

#### What Does the Modeling Tell Us About Good Neighbor SIPs and the New EPA Transport Guidance?



Tad Aburn, Air Director, MDE EPA Transport Meeting – RTP NC - April 8, 2015



#### • The way the EPA guidance on Good Neighbor SIPs will play

- How the effort on "Optimized EGU Controls" fits into the new EPA guidance
- What measures different states may need in their Good Neighbor SIPs to satisfy the Clean Air Act













out

#### Why So Much Modeling From MD?

- Maryland has conducted a large amount of modeling still preliminary but getting close to "SIP Quality"
  - Only state East of the Mississippi designated as a "Moderate" nonattainment area by EPA - Only area required to do modeling and a SIP by 2015
  - Maryland participates actively in the inter-regional modeling coordination process
  - EPA modeling and other regional modeling efforts (LADCO and SESARM) are consistent with Maryland's work
- We believe we have enough modeling to begin to identify what states may need to do for Good Neighbor SIPs & Attainment SIPs (just MD for now) to meet the 75 ppb std.







MDE

#### EPA's Recent Transport Initiative

- On January 22, EPA issued a guidance memo to begin a process that will require states to submit Good Neighbor SIPs to address ozone transport in the East
- The guidance builds from Supreme Court decisions ... and provides preliminary analyses to identify which states are contributing significantly to downwind problem areas
- Today's meeting with states is part of the EPA Process and intended to focus on what measures may need to be included in Good Neighbor SIPs
- Our modeling can begin to give us a glimpse of how the EPA process may play out





MDF

# **Preliminary EPA Contribution Work**

• EPA has performed preliminary modeling to identify which states may owe Good Neighbor SIPs for selected downwind problem areas ... Future problems for **nonattainment** and **maintenance** both identified. Texas problem areas not included.

|                     |        | <b>Contributing States from Preliminary EPA Analyses</b> |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|---------------------|--------|----------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Problem<br>Monitors | A<br>L | A<br>R                                                   | D<br>E | I<br>A | I<br>L | I<br>N | K<br>S | K<br>Y | L<br>A | M<br>D | M<br>I | M<br>O | N<br>J | N<br>Y | O<br>H | O<br>K | P<br>A | T<br>N | T<br>X | V<br>A | W<br>I | W<br>V |
| Harford, MD         |        |                                                          |        |        |        | X      |        | х      |        |        | х      |        |        |        | х      |        | x      |        | х      | X      |        | X      |
| Fairfield, CT 🔶 🕇   |        |                                                          |        |        |        |        |        |        |        | x      | X      |        | x      | x      | X      |        | x      |        |        | X      |        | X      |
| Fairfield, CT 🛛 🛨   |        |                                                          |        |        |        |        |        |        |        | X      |        |        | x      | x      | X      |        | x      |        |        | X      |        | X      |
| Suffolk, NY 🔶       |        |                                                          |        |        | X      | X      |        |        |        | X      | X      |        | X      |        | X      |        | x      |        | x      | X      |        | X      |
| Fairfield, CT 🔶 🛨   |        |                                                          |        |        | x      | x      |        |        |        | x      |        |        | x      | x      | x      |        | x      |        |        | X      |        | X      |
| New Haven, CT ★     |        |                                                          |        |        |        | x      |        |        |        | x      |        |        | x      | X      | X      |        | x      |        |        | X      |        | X      |
| Jefferson, KY       |        |                                                          |        |        | X      | x      |        |        |        |        | X      |        |        |        | X      |        |        |        |        |        |        |        |
| Allegan, MI         |        | х                                                        |        | x      | x      | х      | х      |        |        |        |        | x      |        |        |        | X      |        |        | х      |        | x      |        |
| St. Charles, MO     | X      | x                                                        |        |        | x      |        |        |        | X      |        |        |        |        |        |        | X      |        | x      | x      |        |        |        |
| Camden, NJ 🔶        |        |                                                          | x      |        | x      | x      |        | x      |        |        | x      | x      |        | x      | x      |        | x      |        | х      |        |        | X      |
| Gloucester, NJ 🛧    |        |                                                          | x      |        | x      | x      |        | x      |        | x      | x      |        |        | x      | x      |        | x      |        | х      | x      |        | X      |
| Richmond, NY ★      |        |                                                          | x      |        |        | x      |        | x      |        | x      |        |        | x      |        | x      |        | x      |        |        | X      |        | X      |
| Philadelphia, PA ★  |        |                                                          | x      |        | X      | x      |        | X      |        | x      |        |        | x      |        | X      |        |        | x      | x      | X      |        | X      |
| Sheboygan, WI       |        |                                                          |        |        | x      | X      | X      |        | X      |        | X      | x      |        |        |        | X      |        |        | X      |        |        |        |

= NY/NJ/CT  $\bigstar$ 

# **Control Measures in the MD Modeling**

- More detail provided later ...
  - But the current modeling focuses on 3 basic packages of control measures
- Measures that are "on the way" include:
  - Over 40 control programs: generally older federal programs that continue to generate deeper reductions as they phase in or as fleets turn over
- Optimized EGU reductions include:
  - All coal-fired units in selected eastern states (MD, PA, VA, NC, TN, KY, WV, OH, IN, IL, MI, CT, NJ, NY, WI, LA, MO) running controls in the summertime consistent with emission rates measured in earlier years
- New OTC and local Maryland measures include:
  - Nine new OTC model reduction programs for mobile sources and other sources implemented in just the OTC states ... and
  - Additional EGU and mobile source reductions just in MD





#### Modeling Preliminary EPA Problem Areas

This is what Maryland presented at the March 15, 2015 collaborative meeting. We have now updated this modeling to add in optimized controls in other states, a surrogate for a local strategy around the NY/NJ/CT area and to recalculate future year design values with EPA's new guidance

| Harford, MD         | 240251001 | 90          | 0 77.3 75.7                              |       |      | 74.4 |  |
|---------------------|-----------|-------------|------------------------------------------|-------|------|------|--|
| Fairfield, CT       | 090013007 |             | (1                                       |       | 74.0 | 72.9 |  |
| Fairfield, CT       | 090019003 | Inese       | three counties $n \text{ the } NY/NI/C'$ | 75.7  |      |      |  |
| Suffolk, NY         | 361030002 | no          | nonattainment area. 79.1                 |       |      |      |  |
| Maintenance Probler | ns - 2018 | Beca        | ause these areas                         | s are |      |      |  |
| Fairfield, CT       | 090010017 | down        | wind of MD, no                           | 76.7  |      |      |  |
| New Haven, CT       | 090099002 | l0<br>optim | 74.1                                     |       |      |      |  |
| Jefferson, KY       | 211110067 | or CT       | have been inclu                          | 69.7  |      |      |  |
| Allegan, MI         | 260050003 | the cu      | irrent MD mod                            | 73.1  |      |      |  |
| Saint Charles, MO   | 291831002 | 82.3        | 72.2                                     |       | 71.9 | 71.9 |  |
| Camden, NJ          | 340071001 | 82.         | No Optimized                             |       | 70.5 | 69.5 |  |
| Gloucester, NJ      | 340150002 | 84.         | EGUs in WI, K                            | S,    | 71.7 | 70.6 |  |
| Richmond, NY        | 360850067 | 81.         | LA, MO, OK o                             | or    | 74.9 | 73.9 |  |
| Philadelphia, PA    | 421010024 | 83.         | X included in a                          | the   | 0    | 70.8 |  |
| Sheboygan, WI       | 551170006 | 84.3        | /3.0                                     |       | 75.4 | 75.4 |  |



|                     |           | Design        | <b>2018 Future Projections</b> |                          |                                       |  |  |  |  |  |
|---------------------|-----------|---------------|--------------------------------|--------------------------|---------------------------------------|--|--|--|--|--|
| County, State       | AQS #     | Value<br>2011 | Measures<br>"on the way"       | Add in Optimized<br>EGUs | Add new OTC &<br>local MD<br>measures |  |  |  |  |  |
| Attainment Problen  | ns - 2018 |               |                                |                          |                                       |  |  |  |  |  |
| Harford, MD         | 240251001 | 90            | 76.0                           | 74.5                     | 73.5                                  |  |  |  |  |  |
| Fairfield, CT       | 090013007 | 84 3          | 73.0                           | 72.5                     | 71.5                                  |  |  |  |  |  |
| Fairfield, CT       | 090019003 | Ne            | w EPA guidanc                  | e on 5 1                 | 74.1                                  |  |  |  |  |  |
| Suffolk, NY         | 361030002 | cal           | culating future                | 76.7                     |                                       |  |  |  |  |  |
| Maintenance Problem | ns - 2018 | de<br>Onti    | sign values add                | ed.                      |                                       |  |  |  |  |  |
| Fairfield, CT       | 090010017 | in N          | Y. NJ and CT a                 | 74.9                     |                                       |  |  |  |  |  |
| New Haven, CT       | 090099002 | 05.1          | /4.1                           | 73.8                     | 72.8                                  |  |  |  |  |  |
| Jefferson, KY       | 211110067 | 82.0          | 70.6                           | 69.0                     | 69.0                                  |  |  |  |  |  |
| Allegan, MI         | 260050003 | 82.7          | 73.0                           | 72.8                     | 72.8                                  |  |  |  |  |  |
| Saint Charles, MO   | 291831002 | 82.3          | 71.3                           | 69.6                     | 71.1                                  |  |  |  |  |  |
| Camden, NJ          | 340071001 | 82.           | <b>Optimized EGU</b>           | Js 69.6                  | 68.6                                  |  |  |  |  |  |
| Gloucester, NJ      | 340150002 | 84.           | added in WI, K                 | <mark>S,</mark> 70.9     | 69.9                                  |  |  |  |  |  |
| Richmond, NY        | 360850067 | 81. L         | A, MO, OK or                   | 73                       |                                       |  |  |  |  |  |
| Philadelphia, PA    | 421010024 | 83.           | when possible                  | 70.4                     |                                       |  |  |  |  |  |
| Sheboygan, WI       | 551170006 | 84.3          | 75.4                           | 75.2                     | 75.2                                  |  |  |  |  |  |



#### Other Difficult Monitors in the East - Updated

| County, State      | AQS #     | Design<br>Value<br>2011 | 2018<br>Measures "on<br>the way" | 2018 – Add in<br>Optimized<br>EGUs | 2018 – Add<br>new OTC<br>and local<br>MD<br>measures |
|--------------------|-----------|-------------------------|----------------------------------|------------------------------------|------------------------------------------------------|
| Prince Georges, MD | 240338003 | 82.3                    | 68.6                             | 67.0                               | 66.0                                                 |
| New Castle, DE     | 100031010 | 78.0                    | 66.6                             | 65.1                               | 64.1                                                 |
| Bucks, PA          | 420170012 | 80.3                    | 69.3                             | 68.0                               | 67                                                   |
| Fairfax, VA        | 510590030 | 82.3                    | 69.4                             | 68.1                               | 67.1                                                 |
| Wayne, MI          | 261630019 | 78.7                    | 72.9                             | 72.8                               | 72.8                                                 |
| Mecklenburg, NC    | 371191009 | 79.7                    | 63.5                             | 63.0                               | 63.0                                                 |
| Fulton, GA         | 131210055 | 81.0                    | 70.3                             | 70.1                               | 70.1                                                 |
| Knox, TN           | 470931020 | 71.7                    | 61.7                             | 61.2                               | 61.2                                                 |
| Hamilton, OH       | 390610006 | 82.0                    | 69.7                             | 67.5                               | 67.5                                                 |
| Franklin, OH       | 390490029 | 80.3                    | 69.7                             | 69.2                               | 69.2                                                 |



All values in parts per billion (ppb)





## NY/NJ/CT Nonattainment Area

- There are very preliminary analyses started that begin to look at how a strategy that targets smaller combustion sources ... with relatively large peak day NOx emissions ... might help the NY/NJ/CT nonattainment area
- This sensitivity run was designed to get a very rough idea of how that kind of a strategy might work

| • | Extra | 10% | NOx | reduction | in | just | NY, | NJ, | CT, | PA | and | MD |
|---|-------|-----|-----|-----------|----|------|-----|-----|-----|----|-----|----|
|---|-------|-----|-----|-----------|----|------|-----|-----|-----|----|-----|----|

|               |           | Desig              | 2018 Future Projections  |                             |                                       |                                                                  |  |  |  |  |  |
|---------------|-----------|--------------------|--------------------------|-----------------------------|---------------------------------------|------------------------------------------------------------------|--|--|--|--|--|
| County, State | AQS<br>#  | n<br>Value<br>2011 | Measures<br>"on the way" | Add in<br>Optimized<br>EGUs | Add new OTC<br>& local MD<br>measures | Add in 10% Extra<br>NOx Reduction in<br>NY, NJ, CT, PA<br>and MD |  |  |  |  |  |
| Fairfield, CT | 090013007 | 84.3               | 73.0                     | 72.5                        | 71.5                                  | 71.0                                                             |  |  |  |  |  |
| Fairfield, CT | 090019003 | 83.7               | 75.5                     | 75.1                        | 74.1                                  | 73.6                                                             |  |  |  |  |  |
| Suffolk, NY   | 361030002 | 83.3               | 78.2                     | 77.7                        | 76.7                                  | 75.7                                                             |  |  |  |  |  |
| Fairfield, CT | 090010017 | 80.3               | 76.4                     | 75.9                        | 74.9                                  | 74.5                                                             |  |  |  |  |  |
| New Haven, CT | 090099002 | 85.7               | 74.1                     | 73.8                        | 72.8                                  | 71.7                                                             |  |  |  |  |  |

New EPA guidance on calculating future year design values added. Optimized EGU strategy in NY, NJ and CT added. Surrogate for new local strategy also added (NY, NJ, CT, PA and MD)



- ... What does the MD modeling say about what control measures states may need to include in their Good Neighbor SIPs?
  - Very preliminary Based upon current modeling effort
  - For all of the toughest areas: Harford County, MD NJ/NY/CT nonattainment area Sheboygan, WI ... all of the other tough areas in the east ... except Texas

| Control<br>Programs<br>Needed | СТ | DE | IL | IN | KY | MD | MI | мо | NJ | NY | ОН | РА | TN | TX | VA | wv |
|-------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Optimized EGU<br>controls     | Х  | Х  | X  | Х  | Х  | +  | Х  | Х  | Х  | X  | Х  | Х  | Х  | х  | Х  | Х  |
| Aftermarket<br>Catalyst       | X  | Х  |    |    |    | Х  |    |    | X  | X  |    | Х  |    |    | X  |    |
| On- and off-<br>road idling   | Х  | Х  |    |    |    | Х  |    |    | Х  | Х  |    | Х  |    |    | Х  |    |
| OTC VOC<br>initiatives        | X  | Х  |    |    |    | X  |    |    | X  | X  |    | X  |    |    | X  |    |
| SmartWays                     | X  | Х  |    |    |    | X  |    |    | X  | X  |    | X  |    |    | X  |    |
| Smaller<br>Combustion         | ?  |    |    |    |    | ?  |    |    | ?  | ?  |    | ?  |    |    | ?  |    |

# Where Do Reductions Come From?





#### Where Do the OTB/OTW Reductions Come From?

- There are over 40 control programs in this piece of our modeling
  - Generally older control programs that continue to generate deeper reductions as they are phased in or as fleets turn over
- By far, the largest contributors to NOx reductions in the OTB/OTW category are mobile sources
  - Tier 2 Vehicle Standards
  - Federal fuel economy (CAFÉ) standards
  - Heavy Duty Diesel Standards
  - Marine Diesel Engine Standards
  - Emission Control Area (ECA) requirements
  - Many more ...
- VOC reductions from the OTB/OTW category come from programs like
  - Federal consumer product and paint regulations
  - Tier 2 Vehicle Standards
  - VOC RACT ... Many more ...







# What "Inside MD" Reductions are Included?

- New EGU regulation for NOx
  - Required for RACT and Attainment
- Maryland efforts on mobile sources
  - Electric vehicle initiatives
  - ZEV efforts
  - "Beyond Conformity" partnerships
- Primarily NOx reductions from EGU regulation







#### Reductions in Transport Included?

- Three new significant transport strategies are included
- The Federal Tier 3 Vehicle and Fuel Standards ... maybe the most significant new transport strategy
- New OTC Regional Measures ... just in OTC states
- "Good Neighbor Partnerships" that address coal-fired power plants in 10 states upwind of MD are also included in the modeling (PA, VA, NC, TN, KY, WV, OH, IN, IL, MI)\*
  - Focuses primarily on the large potential reductions from insuring that currently installed technologies are run well
    - Also includes significant reductions from units scheduled for retirement (or other major changes) by 2018
  - Already a discussion item between states and EGU operators





\* Recent sensitivity runs added in optimized EGUs in CT, NJ, NY, WI, LA and MO to look at other tough nonattainment issues in CT, NY and WI



MDE

# What Inside the OTC Measures are Included?

- Mobile Source Initiatives
  - Aftermarket Catalyst effort
  - ZEV/CALEV state programs
  - Onroad and offroad idling
  - Heavy Duty I&M
  - Smartways
- NOx and VOC reductions
- New potential initiatives like Ports are not included

- Stationary and Area Source Efforts
  - Third Generation OTC/SAS
    Initiatives
    - Consumer products
    - Architectural and Industrial Maintenance (AIM) Coatings
    - Auto coatings
    - Ultra Low NOx burners
- NOx and VOC reductions







#### Reductions from OTC Measures

| OTC Model<br>Control<br>Measures | Regional<br>Reductions<br>(tons per year) | Regional<br>Reductions<br>(tons per day) |  |  |  |
|----------------------------------|-------------------------------------------|------------------------------------------|--|--|--|
| Aftermarket<br>Catalysts         | 14,983 (NOx)<br>3,390 (VOC)               | About a                                  |  |  |  |
| On-Road Idling                   | 19,716 (NOx)<br>4,067 (VOC)               | day total                                |  |  |  |
| Nonroad Idling                   | 16,892 (NOx)<br>2,460 (VOC)               | Emission                                 |  |  |  |
| Heavy Duty I & M                 | 9,326 (NOx)                               | in the 13                                |  |  |  |
| Enhanced<br>SMARTWAY             | 2.5%                                      | OTC states                               |  |  |  |
| Ultra Low NOx<br>Burners         | 3,669 (NOx)                               | 10 (NOx)                                 |  |  |  |
| Consumer Products                | 9,729 (VOC)                               | 26 (VOC)                                 |  |  |  |
| AIM                              | 26,506 (VOC)                              | 72 (VOC)                                 |  |  |  |
| Auto Coatings                    | 7,711 (VOC)                               | 21 (VOC)                                 |  |  |  |

- Just in the OTC states for now
- Reductions developed as part of OTC Committee work
- Thanks to Roger Thunell. Emily Bull, Marcia Ways, Joseph Jakuta and Julie McDill
- These emission reduction estimates are being updated as we speak



# **Reductions – Optimized EGU Controls**



DEPARTMENT OF THE ENVIRONMEN

Page 18

#### The Next Ozone Standard - Updated

#### ... will optimized EGU controls help with how areas might be designated under a revised ozone standard?

- EPA may be designating areas as "nonattainment" under a new 65 to 70 ppb standard
- The data for 2015 and 2016 could be very important EPA uses 3 years of data for designations
- Having power plants run their controls well may be very important for some areas and how they might be designated

| Monitor<br>(County, State) | AQS<br>Number | 2014<br>Design<br>Value | Potential Lost Ozone<br>Benefit – Without<br>Optimized EGUs* |
|----------------------------|---------------|-------------------------|--------------------------------------------------------------|
| Greene, IN                 | 180550001     | 71 ppb                  | 5 to 7 ppb                                                   |
| Boone, KY                  | 210150003     | 65 ppb                  | 5 to 7 ppb                                                   |
| Centre, PA                 | 420270100     | 67 ppb                  | 5 to 6 ppb                                                   |
| Person, NC                 | 371450003     | 66 ppb                  | 3 to 11 ppb                                                  |
| Hamilton, OH               | 390610010     | 73 ppb                  | 4 to 6 ppb                                                   |
| Cambria, PA                | 420210011     | 66 ppb                  | 6 to 7 ppb                                                   |
| Kanawa, WV                 | 540390010     | 69 ppb                  | 2 to 5 ppb                                                   |
| Garrett, MD                | 240230002     | 68 ppb                  | 2 to 3 ppb                                                   |

\* From latest MD preliminary modeling





## Other Control Programs ...

- ... that could help reduce transport by 2018?
- What does the modeling tell us about remaining contribution in 2018?
- Is there any "low hanging fruit" that could be considered in the short run
  - 2017 or 2018 reductions
- A chance for EPA to be a "Good Neighbor Helper"









# LADCO OSAT - Edgewood, MD

- The CAMX model has a source apportionment tool called OSAT (Ozone Source Apportionment Tool) that allows the model to work backwards and ask questions like "what states" or "what source sectors" sent the ozone to Edgewood MD – or Sheboygan WI – or Atlanta GA?
- The following series of OSAT runs from Maryland and LADCO generate similar answers and are designed to help identify ...
  - "What source sectors are remaining significant contributors to eastern, mid-west and southern problem areas.
- Helpful for current Good Neighbor efforts, but also informative for looking ahead to the next standard



#### UMD OSAT - Edgewood, MD

- Daily contribution from OSAT July 7, 2011
- Anthropogenic contribution dominated by "other than EGU" source sectors







## LADCO OSAT - Louisville, KY

#### 75 ppb $O_3$ threshold-ERTAC 2.2



MARYLAND DEPARTMENT OF THE ENVIRONMENT



#### LADCO OSAT - St. Louis, MO

#### 75 ppb O<sub>3</sub> threshold-ERTAC 2.2



Boundary condition contribution not shown





#### 75 ppb O<sub>3</sub> threshold-ERTAC 2.2





### UMD OSAT – Sheboygan, WI

• Daily contribution from OSAT – July 7, 2011

**MDE** 

• Anthropogenic contribution dominated by "other than EGU" source sectors







#### LADCO OSAT - Atlanta, GA

#### 75 ppb O<sub>3</sub> threshold-ERTAC 2.2



### Three Additional Early Actions for Consideration

- The OTC states have developed model regional programs for several mobile and area source control programs.
- Three appear to be low hanging fruit as they are supported by affected sources ... with one common complaint ...
  - "This OTC Model Program would work best if implemented by EPA through a Federal Rule"
- The Three:
  - OTC Model Aftermarket Catalyst Rule
    - About 150 tons per day (tpd) of new NOx reduction across the East
  - The Third Generation OTC Model Consumer Product Rule
    - About 90 tpd of new VOC reductions across the East
  - The Third Generation OTC Model AIM Rule
    - Over 220 tpd of new VOC reductions across the East







## **Summary – MD Thoughts on Control Measures**

... What does the Maryland modeling tell us about short-term control measures that may be needed for Good Neighbor SIPs?

- Running EGU controls well (Optimized EGUs) appears to be a common sense strategy that would be beneficial to many areas ...
  - For Good Neighbor responsibilities and for future potential designations
    - At a minimum, EGUs should be expected to run their controls well enough to at least meet 30-day rolling average rates consistent with better rates seen in earlier years when controls were run more efficiently
      - Generally in the .06 to .10 lb/MMBtu range as a 30-day rolling average
      - This can be done very simply as a constraint on the Federal trading programs
  - Up to 500 tpd of NOx reductions in the East
- The nine OTC measures appear to be important for inclusion in Good Neighbor SIPs for states in the OTR Maybe other areas?
  - About 150 tpd NOx reduction in the 13 OTC states. VOC reductions as well.
- Three control programs may be very helpful if implemented as a Federal Rule
  - Expanded OTC Aftermarket Catalysts across the East
  - Expanded OTC Consumer Products across the East
  - Expanded OTC AIM Rule across the East



#### Other Potential Future Control Measures

- The OTC states continue to study new control measures that may be needed in the future
- NOx focused looking for biggest bang for the buck strategies
- Several other strategies to think about:
  - Heavy Duty Truck Engines EPA and California are both studying this issue. Potentially very significant for transport reductions/Good Neighbor SIPs in the future.
    - Potentially large NOx reductions
  - Ports, Ships, Boats and other Marine Engine strategies
    - Both LADCO and MD have identified this as a priority for the future. Potentially large NOx reductions
  - Peak Day NOx Emission Strategies
    - Very significant issue that needs continued study
    - An OTC priority
    - Fixing the current exemptions in the RICE rule may be a good place to start





MDE

# Next Steps with the Modeling

- Maryland, LADCO, SESARM, CENSARA and OTC ... in partnership with EPA ... will continue to work together through the State Air Directors Collaborative to refine and improve the inventories and photochemical modeling – A dialogue with Texas may be important
- There are some important updates to the modeling that are in the works as part of the Maryland effort:
  - These updates will result in minor changes to the model results, but they are unlikely to change the overarching conclusions from the current effort
    - Better chemistry inputs
    - New biogenic (trees and natural stuff) inventory
    - Updates to other parts of the inventory including ERTAC updates and MOVES 14
    - New work on projecting power plant emissions using ERTAC (Eastern Regional Technical Advisory Committee)





MDE



# Thanks

The real work is done by Mike Woodman, Dave Krask, Jen Hains, Joel Dreessen, Emily Bull, Kathy Wehnes, Carolyn Jones and Roger Thunell at MDE and Tim Canty, Dan Goldberg, Hao He, Xinrong Ren, Dale Allen, Ross Salawitch, Russ Dickerson, Tim Vinciguerra, Dan Anderson, Samantha Carpenter, Linda Hembeck and Sheryl Ehrman at UMCP. Thanks to support/input from MARAMA, OTC, NH, NYDEC, NJDEP, ME, VADEQ, LADCO, SESARM, NASA, AQAST, MOG and EPA.

