS | NS | 1.9 | 5.7 H1 | 1.3 | 1.8 | 7.1 | 1.9 | 7.9 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|-----------|----------|-----------|-----------|-----------|--------------|-----------|-----------|------------|----------| | Location ID: | CP20 | -PZM011 | | mg/L | | | | | | | | | | Alkalinity | NS | NS | NS | NS | NS | 350 | 270 | 310 | 310 | 308 | 250 | 276 | | Ammonia (N) | NS | NS | NS | NS | NS | 5.2 | 6 | 3.7 | 6 | 5.4 | 2.9 | 2.5 | | Chemical Oxygen Demand | NS | NS | NS | NS | NS | 42 | 37.5 | 33.1 | 35.2 | 40.4 | 16.5 J | 38 | | Chloride | NS | NS | NS | NS | NS | 53.2 | 48.8 B | 45.4 | 63.3 | 71.8 | 40 | 40.6 | | Hardness | NS | NS | NS | NS | NS | 531 | NS | 483 | 615 | 530 | 619 | 511 | | Nitrate | NS | NS | NS | NS | NS | 0.66 H1 | 0.45 | 1 | 0.026 | 0.52 | 0.65 2c | 0.55 5c | | Nitrite | NS | NS | NS | NS | NS | 0.44 | ND | ND | ND | ND | ND | 0.32 | | Nitrogen, Nitrate-Nitrite | NS | NS | NS | NS | NS | 0.51 | NS | 0.98 | NS | 0.44 MH | 0.64 | 0.87 | | рН | NS | NS | NS | NS | NS | 11.8 H3H6 | 11.7 H6H1 | 11.8 H6H1 | NS | NS | NS | NS | | Specific Conductance | NS 1,930 | | Sulfate | NS | NS | NS | NS | NS | 331 | 430 B | 299 | 595 | 441 | 408 | 401 | | Total Antimony | NS | NS | NS | NS | NS | ND | 0.00032 J | 0.00034 JD3B | 0.00035 J | 0.00035 J | 0.00022 J | 0.00025 | | Total Arsenic | NS | NS | NS | NS | NS | 0.0015 | 0.0013 | 0.0011 JD3 | 0.0014 | 0.0013 | 0.00098 | 0.0011 | | Total Barium | NS | NS | NS | NS | NS | 0.0474 | 0.0501 | 0.045 D3 | 0.055 | 0.0476 | 0.0487 | 0.0463 | | Total Beryllium | NS | NS | NS | NS | NS | ND | ND | NS | ND | ND | ND | ND | | Total Cadmium | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.000045 J | ND | | Total Calcium | NS | NS | NS | NS | NS | 218 | 239 | 193 | 246 | 212 | 248 | 204 | | Total Chromium | NS | NS | NS | NS | NS | 0.008 | 0.0048 | 0.0078 | 0.0017 | 0.0035 | 0.0095 | 0.0457 | | Total Cobalt | NS | NS | NS | NS | NS | ND | 0.00029 J | 0.00018 JD3 | 0.00031 J | 0.00023 J | 0.0003 J | 0.00027 | | Total Copper | NS | NS | NS | NS | NS | 0.0014 | 0.0015 | ND | 0.0013 | 0.00071 J | 0.0014 | 0.0024 | | Total Dissolved Solids | NS 963 | | Total Iron | NS | NS | NS | NS | NS | 0.879 | 0.238 | ND | 0.206 | 0.0836 | 0.306 | 0.345 | | Total Lead | NS | NS | NS | NS | NS | 0.0013 | 0.00055 | 0.00018 JD3 | 0.00067 | 0.00033 | 0.00083 | 0.001 | | Total Magnesium | NS | NS | NS | NS | NS | 0.696 | 0.244 | 0.0609 | 0.186 | 0.0642 | 0.235 | 0.234 | | Total Manganese | NS | NS | NS | NS | NS | 0.176 | 0.0461 | 0.004 D3 | 0.0341 | 0.0117 | 0.0377 | 0.0437 | | Total Mercury | NS | NS | NS | NS | NS | ND | Total Nickel | NS | NS | NS | NS | NS | 0.0041 | 0.0028 | 0.0029 | 0.0026 | 0.0024 | 0.0012 | 0.0012 | | Total Potassium | NS | NS | NS | NS | NS | 50.7 | 54.1 | 48.3 | 50.8 | 49 | 39.2 | 39.5 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|----------|-----------|----------| | Total Selenium | NS | NS | NS | NS | NS | 0.0013 | 0.0013 | 0.0011 JD3 | 0.00085 | 0.0012 | 0.0016 | 0.0027 | | Total Silver | NS | NS | NS | NS | NS | ND | ND | NS | ND | ND | ND | ND | | Total Sodium | NS | NS | NS | NS | NS | 80.7 | 70 | 54 | 75.3 | 71.8 | 43.3 | 40.1 | | Total Thallium | NS | NS | NS | NS | NS | ND | Total Vanadium | NS | NS | NS | NS | NS | 0.0743 | 0.0698 | 0.0683 | 0.0657 | 0.0657 | 0.0838 | 0.0886 | | Total Zinc | NS | NS | NS | NS | NS | ND | ND | ND | 0.0068 B | 0.0028 J | 0.0153 | 0.0061 | | Turbidity | NS | NS | NS | NS | NS | 8.2 H1 | 1 | 1.2 | 5.5 | 1.7 | 4.4 | 6.2 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|-----------|----------|-----------|-----------|-----------|--------------|-------------|-----------|-------------|----------| | Location ID: | CP2 | 1-PZM004 | | mg/L | | | | | | | | | | Alkalinity | NS | NS | NS | NS | NS | 60 | 72 | 90 | 80 | 86 | 112 | 36 MH | | Ammonia (N) | NS | NS | NS | NS | NS | 5.3 | 6.6 | 5.2 | 5.5 M1 | 5.4 | 6.9 | 4.3 | | Chemical Oxygen Demand | NS | NS | NS | NS | NS | 97.5 | 86.5 | 83.9 | 73.2 | 114 | 207 | 116 | | Chloride | NS | NS | NS | NS | NS | 53.6 | 50.3 | 36.9 | 34.3 | 53.3 | 106 JD3 | 42.4 | | Hardness | NS | NS | NS | NS | NS | 406 | NS | 491 | 400 | 627 | 772 | 645 | | Nitrate | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.49 2c | 0.032 50 | | Nitrite | NS | NS | NS | NS | NS | ND | ND | 0.018 J | ND | ND | ND | ND | | Nitrogen, Nitrate-Nitrite | NS | NS | NS | NS | NS | ND | NS | 0.018 J | NS | ND | ND | ND | | рН | NS | NS | NS | NS | NS | 10.1 H3H6 | 10.3 H6H1 | 10.7 H6 | NS | NS | NS | NS | | Specific Conductance | NS 1,880 | | Sulfate | NS | NS | NS | NS | NS | 572 | 618 | 695 | 677 | 881 | 926 | 885 | | Total Antimony | NS | NS | NS | NS | NS | ND | 0.00025 J | 0.00028 JD3E | 3 0.00029 J | 0.00038 J | 0.00066 JD3 | 0.00039 | | Total Arsenic | NS | NS | NS | NS | NS | 0.0102 | 0.0113 | 0.0112 | 0.0108 | 0.0144 | 0.013 | 0.0089 | | Total Barium | NS | NS | NS | NS | NS | 0.0194 | 0.0287 | 0.0314 | 0.0333 | 0.034 | 0.0544 | 0.0349 | | Total Beryllium | NS | NS | NS | NS | NS | ND | ND | NS | ND | ND | ND | ND | | Total Cadmium | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.00032 JD3 | 0.000038 | | Total Calcium | NS | NS | NS | NS | NS | 161 | 172 M1 | 196 | 160 | 250 | 303 | 254 M1 | | Total Chromium | NS | NS | NS | NS | NS | 0.0031 | 0.0012 | ND | 0.00027 J | 0.00016 J | 0.013 | 0.0021 | | Total Cobalt | NS | NS | NS | NS | NS | ND | 0.00028 J | 0.00022 JD3 | 0.00022 J | 0.00024 J | 0.00092 JD3 | 0.00029 | | Total Copper | NS | NS | NS | NS | NS | 0.001 | 0.0011 | ND | 0.00073 J | 0.0059 | 0.0015 JD3 | 0.0027 | | Total Dissolved Solids | NS 1,590 | | Total Iron | NS | NS | NS | NS | NS | 0.489 | 0.031 J | ND | ND | 0.0189 J | 3.17 | 0.386 | | Total Lead | NS | NS | NS | NS | NS | 0.0019 | 0.00029 | 0.00028 JD3 | 0.00027 | 0.00049 | 0.0022 | 0.0012 | | Total Magnesium | NS | NS | NS | NS | NS | 1.11 | 0.503 | 0.284 | 0.146 | 0.378 | 3.55 | 2.64 | |
Total Manganese | NS | NS | NS | NS | NS | 0.154 | 0.0068 | 0.0008 JD3 | 0.00067 | 0.0023 | 0.924 | 0.42 | | Total Mercury | NS | NS | NS | NS | NS | ND | Total Nickel | NS | NS | NS | NS | NS | 0.0081 | 0.0077 | 0.0079 | 0.007 | 0.0093 | 0.0078 | 0.0053 | | Total Potassium | NS | NS | NS | NS | NS | 96.1 | 114 M1 | 109 | 103 | 112 | 119 | 113 M1 | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|------------|-------------|----------|------------|-----------| | Total Selenium | NS | NS | NS | NS | NS | 0.0013 | 0.0011 | 0.0011 JD3 | 0.001 | 0.0026 | 0.0017 JD3 | 0.0092 M1 | | Total Silver | NS | NS | NS | NS | NS | ND | ND | NS | ND | ND | ND | ND | | Total Sodium | NS | NS | NS | NS | NS | 80.2 | 91 M1 | 76.8 | 69.1 | 99 | 93.8 | 78.3 M1 | | Total Thallium | NS | NS | NS | NS | NS | ND | ND | ND | 0.000008 JB | ND | ND | ND | | Total Vanadium | NS | NS | NS | NS | NS | 0.128 | 0.111 | 0.13 | 0.118 | 0.298 | 0.225 | 0.0518 | | Total Zinc | NS | NS | NS | NS | NS | ND | ND | ND | 0.0024 JB | 0.0027 J | 0.0686 B | 0.0095 | | Turbidity | NS | NS | NS | NS | NS | 1.6 H1 | 0.6 | 0.38 | 0.22 | 1.2 | 32.3 | 65.5 | ## Coke Point Landfill Historical Inorganics Intermediate Monitoring Zone | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|------------|------------|-----------| | Location ID: | CP02 | ?-PZM026 | | mg/L | | | | | | | | | | Alkalinity | 26 | 50 | 150 | 90 | 160 | 150 | 164 | 60 | 140 | 130 | 72 | 148 | | Ammonia (N) | 2 | 2.2 | 8.9 | 8.9 | 8.1 | 7.5 | 8.2 | 3.9 | 7.2 | 7.9 | 5.4 | 7.5 | | Chemical Oxygen Demand | ND | 48.6 | 84.7 | 31.5 | 45.8 | 46.3 M1 | 46.1 | 26.5 | 33 | 40.4 | 42.3 | 29.4 MH | | Chloride | 160 | 190 | 111 | 130 | 117 | 55.6 | 115 | 103 | 96.8 | 120 | 91.9 | 87.8 | | Hardness | 1,400 | 1,440 | 1,470 | 1,420 | 1,460 | 1,530 | NS | 1,390 | 1,380 | 1,270 | 1,380 | 1,530 | | Nitrate | ND | ND | ND | 0.014 H3 | NS | ND | 0.017 H1 | 0.01 B | 0.0083 J | 0.012 | ND | 0.0071 J | | Nitrite | 7.1 | 5.5 | ND | ND | NS | 0.18 | 0.41 | 2.3 | ND | 0.061 J | ND | ND | | Nitrogen, Nitrate-Nitrite | 7.1 | NS | ND | ND | ND | 0.18 | ND | 2.4 | NS | 0.074 J | ND | 0.048 J | | рН | 6.1 | 6.5 H6 | 6.8 H6 | 6.6 H6 | NS | 6.9 H3H6 | 6.8 H6H1 | 6.9 H6 | NS | NS | NS | NS | | Specific Conductance | 2.8 | 3,130 | 3,270 | NS 2,710 | | Sulfate | 1,600 B | 1,470 | 1,600 | 1,920 | 1,540 | 1,510 | 1,470 B | 1,460 B | 1,500 | 1,260 | 1,570 | 1,440 | | Total Antimony | ND 0.00011 J | ND | ND | | Total Arsenic | 0.00088 J | ND | 0.0019 | 0.0023 | 0.0018 | 0.002 | 0.002 | ND | 0.0019 | 0.0022 | 0.00071 | 0.0023 | | Total Barium | 0.0091 | ND | 0.01 | 0.0091 | 0.0094 | 0.01 | 0.0097 | 0.0082 | 0.0091 | 0.0101 | 0.007 | 0.0087 | | Total Beryllium | ND NS | ND | ND | ND | ND | | Total Cadmium | 0.00056 | ND 0.000017 J | 0.000034 J | ND | | Total Calcium | 480 | 512 | 511 | 532 | 511 | 531 | 546 | 491 | 478 | 441 | 486 | 533 M6 | | Total Chromium | ND | ND | 0.00064 | 0.00062 | 0.0012 | 0.0015 | 0.0017 | ND | 0.00062 | 0.0014 | 0.00069 | 0.00075 | | Total Cobalt | 0.003 J | ND | 0.0045 | 0.0039 | 0.0035 | 0.0055 | 0.0069 | 0.0024 JD3 | 0.0038 | 0.0062 | 0.0026 | 0.0033 | | Total Copper | 0.0025 | ND | 0.0006 | ND | ND | ND | 0.0015 | ND | ND | 0.002 | 0.00047 J | 0.00039 J | | Total Dissolved Solids | 2,400 | 2,350 | 2,640 | 2,450 | NS 2,550 4c | | Total Iron | 1.9 | 13.9 | 14.8 | 17.5 | 12.7 | 13.8 | 13.5 | 0.746 | 13.9 | 14.9 | 3.46 | 14.7 | | Total Lead | ND | ND | ND | ND | ND | 0.00037 | 0.00049 | ND | 0.00016 B | 0.00073 | 0.00032 | 0.00018 | | Total Magnesium | 52 | 51.8 | 54.9 | 56.2 | 50.1 | 50.6 | 50.8 | 40.8 | 45.2 | 41.9 | 40 | 47.5 M6 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------|----------|----------|-----------|----------|-----------|----------|------------|-------------|-----------|-------------|-----------|------------| | Total Manganese | 6 | 5.8 | 5.81 | 5.9 | 5.27 | 5.54 | 5.22 | 4.92 | 5.1 | 5.06 | 4.58 | 5.16 M6 | | Total Mercury | ND | ND | ND | ND | ND | ND | 0.00003 JB | ND | ND | ND | ND | ND | | Total Nickel | 0.014 | ND | 0.0014 | 0.00052 | 0.0009 | 0.00096 | 0.00074 | ND | ND | ND | 0.00047 J | 0.00037 J | | Total Potassium | 22 | 21.4 | 19.5 | 20.4 | 19.4 | 20.4 | 19.3 | 20.9 | 19.2 | 19.5 | 20.2 | 20.3 M6 | | Total Selenium | 0.0037 J | ND | 0.00097 | 0.0014 | 0.0015 | 0.0014 | 0.00096 | 0.001 JD3 | 0.0011 | 0.0013 | 0.0014 | 0.0015 | | Total Silver | ND NS | ND | 0.000017 JB | ND | ND | | Total Sodium | 180 | 158 | 178 | 172 | 149 | 152 | 149 | 144 | 138 | 126 | 129 | 136 M6 | | Total Thallium | ND 0.000028 J | | Total Vanadium | ND | ND | 0.0013 | 0.0013 | 0.0014 | 0.0023 | 0.0019 | 0.00085 JD3 | 0.0012 | 0.0023 | 0.00085 J | 0.0016 | | Total Zinc | 0.011 | ND | 0.0071 | ND | 0.006 | 0.0062 | 0.0111 | ND | 0.0029 JB | 0.0054 | 0.0089 B | 0.0025 J | | Turbidity | 11 | 2.4 | 16.9 | 28.1 | NS | 29 H1 | 104 H1 | 5.4 | 25.4 | 38.1 | 23.8 | 40.8 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|-----------|-----------|-------------|-------------|-------------|------------|------------| | Location ID: | CP05 | -PZM019 | | mg/L | | | | | | | | | | Alkalinity | 1,400 | 1,300 | 1,400 | 412 | 1,800 | 1,900 | 40 | 1,850 | 1,800 | 422 M1 | 1,650 | 45 | | Ammonia (N) | 6.5 | 7.3 | 7.9 | 8.3 | 8.1 M1 | 7.3 | 8.4 | 7.8 M1 | 8.8 | 5.9 | 6.8 | 6.3 | | Chemical Oxygen Demand | 21 | 85.6 | 84.7 | 66.5 | 65.1 M1 | 106 | 75.9 | 86.1 | 97.8 | 110 | 100 | 70.3 | | Chloride | 470 | 1,730 | 997 | 866 | 918 | 1,040 | 869 | 1,020 B | 1,090 | 2,180 | 1,610 | 1,460 | | Hardness | 1,600 | 1,880 | 1,670 | 1,760 | 1,720 | 1,750 | NS | 2,090 | 1,740 | 1,880 | 1,890 | 1,990 | | Nitrate | 0.88 | 0.043 | 0.021 | 0.062 H3 | 0.04 H11c | 0.04 H3 | NS | 0.033 | 0.027 | ND | 0.019 | 0.083 5c | | Nitrite | ND | ND | ND | ND | 0.081 | ND | NS | 0.07 J | 0.25 | ND | ND | ND | | Nitrogen, Nitrate-Nitrite | 0.054 | NS | ND | ND | NS | ND | ND | 0.1 | NS | ND | 0.053 J | 0.088 J | | рН | 11.9 | 12.5 H6 | 12.4 H6 | 12 H6 | NS | 12.3 H3H6 | 12.5 H6H1 | 12.4 H6H1 | NS | NS | NS | NS | | Specific Conductance | 6.5 | 11,800 | 10,500 | NS 10,700 | | Sulfate | 37 | 29.4 | 20 | 11.1 | 60 | 17.2 | 54.5 | 31.4 | 36.6 | 25.7 | 18.1 | ND | | Total Antimony | 0.00054 J | ND | ND | ND | ND | ND | ND | 0.00017 J | 0.00012 J | 0.00028 JD3 | ND | 0.00014 J | | Total Arsenic | 0.0014 J | ND | 0.0013 | 0.0011 | ND | 0.0013 | 0.0012 | 0.0015 | 0.0011 | 0.0013 JD3 | 0.001 | 0.0013 | | Total Barium | 0.53 | 0.88 | 0.888 | 0.8 | 0.892 | 0.86 | 0.86 | 0.95 M1 | 0.89 | 0.905 | 0.888 | 0.993 | | Total Beryllium | 0.00043 J | ND | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Total Cadmium | ND 0.00003 J | ND | ND | ND | 0.000028 J | | Total Calcium | 620 | 780 | 686 | 704 | 716 | 709 | 672 | 837 M1 | 695 | 754 | 756 | 798 | | Total Chromium | 0.0016 J | ND | 0.00057 | ND | ND | ND | 0.0019 | 0.00019 J | 0.00016 J | 0.0012 JD3 | 0.00046 J | 0.0026 | | Total Cobalt | 0.0012 J | ND | ND | ND | ND | ND | ND | 0.000069 J | 0.000033 J | ND | ND | ND | | Total Copper | 0.0015 | ND | ND | ND | ND | ND | 0.0012 B | ND | ND | ND | ND | 0.00098 J | | Total Dissolved Solids | 2,000 | 3,220 | 3,200 | 3,150 | NS 5,570 2c | | Total Iron | ND | ND | 0.0805 | ND | ND | 0.0638 | 0.249 | 0.0189 J | 0.0231 J | 0.133 JD3 | 0.102 | 0.534 | | Total Lead | 0.00037 J | ND | 0.00012 | ND | ND | ND | 0.00031 | 0.000044 JB | 0.000047 JB | 0.00032 JD3 | 0.000072 J | 0.00093 | | Total Magnesium | 0.21 J | 0.11 | 0.118 | 0.0516 | ND | 0.0526 | 0.187 | 0.0363 | 0.0109 B | 0.152 B | 0.0857 | 0.337 | | Total Manganese | 0.0045 | 0.011 | 0.0108 | 0.0029 | ND | 0.0047 | 0.0426 | 0.0013 | 0.0018 | NS | 0.0127 | 0.0723 | | Total Mercury | ND 0.00014 JB | 0.00008 J | ND | ND | | Total Nickel | 0.037 | 0.011 | 0.0114 | 0.0095 | 0.0088 | 0.0099 | 0.0084 | 0.0102 | 0.0089 | 0.0119 | 0.0092 | 0.0108 | | Total Potassium | 66 | 74 | 77 | 81 | 77.1 | 81.1 | 76 | 95.8 M1 | 89.2 | 88.9 | 88.5 | 96.5 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|------------|------------|--------------|-----------|----------| | Total Selenium | 0.0084 | ND | 0.0005 | ND | ND | ND | 0.00035 J | 0.00065 M1 | 0.0004 J | 0.00068 JD3 | 0.00046 J | 0.00069 | | Total Silver | ND | ND | 0.00059 | ND | ND | ND | ND | NS | ND | 0.000085 JD3 | ND | ND | | Total Sodium | 240 | 686 | 475 | 450 | 498 | 626 | 405 | 742 M1 | 656 | 1,290 | 980 | 928 | | Total Thallium | ND 0.000046 J | 0.00001 JB | ND | ND | ND | | Total Vanadium | 0.0053 | 0.0015 | 0.002 | ND | ND | 0.0011 | 0.0029 | 0.00086 J | 0.00079 J | 0.0011 JD3 | 0.0014 | 0.0055 | | Total Zinc | 0.0031 J | ND | 0.0106 | ND | ND | ND | 0.0078 | 0.0017 JM1 | 0.0022 J | 0.006 JD3 | 0.0033 J | 0.0109 | | Turbidity | 3 | 0.4 | 0.35 | 0.25 H3 | NS | 3.4 H3 | 1.8 H1 | 0.93 | 0.82 | 5.6 | 2.1 | 10.7 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|-----------|----------|------------|----------|-----------|----------|-----------|------------|-----------|----------| |
Location ID: | CP05 | 5-PZM028 | | mg/L | | | | | | | | | | Alkalinity | NS | 770 | 500 | 350 | 1,850 | NS | NS | NS | NS | 382 | 1,280 | 35 | | Ammonia (N) | NS | 2.5 | 17.9 | 7.5 | 7.9 | NS | NS | NS | NS | 7 | 7.1 | 5.8 | | Chemical Oxygen Demand | NS | 39.9 | 256 | 70.9 | 80 | NS | NS | NS | NS | 66.9 | 109 | 40.2 | | Chloride | NS | 523 | 3,160 | 1,010 | 972 | NS | NS | NS | NS | 770 MH | 1,120 | 456 | | Hardness | NS | 757 | 760 | 1,800 | 1,780 | NS | NS | NS | NS | 1,490 | 1,190 | 1,390 | | Nitrate | NS | 2.4 | ND | 0.045 H3 | 0.017 H11c | NS | NS | NS | NS | ND | 0.023 | 0.6 5c | | Nitrite | NS | 0.47 | ND | ND | ND | NS | NS | NS | NS | 0.056 J | ND | ND | | Nitrogen, Nitrate-Nitrite | NS | NS | ND | ND | NS | NS | NS | NS | NS | 0.056 J | ND | 0.3 | | pH | NS | 12.2 H6 | 11.7 H6 | 12 H6 | NS | Specific Conductance | NS | 5,440 | 11,400 | NS 6,700 | | Sulfate | NS | 33 | 21.1 | ND | 30.4 | NS | NS | NS | NS | 7.8 JB | 11.9 | 79.4 JD3 | | Total Antimony | NS | ND | ND | 0.00065 | ND | NS | NS | NS | NS | 0.000098 J | 0.00025 J | 0.00018 | | Total Arsenic | NS | ND | 0.00087 | 0.00098 | ND | NS | NS | NS | NS | 0.0012 | 0.0014 | 0.0011 | | Total Barium | NS | 0.64 | 0.331 | 1.21 | 1.17 M6 | NS | NS | NS | NS | 0.637 | 0.78 | 0.58 | | Total Beryllium | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Total Cadmium | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | 0.000037 | | Total Calcium | NS | 311 | 296 | 737 | 750 M6 | NS | NS | NS | NS | 598 | 472 | 556 | | Total Chromium | NS | ND | 0.0009 | 0.0013 | ND | NS | NS | NS | NS | 0.0026 | 0.004 | 0.0047 | | Total Cobalt | NS | ND | ND | ND | ND | NS | NS | NS | NS | 0.00005 J | ND | ND | | Total Copper | NS | ND | 0.00066 | ND | ND | NS | NS | NS | NS | 0.00067 J | 0.0017 | 0.002 | | Total Dissolved Solids | NS | 1,470 | 5,940 | 3,400 | NS 3,020 40 | | Total Iron | NS | ND | ND | 0.162 | ND | NS | NS | NS | NS | 0.0752 | 0.153 | 0.0518 | | Total Lead | NS | ND | ND | 0.00023 | ND | NS | NS | NS | NS | 0.00043 | 0.0009 | 0.0019 | | Total Magnesium | NS | 0.088 | 4.84 | 0.271 | 0.276 | NS | NS | NS | NS | 0.045 | 2.49 | 0.246 | | Total Manganese | NS | ND | 0.0034 | 0.0091 | 0.0072 | NS | NS | NS | NS | NS | 0.0182 | 0.0061 | | Total Mercury | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Total Nickel | NS | ND | 0.0036 | 0.0084 | 0.008 | NS | NS | NS | NS | 0.0116 | 0.0086 | 0.006 | | Total Potassium | NS | 56.7 | 92.2 | 87.2 | 79.4 M6 | NS | NS | NS | NS | 68.8 | 94.8 | 70.5 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Total Selenium | NS | ND | ND | ND | ND | NS | NS | NS | NS | 0.00084 | 0.00091 | 0.0012 | | Total Silver | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Total Sodium | NS | 260 | 1,760 | 536 | 522 M6 | NS | NS | NS | NS | 581 | 520 | 317 | | Total Thallium | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Total Vanadium | NS | ND | 0.0055 | ND | ND | NS | NS | NS | NS | 0.0027 | 0.0118 | 0.017 | | Total Zinc | NS | ND | 0.0114 | 0.0146 | ND | NS | NS | NS | NS | 0.0044 J | 0.01 | 0.0031 J | | Turbidity | NS | 0.28 | 2.7 | 1.9 H3 | NS | NS | NS | NS | NS | 2.4 | 8.9 | 1.7 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|----------|-----------|--------------|-----------|------------|-------------|----------| | Location ID: | CP08 | 3-PZM034 | | mg/L | | | | | | | | | | Alkalinity | 1,200 | 700 | 1,060 | 1,040 | 1,050 | 1,140 | 1,150 | 1,170 | 1,100 | 1,240 | 1,120 | 30 | | Ammonia (N) | 39 | 42.2 | 30.7 | 28.8 | 28.6 | 28.8 | 30.1 | 28.4 | 27 | 29.2 | 30.3 | 26.4 | | Chemical Oxygen Demand | 88 | 353 | 367 | 375 | 437 | 369 | 412 | 402 | 274 | 292 | 396 | 596 | | Chloride | 3,600 | 6,950 | 3,750 | 3,640 | 3,680 | 125,000 | 3,710 | 3,810 | 3,560 B | 3,520 | 3,720 | 3,780 | | Hardness | 1,200 | 1,090 | 1,260 | 1,180 | 1,160 | 1,280 | NS | 1,270 | 1,190 | 1,150 | 1,300 | 1,210 | | Nitrate | ND | ND | ND | ND | ND | 0.019 H1 | 0.01 H1 | 0.0063 J | 0.016 | ND | ND | 0.0069 J | | Nitrite | ND | ND | ND | ND | 0.057 | ND | Nitrogen, Nitrate-Nitrite | 0.042 J | NS | ND | ND | NS | ND | ND | ND | NS | ND | ND | ND | | рН | 7.11 | 7.5 H6 | 8 H6 | 7.4 H6 | NS | 7.4 H3H6 | 7.3 H6H1 | 7.4 H6H1 | NS | NS | NS | NS | | Specific Conductance | 11 | 12,700 | 13,500 | NS 11,900 | | Sulfate | 16 | 11.1 | ND | ND | ND | ND | 5.8 JB | 0.94 JB | 2.9 JB | 1.4 J | ND | 18.7 | | Total Antimony | ND | ND | 0.0026 | 0.00055 | ND | ND | 0.0002 J | 0.00021 JD3B | 0.00072 | 0.0003 JB | ND | 0.00064 | | Total Arsenic | 0.015 | ND | 0.00091 | ND | ND | 0.0016 | 0.0006 | ND | 0.00038 J | ND | ND | 0.00033 | | Total Barium | 0.067 | 0.069 | 0.0843 | 0.0732 | 0.0768 | 0.0981 | 0.0759 | 0.0804 | 0.0729 | 0.0774 | 0.0719 | 0.0493 | | Total Beryllium | 0.00044 J | ND | 0.00024 | ND | ND | ND | ND | NS | ND | 0.00012 J | ND | ND | | Total Cadmium | 0.00048 J | ND | 0.00019 | ND | 0.00023 | 0.00012 | 0.00004 J | 0.00012 JD3 | 0.00011 | 0.000016 J | ND | 0.000049 | | Total Calcium | 100 | 106 | 104 | 99.1 | 97.3 | 116 | 110 | 105 | 110 | 93 | 109 | 109 | | Total Chromium | 0.006 | ND | 0.0136 | 0.005 | 0.0081 | 0.0333 | 0.0143 | 0.0077 | 0.0056 | 0.0056 | 0.0065 | 0.0039 | | Total Cobalt | 0.00095 J | ND | 0.00088 | ND | 0.00051 | 0.0018 | 0.0013 | 0.00072 JD3 | 0.00057 | 0.00061 | ND | 0.00048 | | Total Copper | 0.0019 | ND | 0.041 | 0.0021 | 0.0051 | 0.01 | 0.0067 | 0.002 JD3 | 0.00098 J | 0.00078 J | 0.0018 JD3 | 0.0013 | | Total Dissolved Solids | 5,100 | 6,300 | 7,030 | 6,480 | NS 6,960 40 | | Total Iron | 5.5 | 4.8 | 5.83 | 5.17 | 4.72 | 13.2 | 5.44 | 5.83 | 4.33 | 5.2 | 6.07 | 2.95 | | Total Lead | 0.00078 J | ND | 0.0097 | 0.0022 | 0.0015 | 0.0288 | 0.006 | 0.0034 | 0.00054 | 0.0016 | 0.003 | 0.00053 | | Total Magnesium | 220 | 217 | 242 | 230 | 223 | 245 | 226 | 246 | 222 | 222 | 250 | 229 | | Total Manganese | 2 | 1.9 | 1.82 | 1.88 | 1.96 | 2.64 | 1.88 | 2 | 1.87 | 1.84 | 1.9 | 1.88 | | Total Mercury | ND | ND | ND | ND | ND | ND | 0.00012 J | ND | ND | ND | ND | ND | | Total Nickel | 0.0067 | ND | 0.0043 | 0.00059 | 0.0016 | 0.0057 | 0.0049 | 0.0017 JD3 | 0.0012 | 0.00056 | 0.00081 JD3 | 0.0011 | | Total Potassium | 75 | 69.8 | 74.9 | 68.8 | 70.8 | 77.2 | 72.2 | 76.9 | 73 | 70 | 76.6 | 79.6 | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|--------------|-------------|-------------|-----------|-----------| | Total Selenium | 0.064 | ND 0.0002 J | ND | 0.00049 J | | Total Silver | ND | ND | 0.00076 | ND | ND | ND | 0.00016 J | NS | 0.000012 J | 0.000039 JB | ND | ND | | Total Sodium | 2,200 | 2,290 | 2,340 | 2,170 | 2,030 | 2,490 | 1,930 | 2,280 | 2,150 | 2,100 | 2,200 | 2,220 | | Total Thallium | ND 0.00006 JD3B | 0.000014 JB | 0.000026 JB | ND | ND | | Total Vanadium | ND | ND | 0.0221 | 0.0081 | 0.0198 | 0.0473 | 0.0148 | 0.0109 | 0.0082 | 0.0081 | 0.0098 | 0.007 | | Total Zinc | 0.0038 J | ND | 0.0653 | 0.0094 | 0.0143 | 0.0703 | 0.0173 | 0.0095 JD3 | 0.016 B | 0.0076 | 0.0131 JB | 0.012 | | Turbidity | 53 | 44.4 | 41 | 39.7 | NS | 223 H1 | 78 H1 | 50.5 | 51.2 | 44.3 | 41.8 | 17.5 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|----------|------------|-------------|-------------|-------------|------------|----------| | Location ID: | CP09 | 9-PZM047 | | mg/L | | | | | | | | | | Alkalinity | 4,900 | 1,800 | 1,350 | 390 | 2,100 | 2,200 | 60 | 2,100 | 1,810 | 2,040 | 1,490 | 45 | | Ammonia (N) | 110 | 190 | 47.9 | 108 | 95.2 | 97.1 | 97.2 | 92.2 | 90.1 | 91.8 MH | 97.3 | 58.5 | | Chemical Oxygen Demand | 150 | 690 | 350 | 659 | 638 | 629 | 567 | 450 | 227 | 266 | 497 | 716 | | Chloride | 6,300 | 8,250 | 4,940 | 5,910 | 5,870 | 5,660 | 6,050 | 5,740 | 5,550 B | 5,770 | 5,950 | 5,390 | | Hardness | 2,100 | 2,220 | 1,340 | 2,050 | 2,150 | 1,870 | NS | 2,360 | 2,110 | 2,120 | 1,870 | 1,760 | | Nitrate | ND | ND | 0.01 | ND | ND | ND | 0.0046 J | ND | ND | 0.0042 J | 0.039 | 2.8 | | Nitrite | 0.11 | ND | ND | ND | 0.052 | ND | ND | ND | 0.4 | ND | ND | ND | | Nitrogen, Nitrate-Nitrite | 0.11 | NS | ND | ND | NS | ND | NS | ND | NS | ND | ND | 2.2 | | рН | 7.16 | 7.3 H6 | 8 H6 | 7.3 H6 | NS | 7.3 H3H6 | 7.2 H6H1 | 7.3 H6H1 | NS | NS | NS | NS | | Specific Conductance | 17 | 21,100 | 17,300 | NS 15,900 | | Sulfate | 7.8 | 6.6 | 58.9 | ND | ND | ND | 14.2 B | 1.2 JB | 7.8 JB | ND | 8 J | 82.9 | | Total Antimony | 0.0025 J | ND 0.000068 J | 0.00032 JD3 | ND | 0.00026 | | Total Arsenic | 0.033 | ND | 0.0017 | ND | ND | ND | ND | 0.00072 JD3 | 0.00041 J | 0.00053 JD3 | ND | 0.00061 | | Total Barium | 0.15 | 0.17 | 0.106 | 0.163 | 0.18 | 0.18 | 0.166 | 0.179 | 0.173 | 0.183 | 0.178 | 0.134 | | Total Beryllium | 0.00046 J | ND | 0.00022 | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Total Cadmium | ND | Total Calcium | 95 | 94.5 | 114 | 91.3 | 93.8 | 108 | 89.5 | 109 | 91.2 | 94.2 | 83 | 89.3 | | Total Chromium | 0.0076 | 0.0034 | 0.0012 | 0.0042 | ND | 0.0051 | 0.0076 | 0.0035 | 0.0026 | 0.0045 | 0.0033 | 0.0023 | | Total Cobalt | 0.0027 J | ND | ND | 0.0013 | ND | ND | 0.0016 JD3 | 0.0011 JD3 | 0.0012 | 0.0013 JD3 | 0.0015 | 0.001 | | Total Copper | 0.0027 | ND | 0.00062 | ND | ND | ND | 0.0054 | ND | ND | 0.0024 JD3 | 0.00083 J | 0.00042 | | Total
Dissolved Solids | 7,200 | 10,900 | 9,320 | 10,700 | NS 11,300 2 | | Total Iron | 19 | 16.1 | ND | 16.2 | 18.1 | 20.4 | 17.6 | 7.02 | 12.1 | 18.8 | 14.2 | 11.2 | | Total Lead | 0.0014 | ND | ND | ND | ND | 0.0005 | 0.0014 | 0.0001 JD3B | 0.000052 JB | 0.00059 | 0.0004 | 0.0003 | | Total Magnesium | 460 | 484 | 255 | 485 | 469 | 487 | 447 | 508 | 457 | 458 | 404 | 374 | | Total Manganese | 1.8 | 1.6 | 0.305 | 1.18 | 1.22 | 1.48 | 1.29 | 1.51 | 1.3 | NS | 1.25 | 0.788 | | Total Mercury | ND 0.000036 J | ND | ND | | Total Nickel | 0.0076 | ND | 0.00066 | 0.00051 | ND | ND | 0.0022 JD3 | ND | ND | 0.00082 JD3 | 0.00048 JB | 0.00087 | | Total Potassium | 150 | 142 | 80.3 | 129 | 143 | 145 | 132 | 158 | 130 | 137 | 125 | 115 | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|------------|-------------|-----------|------------|-----------|------------| | Total Selenium | 0.14 | ND | ND | 0.00076 | ND | ND | ND | ND | 0.00016 J | ND | 0.00022 J | 0.00067 | | Total Silver | ND | 0.0027 | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Total Sodium | 3,700 | 3,720 | 2,120 | 3,440 | 3,820 | 3,660 | 3,420 | 4,000 | 3,510 | 3,460 | 3,150 | 3,050 | | Total Thallium | ND 0.00004 JD3 | ND | ND | ND | 0.000031 J | | Total Vanadium | ND | 0.0085 | 0.0061 | 0.0088 | ND | 0.0119 | 0.0118 | 0.0071 | 0.005 | 0.0065 | 0.0054 | 0.0056 | | Total Zinc | 0.0084 | ND | 0.0095 | ND | ND | ND | 0.0144 JD3 | ND | 0.001 J | 0.0053 JD3 | 0.003 J | 0.0056 | | Turbidity | 210 | 106 | 122 | 64.6 H3 | NS | 233 H1 | 75.2 | 33.7 | 39.6 | 188 | 182 | 33.4 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|----------|------------|-----------|-------------|------------|-----------|------------| | Location ID: | CP12 | -PZM052 | | mg/L | | | | | | | | | | Alkalinity | 270 | 400 | 470 | 108 | 320 | 350 | 386 | 544 | 410 | 130 | 540 | 424 | | Ammonia (N) | 16 E- | 2.4 | ND | 17.7 | 12.1 | 12.2 | 11.9 | 15.9 | 15 | 18.4 | 15.7 ML | 8.5 | | Chemical Oxygen Demand | 28 | 244 | 186 | 193 | 212 | 189 | 241 | 183 M1 | 75.5 | 103 | 160 | 176 | | Chloride | 4,200 | 4,820 | 3,480 | 3,480 | 3,790 | 3,770 | 3,910 | 3,620 | 3,340 B | 3,580 | 3,510 | 1,830 | | Hardness | 1,400 | 1,380 | 1,070 | 1,100 | 1,350 | 1,310 | NS | 1,190 | 1,060 | 1,030 | 1,110 | 1,160 | | Nitrate | ND | ND | ND | ND | NS | ND | 0.0085 J | 0.0025 J | ND | ND | ND | 0.023 | | Nitrite | ND | ND | 0.37 | 0.088 | NS | ND | ND | ND | 0.076 J | ND | ND | 1.5 | | Nitrogen, Nitrate-Nitrite | ND | NS | 0.37 | 0.088 | ND | ND | NS | ND | NS | ND | ND | 1.5 | | рН | 8.51 | 8.2 H6 | 7.8 H6 | 7.8 H6 | NS | 8.2 H3H6 | 8.3 H6H1 | 7.5 H6H1 | NS | NS | NS | NS | | Specific Conductance | 17 | 13,500 | 11,800 | NS 10,300 | | Sulfate | 300 | 306 | 59.4 | 31.6 | 308 | 290 | 294 B | 32.6 | 130 | 21.8 | 29 | 86.2 | | Total Antimony | 0.00051 J | ND | ND | ND | ND | ND | ND | 0.00024 J | 0.00022 JD3 | 0.00022 J | ND | 0.00044 J | | Total Arsenic | 0.026 | 0.014 | 0.0047 | 0.0155 | 0.0126 | 0.0136 | 0.016 | 0.0217 | 0.0141 | 0.0122 | 0.0139 | 0.0114 | | Total Barium | 0.073 | 0.082 | 0.0814 | 0.144 | 0.0783 | 0.0859 | 0.0804 | 0.131 | 0.133 | 0.148 | 0.14 | 0.13 | | Total Beryllium | 0.00044 J | ND 0.00013 J | ND | ND | | Total Cadmium | ND | ND | 0.000082 | ND | ND | ND | 0.0002 JD3 | ND | ND | 0.000014 J | ND | 0.000037 J | | Total Calcium | 130 | 123 | 99.8 | 104 | 127 | 123 | 117 | 122 | 92.4 | 89.6 | 103 | 103 | | Total Chromium | 0.0037 | ND | 0.0012 | 0.00083 | 0.0036 | 0.0077 | 0.0381 | 0.0035 | ND | 0.0011 B | 0.00082 | 0.0012 | | Total Cobalt | 0.00081 J | ND | ND | ND | ND | ND | 0.0021 JD3 | 0.00032 J | 0.00013 JD3 | 0.0002 J | 0.00018 J | 0.00017 J | | Total Copper | 0.0025 | ND | 0.0023 | ND | ND | ND | 0.0137 | ND | ND | 0.00062 J | 0.00042 J | 0.001 | | Total Dissolved Solids | 6,700 | 7,080 | 6,280 | 6,050 | NS 6,570 2c | | Total Iron | 2.7 | 0.95 | 0.092 | 0.394 | 4.96 | 7.01 | 21.7 | 2.11 | 0.355 | 0.801 | 0.617 | 0.275 | | Total Lead | 0.0016 | ND | 0.00023 | 0.00035 | 0.0013 | 0.0027 | 0.0124 | 0.0011 B | ND | 0.00034 | 0.00023 B | 0.00022 | | Total Magnesium | 260 | 261 | 200 | 213 | 257 | 261 | 252 | 216 | 201 | 195 | NS | 218 | | Total Manganese | 0.75 | 0.6 | 0.125 | 0.452 | 0.713 | 0.745 | 0.879 | 0.553 | 0.375 | 0.417 | 0.42 | 0.382 | | Total Mercury | ND | Total Nickel | 0.0085 | ND | 0.00089 | ND | 0.0012 | ND | 0.01 | 0.00078 J | ND | 0.00018 J | 0.00022 J | 0.00072 | | Total Potassium | 88 | 77.3 | 65 | 83 | 83.4 | 89.9 | 77 | 90.5 | 73.5 | 75.3 | 80.4 | 82.2 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-------------|------------|--------------|----------|-----------|-----------| | Total Selenium | 0.067 | ND | ND | ND | NS | ND | ND | ND | ND | ND | ND | 0.00035 J | | Total Silver | ND NS | 0.000095 JD3 | ND | ND | ND | | Total Sodium | 2,300 | 2,250 | 1,770 | 1,890 | 2,420 | 2,190 | 2,130 | 1,910 | 1,820 | 1,950 | 1,930 | 1,690 | | Total Thallium | ND | ND | ND | ND | ND | ND | 0.00008 JD3 | 0.00006 JB | 0.0003 JD3B | ND | ND | 0.000032 | | Total Vanadium | ND | ND | 0.006 | 0.0016 | 0.0099 | 0.0275 | 0.111 | 0.0113 | 0.0019 JD3 | 0.0029 | 0.0024 | 0.0021 | | Total Zinc | 0.0075 | ND | 0.0208 | ND | 0.0082 | ND | 0.0652 | 0.0085 J | ND | 0.0057 | 0.0032 JB | 0.0089 | | Turbidity | 17 | 3.4 | 7.8 | 1.6 | NS | 36.1 | 28.6 | 13 | 1 | 8.8 | 6.4 | 3 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|----------|-----------|-------------|-------------|------------|------------|------------| | Location ID: | CP14 | -PZM062 | | mg/L | | | | | | | | | | Alkalinity | 210 | 300 | 264 | 60 | 300 | 350 | 362 | 380 | 380 | 400 | 350 | 350 | | Ammonia (N) | 30 | 49.6 | ND | 31 | 28.8 | 28.2 | 26.9 | 26.6 | 29.9 | 29 | 28.2 | 29.8 | | Chemical Oxygen Demand | 22 | 114 | 161 | 143 | 99.2 | 140 | 113 J | 126 | 57.6 | 91.2 | 132 | 118 | | Chloride | 2,000 | 2,500 | 1,710 | 1,810 | 1,930 | 1,760 | 1,820 | 1,760 | 2,450 | 1,790 | 1,850 | 1,810 | | Hardness | 450 | 485 | 481 | 529 | 535 | 556 | NS | 565 | 547 | 538 | 539 | 568 | | Nitrate | 0.0087 J | ND | ND | ND | 0.018 | ND | ND | ND | ND | 0.0034 J | 0.0038 J | ND | | Nitrite | ND | Nitrogen, Nitrate-Nitrite | ND | NS | ND | ND | NS | ND | NS | ND | NS | ND | ND | ND | | рН | 8.49 | 8.3 H6 | 8 H6 | 7.6 H6 | NS | 7.9 H3H6 | 8 H6H1 | 7.8 H6H1 | NS | NS | NS | NS | | Specific Conductance | 17 | 6,740 | 6,660 | NS 5,910 | | Sulfate | NS | 7 | ND | ND | ND | ND | 4.8 JB | 0.97 JB | 1.1 JB | ND | ND | ND | | Total Antimony | ND 0.00013 J | 0.00016 J | 0.00016 J | | Total Arsenic | 0.011 | ND | 0.0026 | 0.0108 | 0.0038 | 0.0071 | 0.0025 | 0.0015 JD3 | 0.0052 | 0.008 | 0.0048 | 0.007 | | Total Barium | 0.056 | 0.057 | 0.0633 | 0.0576 | 0.0601 | 0.0646 | 1.11 | 0.063 | 0.0668 | 0.0634 | 0.0702 | 0.0731 | | Total Beryllium | 0.00043 J | ND | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Total Cadmium | 0.00038 J | ND | ND | ND | 0.000081 | 0.00016 | ND | ND | ND | ND | ND | 0.000035 J | | Total Calcium | 39 | 39.1 | 38.2 | 50.1 | 47.9 | 67.3 | 641 | 49.5 | 47.7 | 51.4 | 47.2 | 52.4 M6 | | Total Chromium | 0.0022 | ND | ND | 0.0011 | 0.0031 | 0.005 | 0.0247 | ND | ND | 0.00028 J | 0.00024 J | 0.0014 | | Total Cobalt | 0.00037 J | ND | ND | ND | ND | ND | 0.00014 J | 0.00018 JD3 | 0.00014 JD3 | 0.00015 J | 0.00021 J | 0.00019 J | | Total Copper | 0.0012 | ND | 0.00064 | ND | ND | 0.0052 | 0.0085 | ND | ND | ND | 0.0003 J | 0.0028 | | Total Dissolved Solids | 3,100 | 3,130 | 3,290 | 3,460 | NS 3,080 1c | | Total Iron | 0.42 | ND | 0.704 | 6.41 | 3.06 | 5.7 | 0.161 | 0.975 | 3.62 | 6.03 | 3.37 | 6.04 | | Total Lead | 0.0023 | ND | ND | 0.00023 | 0.0004 | 0.00071 | 0.0093 | ND | ND | 0.000051 J | 0.000038 J | 0.00041 | | Total Magnesium | 86 | 95.5 | 97 | 102 | 108 | 116 | 0.487 | 107 | 104 | 99.5 | 102 | 106 M6 | | Total Manganese | 0.34 | 0.45 | 0.527 | 0.584 | 0.729 | 0.874 | 0.0237 | 0.722 | 0.738 | 0.703 | 0.736 | 0.891 | | Total Mercury | ND | Total Nickel | 0.0043 J | ND | ND | ND | 0.0015 | 0.0012 | 0.0074 | ND | 0.00055 JD3 | 0.00019 J | 0.00022 JB | 0.00032 J | | | 0.0043 1 | ND | ND | IVD | 0.0013 | 0.0012 | 0.0074 | 140 | 0.00055355 | 0.000133 | 0.00022 10 | 0.00032 J | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|-----------|-----------|----------|-----------|----------|------------|---------------|------------|-----------|-----------|----------| | Total Selenium | 0.039 | ND | ND | ND | ND | 0.00059 | 0.00089 | ND | ND | ND | ND | 0.0002 J | | Total Silver | ND | ND | 0.00077 | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Total Sodium | 1,000 | 1,070 | 1,030 | 962 | 1,010 | 1,060 | 207 | 1,020 | 988 | 983 | 1,020 | 994 M6 | | Total Thallium | ND | ND | ND | ND | ND | ND | 0.000033 J |).000065 JD3E | ND | ND | ND | ND | | Total Vanadium | ND | 0.0006 D3 | 0.0015 | 0.0033 | 0.0052 | 0.0065 | 0.0014 | ND | 0.0007 JD3 | 0.00013 J | ND | 0.0016 | | Total Zinc | 0.0045 J | ND | 0.0087 | ND | 0.0065 | 0.0062 | 0.0068 | ND | ND | 0.0015 J | 0.0015 J | 0.0099 | | Turbidity | 7.2 | 2.9 | 4.5 | 32.3 H3 | NS | 39.8 | 29.7 | 7.6 | 31.3 | 55 | 23.7 | 33.4 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015
 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|----------|-----------|-------------|-------------|------------|-----------|----------| | Location ID: | CP15 | -PZM042 | | mg/L | | | | | | | | | | Alkalinity | 940 | 700 | 842 | 2,340 | 892 | 1,030 | 1,080 | 1,050 | 1,100 | 226 | 1,020 | 35 | | Ammonia (N) | 40 | 49.1 | 35.7 | 48.1 | 40.8 | 38.7 | 39.3 | 36 | 36.9 | 39.1 | 46.1 ML | 8.8 | | Chemical Oxygen Demand | 87 | 429 | 334 | 591 | 386 | 804 | 358 | 276 | 95.6 M1 | 185 | 366 | 27.2 | | Chloride | 5,800 | 8,440 | 5,350 | 5,890 | 6,000 | 5,470 | 5,920 | 2,820 | 4,350 B | 5,930 | 6,020 | 221 | | Hardness | 1,600 | 1,600 | 217 | 1,700 | 1,710 | 1,580 | NS | 2,000 | 1,610 | 1,580 | 1,690 | 1,060 | | Nitrate | ND | ND | ND | ND | ND | ND | 0.0068 J | 0.68 | 0.12 M1 | ND | 0.0097 J | 0.69 3c | | litrite | ND | 0.1 | ND | 0.36 | ND | Nitrogen, Nitrate-Nitrite | ND | NS | ND | 0.36 | NS | ND | NS | ND | NS | ND | ND | 0.27 | | Н | 8.21 | 8.2 H6 | 8 H6 | 7.8 H6 | NS | 8.2 H3H6 | 8.3 H6H1 | 12.3 H6H1 | NS | NS | NS | NS | | pecific Conductance | 17 | NS | 18,400 | NS 5,800 | | Sulfate | NS | 4.3 | ND | ND | ND | ND | 8.2 JB | 4.2 JB | 3 JB | 1.2 J | 2.8 J | ND | | otal Antimony | 0.00068 J | ND | 0.0015 | 0.001 | ND | ND | ND | ND | 0.000093 J | 0.00012 J | ND | 0.00013 | | otal Arsenic | 0.029 | ND | 0.00085 | 0.0017 | 0.0015 | ND | 0.00067 | 0.00076 JD3 | 0.00086 | ND | ND | 0.0011 | | otal Barium | 0.23 | 0.23 | 0.0909 | 0.218 | 0.206 | 0.25 | 0.216 | 0.104 | 0.452 | 0.216 | 0.213 | 0.547 | | otal Beryllium | 0.00043 J | ND | ND | ND | ND | ND | ND | NS | 0.00023 JD3 | 0.00026 | ND | ND | | otal Cadmium | 0.00026 J | ND | otal Calcium | 54 | 52.2 | 6.76 | 60.1 | 56.9 | 74.8 | 46.2 | 59.5 | 249 | 43.9 | 44.4 | 423 | | otal Chromium | 0.0021 | ND | 0.00067 | ND | 0.0037 | ND | 0.0044 | ND | ND | 0.00044 JB | 0.00058 | 0.00051 | | otal Cobalt | 0.001 J | ND | ND | ND | ND | ND | 0.0005 | 0.00036 JD3 | 0.0003 J | 0.00032 J | 0.00035 J | ND | | otal Copper | 0.0021 | ND | 0.00087 | ND | ND | ND | 0.0014 | ND | 0.0015 | 0.00056 J | 0.0009 J | 0.0027 | | otal Dissolved Solids | NS | 18,700 | NS | otal Dissolved Solids | 6,500 | 9,910 | 9,930 | 9,760 | NS 1,860 20 | | otal Iron | 1.2 | 1.7 | ND | 1.77 | 2.18 | 1.76 | 2.09 | ND | 0.123 JD3 | 1.31 | 1.65 | ND | | otal Lead | 0.00024 J | ND | 0.00014 | 0.0001 | 0.0002 | ND | 0.00042 | 0.00074 | 0.0004 B | 0.00033 | 0.00038 | 0.0023 | | otal Magnesium | 360 | 365 | 48.6 | 385 | 387 | 393 | 321 | 450 | 241 | 357 | 383 | 0.297 | | otal Manganese | 0.32 | 0.28 | 0.0093 | 0.199 | 0.202 | 0.19 | 0.203 | 0.0224 | 0.0415 | 0.175 | 0.182 | 0.00078 | | otal Mercury | ND 0.000061 JB | ND | ND | ND | | otal Nickel | 0.006 | ND | 0.0029 | ND | 0.00087 | ND | 0.0024 | 0.00082 JD3 | 0.0024 | 0.00031 J | ND | 0.0034 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------|----------|----------|-----------|----------|-----------|----------|-----------|------------|-------------|-----------|-----------|----------| | Total Potassium | 120 | 108 | 120 | 113 | 115 | 121 | 102 | 140 | 119 | 114 | 120 | 94.9 | | Total Selenium | 0.11 | ND 0.00033 J | 0.00016 J | ND | 0.0008 | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 3,300 | 3,430 | 775 | 3,330 | 3,200 | 3,330 | 2,860 | 3,520 | 2,180 | 3,110 | 3,170 | 166 | | Total Thallium | ND | Total Vanadium | ND | 0.0016 | 0.00094 | ND | 0.0014 | ND | 0.00081 J | 0.0022 JD3 | 0.00056 JD3 | ND | 0.00029 J | 0.0005 J | | Total Zinc | 0.0029 J | ND | 0.142 | ND | ND | ND | 0.0031 J | ND | 0.0023 J | 0.0011 J | 0.00084 J | 0.005 J | | Turbidity | 19 | 6.5 | 7.2 | 14.8 H3 | NS | 19.4 H1 | 23.3 | 12.5 | 8.2 | 11.2 | 11.8 | 2 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|-----------|----------|-----------|-----------|-----------|-------------|--------------|------------|-------------|----------| | Location ID: | CP16 | -PZM035 | | mg/L | | | | | | | | | | Alkalinity | 2,200 | 1,800 | 3,000 | 4,580 | 2,450 | 2,470 | 70 | 2,520 | 2,600 | 588 | 2,270 | 60 | | Ammonia (N) | 22 E- | 21.8 | 12.1 | 13.9 | 13 | 12.3 | 10.6 | 12.4 | 11.4 | 11.5 | 11.7 | 11.8 | | Chemical Oxygen Demand | 63 | 89.9 | 93.4 | 70.9 | 77.9 | 84.7 | 86.5 | 75.1 | 86.6 | 79 | 65.9 | 74.6 | | Chloride | 350 | 557 | 253 | 282 | 281 | 284 | 295 | 256 | 235 | 261 | 244 | 216 | | Hardness | 2,400 | 2,310 | 2,180 | 2,310 | 2,230 | 2,440 | NS | 2,650 | 2,180 | 1,930 | 2,370 | 2,230 | | Nitrate | ND 0.0048 J | 0.0092 J | ND | ND | ND | | Nitrite | ND | ND | ND | 0.058 | ND 0.071 J | | Nitrogen, Nitrate-Nitrite | ND | NS | ND | 0.058 | NS | ND | NS | ND | NS | ND | ND | 0.076 J | | рН | 12.3 | 12.6 H6 | 12.3 H6 | 12.3 H6 | NS | 12.6 H3H6 | 12.6 H6H1 | 12.1 H6H1 | NS | NS | NS | NS | | Specific Conductance | 11 | 11,500 | 10,900 | NS 9,530 | | Sulfate | NS | 36.5 | 29.3 | 19.5 | 64.1 | 18.8 | 31.6 B | 24.7 | 46 | 10.1 | 9.8 J | 9.4 J | | Total Antimony | ND 0.00016 J | 0.00018 JD3 | 0.00014 J | ND | ND | | Total Arsenic | ND | ND | 0.0011 | 0.0009 | ND | 0.0011 | 0.0011 | 0.0016 | 0.0014 JD3 | 0.0019 B | 0.0011 | 0.0015 | | Total Barium | 0.74 | 0.76 | 0.724 | 0.727 | 0.76 | 0.766 | 0.765 | 0.844 | 0.784 | 0.888 | 0.892 | 0.876 | | Total Beryllium | 0.00042 J | ND | Total Cadmium | ND | Total Calcium | 960 | 923 | 881 | 992 | 946 | 978 | 947 | 1,060 | 873 | 772 M1 | 949 | 891 | | Total Chromium | 0.0012 J | ND | 0.0011 | ND | ND | 0.00051 | 0.0015 | 0.00058 | ND | 0.0011 B | 0.00059 | 0.00024 | | Total Cobalt | 0.0026 J | ND | ND | ND | ND | ND | ND | 0.000074 J | ND | 0.000063 J | ND | ND | | Total Copper | 0.0021 | ND | 0.00065 | ND | ND | ND | 0.0022 | ND | ND | ND | 0.0002 J | 0.0012 | | Total Dissolved Solids | 2,300 | 2,560 | 2,650 | 2,840 | NS 3,560 30 | | Total Iron | ND | ND | ND | ND | ND | ND | 0.107 | 0.0265 J | ND | 0.0941 | 0.103 | 0.0261 J | | Total Lead | 0.0019 | ND | ND | ND | ND | 0.00012 | 0.00017 | 0.000046 JB | 0.00046 JD3B | 0.000084 J | 0.000077 JB | 0.000066 | | Total Magnesium | ND | 0.12 | 0.0808 | 0.0871 | ND | 0.0985 | 0.069 | 0.0507 | 0.0281 JD3 | 0.0443 | NS | 0.0251 | | Total Manganese | 0.0018 | ND | 0.003 | 0.0017 | 0.0031 | 0.0065 | 0.019 | 0.0029 | 0.0013 JD3 | 0.0088 | 0.0088 | 0.0025 | | Total Mercury | ND | Total Nickel | 0.085 | ND | 0.0135 | 0.0108 | 0.0108 | 0.0115 | 0.0097 | 0.0117 | 0.0106 | 0.0103 | 0.011 | 0.0094 | | Total Potassium | 68 | 60.2 | 60.9 | 70 | 64.2 | 70.3 | 66.5 | 78.1 | 67.4 | 67.5 M1 | 70.7 | 65.5 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|----------| | Total Selenium | 0.0058 | ND | ND | ND | ND | ND | ND | 0.00034 J | ND | 0.00022 J | 0.00033 J | 0.00038 | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 170 | 141 | 140 | 177 | 136 | 148 | 132 | 157 | 128 | 129 M1 | 132 | 113 | | Total Thallium | ND | Total Vanadium | ND | ND | 0.0004 | ND | ND | ND | 0.0013 | 0.0002 J | ND | 0.0014 B | 0.0004 J | ND | | Total Zinc | ND | ND | 0.0108 | ND | ND | ND | 0.007 | 0.0033 J | ND | 0.0021 J | 0.0037 JB | 0.0231 | | Turbidity | 0.62 | 0.19 | 1.5 | 0.86 H3 | NS | 1 | 0.72 | 0.75 | 0.47 | 2.1 | 0.79 | 1.8 | ## APPENDIX C Coke Point Landfill Historical SVOC Concentrations ## Coke Point Landfill Historical SVOCs Shallow Monitoring Zone | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP02 | 2-PZM007 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS ND | ND | ND | ND | | 1,3-Dichlorobenzene | ND | NS ND | ND | ND | ND | | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS 0.81 J | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS 0.86 J | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | 0.75 J1c | 0.13 J1c | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | 0.32 J1c | 0.66 J1c | ND | | Aniline | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Anthracene | ND | NS ND | 0.14 J1c | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | |
Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS 0.68 JB | ND | ND | ND | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | 0.42 J1c | 0.14 J1c | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | 0.16 J1c | ND | ND | | Di-n-octylphthalate | ND | NS ND | 0.7 JB1c | ND | ND | | Fluoranthene | ND | NS 0.68 J | 0.78 J1c | 0.22 J1c | 0.22 J1c | | Fluorene | ND | NS 2.3 | ND | ND | 0.67 J1c | | Hexachloro-1,3-butadiene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | 5.3 M1 | ND | ND | ND | ND | ND | 1.2 J | 1.7 J | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | 0.17 J1c | ND | ND | | Phenol | ND | NS ND | 0.18 JB1c | ND | ND | | Pyrene | ND | NS 0.44 J | 0.56 J1c | ND | 0.17 J1c | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP05 | 5-PZM008 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1,3-Dichlorobenzene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 1-Methylnaphthalene | NS | 2 N2 | NS | 2,4,5-Trichlorophenol | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 2,4,6-Trichlorophenol | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 2,4-Dichlorophenol | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 2,4-Dimethylphenol | 6.1 | 2.4 | 2.1 | NS | NS | 2.7 1c | 3.7 1c | 4 1c | 7.5 IS | 1.8 1c | NS | 1.5 1c | | 2,4-Dinitrophenol | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 2,4-Dinitrotoluene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 2,6-Dinitrotoluene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | 0.19 J1 | | 2-Chloronaphthalene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 2-Chlorophenol | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 2-Methylnaphthalene | 3.5 J | 1.4 | ND | NS | NS | 2.2 1c | 2.7 1c | 2.8 1c | 5.8 IS | 0.71 J1c | NS | 0.52 J1 | | 2-Methylphenol | ND | ND | ND | NS | NS | ND | 0.79 J1c | 1 J1c | 0.94 J | 0.28 J1c | NS | 0.23 J1 | | 2-Nitroaniline | NS | ND | NS | 2-Nitrophenol | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 3&4-Methylphenol | 12 | 3.4 | ND | NS | NS | 5.2 1c | 6.5 1c | NS | NS | NS | NS | 1.6 J1 | | 3,3'-Dichlorobenzidine | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 3-Nitroaniline | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 4-Bromophenyl phenylether | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 4-Chloro-3-methylphenol | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 4-Chloroaniline | NS | ND | NS | 4-Chlorophenyl phenylether | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | 4-Nitroaniline | NS | ND | NS | 4-Nitrophenol | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Acenaphthene | 3.7 J | 2.3 | 1.5 | NS | NS | 3.6 1c | 4.2 1c | 4.2 1c | 3.7 | 2 1c | NS | 1.7 10 | | Acenaphthylene | ND | ND | ND | NS | NS | ND | 1.1 1c | 1.4 1c | 1.1 | ND | NS | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|----------| | Aniline | ND | NS | ND | NS | NS | ND | ND | 0.82 J1c | 9.5 | ND | NS | 0.94 J1c | | Anthracene | ND | ND | ND | NS | NS | ND | 0.76 J1c | 0.57 J1c | 0.39 J | 0.21 JL21c | NS | 0.11 J1c | | Azobenzene | NS | ND | NS | Benz[a]anthracene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Benzo[a]pyrene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Benzo[b]fluoranthene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Benzo[g,h,i]perylene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Benzo[k]fluoranthene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Benzoic acid | NS | ND | NS | Benzyl alcohol | NS | ND | NS | bis(2-Chloro-1-methylethyl)ether | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | bis(2-Chloroethoxy)methane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | bis(2-Chloroethyl)ether | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | bis(2-Ethylhexyl)phthalate | ND | ND | ND | NS | NS | ND | 0.31 J1c | ND | 0.24 JIS | ND | NS | ND | | Butyl benzyl phthalate | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Carbazole | NS | 1.6 | NS | Chrysene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Dibenz[a,h]anthracene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Dibenzofuran | ND | ND | ND | NS | NS | 1.2 1c | 1.4 1c | 1 1c | 1.2 | 0.39 J1c | NS | 0.21 J1c | | Diethylphthalate | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Dimethylphthalate | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Di-n-butylphthalate | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Di-n-octylphthalate | ND | ND | ND | NS | NS | ND | ND | ND | ND | 0.63 JB1c | NS | ND | | Fluoranthene | ND | ND | ND | NS | NS | ND | 0.74 J1c | 0.6 J1c | 0.66 J | 0.24 J1c | NS | 0.2 J1c | | Fluorene | ND | ND | ND | NS | NS | 1.4 1c | 1.7 1c | 1.3 1c | 1.4 | 0.43 JL21c | NS | 0.27 J1c | | Hexachloro-1,3-butadiene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Hexachlorobenzene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Hexachlorocyclopentadiene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Hexachloroethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Indeno[1,2,3-cd]pyrene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-------------|----------|-----------|----------|-----------|----------| | Isophorone | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | Naphthalene | 69 | 13.8 | 6.1 | NS | NS | 97.9 | 95.6 | 86.9 | 142 | 35.3 | NS | 7.9 | | Nitrobenzene | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | N-Nitrosodimethylamine | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | NS | ND | | N-Nitroso-di-n-propylamine | NS | ND | NS | N-Nitrosodiphenylamine | NS | ND | NS | Pentachloroethane | ND | NS | Pentachlorophenol | ND | ND | ND | NS | NS | ND | 0.93 J1c | ND | ND | ND | NS | ND | | Phenanthrene | ND | ND | ND | NS | NS | 2.8 1c | 4 1c | 3 1c | 3.3 | 1.2 1c | NS | 0.75 J1c | | Phenol | 20 | 4.3 | 2.1 | NS | NS | 6.1 1c | 8.6 1c | 11.6 1c | 11 | 2.5 1c | NS | 1 1c | | Pyrene | ND | ND | ND | NS | NS | ND | 0.53 J1c | 0.41 J1c | 0.66 JIS | ND | NS | ND | | Pyridine | ND | NS | ND | NS | NS | ND | 0.72 JCND1c | 0.53 J1c | 0.68 J | ND | NS | 0.31 J1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | СРО | 7-PZM006 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1,3-Dichlorobenzene | ND | 1-Methylnaphthalene | NS | 2.2 N2 | NS | 2,4,5-Trichlorophenol | ND | 2,4,6-Trichlorophenol | ND | 2,4-Dichlorophenol | ND | 2,4-Dimethylphenol | 290 | 170 | 286 | 214 | 151 | 168 1c | 232 1c | 133 1c | 160 | 133 1c | 143 1c | 105 10 | | 2,4-Dinitrophenol | ND | 2,4-Dinitrotoluene | ND | 2,6-Dinitrotoluene | ND 0.26 J | ND | ND | ND | | 2-Chloronaphthalene | ND | 2-Chlorophenol | ND | 2-Methylnaphthalene | ND | 2.1 | ND | 1.8 | ND | 2.9 1c | 3.5 1c | 2.4 1c | 1.9 | 1.9 1c | 1.8 1c | 0.86 J1 | | 2-Methylphenol | 51 | 41.8 | 82.6 | 40.8 | 96.9 | 49.7 1c | 78.5 1c | 27.1 1c | 29.1 | 16.6 1c | 41.5 1c | 13.4 1 | | 2-Nitroaniline | NS | ND | NS | 2-Nitrophenol | ND | 3&4-Methylphenol | 160 | 135 | 219 | 122 | 221 | 122 1c | 172 1c | NS | NS | NS | 103 1c | 36.7 1 | | 3,3'-Dichlorobenzidine | ND | 3-Nitroaniline | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND 0.86 J1c | ND | ND | | 4-Bromophenyl phenylether | ND | 4-Chloro-3-methylphenol | ND | 4-Chloroaniline | NS | ND | NS | 4-Chlorophenyl phenylether | ND
 4-Nitroaniline | NS | ND | NS | 4-Nitrophenol | ND | Acenaphthene | ND | ND | ND | ND | 1.7 | 1.5 1c | 1.7 1c | 1.7 1c | 1.1 | 0.85 J1c | 1.6 1c | 0.68 J1 | | Acenaphthylene | ND | 1.2 | ND | 1.1 | 1.8 | 1.6 1c | 1.7 1c | 1.8 1c | 0.89 J | 0.63 J1c | 0.95 J1c | 0.71 J1 | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Aniline | 3.5 J | NS | ND | ND | 7.6 | 4.6 1c | 5.8 1c | 4.2 1c | 2.8 | 1.6 J1c | 1.6 J1c | 1.6 J1c | | Anthracene | ND | ND | ND | ND | ND | ND | 0.6 J1c | 0.63 J1c | 0.36 J | 0.21 J1c | 0.34 J1c | 0.13 J1c | | Azobenzene | NS | ND | NS | Benz[a]anthracene | ND | Benzo[a]pyrene | ND | Benzo[b]fluoranthene | ND | Benzo[g,h,i]perylene | ND | Benzo[k]fluoranthene | ND | Benzoic acid | NS | ND | NS | Benzyl alcohol | NS | ND | NS | bis(2-Chloro-1-methylethyl)ether | ND | bis(2-Chloroethoxy)methane | ND | bis(2-Chloroethyl)ether | ND | bis(2-Ethylhexyl)phthalate | ND 0.26 J1c | 0.55 JB | ND | ND | ND | | Butyl benzyl phthalate | ND | Carbazole | NS | 2.6 | NS | Chrysene | ND | Dibenz[a,h]anthracene | ND | Dibenzofuran | ND | ND | ND | ND | 1.1 | ND | 0.93 J1c | 0.92 J1c | 0.62 J | 0.38 J1c | 0.84 J1c | 0.44 J1c | | Diethylphthalate | ND | Dimethylphthalate | ND | Di-n-butylphthalate | ND | Di-n-octylphthalate | ND 0.67 JB1c | ND | ND | | Fluoranthene | ND | ND | ND | ND | ND | ND | 0.64 J1c | 0.69 J1c | 0.4 J | 0.23 J1c | 0.42 J1c | 0.15 J1c | | Fluorene | ND | ND | ND | ND | 1.6 | 1.4 1c | 1.3 1c | 1.5 1c | 1 J | 0.61 J1c | 1.2 1c | 0.63 J1c | | Hexachloro-1,3-butadiene | ND | Hexachlorobenzene | ND | Hexachlorocyclopentadiene | ND | Hexachloroethane | ND | Indeno[1,2,3-cd]pyrene | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Isophorone | ND | Naphthalene | 52 | 64.8 | 84.9 | 167 | 230 | 213 | 138 | 126 | 182 | 149 | 141 | 135 | | Nitrobenzene | ND | N-Nitrosodimethylamine | ND | N-Nitroso-di-n-propylamine | NS | ND | NS | N-Nitrosodiphenylamine | NS | ND | NS | Pentachloroethane | ND | NS | Pentachlorophenol | ND | ND | ND | ND | ND | ND | 1.6 J1c | 1.3 J1c | ND | ND | ND | ND | | Phenanthrene | ND | ND | ND | 1.1 | 2.2 | 2 1c | 1.9 1c | 1.9 1c | 1.3 | 0.73 J1c | 1.3 1c | 0.68 J1c | | Phenol | 4.8 J | ND | ND | 1.9 | 1.2 | ND | 0.3 J1c | 0.58 J1c | 0.52 J | 0.64 JB1c | 0.64 J1c | 0.78 J1c | | Pyrene | ND | ND | ND | ND | ND | ND | 0.58 J1c | 0.42 J1c | 0.36 J | ND | 0.27 J1c | ND | | Pyridine | ND | NS | ND 0.16 J1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/201 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|---------| | Location ID: | CP08 | 3-PZM008 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1,3-Dichlorobenzene | ND | 1-Methylnaphthalene | NS | 4.7 N2 | NS | 2,4,5-Trichlorophenol | ND | 2,4,6-Trichlorophenol | ND | 2,4-Dichlorophenol | ND | 2,4-Dimethylphenol | 16 | 16.7 | ND | ND | 21.3 | 18.2 1c | 19 1c | 12.1 1c | 15.2 | 16.9 1c | 14.4 1c | 9.5 JED | | 2,4-Dinitrophenol | ND 1 JCH1c | ND | | 2,4-Dinitrotoluene | ND | 2,6-Dinitrotoluene | ND | 2-Chloronaphthalene | ND | 2-Chlorophenol | ND | 2-Methylnaphthalene | 7.1 | 7.1 | 9.5 | ND | ND | 12 1c | 10.4 1c | 5.1 1c | 6.6 | 5.7 1c | 6 1c | 4 JED1 | | 2-Methylphenol | 10 | 9.1 | 13 | 14.6 | 14.4 | 15 1c | 10.3 1c | 6.8 1c | 8 | 7.3 1c | 6.9 1c | 5.7 JED | | 2-Nitroaniline | NS | ND | NS | 2-Nitrophenol | ND | 3&4-Methylphenol | 10 | 9.8 | 20.4 | 23.2 | ND | 22.7 1c | 10.3 1c | NS | NS | NS | 6.3 1c | 7.9 JED | | 3,3'-Dichlorobenzidine | ND | 3-Nitroaniline | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND 0.69 J | ND | ND | ND | | 4-Bromophenyl phenylether | ND | 4-Chloro-3-methylphenol | ND | 4-Chloroaniline | NS | ND | NS | 4-Chlorophenyl phenylether | ND | 4-Nitroaniline | NS | ND | NS | 4-Nitrophenol | ND 0.44 J | ND | ND | ND | | Acenaphthene | ND | 1.3 | 2.7 | 3 | 2.5 | 3.3 1c | 2.4 1c | 1.8 1c | 1.6 | 1.1 1c | 1.4 1c | ND | | Acenaphthylene | ND | 1.7 | 1.9 | 2.3 | 1.6 | 2.2 1c | 2.1 1c | 1.8 1c | 1.8 | 1.2 1c | 1.2 1c | ND | | Second common commo | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |--|----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|-----------| | No | Aniline | 6.3 | NS | ND | ND | ND | 10.4 1c | 7.6 1c | 7 1c | ND | 8.6 1c | 4.1 1c | 3.9 JED1c | | Renzial anthriacene | Anthracene | ND | 1.5 | 1.9 | 1.9 | 1.7 | 2.6 1c | 2.4 1c | 2 1c | 2.4 | 1.2 1c | 1.7 1c | ND | | Serios S | Azobenzene | NS | ND | NS | Servacio Filtro-ranthene ND ND ND ND ND ND ND N | Benz[a]anthracene | ND | ND | ND | ND | ND | ND | 0.27 J1c | ND | 0.32 J | ND | 0.2 J1c | ND | | Seriolg, h.liperylene | Benzo[a]pyrene | ND | Servoic Activity | Benzo[b]fluoranthene | ND | Serezoic acicid | Benzo[g,h,i]perylene | ND | Serial algority NS | Benzo[k]fluoranthene | ND | No | Benzoic acid | NS | ND | NS | ND ND ND ND ND ND ND ND | Benzyl alcohol | NS | ND | NS | No | bis(2-Chloro-1-methylethyl)ether | ND | No | bis(2-Chloroethoxy)methane | ND 1.5 1c | 2 | 2.5 1c | 2.8 1c | ND | | Sutyl benzyl phthalate | bis(2-Chloroethyl)ether | ND | Carbazole NS 5.6 NS ND | bis(2-Ethylhexyl)phthalate | ND | ND | 1.4 | ND | ND | ND | ND | ND | 0.56 JB | ND | ND | ND | | Chrysene | Butyl benzyl phthalate | ND | ND ND ND ND ND ND ND ND | Carbazole | NS | 5.6 | NS | Dibenzofuran 3.3 J 2.2 2.8 3.7 2.9 3.9 1c 3.3 1c 2.7 1c 2.7 1.9 1c 2.7 1c 2.4 JED: Diethylphthalate | Chrysene | ND 0.18 J1c | ND | | Diethylphthalate | Dibenz[a,h]anthracene | ND | Dimethylphthalate ND | Dibenzofuran | 3.3 J | 2.2 | 2.8 | 3.7 | 2.9 | 3.9 1c | 3.3 1c | 2.7 1c | 2.7 | 1.9 1c | 2.7 1c | 2.4 JED1c | | Di-n-butylphthalate ND | Diethylphthalate | ND | Di-n-octylphthalate | Dimethylphthalate | ND | Fluoranthene ND 2.3 3.1 3.1 3.4 4.7 1c 3.7 1c 3.3 1c 4.1 2 1c 2.8 1c 3.1 JED: Fluorene 4.2 J 3.6 3.4 4.6 3.4 5.3 1c 4.7 1c 3.9 1c 3.6 2.4 1c 3.7 1c 3.9 JED: Hexachloro-1,3-butadiene ND | Di-n-butylphthalate | ND | Fluorene 4.2 J 3.6 3.4 4.6 3.4 5.3 1c 4.7 1c 3.9 1c 3.6 2.4 1c 3.7 1c 3.9 JED: Hexachloro-1,3-butadiene ND | Di-n-octylphthalate | ND 0.67 JB1c | ND | ND | | Hexachloro-1,3-butadiene ND | Fluoranthene | ND | 2.3 | 3.1 | 3.1 | 3.4 | 4.7 1c | 3.7 1c | 3.3 1c | 4.1 | 2 1c | 2.8 1c | 3.1 JED1c | | Hexachlorobenzene ND | Fluorene | 4.2 J | 3.6 | 3.4 | 4.6 | 3.4 | 5.3 1c | 4.7 1c | 3.9 1c | 3.6 | 2.4 1c | 3.7 1c | 3.9 JED1c | | Hexachlorocyclopentadiene ND | Hexachloro-1,3-butadiene | ND | Hexachloroethane ND | Hexachlorobenzene | ND | | Hexachlorocyclopentadiene | ND | ndeno[1,2,3-cd]pyrene ND | Hexachloroethane | ND | | Indeno[1,2,3-cd]pyrene | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------| | Isophorone | ND | Naphthalene | 190 | 273 | 385 | 1,830 | 1,460 | 1,860 | 1,450 | 278 | 6,320 | 5,020 | 881 | 341 | | Nitrobenzene | ND | N-Nitrosodimethylamine | ND | N-Nitroso-di-n-propylamine | NS | ND | NS | N-Nitrosodiphenylamine | NS | ND | NS |
Pentachloroethane | ND | NS | Pentachlorophenol | ND 0.98 J1c | ND | ND | ND | ND | | Phenanthrene | 8.4 | 7.5 | 8.7 | 10 | 9.1 | 12.2 1c | 11 1c | 9.9 1c | 12 | 6.5 1c | 8.2 1c | 9.6 JED1c | | Phenol | 4.2 J | 6.1 | ND | ND | 8.9 | ND | 5.5 1c | 3.3 1c | 5.8 | 4.3 1c | 4.1 1c | 4.5 JED1c | | Pyrene | ND | 1.5 | 2.3 | 2.6 | 1.7 | 2.7 1c | 3 1c | 2 1c | 2.2 | 1.3 1c | 1.6 1c | 2.2 JED1c | | Pyridine | 91 | NS | 97.2 | 117 | 103 | 55.2 1c | 83.1 1c | 65.2 1c | 63 | 59.3 1c | 40.7 1c | 48 ED1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP09 | 9-PZM010 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS ND | ND | ND | ND | | 1,3-Dichlorobenzene | ND | NS ND | ND | ND | ND | | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS 0.79 J | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS 1.4 | ND | 0.13 J | ND | | 2-Methylphenol | ND | NS 0.67 J | ND | 0.16 J | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS 1.1 J | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS 0.61 J | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS 3.1 | ND | ND | ND | | Aniline | ND | NS 4 | ND | ND | ND | | Anthracene | ND | NS 0.32 J | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|------------| | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS 0.59 J | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS 0.21 JIS | ND | ND | 0.29 JIS1c | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS 0.83 J | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | 0.65 JB1c | ND | ND | | Fluoranthene | ND | NS 0.27 J | ND | ND | ND | | Fluorene | ND | NS 0.95 J | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | 20.4 | 36.8 | 3.9 | 6.1 | 3.7 | 61.5 | 2.8 | 9.1 | ND | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS 1.2 | ND | ND | ND | | Phenol | ND | NS 4.7 | 0.19 JB1c | 1.1 | ND | | Pyrene | ND | NS 0.34 JIS | ND | ND | 0.19 JIS1c | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | ND | NS 0.84 J | ND | 0.26 J | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP10 | D-PZM008 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS ND | ND | | 1,3-Dichlorobenzene | ND | NS ND | ND | | 2,4,5-Trichlorophenol | ND | NS ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | | 2,4-Dimethylphenol | 19 | NS ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | | 2-Chlorophenol | ND | NS 0.17 J1c | ND | | 2-Methylnaphthalene | 5.8 | NS 9.6 JD31c | 7 JD31c | | 2-Methylphenol | 5.1 | NS 6.4 1c | 5.3 1c | | 2-Nitrophenol | ND | NS ND | ND | | 3&4-Methylphenol | 16 | NS 25.7 1c | 24 1c | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | | 4-Nitrophenol | ND | NS ND | ND | | Acenaphthene | 3.9 J | NS 5.4 1c | 5.1 1c | | Acenaphthylene | ND | NS ND | 6.9 1c | | Aniline | ND | NS ND | ND | | Anthracene | ND | NS 2.7 1c | 2.5 1c | | Benz[a]anthracene | ND | NS 0.32 J1c | 0.9 J1c | | Benzo[a]pyrene | ND | NS ND | 0.94 J1c | | Benzo[b]fluoranthene | ND | NS ND | 0.83 J1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[g,h,i]perylene | ND | NS ND | 0.37 J1c | | Benzo[k]fluoranthene | ND | NS 0.17 J1c | 1.1 1c | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS 0.15 J1c | 0.34 J1c | | Butyl benzyl phthalate | ND | NS ND | ND | | Chrysene | ND | NS 0.31 J1c | 0.95 J1c | | Dibenz[a,h]anthracene | ND | NS ND | ND | | Dibenzofuran | ND | NS 7.2 1c | 6.6 1c | | Diethylphthalate | ND | NS ND | ND | | Dimethylphthalate | ND | NS ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | | Di-n-octylphthalate | ND | NS ND | ND | | Fluoranthene | ND | NS 4.8 1c | 5 1c | | Fluorene | ND | NS 6 1c | 6.1 1c | | Hexachloro-1,3-butadiene | ND | NS ND | ND | | Hexachlorobenzene | ND | NS ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | | Hexachloroethane | ND | NS ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | 0.37 J1c | | Isophorone | ND | NS ND | ND | | Naphthalene | 59 | NS | NS | 320 | 342 | NS | 217 | NS | NS | NS | 303 | 301 | | Nitrobenzene | ND | NS ND | ND | | N-Nitrosodimethylamine | ND | NS 0.12 J1c | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | | Phenanthrene | 8.2 | NS 18.6 1c | 19.1 1c | | Phenol | 14 | NS 96 1c | 83.2 1c | | Pyrene | ND | NS 2.6 1c | 3.7 1c | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | 3 J | NS 3.6 1c | 2.5 1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP11 | 1-PZM010 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS ND | ND | ND | ND | | 1,3-Dichlorobenzene | ND | NS ND | ND | ND | ND | | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS 8.8 | 4.9 1c | 9.4 1c | 4.6 1c | | 2,4-Dinitrophenol | ND | NS 0.96 J | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | 0.15 J1c | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS 3 | 1.1 1c | 2.7 1c | 1.7 1c | | 2-Methylphenol | ND | NS 4.4 | 2.8 1c | 4.3 1c | 2.3 1c | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | 4.3 J | NS 12.6 1c | 6.7 1c | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS 2.6 | 1.6 1c | 2.6 1c | 1.5 1c | | Acenaphthylene | ND | NS 1.6 | ND | ND | ND | | Aniline | ND | NS ND | 5 1c | ND | ND | | Anthracene | ND | NS 0.64 J | 0.32 J1c |
0.52 J1c | 0.32 J1c | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|-------------| | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | 0.093 JIS1c | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS 0.33 J | ND | 0.72 J1c | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | ND | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS 1.4 | 0.78 J1c | 1.4 1c | 0.78 J1c | | Diethylphthalate | ND | NS 0.3 J | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | 0.79 JB1c | ND | ND | | Fluoranthene | 3.2 J | NS 1.7 | 1.2 1c | 1.4 1c | 0.22 J1c | | Fluorene | ND | NS 1.1 | 0.44 J1c | 1.2 1c | 0.73 J1c | | Hexachloro-1,3-butadiene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | 13 | NS | NS | 96.8 | 93.6 | 104 | 76 | 89.4 | 92.8 | 49.7 | 90.5 | 68.6 | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | 8.6 | NS 6.6 | 4.3 1c | 5 1c | 2.9 1c | | Phenol | 3.6 J | NS 9.2 | 6 1c | 9.3 1c | 5.3 1c | | Pyrene | 2.6 J | NS 1.7 IS | 0.85 J1c | 0.89 J1c | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | ND | NS 2.1 | 1.5 1c | 2 1c | 1 1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------| | Location ID: | CP12 | 2-PZM012 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS | NS | NS | NS | ND | 2,4,6-Trichlorophenol | ND | NS | NS | NS | NS | ND | 2,4-Dichlorophenol | ND | NS | NS | NS | NS | ND | 2,4-Dimethylphenol | 4.5 J | NS | NS | NS | NS | 48 1c | 7.7 1c | 1.5 1c | 7.5 | 1.6 1c | 5.2 1c | 11.3 ISD31 | | 2,4-Dinitrophenol | ND | NS | NS | NS | NS | ND | 2,4-Dinitrotoluene | ND | NS | NS | NS | NS | ND | 2,6-Dinitrotoluene | ND | NS | NS | NS | NS | ND | 2-Chloronaphthalene | ND | NS | NS | NS | NS | ND | 2-Chlorophenol | ND | NS | NS | NS | NS | ND | 2-Methylnaphthalene | ND | NS | NS | NS | NS | 8.8 1c | 3.9 1c | 1.4 1c | 3.3 | 1.2 1c | 2.8 1c | 2.4 JISD3 | | 2-Methylphenol | ND | NS | NS | NS | NS | 9.1 1c | 1.8 1c | 0.49 J1c | 1.7 | 0.28 J1c | 1.1 1c | ND | | 2-Nitrophenol | ND | NS | NS | NS | NS | ND | 3&4-Methylphenol | ND | NS | NS | NS | NS | 27.6 1c | 4.3 1c | NS | NS | NS | 2.8 1c | 5.2 JISD31 | | 3,3'-Dichlorobenzidine | ND | NS | NS | NS | NS | ND | 4,6-Dinitro-2-methylphenol | ND | NS | NS | NS | NS | ND | 4-Bromophenyl phenylether | ND | NS | NS | NS | NS | ND | 4-Chloro-3-methylphenol | ND | NS | NS | NS | NS | ND | 4-Chlorophenyl phenylether | ND | NS | NS | NS | NS | ND | 4-Nitrophenol | ND | NS | NS | NS | NS | ND | Acenaphthene | ND | NS | NS | NS | NS | 1.2 1c | 0.62 J1c | 0.49 J1c | 0.6 J | 0.33 J1c | 0.57 J1c | 0.4 JIS10 | | Acenaphthylene | ND | NS | NS | NS | NS | ND | 0.41 J1c | ND | ND | ND | 0.24 J1c | ND | | Aniline | ND | NS | NS | NS | NS | ND | Anthracene | ND | NS | NS | NS | NS | ND | 0.78 J1c | 0.5 J1c | 0.57 J | 0.29 J1c | 0.42 J1c | 0.49 JIS1 | | Benz[a]anthracene | ND | NS | NS | NS | NS | ND | Benzo[a]pyrene | ND | NS | NS | NS | NS | ND | Benzo[b]fluoranthene | ND | NS | NS | NS | NS | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|------------| | Benzo[g,h,i]perylene | ND | NS | NS | NS | NS | ND | Benzo[k]fluoranthene | ND | NS | NS | NS | NS | ND | bis(2-Chloro-1-methylethyl)ether | ND | NS | NS | NS | NS | ND | bis(2-Chloroethoxy)methane | ND | NS | NS | NS | NS | ND | bis(2-Chloroethyl)ether | ND | NS | NS | NS | NS | ND | bis(2-Ethylhexyl)phthalate | 49 | NS | NS | NS | NS | ND | 0.53 J1c | ND | ND | ND | ND | 0.34 JIS1c | | Butyl benzyl phthalate | ND | NS | NS | NS | NS | ND | Chrysene | ND | NS | NS | NS | NS | ND | Dibenz[a,h]anthracene | ND | NS | NS | NS | NS | ND | Dibenzofuran | ND | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.2 J1c | ND | | Diethylphthalate | ND | NS | NS | NS | NS | ND | Dimethylphthalate | ND | NS | NS | NS | NS | ND | Di-n-butylphthalate | ND | NS | NS | NS | NS | ND | Di-n-octylphthalate | ND | NS | NS | NS | NS | ND | ND | ND | 0.33 JIS | 0.68 JB1c | ND | ND | | Fluoranthene | ND | NS | NS | NS | NS | ND | 0.71 J1c | 0.78 J1c | 0.71 J | 0.49 J1c | 0.52 J1c | 0.33 JIS1c | | Fluorene | ND | NS | NS | NS | NS | ND | 0.25 J1c | ND | ND | ND | 0.19 J1c | ND | | Hexachloro-1,3-butadiene | ND | NS | NS | NS | NS | ND | Hexachlorobenzene | ND | NS | NS | NS | NS | ND | Hexachlorocyclopentadiene | ND | NS | NS | NS | NS | ND | Hexachloroethane | ND | NS | NS | NS | NS | ND | Indeno[1,2,3-cd]pyrene | ND | NS | NS | NS | NS | ND | Isophorone | ND | NS | NS | NS | NS | ND | Naphthalene | 15 | NS | NS | 147 | 95.8 | 163 | 87.1 | 25.1 | 80.5 | 34.4 | 70.9 | 66 | | Nitrobenzene | ND | NS | NS | NS | NS | ND | N-Nitrosodimethylamine | ND | NS | NS | NS | NS | ND | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS | NS | NS | NS | ND | Phenanthrene | ND | NS | NS | NS | NS | 1.7 1c | 1.7 1c | 1.1 1c | 1.5 | 0.78 J1c | 1.1 1c | ND | | Phenol | 3.7 J | NS | NS | NS | NS | 13.6 1c | 6.6 1c | 1.7 1c | 4.9 | 0.95 JB1c | 3.6 1c | 4 JISD31c | | Pyrene | ND | NS | NS | NS | NS | ND | 0.49 J1c | 0.54 J1c | 0.69 J | 0.3 J1c | 0.35 J1c | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------| | Pyridine | ND | NS | NS | NS | NS | 1.2 1c | ND | ND | ND | ND | 0.22 J1c | 0.2 JIS1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP14 | 1-PZM009 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS | NS | NS | NS | ND | 2,4,6-Trichlorophenol | ND | NS | NS | NS | NS | ND | 2,4-Dichlorophenol | ND | NS | NS | NS | NS | ND | 2,4-Dimethylphenol | ND | NS | NS | NS | NS | ND | 1.4 1c | 1 1c | 0.93 J | 1 1c | 0.82 J | 0.76 J | | 2,4-Dinitrophenol | ND | NS | NS | NS | NS | ND | ND | ND | ND | 0.75 J1c | ND | ND | | 2,4-Dinitrotoluene | ND | NS | NS | NS | NS | ND | 2,6-Dinitrotoluene | ND | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.16 J | 0.26 J | | 2-Chloronaphthalene | ND | NS | NS | NS | NS | ND | 2-Chlorophenol | ND | NS | NS | NS | NS | ND | 2-Methylnaphthalene | ND | NS | NS | NS | NS | ND | 1.4 1c | 0.86 J1c | 0.81 J | 0.72 J1c | 0.35 J | 0.47 J | | 2-Methylphenol | ND | NS | NS | NS | NS | ND | 1.1 1c | 0.82 J1c | 0.77 J | 0.64 J1c | 0.68 J | 0.52 J | | 2-Nitrophenol | ND | NS | NS | NS | NS | ND | 3&4-Methylphenol | ND | NS | NS | NS | NS | ND | 2.4 1c | NS | NS | NS | 1.5 J | 1.3 J | | 3,3'-Dichlorobenzidine | ND | NS | NS | NS | NS | ND | 4,6-Dinitro-2-methylphenol | ND | NS | NS | NS | NS | ND | 4-Bromophenyl phenylether | ND | NS | NS | NS | NS | ND | 4-Chloro-3-methylphenol | ND | NS | NS | NS | NS | ND | 4-Chlorophenyl phenylether | ND | NS | NS | NS | NS | ND | 4-Nitrophenol | ND | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | 0.29 J | | Acenaphthene | ND | NS | NS | NS | NS | ND | 1.5 1c | 1 1c | 0.93 J | 0.81 J1c | 0.54 J | 0.59 J | | Acenaphthylene | ND | NS | NS | NS | NS | ND | 0.47 J1c | 0.37 J1c | 0.34 J | ND | ND | ND | | Aniline | ND | NS | NS | NS | NS | ND | 0.79 J1c | 1 J1c | 0.63 J | 0.4 J1c | ND | ND | | Anthracene | ND | NS | NS | NS | NS | ND | 0.94 J1c | 0.67 J1c | 0.46 J | 0.36 J1c | 0.2 J | 0.2 J | | Benz[a]anthracene | ND | NS | NS | NS | NS | ND | Benzo[a]pyrene | ND | NS | NS | NS | NS | ND | Benzo[b]fluoranthene | ND | NS | NS | NS | NS | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 |
----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Benzo[g,h,i]perylene | ND | NS | NS | NS | NS | ND | Benzo[k]fluoranthene | ND | NS | NS | NS | NS | ND | bis(2-Chloro-1-methylethyl)ether | ND | NS | NS | NS | NS | ND | bis(2-Chloroethoxy)methane | ND | NS | NS | NS | NS | ND | bis(2-Chloroethyl)ether | ND | NS | NS | NS | NS | ND | bis(2-Ethylhexyl)phthalate | ND | NS | NS | NS | NS | 2.7 1c | 0.31 J1c | ND | ND | ND | ND | ND | | Butyl benzyl phthalate | ND | NS | NS | NS | NS | ND | Chrysene | ND | NS | NS | NS | NS | ND | Dibenz[a,h]anthracene | ND | NS | NS | NS | NS | ND | Dibenzofuran | ND | NS | NS | NS | NS | ND | 0.63 J1c | 0.34 J1c | 0.36 J | 0.31 J1c | 0.18 J | 0.27 J | | Diethylphthalate | ND | NS | NS | NS | NS | ND | Dimethylphthalate | ND | NS | NS | NS | NS | ND | Di-n-butylphthalate | ND | NS | NS | NS | NS | ND | ND | ND | ND | 0.13 J1c | ND | ND | | Di-n-octylphthalate | ND | NS | NS | NS | NS | ND | ND | ND | ND | 0.74 JB1c | ND | ND | | Fluoranthene | ND | NS | NS | NS | NS | ND | 0.74 J1c | 0.52 J1c | 0.51 J | 0.33 J1c | 0.28 J | 0.43 J | | Fluorene | ND | NS | NS | NS | NS | ND | 0.52 J1c | 0.27 J1c | 0.28 J | ND | 0.2 J | 0.31 J | | Hexachloro-1,3-butadiene | ND | NS | NS | NS | NS | ND | Hexachlorobenzene | ND | NS | NS | NS | NS | ND | Hexachlorocyclopentadiene | ND | NS | NS | NS | NS | ND | Hexachloroethane | ND | NS | NS | NS | NS | ND | Indeno[1,2,3-cd]pyrene | ND | NS | NS | NS | NS | ND | Isophorone | ND | NS | NS | NS | NS | ND | Naphthalene | 17 | NS | NS | 40.2 | 52.8 | 39.5 | 46.3 | 42.7 | 42.9 | 33.8 | 37.9 | 24.7 | | Nitrobenzene | ND | NS | NS | NS | NS | ND | N-Nitrosodimethylamine | ND | NS | NS | NS | NS | ND | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS | NS | NS | NS | ND | Phenanthrene | ND | NS | NS | NS | NS | 1.9 1c | 2.9 1c | 1.9 1c | 2 | 1.6 1c | 1.1 | 1.5 | | Phenol | 3.6 J | NS | NS | NS | NS | 1.3 1c | 2.6 1c | 3.2 1c | 2 | 2.7 1c | 1.9 | 1.5 | | Pyrene | ND | NS | NS | NS | NS | ND | 0.45 J1c | ND | 0.37 JIS | ND | ND | 0.21 J | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | 4 J | NS | NS | NS | NS | ND | 0.78 J1c | 0.79 J1c | 0.74 J | 0.7 J1c | 0.56 J | 0.75 J | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP15 | 5-PZM020 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1,3-Dichlorobenzene | ND | 1-Methylnaphthalene | NS | 11.4 N2 | NS | 2,4,5-Trichlorophenol | ND | 2,4,6-Trichlorophenol | ND | 2,4-Dichlorophenol | ND | 2,4-Dimethylphenol | 18 | 15 | ND | 18.5 | 27.1 | 10.2 1c | 10 1c | 8.5 1c | 18.1 | 8.9 1c | 12.6 | 3.4 1c | | 2,4-Dinitrophenol | ND | 2,4-Dinitrotoluene | ND | 2,6-Dinitrotoluene | ND | 2-Chloronaphthalene | ND | 2-Chlorophenol | ND | 2-Methylnaphthalene | 6.9 | 10.5 | 4.8 | 11.3 | 16.6 | 8 1c | 6.8 1c | 4.9 1c | 6.9 J | 4.8 1c | 5.6 | 1.3 1c | | 2-Methylphenol | 12 | 14.1 | 12.4 | 17.7 | 20.7 | 8.3 1c | 7.9 1c | 6.9 1c | 11.2 | 4.3 1c | 8.6 | 2.2 1c | | 2-Nitroaniline | NS | ND | NS | 2-Nitrophenol | ND | 3&4-Methylphenol | 34 | 34.1 | 36.3 | 54.2 | 56.8 | 23.8 1c | 22.6 1c | NS | NS | NS | 23.2 | 7.3 1c | | 3,3'-Dichlorobenzidine | ND | 3-Nitroaniline | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND 0.79 J | ND | ND | ND | | 4-Bromophenyl phenylether | ND | 4-Chloro-3-methylphenol | ND | 4-Chloroaniline | NS | ND | NS | 4-Chlorophenyl phenylether | ND | 4-Nitroaniline | NS | ND | NS | 4-Nitrophenol | ND | Acenaphthene | 3.1 J | 4.1 | 2.6 | 7.1 | 6.9 | 5 1c | 4.2 1c | 4 1c | 4.1 | 2.4 1c | 3.5 | ND | | Acenaphthylene | ND | 4.2 | 2.5 | 6.2 | 6.6 | 4.1 1c | 3.1 1c | 2.8 1c | 4.5 | 1.7 1c | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|------------| | Aniline | ND | NS | ND | ND | ND | ND | 3.1 1c | 1.7 J1c | 23.4 J | ND | ND | ND | | Anthracene | ND | 1.1 | 1.3 | 2 | 2 | 1.5 1c | 1.4 1c | 1 J1c | 1.1 | 0.48 J1c | 0.74 J | 0.41 JIS1c | | Azobenzene | NS | ND | NS | Benz[a]anthracene | ND | Benzo[a]pyrene | ND | Benzo[b]fluoranthene | ND | ND | ND | ND | ND | ND | 0.21 J1c | ND | ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | Benzo[k]fluoranthene | ND | Benzoic acid | NS | ND | NS | Benzyl alcohol | NS | ND | NS | bis(2-Chloro-1-methylethyl)ether | ND | bis(2-Chloroethoxy)methane | ND 0.93 J | ND | | bis(2-Chloroethyl)ether | ND 4.9 | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | ND | ND | ND | ND | ND | 0.39 J1c | ND | 0.25 JIS | ND | 0.15 J | 0.26 JIS1c | | Butyl benzyl phthalate | ND | Carbazole | NS | 6.6 | NS | Chrysene | ND | Dibenz[a,h]anthracene | ND | Dibenzofuran | ND | 2.8 | 1.6 | 4.8 | 4.8 | 3.4 1c | 2.7 1c | 1.7 1c | 2.5 | 1.4 1c | 1.6 | 0.88 JIS1c | | Diethylphthalate | ND 0.31 J | ND | ND | ND | | Dimethylphthalate | ND | Di-n-butylphthalate | ND 0.11 J1c | ND | ND | | Di-n-octylphthalate | ND 0.73 JB1c | ND | ND | | Fluoranthene | ND | ND | ND | 1.6 | 1.9 | 1.6 1c | 1.5 1c | 1.1 1c | 1.1 | 0.63 J1c | 0.89 J | 0.33 JIS1c | | Fluorene | ND | 3.7 | 2 | 6 | 6.2 | 4.6 1c | 3.9 1c | 2.4 1c | 3.6 | 1.8 1c | 2.6 | ND | | Hexachloro-1,3-butadiene | ND | Hexachlorobenzene | ND | Hexachlorocyclopentadiene | ND | Hexachloroethane | ND | Indeno[1,2,3-cd]pyrene | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------| | Isophorone | ND | Naphthalene | 90 | 117 | 77.6 | 233 | 388 | 227 | 212 | 109 | 319 | 152 | 125 | 46.8 | | Nitrobenzene | ND | N-Nitrosodimethylamine | ND | N-Nitroso-di-n-propylamine | NS | ND | NS | N-Nitrosodiphenylamine | NS | ND | NS | Pentachloroethane | ND | NS | Pentachlorophenol | ND | Phenanthrene | 5.4 | 7.4 | 6.8 | 13.5 | 13.1 | 10.8 1c | 9.5 1c | 7.2 1c | 7.6 | 4.4 1c | 5.5 | 5.1 JD31c | | Phenol | 46 | 30.4 | 33.9 | 44.9 | 55 | 18.4 1c | 25.5 1c | 19.4 1c | 30.6 | 13.7 1c | 25.2 | 6.5 1c | | Pyrene | ND | ND | ND | 1.6 | 1.1 | ND | 0.97 J1c | 0.68 J1c | 1.1 IS | 0.42 J1c | 0.57 J | 1.9 IS1c | | Pyridine | ND | NS | 4.1 | 5.2 | 5.7 | 2.6 1c | 2 1c | 2 1c | 2.9 | 2 1c | 2 | 0.64 J1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP16 | 6-PZM008 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | NS | NS | NS | NS | NS | ND | 1,3-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 2,4,5-Trichlorophenol | NS | NS | NS | NS | NS | ND | 2,4,6-Trichlorophenol | NS | NS | NS | NS | NS | ND | 2,4-Dichlorophenol | NS | NS | NS | NS | NS | ND | 2,4-Dimethylphenol | NS | NS | NS | NS | NS | 6.1 1c | 6.6 1c | 6.6 1c | 6.5 | 5.1 1c | 4.6 1c | 3.6 1c | | 2,4-Dinitrophenol | NS | NS | NS | NS | NS | ND | 2,4-Dinitrotoluene | NS | NS | NS | NS | NS | ND | 2,6-Dinitrotoluene | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | 0.22 J1 | | 2-Chloronaphthalene | NS | NS | NS | NS | NS | ND | 2-Chlorophenol | NS | NS | NS | NS | NS | ND | 2-Methylnaphthalene | NS | NS | NS | NS | NS | ND | 0.33 J1c | 0.41 J1c | ND | ND | 0.25 J1c | 0.26 J1 | | 2-Methylphenol | NS | NS | NS | NS | NS | 1.5 1c | 1.2 1c | 1.4 1c | 1.4 | 1 1c | 0.99 1c | 0.79 J1 | | 2-Nitrophenol | NS | NS | NS | NS | NS | ND | 3&4-Methylphenol | NS | NS | NS | NS | NS | 20 1c | 13.2 1c | NS | NS | NS | 6.9 1c | 4.7 10 | | 3,3'-Dichlorobenzidine | NS | NS | NS | NS | NS | ND | 4,6-Dinitro-2-methylphenol | NS | NS | NS | NS | NS | ND | 4-Bromophenyl phenylether | NS | NS | NS | NS | NS | ND | 4-Chloro-3-methylphenol | NS | NS | NS | NS | NS | ND | 4-Chlorophenyl phenylether | NS | NS | NS | NS | NS | ND | 4-Nitrophenol | NS | NS | NS | NS | NS | ND | Acenaphthene | NS | NS | NS | NS | NS | ND | 0.39 J1c | 0.47 J1c | ND | 0.28 J1c | 0.35 J1c | 0.31 J1 | | Acenaphthylene | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 5.2 1c | ND | | Aniline | NS | NS | NS | NS | NS | ND | 1 J1c | 0.95 J1c | ND | 0.37 J1c | ND | 0.76 J1 | | Anthracene | NS | NS | NS | NS | NS | ND | ND | 0.23 J1c | ND | ND | 0.12 J1c | ND | | Benz[a]anthracene | NS | NS | NS | NS | NS | ND | Benzo[a]pyrene | NS | NS | NS | NS | NS | ND | Benzo[b]fluoranthene | NS | NS | NS | NS | NS | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Benzo[g,h,i]perylene | NS | NS | NS | NS | NS | ND | Benzo[k]fluoranthene | NS | NS | NS | NS | NS | ND | bis(2-Chloro-1-methylethyl)ether | NS | NS | NS | NS | NS | ND | bis(2-Chloroethoxy)methane | NS | NS | NS | NS | NS | ND | bis(2-Chloroethyl)ether | NS | NS | NS | NS | NS | ND
 bis(2-Ethylhexyl)phthalate | NS | NS | NS | NS | NS | ND | 0.22 J1c | 0.23 J1c | ND | ND | 1.1 1c | ND | | Butyl benzyl phthalate | NS | NS | NS | NS | NS | ND | Chrysene | NS | NS | NS | NS | NS | ND | Dibenz[a,h]anthracene | NS | NS | NS | NS | NS | ND | Dibenzofuran | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.13 J1c | ND | | Diethylphthalate | NS | NS | NS | NS | NS | ND | Dimethylphthalate | NS | NS | NS | NS | NS | ND | Di-n-butylphthalate | NS | NS | NS | NS | NS | ND | Di-n-octylphthalate | NS | NS | NS | NS | NS | ND | ND | ND | ND | 0.67 JB1c | ND | ND | | Fluoranthene | NS | NS | NS | NS | NS | ND | 0.39 J1c | 0.32 J1c | 0.26 J | 0.21 J1c | 0.29 J1c | 0.23 J1c | | Fluorene | NS | NS | NS | NS | NS | ND | Hexachloro-1,3-butadiene | NS | NS | NS | NS | NS | ND | Hexachlorobenzene | NS | NS | NS | NS | NS | ND | Hexachlorocyclopentadiene | NS | NS | NS | NS | NS | ND | Hexachloroethane | NS | NS | NS | NS | NS | ND | Indeno[1,2,3-cd]pyrene | NS | NS | NS | NS | NS | ND | Isophorone | NS | NS | NS | NS | NS | ND | Naphthalene | NS | NS | NS | NS | NS | 21.1 | 21.3 | 19.4 | 19 | 8.3 | 12.9 | 7.7 | | Nitrobenzene | NS | NS | NS | NS | NS | ND | N-Nitrosodimethylamine | NS | NS | NS | NS | NS | ND | Pentachlorophenol | NS | NS | NS | NS | NS | ND | Phenanthrene | NS | NS | NS | NS | NS | 1.3 1c | 1.1 1c | 1.1 1c | 0.55 J | 0.6 J1c | 0.76 J1c | 0.65 J1c | | Phenol | NS | NS | NS | NS | NS | 10 1c | 5.5 1c | 4.6 1c | 4.8 | 3.3 1c | 2.8 1c | 2.6 1c | | Pyrene | NS | NS | NS | NS | NS | ND | 0.32 J1c | 0.26 J1c | 0.32 J | ND | 0.24 J1c | 0.22 J1c | | Pyridine | NS | NS | NS | NS | NS | ND | 0.49 J1c | 0.69 J1c | 0.85 J | 0.56 J1c | 0.65 J1c | 0.59 J1c | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP18 | 8-PZM009 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | NS | NS | NS | NS | NS | ND | 1,3-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 2,4,5-Trichlorophenol | NS | NS | NS | NS | NS | ND | 2,4,6-Trichlorophenol | NS | NS | NS | NS | NS | ND | 2,4-Dichlorophenol | NS | NS | NS | NS | NS | ND | 2,4-Dimethylphenol | NS | NS | NS | NS | NS | 1.2 1c | 0.83 J1c | 1.2 1c | 1.1 | 1.1 1c | 0.69 J1c | 0.67 J1c | | 2,4-Dinitrophenol | NS | NS | NS | NS | NS | ND | ND | ND | 0.93 J | ND | ND | ND | | 2,4-Dinitrotoluene | NS | NS | NS | NS | NS | ND | 2,6-Dinitrotoluene | NS | NS | NS | NS | NS | ND | 2-Chloronaphthalene | NS | NS | NS | NS | NS | ND | 2-Chlorophenol | NS | NS | NS | NS | NS | ND | 2-Methylnaphthalene | NS | NS | NS | NS | NS | 1.2 1c | 1.1 1c | 0.9 J1c | 0.95 J | 0.72 J1c | 0.72 J1c | 0.37 J1c | | 2-Methylphenol | NS | NS | NS | NS | NS | 1.5 1c | 0.81 J1c | 1 J1c | 1.4 | 1.4 1c | 0.98 J1c | 0.9 J1c | | 2-Nitrophenol | NS | NS | NS | NS | NS | ND | 3&4-Methylphenol | NS | NS | NS | NS | NS | ND | 1.2 J1c | NS | NS | NS | 1.3 J1c | 0.88 J1 | | 3,3'-Dichlorobenzidine | NS | NS | NS | NS | NS | ND | 4,6-Dinitro-2-methylphenol | NS | NS | NS | NS | NS | ND | 4-Bromophenyl phenylether | NS | NS | NS | NS | NS | ND | 4-Chloro-3-methylphenol | NS | NS | NS | NS | NS | ND | 4-Chlorophenyl phenylether | NS | NS | NS | NS | NS | ND | 4-Nitrophenol | NS | NS | NS | NS | NS | ND | Acenaphthene | NS | NS | NS | NS | NS | ND | 0.94 J1c | 0.86 J1c | 0.7 J | 0.6 J1c | 0.61 J1c | 0.3 J1c | | Acenaphthylene | NS | NS | NS | NS | NS | ND | 0.27 J1c | 0.3 J1c | 0.3 J | ND | 0.19 J1c | ND | | Aniline | NS | NS | NS | NS | NS | ND | 0.53 J1c | 1.4 J1c | 0.89 J | 1 J1c | ND | 0.72 J10 | | Anthracene | NS | NS | NS | NS | NS | ND | 0.47 J1c | 0.32 J1c | 0.28 J | 0.15 J1c | 0.16 J1c | ND | | Benz[a]anthracene | NS | NS | NS | NS | NS | ND | Benzo[a]pyrene | NS | NS | NS | NS | NS | ND | Benzo[b]fluoranthene | NS | NS | NS | NS | NS | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Benzo[g,h,i]perylene | NS | NS | NS | NS | NS | ND | Benzo[k]fluoranthene | NS | NS | NS | NS | NS | ND | bis(2-Chloro-1-methylethyl)ether | NS | NS | NS | NS | NS | ND | bis(2-Chloroethoxy)methane | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.15 J1c | ND | | bis(2-Chloroethyl)ether | NS | NS | NS | NS | NS | ND | bis(2-Ethylhexyl)phthalate | NS | NS | NS | NS | NS | ND | 0.22 J1c | 0.24 J1c | 0.67 JB | ND | ND | ND | | Butyl benzyl phthalate | NS | NS | NS | NS | NS | ND | Chrysene | NS | NS | NS | NS | NS | ND | Dibenz[a,h]anthracene | NS | NS | NS | NS | NS | ND | Dibenzofuran | NS | NS | NS | NS | NS | ND | 0.48 J1c | 0.4 J1c | 0.39 J | 0.3 J1c | 0.3 J1c | ND | | Diethylphthalate | NS | NS | NS | NS | NS | ND | ND | ND | 0.28 J | ND | ND | ND | | Dimethylphthalate | NS | NS | NS | NS | NS | ND | Di-n-butylphthalate | NS | NS | NS | NS | NS | ND | Di-n-octylphthalate | NS | NS | NS | NS | NS | ND | ND | ND | ND | 0.73 JB1c | ND | ND | | Fluoranthene | NS | NS | NS | NS | NS | ND | 0.6 J1c | 0.53 J1c | 0.54 J | 0.31 J1c | 0.31 J1c | ND | | Fluorene | NS | NS | NS | NS | NS | ND | 0.53 J1c | 0.47 J1c | 0.39 J | 0.32 J1c | 0.35 J1c | ND | | Hexachloro-1,3-butadiene | NS | NS | NS | NS | NS | ND | Hexachlorobenzene | NS | NS | NS | NS | NS | ND | Hexachlorocyclopentadiene | NS | NS | NS | NS | NS | ND | Hexachloroethane | NS | NS | NS | NS | NS | ND | Indeno[1,2,3-cd]pyrene | NS | NS | NS | NS | NS | ND | Isophorone | NS | NS | NS | NS | NS | ND | Naphthalene | NS | NS | NS | NS | NS | 137 | 83.1 | 86.2 | 82.3 | 91.3 | 64.9 | 70.6 | | Nitrobenzene | NS | NS | NS | NS | NS | ND | N-Nitrosodimethylamine | NS | NS | NS | NS | NS | ND | Pentachlorophenol | NS | NS | NS | NS | NS | ND | Phenanthrene | NS | NS | NS | NS | NS | 1.8 1c | 2 1c | 1.9 1c | 1.9 | 1.3 1c | 1.2 1c | 0.8 J1c | | Phenol | NS | NS | NS | NS | NS | 1.8 1c | 1.8 1c | 1.4 1c | 0.78 J | 0.68 JB1c | 0.44 J1c | 0.48 J1c | | Pyrene | NS | NS | NS | NS | NS | ND | 0.33 J1c | 0.27 J1c | 0.29 J | ND | 0.18 J1c | ND | | Pyridine | NS | NS | NS | NS | NS | ND | ND | 0.32 J1c | 0.51 J | ND | 0.3 J1c | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP19 | 9-PZM008 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | NS | NS | NS | NS | NS | ND | 1,3-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 2,4,5-Trichlorophenol | NS | NS | NS | NS | NS | ND | 2,4,6-Trichlorophenol | NS | NS | NS | NS | NS | ND | 2,4-Dichlorophenol | NS | NS | NS | NS | NS | ND | 2,4-Dimethylphenol | NS | NS | NS | NS | NS | 232 1c | 131 1c | 142 1c | 81.5 | 77.7 1c | 41.1 1c | 95.3 10 | | 2,4-Dinitrophenol | NS | NS | NS | NS | NS | ND | 2,4-Dinitrotoluene | NS | NS | NS | NS | NS | ND | 2,6-Dinitrotoluene | NS | NS | NS | NS | NS | ND | 2-Chloronaphthalene | NS | NS | NS | NS | NS | ND | 2-Chlorophenol | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 1.1 1c | ND | | 2-Methylnaphthalene | NS | NS | NS | NS | NS | 64.9 1c | 45.4 1c | 31.3 1c | 20.1 | 19.1 1c | 12.7 1c | 11.8 10 | | 2-Methylphenol | NS | NS | NS | NS | NS | 29.4 1c | 20.2 1c | 14.6 1c | 16.3 | 12.4 1c | ND | 9.4 1c | | 2-Nitrophenol | NS | NS | NS | NS | NS | ND | 3&4-Methylphenol | NS | NS | NS | NS | NS | 104 1c | 57.3 1c | NS | NS | NS | 25 1c | 42.7 10 | | 3,3'-Dichlorobenzidine | NS | NS | NS | NS | NS | ND | 4,6-Dinitro-2-methylphenol | NS | NS | NS | NS | NS | ND | 4-Bromophenyl phenylether | NS | NS | NS | NS | NS | ND | 4-Chloro-3-methylphenol | NS | NS | NS | NS | NS | ND | 4-Chlorophenyl phenylether | NS | NS | NS | NS | NS | ND | 4-Nitrophenol | NS | NS | NS | NS | NS | ND | Acenaphthene | NS | NS | NS | NS | NS | 2.8 1c | 2.3 1c | 2.4 1c | 1.5 | 1 1c | 1.2 1c | 0.82 J1 | | Acenaphthylene | NS | NS | NS | NS | NS | 6.9 1c | 5.2 1c | 4.9 1c | 3.4 | 2.6 1c | 1.8 1c | 2 1c | | Aniline | NS | NS | NS | NS | NS | 2.6 1c | ND | 2.7 1c | 1.5 J | ND | ND | 0.77 J1 | | Anthracene | NS | NS | NS | NS | NS | ND | 0.99 J1c | 0.74 J1c | 0.57 J | 0.34 J1c | 0.37 J1c | 0.27 J1 | | Benz[a]anthracene | NS | NS | NS | NS | NS | ND | Benzo[a]pyrene | NS | NS | NS | NS | NS | ND | Benzo[b]fluoranthene | NS | NS | NS | NS | NS | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Benzo[g,h,i]perylene | NS | NS | NS | NS | NS | ND | Benzo[k]fluoranthene | NS | NS | NS | NS | NS | ND | bis(2-Chloro-1-methylethyl)ether | NS | NS | NS | NS | NS | ND | bis(2-Chloroethoxy)methane | NS | NS | NS | NS | NS | ND | bis(2-Chloroethyl)ether | NS | NS | NS | NS | NS | ND | bis(2-Ethylhexyl)phthalate | NS | NS | NS | NS | NS | ND | 0.21 J1c | 0.25 J1c | 0.47 JB | ND | ND | ND | | Butyl benzyl phthalate | NS | NS | NS | NS | NS | ND | Chrysene | NS | NS | NS | NS | NS | ND | Dibenz[a,h]anthracene | NS | NS | NS | NS | NS | ND | Dibenzofuran | NS | NS | NS | NS | NS | 4.6 1c | 3.4 1c | 2.8 1c | 1.9 | 1.5 1c | 1.8 1c | 1.3 1c | | Diethylphthalate | NS | NS | NS | NS | NS | ND | ND | ND | 0.25 J | ND | ND | ND | | Dimethylphthalate | NS | NS | NS | NS | NS | ND | Di-n-butylphthalate | NS | NS | NS | NS | NS | ND | Di-n-octylphthalate | NS | NS | NS
 NS | NS | ND | ND | ND | ND | 0.75 JB1c | ND | ND | | Fluoranthene | NS | NS | NS | NS | NS | 1.2 1c | 1.2 1c | 0.9 J1c | 0.82 J | 0.52 J1c | 0.53 J1c | 0.43 J1c | | Fluorene | NS | NS | NS | NS | NS | 4.1 1c | 3.3 1c | 2.8 1c | 2.2 | 1.7 1c | 1.9 1c | 1.1 1c | | Hexachloro-1,3-butadiene | NS | NS | NS | NS | NS | ND | Hexachlorobenzene | NS | NS | NS | NS | NS | ND | Hexachlorocyclopentadiene | NS | NS | NS | NS | NS | ND | Hexachloroethane | NS | NS | NS | NS | NS | ND | Indeno[1,2,3-cd]pyrene | NS | NS | NS | NS | NS | ND | Isophorone | NS | NS | NS | NS | NS | ND | Naphthalene | NS | NS | NS | NS | NS | 1,460 | 478 | 304 | 2,340 | 1,970 | 387 | 255 | | Nitrobenzene | NS | NS | NS | NS | NS | ND | N-Nitrosodimethylamine | NS | NS | NS | NS | NS | ND | Pentachlorophenol | NS | NS | NS | NS | NS | ND | Phenanthrene | NS | NS | NS | NS | NS | 5.3 1c | 4.8 1c | 4 1c | 3 | 2 1c | 2.1 1c | 1.7 1c | | Phenol | NS | NS | NS | NS | NS | 5.1 1c | 4.6 1c | 1.8 1c | 1.7 | 1.4 B1c | 2.3 1c | 1.2 1c | | Pyrene | NS | NS | NS | NS | NS | ND | 0.92 J1c | 0.53 J1c | 0.48 J | 0.3 J1c | 0.32 J1c | 0.28 J1c | | Pyridine | NS | NS | NS | NS | NS | 2.3 1c | 2.1 1c | 1.1 1c | 1.6 | 0.93 J1c | 0.95 J1c | 0.71 J1c | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP20 | O-PZM011 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | NS | NS | NS | NS | NS | ND | 1,3-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 2,4,5-Trichlorophenol | NS | NS | NS | NS | NS | ND | 2,4,6-Trichlorophenol | NS | NS | NS | NS | NS | ND | 2,4-Dichlorophenol | NS | NS | NS | NS | NS | ND | 2,4-Dimethylphenol | NS | NS | NS | NS | NS | 1.4 1c | 1.8 1c | 0.93 J1c | 1.6 | 1.5 1c | 0.7 J1c | 1.1 1c | | 2,4-Dinitrophenol | NS | NS | NS | NS | NS | ND | 2,4-Dinitrotoluene | NS | NS | NS | NS | NS | ND | 2,6-Dinitrotoluene | NS | NS | NS | NS | NS | ND | ND | ND | 0.51 J | ND | 0.47 J1c | 0.44 J1 | | 2-Chloronaphthalene | NS | NS | NS | NS | NS | ND | 2-Chlorophenol | NS | NS | NS | NS | NS | ND | 2-Methylnaphthalene | NS | NS | NS | NS | NS | 1.2 1c | 2.1 1c | 0.94 J1c | 1.1 | 0.96 J1c | 0.66 J1c | 0.68 J1 | | 2-Methylphenol | NS | NS | NS | NS | NS | 2.2 1c | 2.8 1c | 1.4 1c | 2.6 | 1.9 1c | 1.1 1c | 1.8 1c | | 2-Nitrophenol | NS | NS | NS | NS | NS | ND | 3&4-Methylphenol | NS | NS | NS | NS | NS | 2.3 1c | 2.6 1c | NS | NS | NS | 0.95 J1c | 1.4 J1c | | 3,3'-Dichlorobenzidine | NS | NS | NS | NS | NS | ND | 4,6-Dinitro-2-methylphenol | NS | NS | NS | NS | NS | ND | 4-Bromophenyl phenylether | NS | NS | NS | NS | NS | ND | 4-Chloro-3-methylphenol | NS | NS | NS | NS | NS | ND | 4-Chlorophenyl phenylether | NS | NS | NS | NS | NS | ND | 4-Nitrophenol | NS | NS | NS | NS | NS | ND | Acenaphthene | NS | NS | NS | NS | NS | ND | 1 J1c | 0.69 J1c | 0.71 J | 0.57 J1c | 0.45 J1c | 0.32 J1 | | Acenaphthylene | NS | NS | NS | NS | NS | ND | 0.95 J1c | 0.62 J1c | 0.75 J | 0.53 J1c | 0.14 J1c | 0.34 J1 | | Aniline | NS | NS | NS | NS | NS | ND | 0.42 J1c | ND | 0.86 J | 0.24 J1c | ND | ND | | Anthracene | NS | NS | NS | NS | NS | ND | 0.23 J1c | ND | 0.73 J | ND | 0.12 J1c | ND | | Benz[a]anthracene | NS | NS | NS | NS | NS | ND | Benzo[a]pyrene | NS | NS | NS | NS | NS | ND | Benzo[b]fluoranthene | NS | NS | NS | NS | NS | ND | ND | ND | 0.2 JIS | ND | ND | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Benzo[g,h,i]perylene | NS | NS | NS | NS | NS | ND | Benzo[k]fluoranthene | NS | NS | NS | NS | NS | ND | bis(2-Chloro-1-methylethyl)ether | NS | NS | NS | NS | NS | ND | bis(2-Chloroethoxy)methane | NS | NS | NS | NS | NS | ND | bis(2-Chloroethyl)ether | NS | NS | NS | NS | NS | ND | bis(2-Ethylhexyl)phthalate | NS | NS | NS | NS | NS | ND | Butyl benzyl phthalate | NS | NS | NS | NS | NS | ND | Chrysene | NS | NS | NS | NS | NS | ND | Dibenz[a,h]anthracene | NS | NS | NS | NS | NS | ND | Dibenzofuran | NS | NS | NS | NS | NS | ND | 0.44 J1c | ND | 0.27 J | ND | 0.23 J1c | 0.19 J1c | | Diethylphthalate | NS | NS | NS | NS | NS | ND | Dimethylphthalate | NS | NS | NS | NS | NS | ND | Di-n-butylphthalate | NS | NS | NS | NS | NS | ND | Di-n-octylphthalate | NS | NS | NS | NS | NS | ND | ND | ND | ND | 0.67 JB1c | ND | 0.22 J1c | | Fluoranthene | NS | NS | NS | NS | NS | ND | 0.52 J1c | 0.45 J1c | 0.48 J | 0.3 J1c | 0.48 J1c | 0.28 J1c | | Fluorene | NS | NS | NS | NS | NS | ND | 0.61 J1c | 0.39 J1c | 0.37 J | 0.31 J1c | 0.33 J1c | 0.24 J1c | | Hexachloro-1,3-butadiene | NS | NS | NS | NS | NS | ND | Hexachlorobenzene | NS | NS | NS | NS | NS | ND | Hexachlorocyclopentadiene | NS | NS | NS | NS | NS | ND | Hexachloroethane | NS | NS | NS | NS | NS | ND | Indeno[1,2,3-cd]pyrene | NS | NS | NS | NS | NS | ND | Isophorone | NS | NS | NS | NS | NS | ND | Naphthalene | NS | NS | NS | NS | NS | 114 | 119 | 87.2 | 171 | 147 | 92.7 | 95.4 | | Nitrobenzene | NS | NS | NS | NS | NS | ND | N-Nitrosodimethylamine | NS | NS | NS | NS | NS | ND | Pentachlorophenol | NS | NS | NS | NS | NS | ND | 1.3 J1c | 1 J1c | ND | ND | ND | ND | | Phenanthrene | NS | NS | NS | NS | NS | ND | 0.9 J1c | 0.63 J1c | 0.73 J | 0.58 J1c | 0.61 J1c | 0.45 J1c | | Phenol | NS | NS | NS | NS | NS | ND | 0.24 J1c | 0.19 J1c | ND | 0.37 JB1c | 0.31 J1c | 0.22 J1c | | Pyrene | NS | NS | NS | NS | NS | ND | 0.54 J1c | 0.34 J1c | 0.57 JIS | 0.27 J1c | 0.4 J1c | 0.25 J1c | | Pyridine | NS | NS | NS | NS | NS | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP21 | 1-PZM004 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | NS | NS | NS | NS | NS | ND | 1,3-Dichlorobenzene | NS | NS | NS | NS | NS | ND | 2,4,5-Trichlorophenol | NS | NS | NS | NS | NS | 3.4 1c | 4.4 1c | 4.3 1c | 2.8 | 3.4 1c | 2.8 1c | 1.6 J1c | | 2,4,6-Trichlorophenol | NS | NS | NS | NS | NS | ND | 2,4-Dichlorophenol | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.12 J1c | ND | | 2,4-Dimethylphenol | NS | NS | NS | NS | NS | 2.7 1c | 4.5 1c | 2.1 1c | 1.7 | 1.1 1c | 1.4 1c | 0.58 J1c | | 2,4-Dinitrophenol | NS | NS | NS | NS | NS | ND | 2,4-Dinitrotoluene | NS | NS | NS | NS | NS | ND | 2,6-Dinitrotoluene | NS | NS | NS | NS | NS | ND | 2-Chloronaphthalene | NS | NS | NS | NS | NS | ND | 2-Chlorophenol | NS | NS | NS | NS | NS | ND | 2-Methylnaphthalene | NS | NS | NS | NS | NS | ND | 0.48 J1c | ND | ND | ND | 0.3 J1c | 0.4 J1c | | 2-Methylphenol | NS | NS | NS | NS | NS | ND | 0.95 J1c | ND | ND | ND | 0.16 J1c | 0.22 J1c | | 2-Nitrophenol | NS | NS | NS | NS | NS | ND | 3&4-Methylphenol | NS | NS | NS | NS | NS | ND | 0.49 J1c | NS | NS | NS | 0.18 J1c | 0.21 J1c | | 3,3'-Dichlorobenzidine | NS | NS | NS | NS | NS | ND | 4,6-Dinitro-2-methylphenol | NS | NS | NS | NS | NS | ND | 4-Bromophenyl phenylether | NS | NS | NS | NS | NS | ND | 4-Chloro-3-methylphenol | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.29 J1c | 0.49 J1c | | 4-Chlorophenyl phenylether | NS | NS | NS | NS | NS | ND | 4-Nitrophenol | NS | NS | NS | NS | NS | ND | Acenaphthene | NS | NS | NS | NS | NS | ND | 0.47 J1c | 0.42 J1c | ND | 0.44 J1c | 0.32 J1c | 0.27 J1c | | Acenaphthylene | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.2 J1c | 0.13 J1c | | Aniline | NS | NS | NS | NS | NS | ND | 0.45 J1c | ND | ND | ND | ND | ND | | Anthracene | NS | NS | NS | NS | NS | ND | 0.3 J1c | ND | ND | ND | 0.12 J1c | 0.13 J1c | | Benz[a]anthracene | NS | NS | NS | NS | NS | ND | Benzo[a]pyrene | NS | NS | NS | NS | NS | ND | Benzo[b]fluoranthene | NS | NS | NS | NS | NS | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Benzo[g,h,i]perylene | NS | NS | NS | NS | NS | ND | Benzo[k]fluoranthene | NS | NS | NS | NS | NS | ND | bis(2-Chloro-1-methylethyl)ether | NS | NS | NS | NS | NS | ND | bis(2-Chloroethoxy)methane | NS | NS | NS | NS | NS | ND | ND | ND | 1.1 | 1.2 1c | 0.46 J1c | 0.41 J1c | | bis(2-Chloroethyl)ether | NS | NS | NS | NS | NS | ND | bis(2-Ethylhexyl)phthalate | NS | NS | NS | NS | NS | ND | ND | 0.29 J1c | 0.48 J | ND | ND | 0.46 J1c | | Butyl benzyl phthalate | NS | NS | NS | NS | NS | ND | Chrysene | NS | NS | NS | NS | NS | ND | Dibenz[a,h]anthracene | NS | NS | NS | NS | NS | ND | Dibenzofuran | NS | NS | NS | NS | NS | ND | Diethylphthalate | NS | NS | NS | NS | NS | ND | ND | 0.6 J1c | 0.58 J | 0.4 J1c | ND | ND | | Dimethylphthalate | NS | NS | NS | NS | NS | ND | Di-n-butylphthalate | NS | NS | NS | NS | NS | ND | 0.3 J1c | ND | ND | ND | ND | ND | | Di-n-octylphthalate | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | 1.2 IS1c | | Fluoranthene | NS | NS | NS | NS | NS | ND | 0.55 J1c | 0.4 J1c | 0.42 J | 0.31 J1c | 0.23 J1c | ND | | Fluorene | NS | NS | NS | NS | NS | ND | 0.25 J1c | ND | ND | 0.68 J1c | ND | ND | | Hexachloro-1,3-butadiene | NS | NS | NS | NS | NS | ND | Hexachlorobenzene | NS | NS | NS | NS | NS | ND | Hexachlorocyclopentadiene | NS | NS | NS | NS | NS | ND | Hexachloroethane | NS | NS | NS | NS | NS | ND |
Indeno[1,2,3-cd]pyrene | NS | NS | NS | NS | NS | ND | Isophorone | NS | NS | NS | NS | NS | ND | Naphthalene | NS | NS | NS | NS | NS | 36.4 | 18 | 10.2 | 12.7 | 4.2 | 29.8 | 11.7 | | Nitrobenzene | NS | NS | NS | NS | NS | ND | ND | ND | ND | 0.26 J1c | 0.12 J1c | ND | | N-Nitrosodimethylamine | NS | NS | NS | NS | NS | ND | Pentachlorophenol | NS | NS | NS | NS | NS | ND | 1.6 J1c | 1.4 J1c | ND | ND | ND | ND | | Phenanthrene | NS | NS | NS | NS | NS | ND | 0.7 J1c | 0.26 J1c | ND | ND | 0.23 J1c | ND | | Phenol | NS | NS | NS | NS | NS | ND | 0.4 J1c | 0.69 J1c | 0.28 J | 0.69 JB1c | 0.26 J1c | 0.31 J1c | | Pyrene | NS | NS | NS | NS | NS | ND | 0.73 J1c | 0.45 J1c | 0.31 J | 0.29 J1c | 0.19 J1c | 0.28 J1c | | Pyridine | NS | NS | NS | NS | NS | ND | | | | | | | | | | | | | | ## Coke Point Landfill Historical SVOCs Intermediate Monitoring Zone | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP02 | ?-PZM026 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS ND | ND | ND | ND | | 1,3-Dichlorobenzene | ND | NS ND | ND | ND | ND | | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | 1.3 J1c | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS 0.66 J | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS 1.3 | 0.43 J1c | ND | 0.82 J1c | | Acenaphthene | ND | NS 0.54 J | ND | ND | 0.38 J1c | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS 0.49 JB | ND | ND | 0.16 J1c | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | 0.77 JB1c | ND | ND | | Fluoranthene | ND | NS 3.1 | 0.58 J1c | 1.2 1c | 1.7 1c | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | ND | ND | ND | ND | ND | 12 ML | ND | 0.12 J1c | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | 0.11 J1c | | Pyrene | ND | NS 1.7 | 0.59 J1c | 0.67 J1c | 1 1c | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|----------| | Location ID: | CP05 | 5-PZM019 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS | NS | NS | NS | ND | 2,4,6-Trichlorophenol | ND | NS | NS | NS | NS | ND | 2,4-Dichlorophenol | ND | NS | NS | NS | NS | ND | 2,4-Dimethylphenol | ND | NS | NS | NS | NS | 3.8 1c | 6.5 1c | 4.7 1c | 2.9 | 2.6 1c | 3.4 1c | 2.3 1c | | 2,4-Dinitrophenol | ND | NS | NS | NS | NS | ND | 2,4-Dinitrotoluene | ND | NS | NS | NS | NS | ND | 2,6-Dinitrotoluene | ND | NS | NS | NS | NS | ND | 2-Chloronaphthalene | ND | NS | NS | NS | NS | ND | 2-Chlorophenol | ND | NS | NS | NS | NS | ND | 2-Methylnaphthalene | ND | NS | NS | NS | NS | 4 1c | 6.3 1c | 3.5 1c | 2.9 | 2.3 1c | 3.3 1c | 2.4 10 | | 2-Methylphenol | ND | NS | NS | NS | NS | 1 1c | 1.5 1c | 1.1 1c | 1 J | 0.44 J1c | 0.75 J1c | 0.51 J1 | | 2-Nitrophenol | ND | NS | NS | NS | NS | ND | 3&4-Methylphenol | ND | NS | NS | NS | NS | 8.2 1c | 12 1c | NS | NS | NS | 6.7 1c | 4.2 10 | | 3,3'-Dichlorobenzidine | ND | NS | NS | NS | NS | ND | 4,6-Dinitro-2-methylphenol | ND | NS | NS | NS | NS | ND | ND | ND | 0.71 J | 0.57 J1c | ND | ND | | 4-Bromophenyl phenylether | ND | NS | NS | NS | NS | ND | 4-Chloro-3-methylphenol | ND | NS | NS | NS | NS | ND | 4-Chlorophenyl phenylether | ND | NS | NS | NS | NS | ND | 4-Nitrophenol | ND | NS | NS | NS | NS | ND | Acenaphthene | 2.9 J | NS | NS | NS | NS | 5.2 1c | 7 1c | 4.9 1c | 4.8 | 2.9 1c | 4.1 1c | 3 1c | | Acenaphthylene | ND | NS | NS | NS | NS | 2.1 1c | 2.8 1c | 2.4 1c | 2.4 | 1.9 1c | 14.8 1c | 1.1 10 | | Aniline | ND | NS | NS | NS | NS | ND | Anthracene | ND | NS | NS | NS | NS | ND | 0.47 J1c | 0.31 J1c | 0.33 J | 0.23 JL21c | 0.17 J1c | ND | | Benz[a]anthracene | ND | NS | NS | NS | NS | ND | Benzo[a]pyrene | ND | NS | NS | NS | NS | ND | Benzo[b]fluoranthene | ND | NS | NS | NS | NS | ND | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Benzo[g,h,i]perylene | ND | NS | NS | NS | NS | ND | Benzo[k]fluoranthene | ND | NS | NS | NS | NS | ND | bis(2-Chloro-1-methylethyl)ether | ND | NS | NS | NS | NS | ND | bis(2-Chloroethoxy)methane | ND | NS | NS | NS | NS | ND | ND | ND | ND | ND | 0.19 J1c | ND | | bis(2-Chloroethyl)ether | ND | NS | NS | NS | NS | ND | bis(2-Ethylhexyl)phthalate | ND | NS | NS | NS | NS | ND | ND | ND | 0.21 JIS | ND | ND | ND | | Butyl benzyl phthalate | ND | NS | NS | NS | NS | ND | Chrysene | ND | NS | NS | NS | NS | ND | Dibenz[a,h]anthracene | ND | NS | NS | NS | NS | ND | Dibenzofuran | ND | NS | NS | NS | NS | 1.4 1c | 1.8 1c | 1.2 1c | 1.2 | 0.88 J1c | 1.1 1c | 0.79 J1c | | Diethylphthalate | ND | NS | NS | NS | NS | ND | Dimethylphthalate | ND | NS | NS | NS | NS | ND | Di-n-butylphthalate | ND | NS | NS | NS | NS | ND | Di-n-octylphthalate | ND | NS | NS | NS | NS | ND | ND | ND | ND | 0.63 JB1c | ND | ND | | Fluoranthene | ND | NS | NS | NS | NS | ND | 0.39 J1c | 0.29 J1c | 0.3 J | 0.22 J1c | 0.17 J1c | ND | | Fluorene | ND | NS | NS | NS | NS | 1.9 1c | 2.7 1c | 1.7 1c | 1.6 | 1.4 L21c | 1.6 1c | 1 1c | | Hexachloro-1,3-butadiene | ND | NS | NS | NS | NS | ND | Hexachlorobenzene | ND | NS | NS | NS | NS | ND | Hexachlorocyclopentadiene | ND | NS | NS | NS | NS | ND | Hexachloroethane | ND | NS | NS | NS | NS | ND | Indeno[1,2,3-cd]pyrene | ND | NS | NS | NS | NS | ND | Isophorone | ND | NS | NS | NS | NS | ND | Naphthalene | 12 | NS | NS | 161 | 216 | 184 | 191 | 126 | 180 | 172 | 131 | 14.7 | | Nitrobenzene | ND | NS | NS | NS | NS | ND | N-Nitrosodimethylamine | ND | NS | NS | NS | NS | ND | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS | NS | NS | NS | ND | ND | 1.3 J1c | ND | ND | ND | ND | | Phenanthrene | ND | NS | NS | NS | NS | 1.8 1c | 2.6 1c | 1.7 1c | 1.9 | 1.4 1c | 1.1 1c | 0.77 J1c | | Phenol | 3.3 J | NS | NS | NS | NS | 14.2 1c | 18.4 1c | 15.1 1c | 14.8 | 7.9 1c | 11.8 1c | 6.7 1c | | Pyrene | ND | NS | NS | NS | NS | ND | 0.31 J1c | ND | ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | ND | NS | NS | NS | NS | ND | 0.79 J1c | 0.56 J1c | 0.69 J | ND | 0.65 J1c | 0.43 J1c | | Parameter |
8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|----------| | Location ID: | CP05 | 5-PZM028 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 1,3-Dichlorobenzene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 2,4,5-Trichlorophenol | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 2,4,6-Trichlorophenol | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 2,4-Dichlorophenol | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 2,4-Dimethylphenol | NS | NS | 2.9 | 6.1 | 5.5 | NS | NS | NS | NS | 2.5 1c | 3 | 1.5 1c | | 2,4-Dinitrophenol | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 2,4-Dinitrotoluene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 2,6-Dinitrotoluene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 2-Chloronaphthalene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 2-Chlorophenol | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 2-Methylnaphthalene | NS | NS | 11.4 | 2.2 | 2.6 | NS | NS | NS | NS | 1.4 1c | 0.97 J | 0.74 J1c | | 2-Methylphenol | NS | NS | ND | 1.7 | 1.5 | NS | NS | NS | NS | 0.57 J1c | 0.64 J | 0.24 J1c | | 2-Nitrophenol | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 3&4-Methylphenol | NS | NS | 3.5 | 14.7 | 12.4 | NS | NS | NS | NS | NS | 6.2 | 1.8 J1c | | 3,3'-Dichlorobenzidine | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | NS | NS | ND | ND | ND | NS | NS | NS | NS | 0.53 J1c | ND | ND | | 4-Bromophenyl phenylether | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 4-Chloro-3-methylphenol | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 4-Chlorophenyl phenylether | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | 4-Nitrophenol | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Acenaphthene | NS | NS | 12.4 | 3.5 | 4.2 | NS | NS | NS | NS | 2.2 1c | 2.1 | 1.6 1c | | Acenaphthylene | NS | NS | 2.7 | 1.5 | 1.6 | NS | NS | NS | NS | ND | 16.9 | ND | | Aniline | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Anthracene | NS | NS | ND | ND | ND | NS | NS | NS | NS | 0.33 JL21c | 0.33 J | 0.21 J1c | | Benz[a]anthracene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Benzo[a]pyrene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Benzo[b]fluoranthene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|----------| | Benzo[g,h,i]perylene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Benzo[k]fluoranthene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | bis(2-Chloroethoxy)methane | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | 0.16 J | ND | | bis(2-Chloroethyl)ether | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | 0.18 J1c | | Butyl benzyl phthalate | NS | NS | ND | ND | ND | NS | NS | NS | NS | 0.16 J1c | ND | ND | | Chrysene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Dibenz[a,h]anthracene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Dibenzofuran | NS | NS | 4.9 | ND | ND | NS | NS | NS | NS | 0.61 J1c | 0.55 J | 0.28 J1c | | Diethylphthalate | NS | NS | 2.1 | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Dimethylphthalate | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Di-n-butylphthalate | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Di-n-octylphthalate | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Fluoranthene | NS | NS | 1.6 | ND | ND | NS | NS | NS | NS | 0.35 J1c | 0.53 J | 0.49 J1c | | Fluorene | NS | NS | 6.6 | ND | 1.2 | NS | NS | NS | NS | 0.83 JL21c | 0.93 J | 0.45 J1c | | Hexachloro-1,3-butadiene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Hexachlorobenzene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Hexachlorocyclopentadiene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Hexachloroethane | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Isophorone | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Naphthalene | NS | NS | 239 | 99.1 | 132 | NS | NS | NS | NS | 92.2 | 87.5 | 6.7 | | Nitrobenzene | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | N-Nitrosodimethylamine | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Pentachloroethane | NS | Pentachlorophenol | NS | NS | ND | ND | ND | NS | NS | NS | NS | ND | ND | ND | | Phenanthrene | NS | NS | 8.5 | ND | ND | NS | NS | NS | NS | 1.5 1c | 1.9 | 1.2 1c | | Phenol | NS | NS | 20.2 | 23.3 | 18.4 | NS | NS | NS | NS | 7.1 1c | 9.5 | 2.5 1c | | Pyrene | NS | NS | ND | ND | ND | NS | NS | NS | NS | 0.26 J1c | 0.32 J | 0.29 J1c | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | NS | NS | ND | 2.2 | 1.3 | NS | NS | NS | NS | 0.32 J1c | 0.45 J | 0.21 J1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP08 | 8-PZM034 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS ND | ND | ND | ND | | 1,3-Dichlorobenzene | ND | NS ND | ND | ND | ND | | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS 0.8 J | 0.57 J1c | 0.24 J1c | 0.3 J1c | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS 0.7 J1c | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS 0.61 J | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS 0.48 JB | ND | ND | ND | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS 0.33 J | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | 0.1 J1c | ND | ND | | Di-n-octylphthalate | ND | NS ND | 0.69 JB1c | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | 3.5 | ND | ND | 0.97 J | 2.1 | ND | ND | 0.25 JB1c | 6.3 | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | 0.36 JB1c | 0.2 J1c | ND | | Pyrene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------
----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|----------| | Location ID: | CP09 | 9-PZM047 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS ND | ND | ND | ND | | 1,3-Dichlorobenzene | ND | NS ND | ND | ND | ND | | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS 0.68 J | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS 1.5 | 0.92 J1c | 0.29 J | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS 0.63 J | 0.43 JL21c | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|------------| | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS 0.31 JIS | 0.28 JCH1c | 0.21 J | 0.54 JIS1c | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS 0.35 J | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS 0.29 JIS | 0.64 JB1c | ND | ND | | Fluoranthene | ND | NS 1.5 | 1.1 1c | 0.29 J | ND | | Fluorene | ND | NS 1.1 | 0.81 JL21c | ND | ND | | Hexachloro-1,3-butadiene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | ND | ND | 0.91 J | 0.54 J | 16 | 11.6 | ND | ND | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | 5.5 | NS 3.2 | 2.4 1c | 0.24 J | ND | | Phenol | ND | NS ND | ND | ND | ND | | Pyrene | ND | NS 1.6 IS | 0.85 J1c | 0.18 J | 0.15 JIS1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP12 | 2-PZM052 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS ND | ND | ND | ND | | 1,3-Dichlorobenzene | ND | NS ND | ND | ND | ND | | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS 0.65 J | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------| | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | ois(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | ois(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | 0.33 JIS1c | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | 0.11 J1c | ND | ND | | Di-n-octylphthalate | ND | NS ND | 0.7 JB1c | ND | ND | | Fluoranthene | ND | NS ND | 0.14 J1c | 0.15 J1c | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | ndeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | sophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | 3.7 | ND | 3.3 | ND | 4.4 | ND | ND | ND | 0.4 J1c | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | ND | | Pyrene | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP14 | 1-PZM062 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS ND | ND | ND | ND | | 1,3-Dichlorobenzene | ND | NS ND | ND | ND | ND | | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | |
Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS 0.81 J | ND | 0.16 J | 0.16 JB | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | 0.28 J | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | 0.64 JB1c | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | ND | ND | ND | ND | ND | 1.9 J | 1.1 J | 1.2 J | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | 0.23 JB1c | ND | ND | | Pyrene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP15 | 5-PZM042 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS ND | ND | ND | ND | | 1,3-Dichlorobenzene | ND | NS ND | ND | ND | ND | | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS 2.8 | ND | ND | 1.7 1c | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | 0.12 J1c | | 2-Methylphenol | ND | NS 3.1 | ND | ND | 0.51 J1c | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | 1.4 J1c | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS 0.7 J | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS 1.2 | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|-------------| | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS 0.22 JIS | ND | ND | 0.23 JIS1c | | Butyl benzyl phthalate | ND | NS 5.1 IS | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS 0.36 J | ND | ND | ND | | Dimethylphthalate | ND | NS 2 | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | 0.16 J1c | ND | ND | | Di-n-octylphthalate | ND | NS 0.45 JIS | 0.7 JB1c | ND | ND | | Fluoranthene | ND | NS 0.38 J | ND | ND | 0.091 JIS1c | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | 5.3 | 3.4 | 3.8 | 7.1 | ND | 17.2 | ND | 0.87 J | 3.6 | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS 1.2 | ND | ND | 0.45 JIS1c | | Phenol | ND | NS 7.9 | 0.25 JB1c | ND | 0.57 J1c | | Pyrene | ND | NS 0.38 JIS | ND | ND | 0.3 JIS1c | | | | | | | | | | | | | | | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | ND | NS 2.6 | ND | ND | 0.38 J1c | | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | CP16 | 6-PZM035 | | ug/L | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | ND | ND | ND | NS | ND | 1,3-Dichlorobenzene | ND | ND | ND | ND | NS | ND | 1-Methylnaphthalene | NS | 1.5 N2 | NS | 2,4,5-Trichlorophenol | ND | ND | ND | ND | NS | ND | 2,4,6-Trichlorophenol | ND | ND | ND | ND | NS | ND | 2,4-Dichlorophenol | ND | ND | ND | ND | NS | ND | 2,4-Dimethylphenol | 8.4 | 6.1 | ND | 9.7 | NS | 11.8 1c | 10.7 1c | 11.4 1c | 6.2 | 9.2 1c | 10.3 1c | 6 1c | | 2,4-Dinitrophenol | ND | ND | ND | ND | NS | ND | 2,4-Dinitrotoluene | ND | ND | ND | ND | NS | ND | 2,6-Dinitrotoluene | ND | ND | ND | ND | NS | ND | 2-Chloronaphthalene | ND | ND | ND | ND | NS | ND | 2-Chlorophenol | ND | ND | ND | ND | NS | ND | 2-Methylnaphthalene | ND | ND | 1.2 | 2.7 | NS | 2.9 1c | 2.5 1c | 1.2 1c | 0.67 J | 0.79 J1c | 1.1 1c | 0.44 J1c | | 2-Methylphenol | 5.2 | 3.4 | 3.4 | 4.7 | NS | 4.3 1c | 3.6 1c | 2.4 1c | 2.3 | 2.6 1c | 2.5 1c | 2.1 1c | | 2-Nitroaniline | NS | ND | NS | 2-Nitrophenol | ND | ND | ND | ND | NS | ND | 3&4-Methylphenol | 9.5 | 7.3 | 7.2 | 10.7 | NS | 11.1 1c | 9.3 1c | NS | NS | NS | 7.3 1c | 6.3 1c | | 3,3'-Dichlorobenzidine | ND | ND | ND | ND | NS | ND | 3-Nitroaniline | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND | ND | ND | ND | NS | ND | 4-Bromophenyl phenylether | ND | ND | ND | ND | NS | ND | 4-Chloro-3-methylphenol | ND | ND | ND | ND | NS | ND | 4-Chloroaniline | NS | ND | NS | 4-Chlorophenyl phenylether | ND | ND | ND | ND | NS | ND | 4-Nitroaniline | NS | ND | NS | 4-Nitrophenol | ND | ND | ND | ND | NS | ND | Acenaphthene | 4.7 J | 3.2 | 4 | 7.7 | NS | 9.4 1c | 8.3 1c | 5.6 1c | 3 | 3.4 1c | 5.6 1c | 2.2 1c | | Acenaphthylene | ND | ND | ND | 1.6 | NS | 1.7 1c | 1.4 1c | ND | ND | ND | 6.8 1c | ND | | Anthracene NO | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 |
--|----------------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Arabenzene NS ND NS | Aniline | ND | NS | ND | ND | NS | 3.2 1c | 5.6 1c | 2.8 1c | 19.5 J | ND | 1.3 J1c | ND | | Servical algorithracenee No No No No No No No | Anthracene | ND | ND | 1.8 | 2.7 | NS | 3.1 1c | 2.7 1c | 1.8 1c | 0.91 J | 0.7 J1c | 1.4 1c | 0.61 J1c | | Benzo(alpyrene ND ND ND ND ND ND ND N | Azobenzene | NS | ND | NS | Serzo Serz | Benz[a]anthracene | ND | ND | ND | ND | NS | ND | Benzolgs,hilperylene | Benzo[a]pyrene | ND | ND | ND | ND | NS | ND | Benzola Renzola ND | Benzo[b]fluoranthene | ND | ND | ND | ND | NS | ND | Benzola acid NS ND NS | Benzo[g,h,i]perylene | ND | ND | ND | ND | NS | ND | Benzyl alcohol NS ND NS NS NS NS NS NS | Benzo[k]fluoranthene | ND | ND | ND | ND | NS | ND | Distance No | Benzoic acid | NS | ND | NS | bis(2-Chloroethoxy)methane ND <th< td=""><td>Benzyl alcohol</td><td>NS</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></th<> | Benzyl alcohol | NS | ND | NS | Distance ND ND ND ND ND ND ND N | bis(2-Chloro-1-methylethyl)ether | ND | ND | ND | ND | NS | ND | District | bis(2-Chloroethoxy)methane | ND | ND | ND | ND | NS | ND | Butyl benzyl phthalate | bis(2-Chloroethyl)ether | ND | ND | ND | ND | NS | ND | ND | ND | 3.1 | ND | ND | ND | | Carbazole NS 3.9 NS ND | bis(2-Ethylhexyl)phthalate | ND | ND | ND | ND | NS | ND | 0.3 J1c | 0.34 J1c | ND | ND | ND | ND | | Chrysene ND < | Butyl benzyl phthalate | ND | ND | ND | ND | NS | ND | ND | ND | 0.55 J | ND | ND | ND | | Dibenz[a,h]anthracene ND ND ND ND ND ND ND N | Carbazole | NS | 3.9 | NS | Dibenzofuran ND ND ND 1.4 2.6 NS 3 1c 2.6 1c 1.4 1c 0.82 J 0.85 J1c 1.6 1c 0.56 J1c | Chrysene | ND | ND | ND | ND | NS | ND | Diethylphthalate ND | Dibenz[a,h]anthracene | ND | ND | ND | ND | NS | ND | Dimethylphthalate ND | Dibenzofuran | ND | ND | 1.4 | 2.6 | NS | 3 1c | 2.6 1c | 1.4 1c | 0.82 J | 0.85 J1c | 1.6 1c | 0.56 J1c | | Di-n-butylphthalate ND | Diethylphthalate | ND | ND | ND | ND | NS | ND | Di-n-octylphthalate ND ND ND ND ND ND ND ND 0.68 JB1c ND ND Fluoranthene ND ND 1.7 3 NS 3.4 1c 2.7 1c 1.7 1c 1 0.82 J1c 1.4 1c 0.67 J1 Fluorene ND ND 1.5 2 4 NS 4.8 1c 4 1c 2.4 1c 1.3 1.5 1c 2.5 1c 0.93 J1 Hexachloro-1,3-butadiene ND | Dimethylphthalate | ND | ND | ND | ND | NS | ND | Fluoranthene | Di-n-butylphthalate | ND | ND | ND | ND | NS | ND | Fluorene | Di-n-octylphthalate | ND | ND | ND | ND | NS | ND | ND | ND | ND | 0.68 JB1c | ND | ND | | Hexachloro-1,3-butadiene ND | Fluoranthene | ND | ND | 1.7 | 3 | NS | 3.4 1c | 2.7 1c | 1.7 1c | 1 | 0.82 J1c | 1.4 1c | 0.67 J1c | | Hexachlorobenzene ND | Fluorene | ND | 1.5 | 2 | 4 | NS | 4.8 1c | 4 1c | 2.4 1c | 1.3 | 1.5 1c | 2.5 1c | 0.93 J1c | | Hexachlorocyclopentadiene ND | Hexachloro-1,3-butadiene | ND | ND | ND | ND | NS | ND | Hexachloroethane ND | Hexachlorobenzene | ND | ND | ND | ND | NS | ND | | Hexachlorocyclopentadiene | ND | ND | ND | ND | NS | ND | Indeno[1,2,3-cd]pyrene ND | Hexachloroethane | ND | ND | ND | ND | NS | ND | | Indeno[1,2,3-cd]pyrene | ND | ND | ND | ND | NS | ND | Parameter | 8/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 6/1/2015 | 12/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Isophorone | ND | ND | ND | ND | NS | ND | 0.34 J1c | 0.27 J1c | ND | ND | ND | ND | | Naphthalene | 78 | 49.7 | 56.9 | 161 | 189 | 183 | 174 | 90.2 | 103 | 90.2 | 113 | 51.5 | | Nitrobenzene | ND | ND | ND | ND | NS | ND | N-Nitrosodimethylamine | ND | ND | ND | ND | NS | ND | N-Nitroso-di-n-propylamine | NS | ND | NS | N-Nitrosodiphenylamine | NS | ND | NS | Pentachloroethane | ND | NS | Pentachlorophenol | ND | ND | ND | ND | NS | ND | ND | 1.4 J1c | ND | ND | ND | ND | | Phenanthrene | 5.8 | 4 | 7.2 | 10.9 | NS | 12.4 1c | 10.9 1c | 7.6 1c | 4.8 | 3.8 1c | 6.3 1c | 2.9 1c | | Phenol | 57 | 40.6 | 46 | 70.2 | NS | 58.4 1c | 73.5 1c | 30.5 1c | 22.6 | 32.2 1c | 31.4 1c | 18.8 1c | | Pyrene | ND | ND | ND | 2 | NS | 1.6 1c | 1.3 1c | 0.87 J1c | 0.77 J | 0.39 J1c | 0.64 J1c | 0.35 J1c | | Pyridine | 5.2 | NS | 4.6 | 5 | NS | 4.4 1c | 4.6 1c | 2.5 1c | 3.2 | 3.1 1c | 3.1 1c | 2.8 1c | ## APPENDIX D Greys Landfill Historical VOC Concentrations ## EnviroAnalytics Group ## Greys Landfill Historical VOCs Shallow Monitoring Zone | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -02 (-5) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | NS | NS | ND | 1,1,1-Trichloroethane | ND | ND | ND | NS | NS | ND | 1,1,2,2-Tetrachloroethane | ND | ND | ND | NS | NS | ND | 1,1,2-Trichloroethane | ND | ND | ND | NS | NS | ND | 1,1-Dichloroethane | 22 | 23 | 11.1 | NS | NS | 25.8 | ND | 22 | 32.2 | 24.8 | 27.5 | 24.2 | 19.4 | | 1,1-Dichloroethene | ND | ND | ND | NS | NS | ND | 1,1-Dichloropropene | NS | NS | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | ND | ND | NS | NS | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | ND | ND | NS | NS | ND | 1,2-Dibromoethane | ND | ND | ND | NS | NS | ND | 1,2-Dichlorobenzene | ND | ND | ND | NS | NS | ND | 1,2-Dichloroethane | ND | ND | ND | NS | NS | ND | 1,2-Dichloropropane | ND | ND | ND | NS | NS | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | ND | ND | NS | NS | ND | 2,2-Dichloropropane | NS | NS | NS | NS | NS | ND | 2-Butanone | ND | ND | ND | NS | NS | ND | 2-Chloroethylvinyl ether | NS | NS | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | NS | NS | ND | 2-Hexanone | ND | ND | ND | NS | NS | ND | 4-Chlorotoluene | NS | NS | NS | NS | NS | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | 4-Methyl-2-pentanone | ND | ND | ND | NS | NS | ND | Acetone | ND | ND | 5.2 | NS | NS | ND | ND | ND | ND | 10 J | 32.8 | 6.1 J | 10.4 | | Acetonitrile | NS | NS | NS | NS | NS | ND | Acrolein | NS | NS | NS | NS | NS | ND | Acrylonitrile | ND | ND | ND | NS | NS | ND | Allyl chloride | NS | NS | NS | NS | NS | ND | Benzene | 6.4 | 6.6 | 9.9 | NS | NS | ND | ND | 1.9 | 10.6 | 1.1 | ND | ND | ND | | Bromobenzene | NS | NS | NS | NS | NS | ND | Bromochloromethane | ND | ND | ND | NS | NS | ND | Bromodichloromethane | ND | ND | ND | NS | NS | ND | Bromoform | ND | ND | ND | NS | NS | ND | Bromomethane | ND | ND | ND | NS | NS | ND | Carbon Disulfide | ND | ND | ND | NS | NS | ND | Carbon Tetrachloride | ND | ND | ND | NS | NS | ND | Chlorobenzene | ND | ND | ND | NS | NS | ND | Chloroethane | ND | 0.47 J | ND | NS | NS | ND | Chloroform | ND | ND | ND | NS | NS | ND | Chloromethane | ND | ND | ND | NS | NS | ND | Chloroprene | NS | NS | NS | NS | NS | ND | cis-1,2-Dichloroethene | 4.1 | 4.9 | 3.2 | NS | NS | 19.1 | ND | 12 | 15.3 | 13.5 | 14.3 | 12.6 | 12.6 | | cis-1,3-Dichloropropene | ND | ND | ND | NS | NS | ND | Dibromochloromethane | ND | ND | ND | NS | NS | ND | Dibromomethane | ND | ND | ND | NS | NS | ND | Dichlorodifluoromethane | NS | NS | NS | NS | NS | ND | Ethyl
methacrylate | NS | NS | NS | NS | NS | ND | Ethylbenzene | ND | ND | ND | NS | NS | ND | Iodomethane | ND | ND | ND | NS | NS | ND | ND | ND | ND | ND | ND | 2.2 CL | ND | | Isopropylbenzene (Cumene) | NS | NS | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Methyl methacrylate | NS | NS | NS | NS | NS | ND | Methyl tertiary-butyl ether | 0.77 J | 1 | ND | NS | NS | ND | ND | ND | 0.79 J | 0.54 J | ND | 0.25 J | ND | | Methylene Chloride | ND | ND | ND | NS | NS | ND | n-Butylbenzene | NS | NS | NS | NS | NS | ND | n-Propylbenzene | NS | NS | NS | NS | NS | ND | o-Xylene | NS | NS | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | NS | NS | ND | Propionitrile | NS | NS | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | NS | NS | ND | Styrene | ND | ND | ND | NS | NS | ND | tert-Butylbenzene | NS | NS | NS | NS | NS | ND | Tetrachloroethene | ND | ND | ND | NS | NS | ND | Toluene | ND | ND | ND | NS | NS | ND | trans-1,2-Dichloroethene | ND | 0.21 J | ND | NS | NS | ND | ND | ND | 0.36 J | ND | ND | ND | ND | | trans-1,3-Dichloropropene | ND | ND | ND | NS | NS | ND | trans-1,4-Dichloro-2-butene | ND | ND | ND | NS | NS | ND | Trichloroethene | ND | ND | ND | NS | NS | 1 | ND | 0.41 J | ND | 0.38 J | ND | 0.35 J | 0.45 J | | Trichlorofluoromethane | ND | ND | ND | NS | NS | ND | Vinyl Acetate | ND | ND | ND | NS | NS | ND | Vinyl Chloride | 1 | 0.96 J | ND | NS | NS | ND | ND | 1.1 | 2.2 | 1.5 | 1.2 | 1.7 | ND | | Xylenes | 9 | 0.49 J | ND | NS | NS | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 03 (-3) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | ND | 3.5 | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | ND | 1.5 | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 19.8 | 5.7 J | 5 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 2.4 | 0.81 J | 1.3 | 7.7 | ND | 1.3 | 1.8 | 4.6 | 1.5 | 6.7 | 1.2 | 2.5 | 3.1 | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND 0.49 J | ND | ND | ND | ND | ND | | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND 0.47 J | ND | ND | ND | | Iodomethane | ND 3.1 CL | ND | | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | ND | ND | ND | ND | ND | 1.5 J | ND | ND | ND | | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | ND | ND | ND | ND | ND | 0.68 J | ND | ND | ND | | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND 0.49 J | ND | 0.27 J | ND | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 5 | ND 2.2 J | ND | ND | ND | | Location ID: | GL
ND | -05 (-7) | | | | | | | | | | | | |----------------------------|----------|----------|----|------|----|----|----|----|----|----|------|----|------| | | ND | | | ug/L | | | | | | | | | | | ,1,1,2-Tetrachloroethane | | ND | 1,1,1-Trichloroethane | ND | ,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | ,1-Dichloroethane | ND | 0.86 J | ND | ,1-Dichloroethene | ND | ,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | ,2-Dibromo-3-chloropropane | ND | ,2-Dibromoethane | ND | ,2-Dichlorobenzene | ND | ,2-Dichloroethane | ND | ,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | .,3-Dichloropropane | NS | NS | NS | ND | ,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | I-Chlorotoluene | NS | NS | NS | ND | l-Methyl-2-pentanone | ND | Acetone | ND 37.9 | ND | 11.4 | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND 0.68 JCLB | ND | | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND 0.4 J | 0.27 J | ND | | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 08 (-3) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | ND | 1.7 | 1.3 | ND | ND | 1.3 | ND | 1.4 | 1.2 | ND | ND | ND | | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | 15.8 | ND | ND | 53 | 39.9 | 42.8 | 21.6 | 17 | 22.1 | 16.7 | | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | 7.3 | ND | ND |
23.8 | 17.5 | 18.6 | 9.4 | 8.1 | 10.2 | 7.5 | | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | ND | 6.5 | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | ND | 5.6 | ND | Acetone | ND | ND | 13.1 | 8.6 | ND | ND | ND | ND | 7.8 J | ND | 68.8 | ND | 25.7 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 160 J | 190 | 168 | 117 | 155 | 213 | 171 | 173 | 152 | 115 | 109 | 120 | 96.1 | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND 1.6 | ND | ND | ND | | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | ND | ND | ND | ND | ND | 3.8 | ND | ND | ND | ND | ND | ND | | Chloroform | ND 1.2 J | 3.6 J | | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | ND | 7.8 | 3.6 | ND | ND | 10.4 | 9.7 | 9.2 | 4.6 | 4.6 J | 7.1 | 3.7 J | | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | ND | ND | 2.3 | ND | 5.7 | 0.96 J | ND | ND | ND | | m&p-Xylene | NS | NS | NS | 42.3 | ND | 122 | 150 | 131 | 135 | 48.4 | 46.1 | 80.5 | 46.1 | | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | ND | ND | 3 | 1.7 | 6 | 1.6 | ND | 1.4 J | ND | | o-Xylene | NS | NS | NS | 19.7 | ND | 59.7 | 62.8 | 57.8 | 56.6 | 23.1 | 24.4 | 36.9 | 22.8 | | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | ND | 3.7 | ND | ND | ND | ND | 7.4 | 6.4 | 1.7 | ND | 3.8 J | ND | | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | ND | ND | ND | ND | ND | 1.1 | ND | 0.52 J | ND | ND | ND | ND | | Toluene | 390 | 600 | 386 | 248 | 474 | 707 | 792 H1H5 | 749 | 613 | 250 | 294 | 406 | 261 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 360 J | 150 | 152 | 62 | 94.6 | 182 | 213 | 189 | 192 | 71.6 | 70.5 | 117 | 68.9 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 09 (-2) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | 1.9 | 1.9 | 3.3 | 3.1 | 3.1 | 2 | 3.9 | 2.2 | 2.1 | 1.7 | | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | ND | 1.8 | 1.7 | 1.7 | ND | 1.7 | 1.1 | 1.1 | 0.8 J | | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | 8.3 | 20 | 19 | 7.2 | 14.5 | 24 | 10.2 | 30.4 | 12 | 70.5 | 18 | 43 | 11.7 | | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | ND | 6.4 | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | ND | 5.9 | ND | ND | ND | ND | ND | ND | 7.3 J | ND | 5.7 J | ND | | Acetone | 82 | 140 | 121 | 44.2 | 87.1 | 229 | 52.1 | 195 | 83.4 | 556 | 130 | 269 | 84.4 | | Acetonitrile | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 0.9 J | 0.88 J | 1.2 | ND | ND | 1.6 | 1 | 1.6 | 0.95 J | 1.2 | 0.99 J | 1.2 | 0.86 J | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND 0.74 J | ND | ND | ND | | Carbon Disulfide | 1.8 | ND | ND | ND | ND | 2 | ND | 1.7 | 1.2 | ND | ND | 1.9 | ND | | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND 3.5 | ND | ND | ND | ND | ND | | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND 0.69 J | ND | 0.33 J | ND | | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | ND | 4.7 | ND | m&p-Xylene | NS | NS | NS | ND | ND | ND | ND | ND | ND | 1.2 J | ND | 0.85 J | ND | | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | ND | 6 | ND | o-Xylene | NS | NS | NS | ND | ND | 1.1 | ND | ND | ND | 0.9 J | ND | 0.79 J | ND | | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | 2.7 | 1.6 | 3.1 | 2.4 | 2 | 4.3 | 2.1 | 3.8 | 2.8 | 3.2 | 2.3 | 3.3 | 2.2 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 5.8 | 0.69 J | ND | ND | ND | 2.1 | ND | ND | ND | 2.1 J | ND | 1.6 J | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 10 (-1) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 21.5 MH | ND | ND | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | ND | ND | 2.6 | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND |
Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 11 (-1) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 20.2 | 7 J | 6.7 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 12 (-3) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 18.7 | ND | ND | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -13 (+1) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 24.2 | ND | 48.2 | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene |
ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -14 (+1) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 17.2 | ND | 8.4 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND 0.68 J | ND | ND | ND | ND | ND | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 15 (-6) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND | 16 J | 9 | ND 22.2 | 6.3 J | 5.4 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | ND | ND | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND 2.4 | ND | | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | NS | NS | ND | Xylenes | ND | Lasatian ID. | GI | | | | | | | | | , , | | , , | 5/1/2018 | |-----------------------------|-----|---------|----|------|----|----|----|----|----|-----|----|-----|----------| | Location ID: | OL. | 16 (-6) | | ug/L | | | | | | | | | | | .,1,1,2-Tetrachloroethane | ND | .,1,1-Trichloroethane | ND | .,1,2,2-Tetrachloroethane | ND | .,1,2-Trichloroethane | ND | .,1-Dichloroethane | ND | 0.5 J | ND | .,1-Dichloroethene | ND | .,1-Dichloropropene | NS | NS | NS | ND | .,2,3-Trichlorobenzene | NS | NS | NS | ND | .,2,3-Trichloropropane | ND | .,2,4-Trimethylbenzene | NS | NS | NS | ND | .,2-Dibromo-3-chloropropane | ND | .,2-Dibromoethane | ND | .,2-Dichlorobenzene | ND | .,2-Dichloroethane | ND | .,2-Dichloropropane | ND | .,3,5-Trimethylbenzene | NS | NS | NS | ND | .,3-Dichloropropane | NS | NS | NS | ND | .,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | -Butanone | ND | -Chloroethylvinyl ether | NS | NS | NS | ND | ?-Chlorotoluene | NS | NS | NS | ND | -Hexanone | ND | -Chlorotoluene | NS | NS | NS | ND | -Methyl-2-pentanone | ND | Acetone | ND 15 | ND | 16.2 | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND |
Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | 6.9 | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND 0.68 J | 0.63 J | 0.5 J | 0.49 J | | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND 0.28 J | ND | ND | ND | ND | | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 17 (-1) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | ND | 7.2 | 7.9 | 6.2 | 8.2 | 6 | 7.2 | 7.9 | 6.4 | 6.5 | 7.1 | 6.3 | | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | 1.6 | 1.5 | 2.2 | 1.9 | 1.8 | 1.7 | 1.9 | ND | 1.1 | ND | | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | ND | 1.1 | ND | ND | ND | 0.81 J | ND | 0.47 J | ND | | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | ND | ND | 17.7 | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | ND | 42.8 | 54.6 | 46.2 | 52.2 | 49.3 | 55.2 | 32.7 | 44.3 | 43.7 | 51.6 | 40.9 | | Acetone | ND | ND | 9 | 10.7 | ND | ND | 12.6 L2 | 17.3 | 6.5 J | ND | 22.2 | 16.4 | 11.9 | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 8,000 | 7,400 | 8,280 | 10,100 | 7,320 | 8,080 | 8,780 | 8,810 | 7,960 | 6,570 | 6,610 | 6,270 | 6,070 | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND 1.1 | ND | ND | ND | | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND 0.42 J | 0.47 J | ND | ND | 0.32 J | ND | | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | ND | 1.2 | 1.3 | 1.2 | 1.6 | 1.3 | 1.7 | 1.5 | 1.3 | 1.3 | 1.4 | 1.3 | | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | ND | 2.1 | 2.2 | 2 | 3.2 | 2.4 | 3 | 2.7 | 2.7 | 2.7 | 2.3 | 2 | | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | 3.8 | 3.2 | 4.9 | 3.1 | 4.2 | 4.9 | 4 | 3.9 | 3.5 | 3.2 | | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND 0.39 J | ND | 0.36 J | 0.34 J | | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | 3.7 | 3.5 | 5.1 | 3.8 | 4.7 | 5.2 | 3.8 | 3.8 | 3.5 | 3.1 | | p-Isopropyltoluene | NS | NS | NS | ND | ND | 1 | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | ND | 6 | 7.7 | 6.3 | 9.5 | 7.4 | 8.4 | 7.1 | 6.5 | 7.1 | 7.1 | 6.8 | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | ND | ND | 1.1 | ND | 1.2 | 1.1 | 0.97 J | 1.1 | 0.7 J | 0.98 J | 1.4 | 1.3 | | Xylenes | ND | ND | 9.8 | 7.5 | 6.7 | 10 | 6.8 | 8.9 | 10.1 | 7.7 | 7.7 | 7 | 6.3 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 18 (-3) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 33 J | 38.2 | 30.9 | 29.1 | 39.4 | 22.2 | 29.8 | 25.6 | 20.5 | 15.9 | 17.4 | 14.3 | | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | 39.4 | 57.4 | 61.5 | 60.9 | 53.7 | 52.2 | 44.4 | 48.1 | 40.7 | 41 | | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | 12.7 | 19.4 | 21.8 | 20.2 | 18.2 | 17.3 | 14.7 | 16.8 | 14.1 | 14 | | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | ND | 6.3 | 8.9 | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | ND | 9.9 | 6.8 | 9 | 8.6 | 10 | 9.4 J | 11.6 | 7.5 J | 5.5 J | 6.2 J | 5.7 J | | Acetone | ND | ND | 9.3 | 12 | 6.7 | 8.8 | 10.4 L2 | 10.2 | 12 | 19.3 | 36.6 | 15 | 13.5 | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 920 | 1,100 | 976 | 981 | 1,000 | 997 | 908 | 810 | 733 | 669 | 1,250 | 629 | 607 | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND 0.74 J | ND | ND | ND | | Carbon Disulfide | ND | ND | ND | 2.1 | ND | ND | 1.4 | ND | ND | 1.8 | ND | 1.2 | ND | | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | ND | ND | ND | ND | ND | 2.4 | ND | ND | ND | ND | ND | ND | | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | ND | 5 | 4.5 | 3.9 | 5.6 | 3.9 | 4.9 | 4.6 L1 | 3.8 | 3.3 | 3.3 | 3 | | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | ND | 11 | 9.2 | 10.7 | 12.5 | 9.9 | 9.8 | 9.2 | 8.7 | 8.4 | 8.3 | 8.4 | | lodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | 1.7 | ND | 2.6 | 2.4 | 2 | 5.8 | 1.6 | 2 | 1.6 | 1.5 | | m&p-Xylene | NS | NS | NS | 98.2 | 114 | 136 | 106 | 105 | 108 | 91.6 | 93.6 | 86.6 | 85.9 | | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND 0.26 J | ND | ND | ND | | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | ND | ND | ND | ND | ND | 0.6 J | 0.5 J | 0.62 J | 0.47 J | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | 2.5 | ND | 4.3 | 3.9 | 3.7 | 6.8 | 2.8 | 3.3 | 2.7 | 2.5 | | o-Xylene | NS | NS | NS | 45.7 | 54.2 | 61.2 | 48.2 | 49.9 | 49 |
42.7 | 42.1 | 40.5 | 40.9 | | p-Isopropyltoluene | NS | NS | NS | ND | 5.1 | 2.6 | 2.4 | 2 | 2.2 | 1.9 | 1.7 | 1.7 | 1.6 | | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | ND | 1.4 | 1.4 | 1.1 | ND | 0.81 J | 0.97 J | 0.95 J | 0.87 J | | Styrene | ND | ND | 9 | 4 | 9.6 | 11.7 | 6.6 | 12.1 | 9.3 | 8.3 | 8.9 | 6.3 | 6.6 | | tert-Butylbenzene | NS | NS | NS | ND | ND | 2.6 | ND | Tetrachloroethene | ND | Toluene | 470 | 510 | 395 | 461 | 477 | 450 | 432 | 361 | 356 | 309 | 326 | 316 | 320 | | trans-1,2-Dichloroethene | ND 0.69 J | ND | 0.36 J | ND | | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND 0.57 J | ND | 0.41 J | ND | 0.43 J | ND | | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | ND | 8.1 | 7.3 | 5.3 | 7.7 | 5.7 | 6.7 | 5.1 | 4.9 | 4.3 | 5.9 | 4.7 | | Xylenes | 1,100 | 160 | 172 | 143.9 | 168 | 197 | 154 | 155 | 157 | 134 | 136 | 127 | 127 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | | GL-19 | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | NS | ND NS | ND | | 1,1,1-Trichloroethane | ND | NS | ND NS | ND | | 1,1,2,2-Tetrachloroethane | ND | NS | ND NS | ND | | 1,1,2-Trichloroethane | ND | NS | ND NS | ND | | 1,1-Dichloroethane | 0.93 J | NS | ND | ND | 1.5 | ND | 1.2 | 0.6 J | 0.6 J | 0.57 J | ND | NS | ND | | 1,1-Dichloroethene | ND | NS | ND NS | ND | | 1,1-Dichloropropene | NS | NS | NS | ND NS | ND | | 1,2,3-Trichlorobenzene | NS | NS | NS | ND NS | ND | | 1,2,3-Trichloropropane | ND | NS | ND NS | ND | | 1,2,4-Trimethylbenzene | NS | NS | NS | ND NS | ND | | 1,2-Dibromo-3-chloropropane | ND | NS | ND NS | ND | | 1,2-Dibromoethane | ND | NS | ND NS | ND | | 1,2-Dichlorobenzene | ND | NS | ND NS | ND | | 1,2-Dichloroethane | 0.52 J | NS | ND 1.2 | 0.38 J | NS | ND | | 1,2-Dichloropropane | ND | NS | ND NS | ND | | 1,3,5-Trimethylbenzene | NS | NS | NS | ND NS | ND | | 1,3-Dichloropropane | NS | NS | NS | ND NS | ND | | 1,4-Dichlorobenzene | ND | NS | ND NS | ND | | 2,2-Dichloropropane | NS | NS | NS | ND NS | ND | | 2-Butanone | ND | NS | ND NS | ND | | 2-Chloroethylvinyl ether | NS | NS | NS | ND NS | ND | | 2-Chlorotoluene | NS | NS | NS | ND NS | ND | | 2-Hexanone | ND | NS | ND NS | ND | | 4-Chlorotoluene | NS | NS | NS | ND NS | ND | | 4-Methyl-2-pentanone | ND | NS | ND | ND | 5.6 | ND | ND | ND | ND | ND | ND | NS | ND | | Acetone | ND | NS | ND 23.3 | NS | 5.8 J | | Acetonitrile | NS | NS | NS | ND NS | ND | | Acrolein | NS | NS | NS | ND NS | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | NS | ND NS | ND | | Allyl chloride | NS | NS | NS | ND NS | ND | | Benzene | 40 | NS | 3.7 | 23.8 | 198 | 40.2 | 219 | 55 | 123 | 60.6 | 10.2 | NS | 3.8 | | Bromobenzene | NS | NS | NS | ND NS | ND | | Bromochloromethane | ND | NS | ND NS | ND | | Bromodichloromethane | ND | NS | ND NS | ND | | Bromoform | ND | NS | ND NS | ND | | Bromomethane | ND | NS | ND NS | ND | | Carbon Disulfide | ND | NS | ND NS | ND | | Carbon Tetrachloride | ND | NS | ND NS | ND | | Chlorobenzene | ND | NS | ND NS | ND | | Chloroethane | ND | NS | ND | 1.9 | ND NS | ND | | Chloroform | ND | NS | ND NS | ND | | Chloromethane | ND | NS | ND NS | ND | | Chloroprene | NS | NS | NS | ND NS | ND | | cis-1,2-Dichloroethene | 1.2 | NS | ND | ND | 1.1 | ND | 1.5 | 0.58 J | 1.1 | 0.67 J | ND | NS | ND | | cis-1,3-Dichloropropene | ND | NS | ND NS | ND | | Dibromochloromethane | ND | NS | ND NS | ND | | Dibromomethane | ND | NS | ND NS | ND | | Dichlorodifluoromethane | NS | NS | NS | ND NS | ND | | Ethyl methacrylate | NS | NS | NS | ND NS | ND | | Ethylbenzene | ND | NS | ND NS | ND | | Iodomethane | ND | NS | ND NS | ND | | Isopropylbenzene (Cumene) | NS | NS | NS | ND NS | ND | | m&p-Xylene | NS | NS | NS | ND NS | ND | | Methacrylonitrile | NS | NS | NS | ND NS | ND | | Methyl methacrylate | NS | NS | NS | ND NS | ND | | Methyl tertiary-butyl ether | ND | NS | ND NS | ND | | Methylene Chloride | ND | NS | ND NS | ND | | n-Butylbenzene | NS | NS | NS | ND NS | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND NS | ND | | o-Xylene | NS | NS | NS | ND NS | ND | | p-Isopropyltoluene | NS | NS | NS | ND NS | ND | | Propionitrile | NS | NS | NS | ND NS | ND | | sec-Butylbenzene | NS | NS | NS | ND NS | ND | | Styrene | ND | NS | ND NS | ND | | tert-Butylbenzene | NS | NS | NS | ND NS | ND | | Tetrachloroethene | 7.2 | NS | 4.8 | 3 | 8.1 | 11.7 | 12.3 | 7.8 | 8.1 | 4.5 | 2.5 | NS | 2.6 | | Toluene | ND | NS | ND NS | ND | | trans-1,2-Dichloroethene | ND | NS | ND NS | ND | | trans-1,3-Dichloropropene | ND | NS | ND NS | ND | | trans-1,4-Dichloro-2-butene | ND | NS | ND NS | ND | | Trichloroethene | ND | NS | ND | ND | ND | ND | ND | 0.5 J | ND | 0.38 J | ND | NS | ND | | Trichlorofluoromethane | ND | NS | ND NS | ND | | Vinyl Acetate | ND | NS | ND NS | ND | | Vinyl Chloride | ND | NS | ND NS | ND | | Xylenes | 1.9 J | NS | ND NS | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 20 (-5) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND NS | NS | NS | NS | ND | ND | | 1,1,1-Trichloroethane | ND NS | NS | NS | NS | ND | ND | | 1,1,2,2-Tetrachloroethane | ND NS | NS | NS | NS | ND | ND | | 1,1,2-Trichloroethane | ND NS | NS | NS | NS | ND | ND | | 1,1-Dichloroethane | 6.4 | 3.1 | 2.4 | 1.7 | ND | ND | ND | NS | NS | NS | NS | 3.2 | ND | | 1,1-Dichloroethene | ND NS | NS | NS | NS | ND | ND | | 1,1-Dichloropropene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | 1,2,3-Trichloropropane | ND | NS | ND | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | 1,2,4-Trimethylbenzene | NS | NS | NS | 2.9 | ND | ND | ND | NS | NS | NS | NS | 2.4 | 1.4 | | 1,2-Dibromo-3-chloropropane | ND NS | NS | NS | NS | ND | ND | | 1,2-Dibromoethane | ND NS | NS | NS | NS | ND | ND | | 1,2-Dichlorobenzene | ND NS | NS | NS | NS | ND | ND | | 1,2-Dichloroethane | ND NS | NS | NS | NS | ND | ND | | 1,2-Dichloropropane | ND NS | NS | NS | NS | ND | ND | | 1,3,5-Trimethylbenzene | NS | NS | NS | 1.6 | ND | ND | ND | NS | NS | NS | NS | 0.61 J | ND | | 1,3-Dichloropropane | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | 1,4-Dichlorobenzene | ND NS | NS | NS | NS | ND | ND | | 2,2-Dichloropropane | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | 2-Butanone | ND NS | NS | NS | NS | ND | ND | | 2-Chloroethylvinyl ether | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | 2-Chlorotoluene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | 2-Hexanone | ND NS | NS | NS | NS | ND | ND | | 4-Chlorotoluene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | 4-Methyl-2-pentanone | ND NS | NS | NS | NS | ND | ND | | Acetone | ND NS | NS | NS | NS | 5.7 J | ND | | Acetonitrile | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Acrolein | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND NS | NS | NS | NS | ND | ND | | Allyl chloride | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Benzene | 71 | 36 | 23.6 | 227 | ND | 6.7 | 6.9 | NS | NS | NS | NS | 57.7 | 16 | | Bromobenzene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Bromochloromethane | ND NS | NS | NS | NS | ND | ND | | Bromodichloromethane | ND NS | NS | NS | NS | ND | ND | | Bromoform | ND NS | NS | NS | NS | ND | ND | | Bromomethane | ND NS | NS | NS | NS | ND | ND | | Carbon Disulfide | ND NS | NS | NS | NS | ND | ND | | Carbon Tetrachloride | ND NS | NS | NS | NS | ND | ND | | Chlorobenzene | ND NS | NS | NS | NS | ND | ND | | Chloroethane | ND | ND | ND | 1.6 | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Chloroform | ND NS | NS | NS | NS | ND | ND | | Chloromethane | ND NS | NS | NS | NS | ND | ND | | Chloroprene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | cis-1,2-Dichloroethene | ND | ND | ND | 4.8 | ND | ND | ND | NS | NS | NS | NS | 0.22 J | ND | | cis-1,3-Dichloropropene | ND NS | NS | NS | NS | ND | ND | | Dibromochloromethane | ND NS | NS | NS | NS | ND | ND | | Dibromomethane | ND NS | NS | NS | NS | ND | ND | | Dichlorodifluoromethane | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS
 NS | ND | ND | | Ethyl methacrylate | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Ethylbenzene | 1 | 0.8 J | ND | 1.6 | ND | ND | ND | NS | NS | NS | NS | 1.2 | ND | | Iodomethane | ND NS | NS | NS | NS | ND | ND | | Isopropylbenzene (Cumene) | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | 0.27 J | ND | | m&p-Xylene | NS | NS | NS | 17.2 | ND | ND | ND | NS | NS | NS | NS | 2 | ND | | Methacrylonitrile | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Methyl methacrylate | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Methyl tertiary-butyl ether | ND NS | NS | NS | NS | ND | ND | | Methylene Chloride | ND NS | NS | NS | NS | ND | ND | | n-Butylbenzene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | o-Xylene | NS | NS | NS | 10.4 | ND | ND | ND | NS | NS | NS | NS | 2.1 | ND | | p-Isopropyltoluene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Propionitrile | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | sec-Butylbenzene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Styrene | ND NS | NS | NS | NS | ND | ND | | tert-Butylbenzene | NS | NS | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Tetrachloroethene | ND NS | NS | NS | NS | ND | ND | | Toluene | 1.6 | 1.2 | ND | 41.9 | ND | ND | ND | NS | NS | NS | NS | 1.2 | 0.54 J | | trans-1,2-Dichloroethene | ND NS | NS | NS | NS | ND | ND | | trans-1,3-Dichloropropene | ND NS | NS | NS | NS | ND | ND | | trans-1,4-Dichloro-2-butene | ND NS | NS | NS | NS | ND | ND | | Trichloroethene | ND NS | NS | NS | NS | ND | ND | | Trichlorofluoromethane | ND NS | NS | NS | NS | ND | ND | | Vinyl Acetate | ND NS | NS | NS | NS | ND | ND | | Vinyl Chloride | ND | ND | ND | 1.8 | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Xylenes | 9.1 | 3.7 | 2.1 | 27.6 | ND | ND | ND | NS | NS | NS | NS | 4.1 | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | TS | 5-01 (-7) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | 1 | 2.9 | 3.1 | 2.6 | 2.2 | 3.8 | 3 | 3.4 | 3.2 | 3.2 | ND | 3.1 | 2.8 | | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | ND | 5.3 | ND | Acetone | ND 15.7 | 5.8 J | ND | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 2.6 | 18 | 16 | 13.9 | 11.6 | 16 | 11.4 | 12.2 | 11.1 | 11.5 | 13.7 | 13.2 | 12 | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | 0.93 J | ND | ND | ND | 1.1 | ND | 0.95 J | 0.67 J | 0.6 J | 0.63 J | 0.67 J | 0.57 J | | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND 2.7 CL | ND | | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | ND | ND | ND | ND | 0.57 J | ND | ND | ND | ND | | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND 0.16 J | ND | | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | 0.44 J | ND | ND | ND | ND | ND | ND | 0.34 J | ND | ND | 0.25 J | ND | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND 0.61 J | ND | ND | ND | ND | ND | | Xylenes | 9 | 0.5 J | ND ## EnviroAnalytics Group ## Greys Landfill Historical VOCs ## Intermediate Monitoring Zone | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | 02 (-29) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | 0.58 J | 0.38 J | ND | ND | ND | ND | 18 | 0.86 J | ND | ND | ND | ND | ND | | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND ND: Non-Detect, NS: Not Sampled | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | 4-Methyl-2-pentanone | ND | Acetone | ND | ND | ND | ND | ND | ND | 11.9 L2 | ND | ND | ND | 12.9 | ND | ND | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | ND | ND | ND | ND | ND | 2.1 | ND | ND | ND | ND | ND | ND | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | ND | ND | ND | ND | ND | 10.4 | ND | ND | ND | ND | ND | ND | | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND 1 | ND | | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate
 ND | Vinyl Chloride | ND | ND | ND | ND | ND | ND | 1.4 | ND | ND | ND | ND | ND | 0.35 J | | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -03 (-16) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | ND | ND | 2.5 | ND | ND | 1.1 | ND | ND | ND | | ,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 1-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | 14 | ND | ND | ND | ND | ND | 7 | ND | 5.4 J | ND | 29.2 | 7.5 J | 6.7 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 24 | 28 | 11.8 | 27.5 | 71 | 60 | 37.9 | 55 | 22.1 | 5.2 | 20.2 | 71.2 | 13.8 | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND 0.74 J | ND | ND | ND | | Carbon Disulfide | ND 0.64 J | ND | | Carbon Tetrachloride | ND | Chlorobenzene | ND | ND | ND | ND | ND | 1.4 | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | ND | ND | ND | ND | 2 | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND 0.47 J | ND | ND | ND | | Iodomethane | ND 2.8 CL | ND | | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | 10.3 | ND | 7.7 | 2.4 | 7.2 | 4.6 | 12 | 3.2 | 1.1 J | 1.7 J | | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | ND | ND | ND | ND | ND | 0.53 J | ND | ND | ND | | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND 0.48 J | ND | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 7.3 | 4.9 | 3.6 | 10.3 | ND | 7.7 | 2.4 | 7.2 | 4.6 | 12.5 | 3.2 | 1.3 J | 1.7 J | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -05 (-25) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 6.7 J | ND | 7.8 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -08 (-36) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | ND | ND | 1.3 | ND | ND | ND | ND | ND | ND | | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 29.5 | ND | 5.3 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND 0.66 J | ND | ND | ND | ND | ND | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND |
Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -09 (-20) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | ND | ND | NS | ND | 1,1,1-Trichloroethane | ND | ND | ND | ND | ND | NS | ND | 1,1,2,2-Tetrachloroethane | ND | ND | ND | ND | ND | NS | ND | 1,1,2-Trichloroethane | ND | ND | ND | ND | ND | NS | ND | 1,1-Dichloroethane | ND | ND | ND | ND | ND | NS | ND | 1,1-Dichloroethene | ND | ND | ND | ND | ND | NS | ND | 1,1-Dichloropropene | NS | NS | NS | ND | ND | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | ND | NS | ND | 1,2,3-Trichloropropane | ND | ND | ND | ND | ND | NS | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | ND | NS | ND | 1,2-Dibromo-3-chloropropane | ND | ND | ND | ND | ND | NS | ND | 1,2-Dibromoethane | ND | ND | ND | ND | ND | NS | ND | 1,2-Dichlorobenzene | ND | ND | ND | ND | ND | NS | ND | 1,2-Dichloroethane | ND | ND | ND | ND | ND | NS | ND | 1,2-Dichloropropane | ND | ND | ND | ND | ND | NS | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | ND | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | ND | NS | ND | 1,4-Dichlorobenzene | ND | ND | ND | ND | ND | NS | ND | 2,2-Dichloropropane | NS | NS | NS | ND | ND | NS | ND | 2-Butanone | ND | ND | ND | ND | ND | NS | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | ND | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | ND | NS | ND | 2-Hexanone | ND | ND | ND | ND | ND | NS | ND | 4-Chlorotoluene | NS | NS | NS | ND | ND | NS | ND | 4-Methyl-2-pentanone | ND | ND | ND | ND | ND | NS | ND | Acetone | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | ND | 5.2 J | 7.6 J | | Acetonitrile | NS | NS | NS | ND | ND | NS | ND | Acrolein | NS | NS | NS | ND | ND | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | ND | ND | ND | ND | NS | ND | Allyl chloride | NS | NS | NS | ND | ND | NS | ND | Benzene | ND | ND | ND | ND | ND | NS | ND | Bromobenzene | NS | NS | NS | ND | ND | NS | ND | Bromochloromethane | ND | ND | ND | ND | ND | NS | ND | Bromodichloromethane | ND | ND | ND | ND | ND | NS | ND | Bromoform | ND | ND | ND | ND | ND | NS | ND | Bromomethane | ND | ND | ND | ND | ND | NS | ND | Carbon Disulfide | ND | ND | ND | ND | ND | NS | ND | Carbon Tetrachloride | ND | ND | ND | ND | ND | NS | ND | Chlorobenzene | ND | ND | ND | ND | ND | NS | ND | Chloroethane | ND | ND | ND | ND | ND | NS | ND | Chloroform | ND | ND | ND | ND | ND | NS | ND | Chloromethane | ND | ND | ND | ND | ND | NS | ND | Chloroprene | NS | NS | NS | ND | ND | NS | ND | cis-1,2-Dichloroethene | ND | ND | ND | ND | ND | NS | ND | cis-1,3-Dichloropropene | ND | ND | ND | ND | ND | NS | ND | Dibromochloromethane | ND | ND | ND | ND | ND | NS | ND | Dibromomethane | ND | ND | ND | ND | ND | NS | ND | Dichlorodifluoromethane | NS | NS | NS | ND | ND | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | ND | NS | ND | Ethylbenzene | ND | ND | ND | ND | ND | NS | ND | Iodomethane | ND | ND | ND | ND | ND | NS | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | ND | NS | ND | m&p-Xylene | NS | NS | NS | ND | ND | NS | ND | Methacrylonitrile | NS | NS | NS | ND | ND | NS | ND | Methyl methacrylate | NS | NS | NS | ND | ND | NS | ND | Methyl tertiary-butyl ether | ND | ND | ND | ND | ND | NS | ND | Methylene Chloride | ND | ND | ND | ND | ND | NS | ND | n-Butylbenzene | NS | NS | NS | ND | ND | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | ND | NS | ND | o-Xylene | NS | NS | NS | ND | ND | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | ND | NS | ND | Propionitrile | NS | NS | NS | ND | ND | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | ND | NS | ND | Styrene | ND | ND | ND | ND | ND | NS | ND | tert-Butylbenzene | NS | NS | NS | ND | ND | NS | ND | Tetrachloroethene | ND | ND | ND | ND | ND | NS | ND | Toluene | ND | ND | ND | ND | ND | NS | ND | trans-1,2-Dichloroethene | ND | ND | ND | ND | ND | NS | ND | trans-1,3-Dichloropropene | ND | ND | ND | ND | ND | NS | ND | trans-1,4-Dichloro-2-butene | ND | ND | ND | ND | ND | NS | ND | Trichloroethene | ND | ND | ND | ND | ND | NS | ND | Trichlorofluoromethane | ND | ND | ND | ND | ND | NS | ND | Vinyl Acetate | ND | ND | ND | ND | ND | NS | ND | Vinyl Chloride | ND | ND | ND | ND | ND | NS | ND | Xylenes | ND | ND | ND | ND | ND | NS | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -10 (-31) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND | ND | ND | ND | ND | ND | 5.7 | ND | ND | ND | 18 | 5.3 J | ND | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 0.5 J | 0.81 J | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 2 J | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------
----------|-----------|----------|-----------|----------| | Location ID: | GL- | -11 (-33) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | 16 | ND | ND | ND | ND | 6.2 | ND | ND | ND | ND | 14.8 | ND | ND | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 120 | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 1.8 J | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -12 (-17) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 5.5 J | ND | 5.3 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -13 (-26) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 10.2 | ND | 81 | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl
Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -14 (-33) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | ND 15.2 | ND | 7 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | 2.7 | 7.2 | 133 | 50.3 | 1,660 | 239 | 2,470 | 129 | 1.8 | 74.5 | 2.6 | ND | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | ND | ND | 1.1 | ND | 29.1 | 2.2 | 37 | ND | ND | ND | ND | ND | | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 1.6 J | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -15 (-36) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | 15 | ND 195 | 25.2 | 8.2 J | 7.6 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND 0.24 J | ND | ND | 0.19 J | ND | | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | 0.64 J | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -16 (-32) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | 2.9 | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | 38 | ND | ND | 9.7 | ND | ND | ND | ND | 16.2 | 20.6 | 23 | 17 | 22.1 | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | ND | 6.2 | ND | 6.9 | 8.3 | 7.5 | 8 | ND | 0.5 J | 7 | 0.54 J | 2.5 | | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | 0.39 J | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 |
|-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -17 (-31) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | 20 | ND 28.7 | ND | 5.9 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 75 | 33 | 48.6 | 28.7 | 4 | 1.6 | 2.3 | 0.66 J | 1.4 | 8.4 | ND | 2 | 5 | | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | 1.8 | ND | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | 6.5 | ND | ND | ND | ND | ND | 4.1 | ND | 1.9 J | 2.8 | | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | 1.9 | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND 0.42 J | ND | ND | ND | ND | ND | | Xylenes | 15 | 16 | 20.4 | 6.5 | ND | ND | ND | ND | ND | 4.1 | ND | 1.9 J | 2.8 J | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -18 (-33) | | ug/L | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | 1,1,1-Trichloroethane | ND | 1,1,2,2-Tetrachloroethane | ND | 1,1,2-Trichloroethane | ND | 1,1-Dichloroethane | ND | 1,1-Dichloroethene | ND | 1,1-Dichloropropene | NS | NS | NS | ND | 1,2,3-Trichlorobenzene | NS | NS | NS | ND | 1,2,3-Trichloropropane | ND | 1,2,4-Trimethylbenzene | NS | NS | NS | ND | 1,2-Dibromo-3-chloropropane | ND | 1,2-Dibromoethane | ND | 1,2-Dichlorobenzene | ND | 1,2-Dichloroethane | ND | 1,2-Dichloropropane | ND | 1,3,5-Trimethylbenzene | NS | NS | NS | ND | 1,3-Dichloropropane | NS | NS | NS | ND | 1,4-Dichlorobenzene | ND | 2,2-Dichloropropane | NS | NS | NS | ND | 2-Butanone | ND | 2-Chloroethylvinyl ether | NS | NS | NS | ND | 2-Chlorotoluene | NS | NS | NS | ND | 2-Hexanone | ND | 4-Chlorotoluene | NS | NS | NS | ND | 4-Methyl-2-pentanone | ND | Acetone | 14 | ND 32.1 | 5.3 J | 5.9 J | | Acetonitrile | NS | NS | NS | ND | Acrolein | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | ND | Allyl chloride | NS | NS | NS | ND | Benzene | 13 | 0.62 J | ND | 7.8 | ND | Bromobenzene | NS | NS | NS | ND | Bromochloromethane | ND | Bromodichloromethane | ND | Bromoform | ND | Bromomethane | ND | Carbon Disulfide | ND | ND | 2 | ND | ND | ND | ND | ND | ND | 1.7 | ND | ND | ND | | Carbon Tetrachloride | ND | Chlorobenzene | ND | Chloroethane | ND | Chloroform | ND | Chloromethane | ND | Chloroprene | NS | NS | NS | ND | cis-1,2-Dichloroethene | ND | cis-1,3-Dichloropropene | ND | Dibromochloromethane | ND | Dibromomethane | ND | Dichlorodifluoromethane | NS | NS | NS | ND | Ethyl methacrylate | NS | NS | NS | ND | Ethylbenzene | ND | Iodomethane | ND | Isopropylbenzene (Cumene) | NS | NS | NS | ND | m&p-Xylene | NS | NS | NS | ND | Methacrylonitrile | NS | NS | NS | ND | Methyl methacrylate | NS | NS | NS | ND | Methyl tertiary-butyl ether | ND | Methylene Chloride | ND | n-Butylbenzene | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS | NS | NS | ND | o-Xylene | NS | NS | NS | ND | p-Isopropyltoluene | NS | NS | NS | ND | Propionitrile | NS | NS | NS | ND | sec-Butylbenzene | NS | NS | NS | ND | Styrene | 3 | ND | tert-Butylbenzene | NS | NS | NS | ND | Tetrachloroethene | ND | Toluene | 4.9 | 0.3 J | ND | trans-1,2-Dichloroethene | ND | trans-1,3-Dichloropropene | ND | trans-1,4-Dichloro-2-butene | ND | Trichloroethene | ND | Trichlorofluoromethane | ND | Vinyl Acetate | ND | Vinyl Chloride | ND | Xylenes | 5.7 | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -20 (-36) | | ug/L | | | | | | | | | | | ,1,1,2-Tetrachloroethane | NS ND | ND | ND | | ,1,1-Trichloroethane | NS ND | ND | ND | | ,1,2,2-Tetrachloroethane | NS ND | ND | ND | | .,1,2-Trichloroethane | NS ND | ND | ND | | ,1-Dichloroethane | NS ND | ND | ND | | ,1-Dichloroethene | NS ND | ND | ND | | ,1-Dichloropropene | NS ND | ND | ND | | ,2,3-Trichlorobenzene | NS ND | ND | ND | | .,2,3-Trichloropropane | NS ND | ND | ND | | .,2,4-Trimethylbenzene | NS ND | ND | ND | | ,2-Dibromo-3-chloropropane | NS ND | ND | ND | | ,2-Dibromoethane | NS ND | ND | ND | | .,2-Dichlorobenzene | NS ND | ND | ND | | ,2-Dichloroethane | NS ND | ND | ND | | ,2-Dichloropropane | NS ND | ND | ND | | .,3,5-Trimethylbenzene | NS ND | ND | ND | | .,3-Dichloropropane | NS ND | ND | ND | | .,4-Dichlorobenzene | NS ND | ND | ND | | ,2-Dichloropropane | NS ND | ND | ND | | -Butanone | NS ND | ND | ND | | -Chloroethylvinyl ether | NS ND | ND | ND | | -Chlorotoluene | NS ND | ND | ND | | -Hexanone | NS ND | ND | ND | | -Chlorotoluene | NS ND | ND | ND | | -Methyl-2-pentanone | NS ND | ND | ND | | acetone | NS 28.1 | 5.1 J | 5.2 J | | cetonitrile | NS ND | ND | ND | | crolein | NS ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acrylonitrile | NS ND | ND | ND | | Allyl chloride | NS ND | ND | ND | | Benzene | NS ND | ND | ND | | Bromobenzene | NS ND | ND | ND | | Bromochloromethane | NS ND | ND | ND | | Bromodichloromethane | NS ND | ND | ND |
 Bromoform | NS ND | ND | ND | | Bromomethane | NS ND | ND | ND | | Carbon Disulfide | NS ND | ND | ND | | Carbon Tetrachloride | NS ND | ND | ND | | Chlorobenzene | NS ND | ND | ND | | Chloroethane | NS ND | ND | ND | | Chloroform | NS ND | ND | ND | | Chloromethane | NS ND | ND | ND | | Chloroprene | NS ND | ND | ND | | cis-1,2-Dichloroethene | NS ND | ND | ND | | cis-1,3-Dichloropropene | NS ND | ND | ND | | Dibromochloromethane | NS ND | ND | ND | | Dibromomethane | NS ND | ND | ND | | Dichlorodifluoromethane | NS ND | ND | ND | | Ethyl methacrylate | NS ND | ND | ND | | Ethylbenzene | NS ND | ND | ND | | Iodomethane | NS ND | 2.4 | ND | | Isopropylbenzene (Cumene) | NS ND | ND | ND | | m&p-Xylene | NS ND | ND | ND | | Methacrylonitrile | NS ND | ND | ND | | Methyl methacrylate | NS ND | ND | ND | | Methyl tertiary-butyl ether | NS ND | ND | ND | | Methylene Chloride | NS ND | ND | ND | | n-Butylbenzene | NS ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | n-Propylbenzene | NS ND | ND | ND | | o-Xylene | NS ND | ND | ND | | p-Isopropyltoluene | NS ND | ND | ND | | Propionitrile | NS ND | ND | ND | | sec-Butylbenzene | NS ND | ND | ND | | Styrene | NS ND | ND | ND | | tert-Butylbenzene | NS ND | ND | ND | | Tetrachloroethene | NS ND | ND | ND | | Toluene | NS ND | ND | ND | | trans-1,2-Dichloroethene | NS ND | ND | ND | | trans-1,3-Dichloropropene | NS ND | ND | ND | | trans-1,4-Dichloro-2-butene | NS ND | ND | ND | | Trichloroethene | NS ND | ND | ND | | Trichlorofluoromethane | NS ND | ND | ND | | Vinyl Acetate | NS ND | ND | ND | | Vinyl Chloride | NS ND | ND | ND | | Xylenes | NS ND | ND | ND | ## APPENDIX E Greys Landfill Historical Inorganic Concentrations ## Greys Landfill Historical Inorganics Shallow Monitoring Zone | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|------------|----------|-----------|-----------| | Location ID: | GL | -02 (-5) | | mg/L | | | | | | | | | | | Alkalinity | 180 | 270 | NS | NS | NS | 140 | 154 | 80 | 140 | 80 | 100 | 82 | 88 | | Ammonia (N) | 44 | 0.22 | NS | NS | NS | 11.6 | 3 | 17 | 36.7 | 16.4 M1 | 12.6 | 9.3 MH | 13.6 | | Chemical Oxygen Demand | 140 | 190 | NS | NS | NS | 136 | 119 | 142 | 208 | 112 | 116 | 113 | 148 | | Chloride | 200 | 220 | NS | NS | NS | 146 | 1,470 | 194 | 185 | 151 | 4,150 | 145 | 154 | | Hardness | 440 | 420 | NS | NS | NS | 474 | 455 | NS | 305 | 432 | NS | 475 | 473 | | Nitrate | 0.17 | 0.0074 J | NS | NS | NS | 0.59 | 0.012 H1 | 0.18 | 0.066 | 0.012 | 0.022 | 0.03 | 0.071 | | Nitrite | 1.9 | ND | NS | NS | NS | 7 | ND | 5.8 | 2.4 | 1.5 | 2.8 | 2.3 | 11.5 | | Nitrogen, Nitrate-Nitrite | 2 | ND | NS | NS | NS | NS | ND | NS | 2.5 | NS | 2.8 | 2.4 | 11.6 | | рН | 6.3 | 7.87 | NS | NS | NS | 7.7 H6H1 | 6.2 H3H6 | 8 H6H1 | 8.1 H6H1 | 8.2 H6H1 | 8.2 H6H1 | 8.4 H6 | 8.1 H6H1 | | Specific Conductance | 1,700 | 1,800 | NS | NS | NS | 1,340 | 5,280 | 1,940 | NS | 1,950 | 1,720 | 1,640 | 2,270 | | Sulfate | 340 | 280 | NS | NS | NS | 484 | 139 | 616 | 474 B | 669 | 428 | 543 | 556 | | Total Antimony | ND | 0.00058 J | NS | NS | NS | 0.0019 | ND | 0.0026 | 0.0015 | 0.0011 | 0.0012 | 0.001 | 0.0012 | | Total Arsenic | 0.0038 J | 0.0058 | NS | NS | NS | 0.0048 | 0.0218 | 0.0105 | 0.0069 | 0.005 | 0.004 | 0.0049 | 0.0045 | | Total Barium | 0.037 | 0.041 | NS | NS | NS | 0.0381 | 0.156 | 0.0624 | 0.023 | 0.035 | 0.0268 | 0.0333 | 0.0442 | | Total Beryllium | ND | ND | NS | NS | NS | ND | 0.0025 | 0.00038 | ND | 0.000039 J | ND | 0.00009 J | 0.00013 J | | Total Cadmium | ND | 0.0012 | NS | NS | NS | 0.006 | 0.00057 | 0.0135 | 0.003 | 0.0016 | 0.002 | 0.002 | 0.0055 | | Total Calcium | 98 | 92 | NS | NS | NS | 151 | 46.7 | 104 | 91.6 | 137 | NS | 151 | 160 | | Total Chromium | ND | 0.0045 | NS | NS | NS | 0.0172 | 0.0701 | 0.0497 | 0.0015 | 0.0021 | 0.0012 | 0.0051 | 0.0082 | | Total Cobalt | ND | 0.0012 J | NS | NS | NS | 0.0014 | 0.0181 | 0.0051 | 0.0012 | 0.00092 | 0.00065 | 0.0011 | 0.0015 | | Total Copper | ND | 0.0061 | NS | NS | NS | 0.0036 | 0.0333 | 0.0429 | 0.0074 | 0.0058 | 0.0043 | 0.0069 | 0.0147 | | Total Dissolved Solids | 1,100 | 1,100 | NS | NS | NS | 1,190 | 2,650 | 1,300 | 1,120 | 1,270 | 1,110 | 1,140 | 1,240 | | Total Iron | 1.4 | 7 | NS | NS | NS | 6.05 | 228 | 51.2 | 0.164 | 0.789 | 0.893 | 3.68 | 6.12 | | Total Lead | ND | 0.008 | NS | NS | NS | 0.0778 | 0.0273 | 0.193 | 0.0017 | 0.0055 | 0.0051 | 0.0218 | 0.038 | | Total Magnesium | 48 | 46 | NS | NS | NS | 31.3 | 82.4 | 17.8 | 18.5 | 21.7 | 23.6 | 24 | 17.9 | | | | | | | | | | | | | | | | ND: Non-Detect, NS: Not Sampled | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-------------|-----------|----------|-----------|------------| | Total Manganese | 0.3 | 0.44 | NS | NS | NS | NS | 5.93 | 1.33 | 0.122 | 0.199 | 0.131 | 0.166 | 0.317 | | Total Mercury | ND | ND | NS | NS | NS | ND | Total Nickel | 0.02 | 0.031 | NS | NS | NS | 0.0284 | 0.0326 | 0.0349 | 0.0317 | 0.0188 | NS | 0.0138 | 0.0221 | | Total Potassium | 92 B | 89 | NS | NS | NS | 90.4 | 15 | 76.2 | 86.5 | 92 | 80.7 | 92.6 | 94.6 | | Total Selenium | 0.0068 | 0.01 | NS | NS | NS | 0.01 | 0.0013 | 0.0055 | 0.0096 | 0.0036 | 0.0065 | 0.0057 | 0.0072 | | Total Silver | ND | ND | NS | NS | NS | ND | ND | 0.00073 | NS | ND | ND | ND | ND | | Total Sodium | 160 | 160 | NS | NS | NS | 127 | 696 | 153 | 141 | 143 | 124 | 140 | 141 | | Total Thallium | ND | 0.00049 J | NS | NS | NS | ND | 0.00024 | 0.00014 | 0.000035 JB | ND | ND | ND | 0.000035 J | | Total Vanadium | 0.0033 J | 0.01 | NS | NS | NS | 0.0216 | 0.12 | NS | 0.0247 | 0.017 | 0.0119 | 0.0179 | 0.0199 | | Total Zinc | ND | 0.12 | NS | NS | NS | 0.769 | 0.0898 | 2.17 | 0.0322 | 0.0628 | 0.0792 | 0.196 | 0.361 | | Turbidity | 4.2 | 53 | NS | NS | NS | 54.5 | 1,880 H1 | 662 | 5.3 | 20.5 | 13.1 | 42.2 | 123 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|----------|-----------|----------|-----------|-----------|------------|------------|------------|------------|-----------|------------| | Location ID: | GL | 03 (-3) | | mg/L | | | | | | | | | | | Alkalinity | 300 | NS | 500 | 210 | 116 | 554 | 470 | 368 | 452 | 360 | 450 | 350 | 278 | | Ammonia (N) | 2.4 | NS | 1.5 | 1.8 | 1.1 | 1.7 | 2 | 2.3 | 2.3 | 1.7 | 1 | 1.2 | 1.4 | | Chemical Oxygen Demand | ND | NS | 13.8 | 12.3 | 16.2 | ND | 18.6 | 16.2 J | 22.1 J | 11.1 J | ND | 29.4 | 16.5 J | | Chloride | 12 | NS | 12.2 | 11 | 17.4 | ND | 20.6 | 22.4 | 28.1 | 20.2 | 17.4 | 14.4 | 18 | | Hardness | 390 | NS | 403 | 366 | 563 | 524 | 543 | NS | 503 | 436 | 520 | 505 | 440 | | Nitrate | ND | NS | 0.093 | ND | 0.45 | 0.65 | 0.22 H3 | 0.32 | 0.32 | 0.031 | 0.22 | 0.29 2c | ND | | Nitrite | ND | NS | ND | ND | ND | 0.19 | ND | Nitrogen, Nitrate-Nitrite | ND | NS | NS | ND | 0.49 | 0.84 | 0.13 | NS | 0.19 | NS | 0.17 | 0.25 | ND | | рН | 11.9 | NS | 11.8 H6 | 11.6 H6 | 11.8 H6 | 12.1 H6H1 | 11.7 H3H6 | 11.9 H6H1 | 11.6 H6H1 | 11.3 H6 | 11.5 H6H1 | 11.5 H6H1 | 11.9 H6H1 | | Specific Conductance | 3,000 | NS | 1,790 | 1,360 | NS | 2,390 | 2,330 | 1,700 | 1,810 | 1,480 | 2,170 | 1,790 | 1,780 | | Sulfate | 73 | NS | 126 | 175 | 67.5 | 70 | 84.1 | 96 B | 69.1 | 131 | 69.6 | 98 JB | 157 | | Total Antimony | ND | NS | ND | ND | 0.0016 | ND | ND | 0.00048 J | 0.00037 J | 0.00038 J | 0.00039 J | 0.00032 J | 0.00024 J | | Total Arsenic | ND | NS | ND | 0.0019 | 0.0011 | 0.0014 | 0.0015 | 0.0015 | 0.0015 | 0.002 | 0.0014 | 0.0014 | 0.0016 | | Total Barium | 0.073 | NS | 0.058 | 0.0646 | 0.082 | 0.101 | 0.0788 | 0.0818 | 0.0949 | 0.101 | 0.0888 | 0.089 | 0.069 | | Total Beryllium | ND | NS | ND | Total Cadmium | ND | NS | ND | ND | ND | ND | 0.00015 | 0.000058 J | 0.000018 J | ND | 0.000019 J | ND | ND | | Total Calcium | 150 | NS | 163 M6 | 153 M1 | 233 | 213 | 217 | 136 | 201 | 174 | 208 | 202 | 176 | | Total Chromium | ND | NS | ND | 0.001 | 0.017 | 0.0123 | 0.0086 | 0.0022 | 0.0082 | 0.00036 J | 0.0087 | 0.0018 | 0.0006 | | Total Cobalt | ND | NS | ND | ND | ND | ND | ND | ND | 0.000081 J | 0.000043 J | 0.000068 J | ND | ND | | Total Copper | ND | NS | 0.0042 | 0.002 | 0.015 | 0.0094 | 0.012 | 0.0043 | 0.0046 | 0.0006 J | 0.0036 | 0.0015 | 0.00082 JE | | Total Dissolved Solids | 650 | NS | 507 | 507 | 682 | 573 | 600 | 560 | 619 | 558 | 581 | 539 | 500 | | Total Iron | 0.035 | NS | ND | 0.102 | ND | 0.157 | 0.11 | 0.0386 J | 0.0483 J | ND | 0.0535 | 0.013 J | 0.0409 J | | Total Lead | 0.016 | NS | 0.0065 | 0.003 | 0.061 | 0.0271 | 0.0322 | 0.0106 | 0.0486 | 0.0024 | 0.034 | 0.0047 | 0.0028 | | Total Magnesium | ND | NS | 0.035 | 0.0995 | 0.024 | 0.0999 | 0.0588 | 0.0551 | 0.0252 | 0.0079 JB | 0.0297 | 0.0173 | 0.0232 | | Total Manganese | 0.0022 | NS | ND | 0.0047 | 0.0017 | 0.0101 | 0.0076 | 0.002 | 0.0023 | 0.00038 J | 0.0023 | 0.00044 J | 0.0013 | | Total Mercury | ND | NS | ND | Total Nickel | 0.0026 | NS | ND | 0.0012 | 0.0012 | 0.002 | 0.0012 | 0.0015 | 0.0015 | 0.0013 | 0.00091 | 0.00072 | 0.00075 | | Total Potassium | 12 B | NS | 11.1 | 17.3 M1 | 8.5 | 12.4 | 10.3 | 13.9 | 12.9 | 15.4 | 8.84 | 10.8 | 14.7 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 |
3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|------------|-------------|-----------|----------|-----------|----------| | Total Selenium | ND | NS | ND | 0.002 M1 | 0.0024 | 0.0018 | 0.0012 | 0.0013 | 0.0017 | 0.0013 | 0.0015 | 0.0014 | 0.0018 | | Total Silver | ND | NS | ND | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Total Sodium | 14 | NS | 11.4 | 13 | 15.5 | 14.9 | 14.2 | 15.7 | 18.7 | 15.1 | 12.4 | 12.3 | 14.2 | | Total Thallium | ND | NS | ND | ND | ND | ND | ND | 0.000019 J | 0.000022 JB | ND | ND | ND | ND | | Total Vanadium | 0.025 | NS | 0.022 | 0.0134 | 0.015 | 0.0138 | 0.0127 | 0.0117 | 0.0118 | 0.0138 | 0.0123 | 0.0133 | 0.0121 | | Total Zinc | ND | NS | 0.035 M6 | 0.0118 | 0.0096 | 0.0071 | 0.0075 | 0.003 J | 0.0048 J | 0.0016 J | 0.0038 J | 0.0012 J | 0.0014 J | | Turbidity | 0.69 | NS | 0.58 | 0.96 | 0.71 | 1.1 | 2.8 H3 | 0.82 | 1.3 | 0.38 | 2.8 | 0.44 | 1.3 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|------------|-----------|----------| | Location ID: | GI | L-05 (-7) | | mg/L | | | | | | | | | | | Alkalinity | 44 | 56 | 42 | 32 | 14 | 50 | 24 | 28 | 34 | 16 | 40 | 24 | 70 | | Ammonia (N) | 0.57 | 1.1 | 0.46 | 0.3 | 0.18 | 0.49 | 0.11 | 0.17 | 0.28 | 0.085 J | 0.34 | 0.2 | 0.55 | | Chemical Oxygen Demand | 26 | 35 | 46.4 | 36.4 | 20.6 | 50.1 | 20.7 | 29 | 35.3 | 19.1 J | 42.5 | 42.3 | 61.7 | | Chloride | 99 | 150 | 131 | 95.7 | 80.9 | 85.5 | 84.5 | 94 B | 121 | 90.5 | 110 | 103 | 143 | | Hardness | 400 | 440 | 388 | 298 | 470 | 461 | 203 | NS | 445 | 295 | 342 | 346 | 440 | | Nitrate | 0.0025 J | ND | 0.022 | ND | ND | 0.048 | ND | ND | 0.0016 JH1 | 0.018 M1 | 0.0082 J | 0.0048 J | 0.014 | | Nitrite | ND | ND | ND | ND | ND | ND | 0.15 | 0.062 J | 0.093 J | ND | ND | ND | 0.051 J | | Nitrogen, Nitrate-Nitrite | 0.016 J | ND | NS | ND | ND | ND | 0.15 | NS | 0.094 J | NS | 0.033 J | 0.036 J | 0.065 J | | рН | 5.8 | 5.41 | 5.5 H6 | 6.2 H6 | 5.1 H6 | 6 H6 | 5.3 H3H6 | 5.3 H6H1 | 5.5 H6 | 5.1 H6H1 | 5.5 H6H1 | 5.6 H6 | 5.7 H6 | | Specific Conductance | 1,800 | 1,400 | 1,530 | 1,180 | NS | 1,820 | 995 | 973 | 1,080 | 1,010 | 1,280 | 1,060 | 1,450 | | Sulfate | 570 | 600 | 565 | 399 | 358 | 470 | 321 | 355 | 349 | 361 | 408 | 409 | 473 | | Total Antimony | ND 0.000046 J | 0.0001 J | 0.000049 J | ND | ND | | Total Arsenic | 0.0092 | 0.0042 | 0.0029 | 0.002 | 0.0073 | 0.0044 | 0.004 | 0.0065 | 0.0016 | 0.0044 | 0.0017 | 0.0013 | 0.0036 | | Total Barium | 0.024 | 0.017 | 0.02 | 0.0189 | 0.04 | 0.0245 | 0.0358 | 0.0447 | 0.0179 | 0.0385 | 0.0169 | 0.0151 | 0.0157 | | Total Beryllium | ND | ND | ND | 0.0012 | 0.0014 | 0.0014 | 0.0016 | 0.002 | 0.0012 | 0.0017 | 0.0012 | 0.0013 | 0.00086 | | Total Cadmium | ND | 0.0004 J | 0.00068 | 0.00061 | 0.00062 | 0.00081 | 0.0014 | 0.00083 | 0.0007 | 0.00087 | 0.00069 | 0.0007 | 0.00046 | | Total Calcium | 44 | 48 | 40.3 | 30.4 | 49.2 | 50.7 | 18.6 | 19.1 | 47.2 | 27.8 | 36.3 M1 | 36.9 | 54.7 | | Total Chromium | ND | ND | 0.0026 | 0.0019 | 0.015 | 0.0056 | 0.0131 | 0.0218 | 0.0024 | 0.0136 | 0.00096 | 0.0007 | 0.0017 | | Total Cobalt | 0.22 | 0.19 | 0.19 | 0.154 | 0.19 | 0.217 | 0.101 | 0.131 | 0.145 | 0.17 | 0.178 | 0.184 | 0.181 | | Total Copper | ND | 0.0016 | ND | 0.0027 | 0.012 | 0.0069 | 0.0106 | 0.0156 | NS | 0.0091 | 0.0017 | 0.0014 | 0.0013 | | Total Dissolved Solids | 970 | 1,300 | 1,050 | 884 | 640 | 828 | 600 | 515 | 748 | 764 | 896 | 779 | 1,000 | | Total Iron | 67 | 93 | 69.8 | 53.2 | 99.6 | 92.7 | 21.4 | 48.6 | 66.5 | 37.2 | 46.7 M1 | 42.5 | 89.8 | | Total Lead | ND | ND | 0.0014 | 0.0009 | 0.0075 | 0.0042 | 0.0043 | 0.0098 | 0.00073 | 0.0059 | 0.00053 | 0.00036 | 0.0012 | | Total Magnesium | 71 | 77 | 69.9 | 54.2 | 84.3 | 85.2 | 38 | 44.7 | 79.6 | 54.8 | 61.1 M1 | 61.6 | 73.7 | | Total Manganese | 1.3 | 2 | 1.5 | 1.16 | 1.7 | 2.01 | 0.435 | 0.9 | 1.56 | 0.768 | 1.24 M1 | 1.05 | 1.74 | | Total Mercury | ND | Total Nickel | 0.26 | 0.22 | 0.24 | 0.198 | 0.22 | 0.25 | 0.145 | 0.187 | 0.192 | 0.245 | 0.234 | 0.246 | 0.23 | | Total Potassium | 4.1 B | 1.6 | 1.3 | 1.14 | 1.7 | 1.29 | 1.84 | 1.34 | 0.858 | 1.41 | 0.938 | 0.814 | 0.991 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|------------|-------------|-------------|------------|------------| | Total Selenium | 0.0027 J | 0.0011 J | ND | ND | 0.00075 | 0.0005 | 0.00076 | 0.002 | 0.00052 | 0.0018 | 0.00036 J | 0.00033 J | 0.00054 | | Total Silver | ND NS | ND | 0.000013 JB | ND | ND | | Total Sodium | 110 | 120 | 111 | 92.5 | 117 | 109 | 82.1 | 88.9 | 162 | 90.6 | 94.2 M1 | 98.2 | 123 | | Total Thallium | ND | ND | ND | ND | 0.00016 | ND | 0.0001 | 0.00013 | 0.000046 J | 0.000097 JB | 0.000055 J | 0.000051 J | 0.000065 J | | Total Vanadium | ND | 0.0052 | 0.0023 | 0.0015 | 0.019 | 0.0035 | 0.0125 | NS | 0.0011 | 0.0158 | 0.00071 JB | 0.00039 J | 0.0021 | | Total Zinc | 0.21 | 0.15 | 0.21 | 0.184 | 0.22 | 0.218 | 0.213 | 0.233 | 0.191 | 0.269 | 0.226 | 0.228 | 0.169 | | Turbidity | 19 | 0.62 | 25.9 | 51.9 | 1,620 | 80.5 | 275 H1 | 1,120 | 19.6 | 775 | 39.4 | 7 | 84.5 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|-----------|-------------|------------| | Location ID: | GL | 08 (-3) | | mg/L | | | | | | | | | | | Alkalinity | 230 | 150 | 162 | 224 | 152 | 270 | 196 M1 | 188 | 180 | 220 | 190 | 180 | 190 | | Ammonia (N) | 41 | 23 | 42.3 | 40.5 | 18.5 | 24 | 12.6 | 16.3 M1 | 18.7 | 31.7 M1 | 26.9 | 20 MHML | 26 | | Chemical Oxygen Demand | 210 | 200 | 233 | 352 | 163 | 206 | 130 | 148 M1 | 177 | 265 M1 | 236 | 156 | 231 | | Chloride | 460 | 310 | 329 | 527 | 221 | 15.2 | 162 | 172 B | 221 | 353 | 1,850 | 218 ML | 311 | | Hardness | 470 | 400 | 427 | 433 | 374 | 340 | 402 | NS | 359 | NS | NS | 308 | 297 | | Nitrate | 0.0051 J | ND | ND | ND | ND | ND | ND | 0.0037 J | 0.0038 J | 0.0056 J | 0.0069 J | 0.0035 J2c | ND | | Nitrite | ND | ND | ND | ND | ND | ND | 0.066 | ND | ND | ND | 0.034 J | ND | ND | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | ND | NS | 0.028 J | NS | 0.041 J | ND | ND | | рН | 9.7 | 11.3 | 10.5 H6 | 10.1 H6 | 10.7 H6 | 11.2 H6H1 | 11 H3H6 | 10.8 H6H1 | 10.7 H6H1 | 10.7 H6 | 10.8 H6H1 | 10.9 H6H1 | 11.2 H6H1 | | Specific Conductance | 5,300 | 250 | 2,180 | 2,770 | NS | 1,900 | 1,560 | 1,520 | 1,590 | 2,200 | 2,050 | 1,460 | 2,230 | | Sulfate | 350 | 410 | NS | 277 | 375 | 338 | 334 | 341 | 297 | 315 | 270 | 281 | 286 | | Total Antimony | ND | 0.00075 J | ND | ND | ND | ND | ND | 0.00032 J | 0.00023 J | 0.0004 J | 0.00035 J | ND | ND | | Total Arsenic | 0.013 | 0.0086 | 0.0086 | 0.0127 | 0.0083 | 0.0085 | 0.0048 | 0.0075 | 0.0073 | 0.0114 | 0.0099 | 0.0079 | 0.0091 | | Total Barium | 0.047 | 0.036 | 0.038 | 0.0519 | 0.038 | 0.0394 | 0.0288 | 0.0351 | 0.034 | 0.0456 | 0.0405 | 0.0354 | 0.043 | | Total Beryllium | ND | Total Cadmium | ND | ND | ND | 0.000088 | ND | ND | ND | 0.000089 | ND | ND | ND | ND | ND | | Total Calcium | 190 | 160 | 171 | 177 | 161 | 142 | 161 | 147 | 144 | 139 | NS | 123 | 119 | | Total Chromium | ND | 0.0011 J | ND | 0.00052 | 0.00055 | 0.001 | ND | 0.0029 | 0.00044 J | 0.00041 J | 0.00048 J | ND | 0.0011 JD3 | | Total Cobalt | ND | 0.0011 J | ND | 0.0017 | ND | 0.00086 | ND | 0.00073 | 0.00069 | 0.0015 | 0.0013 | ND | 0.0013 JD3 | | Total Copper | ND | 0.00045 J | ND | 0.00097 | 0.0016 | ND | ND | 0.0022 | ND | 0.00078 J | 0.00065 J | ND | 0.0024 JD3 | | Total Dissolved Solids | 1,600 | 1,200 | NS | 1,760 | 1,130 | 1,150 | 948 | 1,120 | 1,060 | 1,360 | 1,290 | 930 | 1,150 | | Total Iron | 0.2 | 0.12 B | ND | 0.207 | 0.33 | 0.3 | 0.423 | 0.818 | 0.132 | 0.197 | 0.268 | 0.142 JD3 | 0.68 | | Total Lead | ND | ND | ND | 0.00028 | 0.0007 | 0.00058 | 0.0011 | 0.0015 | 0.00023 | 0.00026 | 0.00058 | 0.00022 JD3 | 0.0016 | | Total Magnesium | ND | 0.085 | 0.086 | 0.131 | 0.09 | 0.092 | 0.136 | 0.157 | 0.0322 | 0.0494 | 0.0692 | 0.0469 JD3 | 0.19 | | Total Manganese | ND | 0.00075 J | 0.003 | 0.0026 | 0.0062 | 0.014 | 0.0155 | 0.0228 | 0.0021 | 0.0027 | 0.0044 | 0.0021 JD3B | 0.0148 | | Total Mercury | ND | Total Nickel | 0.014 | 0.011 | 0.0092 | 0.0109 | 0.0078 | 0.008 | 0.004 | 0.0072 | 0.0059 | 0.0098 | NS | 0.0058 | 0.0085 | | Total Potassium | 80 B | 66 | 66.5 | 88.5 | 63.9 | 62.5 | 45.5 | 55.3 | 51.3 | 69.4 | 58.9 | 56.4 | 60.8 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|-------------|-----------|------------|-----------|------------| | Total Selenium | 0.009 | 0.0039 J | ND | 0.0017 | 0.0017 | 0.0015 | ND | 0.0014 | 0.0011 | 0.0012 | 0.0013 | ND | 0.0014 JD3 | | Total Silver | ND NS | ND | 0.00001 JB | ND | ND | | Total Sodium | 280 | 180 | 195 | 354 | 200 | 173 | 98.5 | 126 | 137 | 242 | 207 | 152 | 165 | | Total Thallium | ND 0.000015 JB | ND | ND | NS | ND | | Total Vanadium | 0.02 | 0.026 | 0.021 | 0.0223 | 0.021 | 0.0253 | 0.0212 | 0.0256 | 0.0209 | 0.0234 | 0.023 | 0.0252 | 0.0234 | | Total Zinc | ND | ND | ND | ND | 0.0051 | 0.0076 | ND |
0.009 | 0.0023 J | 0.0031 JB | 0.0039 JB | ND | 0.0094 JD3 | | Turbidity | 0.97 | 1.8 | 4 | 1.2 | 27 H3 | 1.3 | 7.4 H3 | 8.8 | 1.4 | 2 | 1.8 | 1.9 | 6.4 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|------------|------------|------------|-----------|------------| | Location ID: | GL | 09 (-2) | | mg/L | | | | | | | | | | | Alkalinity | 270 | 230 | 188 | 338 | 218 | 334 | 300 | 370 | 252 | 330 | 200 | 330 | 232 | | Ammonia (N) | 87 | 54 | 136 | 98.2 | 51.3 | 87.9 | 62.2 | 95.2 | 65.3 | 87.8 | 49.2 | ND | 55.9 | | Chemical Oxygen Demand | 260 | 160 | 227 | 361 | 189 | 311 | 230 | 327 | 236 | 304 | 191 | 325 | 201 | | Chloride | 400 | 290 | 291 | 446 | 273 | 434 | 312 | 436 | 311 | 366 | 273 | 413 | 258 ML | | Hardness | 690 | 690 | 606 | 560 | 615 | 466 | 603 | NS | 550 | NS | 576 | 527 | 580 | | Nitrate | 0.01 J | ND | 0.01 | ND | ND | ND | ND | 0.017 | 0.012 | 0.0079 J | 0.0093 J | 0.016 2c | 0.0056 J2c | | Nitrite | ND 0.22 J | ND | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | ND | NS | 0.017 J | NS | 0.027 J | 0.24 J | ND | | рН | 10.3 | 10.6 | 9.9 H6 | 9.7 H6 | 10 H6 | 10 H6H1 | 10 H3H6 | 10 H6H1 | 10.2 H6H1 | 9.8 H6 | 9.9 H6H1 | 10.1 H6H1 | 10.2 H6H1 | | Specific Conductance | 4,900 | 2,100 | 253 | 2,750 | NS | 2,650 | 2,390 | 2,450 | 2,130 | 2,530 | 2,090 | 2,210 | 2,380 | | Sulfate | 780 | 740 | 723 | 586 | 644 | 520 | 581 | 474 B | 581 B | 536 | 489 | 521 | 529 | | Total Antimony | ND | 0.0024 J | 0.00078 | 0.00065 | 0.00071 | ND | ND | 0.001 | 0.00043 J | 0.00057 | 0.00064 | 0.00078 | 0.00059 | | Total Arsenic | 0.026 | 0.021 | 0.024 | 0.025 | 0.021 | 0.0174 | 0.0123 | 0.0271 | 0.022 | 0.0249 | 0.0231 | 0.0292 | 0.0208 | | Total Barium | 0.049 | 0.043 | 0.046 | 0.0462 | 0.04 | 0.0444 | 0.0546 | 0.0597 | 0.0361 | 0.0425 | 0.0377 | 0.0447 | 0.0352 | | Total Beryllium | ND 0.00016 J | ND | 0.000065 J | 0.000069 J | 0.0001 J | ND | | Total Cadmium | ND | 0.00051 | 0.00035 | 0.00073 | 0.00062 | 0.00018 | 0.0012 | 0.00068 | 0.000048 J | 0.000067 J | 0.00029 | 0.00046 | 0.00014 | | Total Calcium | 280 | 280 | 259 M6 | 231 | 261 | 227 | 238 | 211 | 220 | 200 | 230 | 210 | 232 | | Total Chromium | 0.0046 | 0.011 | 0.0085 | 0.0075 | 0.013 | 0.0258 | 0.0653 | 0.0428 | 0.0027 | 0.0055 | 0.0082 | 0.009 | 0.0038 | | Total Cobalt | ND | 0.0024 J | 0.002 | 0.002 | 0.0024 | 0.002 | 0.005 | 0.004 | 0.001 | 0.0018 | 0.0017 | 0.0024 | 0.0012 | | Total Copper | 0.012 | 0.019 | 0.034 | 0.014 | 0.025 | 0.002 | ND | 0.0306 | 0.0012 | 0.0075 | 0.0146 | 0.0179 | 0.0075 | | Total Dissolved Solids | 2,000 | 1,700 | 1,600 | 1,870 | 1,570 | 1,670 | 1,650 | 1,720 | 1,540 | 6,310 | 1,540 | 1,570 | 1,470 | | Total Iron | 4.7 | 6.1 B | 4.5 M6 | 4.2 | 7.7 | 5.59 | 9.09 | 12.5 | 0.928 | 2.59 | 4.4 | 5.11 | 2.05 | | Total Lead | 0.0069 | 0.011 | 0.0099 | 0.0081 | 0.015 | 0.0046 | 0.0098 | 0.018 | 0.0013 | 0.0044 | 0.0088 | 0.0094 | 0.004 | | Total Magnesium | ND | 0.6 | 0.55 | 0.74 | 1 | 1.6 | 1.9 | 1.37 | 0.173 | 0.324 | 0.477 | 0.55 | 0.249 | | Total Manganese | 0.11 | 0.15 | 0.12 | 0.127 | 0.23 | 0.326 | 0.325 | 0.36 | 0.0463 | 0.0829 | 0.118 | 0.124 | 0.0547 | | Total Mercury | ND | Total Nickel | 0.016 | 0.017 | 0.012 | 0.0104 | 0.012 | 0.0158 | 0.04 | 0.0278 | 0.0076 | 0.011 | 0.0098 | 0.0128 | 0.007 | | Total Potassium | 76 B | 74 | 72.5 M6 | 84 | 66.4 | 68.5 | 61.6 | 64.2 | 63.6 | 68 | 69.1 | 73.6 | 68 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|-----------|-----------|-----------|----------|-----------|----------|------------|------------|------------|-------------|-----------|----------| | Total Selenium | 0.006 | 0.0059 | 0.0016 M6 | 0.0021 | 0.0017 | 0.0021 | 0.0014 | 0.0032 | 0.0021 | 0.0024 | 0.0017 | 0.0024 | 0.0014 | | Total Silver | ND | ND | 0.0019 M6 | ND | ND | ND | ND | ND | NS | 0.000017 J | 0.000018 JB | ND | ND | | Total Sodium | 240 | 180 | 206 M6 | 243 | 166 | 255 | 180 | 234 | 189 | 243 | 164 | 271 | 161 | | Total Thallium | ND | 0.00025 J | ND | ND | ND | ND | ND | 0.000029 J | 0.000022 J | ND | 0.000011 J | ND | ND | | Total Vanadium | 0.016 | 0.019 | 0.017 | 0.0174 | 0.022 | 0.026 | 0.0446 | 0.039 | 0.0132 | 0.0184 | 0.0176 | 0.0219 | 0.0112 | | Total Zinc | 0.029 | 0.055 | 0.061 | 0.0421 | 0.082 | 0.0788 | 0.0759 | 0.121 | 0.0113 | 0.0248 | 0.0505 | 0.045 | 0.0235 | | Turbidity | 22 | 38 | 12.6 | 5.9 | 70 H3 | 28.6 | 210 H3 | 53 | 39.8 | 24.9 | 29.4 | 27.8 | 21.2 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|-----------|------------|------------|------------|----------| | Location ID: | GI | -10 (-1) | | mg/L | | | | | | | | | | | Alkalinity | ND | NS | 15.4 | 28 | ND | 48 | 40 | 28 | 28 | 40 | 20 ML | 28 | 114 | | Ammonia (N) | 2.8 | NS | 2.2 | 3.5 | 2.8 | 2.7 | 2.2 | 2 | 2 | 2 M1 | 1.9 | 2 | 2.9 | | Chemical Oxygen Demand | ND | NS | 18.2 | 21.1 | ND | 18 | ND | 12 J | 13.2 J | 13.1 J | 14 J | 12.2 J | 31.5 | | Chloride | 9 | NS | 15.8 | 15.2 | 16 | 16 | 17.1 | 27.8 | 18.9 | 17.6 | 24.4 MH | 19.4 | 15.7 | | Hardness | 58 | NS | 57.1 | 51.9 | 48.1 | 57.9 | 54.7 | NS | 71.8 | 54.7 | 53.4 | 58 | 442 | | Nitrate | ND | NS | ND | ND | ND | ND | ND | 0.0022 J | 0.0088 J | 0.041 | ND | ND | ND | | Nitrite | ND | NS | ND | ND | ND | ND | ND | 0.11 | 0.036 J | ND | NS | ND | ND | | Nitrogen, Nitrate-Nitrite | ND | NS | NS | ND | ND | ND | ND | NS | 0.045 J | NS | 0.031 J | ND | ND | | pH | 4.3 | NS | 6 H6 | 6.5 H6 | 5.7 H6 | 5.7 H6H1 | 5.6 H3H6 | 6 H6H1 | 5.7 H6H1 | NS | 5.4 H6 | 5.9 H3H6 | 6 H6H1 | | Specific Conductance | 520 | NS | 331 | 368 | NS | 330 | 355 | 308 | 420 | 379 | 373 | 374 | 1,540 | | Sulfate | 96 | NS | NS | 110 | 89.7 | 88.4 | 88.6 | 101 B | 122 | 109 | 129 MH | 105 | 662 | | Total Antimony | ND | NS | ND | Total Arsenic | ND | NS | 0.0026 | 0.0051 | 0.0014 | 0.0039 | 0.0013 | 0.0011 | 0.00039 J | 0.00058 | 0.00099 | 0.0016 JD3 | 0.00098 | | Total Barium | 0.05 | NS | 0.047 | 0.0787 | 0.032 | 0.0635 | 0.0399 | 0.0383 | 0.0429 | 0.0342 | 0.0396 | 0.0345 | 0.0321 | | Total Beryllium | ND | NS | ND 0.000031 J | ND | ND | ND | | Total Cadmium | ND | NS | ND | ND | ND | ND | 0.0001 | 0.00003 J | ND | ND | 0.000018 J | ND | ND | | Total Calcium | 12 | NS | 11 | 10.6 | 10.2 | 10 | 10.2 | 9.85 | 14.6 | 11.3 | 10.2 | 11.2 | 101 | | Total Chromium | ND | NS | 0.0019 | 0.0073 | ND | 0.0065 | 0.0014 | 0.0029 | 0.00051 | 0.00032 J | 0.00044 J | ND | 0.00025 | | Total Cobalt | ND | NS | ND | 0.0018 | ND | 0.0011 | 0.00067 | 0.00085 | 0.00053 | 0.00057 | 0.0016 | 0.0012 JD3 | 0.0015 | | Total Copper | ND | NS | 0.00099 | 0.005 | ND | 0.0042 | 0.002 | 0.0035 | ND | ND | 0.00041 J | ND | 0.00041 | | Total Dissolved Solids | 260 | NS | NS | 261 | 167 | 212 | 154 | 276 | 304 | 220 | 261 | 164 | 1,020 | | Total Iron | 48 B | NS | 51.4 M6 | 59.6 | 41.9 | 43.8 | 41 | 32.3 | 41 | 31.8 M6 | 34.9 | 32.8 | 91.7 | | Total Lead | ND | NS | 0.00068 | 0.0034 | 0.00013 | 0.0059 | 0.001 | 0.00064 | 0.00022 | 0.000098 J | 0.00013 B | ND | 0.00013 | | Total Magnesium | 7 | NS | 7.2 | 6.5 | 6.6 | 8 | 7.1 | 6.27 | 8.56 | 6.46 | 6.8 | 7.26 | 46.1 | | Total Manganese | 1.1 | NS | 0.82 | 1.08 | 0.9 | 0.912 | 0.9 | 0.792 | 1.01 | 0.802 | 0.942 | 0.891 | 2.66 | | Total Mercury | ND | NS | ND | Total Nickel | ND | NS | 0.00081 | 0.004 | 0.00066 | 0.0039 | 0.00087 | 0.0023 | 0.00052 | 0.0008 | 0.0011 B | 0.0013 JD3 | 0.0019 | | Total Potassium | 0.87 B | NS | 0.76 M6 | 1.14 | 0.65 | 1.22 | 0.669 | 0.81 | 0.734 | 0.788 | 0.662 | 0.706 | 1.19 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|-----------|-------------|------------|------------|----------| | Total Selenium | ND | NS | ND | ND | ND | ND | ND | ND | 0.00014 J | ND | ND | ND | ND | | Total Silver | ND | NS | ND | ND | ND | ND | ND | ND | NS | ND | 0.000011 J | ND | ND | | Total Sodium | 18 | NS | 19.7 M6 | 19.1 | 19.9 | 18.3 | 17.7 | 20 | 25.8 | 20.3 M6 | 19.2 M1 | 20.2 | 57.4 | | Total Thallium | ND | NS | ND 0.000012 JB | ND | ND | ND | | Total Vanadium | ND | NS | 0.0019 | 0.0075 | ND | 0.01 | 0.0014 | 0.0014 | ND | 0.00015 J | 0.00041 JB | ND | ND | | Total Zinc | ND | NS | 0.0073 | 0.0225 | 0.0088 | 0.0159 | 0.0096 | 0.0266 | 0.0035 J | 0.0042 JB | 0.0096 | 0.0088 JD3 | 0.0078 | | Turbidity | 8.8 | NS | 41.8 | 40.7 | 399 H3 | 28.1 | 172 | 59 | 21 | NS | 44.8 | 21.3 H1 | 78 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|----------|------------|------------|-------------|-----------| | Location ID: | GL | 11 (-1) | | mg/L | | | | | | | | | | | Alkalinity | ND | 4 | 4.8 | 14 | 10 | 10 | 12 | 8 J | 14 B | 10 | 20 | 12 | 22 | | Ammonia (N) | 0.08 J | 0.37 | ND | Chemical Oxygen Demand | ND | 12 | 35.6 | 40.8 | 18.4 | 39.4 M1 | 50.6 M1 | 43.9 | 46.4 | 43.3 | 46.5 | 53 | 61.6 | | Chloride | 90 | 87 | 125 | 86 | 91.2 | 88.5 | 93.4 | 133 | 124 | 110 | 144 | 103 | 103 | | Hardness | 170 | 150 | 178 | 187 | 172 | 152 | 193 | NS | 200 | NS | 200 | 213 | 236 | | Nitrate | ND 0.0076 J | ND | ND | 0.005 J | 0.004 JH1 | ND | | Nitrite | ND NS | ND | ND | | Nitrogen,
Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | ND | NS | ND | NS | 0.026 J | ND | ND | | рН | 4.1 | 4.58 | 4.7 H6 | 5.2 H6 | 4.6 H6 | 4.7 H6H1 | 4.7 H3H6 | 5 H6H1 | 4.7 H6H1 | 4.6 H6 | 4.7 H6 | 5 H3H6 | 4.9 H6H1 | | Specific Conductance | 1,300 | 650 | 750 | 652 | NS | 635 | 704 | 609 | 649 | 657 | 715 | 712 | 846 | | Sulfate | 170 | 160 | NS | 153 | 160 | 142 | 143 | 136 | 134 B | 145 | 150 | 138 | 148 | | Total Antimony | ND | 0.00065 J | ND | ND | ND | ND | 0.00052 | ND | 0.0001 J | 0.000081 J | 0.000076 J | ND | 0.00013 J | | Total Arsenic | ND | 0.00091 J | 0.0012 | 0.0014 | 0.001 | 0.0015 | 0.0039 | 0.003 | 0.0013 | 0.0017 | 0.0021 | 0.0022 JD3 | 0.0015 | | Total Barium | 0.023 | 0.022 | 0.025 | 0.0245 | 0.02 | 0.0206 | 0.0242 | 0.0415 | 0.0221 | 0.0225 | 0.0236 | 0.0223 | 0.0233 | | Total Beryllium | 0.0018 J | 0.0036 | 0.0035 | 0.0037 | 0.0028 | 0.0024 | 0.003 | 0.0027 | 0.002 | 0.0022 | 0.002 | 0.0019 D3 | 0.0018 | | Total Cadmium | 0.0004 J | 0.0014 | 0.0016 | 0.0018 | 0.0014 | 0.0012 | 0.0029 | 0.0019 | 0.0015 | 0.0013 | 0.0012 | 0.0011 | 0.001 | | Total Calcium | 13 | 12 | 14.6 | 17.4 | 17.6 | 15.9 | 20.2 | 19.7 | 22.4 | 22 | 21.1 | 24.5 | 28.2 | | Total Chromium | ND | 0.0024 | 0.001 | 0.00089 | 0.00058 | 0.0016 | 0.0025 | 0.0154 | 0.00068 | 0.0007 | 0.0014 | 0.00073 JD3 | 0.0013 | | Total Cobalt | 0.14 | 0.11 | 0.12 | 0.134 | 0.12 | 0.0934 | 0.0972 | 0.106 | 0.107 | 0.0966 | 0.0984 | 0.0862 | 0.0898 | | Total Copper | ND | 0.0018 | 0.0031 | 0.0027 | 0.0022 | 0.003 | 0.0109 | 0.029 | 0.0016 | 0.0014 | 0.0023 | 0.0018 JD3 | 0.0016 | | Total Dissolved Solids | 600 | 370 | NS | 446 | 362 | 384 | 523 | 495 | 476 | 405 | 442 | 423 | 488 | | Total Iron | 3.7 | 3.4 B | 6 | 8.18 | 6.1 | 4.28 | 17.6 | 12.4 | 8.91 | 6.78 | 8.91 | 6.11 | 10.6 | | Total Lead | ND | 0.0017 | 0.0012 | 0.0017 | 0.0007 | 0.0014 | 0.0038 | 0.0059 | 0.00058 | 0.00084 | 0.0012 | 0.00088 D3 | 0.0016 | | Total Magnesium | 33 | 30 | 34.4 | 35.7 | 33.3 | 27.4 | 34.7 | 33.2 | 35 | 33.8 | 35.9 | 36.8 | 40.2 | | Total Manganese | 0.32 | 0.31 | 0.35 | 0.381 | 0.36 | 0.28 | 0.372 | 0.349 | 0.387 | 0.342 | 0.399 | 0.361 | 0.435 | | Total Mercury | ND 0.000047 J | ND | ND | ND | ND | ND | | Total Nickel | 0.22 | 0.2 | 0.21 | 0.221 | 0.19 | 0.155 | 0.165 | 0.186 | 0.188 | 0.172 | 0.165 | 0.152 | 0.155 | | Total Potassium | 0.55 B | 0.46 | 0.48 | 0.451 | 0.36 | 0.337 | 0.512 | 1.2 | 0.348 | 0.374 | 0.395 | 0.329 | 0.389 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|------------|-----------|-------------|----------|------------|----------| | Total Selenium | ND | 0.0022 J | 0.0017 | 0.00053 | 0.00075 | 0.00075 | 0.0017 | 0.0012 | 0.0011 | 0.0027 | 0.0035 | 0.0013 JD3 | 0.0018 | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 61 | 60 | 57 | 51 | 49.9 | 50.1 | 40.6 | 41.9 | 39.2 | 40 | 37.5 | 40.4 | 42.5 | | Total Thallium | ND 0.000082 J | 0.00003 J | 0.000016 JB | ND | ND | ND | | Total Vanadium | ND | ND | 0.00068 | 0.00085 | ND | 0.0012 | 0.0025 | 0.009 | ND | 0.00082 J | 0.0015 | ND | 0.0013 | | Total Zinc | 0.35 | 0.35 | 0.35 | 0.415 | 0.34 | 0.256 | 0.286 | 0.388 | 0.293 | 0.266 | 0.267 | 0.24 | 0.239 | | Turbidity | 4 | 14 | 2.6 | 3.4 | 2.9 H3 | 18.2 | 87 H3 | 542 | 10.6 | 3.9 | 31.5 | 14.8 H1 | 41.5 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|----------|-----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|----------| | Location ID: | GI | 12 (-3) | | mg/L | | | | | | | | | | | Alkalinity | ND | ND | ND | ND | ND | 4 | ND | 8 J | ND | 10 | ND | ND | ND | | Ammonia (N) | 0.53 | 0.26 | ND | 0.35 | ND | 0.13 | 0.23 | 0.52 | 0.14 | 0.43 | 0.16 | 0.69 | 0.1 | | Chemical Oxygen Demand | 7.5 J | ND | 18.2 | ND | ND | 24.4 | ND | 12 J | ND | 13.1 J | ND | 12.2 J | 10.1 J | | Chloride | 48 | 61 | 55.9 | 41.6 | 51.2 | 61.4 | 55.7 | 66.7 | 59.2 | 61.3 | 57.2 | 97.8 | 4.9 | | Hardness | 150 | 210 | 213 | 121 | 205 | 111 | 178 | NS | 49.4 | 142 | 185 | 170 | 266 | | Nitrate | ND 0.0062 J | ND | ND | | Nitrite | ND | Nitrogen, Nitrate-Nitrite | 0.042 J | ND | NS | ND | ND | ND | ND | NS | 0.019 J | NS | ND | ND | ND | | рН | 4.4 | 4.31 | 5.3 H6 | 5.1 H6 | 4.2 H6 | NS | 4.3 H3H6 | 5.1 H6H1 | 4.1 H6H1 | NS | 4.1 H6H1 | 4.7 H6H1 | 3.9 H6H1 | | Specific Conductance | 480 | 720 | 764 | 495 | NS | NS | 681 | 534 | NS | 573 | 694 | 776 | 997 | | Sulfate | 310 | 260 | NS | 150 | 269 | 148 | 192 | 145 | 209 | 164 B | 224 | 195 | 298 | | Total Antimony | ND | Total Arsenic | ND | ND | ND | ND | 0.00076 | 0.00061 | 0.00071 | 0.00056 | 0.00016 J | 0.00037 J | 0.00073 | 0.00036 J | 0.00088 | | Total Barium | 0.017 | 0.015 | 0.017 | 0.019 | 0.015 | 0.0198 | 0.0172 | 0.0189 | 0.0045 | 0.0193 | 0.0183 | 0.022 | 0.0176 | | Total Beryllium | 0.0021 J | 0.0064 | 0.0046 | 0.0024 | 0.0073 | 0.0018 | 0.0051 | 0.0018 | 0.0015 | 0.0019 | 0.0064 | 0.0017 | 0.0079 | | Total Cadmium | ND | 0.001 | 0.00086 | 0.0011 | 0.00078 | 0.0012 | 0.0011 | 0.0012 | 0.00024 | 0.0014 | 0.00086 | 0.0012 | 0.00062 | | Total Calcium | 22 | 24 | 27.1 | 22.7 | 23.6 | 26.2 | 23.7 | 20.2 | 6.48 | 28.4 | 23.6 | 33.7 | 28.7 | | Total Chromium | ND | 0.0014 J | ND | 0.0007 | 0.00081 | 0.001 | 0.0009 | 0.0015 | ND | 0.00022 J | 0.0015 | 0.00032 J | 0.00089 | | Total Cobalt | 0.13 | 0.15 | 0.13 | 0.0892 | 0.17 | 0.0768 | 0.131 | 0.0646 | 0.0385 | 0.0749 | 0.14 | 0.0795 | 0.203 | | Total Copper | ND | 0.0053 | 0.0062 | 0.0017 | 0.005 | 0.0012 | 0.0036 | 0.0102 | 0.0007 J | 0.00092 J | NS | 0.00094 J | 0.0037 | | Total Dissolved Solids | 430 | 420 | NS | 326 | 473 | NS | 411 | 359 | 475 | 342 | 477 | 466 | 554 | | Total Iron | 8.5 | 1.1 | 9.7 | 9.56 | 1.9 | 11.6 | 6.21 | 12.9 | 1.36 | 11.1 | 6.82 | 14 | 3.5 | | Total Lead | ND | 0.0011 | 0.0032 | 0.00074 | 0.0013 | 0.0008 | 0.0011 | 0.00092 | 0.00034 | 0.00064 | 0.0015 | 0.00071 | 0.0016 | | Total Magnesium | 22 | 36 | 35.5 | 15.6 | 37.8 | 17.3 | 28.8 | 15.4 | 8.06 | 17.3 | 30.7 M1 | 20.8 | 47.1 | | Total Manganese | 0.44 | 0.54 | 0.61 | 0.368 | 0.58 | 0.437 | 0.597 | 0.427 | 0.161 | 0.444 | 0.648 | 0.604 | 0.762 | | Total Mercury | ND | ND | 0.0052 M1 | 0.00033 | ND | Total Nickel | 0.17 | 0.26 | 0.22 | 0.119 | 0.26 | 0.105 | 0.2 | 0.0922 | 0.0652 | 0.108 | 0.233 | NS | 0.348 | | Total Potassium | 2.4 B | 1.4 | 1.8 | 2.91 | 1.3 | 3.03 | 1.81 | 2.56 | 0.468 | 2.86 | 1.88 | 3.2 | 1.5 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|------------|------------|------------|------------|-------------| | Total Selenium | ND | 0.00072 J | ND | ND | ND | ND | 0.0011 | 0.00048 J | 0.00015 J | 0.00071 | 0.00045 J | 0.00023 J | 0.0018 | | Total Silver | ND NS | ND | 0.00001 J | ND | ND | | Total Sodium | 45 | 54 | 51.2 | 34.6 | 53 | 39.5 | 37.6 | 35 | 11.6 | 37.7 | 44.5 M1 | 61.1 | NS | | Total Thallium | ND 0.000052 J | 0.000017 J | 0.00007 JB | 0.000046 J | 0.000062 J | 0.000048 JB | | Total Vanadium | ND | ND | 0.0022 | 0.00033 | ND | ND | ND | 0.0014 | ND | ND | 0.0016 | ND | 0.00056 J | | Total Zinc | 0.31 | 0.34 | 0.32 | 0.29 | 0.38 | 0.27 | 0.348 | 0.244 | 0.0972 | 0.259 | 0.365 | 0.243 | 0.418 | | Turbidity | 2.4 | 2.9 | 21.6 | 25.7 | 1 H3 | NS | 13.9 H1 | 15.6 | 5.3 | NS | 24.6 | 6.4 | 9.8 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|------------|-----------|----------|-----------|----------|-----------|----------|------------|------------|------------|------------|-----------|-----------| | Location ID: | GL | -13 (+1) | | mg/L | | | | | | | | | | | Alkalinity | 180 | 250 | 224 | 208 | 204 | 246 | 242 | 266 | 342 | 200 | 284 | 232 | 260 | | Ammonia (N) | 0.17 | 0.096 J | ND NS | ND | 0.07 J | ND | | Chemical Oxygen Demand | 7.8 J | ND | 11.7 | 14.5 | ND | 37.3 | 22.8 | 12 J | 17.7 J | 13.1 J | 12 J | 14.4 J | 12.2 J | | Chloride | 29 | 17 | 7.3 | 12.3 | 5.3 | 7.1 | 5 | 6.9 B | 5.1 B | 6.1 | 5.4 | 6.9 | 5.7 | | Hardness | 230 | 240 | 231 | 196 | 169 | 215 | 205 | NS | 285 | 171 | 250 | 243 | 230 | | Nitrate | 0.0024 J | ND | ND | ND | ND | ND | ND | 0.003 J | ND | ND | 0.015 | ND | ND | | Nitrite | ND | ND | ND | ND | ND | 0.19 | ND | ND | 0.02 J | ND | ND | ND | ND | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | 0.19 | ND | NS | 0.02 J | NS | ND | ND | ND | | рН | 6.2 | 6.4 | 6.8 H6 | 8.1 H6 | 6.7 H6 | NS | 6.4 H3H6 | 6.6 H6H1 | 6.7 H6H1 | NS | 6.6 H6H1 | 6.4 H6H1 | 6.6 H6H1 | | Specific Conductance | 590 | 850 | 609 | 570 | NS | NS | 520 | 548 | NS | 464 | 585 | 579 | 580 | | Sulfate | 170 | 200 | NS | 56.8 | 39.8 | 49.1 | 16.4 | 57.4 | 18.4 B | 50.7 | 28.6 | 43.3 | 12.3 | | Total Antimony | ND | 0.00072 J | ND | ND | ND | ND | ND | 0.0002 J | 0.000078 J | 0.00019 J | 0.00011 J | 0.00027 J | 0.00014 J | | Total Arsenic | ND | ND | ND | 0.0028 | 0.00092 | ND | 0.0068 | 0.00062 | 0.0035 | 0.00039 J | 0.0027 | 0.0013 | 0.0024 | | Total Barium | 0.058 | 0.026 | 0.029 | 0.0637 | 0.024 | 0.0393 | 0.038 | 0.0442 | 0.0487 | 0.0444 | 0.0464 | 0.0433 | 0.0343 | | Total Beryllium | ND | Total Cadmium | ND | ND | ND | ND | ND | ND | 0.00012 | 0.000065 J | 0.00002 J | 0.000039 J | 0.000019 J | 0.000088 | ND | | Total Calcium | 70 | 74 | 71.2 | 55.3 | 58 | 71.2 | 65.3 | 52 | 88.7 | 50.9 | 77.7 | 74.7 | 73.6 | | Total Chromium | ND | 0.0018 J | ND | ND | ND | 0.0018 | 0.0017 | 0.0014 | 0.00052 | 0.00037 J | 0.00054 |
0.00041 J | 0.00041 J | | Total Cobalt | 0.0033 J | 0.00067 J | ND | 0.0103 | ND | ND | 0.0053 | 0.00024 J | 0.0038 | 0.00064 | 0.0035 | 0.0006 | 0.0019 | | Total Copper | ND | 0.0015 | ND | 0.001 | 0.0011 | 0.0024 | 0.0035 | 0.0036 | ND | 0.0018 | NS | 0.002 | 0.00075 J | | Total Dissolved Solids | 480 | 520 | NS | 383 | 311 | NS | 300 | 377 | 382 | 241 | 323 | 350 | 270 | | Total Iron | 0.91 | 0.12 B | 0.54 | 10.9 | 0.43 | 0.121 | 6.24 | 0.246 | 4.72 | 0.0782 | 1.7 | 0.489 | 1.25 | | Total Lead | ND | ND | ND | ND | ND | 0.00013 | 0.001 | 0.00018 | 0.00013 | 0.000033 J | 0.00028 | 0.00012 | 0.00018 | | Total Magnesium | 14 | 13 | 13 | 15.3 | 9.7 | 12.4 | 10.2 | 11.4 | 15.5 | 10.7 | 13.5 | 13.7 | 11.2 | | Total Manganese | 0.25 | 0.018 | 0.13 | 0.674 | 0.16 | 0.0055 | 0.777 | 0.0098 | 0.621 | 0.0785 | 0.471 | 0.0212 | 0.214 | | Total Mercury | 0.000039 J | ND | Total Nickel | 0.0067 | 0.0041 J | ND | 0.0089 | 0.0019 | 0.0028 | 0.0041 | 0.0018 | 0.0034 | 0.0021 | 0.0025 | NS | 0.0016 | | Total Potassium | 18 B | 7.6 | 8.4 | 14.3 | 5.2 | 9.11 | 6.45 | 10.4 | 7.66 | 11.2 | 6.05 | 6.22 | 4.82 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|------------|-------------|------------|-----------|----------| | Total Selenium | ND | 0.00051 J | ND | ND | ND | 0.00053 | ND | 0.0012 | 0.00017 J | 0.00072 | 0.00016 J | 0.001 | 0.0002 J | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 44 | 83 | 36.5 | 43.4 | 33.9 | 36.5 | 22 | 27.1 | 31.2 | 30.3 | 28.2 | 23.6 | NS | | Total Thallium | ND 0.000029 J | 0.000011 J | 0.000018 JB | 0.000013 J | ND | ND | | Total Vanadium | ND | 0.0017 J | 0.00066 | 0.00044 | ND | 0.0015 | 0.0072 | 0.0033 | 0.0014 | 0.0013 | 0.0018 | 0.0036 | 0.0021 | | Total Zinc | ND | 0.0033 J | ND | 0.0177 | 0.0051 | ND | 0.0113 | 0.0159 | 0.0019 J | 0.0039 JB | 0.0069 | 0.0048 J | 0.0039 J | | Turbidity | 5.4 | 3.4 | 4 | 9.6 | 0.68 H3 | NS | 73 H1 | 10.6 | 7.2 | NS | 9.4 | 6.3 | 13.4 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|------------|------------|-----------|------------|----------| | Location ID: | GL | -14 (+1) | | mg/L | | | | | | | | | | | Alkalinity | 40 | 12 | 13.4 | 14 | ND | 20 | 20 | 14 | 20 B | 10 | 20 | 10 | 22 | | Ammonia (N) | 0.31 | 0.28 | ND | 0.67 | 0.17 | ND | ND | 0.46 | ND | ND | ND | 0.055 J | 0.082 J | | Chemical Oxygen Demand | ND 11.1 J | ND | ND | ND | | Chloride | 6 | 8 | 5.6 | 8.6 | 5.9 | 6.3 | 5.7 | 7.7 B | 5.4 | 5.2 | 4.8 | 5.5 | 24.1 | | Hardness | 44 | 42 | 43.4 | 34 | 35.7 | 50.3 | 42 | NS | 46 | 38.1 | 39.6 | 32.9 | 42.5 | | Nitrate | ND 0.082 | ND | ND | ND | ND | ND | | Nitrite | ND 0.022 J | ND | ND | ND | ND | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | ND | NS | 0.022 J | NS | 0.056 J | ND | ND | | рН | 5.5 | 5.4 | 6.1 H6 | 6.5 H6 | 5.4 H6 | NS | 5.8 H3H6 | 5.8 H6H1 | 6 H6H1 | NS | 5.9 H6H1 | 5.9 H3H6 | 5.8 H6H1 | | Specific Conductance | 340 | 130 | 131 | 162 | NS | NS | 123 | 113 | NS | 118 | 113 | 116 | 126 | | Sulfate | 37 | 33 | NS | 43.1 | 33.2 | 25.3 | 23.8 | 28.7 B | 22.1 B | 27.2 B | 23.3 | 24.6 | 20.5 | | Total Antimony | ND | 0.00084 J | ND | Total Arsenic | ND | ND | ND | 0.0058 | ND | 0.0015 | ND | 0.0023 | 0.00045 J | 0.00034 J | 0.00028 J | 0.0012 JD3 | 0.00034 | | Total Barium | 0.024 | 0.019 | 0.013 | 0.0641 | 0.014 | 0.0385 | 0.014 | 0.0346 | 0.0147 | 0.0152 | 0.014 | 0.0148 | 0.0138 | | Total Beryllium | ND | ND | ND | 0.00035 | ND | 0.00027 | ND | 0.00024 | ND | 0.000042 J | ND | ND | ND | | Total Cadmium | ND 0.000015 J | ND | ND | ND | ND | | Total Calcium | 13 | 13 | 13.9 | 7.9 | 12.8 | 13.1 | 13.5 | 6.28 | 15.1 | 12 | 12.8 | 10.3 | 13.8 | | Total Chromium | ND | 0.0019 J | ND | 0.0204 | ND | 0.0028 | 0.00054 | 0.0047 | 0.00029 J | 0.00028 J | 0.0004 J | ND | 0.00048 | | Total Cobalt | 0.0022 J | 0.0019 J | 0.00092 | 0.0041 | 0.0011 | 0.0021 | 0.00092 | 0.0018 | 0.0012 | 0.0014 | 0.0011 | 0.0015 JD3 | 0.0015 | | Total Copper | ND | ND | ND | 0.0113 | ND | 0.0057 | ND | 0.0058 | ND | ND | NS | ND | 0.0002 J | | Total Dissolved Solids | 220 | 64 | NS | 133 | 61 | NS | 60 | 124 | 89 | 58 | 61 | 38 | 59 | | Total Iron | 4.7 | 3.5 B | 1.8 | 22.4 | 1.2 | 5.75 | 1.19 | 14.8 | 2.45 | 1.87 | 1.24 | 3.71 | 1.13 | | Total Lead | ND | ND | ND | 0.0135 | ND | 0.0044 | 0.00019 | 0.0054 | 0.000069 J | 0.000046 J | 0.00011 | ND | ND | | Total Magnesium | 2.5 | 2.4 | 2.1 | 3.6 | 2.2 | 5.1 | 2 | 2.16 | 1.98 | 1.98 | 1.85 | 1.76 | 1.99 | | Total Manganese | 0.17 | 0.14 | 0.079 | 0.418 | 0.085 | 0.178 | 0.0714 | 0.283 | 0.0564 | 0.128 | 0.0585 | 0.131 | 0.105 | | Total Mercury | ND 0.000034 J | ND | ND | ND | ND | ND | | Total Nickel | 0.005 | 0.002 J | 0.0012 | 0.0076 | 0.0014 | 0.0044 | 0.0015 | 0.004 | 0.0019 | 0.0024 | 0.0018 | 0.0025 | 0.0015 | | Total Potassium | 1.1 B | 0.8 | 0.79 | 1.52 | 0.78 | 1.15 | 0.978 | 0.805 | 1.05 | 1.08 | 1.02 | 0.9 | 0.907 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|-----------|-------------|-----------|------------|-----------| | Total Selenium | ND | 0.00054 J | ND | ND | ND | ND | ND | 0.00034 J | 0.00014 J | ND | ND | ND | ND | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 5.2 | 4.5 | 3.7 | 9.88 | 4.4 | 5.37 | 3.63 | 6.17 | 3.89 | 4.65 | 3.79 | 4.81 | NS | | Total Thallium | ND | ND | ND | 0.00011 | ND | ND | ND | 0.000017 J | ND | 0.000009 JB | ND | ND | ND | | Total Vanadium | ND | ND | 0.00014 | 0.0261 | ND | 0.0065 | ND | 0.0094 | ND | 0.00015 J | 0.00035 J | 0.0014 JD3 | 0.00077 J | | Total Zinc | ND | 0.0054 | ND | 0.0342 | ND | 0.0079 | ND | 0.195 | 0.003 J | 0.0041 JB | 0.0047 J | 0.0078 JD3 | 0.0034 J | | Turbidity | 1.6 | 6 | 6.8 | 17.7 | 3.3 H3 | NS | 15.7 | 425 | 8.7 | NS | 13.8 | 46 H1 | 10 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|------------|----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|----------|-----------|----------| | Location ID: | GL | -15 (-6) | | mg/L | | | | | | | | | | | Alkalinity | 910 | 850 | 400 | 632 | 814 | 480 | 826 | 170 | 896 | 192 | 1,150 | 140 | 1,030 | | Ammonia (N) | 0.78 | 2.1 | 2 | 0.52 | ND | 0.72 | 0.18 | 1.8 | ND | 0.9 | ND | 0.93 | 0.09 J | | Chemical Oxygen Demand | ND | ND | 83.4 | 78.1 | 16.2 | 92.8 | 29.2 | 92.9 | 19.9 J | 106 | 30.3 | 85.2 | 27.2 | | Chloride | 36 | 1,100 | 1,380 | 137 | 28.5 | 98.2 | 25.7 | 134 | 25.3 | 204 | 39.6 | 40.3 | 34.9 | | Hardness | 1,500 | 1,200 | 705 | 1,030 | 1,390 | 845 | 1,420 | NS | 1,400 | 648 | 1,570 | 778 | 1,570 | | Nitrate | 0.0043 J | 0.095 | 0.13 | ND | 0.052 | 0.012 | 0.062 H1 | 0.0024 J | 0.0034 JH1 | ND | 0.0038 J | ND | 0.1 | | Nitrite | ND | ND | 0.18 | ND | 2.8 | 0.85 | 1.3 | 0.054 J | 1.8 | ND | 4.6 | 0.072 J | 2.9 | | Nitrogen, Nitrate-Nitrite | 0.04 J | 0.058 | NS | ND | 2.8 | 0.87 | 1.3 | NS | 1.8 | NS | 4.6 | 0.073 J | 3 | | рН | 8.3 | 12.3 | 11.8 H6 | 8.1 H6 | 8 H6 | 8.4 H6 | 8.2 H3H6 | 8.4 H6H1 | 8 H6 | 8.5 H6H1 | 7.9 H6H1 | 8.1 H6H1 | 8.1 H6H1 | | Specific Conductance | 3,300 | 6,600 | 5,660 | 2,130 | NS | 2,650 | 2,420 | 1,700 | 2,310 | 2,040 | 2,570 | 1,570 | 2,590 | | Sulfate | 660 | 48 | 78.4 | 320 | 830 | 514 | 647 | 572 B | 522 B | 575 B | 431 | 492 | 556 | | Total Antimony | ND | ND | ND | ND | 0.0014 | 0.00098 | 0.0014 | 0.00046 J | 0.0016 | 0.00029 J | 0.0016 | 0.00026 J | 0.0017 | | Total Arsenic | 0.0078 | 0.0026 | ND | 0.0062 | 0.0056 | 0.0035 | 0.0053 | 0.0031 | 0.0057 | 0.0025 | 0.0061 | 0.0032 | 0.0067 | | Total Barium | 0.024 | 0.57 | 0.38 | 0.0214 | 0.019 | 0.0187 | 0.021 | 0.0093 | 0.0226 | 0.0093 | 0.0254 | 0.0108 | 0.0261 | | Total Beryllium | ND 0.000068 J | ND | ND | ND | ND | | Total Cadmium | ND | ND | ND | 0.00017 | 0.00029 | 0.00031 | 0.00023 | 0.00025 | 0.00026 | 0.00008 | 0.00028 | 0.00012 | 0.00027 | | Total Calcium | 38 | 480 | 295 | 43.3 | 33.8 | 63.9 | 32.5 | 55.5 | 35.6 | 54.4 | 42.8 | 81.8 | 36 | | Total Chromium | 0.15 | 0.014 | 0.012 | 0.0012 | 0.092 | 0.023 | 0.0753 | 0.0077 | 0.0818 | 0.0011 | 0.135 | 0.00041 J | 0.14 | | Total Cobalt | ND | 0.0025 J | ND | 0.00094 | 0.0013 | 0.00077 | 0.0013 | 0.00046 J | 0.0012 | 0.00032 J | 0.0015 | 0.00027 J | 0.0016 | | Total Copper | 0.0048 | 0.0038 | 0.0027 | 0.0022 | 0.0064 | 0.0065 | 0.0065 | 0.0033 | NS | 0.0014 | 0.0058 | 0.00082 J | 0.0063 | | Total Dissolved Solids | 1,500 | 2,800 | 2,430 | 1,390 | 1,670 | 1,230 | 1,610 | 910 | 1,620 | 1,340 | 1,730 | 1,230 | 1,700 | | Total Iron | 0.15 | ND | ND | 0.0898 | 0.43 | 0.175 | 0.184 | 0.86 | 0.151 | 0.105 | 0.173 | 0.343 | 0.175 | | Total Lead | ND | ND | ND | 0.002 | 0.0039 | 0.0047 | 0.0021 | 0.0085 | 0.0026 | 0.00056 B | 0.003 | 0.00062 | 0.0034 | | Total Magnesium | 330 | 0.082 J | 0.16 | 245 | 317 | 178 | 324 | 89.7 | 319 | 124 | 356 | 139 | 359 | | Total Manganese | 0.014 | ND | ND | 0.0281 | 0.0095 | 0.0307 | 0.0085 | 0.0571 | 0.0055 | 0.0574 | 0.0067 | 0.0713 | 0.0066 | | Total Mercury | 0.000028 J | ND | Total Nickel | 0.0043 J | 0.017 | 0.0029 | 0.0043 | 0.0032 | 0.0085 | 0.0034 | 0.012 | 0.0029 | 0.0112 | 0.0029 | 0.0085 | 0.0032 | | Total Potassium | 98 B | 67 | 49.8 | 108 | 96.7 | 98.8 | 86.4 | 83.6 | 90 | 90 | 94.4 | 71.2 | 93.1 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 |
12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|------------|----------|-----------|-----------|------------|----------| | Total Selenium | 0.023 | 0.0077 | ND | 0.0022 | 0.042 | 0.0164 | 0.054 | 0.00083 | 0.0859 | 0.0013 | 0.121 | 0.0014 | 0.136 | | Total Silver | ND 0.00059 | NS | 0.00004 J | 0.00016 J | ND | ND | | Total Sodium | 40 | 470 | 548 | 90.9 | 35.4 | 76.9 | 27.8 | 104 | 28.2 | 129 | 36.2 | 620 | 32.7 | | Total Thallium | ND | ND | ND | 0.00015 | 0.00016 | 0.00016 | 0.00017 | 0.000049 J | 0.00026 | ND | 0.0002 | 0.000042 J | 0.00022 | | Total Vanadium | 0.0009 J | 0.0019 J | ND | 0.00066 | 0.0027 | 0.0019 | 0.0027 | NS | 0.0028 | 0.00053 J | 0.0034 | 0.00036 J | ND | | Total Zinc | 0.045 | 0.0016 J | ND | 0.0434 | 0.072 | 0.0541 | 0.0508 | 0.081 | 0.0603 | 0.0319 | 0.0938 | 0.0234 | 0.08 | | Turbidity | 0.47 | 0.34 | 0.61 | 2.2 | 0.93 | 6.2 | 1.7 H1 | 38.4 | 0.49 | 0.84 | 1.3 | 1.5 | 2.6 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|------------|-----------|----------| | Location ID: | GL | 16 (-6) | | mg/L | | | | | | | | | | | Alkalinity | ND | Ammonia (N) | 0.64 | 32 | ND 0.062 J | 0.092 J | | Chemical Oxygen Demand | 32 | 33 | 63.8 | 58.4 | 35.9 | 62.9 | 59.1 | 61 | 66.2 | 61.5 | 60.8 | 72.3 | 57.4 | | Chloride | 120 | 150 | 178 | 154 | 154 | 163 | 16,900 | 172 | 162 | 187 | 198 | 173 | 145 | | Hardness | 340 | 360 | 388 | 380 | 294 | 333 | 371 | NS | 406 | 392 | NS | 447 | 430 | | Nitrate | ND | ND | ND | ND | ND | 0.015 | ND | 0.012 | ND | 0.0054 J | 0.011 | 0.0065 J | ND | | Nitrite | ND 0.039 J | 0.052 J | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | 0.23 | NS | ND | NS | ND | 0.046 J | 0.056 J | | рН | 4.5 | 4.27 | 4.2 H6 | 4.3 H6 | 4.4 H6 | 4.5 H6 | 4.4 H3H6 | 4.3 H6H1 | 4.2 H6H1 | 4.2 H6H1 | 4.3 H6H1 | 4.2 H6 | 5.2 H6 | | Specific Conductance | 1,200 | 1,300 | 1,550 | 1,390 | NS | 2,730 | 1,540 | 1,360 | NS | 1,470 | 1,540 | 1,420 | 1,530 | | Sulfate | 420 | 360 | 474 | 460 | 474 | 458 | 459 | 477 B | 457 | 473 B | 465 | 491 | 537 | | Total Antimony | ND 0.000061 J | 0.00005 J | 0.000064 J | ND | ND | | Total Arsenic | 0.0028 J | 0.0022 | 0.0046 | 0.0016 | 0.0029 | 0.0025 | 0.0042 | 0.0042 | 0.0043 | 0.0032 | 0.0025 | 0.0021 | 0.0023 | | Total Barium | 0.017 | 0.014 | 0.019 | 0.0161 | 0.023 | 0.0212 | 0.0246 | 0.0208 | 0.0165 | 0.0164 | 0.0174 | 0.0162 | 0.0162 | | Total Beryllium | 0.0025 | 0.0043 | 0.0058 | 0.0037 | 0.0037 | 0.0039 | 0.0042 | 0.0042 | 0.0042 | 0.0044 | 0.0047 | 0.0053 | 0.0043 | | Total Cadmium | ND | 0.0012 | 0.0017 | 0.0013 | 0.001 | 0.0015 | 0.0025 | 0.0016 | 0.0013 | 0.0013 | 0.0016 | 0.0014 | 0.0014 | | Total Calcium | 18 | 20 | 23.9 | 23.5 | 18.9 | 22.5 | 22.7 | 18.5 | 25 | 22.1 | 29.7 | 30.4 | 28.3 | | Total Chromium | ND | 0.001 J | 0.0027 | 0.0017 | 0.0009 | 0.0034 | 0.0054 | 0.0064 | 0.0012 | 0.00091 | 0.0017 | 0.0011 | 0.0012 | | Total Cobalt | 0.27 | 0.24 | 0.27 | 0.258 | 0.22 | 0.247 | 0.25 | 0.226 | 0.26 | 0.262 | 0.271 | 0.269 | 0.259 | | Total Copper | ND | 0.0022 | 0.02 | 0.0041 | 0.013 | 0.0244 | 0.0262 | 0.0242 | 0.0028 | 0.0038 | 0.0136 | 0.0104 | 0.0133 | | Total Dissolved Solids | 920 | 970 | 1,010 | 997 | 1,240 | 963 | 1,040 | 990 | 1,020 | 1,020 | 1,170 | 1,020 | 1,020 | | Total Iron | 16 | 16 | 17.7 | 15.3 | 12.4 | 14.5 | 14.6 | 15.5 | 13.8 | 15.7 | 16.6 | 17.5 | 16.8 | | Total Lead | 0.00061 J | 0.0021 | 0.0048 | 0.0022 | 0.0022 | 0.0036 | 0.0035 | 0.0037 | 0.0026 | 0.0027 | 0.0043 | 0.0034 | 0.0039 | | Total Magnesium | 72 | 74 | 82.8 | 78.5 | 64.6 | 83 | 76.4 | 70 | 83.3 | 81.9 | 91.4 | 90.1 | 87.4 | | Total Manganese | 0.5 | 0.57 | 0.68 | 0.655 | 0.51 | 0.617 | 0.644 | 0.658 | 0.729 | 0.742 | 0.852 | 0.877 | 0.826 | | Total Mercury | ND | Total Nickel | 0.38 | 0.34 | 0.4 | 0.359 | 0.33 | 0.355 | 0.35 | 0.326 | 0.37 | 0.382 | 0.394 | 0.384 | 0.375 | | Total Potassium | 0.89 B | 0.95 | 1.1 | 0.957 | 0.78 | 1.02 | 1.06 | 1.1 | 1 | 1.06 | 1.11 | 1.22 | 1.08 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|------------|-------------|-------------|------------|------------|------------| | Total Selenium | 0.0041 J | 0.003 J | 0.0068 | 0.0011 | 0.0009 | 0.0011 | 0.0035 | 0.0041 | 0.013 | 0.0066 | 0.0014 | 0.0014 | 0.0013 | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 110 | 120 | 126 | 119 | 128 | 128 | 118 | 147 | 128 | 130 | 135 | 142 | 130 | | Total Thallium | ND 0.000048 J | 0.000048 JB | 0.000012 JB | 0.000057 J | 0.000059 J | 0.000065 J | | Total Vanadium | ND | ND | 0.0039 | 0.0018 | 0.0017 | 0.0019 | 0.0042 | NS | 0.0013 | 0.0014 | 0.0027 B | 0.0017 | 0.0023 | | Total Zinc | 0.64 | 0.62 | 0.75 | 0.714 | 0.6 | 0.706 | 0.73 | 0.694 | 0.736 | 0.696 | 0.844 | 0.802 | 0.763 | | Turbidity | 5 | 0.89 | 9.5 | 5.7 | 6.6 | 14.3 | 19.2 H1 | 39.8 | 5.8 | 2.2 | 30.9 | 10.8 | 18.5 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|-----------|------------|-------------|------------|------------| | Location ID: | GL | 17 (-1) | | mg/L | | | | | | | | | | | Alkalinity | 280 | 310 | 204 | 300 | 250 | 364 | 246 | 306 | 222 | 260 | 250 | 240 | 216 | | Ammonia (N) | 66 | 62 | 161 | 76.1 | 63 | 66.4 | 59.1 | 47.6 | 55.7 | 59.4 | 59.4 | 67.1 | 58.2 | | Chemical Oxygen Demand | 230 | 180 | 460 | 402 | 311 | 304 | 290 | 302 | 298 | 271 | 264 | 293 | 290 | | Chloride | 260 | 240 | 121 | 227 | 181 | 194 | 184 | 191 | 182 | 171 | 211 | 1,810 | 168 | | Hardness | 800 | 680 | 556 | 572 | 488 | 531 | 440 | NS | 443 | 453 | NS | 435 | 251 | | Nitrate | 0.0039 J | ND | 0.031 | ND | 0.018 | 0.029 | ND | 0.0063 J | 0.017 | 0.0094 J | 0.024 | 0.014 2c | 0.095 3c | | Nitrite | ND 0.041 J | ND | ND | ND | ND | ND | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | NS | ND | NS | 0.069 J | NS | ND | ND | ND | | рН | 10.5 | 10.6 | 10 H6 | 9.9 H6 | 10.1 H6 | 10.6 H6H1 | 10.4 H3H6 | 10.8 H6H1 | 10.1 H6H1 | 10.2 H6 | 10.5 H6H1 | 10.4 H6H1 | 10 H6H1 | | Specific Conductance | 10,000 | 2,900 | 3,010 | 2,840 | NS | 2,010 | 2,590 | 2,460 | NS | 2,480 | 2,460 | 2,310 | 2,580 | | Sulfate | 970 | 930 | 970 | 1,010 | 808 | 876 | 805 | 909 | 897 | 943 | 704 | 912 | 701 | | Total Antimony | ND | ND | ND | ND | 0.00055 | ND | 0.00063 | 0.00048 J | 0.00037 J | 0.00064 | 0.00016 J | ND | 0.00064 JD | | Total Arsenic | 0.013 | 0.014 | 0.016 | 0.0145 | 0.014 | 0.0236 | 0.0236 | 0.0169 | 0.0112 | 0.0148 | 0.0098 | 0.0129 | 0.0127 | | Total Barium | 0.012 | 0.009 | 0.01 | 0.0091 | 0.01 | 0.0168 | 0.0205 | 0.014 | 0.0124 | 0.0136 | 0.0965 | 0.0124 | 0.0124 | | Total Beryllium | ND 0.00023 JD3 | ND | ND | | Total Cadmium | 0.00068 | 0.0015 | ND | 0.00032 | ND | 0.0006 | 0.0014 | 0.0005 | ND | 0.000022 J | 0.000027 J | ND | 0.00026 JD | | Total Calcium | 320 | 270 | 228 | 249 | 200 | 242 | 195 | 213 | 176 | 180 | 105 | 173 | 98.5 | | Total Chromium | ND | ND | ND | ND | 0.00081 | 0.0062 | 0.0213 | 0.0111 | 0.00088 | 0.0023 | 0.0011 | 0.0011 JD3 | ND | | Total Cobalt | ND | 0.00069 J | ND | ND | ND | 0.0015 | 0.0034 | 0.0018 | 0.00061 | 0.00076 | 0.0029 | ND | 0.00078 JD | | Total Copper | ND | 0.0025 | 0.011 | 0.0023 | 0.0024 | 0.0033 | 0.0194 | 0.0092 | 0.0038 | 0.0037 | 0.0012 | 0.0042 JD3 | 0.0161 | | Total Dissolved Solids | 2,100 | 2,000 | 1,950 | 2,100 | 1,820 | 2,000 | 1,620 | 2,010 | 1,780 | 1,850 | 1,900 | 1,810 | 1,250 2c | | Total Iron | 0.28 | 0.024 | 0.65 | 0.162 | 0.48 | 1.53 | 11.2 | 4.39 | 0.516 | 1.05 | 2.05 | 0.877 | 1.93 | | Total Lead | ND | ND | 0.01 | 0.00099 | 0.0034 | 0.0247 | 0.12 | 0.0584 | 0.0076 | 0.0064 | 0.00068 | 0.0105 | 0.0148 | | Total Magnesium | ND | 0.26 | 1.7 | 0.36 | 0.14 | 1.2 | 1.56 | 0.971 | 1.12 | 0.704 | 85.4 | 0.933 | 1.31 | | Total Manganese | 0.0043 J | 0.00095 J | 0.031 | 0.0015 | 0.0058 | NS | 0.24 | 0.117 | 0.0422 | 0.0191 | 0.393 | 0.052 | 0.0553 | | Total Mercury | ND | Total Nickel | 0.039 | 0.033 | 0.032 | 0.0288 | 0.029 | 0.0353 | 0.0348 | 0.0274 | 0.0288 | 0.0312 | 0.0012 | 0.0287 | 0.0254 | | Total Potassium | 210 B | 200 | 191 | 225 | 176 | 213 | 168 | 197 | 175 | 182 | 53.6 | 166 | 111 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|-------------|------------|-------------| | Total Selenium | 0.0049 J | 0.0073 | ND | 0.0021 | 0.0016 | 0.0018 | 0.0012 | 0.0011 | 0.0014 | 0.0016 | 0.00092 | 0.0012 JD3 | 0.0015 JD3 | | Total Silver | ND NS | ND | 0.000049 JB | ND | ND | | Total Sodium | 260 | 240 | 233 | 266 | 213 | 235 | 196 | 225 | 212 | 216 | 1,190 | 196 | 132 | | Total Thallium | ND | 0.00041 J | ND | 0.0004 | 0.00051 | 0.0012 | 0.0021 | 0.0009 | 0.00064 JB | 0.00035 | 0.000018 J | NS | 0.00048 JD3 | | Total Vanadium | 0.07 | 0.087 | 0.039 | 0.0504 | 0.047 | 0.164 | 0.166 | 0.117 | 0.0466 | 0.071 | 0.0017 B | 0.0658 | 0.0565 | | Total Zinc | ND | 0.0037 J | 0.029 | 0.0089 | 0.024 | 0.19 | 0.521 | 0.289 | 0.0081 | 0.0295 | 0.0103 | 0.0295 | 0.0229 JD3 | | Turbidity | 1.9 | 1.2 | 43.7 | 2.8 | 11.8 | 26.4 | 438 H1 | 15.1 | 16.4 | 5.2 | 12.9 | 20.3 | 64 | | Parameter
 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|------------|------------|-----------|-------------|------------| | Location ID: | GL | 18 (-3) | | mg/L | | | | | | | | | | | Alkalinity | 200 | 200 | 200 | 246 | 194 | 372 | 274 | 300 | 250 | 280 | 200 | 260 | 236 | | Ammonia (N) | 26 | 30 | 85 | 43.3 | 31.8 | 43.8 | 39 | 47.5 | 47.3 | 79.8 | 31.8 | 41.6 | 36.7 | | Chemical Oxygen Demand | 200 | 160 | 262 | 339 | 220 | 317 M1 | 262 | 312 | 307 | 273 | 195 | 255 | 237 | | Chloride | 220 | 220 | 354 | 274 | 197 | 268 | 263 | 287 B | 276 | 264 | 213 | 238 | 217 | | Hardness | 760 | 790 | 655 | 784 | 607 | 693 | 607 | NS | 651 | NS | NS | 509 | 330 | | Nitrate | 0.0026 J | ND | ND | ND | ND | ND | ND | 0.011 | 0.011 | 0.0031 J | 0.0074 J | 0.021 2c | ND | | Nitrite | ND 0.052 J | ND | ND | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | NS | ND | NS | ND | NS | 0.06 J | ND | ND | | рН | 10.9 | 11 | 10.8 H6 | 10 H6 | 10.7 H6 | 10.8 H6H1 | 10.8 H3H6 | 10.6 H6H1 | 10.5 H6H1 | 10.6 H6 | 10.7 H6H1 | 10.9 H6H1 | 11.1 H6H1 | | Specific Conductance | 7,800 | 2,300 | 2,470 | 2,680 | NS | 1,480 | 24,700 | 2,570 | 2,410 | 2,510 | 2,000 | 2,030 | 2,460 | | Sulfate | 930 | 900 | 1,400 | 957 | 656 | 1,050 | 682 | 869 B | 739 | 855 | 528 | 675 | 652 | | Total Antimony | ND 0.00041 J | 0.00031 J | 0.00032 J | 0.00029 J | ND | ND | | Total Arsenic | 0.0094 | 0.009 | 0.0087 | 0.0109 | 0.0084 | 0.0085 | 0.0082 | 0.0104 | 0.0082 | 0.0098 | 0.0084 | 0.0098 | 0.0096 | | Total Barium | 0.03 | 0.027 | 0.026 | 0.0374 | 0.026 | 0.0384 | 0.0294 | 0.0383 | 0.0301 | 0.0367 | 0.0276 | 0.0303 | 0.0372 | | Total Beryllium | ND | Total Cadmium | ND | ND | ND | 0.00008 | ND | 0.00012 | 0.0004 | 0.00019 | 0.000025 J | ND | 0.00014 | ND | ND | | Total Calcium | 310 | 310 | 264 | 337 | 243 | 305 | 243 | 267 | 261 | 262 | 210 | 204 | 132 | | Total Chromium | ND | ND | ND | ND | ND | 0.0017 | 0.0016 | 0.0021 | 0.00076 | 0.00027 J | 0.00085 | 0.00068 JD3 | ND | | Total Cobalt | ND | 0.00072 J | ND | 0.00092 | ND | 0.00094 | 0.00082 | 0.001 | 0.00078 | 0.00086 | 0.00072 | 0.00081 JD3 | 0.00084 JD | | Total Copper | ND | 0.0016 | ND | ND | ND | 0.004 | 0.0011 | 0.0011 | ND | ND | 0.00092 J | ND | ND | | Total Dissolved Solids | 1,200 | 1,700 | 1,700 | 2,020 | 1,560 | 2,020 | 1,720 | 1,870 | 1,830 | 1,770 | 1,430 | 1,630 | 1,480 | | Total Iron | 0.33 | 0.2 | 0.3 | 0.391 | 0.23 | 0.643 | 0.755 | 0.862 | 0.29 | 0.262 | 0.583 | 0.392 | 0.469 | | Total Lead | ND | ND | ND | 0.00037 | 0.0001 | 0.00097 | 0.0026 | 0.0019 | 0.00012 | 0.000061 J | 0.0011 | 0.0012 | 0.00078 | | Total Magnesium | ND | 0.045 J | 0.047 | 0.0567 | 0.018 | 0.103 | 0.0813 | 0.099 | 0.0288 | 0.0153 | 0.0622 | 0.0976 | 0.0446 JD3 | | Total Manganese | ND | 0.00022 J | 0.0035 | 0.0064 | 0.0018 | NS | 0.02 | 0.0256 | 0.0026 | 0.00096 | 0.0077 | 0.012 | 0.0036 | | Total Mercury | ND | Total Nickel | 0.019 | 0.024 | 0.017 | 0.0217 | 0.017 | 0.0212 | 0.0207 | 0.0215 | 0.023 | 0.0226 | 0.0197 | 0.0181 | 0.0217 | | Total Potassium | 110 B | 110 | 109 | 152 | 108 M1 | 146 | 111 | 133 | 130 | 138 | 112 | 117 | 65 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|-------------|-----------|----------|-----------|------------|-----------|-------------|------------|------------| | Total Selenium | 0.0062 | 0.0095 | 0.0025 | 0.003 | 0.0027 M1R1 | 0.0037 | 0.003 | 0.0036 | 0.0039 | 0.0033 | 0.0024 | 0.0028 | 0.0033 | | Total Silver | ND NS | ND | 0.000065 JB | ND | ND | | Total Sodium | 130 | 140 | 146 | 169 | 150 M1 | 181 | 152 | 174 | 186 | 178 | 138 | 146 | 79 | | Total Thallium | ND 0.00001 JB | ND | 0.000021 J | NS | ND | | Total Vanadium | 0.021 | 0.02 | 0.022 | 0.0222 | 0.02 | 0.0247 | 0.0189 | 0.0235 | 0.0176 | 0.0213 | 0.0191 | 0.0188 | 0.0218 | | Total Zinc | ND | 0.0054 | ND | 0.006 | ND | 0.0228 | 0.0293 | 0.0225 | 0.0031 J | 0.002 JB | 0.0148 | 0.0073 JD3 | 0.0097 JD3 | | Turbidity | 0.87 | 0.61 | 1.2 | 1.1 | 0.73 | 2.8 | 5 | 6.4 | 0.9 | 0.56 | 3.5 | 1.6 | 1.7 | | Location ID: | | | | | | | | | | | | | | |---------------------------|----------|-------|---------|---------|---------|-----------|-----------|-----------|------------|------------|------------|----|------------| | | | GL-19 | | mg/L | | | | | | | | | | | Alkalinity | 90 | NS | 200 | 74 | 72 | 68 | 70 | 76 | 66 | 90 | 60 | NS | 48 | | Ammonia (N) | 7.9 | NS | 3.5 | 6.1 | 9.5 | 5.3 | 8.7 | 6.4 | 7.1 M1 | 58 | 2.6 | NS | 3.1 | | Chemical Oxygen Demand | 35 | NS | 24.7 | 49.6 | 38.1 | 35.1 | 46.3 | 24.8 J | 30.9 | 27.2 | 36.4 | NS | 35.9 | | Chloride | 56 | NS | 73.4 | 74.9 | 84.1 | 64.4 | 473 | 48.4 B | 92.3 | 57.6 | 110 | NS | 79 | | Hardness | 800 | NS | 791 | 686 | 685 | 547 | 699 | NS | 667 | 589 | 491 | NS | 622 | | Nitrate | 0.0019 J | NS | 0.53 | 0.031 | 0.12 | 1.2 | 0.27 H3 | 0.018 | 0.14 | ND | 0.58 | NS | 0.34 3c | | Nitrite | ND | NS | ND | ND | ND | 0.54 | 0.64 | ND | 0.16 | ND | NS | NS | 0.16 | | Nitrogen, Nitrate-Nitrite | ND | NS | NS | ND | ND | 1.8 | 0.89 | NS | 0.3 | NS | 1.6 | NS | 0.5 | | Н | 11 | NS | 10.8 H6 | 10.8 H6 | 9.1 H6 | 10.6 H6H1 | 10.4 H3H6 | 10.9 H6H1 | 10.7 H6H1 | 11.4 H6 | 10.5 H6 | NS | 10.8 H6H1 | | Specific Conductance | 1,200 | NS | 2,040 | 1,760 | NS | 1,540 | 1,790 | 1,360 | 1,690 | 1,460 | 1,620 | NS | 1,900 | | Sulfate | 900 | NS | 47 | 767 | 757 | 619 | 740 | 600 B | 751 | 683 B | 723 | NS | 661 | | Total Antimony | ND | NS | ND | 0.0024 | ND | ND | ND | 0.00031 J | 0.00039 J | 0.00033 J | 0.00041 J | NS | 0.00045 J | | Total Arsenic | 0.004 J | NS | 0.0032 | 0.0045 | 0.0041 | 0.0033 | 0.0035 | 0.0031 | 0.0037 | 0.0033 | 0.0032 | NS | 0.003 | | Total Barium | 0.017 | NS | 0.018 | 0.0294 | 0.018 | 0.0174 | 0.0182 | 0.0166 | 0.0184 | 0.0169 | 0.0187 | NS | 0.0197 | | Γotal Beryllium | ND | NS | ND 0.000086 J | NS | ND | | Total Cadmium | ND | NS | ND | 0.00012 | ND | 0.00011 | ND | ND | 0.000022 J | ND | ND | NS | 0.000052 J | | Total Calcium | 320 | NS | 326 | 273 | 274 | 219 | 278 | 215 | 266 | 236 | 196 | NS | 249 | | Total Chromium | ND | NS | ND | 0.0053 | ND | 0.0019 | 0.001 | 0.00093 | 0.00027 J | 0.0013 | 0.00071 | NS | ND | | Fotal Cobalt | ND | NS | ND | 0.0066 | ND | ND | ND | ND | 0.00014 J | 0.000091 J | 0.0003 J | NS | ND | | Total Copper | ND | NS | ND | 0.0062 | ND | ND | 0.0017 | 0.00034 J | 0.00054 J | 0.00048 J | 0.0007 J | NS | 0.00043 JB | | Total Dissolved Solids | 970 | NS | 1,460 | 1,270 | 1,260 | 1,070 | 1,380 | 1,090 | 2,550 | 1,110 | 1,170 | NS | 1,140 | | Γotal Iron | 0.066 | NS | ND | 1.46 | ND | 0.0587 | ND | 0.0174 J | 0.0322 J | 0.019 J | 0.214 | NS | 0.0104 J | | Total Lead | 0.0016 J | NS | 0.0026 | 0.0095 | 0.00063 | 0.001 | 0.0018 | 0.00034 | 0.00028 | 0.00018 B | 0.0012 | NS | 0.00072 | | Total Magnesium | ND | NS | 0.077 | 1.3 | 0.095 | 0.33 | 1 | 0.09 | 0.3 | 0.0658 | 0.394 | NS | 0.18 | | Total Manganese | 0.003 J | NS | ND | 0.177 | ND | 0.0037 | 0.0037 | 0.00072 | 0.0017 | 0.0007 | 0.0114 | NS | 0.00032 J | | Total Mercury | ND | NS | ND NS | ND | | Total Nickel | 0.0069 | NS | ND | 0.0058 | 0.0029 | 0.0031 | 0.0035 | 0.002 | 0.0024 | 0.0023 | 0.0014 B | NS | 0.0012 | | Total Potassium | 50 B | NS | 50 | 56.6 | 62.9 | 60.6 | 59.1 | 43.3 | 52.5 | 42.4 | 38.5 | NS | 47.3 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|------------|-----------|------------| | Total Selenium | ND | NS | 0.0046 | 0.0019 | 0.0047 | 0.0053 | 0.0032 | 0.0024 | 0.0047 | 0.0022 | 0.0053 | NS | 0.0046 | | Total Silver | ND | NS | ND | ND | ND | ND | ND | ND | NS | ND | ND | NS | ND | | Total Sodium | 52 | NS | 56 | 63 | 76.5 | 69.1 | 66.1 | 43.8 | 89.4 | 51.6 | 74.1 | NS | 83.1 | | Total Thallium | ND | NS | ND | ND | ND | ND | ND | ND | 0.00003 J | ND | 0.000026 J | NS | 0.000048 J | | Total Vanadium | 0.093 | NS | 0.037 | 0.0302 | 0.046 | 0.0396 | 0.0338 | 0.0469 | 0.039 | 0.0405 | 0.0406 | NS | 0.0466 | | Total Zinc | ND | NS | ND | 0.0504 | ND | ND | ND | ND | 0.0018 J | 0.0016 J | 0.0095 B | NS | 0.0027 J | | Turbidity | 1.4 | NS | 0.31 | 13.6 | 0.91 | 1.3 | 2 H3 | 0.42 | 0.48 | 0.2 | 1 | NS | 0.21 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|------------|----------| | Location ID: | GL | 20 (-5) | | mg/L | | | | | | | | | | | Alkalinity | 84 | 75 | 106 | 78 | 224 | 168 | 150 | NS | NS | NS | NS | 114 | 120 | | Ammonia (N) | 7.1 | 7 | 4.6 | 5.1 | 10.6 | 2.1 | 2.1 | NS | NS | NS | NS | 4.8 | 3.7 | | Chemical Oxygen Demand | 53 | 61 | 50.8 | 43 | 145 | 24.4 | 31.4 | NS | NS | NS | NS | 42.3 | 38 | | Chloride | 70 | 45 | 39 | 39.4 | 2,090 | 17.5 | 20.2 | NS | NS | NS | NS | 41.7 | 34.3 | | Hardness | 54 | 32 | 60.4 | 281 | 815 | 81.9 | 81.8 | NS | NS | NS | NS | 126 | 205 | | Nitrate | 0.0034 J | ND | ND | ND | ND | 0.032 | ND | NS | NS | NS | NS | 0.0068 J2c | ND | | Nitrite | ND | ND | ND | ND | ND | ND | 0.062 | NS | NS | NS | NS | ND | ND | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | рН | 10.5 | 10.3 | 9.4 H6 | 10.5 H6 | 6.6 H6 | 8.6 H6H1 | 8.8 H3H6 | NS | NS | NS | NS | 9 H6H1 | 8.8 H6H | | Specific Conductance | 640 | 600 | 525 | 864 | NS | 428 | 411 | NS | NS | NS | NS | 528
 661 | | Sulfate | 160 | 1,100 | 48.8 | 284 | 634 | 16.7 | 16.6 | NS | NS | NS | NS | 79 J | 138 | | Total Antimony | ND NS | NS | NS | NS | 0.0003 J | 0.0002 | | Total Arsenic | 0.0024 J | 0.002 | ND | 0.0078 | 0.023 | 0.00096 | 0.001 | NS | NS | NS | NS | 0.0022 | 0.0015 | | Total Barium | 0.045 | 0.028 | 0.063 | 0.0425 | 0.061 | 0.0987 | 0.0834 | NS | NS | NS | NS | 0.163 | 0.241 | | Total Beryllium | ND NS | NS | NS | NS | ND | ND | | Total Cadmium | ND | 0.00077 | ND | ND | ND | 0.00038 | ND | NS | NS | NS | NS | 0.00029 | 0.0002 | | Total Calcium | 21 | 12 | 8.8 | 118 | 110 | 9.3 | 7.9 | NS | NS | NS | NS | 24.7 | 33.8 | | Total Chromium | ND | 0.00088 J | ND | 0.00085 | 0.0022 | 0.0025 | 0.00069 | NS | NS | NS | NS | 0.0014 | 0.0014 | | Total Cobalt | ND | 0.00027 J | ND | ND | 0.012 | ND | ND | NS | NS | NS | NS | 0.00036 J | 0.00028 | | Total Copper | ND | 0.0015 | ND | 0.0012 | 0.001 | 0.0019 | ND | NS | NS | NS | NS | 0.0026 | 0.0029 | | Total Dissolved Solids | 530 | 480 | 288 | 573 | 4,390 | 208 | 172 | NS | NS | NS | NS | 407 | 1,180 | | Total Iron | 0.062 | 0.028 | ND | 0.134 | 73.7 | 0.622 | 0.212 | NS | NS | NS | NS | 0.481 | 0.441 | | Total Lead | ND | 0.0035 | 0.0023 | 0.00088 | 0.00018 | 0.0105 | 0.0023 | NS | NS | NS | NS | 0.0088 | 0.007 | | Total Magnesium | 0.23 | 0.79 | 9.4 | 0.144 | 131 | 14.4 | 15.1 | NS | NS | NS | NS | 15.6 | 29.4 | | Total Manganese | 0.019 | 0.00071 J | 0.0082 | 0.0024 | 4.2 | 0.173 | 0.0494 | NS | NS | NS | NS | 0.0315 | 0.0531 | | Total Mercury | ND | 0.00015 J | ND | ND | ND | ND | ND | NS | NS | NS | NS | 0.000097 J | ND | | Total Nickel | 0.0017 J | 0.0026 J | ND | 0.0013 | 0.0015 | 0.0022 | 0.0011 | NS | NS | NS | NS | 0.0022 | 0.0019 | | Total Potassium | 54 B | 46 | 32 | 29.1 | 159 | 23.8 | 22.6 | NS | NS | NS | NS | 31.5 | 22.7 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------| | Total Selenium | ND | 0.00086 J | ND | 0.0006 | 0.0005 | ND | ND | NS | NS | NS | NS | 0.00031 J | 0.00028 J | | Total Silver | ND NS | NS | NS | NS | ND | ND | | Total Sodium | 88 | 82 | 49.3 | 31.9 | 1,220 | 37.3 | 31.2 | NS | NS | NS | NS | 46.8 | 32.7 | | Total Thallium | ND NS | NS | NS | NS | ND | ND | | Total Vanadium | 0.0055 | 0.0068 | 0.0063 | 0.0629 | 0.0011 | 0.0071 | 0.0041 | NS | NS | NS | NS | 0.0029 | 0.0031 | | Total Zinc | ND | 0.0061 | 0.029 | 0.0105 | ND | 0.047 | 0.0105 | NS | NS | NS | NS | 0.022 | 0.0172 | | Turbidity | 1.4 | 0.5 | 3.6 | 2 | 686 | 38.5 | 7.5 | NS | NS | NS | NS | 14.3 | 10.1 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|-----------|-----------|----------|-----------|----------|-----------|-----------|-----------|-------------|-----------|-------------|-------------|-------------| | Location ID: | TS | -01 (-7) | | mg/L | | | | | | | | | | | Alkalinity | 390 | 360 | 400 | 302 | 168 | 330 | 290 | 372 M1 | 270 | 280 | 250 | 230 | 242 | | Ammonia (N) | 40 | 23 | 56.6 | 22.8 | 21.2 | 21.1 | 20 | 18 | 19.1 | 15.8 M1 | 18 | 19 | 18.1 | | Chemical Oxygen Demand | 85 | 120 | 190 | 188 | 165 | 163 | 151 | 155 | 121 | 97.8 | 116 | 152 | 139 | | Chloride | 2,300 | 3,700 | 2,460 | 1,620 | 1,100 | 1,340 | 1,280 | 1,170 | 928 | 831 | 836 | 1,030 | 1,050 | | Hardness | 1,500 | 1,500 | 1,240 | 1,280 | 1,360 | 1,270 | 1,430 | NS | 1,430 | 1,310 | NS | 1,500 | 1,570 | | Nitrate | ND | ND | ND | ND | 0.17 | ND | 0.057 H3 | 0.012 | 0.038 H1 | ND | 0.026 | 0.0099 J2c | 0.012 2c | | Nitrite | ND | ND | 0.074 | ND | ND | ND | ND | 0.038 J | 0.11 | ND | 0.073 J | 0.13 | ND | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | 0.11 | NS | 0.14 | NS | 0.099 J | 0.14 | ND | | рН | 11 | 11.4 | 11.6 H6 | 11.5 H6 | 10.8 H6 | 11.4 H6H1 | 11.4 H3H6 | 11.5 H6H1 | 11.4 H6 | 10.8 H6 | 11.4 H6H1 | 11.4 H6H1 | 11.5 H6H1 | | Specific Conductance | 20,000 | 1,200 | 11,100 | 10,100 | NS | 9,220 | 9,590 | 7,220 | 7,340 | 6,950 | 6,990 | 6,870 | 8,310 | | Sulfate | 2,200 | 2,900 | 2,540 | 2,950 | 2,400 | 2,770 | 2,600 | 2,270 B | 2,340 | 2,370 | 2,120 | 2,450 | 2,130 | | Total Antimony | ND | 0.00065 J | ND | 0.00084 | 0.00065 | ND | ND | 0.00032 J | 0.00028 JD3 | 0.00033 J | 0.00033 J | ND | ND | | Total Arsenic | 0.016 | 0.02 | 0.0045 | 0.0062 | 0.0059 | 0.0039 | 0.0012 | 0.0029 | 0.0032 | 0.0031 | 0.0036 | 0.0034 | 0.0032 | | Total Barium | 0.028 | 0.025 | 0.024 | 0.0257 | 0.028 | 0.0244 | 0.0238 | 0.0223 | 0.0242 B | 0.0246 | 0.0257 | 0.0254 | 0.027 | | Total Beryllium | ND 0.00018 JD3 | ND | ND | | Total Cadmium | 0.00038 J | 0.0021 | ND | ND | ND | 0.00023 | ND | ND | ND | ND | 0.000093 | ND | ND | | Total Calcium | 580 | 590 | 541 | 544 | 544 | 554 | 572 | 448 | 574 | 524 | 613 | 602 | 629 | | Total Chromium | ND | ND | ND | ND | 0.0063 | ND | 0.0012 | 0.0017 | ND | ND | 0.00033 J | ND | ND | | Total Cobalt | ND | 0.00084 J | ND | ND | ND | ND | ND | 0.0002 J | 0.00016 JD3 | 0.00013 J | 0.00017 J | ND | ND | | Total Copper | 0.0093 | 0.0052 | ND | ND | 0.0015 | ND | ND | 0.00053 J | NS | ND | 0.00049 J | ND | ND | | Total Dissolved Solids | 6,800 | 5,900 | 7,120 | 6,940 | 5,530 | 6,180 | 6,280 | 5,520 | 5,240 | 5,680 | 4,800 3c | 6,650 | 5,440 | | Total Iron | ND | ND | ND | ND | 0.84 | ND | 0.0826 | 0.347 | 0.0946 JD3 | 0.0296 J | 0.0698 | 0.0387 J | 0.0463 J | | Total Lead | ND | ND | ND | ND | 0.0036 | 0.0008 | ND | 0.0018 | 0.0003 JD3B | 0.0001 B | 0.00031 | 0.00024 JD3 | 0.00023 JD3 | | Total Magnesium | ND | 0.07 J | 0.091 | 0.0494 | 0.58 | 0.25 | 0.127 | 0.286 | 0.102 | 0.0492 | 0.147 | 0.105 | 0.0799 | | Total Manganese | ND | 0.0008 J | ND | 0.00071 | 0.014 | 0.0078 | 0.0024 | 0.006 | 0.0081 | 0.00076 | 0.0014 | 0.001 JD3 | 0.0015 JD3B | | Total Mercury | ND | Total Nickel | 0.014 | 0.016 | ND | 0.0022 | 0.0035 | 0.0026 | 0.0014 | 0.0019 | 0.0029 | 0.0017 | 0.0026 | 0.0025 | 0.0022 JD3 | | Total Potassium | 520 B | 580 | 540 | 577 | 536 | 520 | 427 | 372 | 381 | 348 | 364 | 359 | 315 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|-------------|------------|------------| | Total Selenium | 0.028 | 0.045 | ND | 0.0026 | 0.002 | 0.0047 | 0.0038 | 0.0025 | 0.0044 | 0.0012 | 0.0021 | 0.0021 JD3 | 0.0015 JD3 | | Total Silver | ND | ND | ND | 0.0011 | ND | ND | ND | ND | NS | ND | 0.000014 JB | ND | ND | | Total Sodium | 1,800 | 1,700 | 1,630 | 1,540 | 1,670 | 1,220 | 1,160 | 921 | 987 | 853 | 926 | 994 | 924 | | Total Thallium | ND | Total Vanadium | 0.052 | 0.05 | 0.051 | 0.0446 | 0.052 | 0.0438 | 0.0432 | 0.0321 | 0.0421 | 0.0317 | 0.0455 | 0.0391 | 0.0378 | | Total Zinc | ND | 0.0069 | ND | ND | 0.026 | 0.0104 | 0.0054 | 0.0176 | 0.0097 JD3 | 0.0023 J | 0.005 J | ND | 0.008 JD3 | | Turbidity | 1.3 | 0.21 | 0.19 | 0.29 | 4.8 | 1.8 | 4.3 H3 | 10.2 | 1.6 | 0.18 | 1.1 | 0.18 | 1 | ## EnviroAnalytics Group ## Greys Landfill Historical Inorganics *Intermediate Monitoring Zone* | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|------------|-------------|-------------|-------------| | Location ID: | GL- | 02 (-29) | | mg/L | | | | | | | | | | | Alkalinity | 50 | ND | 70 | ND | 76 | 418 | 118 | 92 | 122 | ND | 80 | 56 ML | 124 | | Ammonia (N) | 3.3 | 2.9 | 2.9 | 4.4 | 3.1 | 2.8 | 10.7 | 2.6 | 3.1 | 2.1 | 2.8 | 2.8 | 2.9 | | Chemical Oxygen Demand | 37 | 18 | 112 | 97.8 | 104 | 121 | 99.7 | 312 | 110 | 69.6 | 95.3 | 124 | 109 | | Chloride | 1,300 | 1,500 | 1,850 | 1,240 | 1,440 | 1,430 | 122 | 1,450 | 1,460 | 1,260 | 190 | 1,230 | 1,320 | | Hardness | 450 | 440 | 457 | 460 | 441 | 473 | 441 | NS | 452 | 430 | NS | 458 | 415 | | Nitrate | 0.007 J | ND | 0.022 | ND | 0.015 | 0.018 | 0.12 H1 | 0.032 | ND | ND | 0.011 | 0.014 | ND | | Nitrite | ND | ND | ND | 0.074 | ND | ND | 9.2 | ND | ND | ND | ND | 0.076 J | 0.086 J | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | 9.3 | NS | ND | NS | ND | 0.09 JML | 0.089 J | | рН | 3.5 | 3.03 | 6.1 H6 | 3.1 H6 | 6.2 H6 | 6.4 H6H1 | 7.6 H3H6 | 6.2 H6H1 | 6.1 H6H1 | 3.1 H6H1 | 6.4 H6H1 | 6.2 H6 | 6.5 H6H1 | | Specific Conductance | 4,300 | 4,600 | 5,450 | 4,680 | NS | 4,100 | 1,680 | 4,730 | NS | 4,560 | 5,140 | 4,320 | 5,860 | | Sulfate | 95 | 110 | 135 | 97.6 | 131 | 130 | 452 | 133 | 125 | 117 B | 112 | 138 | 116 | | Total Antimony | ND | ND | ND | ND | ND | ND | 0.0025 | ND | ND | ND | 0.00011 J | ND | ND | | Total Arsenic | 0.0057 | 0.0037 | ND | ND | 0.0015 | 0.0025 | 0.021 | 0.0024 | 0.0016 | 0.00039 JB | 0.0025 | 0.0013 JD3 | 0.0018 JD3 | | Total Barium | 0.094 | 0.12 | 0.097 | 0.248 | 0.094 | 0.18 | 0.128 | 0.0844 | 0.104 | 0.13 | 0.111 | 0.1 | 0.0986 | | Total Beryllium | ND | 0.0048 J | 0.002 D3 | 0.0034 | ND | ND | 0.0015 | 0.00023 | 0.000079 J | 0.00023 | 0.00035 JD3 | ND | ND | | Total Cadmium | ND | ND | ND | 0.00021 | ND | ND | 0.0162 | 0.00003 J | 0.000021 J | 0.00019 | 0.000014 J | 0.00018 JD3 | ND | | Total Calcium | 46 | 46 | 48 | 51.3 | 49.4 | 50.4 | 145 | 32.1 | 45.5 | 43.8 | 49.4 | 47.4 | 44.3 | | Total Chromium | ND | ND | ND | 0.00066 | 0.00053 | 0.0023 | 0.0985 | 0.006 | 0.00044 J | 0.00035 J | 0.0036 | ND | 0.0015 JD3 | | Total Cobalt | ND | 0.00072 J | ND | 0.00071 | 0.0011 | 0.0024 | 0.0168 | 0.0032 | 0.0015 | 0.001 | 0.0033 | 0.0012 JD3 | 0.0022 JD3 | |
Total Copper | ND | 0.0011 | 0.0042 | 0.0015 | ND | ND | 0.0821 | 0.0028 | ND | 0.0014 | 0.0019 | ND | 0.0014 JD3B | | Total Dissolved Solids | 2,200 | 2,100 | 2,730 | 2,300 | 2,340 | 2,700 | 985 | 2,730 | 2,820 | 3,120 | 2,800 3c | 3,180 | 3,330 | | Total Iron | 170 | 9.6 | 85.1 | 5.9 | 170 | 174 | 98.8 | 148 | 166 | 122 | 181 | 182 | 146 | | Total Lead | ND | 0.0004 J | 0.00056 | 0.00043 | 0.00011 | 0.00088 | 0.348 | 0.0019 | 0.000054 J | 0.00043 B | 0.0016 | 0.0002 JD3 | 0.00092 | | Total Magnesium | 82 | 79 | 83.2 | 89 | 80.5 | 92.7 | 35.8 | 64.8 | 82.2 | 78 | 86.6 | 82.4 | 73.8 | ND: Non-Detect, NS: Not Sampled | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------------|-----------|----------|----------|-----------|----------|-----------|----------|------------|-------------|------------|------------|-------------|------------| | Total Manganese | 5 | 6.3 | 3 | 6.21 | 5.6 | 3.41 | 1.91 | 4.93 | 5.85 | 6.2 | 6.32 | 6.27 | 5.01 | | Total Mercury | ND | ND | ND | ND | ND | ND | 0.00023 | ND | ND | 0.000038 J | ND | ND | ND | | Total Nickel | 0.00069 J | 0.0026 J | ND | 0.0014 | 0.001 | 0.0024 | 0.0528 | 0.004 | 0.00096 | 0.0018 | 0.0028 | 0.00094 JD3 | 0.0019 JD3 | | Total Potassium | 17 B | 14 | 15.2 | 15.1 | 14.7 | 15.8 | 58.4 | 11.5 | 15.2 | 11.7 | 16.3 | 14.4 | 14 | | Total Selenium | 0.0093 | 0.014 J | ND | ND | ND | ND | 0.0099 | ND | ND | ND | 0.00048 J | ND | ND | | Total Silver | ND | ND | ND | 0.00055 | ND | ND | 0.0016 | ND | NS | ND | ND | ND | ND | | Total Sodium | 700 | 680 | 370 | 688 | 738 | 742 | 91.5 | 632 | 812 | 639 | 781 | 749 | 607 | | Total Thallium | ND | ND | ND | ND | ND | ND | 0.00029 | 0.000023 J | 0.000025 JB | ND | 0.000026 J | ND | ND | | Total Vanadium | ND | 0.02 J | ND | 0.00029 | ND | 0.0021 | 0.156 | NS | 0.00021 JB | ND | 0.0057 | ND | 0.0029 JD3 | | Total Zinc | ND | 0.0053 | 0.032 | 0.0469 | ND | 0.0097 | 3.92 | 0.0166 | 0.0028 J | 0.0169 | 0.0053 | 0.0126 JD3 | 0.0054 JD3 | | Turbidity | 130 | 3.6 | 87 | 1.3 | 134 | 30.8 | 1,670 H1 | 178 | 39.8 | 1.8 | 64.5 | 49.1 | 118 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|-----------|-----------|------------|-------------|-------------| | Location ID: | GL- | -03 (-16) | | mg/L | | | | | | | | | | | Alkalinity | 540 | 640 | 576 | 610 | 696 | 720 | 676 | 682 | 696 | 700 | 690 ML | 710 | 628 | | Ammonia (N) | 0.18 | 9.5 | 23.9 | 10.7 | 9.8 | 8.7 | 8.9 | 7.5 | 9.5 | ND | 8.6 | 6.9 | 9.9 | | Chemical Oxygen Demand | 200 | 180 | 283 | 370 | 499 | 352 | 396 | 421 M1 | 490 | 292 | 386 | 546 | 283 | | Chloride | 460 | 260 | 348 | 328 | 728 | 17.7 | 533 | 502 M6 | 538 | 212 | 363 | 621 | 193 | | Hardness | 580 | 540 | 521 | 553 | 744 | 701 | 623 | NS | 554 | 513 | 604 | 643 | 533 | | Nitrate | ND | 0.009 J | ND | 0.034 | ND | 0.02 | 0.024 H3 | 0.062 | 0.04 | 0.031 | 0.018 | 0.056 | 0.011 | | Nitrite | ND | ND | ND | 0.19 | ND | Nitrogen, Nitrate-Nitrite | ND | ND | NS | 0.23 | ND | ND | ND | NS | 0.022 J | NS | 0.036 J | ND | ND | | рН | 8.6 | 8.1 | 7.9 H6 | 8.1 H6 | 7.7 H6 | 8.4 H6H1 | 8 H3H6 | 8 H6H1 | 7.6 H6H1 | 7.9 H6 | 7.9 H6H1 | 7.8 H6H1 | 7.8 H6H1 | | Specific Conductance | 3,400 | 1,800 | 1,940 | 2,170 | NS | 2,310 | 3,020 | 2,650 | 2,940 | 1,860 | 2,360 | 3,170 | 2,120 | | Sulfate | 90 | 84 | 48.3 | 45.4 | 18.5 | 28.3 | 55.5 | 12.4 B | 20.8 | 57 | 13.9 ML | 8.4 JB | 42.5 | | Total Antimony | ND | 0.00048 J | ND | ND | 0.0019 | ND | ND | 0.00032 J | 0.00024 J | 0.00032 J | 0.00028 J | ND | ND | | Total Arsenic | 0.0077 | 0.0056 | 0.0035 | 0.0056 | 0.0051 | 0.0067 | 0.0037 | 0.0043 | 0.0043 | 0.005 | 0.0044 | 0.0035 | 0.005 | | Total Barium | 0.068 | 0.066 | 0.073 | 0.0693 | 0.063 | 0.0845 | 0.0554 | 0.057 | 0.0536 | 0.0835 | 0.0558 | 0.0422 | 0.0841 | | Total Beryllium | ND 0.000034 J | ND | ND | | Total Cadmium | ND | ND | ND | ND | ND | 0.0001 | ND | 0.000054 J | ND | 0.00002 J | 0.000015 J | ND | ND | | Total Calcium | 110 | 100 | 99.8 | 113 | 168 | 165 | 116 | 75 | 94.7 | 102 | 113 | 107 | 108 | | Total Chromium | ND | 0.0023 | ND | 0.0011 | 0.0024 | 0.0062 | 0.0021 | 0.0017 | 0.0012 | 0.0015 | 0.0014 | 0.0011 JD3 | 0.0011 JD3 | | Total Cobalt | ND | 0.0026 J | ND | 0.0032 | 0.0056 | 0.0036 | 0.0046 | 0.0041 | 0.005 | 0.0031 | 0.0041 | 0.0058 | 0.0028 | | Total Copper | ND | ND | ND | 0.0008 | 0.0078 | 0.0014 | ND | 0.0017 | ND | ND | 0.00078 J | ND | ND | | Total Dissolved Solids | 1,400 | 1,200 | 1,130 | 1,370 | 2,330 | 1,310 | 1,780 | 1,720 | 1,870 | 1,170 | 1,440 | 1,970 | 1,100 | | Total Iron | 0.11 | 0.081 | ND | 0.131 | 1.3 | 9.05 | 0.925 | 0.602 | 0.319 | 0.164 | 0.642 | 0.534 | 0.971 | | Total Lead | ND | ND | ND | 0.0001 | 0.0016 | 0.0022 | 0.00084 | 0.00042 | 0.00011 | 0.00022 B | 0.00042 | 0.00018 JD3 | 0.00017 JD3 | | Total Magnesium | 72 | 69 | 67.5 | 68.1 | 93.6 | 86.8 | 81.1 | 63.1 | 77.2 | 62.4 | 78.2 | 91.4 | 64.1 | | Total Manganese | 0.17 | 0.23 | 0.25 | 0.295 | 0.4 | 0.966 | 0.356 | 0.344 | 0.32 | 0.422 | 0.367 | 0.331 | 0.408 | | Total Mercury | ND | Total Nickel | 0.0016 J | 0.0058 | ND | 0.0012 | 0.0019 | 0.0059 | 0.0013 | 0.0014 | 0.00096 | 0.0012 | 0.0012 | 0.00094 JD3 | 0.0011 JD3 | | Total Potassium | 19 B | 13 | 12.1 | 15.9 | 29.5 | 14.8 | 21.9 | 17.5 | 24.1 | 11.4 | 21.1 | 30 | 13.8 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-------------|------------|------------| | Total Selenium | 0.006 | 0.0087 | ND | 0.002 | 0.002 | 0.0019 | 0.0018 | 0.0016 | 0.0018 | 0.0018 | 0.002 | 0.002 JD3 | 0.002 JD3 | | Total Silver | ND NS | ND | 0.000025 JB | ND | ND | | Total Sodium | 300 | 190 | 178 | 270 | 531 | 235 | 386 | 318 | 479 | 199 | 399 | 544 | 145 | | Total Thallium | ND 0.000009 J | ND | ND | | Total Vanadium | 0.0022 J | ND | 0.0032 | 0.0042 | 0.0075 | 0.0551 | 0.0067 | 0.0052 | 0.0033 | 0.0051 | 0.0057 | 0.0032 JD3 | 0.005 | | Total Zinc | ND | ND | 0.028 | 0.0085 | 0.021 | 0.0142 | 0.0065 | 0.0034 J | 0.0022 J | 0.0035 J | 0.0043 J | 0.0048 JD3 | 0.0044 JD3 | | Turbidity | 6.8 | 11 | 8 | 116 | 1,630 | 53 | 44.2 H3 | 41.4 | 86.5 | 43.6 | 41.6 | 93.5 | 46 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|--------------|-------------|--------------|-------------|----------| | Location ID: | GL- | -05 (-25) | | mg/L | | | | | | | | | | | Alkalinity | 39 | 38 | 10 | 12 | 20 | 88 M2 | 42 | 34 | 20 | 30 | 20 | 14 | 38 | | Ammonia (N) | 4.2 | 3.7 | 3.9 | 3.8 | 4.3 | 4 | 4.4 | 4 | 4.6 | 4 | 4.6 | 4.3 | 3.4 | | Chemical Oxygen Demand | 110 | 110 | 264 | 220 | 296 | 317 | 411 | 358 | 510 | 382 | 422 | 463 | 361 | | Chloride | 1,000 | 1,000 | 866 | 902 | 820 | 953 | 766 | 939 B | 743 | 823 | 976 | 864 | 596 | | Hardness | 250 | 260 | 324 | 342 | 373 | 389 | 423 | NS | 499 | 423 | 492 | 510 | 498 | | Nitrate | 0.0037 J | ND | 0.026 | ND | ND | ND | ND | 0.0094 J | 0.0036 JH1 | ND | 0.014 | 0.015 | 0.0055 J | | Nitrite | ND 0.035 J | ND | ND | ND | 0.12 | 0.062 J | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | ND | NS | ND | NS | ND | 0.13 | 0.067 J | | рН | 6.1 | 6.18 | 6 H6 | 6.4 H6 | 6 H6 | 6.3 H6 | 5.8 H3H6 | 6.1 H6H1 | 5.8 H6 | 6 H6H1 | 6.1 H6H1 | 6.2 H6 | 6 H6 | | Specific Conductance | 4,700 | 3,200 | 3,820 | 3,890 | NS | 5,250 | 4,160 | 3,830 | 4,150 | 4,190 | 4,360 | 4,040 | 3,320 | | Sulfate | 180 | 230 | 457 | 362 | 586 | 540 | 917 | 663 | 1,090 | 920 | 853 | 944 | 806 | | Total Antimony | ND | Total Arsenic | 0.0077 | 0.0056 | 0.0094 | 0.0153 | 0.015 | 0.0148 | 0.0071 | 0.0111 | 0.0021 JD3 | 0.0044 | 0.0051 | 0.006 | 0.0069 | | Total Barium | 0.12 | 0.08 | 0.1 | 0.0957 | 0.099 | 0.084 | 0.084 | 0.0719 | 0.0605 | 0.0541 | 0.0514 | 0.0541 | 0.0525 | | Total Beryllium | ND 0.00019 JD3 | ND | ND | ND | ND | | Total Cadmium | ND | ND | ND | ND | ND | ND | 0.00035 | ND | ND | 0.000024 J | 0.000095 JD3 | ND | ND | | Total Calcium | 28 | 28 | 34.7 | 34.3 | 38.8 | 39.8 | 48.4 | 28.9 | 58.1 | 45.2 | 54.6 | 56.9 | 64.7 | | Total Chromium | ND | ND | ND | 0.001 | 0.004 | 0.0021 | 0.0082 | 0.0092 | ND | 0.0003 J | ND | 0.00069 JD3 | 0.0036 | | Total Cobalt | ND | ND | ND | ND | ND | ND | 0.00087 | 0.00071 | 0.00093 JD3 | 0.0004 J | 0.00012 JD3 | ND | ND | | Total Copper | ND | 0.00055 J | ND | 0.0007 | ND | 0.0079 | 0.0052 | 0.0033 | NS | ND | ND | ND | 0.0017 J | | Total Dissolved Solids | 1,500 | 2,000 | 2,250 | 2,370 | 2,520 | 2,280 | 2,690 | 2,920 | 3,400 | 3,330 | 3,240 2c | 3,810 | 2,610 | | Total Iron | 210 | 210 | 244 | 221 M1 | 284 | 284 | 354 | 278 | 443 | 362 | 396 | 422 | 452 | | Total Lead | ND | ND | ND | ND | 0.00012 | 0.00053 | 0.0032 | 0.0015 | 0.00033 JD3B | 0.000016 JB | 0.0003 JD3B | 0.00028 JD3 | 0.0019 | | Total Magnesium | 45 | 46 | 58.8 | 62.3 | 69.4 | 73.7 | 73.3 | 55.4 | 85.9 | 75.2 | 86.3 | 89.3 | 81.8 | | Total Manganese | 5.1 | 4.4 | 5.1 | 4.62 M1 | 5.8 | 5.28 | 7.68 | 5.76 | 9.62 | 7.98 | 9.34 | 9.07 | 10.1 | | Total Mercury | ND | Total Nickel | ND | 0.0009 J | ND | ND | 0.0018 | 0.0014 | 0.0021 | 0.0051 | 0.001 JD3 | 0.00016 J | 0.00061 JD3 | ND | 0.0028 | | Total Potassium | 5.4 B | 6.3 | 7.1 | 9.37 M1 | 8.2 | 8.66 | 5.73 | 6.93 | 5.84 | 6.14 | 7.05 | 7.81 | 6.95 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 |
----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|--------------|------------|----------| | Total Selenium | 0.0078 | 0.0014 J | ND | ND | ND | ND | ND | ND | 0.0007 JD3 | ND | ND | ND | ND | | Total Silver | ND NS | ND | 0.00031 JD3B | ND | ND | | Total Sodium | 420 | 440 | 467 | 537 M1 | 505 | 522 | 418 | 470 | 459 | 485 | 505 | 527 | 489 | | Total Thallium | ND | Total Vanadium | ND | 0.0054 | ND | 0.00026 | ND | ND | 0.0092 | NS | ND | 0.00011 J | ND | ND | 0.0056 | | Total Zinc | ND | 0.0034 J | ND | 0.0101 | ND | 0.0071 | 0.0199 | 0.0159 | ND | 0.002 J | 0.0234 JD3 | 0.0077 JD3 | 0.008 J | | Turbidity | 130 | 570 | 97.5 | 198 | 1,380 | 65 | 295 H1 | 228 | 140 | 84.5 | 90.5 | 104 | 132 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|------------|------------|------------|-------------|------------| | Location ID: | GL- | ·08 (-36) | | mg/L | | | | | | | | | | | Alkalinity | 90 | 72 | 74.2 | 70 | 68 | 182 | 170 | 154 | 116 | ND | 80 | 120 | 102 | | Ammonia (N) | 4.8 | 4.4 | 4.4 | 5.1 | 5.3 | ND | 4.6 | 4.4 | 4.9 | 3.5 | 4.6 | 4.6 ML | 4.6 | | Chemical Oxygen Demand | 200 | 170 | 416 | 400 | 397 | 315 | 273 | 302 | 287 M1 | 166 | 284 | 287 | 272 | | Chloride | 1,300 | 2,200 | 1,600 | 1,530 | 1,580 | 28.6 | 1,420 | 1,480 | 1,400 | 944 | 1,410 | 1,380 | 1,300 | | Hardness | 540 | 530 | 749 | 714 | 653 | 575 | 560 | NS | 554 | NS | NS | 525 | 535 | | Nitrate | ND | ND | 0.028 | ND | 0.023 H3 | ND | ND | 0.016 | 0.014 | ND | 0.016 | 0.016 H1 | 0.014 | | Nitrite | ND | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | ND | NS | ND | NS | ND | ND | 0.067 J | | рН | 9.8 | 6.31 | 6.2 H6 | 6.3 H6 | 6.3 H6 | 6.5 H6H1 | 6.2 H3H6 | 6.5 H6H1 | 6.2 H6H1 | 2.8 H6 | 6.1 H6H1 | 6.4 H3H6 | 6.4 H6H1 | | Specific Conductance | 9,400 | 3,800 | 6,100 | 5,410 | NS | 5,210 | 5,260 | 4,790 | 4,850 | 3,700 | 5,050 | 4,830 | 5,440 | | Sulfate | 140 | 140 | NS | 236 | 241 | 177 | 151 | 154 | 144 | 79.9 | 140 | 158 | 147 | | Total Antimony | ND | 0.0005 J | ND | ND | ND | ND | ND | 0.00015 J | 0.000036 J | ND | 0.000042 J | ND | ND | | Total Arsenic | 0.0044 J | 0.0024 | 0.0031 | 0.0023 | 0.0026 | 0.0021 | 0.001 | 0.0024 | 0.0016 | 0.00013 J | 0.002 | 0.0015 JD3 | 0.0018 JD3 | | Total Barium | 0.53 | 0.52 | 0.57 | 0.516 | 0.53 | 0.508 | 0.456 | 0.441 | 0.44 | 0.222 | 0.457 | 0.427 | 0.439 | | Total Beryllium | ND 0.00018 J | 0.000044 J | 0.000051 J | 0.000097 J | ND | ND | | Total Cadmium | ND 0.000053 J | ND | 0.0028 | ND | ND | ND | | Total Calcium | 58 | 56 | 75.3 | 72.7 | 71.9 | 64.9 | 60 | 62 | 61.7 | 64.8 | 68.2 M1 | 59 M1 | 62.1 | | Total Chromium | ND | 0.0012 J | ND | 0.00052 | 0.0038 | 0.0061 | 0.0015 | 0.0119 | 0.00073 | 0.00086 | 0.00073 | 0.00074 JD3 | ND | | Total Cobalt | 0.0042 J | 0.0076 | 0.016 | 0.0113 | 0.012 | 0.0082 | 0.007 | 0.0093 | 0.0082 | 0.0071 | 0.0094 | 0.0104 | 0.0103 | | Total Copper | ND | ND | ND | 0.00068 | 0.0016 | ND | ND | 0.0036 | ND | 0.006 | 0.00052 J | ND | ND | | Total Dissolved Solids | 3,800 | 2,400 | NS | 3,560 | 2,920 | 3,000 | 2,780 | 2,680 | 2,900 | 1,830 | 2,910 3c | 2,590 | 2,670 | | Total Iron | 200 | 190 B | 215 | 240 | 227 | 215 | 198 | 200 | 204 | 62.5 | 214 M1 | 202 M1 | 170 | | Total Lead | ND | ND | ND | ND | 0.0014 | 0.0013 | 0.00079 | 0.0023 | 0.000095 J | 0.0025 | 0.00013 B | 0.00027 JD3 | 0.0002 JD3 | | Total Magnesium | 97 | 95 | 136 | 129 | 130 | 110 | 99.6 | 95.7 | 97.2 | 74.3 | 108 M1 | 91.6 M1 | 92.3 | | Total Manganese | 9.4 | 8.5 | 9 | 9.29 | 8.7 | 8.7 | 7.76 | 7.49 | 7.69 | 7.1 | 8.35 M1 | 7.58 M1 | 6.29 | | Total Mercury | ND | Total Nickel | 0.0041 J | 0.012 | 0.01 | 0.0071 | 0.0088 | 0.01 | 0.0049 | 0.0112 | 0.0054 | 0.0075 | 0.0066 | 0.0074 | 0.0074 | | Total Potassium | 6 B | 5.2 | 7.4 | 7.7 | 7.5 | 7.38 | 6.54 | 7.2 | 6.99 | 5.2 | 7.18 | 6.21 | 6.98 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|------------|------------|------------|-------------|-----------|------------| | Total Selenium | 0.0097 | 0.0064 | ND | ND | ND | ND | ND | 0.00042 J | ND | 0.00014 J | 0.00029 J | ND | ND | | Total Silver | ND NS | 0.00001 J | 0.000021 JB | ND | ND | | Total Sodium | 570 | 590 | 820 | 690 | 759 | 625 | 614 | 653 | 693 | 445 | 674 M1 | 623 M1 | 484 | | Total Thallium | ND 0.000017 J | ND | 0.00003 JB | 0.000011 J | ND | ND | | Total Vanadium | ND | ND | 0.0013 | 0.00069 | 0.0048 | 0.0039 | ND | 0.0072 | 0.00052 JB | ND | 0.00072 JB | ND | ND | | Total Zinc | ND | 0.0011 J | ND | 0.0085 | 0.0074 | 0.0068 | 0.007 | 0.0258 | 0.0039 J | 0.129 | 0.0048 J | 0.0293 M1 | 0.0065 JD3 | | Turbidity | 82 | 200 | 171 | 130 | 1,120 H3 | 68 | 102 H3 | 89.5 | 147 | 0.31 | 136 | 162 H1 | 136 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|------------|------------|------------|-----------|-----------| | Location ID: | GL- | -09 (-20) | | mg/L | | | | | | | | | | | Alkalinity | 380 | 370 | 330 | 326 | 316 | NS | 450 | 428 | 376 | 430 | 380 | 380 ML | 306 | | Ammonia (N) | 2.9 | 2.1 | 1.9 | 2 | 2 | NS | 1.6 | 1.2 | 1.7 | 1.2 | 1.6 | 1.6 | 6.4 | | Chemical Oxygen Demand | 46 | 34 | 61.7 | 54 | 46.8 | NS | 50.6 | 54.6 | 53 M1 | 49.4 | 48.6 | 68 | 91.6 | | Chloride | 520 | 670 | 494 | 488 | 476 | NS | 69.8 | 464 | 495 | 419 | 449 ML | 446 | 477 | | Hardness | 440 | 440 | 431 | 443 | 404 | NS | 449 | NS | 414 | NS | 423 | 440 | 457 | | Nitrate | 0.002 J | ND | 0.021 | 0.17 | 0.019 H3 | NS | 0.068 H3 | 0.013 | 0.0034 J | 0.064 | 0.015 | 0.0053 J | 0.0078 J | | Nitrite | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | ND | 0.24 | ND | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | NS | ND | NS | ND | NS | ND | 0.24 | ND | | рН | 5.9 | 6.78 | 6.2 H6 | 6.8 H6 | 6.4 H6 | NS | 6.2 H3H6 | 6.5 H6H1 | 6.3 H6H1 | 6.1 H6 | 6.2 H6H1 | 6.2 H6H1 | 6.2 H6H1 | | Specific Conductance | 4,300 | 2,400 | 2,610 | 2,400 | NS | NS | 2,450 | 2,240 | 2,370 | 2,330 | 2,420 | 2,190 | 2,720 | | Sulfate | 120 | 100 | 77.5 | 120 | 109 | NS | 114 | 115 | 71.6 | 83 B | 62.8 B | 100 | 193 | | Total Antimony | ND | 0.0011 J | ND | ND | ND | NS | ND | ND | ND | ND | 0.00011 J | ND | ND | | Total Arsenic | 0.014 | 0.0076 | 0.0037 | 0.0072 | 0.008 | NS | 0.0065 | 0.0103 | 0.0045 | 0.0058 | 0.008 | 0.0091 | 0.0132 | | Total Barium | 0.22 | 0.21 | 0.18 | 0.215 | 0.17 | NS | 0.201 | 0.191 | 0.18 | 0.199 | 0.193 | 0.194 | 0.175 | | Total Beryllium | ND | ND | ND | ND | ND | NS | ND | ND | 0.000067 J | ND | 0.000052 J | ND | ND | | Total Cadmium | ND | ND | ND | ND | ND | NS | 0.00013 | 0.000035 J | 0.000021 J | ND | 0.000017 J | ND | ND | | Total Calcium | 39 | 38 | 39.2 | 39.9 | 41.4 | NS | 40.2 | 37.3 | 41.4 | 37.9 | 38.1 | 39.6 | 76.4 | | Total Chromium | ND | ND | ND | 0.0008 | 0.0014 | NS | 0.0025 | 0.0043 | 0.00035 J | 0.00026 J | 0.00098 | 0.00061 | 0.00039 J | | Total Cobalt | 0.0058 | 0.0077 | 0.0051 | 0.0071 | 0.0082 | NS | 0.0081 | 0.0124 | 0.0066 | 0.0085 | 0.0086 | 0.0114 | 0.0107 | | Total Copper | ND | ND | 0.0049 | 0.0033 | 0.0079 | NS | 0.0025 | 0.0029 | ND | 0.00046 J | 0.001 | 0.0012 | 0.00068 J | | Total Dissolved Solids | 1,500 | 1,200 | 1,330 | 1,460 | 1,060 | NS | 1,580 | 1,340 | 694 | 1,280 | 1,390 | 1,240 | 1,460 | | Total Iron | 80 | 72 B | 50.6 | 77.5 | 59 | NS | 73.5 | 73.7 | 67.6 | 65 | 72.6 | 77.9 | 62.4 | | Total Lead | ND | ND | ND | 0.00038 | 0.0013 | NS | 0.0018 | 0.0012 | 0.00009 J | 0.000032 J | 0.00045 | 0.00025 | 0.00016 | | Total Magnesium | 82 | 84 | 80.9 | 83.9 | 78.4 | NS | 84.8 | 74.5 | 75.4 | 74.8 | 79.7 | 82.8 | 64.5 | | Total Manganese | 3 | NS | 3.3 | 3.47 | 3.2 | NS | 3.28 | 3.21 | 3.44 | 3.23 | 3.36 | 3.49 | 2.78 | | Total Mercury | ND | ND | ND | ND | ND | NS | ND | Total Nickel | 0.0019 J | 0.0077 | ND | 0.0018 | 0.0027 | NS | 0.0035 | 0.0055 | 0.0013 | 0.0016 | 0.0024 | 0.0027 | 0.0033 | | Total Potassium | 11 B | 11 | 12 | 11.4 | 11.2 | NS | 10 | 10.6 | 10.7 | 10.6 | 10.6 | 11.3 | 19 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|------------|-----------|----------| | Total Selenium | 0.0084 | 0.0098 | ND | ND | ND | NS | ND | 0.00054 | 0.00073 | 0.0002 J | 0.00043 J | 0.00017 J | 0.00052 | | Total Silver | ND | ND | ND | ND | ND | NS | ND | ND | NS | ND | ND | ND | ND | | Total Sodium | 310 | 290 | 330 | 302 | 314 | NS | 279 | 283 | 297 | 284 | 300 | 326 | 289 | | Total Thallium | ND | ND | ND | ND | ND | NS | ND | Total Vanadium | ND | ND | ND | 0.00059 | 0.0012 | NS | 0.0012 | 0.0019 | 0.00018 J | 0.00016 J | 0.00084 JB | 0.00067 J | 0.0015 | | Total Zinc | ND | 0.0035 J | 0.031 | 0.0111 | 0.033 | NS | 0.0208 | 0.0344 | 0.0035 J | 0.004 JB | 0.0127 | 0.0146 | 0.0124 | | Turbidity | 33 | 130 | 72.8 | 78.9 | 748 H3 | NS | 67.2 H3 | 47.4 | 67.5 | 43.6 | 46.7 | 61 | 42.6 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|------------|-------------|-------------|----------| | Location ID: | GL | -10 (-31) | | mg/L |
 | | | | | | | | | Alkalinity | 60 | 56 | 59.2 | 50 | 256 | 124 | 132 | 112 | 44 | 100 | 80 | 120 | 76 ML | | Ammonia (N) | 4.8 | 4.5 | 5 | 5 | 4.8 | 4.7 | 4.8 | 4.4 | 4.8 | 4.1 | 4.8 | 4.9 | 5.2 | | Chemical Oxygen Demand | ND | 20 | 33.4 | 34.3 | 31.5 | 41.5 | 37.8 | 39.7 | 39.7 | 35.3 | 48.6 | 46.5 | 50.8 | | Chloride | 9 | 12 | 13.1 | 18 | 12.2 | 12.7 | 13.2 | 24.5 | 14.7 | 13.8 | 15.9 | 15.6 | 13.4 | | Hardness | 35 | 32 | 37.5 | 38.9 | 35.1 | 31.2 | 38.6 | NS | 42.5 | 34.9 | 36.2 | 35.4 | 40.9 | | Nitrate | ND | ND | 0.028 | ND | 0.013 H3 | ND | ND | 0.009 J | 0.0016 J | 0.009 J | 0.014 | 0.0078 JH1 | 0.053 | | Nitrite | ND NS | ND | ND | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | ND | NS | 0.017 J | NS | ND | ND | ND | | рН | 6.7 | 6.56 | 6.3 H6 | 6.7 H6 | 6.3 H6 | 6.2 H6H1 | 6.3 H3H6 | 6.5 H6H1 | 6.2 H6H1 | NS | 6.2 H6 | 6.6 H3H6 | 6.1 H6H | | Specific Conductance | 300 | 290 | 257 | 244 | NS | 256 | 200 | 179 | 279 | 232 | 364 | 286 | 315 | | Sulfate | 17 | 15 | NS | 22.5 | 28.8 | 23.2 | 25.5 | 18.3 B | 20.2 B | 8.5 JB | 8.1 JB | 7.2 J | 17.7 | | Total Antimony | ND | 0.00058 J | ND 0.0001 J | ND | ND | | Total Arsenic | ND 0.00028 J | ND | ND | 0.00017 J | ND | ND | | Total Barium | 0.053 | 0.06 | 0.07 | 0.0814 | 0.079 | 0.0753 | 0.0737 | 0.0779 | 0.0888 | 0.0754 | 0.0788 | 0.0878 | 0.0838 | | Total Beryllium | ND 0.000049 J | ND | ND | ND | | Total Cadmium | ND | Total Calcium | 8.6 | 7.4 | 7.9 | 8.17 | 7.7 | 7.04 | 7.4 | 6.98 | 8.57 | 6.92 | 6.61 | 6.71 | 7.74 | | Total Chromium | ND | 0.0012 J | 0.00078 | 0.00056 | 0.0012 | 0.0011 | 0.00076 | 0.0057 | 0.00068 | 0.00047 J | 0.00054 | 0.00086 JD3 | 0.00054 | | Total Cobalt | ND 0.00028 J | 0.000029 J | 0.000095 J | 0.00011 J | ND | ND | | Total Copper | ND | ND | ND | 0.00071 | 0.0031 | ND | ND | 0.0033 | ND | ND | ND | 0.001 JD3 | ND | | Total Dissolved Solids | 170 | 130 | NS | 264 | 138 | 199 | 152 | 290 | 229 | 163 | 212 | 93 | 215 | | Total Iron | 18 | 45 B | 54.8 | 60.9 | 61.3 | 60.1 | 57.5 | 61.9 | 72 | 57.6 | 57.2 | 63.6 | 65.9 M1 | | Total Lead | ND | ND | ND | ND | ND | ND | 0.00017 | 0.00045 | 0.000048 J | 0.000025 J | 0.000061 JB | 0.00021 JD3 | 0.000076 | | Total Magnesium | 3.2 | 3.4 | 4.3 | 4.6 | 4.5 | 4.32 | 4.8 | 4.47 | 5.12 | 4.27 | 4.78 | 4.52 | 5.24 | | Total Manganese | 0.73 | 0.84 | 1.4 | 1.53 | 1.6 | 1.66 | 1.85 | 1.76 | 2.11 | 1.56 | 1.94 | 1.64 | 2.27 M1 | | Total Mercury | ND | Total Nickel | ND | ND | ND | ND | ND | 0.00068 | ND | 0.0035 | ND | ND | 0.0011 B | 0.002 JD3 | ND | | Total Potassium | 14 B | 6.5 | 1.5 | 1.3 | 1.1 | 1.09 | 1.15 | 1.14 | 1.19 | 1.07 | 1.07 | 1.09 | 1.12 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-------------|------------|------------|-----------| | Total Selenium | ND | 0.0007 J | ND | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 19 | 11 | 8.6 | 9.91 | 9.5 | 9.01 | 8.63 | 9.21 | 10.1 | 9.09 | 9.02 | 9.56 | 9.54 | | Total Thallium | ND 0.000012 JB | ND | ND | ND | | Total Vanadium | ND | ND | 0.00046 | 0.00041 | ND | ND | ND | 0.0011 | ND | 0.00028 J | 0.00048 JB | ND | 0.00049 J | | Total Zinc | ND | 0.0011 J | ND | 0.0086 | ND | ND | ND | 0.0165 | 0.0016 J | 0.0058 B | 0.0068 B | 0.0086 JD3 | 0.0066 B | | Turbidity | 76 | 33 | 131 | 192 | 722 H3 | 60.5 | 37.2 | 57.5 | 185 | NS | 99.5 | 186 H1 | 212 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|------------|------------|------------|------------|------------| | Location ID: | GL- | -11 (-33) | | mg/L | | | | | | | | | | | Alkalinity | 120 | NS | 126 | 88 | 128 | 162 | 500 | 478 | 100 | 100 | 160 | 120 | 118 | | Ammonia (N) | 2.6 | NS | 2.1 | 2 | 2.1 | 2.1 | 2.1 | 1.8 | 2 | 1.6 | 1.8 | 2.1 | 2.1 | | Chemical Oxygen Demand | ND | NS | 70.4 | ND | ND | 240 | 130 | 88.6 | 22.1 J | 23.2 J | 26.2 | 22.9 J | 27.2 | | Chloride | 62 | NS | 43.1 | 32.9 | 26.7 | 29.4 | 25.3 | 81.6 | 24.8 | 23.1 | 25.8 | 25.2 | 25.1 | | Hardness | 240 | NS | 688 | 86.9 | 91.2 | 777 | 635 | NS | 104 | NS | 127 | 109 | 142 | | Nitrate | 0.0052 J | NS | 0.014 | 0.011 | ND | ND | ND | 0.04 | 0.0037 J | 0.015 | 0.014 | 0.013 H1 | 0.017 | | Nitrite | ND | NS | ND | ND | ND | ND | ND | ND | 0.03 J | ND | NS | ND | ND | | Nitrogen, Nitrate-Nitrite | ND | NS | NS | ND | ND | ND | ND | NS | 0.034 J | NS | 0.037 J | ND | ND | | рН | 9.4 | NS | 7.2 H6 | 6.9 H6 | 6.4 H6 | 6.6 H6H1 | 6.4 H3H6 | 6.6 H6H1 | 6.3 H6H1 | 6.2 H6 | 6.3 H6 | 6.5 H3H6 | 6.2 H6H1 | | Specific Conductance | 1,700 | NS | 427 | 281 | NS | 359 | 357 | 322 | 314 | 290 | 356 | 319 | 359 | | Sulfate | 2.3 | NS | NS | ND | ND | ND | ND | 5.2 JB | 2.5 JB | 3.8 JB | ND | 3.8 J | 7.1 J | | Total Antimony | ND | NS | ND | ND | ND | ND | ND | 0.00015 J | ND | ND | 0.000035 J | ND | ND | | Total Arsenic | ND | NS | 0.0083 | 0.00064 | ND | 0.0039 | 0.0026 | 0.0047 | 0.00021 J | 0.00014 J | 0.00043 J | ND | 0.0006 | | Total Barium | 0.1 | NS | 0.25 | 0.0721 | 0.066 | 0.299 | 0.184 | 0.125 | 0.0889 | 0.0682 | 0.0973 | 0.076 | 0.0776 | | Total Beryllium | ND | NS | 0.0016 | ND | ND | 0.0041 | 0.0017 | 0.0012 | ND | ND | 0.000079 J | ND | 0.00024 | | Total Cadmium | ND | NS | ND | ND | ND | ND | 0.00071 | 0.0004 | 0.000014 J | ND | 0.000054 J | ND | 0.000035 J | | Total Calcium | 90 | NS | 81.4 | 21 | 24.9 | 172 | 180 M1 | 82 | 27.6 | 24.6 | 36.6 | 27.4 | 39.6 | | Total Chromium | ND | NS | 0.034 | 0.002 | 0.00098 | 0.0318 | 0.0134 | 0.0259 | 0.00088 | 0.00079 | 0.0015 | 0.0022 JD3 | 0.0019 | | Total Cobalt | ND | NS | 0.0054 | ND | ND | ND | 0.0012 | 0.0027 | 0.000033 J | 0.000071 J | 0.00017 J | ND | 0.00023 J | | Total Copper | ND | NS | 0.029 | 0.00084 | ND | ND | ND | 0.012 | ND | ND | 0.00047 J | ND | 0.00064 J | | Total Dissolved Solids | 250 | NS | NS | 280 | 146 | 220 | 280 | 490 | 188 | 199 | 215 | 136 | 218 | | Total Iron | 16 B | NS | 378 | 46.9 | 44.6 | 1,080 | 368 | 238 | 47.4 | 40.3 | 49.9 | 55.6 | 58.7 | | Total Lead | ND | NS | 0.015 | 0.00067 | 0.00015 | 0.0057 | 0.0044 | 0.0065 | 0.000053 J | 0.000052 J | 0.0003 | 0.00058 | 0.00048 | | Total Magnesium | 4.9 | NS | 118 | 9.24 | 8.6 | 117 | 44.7 M1 | 28.5 | 8.52 | 7.93 | 8.69 | 9.76 | 10.4 | | Total Manganese | 0.54 | NS | 9.8 | 1.51 | 1.6 | 21.1 | 8.42 | 5.29 | 1.65 | 1.45 | 1.55 | 1.71 | 1.8 | | Total Mercury | ND | NS | ND | ND | ND | ND | ND | 0.000034 J | ND | ND | ND | ND | ND | | Total Nickel | 0.0054 J | NS | 0.062 | 0.0011 | 0.00082 | 0.0814 | 0.0437 | 0.0495 | 0.00021 J | 0.00018 J | 0.005 | 0.0033 | 0.0045 | | Total Potassium | 1.7 B | NS | 2.5 | 1.15 | 0.93 | 1.52 | 1.08 | 1.46 | 0.996 | 0.943 | 0.906 | 0.895 | 1.03 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|------------|-----------|-----------|-----------|------------|----------| | Total Selenium | ND | NS | ND | ND | ND | ND | 0.0005 | 0.00031 J | ND | ND | 0.00014 J | ND | ND | | Total Silver | ND | NS | ND | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Total Sodium | 20 | NS | 15.9 | 14.1 | 13.4 | 14.6 | 13.1 | 12.9 | 14.2 | 13.2 | 13 | 13.4 | 14.2 | | Total Thallium | ND | NS | ND | ND | ND | ND | ND | 0.000076 J | ND | ND | 0.00001 J | ND | ND | | Total Vanadium | ND | NS | 0.072 | 0.0033 | 0.0011 | 0.147 | 0.0597 | 0.0525 | 0.00049 J | 0.00076 J | 0.0033 | 0.007 | 0.0069 | | Total Zinc | ND | NS | 0.038 | ND | 0.0061 | ND | 0.0164 | 0.0337 | 0.0014 J | 0.0056 B | 0.0087 B | 0.0062 JD3 | 0.0066 | | Turbidity | 16 | NS | 258 | 147 | 415 H3 | 316 | 74.5 H1 | 995 | 252 | 112 | 265 | 192 H1 | 216 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|------------|------------|-----------|----------| | Location ID: | GL | -12 (-17) | | mg/L | | | | | | | | | | | Alkalinity | ND | NS | 37.2 | 30 | 46 | 98 | 94 | 70 | 90 | 70 | 110 | 90 ML | 60 ML | | Ammonia (N) | 4.4 | NS | 3.6 | 3.7 | 3.4 | 3.1 | 3.4 | 3.3 M1 | 3.5 | 3.1 | 3.4 | 3.2 | 3 | | Chemical Oxygen Demand | 25 | NS | 33.4 | 43 | 29.4 | 33 | 35.6 | 35.4 | 35.3 | 37.3 | 36.4 | 27.2 | 31.5 | | Chloride | 220 | NS | 230 | 198 | 180 | 241 | 197 | 196 | 236 M1 | 217 | 243 | 210 | 65.6 | | Hardness | 130 | NS | 149 | 140 | 122 | 166 | 157 | NS | 143 | 137 | 148 | 145 | 136 | | Nitrate | 0.0041 J | NS | ND 0.0049 J | 0.0057 J | | Nitrite | ND | NS | ND | ND | ND | ND | ND | ND | 0.12 M1 | 0.34 | ND | ND | ND | | Nitrogen, Nitrate-Nitrite | ND | NS | NS | ND | ND | ND | ND | NS | 0.12 | NS | ND | ND | ND | | рН | 6.2 | NS | 6 H6 | 6.4 H6 | 6.2 H6 | NS | 5.8 H3H6 | 6.2 H6H1 | 6.2 H6H1 | NS | 6.1 H6H1 | 6.1 H6H1 | 6 H6H1 | | Specific Conductance | 1,100 | NS | 1,360 | 1,220 | NS | NS | 1,300 | 1,130 | NS | 1,270 | 1,340 | 1,270 | 1,210 | | Sulfate | 240 | NS | NS | 231 | 228 | 243 | 225 | 223 B | 230 | 249 | 225 | 223 | 189 MF | | Total Antimony | ND | NS | ND | ND | ND | ND | ND | ND | 0.00007 J | ND | ND | 0.00015 J | ND | | Total Arsenic | ND | NS | ND | ND | ND | 0.00072 | 0.001 | 0.00042 J | 0.00041 J | 0.00026 J | 0.00041 J | 0.0009 | 0.00059 | | Total Barium | 0.028 | NS | 0.029 | 0.0394 | 0.028 | 0.0354 | 0.0411 | 0.0278 | 0.0343 | 0.0307 | 0.033 | 0.0475 | 0.0493 | | Total Beryllium | ND | NS | ND | ND | ND | ND | ND | ND | 0.000049 J | 0.000043 J |
0.000053 J | ND | 0.000073 | | Total Cadmium | ND | NS | ND | ND | ND | ND | 0.00011 | ND | ND | ND | ND | ND | ND | | Total Calcium | 20 | NS | 21.5 | 20.8 | 19.2 | 25.1 | 28.6 | 15.1 | 21.9 | 20.6 | 21.4 | 21 M6 | 22.3 | | Total Chromium | ND | NS | ND | 0.00061 | ND | 0.001 | 0.0028 | 0.0017 | 0.00058 | 0.0005 | 0.00052 | 0.0012 | 0.00088 | | Total Cobalt | ND | NS | ND | ND | ND | ND | 0.0022 | 0.00076 | 0.00026 J | 0.0003 J | 0.00029 J | 0.00083 | 0.002 | | Total Copper | ND | NS | ND | 0.001 | ND | ND | 0.0035 | 0.0039 | ND | ND | NS | 0.00062 J | 0.00026 | | Total Dissolved Solids | 850 | NS | NS | 864 | 682 | NS | 801 | 860 | 853 | 772 | 831 | 768 | 643 | | Total Iron | 130 | NS | 119 | 133 M1 | 125 | 131 | 135 | 130 | 139 | 117 | 121 | 126 M6 | 120 M1 | | Total Lead | ND | NS | ND | ND | ND | ND | 0.0019 | 0.00034 | 0.00016 | 0.00006 J | 0.0001 | 0.00035 | 0.00018 | | Total Magnesium | 21 | NS | 23.1 | 21.9 | 19.4 | 26.5 | 20.9 | 18.5 | 21.5 | 20.7 | 22.9 | 22.4 | 19.5 | | Total Manganese | 2.9 | NS | 2.9 | 3.13 | 2.8 | 2.82 | 3.07 | 3.04 | 3.12 | 2.8 | 2.96 | 2.8 M6 | 2.6 M1 | | Total Mercury | ND | NS | ND | Total Nickel | ND | NS | ND | ND | ND | 0.00052 | 0.002 | 0.0013 | ND | ND | 0.00093 | NS | 0.00093 | | Total Potassium | 3.2 B | NS | 3.4 | 3.29 | 3.1 | 4.55 | 2.96 | 2.9 | 3.2 | 3.38 | 3.79 | 3.77 | 3.35 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|------------|-----------|-----------| | Total Selenium | ND | NS | ND | ND | ND | ND | ND | ND | 0.00014 J | ND | ND | ND | ND | | Total Silver | ND | NS | ND | ND | ND | ND | ND | ND | NS | ND | 0.000059 J | ND | ND | | Total Sodium | 110 | NS | 121 | 121 M1 | 115 | 150 | 107 | 117 | 124 | 118 | 134 | 122 M6 | NS | | Total Thallium | ND | NS | ND | ND | ND | ND | ND | ND | 0.000018 J | ND | 0.000023 J | ND | ND | | Total Vanadium | ND | NS | ND | 0.00043 | ND | ND | 0.0025 | 0.00099 J | ND | 0.00024 J | 0.00023 J | 0.0011 | 0.00028 J | | Total Zinc | ND | NS | ND | 0.0093 | ND | ND | 0.0093 | 0.0264 | 0.0023 J | 0.0014 JB | 0.0032 J | 0.0049 J | 0.0041 J | | Turbidity | 70 | NS | 65 | 62.2 | 105 H3 | NS | 84.2 H1 | 94.5 | 104 | NS | 63 | 79.4 | 154 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|-------------|-----------|------------| | Location ID: | GL | -13 (-26) | | mg/L | | | | | | | | | | | Alkalinity | 7.5 | ND | ND | ND | ND | 86 | 112 | 40 | 62 | 40 | 60 | 44 | 40 | | Ammonia (N) | 3.4 | 7.4 | 8.9 | 8.8 | 9.6 | 9.6 | 8.6 | 8.6 | 9.1 | 8.7 | 12.1 | 11.1 ML | 11.8 | | Chemical Oxygen Demand | 180 | 160 | 864 | 1,120 | 1,390 | 1,760 | 390 | 1,300 | 1,410 | 1,310 | 1,910 | 1,750 | 1,920 | | Chloride | 130 | 140 | 141 | 112 | 106 | 125 | 120 | 121 | 143 | 126 | 122 | 117 | 28 | | Hardness | 390 | 410 | 749 | 713 | 733 | 887 | 696 | NS | 758 | 712 | 962 | 923 | 1,050 | | Nitrate | ND | ND | 0.02 | ND | 0.016 H3 | 0.011 | ND | 0.012 | 0.014 | 0.0022 J | ND | 0.022 | 0.0092 J | | Nitrite | ND | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | ND | NS | ND | NS | 0.059 J | ND | ND | | рН | 6.3 | 6.37 | 5.4 H6 | 6 H6 | 5.8 H6 | NS | 5.5 H3H6 | 5.7 H6H1 | 5.7 H6H1 | NS | 5.6 H6H1 | 5.7 H6H1 | 5.6 H6H1 | | Specific Conductance | 2,200 | 1,700 | 4,300 | 3,520 | NS | NS | 4,240 | 3,830 | NS | 4,070 | 5,130 | 4,600 | 6,100 | | Sulfate | 1,800 | 1,500 | NS | 2,270 | 3,060 | 3,360 | 2,730 | 2,700 | 2,690 | 2,820 B | 3,230 | 3,450 | 4,040 | | Total Antimony | ND | 0.00047 J | ND | ND | ND | ND | ND | ND | 0.000035 J | ND | ND | ND | ND | | Total Arsenic | ND 0.00019 J | ND | ND | ND | ND | | Total Barium | 0.07 | 0.062 | 0.038 | 0.0291 | 0.026 | 0.0257 | 0.0301 | 0.0249 | 0.0354 | 0.0296 | 0.0288 | 0.0261 | 0.0252 | | Total Beryllium | ND | 0.00036 J | ND | ND | ND | ND | ND | 0.00017 J | 0.00046 J | 0.00013 J | 0.00076 JD3 | ND | 0.0005 JD3 | | Total Cadmium | ND | Total Calcium | 50 | 48 | 86.6 | 89.4 | 91.6 | 105 | 80.6 | 56.8 | 94.3 | 78.7 | 104 | 97.2 | 120 | | Total Chromium | ND | 0.0014 J | ND | 0.00085 | ND | ND | 0.0014 | 0.0017 | 0.00078 | 0.0016 | ND | 0.00076 J | 0.001 J | | Total Cobalt | ND | ND | ND | ND | ND | ND | 0.0011 | 0.0014 | 0.000081 J | 0.0011 | ND | ND | 0.0018 JD3 | | Total Copper | ND | 0.0015 | ND | ND | ND | ND | ND | 0.00048 J | ND | ND | NS | ND | ND | | Total Dissolved Solids | 2,000 | 2,600 | NS | 4,540 | 5,980 | NS | 5,410 | 4,800 | 5,400 | 5,510 | 7,500 | 7,520 | 8,150 | | Total Iron | 640 | 690 B | 1,140 | 1,250 E | 1,360 | 1,470 | 1,150 | 1,400 | 1,300 | 1,250 | 1,520 | 1,410 | 1,820 | | Total Lead | ND 0.00029 | 0.000063 J | 0.00002 J | 0.0003 JD3 | ND | ND | | Total Magnesium | 65 | 69 | 131 | 132 | 147 | 157 | 124 | 104 | 127 | 125 | 171 | 165 | 183 | | Total Manganese | 66 | 71 | 128 | 137 E | 156 | 170 | 127 | 157 | 145 | 142 | 186 | 185 | 216 | | Total Mercury | ND | Total Nickel | ND | 0.0073 | ND | ND | ND | ND | ND | 0.00067 | 0.00072 | 0.00043 J | ND | NS | ND | | Total Potassium | 2 B | 1.8 | 2.4 | 2.52 | 2.2 | 2.61 | 2.16 | 1.81 | 2.36 | 2.21 | 2.68 | 2.6 | 2.92 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|-----------|-------------|------------|-----------|--------------| | Total Selenium | 0.0021 J | 0.0017 J | ND | ND | ND | ND | ND | ND | 0.00099 J | 0.00017 J | ND | ND | ND | | Total Silver | ND NS | ND | 0.0002 JD3 | ND | ND | | Total Sodium | 33 | 34 | 38.7 | 7.65 | 41.1 | 41.4 | 38.5 | 33.5 | 42.7 | 40.2 | 43.3 | 44.6 | NS | | Total Thallium | ND 0.00002 J | 0.000009 JB | ND | ND | 0.00026 JD3B | | Total Vanadium | ND | ND | 0.00089 | 0.00059 | ND | ND | ND | 0.00088 J | ND | 0.00055 J | ND | ND | ND | | Total Zinc | ND | 0.0013 J | ND | ND | ND | ND | 0.008 | 0.0206 | 0.0064 | 0.0031 JB | ND | ND | 0.0043 JD3 | | Turbidity | 48 | 110 | 115 | 84.5 | 728 H3 | NS | 82.5 H1 | 173 | 211 | NS | 95.8 | 162 | 148 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|------------|-------------|-------------|------------| | Location ID: | GL | -14 (-33) | | mg/L | | | | | | | | | | | Alkalinity | 48 | 32 | 59.6 | 44 | ND | 92 | 110 | 62 | 76 | 80 | 90 | 80 | 82 | | Ammonia (N) | 4.1 | 0.12 | 4.4 | 4.8 | 5 | 6.9 | 5.3 | 7.8 | 5.2 | 4.1 | 5.1 | 4.9 | 1.6 | | Chemical Oxygen Demand | 10 | 24 | 42.1 | 64.9 | 99.3 | 544 | 183 | 640 | 115 | 49.4 | 95.3 | 68 | 48.7 | | Chloride | 19 | 20 | 18.8 | 24.4 | 21.1 | 24.4 | 25.4 | 29.6 | 23.5 | 22.1 | 23.8 | 24.2 | 22 | | Hardness | 58 | 46 | 55.3 | 69.2 | 49 | 158 | 57.4 | NS | 65.5 | 38.2 | 61.3 | 44.5 | 79.4 | | Nitrate | ND | ND | 0.012 | ND | ND | ND | ND | ND | 0.0033 J | 0.002 J | ND | ND | 0.0086 J | | Nitrite | ND 0.19 | | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | ND | ND | NS | ND | NS | ND | ND | 0.19 | | рН | 6.8 | 6.59 | 6.4 H6 | 6.5 H6 | 6.2 H6 | NS | 6 H3H6 | 5.9 H6H1 | 6.2 H6H1 | NS | 6.2 H6H1 | 6.5 H3H6 | 6.6 H6H1 | | Specific Conductance | 340 | 290 | 267 | 332 | NS | NS | 601 | 1,820 | NS | 233 | 439 | 265 | 316 | | Sulfate | 27 | 42 | NS | 65.7 | 90.5 | 714 | 211 | 1,120 | 141 | 12 B | 117 | 4.6 J | 13.7 | | Total Antimony | ND | 0.0019 J | ND | ND | ND | ND | ND | ND | 0.000067 J | 0.000046 J | ND | ND | 0.00013 J | | Total Arsenic | ND | 0.0009 J | 0.0013 | 0.00063 | 0.0072 | 0.0147 | 0.0113 | 0.004 | 0.0004 J | ND | 0.00048 JD3 | 0.0019 JD3 | 0.0003 J | | Total Barium | 0.086 | 0.073 | 0.078 | 0.0691 | 0.15 | 0.16 | 0.132 | 0.0702 | 0.0688 | 0.0614 | 0.078 | 0.0692 | 0.0565 | | Total Beryllium | ND | 0.00021 J | 0.0011 | 0.0014 | 0.023 | 0.0421 | 0.0229 | 0.0078 | 0.0011 | 0.000064 J | 0.0015 | 0.0015 | 0.00012 J | | Total Cadmium | ND | Total Calcium | 17 | 11 | 14.6 | 8.97 | 8.7 | 20.9 | 9.68 | 17.3 | 8.56 | 7.47 | 8.28 | 7.05 | 25.8 | | Total Chromium | ND | 0.0011 J | 0.001 | 0.0016 | 0.01 | 0.0136 | 0.0084 | 0.0046 | 0.0011 | 0.00043 J | 0.00098 JD3 | 0.00071 JD3 | 0.00047 J | | Total Cobalt | ND | ND | ND | ND | 0.0011 | ND | ND | 0.001 | 0.000066 J | 0.000078 J | ND | ND | ND | | Total Copper | ND | ND | ND | 0.00075 | 0.0018 | ND | ND | 0.00032 J | ND | ND | NS | ND | 0.00048 J | | Total Dissolved Solids | 180 | 220 | NS | 272 | 270 | NS | 618 | 2,140 | 408 | 150 | 399 | 115 | 174 | | Total Iron | 13 | 53 B | 50 | 118 | 145 | 342 | 143 | 479 | 122 | 55.4 | 102 | 71.2 | 26.9 | | Total Lead | ND | ND | ND | ND | 0.00018 | ND | ND | ND | 0.000063 J | 0.000089 J | 0.00032 JD3 | ND | 0.000083 J | | Total Magnesium | 3.9 | 4.4 | 4.6 | 11.7 | 12 | 42.4 | 13.5 | 46.6 | 10.7 | 4.74 | 9.86 | 6.52 | 3.61 | | Total Manganese | 1.6 | 2.5 | 2.7 | 10.5 E | 12.3 | 38.7 | 12.9 | 63.5 | 10.2 | 2.85 | 8.74 | 4.87 | 1.33 | | Total Mercury | ND | Total Nickel | ND | ND | 0.00082 | 0.00059 | 0.012 | 0.0064 | 0.0039 | 0.0049 | 0.0004 J | 0.00018 J | ND | ND | 0.00075 | | Total Potassium | 1.4 B | 1.2 | 1.1 | 1.33 | 1.1 | 1.82 | 1.25 | 1.65 | 1.22 | 0.999 | 1.19 | 0.992 | 1.3 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------
------------|-----------|------------|------------|----------| | Total Selenium | ND | ND | 0.0026 | ND | 0.0045 | 0.0105 | 0.025 | 0.0094 | ND | ND | ND | 0.0034 | ND | | Total Silver | ND NS | ND | ND | ND | ND | | Total Sodium | 8.7 | 8.7 | 8.5 | 10.5 | 10.1 | 12.4 | 9.32 | 11.2 | 9.97 | 8.84 | 9.69 | 9.5 | NS | | Total Thallium | ND 0.000008 J | ND | ND | ND | ND | | Total Vanadium | ND | 0.00061 J | 0.001 | 0.0015 | 0.02 | 0.0282 | 0.0162 | 0.005 | ND | 0.00024 J | ND | 0.0016 JD3 | 0.0003 J | | Total Zinc | ND | 0.0032 J | ND | 0.0323 | 0.017 | ND | 0.0091 | 0.0083 | 0.0022 J | 0.0015 JB | 0.0161 JD3 | ND | 0.0087 | | Turbidity | 36 | 140 | 112 | 156 | 31.6 H3 | NS | 162 H1 | 102 | 308 | NS | 102 | 132 H1 | 51 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-------------|------------|------------|------------|----------| | Location ID: | GL- | -15 (-36) | | mg/L | | | | | | | | | | | Alkalinity | 450 | 840 | 864 | 330 | 380 | 456 | 356 | 628 | 390 | 806 | 450 | 398 | 434 | | Ammonia (N) | 3.7 | 0.39 | ND | 2.7 | 2.8 | 2.5 | 2.6 | 1.6 | 2.8 | 1.6 | 2.4 | 2.4 | 2.6 | | Chemical Oxygen Demand | 13 | 5.3 J | 31.2 | 150 | 139 | 166 | 130 | 198 | 132 | 51.4 | 95.3 | 111 | 128 | | Chloride | 2,200 | 31 | 31.7 | 2,530 | 2,950 | 2,720 | 2,860 | 2,910 | 3,460 | 859 | 2,930 | 2,530 | 2,690 | | Hardness | 1,200 | 1,300 | 1,450 | 1,070 | 1,470 | 1,210 | 1,110 | NS | 1,070 | 1,140 | 1,400 | 1,360 | 1,220 | | Nitrate | 0.045 | 0.074 | 0.11 | ND | ND | 0.02 | ND | 0.042 | 0.0041 JH1 | 0.11 | 0.02 | 0.027 | 0.017 | | Nitrite | ND | 2 | 4 | ND | ND | ND | ND | ND | 0.022 J | ND | ND | 0.08 J | 0.045 J | | Nitrogen, Nitrate-Nitrite | ND | 2.1 | NS | ND | ND | ND | ND | NS | 0.026 J | NS | ND | 0.11 | 0.062 J | | рН | 11.9 | 8.61 | 8.1 H6 | 7.4 H6 | 6.7 H6 | 7 H6 | 6.6 H3H6 | 6.9 H6H1 | 6.6 H6 | 11.9 H6H1 | 6.8 H6H1 | 6.8 H6H1 | 6.6 H6 | | Specific Conductance | 8,900 | 2,000 | 2,580 | 8,920 | NS | 7,400 | 10,400 | 9,110 | 10,000 | 6,150 | 9,760 | 8,710 | 9,510 | | Sulfate | 69 | 460 | 29.7 | 236 | 311 | 244 | 267 | 263 B | 253 B | 71.4 | 208 | 249 | 222 | | Total Antimony | ND | 0.0018 J | ND | ND | ND | ND | ND | 0.00035 J | ND | 0.00017 J | ND | ND | ND | | Total Arsenic | 0.0043 J | 0.0061 | 0.0051 | 0.0083 | 0.026 | 0.0113 | 0.0125 | 0.0166 | 0.0087 | 0.0011 | 0.0097 | 0.0082 | 0.0115 | | Total Barium | 0.85 | 0.017 | 0.021 | 0.16 | 0.44 | 0.154 | 0.399 | 1 | 0.184 | 0.396 | 0.207 | 0.199 | 0.245 | | Total Beryllium | ND 0.00016 JD3 | ND | ND | ND | ND | | Total Cadmium | ND | 0.00076 | ND | ND | 0.00074 | 0.00014 | 0.001 | 0.00039 | ND | 0.000016 J | ND | ND | 0.000039 | | Total Calcium | 500 | 28 | 32.6 | 87.6 | 341 | 115 | 106 | 591 | 104 | 449 | 136 | 142 | 131 | | Total Chromium | 0.0076 | 0.17 | 0.088 | 0.00086 | 0.044 | 0.0088 | 0.0253 | 0.13 | 0.0051 | 0.0125 | 0.0095 | 0.0023 JD3 | 0.0049 | | Total Cobalt | ND | 0.0018 J | ND | 0.003 | 0.014 | 0.0057 | 0.0062 | 0.0149 | 0.0044 | 0.002 | 0.0043 | 0.0036 | 0.0042 | | Total Copper | 0.0033 | 0.0081 | 0.0083 | 0.00072 | 0.015 | 0.0046 | 0.0092 | 0.107 | NS | 0.0027 | 0.0022 JD3 | ND | 0.0015 | | Total Dissolved Solids | 2,000 | 1,400 | 1,630 | 4,960 | 5,570 | 5,640 | 5,230 | 4,030 | 5,770 | 3,360 | 5,580 2c | 6,500 | 7,030 | | Total Iron | 0.53 | 0.044 | ND | 34.6 | 150 | 49.8 | 58 | 91 | 42.5 | 0.829 | 43.7 | 39.3 | 37.2 | | Total Lead | ND | 0.0018 | 0.0025 | ND | 0.018 | 0.0045 | 0.0079 | 0.0156 | 0.0024 | 0.00024 B | 0.0033 D3 | 0.001 | 0.0016 | | Total Magnesium | ND | 300 | 332 | 211 | 243 | 228 | 211 | 214 | 196 | 3.67 | 258 | 244 | 216 | | Total Manganese | 0.0035 J | 0.0069 | 0.005 | 0.505 | 2 | 0.692 | 0.724 | 1.56 | 0.642 | 0.0123 | 0.715 | 0.617 | 0.676 | | Total Mercury | ND | Total Nickel | 0.018 | 0.0043 J | 0.0033 | 0.0016 | 0.017 | 0.0093 | 0.0084 | 0.0948 | 0.0036 | 0.0035 | 0.0025 JD3 | 0.0018 JD3 | 0.0025 | | Total Potassium | 72 B | 82 | 95 | 35.2 | 39.1 | 36.6 | 35.5 | 37 | 35.3 | 42.6 | 36.9 | 35.6 | 38.6 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|-----------|----------|-----------|-----------|----------|-----------|----------|-----------|--------------|------------|--------------|------------|------------| | Total Selenium | 0.0075 | 0.032 | 0.029 | ND | ND | ND | ND | 0.00037 J | 0.0024 JD3 | 0.00067 | 0.00094 JD3 | ND | 0.00026 J | | Total Silver | ND NS | ND | 0.00006 JD3B | ND | ND | | Total Sodium | 500 | 31 | 32.4 | 1,540 | 1,710 | 1,640 | 1,530 | 1,540 | 1,560 | 486 | 1,950 | 1,860 | 1,380 | | Total Thallium | ND | ND | ND | ND | 0.00023 | ND | ND | 0.00022 | 0.000065 JD3 | ND | 0.00004 JD3 | ND | 0.000036 J | | Total Vanadium | 0.00054 J | ND | 0.0024 D3 | 0.00036 | 0.066 | 0.0071 | 0.068 | NS | 0.016 | 0.000098 J | 0.0164 | 0.0039 JD3 | 0.0068 | | Total Zinc | ND | 0.047 | 0.063 | 0.015 | 0.16 | 0.0407 | 0.0623 | 0.119 | 0.0268 | 0.0042 J | 0.0199 JD3 | 0.0135 JD3 | 0.02 | | Turbidity | 2 | 0.2 | 0.26 | 96.3 | 1,650 | 37.4 | 770 H1 | 3,680 | 290 | 13.1 | 120 | 172 | 128 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|------------|------------|------------|------------|----------| | Location ID: | GL | -16 (-32) | | mg/L | | | | | | | | | | | Alkalinity | 110 | 30 | 126 | ND | 118 | 176 | 146 | 134 | 1,270 M1 | 1,350 | 140 | 1,500 | 192 | | Ammonia (N) | 4.1 | 4 | 3.3 | 3.4 | 3.6 | 3.4 | 3.5 | 3.3 | 3.5 | 2.9 | 3.5 | 3.1 | 3.6 | | Chemical Oxygen Demand | 4.5 J | 11 | 181 | 34.3 | 158 | 183 | 157 | 252 | 39.7 | 19.1 J | 77 | 35.8 | 91.8 | | Chloride | 3,900 | 3,000 | 4,690 | 179 | 3,760 | 3,700 | 3,600 | 3,870 | 517 | 450 B | 4.1 | 336 | 3,410 | | Hardness | 2,100 | 1,200 | 1,270 | 1,900 | 1,390 | 1,220 | 1,210 | NS | 1,540 | 1,490 | NS | 1,920 | 1,280 | | Nitrate | 0.0052 J | 0.01 J | ND | 0.065 | 0.01 | ND | ND | 0.0082 J | 0.033 | 0.034 | ND | 0.03 | ND | | Nitrite | ND | ND | ND | 0.1 | ND | ND | ND | ND | 0.12 | ND | ND | 0.11 | 0.044 J | | Nitrogen, Nitrate-Nitrite | ND | 0.043 J | NS | 0.17 | ND | ND | ND | NS | 0.15 | NS | ND | 0.14 | 0.046 J | | рН | 8.1 | 11.4 | 6.5 H6 | 12.5 H6 | 6.5 H6 | 6.7 H6 | 6.4 H3H6 | 6.4 H6H1 | 12.3 H6H1 | 12 H6H1 | 6.5 H6H1 | 12.1 H6 | 7.2 H6 | | Specific Conductance | 11,000 | 8,800 | 13,600 | 8,370 | NS | 6,100 | 13,300 | 11,500 | NS | 6,560 | 12,700 | 6,990 | 14,400 | | Sulfate | 520 | 290 | 496 | 37.2 | 458 | 453 | 447 | 491 B | 54.7 | 58.7 M1 | 456 | 18.4 | 488 | | Total Antimony | ND | ND | ND | ND | 0.0028 | ND | ND | ND | 0.000081 J | 0.00007 J | 0.000042 J | 0.00017 J | ND | | Total Arsenic | 0.0042 J | 0.018 | 0.0075 | 0.0019 | 0.0087 | 0.0095 | 0.0094 | 0.0083 | 0.0019 | 0.0026 | 0.0157 | 0.0036 | 0.0116 | | Total Barium | 2.4 | 0.097 | 0.22 | 1.67 | 0.12 | 0.0745 | 0.0832 | 0.062 | 0.589 | 0.822 | 0.0689 | 1.06 | 0.0978 | | Total Beryllium | ND | ND | ND | ND | 0.00098 | ND | ND | ND | ND | ND | ND | 0.000077 J | ND | | Total Cadmium | ND | ND | ND | ND | ND | ND | 0.00019 | ND | ND | ND | ND | 0.000079 J | ND | | Total Calcium | 850 | 95 | 151 | 810 | 174 | 98.9 | 94.6 | 70.4 | 615 | 597 | NS | 767 | 104 M1 | | Total Chromium | 0.01 | 0.0015 J | ND | 0.0139 | 0.0009 | ND | 0.0016 | 0.0017 | 0.0107 | 0.0132 | 0.0012 | 0.0113 | 0.00077 | | Total Cobalt | ND | 0.0015 J | ND | 0.0011 | 0.0012 | 0.0023 | 0.0015 | 0.0013 | 0.00068 | 0.00074 | 0.0013 | 0.00096 | 0.0012 | | Total Copper | 0.006 | 0.002 | ND | 0.0054 | 0.25 | 0.003 | 0.0022 | 0.00098 J | 0.0047 | 0.0047 | 0.00073 J | 0.0052 | 0.00071 | | Total Dissolved Solids | 3,500 | 5,200 | 7,360 | 2,080 | 6,760 | 7,060 | 6,890 | 3,820 | 2,380 | 3,680 | 7,160 1c | 2,480 | 7,750 | | Total Iron | 0.51 | 22 | 16.2 | 0.28 | 14.7 | 19 | 16.6 | 15.3 | 0.101 | 0.0741 | 21.9 | 0.874 | 18.9 M1 | | Total Lead | 0.001 J | ND | ND | 0.00078 | 0.00047 | 0.00042 | 0.00023 | 0.000082 J | 0.00013 | 0.00009 JB | 0.00022 | 0.00021 | 0.00022 | | Total Magnesium | ND | 240 | 228 | 0.78 | 247 | 241 | 239 | 218 | 0.126 | 0.0343 | 230 | 0.575 | 230 | | Total Manganese | 0.0072 | 0.51 | 0.4 | 0.0056 | 0.43 | 0.452 | 0.44 | 0.403 | 0.0017 | 0.00044 J | 0.522 | 0.0035 | 0.463 M | | Total Mercury | ND | Total Nickel | 0.034 | 0.0062 | 0.0047 | 0.0171 | 0.0049 | 0.0065 | 0.0037 | 0.004 | 0.0138 | 0.015 | NS | 0.0158 | 0.0035 | | Total Potassium | 84 B | 86 | 63 | 12.1 | 68.4 | 67.6 | 61.8 | 58.8 | 14.2 | 11.8 | 65.4 | 10 | 67.3 M1 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|-----------|----------|----------|-----------|----------|-----------|----------|-----------|-------------|-----------|-------------|------------|------------| | Total Selenium | ND | 0.027 | ND | ND | ND | ND | ND | ND | 0.00029 J | 0.00034 J | 0.0024 | 0.00047 J | 0.00032 J | | Total Silver | ND NS | ND | 0.000016 JB | ND | ND | | Total Sodium | 70 | 2,200 | 2,230 | 74.9 | 2,400 | 2,250 | 2,020 | 2,120 | 265 | 242 | 2,210 | 180 | 2,240 M6 | | Total Thallium | ND 0.000019 JB | ND | 0.00002 J | 0.000066 J | 0.000046 J | | Total Vanadium | 0.00048 J | ND | ND | 0.0002 | ND | ND | ND | NS | ND | ND | 0.00074 J | ND | 0.00046 J | | Total Zinc | ND | 0.0037 J | ND | 0.0076 | 0.04 | 0.0108 | 0.0061 | 0.005 | 0.0033 J | 0.0025 J | 0.0042 JB | 0.0057 | 0.0032 J | | Turbidity | 92 | 360 | 2.2 | 2.6 | 135 | 5.5 | 8 H1 | 4.9 | 3.3 | 0.72 | 5.1 | 5.1 | 9.3 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 |
10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|------------|------------|----------|-------------|------------| | Location ID: | GL | -17 (-31) | | mg/L | | | | | | | | | | | Alkalinity | 400 | 380 | 414 | 384 | 392 | 508 | 434 | 456 | 420 | 440 M1 | 440 | 400 | 404 | | Ammonia (N) | 17 | 17 | 46.3 | 16.9 | 17.8 | 17.2 | 0.64 | 17.1 | 16.9 | 16.5 | 17.6 | 19 | 17.7 | | Chemical Oxygen Demand | 130 | 160 | 310 | 324 | 335 | 341 | 317 | 318 | 314 | 273 | 284 | 321 | 299 | | Chloride | 1,500 | 2,200 | 2,500 | 1,840 | 1,940 | 1,720 | 1,830 | 1,840 | 1,760 | 1,700 | 162 | 169 | 1,620 | | Hardness | 550 | 600 | 652 | 653 | 590 | 619 | 574 | NS | 621 | 581 | NS | 541 | 567 | | Nitrate | 0.0048 J | ND | 0.037 | ND | ND | 0.012 | ND | 0.032 | 0.0047 J | 0.0029 J | ND | 0.0037 J2c | ND | | Nitrite | ND | Nitrogen, Nitrate-Nitrite | ND | ND | NS | ND | ND | NS | ND | NS | ND | NS | ND | ND | ND | | рН | 7.8 | 8.21 | 8 H6 | 7.9 H6 | 7.8 H6 | 7.8 H6H1 | 7.8 H3H6 | 8 H6H1 | 7.8 H6H1 | 7.7 H6 | 7.8 H6H1 | 7.8 H6H1 | 8.2 H6H1 | | Specific Conductance | 22,000 | 6,600 | 7,530 | 7,150 | NS | 10,000 | 7,610 | 6,610 | NS | 6,920 | 6,980 | 6,240 | 8,020 | | Sulfate | 450 | 360 | 304 | 402 | 395 | 375 | 395 | 372 B | 397 B | 421 | 359 | 436 | 421 | | Total Antimony | ND 0.00037 J | 0.00012 J | 0.00011 J | 0.00054 | ND | ND | | Total Arsenic | 0.015 | 0.016 | 0.0083 | 0.0107 | 0.012 | 0.0057 | 0.0104 | 0.0143 | 0.0086 | 0.0092 | 0.0143 | 0.0072 | 0.0085 | | Total Barium | 0.1 | 0.1 | 0.13 | 0.108 | 0.1 | 0.116 | 0.11 | 0.0948 | 0.0999 | 0.101 | 0.0096 | 0.0896 | 0.0958 | | Total Beryllium | ND 0.000098 J | 0.000061 J | ND | ND | ND | ND | | Total Cadmium | ND | ND | ND | ND | ND | 0.000093 | 0.00019 | 0.00053 | 0.000047 J | 0.000031 J | 0.00015 | ND | ND | | Total Calcium | 95 | 100 | 112 | 111 | 104 | 105 | 98.5 | 68.6 | 106 | 97.3 | NS | 91 | 98.7 | | Total Chromium | ND | 0.0016 J | ND | 0.00057 | 0.0016 | 0.0088 | 0.0068 | 0.0204 | 0.0015 | 0.00094 | 0.00059 | ND | 0.00094 JD | | Total Cobalt | ND | 0.0024 J | ND | 0.0026 | 0.0027 | 0.0029 | 0.0034 | 0.0039 | 0.003 | 0.003 | 0.00062 | 0.0027 | 0.0026 | | Total Copper | 0.0039 | 0.0011 | ND | 0.00082 | 0.0012 | ND | 0.0027 | 0.0071 | 0.00092 J | 0.0005 J | 0.0022 | ND | ND | | Total Dissolved Solids | 4,000 | 3,600 | 4,030 | 4,120 | 4,120 | 4,140 | 4,010 | 4,130 | 4,000 | 4,590 | 3,830 1c | 3,400 | 5,760 | | Total Iron | 0.76 | 0.08 | 1 | 1.3 | 3.1 | 11.3 | 9.89 | 24.3 | 2.34 | 1.98 | 0.423 | 1.86 | 1.5 | | Total Lead | ND | ND | 0.0019 | 0.00022 | 0.00098 | 0.0018 | 0.0062 | 0.0159 | 0.0012 | 0.0006 | 0.0027 | 0.0003 JD3 | 0.00062 | | Total Magnesium | 76 | 85 | 91.1 | 94.6 | 91.5 | 93.7 | 84.7 | 63.8 | 86.4 | 82.2 | 0.19 | 76.2 | 78 | | Total Manganese | 0.16 | 0.17 | 0.29 | 0.308 | 0.33 | NS | 0.365 | 0.364 | 0.306 | 0.317 | 0.0059 | 0.349 | 0.344 | | Total Mercury | ND | Total Nickel | 0.0036 J | 0.0063 | 0.005 | 0.0012 | 0.0019 | 0.0061 | 0.0036 | 0.0094 | 0.0015 | 0.0012 | NS | 0.00076 JD3 | 0.0014 JD3 | | Total Potassium | 54 B | 69 | 55.4 | 61.7 | 51.7 | 54.2 | 51.6 | 40.4 | 55.1 | 52.8 | 176 | 49.9 | 51.7 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|-----------|-----------|----------|-----------|----------|------------|-------------|-----------|-------------|------------|------------| | Total Selenium | 0.012 | 0.024 | ND | 0.0007 | 0.00065 | 0.00074 | ND | 0.00076 | 0.0006 | 0.00059 | 0.0018 | 0.0015 JD3 | ND | | Total Silver | ND NS | ND | 0.000012 JB | ND | ND | | Total Sodium | 1,000 | 1,200 | 1,130 | 1,390 | 1,270 | 1,270 | 1,130 | 1,160 | 1,270 | 1,210 | 212 | 996 | 885 | | Total Thallium | ND 0.000043 J | 0.000013 JB | ND | 0.0004 | NS | ND | | Total Vanadium | ND | ND | 0.0021 D3 | 0.0008 | 0.0018 | 0.0029 | 0.0059 | 0.0133 | 0.0014 | 0.0011 | 0.0592 | ND | 0.0014 JD3 | | Total Zinc | ND | 0.0042 J | ND | 0.0141 | 0.012 | 0.0266 | 0.0663 | 0.183 | 0.0146 | 0.0083 | 0.0132 B | 0.0051 JD3 | 0.0133 JD3 | | Turbidity | 0.9 | 1.8 | 81.5 | 48 | 21.7 | 41.8 | 110 | 152 | 22.7 | 11.6 | 8.6 | 20.3 | 8.7 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|------------|-----------|------------|-----------|-----------| | Location ID: | GL | -18 (-33) | | mg/L | | | | | | | | | | | Alkalinity | ND | 61 | ND | 30 | 34 | 136 | 134 | 114 M1 | 82 | ND | 60 | 100 | 84 | | Ammonia (N) | 4.3 | 3.9 | 3.4 | 3.3 | 3.3 | 3 | 3.2 | 3.1 | 3.2 | ND | 3 | 2.9 | 3.2 | | Chemical Oxygen Demand | 23 | 51 | 140 | 142 | 150 | 133 | 140 | 33.3 | 130 | 77.6 | 105 | 130 | 113 | | Chloride | 1,500 | 3,500 | 1,940 | 1,690 | 1,880 | 1,900 | 1,870 | 297 | 1,670 | 1,620 | 1,630 | 1,660 | 1,580 | | Hardness | 710 | 640 | 631 | 645 | 675 | 705 | 716 | NS | 692 | NS | NS | 598 | 477 | | Nitrate | 0.0027 J | 0.0065 J | ND | ND | 0.016 | ND | ND | 0.016 | 0.033 | ND | 0.015 | 0.014 | 0.012 | | Nitrite | ND 0.13 | 0.062 J | | Nitrogen, Nitrate-Nitrite | 0.0064 J | ND | NS | ND | ND | NS | ND | NS | ND | NS | ND | 0.15 | 0.074 J | | рН | 9.4 | 6.5 | 2.4 H6 | 6.1 H6 | 6.1 H6 | 6.1 H6H1 | 6.1 H3H6 | 6.4 H6H1 | 5.9 H6H1 | 2.4 H6 | 6.2 H6H1 | 6.2 H6H1 | 6.4 H6H1 | | Specific Conductance | 18,000 | 5,500 | 6,830 | 5,420 | NS | 12,900 | 6,240 | 5,950 | 5,500 | 6,340 | 5,430 | 4,970 | 6,400 | | Sulfate | 33 | 44 | 22.5 | 36.2 | 37.2 | 34.4 | 30.1 | 37 B | 30.2 | 14 B | 12.7 B | ND | 25 | | Total Antimony | ND 0.00011 J | ND | ND | | Total Arsenic | 0.0034 J | 0.0052 | 0.0039 | 0.0035 | 0.011 | 0.0138 | 0.0083 | 0.0094 | 0.0047 | 0.00022 J | 0.0061 | 0.0034 | 0.0043 | | Total Barium | 0.78 | 0.85 | 0.93 | 0.999 M1 | 0.86 M6 | 0.944 | 0.961 | 0.799 | 0.927 | 0.91 | 0.981 | 0.938 | 1.14 | | Total Beryllium | ND 0.000051 J | 0.0001 J | 0.000079 J | ND | ND | | Total Cadmium | ND | ND | 0.00047 | ND | ND | 0.00011 | 0.000093 | 0.000049 J | ND | 0.0031 | 0.000051 J | ND | ND | | Total Calcium | 93 | 81 | 77.7 | 84.5 M1 | 86.6 M6 | 97 | 86.3 | 80.7 | 87.5 | 123 | NS | 72 | 92.3 | | Total Chromium | ND | ND | ND | ND | 0.00055 | 0.0014 | 0.0044 | 0.0021 | 0.0014 | 0.0042 | 0.0031 | 0.001 JD3 | 0.001 JD3 | | Total Cobalt | 0.025 | 0.016 J | 0.021 | 0.0164 | 0.023 | 0.0237 | 0.0217 | 0.0251 | 0.0162 | 0.0214 | 0.0165 | 0.0163 | 0.0187 | | Total Copper | ND | 0.00038 | ND | ND | 0.0013 | ND | 0.0037 | 0.00099 J | ND | 0.0143 | 0.0014 | ND | ND | | Total Dissolved Solids | 2,100 | 3,100 | 2,790 | 2,750 | 3,090 | 3,220 | 3,330 | 2,960 | 3,150 | 2,660 | 3,060 1c | 2,540 | 3,750 | | Total Iron | 200 | 300 | 301 | 336 M1 | 352 M6 | 364 | 336 | 326 | 338 | 56.2 | 330 | 300 | 184 | | Total Lead | ND | ND | 0.00086 | ND | 0.00018 | 0.00051 | 0.0016 | 0.00075 | 0.000036 J | 0.0123 | 0.0014 | 0.00084 | 0.0005 JD | | Total Magnesium | 120 | 110 | 107 | 109 | 122 M6 | 134 | 122 | 111 | 115 | 111 | 118 | 101 | 60 | | Total Manganese | 13 | 11 | 9.7 | 11.2 M1 | 11.4 M6 | NS | 10.3 | 9.93 | 10.3 | 10.4 | 10.9 | 9.1 | 5.34 | | Total Mercury | ND | Total Nickel | 0.011 | 0.0083 | 0.0071 | 0.0044 | 0.0081 | 0.0085 | 0.0081 | 0.01 | 0.0046 | 0.012 | NS | 0.0052 | 0.0058 | | Total Potassium | 11 B | 6.9 | 6.3 | 6.4 M1 | 6.6 M6 | 7.11 | 6.38 | 6.67 | 7.05 B | 7.77 | 7.01 | 6.42 | 8.56 | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|------------|-------------|-------------|-------------|------------|------------| | Total Selenium | 0.0093 | 0.021 | ND | ND | ND | ND | ND | 0.0011 | 0.00042 J | 0.00018 J | 0.00019 J | ND | ND | | Total Silver | ND | ND | ND | 0.00053 | ND | ND | ND | ND | NS | ND | 0.000049 JB | ND | ND | | Total Sodium | 640 | 630 | 588 | 680 M1 | 664 M6 | 670 | 632 | 632 | 684 | 635 | 662 | 624 | 358 | | Total Thallium | ND 0.000016 J | 0.000009 JB | 0.000049 JB | 0.000031 J | NS | ND | | Total Vanadium | ND | ND | ND | 0.00011 | ND | ND | 0.0023 | 0.0017 | ND | ND | 0.0041 | ND | ND | | Total Zinc | 0.022 | 0.0071 | ND | 0.0071 | 0.015 | 0.0227 | 0.027 | 0.0273 | 0.006 | 0.143 | 0.0171 B | 0.0142 JD3 | 0.0153 JD3 | | Turbidity | 4.1 | 390 | 0.34 | 20.8 | 117 | 34.8 | 106 | 48.3 | 136 | 0.76 | 90 | 136 | 97.5 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|------------|-------------| | Location ID: | GL- | -20 (-36) | | mg/L | | | | | | | | | | | Alkalinity | NS 570 | 350 | 598 | | Ammonia (N) | NS 8.1 | 12 | 9.3 | | Chemical Oxygen Demand | NS 75 | 111 | 83.2 | | Chloride | NS 390 | 1,640 | 167 | | Hardness | NS 775 | 199 | | Nitrate | NS 0.024 | 0.037 | ND | | Nitrite | NS ND | ND | ND | | Nitrogen, Nitrate-Nitrite | NS 0.039 J | ND | ND | | рН | NS 8.8 H6H1 | 6.9 H6H1 | 8.8 H6H1 | | Specific Conductance | NS 2,760 | 7,080 | 3,220 | | Sulfate | NS 527 | 793 | 571 | | Total Antimony | NS 0.00068 | ND | 0.00061 JD3 | | Total Arsenic | NS 0.0043 | 0.032 | 0.0032 | | Total Barium | NS 0.0252 | 0.0558 | 0.0284 | | Total Beryllium | NS ND | ND | ND | | Total Cadmium | NS 0.000042 J | ND | ND | | Total Calcium | NS 106 | 44.9 | | Total Chromium | NS 0.0044 | 0.0011 JD3 | 0.0045 | | Total Cobalt | NS 0.0014 | 0.005 | 0.001 JD3 |
| Total Copper | NS 0.0026 | ND | 0.0026 JD38 | | Total Dissolved Solids | NS 1,750 | 6,080 | 1,670 | | Total Iron | NS 2.07 | 59.2 | 1.35 | | Total Lead | NS 0.0014 | 0.00056 | 0.001 | | Total Magnesium | NS 17.5 | 124 | 21.2 | | Total Manganese | NS 0.0583 | 2.61 | 0.0617 | | Total Mercury | NS ND | ND | ND | | Total Nickel | NS 0.0007 JD3 | 0.0015 JD3 | | Total Potassium | NS 241 M1 | 224 | 117 | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-------------|------------|------------| | Total Selenium | NS 0.00088 M1 | ND | ND | | Total Silver | NS 0.000012 JB | ND | ND | | Total Sodium | NS 350 M1 | 1,300 | 159 | | Total Thallium | NS ND | ND | ND | | Total Vanadium | NS 0.006 | ND | 0.0069 | | Total Zinc | NS 0.0239 | 0.0076 JD3 | 0.0183 JD3 | | Turbidity | NS 4.7 | 328 | 7.1 | ## APPENDIX F Greys Landfill Historical SVOC Concentrations ## Greys Landfill Historical SVOCs Shallow Monitoring Zone | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -02 (-5) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | 0.17 J1c | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS 1.5 1c | ND | 0.29 J1c | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS 0.31 J1c | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS 0.46 J1c | ND | ND | ND | ND: Non-Detect, NS: Not Sampled | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | 0.2 J | 0.19 J1c | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS 0.27 J1c | 0.3 J | 0.17 J1c | ND | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS 0.34 J1c | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | 0.87 J | ND | ND | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | NS | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | NS | NS | ND | ND | ND | 2.3 | ND | ND | 4.9 | ND | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS 0.75 J1c | 0.7 J | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | 0.21 J | ND | ND | | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GI | L-03 (-3) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | ND | NS | ND | 1,3-Dichlorobenzene | ND | ND | NS | ND | 2,4,5-Trichlorophenol | ND | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | ND | NS 26.3 1c | 2.5 1c | 2.3 1c | 1.5 | | 2,4-Dinitrophenol | ND | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | ND | NS 1.1 1c | ND | 0.22 J1c | 0.34 J | | 2-Methylphenol | ND | ND | NS 0.74 J1c | ND | 0.15 J1c | ND | | 2-Nitrophenol | ND | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | ND | NS 0.81 J1c | 0.48 J | | 3,3'-Dichlorobenzidine | ND | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | ND | NS 1.8 1c | 0.45 J1c | 0.8 J1c | 0.78 J | | Acenaphthylene | ND | ND | NS ND | ND | ND | ND | | Acetophenone | NS 0.58 J1c | ND | ND | ND | | Aniline | ND | ND | NS 4.7 1c | ND | ND | 0.48 J | | Anthracene | ND | ND | NS 0.38 J1c | ND | 0.2 J1c | 0.2 J | | Benz[a]anthracene | ND | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | ND | NS ND | ND | ND | ND | | Parameter | 0/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | ND | NS 0.44 J1c | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | ND | NS 0.47 J1c | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | ND | NS ND | ND | ND | 0.19 J | | Butyl benzyl phthalate | ND | ND | NS ND | ND | ND | ND | | Chrysene | ND | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | ND | NS 1.1 1c | ND | 0.46 J1c | 0.51 J | | Diethylphthalate | ND | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | ND | NS 1.2 1c | 0.68 J1c | 0.66 J1c | 0.58 J | | Fluorene | ND | ND | NS 1.5 1c | 0.45 J1c | 0.77 J1c | 0.87 J | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | ND | NS ND | ND | ND | ND | | Isophorone | ND | ND | NS ND | ND | ND | ND | | Naphthalene | 5.9 | ND | NS | 12.5 | 3.4 | 6.3 | 16 | 5.5 | 2.6 | 13.2 | 1.7 J | 3.6 | 4.2 | | Nitrobenzene | ND | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | ND | NS | Pentachlorophenol | ND | ND | NS 0.83 J1c | 0.7 J1c | ND | ND | | Phenanthrene | ND | ND | NS 2.6 1c | 0.59 J1c | 1.1 1c | 1.3 | | Phenol | ND | ND | NS 0.36 J1c | ND | 0.16 JB1c | 0.17 J | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | ND | NS 0.78 J1c | 0.45 J1c | 0.38 J1c | 0.38 J | | Pyridine | ND | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 |
10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -05 (-7) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | 0.22 J1c | ND | 0.17 J1c | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 08 (-3) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1,3-Dichlorobenzene | ND | 1-Methylnaphthalene | NS | NS | 45.3 N2 | NS | 2,4,5-Trichlorophenol | ND 1.1 J | ND | ND | | 2,4,6-Trichlorophenol | ND 0.27 J1c | ND | | 2,4-Dichlorophenol | ND 1 1c | ND | ND | ND | ND | | 2,4-Dimethylphenol | 89 | ND | 126 | 55.7 | 119 | 108 | 85.9 1c | 92.8 1c | 58.5 1c | 60.2 1c | 62.4 | 82.9 1c | 79.1 ED | | 2,4-Dinitrophenol | ND | 2,4-Dinitrotoluene | ND | 2,6-Dinitrotoluene | ND | 2-Chloronaphthalene | ND 2.2 1c | ND | | 2-Chlorophenol | ND | 2-Methylnaphthalene | 29 | ND | 67.1 | 23.8 | 72.2 | 125 | 125 1c | 117 1c | 63.5 1c | 28.9 1c | 34.1 | 57.3 1c | 41.3 ED | | 2-Methylphenol | 24 | ND | 44.3 | 30 | 44.8 | 43.2 | 36.4 1c | 28.5 1c | 19.4 1c | 26.4 1c | 25.2 | 30.7 1c | ND | | 2-Nitroaniline | NS | NS | ND | NS | 2-Nitrophenol | ND | 3&4-Methylphenol | 40 | ND | 101 | 59.6 | 101 | 100 | 91.6 1c | 79.4 1c | NS | NS | NS | 68.3 1c | 53.9 ED | | 3,3'-Dichlorobenzidine | ND | 3-Nitroaniline | NS | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND | 4-Bromophenyl phenylether | ND | 4-Chloro-3-methylphenol | ND | 4-Chloroaniline | NS | NS | ND | NS | 4-Chlorophenyl phenylether | ND | 4-Nitroaniline | NS | NS | ND | NS | 4-Nitrophenol | ND | Acenaphthene | ND | ND | 32.4 | ND | 16.5 | 29.9 | 31.2 1c | 27.3 1c | 18.7 1c | 5.3 1c | 11.3 | 13.5 1c | 11.4 ED | | Acenaphthylene | ND | ND | 20.9 | ND | 23.7 | 42.5 | 51.7 1c | 43.4 1c | 25.1 1c | 7.3 1c | 13.4 | 17.2 1c | 11.9 ED | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|------------|------------|------------|----------|-----------|----------| | Acetophenone | NS | NS | NS | 21 | 40.4 | 46.9 | 47.9 1c | 36 1c | 18.3 1c | 20.3 1c | 19.1 | 35.1 1c | 19.1 ED | | Aniline | ND | ND | NS | ND | ND | ND | 3.9 1c | 4 1c | 3.3 1c | ND | 2.2 J | ND | ND | | Anthracene | ND | ND | ND | ND | 7.2 | 13.8 | 11.6 1c | 12.7 1c | 7.6 1c | 3.8 1c | 4.3 | 7.2 1c | 4.7 JED | | Azobenzene | NS | NS | ND | NS | Benz[a]anthracene | ND 0.88 J1c | 0.26 J1c | ND | 0.25 J | 0.42 J1c | ND | | Benzo[a]pyrene | ND 0.51 JIS1c | ND | ND | ND | ND | ND | | Benzo[b]fluoranthene | ND 1.6 lpIS1c | 0.22 Jlp1c | 0.26 JIS1c | ND | ND | ND | | Benzo[g,h,i]perylene | ND | Benzo[k]fluoranthene | ND 1.5 lplS1c | 0.22 JIp1c | 0.26 JIS1c | ND | ND | ND | | Benzoic acid | NS | NS | ND | NS | Benzyl alcohol | NS | NS | ND | NS | bis(2-Chloro-1-methylethyl)ether | ND | bis(2-Chloroethoxy)methane | ND 1.8 JED | | bis(2-Chloroethyl)ether | ND | bis(2-Ethylhexyl)phthalate | ND 0.36 J1c | 0.37 J1c | ND | 0.44 J | ND | ND | | Butyl benzyl phthalate | ND | Carbazole | NS | NS | 139 | NS | Chrysene | ND 0.65 J1c | ND | ND | ND | 0.36 J1c | ND | | Dibenz[a,h]anthracene | ND | Dibenzofuran | 11 | ND | 35.3 | 11.4 | 35.5 | 68.6 | 78.5 1c | 65.9 1c | 37.3 1c | 9.5 1c | 19.4 | 28.2 1c | 18.3 ED | | Diethylphthalate | ND | Dimethylphthalate | ND | Di-n-butylphthalate | ND 1.1 | ND | ND | | Di-n-octylphthalate | ND | Fluoranthene | ND | ND | ND | ND | ND | 8.1 | 6.2 1c | 7.2 1c | 4 1c | 2.5 1c | 2.5 | 5.2 1c | 4.7 JED | | Fluorene | 10 | ND | 34.5 | 11.7 | 35 | 70 | 72.3 1c | 63.1 1c | 37.4 1c | 9.7 1c | 17.1 | 28.3 1c | 19.5 ED | | Hexachloro-1,3-butadiene | ND | Hexachlorobenzene | ND | Hexachlorocyclopentadiene | ND | Hexachloroethane | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|------------|------------|----------|-----------|----------|-----------|----------| | Indeno[1,2,3-cd]pyrene | ND 0.19 JIS1c | ND | ND | ND | ND | ND | | Isophorone | ND | Naphthalene | 910 | 2,100 | 1,420 | 1,050 | 10,500 | 5,960 | 5,400 H1H5 | 15,200 | 4,130 | 15,200 | 1,790 | 3,440 | 1,890 | | Nitrobenzene | ND | N-Nitrosodimethylamine | ND | N-Nitroso-di-n-propylamine | NS | NS | ND | NS | N-Nitrosodiphenylamine | NS | NS | ND | NS | Pentachloroethane | ND | ND | NS | Pentachlorophenol | ND 2.7 1c | 1.3 J1c | 1.5 J1c | 2.2 J | 1.8 J1c | ND | | Phenanthrene | 11 | ND | 34.1 | 13 | 37.2 | 84.4 | 70.9 1c | 65.8 1c | 38.9 1c | 18.7 1c | 19.2 | 33.5 1c | 22 ED | | Phenol | ND | ND | ND | ND | ND | 10.6 | 32 1c | 30.5 1c | 8.1 1c | 1.9 1c | 2.7 | 12.5 1c | 1.7 JED | | Pyrene | ND | ND | ND | ND | ND | 9.2 | 5.2 1c | 8.2 1c | 2.9 1c | 1.8 IS1c | 2 | 3.1 1c | 2.8 JED | | Pyridine | 11 | ND | NS | ND | 24.6 | 14.8 | 13.4 1c | 19.9 1c | 8.4 1c | 11.7 1c | 15.3 | 13 1c | 7.8 JED | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Location ID: | GI | L-09 (-2) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1,3-Dichlorobenzene | ND | 1-Methylnaphthalene | NS | NS | 1.7 N2 | NS | 2,4,5-Trichlorophenol | ND | 2,4,6-Trichlorophenol | ND 0.81 J1c | 0.25 J1c | | 2,4-Dichlorophenol | ND 0.34 J1c | 0.44 J1c | ND | ND | 0.26 J1c | | 2,4-Dimethylphenol | 29 | 8.7 | 16.4 | ND | 12.2 | 52.3 | 10.2 1c | 32.1 1c | 13.7 1c | 49.9 1c | 18.2 ED1c | 48.2 1c | ND | | 2,4-Dinitrophenol
| ND | 2,4-Dinitrotoluene | ND | 2,6-Dinitrotoluene | ND | 2-Chloronaphthalene | ND | 2-Chlorophenol | ND 0.35 J1c | 0.56 J1c | ND | 0.67 J1c | ND | | 2-Methylnaphthalene | ND | ND | 2.2 | ND | ND | 1.1 | 1.7 1c | 2.4 1c | 1.6 1c | 1.8 1c | ND | 0.92 J1c | 0.82 J1c | | 2-Methylphenol | 16 | 4.3 J | 10.4 | 15.9 | 6.6 | 29.1 | 7.2 1c | 19.2 1c | 10.2 1c | 27.3 1c | 8.1 JED1c | 28.8 1c | 8.5 1c | | 2-Nitroaniline | NS | NS | ND | NS | 2-Nitrophenol | ND | 3&4-Methylphenol | 170 | 70 | 24.4 | 169 | 57.8 | 309 | 61.8 1c | 219 1c | NS | NS | NS | 345 1c | 91.6 1c | | 3,3'-Dichlorobenzidine | ND | 3-Nitroaniline | NS | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND | 4-Bromophenyl phenylether | ND | 4-Chloro-3-methylphenol | ND | 4-Chloroaniline | NS | NS | ND | NS | 4-Chlorophenyl phenylether | ND | 4-Nitroaniline | NS | NS | ND | NS | 4-Nitrophenol | ND 2.1 1c | ND | ND | ND | | Acenaphthene | ND | ND | ND | ND | ND | 1.3 | 1.4 1c | 1.4 1c | 1.3 1c | 1.6 1c | ND | 0.93 J1c | 0.8 J1c | | Acenaphthylene | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acetophenone | NS | NS | NS | ND | ND | ND | ND | ND | 0.37 J1c | ND | ND | 2.7 1c | ND | | Aniline | ND | ND | NS | ND | Anthracene | ND 0.53 J1c | 0.49 J1c | 0.54 J1c | ND | 0.7 J1c | 0.37 J1c | | Azobenzene | NS | NS | ND | NS | Benz[a]anthracene | ND | Benzo[a]pyrene | ND | Benzo[b]fluoranthene | ND | Benzo[g,h,i]perylene | ND | Benzo[k]fluoranthene | ND | Benzoic acid | NS | NS | ND | NS | Benzyl alcohol | NS | NS | ND | NS | bis(2-Chloro-1-methylethyl)ether | ND | bis(2-Chloroethoxy)methane | ND | bis(2-Chloroethyl)ether | ND | bis(2-Ethylhexyl)phthalate | ND | ND | ND | ND | ND | 1 | ND | 0.39 J1c | 0.41 J1c | 2.9 IS1c | ND | 0.2 J1c | ND | | Butyl benzyl phthalate | ND | Carbazole | NS | NS | 2.6 | NS | Chrysene | ND | Dibenz[a,h]anthracene | ND | Dibenzofuran | ND | ND | ND | ND | ND | ND | 1.3 1c | 1.1 1c | 0.97 J1c | 1.1 1c | ND | 0.77 J1c | 0.41 J1c | | Diethylphthalate | ND 0.79 J1c | ND | ND | 0.45 J1c | | Dimethylphthalate | ND | Di-n-butylphthalate | ND 0.11 J1c | ND | ND | ND | 0.23 J1c | | Di-n-octylphthalate | ND | Fluoranthene | ND 0.42 J1c | 0.39 J1c | 0.3 J1c | ND | ND | ND | | Fluorene | ND | ND | 1.2 | ND | ND | 1.2 | 1.5 1c | 1.4 1c | 1.3 1c | 1.3 1c | ND | 1.1 1c | 0.65 J1c | | Hexachloro-1,3-butadiene | ND | Hexachlorobenzene | ND | Hexachlorocyclopentadiene | ND | Hexachloroethane | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|------------| | Indeno[1,2,3-cd]pyrene | ND | Isophorone | ND | Naphthalene | 26 | 6.5 | 17 | 39.4 | 39.1 | 42.6 | 33.8 | 54.9 | 22.5 | 39 | 19.1 | 23 | 16.4 | | Nitrobenzene | ND | N-Nitrosodimethylamine | ND | N-Nitroso-di-n-propylamine | NS | NS | ND | NS | N-Nitrosodiphenylamine | NS | NS | ND | NS | Pentachloroethane | ND | ND | NS | Pentachlorophenol | ND 1.2 J1c | ND | ND | ND | ND | ND | | Phenanthrene | ND | ND | 1.4 | ND | ND | 1.9 | 2.1 1c | 2.1 1c | 1.7 1c | 2 1c | ND | 1.2 1c | 0.76 J1c | | Phenol | 88 | 41 | 31.7 | 123 | 33.4 | 185 | 43.9 1c | 156 1c | 70.9 1c | 232 1c | 48.9 ED1c | 239 1c | 48.2 1c | | Pyrene | ND 0.54 J1c | 0.38 J1c | ND | ND | 0.17 J1c | ND | | Pyridine | ND | ND | NS | ND | ND | ND | ND | 0.39 J1c | 0.38 J1c | 0.84 J1c | ND | 0.55 J1c | 0.32 JL21c | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -10 (-1) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | 0.25 J | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | 0.21 J | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | 7 | ND | ND | ND | ND | ND | 1.8 J | ND | ND | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 11 (-1) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | 0.67 J1c | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS 0.31 J1c | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------
----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | 0.23 J1c | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | 0.26 J1c | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | 4.3 | ND | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 12 (-3) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | ND | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | 0.64 J1c | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | 3.8 | ND | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 13 (+1) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | ND | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | 0.67 J1c | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------
----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 14 (+1) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | 0.21 J | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | ND | ND | ND | ND | ND | 0.41 J1c | ND | ND | ND | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -15 (-6) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | 0.14 J1c | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS 0.32 J1c | ND | 0.21 J1c | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS 0.31 J1c | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS 0.13 J1c | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | ND | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS 0.24 J1c | ND | 0.28 J1c | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS 0.76 J1c | ND | ND | ND | | Phenanthrene | ND | NS 0.22 J1c | ND | ND | ND | | Phenol | ND | NS ND | ND | 0.073 J1c | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS 0.61 J1c | ND | 0.47 J1c | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | 16 (-6) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene |
ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | 0.21 J1c | ND | 0.24 J1c | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | 1.3 1c | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|-------------|-----------|------------| | Location ID: | GL | 17 (-1) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1,3-Dichlorobenzene | ND | 1-Methylnaphthalene | NS | NS | ND | NS | 2,4,5-Trichlorophenol | ND | 2,4,6-Trichlorophenol | ND 0.15 JED1c | | 2,4-Dichlorophenol | ND 0.59 J1c | ND | ND | ND | | 2,4-Dimethylphenol | ND | 280 | 360 | 350 | 173 | 179 | 156 1c2c | 290 1c | 197 1c | 268 1c | 150 ED1c2c | 204 1c | 175 ED1c | | 2,4-Dinitrophenol | ND | 2,4-Dinitrotoluene | ND | 2,6-Dinitrotoluene | ND 0.53 J1c | ND | ND | ND | | 2-Chloronaphthalene | ND 9.7 1c | 15.2 ED1c | | 2-Chlorophenol | ND | 3.9 J | ND | ND | ND | 3.9 | 2.6 1c2c | 3.3 1c | 2.8 1c | 3.1 1c | ND | 3.4 1c | 3.8 ED1c | | 2-Methylnaphthalene | ND | ND | ND | ND | ND | ND | 5.4 1c2c | ND | 2.1 J1c | 2.8 1c | ND | ND | ND | | 2-Methylphenol | 16 | 19 | 17.7 | 22.2 | 11.5 | 15.1 | 11.9 1c2c | 14.1 1c | 11.6 1c | 13.6 1c | 9.9 JED1c2c | 15.4 1c | 18.3 ED1c | | 2-Nitroaniline | NS | NS | ND | NS | 2-Nitrophenol | ND | 3&4-Methylphenol | ND | 200 | 244 | 282 | 138 | 404 | 123 1c2c | 188 1c | NS | NS | NS | 178 1c | 196 ED1c | | 3,3'-Dichlorobenzidine | ND | 3-Nitroaniline | NS | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND | 4-Bromophenyl phenylether | ND | 4-Chloro-3-methylphenol | ND | ND | ND | ND | 30.7 | ND | 4-Chloroaniline | NS | NS | ND | NS | 4-Chlorophenyl phenylether | ND | 4-Nitroaniline | NS | NS | ND | NS | 4-Nitrophenol | ND | Acenaphthene | ND | ND | ND | ND | ND | 2.3 | 2.4 1c2c | 2.4 1c | 1.7 1c | 2.8 1c | ND | 0.94 J1c | 1.1 ED1c | | Acenaphthylene | ND 0.44 J1c | 0.35 J1c | ND | ND | 0.26 J1c | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|------------|--------------|-----------|-------------|-----------|------------| | Acetophenone | NS | NS | NS | ND | ND | ND | ND | ND | 2 1c | ND | ND | 3.6 1c | ND | | Aniline | 7.3 | 11 | NS | ND | ND | 5.9 | ND | ND | 4.4 1c | 9.2 1c | 8.1 JED1c2c | 6.7 1c | 7.9 ED1c | | Anthracene | ND 0.65 J1c | 0.35 J1c | 0.54 J1c | ND | 0.43 J1c | 0.22 JED1c | | Azobenzene | NS | NS | ND | NS | Benz[a]anthracene | ND | Benzo[a]pyrene | ND 0.23 JIS1c | ND | ND | ND | ND | ND | | Benzo[b]fluoranthene | ND 0.33 JIS1c | ND | ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | Benzo[k]fluoranthene | ND 0.23 JIS1c | 0.15 JIpIS1c | ND | ND | ND | ND | | Benzoic acid | NS | NS | ND | NS | Benzyl alcohol | NS | NS | ND | NS | bis(2-Chloro-1-methylethyl)ether | ND | bis(2-Chloroethoxy)methane | ND 8.6 1c | 2.8 JED1c2c | ND | ND | | bis(2-Chloroethyl)ether | 11 | ND | bis(2-Ethylhexyl)phthalate | ND 0.21 JIS1c | 0.3 J1c | 0.38 J1c | ND | 0.18 J1c | 0.8 JEDB1c | | Butyl benzyl phthalate | ND | Carbazole | NS | NS | ND | NS | Chrysene | ND | Dibenz[a,h]anthracene | ND | Dibenzofuran | ND 0.99 J1c | 0.54 J1c | 0.9 J1c | ND | 0.23 J1c | 0.25 JED1c | | Diethylphthalate | ND 0.85 J1c | ND | 0.62 J1c | ND | | Dimethylphthalate | ND 3.7 ED1c | | Di-n-butylphthalate | ND 0.21 J1c | ND | ND | ND | ND | ND | | Di-n-octylphthalate | ND | Fluoranthene | ND | ND | ND | ND | ND | 1.1 | 1.2 1c2c | 0.64 J1c | 0.5 J1c | 0.48 J1c | ND | 0.39 J1c | 0.28 JED1c | | Fluorene | ND | ND | ND | ND | ND | 1.5 | 1.6 1c2c | 1.5 1c | 0.96 J1c | 1.6 1c | ND | 0.36 J1c | 0.33 JED1c | | Hexachloro-1,3-butadiene | ND | Hexachlorobenzene | ND | Hexachlorocyclopentadiene | ND | Hexachloroethane | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-------------|-----------|------------| | Indeno[1,2,3-cd]pyrene | ND | Isophorone | ND | Naphthalene | 31 | 34 | 32.2 | 50.5 | 55.9 | 86.9 | 78.5 | 61.2 | 58 | 64.1 | 68 | 50.8 | 41.2 | | Nitrobenzene | ND | N-Nitrosodimethylamine | ND | N-Nitroso-di-n-propylamine | NS | NS | ND | NS | N-Nitrosodiphenylamine | NS | NS | ND | NS | Pentachloroethane | ND | ND | NS | Pentachlorophenol | ND 2.3 J1c | ND | 1.4 J1c | ND | 1 J1c | 1.2 JED1c | | Phenanthrene | ND | ND | ND | ND | ND | 3.1 | 3.2 1c2c | 2.4 1c | 1.3 1c | 2.2 1c | 2.4 JED1c2c | 0.72 J1c | 0.49 JED1c | | Phenol | 59 | 93 | 119 D3 | 170 | 68.7 | 134 | 52 1c2c | 58.7 1c | 34.7 1c | 12.1 1c | 9.8 JED1c2c | 3 1c | 4.3 ED1c | | Pyrene | ND | ND | ND | ND | ND | 1.6 | 1.9 1c2c | 1 JIS1c | 0.5 J1c | 0.37 J1c | ND | 0.31 J1c | 0.4 JED1c | | Pyridine | ND | ND | NS | ND | ND | ND | ND | 1.2 1c | 0.42 J1c | 1.4 1c | ND | 1 1c | 1.1 ED1c | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Location ID: | GL | 18 (-3) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1,3-Dichlorobenzene | ND | 1-Methylnaphthalene | NS | NS | 64.3 N2 | NS | 2,4,5-Trichlorophenol | ND | 2,4,6-Trichlorophenol | ND | 2,4-Dichlorophenol | ND | 2,4-Dimethylphenol | ND | 490 | ND | 1,180 | 716 | 827 | 1,030 1c | 960 1c | 829 1c | ND | 329 | 764 1c | 537 ED | | 2,4-Dinitrophenol | ND | 2,4-Dinitrotoluene | ND | 2,6-Dinitrotoluene | ND | 2-Chloronaphthalene | ND 5.1 1c | ND | | 2-Chlorophenol | ND 1.5 JED | | 2-Methylnaphthalene | 98 | 40 | 60.3 | 53.6 | 57.9 | 97.5 | 54.7 1c | 76.1 1c | 69.9 1c | 9.2 IS1c | 33.8 ED1c | 77.2 1c | 28.5 ED | | 2-Methylphenol | 410 | 220 | 928 | 592 | 257 | 364 | 218 1c | 408 1c | 313 1c | ND | 100 ED1c | 288 1c | 240 ED | | 2-Nitroaniline | NS | NS | ND | NS | 2-Nitrophenol | ND | 3&4-Methylphenol | 740 | 500 | ND | 1,500 | 602 | 943 | 521 1c | 1,040 1c | NS | NS | NS | 662 | 629 ED | | 3,3'-Dichlorobenzidine | ND | 3-Nitroaniline | NS | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND | 4-Bromophenyl phenylether | ND | 4-Chloro-3-methylphenol | ND | 4-Chloroaniline | NS | NS | ND | NS | 4-Chlorophenyl phenylether | ND | 4-Nitroaniline | NS | NS | ND | NS | 4-Nitrophenol | ND | Acenaphthene | ND | 3.6 J | 32.1 | ND | ND | 12.4 | 9.3 1c | 6.5 1c | 11 1c | 9.9 1c | 4.6 JED1c | 7.3 1c | 9.4 JED | | Acenaphthylene | 8 | 6.1 | ND | 11.4 | ND | 16.2 | 11 1c | 10.8 1c | 15 1c | 11.3 1c | 8.1 JED1c | 11.9 1c | 10.1 ED | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|------------|----------|-----------|------------|-----------|----------| | Acetophenone | NS | NS | NS | ND | 41 | 60.7 | ND | ND | ND | ND | 15 ED1c | ND | ND | | Aniline | ND | 28 | NS | ND | ND | ND | ND | ND | 49.1 1c | ND | 19.7 JED1c | ND | ND | | Anthracene |
ND | ND | ND | ND | ND | 4.1 | 3.7 1c | 3.3 1c | 2.7 1c | 3.9 1c | ND | 3.9 1c | 3 JED | | Azobenzene | NS | NS | ND | NS | Benz[a]anthracene | ND | Benzo[a]pyrene | ND 0.22 JIS1c | ND | ND | ND | ND | ND | | Benzo[b]fluoranthene | ND 0.23 JIS1c | ND | ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | Benzo[k]fluoranthene | ND | Benzoic acid | NS | NS | ND | NS | Benzyl alcohol | NS | NS | ND | NS | bis(2-Chloro-1-methylethyl)ether | ND | bis(2-Chloroethoxy)methane | ND | bis(2-Chloroethyl)ether | ND | 43 | ND | bis(2-Ethylhexyl)phthalate | ND 1.3 IS1c | 0.34 J1c | ND | ND | ND | ND | | Butyl benzyl phthalate | ND | Carbazole | NS | NS | 165 | NS | Chrysene | ND | Dibenz[a,h]anthracene | ND | Dibenzofuran | 6.9 | ND | ND | ND | ND | 8.6 | 6 1c | 5.9 1c | 7.4 1c | 5.1 1c | 5 JED1c | 6.8 1c | 6.9 JED | | Diethylphthalate | ND | Dimethylphthalate | ND | Di-n-butylphthalate | ND | Di-n-octylphthalate | ND | Fluoranthene | ND 0.35 J1c | 0.18 J1c | ND | ND | 0.26 J1c | ND | | Fluorene | 4.6 J | ND | ND | ND | ND | 7.1 | 6 1c | 5.2 1c | 7 1c | 4.1 1c | 4.2 JED1c | ND | 6 JED | | Hexachloro-1,3-butadiene | ND | Hexachlorobenzene | ND | Hexachlorocyclopentadiene | ND | Hexachloroethane | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------| | Indeno[1,2,3-cd]pyrene | ND | Isophorone | ND | Naphthalene | 2,000 | 1,600 | 2,580 | 10,000 | 7,910 | 11,000 | 7,500 | 8,380 | 3,900 | 19,400 | 6,510 | 4,130 | 5,770 | | Nitrobenzene | ND | N-Nitrosodimethylamine | ND | N-Nitroso-di-n-propylamine | NS | NS | ND | NS | N-Nitrosodiphenylamine | NS | NS | ND | NS | Pentachloroethane | ND | ND | NS | Pentachlorophenol | ND 1.8 J1c | ND | ND | ND | ND | ND | | Phenanthrene | ND | ND | ND | ND | ND | 4.7 | 4.3 1c | 4.3 1c | 3.6 1c | 3.9 1c | 2.2 JED1c | 3.7 1c | 2.7 JED | | Phenol | 350 | 250 | ND | 651 | 235 | 404 | 234 1c | 474 1c | 362 1c | 368 1c | 87.6 ED1c | 288 1c | 292 ED | | Pyrene | ND | ND | ND | ND | ND | 1.5 IS | 1.6 IS1c | 1.7 IS1c | 0.91 J1c | ND | ND | 0.3 JIS1c | ND | | Pyridine | 40 | 52 | NS | ND | 41.3 | 113 | 30.6 1c | 46.1 1c | 38 1c | 41 1c | 20.6 ED1c | 41.2 1c | 31.8 ED | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | | GL-19 | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | ND | ND | ND | 0.34 J1c | 0.28 J1c | ND | ND | NS | ND | | 1,3-Dichlorobenzene | ND | NS | NS | ND NS | ND | | 2,4,5-Trichlorophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 2,4,6-Trichlorophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 2,4-Dichlorophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 2,4-Dimethylphenol | ND | NS | NS | NS | NS | NS | NS | 1.9 1c | 3.3 1c | 3 1c | ND | NS | ND | | 2,4-Dinitrophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 2,4-Dinitrotoluene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 2,6-Dinitrotoluene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 2-Chloronaphthalene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 2-Chlorophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 2-Methylnaphthalene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 2-Methylphenol | ND | NS | NS | NS | NS | NS | NS | ND | 0.3 J1c | ND | ND | NS | ND | | 2-Nitrophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 3&4-Methylphenol | ND | NS | NS | NS | NS | NS | NS | ND | NS | NS | NS | NS | ND | | 3,3'-Dichlorobenzidine | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 4,6-Dinitro-2-methylphenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 4-Bromophenyl phenylether | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 4-Chloro-3-methylphenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 4-Chlorophenyl phenylether | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | 4-Nitrophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Acenaphthene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Acenaphthylene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Acetophenone | NS ND | ND | 0.63 J1c | ND | NS | ND | | Aniline | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Anthracene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Benz[a]anthracene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Benzo[a]pyrene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Benzo[g,h,i]perylene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Benzo[k]fluoranthene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | bis(2-Chloroethoxy)methane | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | bis(2-Chloroethyl)ether | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | bis(2-Ethylhexyl)phthalate | ND | NS | NS | NS | NS | NS | NS | ND | 0.21 J1c | 0.3 J1c | ND | NS | ND | | Butyl benzyl phthalate | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Chrysene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Dibenz[a,h]anthracene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Dibenzofuran | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Diethylphthalate | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Dimethylphthalate | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Di-n-butylphthalate | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Di-n-octylphthalate | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Fluoranthene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Fluorene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Hexachloro-1,3-butadiene | ND | NS | NS | ND NS | ND | | Hexachlorobenzene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Hexachlorocyclopentadiene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Hexachloroethane | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Indeno[1,2,3-cd]pyrene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Isophorone | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Naphthalene | ND | NS | NS | ND | 20.4 | ND | 5.1 | 0.55 J1c | 0.64 J1c | 1.8 J | 0.45 J1c | NS | ND | | Nitrobenzene | ND | NS | NS | NS | NS | NS | NS | ND | ND | 0.47 J1c | ND | NS | ND | | N-Nitrosodimethylamine | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS | NS | NS | NS | NS | NS | 1.1 J1c | ND | 0.7 J1c | 0.67 J1c | NS | ND | | Phenanthrene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Phenol | ND | NS | NS | NS | NS | NS | NS | 2 1c | 0.58 J1c | 0.3 J1c | 0.39 J1c | NS | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Pyridine | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | NS | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GI | L-20 (-5) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND NS | NS | NS | NS | ND | ND | | 1,3-Dichlorobenzene | ND NS | NS | NS | NS | ND | ND | | 1-Methylnaphthalene | NS | NS | ND | NS | 2,4,5-Trichlorophenol | ND NS | NS | NS | NS | ND | ND | | 2,4,6-Trichlorophenol | ND NS | NS | NS | NS | ND | ND | | 2,4-Dichlorophenol | ND NS | NS | NS | NS | ND | ND | | 2,4-Dimethylphenol | ND | 100 | 39.2 | 67.6 | ND | 3.3 | 8.6 1c | NS | NS | NS | NS | 34.4 D31c | 6.1 1c | | 2,4-Dinitrophenol | ND NS | NS | NS | NS | ND | ND | | 2,4-Dinitrotoluene | ND NS | NS | NS | NS | ND | ND | | 2,6-Dinitrotoluene | ND NS | NS | NS | NS | ND | ND | | 2-Chloronaphthalene | ND NS | NS | NS | NS | ND | ND | | 2-Chlorophenol | ND NS | NS | NS | NS | 0.13 J1c | ND | | 2-Methylnaphthalene | ND | ND | ND | 1.4 | ND | ND | ND | NS | NS | NS | NS | 1.2 JD31c | 0.6 J1c | | 2-Methylphenol | 17 | 11 | 6.4 | 12.7 | ND | ND | ND | NS | NS
 NS | NS | 8.9 1c | 1.5 1c | | 2-Nitroaniline | NS | NS | ND | NS | 2-Nitrophenol | ND NS | NS | NS | NS | ND | ND | | 3&4-Methylphenol | 5.2 | 4.2 J | 2.6 | 18.1 | ND | ND | ND | NS | NS | NS | NS | 3.6 1c | 0.79 J1c | | 3,3'-Dichlorobenzidine | ND NS | NS | NS | NS | ND | ND | | 3-Nitroaniline | NS | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND NS | NS | NS | NS | ND | ND | | 4-Bromophenyl phenylether | ND NS | NS | NS | NS | ND | ND | | 4-Chloro-3-methylphenol | ND NS | NS | NS | NS | ND | ND | | 4-Chloroaniline | NS | NS | ND | NS | 4-Chlorophenyl phenylether | ND NS | NS | NS | NS | ND | ND | | 4-Nitroaniline | NS | NS | ND | NS | 4-Nitrophenol | ND NS | NS | NS | NS | ND | ND | | Acenaphthene | ND | ND | ND | 1.2 | ND | ND | ND | NS | NS | NS | NS | 0.86 J1c | 0.47 J1c | | Acenaphthylene | ND NS | NS | NS | NS | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Acetophenone | NS | NS | NS | 6.2 | ND | ND | ND | NS | NS | NS | NS | 0.73 J1c | ND | | Aniline | ND | ND | NS | 3.3 | ND | ND | ND | NS | NS | NS | NS | 0.57 J1c | ND | | Anthracene | ND NS | NS | NS | NS | 0.16 J1c | 0.14 J1c | | Azobenzene | NS | NS | ND | NS | Benz[a]anthracene | ND NS | NS | NS | NS | ND | ND | | Benzo[a]pyrene | ND NS | NS | NS | NS | ND | ND | | Benzo[b]fluoranthene | ND NS | NS | NS | NS | ND | ND | | Benzo[g,h,i]perylene | ND NS | NS | NS | NS | ND | ND | | Benzo[k]fluoranthene | ND NS | NS | NS | NS | ND | ND | | Benzoic acid | NS | NS | ND | NS | Benzyl alcohol | NS | NS | ND | NS | bis(2-Chloro-1-methylethyl)ether | ND NS | NS | NS | NS | ND | ND | | bis(2-Chloroethoxy)methane | ND NS | NS | NS | NS | ND | ND | | bis(2-Chloroethyl)ether | ND NS | NS | NS | NS | ND | ND | | bis(2-Ethylhexyl)phthalate | ND NS | NS | NS | NS | ND | 0.21 J1c | | Butyl benzyl phthalate | ND NS | NS | NS | NS | ND | ND | | Carbazole | NS | NS | ND | NS | Chrysene | ND NS | NS | NS | NS | ND | ND | | Dibenz[a,h]anthracene | ND NS | NS | NS | NS | ND | ND | | Dibenzofuran | ND NS | NS | NS | NS | 0.29 J1c | 0.25 J1c | | Diethylphthalate | ND NS | NS | NS | NS | ND | ND | | Dimethylphthalate | ND NS | NS | NS | NS | ND | ND | | Di-n-butylphthalate | ND NS | NS | NS | NS | ND | ND | | Di-n-octylphthalate | ND NS | NS | NS | NS | ND | ND | | Fluoranthene | ND NS | NS | NS | NS | 0.24 J1c | 0.23 J1c | | Fluorene | ND | ND | ND | 1.3 | ND | ND | ND | NS | NS | NS | NS | 0.92 J1c | 0.63 J1c | | Hexachloro-1,3-butadiene | ND NS | NS | NS | NS | ND | ND | | Hexachlorobenzene | ND NS | NS | NS | NS | ND | ND | | Hexachlorocyclopentadiene | ND NS | NS | NS | NS | ND | ND | | Hexachloroethane | ND NS | NS | NS | NS | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------| | Indeno[1,2,3-cd]pyrene | ND NS | NS | NS | NS | ND | ND | | Isophorone | ND NS | NS | NS | NS | ND | ND | | Naphthalene | 17 | 13 | 6.3 | 125 | 3.2 | 5.6 | 4.1 | NS | NS | NS | NS | 30.1 | 10.5 | | Nitrobenzene | ND NS | NS | NS | NS | ND | ND | | N-Nitrosodimethylamine | ND NS | NS | NS | NS | ND | ND | | N-Nitroso-di-n-propylamine | NS | NS | ND | NS | N-Nitrosodiphenylamine | NS | NS | ND | NS | Pentachloroethane | ND | ND | NS | Pentachlorophenol | ND NS | NS | NS | NS | ND | ND | | Phenanthrene | ND | ND | ND | 1.7 | ND | 1.4 | 1.1 1c | NS | NS | NS | NS | 1.2 1c | 1.1 1c | | Phenol | ND | ND | ND | ND | 1.6 | ND | ND | NS | NS | NS | NS | 0.12 J1c | 0.075 J1c | | Pyrene | ND NS | NS | NS | NS | 0.19 J1c | ND | | Pyridine | ND | ND | NS | ND | ND | ND | ND | NS | NS | NS | NS | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | TS | -01 (-7) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS | NS | NS | NS | NS | NS | 3 1c | 2.5 1c | 3 1c | ND | 2.8 1c | 1.5 1c | | 2,4-Dinitrophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 2-Chlorophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 2-Methylphenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | 0.17 J1c | ND | | 2-Nitrophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS | NS | NS | NS | NS | NS | 1.2 J1c | NS | NS | NS | 0.85 J1c | 0.51 J1c | | 3,3'-Dichlorobenzidine | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | 4-Nitrophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Acenaphthene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Acenaphthylene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Acetophenone | NS ND | ND | 0.34 J1c | ND | 0.15 J1c | ND | | Aniline | ND | NS | NS | NS | NS | NS | NS | ND | 0.25 J1c | ND | ND | ND | ND | | Anthracene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Benz[a]anthracene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS | NS | NS | NS | NS | NS | 0.28 J1c | 0.42 J1c | ND | ND | ND | ND | | Butyl benzyl phthalate | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Chrysene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Dibenzofuran | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Diethylphthalate | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Dimethylphthalate | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Fluoranthene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Fluorene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Hexachloroethane | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Isophorone | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Naphthalene | ND | NS | NS | 6.1 | 11 | ND | 5.3 | 1.3 J | 1.8 J | 0.67 J1c | 3.8 | 0.89 J | 1.4 J | | Nitrobenzene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Phenanthrene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Phenol | ND | NS | NS | NS | NS | NS | NS | 0.89 J1c | ND | ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 |
11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | | Pyridine | ND | NS | NS | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | ## EnviroAnalytics Group ## Greys Landfill Historical SVOCs ## Intermediate Monitoring Zone | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | ·02 (-29) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | ND: Non-Detect, NS: Not Sampled | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------| | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | 0.3 J1c | ND | 0.56 JB1c | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS 0.2 J1c | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND 0.39 J1c | ND | ND | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | ND | | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -03 (-16) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | ND | NS | ND | 1,3-Dichlorobenzene | ND | ND | NS | ND | 2,4,5-Trichlorophenol | ND | ND | NS | NS | NS | NS | ND | 2,4,6-Trichlorophenol | ND | ND | NS | NS | NS | NS | ND | 2,4-Dichlorophenol | ND | ND | NS | NS | NS | NS | ND | 2,4-Dimethylphenol | ND | ND | NS | NS | NS | NS | ND | 2 1c | 0.73 J1c | 0.97 J1c | 0.45 J1c | 2.9 1c | 0.22 J | | 2,4-Dinitrophenol | ND | ND | NS | NS | NS | NS | ND | ND | ND | ND | 0.72 J1c | ND | ND | | 2,4-Dinitrotoluene | ND | ND | NS | NS | NS | NS | ND | 2,6-Dinitrotoluene | ND | ND | NS | NS | NS | NS | ND | 2-Chloronaphthalene | ND | ND | NS | NS | NS | NS | ND | ND | ND | ND | ND | ND | 9 | | 2-Chlorophenol | ND | ND | NS | NS | NS | NS | ND | 2-Methylnaphthalene | ND | ND | NS | NS | NS | NS | ND | 2-Methylphenol | ND | ND | NS | NS | NS | NS | ND | 0.37 J1c | ND | ND | ND | 0.7 J1c | ND | | 2-Nitrophenol | ND | ND | NS | NS | NS | NS | ND | 3&4-Methylphenol | ND | ND | NS | NS | NS | NS | ND | 0.93 J1c | NS | NS | NS | 2.5 1c | ND | | 3,3'-Dichlorobenzidine | ND | ND | NS | NS | NS | NS | ND | 4,6-Dinitro-2-methylphenol | ND | ND | NS | NS | NS | NS | ND | 4-Bromophenyl phenylether | ND | ND | NS | NS | NS | NS | ND | 4-Chloro-3-methylphenol | ND | ND | NS | NS | NS | NS | ND | 4-Chlorophenyl phenylether | ND | ND | NS | NS | NS | NS | ND | 4-Nitrophenol | ND | ND | NS | NS | NS | NS | ND | Acenaphthene | ND | ND | NS | NS | NS | NS | 1.7 1c | 1.9 1c | 1.5 1c | 1.1 1c | 0.94 J1c | 1.7 1c | 0.81 J | | Acenaphthylene | ND | ND | NS | NS | NS | NS | ND | 0.42 J1c | 0.36 J1c | 0.31 J1c | 0.38 J1c | 0.75 J1c | 0.21 J | | Acetophenone | NS | NS | NS | NS | NS | NS | ND | ND | 0.29 J1c | 0.53 J1c | 0.31 J1c | 1.3 1c | 0.21 J | | Aniline | ND | ND | NS | NS | NS | NS | ND | Anthracene | ND | ND | NS | NS | NS | NS | ND | 0.82 J1c | 0.56 J1c | 0.43 J1c | 0.63 J1c | 1 1c | 0.35 J | | Benz[a]anthracene | ND | ND | NS | NS | NS | NS | ND | Benzo[a]pyrene | ND | ND | NS | NS | NS | NS | ND | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|------------|-----------|----------| | Benzo[b]fluoranthene | ND | ND | NS | NS | NS | NS | ND | Benzo[g,h,i]perylene | ND | ND | NS | NS | NS | NS | ND | Benzo[k]fluoranthene | ND | ND | NS | NS | NS | NS | ND | bis(2-Chloro-1-methylethyl)ether | ND | ND | NS | NS | NS | NS | ND | bis(2-Chloroethoxy)methane | ND | ND | NS | NS | NS | NS | ND | bis(2-Chloroethyl)ether | ND | ND | NS | NS | NS | NS | ND | bis(2-Ethylhexyl)phthalate | ND | ND | NS | NS | NS | NS | ND | 0.3 J1c | 0.2 J1c | 0.38 J1c | ND | ND | 0.26 J | | Butyl benzyl phthalate | ND | ND | NS | NS | NS | NS | ND | Chrysene | ND | ND | NS | NS | NS | NS | ND | Dibenz[a,h]anthracene | ND | ND | NS | NS | NS | NS | ND | Dibenzofuran | ND | ND | NS | NS | NS | NS | 2.7 1c | 2.9 1c | 2.2 1c | 1.5 1c | 1.4 1c | 2 1c | 1.3 | | Diethylphthalate | ND | ND | NS | NS | NS | NS | ND | 0.31 J1c | ND | ND | ND | ND | ND | | Dimethylphthalate | ND | ND | NS | NS | NS | NS | ND | Di-n-butylphthalate | ND | ND | NS | NS | NS | NS | ND | ND | 0.12 J1c | 0.15 J1c | ND | ND | 0.24 J | | Di-n-octylphthalate | ND | ND | NS | NS | NS | NS | ND | ND | ND | ND | 0.22 JIS1c | ND | ND | | Fluoranthene | ND | ND | NS | NS | NS | NS | ND | 1.1 1c | 0.71 J1c | 1 1c | 0.52 J1c | ND | 0.53 J | | Fluorene | ND | ND | NS | NS | NS | NS | 1.6 1c | 1.4 1c | 1.6 1c | 0.51 J1c | 0.76 J1c | 1.5 1c | 0.89 J | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | ND | NS | NS | NS | NS | ND | Hexachlorocyclopentadiene | ND | ND | NS | NS | NS | NS | ND | Hexachloroethane | ND | ND | NS | NS | NS | NS | ND | Indeno[1,2,3-cd]pyrene | ND | ND | NS | NS | NS | NS | ND | Isophorone | ND | ND | NS | NS | NS | NS | ND | Naphthalene | ND | ND | NS | ND | 6 | 9.3 | 8.1 | 2.3 1c | 19.9 | 2.9 | 1.5 J | 1.2 J | 0.19 J | | Nitrobenzene | ND | ND | NS | NS | NS | NS | ND | N-Nitrosodimethylamine | ND | ND | NS | NS | NS | NS | ND | Pentachloroethane | ND | ND | NS | Pentachlorophenol | ND | ND | NS | NS | NS | NS | ND | Phenanthrene | ND | ND | NS | NS | NS | NS | ND | 0.24 J1c | ND | ND | ND | ND | ND | | Phenol | ND | ND | NS | NS | NS | NS | ND | 0.66 J1c | 0.25 J1c | ND | ND | 1 1c | 0.17 J | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | ND | NS | NS | NS | NS | ND | 0.92 J1c | 0.58 J1c | 0.7 J1c | 0.33 J1c | 0.22 J1c | 0.38 J | | Pyridine | ND | ND | NS | NS | NS | NS | ND | 0.41 J1c | 0.35 J1c | ND | ND | 0.46 J1c | 0.14 J | | Parameter | 6/1/2010 |
3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -05 (-25) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | 0.93 J1c | 1.2 1c | 0.93 J1c | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | 0.18 J1c | 0.15 J1c | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS 0.76 J1c | 0.41 J1c | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS 0.31 J1c | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Benrolgiftuoranthene NO | 5/1/2018 | 11/1/2017 | 5/1/2017 | 11/1/2016 | 5/1/2016 | 11/1/2015 | 5/1/2015 | 12/1/2014 | 4/1/2014 | 10/1/2013 | 3/1/2013 | 3/1/2011 | 6/1/2010 | Parameter | |--|-----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|----------|----------|----------------------------------| | Benzolkjillooranthene | ND | ND | ND | ND | NS ND | Benzo[b]fluoranthene | | bis(2-Chioro-1-methylethyljether) ND NS NS NS NS NS NS ND | ND | ND | ND | ND | NS ND | Benzo[g,h,i]perylene | | bis[2-Chloroethoxymethane ND NS NS NS NS NS NS ND | ND | ND | ND | ND | NS ND | Benzo[k]fluoranthene | | bis(2-Chloroethyl)ether ND NS NS NS NS NS ND | ND | ND | ND | ND | NS ND | bis(2-Chloro-1-methylethyl)ether | | bis(2-Ethylhexyl)phthalate ND NS NS NS NS NS NS NS ND ND ND ND Butyl benzyl phthalate ND NS NS NS NS NS NS NS ND ND ND ND Chrysene ND NS NS NS NS NS NS NS ND | ND | ND | ND | ND | NS ND | bis(2-Chloroethoxy)methane | | Butyl benzyl phthalate ND NS NS NS NS NS NS ND ND< | ND | ND | ND | ND | NS ND | bis(2-Chloroethyl)ether | | Chrysene ND NS NS NS NS NS NS NS ND < | 0.26 J1c | ND | ND | ND | NS ND | bis(2-Ethylhexyl)phthalate | | Diben/a,hanthracene ND NS NS NS NS NS NS ND ND ND ND Dibenzofuran ND NS NS NS NS NS NS NS NS NS ND < | ND | ND | ND | ND | NS ND | Butyl benzyl phthalate | | Dibenzofuran ND NS NS NS NS NS NS ND | ND | ND | ND | ND | NS ND | Chrysene | | Diethylphthalate ND NS NS NS NS NS NS NS ND | ND | ND | ND | ND | NS ND | Dibenz[a,h]anthracene | | Dimethylphthalate ND | ND | ND | ND | ND | NS ND | Dibenzofuran | | Di-n-butylphthalate | ND | ND | ND | 0.33 J1c | NS ND | Diethylphthalate | | Di-n-octylphthalate ND NS NS NS NS NS NS ND <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>ND</td> <td>Dimethylphthalate</td> | ND | ND | ND | ND | NS ND | Dimethylphthalate | | Fluoranthene ND | ND | ND | ND | ND | NS ND | Di-n-butylphthalate | | Fluorene ND NS NS NS NS NS NS NS | ND | ND | ND | ND | NS ND | Di-n-octylphthalate | | Hexachloro-1,3-butadieneNDNDNDNDNDNDNDNDNDNDNDHexachlorobenzeneNDNSNSNSNSNSNSNSNSNDNDNDNDHexachlorocyclopentadieneNDNSNSNSNSNSNSNSNSNDNDNDHexachlorocyclopentadieneNDNSNSNSNSNSNSNSNSNDNDNDHexachlorocyclopentadieneNDNSNSNSNSNSNSNSNSNDNDNDHexachlorocyclopentadieneNDNSNSNSNSNSNSNSNSNDNDNDHexachlorocyclopentadieneNDNSNSNSNSNSNSNSNSNDNDNDIndeno[1,2,3-cd]pyreneNDNSNSNSNSNSNSNSNSNSNSNDNDNDIsophoroneNDNSNSNSNSNSNSNSNSNSNSNDNDNDNitrobenzeneNDNSNSNSNSNSNSNSNSNSNSNSNSNSNDNDNDNetrobenzeneNDNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNS | ND | ND | ND | ND | NS ND | Fluoranthene | | Hexachlorobenzene ND NS ND | ND | ND | ND | ND | NS ND | Fluorene | | HexachlorocyclopentadieneNDNSNSNSNSNSNSNSNDNDNDHexachlorocethaneNDNSNSNSNSNSNSNSNSNDNDNDNDIndeno[1,2,3-cd]pyreneNDNSNSNSNSNSNSNSNSNDNDNDIsophoroneNDNSNSNSNSNSNSNSNSNDNDNDNaphthaleneNDNSNSNSNSNSNSNSNSNDNDNDNitrobenzeneNDNSNSNSNSNSNSNSNSNDNDNDN-NitrosodimethylamineNDNSNSNSNSNSNSNSNSNSNSPentachloroethaneNDNSNSNSNSNSNSNSNSNS | ND NS | ND | ND | Hexachloro-1,3-butadiene | | Hexachloroethane ND NS ND | ND | ND | ND | ND | NS ND | Hexachlorobenzene | | Indeno[1,2,3-cd]pyreneNDNSNSNSNSNSNSNSNDNDNDIsophoroneNDNSNSNSNSNSNSNSNDNDNaphthaleneNDNSNSNDNDNDNDNDNDNDNDNDNDNDNDNitrobenzeneNDNSNSNSNSNSNSNSNSNSNSNDNDNDNDN-NitrosodimethylamineNDNSNSNSNSNSNSNSNSNSNSNSNSPentachloroethaneNDNSNSNSNSNSNSNSNSNSNS | ND | ND | ND | ND | NS ND | Hexachlorocyclopentadiene | | IsophoroneNDNSNSNSNSNSNSNSNDNDNaphthaleneNDNSNSNDNDNDNDNDNDNDNDNDNDNDNitrobenzeneNDNSNSNSNSNSNSNSNSNSNSNDNDNDNDN-NitrosodimethylamineNDNSNSNSNSNSNSNSNSNSNSNSNSNSPentachloroethaneNDNSNSNSNSNSNSNSNSNSNS | ND | ND | ND | ND | NS ND | Hexachloroethane | | Naphthalene ND NS NS NS ND | ND | ND | ND | ND | NS ND | Indeno[1,2,3-cd]pyrene | | Nitrobenzene ND NS ND | ND | ND | ND | ND | NS ND | Isophorone | | N-Nitrosodimethylamine ND NS NS NS NS NS NS NS NS NS ND ND ND ND ND Pentachloroethane ND NS | ND NS | NS | ND | Naphthalene | | Pentachloroethane ND NS | ND | ND | ND | ND | NS ND | Nitrobenzene | | | ND | ND | ND | ND | NS ND | N-Nitrosodimethylamine | | Pentachlorophenol ND NS NS NS NS NS NS NS ND ND ND | NS ND | Pentachloroethane | | | ND | ND | ND | ND | NS ND | Pentachlorophenol | | Phenanthrene ND NS NS NS NS NS NS NS ND ND ND | ND | ND | ND | ND | NS ND | Phenanthrene | | Phenol ND NS NS NS NS NS NS NS ND ND 0.1 J1c | 0.067 J1c | 0.1 J1c | ND | ND | NS ND | Phenol | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -08 (-36) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | ND | NS | ND | 1,3-Dichlorobenzene | ND | ND | NS | ND | 2,4,5-Trichlorophenol | ND | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | ND | NS ND | ND | 0.42 J | 0.32 J | | 2,4-Dinitrophenol | ND | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | ND | NS ND | ND | 0.19 J | ND | | 2-Nitrophenol | ND | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | ND | NS 0.74 J | 0.53 J | | 3,3'-Dichlorobenzidine | ND | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | ND | NS ND | ND | 0.13 J | 0.19 J | | Acenaphthene | ND | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | ND | NS ND | ND | ND | ND | | Acetophenone | NS 0.3 J1c | ND | ND | ND | | Aniline | ND | ND | NS ND | ND | ND | ND | | Anthracene | ND | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | ND | NS ND | ND | ND | ND | | Parameter
| 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | ND | NS ND | ND | ND | 0.29 J | | Butyl benzyl phthalate | ND | ND | NS ND | ND | ND | ND | | Chrysene | ND | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | ND | NS 0.73 J1c | ND | ND | ND | | Dimethylphthalate | ND | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | ND | NS ND | ND | ND | ND | | Fluorene | ND | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | ND | NS ND | ND | ND | ND | | Isophorone | ND | ND | NS ND | ND | ND | ND | | Naphthalene | ND | ND | NS | ND | ND | ND | 68.9 | ND | 88.9 | ND | 0.55 J1c | ND | 0.22 J | | Nitrobenzene | ND | ND | NS 1.3 1c | ND | ND | ND | | N-Nitrosodimethylamine | ND | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | ND | NS | Pentachlorophenol | ND | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | ND | NS ND | ND | ND | ND | | Phenol | ND | ND | NS ND | ND | 0.19 J | 0.15 J | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | ND | NS ND | ND | ND | ND | | Pyridine | ND | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -09 (-20) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | ND | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | ND | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | 0.33 J1c | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS 0.25 JB1c | ND | ND | 0.21 J1c | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | 0.52 J1c | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | 54.2 | 42.9 | NS | ND | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | 0.1 JB1c | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -10 (-31) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | 0.18 J | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS 0.2 J | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 |
--|----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Distance | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | No | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis (2-Chroroethyl)ether ND NS NS NS NS NS NS NS NS ND N | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | Description | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | Service Serv | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | Chrysene | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | ND | | Dibenzian And No No No No No No No N | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Disease Dise | Chrysene | ND | NS ND | ND | ND | ND | | Description No. No | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Directylphthalate | Dibenzofuran | ND | NS ND | ND | ND | ND | | No | Diethylphthalate | ND | NS ND | ND | ND | ND | | No | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Fluorene ND | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene ND N | Fluoranthene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene ND NS NS NS NS NS NS NS ND | Fluorene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene ND NS NS NS NS NS NS NS ND | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachloroethane ND NS NS NS NS NS NS NS ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Isophorone ND NS NS NS NS NS NS NS NS NS ND | Hexachloroethane | ND | NS ND | ND | ND | ND | | Naphthalene ND NS NS 6 9.8 4.7 ND | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Nitrobenzene ND NS NS NS NS NS NS NS ND | Isophorone | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine ND NS NS NS NS NS NS NS NS NS ND | Naphthalene | ND | NS | NS | 6 | 9.8 | 4.7 | ND | Pentachloroethane ND NS | Nitrobenzene | ND | NS ND | ND | ND | ND | | PentachlorophenolNDNSNSNSNSNSNSNSNDNDNDNDNDPhenanthreneNDNSNSNSNSNSNSNSNSNDNDNDNDND | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Phenanthrene ND NS NS NS NS NS NS NS ND ND ND ND ND | Pentachloroethane | ND | NS | | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenol ND NS NS NS NS NS NS NS ND ND 0.065 J ND | Phenanthrene | ND | NS ND | ND | ND | ND | | | Phenol | ND | NS ND | ND | 0.065 J | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -11 (-33) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | 0.23 J1c | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | 0.22 J1c | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | 5 | ND | ND | ND | ND | 0.69 J1c | ND | ND | ND | | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS 0.23 J1c | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -12 (-17) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND |
ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | ND | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate | ND | NS ND | 0.64 J1c | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | ND | ND | | Naphthalene | ND | NS | NS | ND | 4.1 | ND | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -13 (-26) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS 3.5 1c | 1.7 1c | 4.1 1c | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS 0.34 J1c | ND | 0.55 J1c | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS 3.2 1c | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS ND | ND | ND | ND | | Aniline | ND | NS 0.34 J1c | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Butyl benzyl phthalate ND NS NS NS NS NS ND ND< | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |--|----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Permock Finder | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | District | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Display Disp | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | No. | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | Second Comment Seco | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | No | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | Chrysene ND NS NS NS NS NS NS ND < | bis(2-Ethylhexyl)phthalate | ND | NS 0.32 JB1c | 0.25 J1c | ND | ND | | Dieckesta, hanthracene ND | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Diberacturan ND | Chrysene | ND | NS ND | ND | ND | ND | | Diethylphthalate ND | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dimethylphthalate ND NS NS NS NS NS NS NS ND | Dibenzofuran | ND | NS ND | ND | ND | ND | | Display | Diethylphthalate | ND | NS ND | ND | ND | ND | | Din-octylephthalate ND | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene ND | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Fluorene ND NS NS NS NS NS NS NS | Di-n-octylphthalate | ND | NS ND | 0.65 J1c | ND | ND | | Hexachloro-1,3-butadiene ND N | Fluoranthene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene ND NS NS NS NS NS NS ND | Fluorene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene ND NS NS NS NS NS NS ND | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachloroethane ND NS NS NS NS NS NS NS ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene ND NS NS NS NS NS NS NS ND ND< | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | IsophoroneNDNSNSNSNSNSNSNSND <t< td=""><td>Hexachloroethane</td><td>ND</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<> | Hexachloroethane | ND | NS ND | ND | ND | ND | | Naphthalene ND NS | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Nitrobenzene ND NS NS NS NS NS NS NS ND | Isophorone | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine ND NS ND | Naphthalene | ND | NS | NS | ND | 2.9 | ND | ND | ND | ND | ND | ND | 0.63 J | ND | | Pentachloroethane ND NS | Nitrobenzene | ND
| NS ND | ND | ND | ND | | PentachlorophenolNDNSNSNSNSNSNSNSNDNDNDNDNDPhenanthreneNDNSNSNSNSNSNSNSNSNDNDNDNDND | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Phenanthrene ND NS NS NS NS NS NS NS NS ND ND ND ND ND | Pentachloroethane | ND | NS | | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenol ND NS 0.19 J1c ND 0.27 J1c ND | Phenanthrene | ND | NS ND | ND | ND | ND | | | Phenol | ND | NS 0.19 J1c | ND | 0.27 J1c | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -14 (-33) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS | NS | NS | NS | NS | ND | 2,4,6-Trichlorophenol | ND | NS | NS | NS | NS | NS | ND | 2,4-Dichlorophenol | ND | NS | NS | NS | NS | NS | ND | 2,4-Dimethylphenol | ND | NS | NS | NS | NS | NS | ND | 2.6 1c | 0.69 J1c | ND | 0.5 J1c | 0.21 J | ND | | 2,4-Dinitrophenol | ND | NS | NS | NS | NS | NS | ND | 2,4-Dinitrotoluene | ND | NS | NS | NS | NS | NS | ND | 2,6-Dinitrotoluene | ND | NS | NS | NS | NS | NS | ND | 2-Chloronaphthalene | ND | NS | NS | NS | NS | NS | ND | 2-Chlorophenol | ND | NS | NS | NS | NS | NS | ND | 2-Methylnaphthalene | ND | NS | NS | NS | NS | NS | ND | 2-Methylphenol | ND | NS | NS | NS | NS | NS | ND | 1.1 1c | ND | ND | ND | ND | ND | | 2-Nitrophenol | ND | NS | NS | NS | NS | NS | ND | 3&4-Methylphenol | ND | NS | NS | NS | NS | NS | ND | 5 1c | NS | NS | NS | 0.2 J | ND | | 3,3'-Dichlorobenzidine | ND | NS | NS | NS | NS | NS | ND | 4,6-Dinitro-2-methylphenol | ND | NS | NS | NS | NS | NS | ND | 4-Bromophenyl phenylether | ND | NS | NS | NS | NS | NS | ND | 4-Chloro-3-methylphenol | ND | NS | NS | NS | NS | NS | ND | 4-Chlorophenyl phenylether | ND | NS | NS | NS | NS | NS | ND | 4-Nitrophenol | ND | NS | NS | NS | NS | NS | ND | Acenaphthene | ND | NS | NS | NS | NS | NS | ND | Acenaphthylene | ND | NS | NS | NS | NS | NS | ND | Acetophenone | NS | NS | NS | NS | NS | NS | ND | 0.48 J1c | ND | ND | ND | ND | ND | | Aniline | ND | NS | NS | NS | NS | NS | ND | 0.48 J1c | ND | ND | ND | ND | ND | | Anthracene | ND | NS | NS | NS | NS | NS | ND | Benz[a]anthracene | ND | NS | NS | NS | NS | NS | ND | Benzo[a]pyrene | ND | NS | NS | NS | NS | NS | ND | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS | NS | NS | NS | NS | ND | Benzo[g,h,i]perylene | ND | NS | NS | NS | NS | NS | ND | Benzo[k]fluoranthene | ND | NS | NS | NS | NS | NS | ND | bis(2-Chloro-1-methylethyl)ether | ND | NS | NS | NS | NS | NS | ND | bis(2-Chloroethoxy)methane | ND | NS | NS | NS | NS | NS | ND | bis(2-Chloroethyl)ether | ND | NS | NS | NS | NS | NS | ND | bis(2-Ethylhexyl)phthalate | ND | NS | NS | NS | NS | NS | ND | ND | ND | ND | 0.4 J1c | ND | 0.23 J | | Butyl benzyl phthalate | ND | NS | NS | NS | NS | NS | ND | Chrysene | ND | NS | NS | NS | NS | NS | ND | Dibenz[a,h]anthracene | ND | NS | NS | NS | NS | NS | ND | Dibenzofuran | ND | NS | NS | NS | NS | NS | ND | Diethylphthalate | ND | NS | NS | NS | NS | NS | ND | Dimethylphthalate | ND | NS | NS | NS | NS | NS | ND | Di-n-butylphthalate | ND | NS | NS | NS | NS | NS | ND | Di-n-octylphthalate | ND | NS | NS | NS | NS | NS | ND | ND | ND | ND | 0.77 J1c | ND | ND | | Fluoranthene | ND | NS | NS | NS | NS | NS | ND | Fluorene | ND | NS | NS | NS | NS | NS | ND | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS | NS | NS | NS | NS | ND | Hexachlorocyclopentadiene | ND | NS | NS | NS | NS | NS | ND | Hexachloroethane | ND | NS | NS | NS | NS | NS | ND | Indeno[1,2,3-cd]pyrene | ND | NS | NS | NS | NS | NS | ND | Isophorone | ND | NS | NS | NS | NS | NS | ND | Naphthalene | ND | NS | NS | ND | ND | ND | ND | 2.9 1c | ND | ND | ND | ND | ND | | Nitrobenzene | ND | NS | NS | NS | NS | NS | ND | N-Nitrosodimethylamine | ND | NS | NS | NS | NS | NS | ND | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS | NS | NS | NS | NS | ND | Phenanthrene | ND | NS | NS | NS | NS | NS | ND | Phenol | ND | NS | NS | NS | NS | NS | ND | 2.8 1c | 0.29 J1c | ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS | NS | NS | NS | NS | ND | Pyridine | ND | NS | NS | NS | NS | NS | 2.1 1c | 32.6 1c | 1.4 1c | ND | 0.39 J1c | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL | -15 (-36) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS ND | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | ND | ND | | Acetophenone | NS 0.33 J1c | ND | ND | ND | | Aniline | ND | NS ND | ND | ND | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | | | | | | | | | | | | | | | | Benrolgh,i)perylene | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |--|----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | BernzolAjthoranthene ND | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | bisQ2-Chloro-1-methylethylpither ND NS NS NS NS NS ND ND ND ND
bisQ2-Chloroethoy/methane ND NS NS NS NS NS NS NS NS ND | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | bit 2-Chloroethoxylmethane NO | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | big2-Chloroethylether No | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | Display Disp | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | Butty betayl phthalate ND | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | Chrysene ND NS NS NS NS NS NS ND < | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | 0.23 J1c | | Dibetryla, hjanthracene ND | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Diberactor Dib | Chrysene | ND | NS ND | ND | ND | ND | | Diethylphthalate ND NS ND | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dimethylphthalate ND NS NS NS NS NS NS NS ND | Dibenzofuran | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate ND NS <td>Diethylphthalate</td> <td>ND</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> | Diethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-octylphthalate ND NS NS NS NS NS NS ND <td>Dimethylphthalate</td> <td>ND</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene ND | Di-n-butylphthalate | ND | NS ND | ND | ND | ND | | Fluorene ND | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene ND N | Fluoranthene | ND | NS ND | ND | ND | ND | | Hexachlorobenzene ND NS NS NS NS NS NS NS ND | Fluorene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene ND NS NS NS NS NS NS ND ND ND ND Hexachlorocyclopentadiene ND NS NS NS NS NS NS NS NS ND <t< td=""><td>Hexachloro-1,3-butadiene</td><td>ND</td><td>ND</td><td>NS</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<> | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachloroethane ND NS ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene ND NS NS NS NS NS NS NS ND ND< | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Isophorone ND NS ND | Hexachloroethane | ND | NS ND | ND | ND | ND | | Naphthalene ND NS | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Nitrobenzene ND NS ND | Isophorone | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine ND NS NS NS NS NS NS NS NS NS ND | Naphthalene | ND | NS | NS | ND | Pentachloroethane ND NS | Nitrobenzene | ND | NS ND | ND | ND | ND | | PentachlorophenolNDNSNSNSNSNSNSNSNDNDNDNDNDPhenanthreneNDNSNSNSNSNSNSNSNSNDNDNDNDND | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Phenanthrene ND NS NS NS NS NS NS NS NS ND ND ND ND ND | Pentachloroethane | ND | NS | | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phonel 6.2 NS | Phenanthrene | ND | NS ND | ND | ND | ND | | FileHol 0.2 No | Phenol | 6.2 | NS 0.3 J1c | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -16 (-32) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | NS | NS | ND | 1,3-Dichlorobenzene | ND | NS | NS | ND | 2,4,5-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | NS ND | ND | ND | ND | | 2-Nitrophenol | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | NS 0.68 J1c | ND | | 3,3'-Dichlorobenzidine | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | NS ND | ND | 0.22 J1c | ND | | Acetophenone | NS 0.63 J1c | ND | 0.4 J1c | ND | | Aniline | ND | NS 4 1c | ND | 4.5 1c | ND | | Anthracene | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | NS ND | ND | ND | ND | | Butyl benzyl phthalate | ND | NS ND | ND | ND | ND | | Chrysene | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | NS ND | ND | ND | ND | | Dimethylphthalate | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | NS ND | 0.37 J | ND | ND | | Di-n-octylphthalate | ND | NS ND | ND | ND | ND | | Fluoranthene | ND | NS ND | ND | ND | ND | | Fluorene | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | NS ND | ND | ND | ND | | Isophorone | ND | NS ND | ND | 0.2 J1c | ND | | Naphthalene | ND | NS | NS | ND | Nitrobenzene | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | NS | Pentachlorophenol | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | NS ND | ND | ND | ND | | Phenol | ND | NS 4.9 1c | ND | 4.6 1c | 1.3 1c | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | NS ND | ND | ND | ND | | Pyridine | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -17 (-31) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | 1,3-Dichlorobenzene | ND | 1-Methylnaphthalene | NS | NS | ND | NS | 2,4,5-Trichlorophenol | ND NS | ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND NS | ND | ND | ND | ND | | 2,4-Dichlorophenol | ND NS | ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | 11 | 3 | 1.6 | 1.3 | 1.1 | 2.1 1c | 1.1 1c | NS | 1.8 1c | 9.8 | 0.83 J1c | 1.9 1c | | 2,4-Dinitrophenol | ND NS | ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND NS | ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND NS | ND | ND | ND | ND | | 2-Chloronaphthalene | ND NS | ND | ND | ND | ND | | 2-Chlorophenol | ND NS | ND | ND | ND | ND | | 2-Methylnaphthalene | ND | ND | ND | ND | ND | ND | 5 1c | ND | NS | ND | ND | ND | ND | | 2-Methylphenol | ND | ND | ND | ND | ND | ND | 1.2 1c | 0.89 J1c | NS | ND | ND | ND | ND | | 2-Nitroaniline | NS | NS | ND | NS | 2-Nitrophenol | ND NS | ND | ND | ND | ND | | 3&4-Methylphenol | ND | 3.6 J | ND | ND | ND | ND | ND | 0.89 J1c | NS | NS | NS | 0.6 J1c | ND | | 3,3'-Dichlorobenzidine | ND NS | ND | ND | ND | ND | | 3-Nitroaniline | NS | NS | ND | NS | 4,6-Dinitro-2-methylphenol | ND NS | ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND NS | ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND NS | ND | ND | ND | ND | | 4-Chloroaniline | NS | NS | ND | NS | 4-Chlorophenyl phenylether | ND NS | ND | ND | ND | ND | | 4-Nitroaniline | NS | NS | ND | NS | 4-Nitrophenol | ND NS | ND | ND | ND | ND | | Acenaphthene | ND NS | ND | ND | ND | ND | | Acenaphthylene | ND NS | ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------| | Acetophenone | NS | NS | NS | ND | ND | ND | 8.7 1c | ND | NS | 0.38 J1c | ND | ND | ND | | Aniline | ND | ND | NS | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Anthracene | ND NS | ND | ND | ND | ND | | Azobenzene
| NS | NS | ND | NS | Benz[a]anthracene | ND NS | ND | ND | ND | ND | | Benzo[a]pyrene | ND NS | ND | ND | ND | ND | | Benzo[b]fluoranthene | ND NS | ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND NS | ND | ND | ND | ND | | Benzo[k]fluoranthene | ND NS | ND | ND | ND | ND | | Benzoic acid | NS | NS | ND | NS | Benzyl alcohol | NS | NS | ND | NS | bis(2-Chloro-1-methylethyl)ether | ND NS | ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND NS | ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND NS | ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND 0.24 J1c | NS | ND | 0.25 J | ND | 0.37 JB1c | | Butyl benzyl phthalate | ND NS | ND | ND | ND | ND | | Carbazole | NS | NS | ND | NS | Chrysene | ND NS | ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND NS | ND | ND | ND | ND | | Dibenzofuran | ND NS | ND | ND | ND | ND | | Diethylphthalate | ND NS | ND | ND | ND | ND | | Dimethylphthalate | ND NS | ND | ND | ND | ND | | Di-n-butylphthalate | ND NS | ND | 0.82 J | ND | ND | | Di-n-octylphthalate | ND | ND | ND | ND | ND | 1.3 | ND | ND | NS | ND | ND | ND | ND | | Fluoranthene | ND NS | ND | ND | ND | ND | | Fluorene | ND NS | ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | Hexachlorobenzene | ND NS | ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND NS | ND | ND | ND | ND | | Hexachloroethane | ND NS | ND | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Indeno[1,2,3-cd]pyrene | ND NS | ND | ND | ND | ND | | Isophorone | ND NS | ND | ND | ND | ND | | Naphthalene | ND | ND | ND | ND | ND | ND | 11.2 1c | 0.5 J1c | ND | ND | ND | ND | ND | | Nitrobenzene | ND NS | ND | ND | ND | ND | | N-Nitrosodimethylamine | ND NS | ND | ND | ND | ND | | N-Nitroso-di-n-propylamine | NS | NS | ND | NS | N-Nitrosodiphenylamine | NS | NS | ND | NS | Pentachloroethane | ND | ND | NS | Pentachlorophenol | ND NS | ND | ND | ND | ND | | Phenanthrene | ND NS | ND | ND | ND | ND | | Phenol | ND | 3.3 J | ND | ND | ND | ND | 1.2 1c | 0.35 J1c | NS | ND | ND | 0.16 JB1c | ND | | Pyrene | ND NS | ND | ND | ND | ND | | Pyridine | ND | ND | NS | ND | ND | ND | ND | ND | NS | ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -18 (-33) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | ND | ND | NS | ND | 1,3-Dichlorobenzene | ND | ND | NS | ND | 2,4,5-Trichlorophenol | ND | ND | NS ND | ND | ND | ND | | 2,4,6-Trichlorophenol | ND | ND | NS ND | ND | ND | ND | | 2,4-Dichlorophenol | ND | ND | NS ND | ND | ND | ND | | 2,4-Dimethylphenol | ND | ND | NS 1 J1c | ND | 0.3 J1c | ND | | 2,4-Dinitrophenol | ND | ND | NS ND | ND | ND | ND | | 2,4-Dinitrotoluene | ND | ND | NS ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND | ND | NS ND | ND | ND | ND | | 2-Chloronaphthalene | ND | ND | NS ND | ND | ND | ND | | 2-Chlorophenol | ND | ND | NS ND | ND | ND | ND | | 2-Methylnaphthalene | ND | ND | NS ND | ND | ND | ND | | 2-Methylphenol | ND | ND | NS 1.3 1c | ND | ND | ND | | 2-Nitrophenol | ND | ND | NS ND | ND | ND | ND | | 3&4-Methylphenol | ND | ND | NS 0.26 J1c | ND | | 3,3'-Dichlorobenzidine | ND | ND | NS ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND | ND | NS ND | ND | ND | ND | | 4-Bromophenyl phenylether | ND | ND | NS ND | ND | ND | ND | | 4-Chloro-3-methylphenol | ND | ND | NS ND | ND | ND | ND | | 4-Chlorophenyl phenylether | ND | ND | NS ND | ND | ND | ND | | 4-Nitrophenol | ND | ND | NS ND | ND | ND | ND | | Acenaphthene | ND | ND | NS ND | ND | ND | ND | | Acenaphthylene | ND | ND | NS ND | ND | ND | ND | | Acetophenone | NS 0.31 J1c | ND | ND | ND | | Aniline | ND | ND | NS ND | ND | ND | ND | | Anthracene | ND | ND | NS ND | ND | ND | ND | | Benz[a]anthracene | ND | ND | NS ND | ND | ND | ND | | Benzo[a]pyrene | ND | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Benzo[b]fluoranthene | ND | ND | NS ND | ND | ND | ND | | Benzo[g,h,i]perylene | ND | ND | NS ND | ND | ND | ND | | Benzo[k]fluoranthene | ND | ND | NS ND | ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | ND | ND | NS ND | ND | ND | ND | | bis(2-Chloroethoxy)methane | ND | ND | NS ND | ND | ND | ND | | bis(2-Chloroethyl)ether | ND | ND | NS ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND | ND | NS ND | 0.34 J | 0.23 J1c | 0.15 J | | Butyl benzyl phthalate | ND | ND | NS ND | ND | ND | ND | | Chrysene | ND | ND | NS ND | ND | ND | ND | | Dibenz[a,h]anthracene | ND | ND | NS ND | ND | ND | ND | | Dibenzofuran | ND | ND | NS ND | ND | ND | ND | | Diethylphthalate | ND | ND | NS 0.33 J1c | ND | ND | ND | | Dimethylphthalate | ND | ND | NS ND | ND | ND | ND | | Di-n-butylphthalate | ND | ND | NS ND | 1.2 | ND | ND | | Di-n-octylphthalate | ND | ND | NS ND | ND | 0.18 J1c | ND | | Fluoranthene | ND | ND | NS ND | ND | ND | ND | | Fluorene | ND | ND | NS ND | ND | ND | ND | | Hexachloro-1,3-butadiene | ND | ND | NS | ND | Hexachlorobenzene | ND | ND | NS ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND | ND | NS ND | ND | ND | ND | | Hexachloroethane | ND | ND | NS ND | ND | ND | ND | | Indeno[1,2,3-cd]pyrene | ND | ND | NS ND | ND | ND | ND | | Isophorone | ND | ND | NS ND | ND | ND | ND | | Naphthalene | 14 | ND | NS | ND | ND | ND | ND | 2.7 | ND | 1.1 1c | ND | 0.91 JB1c | ND | | Nitrobenzene | ND | ND | NS ND | ND | ND | ND | | N-Nitrosodimethylamine | ND | ND | NS ND | ND | ND | ND | | Pentachloroethane | ND | ND | NS | Pentachlorophenol | ND | ND | NS ND | ND | ND | ND | | Phenanthrene | ND | ND | NS ND | ND | ND | ND | | Phenol | ND | ND | NS 0.38 J1c | ND | ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyrene | ND | ND | NS ND | ND | ND | ND | | Pyridine | ND | ND | NS ND | ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Location ID: | GL- | -20 (-36) | | ug/L | | | | | | | | | | | 1,2,4-Trichlorobenzene | NS ND | ND | ND | | 1,3-Dichlorobenzene | NS ND | ND | ND | | 2,4,5-Trichlorophenol | NS ND | ND | ND | | 2,4,6-Trichlorophenol | NS ND | ND | ND | | 2,4-Dichlorophenol | NS ND | ND | ND | | 2,4-Dimethylphenol | NS ND | 0.2 J1c | 0.33 J1c | | 2,4-Dinitrophenol | NS ND | ND | 1.3 J1c | | 2,4-Dinitrotoluene | NS ND | ND | ND | | 2,6-Dinitrotoluene | NS ND | ND | ND | | 2-Chloronaphthalene | NS ND | ND | ND | | 2-Chlorophenol | NS ND | ND | ND | | 2-Methylnaphthalene | NS ND | ND | ND | | 2-Methylphenol | NS ND | ND | ND | | 2-Nitrophenol | NS ND | ND | ND | | 3&4-Methylphenol | NS ND | ND | | 3,3'-Dichlorobenzidine | NS ND | ND | ND | | 4,6-Dinitro-2-methylphenol | NS ND | ND | ND | | 4-Bromophenyl phenylether | NS ND | ND | ND | | 4-Chloro-3-methylphenol | NS ND | ND | ND | | 4-Chlorophenyl phenylether | NS ND | ND | ND | | 4-Nitrophenol | NS ND | ND | ND | | Acenaphthene | NS ND | ND | ND | | Acenaphthylene | NS ND | ND | ND | | Acetophenone | NS ND | ND | ND | | Aniline | NS ND | ND | ND | | Anthracene | NS ND | ND | ND | | Benz[a]anthracene | NS ND | ND | ND | | Benzo[a]pyrene | NS ND | ND | ND | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |----------------------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------| | Benzo[b]fluoranthene | NS ND | ND | ND | | Benzo[g,h,i]perylene | NS ND | ND | ND | | Benzo[k]fluoranthene | NS ND | ND | ND | | bis(2-Chloro-1-methylethyl)ether | NS ND | ND | ND | | bis(2-Chloroethoxy)methane | NS ND | ND | ND | | bis(2-Chloroethyl)ether | NS ND | ND | ND | | bis(2-Ethylhexyl)phthalate | NS 0.29 J | ND | 0.34 JB1c | | Butyl benzyl phthalate | NS ND | ND | ND | | Chrysene | NS ND | ND | ND | | Dibenz[a,h]anthracene | NS ND | ND | ND | | Dibenzofuran | NS ND | ND | ND | | Diethylphthalate | NS ND | ND | ND | | Dimethylphthalate | NS ND | ND | ND | | Di-n-butylphthalate | NS 0.43 J | ND | ND | | Di-n-octylphthalate | NS ND | ND | ND | | Fluoranthene | NS ND | ND | ND | | Fluorene | NS ND | ND | ND | | Hexachloro-1,3-butadiene | NS ND | ND | ND | | Hexachlorobenzene | NS ND | ND | ND | | Hexachlorocyclopentadiene | NS ND | ND | ND | | Hexachloroethane | NS ND | ND | ND | | Indeno[1,2,3-cd]pyrene | NS ND | ND | ND | | Isophorone | NS ND | ND | ND | | Naphthalene | NS ND | ND | ND | | Nitrobenzene | NS ND | ND | ND | | N-Nitrosodimethylamine | NS ND | ND | ND | | Pentachlorophenol | NS ND | ND | ND | | Phenanthrene | NS ND | ND | ND | | Phenol | NS ND | ND | ND | | Pyrene | NS ND |
ND | ND | | | | | | | | | | | | | | | | | Parameter | 6/1/2010 | 3/1/2011 | 3/1/2013 | 10/1/2013 | 4/1/2014 | 12/1/2014 | 5/1/2015 | 11/1/2015 | 5/1/2016 | 11/1/2016 | 5/1/2017 | 11/1/2017 | 5/1/2018 | |-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------| | Pyridine | NS ND | ND | ND |